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Editorial on the Research Topic

Haplotype Analysis Applied to Livestock Genomics

The recent availability of dense panels of single nucleotide polymorphism (SNP) markers has
permitted a finer investigation of genome architecture, a deeper understanding of biology
and evolution, and the implementation of marker-assisted and genomic selection in livestock
species. Paradigmatic examples of the use of SNP panels include understanding domestication,
population diversity, inbreeding, admixture, demographic trajectories, identification of loci
associated with economically important traits, and accurate prediction of breeding values. The
common denominator of the vast majority of the research conducted in livestock to date has
relied on analytical tools that treat genetic markers as individual and independent variables. We
know, however, that genetic inheritance is driven by segments of closely interlinked nucleotides.
Thus, utilizing phased multi-marker segments (i.e., haplotypes) holds the potential of improving
existing models. This is particularly true in genome-wide association studies (GWAS) and genomic
predictions, which are analyses that rely on the concept that information of unobserved causal
variants is captured by correlation (linkage disequilibrium—LD) with nearby (observed) markers.

The potential utilization of haplotypes in genetic analysis is highly varied. Haplotypes are used
in the imputation process. Imputation is the in silico procedure that allows us to expand upon our
information on sparse SNPmarkers produced by existing microarray data up to the whole-genome
sequence level without additional genotyping and sequencing.

Since haplotypes may serve as better proxies for causal variants than single SNP markers,
the incorporation of haplotype data in genomic predictions seems promising in the absence of
information on functional alleles. In extensive conditions, e.g., in the tropics, haplotypes could be
used to select favorable combinations of variants in crossbreds and advanced backcross programs
to retain those important for adaptation to local environmental conditions as well as those for
improved production. Also, the models applied to the characterization of livestock genetic diversity
could be re-designed to better estimate relationship and inbreeding, facilitate the investigation of
difficult traits, as those involved in adaptation to different production systems and ecosystems, and
extend the investigation of genotype-by-environment interaction. Future developments in animal
breeding and genetics will be strongly based on the increasing availability of data, both molecular
and phenotypic. However, our ability to dissect and understand livestock complex traits is still
limited. The use of haplotypes instead of single markers and of more correct inheritance models
may contribute to a better understanding of the genetics underlying livestock trait complexity
and biology.

The “Haplotype Analysis Applied to Livestock” Research Topic is intended to collect empirical
studies and theoretical papers exploring, evaluating, and improving the use of haplotype analysis
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in livestock. After its conclusion, it managed to collect 12
articles from 89 authors, with subjects ranging from relatively
straightforward diversity analyses to complex applications to
unravel the genetic architecture of quantitative traits. Data used
in the research studies were SNPmicroarray data, whole-genome
sequences, or a combination of both.

Haplotype size is influenced by recombination, and
consequently by the level of linkage disequilibrium (LD)
existing in a population. In livestock, LD has been largely
influenced by human decisions since domestication, as humans
have ruled livestock demography and recent selection intensity
and direction. The extent of LD in livestock is reviewed by
Qanbari, with a focus on cattle and chicken populations. The
study provides insights into pair-wise allelic correlations and
haplotype structure in the genomes of livestock.

The concept of LD was also utilized in the development of
hierarchical clustering methods for haplotype-based genomic
predictions by Won et al. Their study showed increased
accuracies when haplotypes, rather than single SNPs, were used
to predict genomic breeding values. Importantly, the authors
found that not all traits benefit from the use of haplotype data
equally, and that haplotype size should be optimized on a case-
by-case basis. Therefore, their results suggest a need for further
improvements in methods for haplotype size selection that can
consider both population structure and trait architecture.

Haplotypes are also used to detect selection signatures. An
example of their utilization is shown by Aliloo et al., who sought
genomic regions influencing milk production and carrying
selection signals related to variation in environment, climate, and
disease challenges on the African continent. The study focused
on highly admixed populations of exotic and local cattle breeds.
Finding selection signatures related to tolerance to African
animal trypanosomiasis in Sheko cattle was the goal ofMekonnen
et al. The identified genomic regions were further investigated to
find promising candidate genes and over-represented genomic
pathways influencing trypanotolerance. A promising regulator
appears to be Caspase protease, which could play a role in the
design of future intervention strategies to improve the health of
cattle populations.

A wider diversity study by Luzuriaga-Neira et al. described
the population structure and the relationships among South
American chicken populations. Understanding the origin and
assessing the extent of genetic diversity is pivotal in safeguarding
and valuating animal genetic resources. Unfortunately, local
chicken populations are often neglected in this respect.
Admixture studies revealed the strong influence of commercial
populations but also discovered unusual gene flows within
the continent.

The correct identification of haplotypes based on reference
genomic data is one of the cornerstones of imputation
techniques. Butty et al. compared different methods designed
to optimize the selection of samples to compose a reference
haplotype library supporting routine imputation. In summary, if
the reference set is empty, key ancestors and animals carrying
common haplotypes should be the first to be included in
the library. Identification of the latter can be conducted with
the new Highly Segregating Haplotype method presented by
the authors. As the reference set grows, rare alleles become

more important, in which case newer reference samples should
be selected using the Inverse Selection Method. Faux et al.
presented a method for automatically matching haplotypes used
for imputation, which utilizes extremely randomized trees in
a random forests method. The approach holds great potential
in improving imputation accuracy, as well as in developing
new applications that rely on haplotype matching, such as
identification of deleterious haplotypes or prediction of carriers
of complex structural variants.

The power of haplotypes in capturing information about
unobserved sequence variants has vast applications. For example,
Meier et al. analyzed casein variants in German Black Pied cattle,
Xu et al. provided insight into the genomic architecture of scrotal
hernia in pigs, Oyelami et al. revealed new candidate genes and
QTLs for meat quality and disease resistance in pigs, and Zhang
et al. investigated hip-height and muscle development in beef
cattle. The overarching theme in these studies was the use of
haplotypes, instead of single SNPs, to identify relevant regions of
the genome to be used in DNA-assisted breeding programs.

From a general perspective, however, the natural hereditary
processes and the genetic architecture of economic traits are
profoundly complex. This is in contrast with the need for
the development of reliable models. The hierarchical modeling
technique developed by Selle et al. combined simulation studies
and cattle data with the goal to improve estimates of haplotype
effects on traits of interest, especially in cases of limited data
availability for rare haplotypes.

The papers included in the Research Topic “Haplotype
Analysis Applied to Livestock” are examples of how these
genomic segments could be utilized in a wide variety of ways. We
invite you to browse and read themwith the hope that they widen
your overview and give you new ideas for future investigations.
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Imputation of high-density genotypes to whole-genome sequences (WGS) is a cost-
effective method to increase the density of available markers within a population.
Imputed genotypes have been successfully used for genomic selection and discovery
of variants associated with traits of interest for the population. To allow for the use
of imputed genotypes for genomic analyses, accuracy of imputation must be high.
Accuracy of imputation is influenced by multiple factors, such as size and composition
of the reference group, and the allele frequency of variants included. Understanding
the use of imputed WGSs prior to the generation of the reference population is
important, as accurate imputation might be more focused, for instance, on common
or on rare variants. The aim of this study was to present and evaluate new methods
to select animals for sequencing relying on a previously genotyped population. The
Genetic Diversity Index method optimizes the number of unique haplotypes in the future
reference population, while the Highly Segregating Haplotype selection method targets
haplotype alleles found throughout the majority of the population of interest. First the
WGSs of a dairy cattle population were simulated. The simulated sequences mimicked
the linkage disequilibrium level and the variants’ frequency distribution observed in
currently available Holstein sequences. Then, reference populations of different sizes,
in which animals were selected using both novel methods proposed here as well as
two other methods presented in previous studies, were created. Finally, accuracies
of imputation obtained with different reference populations were compared against
each other. The novel methods were found to have overall accuracies of imputation
of more than 0.85. Accuracies of imputation of rare variants reached values above
0.50. In conclusion, if imputed sequences are to be used for discovery of novel
associations between variants and traits of interest in the population, animals carrying
novel information should be selected and, consequently, the Genetic Diversity Index
method proposed here may be used. If sequences are to be used to impute the overall
genotyped population, a reference population consisting of common haplotypes carriers
selected using the proposed Highly Segregating Haplotype method is recommended.

Keywords: dairy cattle, sequencing, imputation, haplotypes, accuracy, selection
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INTRODUCTION

Globally, over 2.6 million cattle have been genotyped to date and
the number of genotyped animals is expected to further grow in
the coming years1. Dairy cattle genotyping is typically performed
using genotype arrays of low or medium densities. Variants on
genotype arrays are not selected randomly, rather they are evenly
distributed over the whole genome and selected for their high
level of segregation across multiple breeds (Boichard et al., 2012).
Such a selection of variants has the advantage of enabling the
application of the same array for multiple breeds, thus simplifying
comparison between breeds. A disadvantage, however, is that
they show an ascertainment bias, and variants with a low minor
allele frequency (MAF) are underrepresented in genotype array
data. The term “rare variants” henceforth refers to variants with
a MAF lower than 0.05. Depending on the number of animals
included and the alleles they carry, each genomic dataset contains
its share of rare variants.

The lack of knowledge about rare variants hinders the
discovery of quantitative trait loci (QTL) that, for example,
appeared recently in a population through mutation (Fritz et al.,
2013). Observed low MAF of variants can also be due to natural
or artificial selection against an allele that has a negative impact
on animal fitness or performance, thus indicating that a rare
variant could be linked to a trait of interest or even a lethal
malformation. An example of a rare variant associated with a
disease can be found in a study by Drögemüller et al. (2009) in
which a variant with a MAF of 0.03 is associated to arachnomelia
(a calf malformation also called spider legs) in Brown Swiss cattle.
Errors during genotyping or sequencing can also lead to wrongly
identified variants with low MAF (Zhang et al., 2016).

Whole-genome sequencing can help provide better insight
about rare variants (Daetwyler et al., 2014) but the costs of
Next-Generation Sequencing technologies are still too high for
mass sequencing of animals (Fraser et al., 2018). Imputation
allows inference of whole-genome sequence (WGS) information
for animals genotyped with various arrays based on complete
WGS information of a reference population. The in silico creation
of WGS from the readily available high number of genotypes
enables a drastic increase in genotypic information for a large
number of animals. High levels of imputation accuracy, however,
are needed to allow use of the predicted genotypes for genomic
evaluation or GWAS as demonstrated by Marchini and Howie
(2010). The imputation from 50K to HD has been widely studied,
and accurate HD genotypes are routinely imputed in dairy
cattle genetic evaluation centers (e.g., Hozé et al., 2013; Ma
et al., 2013; Pausch et al., 2013). Imputation to WGS variants,
however, still needs to be improved. Accuracy of imputation
is influenced by: (a) the size of the reference population;
(b) the imputation method; (c) the relatedness between the
reference and the target population; (d) the genotyping densities
used, the difference in the number of variants and the linkage
disequilibrium between SNP of both low- and high-density
panels; (e) the MAF of the variants considered; and (f) the genetic
diversity of the reference population. A thorough review of the

1https://queries.uscdcb.com/Genotype/cur_ctry.html, last accessed 2018-09-23

factors influencing accuracy of imputation in livestock species
was written by Calus et al. (2014). The selection of animals
to include in reference populations influences many of these
parameters and is thus of high importance. Druet et al. (2014)
stated that as the MAF of variants becomes lower, the method
used to select animals to be included in the reference population
becomes more important.

The international dataset created under the scope of the
1,000 Bull Genomes Project (Daetwyler et al., 2014) is a possible
reference set for imputation of cattle array genotypes to WGS. Up
to Run 5 of this project, most animals sequenced were selected for
their high genetic contribution to the population of their breed
(Goddard and Hayes, 2009). These key ancestors carry most of
the common variants for the populations they were selected from
but lack information on rare variants. Pausch et al. (2017) showed
that overall average imputation accuracy of array genotypes to
the variant list from the 1,000 Bull Genomes Project was greater
than 90%, but that the imputation accuracy of rare variants did
not reach 70%. Low imputation accuracy of rare variants hinders
the discovery of causal variants, not only for highly polygenic
traits, but also for recent mutations that lead to malformations
or loss of fitness (Li et al., 2011). Zhang et al. (2017) showed
that the lack of accuracy in imputation of variants with low
MAF also limits the success of genomic selection, particularly
for health traits. Improved accuracy of WGS imputation will not
only increase the probability of discovering causal variants for
newly recognized diseases or malformations, but will also enable
more precise categorization and selection of variants for routine
genomic selection programs for traditional and novel traits.

Various methods have been proposed to select animals
for sequencing, the first of which relied solely on pedigree
information and targeted influential ancestors of the population
of interest. Boichard et al. (1997) developed a method to
identify animals that have the greatest genetic contribution to
a population based on its pedigree information. This method
was implemented and widely distributed using the software
PEDIG (Boichard, 2002). The key ancestors method, developed
thereafter, relied on the numerator relationship matrix of the
genotyped population of interest and also aimed to maximize the
proportion of genes of the population captured by the selected
animals (Goddard and Hayes, 2009). As the number of genotyped
animals increased, selection methods have been adapted to
consider genomic information. Methods were proposed which
emphasize selection of animals carrying common haplotypes.
Druet et al. (2014) presented a method maximizing the
number of haplotypes selected. The key contributors method
presented by Neuditschko et al. (2017) defines animals as
informative based on the genomic relationship matrix of the
population and aims to select individuals within possible
subpopulations. Another selection method developed by Gonen
et al. (2017) involved the algorithm AlphaSeqOpt that not
only selects individuals that, together, represent the maximum
haplotype diversity of a population, but also suggests different
sequencing coverages in situations where the sequencing costs
are predetermined. An optimized version of AlphaSeqOpt was
proposed by Ros-Freixedes et al. (2017), similarly considering
situations where the sequencing costs were predetermined, but
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additionally targeting haplotypes instead of individuals. This
method was shown to improve the phasing accuracy of the
reference population it formed, even if it still maximizes the
proportion of the total haplotypes included. In contrast to
the previously described methods, which target representative
animals of a population, the Inverse Weighted Selection Method
(Bickhart et al., 2016) was developed to prioritize individuals for
their higher genetic diversity at the haplotype level, classifying
animals based on the rarity of their haplotypes. The Inverse
Selection Methods was shown to allow sequencing of the
maximum number of haplotypes with the fewest number of
animals. In this study, two new selection methods are presented:
the optimized Genetic Diversity Index (GDI), which targets
animals carrying more rare haplotype alleles than the average
individuals and the Selection of Highly Segregating Haplotype
(HSH), which aims at selecting animals whose haplotypes are
highly segregating, but not selected yet. The GDI method aims
to improve the accuracy of imputation of rare variants through
selection of animals that, together, carry the most different
haplotypes, whereas the HSH should help to improve overall
accuracy through selection of animals that carry the highest
segregating haplotypes not previously sequenced.

The objectives of this study were: (1) to describe two
innovative methods to select animals for sequencing from a
population, and (2) to compare these methods to two previously
described selection methods: the key ancestors method and the
Inverse Weighted Selection method.

MATERIALS AND METHODS

Firstly, the WGS and high-density array genotypes of a
dairy cattle population were simulated. Secondly, reference
populations were created by selecting animals based on four
different methods. Thirdly, a set of simulated target animals were
imputed using the different reference populations. Finally, the
imputation accuracies of the different methods were compared
to each other considering sets of variants, defined depending on
their MAF (Figure 1).

Simulation
Population Structure
Large scale WGS data was simulated with the QMsim program
(Sargolzaei and Schenkel, 2009) using three subsequent
populations. First, a historical population was simulated to
create linkage disequilibrium (LD) between the variants. Then,
a second population, termed LongRangeLD, was simulated
to increase long-range LD between variants. Finally, a third
population (CurrentPop) was simulated for downstream
analysis. CurrentPop simulated the latest years of dairy cattle
breeding, in which few selected sires were used heavily in the
breeding population.

The historical population considered an equal number of
individuals from both sexes, discrete generations, random mating
at the gametic level, no selection, and no migration. A total of
800 males and 800 females were simulated for 4,000 generations
to achieve mutation-drift equilibrium. Ten further historical

FIGURE 1 | Structure and number of animals of the simulated populations.

generations were generated expanding the population to 10,100
animals. In the last generation of the historical population, there
were 100 males and 10,000 females.

The founders of LongRangeLD were all animals of the
last generation in the historical population, after which each
generation was composed of 8,000 animals. Through using
different replacement rates, the 20 generations of this population
overlapped. The total LongRangeLD population was composed
of 168,100 animals. Founders of CurrentPop were 100 males
and 4,000 females from the last generation of LongRangeLD
and also 4,000 more females from the second-last generation of
LongRangeLD. The 10 generations of this population had 6,000
animals and overlapped too. Finally, the complete population
for downstream analysis had 66,100 animals, of which 30,168
(±127) were males. Migration was not simulated in any scenario.
Further parameters used for both LongRangeLD and CurrentPop
are presented in Table 1. The complete simulation process
was replicated 10 times and the results reported are averages
of the replicates.

Genome
Gene-dropping simulation was completed using QMSim
(Sargolzaei and Schenkel, 2009). The same genome was
simulated for all populations. Cattle autosomal chromosomes
were simulated with a length that followed the results presented
by Bohmanova et al. (2010) and summed up to a total of 2,496 cM.
Bi-allelic markers and QTL were randomly distributed over all
chromosomes with equal MAF in the first historical generation.
The QTL effects were sampled from a gamma distribution with a
shape parameter of 0.4, following the results obtained by Hayes
and Goddard (2001). The number of crossovers per chromosome
was sampled from a Poisson distribution with mean equal to
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TABLE 1 | Parameters used for the simulation of the populations
LongRangeLD and CurrentPop.

Parameter LongRangeLD CurrentPop

Number of
generations

20 10

Litter size 1.0 1.0

Sire replacement
rate

0.5 0.5

Dam replacement
rate

0.3 0.3

Mating design Positive assortative Positive assortative

on phenotypes on EBV

Selection design On phenotypes On EBV

Culling design Age Low EBV

EBV estimation
method

None BLUP using the true
additive

genetic variance

Number of traits 1.0 1.0

Heritability 0.3 0.3

Phenotypic
variance of trait

1.0 1.0

the chromosome length in centimorgans. The probability of a
second crossover within 25 cM of a first recombination event
was, therefore, lower depending on the proximity of crossovers.
The mutation rate of the markers and the QTL was assumed
to be 10−4. For each replicate, 8,622,767 markers and 4,000
QTL were generated.

Introduction of Genotyping Error and Selection of
Variant Subsets
Selection of markers in the simulated data was performed to
ensure that the MAF distribution followed that observed in the
real data, described below. From all simulated variants, a first
subset representing WGS was selected that contained all QTL.
Then two subsets of the WGS were selected, which simulated
high-density (HD) and medium density (50K) array genotype
variant panels. In contrast to the WGS set, no QTL were allowed
in the HD and 50K variant panels. Minor allele frequencies
considered at this stage were computed considering a random
sample of 30,000 animals from CurrentPop. Those animals
represented 45% of the total population.

Real data comprised 425 Holstein (HOL) and 25 Red-
Holstein animals from Run 5 of the 1,000 Bull Genomes Project
(Daetwyler et al., 2014), 2,946 HOL animals (males and females)
from the Canadian Dairy Network database (as of August 2017),
and 36,157 HOL bulls with a North American identification tag
born after 2010 for the WGS, HD, and 50K panels, respectively.
The real WGS set was filtered for a minor allele count of 1 and
was composed of 31,787,016 bi-allelic variants. Variants with a
MAF lower than 0.1% were filtered out from the HD dataset. The
real HD genotypes contained information for 587,817 bi-allelic
variants. The same filter for variants with a MAF lower than 0.1%
was applied to the 50K panel leading to 44,347 bi-allelic variants.

The number of selected variants per chromosome was
proportional to the number of variants found in the real data.

Variants were distributed by MAF in 50 bins. The sampling of
the variants occurred randomly within the bin-by-chromosome
groups with the function sample() in R, version 3.4.3 (R Core
Team, 2017). The final simulated data was composed of 3,235,171
(±155,117), 571,661 (±6) and 44,288 (±0) variants for WGS, HD,
and 50K, respectively. Genotyping error was introduced in the
WGS based on error rates observed by Baes et al. (2014) using
the HaplotypeCaller function of the Genome Analysis Toolkit
with a multi-sample approach (McKenna et al., 2010; Table 2).
Missing data was also added at this stage. Inclusion of genotyping
errors and missing data in the genotypes was done using snp1101
(Sargolzaei, 2014).

Creation of the Reference Populations and the
Validation Set
Groups of 50, 100, 200, 400, 800, and 1,200 animals were
created from one pool of candidates using four selection
methods. This pool of candidates was composed by all males
of the CurrentPop and contained 30,027 (±108) bulls. As
the 50K chip represents the preferred SNP chip for bull
genotyping, animals were selected on their 50K haplotypes.
The groups of selected bulls were later used as the reference
populations for imputation from HD to WGS genotype density.
Although imputation was done from HD to WGS genotype
densities, selection of animals, when performed based on
genotypes, was run on the 50K array panel to mimic again real
situations, where the majority of the individuals would have
only 50K genotype information. Haplotypes were defined as
non-overlapping segments of 20 contiguous SNP of the 50K
SNP panel throughout the study and had an average length
of 1,082,875 bp (±264,426 bp). The same candidate pool was
available for each method, so the same animal could be selected
by multiple methods.

The selection methods were: (1) the key ancestors method,
which used the additive genetic relationship matrix; (2) a
combination of the newly developed Genetic Diversity Index
and the simulated annealing algorithm (Kirkpatrick et al.,
1983; Černý, 1985); (3) the Inverse Weighted Selection method
(Bickhart et al., 2016); and (4) a second novel method aiming to
select highly segregating haplotypes in the genotyped population
that are not carried by any animal of the population of
interest already sequenced. These methods are described in
more details next. The 5,000 youngest animals (males and

TABLE 2 | Rate of genotyping change as introduced in the simulated
whole-genome sequence genotypes.

Simulated genotypes including

genotyping error and missing values

AA AB BB −/−

Tr
ue

g
en

o
ty

p
es AA 0.639 0.004 0.001 0.356

AB 0.011 0.970 0.000 0.019

BB 0.002 0.004 0.976 0.018

As an example, 1.1% of the simulated AB genotypes were changed to AA
genotypes. Values were retrieved from the study by Baes et al. (2014).
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females) from CurrentPop that were not selected during the
creation of the reference groups composed the target population
of the imputation.

Selection Methods
Selection of key ancestors was the method of choice to select
the first animals sequenced in populations, as a representative
genotyped group of animals from the population of interest
was not needed (Daetwyler et al., 2014). This key ancestor
method (AMAT) was chosen for comparison because of its
frequent use and because it had indirectly a similar aim
than the novel Selection of Highly Segregating Haplotype
(HSH) method proposed here, i.e., selection of carriers of
commonly found variants. Shortly after the first draft of the
optimized Genetic Diversity Index (GDI) proposed here was
designed, the paper of Bickhart et al. (2016) was published
that presented the Inverse Selection Method (IWS). As GDI,
this method aimed at selecting animals that are genetically
more diverse in the pool of candidates. IWS seemed thus
to be fairly comparable to GDI and was chosen to be
included in this study. Other methods of animal selection for
sequencing considered other objectives such as sequencing some
animals at different coverages or combination of genotyping
and sequencing, given a limited budget. In contrast, this
study only considers situations where a given number of
animals to sequence is given. Focusing on methods with
similar aims than the novel methods proposed here seemed
a way to allow for an in-depth analysis of them, as for
example, differentiating accuracies of imputation of variants
with different MAF.

Selection of Key Ancestors
The AMAT method aimed to identify animals explaining
most of the genetic variation of a population following the
equation pn = A−1

n
∗cn where pn was a vector of the

proportion of gene pool captured by the n selected animals,
A−1
n was the inverse of the numerator relationship matrix of

the n selected animals, and cn was a vector of the average
relationships of the n selected animals with the entire population
(Goddard and Hayes, 2009).

Inverse Selection Method
The IWS method developed by Bickhart et al. (2016) prioritized
sequencing of rare haplotypes following the equation

Index =
NHAP∑
i=1

f 2
i − 2fi + 1 where NHAP was the number

of haplotypes and fi was the frequency of haplotype i in the
population. This inverted parabolic function gave a high
index value to individuals carrying haplotype alleles with low
frequencies, as higher frequencies led to higher penalization
(through the term−2fi). The computation of this index was
iterative: (1) select the animal with the highest index; (2)
recalculate the index of the remaining candidates without
considering the haplotypes present in the genotypes of selected
animals; and (3) pick out the next animal with the best new
index. This method was used as it is implemented in the software
program snp1101 (Sargolzaei, 2014).

Optimized Genetic Diversity Index
Relying on a probabilistic optimization algorithm –simulated
annealing (Kirkpatrick et al., 1983; Černý, 1985) – the proposed
GDI method optimized the count of unique haplotypes of a
group of animals composed of all previously sequenced animals
and a defined number of sequencing candidates. The simulated
annealing algorithm was developed to find the global optimum of
a dataset with multiple local optima. The GDI of the whole group
of animals was optimized with the simulated annealing algorithm
permuting one candidate at a time and recalculating the index.
The GDI was computed by summing the count of unique
haplotype alleles present within a group of animals following

the equation Index =
NHAP∑
i=1

unique(HAPi), where NHAP was the

number of haplotype blocks and HAPi were the haplotype
variants in block i. Figure 2 gives an example of the index
calculation based on five animals and four haplotypes. This
method was also used as implemented in the program snp1101
(Sargolzaei, 2014).

Selection of Highly Segregating Haplotypes
To identify animals with the highest contribution to the
population, the novel HSH method based on haplotype diversity
was developed. The method had the following steps: (1) a
haplotype library was created for all selection candidates using
non-imputed genotypes. Haplotypes that appeared in less than
10 animals were discarded to reduce errors in the computation of
their frequencies due to phasing error or haplotypes from other
breeds; (2) contribution of each animal to the haplotype library
based on the haplotypes’ frequency was calculated following

the equation, Index =
NHAP∑
i=1

fi, where NHAP was the number

of haplotypes and fi was the frequency of haplotype i in the
population. The animal with the highest Index value was then
selected and; (3) frequencies of all haplotypes present in the
selected animal were multiplied by a factor of 0.75 to penalize
these already captured haplotypes. The factor for penalization is
decided based on haplotypes frequency distribution in Holstein.
Then the second most influential animal was selected based on
highest contribution from the penalized haplotypes frequencies
of all haplotypes it carries were multiplied again by the same
factor of 0.75. After selecting an influential animal, total
haplotype coverage (i.e., prevalence) was calculated for the new
group of selected candidates. The process was repeated until
the desired number of animals was selected, increasing the
number of unique haplotypes selected with each animal, but
avoiding selection of possible outliers (which carry many low-
frequency haplotypes from another breed), for example from
crossbred individuals as long as any non-outlier animals were
still in the selection pool. Because the most frequent haplotypes
were penalized first, the next animal chosen tended to carry
haplotypes that are less frequent in the library or population.
This method was also used as it is implemented in the software
program snp1101 (Sargolzaei, 2014). The HSH method could
accommodate any situation where some animals were previously
sequenced, as the choice of the next influential animal is a
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FIGURE 2 | The Genetic Diversity Index is the sum of the unique haplotypes found in a group of animals. On this figure, five animals carry in total 18 unique
haplotypes (5 variants of haplotypes A, 4 variants of haplotype B, 6 variants of haplotype C, and 3 variants of haplotype D). Colors highlight the unique haplotype
alleles of each haplotype block.

function of already selected animals. Therefore, although the
selected candidates may be different depending on which initial
list of sequenced animals is used, the overall contribution to the
population haplotypes should change only minimally.

Measures of Diversity in the Reference
Population
The level of genetic diversity was compared between reference
populations. Next to the number of segregating variants as
presented by Pluzhnikov and Donnelly (1996), the proportion
of the total number of unique haplotypes alleles found in the
candidate groups that were also found in the individuals selected
for sequencing were used to compare the level of genetic diversity
of the reference population of each scenario. The proportion of
the rare haplotypes found in differently selected individuals was
computed using the R package GHap (Utsunomiya et al., 2016).
First, all haplotypes found within the candidates were identified.
Second, the frequencies of the haplotypes within the candidates
were computed. Finally, the proportions of haplotypes found in
different groups were calculated. Following the construction of
haplotypes when the animals were selected, haplotypes were built
here again with 20-SNP windows and without overlap.

Principal Component Analysis
Principal components analysis (PCA) is a statistical method that,
when applied to genotypic data, allows detection of its structure
(Ely et al., 2010). PCA was run on 50K genotypes of the candidate
pool to determine the structure of the simulated population. This
analysis was conducted using the implementation presented by
Abraham and Inouye (2014) and available in snp1101 (Sargolzaei,
2014) with the following parameters: a maximum of 50 iterations
were allowed, 40 principal components were computed and only
variants with a MAF equal or higher than 0.01 were considered.

Imputation
Following results presented by Whalen et al. (2018), the
combination of the phasing software Eagle version 2.3.5
(Loh et al., 2016) and the imputation software Minimac3

(Das et al., 2016) – two programs developed for analysis
of human data for which little to no family information is
available – was used without pedigree information on the
differently created reference populations to impute one set
of target animals. Both software programs were used in their
default mode. A linear genetic map of 1 cM per Mb was used
to approximate the average recombination rate at phasing.
From this step onward, all genotypes were reduced to the 10
first simulated chromosomes to reduce computation time and
memory load. Imputed genotype calls only were used, not the
genotype probabilities.

Measure of Imputation Accuracy
Imputation accuracy was computed on multiple sets of variants
for each scenario. Variants were distributed over multiple bins,
depending on the MAF observed in the true genotypes of
the target population of each simulation replicate. Two non-
overlapping subsets containing common (MAF > 0.05) or rare
(MAF = 0.05) variants were created, as well as a set of adjacent
SNP bins. Variants were distributed following their MAF in the
bins with boundaries at 0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.10,
0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, and 0.50. The bins were
created to allow for the higher bound MAF to be included but
not the lower bound. The composition of all bins is represented
in Figure 3.

Imputation was evaluated at a per SNP basis by the squared
correlation between the true and imputed genotypes and
average. This accuracy measure, called allelic R2 by Browning
and Browning (2009), is advantageous, as it is independent
of the MAF of the variants imputed. Correlations between
true and imputed genotypes were checked to ensure that
negative correlations were not present so that no variants were
filtered out at this stage. Accuracies of variants that were
not segregating anymore after imputation were set to zero.
Genotype concordance rates between all variants of the true and
imputed genotypes were also computed on all variants. This
measure represents the proportion of genotypes that are correctly
imputed and allowed for evaluation of the imputation on a
per animal basis.
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FIGURE 3 | Representation of the distribution of the intervals of minor alleles frequencies used for assessing imputation accuracy.

Performance of the Haplotype-Based
Selection Methods With Crossbred
Animals in the Candidate Pool
Selection of animals for sequencing is often run in one population
at a time. Depending on the quality of the data recording,
a proportion of the animals declared to be purely from one
population may be crossbred or from another population. It
is important that the method of selection avoids selecting
individuals that are not part of the population of interest.
BovineSNP50 genotypes of 16,420 Holstein and 2,920 Jersey
(JE) males born after 2011 were retrieved from the Canadian
Dairy Network database to create pools of 5,840 selection
candidates with different degrees of admixture as presented on
the horizontal axis of Figure 4. From the complete dataset,
animals were randomly selected to enter each pool. The IWS,
GDI and HSH methods were then used to select 100 animals
out of each pool and the number of JE animals that were
picked were counted.

Statistical Tests of Average Differences
Between Scenarios
After testing for the normality of the replicates within methods-
by-reference size scenarios with Shapiro–Wilk tests, Kruskal–
Wallis Rank Sum tests, and Wilcoxon Rank Sum statistical
tests were performed for each MAF category to determine
significant differences in accuracies among all methods or
pairwise, respectively. The Bonferroni correction was used
to adjust for multiple comparisons for an experimental-wise
significance level of 0.05.

RESULTS

LD Structure, MAF Distribution and
Structure of the Simulated Population
A rapid decrease in LD over increasing genomic distance was
observed in both real and simulated genomic data (Figure 5).
The high level of LD at distances shorter than 100kb in the real
Holstein population already described by Sargolzaei et al. (2008)
is mimicked in the simulation. Rare variants comprised 52.43%
(±2.2%) of the WGS variants over the replicates. Principal
component analysis showed a compactly distributed population
on the two first components, which explained 6.11% of the
total genomic variance (Figure 6). Spearman’s rank correlation

between the first principal component and the generation of the
animals was 0.87 (data not shown). Density curves of the MAF
over the generations of the simulated population showed that an
increasing number of variants became rare (Figure 7).

Haplotype Coverage in the Reference
Population
The number of segregating variants and the proportion of
unique haplotype alleles found in each reference population
had a correlation of 0.68 (P < 0.0001). Increasing the number
of animals in the reference population led to an increased
proportion of unique haplotypes covered (Figure 8). Overall,
haplotypes coverage ranged from 8.6% of the total haplotypes
from the scenario with 50 animals selected on the basis of HSH,
to 35.5% in the scenario including 1,200 animals selected through
GDI. The reference groups created following the AMAT and HSH
methods captured a lower proportion of the total haplotypes
than reference populations created following the IWS and GDI
methods. The proportion of haplotypes with a frequency equal or
below 5% that were selected in each reference group followed the
proportion of total haplotype selected.

Overlap in Selection
The same pool of candidates was made available for selection for
each method and reference size so that the same animals could be
selected by multiple methods. The proportions of animals present
in two groups for each reference size are shown in Table 3.
Overlaps were higher between AMAT and HSH and between
IWS and GDI. Small reference population sizes led to a higher
proportion of animals found in multiple reference populations,
with a maximum of 26% of animals found in common between
the reference groups of AMAT and HSH that contained 50
animals in total. GDI did not have any overlap with AMAT or
HSH for groups containing 50 and 100 animals. The overlap
in the selected references of 100 individuals can be observed
in Figure 6 where plusses, representing the animals selected
with IWS, and crosses, representing the animals selected with
GDI, are superposed.

Selection With Possible Crossbred
Animals
With a pool composed of animals from two populations in a
50:50 ratio, no genotype-based method could avoid selecting at
least half of them from the JE population (Figure 4). Differences
were observed between methods in the more realistic scenarios

Frontiers in Genetics | www.frontiersin.org 7 May 2019 | Volume 10 | Article 51013

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00510 May 29, 2019 Time: 19:20 # 8

Butty et al. Selection of Animals for Sequencing

FIGURE 4 | Number of Jersey (JE) animals selected by the Highly Segregating Haplotype selection (HSH), the Inverse Weighted Selection (IWS), and the Genetic
Diversity Index (GDI) methods from candidate pools with different proportion of JE animals.

FIGURE 5 | Decay of linkage disequilibrium (LD) over genomic distance in the
real and the simulated sequences.

with a proportion of 5% or less non-target animals. HSH
did not select any JE animals until they comprised 5% of
the candidate pool. In contrast, GDI already selected 58 JE
animals when JE comprised 1% of the candidate pool. The 58
JE selected in this scenario were 45% of all JE animals present
in the pool. In the scenarios with a candidate pool composed
of 5% or less JE animals, IWS consistently selected only 5%
of the JE animals.

FIGURE 6 | Distribution of the different groups of animals on the first and
second principal components. The variance explained by the components is
given in brackets. Gray crosses represent all the candidates, the green
triangles are the animals selected by the key ancestors (AMAT) method, the
purple plusses are the animals selected by the Inverse Weighted Selection
(IWS) method, the green plusses are the animals selected by the Highly
Segregating Haplotypes selection (HSH) method, and the blue crosses are the
animals selected with the Genetic Diversity Index (GDI) method.
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FIGURE 7 | Density curves of the minor allele frequencies observed in the simulated population over the generations.

Accuracy of Imputation
Accuracies of imputation were observed on all variants and on
two non-overlapping subsets: the rare variants with a MAF below
0.05 and the common variants with a MAF equal or above 0.05.
Results are presented about these sets in the following order:
first, all variants, then the rare variants and finally the common
variants as the later showed re-ranking in comparison with the
two other groups.

Considering all variants, accuracy of imputation reached
values between 0.55 and 0.85, depending on the method used
to create the reference groups and their sizes. Increasing
the number of animals in the reference population led to
corresponding increases in accuracies. Table 4 shows the
accuracies of imputation reached in scenarios with 50, 200,
and 1,200 reference animals selected by the four methods and
across all adjacent MAF bins. In general, AMAT and HSH
reached lower accuracies than IWS and GDI. The differences in
accuracies, however, were smaller when the reference population
size increased (Figure 9). In the scenario in which only 50 animals
composed the reference population, IWS and GDI had the
highest accuracies and were not significantly different (P > 0.05).
AMAT had a significantly lower accuracy and the accuracy of
HSH was even lower than that of AMAT (P < 0.0001) (Table 4).
By increasing the size of the reference population to 100, 200, or
400 animals, differences in accuracy between AMAT and HSH

were small, so that only two groups of methods, AMAT/HSH and
IWS/GDI, could be differentiated. With reference groups of 800
and 1,200 individuals, only GDI and AMAT were significantly
different (P < 0.0001), where GDI had the highest accuracy
(0.944). Genotype concordance rates reached values above 0.96
in all cases (Figure 10). Significant differences between methods
were only observed with reference populations comprising 50,
100, or 200 animals. Concordance rates were higher when
animals were selected with HSH or AMAT than with IWS or
GDI for reference sizes of 50 or 100 animals (P < 0.0001).
Only the concordance rate of GDI for a reference population
comprised of 200 animals was significantly lower than any
other (P < 0.0001).

When the accuracies of imputation were estimated on rare
variants only, accuracies reached values between 0.33 and 0.76,
but the rank of the methods from best to worst was consistent
with results based on all variants (IWS/GDI > AMAT/HSH),
and significant differences were also observed at any reference
populations size (P < 0.0001). With reference size of 1,200
individuals, differences were only found between AMAT vs.
HSH and AMAT vs. GDI, where AMAT had lower accuracy
in both contrasts. In contrast, when only common variants
were considered, the ranking was reversed: AMAT and HSH
produced significantly higher accuracies than IWS and GDI
(P < 0.0001). Accuracies took values as high as 0.99 and were
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FIGURE 8 | Selected proportion of unique haplotypes from the total haplotype library found in the reference group created with different selection methods. The
methods compared are the key ancestors (AMAT), the Highly Segregating Haplotype selection (HSH), the Inverse Weighted Selection (IWS), and the Genetic
Diversity Index (GDI).

never below 0.84. With a reference population of 50 animals,
HSH reached a greater accuracy than AMAT and both were
better than IWS and GDI. With reference sizes of 100 and
200, significant differences were again observed between the
groups of methods AMAT/HSH and IWS/GDI (P < 0.0001).
With 400 animals as reference, the accuracy reached by GDI
was significantly lower than the other methods. Scenarios where
800 and 1,200 animals composed the reference population did
not show difference in accuracy value before the fourth decimal.
Although no change in the values was observed for these
scenarios (Table 4), variances between replicates were very small
(standard deviation < 0.004), therefore testing the methods
against each other still led to significant results after correction
for multiple testing.

Distribution of the variants into 14 adjacent bins allowed
a more precise evaluation of the effect of the reference
composition on the imputation accuracy. With no exception,
increased MAF led to increased accuracy values. For example,
accuracies increased from 0.21 to 0.94 when using a reference
group of 50 individuals selected with AMAT (Figure 11).
Only pairs of contiguous MAF bins were analyzed and no
significant differences within reference size-by-method scenario
were found in imputation accuracy of variants with a MAF
greater than 0.3 (P > 0.05).

DISCUSSION

In the first step of this study, the WGSs of a dairy cattle population
were simulated. They were compared to currently available real
Holstein sequence data to ensure they mimicked observed levels
of LD and MAF distribution. In the second step, reference
populations of different size were created with animals selected
by both proposed novel methods as well as two other methods
presented in previous studies. The selection methods were
assessed with respect to their propensity to select animals that
might not be of the population of interest, the genetic diversity of
the groups of animals picked, and the distribution of those over
generations. Finally, accuracies of imputation were compared for
imputation runs with the different reference populations. The
differentiation of imputation accuracy of variants with specific
MAF allowed comparison between the strengths and weaknesses
of each method of selection.

Different software programs were developed to simulate
genomic information such as AlphaSim (Faux et al., 2016), ms2gs
(Pérez-Enciso and Legarra, 2016), and QMsim (Sargolzaei and
Schenkel, 2009). With its highly flexible genome and population
configuration system, QMsim allowed for simulation of a great
number of WGSs that had a LD structure properly following
the parameters of the real data available. With the aim of
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TABLE 3 | Proportion of animals overlapping between selection methods in
reference populations of different sizes.

Size Method

AMAT HSH IWS

50

HSH 0.26

IWS 0.04 0.00

GDI 0.00 0.00 0.08

100

HSH 0.23

IWS 0.03 0.01

GDI 0.00 0.00 0.1

200

HSH 0.20

IWS 0.05 0.03

GDI 0.01 0.02 0.14

400

HSH 0.13

IWS 0.04 0.06

GDI 0.02 0.03 0.09

800

HSH 0.09

IWS 0.03 0.12

GDI 0.03 0.06 0.12

1,200

HSH 0.08

IWS 0.03 0.16

GDI 0.04 0.09 0.12

The methods were the key ancestors (AMAT), the selection of Highly Segregating
Haplotypes (HSH), the Inverse Weighted Selection (IWS), and the Genetic
Diversity Index (GDI).

simulating a Holstein population, only sequences of Holstein
animals from the 1,000 Bull Genomes Project Run 5 were
retrieved. These animals were mostly sequenced because they had
a great genetic contribution to their population (Daetwyler et al.,
2014). Although they are considered representative, these animals
became influential as they were used heavily for breeding in their
population and probably had a high genetic merit. They may, in
fact, carry alleles at frequencies different from those in the overall
population. This difference between the influential animals and
the complete population limits the possible true closeness of
the simulation with the whole real Holstein population. The LD
level of the simulated sequences followed the real observed LD
decay (Figure 5). Similarly, the distribution of the variants used
in this work in MAF bins followed the distribution observed
in real datasets.

Once the sequence was simulated, multiple reference
populations were created by selecting animals using methods
of selection that can be divided into two groups: AMAT
and HSH, which mainly target animals that are carriers of
commonly found haplotypes, whereas IWS and GDI are
methods aiming to maximize the selection of animals carrying
more haplotype alleles. Moreover, although AMAT keeps on
searching for commonly found haplotypes, the penalization

of those implemented in HSH leads to a shift from the search
of commonly found haplotypes to rare ones. Through this
shift, not only selection of common, but also of rare haplotypes
is optimized. This shift, however, is highly dependent on
the size of the candidate pool and the number of animals to
be selected, as the increasing ratio of selected animals over
the candidate pool facilitates the capture of more different
haplotypes. A disadvantage of the haplotype-based selection
method is that candidates must all be genotyped. In this sense,
selection of animals for genotyping or sequencing in populations
in which only a small proportion of individuals are genotyped
should be done with AMAT, as long as a correct and complete
pedigree is available.

Candidate pools for animal selection are often composed
of individuals belonging to more than one population due to
errors at the time of data recording, and thus crossbred animals
could be erroneously selected. Testing methods for their tendency
to pick crossbred animals revealed that methods targeting rare
variants selected more animals that were not from the population
of interest, which was expected. HSH was the only method
in which no animal of the JE population was selected before
their proportion in the candidate pool reached 5%, which can
be considered a usual proportion of crossbred animals wrongly
declared as purebreds (Figure 4). If GDI or IWS are used on
real datasets, population structure analysis and analysis of the
relationships between the candidates is essential to ensure that
crossbred animals are removed prior to selection.

Following the control of the non-target animals selected with
each method, a principal component analysis was used. This
allowed for comparison of the distribution and overlap of the
selected animals over the complete candidate pool. Methods
targeting rare haplotypes picked the same animals more often
(Table 3). The concentration of points representing the animals
selected by IWS and GDI or the superposed dark and light brown
points on Figure 6 follows the same idea. The animals selected
for their higher genetic diversity were mostly of generation 1
and 2 out of the 10 simulated generations. Selection applied
without allowing for migration in the simulated population led
to a reduction of the MAF of the variants under selection
pressure (Figure 7). Accordingly, the number of combinations
of SNP alleles at the haplotype level was reduced, and less
unique haplotypes alleles could be found in animals in generation
three or more. Fewer unique haplotype alleles also led to
higher haplotype frequencies of the remaining ones. Finally,
carrying less unique haplotype and haplotypes alleles of higher
frequencies, individuals of generation three or more were less
likely to be selected by GDI and IWS.

It is of interest to assess the genetic diversity within and
between the created reference populations. The proportion of
selected haplotypes alleles increased with the number of animals
selected, which was expected, as more animals can collectively
carry additional different haplotypes. Similarly, when looking at
the overlap of picked haplotypes alleles between methods, the
methods presented more overlap if they targeted the common
(AMAT, HSH) or the rare variants (IWS, GDI). Notably, when
reference populations were smaller, animals selected with AMAT
carried a greater number of different haplotypes than HSH.
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TABLE 4 | Accuracies for reference populations of 50, 200, and 1,200 individuals and increasing MAF of the variants considered, all variants, the rare variants
(MAF < 0.05), or the common variants (MAF ≥ 0.05).

50 200 1,200

MAF bin AMAT IWS HSH GDI AMAT IWS HSH GDI AMAT IWS HSH GDI

0.00−0.01 0.212a 0.282b 0.146c 0.281b 0.471a 0.527b 0.468a 0.540b 0.625a 0.641a,b 0.643a,b 0.647b

0.01−0.02 0.624 0.640 0.557 0.629 0.903 0.912 0.908 0.906 0.960 0.962 0.961 0.961

0.02−0.03 0.712a 0.704b 0.678a 0.691b 0.931 0.936 0.935 0.929 0.970 0.972 0.971 0.970

0.03−0.04 0.761a 0.732b 0.746a 0.725b 0.944a,b 0.948a 0.948a,b 0.940b 0.975 0.976 0.975 0.975

0.04−0.05 0.793a 0.754b 0.790a 0.745b 0.952 0.954 0.956 0.946 0.979 0.979 0.978 0.978

0.05−0.10 0.837a 0.786b 0.848a 0.776b 0.964 0.966 0.966 0.957 0.983 0.984 0.983 0.983

0.10−0.15 0.887 0.834 0.898 0.825 0.974 0.975 0.976 0.969 0.987 0.988 0.987 0.987

0.15−0.20 0.911a 0.865b 0.920a 0.855b 0.979 0.980 0.980 0.974 0.990 0.990 0.989 0.989

0.20−0.25 0.925a 0.878b 0.932a 0.870b 0.982 0.982 0.983 0.978 0.991 0.991 0.990 0.990

0.25−0.30 0.933a 0.892b 0.940a 0.881b 0.984a,b 0.984a 0.984a,b 0.980b 0.991 0.992 0.991 0.991

0.30−0.35 0.939a 0.904b 0.944a 0.896b 0.985a,b 0.985a 0.985a,b 0.982b 0.992 0.993 0.992 0.992

0.35−0.40 0.942a 0.908b 0.948a 0.900b 0.986 0.986 0.986 0.982 0.992 0.993 0.992 0.992

0.40−0.45 0.944a 0.911b 0.949a 0.904b 0.986 0.986 0.986 0.983 0.993 0.993 0.992 0.992

0.45−0.50 0.945a,b 0.914b,c 0.949a 0.908b,c 0.986a 0.986b 0.986a 0.983b 0.993a 0.993b 0.992b 0.993b

All 0.580a 0.589b 0.549c 0.583b 0.765a 0.789b 0.765a 0.790b 0.840a 0.847a,b 0.847a,b 0.849b

Common 0.894a 0.848b 0.903c 0.839b 0.976a 0.976b 0.977a 0.970b 0.988a 0.989a,b 0.988b 0.988b

Rare 0.387a 0.429b 0.331c 0.425b 0.635a 0.673b 0.635a 0.679b 0.749a 0.759a,b 0.761b 0.763b

MAF bins “x-y” stands for “x < MAF ≤ y”. a,b,c Different letters represent significant differences in accuracies among the methods within a bin-by-size set of values
(pairwise Wilcoxon Rank Sum Test significant with p-value after experimental-wise Bonferroni correction).

FIGURE 9 | Accuracy of imputation for all SNP, only common SNP (minor allele frequency ≥ 0.05), or only rare SNP (minor allele frequency < 0.05), using reference
population sizes from 50 to 1,200 individuals. The methods compared are the key ancestors (AMAT), the Highly Segregating Haplotype selection (HSH), the Inverse
Weighted Selection (IWS), and the Genetic Diversity Index (GDI). All standard errors are below 0.013.
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FIGURE 10 | Genotype concordance rates for all SNP using reference population sizes from 50 to 1,200 individuals. The methods compared are the key ancestors
(AMAT), the Highly Segregating Haplotype selection (HSH), the Inverse Weighted Selection (IWS), and the Genetic Diversity Index (GDI). All standard errors are below
0.009.

This can be explained by the following arguments. The HSH
method makes sure that all commonly found haplotypes are
selected before animals carrying rare variants get targeted, while
AMAT relies solely on pedigree and thus has no possibility to
consider the Mendelian sampling happening over generations.
This limitation of AMAT, when compared to haplotype-based
methods, was observed in our study when 1,200 animals
comprised the reference group and only rare variants were
considered. In this case, AMAT had a significantly lower accuracy
than both HSH and GDI (Table 4). Moreover, it is likely that
a real pedigree would contain errors that would not allow for
a better haplotype coverage using AMAT than HSH as missing
and incorrect information would impeach correct computation
of the kinship among animals and thus the probable proportion
of haplotypes they share. The pedigree-based method AMAT also
showed a limitation once the number of animals increased, as
redundancy of the added haplotype in the selected group was
not directly avoided and effective Mendelian sampling could not
be evaluated, which was in contrast to the results obtained for
HSH. GDI consistently obtained greater haplotype coverage in
the selected group of animals (Figure 8). This shows that the
targeted optimization at the group level of the number of rare
haplotypes was also achieved. Therefore, GDI and IWS seem to
be the methods of choice when the objective is to select animals

for their propensity to carry novel, rare or deleterious variants.
The influence of the selection of genetically more diverse animals
on the accuracy of selection, however, must be carefully assessed.

Overall, accuracies of imputation from HD to WGS were
similar to previous results observed in real dairy cattle datasets
(e.g., Pausch et al., 2017), although rare variants were kept
throughout the whole analysis in the current study. Differences
between scenarios were significant (P < 0.0001), however, the
accuracies were mostly similar between methods. This was
probably due to very low variance between the replicates, as the
simulation algorithm is highly stable. All methods of selection
avoided redundancy of the haplotypes selected, thus only minor
differences between methods were observed after enough animals
were selected. The greatest differences in accuracy of imputation
between the methods were found when the reference population
was small. Moreover, when observing genotype concordance
rates, no differences were found when the reference populations
comprised more than 200 animals. In contrary to the allelic r2

and as demonstrated in the review by Calus et al. (2014), the
genotype concordance is dependent on the MAF of the variants
considered and increases artificially with lower MAF. Differences
in the distribution of the MAF of the rare variants between the
reference population led to the observed re-ranking. Considering
that animals selected with IWS and GDI were mainly from
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FIGURE 11 | Accuracy of imputation increases with higher minor allele frequency (MAF) of the variants. Here the accuracies reached with 50 animals in a reference
group of key ancestors (AMAT) are presented. MAF bins “x-y” stands for “x < MAF ≤ y”. All standard errors are below 0.008.

generation 1 and 2 of the simulated population (Figure 6),
and that the MAF distribution of the rare variants shifted
toward zero generation after generation (Figure 7), the MAF
distribution within the rare variants category might be different
between reference populations selected for high coverage of rare
or common haplotypes. More different haplotype alleles were
present in the reference populations selected with GDI and IWS
(Figure 8), whereas animals selected with AMAT and HSH
carried, as intended, more common variants. Animals selected
with AMAT and HSH, however, still carried some rare variants
but those had more often a MAF below 0.01. Figure 11 shows
a distinctly bigger change in accuracy between monomorphic
or rare variants with a MAF lower than 0.01 and rare variants
with MAF between 0.01 and 0.05. It is this difference in the
distribution of the MAF of the rare variants that explain the
re-ranking of the methods between the genotype concordance
and the allelic r2 values. Targeting rare haplotypes at selection
(GDI and IWS) led to the creation of a reference population
with more rare variants, but most of the added rare variants
had a MAF between 0.01 and 0.05, whereas targeting common
haplotypes led to the creation of a reference population carrying
mainly common variants, but also some rare variants that mainly
had a MAF below 0.01. Those variants with a MAF below
0.01 artificially increased the genotype concordance so that a
re-ranking was observed.

Considering the re-ranking observed between method group,
i.e., HSH/AMAT and IWS/GDI when looking at either rare
or common variants, the method to select animals should be
chosen using one of two principles: if the future imputed
genotypes will be used as full genotypes and the imputation
needs to be specially accurate for variants that will explain

most of the genetic variation of a trait, animals should be
selected using AMAT or HSH. In contrast, if future analysis
will focus on the discovery of novel functional rare variants
animals should be selected using IWS or GDI. Genotype
concordance is the measure of imputation accuracy of choice
when common variants that explain most of the genetic
variance of most traits of interest for the dairy industry, are of
interest for future analyses. Our results showed that genotype
concordances with small reference populations were higher when
the individuals were selected with AMAT or HSH. The first
line of Table 4, where only the segregating variants with a
MAF below 1% were considered, is a good example of the
differences in accuracy of imputation for rare variants, variants
that could have a novel deleterious effect. In this example,
when the reference population only contained 50 animals,
the difference in accuracy of imputation reached 0.18 points
between the best (IWS) and the worst (HSH) methods. The
accuracy of imputation increased with the MAF of the variants,
but this increase stopped once segregation reached a level
of 30% (Figure 11).

CONCLUSION

Selection of animals for sequencing is an important task, as
it greatly impacts the information gained about a population
of interest, especially in populations with limited effective
population size. Different selection methods are available that
either rely solely on pedigree or that utilize information on
previously genotyped individuals. In the first case, selecting key
ancestors is highly recommended. Otherwise, the best method
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depends on the use of the future set of sequences. If the newly
selected animals will be the first sequenced animals in their
population and should allow for the overall imputation of the rest
of the population, it is better to select animals carrying common
haplotypes using the new HSH method instead of any of the other
methods described in this study. If the resulting sequences of the
selection of animals in a population will be used for discovery of
new variants or should allow annotation of possible deleterious
ones, animals carrying novel information should be selected and,
consequently, the GDI method proposed here may be used.
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Many genomic data analyses such as phasing, genotype imputation, or local ancestry
inference share a common core task: matching pairs of haplotypes at any position
along the chromosome, thereby inferring a target haplotype as a succession of pieces
from reference haplotypes, commonly called a mosaic of reference haplotypes. For that
purpose, these analyses combine information provided by linkage disequilibrium, linkage
and/or genealogy through a set of heuristic rules or, most often, by a hidden Markov
model. Here, we develop an extremely randomized trees framework to address the
issue of local haplotype matching. In our approach, a supervised classifier using extra-
trees (a particular type of random forests) learns how to identify the best local matches
between haplotypes using a collection of observed examples. For each example, various
features related to the different sources of information are observed, such as the
length of a segment shared between haplotypes, or estimates of relationships between
individuals, gametes, and haplotypes. The random forests framework was fed with
30 relevant features for local haplotype matching. Repeated cross-validations allowed
ranking these features in regard to their importance for local haplotype matching. The
distance to the edge of a segment shared by both haplotypes being matched was
found to be the most important feature. Similarity comparisons between predicted and
true whole-genome sequence haplotypes showed that the random forests framework
was more efficient than a hidden Markov model in reconstructing a target haplotype as
a mosaic of reference haplotypes. To further evaluate its efficiency, the random forests
framework was applied to imputation of whole-genome sequence from 50k genotypes
and it yielded average reliabilities similar or slightly better than IMPUTE2. Through this
exploratory study, we lay the foundations of a new framework to automatically learn
local haplotype matching and we show that extra-trees are a promising approach for
such purposes. The use of this new technique also reveals some useful lessons on
the relevant features for the purpose of haplotype matching. We also discuss potential
improvements for routine implementation.
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INTRODUCTION

Modeling a target haplotype as a succession of segments from
other haplotypes (referred to as reference or template haplotypes)
is a common issue and a primary step in various genotype data
analyses such as genotype imputation (e.g., in Burdick et al.,
2006; Li et al., 2006; Marchini et al., 2007; Howie et al., 2009;
Daetwyler et al., 2011; Sargolzaei et al., 2014) often coupled
with phase reconstruction, local ancestry inference (e.g., in Price
et al., 2009; Baran et al., 2012; Maples et al., 2013), estimation
of identity-by-descent between segments (Druet and Farnir,
2011), or even clustering (e.g., in Su et al., 2009; Lawson et al.,
2012). To describe this modeling procedure, it is commonly
written that target haplotypes are modeled as a mosaic of
reference haplotypes (e.g., Burdick et al., 2006; Baran et al.,
2012). At any map position along the chromosome, the issue is
to find which reference haplotype matches the target haplotype
best (Figure 1A). Answering this question, for instance in the
particular case of genotype imputation, allows to infer the target
haplotype on a higher density map, on which the reference
haplotypes were observed. Several sources of information are
useful to address this question. Many methods (Li et al., 2006;
Scheet and Stephens, 2006; Howie et al., 2009; Price et al.,
2009) only take into consideration the linkage disequilibrium
information. Family information can also be a trustful source,
when available at large scale, for instance in livestock (Daetwyler
et al., 2011; Sargolzaei et al., 2014). Linkage information (Burdick
et al., 2006; Druet and Farnir, 2011; Sargolzaei et al., 2014) is a
third potential source of information to locally match haplotypes.
Common methods to address this question are usually either
based on hidden Markov models (HMM-based methods; see
Scheet and Stephens, 2006 for a general model) or rely on a set of
deterministic rules (heuristic methods, e.g., based on long-range
segments shared between individuals as in Kong et al., 2008).

The development of the latter type of methods, heuristics,
could be described as the iterative repetition of two main steps.
First, during a conception step, the human operator identifies
relevant variables and uses them in a set of rules. Then, during
a validation step, the proposed heuristic is tested. If the validation
does not return the desired efficiency, then the human operator
adjusts the heuristic in the conception step and validates it again.
Conception and validation steps would therefore be repeated
back and forth until enough efficiency is reached. Defining in
these terms the development of a heuristic method for the issue
of local haplotype matching makes it an attractive problem
for a class of machine learning methods known as supervised
classification. In such a learning framework, the classifier is fed
with data containing both explicative variables (hereafter referred
to as features, as this denomination prevails in the machine
learning community) and their classification (variable to explain,
also referred to as labels). Then, the data is repeatedly partitioned
between a learning sample, on which the classifier performs the
conception step, and an independent testing sample, on which the
classifier assesses the efficiency of the method. We recommend to
readers the review by Libbrecht and Noble (2015) for a detailed
glossary as well as clear explanations about the terms used in
machine learning.

Additionally, supervised classification also allows combining
automatically different sources of information with flexibility.
Such aspects make it interesting for locally matching haplotypes:
although most of the HMM-based methods (using models
similar to Scheet and Stephens, 2006) only rely on haplotype
similarity, other methods (e.g., Druet and Georges, 2010) can
reach higher efficiency by integrating linkage information.
Also, supervised classification returns the importance of any
explicative variable as a useful by-product for improving other
methods. Because of these advantages, Maples et al. (2013)
have already used supervised classification to address a specific
problem of local haplotype matching – local ancestry inference.
In their approach (RFMix), these authors implemented a random
forests (RF) classifier which uses positions along the genetic map
as the features.

Here, our main objective is to describe a new learning
framework to locally match haplotypes using an extremely
randomized trees classifier (extra-trees, a particular type of RF
method; see Geurts et al., 2006). In this framework, a supervised
classifier learns from a large collection of examples what are
the relevant features to take into consideration when searching
for the reference haplotype that best locally matches a target
haplotype and how to combine them. We show that the learning
framework accurately finds the best local matches by comparing
it to a state-of-the-art HMM-based framework equivalent to
IMPUTE2 (Howie et al., 2009). We eventually discuss the main
findings of our framework in terms of the importance of features
and propose improvements.

MATERIALS AND METHODS

Long-Range Haplotype Pre-phasing
All computations and results presented here come from
genotypes (for the lower-density map) and WGS (for the
higher density map) of the first bovine autosome (BTA1) of
91 dairy cattle from New Zealand (67 bulls and 24 cows;
partitioned as 36 Holstein-Friesian, 24 Jersey and 31 crossbred
individuals). All individuals have been genotyped with the
BovineSNP50k (v1 and v2) genotyping array from Illumina.
A total of 2,321 SNPs remained for BTA1 after cleaning the
initial data as described in Faux and Druet (2017) and shaped
a lower density map, later referred to as the “LD map.” Those
genotypes were phased using both linkage disequilibrium and
family information.

Besides genotyping, all individuals were sequenced at
high coverage (15× or more). Details about sequencing and
downstream filters can be found in the study by Charlier
et al. (2016). A map of 328,045 SNPs from chromosome BTA1
was obtained using stringent filtering rules (described in Faux
and Druet, 2017); this map is later referred to as the higher-
density (HD) map and includes the 2,321 SNPs from LD
map. Using stringent rules allowed reducing the proportion
of noise in our data set (e.g., assembly errors, false variants,
incorrect genotypes, or phasing errors). These stringent filtering
rules include, among others: (1) comparisons to other sets of
WGS SNPs (markers are kept if they were observed in other
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FIGURE 1 | (A) Schematic representation of local haplotype matching. Each horizontal line features a whole-chromosome haplotype (phased from red/blue bi-allelic
genotypes), to be locally matched (target) to other haplotypes (reference). Both target and reference haplotypes have P positions observed on the LD map
(rectangles) whereas reference haplotypes may be also observed on a HD map (circles, plain color if observed), thereby allowing imputation of the target haplotype.
For a given target haplotype t, the question is to find which one of the R reference haplotypes matches the best with t, in the neighborhood of LD position p
(delimited by dotted lines). Here, at positions p – 1, p, and p + 1, t perfectly matches with r and r + 1, however, t perfectly matches on HD positions only with r + 1.
Therefore, locally matching haplotypes in such case comes down to match t to r + 1 rather than to r. (B) Translating local haplotype matching into machine-readable
language. At a LD map position p, a target haplotype t can be matched to R reference haplotypes. Because target haplotypes are also observed on the HD map, we
measure the success of each of the R local matches by computing the similarity between t and each reference haplotypes on HD markers that are closer to the LD
position p than to any other LD position. Reference haplotypes returning the highest similarity with t earn a 1 (success) in the observation vector Yp,t whereas others
earn a 0 (fail). Additionally, we compute a vector Xp,t,r. of observed features (see Table 2) for any reference haplotype r. The machine learns how to discriminate
successes from fails in Yp,t according to features in Xp,t. Here, on HD markers closest to p, the target haplotype t is identical to reference haplotypes r and r + 1. This
is therefore the maximum similarity observable for haplotype t at position p. Thus, both reference haplotypes r and r + 1 earn a success (Yp,t,r = Yp,t,r + 1 = 1)
whereas any other reference haplotype less similar to t (e.g., r – 1) earns a fail (Yp,t,r − 1 = 0).

available bovine WGS datasets and if they displayed correct
Mendelian segregation in another WGS dataset), (2) removal
of genomic regions because of a high suspicion of incorrect
mapping, and (3) removal of SNPs based on additional rules for
error detection.

The HD map was then phased by the two-step method
outlined in Faux and Druet (2017). In a few words, this
method exploits the haplotypes estimated on a genotyped

population much larger (∼58,000 dairy cattle individuals from
New Zealand – more details in Faux and Druet, 2017) than the
91 sequenced individuals used in the present study. Therefore,
the resulting 182 haplotypes are very accurate: 99.72% of the
SNPs whose phasing can be assessed using Mendelian segregation
rules were proved to be assigned to their correct parental origin.
Based on these results, we consider these haplotypes as the true
haplotypes in the present study.
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Criteria for Methods Comparison
In this study, we detail a framework for automatic learning of
rules to locally match haplotypes and we compare it to an HMM-
based method designed for the same purpose. That comparison
method is inspired from Howie et al. (2009) and fully described
in the section “Hidden Markov Model for Local Haplotype
Matching.” In order to quantify the ability of each method to
accurately achieve this purpose, we partition the full set of 182
haplotypes in reference and target panels. Haplotypes in the
target panel are observed only on the LD map whereas those
in the reference panel are observed on both LD and HD maps.
Any given target haplotype is locally matched to all reference
haplotypes on the LD map. Then based on the quality of these
local matches, the target haplotype is inferred as a mosaic of the
reference haplotypes (which are observed on the HD map).

The first and main criterion to compare methods is, for any
target haplotype, the difference between the inferred and the true
haplotypes on the HD map, measured by the metric eA as the
proportion of the 328,045 SNPs whose inferred allele is different
from the true allele. Such haplotype-based comparison is possible
because we consider the phased haplotypes as correct enough
to be the true ones. To get rid of the remaining phasing errors
in method comparisons, we used a second criterion based on
genotypes rather than on haplotypes: imputation reliability (r2),
measured, for any SNP specific to the HD map, as the squared
correlation between imputed and observed genotypes of all target
individuals (see section “Cross-Validation Plan,” for partitioning
the population in reference and target). Details are given in the
next sections on how imputation is performed within the random
forests framework and the HMM. We also observed the number
of switches from a reference haplotype to another one. Such an
observation does not reflect the ability of the methods to reach
their objective but provides information on their properties (how
many segments from reference haplotypes does the method use
when modeling a target haplotype as a mosaic).

Cross-Validation Plan
The cross-validation plan is outlined in Figure 2. In order to
obtain numerous cross-validation groups (of uniform size) while
keeping a training set of a reasonable size, we have chosen to
partition the 91 individuals in thirteen groups of cross-validation
(13-fold cross-validation scheme – as detailed in section 7.10.1
of Hastie et al., 2017). In each one of them, fourteen target
haplotypes (i.e., those of seven target individuals) are inferred as
mosaics of 168 reference haplotypes (i.e., those of 84 reference
individuals). Then, the missing genotypes of the seven target
individuals are imputed on the HD map. The seven animals
forming each batch are randomly picked among the 91 animals.
In each of these cross-validation groups, the fourteen target
haplotypes are simultaneously imputed and modeled as a mosaic
of segments from reference haplotypes. The fourteen imputed
haplotypes are then summed pairwise (per individual) to obtain
seven imputed genotypes per HD marker. Once cross-validation
is achieved over all the 13 groups, there are 182 target haplotypes
inferred as mosaic of reference haplotypes and 91 imputed
genotypes per HD marker. Comparison criteria eA and r2 are then

measured respectively on all the inferred target haplotypes and on
all HD markers for 91 imputed genotypes.

Machine Learning Framework for Local
Haplotype Matching
General Framework
The purpose of local haplotype matching is to answer the
following question (see Figure 1A): at a given position p along
the chromosome, which of the R reference haplotypes would
match at best with a given target haplotype t? Answering that
question for the P map positions leads to the reconstruction of
haplotype t as a mosaic of segments picked from the R reference
haplotypes. Hereafter, we detail a framework that makes this
question answerable using an automatic classifier.

Let us consider a target haplotype t and a panel of R reference
haplotypes. Both are observed on two maps of different densities
(LD and HD maps). At a given position p, we assume that t could
be matched to R haplotypes (see Figure 1B); therefore, among
the R possible local matches with t, we expect at least one to be
better than others. To find this one out, we first compute a local
difference, denoted dp,t,r, for any couple of haplotypes t (target)
and r (reference) at position p. Considering all the HD positions
for which p is the closest position on the LD map, the difference
between r and t is computed as the number of these HD positions
that carry a different allele between r and t. This difference is
basically a measure of local similarity between haplotypes. Once
all the R differences are obtained, a success score (1) award
the reference haplotype(s) showing the lowest difference with t
whereas other reference haplotypes earn a fail score (0), returning
thus a r-long scoring vector yp,t whose elements are computed
as follows:

yp,t,r =

{
1, if (dp,t,r−min(dp,t))

nHD
≤ 0.01

0, otherwise

where nHD is the number of HD positions for which p is the
closest LD position. As expressed in the previous formula, more
than one reference haplotype may earn a success score: obviously
all those whose local difference with t is the lowest, but also those
whose local difference with t is very close to the lowest local
difference (arbitrarily defined as less than 1% of difference in
similarity with the best matching haplotype).

The machine learning task is to build up a classifier that
discriminates the best reference haplotype from others. For this
purpose, we have to feed the classifier with observations on
the same features for all the R reference haplotypes. There are
many featured observations that may prove to be helpful, e.g.,
the genetic relationship between haplotype t and any reference
haplotypes or the fact that a long identical segment is shared by
t and a given reference haplotype on the LD map. Those features
can be specific to one map position (as the latter example) or
not (as the former one). Measuring these features for all the R
reference haplotypes at all the P LD positions shapes a R-by-
P-by-N collection of observations (where N is the number of
features). Each observation of the learning sample from which to
train the classifier is therefore a vector xp,t,r of observed features
that corresponds to a specific triplet (p,t,r) with p a LD position,
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FIGURE 2 | Cross-validation plan. The total number (182) of haplotypes in our study is divided into 13 cross-validation groups containing 168 reference haplotypes
known on both LD (rectangles) and HD (circles) maps and 14 target haplotypes only known on the LD (rectangles) map. The 14 target haplotypes are each inferred
as a mosaic of segments from reference haplotypes and simultaneously imputed from reference haplotypes. Summing per individual the imputed haplotypes returns
seven imputed genotypes for each cross-validation group. Green-faced shapes are known (true haplotypes), blue-faced are modeled as mosaic of references and
red-faced are imputed.

t a target haplotype, and r a reference haplotype. The number
of observed features defines the length of each vector xp,t,r.
Following the terminology of the machine learning community
the success|fail score that corresponds to each observation is
hereafter referred to as the label. The learning sample thus
contains labeled observations, whereas samples with data to
predict would contain unlabeled observations (i.e., observed
features for each point p,t,r but not their score, which remains
to predict). The goal of the machine learning algorithm is now
to exploit observations in the learning sample and their labels in
order to build up a classifier that efficiently discriminates successes
from fails.

Specific Implementation With Extra-Trees Classifier
The following section details the implementation of the general
framework specifically achieved to address the second research
objective of this study, namely, to compare the efficiency of the
machine learning classifier to locally match haplotypes to an
HMM-based method.

Supervised classification is here achieved using the extremely
randomized trees method (extra-trees hereafter), an ensemble
method based on random forests (originally proposed by Geurts
et al., 2006). Growing a decision tree works by gathering labeled
observations showing identical values of features into a node

and then splitting the node if a substantial proportion of these
observations have distinct labels (success or fail in our specific
case). The growing process can be illustrated with the theoretical
example in Table 1: the observations listed in that table are
considered as pertaining to the same node of a decision tree. In
that theoretical example, we consider two features: the length of
a segment shared by target and reference haplotypes (LSS) and
the genomic relationship between target and reference gamete
on the current chromosome (GENGc). A node split gathering
all observations that have a value of LSS greater than 1,000 kb
would completely discriminate successes from fails. The resulting
leaves would therefore be “pure”: in one leave (LSS < 1,000 kb),
all observations are fails, in the other one (LSS > 1,000 kb) all
observations are successes. Such a node split uses only one feature
to classify the observations according to their labels and the cut-
point value that allowed this split is 1,000 kb. Node splits are
determined automatically during tree growing, by going through
all features and cut points and looking for the combination
that minimizes the label impurity of the leaves defined by this
combination. Label impurity reduction is quantified through a
score measure, with the most common ones based on Gini index
or information entropy (we use the former in our experiments).
A complete decision tree is obtained by repeatedly applying
these splitting operations on the whole learning sample until the
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TABLE 1 | Schematic example of a learning sample.

Features Label

LSS (in kb) GENGc . . .

100 0.51 Fail

1,500 −0.02 Success

350 0.49 Fail

400 0.36 Fail

15,000 0.52 Success

5,400 0.55 Success

240 0.04 Fail

850 0.38 Fail

350 0.44 Fail

400 0.45 Fail

15,000 0.44 Success

1,500 0.56 Success

350 0.32 Fail

A target haplotype is compared to a panel of reference haplotypes at any LD
map position. Two features (LSS, length of a shared segment; GENGc, genomic
relationship between target and reference gamete on the current chromosome) are
observed. Each observation can be a success (being the best matching reference
haplotype at that position) or a fail, computed using HD map information.

resulting leaves are either pure (all examples they contain have the
same label) or contain too few examples from the learning sample
(this threshold is optimized by a parameter – see here below).

A single decision tree usually does not perform well in
terms of predictive performance. Better results are obtained
by aggregating the predictions, through a majority vote, of an
ensemble of decision trees (called forests). Several ways to obtain
the different decision trees that compose forests do exist. In
Breiman’s (2001) original RF algorithm each tree is grown from a
bootstrap sample drawn from the original learning sample and
node splitting is modified so that the best split (feature and
cut point) is searched within a random sample of k features,
redrawn at each node. In contrast, in the extra-tree’s method,
each tree is grown from the original learning sample without
bootstrapping. When splitting a node, the best split is searched for
among a subset of k randomly selected features like in standard
RF, with the difference that the cut-point for each feature is
selected randomly instead of being optimized to reduce label
impurity as in standard RF. Extra-trees have been shown to be
competitive with classical RF in terms of predictive performances
while being more computationally efficient because of the extra-
randomization (Geurts et al., 2006). For our specific case, they
have also proven to yield more accurate results than classical RF
(see Supplementary Material S1).

In this study, we used the extra-tree classifier implemented
as part of the Python SciKit-Learn package (Pedregosa et al.,
2011). Among the seventeen parameters of this implementation
of the classifier, two were set to a value different than the
default one (n_estimators, the number of trees, was set to
200 and min_samples_split, the minimum number of examples
required to split a node, was set to 1) and two were set to vary
as they were influencing results more than other parameters
during exploratory runs (unpublished results). The first one

(max_features, the number k of features randomly selected at
each node) was set to vary over the range of values [1, 2, 3, 4,
5] and the second one (min_samples_leaf, the minimum number
of examples required at a leaf node) was set to vary over the range
of values [50, 150, 250, 500, 1000, 1500, 2000, 2500].

After the learning stage, extra-trees return the importance
of each feature, which is a measure of the total reduction of
impurity brought by that feature within the forest. The higher the
importance of a given feature in the forest, the more relevant this
feature is in predicting the label. Therefore, importance values
can be used afterward to rank the features from the most to the
least relevant and to gain some understanding of the problem.

Optimization of Extra-Trees Parameters
To tune these parameters, we used a second internal cross-
validation loop. More precisely, each of the 13 groups of the
external cross-validation loop (outlined in Figure 2) is further
divided into 12 subgroups. Each of these 12 subgroups are divided
into target and reference panels in the same way as for the 13
groups of the outer loop (see Figure 2). For each of the 5-
by-8 combinations of the max_features and min_samples_leaf
parameters and for each of the 12 subgroups, all target haplotypes
are modeled as a mosaic of reference haplotypes and imputed,
and the comparison criteria eA and r2 are computed. For each
criterion, the combination of parameters yielding the best values
over all twelve subgroups is retained as the optimal one, returning
therefore the two best combinations (one per criterion) used
for the parent cross-validation group. Such two-level cross-
validation is necessary to avoid artificial inflation of results that
might arise if we would have used the target panel from the
cross-validation group in the optimization of parameters.

Building the Learning Samples
The learning sample of each of the 13 cross-validation groups
is built by successively considering each one of the 84
reference individuals as a target. Therefore, two haplotypes
considered as targets are matched to 166 haplotypes considered
as references along the 2,321 positions of our LD map. The
maximal number of labeled observations in the learning sample
of the cross-validation group is thus close to 65 million
(2,321 × 2 × 166 × 84). Handling such a large learning sample
would be tricky computationally speaking. Furthermore, we
expect much of it to be redundant, which is the reason why we
have downsized the number of labeled observations to two fixed
sizes of 100,000 and 1,000,000, randomly picked from the 65
million possibilities and, respectively, denoted as EXT-100k and
EXT-1M hereafter.

Selection of Features
Features from which observations are made were selected during
exploratory analyses (unpublished results) and are listed in
Table 2. We have listed 30 of them and ordered them in three
main types : (1) those gathering information about local similarity
between haplotypes, (2) those estimating the relationships
between individuals, gametes, and haplotypes, and (3) those
outputted from other methods for locally matching haplotypes.
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TABLE 2 | List of all features investigated for use in the random forests framework, with their names and ranges of variation.

Range

Type Name Description Min Max

Features based on position along POS Position along the SNPs of the LD panel 1 P

the chromosome and local NSS Length (in #POS) of the shared segments 0 P

haplotype sharing (16 features) R1-NSS Ranking (standard∗) of the length (in #POS) of the shared segment 1 R

R2-NSS Ranking (dense∗) of the length (in #POS) of the shared segment 1 R

DLN Distance (in #POS) to the left edge of the shared segment + 1 0 P + 1

DRN Distance (in #POS) to the right edge of the shared segment + 1 0 P + 1

DMN Distance (in #POS) to the closest edge of the shared segment + 1 0 P + 1

R1-LSS Ranking (standard∗) of the physical length of the shared segment 1 R

R2-LSS Ranking (dense∗) of the physical length of the shared segment 1 R

iDLN Inverse of DLN, as 2-(DLN)−1 when DLN > 0; 0 otherwise 0 2

iDRN Inverse of DRN, as 2-(DRN)−1 when DRN > 0; 0 otherwise 0 2

iDMN Inverse of DMN, as 2-(DMN)−1 when DMN > 0; 0 otherwise 0 2

LSS Physical length of the shared segments (in kb) 0 L

DLL Physical distance to the left edge of the shared segment 0 L

DRL Physical distance to the right edge of the shared segment 0 L

DML Physical distance to the closest edge of the shared segment 0 L

Features based on estimation of PEDI Pedigree relationship between reference and target individuals 0 2

relationship (11 features) PEDG Pedigree relationship between reference and target gametes 0 1

GENI Genomic relationship (as in Yang et al., 2010) between reference
and target individuals on all chromosomes

(n.b.)

GENG Genomic relationship (as in Yang et al., 2010) between reference
and target gametes on all chromosomes

(n.b.)

GENIc Genomic relationship (as in Yang et al., 2010) between reference
and target individuals on the current chromosome

(n.b.)

GENGc Genomic relationship (as in Yang et al., 2010) between reference
and target gametes on the current chromosome

(n.b.)

SIMI Genomic similarity between reference and target individuals on all
chromosomes

0 1

SIMG Genomic similarity between reference and target gametes on all
chromosomes

0 1

SIMIc Genomic similarity between reference and target individuals on the
current chromosome

0 1

SIMGc Genomic similarity between reference and target gametes on the
current chromosome

0 1

MNT Minimum number of ties to join the reference and target gametes
using the pedigree (equal to 100 when MNT > 99)

1 100

Features outputted from other PBLM Probability of IBD obtained by the HMM-HP-LD method 0 1

methods (3 features) R2-PBLM Ranking (dense∗) of reference haplotypes according to their PBLM 1 R

MASW Moving average of the number of switches between longest shared
segments in the surrounding 5 Mb

0 (n.b.)

∗Standard ranking is “1134” whereas dense ranking is “1123.” The dense ranking allows comparing a situation where many reference haplotypes are the local best match
to a situation where only one is the local best match: in both cases the second top-ranked reference has a ranking equal to 2. nb: not bounded.

Features of the first type contain information about local
similarity between target and reference haplotypes, according to
their position along the phased chromosome. The LD position
itself is one of these features, as well as a group of features related
to the size of the segment shared between reference and target
haplotypes (expressed in number of SNPs, in kb, or ranked) and a
group of features related to the position inside a shared segment,
expressed as the distance to the edges of the segment. If target and
reference haplotypes do not share a segment at a given position,
only the LD position is non-zero; as no identity was observed,

there are no shared segments and therefore their length and
distance to their edges are set to zero.

Then come features related to (individual, gametic,
haplotypic) relationships. Note that we understand the term
“gamete” to mean the whole set of alleles inherited from each
parent, as mentioned in previous studies involving gametic
relationships (e.g., Schaeffer et al., 1989). Estimations are based
on pedigree information and/or genomic information brought
by the LD map. In the present study, haplotypes from individuals
with ancestors in the sample are identified according to their
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parental origins (e.g., paternal vs. maternal haplotype). This
allows the use of gametic relationships (e.g., based on the
genealogy, the paternal haplotype is linked with both haplotypes
from its father and eventually to haplotypes from paternal grand-
parents, when these are present in the sample, but it is not linked
to the haplotypes from its mother, assuming both parents are
unrelated). Following notations in Figure 3, PEDI and PEDG are
the additive relationships [estimated using pedigree information
as defined in Wright (1922)], respectively, between individuals
(e.g., Ii and Ij) and gametes (e.g., Gi,p and Gj,p, or Gi,p and Gj,m).
Genomic relationships (between individuals, gametes – on all
autosomes – or haplotypes – only on current autosome and
denoted with suffix “c”) are computed using the formula by Yang
et al. (2010). That formula weights the relationship according
to allelic frequencies. Conversely, the genomic similarities
(between the same pairs of individuals, gametes, and haplotypes
as for genomic relationships) do not take into account allelic
frequencies (computed using Eq. 6 in Speed and Balding, 2014).
Considering the pedigree as a directed graph, we have computed
the feature MNT (for the minimum number of ties) as the shortest
path from any gamete to another one.

Lastly come features outputted from other methods for locally
matching haplotypes: (1) the probability that any reference

haplotype would be the best local match haplotype for a given
target haplotype (PBLM), as computed in our implementation of
the HMM and ranked from highest to lowest (R1-PBLM), and
(2) the average number of switches in the 5 Mb surrounding
the current position (MASW), using a simple (unpublished)
heuristic that reconstructs the target haplotype as a mosaic
of segments from reference haplotypes under constraint of a
minimal number of segments. Here, the rationale is that a
high value of MASW could pinpoint a chromosomal region
where no large reference haplotype could be assigned to the
target haplotype. Through PBLM, the classifier is fed the data
used by the HMM-HP-LD modality of our HMM (see the
description here below, section “Modeling Target Haplotypes As
a Mosaic of Reference Haplotypes”) without, however, specifying
its selection rule (namely, the reference haplotype with the
highest probability is chosen).

Tests With Reduced Number of Features
In order to better understand properties of the machine learning
classifier, we have applied a similar evaluation protocol to four
modalities corresponding to four relevant sets of features. Each
of them was obtained from the learning samples used in the EXT-
100k modality by hiding some features. EXT-100k-L contains all

FIGURE 3 | Estimated relationships between individuals, gametes, and haplotypes. Individuals Ii and Ij have been genotyped on the LD map; parental origins are
known, and genotypes are accurately phased. All haplotypes inherited from mother (father) are denoted as maternal (paternal) gamete Gm (Gp). For each of the 29
bovine autosomes, chromosomes are entirely phased in maternal (paternal) haplotypes Hm (Hp).
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features from the first type (cf. Table 2), EXT-100k-LR contains
all features from the first and second types, EXT-100k-H only
contains the two features obtained from the HMM (PBLM and
R1-PBLM) and the last one, EXT-100k-HR contains the two
HMM features plus all features from the second type. In this
case, the cross-validation plans, the comparison criteria and
the learning samples are the same. The only difference lies in
the range of tested values for optimization of the max_features
parameter ([1, 2] instead of [1, 2, 3, 4, 5] to not exceed the number
of features of the group with the lowest number of features).

Obtaining Evaluation Criteria
Once extra-trees have learnt discrimination rules using the
learning sample, the rules are applied to unlabeled observations
and, for any of them, the extra-tree classifier provides the
probability that the observation belongs to the two score
modalities: Ps, the probability of success, complement Pf, the
probability of fail. For any target haplotype at any LD position,
Ps are computed for each reference haplotype. The best match
is the one that has obtained the highest (predicted) probability
of success (in case of equality, the reference haplotype occurring
at first in the vector of probability is chosen). Doing so for each
LD position results in modeling the target haplotype as a mosaic
of segments from the locally best matching reference haplotypes.
The main criterion to assess the correctness of the mosaic target
haplotype, the metric eA, is obtained by summing the difference
of allelic content between a true target haplotype observed on the
HD map and its modeling as a mosaic of HD segments from the
reference haplotypes.

A first imputation of the target haplotypes (only observed on
the LD map) may be achieved by considering the inferred mosaic
of reference haplotypes (observed on both maps) on the HD
map. However, haplotype imputation may yield better results if
we consider more reference haplotypes rather than only the best
matching one, e.g., if there are more than one best matching
haplotype, or if some reference haplotypes have a Ps very close
to the highest one. Therefore, we impute the allelic content
at

i(ai ∈ [0, 1]) of a target haplotype t at SNP i by averaging over
the allelic contents of all Q best-matching reference haplotypes
among R(Q ≤ R) according to a weight wq as follows:

at
i =

Q∑
q=1

(wq · a
q
i )

The weight wq is computed according to the probabilities of the
best local match (Ps) of the Q best-matching reference haplotypes
at the LD position closest to HD position i:

wq =
Ps(q)∑Q

q=1 Ps(q)

The Q best-matching reference haplotypes are selected as those
having a Ps greater or equal to a fraction c(c ∈ [0, 1]) of the
highest Ps. For instance, setting c to 0 leads to a weighted average
of all the R reference haplotypes. Nonetheless, such an option
is not optimal: the best imputation results were obtained during
exploratory runs with c close to 1.

For a given individual, the imputed HD dosages are obtained
by summing the allelic contents of the two imputed haplotypes.
Once genotype imputation is achieved for all animals, the
imputation reliability (r2) can be computed at every HD map
position. Note that the optimization of extra-tree parameters
max_features and min_samples_leaf are independently achieved
for each criterion chosen for comparison; optimized parameters,
and thus optimized extra-trees, are different, whether the purpose
was to optimize eA or the imputation of r2. For imputation
purposes, the value of c is optimized along with max_features and
min_samples_leaf by setting it to vary in the range [0.75, 0.80,
0.85, 0.90, 0.95, 1.00].

Hidden Markov Model for Local
Haplotype Matching
Modeling Target Haplotypes as a Mosaic of
Reference Haplotypes
IMPUTE2 (Howie et al., 2009) returns imputed genotypes
without providing information on the best matching reference
haplotypes. To obtain the mosaic structure, we have implemented
an HMM equivalent to IMPUTE2 and similar to models
underlying other HMM-based methods, e.g., MaCH (phasing
and imputation, Li et al., 2006) or ChromoPainter (local
ancestry inference, Lawson et al., 2012). Our model corresponds
to settings where genotypes are pre-phased, thus it does
not include a phasing step, nor does it integrate phasing
uncertainties. Working straight from phased haplotypes rather
than genotypes makes the method comparable to the random
forests framework.

In this HMM, we model each target haplotype as an
unobserved mosaic of the R reference haplotypes (hidden states).
Emission probabilities Pe correspond to the probability to
observe allele k (k = 0|1) at a position p when the underlying
hidden state is a reference haplotype r and accounts for
genotyping errors. Denoting the probability of error as Perror, Pe
is equal to 1 − Perror if alleles are identical and to Perror if alleles
are not identical. Between positions p and p + 1, separated by a
distance dp,p + 1 (in cM), the probability of transition Pt;p,p+1
from hidden state r to hidden state s(r, s ∈ [1, R]) is estimated as:

Pt;p,p+1 =

{
1/R ·

(
1− exp

(
−Ngdp,p+1

))
if r 6= s

exp
(
−Ngdp,p+1

)
+ 1/R ·

(
1− exp

(
−Ngdp,p+1

))
if r = s

In the formula above, Ng is a parameter corresponding
to the expected number of generations from the target
haplotype to the reference haplotype. Since the maximum
number of reference haplotypes is low in our case (R = 168
at maximum, see Figure 2), we do not restrict the space
of hidden states.

At each position, we compute the probability that the
reference haplotype r contributes to the unobserved mosaic
structure of target haplotype t according to the HMM. That
probability is later referred to as the “best local match probability”

Frontiers in Genetics | www.frontiersin.org 9 June 2019 | Volume 10 | Article 56231

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00562 June 26, 2019 Time: 15:43 # 10

Faux et al. Modeling Mosaic Haplotypes by Machine Learning

(for consistency with definition used for the random forests
framework) and is computed with the forward–backward
algorithm (described in Rabiner, 1989). This algorithm efficiently
computes the probabilities over all possible sequences of
unobserved states and conditionally on all observations and on
the parameters of the model.

Inferring a discrete mosaic sequence is achieved in two ways:
(1) HMM-VI, selecting the most likely mosaic sequence using
the Viterbi algorithm (also described in Rabiner, 1989), or
(2) HMM-HP, selecting the hidden state (reference haplotype)
with highest probability at each map position. The HMM
is trained on the two genetic maps, LD and HD, leading
therefore to four mosaic sequences (HMM-VI-LD, HMM-VI-
HD, HMM-HP-LD, HMM-HP-HD).

The parameters Perror and Ng of the so-defined HMM have
been chosen to mimic at best the behavior of IMPUTE2 with
option allow_large_regions and default parameters except for
k_hap (set to 168) and Ne (set to 200). The selected values are
Perror = 0.0005 and Ng = 4.7619. The model was then applied to
all 14 target haplotypes of each of the 13 cross-validation groups
(see Figure 2).

Imputation of Target Haplotypes and Genotypes
Using the HMM
For any map position, haplotype imputation of a given target
haplotype is obtained by averaging the allelic content of
all reference haplotypes according to their respective best
local match probability (computed using forward–backward
algorithm). When the HMM is trained on the LD map,
HD positions that are unobserved on that map are imputed
using probabilities computed at the closest LD positions.
Imputed haplotypes are eventually paired per individual

to yield imputed dosages. With the aforementioned values
for parameters Perror and Ng and trained on the HD
map, our implementation of the model behaves similarly
enough to IMPUTE2 (using option allow_large_regions and
the fore-mentioned values for parameters k_hap and Ne) to
consider them as identical imputation methods (see correlations
between imputation methods in Supplementary Material S2).
Hereafter, genotype imputation results using the HD map
are obtained by running IMPUTE2 (with fore-mentioned
parameters) and results using the LD map are obtained by
running our implementation of the HMM (denoted HMM-LD
and written in Fortran 90).

RESULTS

Importance of Features
After supervised learning on the learning samples of the 13
cross-validation groups (see Figure 2), the importance of each of
the 30 features was computed and averaged over the 13 cross-
validation groups. The features are ranked by importance in
Figure 4, for each case of size of learning sample and each
purpose (inference of a target haplotype as a mosaic of reference
haplotypes and genotype imputation from LD to HD map).
The ranking is quite conserved between the four cases: from
96.9 to 99.7% of Spearman’s correlation, less correlated between
purposes than between sizes of LS. The three top-ranked features
are always iDMN, iDRN, and iDLN, three features expressing
the distance to the edge of a shared segment (respectively
the minimal, right and left distances) on an inverse scale.
These three features mostly form a top group, well delimited
from other features. It may be worth noting that those three

FIGURE 4 | Features ranked by their importance in extra-trees (averaged over 13 cross-validations), for the purpose of locally matching haplotypes (top) or genotype
imputation (bottom) and for two sizes of learning sample (100,000 and 1,000,000 labeled observations).
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features are always preferred to their corresponding ones on
the regular scale (DMN, DRN, and DLN). Those are ranked
in a second group of importance, alongside features related
to the size of shared segments (NSS, LSS and their rankings).
Features related to estimation of relationships (between gametes
or individuals) are always low in rankings: SIMGc earns the
highest ranking (17th) for a feature of this kind, ∼22 times less
important than iDMN in that ranking. About features related
to other assignation methods, the ranking of the best local
match probability (R1-PBLM) is always more important than
the probability itself (PBLM). The estimated number of switches
in the neighboring 5 Mb (MASW) is consistently the least
important feature, in the bottom group along with similarity
between individuals.

The distribution of four selected features (iDMN, DMN, NSS,
and GENGc) are given in Figure 5 (the detailed information
is given in Supplementary Material S3). In that figure, the
range of each of these features is divided in 20 equally spaced
bins. The relative size of each bin is then computed as the
proportion of observations falling into this bin. Among those
observations, some are labeled with success (in blue), others
with fail (in red). The purity of the bin is measured by the
proportion of objects in this bin and labeled with success.
This figure therefore shows how each of these four features
is linked to the label. For each of them, the lower the value
of the feature, the lower the purity and the larger the bins.
However, feature iDMN reaches a better compromise between
purity and size than feature GENGc does, for instance: less
than 1% of the observations fall in the last bin of GENGc,
in which 99.9% of the observations are successes, whereas
5.5% of the observations fall in the last bin of iDMN, in

which purity is reasonably high (94.5% of the observations
are successes). This may explain why iDMN is a good feature
for classification.

Differences Between True Haplotypes
and Haplotypes Predicted Using
Extra-Trees or the HMM
The 182 target haplotypes were modeled (per group of 14,
see the cross-validation plan in Figure 2) as mosaics of HD
segments from the best matching reference haplotypes. The
metric eA was then measured by comparing the modeled
haplotypes to their known phase, for the four modalities of
the HMM and the two modalities of the random forests
framework. Results are averaged over the 182 haplotypes in
Table 3. On these results, we see that the extra-trees classifier
performs better than the other methods, whether the learning
sample contains 1E5 or 1E6 objects. When a target haplotype
is inferred as a mosaic of HD segments from the reference
haplotypes that are locally classified as the best match, 98.75–
98.77% of the HD positions have allelic content identical to
the known target haplotype on the HD map. The HMM-HP-
xx returns a lower median value than the extra-trees classifier;
that median value difference is, however, much lower than the
average difference.

Among the four HMM mosaic sequences, the method
for selection of the local reference haplotype has more
impact than that of the map on which the HMM was
trained. Building the mosaic by selecting the hidden states
(reference haplotypes) with the highest best local match
probability (HMM-HP-xx) performs better on both maps

FIGURE 5 | Distribution of the success labels along the ranges of four selected features. The range of each feature is divided into 20 equally spaced bins; the relative
size of each bin (in %) is given by its height and its proportion of observations labeled with success is blue faced. The four features are DMN [distance (in #POS) to
the closest edge of the shared segment +1], iDMN [inverse of DMN, as 2-(DMN)−1 when DMN > 0; 0 otherwise], NSS [length (in #POS) of the shared segments],
and GENGc (genomic relationship between reference and target gametes, on the current chromosome).
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TABLE 3 | Inference of target haplotype as a mosaic of reference haplotypes.

eA [%] Number of switches in inferred mosaic

Min Avg Med Max Min Avg Med Max

HMM-VI-LD 0.004 1.441 0.430 11.936 0 15.7 9.0 73

HMM-HP-LD 0.005 1.304 0.413 7.401 0 19.5 9.0 91

HMM-VI-HD 0.005 1.413 0.409 8.327 0 14.9 9.0 67

HMM-HP-HD 0.005 1.310 0.394 7.403 0 27.6 9.0 671

EXT-100k 0.005 1.226 0.410 6.941 4 70.5 47.0 285

EXT-1M 0.006 1.231 0.414 7.026 4 95.8 71.0 367

Distribution of the difference between predicted and true haplotypes (eA) and of the number of switches in the mosaic, on 182 haplotypes and 328,045 HD SNPs. Best
results are boldfaced.

than by selecting the best mosaic sequence with the Viterbi
algorithm (HMM-VI-xx).

Methods are ranked almost reversely when looking at the
number of switches in the mosaic in Table 3: the best
mosaic sequences on eA tend to model the target haplotype
with more segments. For instance, when using the HMM,
the mosaic obtained by the Viterbi algorithm (HMM-VI-
xx) is less prone to switches than the mosaic obtained by
selecting the reference haplotype with highest best local match
probability (HMM-HP-xx), whatever the map (VI does 19
and 46% less switches than HP, respectively, for LD and
HD maps). Conversely, the HP mosaic sequences have a
lower proportion of error than the VI mosaic sequences
(e.g., the average eA is equal to 1.41% for HMM-VI-HD and
1.31% for HMM-HP-HD).

Comparisons of Imputation Reliability
Between Extra-Trees and HMM
In Table 4, results of imputation from LD to HD maps are
detailed for the four methods of imputation: HMM using
LD and HD maps (respectively HMM-LD and IMPUTE2)
and extra-trees with 100,000 and 1,000,000 observations in
the learning samples (respectively EXT-100k and EXT-1M).
The imputation r2 are categorized by minor allele frequency
(MAF) and position along the BTA1 chromosome. These
results show that the extra-trees classifier performs as good as
HMM: extra-trees classifiers are better on average imputation
r2 whilst IMPUTE2 has a greater number of variants that are
better imputed (higher median). Although slightly better on
rare variants (MAF < 0.05) and between first and last Mb
of the chromosome, the machine learning model is distinctly
better than the HMM on chromosome edges: SNPs located
on the last Mb of BTA1 have an average imputation r2

2.23% higher for the best extra-trees (EXT-100k) than for the
best HMM (IMPUTE2).

The statistics in Table 4 relate to the SNPs that do
not pertain to the LD map and for which imputation
reliability was always computable (for that reason, SNPs
imputed as monomorphic by one of the four methods were
excluded). The numbers of SNP excluded for being imputed
as monomorphic are proportionally very low (0.14% of the
total number of only HD SNPs) but the random forests

framework has imputed SNPs as monomorphic ∼3 to ∼4 times
more than the HMM.

Another way of categorizing SNPs to highlight imputation
differences between methods is given in Figure 6. That figure
shows the average imputation r2 in regard to the distance
between the imputed HD SNP and the closest observed LD
SNP. Ten classes of distance (from 0–2.9 to 66–389 kb)
were designed so that they all include the same number
(∼33k) of HD SNPs. For the HMM-based imputations,
the figure shows that both maps return an equal average
reliability up to ∼13 kb and then the HD map (IMPUTE2)
overtakes the LD map (HMM-LD). Besides, whatever the
size of the learning sample (EXT-100k or EXT-1M), the
random forests framework always imputes better than the
HMM which uses the same map (HMM-LD). As a result
of these two trends, the random forests framework always
yields better results than the HMM, except for the most
distant class (>66 kb), where IMPUTE2 overtakes it. However,
in that last distance class, the average imputation r2 drops
for all methods.

Machine Learning With Reduced Number of Features
The results (Table 5) obtained when considering only the features
of the first type (i.e., those based on the position along the
chromosome) are quite close to the results obtained with all
features, much more for inferring the target haplotype as a mosaic
of segments than for genotype imputation. Adding the eleven
relationship features further enhances these results. Note that
the differences between Tables 3, 4 on average imputation r2

for a given method are due to the exclusion of more SNPs
in Table 5, for being imputed as monomorphic in at least
one of the tests.

Though lower, the results achieved by an automatic
classifier only fed with two features – the features returned
by the HMM (the probability of best local match and its
ranking) – are still close to the “full” automatic classifier and
actually slightly better than HMM-HP-HD for the purpose
of inferring the target haplotype as a mosaic of segments.
For that purpose, using the two HMM features with machine
learning returns the same results as the HMM using the
LD map (HMM-HP-LD). Surprisingly however, adding the
relationship features yields worse results. The fact that the
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TABLE 4 | Genotype imputation of target haplotypes.

Overall NMA1 = 2 MAF < 0.05 MAF > = 0.05 First Mb Last Mb Between first and last Mb Number of SNP imputed as
monomorphic

N 325,358 4,020 41,931 283,427 2,587 2,370 320,401

HMM-LD Avg 91.86 71.89 80.96 93.47 87.89 87.74 91.92 125

Med 94.93 99.15 90.22 95.04 92.61 90.30 95.00

IMPUTE2 Avg 91.93 71.85 81.00 93.55 87.91 87.76 92.00 157

Med 94.97 99.14 90.20 95.10 92.21 90.39 95.03

EXT-100k Avg 92.01 72.31 81.52 93.56 88.74 89.99 92.05 455

Med 94.89 99.43 90.65 95.00 92.51 93.34 94.94

EXT-1M Avg 92.08 72.33 81.50 93.65 89.28 89.60 92.12 444

Med 94.94 99.43 91.16 95.08 92.48 92.89 95.00

Average and median imputation r2 (as percentages) of four different imputation methods, partitioned by allele frequency and by position on BTA1, after exclusion of LD
SNPs as well as any SNP imputed as monomorphic by at least one of the four methods. For each partition, the best average result is boldfaced. 1NMA, number of
occurrences of Minor allele.

FIGURE 6 | Average imputation r2 by four methods with regard to the distance between the imputed SNP (from the HD map) and the closest observed SNP (from
the LD map), for different classes of distance containing the same number of imputed SNP.

max_features parameter was set to vary between few and
low values (1 or 2) could explain this unexpected result. For
the purpose of imputation, considering only some features
never reach average imputation reliabilities higher than
those of the HMM.

DISCUSSION

Genotype Imputation Illustrates the
Effectiveness of the Random Forests
Framework
When imputing WGS genotypes from 50k dense genotypes,
the implemented random forests framework reaches average
reliabilities similar to those achieved by IMPUTE2. We

consider therefore these reliabilities as fair evidence of the
ability of our framework to efficiently learn how to locally
match haplotypes from examples (the labeled observations) for
two main reasons. First, such a measure is independent of
phasing, thus it does not embed potential phasing errors (even
though those remain scarce). Second, using the imputation
criterion makes it comparable to a state-of-the-art method,
here IMPUTE2. Imputation results of the two types of
methods are very similar, although we observed two main
differences between HMM and the random forests framework.
The first is that the random forests framework performs
better on both edges of chromosomes: a difference of ∼2%
of average imputation r2 is observed. The second difference
is that IMPUTE2 imputes genotypes at distant positions
from known genotypes with higher accuracy; this is due
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TABLE 5 | Effect of considering only some features and not others, on average
difference eA between predicted and true target haplotypes and on average
imputation r2.

eA r2 Number of SNP imputed as
monomorphic

N 182 324,738

HMM-HP-LD| HMM-LD 1.304 92.00 125

HMM-HP-HD| IMPUTE2 1.310 92.07 157

EXT-100k 1.236 92.15 455

EXT-100k-L 1.240 91.73 577

EXT-100k-LR 1.238 91.83 692

EXT-100k-H 1.304 91.47 613

EXT-100k-HR 1.345 91.03 914

Both comparison criteria are given as percentages and best results are boldfaced.

to its use of the HD map, as shown by comparison with
HMM-LD in Figure 6.

Conceptual Differences Between the
HMM and the Random Forests
Framework
The differences in imputation results could be explained by
the views behind the two types of methods, which also are
quite distinct. The very basic conceptual difference between
them lies in their modeling objectives: the HMM seeks to
find the sequence of reference haplotypes that most likely
reproduces an observed target haplotype (hence, essentially
minimizing the number of segments) while our proposed
framework searches for the best match locally (independently of
the whole sequence). In some particular designs, the reference
haplotypes correspond to the true ancestors of the target
haplotype (e.g., Mott et al., 2000; Druet and Farnir, 2011;
Zheng et al., 2015); then the HMM models the biological
process of chromosomes transmission over a few generations.
In contrast, the sequence returned by the random forests
framework has no pretention to model that biological process
but aims at imputing the target haplotype as well as possible,
chunk after chunk. When the reference haplotypes are not the
true ancestors of the target haplotype (e.g., when the target
haplotype is not a true mosaic of reference haplotypes), the
HMM framework no longer aims at finding the reference
haplotype that is the most likely to be identical-by-descent (IBD)
with the target haplotype at a given position but essentially
minimizes the number of segments in the mosaic. Conversely, the
random forests framework searches for the best match haplotype
similarly to methods estimating IBD probability, considering
the number of identical-by-state SNPs on both sides of the
position (e.g., Meuwissen and Goddard, 2001). The natural
consequence of these two different modeling purposes is a much
higher level of “mosaicism” for the random forests framework
(given in Table 3).

Beyond that first conceptual difference, another two are
of interest. First, our framework does not allow for small
differences between shared segments: a mismatch between target
and reference haplotypes terminates a shared segment. For

some methods (e.g., Beagle – Browning and Browning, 2009),
more efficient imputation results have been observed without
allowing differences. Not allowing differences also partially
explains why the extra-trees makes more switches than the
HMM. Note that the same constraint could be imposed in
the HMM framework by setting Perror to 0. Second, the two
types of methods use different map information: the random
forests framework only obtains information from the LD map
whereas the HMM may additionally obtain information from
the HD map. That difference matters since the HMM achieves
better imputation with the HD map than with the LD map
(particularly for HD SNPs distant from a LD position, see
Figure 6). When it uses the entire map, the HMM better accounts
for distances between SNP positions and for the structure of
linkage disequilibrium between SNPs. It subsequently produces
a better estimation of the haplotype blocks: a block is
defined by SNPs in perfect linkage disequilibrium, not by
those closest to a LD position. Integrating the information
from the HD map into the random forests framework would
therefore be profitable.

Main Lessons of the Extra-Trees
Classifier
Beyond its use, the random forests framework also reveals
some useful lessons for the development of methods for local
haplotype matching. The most informative lesson comes from
the importance ranking of the features: top-ranked features are
those expressing the distance to an edge of a shared segment
(e.g., DMN, minimal distance to the left or right edge of the
shared segment, or iDMN, its expression on an inverse scale).
When such a feature is not equal to zero, it contains a double
information: (1) that both haplotypes are, at this position, in a
shared segment and (2) the value of the distance to the edges
of the segment. A high value of DMN (or a value of iDMN
close to 2) reveals that both haplotypes share a long identity
segment (at least twice the length of the value of DMN) and
that the current position is quite distant from the closest edge
of this identity segment. The distance to the edge of a shared
segment is thus more important than the length of this shared
segment. As discussed above, the distance to the closest edge
might better reflect relative local IBD probabilities than the length
of the shared segment. Accordingly, minimizing the number of
segments in the mosaic as done in the HMM does not guarantee
the identification of the reference haplotype with the highest local
IBD probability.

Before going further, note that the precedence of iDMN over
DMN (and similarly for iDRN, iDLN) can be explained by the
nature of extra-trees itself: for any node split when growing a
decision tree, the extra-trees algorithm randomly picks up the
value of the cut-point for a feature uniformly between the min
and max value of this feature in the node to split. However,
the sizes of classes of iDMN are more uniformly distributed
over its (bounded) range than the sizes of classes of DMN (see
Figure 5: for DMN, >98% of the observations fall into the first
bin of range). Therefore, when picking at random a cut-point for
node splitting, there is a higher chance of having an informative
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discrimination with iDMN compared with DMN. With classical
random forests (where cut-points are optimized over the full
range of values), iDMN and DMN have similar importance (see
Supplementary Material S4).

Features rankings (Figure 4) also show that features of
the first group (i.e., 16 features related to the position
along the chromosome) unambiguously take the precedence
over the ones of the second group (relationships). Such
hierarchy was then confirmed by the tests with a reduced
number of features (Table 5). This result was expected
in the sense that the relationship features express identity
between haplotypes at maximum at the chromosome level
(feature GENGc, which actually is the most important of
these features) whereas features from the first group express
identity between haplotypes at a segment level (e.g., a high
value of feature LSS reveals an identity spanning on several
Mb). A second lesson is thus that relationship features
have a small but not null impact: removing them from
the random forests framework leads to average imputation
reliabilities lower than those of the HMM (Table 5). Our
explanation is that these relationships are still useful to
discriminate between reference haplotypes bearing a shared
segment of the same length, although for most of the cases
the length of the shared segment already captures the familial
information (long segments indicating close relationships).
Consequently, using relationship to pre-select the subset of
reference haplotypes, as done by SHAPEIT2 (Delaneau et al.,
2011) or by LDMIP (Meuwissen and Goddard, 2010), is
probably already a good way to use this information. Similarly,
we observed that adding the relationship information to the
HMM information (in the random forests framework) did not
improve our accuracy.

The rankings of features (Figure 4) bring other minor
lessons about features expressing the same aspect, but in
a different way. First, feature NSS is always preferred to
feature LSS, whereas both express the length of a shared
segment between target and reference haplotypes (respectively
in number of LD map positions and in kb). Second, the
dense rankings are of little help: standard rankings (“R1-
”) always take precedence over them (“R2-”). The rationale
behind the use of the dense rankings was to make comparable
cases where many reference haplotypes were the best match
to cases where only one reference haplotype was the best
match. In both situations, with dense ranking (“1123”), the
second-best reference haplotype is ranked second whereas,
with standard ranking (“1134”), the second-best reference
haplotype is ranked n + 1, where n is the number of best
matching haplotypes.

Perspectives and Improvements for
Routine Use of the Random Forests
Framework
As implemented in our study, the random forests framework
is not computationally competitive compared to the existing
HMM approaches. Hence, prior to a routine application,
two entangled aspects have to be considered: how does

one achieve routine predictions with higher accuracy,
and with lower computational demand than the random
forests framework as implemented so far? Both aspects
can be circumscribed to the constitution of the learning
samples, summarizing the previous question to reducing
the dimensions of these learning samples (number of
labeled observations per number of features) along with
improving accuracy.

On the aspect of the number of features, the tests conducted
in this study have shown that discarding features could lead
to very limited losses of precision but should not be done
in a group-wise manner. Now that the hierarchy of features
have been established inside each group, some features could
be trimmed off to avoid redundancy, i.e., giving preference
to iDMN over DMN, to NSS over LSS, or to R1- over
R2. For instance, an optimized set of features may also be
obtained through recursive feature elimination (Guyon et al.,
2002). Besides removing less important features, new ones
could also be investigated. Note that preliminary investigations
are, however, always necessary for new features; for instance,
we had considered the gametic linkage (as estimated in
Wang et al., 1995) but too few relationships were non-
zero so that it was helpless to identify best local matches
between haplotypes. The IBD probabilities, as estimated by
Beagle (Browning and Browning, 2009) or LDMIP (Meuwissen
and Goddard, 2010), could also be considered although the
usefulness of such features might be hampered by the time
requested for computing them. Other features to consider
are the allele (as in Maples et al., 2013), the MAF and the
position of HD SNPs. These features would extend the learning
sample to all HD positions, which would undoubtedly be
profitable for accuracy. Conversely, this would directly impact
the computational aspect. For that reason, an intermediate
solution would be to consider blocks of linkage disequilibrium
of HD SNPs (and their allele, MAF and position) instead
of operating on these HD SNPs. All lengths and distances
could also be expressed on a different scale to account
for the average number of generations between target and
reference haplotypes as in the HMM framework (e.g., using
genetic distances and the number of generations to estimate
recombination probabilities).

The number of labeled observations is the second aspect
to consider and should be optimized alongside the number of
features. Our results show a limited improvement when using
a learning sample 10-times larger (EXT-1M vs. EXT-100k). The
number of labeled observations could therefore be reduced. In
addition, their selection could be achieved in a wiser manner, e.g.,
selecting them in order to contain the most different examples
rather than randomly. The problem of the selection of the best
training examples is known as active learning in machine learning
literature (Settles, 2012).

CONCLUSION

We herein outlined a new framework for automatically
matching haplotypes along the chromosome and have
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illustrated that extremely randomized trees can effectively
combine multiple sources of information to identify the
best matching reference haplotypes. As an example, our
implementation of the extremely randomized trees achieved
slightly better imputation results than IMPUTE2. The random
forests framework also allows identifying which features are
the most important for a specific prediction. In the present
case, distance to the edges of the shared segment appeared as
the most important variable and adding genomic relationships
only marginally improved results. To conclude, this approach
might be further enhanced, for instance by including additional
features, or could also be applied to other related applications
such as identification of carriers of genetic defects or imputation
of structural variants (by including features as distance with
known carriers, genotyping intensity, etc.).
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Pig scrotal hernia is one of the most common congenital defects triggered by both genetic 
and environmental factors, leading to severe economic loss as well as poor animal welfare 
in the pig industry. Identification and implementation of genomic regions controlling scrotal 
hernia in breeding is of great appeal to reduce incidences of hernia in pig production. 
The aim of this study was to identify such regions or molecular markers affecting scrotal 
hernia in pigs. First of all, we summarized and analyzed the results of some international 
teams on scrotal hernia and designed a specially population which contains 246 male 
individuals. We then performed genome-wide association study (GWAS) in this specially 
designed population using two scenarios, i.e., the target panel data before and after 
imputation, which contain 42,365 SNPs and 18,756,672 SNPs, respectively. In addition, 
a series of methods including genetic differentiation analysis, linkage disequilibrium and 
linkage analysis (LDLA), and haplotype sharing analysis were appropriate to provide 
for further analysis to identify the potential gene underlying the QTL. The GWAS in this 
report detected a highly significant region affecting scrotal hernia within a 24.8Mb region  
(114.1–138.9Mb) on SSC8. And the result of genetic differentiation analysis also showed 
a strong genetic differentiation signal between 116.1 and 132.7Mb on SSC8. In addition, 
the QTL interval was refined to 2.99Mb by combining LDLA and genetic differentiation 
analysis. Finally, two susceptibility haplotypes were identified through haplotype sharing 
analysis, with one potential causal gene in it. Our study provided deeper insights into the 
genetic architecture of pig scrotal hernia and contributed to further fine-mapping and 
characterize haplotype and gene that influence scrotal hernia in pigs.

Keywords: GWAS, imputation, haplotype, specially designed population, scrotal hernia, pigs

INTRODUCTION

Pig hernias are of the most common congenital defects which cause severe economic losses as well 
as poor animal welfare in the pig industry. The most common types of hernias in pig are scrotal 
and umbilical hernia. Scrotal hernia is the phenomenon of abdominal contents falling into scrotum 
from the unilateral or bilateral inguinal rupture, causing local expansion bulge (Grindflek et al., 
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2006; Du et al., 2009; Zhao et al., 2009). As a complex congenital 
defect, the reason of scrotal hernia formation is unclear; some 
abnormal phenomena and problems occurred at the stage of the 
development and obliteration of processus vaginalis in descent 
of testis, which have been considered to be the main reason 
for the development of scrotal hernia (Clarnette and Hutson, 
1997; Clarnette et al., 1998). The genetic mechanical of scrotal 
hernia is also poorly clarified, only with the knowledge of cause 
by both multiple genetic and environmental factors. In the pig 
breeding industry, the occurrence of scrotal hernia is varied 
from 1.7 to 6.7% across from pig breeds and populations, and the 
heritability estimation varied from 0.2 to 0.6 in disparate studies 
(Mikami and Fredeen, 1979; Thaller et al., 1996). Environmental 
factors, as a potential factor in the occurrence of complex 
genetic diseases, have a great influence on the occurrence of 
scrotal hernia. Research reports showed that the incidence of 
scrotal hernia in Dutch Landrace and large white pig was 1.36 
and 1.31%, respectively, while the corresponding incidence rate 
of Dutch Landrace and large white pig of Hypor was 0.54 and 
0.22% (PK, 2006). In 2010, the European Breeding Corporation 
reported that the incidence of scrotal hernia in Dutch Landrace 
and large white pig was 0.383% (Walters, 2010). Obviously, the 
difference of environment will make the incidence of scrotal 
hernia different.

In breeding practice, it is not effective to decrease the 
incidence of pig scrotal hernia by conventional phenotypic 
selection. One of the methods of hernia resistance breeding is 
to isolate and identify susceptibility loci and major causative 
genes and then implement marker assisted selection. Currently, 
several research groups have identified the susceptible loci and 
potential positional candidate genes for scrotal hernia. Grindflek 
et al. reported several susceptibility QTLs for pig scrotal hernias 
on eight chromosomes (Grindflek et al., 2006). Ding et al. have 
revealed seven regions on SSC2, 4, 8, 10, 13, 16, and 18 for 
scrotal hernia in a White Duroc and Erhualian F2 intercross 
using nonparametric genome-wide linkage (NPL) analysis and 
transmission disequilibrium test (TDT) (Ding et al., 2009). Du et 
al. found that four regions surrounding ELF5, KIF18A, COL23A1 
on chromosome 2, and NPTX1 on chromosome 12 may contain 
the genetic variants important for the development of the scrotal 
hernia development using a family-based analysis (Du et al., 
2009). Sevillano et al. reported a susceptibility region on SSC13 
between 34 and 37 Mb for scrotal hernia (Sevillano et al., 2015). 
However, these susceptibility areas are rarely further confirmed 
in other research groups; even using bigger population sizes, the 
genetic control of scrotal hernia has still not been clarified.

In the 10 years, we performed two statistical methods (TDT 
and NPL) in the F2 population using 194 microsatellites and 
identified one chromosomal region distributed on SSC8 for 
the scrotal hernia. Generally speaking, nonparametric linkage 
analysis (NPL) evaluates allele sharing among affected individuals 
and comes to a result without particular model assumptions, and 
the TDT was proposed as a family-based association test for the 
presence of genetic linkage between a genetic marker and a trait; 
more computational details with this 2 statistical methods were 
showed by Ding et al. (2009). Using the same population, we 
perform GWAS study in 60K genotypes, the result manifested that 

none of SNPs achieved the genome-wide significance threshold 
(Su et al., 2014). The feasible reasons for the “missing QTLs” in 
GWAS study probably are the low linkage disequilibrium between 
markers and low incidence rate in the subject population, or 
due to the intricacy genetic basis of this congenital defect. To 
overcoming these problems and exploring this congenital defect, 
we designed a specially F3 population which was mated with full-
sibs or half-sib of the affected individuals and imputed the chip 
SNPs to whole-genome sequences (Supplementary Figure S1) 
then implemented several classical genetic methods to rediscover 
and refine QTLs for pig scrotal hernia. Our aim in this study was 
to identify susceptibility loci of pig scrotal hernia and provided 
a novel insight for further analysis of the genetic basis of this 
congenital defect.

MATERIAL AND METHOD

All procedures including experimental animals established 
and tissue collection were performed in accordance with the 
guidelines approved by the Ministry of Agriculture of China. 
This study was approved by the ethics committee of Jiangxi 
Agricultural University.

ANIMALS OF THE TARGET POPULATION

A four-generation resource population was developed from the 
intercross of 2 White Duroc boars (PIC 1075) and 17 Chinese 
Erhualian sows between 2,000 to 2,006. In briefly, two White 
Duroc boars were crossed to 17 Erhualian sows, then 9 F1 
boars, and 59 F1 sows were randomly selected to produce a 
total of 1,912 F2 pigs in 6 batches avoiding full-sib mating (Guo 
et al., 2009). Last, 62 F2 boars and 149 F2 sows were selected to 
produce two types of F3 population. The ordinary experiment 
population contains 661 F3 offspring from an intercross of 
randomly chosen F2 avoiding full-sib mating; the particular 
hernia population in this study contains 851 F3 offspring, 
which were designed to mate the health full-sibs or half-sibs of 
affected individuals. Affected pigs were diagnosed and recorded 
carefully by veterinarians at three age stages: 46, 90, and 240 
days. In summary, 23 affected pigs from F2 population were 
confirmed, 5 affected pigs from ordinary F3 population, and 23 
affected pigs from F3 hernia study population were diagnosed, 
respectively. A total of 1,020 individuals (19 F0, 68 F1, and 933 
F2) and 500 F3 were genotyped. For this study, 246 male F3 pigs 
were chosen for GWAS analysis, which contain 18 available 
DNA samples for affected individuals. Furthermore, 19 F0, 68 
F1, and 516 F2 male pigs, and 246 F3 male pigs were used in 
haplotype sharing analysis.

Genomic DNA was isolated from ear tissue with a standard 
phenol/chloroform extraction method. All DNA samples were 
qualified and diluted to a final concentration of 50 ng/µl in 
96-well plates. A total of 1,020 F2 and 500 F3 were genotyped 
with the Illumina PorcineSNP60 BeadChip and GeneSeek GGP 
Porcine 50K BeadChip on an iScan System (Illumina, USA) 
following the manufacturer’s protocol, respectively (Ramos et al., 
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2009). Physical positions of SNPs on chromosomes referred to 
the swine reference genome sequence assembly (Sus_scrofa11.1) 
(http://asia.ensembl.org/Sus_scrofa/Info/Index). Quality control 
procedures were implemented by PLINK (version 1.07). Briefly, 
SNPs were removed if their positions on the genome build 11.1 
were unspecific, call rate <90%, and minor allele frequency 
(MAF) <1%. Animals more than 10% missing genotypes were 
removed. To keep the alleles consistency with the sequencing 
data, we firstly aligned the primer sequences of each SNP to the 
reference porcine genome assembly Sus scrofa 11.1 by BLAST. 
Then, the genotypes of reversed SNP strands in target panel 
were flipped using PLINK (v1.9) software (Chang et al., 2015); 
SNPs without positions were excluded for further analysis.

HAPLOTYPE CONSTRUCTION OF 
REFERENCE PANEL

In this study, a wide collection of 109 whole-genome sequence 
individuals from 14 difference populations were used as a 
reference; each breed contained 2 to 22 individuals. More details 
on the origins, breeds, and sample size are shown in Table 1. 
We firstly trimmed the raw reads according to a quality score 
threshold greater than 15; then, BWA (Burrows–Wheeler Aligner) 
was used to align the raw reads which passed chastity filtering to 
the reference porcine genome assembly Sus scrofa11.1 (Li and 
Durbin, 2009). Variants were identified using the GATK (Genome 
Analysis Toolkit) (McKenna et al., 2010); PCR duplications were 
firstly marked by Picard MarkDuplicates (http://broadinstitute.
github.io/picard/), and GATK IndelRealigner option was carried 
out for local realignments. Then, variants were filtered with 
GATK VariantFiltration option. VCFtools was used to remove 
the structural variants. Subsequently, the haplotypes of 109 
individuals with cleaned SNP data were constructed by Beagle 
(v4.1) (Browning and Browning, 2007). Specifically, the number 
of markers to include in each sliding window was set to 100,000, 
and the overlap between windows was set to 3,000 markers. Then, 
the number of phasing iterations was set to 50. Finally, the other 
options involving in the imputation follow the default setting.

IMPUTATION

Whole-genome sequence imputation between target and 
reference panel was conducted by Beagle (v4.1) using the default 
parameter settings (Browning and Browning, 2016). Specifically, 
the size of imputed region was set to 50,000 markers per window, 
and the overlap between windows was set to 3,000 SNPs. This 
software first constructed local haplotypes using the hidden 
Markov chain Monte Carlo (MCMC) algorithm and then 
resampled new estimated haplotypes for each individual based 
on a hidden Markov model (HMM).

Imputation accuracy should be further investigated in whole-
genome sequence data because of the low density and common 
variants in 50k. Browning et al. and Williams et al. have fully 
exhibited the number of individuals present in a population 
is a crucial factor in determining how well the phase can be 
estimated for haplotype construction (Browning and Browning, 
2011; Williams et al., 2012). Therefore, 109 whole-genome 
sequence pigs including 19 F0 who were the progenitor of the 
500 F3 populations were also regarded as reference panel in order 
to obtain more accurate phase information. Then, the genotypic 
concordance rate and the squared correlation (R2) between 
best-guess imputed and the original variants as imputation 
accuracy. The genotypic concordance rate used a cross-validation 
strategy described in previous studies (Brondum et al., 2014; van 
Binsbergen et al., 2014; Pausch et al., 2017). More specifically, 
two thousand loci in the target sample were deleted randomly 
then imputed in the same strategy. The number of 2,000 alleles 
imputed correctly divided by total 2,000 loci (the allelic correct 
rate) was taken to calculate the accuracy of imputation. Finally, in 
order to balance the imputation accuracy and missing proportion 
in the next analysis process, we excluded the variants with call 
rate <90% and MAF <0.03.

GWAS

GEMMA was utilized to perform the association analyses 
underlining the standard linear mixed model (Zhou and 
Stephens, 2012). Sex and batch were included as fixed 
effects. Heritability was estimated by using −lmm procedure 
implemented in GEMMA using genomic relationship matrix. 
Population stratification and were adjust by including genomic 
relationship matrix. Briefly, this model is denoted as:

 y W X u u MVN MVNn n n= + + + − −α β λ λτ∈ ∈; ~ ( , K), ~ ( , )0 01 1I  

where y is a n element vector of phenotypic values (or case/
control labels), α is a c-vector of fixed effects, β is the effect 
size of SNPs, W is a design matrix of covariates, x is a vector of 
genotypes at each locus, and u is the vector of random effects 
following the multivariate normal distribution MVNn(0, 
λτ−1K), where τ−1 is the variance of the residual errors, and λ is 
the ratio between τ−1 and the variance of the residual errors; K 
is a known kinship matrix, ∈ is an vector of errors following 
the multivariate distribution MVNn(0, λτ−1In), and In is an n × 
n identity matrix. Normally, significance threshold of multiple 

TABLE 1 | The components of the reference panel.

Breeds Sample 
Size

Depth Location

Bamei 6 24.9 Shanxi, China
Hetao 6 24.4 Inner Mongolia, China
Laiwu 6 27.5 Shandong, China
Min 6 25.8 Heilongjiang, China
Bamaxiang 6 28.1 Guangxi, China
Luchuan 6 26.4 Guangxi, China
Wuzhishan 6 26.1 Hainan, China
Jinhua 6 26.2 Zhejiang, China
Erhualian 19 28.1 Jiangsu, China
Tibet 22 26.9 Southwest China
Baoshan 6 26.5 Yunnan, China
Neijiang 6 26.2 Sichuan, China
White Duroc 2 31.1 USA
Wild boar 6 28.9 South China; North China; 

Sumatra, Indonesia
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test in chip array-based GWAS was adjusted by naïve Bonferroni 
corrections, which is 0.05 divided number of examined SNPs. 
However, this approach would lead to over correction and 
decreasing the detection power in GWAS as these tests are non-
independent for the linkage disequilibrium between markers. 
We herein used 5E−08 as a genome-wide suggestive significance 
threshold following Pe’er et al. and Johnson et al. (Pe’er et al., 
2008; Johnson et al., 2010). The population stratification is one 
of the factors that affects the validity of genome-wide association 
study (Pearson and Manolio, 2008). To check if stratification 
exists in our result, quantile–quantile plots (Q–Q plots) were 
implemented to evaluate population stratification effects. The 
Q–Q plots were constructed with R software. Measures of 
linkage disequilibrium (r and r2) between SNPs were estimated 
by plink 1.07 (Clarnette and Hutson, 1997), the default settings 
for minimum linkage between SNPs at threshold r2 = 0.8.

GENETIC DIFFERENTIATION ANALYSIS

To elucidate whether there is genetic differentiation exist in 
scrotal hernia pigs and health pigs, we divided the affected pigs 
and the unaffected pigs into two groups, as the method did by 
Zhang et al. (2019) then assessed allele frequency differentiation 
using the unbiased genetic differentiation estimated of the 
fixation index (Fst). Akey et al. have fully described estimation of 
unbiased Fst fixation index in his paper using SNP dataset (Akey 
et al., 2002). Briefly, Fst was estimated as follows:

 
Fst MSP MSG

MSP n MSGc
= −

+ −( )1  

where MSG represents the observed mean square errors for loci 
within populations, MSP denotes the observed mean square 
errors for loci between populations, and nc is the average sample 
size across samples, which incorporates and corrects for the 
variance in the sample size over population 
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In the above formulae, ni and pAi denote the sample size and the 
frequency of SNP allele A in the ith population, respectively, and 
pA  is a weighted average of pA across populations. The negative 

Fst didn’t have any biological interpretation and were set to 0 to 
fit the definition of Fst ranging from between 0 and 1 (Wright, 

1951). The top 1% of loci according to genetic differentiation 
values was served as candidate regions to host resistance or 
susceptibility to pig scrotal hernia (Zhang et al., 2019).

LINKAGE DISEQUILIBRIUM AND LINKAGE 
ANALYSIS (LDLA)

The haplotypes of F3 on SSC8 were reconstructed using a hidden 
Markov model by beagle (Zhang et al., 2012) and then the 
graphical model for the haplotype clusters with beagle was directly 
generated, which is a directed acyclic graph (DAG). The parameters 
for both processes are set to scale equals 2 and shift equals 0.1. 
Haplotypes within a cluster are likely to descend from the same 
ancestral haplotype and to carry the same DSV (DNA sequence 
variants) and combination of alleles, which is actually the principle 
used in linkage analysis. The linkage disequilibrium or association 
mapping information is generated by ancestral recombinations 
and detected by population level associations between individuals. 
Then, the clustered haplotypes were converted into diallelic 
markers by pseudomarker program, which can be imported into 
a program like R for statistical analysis. Thus, haplotype data 
contains both linkage and linkage disequilibrium information and 
can be imported into a mixed model framework:

 Y Xb Zu e= + +  

where Y is the vector of phenotypes, and b is fixed effects including 
sex and batch. The haplotypes could be treated as random here, 
as there are likely to be many of them, and some haplotypes 
will occur only a small number of times. Therefore, the random 
additive genetic effect following the distribution u N Gu~ ( , )0 2σ , 
in which G is the individual–individual similarity matrix, and σ u

2  
is the polygenetic additive variance, and X and Z are incidence 
matrices for b and u, respectively. The residual random effect “e” 
following the distribution e ~ ( , )N Ie0 2σ . The LDLA analysis was 
carried out using a homemade R scripts (Supplementary Data 
Sheet 2). The most likely position of the QTL was obtained by the 
2-LOD drop method (Karim et al., 2011).

HAPLOTYPE SHARING ANALYSIS

The haplotypes in the target QTL region were constructed by 
fastPHASE. Firstly, we tried to find the sharing susceptibility 
haplotype by thoroughly scanning the haplotypes of affected 
individuals in F3 population. Then, we tried to identify whether 
the same sharing susceptibility haplotype existed in F2 affected 
individuals and tried to trace it to the F1 and F0 generations. It 
should be noted that we take the intersection of SNPs of F3 and F2 
due to the different density of 50 and 60k chip.

CONDITIONAL ASSOCIATION TEST

To elucidate whether there are additional QTLs for scrotal hernia 
in the identified QTL region, we extracted genotypes of the top 
SNP and included as a covariate to the univariate linear mixed 
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model, which was performed in the single-marker GWAS as we 
described above then performed a conditional test to retest the 
association between SNPs and phenotypes. If additional signal 
was detected, then there were multiple QTLs that cooperated to 
control scrotal hernia. Otherwise, there was only one QTL that 
affected scrotal hernia.

BOOTSTRAP TEST

The bootstrap method is a resampling technique used to estimate 
statistics on a population by sampling a dataset with replacement 
(Efron and Tibshirani, 1993). It can be used to estimate summary 
statistics such as the mean, standard deviation, confidence 
interval, or correlation coefficient, which is done by repeatedly 
taking small samples, calculating the statistic, and taking 
the average of the calculated statistics. We herein carried out 
bootstrap test to verify the reliability of GWAS in this study. 
First, we randomly resampled for 1,000 times with replacement, 
in which some affected individuals can be sampled for multiple 
times, while some may be sampled for 0 times, the total number 
of affected individuals that may either increase or decrease, 
and the same resample results were acquired in unaffected 
individuals. Then, we conducted GWAS for 1,000 times to see 
if there were still significant signals in the susceptibility region 
which was identified in our study.

RESULTS

Phenotype Statistics and SNP 
Characteristics After Quality Control
Incidences of scrotal hernia were estimated to be 0.7 and 2.7% in the 
ordinary F3 population and in the specially designed F3 population, 
respectively. It is obvious that the incidence of scrotal hernia in 
the specially designed F3 population was significantly higher than 
in the ordinary F3 population. Heritability for scrotal hernia was 
estimated at 0.39 using the standard linear mixed model, which 
implies that there is a genetic contribution to scrotal hernia.

After quality control, a total of 42,365 SNPs and 246 pigs had 
retained for further analyses. Imputation was produced using 
Beagle software. The summarization of imputation results is 
presented in Table 2. After imputation, a total of 46,483,626 SNPs 
for 246 individuals were obtained, and 18,756,672 SNPs were 
retained after filtering with MAF > 0.03. The average genotypic 
concordance rate was 84.8%, and the average correlation between 
best-guess and true variants reached with an average of 71% after 
we delete sites where R2 is equal to 0 and MAF is less than 0.03 
(Supplementary Figure S2).

SUMMARY OF GWAS

We conducted a GWAS on the F3 population in two scenarios, 
i.e., the target data before and after imputations. In the scenario 
with experimental 50k chips data, we identified a total of 
18 SNPs that surpassed the genome-wide significance level 
(Figure 1A). The most significantly associated SNP rs320409365 

(P-value = 2.64 × e−14) locates at 124.1Mb within a 10.6Mb 
region (116.1–126.7Mb) on SSC8 (Table 3). In the scenario with 
imputed sequence data, 3,236 significant SNPs were located on 
SSC1, 3, 6, 7, 8, 9, 10, 12, 13, and 16 (Figure 1B), and the most 
significantly SNP rs319603861 (P-value = 1.52 × e−18) locates 
at 122.2Mb within a 21Mb region (115.5–136.5Mb) on SSC8 
(Table 4). In addition, to validate the possibility of spurious 
SNPs caused by population stratification, the Q–Q plots for 
these GWAS were explored (Supplementary Figure S3). The 
average inflation factors (λ) of the GWAS were 1.17 and 1.2 
in the two scenarios, respectively. Indicating that population 
structures were properly corrected.

GENETIC DIFFERENTIATION SCORES

Fst were estimated to determine the extent of population 
differentiation between the affected and unaffected pigs. We 
identified a total of 26 SNPs beyond the empirical threshold 
on SSC8 (Figure 2B); the strongest genetic differentiation loci 
rs320409365 (Fst = 0.535) locates at 124.1Mb within a 16.6Mb 
region (116.1–132.7Mb), indicating the affected pigs and the 
unaffected pigs had a large genetic differentiation in this interval. 
All the SNPs beyond the empirical threshold in this interval are 
shown in Table 5.

FINE MAPPING ON SSC8 USING LDLA 
AND GENETIC DIFFERENTIATION 
ANALYSES IN THE F3 POPULATION

To further narrow down the confidence interval of SNPs 
SSC8 for scrotal hernia, we perform linkage and linkage 
disequilibrium (LDLA) for scrotal hernia on SSC8. The LDLA 
results showed the strongest association SNP was rs330263452 
(P-value = 1.58 × 10−17); the most likely confidence interval of 

TABLE 2 | The distribution of SNPs in different chromosomes.

Chr Before QC After QC

Chr1 4,735,710 1,871,922
Chr2 3,000,496 1,128,593
Chr3 2,841,406 1,161,477
Chr4 2,711,334 1,140,103
Chr5 2,259,813 971,685
Chr6 3,399,128 1,410,997
Chr7 2,647,087 1,094,716
Chr8 2,786,786 1,193,047
Chr9 2,942,680 1,159,718
Chr10 1,840,363 856,736
Chr11 1,894,832 815,114
Chr12 1,502,345 649,471
Chr13 3,648,208 1,351,511
Chr14 2,828,077 1,122,063
Chr15 2,743,392 1,095,268
Chr16 1,788,429 728,729
Chr17 1,544,662 562,261
Chr18 1,368,878 562,261
Whole genome 46,483,626 18,875,672

Chr, chromosome number; QC, quality control. The QC condition was MAF > 0.03.
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the QTL was approximately 3Mb (121–123.99Mb), based on the 
LOD drop off 2 (Figure 2A). We herein concluded a common 
QTL region located on SSC8 between 121.02 and 123.99Mb 
mapped by LDLA and genetic differentiation analysis.

HAPLOTYPE SHARING ANALYSIS WITHIN 
THE CONFIDENCE INTERVAL

The result of haplotype sharing analysis on F3 population was 
showed on Figure 3B. To put the result in detail, 15 of 18th 
affected pigs shared two types of haplotype in this 2.97Mb  

region flanked by markers rs318390967 and rs81404172. 
Those two shared haplotypes were associated with pig scrotal 
hernia and presumably Q1-bearing and Q2-bearing haplotypes, 
respectively. Further investigation revealed 27 of 228 unaffected 
pigs also carried the Q1 or Q2 haplotype. To test the risk ration and 
significance of individual carried Q haplotype, we summarized 
the number of affected pigs and unaffected pigs who carried and 
uncarried Q haplotype and conducted chi-square test with them 
(chi-square test P-value = 8.46 × E−15). This result is indicative of 
that the hypothesized Q haplotype was involved in the occurrence 
of scrotal hernia in pigs. Next, we tried to identified whether there 
is the same sharing susceptibility haplotype existed in F2 affected 

FIGURE 1 | Manhattan plots for scrotal hernia with data before imputation and after imputation. log10 (1/P) are shown for all qualified SNPs, which were plotted 
against genomic position. In Manhattan plot (A), black solid line indicates the 5% genome-wide significant threshold. In Manhattan (B), the black line indicated the 
significance threshold [−log10(5E−08)]. All SNPs surpassing the genome-wide threshold are highlighted in pink.
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individuals and trace this susceptibility haplotype back to the F1 
and F0 generations. The result showed that 13 of the 19 affected 
pigs in the F2 population also carried Q1 or Q2 haplotype flanked 
by markers rs81275702 and rs81404172 (Figure 4), and another 
carried other types of haplotypes. According to the pedigree 
(Table 6), we also found that the parents of those 13 affected pigs 
also carried Q1 or Q2 haplotype in the same region, while the 
other 5 parents with other types of haplotypes individuals did 
not. Most of all, we found Q1 and Q2 haplotypes were come from 
of one White Duroc boars (F0-73) and three Chinese Erhualian 
sows (F0-74, F0-94, F0-124) when we traced those two haplotypes 
to the F0 generation, respectively. Therefore, it is concluded that 
two susceptibility haplotypes underlying the SSC8 were identified 

for pig scrotal hernia, and there should be some important 
pathogenic mutations. In addition, it was worth mentioning 
that the significantly associated SNP rs81404013 (P-value = 
8.72×E−12), rs318390967 (P-value = 8.72×E−12), and rs333147082 
(P-value = 2.64×E−14) that contained in this confidence interval 
have strong linkage disequilibrium extents (r2  > 0.9) to each 
other (Figure 3A). However, the most significantly associated 
SNP rs320409365 (P-value = 2.62×E−14) has a low linkage 
disequilibrium extents (r2 < 0.5) with those three loci. We take 
a region flanked by markers rs341392224 and rs326688253, 
which contain rs320409365, as well as it’s left and right two 
loci. Then, we count the types of haplotype in this interval and 
take a chi-square test with them (Supplementary Table 1); the 
result showed that haplotype CACGT (P-value = 1.02×E−12) was 
significantly associated with scrotal hernia.

CANDIDATE GENE EIF4E FOR GENOME-
WIDE SIGNIFICANT QTL

The 2.95Mb region on SSC 8 in pig (Ensembl 2018) encompasses 
eight annotated genes (ADH6, ADH4, ADH5, METAP1, EIF4E, 
TSPAN5, RAP1GDS1, STPG2), which indicated that few genes 
are the most likely candidate genes that caused scrotal hernia in 
pigs (Zerbino et al., 2018). Of the eight genes, EIF4E stood out as 
a potential candidate based on its biochemical and physiological 
functions. EIF4E is a protein-coding gene, which regulates the 
expression of the Eukaryotic translation initiation factor 4E 
protein, and translation initiation factor 4E is regulating the 
expression of MID1 gene (Pelletier et al., 1991; Jones et al., 1997). 
Winter et al. demonstrated that loss-of-function mutations in the 
MID1 gene may cause the malformations of the ventral midline, 
which always lead to a series of urogenital abnormalities, such 
as cryptorchidism, ambiguous genitalia, hypoplastic scrotum, 
and umbilical and inguinal hernias (Winter et al., 2016). In 
addition, both top SNPs rs333147082 (P-value = 2.64×e−14) and 
rs81404013 (P-value = 8.72×e−12) located in the intron of EIF4E 
gene when we condition the strongest significantly associated 
SNP rs333147082; no additional association signals appeared 
in this loci (QTL) was detected (Supplementary Figure S4), 
which showed the additional evidence for the causality of 
EIF4E incorporating functional and conditional association 
studies. These results were more evidence that the EIF4E is the 
susceptibility gene for pig scrotal hernias. 

DISCUSSION

In the current study, we obtained 18,756,672 variants with 
84.8% genotypic concordance rate. In the study on imputation, 
few researches reported the imputation accuracy from 60K 
to whole-genome sequence in pig, compared to most studies 
focused on imputation from low-density genotypes to 60k 
variants with correlations ranging from 0.938 to 0.992 for 
imputation from 3 to 60K (Cleveland and Hickey, 2013). 
Yan et al. showed an average genotypic concordance of 89% 
with imputing 60K to whole-genome sequence variants in a 

TABLE 3 | Description of the most significant 13 SNPs associated with scrotal 
hernia on chromosome 8 in F3 population with the 50k data. 

Chr ps rs P_wald

8 124,136,332 rs320409365 2.62E−14
8 121,414,739 rs333147082 2.64E−14
8 121,443,468 rs81404013 8.72E−12
8 121,025,652 rs318390967 8.72E−12
8 123,546,433 rs334430596 3.45E−10
8 116,106,612 rs329921419 7.94E−10
8 124,435,610 rs81306859 4.79E−09
8 123,575,503 rs327837715 7.01E−08
8 116,743,649 rs81284684 1.11E−07
8 126,744,562 rs81404481 5.65E−07
8 126,706,775 rs339470982 5.65E−07
8 120,387,726 rs81403944 9.81E−07
8 124,688,011 rs345674547 1.80E−06

Chr, chromosome number; rs, SNP IDs and SNPs that do not possess ID were 
named after Chr_ps, by the author; ps, base positions on the chromosome; P_wald, 
P-value from the Wald test.

TABLE 4 | Description of the most significant 20 SNPs associated with scrotal 
hernia on chromosome 8 in F3 population with the data after imputation. 

Chr ps rs p_wald

8 122,211,833 rs319603861 1.53E−18
8 125,809,848 rs337122565 2.18E−18
8 125,809,964 rs339744702 2.18E−18
8 125,809,992 rs318592275 2.18E−18
8 124,541,337 rs695816095 4.51E−17
8 125,085,997 rs344335641 6.84E−17
8 125,845,805 rs321787225 1.42E−15
8 125,845,868 rs332303403 1.42E−15
8 126,802,357 8_126802357 1.44E−15
8 125,810,544 rs340831415 2.22E−15
8 125,818,781 rs324505118 2.22E−15
8 125,818,811 rs324505118 2.22E−15
8 125,810,459 rs327695191 5.07E−15
8 125,811,139 rs336507639 5.07E−15
8 125,812,250 rs81404378 5.07E−15
8 125,813,294 rs337489662 5.07E−15
8 125,817,665 rs321431992 5.07E−15
8 125,817,706 rs341020016 5.07E−15
8 120,993,480 rs790867883 5.29E−15

Chr, chromosome number; rs, SNP IDs and SNPs that do not possess ID were 
named after Chr_ps, by the author; ps, base positions on the chromosome; P_wald, 
P-value from the Wald test.
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large-scale swine F2 resource population (Yan et al., 2018), and 
Zhang et at. reported the genotypic concordance was 85.6% 
from 650K to whole-genome sequence variants using a stepwise 
imputation strategy in 1,363 Duroc pigs (Zhang et al., 2018); 
the genotypic concordance rate (84.8%) in our study is almost 
to their level. Moreover, we adopted R2 to estimate imputation 
accuracy on account of genotypic concordance rate that is 
highly sensitive to MAF and is not appropriate for comparing 
genotypes with different MAF (Yan et al., 2018).

In the present study, R2 decreased from 58 to 8% when MAF 
decreased from 0.1 to 0. The same trend was found in other 
studies (Daetwyler et al., 2014; Yan et al., 2018). And the average 
correlation between best-guess and true variants reached with an 
average of 71% after we delete sites where R2 is equal to 0 and 
MAF is less than 0.03. Besides, Yan et al. showed that the average 
correlation is lower than the genotypic concordance rate, which 
was consistent with our result in this study (Yan et al., 2017). In 
addition, there are many other factors that affect the accuracy of 

FIGURE 2 | The significant associated region on SSC8 in LDLA analysis (A) and genetic differentiation analysis (B). (A) The y-axis shows negative log10 (P-values) 
from haplotype-based association study, and the x-axis indicates the SNP positions on SSC8. The red lines represent the haplotype. The horizontal line indicated 
the 95% of confidence interval by LOD drop off two from the most significant haplotype. (B) The significant associated region on SSC8 were represented as light 
blue. The x-axis indicates the SNP positions on SSC8, and y-axis shows Fst. The horizontal line indicated the top 1 of confidence interval. All SNPs surpassing the 
threshold are highlighted in pink. Region with a large genetic differentiation were represented as light blue.
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imputation, such as the relationships between target panel and 
reference (van Binsbergen et al., 2014) and LD and reference size 
(van Binsbergen et al., 2014). Here we sequenced 19 ancestors 
of F3 to ensure our imputation reliability. Overall, imputation 
accuracy can be affected by different aspects, and high accuracy 
of imputation will lead to a reliable GWAS.

GWAS has become an exceedingly effective and widely used 
approach in identification of genetic variants associated with 
common diseases or complex traits since the first application of 
GWAS research was performed successfully in 2005 by Klein et al. 
(2005). Previously, by performing haplotype-based GWAS in F2 
population for scrotal hernia using Porcine SNP60 BeadChip, 
108 chromosome-wise significance SNPs were identified to be 
associated with scrotal hernia; however, there was no marker 
surpassed the genome-wide significance level. The feasible 
reasons for the low detection power in this study was probably the 
low incidence and penetrance rate in F2 population. But the most 
possible reason is the intricacy molecular genetic mechanism of 
scrotal hernia. So far, many international teams have identified the 
susceptibility loci of scrotal hernia on almost all chromosomes. 
Complex interactions between environmental factors and 
susceptibility alleles of multiple genes are the most normal 
process resulting in such a complex genetic background diseases. 
As a complex genetic defect, the polygene model may be the main 
pathogenesis, under polygene model that lots of susceptibility 
genes cause a change for disease. Therefore, whether a certain 
mutation is not directly related to scrotal hernia, but does have 
a role in the occurrence of it, this is why single-marker GWAS 

can’t detect any significant signal in the F2 population. Therefore, 
we generate a particular hernia population which was mated with 
full-sibs or half-sib of the affected individuals. The incidences of 
scrotal hernia will increase significantly in this population. Next, 
we will systematically describe the feasibility of our idea.

In the current study, we first designed a specially F3 population 
to increase the incidence and penetrance rate by crossing full-
sibs or half-sib of the affected individuals in the F2 population. 
Statistics manifested that prevalence of scrotal hernia in the 
specially designed F3 population was 3.6 times and 2.4 times 
higher than the ordinary F3 population and F2 population, 
respectively, indicating the F3 specially designed population is 
completely successful in increasing the incidence rate of scrotal 
hernia. Most importantly, in the F2 population, the frequency of a 
mutation associated with scrotal hernia will be greatly increased 
in F3 specially designed population, as the health full-sibs or half-
sib of the affected individuals in the F2 population also have the 
mutant sites, which will pass on to the F3 population.

As we predicted, 13 SNPs were located on SSC8 between 
116.1 and 126.7Mb surpassed the genome-wide significance 
level after we conducted a GWAS on the specially designed F3 
population with experimental 50-k chip data, and this QTL must 
have come from F2, which overlaps with a region previously 
identified by Sevillano et al. (2015). The basic principle of single-
marker GWAS was to test association between phenotypes and 
genotypes. Normally, this association was indirect correlation 
as the causative mutation was not included in the study locus. 
Potentially, significant signals could be missed in a GWAS 
analysis if there were low LDs among paired markers. To 
improve the LD between markers, we performed imputation 
analysis by increasing the marker density in the study population 
using 109 sequenced data as reference panel. Consequently, we 
obtained 18,756,672 variants with relatively high imputation 
accuracy (average CR = 84.8%). After performing the whole-
genome association study with sequence data, 3,252 significant 
SNPs reached the significant level. Three regions located on 
SSC3, SSC8, and SSC10 were similar to corresponding interval 
previously identified by Sevillano et al. (2015), especially the 
region on SSC8 between 115.6 and 136.5Mb overlaps a region 
they previously identified. To our knowledge, it is the first time 
that the other eight QTL regions identified on SSC1, 6, 7, 9, 13, 
and 16 are found to be associated with scrotal hernia, although 
some studies have reported that different regions on these 
chromosomes harbor QTL for scrotal hernia.

According to our original intention, we identified 13 SNP loci 
significantly associated with scrotal hernia on chromosome 8 through 
GWAS analysis with the specially designed F3 population. In the 
subsequent analysis, we divided the affected individuals and unaffected 
individuals into two independent groups and calculated the genetic 
differentiation index to verify that there is genetic differentiation on 
SSC8. The result showed that a strong genetic differentiation signal 
located on rs320409365 (Fst = 0.535) within a 16.6Mb region (116.1–
132.7Mb) on SSC 8 was detected. This result indicated that the affected 
pigs and the unaffected pigs had a greater genetic differentiation in this 
confidence interval. Moreover, there is a high coincidence of the top 
SNPs detected through genetic differentiation analyses and GWAS. 

TABLE 5 | Genome-wide loci beyond the empirical threshold on chromosome 8 
for pig inguinal/scrotal hernias identified by genetic differentiation analysis. 

Chr ps rs Fst

8 124,136,332 rs320409365 0.53536008
8 121,025,652 rs318390967 0.501778292
8 121,443,468 rs81404013 0.501778292
8 123,546,433 rs334430596 0.481862641
8 124,435,610 rs81306859 0.458791183
8 116,106,612 rs329921419 0.456265642
8 116,743,649 rs81284684 0.390162465
8 126,706,775 rs339470982 0.384398437
8 126,744,562 rs81404481 0.384398437
8 125,530,778 rs334269805 0.37324505
8 124,688,011 rs345674547 0.37324505
8 120,387,726 rs81403944 0.361238378
8 117,897,490 rs336417589 0.353602403
8 120,167,202 rs81403910 0.328123759
8 117,335,274 rs81324515 0.323287852
8 120,335,533 rs81403964 0.293693666
8 132,760,090 rs81323639 0.281592392
8 115,799,722 rs81307505 0.277478219
8 129,198,702 rs329385027 0.270487326
8 128,613,004 rs336466493 0.270487326
8 127,090,631 rs81317149 0.258692328
8 124,278,247 rs332687320 0.249736644
8 119,943,759 rs81330386 0.247590093
8 124,189,324 rs81340120 0.247278921

Chr, chromosome number; rs, SNP IDs and SNPs that do not possess ID were 
named after Chr_ps, by the author; ps, base positions on the chromosome; Fst, the 
genetic differentiation scores.
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Additionally, in consideration of single-marker GWAS, it was 
hard to properly estimate the confidence interval of the detected 
QTL, as LD varied severely among nearby SNPs while haplotypes 
have stable LD than SNPs. Thus, we conducted haplotype-based 
LDLA analysis, by simultaneously taking advantage of recent 
and ancestral recombination events to increase the efficiency and 
detect confidence interval. The LDLA results showed that the 
SNP with the strongest association at the locus was rs330263452 
(P-value = 1.58 × 10−17), and the most likely confidence intervals 
around the 121–123.99Mb region on SSC8. Furthermore, we 
found out that the confidence intervals mapped by LDLA 
contained within the region mapped by genetic differentiation 
analysis. We narrow the confidence interval to 2.99Mb by picking 
up the intersection of those two intervals for further analysis.

Lastly, we identified two susceptibility haplotypes underlying 
the SSC8 associated with scrotal hernia after performed a 
haplotype sharing analysis, and those two haplotypes were from 
one White Duroc boar (F0-73) and three Chinese Erhualian sows 
(F0-74, F0-94, F0-124), respectively. It is incomprehensible that the 

White Duroc boar (F0-73) carried the susceptibility haplotype, 
but it was unaffected. Actually, whether a certain mutation is 
not directly related to scrotal hernia as we explained earlier. 
Similarly, 163 of 497 unaffected pigs in the F2 population also 
carried the susceptibility haplotypes, echoing the result that there 
was no significant signal when we performed GWAS in the F2 
population. When we merge the F2 and F3 populations and then 
conducted chi-square test with them (chi-square test P-value = 
8.32×E−11), this result is also indicative of that the hypothesized 
Q haplotype was involved in the occurrence of scrotal hernia in 
pigs. In addition to discovering two susceptibility haplotypes, we 
further found that there are nine annotated genes in this 2.95Mb 
interval in total, and the EIF4E was selected as potential candidate 
gene based on its biochemical and physiological functions. 

Although there are some crucial discoveries revealed by these 
studies, there are a slice of limitations to our study, such as the 
relatively small number of samples in the F3 population. Therefore, 
we herein carried out bootstrap test to verify the reliability of GWAS 
in this study. The result showed that there are 957 of the 1,000 GWAS 

FIGURE 3 | Fine mapping of the target region by the haplotype sharing analysis in the F3 population. (A) Regional association plot of SNPs in linkage disequilibrium 
with rs333147082. The colored diamonds indicate different linkage disequilibrium (LD) levels between rs333147082 and other SNPs. The light blue region indicates 
the interval which SNPs and rs333147082 with LD greater than 0.2. (B) Haplotypes of the target region between 121 ~ 123.99 Mb on chromosome 8 are shown. 
Golden diamonds and red diamonds represent the Q1 and Q2 haplotypes with affected pigs, respectively. The last six lines indicate that three affected pigs who 
carried other types of haplotypes.
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FIGURE 4 | The haplotype sharing analysis in the F2 population. The figure showed that Q1 and Q2 haplotypes contained in F2 affected individuals and traced back 
to the F1 and F0 generations. The last 12 lines indicate six affected pigs that carried other types of haplotypes.

TABLE 6 | The pedigree of F2 affected individuals.

Parent’s generation Grandparent’s generation

Male Female Male Female Male Female

F2-1,585 F1-29 F1-46 F0-75 F0-74 F0-73 F0-58
F2-1,469 F1-29 F1-52 F0-75 F0-74 F0-73 F0-58
F2-1,451 F1-75 F1-26 F0-75 F0-94 F0-73 F0-90
F2-1,391 F1-29 F1-64 F0-75 F0-74 F0-73 F0-202
F2-1,389 F1-29 F1-64 F0-75 F0-74 F0-73 F0-202
F2-1,381 F1-29 F1-64 F0-75 F0-74 F0-73 F0-202
F2-1,375 F1-29 F1-64 F0-75 F0-74 F0-73 F0-58
F2-1,329 F1-35 F1-6 F0-73 F0-58 F0-73 F0-124
F2-795 F1-75 F1-32 F0-75 F0-94 F0-73 F0-90
F2-721 F1-49 F1-70 F0-75 F0-94 F0-73 F0-202
F2-697 F1-29 F1-46 F0-75 F0-74 F0-73 F0-58
F2-681 F1-49 F1-54 F0-75 F0-94 F0-73 F0-58
F2-559 F1-3 F1-36 F0-73 F0-124 F0-75 F0-74
F2-509 F1-35 F1-6 F0-73 F0-58 F0-73 F0-124
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that were detected significant signals in the 116–126Mb interval on 
chromosome 8, which indicated that the fluctuation in the number 
of affected and unaffected individuals has no effect on GWAS (FDR 
< 0.05). Therefore, the significant signals obtained in our GWA study 
were not accidental but were caused by differences in the genomes of 
affected and unaffected individuals, which were reliable.

CONCLUSION

In summary, in the first place, we discovered a major quantitative 
trait loci (QTL) for pig scrotal hernia on chromosome 8 in an 
F3 specially designed population using GWAS. There is one 
more point: two susceptibility haplotypes (Q1 and Q2) flanked 
by markers rs81275702 and rs81404172 and one potential causal 
gene underlying the SSC8 were identified through a series of 
methods including genetic differentiation analysis, LDLA, and 
haplotype sharing analysis. Last but not the least, we explain 
why many international research teams do not have a high 
repeatability of the results of scrotal hernia research, and some 
research studies haven’t even found any associated locus with 
scrotal hernia. Further studies will be devoted to confirming the 
detected haplotype and gene in outbred populations. 
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Novel lncRNA lncFAM200B: 
Molecular Characteristics and 
Effects of Genetic Variants on 
Promoter Activity and Cattle Body 
Measurement Traits
Sihuan Zhang 1, Zihong Kang 1, Xiaomei Sun 1,2, Xiukai Cao 1, Chuanying Pan 1, 
Ruihua Dang 1, Chuzhao Lei 1, Hong Chen 1 and Xianyong Lan 1*

1 College of Animal Science and Technology, Northwest A&F University, Yangling, China, 2 College of Animal Science 
and Technology, Yangzhou University, Yangzhou, China

Skeletal muscle is one of the three major muscle types in an organism and has key 
roles in the motor system, metabolism, and homeostasis. RNA-Seq analysis showed 
that novel lncRNA, lncFAM200B, was differentially expressed in embryonic, neonatal, and 
adult cattle skeletal muscles. The main aim of this study was to investigate the molecular 
and expression characteristics of lncFAM200B along with its crucial genetic variations. 
Our results showed that bovine lncFAM200B was a 472 nucleotide (nt) non-coding RNA 
containing two exons. The transcription factor binding site prediction analysis found 
that lncFAM200B promoter region was enriched with SP1 transcription factor, which 
promotes the binding of myogenic regulatory factor MyoD and DNA sequence. The mRNA 
expression analysis showed that lncFAM200B was differentially expressed in embryonic, 
neonatal, adult bovine muscle tissues, and the lncFAM200B expression trend positively 
correlated with that of MyoG and Myf5 in myoblast proliferation and differential stages. To 
identify the promoter active region of lncFAM200B, we constructed promoter luciferase 
reporter gene vector pGL3-Basic plasmids containing lncFAM200B promoter sequences 
and transfected them into 293T, C2C12, and 3T3-L1 cells. Our results suggested that 
lncFAM200B promoter active region was from −403 to −139 (264 nt) of its transcription 
start site, covering 6 SP1 potential binding sites. Furthermore, we found a novel C-T 
variation, named as SNP2 (ERZ990081 in European Variation Archive) in the promoter 
active region, which was linked to the nearby SNP1 (rs456951291 in Ensembl database). 
The genotypes of SNP1 and combined genotypes of SNP1 and SNP2 were significantly 
associated with Jinnan cattle hip height. The luciferase activity analysis found that the 
SNP1-SNP2 haplotype CC had the highest luciferase activity, which was consistent 
with the association analysis result that the combined genotype CC-CC carriers had the 
highest hip height in Jinnan cattle. In conclusion, our data showed that lncFAM200B is 
a positive regulator of muscle development and that SNP1 and SNP2 could be used as 
genetic markers for marker-assisted selection (MAS) breeding of beef cattle.

Keywords: bovine, lncFAM200B, muscle development, promoter, body measurement traits
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iNTRODUCTiON

Long non-coding RNA (lncRNA) is an important class of non-
coding RNAs (ncRNAs), which are involved in a variety of 
biological processes. LncRNAs are usually greater than 200 
nucleotide (nt) in length, mostly were transcribed by RNA 
polymerase II, and some were transcribed by RNA polymerase 
III. Similar to mRNAs, the expression of lncRNAs have obviously 
temporal (the same tissue on different development stages) as well 
as the spatial (different tissues) specificity. LncRNA gene has its 
own promoter, which can be recognized by specific transcription 
factors. In the last decade, lncRNAs have been showed to have 
multiple functions in many developmental processes, such as 
regulating gene expression by transcriptional, post-transcriptional, 
or epigenetic regulation (Yan et al., 2017; Fernandes et al., 2019). 
Besides, lncRNAs can serve as the sponges for miRNAs to relieve 
the repression of miRNAs on their target genes (Sun et al., 2016). 
Although the biological functions of lncRNAs are very important, 
their sequence conservation is low among species. Thus, it is 
important to understand the role of novel lncRNAs in various 
biological processes in different species.

Skeletal muscles account for about 40% of human body 
weight, which are not only the dynamic part of the motor 
system but also play a key role in organism metabolism and 
homeostasis (Li et al., 2018). Skeletal muscles are composed 
primarily of multinucleated myotubes, which were originally 
derived from myogenic progenitor cells (MPCs). MPCs are 
destined to become myoblasts, which subsequently turn into 
myotubes after proliferation, differentiation, and fusion (Li et al., 
2018). This process is regulated by a variety of transcription 
factors and epigenetic regulators such as the myogenic regulatory 
factors myogenic differentiation 1 (MyoD), myogenin (MyoG), 
myogenic factor 5 (Myf5), and myosin heavy chain 3 (MYH3) 
(Bharathy et al., 2013). Recently, with the rapid development of 
sequencing technology, an increasing number of studies found 
that lncRNA played a crucial role in the development of muscle 
(Yu et al., 2017; Zhu et al., 2017; Li et al., 2018). In cattle, the 
lncRNA sequencing showed that lncRNAs were crucial in muscle 
development (Billerey et al., 2014; Sun et al., 2016; Liu et al., 
2017). Although the functions of some lncRNAs such as lncMD, 
lncYYW, and lnc133b in bovine muscle development have been 
identified, the roles of numerous lncRNAs are still mysteries to be 
explored (Sun et al., 2016; Jin et al., 2017; Yue et al., 2017).

Muscle development is one of the main factors that affect 
cattle growth, and thus, ultimately influences the production 
economic benefits. Thus, this issue has attracted huge attention 
in the beef cattle breeding industry. Nowadays, marker-assisted 
selection (MAS) is a rapid and efficient breeding method, which 
is based on crucial genetic variation markers (Cui et al., 2018; 
Chen et al., 2019). Thus, finding muscle development associated 
genetic variation markers is very important for beef cattle MAS 
breeding. Given the important role of lncRNA, we think that 
it would be feasible to screen genetic variations in the muscle 
development associated lncRNAs region.

Sun et al. (2016) using Ribo-Zero RNA-Seq identified the 
lncRNA landscape of bovine embryonic, neonatal, and adult 
skeletal muscles. Within these three developmental stages, 

401 differentially expressed lncRNAs were revealed, which 
included lncMD and some new lncRNAs (Sun et al., 2016). In 
these newly identified lncRNAs, NONBTAT022788 was mapped 
to the first intron and the second exon (sequence identity is 
100%) of Bos taurus FAM200B gene (NCBI Reference Sequence: 
AC_000163.1), thus we aptly renamed it as lncFAM200B. In this 
study, we focused on lncFAM200B as it was differentially expressed 
in bovine embryonic, neonatal, and adult skeletal muscle [the 
fragments per kilobase of exon per million fragments mapped 
(FPKM) of lncFAM200B were 15.72, 0.41, and 5.73, respectively]. 
Based on the RNA-Seq results, we speculated that lncFAM200B 
probably plays an important role in the development of bovine 
skeletal muscle.

Therefore, in this study, we investigated the sequence and 
expression characteristics of bovine lncFAM200B and further, 
we identified the functional genetic variations in lncFAM200B 
gene. These results would lay the foundation for the function 
research of lncFAM200B and provide scientific data for beef 
cattle breeding.

MATERiAls AND METhODs

All experiments in this study were approved by the Faculty 
Animal Policy and Welfare Committee of Northwest A&F 
University (no.NWAFAC1008). The care and use of experimental 
animals is in full compliance with local animal welfare laws, 
guidelines, and policies.

Animal Tissue samples Collection
To explore the expression profile of lncFAM200B, multiple tissue 
samples from Qinchuan steers at three different developmental 
stages: embryos of about 3 months old, newborns within 1 week, 
and adults of about 24 months old were collected from Shaanxi 
Kingbull Livestock Co., Ltd. (Baoji, China). For sampling at each 
of the developmental stages, three individuals were used. For 
each neonatal and adult individual, seven types of tissue samples 
were collected (heart, liver, spleen, lung, kidney, skeletal muscle, 
and fat tissue). For embryonic stage, only six kinds of tissue 
samples were collected (without fat). All samples were frozen 
immediately in liquid nitrogen and stored at −80°C.

Total RNA isolation, cDNA synthesis, and 
RACE Experiments
Total RNA was isolated from samples using TRIzol reagent 
(TaKaRa, Dalian, China). The quality of total RNA was 
evaluated by 1% agarose gel electrophoresis and NanoDrop 
2000 spectrophotometer (Thermo Fisher Scientific, Waltham, 
MA, USA). Then PrimeScript™ RT reagent Kit with gDNA 
Eraser (TaKaRa, Dalian, China) was used to synthesize 
complementary DNA (cDNA), which was used as template for 
quantitative reverse-transcription PCR (qRT-PCR) or full-length 
amplification of lncFAM200B.

Rapid amplification of cDNA ends (RACE) experiments were 
carried out to identify the full-length of bovine lncFAM200B 
using bovine fetus skeletal muscle cDNA as template. 
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The  3′  RACE was done using PrimeScript™ RT reagent Kit 
(TaKaRa, Dalian, China) and 3′ RACE universal primers QT, QO, 
and QI as described in Scotto-Lavino et al. (2006). The 5′ RACE 
was done using SMARTer® RACE 5′/3′ Kit (Clontech, Palo Alto, 
CA, USA) according to the user manual and the previous study 
(Sun et al., 2016). The 3′ RACE and 5′ RACE specific primers for 
lncFAM200B were designed based on the sequence obtained from 
RNA-Seq (Table 1). Then the full-length of bovine lncFAM200B 
was obtained through sequences assembly based on the results of 
3′ and 5′ RACE.

The sequence Features Analyses and 
Functional Prediction of Bovine lncFAM200B
The coding potential was predicted on Coding Potential 
Calculator (CPC) website (Kong et al., 2007). The known 
protein-coding genes CCAAT enhancer binding protein alpha 
(C/EBPα) and lncRNA H19 imprinted maternally expressed 
transcript (H19) were also calculated as control. NCBI-Open 
Reading Frame Finder (ORF Finder) was used to analyze the 

open reading frame (ORF) of lncFAM200B. The prokaryotic 
expression system was used to detect the protein coding 
ability of lncFAM200B. The full length of bovine lncFAM200B 
and enhanced green fluorescent protein (EGFP) were cloned 
into vitro prokaryotic expression system pET-28a vector 
using XhoI and HindIII restriction enzymes and In-Fusion® 
HD Cloning Kit (TaKaRa, Dalian, China) (Li et al., 2016). 
The miRDB (http://www.mirdb.org/) was used to predict the 
interacting miRNAs, and AliBaba2.1 (http://gene-regulation.
com/pub/programs/alibaba2/index.html) was used to predict 
the transcription factors that may bind to the promoter region 
of lncFAM200B.

Quantitative Reverse-Transcription PCR
The qRT-PCR was performed to detect the expression of 
lncFAM200B in tissues. The housekeeping gene glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) was used as internal 
control. The primers for qRT-PCR were listed in Table 1. The 
qRT-PCR was performed in a Bio-Rad CFX Manager 3.1 

TABlE 1 | Primers in this study.

Primers Primer sequences (5’→3’) sizes (bp) Purpose

qlncFAM200B-F CCACTTCAAGGAAGTTCCA 93 qRT-PCR
qlncFAM200B-R TTGTGTTGGTAGCTTGACTA
GAPDH-F AAAGTGGACATCGTCGCCAT 116 qRT-PCR
GAPDH-R CCGTTCTCTGCCTTGACTGT
MYOG-F CCAGTACATAGAGCGCCTGC 183 qRT-PCR
MYOG-R AGATGATCCCCTGGGTTGGG
MYOD-F GAACACTACAGCGGCGACTC 126 qRT-PCR
MYOD-R GCTGTAGTAAGTGCGGTCGT
MYH3-F TGCTCATCTCACCAAGTTCC 150 qRT-PCR (Sun et al., 2016)
MYH3-R CACTCTTCACTCTCATGGACC
MYF5-F ACTACTATAGCCTGCCGGGG 238 qRT-PCR
MYF5-R GGCAATCCAGGTTGCTCTGA
3’RACE-F GCTTCCCATCAGAAAGTATCAGGA 141 3’ RACE
5’RACE-R1 TGCTAAACTGCTGGCTGACACTGGA 295 5’ RACE
5’RACE-R2 TTCCTTGAAGTGGTGGATTC 268 5’ RACE
Full length-F GGTGTTGAGTAGGGAATGG 472 Full-length cloning
Full length-R TTGTGTTGGTAGCTTGACTACG
pET-28a-F CTCCGTCGACAAGCTTGGTGTTGAGTAGGGAATGG 504 Prokaryotic expression
pET-28a-R GGTGGTGGTGCTCGAGTTGTGTTGGTAGCTTGACTACG
pGL3-1F TATCGATAGGTACCGACAACATAGCAGATAATTCGAGTGT 2787 Luciferase reporter system 

construction for promoter 
active region identification

pGL3-2F TATCGATAGGTACCGGCCAACTTTGGAGACCACTT 1994
pGL3-3F TATCGATAGGTACCGAATCGGTGGACTGCTAACCT 1143
pGL3-4F TATCGATAGGTACCGTCAGCATCACCAGTCACCAAC 744
pGL3-5F TATCGATAGGTACCGGCGAGAAAAGGAAACACCGC 480
pGL3-6F TATCGATAGGTACCGGGTTAGGCGGGAGGCTTGA 296
pGL3-R1 GCAGATCTCGAGCCCTCCCCCAGATCTCAAGGGAG
SNP-F GTCTCCTCCTGCCTTCAATCT 626 SNP screening
SNP-R CGAGCGCCAGTGTACCTC
pGL3-SNP-F TAGCCCGGGACTCGAGTCTCCTCCTGCCTTCAATCT 594 Construction of luciferase 

reporter system of SNP1-
SNP2 haplotypes

pGL3-SNP-R CCGGAATGCCAAGCTTCGAGCGCCAGTGTACCTC
pGL3-SNP1-A-F TCGCGTGTGGCCGAGAGGGGCGGCCCGGCCA
pGL3-SNP1-A-R TGGCCGGGCCGCCCCTCTCGGCCACACGCGA
pGL3-SNP2-T-F CTGCTTGATTGGTACTAGCCTCTTCTCCGCT
pGL3-SNP2-T-R AGCGGAGAAGAGGCTAGTACCAATCAAGCAG
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(Bio-Rad Laboratories, Hercules, CA, USA) using SYBR® 
Premix Ex Taq™ II (Tli RNaseH Plus) (TaKaRa, Dalian, China) 
(Kang et al., 2019a). All samples were detected in triplicate. 
The relative expression levels of mRNA in tissue samples were 
calculated using the 2−∆∆Ct method (Livak and Schmittgen, 2001). 
The correlations between genes were calculated using Pearson 
correlation analysis, and the differences between samples were 
calculated using Student t-test (Chen et al., 2018).

Cell Culture, Plasmids Construction, 
and Transfection
The procedure for separating bovine myoblast from skeletal 
muscle was the same as the previous study of our lab (Sun 
et al., 2016). Then cells were cultured in incubator at 37°C with 
5% CO2. The proliferation medium for myoblast contains 80% 
Dulbecco’s Modified Eagle Medium (DMEM), 20% fetal bovine 
serum (FBS), penicillin (10 U/ml), and streptomycin (10 mg/ml). 
When myoblast start to fuse, the proliferation medium was 
replaced by differential medium, which contains 2% horse 
serum, penicillin (10 U/ml), streptomycin (10 mg/ml), and 
DMEM. The RNA of the myoblast was collected using TRIzol 
reagent (TaKaRa, Dalian, China) at proliferation and differential 
stages. Mouse C2C12 myoblast cells, mouse 3T3-L1 embryo 
fibroblast, and human embryonic kidney 293T cells were used 
to uncover the active region of lncFAM200B promoter or single 
nucleotide polymorphisms (SNPs) effects on promoter activity. 
They were grown in 10% FBS, 90% DMEM, penicillin (10 U/ml), 
and streptomycin (10 mg/ml) medium.

To investigate the active region of lncFAM200B gene 
promoter, six fragments of the lncFAM200B promoter region 
were amplified and cloned into the pGL3-Basic vector (Promega, 
Madison, WI, USA) using SacI and SmaI restriction enzymes 
(Table 1). These constructed plasmids were named as pGL3-
pro1 (2,787 base pairs [bp]), pGL3-pro2 (1,994 bp), pGL3-pro3 
(1,143 bp), pGL3-pro4 (744 bp), pGL3-pro5 (480 bp), and pGL3-
pro6 (296 bp) according to their sequence length. The largest 
fragment (2,787 bp) spans from −2,446 nt to +310 nt of the 
lncFAM200B transcription start site. Additionally, four plasmids 
termed as pGL3-CC (SNP1-C and SNP2-C), pGL3-CT (SNP1-C 
and SNP2-T), pGL3-AC (SNP1-A and SNP2-C), and pGL3-AT 
(SNP1-A and SNP2-T) were constructed using overlap PCR to 
detect the effects of haplotype on promoter activity (Table 1). The 
vector pRL-TK was used as internal reference in the luciferase 
reporter system. The pGL3-Control and empty pGL3-Basic were 
used as positive and negative control, respectively (Xu et al., 
2018; Kang et al., 2019b).

The plasmids were transfected into cells using Lipofectamine 
2000 (Invitrogen, Carlsbad, CA, USA). Before transfection, cells 
were seeded into 96-well plate. When cells covered 80% of the 
culture plate bottom, the plasmids were transient transfected 
according to the manufacturer’s protocol. To normalize the 
transfection efficiency, the pRL-TK was transfected with 
constructed plasmids, and the transfection ratio of constructed 
plasmids and pRL-TK was 50:1 (Kang et al., 2019b). All 
transfections were carried out in triplicate. After 36 h, the cells were 
lysed, and the luciferase activity was measured using BHP9504 

microporous-plate luminescence analyzer (Hamamatsu Photons 
Technology, Beijing, China). The relative luciferase activity 
of different promoter fragments were normalized by renilla 
luciferase activity (Xu et al., 2018; Kang et al., 2019b). The relative 
luciferase activity was represented by mean ± standard deviation. 
The one-way ANOVA and Bonferroni multiple comparisons were 
used to analyze the difference between groups (Yang et al., 2019).

Genetic Variation Analyses of Bovine 
lncFAM200B Promoter Region
A total of 352 female cattle from four breeds were used in this study 
to identify the novel genetic variations in bovine lncFAM200B 
promoter region. The samples of Qinchuan cattle (n = 139), 
Jinnan cattle (n = 121), Nanyang cattle (n = 67), and Ji’an cattle 
(n = 25) were randomly collected from Shaanxi, Shanxi, He’nan, 
and Jiangxi provinces, respectively. The detailed information and 
records of body measurement traits for the cattle were the same 
as the published papers (Zhang et al., 2015; Jin et al., 2018). The 
blood DNA samples were isolated using high salt-extraction 
method (Aljanabi and Martinez, 1997). The primers (SNP-F and 
SNP-R) used to identify the genetic variations were designed 
based on the DNA sequence of bovine lncFAM200B gene. All the 
variations were identified by agarose gel electrophoresis and DNA 
sequencing (Sangon Biotech, Shanghai, China). After genotyping, 
the genotypic and allelic frequencies, population genetic diversity 
indexes [Hardy-Weinberg equilibrium (HWE), heterozygosity 
(He), effective population size (Ne), polymorphism information 
content (PIC)] were calculated according to the methods 
described as Nei (1973) using MSR website (http://www.msrcall.
com/) (Wang et al., 2017; Yang et al., 2017). Then the association 
analyses between genotypes and records of body measurement 
traits were performed based on the reduced linear model below: 
Yi = u + Gi + e, where Yi was the trait measured data for each 
animal; u was the over mean for each trait; Gi was the effect of 
genotype; and e was the random error. Different breeds were 
analyzed separately. Due to all the cattle were 2−3 years old female 
and the individuals of the same breed were bred in the same farm, 
so this model excluded the farm, breed, years old, and sex factors. 
The linkage disequilibrium (LD) and haplotypes analyses were 
performed using SHEsis online platform (http://analysis.biox.
cn1; Cui et al., 2018). The association analyses between genotypes 
or haplotypes and body measurement traits were performed by 
one-way ANOVA followed by Bonferroni multiple comparison 
(three groups) or independent-sample t-test (two groups) 
(Wang et al., 2019).

REsUlTs

Characterization of Bovine lncFAM200B
Due to only partial sequence (369 nt) was obtained by RNA-Seq 
(Sun et al., 2016), the 5′ and 3′ RACE were carried out to obtain 
the full length of lncFAM200B. The 3′ and 5′ RACE obtained 
174 bp and 323 bp sequences, respectively (Figure 1). The full-
length of bovine lncFAM200B was 472 nt and had two  exons 

1 Accessed: Sep 26, 2019.
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(Figures  2A, B). The protein-coding potential prediction 
score of bovine lncFAM200B in CPC was −1.22524, which was 
far less than the scores of the known protein-coding genes C/
EBPα and lncRNA H19 (Figure 2C). Meantime, all the ORFs in 
lncFAM200B were smaller than 100 amino acids, illustrated that 
the coding ability of lncFAM200B was very low (Sun et al., 2016). 
To ensure the coding ability of lncFAM200B, the prokaryotic 
expression system was implemented and it showed that no 
protein was being encoded by lncFAM200B (Figure 2D).

The miRNA prediction analysis uncovered that 8 miRNAs 
might interact with lncFAM200B. Among these miRNAs, 
5 miRNA scores were above 60, so we further predicted the target 
genes of these 5 miRNAs. As a result, some cell proliferation 
associated genes were uncovered, such as insulin like growth 
factor 2 mRNA binding protein 2 (IGF2BP2) (Figure 2E). 
Furthermore, as it is known that few lncRNAs could interact 
with their nearby genes, we searched the adjacent genes of 
lncFAM200B. Interestingly, we found that fibroblast growth 

FiGURE 1 | The amplification products of lncFAM200B 3’ RACE and 
5’ RACE. (A) the amplification product of lncFAM200B 3’ RACE, 174 
bp = 141 bp (lncFAM200B sequence) + 15 bp (poly A) + 18 bp (QI). 
(B) the amplification product of lncFAM200B 5’ RACE, 323 bp = 268 bp 
(lncFAM200B sequence) + 33 bp (5’ RACE adapter) + 22 bp (primer).

FiGURE 2 | Characterization of bovine lncFAM200B. (A) The full-length of lncFAM200B; (B) The distribution mode chart of lncFAM200B exons. The box and the 
line represented the exon and intron, respectively; (C) The coding ability prediction of lncFAM200B using CPC website; (D) The in vitro translation system of protein 
product from lncFAM200B; (E) The potential interacting miRNAs of lncFAM200B and miRNAs target genes.
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factor binding protein 1 (FGFBP1) was close to lncFAM200B. 
Thus, lncFAM200B might interact with FGFBP1 and affect 
cell proliferation and differentiation (Xie et al., 2006). The 
transcription factors binding sites prediction analysis found that 
within the 3000 bp sequence region upstream of lncFAM200B, 
there were 30 C/EBPα, 7 CCAAT/enhancer binding protein beta 
(C/EBPβ), and 43 SP1 transcription factor binding sites. Hayashi 
et al. (2016) found that the area enriched with SP1 was highly 
prone to promote the binding of MyoD and DNA sequence. 
Since the MyoD was a crucial transcription factor during muscle 
cell differentiation, we think that the identified region must be 
important for the transcription of bovine lncFAM200B.

Expression Profiles of lncFAM200B in 
Bovine Tissues and Myoblasts
To reveal the function of lncFAM200B, we investigated the 
expression profiles in bovine embryonic, neonatal, and adult 
tissues. In various bovine tissues, lncFAM200B was widely 
expressed in three developmental stages (Figures 3A–C). In 
skeletal muscle, the expression level of lncFAM200B was low 
at each state, but was significantly different among the three 
developmental stages (Figure 3D), which was consistent 
with the RNA-Seq data. At the cellular level, we detected the 

expression level of lncFAM200B, MyoD, MyoG, Myf5, and MYH3 
genes in myoblast proliferation and differential stages, which 
were important in the regulation of myoblast development 
(Figure 4). The expression characteristic of lncFAM200B showed 
a significant positive correlation with the expression of MyoG 
(Pearson correlation coefficient = 0.922, P = 0.003) and Myf5 
(Pearson correlation coefficient = 0.741, P = 0.035) (Table 2). 
These results suggested that lncFAM200B might be involved in 
the development of bovine myoblasts.

identification of Bovine lncFAM200B 
Promoter Active Region
Considering the characteristic of lncFAM200B promoter region, 
this study further confirmed the promoter active region of bovine 
lncFAM200B. Six truncated fragments of the promoter region 
were constructed into pGL3-Basic plasmid and transfected 
into 293T, C2C12, and 3T3-L1 cells. By restriction enzyme 
identification and plasmids sequencing analyses, we confirmed 
that the recombinant plasmids were successfully constructed 
(Figure 5). The detection of double luciferase activity showed 
that the luciferase activity of different truncated fragments 
showed the same trend in these three different cell lines (Figure 
6D). In each cell line, the luciferase activity of positive control 

FiGURE 3 | The relative expression levels of lncFAM200B in tissues of Qinchuan cattle. Expression level of lncFAM200B in fetus (A), calf (B), adult, (C) tissues (D). 
(A, B, C) The columns with different superscripts (a, b, c, d, e) within each figure differ significantly at P < 0.05 level. (D) *P < 0.05; **P < 0.01.
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(pGL3-Control) was high, but the negative control (empty 
pGL3-Basic) was low (Figures 6A–D), providing the basis 
for our observations and correct experimental design. The 
pGL3-pro2, pGL3-pro3, and pGL3-pro4 yielded a significantly 

stronger luciferase activity compared to the other vectors 
(P < 0.01; Figures 6A–C), which suggested that these fragments 
contained promoter active region. The luciferase activity of the 
longest fragment pGL3-pro1 was lower than that of pGL3-
pro2, pGL3-pro3, and pGL3-pro4 (Figures 6A–C), suggesting 
that there might be inhibitor binding sites in the region (−2,446 
to −1,653) of the lncFAM200B. Particularly, from pGL3-pro4 
to pGL3-pro5, the luciferase activity dramatically decreased 
(P < 0.01; Figures 6A–C), which meant that the active region 
was truncated in pGL3-pro5 and the active region was from 
−403 to −139 (264 nt) of the lncFAM200B transcription start 
site (Figure 6D). Besides, upon the transcription factor binding 
site prediction, we found 6 SP1 and 2 C/EBPα potential binding 
sites in the active region (−403 to −139) (Figure 6E). Above 

FiGURE 4 | Expression characteristics of lncFAM200B and myoblast development associated genes in bovine myoblast. Expression trend of lncFAM200B (A), 
MyoD (B), MyoG (C), MYH3 (D), and Myf5 (E) in bovine myoblast cultured in proliferation medium (−1 day) and differentiation medium (0, 1, 2, 3, 4, 5, and 6 days).

TABlE 2 | Pearson correlation analyses between the expression of lncFAM200B 
and myoblast development associated genes in proliferation and differentiation 
states muscle cell.

Gene MyoD MyoG MYH3 Myf5

Pearson correlation coefficient 0.527 0.922** 0.442 0.741*
Sig.(2-tailed) 0.179 0.003 0.273 0.035

*P < 0.05; **P < 0.01.
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results suggested that the 264 nt active region was crucial for 
the expression of bovine lncFAM200B.

Novel Genetic Variations in Bovine 
lncFAM200B Promoter Region
Promoter active region is very important for gene expression, 
hence we wanted to know whether there are crucial genetic 
variations in this region. Based on the DNA sequencing 

results, two SNPs were revealed in the promoter region of 
bovine lncFAM200B, SNP1 (NC_037333.1:g.110851632 C-A, 
rs456951291 in Ensembl database) and a novel genetic variant 
SNP2 (NC_037333.1:g.110851751 C-T, ERZ990081 in European 
Variation Archive) (Figure 7). Interestingly, SNP2 was in the 
promoter active region of bovine lncFAM200B.

At SNP1 locus, CC and CA genotypes were identified in cattle 
(three genotypes were identified in Jinnan cattle). At SNP2 locus, only 
CC and CT were identified in the four detected cattle breeds (Table 3; 

FiGURE 5 | The products of lncFAM200B promoter fragments and the identification of the plasmids using different restriction enzymes. (A) P1 to P6 represented 
the PCR products of pGL3-pro1 to pGL3-pro6. (B) P1 to P6 represented the recombined plasmids of pGL3-pro1 to pGL3-pro6 digested by different restriction 
enzymes.

FiGURE 6 | The bovine lncFAM200B promoter active region. Relative luciferase activity of different promoter fragments in (A) 293T, (B) C2C12, (C) 3T3-L1 cell 
lines; (D) Relative luciferase activity changed trend; (E) Potential transcription factor binding sites in promoter activity region.
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Figure 7). At these two loci, C was the main allele in all the detected 
cattle breeds. The Chi-squared test showed that these loci were at 
Hardy-Weinberg equilibrium (P > 0.05) in the four populations 
(Table 3). Further, population genetic parameters indicated that the 
loci were polymorphic but belonged to low (PIC < 0.25) or moderate 
(0.25 < PIC < 0.50) polymorphisms categories (Table 3). Then LD 
analyses between SNP1 and SNP2 were analyzed in Qinchuan, 
Jinnan, and Ji’an populations [‘in Nanyang cattle the individual 
numbers of CA (SNP1 locus) and CT (SNP2 locus) were found to 

be smaller than 3, so we did not perform the LD analysis and the 
follow association analysis]. The D’ and r2 values in Qinchuan (D’ = 
1.000, r2 = 0.735), Jinnan (D’ = 0.611, r2 = 0.049), and Ji’an (D’ = 0.857, 
r2 = 0.532) cattle populations showed these two loci were linked in 
cattle. The r2 reflects the extent of the linkage disequilibrium and r2 > 
0.33 indicated that there was a sufficiently strong linkage between 
the two loci. When different genotypes are evenly distributed in 
the population, the D’ > 0.33 can also be used to judge that there 
was a linkage disequilibrium (Zhao et al., 2007).

FiGURE 7 | Sequencing maps of SNP1 and SNP2 different genotypes in lncFAM200B gene promoter region.

TABlE 3 | Calculation of the parameters of the genetic variations in bovine lncFAM200B promoter region.

loci/Breeds Genotype numbers (frequencies) Allele frequencies hWE Population parameters

sNP1 CC CA AA C A P values he Ne PiC

Nanyang 65 (0.97) 2 (0.03) / 0.99 0.01 0.901 0.029 1.030 0.029
Qinchuan 119 (0.86) 20 (0.14) / 0.93 0.07 0.361 0.134 1.154 0.125
Jinnan 46 (0.38) 58 (0.48) 17 (0.14) 0.62 0.38 0.851 0.459 1.848 0.354
Ji’an 14 (0.56) 11 (0.44) / 0.72 0.28 0.158 0.343 1.523 0.284

sNP2 CC CT TT C T P values he Ne PiC

Nanyang 65 (0.97) 2 (0.03) / 0.99 0.01 0.901 0.029 1.030 0.029
Qinchuan 124 (0.89) 15 (0.11) / 0.95 0.05 0.501 0.102 1.114 0.097
Jinnan 103 (0.85) 18 (0.15) / 0.93 0.07 0.377 0.138 1.160 0.128
Ji’an 11 (0.44) 14 (0.56) / 0.72 0.28 0.052 0.403 1.680 0.322

HWE, Hardy-Weinberg equilibrium; He, heterozygosity; Ne, effective population size; PIC, polymorphism information content.
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The association analyses found that the genotypes of SNP1 were 
significantly associated with the hip height in Jinnan cattle (P  = 
0.012). The hip height of the CC genotype carriers was 131.7  ± 
6.7  cm, which was evidently higher than that of CA (128.6 ± 
6.5 cm) and AA (127.1 ± 5.4 cm) genotype carriers, but we did not 
observe any significant difference between CA and AA genotype 
carriers (Figure 8). Besides, at SNP1 and SNP2 loci, the body 
measurement traits (hip height, body height, body length, heart 
girth, rump length) of CC genotype carriers were all better than 
the carriers with the other genotypes in Jinnan cattle (Figure 8). 
Furthermore, the combined genotypes of SNP1 and SNP2 were 
found to be significantly associated with hip height in Jinnan cattle 
(P = 0.033). The hip height of the CC-CC carriers (132.0 ± 6.6 cm, 
n = 44) was markedly higher than that of CA-CT (127.7 ± 7.9 cm, 
n = 15), CA-CC (128.9 ± 6.0 cm, n = 43), and AA-CC (127.1 ± 5.4 
cm, n = 17) genotype carriers (Figure 9). Because we only found one 
individual with CC-CT and one individual with AA-CT genotype, 
they were excluded in association analyses (Table 4). In Qinchuan 
and Ji’an cattle, no significant association was found between SNP1, 
SNP2, or the combined genotypes and the body measurement traits.

influence of the haplotypes on the 
Transcriptional Activity of Bovine 
lncFAM200B
Bearing in mind the significant relationship between SNP1 and 
the combined genotypes with the cattle body measurement traits, 

we wanted to further investigate the mechanism that contributed 
to the phenotype. Four plasmids (pGL3-CC, pGL3-CT, pGL3-AC, 
pGL3-AT) of SNP1 and SNP2 haplotypes were constructed and 
transfected into commonly used 293T cells to detect the luciferase 
activity. The luciferase activity of positive control (Control) was 
significantly higher compared to that of the negative control 
(empty Basic) and we found that the relative luciferase activity 
of pGL3-CC was the highest among the four haplotypes in 293T 
cells. The luciferase activities of pGL3-CC and pGL3-AT were 
significantly higher than that of the pGL3-CT haplotypes (P < 
0.05). But no difference was found among the other haplotypes 
(Figure 10). These results suggested that the genotypes of SNP1-
SNP2 haplotypes influenced the body measurement traits by 
regulating the expression of lncFAM200B.

DisCUssiON

With the rapid development of high-throughput sequencing 
technology, an increasing number of lncRNAs have been 
discovered in many animal species. Structurally, the lncRNA 
resembled protein-coding gene with its own promoter, exons, 
and introns. The lncFAM200B was screened from the sequencing 
results obtained in an earlier study done by Sun et al. (2016). 
In their study, they implemented strict parameters to identify 
the lncRNA from the sequencing results such as the number of 
exons must be ≥2, the size must ≥200 nt, the read number should 

FiGURE 8 | Association of lncFAM200B SNPs (left−SNP1; right−SNP2) and body measurement traits of Jinnan cattle.

TABlE 4 | Genotypic frequencies of lncFAM200B SNP1-SNP2 combined genotypes in cattle.

Breeds sample size(N) sNP1-sNP2 combined genotypes numbers (frequencies)

CC-CC CA-CT CA-CC AA-CC CC-CT AA-CT

QC 139 119 (0.86) 15 (0.11) 5 (0.03) / / /
Jinnan 121 44 (0.36) 15 (0.12) 43 (0.36) 17 (0.14) 1 (0.01) 1 (0.01)
Ji’an 25 10 (0.40) 10 (0.40) 1 (0.04) / 4 (0.16) /
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be >3, the ORF should be no longer than 100 amino acids, and 
the predicted protein-coding potential should be weak (Li et al., 
2016; Sun et al., 2016). Based on their research, we used different 
methods (RACE, in vitro prokaryotic expression system, and 
protein-coding ability prediction analysis) to further prove that 
lncFAM200B was a novel lncRNA.

Expression analysis found that the expression of lncFAM200B 
positively correlated with the expression of MyoG (P = 0.003) and 
Myf5 (P = 0.035). MyoG, a muscle-specific transcription factor, 
positively regulated the skeletal muscle fiber development, myoblast 
differentiation, and fusion, and was found to be indispensable 
for myogenic differentiation (Zammit, 2017). Myf5 is a master 
regulator belonging to the MRFs family and is known to play a 
key role in muscle differentiation or myogenesis. Myf5 is a master 
gene for the determination of skeletal muscle, which pushes the 
myogenic precursors into myoblasts (Dimicoli-Salazar et al., 2011). 
The genes have the same expression pattern may have the same 

function, such as MEGF10, a myogenic regulator of satellite cells in 
skeletal muscle, shares a similar expression pattern with MyoG in 
muscle regeneration (Park et al., 2014). Thus, we hypothesize that 
lncFAM200B might play a positive role in muscle development.

The molecular markers based on nucleotide sequence variations 
among individuals, which are the directly reflection of genetic 
polymorphism in DNA level. Compared to the morphological 
markers, DNA molecular markers have many advantages. Genomic 
variations are extremely abundant and are the impetus of biological 
evolution providing rich material for animal breeding. At different 
stages of biological development, such as the early disease diagnosis 
and early animal selection for breeding, the DNA markers can be 
used. The detection method of DNA genetic variations is simple 
and rapid. Nowadays, DNA markers are widely used in biological 
evolution analysis, genetics analysis, diagnosis of genetic diseases 
and so on (Alidoust et al., 2018). In animal breeding, it is important 
to explore crucial markers. In cattle, numerous variations have been 
identified within the protein-coding genes, but only a few studies 
have uncovered the variations in the non-coding RNA genes (Jin 
et al., 2018; Yu et al., 2018). In this study, first, we analyzed the SNPs 
in the promoter region of lncFAM200B gene and found that the 
SNP1 was linked with the promoter active region mutation, SNP2. 
Importantly, the genotypes of SNP1 and combined genotypes of 
SNP1 and SNP2 were associated with the hip height in Jinnan cattle.

We attempted to uncover the cause of the above SNP effect 
on the cattle growth trait. Promoter regulates the activity of 
gene by affecting the binding of transcription factors and DNA 
promoter region sequences. Mutations in the gene promoter 
region will result in gene expression disorder, further resulting in 
phenotypic changes and disease (Lu et al., 2019). In this study, we 
used the dual-luciferase reporter system to detect the effects of 
SNP1 and SNP2 variations on gene expression. In the commonly 
used 293T cells, haplotype CC showed the highest fluorescence 
value followed by haplotype AT and both were significantly 
higher than haplotype CT. The haplotype CC had the highest 
hip height, which agreed with the luciferase activity data. These 
results further provided evidence proving that lncFAM200B is a 
positive regulator of muscle development.

CONClUsiON

The lncRNA lncFAM200B differentially expressed in embryonic, 
neonatal, and adult bovine skeletal muscles. In myoblast 
proliferation and differential stages, the expression characteristic 
of lncFAM200B was positively correlated with the expression of 
MyoG and Myf5. In lncFAM200B active region (−403 to −139 
of lncFAM200B transcription start site), one novel SNP (SNP2, 
NC_037333.1:g.110851751 C-T, ERZ990081) was discovered 
which linked with the nearby SNP1 (rs456951291). The 
genotypes of the SNP1 and the combined genotypes of SNP1 and 
SNP2 were significantly associated with the hip height in Jinnan 
cattle. Interestingly, haplotype CC had the highest luciferase 
activity and the highest hip height. Our results established that 
lncFAM200B is a positive regulator of muscle development and 
we believe that our studies will help in advancing the beef cattle 
MAS breeding program.

FiGURE 10 | Relative luciferase activity of different haplotypes of bovine 
lncFAM200B SNP1-SNP2 in 293T cell.

FiGURE 9 | Association of lncFAM200B SNP1-SNP2 combined genotypes 
and body measurement traits of Jinnan cattle.
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German Black Pied Cattle (DSN)
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Faculty of Life Sciences, Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Animal Breeding Biology 
and Molecular Genetics, Humboldt University of Berlin, Berlin, Germany

Casein proteins were repeatedly examined for protein polymorphisms and frequencies in 
diverse cattle breeds. The occurrence of casein variants in Holstein Friesian, the leading 
dairy breed worldwide, is well known. The frequencies of different casein variants in 
Holstein are likely affected by selection for high milk yield. Compared to Holstein, only 
little is known about casein variants and their frequencies in German Black Pied cattle 
(“Deutsches Schwarzbuntes Niederungsrind,” DSN). The DSN population was a main 
genetic contributor to the current high-yielding Holstein population. The goal of this 
study was to investigate casein (protein) variants and casein haplotypes in DSN based 
on the DNA sequence level and to compare these with data from Holstein and other 
breeds. In the investigated DSN population, we found no variation in the alpha-casein 
genes CSN1S1 and CSN1S2 and detected only the CSN1S1*B and CSN1S2*A protein 
variants. For CSN2 and CSN3 genes, non-synonymous single nucleotide polymorphisms 
leading to three different β and κ protein variants were found, respectively. For β-casein 
protein variants A1, A2, and I were detected, with CSN2*A1 (82.7%) showing the highest 
frequency. For κ-casein protein variants A, B, and E were detected in DSN, with the highest 
frequency of CSN3*A (83.3%). Accordingly, the casein protein haplotype CSN1S1*B-
CSN2*A1-CSN1S2*A-CSN3*A (order of genes on BTA6) is the most frequent haplotype 
in DSN cattle.

Keywords: sequencing, 1000 Bull Genomes Project, bovine, SNP, comparative genomics, endangered

INTRODUCTION
The German Black Pied cattle (DSN, “Deutsches Schwarzbuntes Niederungsrind”) is a dual-purpose 
breed for milk and beef production. DSN is considered the founder population of the high-yielding 
Holstein Friesian breed (Köppe-Forsthoff, 1967; Grothe, 1993). The DSN ancestors have their roots 
in the German and Dutch North Sea coast region. While DSN cattle produce about 2,500 kg less 
milk per lactation compared to German Holstein, they were almost entirely replaced by Holstein 
and DSN became an endangered breed with currently about 2,800 cows registered in Germany. 
Nevertheless, with 4.3% fat and 3.7% protein, milk from DSN cows contains more protein and fat 
compared to Holstein (RBB Rinderproduktion Berlin-Brandenburg GmbH, 2016). Moreover, DSN 
cattle are considered to be more robust and fertile.

To preserve the DSN breed and conserve the genetic diversity, farmers are financially compensated 
for the lower milk yield by the EU and the German government. The close genetic relationship to 
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Holstein makes a genetic comparison between the original DSN 
and Holstein interesting with respect to differences in milk yield 
and protein composition.

Genes known to influence protein content and composition 
in milk are the casein genes CSN1S1, CSN2, CSN1S2, and CSN3, 
encoding the casein proteins alpha S1 (αS1), beta (β), alpha S2 
(αS2), and kappa (κ), respectively (Ferretti et al., 1990; Threadgill 
and Womack, 1990), which are located in the given order on 
BTA6 in the so-called casein gene cluster, which spans ~250 kb 
(Boettcher et al., 2004). All caseins account for about 75% of the 
milk protein content (Gallinat et al., 2013); the remaining 25% are 
whey proteins. Several single nucleotide polymorphisms (SNPs) 
and insertions or deletions in exons of these casein genes are 
known to change their protein sequences, resulting in different 
casein variants. In the Bos genus, 10 protein variants for αS1- (A, 
B, C, D, E, F, G, H, I, and J), 15 for β- (A1, A2, A3, B, C, D, E, F, 
G, H1, H2, I, J, K, and L), 5 for αS2- (A, B, C, D, and E), and 11 for 
κ-casein (A, B, C, E, F1, F2, G1, G2, H, I, and J) have been reported  
(Table 1). Additional variants in the upstream gene regions could 
affect the expression of the casein genes and influence the amount 
and ratio of different caseins in the milk (Martin et al., 2002). 
Casein polymorphisms were found to affect milk processing and 
cheese making properties as well as the digestibility in human 
nutrition, hypoallergenic reactivity, and the risk of cardiovascular 
diseases and diabetes, for example (Caroli et al., 2009).

While many studies investigated the casein gene cluster in 
Holstein and other breeds (Ng-Kwai-Hang et al., 1984; Velmala 
et al., 1995; Formaggioni et al., 1999; Boettcher et al., 2004; 
Gallinat et al., 2013), so far only little is known about the genetic 
diversity of the casein cluster in DSN cattle. In a former study 
of β- and κ-casein variants in DSN cattle, homozygous carriers 
of the β-casein variant A2 showed a tendency for higher milk, 
fat, and protein yield with lower fat and protein percentages, 
while κ-casein variants tended to have an influence on the 
protein percentage (Freyer et al., 1999). Since DSN has not been 
selected for protein variants in the recent past, but for other 
important traits such as milk yield and udder conformation, 
an indirect selection for specific casein variants could have 
happened as a by-product. Because of the close proximity of 
the four casein genes in the bovine genome, the casein genes 
are not inherited independently, but are often transmitted 
from parents to offspring as a single haplotype. Therefore, it 
is very useful to determine the frequency not only for single 
protein variants but also for each “comprehensive haplotype” 

made by building a haplotype out of protein variants found 
in the four casein genes using the sequential order in which 
these genes are found in the casein cluster. Such haplotypes for 
the casein gene cluster were described for many dairy breeds 
using sequence variation within coding regions (Ikonen et al., 
2001; Caroli et al., 2003; Boettcher et  al., 2004), in promoter 
regions (Jann et al., 2004; Ahmed et al., 2017) or microsatellites 
(Velmala et al., 1995). Some studies provided evidence for a 
correlation between casein haplotypes and milk yield, fat, and 
protein percentage (Velmala et al., 1995; Braunschweig et al., 
2000; Ikonen et al., 2001; Boettcher et al., 2004; Braunschweig, 
2008; Nilsen et al., 2009).

In the DSN cattle, the frequencies of single casein protein 
variants and casein protein haplotypes recently have been 
investigated by isoelectric focusing of milk samples (N = 1,219) 
(Hohmann et al., 2018). In British Friesian, a breed that has 
similar ancestors and a similar breeding history like DSN, casein 
haplotypes were examined on the basis of genotype data (N = 51) 
(Jann et al., 2004).

In the current study, we used whole-genome sequencing 
data of the DSN population and additional data from the 
1000 Bull Genomes Project (Daetwyler et al., 2014; http://
www.1000bullgenomes.com/) to examine and compare the 
sequence of all casein genes including the 1-kb upstream 
regulatory region. Our aim is to compare the DSN population 
with 13 other cattle breeds. This comparison is undertaken 
to investigate the genetic diversity of missense variants in 
the casein gene cluster across these cattle breeds and might 
provide selectable casein variants and/or haplotypes to improve  
DSN breeding.

MATeRIAl AND MeTHODS

Sequencing Data
In order to characterize DSN casein sequence variants, the 
raw sequence variants of Bos taurus animals available from 
the 1000 Bull Genomes Project Run 6.0 were used (http://
www.1000bullgenomes.com/; Daetwyler et al., 2014). Animals 
that shared high genetic similarity (>0.99 relative Manhattan 
distance; Korkuć et al., 2019), which could not be explained 
by kinship, were removed from the dataset. Furthermore, only 
breeds with at least 30 animals were selected for the analyses, 
so that the final dataset contained 14 different B. taurus breeds 
(30 DSN, 541 Holstein Friesian, 276 Angus, 217 Simmental, 148 
Brown Swiss, 127 Charolais, 82 Limousin, 75 Hereford, 66 Jersey, 
56 Danish Red, 54 Montbéliarde, 53 Fleckvieh, 52 Gelbvieh, and 
44 Normande).

Filtering of raw SNP data was performed as described in 
Daetwyler et al. (2014), except we did not apply the proximity 
filter, which keeps only the highest quality SNP within 3 bp to 
increase the number of investigated SNPs in the casein cluster. In 
addition, we required at least three reads mapped to the reference 
and/or alternative allele to be considered a trustworthy SNP call; 
otherwise, the SNP genotype for that animal was set to missing. 
Only variants were investigated which are polymorphic in at least 
one breed.

TABle 1 | Known protein variants

Gene Protein Variants

CSN1S1 αS1 A, B, C, D, E, F, G, H, I, J
CSN2 β A1, A2, A3, B, C, D, E, F, G, H1, H2, I, J, K, L
CSN1S2 αS2 A, B, C, D, E
CSN3 κ A, B, C, E, F1, F2, G1, G2, H, I, J

In this table, we list all known variants for the casein genes published in 
recent literature for the CSN1S1, CSN2, CSN1S2, and CSN3 genes and their 
corresponding proteins in Bos genus (Ibeagha-Awemu et al., 2007; Caroli et al., 
2010; Gallinat et al., 2013).
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The 30 DSN cattle in the 1000 Bull Genomes dataset were 
selected to best represent the current DSN population. The DSN 
population submitted includes 13 cows (mostly bull mothers) 
and 17 artificial insemination bulls. Due to the small population 
size, relationships between DSN cattle exist. Animal selection 
criteria for the other breeds from the 1000 Bull Genomes Project 
are not known.

Investigated DNA Sequence Region
Genomic positions, reference genome, and protein sequences 
of the casein genes were obtained from Ensembl Release 93 
(Zerbino et al., 2018) based on UMD3.1 assembly (Zimin 
et al., 2009). Sequence variants located within the casein 
genes CSN1S1, CSN1S2, CSN2, and CSN3 (Supplementary 
Table 1) and 1,000 bp upstream were selected for analyses. 
The sequence variants were examined and categorized into 
variant types based on their genomic locations (1,000 bp 
upstream, 5′-UTR, intron, synonymous, missense, splice 
region, 3′-UTR) using the Ensembl Variant Effect Predictor 
(McLaren et al., 2016).

The lowest detectable allele frequency in DSN was 1/60 (0.017) 
as the minimum number of animals per breed was set to 30. So 
an allele frequency of 0.017 implies a single heterozygous animal 
within the population.

A comparison of the SNP annotation of the genes in the casein 
cluster to the rest of the genomic SNP was performed using all 
SNP variants annotated by the 1000 Bull Genomes Project (Hayes 
and Daetwyler, 2019). However, while our analysis of the casein 
cluster does not include intergenic variants, we recalculated the 
annotation percentages in the 1000 Bull dataset after removing 
the “intergenic variant” category. A comparison between 
the casein cluster and the rest of the genome can be found in 
Supplementary Table 7.

Haplotypes and haplotype frequency of protein-coding 
variants were estimated if at least two protein-coding variants 
were present. Haplotype analysis was performed using the 
function haplo.group from R package haplo.stats with the 
default settings (Sinnwell and Schaid, 2018). In order to assess 
the similarity of cattle breeds with regard to their haplotypes, 
Euclidean distances of protein variants and haplotype 
frequencies between all breeds were calculated. The resulting 
distance matrix was used to cluster (using average linkage) the 
cattle breeds hierarchically and to generate a dendrogram with 
standard R plot routines. All other plots were generated using 
the R package ggplot2 (Wickham et al., 2016).

Protein variants with a minimum frequency of 5% in a 
single breed were used to build comprehensive haplotypes 
across all four casein genes. Haplotypes are named according 
to the ordered position of the casein genes on the chromosome 
(CSN1S1-CSN2-CSN1S2-CSN3) and the variant name of each 
individual casein protein, e.g., B-A1-A-A for CSN1S1*B–
CSN2*A1–CSN1S2*A–CSN3*A. This way of coding casein 
variants was proposed by Caroli et al.; more information about 
casein (haplotype) coding can be found in their 2009 paper 
(Caroli et al., 2009).

ReSUlTS

Distribution of DNA Sequence Variants in 
Casein Genes and Upstream Regions
In total, 892 SNPs were detected within the four casein genes 
(CSN1S1, CSN2, CSN1S2, and CSN3) and their 1,000-bp 
upstream regions. Most of the detected variants were intron 
variants (87.3%), followed by variants in the 1,000-bp upstream 
gene region (5.8%), and missense variants (2.2%). Remaining 
SNPs were synonymous variants (1.2%), located in the 3′-UTR 
(2.2%), splice region (0.7%), or in the 5′-UTR region (0.4%) 
(Table 2 and Supplementary Table 2).

Comparison of casein SNPs to the 1000 Bull Genomes whole-
genome SNP dataset showed that the percentages detected in 
the casein cluster are similar to the whole-genome annotation 
frequencies (intron variants 84.7%, upstream region 11.4%, 
missense variants 1.4%, synonymous variants 1.4%, 3′-UTR 
0.7%, splice region 0.2%, and 5′-UTR 0.2%) (Supplementary 
Figure 1 and Supplementary Table 7).

SNP density was calculated for the average number of SNPs 
per 10 kb for upstream (+1,000 bp), intron and exon regions of 
the four casein genes (Table 2). The highest SNP density over 
all four genes was found in the introns (14.57 SNPs per 10 kb), 
followed by upstream gene regions (13.00 SNPs per 10 kb) and 
exons (6.22 SNPs per 10 kb). CSN3 had the highest density of 
intronic DNA variants (17.44 SNPs per 10 kb) and exon regions 
(9.46 SNPs per 10 kb), while CSN1S1 had the lowest SNP density 
in the exons (3.36), but the highest in the upstream region (22.00).

In DSN, 254 of 892 sequence variants over all four casein 
genes were detected (Supplementary Table 3). Six SNPs were 
found to be novel. This means that these SNPs were not found in 
the dbSNP and/or EVA database; this was investigated using the 
Ensemble genome browser (Release 93) which integrates both 
these databases. One in intron 6 of CSN1S1 (BTA6:87147250 
G/A) found in DSN and Holstein. One in intron 14 within the 
splice region of CSN1S1 (BTA6:87155332 C/T) found in DSN, 
Holstein, and Fleckvieh. Another novel SNP that was found 
in intron 2 of CSN3 (BTA6:87382140 T/C) was segregating in 
most of the investigated breeds. The alternative allele frequency 
(AAF) of this SNP is similar in DSN and Danish Red (AAF(DSN) = 
28.3%, AAF(Danish Red) = 21.7%), while all other breeds showed 
an alternative allele frequency <10%. Interestingly, in CSN2, 
three novel SNPs were found in a single DSN bull only, one of 

TABle 2 | SNP density.

Gene Upstream Intron exon Missense Synonymous

CSN1S1 22.0 17.3 3.4 1.7 1.7
CSN2 10.0 15.6 8.7 6.1 2.6
CSN1S2 8.0 9.6 5.8 2.5 3.3
CSN3 12.0 17.4 9.5 8.3 1.2
Total 13.0 14.6 6.2 4.0 2.2

SNP density per 10 kb in the upstream (+1,000 bp), intron and exon (split into 
missense and synonymous variants) regions of the casein genes CSN1S1, 
CSN2, CSN1S2, and CSN3.
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them in intron 1 (BTA6:87186177 G/A) and two in intron 4 
(BTA6:87185025 T/A and BTA6:87184912 C/G).

The alternative allele frequency of all SNPs in the four 
casein genes differs between the investigated breeds. Through 
clustering of the 892 SNPs based on the respective alternative 
allele frequency per breed, distinct relationships between the 

breeds can be observed (Figures 1 and 2). The alternative allele 
frequencies of the sequence variants across all casein genes 
showed breed-specific differences. Overall, the alternative 
allele frequencies of DSN are most similar to those of Danish 
Red (dual-purpose breed), Holstein (milk production breed), 
and Hereford (beef production breed). DSN show very low 

FIGURe 1 | Overview of variant types occurring within the four casein genes CSN1S1, CSN1S2, CSN2, and CSN3 including their 1,000-bp upstream region.

FIGURe 2 | Clustering of per-breed alternative allele frequency for the detected sequence variants in the casein genes CSN1S1, CSN2, CSN1S2, and CSN3 
including their 1,000-bp upstream region. The respective variant types are presented above the alternative allele frequencies. It should be noted that the clustering is 
mainly based on intron variants (light blue areas) as they make up 87.3% of all detected variants.
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alternative allele frequency for SNPs in CSN1S1 and CSN1S2, but 
higher ones for SNPs in CSN2 and CSN3. In contrast to all other 
breeds, Normande and Jersey had high and low alternative allele 
frequency in CSN1S1 and CSN3, respectively. As such, these two 
breeds also cluster together on the lower side of the dendrogram 
(Figure 2). The relationship between all investigated breeds 
based on all genome-wide SNPs in the 1000 Bull Genomes 
Project showed a close relatedness between DSN, Holstein, and 
Danish Red (Supplementary Figure 2).

Casein Protein Variants
CSN1S1
Protein variants CSN1S1*B and CSN1S1*C were detected in at 
least one breed. In DSN, only the CSN1S1*B variant was detected 
(Table 3). Variants CSN1S1*A and CSN1S1*C were not observed 
among the 30 sequenced DSN animals. In Gelbvieh, Holstein, 
and Danish Red, the frequency of the CSN1S1*C variant was also 
low (<1%). In contrast, Limousin, Brown Swiss, and Fleckvieh 
had higher frequencies of the CSN1S1*C variant (>10%). The 
highest protein variant frequency of the CSN1S2*C variant was 
detected in the Jersey (44.8%) and Normande (25.6%) breeds 
(Supplementary Table 4).

CSN2
Seven missense variants were found in the CSN2 gene, of which 
five β-casein protein variants (A1, A2, B, I, and F) have a frequency 
of at least 5% in one breed. The distribution of those five most 
common β-casein protein variants differed in DSN compared to 
the other breeds. In DSN, the A1 is the most common protein 
variant with a frequency of 82.7% compared to 30.0% in Holstein. 
The protein variants A2 (15%) and I (2%) were found in DSN as 
well (Table 3). Variant I has not been described before for DSN 
(Jann et al., 2002; Caroli et al., 2009). The variants B and F were 

not detected in the examined DSN population, but were found 
in other breeds. Nine out of 14 breeds have a frequency of the A2 
variant of more than 50%, with the highest frequency in Angus 
(94.7%) (Supplementary Table 5).

CSN1S2
In the CSN1S2 gene, three missense variants were found which 
correspond to protein variants CSN1S2*A, CSN1S2*C, and 
CSN1S2*D. In DSN only variant A was detected (Table 3), 
similar to Jersey, Montbéliarde, Normande, Fleckvieh, and 
Hereford. Additionally, in Holstein, CSN1S2*D was found with 
low frequencies (0.3%). Gelbvieh has the highest frequency for 
variant D, with 12.2%. The highest frequency of the C variant 
was found in Angus, with a frequency of 7.5% (Supplementary 
Table 4).

CSN3
Seven missense variants were found in the CSN3 gene. The 
κ-casein variants A, B, and E have a frequency of at least 5% 
in one breed. In DSN, variant A is the most frequent (83.3%), 
followed by B (13.3%) and E (3.4%) (Table 3). CSN3*A is the 
most frequently detected variant in 10 out of the 14 breeds 
investigated. The highest frequency for the B variant was found 
in Jersey (96.0%), Brown Swiss (67.4%), Normande (84.6%), and 
Charolais (51.0%). The distribution of the CSN3 protein variants 
in DSN are similar to Fleckvieh (CSN3*A = 84.4%, CSN3*B = 
14.5%), although the E variant was not detected in Fleckvieh 
(Supplementary Table 6).

Protein Haplotype Analysis Across the 
Casein Cluster
Across all casein genes, frequency of variants varied between 
the investigated breeds. Therefore, we performed a haplotype 

TABle 3 | Allele frequency of missense variants.

Variant of casein 
gene

BTA positiona Allele Amino acid Protein seq. 
positionb

SNP ID Variant frequency

DSN HF All breeds

CSN1S1*B 6:87157262 A/G Glu/Gly 207 (192) rs43703010 1.0 0.995 0.944
CSN2*A1 6:87181619 T/G His/Pro 82 (67) rs43703011 0.827 0.340 0.295
CSN2*A2 6:87181619 T/G His/Pro 82 (67) rs43703011 0.156 0.562 0.592
CSN2*I 6:87181542 T/G Met/leu 108 (93) rs109299401 0.017 0.059 0.036
CSN1S2*A 6:87266177 C/T Ser/Phe 23 (8) rs441966828 1.0 1.0 0.994
CSN3*A 6:87390576 T/C Ile/Thr 157 (136) rs43703015

6:87390612 C/A Ala/Asp 169 (148) rs43703016 0.833 0.752 0.628
6:87390632 A/G Ser/Gly 176 (155) rs43703017

CSN3*B 6:87390576 T/C Ile/Thr 157 (136) rs43703015 0.133 0.203 0.341
6:87390612 C/A Ala/Asp 169 (148) rs43703016

CSN3*E 6:87390632 A/G Ser/Gly 176 (155) rs43703017 0.034 0.045 0.030

Allele frequencies of missense variants in CSN1S1, CSN2, CSN1S2, and CSN3 in DSN compared to Holstein Friesian (HF) and other breeds. For each variant, we list 
the alleles as ref/alt. In a bold font we highlight the SNP allele and resulting amino acid which causes the casein variant. As an example, the CSN2*A1 and CSN2*A2 
variants are caused by a SNP on the same position 6:87181619. In the case of A1, the T-allele causes a histidine to be incorporated into the protein sequence. The A2 
variant is defined as a G on the same position, leading to a proline in the resulting protein.
aBos taurus autosome (BTA) CSN1S1*B (ENSBTAG00000007695), CSN2*A2 (ENSBTAG00000002632), CSN1S2*A (ENSBTAG00000005005), and CSN3*A 
(ENSBTAG00000039787).
bPositions of amino acids according to the reference protein sequence from Ensembl Release 93 UMD3.1 assembly. Positions in the mature protein are given in 
parentheses.
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analysis across all protein variants of the four casein genes to 
position DSN relative to the other breeds.

Altogether, 37 haplotypes were constructed across all cattle 
breeds; 13 out of 37 haplotypes had a frequency higher than 5% 
in at least one breed. Out of the 13 haplotypes which met our 
inclusion criteria, five haplotypes showed a frequency >5%. For 
DSN, nine haplotypes could occur theoretically based on the 
number of casein protein variants across the casein cluster. Out 
of the expected haplotypes, seven were found. The most common 
haplotype in DSN was B-A1-A-A with a frequency of 71.1%. In 
contrast to DSN, the most frequent haplotype in Holstein (53.1%) 
as well as in seven other breeds was B-A2-A-A (Table 4).

Because of their similarity in their comprehensive haplotype 
distribution, DSN and Danish Red cattle clustered closely together 
(Figure 3). Both show the highest frequency for the B-A1-A-A 
haplotype. Holstein clusters together with Hereford, Angus, 
Charolais, Fleckvieh, Gelbvieh, Limousin, and Simmental, which 
all show the highest frequency for the B-A2-A-A haplotype. The 
breeds Brown Swiss (B-A2-A-B = 50.0%), Montebéliarde (B-A2-
D-B = 35.9%), Jersey (C-A2-A-B = 50.6%), and Normande (C-A2-
A-B = 28.4%) cluster together, showing the highest proportion of 
other haplotypes.

DISCUSSION

DNA Sequence Variants and New Alleles
Over the whole cattle genome, 0.6% of base pairs were 
polymorphic sequence variants in all breeds within the 1000 Bull 
Genomes Project (Sanchez et al., 2017). Within the casein cluster, 
we detected 0.4% of polymorphic sequence variants, which is an 
adequate result under consideration of the short region of about 
250 kb on the bovine genome.

In the investigated casein region, intron variants are slightly 
more frequent with 87.3% in our study than in the whole cattle 
genome with an average of 84.7% (Hayes and Daetwyler, 2019). 
Upstream gene variants make up 11.4% of all SNPs in the whole 
cattle genome. In this study (1,000 bp upstream), only 5.8% of total 
SNPs were located in the upstream regions, which the authors 
suspect is due to the definition of what constitutes as “upstream.” 
Missense variants are more frequent in the investigated casein 
region, with a proportion of 2.2% compared to the rest of the 
bovine genome (1.4%), which might point to more abundant 
genetic variation in the casein cluster compared to the whole 
genome. Overall, the casein cluster is very similar compared to 
the average cattle genome, with a few small deviations in the 
percentage of SNPs found in the upstream, missense, 3′-, and 
5′-UTR as well as in splice sites.

In our analysis, we found 892 SNPs, of which 254 were 
present in DSN (28.4%). The allele frequencies across all SNPs 
clearly differentiate between the different cattle breeds. In 
upstream regulatory regions, no new variant was detected in 
DSN. Upstream variants in CSN1S1, CSN2, and CSN3, which 
might have regulatory effects on gene expression, have an allele 
frequency distribution in DSN similar to other breeds, and 
the allele frequencies of two variants in the upstream regions 
of CSN1S2 are comparable to Danish Red. This is interesting TA
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because DSN and Danish Red have similar breeding goals 
towards a dual-purpose phenotype and the breeds show similar 
fat and protein percentages in milk. As such, it could be proposed 
that the similarities in the CSN1S2 upstream regions could be 
influencing the expression level of CSN1S2 in both breeds, 
leading to similarities in the protein composition of the milk 
from these breeds. The expression level of the CSN1S2 gene 
variant of DSN/Danish Red should be further investigated in 
comparison to other breeds.

Six new DNA variants were detected in the intronic regions 
of CSN1S1, CSN2, and CSN3. Three out of these six new DNA 
variants were detected in two different CSN2 intron regions in a 
single DSN bull only. Because of the relatively stringent quality 
filter for sequencing data of at least three reads to one allele, we 
are reasonably confident that these three SNPs are real. However, 
a sequencing failure in this animal cannot be fully excluded. 
Three additional new SNPs that were detected in DSN and 
other breeds are reliable because of their frequencies and their 
occurrence in different breeds.

Casein Protein Variants
No variation was detected in the two α-caseins in DSN. In the 30 
sequenced animals, only the CSN1S1*B and CSN1S2*A variants 
were detected, while in Holstein the protein variants CSN1S1*C and 
CSN1S2*D were detected at low frequencies. However, since the 
investigated DSN population was small, we cannot exclude additional 
αS1 and αS2 protein variants; for example, variant CSN1S1*C has 
recently been detected in DSN (Hohmann et al., 2018).

In other breeds selected for high milk yield, the CSN1S1*B 
variant was reported to be fixed (Caroli et al., 2003). For DSN, 
which is a dual-purpose breed, CSN1S1*B is the only variant 
detected in our study. Interestingly, Jersey cattle, which were 
selected for high fat and protein content, showed the lowest 
frequency for CSN1S1*B (51.9%) and the highest frequency for 
CSN1S1*C (44.8%), which might mean a positive effect on protein 
and fat content for the CSN1S1*C variant. Since CSN1S1*C 
was recently detected in DSN (Hohmann et al., 2018), this 
might provide an opportunity for DSN breeders to increase the 
percentage of milk fat and protein in DSN by actively searching 
for and breeding with animals carrying the CSN1S1*C variant.

The A1 variant of the β-casein has a frequency of 82.9% in 
DSN, which is much higher than in other breeds. Compared 
to earlier results from the DSN population, an overestimation 
of this variant (DSN Brandenburg CSN2*A1 = 67% frequency; 
Hohmann et al., 2018) could result from the small sample size in 
our data. This overestimation goes probably to the disadvantage 
of the β-casein variant A2, which we only detected by a frequency 
of 15.4% in DSN (DSN Brandenburg CSN2*A2 = 31% frequency; 
Hohmann et al., 2018). The I variant of β-casein showed a 
frequency of 1.7% in our DSN population. While all casein 
variants that occur in DSN were also found in Holstein, the 
reverse situation is not true.

Since our study used SNPs to predict protein variants, 
we are not able to detect some known casein variants which 
can only be found using protein analysis. As an example, our 
study is unable to estimate the occurrence of CSN2*C since the 
dephosphorylation of Ser35P into a unphosphorylated Ser in 
CSN2 happens posttranslational and can only be investigated at 
the protein molecule level (Gallinat et al., 2013). Other studies 
on the DSN population show the existence of the CSN2*B 
variant with low frequencies (DSN Brandenburg CSN2*B = 2% 
frequency; Hohmann et al., 2018). In further investigations, the 
sequence on protein level should be examined parallel to the 
DNA sequence.

With a frequency of 83.2%, the A variant of κ-casein is the 
most common in DSN, followed by CSN3*B (13.3%) and CSN3*E 
(3.5%). The variant frequencies agree with previous findings by 
Hohmann and colleagues (Hohmann et al., 2018). In contrast 
to Holstein, no additional κ-casein protein variant could be 
found in DSN. The E variant, which influences cheese making 
properties in a presumably negative way (Caroli et al., 2009), 
was detected in six breeds including DSN at a low frequency. A 
low frequency is also occurring in Holstein (4.6%) and Danish 
Red (3.6%). However, increasing the E variant in the population 
should be selected against in DSN.

Casein Haplotype Frequencies in DSN 
Compared to Other Breeds
In DSN, B-A1-A-A is the most frequent casein haplotype with 
a frequency of 71.7%. This is due to the very high frequency of 

FIGURe 3 | Haplotype analysis across the casein proteins CSN1S1-CSN2-CSN1S2-CSN3 for the five most common haplotypes listed using the respective protein 
variant names. Haplotypes with a total frequency less than 5% are summarized as “Other.”
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CSN2*A1 (82.9%), which might be overestimated in our results. 
Studies with higher sample sizes showed similar results. Also, 
they detected the highest frequency (57%) for the shortened 
CSN1S1*B–CSN2*A1–CSN3*A haplotype in DSN (Hohmann 
et al., 2018). The 57% estimate should be considered the more 
reliable estimate as it is based on a larger sample size. The most 
common comprehensive casein haplotype in British Friesian was 
also B-A1-A-A, with a frequency of 60% (Jann et al., 2004), which 
is similar to the frequency found in DSN. In contrast to DSN, 
the protein variants CSN2*I and CSN3*E were not detected in 
British Frisian.

The haplotype B-A2-A-A is the most common in Holstein 
(53.1%) and several other B. taurus breeds (Limousin 41.9%, 
Angus 64.4%, Hereford 35.9%, Charolais 33.1%, Simmental 
44.6%, Fleckvieh 41.5%, and Gelbvieh 49.0%), and the estimated 
frequencies of the casein protein variants reported in this paper 
are comparable to frequencies found in the literature, e.g., for 
Aberdeen Angus (51.1%) (Jann et al., 2004) or Italian Holsteins 
(CSN1S1*B-CSN2*A2-CSN3*A = 48%) (Boettcher et al., 2004). 
For Brown Swiss, the haplotype B-A2-A-B with a frequency of 
50% is identical to results in the literature for the shortened 
haplotype CSN1S1*B-CSN2*A2-CSN3*B in Italian Brown Swiss 
(Boettcher et al., 2004). The cattle populations within the 1000 
Bull Genomes Project seem to adequately represent the respective 
cattle breeds.

Further investigation should investigate the effect of different 
haplotypes in DSN on milk yield and protein and fat percentage. 
However, the current sample size would not lead to significant 
results. A previous investigation of casein variants with >600 
DSN found no significant results based on the β- and κ-casein 
genotype (Freyer et al., 1999).

CONClUSION
Few of the already known casein protein variants, αS1 (B), β (A1, 
A2, and I), αS2 (A), and κ (A, B, and E), were detected in DSN 
using whole-genome sequencing data. This study is the first to 
find the CSN2*I variant in DSN. Besides the detection of this 
new variant, we confirm previous findings by Hohmann and 
colleagues that the most common casein cluster haplotype in 
DSN is B-A1-A-A. Based on the casein haplotype, DSN clusters 
together with Danish Red.

DSN cattle is remarkably different from the other investigated 
B. taurus breeds by having a high frequency of the CSN2*A1 
variant. The preferred protein variants CSN2*A2 for potentially 
improving human health and CSN3*B for better cheese making 
properties were detected at low frequencies in the DSN breed. 
Our study found a large and untapped potential for DSN breeders 
to select and increase beneficial protein variants. However, 
selection for these variants could also (negatively) influence other 
important traits (e.g., protein and fat percentage or milk yield).

Because of its low variability, the αS2 protein is often omitted 
from casein studies. In our study of 14 breeds, we also come 
to the same conclusion that variability in αS2 is low and can be 
disregarded when investigating protein variants. However, we 
found a number of upstream genetic variations which show a 

similarity between the dual-purpose breeds DSN and Danish 
Red. These upstream variants might influence expression of the 
CSN1S2 gene and should be investigated further.
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African animal trypanosomiasis (AAT) is caused by a protozoan parasite that affects the 
health of livestock. Livestock production in Ethiopia is severely hampered by AAT and 
various controlling measures were not successful to eradicate the disease. AAT affects 
the indigenous breeds in varying degrees. However, the Sheko breed shows better 
trypanotolerance than other breeds. The tolerance attributes of Sheko are believed to 
be associated with its taurine genetic background but the genetic controls of these 
tolerance attributes of Sheko are not well understood. In order to investigate the level 
of taurine background in the genome, we compare the genome of Sheko with that of 
11 other African breeds. We find that Sheko has an admixed genome composed of 
taurine and indicine ancestries. We apply three methods: (i) The integrated haplotype 
score (iHS), (ii) the standardized log ratio of integrated site specific extended haplotype 
homozygosity between populations (Rsb), and (iii) the composite likelihood ratio (CLR) 
method to discover selective sweeps in the Sheko genome. We identify 99 genomic 
regions harboring 364 signature genes in Sheko. Out of the signature genes, 15 genes 
are selected based on their biological importance described in the literature. We also 
identify 13 overrepresented pathways and 10 master regulators in Sheko using the 
TRANSPATH database in the geneXplain platform. Most of the pathways are related with 
oxidative stress responses indicating a possible selection response against the induction 
of oxidative stress following trypanosomiasis infection in Sheko. Furthermore, we present 
for the first time the importance of master regulators involved in trypanotolerance not only 
for the Sheko breed but also in the context of cattle genomics. Our finding shows that the 
master regulator Caspase is a key protease which plays a major role for the emergence 
of adaptive immunity in harmony with the other master regulators. These results suggest 
that designing and implementing genetic intervention strategies is necessary to improve 
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InTRODUCTIOn
Trypanosomiasis is a disease caused by uni-cellular protozoan 
parasites which affects the health of humans and livestock. 
In Africa, this disease is referred to as African animal 
trypanosomiasis (AAT) (Kristjanson et al., 1999; Shaw et  al., 
2014). AAT is the major livestock production constraint 
especially in sub-Saharan African countries. It is mainly caused by 
Trypanosoma congolense, Trypanosoma vivax, and Trypanosoma 
brucei brucei (Hoare, 1972; Abebe, 2005, Batista et al., 2011; Yaro 
et al., 2016). Particularly, T. congolense is the most frequent cause 
of livestock disease in this region (Naessens, 2006). The disease 
is transmitted from infected animals to healthy animals by tsetse 
fly as a vector (Welburn et al., 2016). The infected animal shows 
symptoms such as anemia (Murray et al., 1990; Naessens, 2006), 
neurological symptoms (Tuntasuvan et al., 1997; Giordani et al., 
2016), reduced productivity, infertility, abortion (Barrett and 
Stanberry, 2009), listlessness, and emaciation (Nantulya, 1986; 
Batista et al., 2007; Steverding, 2008; Noyes et al., 2011). If not 
treated, it can lead to death (Kristjanson et al., 1999; Barrett and 
Stanberry, 2009; Giordani et al., 2016). Hence, this disease has a 
major economic impact that accounts for an estimated annual 
loss of US$ 5 billion in sub-Saharan countries (Kristjanson et al., 
1999; Giordani et al., 2016).

Ethiopia is located in the eastern part of the tsetse belt. 
The tsetse fly distribution in the country spans from the south 
western to the north western regions covering 22,000 km2) 
between longitude 38° and 38° East and latitude 5° and 12° 
North along river basins (Andrew, 2004; NTTICC, 2004). About 
14 million cattle, 7 million horses, 1.8 million camels, and 14 
million small ruminants are kept in the infection zone (MoARD, 
2004). AAT severely affects the draft power as well as meat and 
milk production of the animals (Chanie et al., 2013). Therefore, 
AAT is considered as a major challenge constraining the path 
toward ensuring food security and combating poverty in this 
region (Meyer et al., 2018).

Until now, a number of methods have been applied to 
control the spread of this disease such as trypanocidal drugs, 
insect traps, and insecticides (Slingenbergh, 1992; Leak et al., 
1996; Giordani et al., 2016). But none of these controlling 
measures has been successful to eradicate the disease. The 
current situation is deteriorating because of the trypanocidal 
drug resistance due to inappropriate drug usage. Moreover, 
pharmaceutical companies are less attracted to invest in new 
drug discovery and development due to high cost (Codjia 
et al., 1993; Mulugeta et al., 1997; Kristjanson et al., 1999; 
Naula and Burchmore, 2003). To control the spread of this 
disease, Lutje et al. (1996) have suggested a cross breeding 

strategy between trypanotolerant and trypanosusceptible 
cattle, together with vector control. Accordingly, Hanotte et al. 
(2003) performed crossbreeding between the trypanotolerant 
N’Dama and trypanosusceptible Boran breeds to produce an 
F2 population that shows heterosis. This led to the assumption 
that an F2 cross between trypanotolerant and susceptible 
breeds could produce a trypanotolerant synthetic breed whose 
performance would exceed that of either parent. Consequently, 
marker assisted selection from the F2 breed would be the most 
promising strategy to produce a breed that combines high 
production and trypanotolerance (Hanotte et al., 2003; Noyes 
et al., 2011).

In Ethiopia, Sheko shows better trypanotolerance attributes 
than other breeds such as Abigar and Horro (Lemecha et al., 
2006). Sheko is found in the southern region of the Bench Maji 
Zone, the adjoining areas of Keffa and Shaka and is considered 
as an endangered breed due to extensive interbreeding with 
local indicine and sanga breeds (DAGRIS, 2007). Sheko cattle 
are kept in the tsetse infested regions likely explaining their 
degree of trypanotolerance (Hanotte et al., 2003; Bahbahani 
et al., 2018). In order to address the tolerance attributes of 
the Sheko breed at the molecular level, this study analyzes 
the genotyping data of the breed to explore the genome for 
candidate signature genes. The rationale is that natural 
or artificial selection targets the genome in response to 
environmental pressures or stresses as shaping adaptation and 
evolution. This implies that if the new allele of a mutation is 
beneficial (increases the fitness of their carriers) under certain 
environmental pressure or stress, then the frequency of these 
alleles will rapidly increase in the population (Charlesworth, 
2007). Under positive selection, strong and long range linkage 
disequilibrium (LD) and unexpectedly high local haplotype 
homozygosity might occur in the genome (Gautier and Vitalis, 
2012; Bomba et al., 2015).

Likewise, trypanosomiasis is considered as an environmental 
pressure which plays a major role to create selection signatures 
in the genome and which is thus leading to breed formation 
(Kristjanson et al., 1999; Abebe, 2005; Yaro et al., 2016). These 
signs or traces of selection in the genome could be detected 
by using a “bottom-up” or a “from genotype to phenotype” 
approach (McGuire and McGuire, 2008). This study provides 
traces or signs of positive selection in the genome of Sheko 
against trypanosomiasis using the “bottom-up” approach. In 
response to trypanosomiasis as the environmental pressure, the 
genome of Sheko could undergo changes at the molecular level. 
With the aim to identify the molecular mechanism of Sheko 
tolerance, we use extended haplotype homozygosity (EHH; iHS 
and Rsb) and spatial distribution of allele frequency [composite 

the performance of susceptible animals. Moreover, the master regulatory analysis 
suggests potential candidate therapeutic targets for the development of new drugs for 
trypanosomiasis treatment.

Keywords: trypanosomiasis, trypanotolerant, selection signature, candidate signature genes, master regulators, 
overrepresented pathways
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likelihood ratio (CLR)] based methods to identify genes that 
are associated with this selection pressure in the Sheko breed. 
Combining methods for the detection of selection signature 
regions has been suggested as a means of increasing the power 
of the study compared to single analysis (e.g. Ma et al., 2015; 
Vatsiou et al., 2016).

Summary of the Analysis Workflow
Our workflow can be divided into two major steps as described 
below (see also Figure 1): 1) We analyzed the genetic 
relationship and structure of Sheko and 11 other indigenous 
African breeds using Plink 1.9 and the ADMIXTURE 1.3 
software. 2) The identified candidate signature genes were then 
used in the analysis pipeline comprising the following four 
sub-steps: i) First, we identified genomic regions and signature 
genes under positive selection toward trypanotolerance in 
Sheko using iHS, CLR and Rsb analyses. As an intermediate 
result, we present the 15 genes resulting from a literature 
survey; ii) in the second step, we applied enrichment analysis 
in gene ontology (GO) terms in the combined gene sets of 
the three methods and made clusters of enriched GO terms 
in the form of a treemap using the geneXplain platform; iii) 
we then identified overrepresented pathways based upon the 
significant genes found in (ii) using the TRANSPATH database 
in the geneXplain platform; iv) finally, we identified the master 
regulators 10 steps upstream in the regulatory hierarchy using 
the significant genes found in (ii) using the TRANSPATH 
database in the geneXplain platform.

ReSUlT AnD DISCUSSIOn

The Genetic Relationship and Structure of 
Cattle Populations
In order to understand the genetic structure of Sheko in 
comparison with 11 other African breeds, principal component 
analysis (PCA) was used. The result shows that the first two 
principal components (PCs), which explain 30.3% and 4.6% of the 
total variation, distinguishes the African taurine (N’Dama and 
Muturu) from the African indicine breeds [Benshangul, Serere, 
Karamojong, East African Shorthorn Zebu (EASZ), Fogera, and 
Gindeberet] (Figure 2A). Moreover, the Sheko, Nganda, Ankole, 
and Nuer are positioned between the African taurine and the 
African indicine clusters. These breeds are close to the indicine 
cluster and thereby support the admixture of more indicine than 
taurine type genomes in these breeds. The PCA result also shows 
the highest level of genetic heterogeneity in the Nganda breed 
which might be caused by ongoing crossbreeding of Nganda with 
exotic breeds to enhance their productivity (Mwai et al., 2015). 
We also conducted PCA exclusively for indigenous Ethiopian 
breeds. The result shows that the Sheko and Nuer form separate 
groups while the indicine type breeds (Benshangul, Fogera and 
Gindeberet) form a cluster in both PCs (Figure 2B).

For the further understanding of the degree of admixture 
in the populations, the ADMIXTURE 1.3 (Alexander et al., 
2009) software was used for K = 2 to 7 hypothetical ancestral 
populations (Figure 3). We start from two hypothetical 
ancestral populations with the aim to determine the degree of 
indicine and taurine genetic background in the cattle breeds. 

FIGURe 1 | Workflow for the study to identify candidate genes and key regulators that are associated with trypanotolerance in Sheko breed. (A) The genotypes of 
the Sheko and 11 other indigenous African breeds are obtained and quality control filtering is performed. (B) The genomic structure of Sheko in comparison to 11 
other indigenous African breeds is analyzed using principal component analysis (PCA) and ADMIXTURE. (C) The identification of 364 signature genes is performed 
by iHS, CLR, and Rsb analyses. (D) Among 364 genes, the 15 most significant genes that are associated with trypanotolernace attributes are identified and 
disclosed. (e) Significantly functionally enriched terms [gene ontology (GO) terms] are identified for the 364 signature genes. 260 genes are identified as significantly 
enriched. (F) Using the functionally enriched 260 genes, a treemap is produced based on the biological processes. (G) Functionally enriched signature genes 
(260 genes) are analyzed to identify overrepresented pathways. (h) A master regulator network is generated up to 10 steps upstream using functionally enriched 
signature genes. The treemap, overrepresented pathway, and master regulator analyses were performed in the geneXplain platform.
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Since the CV errors from K = 3 to K = 6 have not exceeded 
the cross-validation (CV) errors of K = 2, we extend the 
hypothetical population up to K = 7 which has the highest CV 
error (Supplementary Figure 1). At K = 2, the two ancestries 
taurine and indicine are revealed. The genomes of Ankole, 
Nganda, Nuer, and Sheko are mainly of indicine origin but 
have substantial taurine admixture, a result supporting our 
interpretation of the first PC of Figure 2A, that African taurine 
are separated from the East African indicine breeds and the 
mixed taurine-indicine type populations. At K = 3, Ankole, Nuer 
and Sheko show genetic heterogeneity with a considerable level 
of taurine admixture. EASZ, Karamojong, Serere, Benshangul, 
Fogera, and Gindeberet also show minor levels of taurine 
admixture whereas Nganda reveals a high level of within breed 
genetic differentiation. This is also in agreement with the second 
PC coordinate analysis in showing genetic heterogeneity within 
the cattle breeds (Figure 2A). Moreover, with the increment of 
the value of K, Sheko and Nuer show a higher level of genetic 
heterogeneity than the other east African breeds. Furthermore, 
at K = 6 and K = 7, the African taurine breeds N’Dama and 
Muturu show separate genetic backgrounds. In general, Sheko 
shows the highest level of African taurine genomic contribution 
for all values of K among East African breeds. The proportions 
of admixture in each of the analyzed breeds are presented for 
K = 7 in Supplementary Table 1.

Consistent with the previous findings and the origins of the 
genetic backgrounds of the cattle breeds worldwide (Mbole-
Kariuki et al., 2014; Bahbahani et al., 2018), K = 2 highlights 
best the ancient divergence between indicine and taurine 
cattle. However, the three optimal genetic clusters suggested 
by the minimal CV error (Supplementary Figure 1) reflect 
the common genetic background unique to East Africa 
besides taurine and indicine ancestral genetic admixture. In 
agreement with our study, Bahbahani et al. (2018) reported 
east African genetic background unique to East African cattle 
breeds. Moreover, the admixture plots show two individuals of 
Sheko with a high level of taurine introgression. One of these 
individuals with higher taurine introgression is also detected 
by the PCA (Figure 1B, upper left corner). This could be due 
to the recent crossbreeding of Sheko with European dairy 
breeds. There were similar observations in Butana, and it 
was speculated that farmers might have been involved in the 
crossbreeding with European dairy breeds in order to increase 
milk production (Bahbahani et al., 2018). We believe that the 
introgression of the European dairy breeds into the genome 
of indigenous breeds such as Sheko and Butana might distort 
their adaptive evolutionary responses against their natural 
environmental stresses. In this regard, future studies should 
assess the impact of European dairy breeds on the genome of 

FIGURe 2 | Continued

FIGURe 2 | PCA plots of the first two principal components showing 
the genetic relationship between cattle breeds. (A) PCA plot for all cattle 
breeds included in this study, and (B) PCA plot for the Ethiopian cattle 
breeds. ANK, Ankole; BEN, Benshangul; FOG, Fogera; GND, Gindeberet; 
KAR, Karamojong; MUT, Muturu; NDM, N’Dama; NGA, Nganda; NUR, Nuer; 
SER, Serere; SHK, Sheko.
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the indigenous African breeds with respect to their natural 
adaptation and tolerance attributes.

It is believed that the taurine background of the Sheko is linked 
to its trypanotolerance characteristics (Lemecha et al., 2006; Gibbs 
et al., 2009). This taurine admixture is likely a legacy of the first 
taurine occurrence on the African continent (Hanotte et al., 2000; 
Salim et al., 2014). A study on mtDNA indicates that all African 
cattle breeds analyzed so far carried taurine mtDNA haplotypes 

which suggests that these waves of indicine arrival into Africa were 
male-mediated (Bradley et al., 1996; Bonfiglio et al., 2012).

Identification of Candidate Signature 
Genes Associated With Trypanotolerance
A total of 20, 14, and 65 genomic regions harboring 109, 64, and 
202 candidate signature genes were identified by iHS, CLR, and 
Rsb analyses in 22, 10, and 27 autosomes in Sheko, respectively 
(Figure 4 and Supplementary Tables 2–4). Among the 364 
unique candidate signature genes identified by iHS, CLR, and 
Rsb analyses, 260 disposed of enriched GO terms (α  = 0.05) 
(Supplementary Tables 5–7). Moreover, 96, 323, and 463 
intergenic variants were identified in gene desert regions by 
iHS, CLR, and Rsb analyses in all candidate regions, respectively 
(Supplementary Tables 8–10).

Mainly focusing on the top 10 candidate signature genes of 
each of the three methods, we performed a literature survey 
and identified 15 (4 genes identified by iHS, 3 genes identified 
by CLR, 7 genes identified by Rsb, and 1 gene identified by both 
iHS and CLR) candidate signature genes that are associated with 
trypanotolerant attributes which have been reported in previous 
studies (Table 1). Notably, polymorphisms in or nearby the 
MIGA1, CDAN1, HSPA9, and PCSK6 genes in the genome of 
Sheko might be associated with the evolutionary response against 
anemia. The MIGA1 gene is associated with iron deficiency 
anemia and immunity (Moura et al., 2001; Rouault, 2006). This 
gene also plays a major role for the development and proliferation 
of lymphocyte since defective T- and B-cell activation is caused 
by inadequate iron uptake (Rouault, 2006; Jabara et al., 2016). 
Another interesting candidate signature gene related with 
anemia is CDAN1. Polymorphisms in this gene are associated 
with congenital dyserythropoietic anemia type 1 (Dgany et al., 
2002; Renella et al., 2011). Moreover, the hsp70 protein family 
and the heat shock 70kDa protein 9 (HSPA9) gene play a role as a 
downstream mediator of erythropoietin signaling and contribute 
to normal erythropoiesis (Singh et al., 1997; Ran et  al., 2000; 
Ohtsuka et al., 2007; Chen et al., 2011). The mutation in this gene 
is associated with sideroblastic anemia (Schmitz-Abe et al., 2015), 
while the PCSK6 gene is involved in iron homeostasis and hence 
related with iron deficiency anemia (Guillemot and Seidah, 2015). 
In agreement with our findings, it has been reported by several 
studies that trypanotolerant N’Dama do better control anemia, 
a process mediated by hematopoietic cells differentiation, than 
trypanosusceptible breeds (Berthier et al., 2016; Naessens, 2006).

In previous studies, trypanotolerant animals were reported 
to switch from innate immune response to adaptive immune 
response with the induction of active macrophages (M2) following 
trypanosome infection (Stijlemans et al., 2010; Bosschaerts 
et al., 2011). For instance, humoral response differences between 
trypanosusceptible (Boran) and trypanotolerant (N’Dama) cattle 
corresponding to the amount of antibody (Ab) titers have been 
observed. There is a difference in trypanosome-specific antiparasite 
Ab secreting cells in spleen and B cell activation between 
trypanotolerant and trypanosusceptible cattle (La Greca et al., 
2014; Mamoudou et al., 2016; Morrison et al., 2016). In agreement 
with this, we identified the SPAG11B, RAET1G, PPP1R14C, and 

FIGURe 3 | Admixture bar plots of each individual assuming different numbers 
of ancestral breeds (K = 2 to K = 7). ANK, Ankole; BEN, Benshangul; FOG, 
Fogera; GND, Gindeberet; KAR, Karamojong; MUT, Muturu; NDM, N’Dama; 
NGA, Nganda; NUR, Nuer; SER, Serere; SHK, Sheko.
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FIGURe 4 | Manhattan plots of genome-wide iHS (A), Rsb (B), and CLR (C) analyses. The x-axis shows the autosomal chromosomes and the y-axis shows −log 
transformed P-values (A and B) and CLR values (C).
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TTC3 genes which are involved in immune tolerance in Sheko. 
Interestingly, the PPP1R14C gene could play an important role 
in the tolerance mechanisms of Sheko with PP1, a competitive 
inhibitor of ATP binding of Src tyrosine kinase family members 
(Hanke et al., 1996; Liu et al., 2002). The inhibition of Src kinase 
is associated with the termination of stem cell factor induced 
proliferation of hemopoietic cells (Linnekin et  al., 1997). It was 
also reported that Src kinases are involved as a primary activator 
of AKT (serine/threonine kinase family). AKT plays a critical role 
in adaptive immunity through the inhibition of regulatory T-cells 
(Treg cells), which could play a key role in maintaining the immune 
tolerance (Liu et al., 2002; Haynes et al., 2003; Vignali et al., 2008). 
In addition, activated AKT is a mediator of neuronal cell survival 
(Liu et al., 2002; Chen et al., 2003; Pulst, 2016).

Furthermore, the TTC3 gene is also involved in the regulation 
of AKT signaling and is related with immune tolerance and 
neuronal cell survival (Chen et al., 2003; Liu et al., 2009; Pulst, 
2016). Therefore, the mutation in the PPP1R14C gene is associated 
with three tolerance attributes (immune tolerance, neurological 
dysfunction, and anemia). Remarkably, the candidate signature 
gene RAET1G is one of the few genes that could encode a 
ligand recognized by NKG2D proteins in response to stress 
and infections (Eagle and Trowsdale, 2007; Tomasec et al., 
2007; Lanier, 2015). Furthermore, the isoforms of the SPAG11B 
gene encode defensine-like peptides which are expressed by 
phagocytic cells (Yang et al., 1999). These structurally diverse 
peptides make multimeric forms during infection and disrupt the 
membrane of the pathogen (Ganz, 2003). They are also involved 
in the recruitment of T- and dendritic cells to facilitate the 
adaptive immunity (Yang et al., 1999). Therefore, the mutations 
or the differential expression of these genes are critical for the 
immune tolerance of Sheko to combat anemia and neurological 
dysfunction caused by trypanosome infection.

Trypanosomiasis is also reported to affect the nervous system 
of the animal. Fatihu et al. (2009) and Allam et al. (2011) reported 
causes of thyroid and parathyroid gland dysfunction following 
trypanosome infection in cattle. The dysfunctioning of thyroid 
and parathyroid glands often result in neurological complications 
or cerebral pathology (Jaggy et al., 1994; Wu and Hersh, 1994). 
Therefore, mutations in the POLR3B, MIGA1, TTC3, ERN1, 
CAPG, GNAS, and TTBK2 genes might be associated with the 
response to the presence of the parasite in the brain white matter, 
cerebral fluid, thyroid, and parathyroid glands. The endoplasmic 
reticulum to nucleus signaling 1 (ERN1) and capping protein 
gelsolin-like (CAPG) genes are involved in the regulation of 
hypoxia (a state of a cell with inadequate or reduced oxygen 
availability) (Leach and Treacher, 1998). The reduction of 
the hypoxic response element in the spinal cord results in the 
progressive degradation of the motor neuron (Oosthuyse et al., 
2001; Minchenko et al., 2015). Therefore, mutations in the ERN1 
and CAPG genes are associated with neurological dysfunction 
(Liao et al., 2009; Minchenko et al., 2015). The ERN1 and CAPG 
genes might also be involved in the innate immune response 
since hypoxia triggers innate immunity responses through the 
activation of the hypoxia induced factor α1 (HIF-1α) (Oosthuyse 
et al., 2001; Rius et al., 2008; Singh et al., 2016).

Trypanosome parasites are also known for their ability to 
manipulate the host immune responses. One of the mechanisms 
of innate immune evasion by these parasites is the reduction of 
HIF-1α by indolepyruvate. Therefore, the reduction of hypoxic 
response elements in the spinal cord results in the progressive 
degradation of the motor neuron (Oosthuyse et al., 2001). 
Therefore, the mutation in the ERN1 and CAPG genes in 
particular would be related to the host innate immune evasion of 
the parasite. Another reported candidate signature gene related 
with neurological dysfunction is the TTBK2 gene. A mutation 

TABle 1 | Summary of major candidate signature regions identified by CLR, iHS, and Rsb analyses.

Genes Method ChR Association Position (UMD3.1) Start-end 
(bp)

MIGA1 Rsb 3 Anemia, immune tolerance and neurological dysfunction (Moura et al., 2001; Rouault, 2006; 
Jabara et al., 2016)

6706504–67137909

CDAN1 CLR 10 Anemia (Dgany et al., 2002; Renella et al., 2011) 38138863–38151656
HSPA9 Rsb 7 Anemia (Singh et al., 1997; Ran et al., 2000; Ohtsuka et al., 2007; Chen et al., 2011; 

Schmitz-Abe et al., 2015)
51506219–51521515

PCSK6 iHS 21 Anemia (Guillemot and Seidah, 2015) 29553201–29673109
SPAG11B iHS 27 Immune tolerance (Yang et al., 1999; Ganz, 2003) 4920083–4942958
RAETIG Rsb 9 Immune tolerance (Eagle and Trowsdale, 2007; Tomasec et al., 2007; Lanier, 2015) 88232044–88408862
PPP1R14C Rsb 9 Immune tolerance, anemia and neurological dusfunction (Hanke et al., 1996; Linnekin et al., 

1997; Liu et al., 2002; Haynes et al., 2003; Vignali et al., 2008)
88384683–88500749

TTC3 Rsb 1 Immune tolerance and neurological dysfunction (Chen et al., 2003; Liu et al., 2009; Pulst, 2016) 151034217–151141015
ERN1 Rsb 19 Immune tolerance and neurological dysfunction (Leach and Treacher, 1998; Oosthuyse 

et al., 2001; Rius et al., 2008; Liao et al., 2009; Minchenko et al., 2015; Singh et al., 2016)
48924511–48971838

CAPG CLR 11 Immune tolerance and neurological dysfunction (Leach and Treacher, 1998; Oosthuyse 
et al., 2001; Rius et al., 2008; Liao et al., 2009; Zhang et al., 2009; Minchenko et al., 2015; 
Singh et al., 2016)

49423731–49438680

TTBK2 CRL 10 Neurological dysfunction (Jackson, 2012; Matilla-Duenas, 2012) 38159317–38248606
POLR3B iHS 5 Neurological dysfunction (Schiffmann and van der Knaap, 2009; Daoud et al., 2013) 70062608–70178439
GNAS iHS and 

CLR
13 Neurological dysfunction (Tuntasuvan et al., 1997; Bastepe, 2008; Giordani et al., 2016) 58010287–58049012

CHAT Rsb 28 Listlessness (Johnson et al., 2016) 44143245–44187239
AP1M1 iHS 7 Listlessness (Molenaar et al., 1982) 7820650–7850254
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in the TTBK2 gene is associated with spinocerebellar ataxia 
which is a genetic syndrome causing progressive degeneration 
of the cerebellum and the spinal cord (Jackson, 2012; Matilla-
Duenas,  2012). Moreover, a mutation in the POLR3B gene 
is associated with hypomyelinating leukodystrophy which is 
characterized by a deficiency in myelin deposition of the white 
matter of the brain (Schiffmann and van der Knaap, 2009; Daoud 
et al., 2013). In addition, the POLR3B gene is also involved in 
positive regulation of the interferon-beta production and the 
innate immune response (GO:0032728, GO:0045089).

Strikingly, a mutation in the GNAS gene is associated with 
pseudohypoparathyroidism which is characterized by a low level 
of calcium and a high phosphate level in the blood (Bastepe, 
2008). Allam et al. (2011) reported a similar profile during 
trypanosome infection in cattle that could be associated with 
neurological dysfunction such as muscle spasm (Tuntasuvan et al., 
1997; Bastepe, 2008; Giordani et al., 2016). Furthermore, during 
trypanosome infection, listlessness and emaciation are some of 
the clinical signs of the infection (Nantulya, 1986; Steverding, 
2008; Noyes et al., 2011). These clinical signs might be associated 
with the destruction of the thyroid gland by trypanosome 
parasites in cattle (Fatihu et al., 2009). The candidate signature 
genes AP1M1 and CHAT are related with these clinical signs. 
Most importantly, the AP1M1 gene is a member of the adapter 
protein complex which is involved in thyroid abnormalities 
(Johnson et al., 2016). Due to the thyroid gland dysfunction 
(hypothyroidism), the nerves are unable to conduct electrical 
impulses properly. This leads to general weakness, lethargy, and 
listlessness (Jaggy et al., 1994). The mutation in the CHAT gene 
is associated with myasthenia gravis which is an autoimmune 
disease characterized by load dependent muscle weakness 
(Molenaar et al., 1982).

Our findings show strong selective sweeps (Figures 4A–C) 
in the genomic regions around the selected signature genes of 
Table 1 (Supplementary Table 11). This might indicate that 
the mutations in these genes have reached fixation or are near 

fixation. Therefore, the identified candidate signature genes in 
Table 1 might play a major role in the natural tolerance attributes 
of Sheko against trypanosomiasis. Moreover, the comparison of 
candidate signature genes identified by the iHS, CLR, and Rsb 
methods show more overlaps between iHS and CLR than between 
Rsb and iHS or CLR analyses (Figures 5A, B), in agreement with 
Rsb being a powerful method to detect selection signature when 
the selected allele has reached fixation (Tang et al., 2007; Oleksyk 
et al., 2010; Bahbahani et al., 2018).

Among the 15 identified candidate signature genes (Table 1), 
the MIGA1, RAETG, and PPP1R1AC genes are not significantly 
functionally enriched (α = 0.05). This might indicate that these 
candidate signature genes in Sheko could be specific to the 
environmental pressure in the region such as trypanosomiasis. 
Moreover, the identified signature regions of the three methods 
were compared with trypanotolerant QTL regions which were 
reported by Hanotte et al. (2003). Among the 55 trypanotolerant 
QTL, which were identified by crossing trypanotolerant 
N’Dama and susceptible Boran, 6 regions were overlapping with 
trypanotolerant QTL in N’Dama (Supplementary Table  12). 
Interestingly, among the identified candidate signature genes 
in Table 1, the AP1M1 and GNAS genes are found in these 
overlapping regions. The overlapping regions and genes of 
Sheko and N’Dama might indicate occurrence of selection 
at the same genes in these two breeds against the same 
environmental pressures.

Functional Annotation of Candidate 
Signature Genes
In order to characterize the biological functions of functionally 
enriched candidate genes, a treemap was produced using the 
geneXplain platform (Krull et al., 2006). The treemap shows 
the clusters of 30 functional terms. Most of these terms are 
associated with cellular transport, metabolic processes and 
biological regulation (Figure 6). Interestingly, among the 30 

FIGURe 5 | Venn diagrams of the overlapping (A) genomic regions and (B) candidate genes identified by iHS, CLR, and Rsb.
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enriched terms, two GO-terms are T-cell chemotaxis and cell–
cell adhesion which play a critical role in the immune system 
(Springer, 1990; Gerard and Rollins, 2001; Bach et al., 2007). 
T-cell chemotaxis (chemoattractant cytokines) is a process 
that requires the movement of T-cells in response to a certain 
signal or external stimulus. The movement or circulation of 
immune cells in the blood and lymph as non-adherent cells 
and in tissues as adherent cells is critical for patrolling the body 
against infectious organisms effectively (Springer, 1990). For 
instance, β defensin is chemotactic for chemokine receptors of 
macrophages, natural killer cells, immature dendritic cells, and 
memory T-cells. Therefore, the recruitment of these cells to the 
site of a microbial invasion provides a link between innate and 
adaptive immunity (Yang et al., 1999). Likewise, T-cell mediated 
migration of thymocyte toward chemokines was observed 
following trypanosome infection in human (Mendes-da Cruz 
et al., 2006). In the presence of infectious organisms (foreign 
antigens), the immune cells aggregate at the site of the infection 
and through their adhesion receptors they adhere to cells bearing 
a foreign antigen (Springer, 1990).

Identification of Overrepresented 
Pathways in the Candidate Signature 
Gene Sets
Pathway analysis has become a powerful tool in order to refine 
the molecular mechanisms of disease tolerance. The rationale 

of pathway analysis lies in the detection of overrepresentation 
of biologically defined pathways based upon the functionally 
enriched candidate selected genes. We performed pathway 
analysis using the TRANSPATH database on the geneXplain 
platform. The TRANSPATH pathway analysis identified 15 
genes out of 260 functionally enriched genes that are involved 
in 13 overrepresented TRANSPATH pathways (Table 2). 
Among these genes, the immunoproteasome PSMD7 gene is 
involved in most of the overrepresented pathways. This gene is 
involved in the processes of presenting antigens by the major 
histocompatibility complex (MHC) class I proteins to CD8+ 
T-lymphocytes (Morrot and Zavala, 2004; Goldszmid and Sher, 
2010; Jordan and Hunter, 2010). Sufficient induction of CD8+ 
during infection leads to pathogen elimination. It has been 
reported that immunoproteasome subunits are key determinants 
of the CD8+ T-cell level and quality involved in host resistance 
to trypanosomes infection (Ersching et al., 2016). This gene 
plays a critical role in the development of adaptive immunity or 
tolerance (Doolan and Hoffman, 1999).

However, adaptive immunity also plays a key role for the 
emergence of auto-immunity. Previous studies indicate that 
trypanosome infection could deplete thymocytes. As a result, 
immature T-lymphocytes are released from the thymic central 
tolerance and differentiate into mature T-helper cells in the lymph 
nodes (Flávia Nardy et al., 2015). This process would induce auto-
immunity against self-antigens. Moreover, during trypanosome 
infection, the red blood cell membrane might be damaged by 

FIGURe 6 | GO treemap for the 260 functionally enriched (P < 0.05) genes. The size of the boxes corresponds to the −log10 P-value of the GO-term. The boxes 
are grouped together based on the upper-hierarchy GO-term which is written in bold letters.
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parasite enzymes such as proteases or phospholipases. This 
could expose epitopes which are not recognized as self-antigens 
and would trigger immune-mediated hemolysis due to antibody 
response against these self-antigens (Taylor, 1998). This could 
be controlled by suppressing the development of auto-reactive 
immune cells through ubiquitination which is a degradative tag to 
be recognized by a proteasome complex such as PSMD7 (Lodish 
et al., 2004; Zinngrebe et al., 2014). Furthermore, some of the 
identified candidate signature genes are also associated with protein 
ubiquitination processes which might indicate that these genes are 
also involved in the functions described above (Supplementary 
Tables 2–4). To the best of our knowledge, our study is the first 
to show the potential of a molecular mechanism for controlling 
auto-reactive immune cells caused by trypanosomiasis in cattle. In 
agreement with our finding, Kierstein et al. (2006) reported that 
a trypanotolerant mouse strain showed overexpression of several 
genes encoding proteases.

In general, most of the overrepresented pathways (PDGFB –> 
STATs, stress associated pathways, IMP –> ADP, ARIP1 –> 
atrophin 1, p38 pathway, IL-3 signaling, oxygen independent 
HIF-1alpha degradiation and Cul3 –/Nrf2) pathways are 
activated by cellular stresses and antigens while others [E2F 
network, G2/M phase (cyclin B:Cdk1), S phase (Cdk2), Plk1 cell 
cycle regulation and Aurora-B cell cycle regulation] pathways are 
involved in cell cycle processes.

The first two pathways in Table 2 (PDGFB –> STATs and 
stress associated pathways) are related to the immune system 
and anemia. Especially, in stress associated pathways we find 
MBP, RAF1, MEF2A, and STAT3 genes that are involved in the 
immune and nervous systems. In the MBP gene, there are eight 
different mRNAs due to alternative splicing of exons (Zelenika 
et al., 1993). Three of the eight splice variants are expressed in 
the brain, macrophages and hemolymphopoietic tissues such as 
spleen, bone marrow, and thymus (Zelenika et al., 1993). This 
gene is also involved in the interleukin (IL)-3 signaling pathway. 

IL-3 is a T-cell-derived hematopoiesis stimulating cytokine 
involved in the production, differentiation and function of 
granulocytes and macrophages (Ymer et al., 1985; Dorssers et al., 
1987). This suggested that the expression of alternatively spliced 
MBP mRNAs is related with the immune system in response 
to trypansome infection or the presence of a pathogen in the 
central nervous system. The serine/threonine kinase proto-
oncogene RAF1 is also related with the stress associated pathway 
and is involved in inducing adaptive immunity by regulating the 
expression of cytokines that are important for the differentiation 
of T-helper cells (Gringhuis et al., 2009).

Moreover, STATs family members are also involved in the 
activation of various cytokines and in the promotion of cell 
survival by inducing the expression of antiapoptotic BCL2L1/
BCL-X(L) genes (Benito et al., 1996; Packham et al., 1998; Yuan 
et al., 2004). For instance, STAT3 activation by trypomastigotes 
was associated with the survival of cardiomyocytes during 
infection (Ponce et al., 2012; Stahl et al., 2013). The other gene 
involved in defense response is MEF2A which is associated with 
promoting antimicrobial peptide expression during infection 
(Clark et al., 2013). This gene is also involved in neuronal cell 
survival and loss of function (Gong et al., 2003; She et al., 2011). As 
reported by She et al. (2012), neurotoxins induce ubiquitination 
of MEF2A in response to toxic stress which leads to the loss of 
neuronal viability. Furthermore, He et al. (2015) reported that 
increased platelet-derived growth factor (PDGF)-B related 
signaling is associated with induced chemokine secretion which 
is a mediator of innate and adaptive immune responses (Kim 
and Broxmeyer, 1999). In addition, knock-out mice for PDGF-B 
develop anemia (Kaminski et al., 2001) which indicates that the 
PDGFB –> STATs pathway is also involved in this disease.

The E2F network as well as the Cdk1 and Cdk2 related 
pathways are also associated with anemia which is the most 
prominent and consistent clinical sign of trypanosome infection 
(Kaminski et al., 2001; Dimova and Dyson, 2005; Noyes et al., 
2011, Hu and Sun, 2016). The tumor suppressor retinoblastoma 
(Rb) is the inhibitor of E2Fs. When Rb binds to E2Fs, it prevents 
E2F mediated activation of transcriptional genes. In quiescent 
cells, E2F is required for the cell differentiation through a series 
of signal transduction cascades, including Cdks activation and 
phosphorylation. The Aurora-B and Plk1 pathways are involved 
in the activation and phosphorylation of Cdks, respectively. 
As a result of these and several other signaling cascades, E2Fs 
is activated while inactivating Rb. The activated E2F mediates 
quiescent cells for S phase entry and cell cycle progression 
(Dyson, 1998; Nevins, 1998; Trimarchi and Lees, 2002; Dimova 
and Dyson, 2005; Song et al., 2007). Hu et al. (2012) reported that 
mice deficient for both E2F8 (i.e., E2F gene family) and Rb show 
severe anemia.

Furthermore, the hypoxia inducible factor (HIF) and the 
nuclear factor-erythroid 2-related factor 2 (NRF2) pathways 
are related with anemia (Lee et al., 2004; Silva and Faustino, 
2015). During hypoxia, HIF facilitates a high production of red 
blood cell (erythropoiesis) in order to overcome shortage of 
oxygen (Silva and Faustino, 2015). The other pathway, NRF2, 
regulates the expression of antioxidant responsive element-
driven genes and plays a critical role in the antioxidant 

TABle 2 | Overrepresented pathways for the identified candidate 
signature genes.

Pathway Raw P-value Genes

PDGF B —> STATs 0.003 STAT3, STAT5A
Stress-associated pathways 0.007 MBP, MEF2A, PSMD7, 

RAF1, RBX1, STAT3
E2F network 0.008 AKT3, CDC25C, PPP2R5A, 

PSMD7, RAF1, RBX1
G2/M phase (cyclin B:Cdk1) 0.015 AKT3, CDC25C, PSMD7, 

RBX1
IMP —> ADP 0.025 AK5, AMPD3
ARIP1 —> atrophin1 0.034 AKT3, APBA1
p38 pathway 0.039 MBP, MEF2A, STAT3
Plk1 cell cycle regulation 0.039 CDC25C, PSMD7, RBX1
IL-3 signaling 0.043 MBP, RAF1, STAT5A
Aurora-B cell cycle regulation 0.045 CENPE, PSMD7, RBX1
Oxygen independent HIF-
1alpha degradation

0.045 PSMD7, RBX1, UBE2R2

Cul3 —/Nrf2 0.047 PSMD7, RBX1
S phase (Cdk2) 0.048 CDC25C, RAF1, RBX1

The names of the pathways are provided by the TRANSPATH database on the 
geneXplain platform.
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responsive element-driven cellular protection (Cho et al., 
2002). In addition, knockout mice for NRF2 show regenerative 
immune-mediated hemolytic anemia which indicates that 
this pathway is involved in erythrocyte maintenance during 
oxidative stress (Lee et al., 2004).

Intriguingly, serine/threonine kinase family isoforms of 
the AKT gene are involved in the E2F, Cdk1, IMP-ADP, and 
ARIP1-atrophin1 pathways. This gene is activated in the host 
cells during trypanosome infection (Woolsey et al., 2003;  
Chuenkova and PereiraPerrin, 2009). The host kinase AKT 
promotes infected host cell survival and restricts the growth of 
intracellular parasites (Caradonna et al., 2013). AKT3 is also a 
key mediator of down stream signaling pathways of activated 
receptor tyrosine kinases which play a role in STAT3 activation 
(Yuan et al., 2004; Chuenkova and PereiraPerrin, 2009. The 
different isoforms of the kinase AKT regulate the development 
of immunity and autoimmuniy. Zhang et al. (2013) reported 
that AKT is predominantly expressed in the innate immune 
cells. The isoforms of AKT are primarily involved in regulating 
inflammatory responses although it has been reported that AKT 
also modulates adaptive immune responses (Liu et al., 2002).

Moreover, the AKT related pathway Atrophin-1 plays a 
role in erythroid and lymphoid cell differentiation and in 
E3 ubiquitin ligase atrophin-1 interacting protein 4 (ITCH) 
signaling cascades. Atrophin-1 is involved in the regulation of 
immune responses through Notch-mediated signaling pathways 
(Qiu et  al., 2000; You et al., 2009; Aki et al., 2015). It is also 
associated with spinocerebellar degeneration caused by extended 
CAG repeats encoding several glutamine units (polyglutamine 
tract) in the atrophin-1 protein (Kanazawa, 1999). The disease is 
characterized by neurological symptoms such as ataxia which is 
one of the clinical signs of trypanosome infection (Tuntasuvan 
et al., 1997; Suzuki and Yazawa, 2011; Giordani et al., 2016).

Further important pathways are p38, IMP –> ADP, and the 
aurora B-cell cycle regulation pathways that are involved in the host 
defense mechanism. The p38 pathway is a MAPK-related pathway 
which is activated by various physical and chemical stresses, such as 
hypoxia and various cytokines. The activation of the p38 pathway 
is critical for normal immunity and inflammatory responses 
(Roux and Blenis, 2004). Moreover, the AK5 and AMPD3 genes 
are involved in the IMP –> ADP pathway and play a central role 
in the regulation of inflammation and red blood cell homeostasis 
(Tavazzi et al., 2000; Mabley and Szabo, 2008). AK5 is associated 
with double positive thymocyte and auto-immunity regulation in 
the brain and pancreatic tissues (Stanojevic et al., 2008) while the 
AMPD3 gene is involved in the regulation of the energy state of red 
blood cells during oxidative stress (hypoxia) (Tavazzi et al., 2000). 
In addition to that, the aurora B-cell cycle regulation pathway is 
involved in the progression of T-lymphocytes which play a critical 
role for the development of innate and adaptive immunity (Song 
et  al., 2007; Paul et al., 2011). To this end, the HIF and NRF2 
related pathways are directly associated with the induction of host 
innate and adaptive immunity under oxidative stress (Singh et 
al., 1997; Cramer et al., 2003; Jantsch et al., 2011; McNamee et al., 
2013; Battino et al., 2018).

In summary, our findings of the search for signature 
genes appear to be well substantiated by the results of the 

overrepresented pathways analysis. This implies that most of 
the overrepresented pathways are mainly associated with host 
defense mechanisms against pathogens and anemia. Particularly, 
stress-associated, HIF and NRF2 related pathways are involved in 
oxidative stress responses. Interestingly, trypanosome infection 
induces the production of superoxide, hydrogen peroxide, 
peroxyl radicals, and hydroxyl radicals which are known to cause 
oxidative stress followed by tissue damage and hemolysis (Saleh 
et al., 2009). Under oxidative stress (hypoxia), erythrocytes are 
important mobile oxidative sinks (antioxidant) for themselves, 
other cells, and tissues. However, these properties of the red blood 
cells during oxidative stress contribute to its susceptibility toward 
hemolysis which leads to anemia (Chan et al., 2001; Sangokoya 
et al., 2010). In order to overcome the shortage of oxygen, stress-
associated, HIF, and NRF2 related pathways play a critical role 
in the production of red blood cells in which hemoglobin acts as 
oxygen repository for red blood cells and other cells (Chan et al., 
2001; Sangokoya et al., 2010; Silva and Faustino, 2015).

None of the most significant candidate signature genes 
(Table 1) was contained in the overrepresented pathway gene 
list (Table 2). This indicates that the candidate signature genes 
might be involved in the evolutionary gear particularly toward 
trypanotolerance in Sheko. For instance, candidate signature 
genes involved in the regulation of hypoxia (ERN1 and CAPG) 
are not identified in the overrepresented hypoxia related 
pathways. This might indicate that these candidate signature 
genes might be specific to oxidative stress tolerance attributes in 
Sheko. Hence, trypanotolerance of Sheko could be controlled by 
some major selected genes whose major effect close to fixation 
in the breed (become breed characteristic) and cohorts of genes 
with minor effects.

Identification of Master Regulators Based 
on Candidate Signature Genes
To gain more insight into the regulatory mechanisms of the 
identified candidate signature genes, we performed a master 
regulatory network analysis using the TRANSPATH database 
in the geneXplain platform. Applying the maximum radius of 
10 steps upstream in the regulatory hierarchy, we identified ten 
master regulators (Figure 7). Remarkably, the master regulator 
Caspase, which is a family of protease enzymes, is associated 
mainly with regulating the reduction of the load of intracellular 
parasites, induction of nitric oxide production, increasing the 
level of CD4 and CD8+ T-cells, secretion of IFNγ, and control of 
trypanosome infection by macrophages (Gonçalves et al., 2013). 
This master regulator is involved in programmed cell death such 
as pyroptosis and necroptosis. These types of programmed cell 
deaths play a role for protecting an organism against oxidative 
stress (stress signals) and pathogenic attack (Shalini et al., 2015). 
In addition, Caspase also plays a role in the normal erythroid 
differentiation in the terminal stages (Zermati et al., 2001).

Most of the regulatory molecules (Syk, Lck, Lyn, Jak1, Jak2, 
and Jak3) are protein tyrosine kinases while others (VHR and 
PTP1B) are protein tyrosine phosphatases and activated kinase 
(PAK1). These master regulators are mainly associated with 
innate and adaptive immune responses and are critical for the 

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 109585

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Trypanotolerance of the Sheko BreedMekonnen et al.

12

functioning of the nervous and immune systems. For instance, the 
activation of the regulatory molecule Syk requires the regulatory 
molecule Lck to phosphorylate immunoreceptor tyrosine-based 
activation motifs. Then, the phosphorylated immunoreceptor 
tyrosine-based activation motif modulates T-cell proliferation 
and differentiation by recruiting Syk protein tyrosine kinases 
(Acuto et al., 2008; Au-Yeung et al., 2009). In addition, coupling 
of the other master molecules JAK1 and JAK3 occurs on the 
cell surface receptor of IFNγ, followed by phosphorylation of 
the IFNγ receptor 1. This process leads to the activation of the 
STAT1 protein. The STAT1 protein binds to the target element 
of the IFNγ inducible gene in the nucleus and facilitates the 
transcription of the target regions during immunity responses 
(Rosenzweig and Holland, 2005; Casanova and Abel, 2007). 
Another reported regulator molecule VHR is also involved in 
the phosphorylation of STAT proteins and in the T-lymphocyte 
physiology (Alonso et al., 2001; Hoyt et al., 2007). Moreover, the 
master molecule JAK2 plays a critical role in the maintenance of 
hematopoiesis. It has been shown that selective deletion of JAK2 
results in lethal anemia in adult mice (Grisouard et al., 2014).

Furthermore, a related master molecule, the protein tyrosine 
phosphatase 1B (PTP1B), is reported to modulate the activation 
of macrophages and plays a key role in mediating the central 
dendritic cell function of bridging innate and adaptive immunity 
(Heinonen et al., 2006; Martin-Granados et al., 2015). The kinase 
family regulator molecule Lyn is also involved in the regulation of 
innate and adaptive immune responses (Ingley, 2012). Lyn is also 
known for mediating the production of type I interferone (IFN-
I) which is involved in host defense mechanisms against invading 

pathogens (Kawai and Akira, 2007; Blasius and Beutler, 2010; 
McNab et al., 2015). The related kinase regulatory molecule PAK1 
is highly expressed in most leukocytes that are involved in immune 
responses. PAK1 also plays an important role in the activation of 
MAP-kinase pathways which are involved in all aspects of immune 
responses, from innate immunity to the activation of adaptive 
immune responses (Yi et al., 1991; Adachi et al., 1992; Zhang et al., 
1995; Dong et al., 2002; Wang et al., 2002; Traves et al., 2014). 
In general, these proteins and master regulatory molecules are a 
large family of signaling enzymes that are expressed in various 
immune cells and regulate immune cell differentiation, cytokine 
production, and immune responses. Therefore, to maintain the 
tolerance against a pathogen, the regulation of these signaling 
pathways is critical (Manning et al., 2002; Salmond et al., 2009).

Strikingly, stress-induced protein kinases could also induce or 
aggravate auto-immunity by phosphorylating self-antigens to be 
recognized by auto-antibodies (Utz et al., 1997; Patterson et al., 
2014). However, Caspase-mediated apoptosis plays an important 
role in arresting the development of auto-immunity by eliminating 
auto-reactive and pro-inflammatory cells (Eguchi, 2001). 
Moreover, the activation of Caspase and JAK2 is essential for the 
processes of erythroid differentiation and for the maintenance 
of hematopoiesis (Zermati et al., 2001). On the other hand, the 
inhibition of Caspase dependent mechanisms contributes to cell 
survival (Lamkanfi et al., 2007). We believe that the candidate 
signature genes involved in anemia, neurological dysfunction, 
listlessness, and immune tolerance might be governed by the 
top master regulator Caspase in harmony with other regulatory 
molecules. In general, our study provides a first report on the top 

FIGURe 7 | The master regulatory networks for Sheko (Caspase, Lyn, Jak1, Jak2, Jak3, VHR, PTP1B, PAK1, Lck, and Syk). Red, blue, and green indicate master 
regulators, regulated proteins, and connecting molecules, respectively.
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master regulators for trypanotolerance of Sheko and the overall 
analysis framework might be helpful to understand the underlying 
mechanisms of different cattle diseases in future works.

MATeRIAlS AnD MeThODS

SnP Genotyping and Quality Control
sDNA was extracted from 67 blood and tissue samples 
according to the QIAGEN DNA extraction protocol 
(Supplementary Table 13). 19 samples from Gindeberet, 12 
from Sheko, 13 from Nuer, 12 from Benshangul and 11 from 
Fogera breeds were collected. All samples were taken randomly 
from unrelated animals based on the information given by 
livestock keepers at the time of sampling. All samples were 
genotyped for 777,962 SNPs using the Illumina BovineHD 
Genotyping Bead chip. In addition, the genotyping data of 
two west African breeds (24 N’Dama and 8 Muturu), and five 
east African breeds (92 EASZ, 25 Ankole, 16 Karamojong, 23 
Nganda, and 12 Serere) were obtained from the International 
Livestock Reaserch Institute (ILRI, Addis Ababa, Ethiopia; 
Bahbahani et al. (2017)). For quality control, Plink1.9 (Purcell 
et al., 2007) was used on 735,293 autosomal SNPs. SNPs with 
minor allele frequency of less than 1% were excluded (19,581 
SNPs). Minimum genotyping call rate (<95%) and maximum 
identity-by-state (IBS) (≥95%) were also used as filtering 
criteria. Two Benshangul samples failed the genotyping call 
rate criteria and were excluded from the analysis but no pair 
of samples was excluded due to the IBS filtering criterion. 
The total sample size for the down stream analysis consisted 
of 265 samples and 715,712 SNPs. BEAGLE 4 (Browning and 
Browning, 2007) was used for inferring haplotype phasing and 
imputing the missing alleles. The imputation was performed 
by fitting 83 sliding windows across the autosomes in which 
on average 8600 markers were included. With in each window 
12 iterations were executed. Since our samples consist of 
indigenous African breeds, the total of 264 (n − 1) animals 
included in this study are used as a background to impute 
the missing alleles in the context of indigenous African cattle 
genome (i.e., without using the reference genome).

Genetic Background of the Cattle Population
In the eastern part of Africa, the mixture of African taurine 
and indicine cattle populations is common which reflects 
the wave of these two different ancestral aurochs in the 
region (Hanotte et al., 2000; Salim et al., 2014; Bahbahani 
et al., 2017). Regarding these two ancestral populations, the 
N’Dama and Muturu breeds are considered as African taurine 
whereas the Fogera, EASZ, Ankole, Karamojong, and Serere 
breeds are referred to as African zebu (Bahbahani et al., 
2017). The Nuer and Ankole breeds are classified as African 
sanga (DAGRIS, 2007) while the Nganda breed is assigned to 
African zenga (Bahbahani et al., 2017). The sanga and zenga 
cattle are crossbreds between the indigenous humpless cattle 
and zebu. The latter have higher zebu genetic introgression 
than the former (Rege, 1999). Interestingly, the Sheko breed is 

considered as the last oddments of the primordial Bos taurus 
cattle in eastern Africa. However, some animals in the present 
population of Sheko display small humps which indicates the 
genetic introgression of zebu cattle (DAGRIS, 2007). Yet, there 
is no research publication or documentation available on the 
genetic background of the Benshangul and Gindeberet breeds 
which are included in this study. The breed type and origin 
of the cattle samples included in this study are presented in 
Table 3.

Breed Differentiation, Genetic 
Relationship, and Structure
In order to understand the genomic structure of Sheko, we 
considered in total 12 indigenous African breeds genotyped 
with the Illumina BovineHD Genotyping BeadChip. To assess 
the within and between population genetic structure and 
admixture, PCA and admixture analyses were conducted. 
PCA was performed using Plink 1.9 to estimate the 
eigenvectors of the variance-standardized relationship matrix 
of all samples. In order to refine the genetic structure of the 
indigenous Ethiopian cattle breeds, separate PCA calculation 
were made for samples that were collected in Ethiopia (Sheko, 
Benshangul, Gindeberet, Fogera, and Nuer). Admixture 
analysis was performed using the ADMIXTURE 1.3 software 
with CV and 200 bootstraps for the hypothetical number of 
ancestries K (2 ⩽ K ⩽ 7). Both PCA and admixture analyses 
were used to determine the level of admixture and genetic 
differentiation of the populations. Furthermore, admixture 
analysis was used to determine the level of indicine and 
taurine ancestries of each breed at the genome-wide level. In 
particular, PCA and admixture analyses were performed to 
show the taurine background of Sheko.

Analysis of Signatures of Positive 
Selection
In general, methods for the detection of selection signatures 
are based on the spatial distribution of allele frequencies and 
the property of segregating haplotypes in the population 
(Hayes et  al., 2010). As suggested by Ma et al. (2015) and 

TABle 3 | Cattle breeds included in the study.

Breed name Breed category* Breed origin

N’Dama African taurine Guinea
Muturu African taurine Nigeria
Ankole Sanga Uganda
Karamojong African zebu Uganda
Serere African zebu Uganda
Nganda Zenga Uganda
EASZ African zebu Kenya
Sheko African taurine and zebu Ethiopia
Nuer Sanga Ethiopia
Gindeberet Not available Ethiopia
Benshangul Not available Ethiopia
Fogera African zebu Ethiopia

*Breed category according to DAGRIS (2007).
EASZ, East African Shorthorn Zebu.
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Vatsiou et al. (2016), combining these methods would help to 
reach a higher power than with single analysis. In this paper, 
we used EHH and spatial distribution of allele frequency-
based methods to identify signatures of positive selection in 
the genome of the Sheko breed. This denotes that integrated 
haplotype score (iHS) and CLR analyses were performed 
on Sheko (12) while the ratio of site-specific EHH (EHHS) 
between populations (Rsb) analysis were performed between 
Sheko (12) and combined trypanosusceptible reference 
cattle populations (179) [EASZ (92) (Muhanguzi et al., 2014; 
Van Wyk et al., 2014), Ankole (25) (Magona et al., 2004), 
Karamojong (16) (Muhanguzi et al., 2017), Nganda (23) 
(FAO, 2004), Serere (12) (Ocaido et al., 2005) and Fogera 
(11) (Sinshaw et al., 2006)]. The results of these tests were 
combined into one gene set.

Extended Haplotype Homozygosity Based Methods
Rsb and iHS are LD based approaches which are implemented 
in R package rehh. Both Rsb and iHS are used to identify 
genome-wide signatures of selection (Gautier and Vitalis, 
2012). These tests start with a core haplotype (i.e., a set of 
closely linked SNPs in which recombination does not take 
place) identification (Sabeti et al., 2002; Skipper, 2002). Then, 
the decay of LD as a function of the distance from the core 
haplotypes is analyzed (Sabeti et al., 2002). The Rsb analysis 
was performed between Sheko and the combined group of 
trypanosusceptible breeds. For each group, integrated site-
specific EHH of each SNP (iES) was calculated. Standardized 
log-ratio between iES of the two groups was used to calculate 
Rsb values. The iHS values were calculated for Sheko as the 
natural log ratio of integrated EHH (iHH) between reference 
and alternative alleles for each SNP (Gautier and Vitalis, 
2012; Bahbahani et al., 2018). The bovine reference genome 
(UMD3.1) is used as the reference allele while the study 
population (Sheko) is considered as the alternative allele. The 
iHS values were standardized based on the calculated mean 
and standard deviation values. This allows direct comparisons 
among different SNPs regardless of their allele frequencies 
(Gautier and Vitalis, 2012). For the standardization of Rsb 
values, median and standard deviation values were used. 
One-tailed Z-tests for Rsb and two-tailed Z-tests for iHS 
were applied on the standardized and normally distributed 
Rsb and iHS values (Supplementary Figures 2A, B) to 
identify statistically significant SNPs that are under positive 
selection. For one-tailed Z-tests, P = 1 − Φ(Rsb), whereas P = 
1 − 2|Φ(iHS) − 0.5| was used for the two sided tests with Φ 
being the Gaussian cumulative density function. For both 
Rsb and iHS P-values, the significance threshold of α = 10−4 
was applied following the study of Bahbahani et al. (2018) to 
identify candidate regions.

Spatial Distribution of Allele Frequency Based 
Method
The CLR test is an LD based selective sweep searching 
algorithms using the information from the spatial distribution 
of allele frequencies (Charlesworth, 2012). CLR is used to 
identify skewed patterns of the allele frequency spectrum 

toward excess of rare alleles and high frequency alternative 
alleles due to the hitchhiking effect (Kim and Stephan, 2002; 
Nielsen et al., 2005; Qanbari et al., 2014). The P-values were 
calculated by the rank of the genome wide scan of CLR values. 
As suggested by Wilches et al.(2014), the 95th) quantile of the 
distribution of the top CLR P-values was used to identify a 
significance threshold of α=10-5 (Supplementary Figure 3). 
For CLR analysis, the Sweepfinder2 (DeGiorgio et al., 2016) 
software was used for each chromosome with a window 
size of 50kb including on average 226 SNPs per window. 
Sweepfinder2 estimates CLRs in the context of background 
selection to identify sweeps (DeGiorgio et al., 2016;  Huber 
et al., 2016).

Functional Annotation of Selected 
Candidate Regions
Genes found within 25 kb around the most significant SNP 
were considered as candidate genes (Bahbahani et al., 2018). 
Protein-coding and RNA genes found within the candidate 
regions were retrieved using the BioMart tool (Kinsella 
et al., 2011). The R package Enrichr (Kuleshov et al., 2016) 
was used to determine the candidate signature genes that 
are functionally enriched in GO terms with respect to the 
whole bovine reference genome background (α = 0.05). These 
functionally enriched candidate signature genes were used to 
produce a treemap which shows clusters of functional terms 
based on the biological functions of the candidate signature 
genes.

To gain more insight into the functional properties 
and molecular mechanisms involved in trypanotolerance, 
overrepresented pathways were analyzed using the 
TRANSPATH database (Krull et al., 2006) of the geneXplain 
platform (http://genexplain.com/). Furthermore, to 
understand the regulatory mechanisms of the candidate 
signature genes and the signaling cascades in the 
regulatory hierarchy involved in trypanotolerance, the 
identification of master regulators was conducted using the 
TRANSPATH database.

COnClUSIOn
For generations, African animal trypansomiasis has 
been the major selection pressure in the region. We have 
identified the candidate causative genes, pathways, and 
master regulators associated with the adaptation of the 
Sheko breed to its natural environmental pressure. Most of 
the identified candidate signature genes, overrepresented 
pathways, and master regulator molecules were involved in 
immune tolerance, neurological dysfunction, and anemia. 
This entails that the genome of Sheko was targeted by 
these environmental pressures which are associated with 
trypanosomiasis. Therefore, this study helps as an input for 
designing and implementing genetic intervention strategies 
to improve the performance of susceptible as well as animals 
which are relatively tolerant toward higher trypanotolerance. 
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The improvement of the cattle health contributes to increase 
the production of milk and meat. The improvement of the 
cattle health enhances the draft power of the animal which 
is associated with increasing crop production. This implies 
that, increasing animal and crop production significantly 
contributes to eradicate poverty in the area. In general, this 
study contributes to the existing literature in two ways: 1) 
The genetic controls of Sheko against trypanosomiasis have 
not been well studied and this study examines the genomic 
signatures in response to trypanosomiasis in detail; 2) this 
study presents pathways and master regulators which could 
help to understand the upstream biological processes involved 
in trypanotolerance. Particularly, this study for the first time 
identifies the master regulators involved in the regulatory 
mechanisms of trypanotolerance in relation to signatures 
of selection not only for Sheko breed but also in the context 
of cattle genomics, which can be used for the development 
of effective new drugs. However, additional studies such as 
differential expressions of targeted genes and regulatory 
molecules may be required to further confirm the validity of 
the results reported in this paper.
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Chicken have a considerable impact in South American rural household economy 
as a source of animal protein (eggs and meat) and a major role in cultural traditions 
(e.g., cockfighting, religious ceremonies, folklore). A large number of phenotypes and 
its heterogeneity are due to the multitude of environments (from arid to tropical rain 
forest and high altitude) and agricultural systems (highly industrialized to subsistence 
agriculture). This heterogeneity also represents the successive introduction of domestic 
chicken into this continent, which some consider predating Columbus’ arrival to South 
America. In this study, we have used next-generation restriction site-associated DNA 
sequencing to scan for genome-wide variation across 145 South American chickens 
representing local populations from six countries of South America (Colombia, Brazil, 
Ecuador, Peru, Bolivia, and Chile). After quality control, the genotypes of 122,801 
single nucleotide polymorphisms (SNPs) were used to assess the genomic diversity 
and interpopulation genetic relationship between those populations and their potential 
sources. The estimated population genetic diversity displayed that the gamefowl has the 
least diverse population (θπ = 0.86; θS = 0.70). This population is also the most divergent 
(FST = 0.11) among the South American populations. The allele-sharing analysis and the 
admixture analysis revealed that the current diversity displayed by these populations 
resulted from multiple admixture events with a strong influence of the modern commercial 
egg-layer chicken (ranging between 44% and 79%). It also revealed an unknown genetic 
component that is mostly present in the Easter Island population that is also present in 
local chicken populations from the South American Pacific fringe.
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inTRODUCTiOn
The domestic chicken, Gallus gallus domesticus, is a major source 
of animal protein (eggs and meat) and owes its popularity to low-
cost production and the inexistence of any cultural or religious 
prohibition to its consumption. Chicken production is even more 
important in rural areas with economies based on subsistence 
agriculture. Additionally, besides being a source of food, in some 
regions of the globe, the chicken has been also used for cultural, 
religious, and entertainment proposes (Lawler, 2014).

The initiation of molecular genetic studies in the early 1990s 
has answered many questions regarding the origin, dispersal, 
and genetic diversity of many modern domestic chickens. It 
is now widely accepted that the red junglefowl (Gallus gallus) 
from jungles in South and Southeast Asia is considered the most 
probable ancestor of the domestic chicken (Fumihito et al., 1994; 
Fumihito et al., 1996). Historical and archaeological sources point 
to early domestication of the chicken, around 5,400 BC (West and 
Zhou, 1988; Underhill, 1997), although recent work on ancient 
DNA (aDNA) suggests northern China as the earliest chicken 
domestication site, around 8,000 BC (Xiang et al., 2014). Also, 
several recent genetic studies based on the mitochondrial DNA 
(mtDNA) variation have suggested the additional contributions 
of the red junglefowl from the Indian Subcontinent, South and 
East of China, Thailand, Myanmar, and Indonesia (e.g., see for 
more detail Liu et al., 2006; Miao et al., 2013).

The history of domestic animals in South America is similar 
to the rest of the "new world," in which the majority of the 
livestock species have been introduced by European colonizers 
from the 15th century onwards. Although the indigenous 
guinea pig and the South American camelid species have been 
always considered a South American domestication, some 
authors, mostly based on archaeological evidence (Carter, 1971; 
Fitzpatrick and Callaghan, 2009; Ramírez-Aliaga, 2010), have 
been arguing for a pre-Colombian introduction of the chicken in 
SA. Recently, the sequencing of the region of the mitochondrial 
genome from a Chilean bone dated from Ca. 1,304 to 1,424 
AD suggested a pre-Columbian origin of the South American 
chicken (Storey et al., 2007). However, this work was contested 
by other authors (Gongora et al., 2008) as the mtDNA haplotype 
found at this site, and on which the authors argued as evidence 
of a Pacific origin of chicken in SA, belongs to a ubiquitous 
haplogroup (E) that can be found in chicken from all over the 
world. More recently, a study on the contemporary mtDNA 
diversity of several South American populations have found 
that although the Iberian Peninsula (European) chicken might 
have been the main source of the modern South American 
chicken, it also identified the presence of a genetic component 
in the Easter Island chickens that cannot be attributed to the 
introduction of chickens from Europe (through the Iberian 
Peninsula), and which is phylogenetically closer to the Southeast 
Asia populations (Luzuriaga-Neira et al., 2017).

Throughout time, successive waves of European colonizers 
have brought to South America their chicken stocks from 
their places of origin. With the intensification of chicken 
production in the twentieth century, new and highly selected 
and specialized breeds (e.g., egg-layers, broilers) have been 

created (Crawford, 1990), which have been spread worldwide at 
a much faster pace. However, the introgression of these highly 
selected and performant lineages of chicken into the local breeds 
has been impeded by the lower capacity of adaptation to most 
of the environmental conditions (e.g., temperature, parasites, 
predators). Most of the gene flow from the highly selected 
lineages has been made through F1s, in which a high performant 
lineage is crossed with a locally adapted breed.

In the last decade, access to next-generation sequencing 
(NGS) has permitted the development of more cost-effective and 
efficient techniques to measure variation at a genome-wide scale. 
NGS has permitted major advances in demographic parameters 
estimation as well as on the identification of genes underlying 
adaptation and production traits, and this in combination 
with phenotype data can accelerate breeding in plants and 
animals (e.g., review by Daetwyler et al., 2013). Thus, genome-
wide variation studies can not only identify genomic regions 
underpinning the adaptation of certain populations to extreme 
environments (e.g., Zhang et al., 2016) as well as help conserving 
these regions while improving the productive performances of 
the local breeds (Thornton, 2010; Kristensen et al., 2015).

In this study, we used RADseq to scan and genotype hundreds 
of thousands of single-nucleotide polymorphism (SNPs) 
throughout the genome to characterize six SA local chicken 
populations from Bolivia, Brazil, Colombia, Chile (continental 
and Easter Island), Ecuador, and Peru. As cock-fighting has 
an important socio-cultural role in South America in the last 
centuries (Finsterbusch, 1990; Lawler, 2014), this region possesses 
a large number of gamefowls that have been bred separately 
from the others for many generations. Like the rest of the local 
populations, information on the origin and genetic structure of 
this population is very limited or unknown and for this reason 
we have included samples representing this population and 
three other populations representing old (Iberian Peninsula 
population) and two contemporary sources [a cosmopolitan 
meat production breed (broiler) and cosmopolitan egg-layers 
(Isa Brown)] that might have contributed for the current genetic 
architecture of the current South American local populations.

MATeRiALS AnD MeThODS

Tissue Sampling and DnA extraction
Approximately 2 mm2 of the comb of 145 local domestic chickens 
were collected from six SA local populations representing: Bolivia 
(N = 6), Brazil (N = 4), Chile ((N = 35; 21 Mainland + 14 Easter 
Island), Colombia (N = 17), Ecuador (N = 16), Peru (N = 17), 
and gamefowl (N = 14). Individuals representing local Iberian 
Peninsula chicken (N = 17) as well as individuals representing 
commercial egg layers (N = 5; Isa Brown endproducts) and 
broiler (N = 15) were also sampled. Samples were stored in 95% 
ethanol at -20°C.

Genomic DNA was extracted using a JetQuick™ Tissue 
DNA Spin Kit (Genomed, GmbH) and quantified using a Qubit 
Fluorimeter (Thermo Fisher Scientific). RADseq sequencing 
libraries were prepared using the eight base-pair recognition site 
restriction enzyme SbfI (New England Biolabs, cat.# R3642L) 
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using a new RAD protocol (Ali et al., 2016). In brief, DNA was 
normalized to 5 ng/µl and 10 µl of each sample was arrayed into a 
well in a 96-well plate. The DNA was cut using the eight base-pair 
recognition site restriction enzyme SbfI (New England Biolabs, 
cat.# R3642L). After cleavage, unique barcodes were ligated 
on and the samples were pooled, sheared in a Bioruptor NGS 
(Diagenode, Belgium), and used as input for NEBNext Ultra 
DNA Library Prep Kit for Illumina (New England Biolabs, USA). 
The libraries were sequenced on an Ilumina Hiseq 2500 using 
paired end 100 bp reads.

Data Analysis
We demultiplexed the libraries filtering solely the reads having 
a full barcode match and a partial restriction site match. 
Sequences were aligned to the Galgal4 Chicken Genome 
assembly (International Chicken Genome Sequencing 
Consortium, 2004), using the BWA algorithm (Li and Durbin, 
2009), with the default parameters. Ambiguously mapped and/
or clonal sequences were removed using the filters for proper 
pairs and PCR duplicates included in the SAMtools package 
(Li et al., 2009). The consensus sequences were constructed 
and the Binary sequence/Alignment Map format files (BAM) 
indexed using the same software package. To avoid bias caused 
by variable sequencing depth, we created subsampled BAM files 
using the random sampling option from SAMtools. We chose 
180,000 alignments from each BAM file for the subsampled set. 
Genotype calls were performed using ANGSD (Korneliussen 
et  al., 2014) with a minimum map quality score (minMapQ) 
and a minimum base quality score (minQ) of 20. For the variant 
calls, we used the SAMtools genotype likelihood model (Li, 
2011) and selected sites present in at least 50% of the samples 
(minInd). To verify the performance of our SNP calling method, 
we have searched the public databases (the National Center for 
Biotechnology Information NCBI, dbSNP database, available at 
https://ftp.ncbi.nih.gov/snp/organisms/archive/chicken_9031/) 
for matches between our variants and those already identified in 
genome-wide studies. SNP annotation was performed using the 
SnpEff 3.0 program (Cingolani et al., 2012), using the galGal4 
genome version as the reference.

Genetic Diversity
The two most common indexes of molecular genetic variation 
(θ)—mean pairwise differences between sequences (π; Tajima, 
1989) and Watterson segregating sites (S; Watterson, 1975)—
were calculated using thetaStat (ANGSD). Pairwise weighted FST 
windows were used to measure genetic differentiation between 
populations (Weir and Cockerham, 1984) using the VCFtools 
program (Danecek et al., 2011). Additionally, for estimating the 
genetic relationships between the potential population sources—
i.e., samples representing Iberian Peninsula, broiler, egg-
layer, South American gamefowl populations—and the South 
American chicken populations, we have also performed variance 
analyses (one-way ANOVA model) by comparing each pair of 
populations as a factor and the weighted FST value (per 50 kb 
sliding window) for the same pair of populations as the variable. 
Averages, standard error, and plots were generated using the R 
software (R Core Team, 2013).

To count the number of shared SNPs among South American 
chicken populations, we created Variant Call Format Files (VCF) 
for four groups of samples according to their geographical 
location. One group, composed by the individuals from South 
American countries located at Pacific fringe (Ecuador, Peru, 
Chile, and Bolivia), another group formed by individuals from 
the Atlantic fringe (Colombia and Brazil), and the potential 
source populations were kept in two separated groups. The 
number of shared variants between the groups was determined 
using the module vcf-compare included also in the VCFtools 
software, which conducts simple comparisons between VCF 
files. Venn diagrams (Caminsky et al., 2016; Feichtinger et al., 
2016) were used to visualize private/shared variants per group. 
Those variants were then represented in pie charts (Figure 1A) 
representing variants in different categories: i) shared between 
the Pacific and Atlantic groups, ii) shared with any of the possible 
source populations (Egg layer, Broiler, gamefowl or Iberian 
Peninsula), and iii) unique to a group. Only variants displaying 
a ≥5% frequency per population were considered.

Population Structure and Genetic 
Relationships
The r2 parameter was estimated to identify SNPs in linkage 
disequilibrium (LD) using the software PLINK v1.9 (Purcell 
and Chang, 2015) for 50 kb sliding windows, over a phased file 
excluding SNPs with allele frequencies <0.05 and an r2 > 0.5. A 
second filter was applied to remove all SNPs that significantly 
deviated from the expected neutrality. For this, we have used a 
Bayesian Fst-outliers based method that identifies loci, which 
the FST significantly depart from the average (FST-outlier) 
(BayeScan v.2.1; Foll and Gaggiotti, 2008). After removal of all 
significantly linked SNPs, the dataset was phased using Beagle 
v3.3.2 (Browning and Browning, 2007).

The population structure and the pairwise genetic relationship 
between individuals from different populations were investigated 
using a principal component analysis (PCA) implemented in 
the ngsTools package (Fumagalli et al., 2014) and the resulting 
principal components (PCs) were plotted using the R script 
provided at the package website (available at https://github.
com/mfumagalli/ngsPopGen/tree/master/scripts). The method 
implemented takes into account the genotype uncertainty and 
uses the output of the analyses performed in ANGSD to identify 
the polymorphic sites (SNP_pval 1x10-6), estimate the major and 
minor alleles (doMajorMinor 1), and infer the minimum allele 
frequencies (doMaf 2). Finally, we only retained loci with a minor 
allele frequency of <0.05 (minMaf). The posterior genotype 
probabilities were calculated with uniform a priori (doPost 2). The 
covariance matrix between individuals was calculated weighting 
each genotype for its posterior probability (Fumagalli et al., 2014).

To explore the relatedness among the chicken populations, we 
used the admixture model implemented in NGSadmix (Skotte 
et al., 2013). This method uses the genotype likelihood, taking 
into account the uncertainty of the genotype callings typical 
of the low-sequencing depth methods (Foote et al., 2016). For 
this analysis, we used the genotypes likelihoods determined in 
ANGSD and used the same set of filters as in previous analysis 
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to avoid bias caused by outliers or linked loci. Several runs were 
done varying the number of K populations from 3 to 5; to extend 
this analysis, we have constructed a pie plot chart calculating the 
average contribution of all potential sources.

The Origins of the South American 
Chicken Populations
Hypothetical ancestral admixture events among local South 
American chicken populations and the four possible population 
sources (Iberian Peninsula, egg layers, broiler, gamefowl) were 
assessed using TreeMix (Pickrell and Pritchard, 2012), which 
calculates a maximum likelihood population tree based on the 
allele frequencies. This method assigns an edge as a branch of the 
tree if it contributes with the majority of alleles to the descendant 
population; otherwise it is a migration edge. This process is 
performed in a stepwise likelihood mode to find the tree with the 
best fit for each admixture event (Pickrell and Pritchard, 2012). 
Here we used 117,962 autosomal phased SNPs, and the SNP 
dataset obtained from the genome resequencing of several red 
jungle fowls (Ulfah et al., 2016) as the outgroup.

The TreeMix results were also compared to those obtained 
using 3 Population Test (AdmixTools package; Patterson et al., 
2012), which allows determining whether a population has 
inherited a mixture of ancestries (Reich et al., 2009). This method 
is similar to the f3 (A, B, C), and when significantly negative 
values of the f3 statistic are obtained, it implies that population 
A is admixed. Finally, ROLLOFF software (Patterson et al., 
2012) was used to estimate the time of the admixture event. This 

method used the decay of the linkage admixture disequilibrium 
to approximate the time of admixture (Moorjani et al., 2011). 
In our case, the populations from the Iberian Peninsula and 
gamefowl were used as potential source populations and the 
South American populations as the admixed populations. The 
TreeMix results were used to select source populations to be 
tested in the 3 Population Test. As before, we divided the South 
American populations into two groups (Atlantic and Pacific).

ReSULTS

Genetic Diversity
Around 91% of our set of 122,801 nuclear SNPs matched with 
others already reported at dbSNP NCBI database. The majority 
of the identified variants were located in intergenic or intronic 
regions (Figure 1), from which approximately 60% were located 
across the nine macro chromosomes. On average, we roughly 
observed one SNP for every 8,900 bases (0.122 SNPs per kb).

Regarding the South American continental populations, the 
lowest number of private variants was observed in the Chilean 
continental populations, while the highest value was obtained in 
the Bolivian population. When grouping populations according to 
their geographic locations in South America (Atlantic and Pacific), 
all the populations showed a higher number of variants shared with 
the Pacific group, ranging from 108 in Peru up to 750 in Chile. In 
the Pacific group, the lowest number of private variants was found 
in Peru (19) and was highest in the Bolivian population (105). The 
Atlantic façade populations had a higher number of unique variants 

FiGURe 1 | (A) Shared polymorphic variants within the South American chicken populations. Pie charts are divided into eight slices as is described in the figure 
legend at the bottom. The size of the circle is proportional to the number of the variants. (B) Bar plots of the mean estimate values of nucleotide diversity with the 
line corresponding to the mean standard error. Bolivia (BOL), Brazil (BRA), Broiler (CBR), Chile (CHI), Colombia (COL), Ecuador (ECU), Easter Island (EID), Gamefowl 
(GFL), Iberian Peninsula (IBP), Egg-layer (EGL), Peru (PER). (C) Variant effect location, colored areas are proportional to the percentage of previously reported (blue) 
and first time reported (red) variants.
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compared with the Pacific, with the maximum found in Brazil 
(113). The number of variants shared between the South American 
chicken and the egg layer was lower (between 1 and 46) than the 
number of variants shared with the broilers (between 17 and 124), 
the Iberian Peninsula (between 29 and 169), and the gamefowl 
(between 32 and 130). Individually, the Easter Island population 
displayed the highest values in terms of private and shared variants. 
A deeper analysis showed that 643 SNPs were exclusively found in 
the Easter Island population; 106 were shared only with egg layers, 
367 only with broilers, 487 shared with gamefowl, 504 shared with 
the Iberian Peninsula, and 1,024 and 345 shared with the Pacific 
and the Atlantic South American groups, respectively (Figure 1A). 
The population diversity theta parameters (θS and θπ) estimated 
per 1,000 bp window attained the lowest values (θS and θπ) in 
the gamefowl population, and the Chile local chicken population 
showed the highest values for θS and the Brazilian and Bolivian 
population the highest values for θπ (Figure 1B).

Population Structure and Genetic 
Relationships
Regarding the population structure and genetic relationships, 
the most remarkable finding revealed in the PCA plot (Figure 2) 

was the separation between the gamefowl and all the other South 
American chicken obtained in PC1, whereas PC2 separates 
Easter Island individuals from all the others. Another separation, 
although less evident, was the formation of two groups of 
populations, one containing all countries located in the SA Pacific 
façade (Ecuador, Peru, and Chile) and the other constituted by 
Brazil, Colombia, Bolivia, and Iberian Peninsula chicken. We 
have noticed a slightly higher tendency of the commercial breeds 
and Iberian population to cluster closer to the South America 
Atlantic group, whereas the Pacific group is genetically closer to 
the Easter Island than it is from the Iberian population.

Regarding the pairwise differentiation between the all 
analyzed populations (Figure S1), the gamefowl was the most 
differentiated population, with FST values ranging from 11% 
(Colombia) to 28% (egg layer). All the remaining populations 
showed lower differentiation levels ranging between 1% 
between Brazil and Bolivia and 17% between egg layer and 
Easter Island populations. A one-way ANOVA and Tukey’s 
post hoc analysis of the weighted FST estimates (50 kb sliding 
windows) showed that the differentiation between South 
America and the hypothesized population sources (Iberian 
Peninsula, broiler, egg-layer, gamefowl) is highly significant 
(P < 0.001). When ranking the potential source populations 

FiGURe 2 | Principal component analysis of the local South American populations and putative genetic material sources.
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according to their degree of differentiation from the SA, the 
Iberian Peninsula showed the lowest differentiation (FST = 
0.014), followed by the egg layer (FST = 0.039) and the broiler 
(FST = 0.056), and the gamefowl displayed the highest value 
(FST = 0.1) (Figure S1).

The Bayesian clustering analysis performed with NGSadmix 
was consistent with the PCA results. The relatively closely related 
group formed by all South American populations depicted by the 
PCA is also confirmed by plotting the admixture analysis results 
(Figure 3). Here, we observe a certain degree of admixture 
between all the South American chickens and the influence of 
the commercial egg layers and broiler lineages as well as the 
gamefowl in the contemporary South American chicken. The 
Easter Island population displays a different admixture pattern 
in which a specific (non-shared) genetic background is very 
pronounced. Moreover, the admixture plot shows that in the 
Easter Island population, the most frequent genetic component is 
represented, although at a very small frequency, at the continental 
South American populations.

The Origins of the South American 
Populations
As the previous analysis pointed to a large influence of commercial 
breeds in the South American chicken, we have quantified this 
influence using TreeMix analyses. The obtained phylogenetic 
tree reflects the divergence patterns among the different chicken 
populations (Figure 3) and depicts the large influence of the egg 
layer in the South American chicken (Figures S2, S3).

The f3-statistics analysis, through 3-population test, to confirm 
the introgression events identified using the TreeMix method, 
returned significant values for the combinations f3 (Pacific; egg 
layer, gamefowl) and f3 (Atlantic; egg layers, gamefowl). For the 
Pacific–egg layer–gamefowl combination, the calculated values 
were f3 = -0.0017, Z = -12.44 and for the Atlantic–egg layers–
gamefowl combination, calculated values were f3 = -0.0017, Z = 
-16.599 (Table S1).

Finally, to quantify the contribution of each potential source, 
we have calculated the average values based on the NGSadmix 
results (Figure 3C). With the exception of Chile, the local 

FiGURe 3 | (A) Individual ancestry proportion of each of the South American chicken samples and putative genetic material sources conditional on the number of 
genetic clusters (k = 3-5). (B) TreeMix analyses of the genetic relationships between South American chicken and potential source populations. (C) Putative genetic 
material sources conditional on the number of genetic clusters.
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South American chicken populations were highly influenced 
by commercial chicken breeds, in which the egg-layers average 
admixture level ranges between 44% and 79%, while the broiler 
had a lower influence with an average admixture level ranging 
between 16% and 32%, and the gamefowl contribution ranges 
from 4% to 27% with the lowest in Chile and the highest to 
Colombia. Chile and Easter Island populations show different 
admixture patterns relative to the other populations with a 
high percentage of contributions from unknown sources.  
Interestingly, the results from the roll-off analyzes that are dated 
to be the most influential migratory events from around 70 ± 
10 generations ago, which represents between 70 and 35 years 
considering a 1-year or 2-year generation interval, respectively.

DiSCUSSiOn

Genetic Diversity
The commercial and relatively accessible high-density SNP array 
for the chicken became the most common tool used in genomic 
studies recently. However, the use of this pre-ascertained SNP 
panel distorts population genetic inferences on local livestock 
populations, as the sample sizes and the highly selected 
populations in which SNPs were discovered pose significant 
biases (Albrechtsen et al., 2010; Lachance and Tishkoff, 2013). 
Here, we used reduced representation library sequencing, in this 
case, RADseq, to interrogate a medium-high number of SNPs 
(122,801). The comparison of this set with those SNPs identified 
in the NCBI dbSNP database revealed that 91% of our SNPs 
match with others previously identified and 97% of them are 
located in intergenic or intronic regions, showing great potential 
to be used in genetic diversity studies.

The summary statistics of genetic variation using two theta 
estimators (θπ and θs) showed similar diversity per population 
(Figure 1B). The gamefowl proved to be an exception to this 
as they showed the lowest values and can be explained as the 
result of the inbreeding practices used to swiftly fix desired traits 
(García, 1997). The very similar values obtained for the two 
parameters (θs, θπ) in Brazil and Bolivia populations are better 
explained by the sample size effect (Korneliussen et al., 2013), as 
the sampling for both populations was substantially smaller than 
for the other South American populations. On the other hand, 
the different values displayed between the two theta parameters, 
with the θs showing higher values than θπ, at the remaining 
populations (e.g., CHI, PER, ECU, and IBP), can be explained by 
differences in the proportion of alleles segregating at intermediate 
frequencies. It is known that the θπ algorithm ascribes more 
weight to alleles segregating at intermediate frequencies, while θs 
weights all categories equal (Korneliussen et al., 2013), and thus 
populations showing a lower number of alleles with intermediate 
frequencies will result in smaller θπ values.

The patterns of the genetic variants shared among the different 
populations also provide insights about the continental South 
American chicken population diversity. Interestingly, the Easter 
Island population is the one displaying the highest number of 
unique variants (643), and this can be interpreted as the result 
of its different demographic history and/or different population 

origins. The high number of unique alleles could be explained 
by the different origins of the chicken introduced on this island 
across time (Luzuriaga-Neira et al., 2017). Alternatively, the high 
number of shared variants between this population and the other 
continental South American chickens can be explained by a 
source-sink metapopulation process (e.g., Gaggiotti, 1996). The 
occurrence of this phenomenon can simultaneously explain the 
occurrence of a high number of private variants (sink) and shared 
variants (source) as the result of different migration events from 
SA continent that have arrived at this island since at least 1772 
(Wilhelm, 1957).

Population Structure and Genetic 
Relationships
The PCA plot (Figure 2) constructed with all individuals shows 
that the individuals belonging to the gamefowl and Easter Island 
populations are relatively well separated from the remaining 
populations. Curiously, despite the low differentiation between 
the remaining continental South American populations, the 
PCA divides them into two groups, which might be related with 
whether its geographic location is on the Atlantic façade (Brazil, 
Columbia) or the Pacific façade (Peru, Chile, Ecuador).

The large differentiation indicated by FST estimates between 
the gamefowl and all the other South American populations 
(Table S2) is not very surprising. The different breeding objectives 
(i.e., behavior) and the observed low levels of diversity are the 
two most probable causes of this high differentiation regarding 
the other South American populations. Indeed, the admixture 
analysis shows the absence of influence from the other tested 
breeds in the gamefowl (Figure 3A) but shows some influence of 
this population in the other populations. This might indicate that 
the different breeding goal of this population, regarding the rest, 
has prevented its crossing with the commercial chicken breeds, 
particularly with the commercial egg-layer breed, as is evident in 
the other South American populations.

The Easter Island population is a very interesting example, as 
despite being the most divergent from the other populations, it is 
also the one in which its individuals are relatively more dispersed. 
The PCA grouping of the individuals (Figure 2) is a relatively good 
method to detect the coancestry relationship among individuals 
from the same population. It is expected that two individuals 
closely related would be closer to each other, but the Easter Island 
population has individuals that are considerably more distant from 
the others of their own population than relatively other individuals 
from other populations (e.g., Peru). In fact, this pattern is usually 
associated with different migration events (Fumagalli et al., 2013; 
Schraiber and Akey, 2015), and in this case, may indicate the 
influence of the chicken populations from the SA Pacific fringe in 
the Easter Island population. The higher differentiation is displayed 
by both Easter Island and the gamefowl populations, whereas the 
small differentiation amidst South American chicken populations 
and between these and the commercial breeds suggests differential 
gene-flow rates as the main driver of the extant South American 
chicken population structure. 

The post-Columbian human migration events and the 
subsequent spread of people from the coastal areas to the 
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interior become particularly massive at the end of the nineteenth 
century and might have led to multiple introductions of chicken 
from different populations. The quantification of the admixture 
proportion for each of the studied populations and a large 
number of migration edges needed to add (13) to explain most 
of the variance (99.8%) depicted by the phylogram (Figure S2) 
demonstrates that those populations have had a constant flux 
of foreign genes.

The Origins of the South American 
Chicken Populations
It has been hypothesized that European and Asian chickens were 
introduced in SA after 1500 (Storey et al., 2011); nevertheless, 
the modern introductions have been less described. However, 
we found that a single source population (Iberian Peninsula) 
could not explain the diversity displayed by the South American 
chicken suggesting a different demographic history for the 
South American chicken populations, opening the possibility 
of a multiple origin scenario. The poultry industrialization 
that started after World War II resulted in the globalization 
of massive industrial production and dispersal, leading to 
extensive crossbreeding between individuals from few highly 
selected and cosmopolitan chicken varieties (egg-layers, 
broilers) with local varieties, which have taken place in SA. 
Remarkably, the roll off admixture analysis detected signs of a 
strong introgression in SA population dating between 35 and 70 
years ago, which is concordant with the worldwide expansion of 
poultry industry based on highly productive chicken lineages. 
If this is correct, then the current SA local chicken accumulates 
the legacy of the older chicken introduced with those modern 
highly selected varieties.

In Ecuador, Peru and, Colombia, cock-fighting is a popular 
part of their culture and local recreation activities (Finsterbusch, 
1990). However, the origin of the SA gamefowl is poorly 
known, with many anecdotal reports linking their introduction 
with the arrival of Spanish and Portuguese colonizers who 
may have brought these birds from their colonies in South and 
Southeast Asia, where cock-fighting is a very ancient tradition 
(Lawler, 2014). Here, we could not identify the potential source 
population, but the TreeMix tree positions it at the same branch 
with the Easter Island population (Figure 3B), which might 
be indicative of a common origin of these two populations. 
Although the Easter Island chicken may have their roots linked 
to the Polynesian people expansion throughout the South 
Pacific (Wilhelm, 1957; Fitzpatrick and Callaghan, 2009), which 
have arrived at Easter Island around 1,200 A.D. (Hunt and Lipo, 
2006), its genetic proximity with the SA continental gamefowl 
can be explained by the fact that both populations were not 
crossed with cosmopolitan breeds and therefore remain closer 
to the ancestral population that originated them. Moreover, if 
this is true, then these populations may represent the genomes 
of the first chicken that were introduced in this part of the world, 
which have been replaced in other populations by uncontrolled 
crosses between local and newly selected chicken cosmopolitan 
populations (broiler and egg-layers) that were developed 
during the intensification of poultry production. Indeed, the 

admixture levels obtained in this study point for a replacement 
of the local genomes of the older local chicken populations that 
were taken from the Iberian Peninsula to South America five 
centuries ago.
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Ramírez-Aliaga, J.-M. (2010). The polynesian – mapuche connection: soft and 
hard evidence and new ideas. Rapa Nui J. 24, 29–33.

Reich, D., Thangaraj, K., Patterson, N., Price, A. L., and Singh, L. (2009). 
Reconstructing Indian population history. Nat. 461, 489–494. doi: 10.1038/
nature08365

Schraiber, J. G., and Akey, J. M. (2015). Methods and models for unravelling human 
evolutionary history. Nat. Rev. Genet. 16, 727–740. doi: 10.1038/nrg4005

Skotte, L., Korneliussen, T. S., and Albrechtsen, A. (2013). Estimating individual 
admixture proportions from next generation sequencing data. Genet. 195, 693–
702. doi: 10.1534/genetics.113.154138
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Given the importance of linkage disequilibrium (LD) in gene mapping and evolutionary
inferences, I characterize in this review the pattern of LD and discuss the influence of human
intervention during domestication, breed establishment, and subsequent genetic
improvement on shaping the genome of livestock species. To this end, I summarize data
on the profile of LD based on array genotypes vs. sequencing data in cattle and chicken,
two major livestock species, and compare to the human case. This comparison provides
insights into the real dimension of the pairwise allelic correlation and haplo-block structuring.
The dependency of LD on allelic frequency is pictured and a recently introduced metric for
moderating it is outlined. In the context of the contact farm animals had with human, the
impact of genetic forces including admixture, mutation, recombination rate, selection, and
effective population size on LD is discussed. The review further highlights the interplay of LD
with runs of homozygosity and concludes with the operational implications of the widely
used association and selection mapping studies in relation to LD.

Keywords: association mapping, selection mapping, runs of homozygosity, allele frequency spectrum (AFS),
haplotype block
INTRODUCTION

Linkage disequilibrium (LD) is the non-random assortment of alleles at different loci. The terms
linkage and LD are often confused. As highlighted by Slatkin (2008), LD is one of those unfortunate
terms that do not reveal its meaning. Indeed, LD means simply a correlation between alleles, and
detecting LD does not ensure either linkage or a lack of equilibrium. This stems from the fact that
mechanisms other than just physical proximity on a chromosome (linkage) such as mutation,
genetic drift, and epistatic combinations might also cause (gametic phase) disequilibrium between
unlinked markers. For example, admixing genetically distinct populations creates association
between two loci with different allele frequencies even if they are unlinked. LD can also arise due
to population stratification and cryptic relationships within a population that results in correlated
allelic frequencies (reviewed in Hellwege et al., 2017).

The pattern of LD is a powerful indicator of the genetic forces shaping a population. For example,
knowledge of LD helps inferring a population’s effective size (Ne) and past demography. Populations
with smaller Ne experience more genetic drift than larger populations. This genetic drift causes LD
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between alleles at independently-segregating loci, at a rate inversely
proportional to Ne (Waples et al., 2016). This way, an estimate of
contemporary Ne can be concluded from LD information (Sved,
1971; Hill, 1981). On the contrary, past Ne is a function of LD
between physically-linked loci, given that the inter-loci
recombination fractions are available (Sved, 1971). Accordingly,
the closely-linked loci indicate population sizes over historical past,
while loosely-linked loci signify Ne in the immediate past (Hill,
1981, Hayes et al., 2003). Unlike the non-model species, these
methods can be applied in the populations of farm animals for
which the high resolution genetic maps are becoming available
(Tortereau et al., 2012; Ma et al., 2015a; Petit et al., 2017).

LD between linked markers also determines the power and
precision of association mapping studies,directly influencing our
ability to localize genes and or loci responsible for economic
traits in agriculture or inherited diseases in human (reviewed in
Goddard and Hayes, 2009). Given the economic impact of
domestic animals, understanding the dimension of LD enables
planning and performing successful genomic breeding programs,
when working towards global food security. This review aims to
outline the definition of LD, summarize data on patterns of LD in
the genome of farm animals, and discuss the various properties
and implications that LD causes for gene mapping and
evolutionary studies of livestock species.
A HISTORICAL GLANCE

The concept of LD was first introduced in Jennings (1917), and its
quantification (D) was developed by Lewontin and Kojima (1960).
LD became a hot topic in the last two decades once the usefulness
of LD for gene mapping became evident and genotyping of large
numbers of linked single-nucleotide polymorphism (SNP) became
feasible through high-throughput technologies.

The simple formulation of the commonly used LDmeasureD is
the differencebetween the observed and the expected gametic
haplotype frequencies comprising two loci A and Bunder linkage
equilibrium (D=PAB-PAPB=PABPab–PAbPaB). Besides D, several
measures of LD (for example, D’, l, d, r2, c2 r2, among others)
have been suggested (Lewontin, 1964; Bengtsson and Thomson,
1981; Hill and Weir, 1994; Terwilliger, 1995; Zhao et al., 2005;
Gianola et al., 2013). The merits, comparison, and methodologies
of these metrics with the utilization of biallelic or multi-allelic loci
have been extensively described in the literature (e.g., Jorde, 2000;
Pritchard and Przeworski, 2001; Mueller, 2004; Sved, 2009).
Choosing the appropriate LD measure depends on the objective
of the study, and onemay perform better than another in particular
situations. The two widely used measures of LD are r2 and D’. r2 is
indicative of the correlation that a markermight have with the gene
of interest and is often preferred for association studies.
LD-BASED MAPPING OF GENES

Identifying the genetics underlying phenotypic variation is the
ultimate goal of most mapping studies. In general, there are two
Frontiers in Genetics | www.frontiersin.org 2106
different, but to some extent, complementary methodologies to
localize genes controlling traits. Both methodologies, outlined
below, benefit from the properties of LD to accomplish the
mapping task.

Association mapping: is the most common approach of
mapping quantitative trait loci (QTLs) that takes advantage of
the historic LD to connect phenotypes to genotypes. This
approach detects inherited markers in the vicinity of the
genetic causatives or loci controlling the complex quantitative
traits. It is often performed by scanning the entire genome for
significant associations between a panel of SNPs and a particular
phenotype (e.g., Hayes et al., 2010). Subsequent analyses will
then be required to verify the realized association independently
in order to confirm that it either directly controls the trait of
interest, or is linked to (in LD with) a QTL that contributes to the
trait of interest.

Association analysis is based on the principle that an
unbeknownst causative variant is located on a haplotype, and a
marker allele in LD with the causative variant should signify (by
proxy) an association with the trait of interest. Given the fact that
SNPs are in LD with one another, if a common SNP affects a
trait, one can probably genotype a SNP in LD with it (a “marker”
SNP) and that marker will be correlated with the trait of interest.

Quantifying the extent of LD is the essential first step to
determine the number of markers required to cover the entire
genome in an association study with succinct power and
precision. Theoretically, extensive LD reduces the number of
markers required to localize an association between marker and
trait but in lower resolution. In contrast, when LD promptly
decays within a short distance, many markers are needed to map
a gene of interest.

Although the LD-based association analysis is a powerful tool
routinely applied for gene mapping, it has not been very
successful for targeting genes of complex traits, especially
where the causative variants are low in frequency. This is due
to the fact that commercial genotyping arrays largely under-
represent infrequent alleles (reviewed in Lee et al., 2014). For a
detailed discussion, refer to the article by Goddard and Hayes
(2009) reviewing the pros and cons of association analysis in
farm animals. Here I stress the importance of LD in exploring the
genetic variability underlying phenotype-genotype relationship.
It is noteworthy that with the advancement of bioinformatics
tools and high throughput sequencing technologies that provides
the full profile of an individual’s genetic variation, it is now
possible to test for the effects of every single DNA polymorphism
on phenotypic variation, without requiring LD information.
However, given the presence of confounding factors such as
cryptic correlations in interpreting the GWAS results, LD
remains useful as evidence for validation of a detected
association (Bulik-Sullivan et al., 2015).

Mapping selection: Selection generates LD between distant
loci through a “hitch-hiking” effect (Smith and Haigh, 1974),
which happens when a haplotype carrying the favored allele rises
in frequency so fast and drags neighboring loci to higher
frequencies. Scanning the genome for long unbroken
haplotypes accompanied by extensive LD can reveal past
January 2020 | Volume 10 | Article 1304

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Qanbari LD in Livestock
selection responding to an adaptive quality (e.g., Sabeti et al.,
2002). Domestic species have been intensively selected during the
recent past through domestication, breed establishment and
genetic improvement and as such, have achieved tremendous
phenotypic changes. Consequently, genomic regions controlling
traits of economic importance are expected to exhibit footprints
of selective breeding (reviewed in Qanbari and Simianer, 2014a).
DEPENDENCY ON ALLELIC FREQUENCY

The widely used measure of LD in animal breeding and genome-
wide association mapping is r2. This metric has an allele
frequency-dependent character (see Figure 1), as is quoted in
Lewontin (1988) “there are generally no gene frequency
independent measures of association between loci”. The
dependence of r2 on allele frequencies affects the outcomes and
interpretations of population genetics studies in several ways. For
example, there are population characteristics that are related to
the estimated value of LD, such as effective population size and
pattern of recombination landscapes. This implies that the
estimates of effective size or recombination maps developed
based on expected values of r2 are frequency-dependent as well
(e.g., Ober et al., 2013). Furthermore, in gene mapping studies,
power to detect a causative variant using SNP markers is a
function of r2 between the causative variant and the marker.
Thus, if a SNP marker and a causative variant have different
Frontiers in Genetics | www.frontiersin.org 3107
minor allele frequencies, then the power to detect an effect at the
marker can be small since high values of r2 are not realized. This
property of r2 becomes especially more significant in human
models, where the most disease-causing variants are rare and
genome-wide association studies should be adapted to target
these variants.

Even if a frequency independent measure of LDmay not exist,
it would be desirable to develop one which is less affected by
frequencies than r2. In a recent study (Gianola et al., 2013), we
developed a new estimator of LD parameter (r2) based on a
metric proposed by Plackett (1965) that is a tetra-choric
correlation (Pearson, 1901). Plackett (1965) introduced
bivariate distributions indexed by a single parameter y that, in
the case of the 2 x 2 table, takes the form y = PAAPBB

PABPBA
. The

relationship between the tetra-choric correlation and y is
given by

r = −cos p
ffiffiffiffiyp

1 +
ffiffiffiffiyp

� �
,

where, r is easy to compute and much less dependent on allele
frequency than r2 (see Figure 2).

We argue that r2 is a useful metric and potent to the further
research and developments for applications in population and
quantitative genetics. For instance, r2 can facilitate comparison
of levels of LD among populations that are subjected to
different allelic frequencies, whereas such comparisons are
distorted by the frequency-dependent nature of r2. Likewise, in
the quantitative genetics context, the power analyses are
FIGURE 1 | Surface plot of the dependency of LD on allelic frequency of SNP pairs. The means of r2 are plotted for 45 bins of 0.01 allele frequency each (from
Qanbari et al., 2010a).
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formulated based on r2 in association studies or genomic
selection programs. For example, the sample size in indirect
association studies must be increased by roughly 1/r2 for
detecting the causal mutation directly (Kruglyak, 1999;
Pritchard and Przeworski, 2001). Similarly it is suggested that
the required level of LD (r2) for genomic selection to achieve an
accuracy of 0.85 for genomic breeding values has to be 0.2
(Meuwissen et al., 2001). Perhaps, similar relationships can
also be developed for r2, which is a subject for future research.
THE EXTENT OF LD: GENOTYPE VS.
SEQUENCE DATA

The strength of LD is of crucial importance for the genome-
based analysis of evolutionary history, fine-tuning of applications
like association mapping, genomic selection and selection
mapping. Most of the previous studies on LD in farm animals
have used panels of ascertained genotypes of different densities
available by SNP genotyping arrays. The availability of
population sequencing for livestock species nowadays has
provided the opportunity to figure patterns of LD in
unprecedented resolution. With advances in high-throughput
sequencing technologies, read lengths are becoming longer, an
ideal situation for estimating LD, as longer reads allow direct
phasing of double heterozygotes (Maruki and Lynch, 2014).

The extent to which LD decays in the genome of farm animals
has been extensively studied on the basis of genotypes from SNP
arrays (Porto-Neto et al., 2014; Khanyile et al., 2015; Prieur et al.,
2017; Marchiori et al., 2019; Mokhber et al., 2019; Muñoz et al.,
2019, among others). While genotyping arrays exhibited LD
extending at several hundreds of kilobases, a denser catalog of
SNPs generated from genome re-sequencing reveals LD decaying
at much shorter distances (see Figure 3). This is attributed to the
SNP profile used to measure LD. As shown in Figure 4, the
distribution of allele frequency drawn from sequence data is a
decreasing function that involves a sizable fraction of infrequent
Frontiers in Genetics | www.frontiersin.org 4108
alleles. In contrast, frequency distribution in genotyping arrays is
rather an increasing function, as SNPs were mainly ascertained
aiming at frequent alleles and coverage of the genome during the
establishment of the array (also see Fu et al., 2015 and Makina
et al., 2015). Given that LD, as measured by r2 depends on allele
frequencies, the difference between the studies is partially due to
the biased SNPs selection on the genotyping arrays. Other factors
such as the influence of population sub-structuring in the sample
composition or sequencing errors may also affect the allelic
correlations. However, LD measures in this experiment were
FIGURE 2 | The behavior of LD as a function of inter-marker distance (Mb) and MAF interval (dMAF). The estimates of r2 (left panel) and r2 (right panel) are depicted
as surface plots for SNP loci on chromosome 3 of the Italian Tuscan population in HapMap III (from Gianola et al., 2013).
FIGURE 3 | A schematic representation of decay of LD in domestic chicken.
r2 values are plotted as a function of pair-wise inter-marker distances based
on sequence (Seq) versus SNP50K (Array) data in a population of Lohmann
brown layer line. The gray dots represent sequence-based r2 plotted for each
chromosome separately, whereas LD based on array data was simply
averaged genome-wide due to the lack of enough LD estimates in shorter
distance bins. The black dashed line is fitted as mean LD in each distance bin
across chromosomes. The r2 values representing sequence data are
estimated for sub-samples of all pairwise estimates in macrochromosomes,
but include all SNP by SNP relationships in microchromosomes.
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drawn from the identical set of samples for both array and
sequence resolution and the differences between the two marker
sets are too significant to be caused by sequencing errors. For
further validation of this observation based on possible scenarios
I refer to the experiments described in Qanbari et al. (2014b).
LD HAPLO-BLOCKS: GENOTYPE VS.
SEQUENCE DATA

A haplotype block is a set of closely linked markers on a
chromosome with a strong LD between each other that tend to
inherit together (Gabriel et al., 2002). The haplo-blocks could
have been produced by interplay of several possible mechanisms,
including domestication, population subdivision, founding
events, selection, and recombination hotspots. These
structures, when discovered, were of great practical importance
for the gene mapping studies; as such, testing one SNP within
each block for significant association with a trait might be
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sufficient to indicate association with every SNP in that block
(Carlson et al., 2004). This could reduce the number of SNPs
required to be tested in association studies.

Haplotype blocks have been studied in human and other farm
animals. Previous studies in farm animals based on array data
have reported haplo-blocks extending to several hundreds of
kilobasepairs (e.g., Qanbari et al., 2010a; Qanbari et al., 2010c;
Al-Mamun et al., 2015, among others). The assembly of large LD
blocks appearing in array-based analyses, however, breaks into
series of shorter tracts when LD is assessed by sequence data in
the cattle genome (Figure 5). Consistent with the reduced LD
profile presented in Figure 4, resolving large haplo-blocks in
sequence resolution is a consequence of shift in allele frequency
spectrum towards infrequent alleles that are under-represented
in the ascertained array genotypes. This way, a sizable number of
pairwise LD estimates comprising infrequent alleles become
smaller so that a reduced LD profile breaks stretched LD
blocks formed in the array-based experiments.
TO WHAT EXTENT IS LD IN FARM
ANIMALS INFLUENCED BY HUMANS?

Addressing this question requires speculating about the possible
influence of domestication,breed establishment and animal
farming on genetic factors implicating LD. Principally, LD is
influenced by several factors, including drift, admixture,
mutation and recombination rates, selection, finite population
size, population bottlenecks, or other genetic events which a
population experiences (reviewed in Slatkin, 2008). For example,
population admixture creates sizable LD, depending on the
similarity of the allele frequency profiles in the admixed
populations. LD due to crossbreeding of inbred lines is
significant but, it could be small when crossing breeds have
similar gene frequencies, and it erodes quickly and disappears
after a limited number of generations. Mutation, due to its minor
effect on changing gene frequencies, has a negligible impact on
the LD in the time frame of domestication. Selection is probably
FIGURE 4 | Distribution of allelic frequency in domestic chicken. Histogram
compares profile of minor allele frequency between 50K array and sequence
data in a population of Lohmann brown layer.
FIGURE 5 | The LD-block structuring as a function of SNP density. (Panel A) displays a LD block of length 29 Kb based on estimates of pair-wise D’ among 13
SNPs located on BTA25 in Fleckvieh cattle. (Panel B) displays LD structure in the same region in sequencing resolution consisting of 115 markers. The LD blocks
are obtained using “confidence intervals” algorithm (Gabriel et al., 2002) in Haploview (Barrett et al., 2005). LD analysis has been conducted with a constant number
of individuals.
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a significant cause of LD, however, its effect is likely localized
around specific (major) genes, and so has relatively little effect on
the amount of LD averaged across the genome.

While the buildup of LD can be a result of several population
genetic forces, recombination isthe only primary mechanism to
break it down. The absence of recombination between sites
under selection can reduce the efficiency of selection in what is
known as the ‘Hill-Robertson effect’ (Hill and Robertson, 1966).
It is suggested that high rates of recombination during
domestication have contributed to strong selection response
(reviewed in Ross-Ibarra, 2004), but remains a debate since the
evidences are ambiguous and inconclusive. The most recent
study found no difference in the number and distribution of
recombination breakpoints between dogs and wolves suggesting
that both upper and lower bounds of crossover rates may be
tightly regulated (Muñoz-Fuentes et al., 2015).

The finite population size is generally thought to be the
leading cause of LD as effectivepopulation size has been
severely eroded for most domestic species. For example, our
experimentbased on sequence data suggests that chicken has
experienced a drastic decline inNe, evidencing a severe
bottleneck most likely driven by domestication started inrecent
past (see Figure 6). As shown, chicken hadthe largest effective
population size 10,000 years ago which coincides with the
generally accepted timing of chicken domestication (e.g., Xiang
et al., 2014). The most recent Ne has dropped to a few hundred
individuals and the Red Jungle Fowl (RJF) appears to have a
larger population size present day in comparison to the
commercial birds. A similar pattern of historical demography
is observed in cattle (The Bovine HapMap Consortium, 2009). In
human, the story is the opposite (The 1000 Genomes Project
Consortium, 2015); improved agricultural productivity and
industrialization have led to dramatic increases in population
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size. If LD is a result of the (current) finite population size, then
the extent of LD should be many times more in livestock, as these
species have Ne order of magnitude smaller (Leroy et al., 2013;
Hall, 2016; Boitard et al., 2016) than the recent estimates
reported for humans (Keinan and Clark, 2012; Browning and
Browning, 2015). In reality, this is observed only for a portion of
the marker pairs situated apart up to several hundreds of
kilobases (Szyda et al., 2017). Instead, the observations based
on full re-sequencing data revealed that the average genome-
wide LD in chicken (see Figure 4) and cattle (Qanbari et al.,
2014b) extends less than 40Kb, slightly greater than that in
human populations. Since this is obtained from the full profile of
polymorphisms, it represents the real strength of LD in these
genomes, and far less than the extent previously reported.

Indeed, the observation of nearly comparable strength of LD
in human and livestock is aconsequence of a sizable amount of
polymorphism preserved in the genome of livestock. We observe
millions of SNPs in the genome of cattle (e.g., Daetwyler et al.,
2014) and chicken (Qanbari et al., 2019), in line with the latest
updates of the genome sequencing projects in other livestock
populations, including horse (Jagannathan et al., 2019), pig
(Rubin et al., 2012), and sheep (Naval-Sanchez et al., 2018)
that identified tens of millions SNP variants. This is comparable
to the polymorphism content found in the human genome on
the basis of sequencing several hundreds of individuals (The
1000 Genomes Project Consortium, 2015).

Hypothetically, the observed level of nucleotide diversity is
much larger than a small population with Ne as low as several
tens or hundreds is expected to generate or carry. This implies
that chicken and cattle must have experienced much larger Ne in
their history, which is indeed what exactly emerges from
demographic inferences in these species. For example, analysis
of sequence data suggests that chicken had a historicalNe around
FIGURE 6 | A schematic illustration of historical Ne in chicken. The ancestral demography is inferred in sequence resolution for RJF and white (WL) and brown (BL)
layers employing the Pairwise Sequentially Markovian Coalescent [PSMC, Li and Durbin (2011)] framework. The scale on the x-axis is years in the past and the scale
on the y-axis represents the historical effective population numbers. Orange (RJF), brown (BL), and cyan (WL) lines represent inferred demography for different
populations with bootstraps in lighter colors. Note that inferences of bootstraps are depicted only for one sample of each population.
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25,000 at 1 million years ago that persisted for several hundreds
of thousands years, before chicken population expanded starting
from 50,000 to 100,000 years ago (see Figure 6). A somewhat
similar picture of ancestral demography was also reported for the
bovine genome (The Bovine HapMap Consortium 2009).
Comparing the LD pattern across breeds of livestock species
can reveal the influence of humans in shaping the genetic
buildup. LD have been reported across breeds of cattle
(Qanbari et al., 2011; Porto-Neto et al., 2014; Makina et al.,
2015), sheep (Al-Mamun et al., 2015; Prieur et al., 2017), pig
(Badke et al., 2012; Ai et al., 2013; Muñoz et al., 2019), buffalo
(Deng et al., 2019; Mokhber et al., 2019), chicken (Khanyile et al.,
2015; Hérault et al., 2018), and horse (Wade et al., 2009; McCue
et al., 2012, Marchiori et al., 2019), among others. The general
trend is that in local breeds or populations that experienced less
intensive breeding programs, LD decays faster between distant
markers than the commercial populations in which, LD extends
for larger pairwise distances. For example, Holstein exhibits
extensive LD than the other cattle breeds, despite having the
largest contemporary population. In comparison, Indicine
breeds have a lower LD than Taurine, suggestive of a larger
ancestral population (e.g., Porto-Neto et al., 2014). The
involvement of human in shaping genetic makeup of livestock
is also evident in domestic chickens, where local breeds mostly
exhibit shorter extent of LD (Khanyile et al., 2015) and among
the commercials, the broilers presents faster decay of LD than
layer populations (Pengelly et al., 2016; Seo et al., 2018 and
Hérault et al., 2018). This is attributed to a more intensive
selection scheme running over many generations during past
several decades in layers resulting in a lower population
haplotype diversity and a smaller Ne.

Further to the comparable polymorphism content, a
somewhat similar pattern of allele frequency spectra (SFS)
emerges in human and livestock genomes from sequence data
(see Qanbari et al., 2014b and Qanbari et al., 2019). The SFS in
livestock follows a decreasing trend consistent with many other
organisms, including human (e.g., Nielsen et al., 2012). The
distinction in livestock is that the spectra are skewed towards a
larger fraction of intermediate frequencies (Figure 4). This is
most likely stemming from an extremely small effective
population size in present day livestock species and
substantiates the significant under-representation of infrequent
alleles in commercial breeds (e.g., see Muir et al., 2008 and
Qanbari et al., 2019).
GENOME-WIDE VARIATION IN LD

Across the genome, every chromosome behaves as a unique
linkage group and may experience independent demography.
This is similar to the inter-species or inter-population scenarios,
where it generates different profiles of LD for each unit. LD levels
are also higher for sex chromosomes than autosomes because
recombination on the sex chromosomes only occurs in females.
Previous studies of measuring LD revealed a substantial
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difference among chromosomes of farm animals (e.g.,
Sargolzaei et al., 2008). In human models, evidence also exists
for significant variation in LD across genome, between sexes and
among populations (Vega et al., 2005; Baudat et al., 2010; Kong
et al., 2010, among others). Besides the recombination landscape
which is the primary mechanism in shaping genome-wide LD,
other factors such as genetic drift, demographic forces, mutation
rate, and selection play a role as well. This depicts how
challenging predicting LD between two sets of polymorphism
based solely on physical distance could be. The design of LD
mapping experiments and placement of SNPs will, therefore,
require a thorough understanding of the local interplay of these
factors for precisely localizing a target locus.
THE DECAY OF LD IN HUMAN
AND LIVESTOCK

LD persists for several hundreds of kilobases at least for a
portion of marker pairs in the contemporary populations of
chicken and cattle (Szyda et al., 2017; Hérault et al., 2018),
which causes a slightly higher LD averaged over the genome
compared to human. This is primarily stemming from
the “family-based LD,” a representation of the large chunks
of chromosomes of founder animals segregating in the
population. The consanguine parents transmit these identical-
by-descent segments to the progenies and create uninterrupted
stretches of homozygous genotypes, known as “run of
homozygosity” (ROH), the hallmark of these autozygous
segments inherited from a recent common ancestor (reviewed
in Peripolli et al., 2017; Ceballos et al., 2018). The frequency,
size, and distribution of ROH in the genome provide insights
into the inbreeding, past demography, and selection in livestock
populations (e.g., Bosse et al., 2012; Purfield et al., 2012, among
others). In general, the extent of ROH islands is a function of
the number of generations to the common ancestor, so that
longer ROH indicate recent inbreeding, whereas ROH of older
origin are generally shorter. The livestock populations involve
more recent inbreeding loops through assortative mating,
therefore, are expected to carry longer ROH than outbred
populations like human that hold a much larger effective
population size and diverse population (Gibson et al., 2006).
Although a direct comparison of ROH between species in
previous studies is impractical due to the lack of a gold
standard in defining ROH islands, the extent to which the
genome is covered by ROH tracts is expected to be higher in
domestic animals relative to their wild counterparts. The long
unbroken homozygosity hold in ROH islands, therefore, gives
rise to an extended LD in livestock than that in human.

The unusually long ROH may also persist in outbred
populations. These homozygosity islands may originate from
the locally low mutation or recombination rates, or be a result of
the positive selection for a favorable allele followed by the hitch-
hiking of the polymorphism around the target locus (see section
“Mapping selection”).
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IMPLICATIONS FOR GENE MAPPING
STUDIES

LD in sequencing resolution decays more rapidly than previously
reported using array data. This enables higher resolution mapping
of a trait of interest in outbred populations employing either
association or selection mapping strategies. This also implies that
selection mapping using haplotype-based metrics demands a panel
of denser SNPs arrays to efficiently reveal patterns generated by
unusually long haplotypes than medium-density arrays. The low
reproducibility of the results reported in some of the first genome-
wide selection studies in farm animal populations (e.g., Qanbari
et al., 2010b) based on medium-density SNP arrays (~50 k SNPs)
may be due to the lack of power prompted by overestimating the
extent of LD demonstrated here. This is backed by our recent study
in which extensive simulations were used to investigate the power
of combining selection signatures detected with multiple methods
under different scenarios of marker density, sample size, and
selection intensity (Ma et al., 2015b). The authors showed that a
reasonable power to detect selection signatures is achieved with
high marker density (>1 SNP/Kb). Ultimately, uncovering older
selective sweeps that carry shorter haplotypes will need
sequencing resolution.

The extent of LD varies across the genomic regions,
chromosomes, among populations and between species. In other
words, genome-wide averaged estimates of the extent of LD may
not adequately reflect LD patterns of specific regions or population
groups. These observations have broader practical relevance in
genomic studies of farm animals, as such the optimal number of
samples and marker density in either genome-wide association or
selection mapping studies may largely vary due to the extremely
adverse pattern of LD within and among chromosomes. Finally,
confounding population characteristics such as cryptic allelic
correlations or stratification may have serious impact on pattern
and structure of LD in livestock populations that need to be taken
into consideration in conducting unbiased genome-wide
association mapping (reviewed in Hellwege et al., 2017, also see
Ma et al., 2012 and Bulik-Sullivan et al., 2015).
LD ASSESSMENT SOFTWARE TOOLS

Estimating LD coefficients is computationally simple and can be
performed using in-house scripts when the marker density is
restricted to the genotypes of SNP arrays. r2 is particularly
straightforward to achieve based on built-in commands as it
corresponds the spearman correlation between SNPs pairs.
Moreover, the standard population genetics programs, among
them are Haploview (Barrett et al., 2005) and Arlequin (Excoffier
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et al., 2005), along with several R packages provide tools to estimate
LD statistics. In sequence resolution, however, estimation LD
coefficients can be computationally burdensome specifically for
the mega reference panels such as genome sequencing consortiums
of different livestock species. For example, a panel of 1000 genomes
of a mammalian species sequenced may include over 35M shared
variants, which corresponds to over 4 × 1011 pairwise LD
coefficients within 1 Mbp windows genome-wide. A number of
sophisticated programs to estimate LD statistics from sequencing
data are freely available. PLINK is a widely used software toolkit for
analyzing genetic data and is among the most computationally
efficient tools for estimating LD (Purcell et al., 2007). VCFtools is
another widely used software toolkit for manipulating and
analyzing genetic data that provide utilities to estimate LD from
the Variant Call Format (VCF) (Danecek et al., 2011). VCFtools
works with compressed VCF files (VCF.gz) which require far less
storage space than PLINK BED files; however, it can be
computationally demanding for large data sets. M3VCFtools (Das
et al., 2016), an extension of VCFtools uses a compact haplotype
representation format called M3VCF, to estimate LD statistics.
M3VCF requires far less storage than genotype formats. M3VCF
toolkit provides more efficient querying and data processing and
has option to convert a VCF file into M3VCf format.
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Genomic prediction is an effective way to estimate the genomic breeding values from
genetic information based on statistical methods such as best linear unbiased prediction
(BLUP). The used of haplotype, clusters of linked single nucleotide polymorphism (SNP) as
markers instead of individual SNPs can improve the accuracy of genomic prediction.
Since the probability of a quantitative trait loci to be in strong linkage disequilibrium (LD)
with a cluster of markers is higher compared to an individual marker. To make haplotypes
efficient in genomic prediction, finding optimal ways to define haplotypes is essential. In
this study, 770K or 50K SNP chip data was collected from Hanwoo (Korean cattle)
population consisted of 3,498 cattle. Using SNP chip data, haplotype was defined in three
different ways based on 1) the number of SNPs included, 2) length of haplotypes (bp), and
3) agglomerative hierarchical clustering based on LD. To compare the methods in parallel,
haplotypes defined by all methods were set to have comparable sizes; 5, 10, 20 or 50
SNPs on average per haplotype. A linear mixed model using haplotype to calculated the
covariance matrix was applied for testing the prediction accuracy of each haplotype size.
Also, conventional SNP-based linear mixed model was tested to evaluate the
performance of the haplotype sets on genomic prediction. Carcass weight (CWT), eye
muscle area (EMA) and backfat thickness (BFT) were used as the phenotypes. This study
reveals that using haplotypes generally showed increased accuracy compared to
conventional SNP-based model for CWT and EMA, but found to be small or no
increase in accuracy for BFT. LD clustering-based haplotypes specifically the five SNPs
size showed the highest prediction accuracy for CWT and EMA. Meanwhile, the highest
accuracy was obtained when length-based haplotypes with five SNPs were used for BFT.
The maximum gain in accuracy was 1.3% from cross-validation and 4.6% from forward
validation for EMA, suggesting that genomic prediction accuracy can be increased by
using haplotypes. However, the improvement from using haplotypes may depend on the
trait of interest. In addition, when the number of alleles generated by each haplotype
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defining methods was compared, clustering by LD generated the least number of alleles,
thereby reducing computational costs. Therefore, finding optimal ways to define
haplotypes and using the haplotype alleles as markers can improve the accuracy of
genomic prediction.
Keywords: genomic prediction, haplotype, hierarchical clustering, linkage disequilibrium, best linear unbiased
prediction, accuracy, Hanwoo
INTRODUCTION

Genomic prediction is an effective way to measure the genetic merit
and breeding values of livestock based on their genetic information.
Practically, genotype data of the animals particularly the single
nucleotide polymorphisms (SNP) and statistical prediction
methods such as the best linear unbiased prediction (BLUP) are
required to calculate the genomic estimated breeding values
(GEBV). The accuracy of genomic prediction depends on the
degree of linkage disequilibrium (LD) between the SNP markers
and real quantitative trait loci (QTL) (Goddard, 2009).
Fundamentally, linkage disequilibrium is a nonrandom
association between different loci in a certain population, which
can be calculated by measuring the frequencies of alleles and the
haplotype frequencies of the pair of alleles at the loci (Slatkin, 2008).

By using clusters of related SNPs as markers instead of
individual SNPs, the probability that a QTL is in strong LD with
a marker becomes higher (Goddard and Hayes, 2007). Thus, the
accuracy of genomic prediction can be improved by using clusters
of SNPs, which are referred to as haplotypes. With the higher LD
with QTLs, haplotypes better detect identity-by-descent structure
while making the genomic relationship matrix, resulting in
increased genomic prediction accuracy (Hess et al., 2017). To
make efficient use of haplotypes in genomic predictions, numerous
studies have focused on finding optimal ways to define a cluster of
SNPs as a haplotype. The simplest way is to consider equal sizes of
segments in the genome as haplotypes (Villumsen and Janss, 2009;
Sun et al., 2015; Ferdosi et al., 2016; Hess et al., 2017). By this
method, equal size can be determined through physical length in
base pairs (Ferdosi et al., 2016; Hess et al., 2017), the length in
centimorgans (Sun et al., 2015), or the number of SNPs (Villumsen
et al., 2009). In addition, methods to define haplotypes such as
combining information about identity by descent (IBD) with
clusters of adjacent SNPs (Calus et al., 2008; Calus et al., 2009),
and using predicted genealogy (Edriss et al., 2013) were studied.
Also, setting minimum pairwise LD cutoffs to grouped SNPs into
haplotypes was considered (Cuyabano et al., 2014).

Some of the methods to define haplotypes for genomic
prediction attempts to incorporate the LD structure of the
genome (Calus et al., 2008; Cuyabano et al., 2014; Cuyabano
et al., 2015). Lesser number of haplotype alleles brings an
advantage in LD based haplotypes since the number of
explanatory variables used for computation is reduce compared
to other methods (Cuyabano et al., 2014). Recently, the
application of some clustering methods originated in the data
mining field represent a more precise LD structure when
defining haplotypes (Dehman, 2015). Among these methods is
2117
hierarchical clustering, which produces a tree that has nodes
representing clusters in a hierarchical order from, where each
element being each cluster is the leaf the all the elements being
one cluster is the root. Applying hierarchical clustering to make
SNP clusters based on LD was implemented to genome-wide
association study (Dehman, 2015).

In this study, agglomerative hierarchical clustering was used
to construct haplotypes based on LD from phased genotypes of
770K SNP chips. In addition, haplotypes were alternatively
defined as segments with given sizes. The length of a haplotype
in base pairs and the number of SNPs within a haplotype were
respectively used as criteria of sizes. Differently define haplotypes
were tested and compared with the accuracy of using individual
SNPs to find out whether which method can bring improvement
in genomic prediction. Also, to find out the optimal size of
haplotypes, various sizes of haplotypes defined by each method
were tested. To compare the methods in parallel, haplotypes
defined by all methods were set to have comparable sizes.
MATERIALS AND METHODS

Genotypic and Phenotypic Data
The genotypic and phenotypic information were collected from
the 3,498 Hanwoo (Korean cattle) population. Animal health
and welfare issues were followed according to the appropriate
guidelines approved by the Animal Care and Use Committee of
the National Institute of Animal Science, Rural Development
Administration, Korea. Available information such as sex and
slaughter age was used for analysis. The traits analyzed in this
study were carcass weight (CWT), eye muscle area (EMA) and
backfat thickness (BFT), measured after slaughter. Genotyping
was performed using Illumina BovineHD 770K Genotyping
BeadChip for 1,166 samples and Illumina BovineSNP50
Genotyping BeadChip for 2,332 samples. The 50K genotypes
were imputed to 770K using Eagle (https://data.broadinstitute.
org/alkesgroup/Eagle/) and Minimac3 (http://genome.sph.
umich.edu/wiki/Minimac3) pipeline.

For further analyses, SNPs having low minor allele frequency
(<0.01), low genotyping rate (<0.95), significant deviation from
Hardy–Weinberg equilibrium (p <0.001) were discarded, while
only one SNP was kept if multiple SNPs were located on the same
site. Individualswith lowgenotyping call rate (<0.95)were excluded
from the study. From the data collecting stage, phenotypes
including sex and slaughter age of some animals were not fully
recorded and were removed from the study. Moreover, two-sided
Grubb's test with alpha = 0.05 was performed to check whether
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therewere outliers in phenotypic data. Test results revealed that one
sample of BFT and two samples of EMA were considered outlier.
After the removal of identified outliers, none of the tests were
significant (p<0.05)withp=0.80 forCWT,p=0.14 forEMA, andp
=0.10 forBFT. Similarly, nine significantoutliers fromthe covariate
age were also removed.

Thus, the total number of SNPs used for genomic prediction
was 555,678 from 2,494 animals (821 males and 1,673 females)
The summary statistics of the phenotype data are presented in
Table 1, while the distributions of the phenotypes used in this
study are presented in Supplementary Figure 1. The total
genotyping rate was 0.9971. Genotypes were phased and
imputed using SHAPEIT2 with 200 states and a window size
of 0.5 Mb for haplotyping (Delaneau et al., 2012).

Defining Haplotypes
Threemethods todefinehaplotypeswere considered respectively in
this study. First, segments of the genome containing constant
number of SNPs were treated as haplotypes (method 1). Second,
segments of the genomewith equal sizes in basepairs were regarded
as haplotypes (method 2). Third, hierarchical clustering based on
LD was used to construct haplotypes (method 3). In these three
methods, the start and end points of haplotypes were designated
accordingly and the SNPs within the point formed haplotypes.

In each method, we varied the sizes of haplotypes to find out
the optimal size of haplotypes for accurate genomic prediction.
To compare the three methods in a comparable way, the average
number of SNPs per block were balanced to be approximately 5,
10, 20, or 50. Briefly, three haplotype defining methods with four
average size criteria, making twelve kinds of haplotype were
tested. The lengths of haplotypes in method 1 was calculated by
dividing the total length of the genome by the total number of
SNPs, then multiplying 5, 10, 20, or 50. In method 3, the number
of clusters (number of haplotype regions) were set as the total
number of SNPs divided by 5, 10, 20, or 50. The lengths of
haplotypes in method 1 and number of clusters in method 3 are
later shown in Table 2.

Hierarchical Clustering Based on LD
In hierarchical clustering based on LD, the pairwise LD between
SNPs were calculated as D', based on the following equation
(Lewontin, 1964).

DAB = pAB − pApB

Dmax =
 max −pApB,  − 1 − pAð Þ 1 − pBð Þð Þ  when  D < 0

 min pA 1 − pBð Þ,   1 − pAð ÞpBð Þ  when  D > 0  

(

D 0 = DAB=Dmax
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Clustering groups similar objects together. Here, SNPs
with high LD were regarded as similar SNPs and were
assigned to the same clusters. In other words, the measure
of LD, D' was set as the proximity measure of two SNPs and
(1 − D') was defined as the distance between two SNPs in the
clustering algorithm. To define the distance between two
clusters, complete linkage was used. In complete linkage
clustering, the link between two clusters contains all
element pairs, and the distance between two clusters is
measured as the maximum pairwise distance among all
elements in the clusters. Here, the distance between
clusters was defined as the maximum of 1 − D' between all
pairwise SNPs in two clusters. Agglomerative hierarchical
clustering is an iterative process of merging clusters starting
from each element being a cluster of its own (Rokach and
Maimon, 2005). First, two clusters with the closest distance
are found and are merged to form a new cluster. After two
clusters were merged, the distance between clusters is
updated by calculating the distances between the new
clusters and the others. This is repeated until the number
of clusters reaches the threshold, which was the total number
of SNPs divided by 5, 10, 20, or 50.

In this study, to make non-overlapping and linear clusters
using all the SNPs for defining haplotype, only physically
adjacent SNPs or clusters were merged by keeping a linear
distance list of adjacent clusters instead of a distance matrix.
TABLE 1 | Summary statistics of the phenotypes used for the study.

Minimum 1st Qt. Median Mean 3rd Qt. Maximum

CWT 197 335 374 377.5789 415 623
EMA 42 77 84 84.85138 92 126
BFT 1 7 10 11.02117 14 39
CWT, carcass weight (kg); EMA, eye muscle area (cm2); BFT, backfat thickness (mm).
TABLE 2 | Haplotype and allele statistics of each haplotype defining method at
different sizes.

SNP count-based haplotypes 5 SNPs 10 SNPs 20 SNPs 50 SNPs

Number of haplotype alleles 1,303,861 1,877,160 2,713,296 3,710,659
Number of haplotypes 111,123 55,554 27,768 11,099
Average number of SNPs per
haplotypes

5 10 20 50

Average number of alleles per
haplotypes

11.73349 33.78983 97.71305 334.3237

Minimum SNPs in haplotypes 5 10 20 50
Maximum SNPs in haplotypes 5 10 20 50
Length-based haplotypes 22.25 kb 44.5 kb 89 kb 222.5 kb

Number of haplotype allele
markers

1,364,861 1,867,261 2,621,574 3,581,059

Number of haplotypes 97,061 54,163 27,797 11,196
Average number of SNPs per
haplotypes

5.725038 10.25936 19.99057 49.63183

Average number of alleles per
haplotypes

14.06188 34.47484 94.31140 319.8516

Minimum SNPs in haplotypes 2 2 2 2
Maximum SNPs in haplotypes 29 47 71 136
LD clustering-based
haplotypes

K = N/5 K = N/10 K = N/20 K = N/50

Number of haplotype alleles 1,277,525 1,764,074 2,472,637 3,358,562
Number of haplotypes 111,123 55,554 27,768 11,099
Average number of SNPs per
haplotypes

5.000567 10.00248 20.01145 50.06559

Average number of alleles per
haplotypes

11.49649 31.75422 89.04628 302.6004

Minimum SNPs in haplotypes 1 1 1 1
Maximum SNPs in haplotypes 114 131 141 213
Mar
ch 2020 | V
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K is the number of clusters and N is the number of total SNPs.
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For example, when the ith and the (i + 1)th clusters were
merged as the I ∗ th, the distances between the (i − 1)th and
ith cluster, ith and (i + 1)th cluster, (i+1)th and the (I + 2)th
cluster are removed from the list and the distance of the (i −
1)th and the i ∗ th cluster, the i ∗ th cluster and the (i + 2)th
cluster are added to the list for updating. In this way, when
finding the closest two clusters from the list, only the
distances between adjacent clusters are being considered.

Haplotype Alleles and Diplotypes
After defining the start and endpoints of haplotypes throughout
the genome, the phased genotype was re-coded according to the
haplotype alleles. The individual diplotypes were then coded as 0,
1 or 2 for each haplotype allele in a haplotype region. This results
in an N × Hmatrix, where and N is the number of animals and H
is the total number of haplotype alleles. R package ‘GHap' was
used for this procedure (Utsunomiya et al., 2016).

Genomic Prediction
A linear mixed model was used to perform genomic predictions
using the haplotype markers defined in the previous stage. The
model was described as:

y = Xb + g +   ϵ,

where y is the vector of observations (CWT, BFT and EMA), b is
the vector of fixed effects including sex and slaughter age, g is the
vector of additive genetic effects, ϵ is the vector of residual errors,
and X is the design matrix for fixed effects. The additive genetic
effects g and residual errors ϵ were assumed as random effects
assuming that it follows the distributions specified bellow:

g   e  N 0,  Gs 2
g

� �
ϵ  e  N 0,   Is 2

e

� �
Here, G is the genetic relatedness matrix and I is an identity

matrix. G was calculated from the following equation.

G =  
MM0

2o pi 1 − pið Þ
M was the haplotype matrix obtained from the haplotyping

step (Haplotype Alleles and Diplotypes) adjusted for allele
frequencies. The ijth element of M is calculated as mij =
(xij − 2pj)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pj(1 − pj)

p
, where xij is the number of jth

haplotype allele carried by the ith animal and pj is the minor
allele frequency of the jth haplotype allele. For the SNP-based
model, M was the matrix of genotype adjusted for minor
allele frequency.

The BLUP solution of the linear mixed model, û was
computed using the equation û   =  M0G−1ĝ=N, from restricted
expectation maximization (REML). GCTA software was used for
computation (Yang et al., 2011). Heritability was also estimated
from REML by estimating the variance components s 2

g and s 2
e

with GCTA.
Then, the GEBVs were obtained as the following equation:

GEBV   = Mû
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Final ly , the performances of different haplotype
definitions were compared based on the accuracy of the
models, which was calculated as the correlation of the
GEBVs and pre-corrected phenotypes. Sex and slaughter
age were used for pre-correction. Five times of 5-fold
cross-validation (5 × 5 cross-validation) were performed to
access the accuracies of different methods.

In addition, forward validation was done to access the
performance of predicting breeding values of younger
animals from the data of older animals. Animals born from
January 2012 were assigned to test set and the remaining
animals were assigned as a training set. Training set and test
set consisted of 2,015 animals and 479 animals respectively.
The accuracy was calculated as the correlation between
predicted GEBVs and pre-corrected phenotypes as in
cross-validation.
RESULTS

Haplotype Construction
The statistics of haplotypes constructed by different haplotype
defining methods and the different average SNP number
criteria in each method are presented in Table 2 and
Supplementary Figure 2. The actual average numbers of
SNPs per haplotype were also obtained and evaluated to
check whether the haplotypes were constructed with
intended sizes. The average numbers of SNPs were
consistent with the intended numbers in LD clustering-
based haplotypes and length-based haplotypes with sizes of
44.5kb, 89kb and 222.5kb, while larger than intended in
length-based haplotypes of 22.25kb.

The total number of haplotype alleles were computed to
compare the number of explanatory variables used for
genomic prediction (Table 2). The number of alleles
increased as the average number of SNPs per haplotype
increased. However, the numbers of alleles from haplotypes
of similar sizes were where found to be smaller when LD
clustering was used to define haplotypes. The average number
of alleles per haplotypes showed similar tendencies with the
total number of alleles.

Genomic Prediction Accuracy
The genomic prediction accuracies from 5 × 5-fold cross-
validation of haplotypes defined by three methods were
higher compared to the SNP-based model except for
haplotypes with 50 SNPs in CWT and EMA (Figure 1).
For both CWT and EMA, LD clustering based-haplotypes
with an average of 5 SNPs showed the highest gain in terms
of accuracy. Prediction accuracy increased from 0.435 to
0.448 for CWT and 0.319 to 0.331 for EMA, which were 1.2%
and 1.3%, respectively. Conversely, there was no observed
improvement in prediction accuracy in BFT.

Meanwhile, when forward validation was used for testing
prediction accuracy, the tendency of accuracies was similar,
however, the overall accuracy was lower while the gain in
March 2020 | Volume 11 | Article 134
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FIGURE 1 | Genomic prediction accuracies from five time five-fold cross validation. Prediction accuracies of using various sizes of haplotypes defined by different
methods and using individual SNPs were compared for CWT, BFT and EMA respectively. The black lines on the bars show standard errors of the prediction
accuracies. Accuracies were calculated as the correlation coefficients of GEBVs and pre-corrected phenotypes.
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FIGURE 2 | Genomic prediction accuracies from forward validation. Prediction accuracies of using various sizes of haplotypes defined by different methods and
using individual SNPs were compared for CWT, BFT and EMA respectively. Accuracies were calculated as the correlation coefficients of GEBVs and pre-corrected
phenotypes.
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accuracy by using haplotypes was larger (Figure 2). LD
clustering-based haplotypes with 5 and 10 SNPs showed the
highest accuracy for both CWT and EMA, respectively.
Moreover, length-based haplotypes with five SNPs showed
the highest accuracy for BFT. Numerically, the maximum
increase in prediction accuracy was 3.5% for CWT, 4.6% for
EMA, and 2.1% for BFT.

The prediction accuracy of haplotype-based model tended to
decrease as the size of haplotypes became larger in all haplotype
defining methods. Overall, LD clustering-based haplotypes
showed the highest accuracy for all sizes except for 50 SNPs.

Paired t-tests were performed to determine whether the
increases in prediction accuracies by using haplotypes
compared to individual SNPs were statistically significant
(Table 3). Statistical tests were also performed for different
haplotype defining methods with different sizes for three
traits. Results revealed that an observed increase in
Frontiers in Genetics | www.frontiersin.org 7122
prediction accuracy in haplotypes with 5 or 10 SNPs defined
by three methods were found to be statistically significant in
both CWT and EMA.

Also, the heritability of the three traits were estimated using
haplotypes and individual SNPs (Table 4). Estimated heritability
for each trait using individual SNPs was 0.36, 0.43, 0.31 for CWT,
BFT and EMA respectively. Interestingly, estimated heritability
estimate using haplotypes was higher in all traits with values
ranging from 0.38 to 0.43 for CWT, 0.44 to 0.52 for BFT and 0.33
to 0.38 for EMA.
DISCUSSION

Genomic prediction accuracy using haplotypes designed in this
study was mostly higher than using individual SNPs and was
statistically significant in the best performing haplotypes for
CWT and EMA. The increased accuracy by using haplotypes
may be due to higher LD between alleles and QTLs, better
detection of ancestral relationships (identity-by-descent), and
capturing of short-range epistatic effects (Hess et al., 2017).
Haplotyping and constructing genomic prediction models
using haplotype alleles can improve prediction accuracy
without any additional cost for data production though it may
cause some more computational cost. The maximum gain in
accuracy was more than 1% in 5 × 5 cross-validation and more
than 4% in forward validation, suggesting that genomic
prediction accuracy can be improved by using haplotypes.
However, improvement depends on traits of interest, some
traits may elicit the same results with the use of haplotypes for
the genomic predict ion but other tra i ts may also
result contrariwise.

In addition, although overall prediction accuracy was low in
forward validation, the used of haplotypes still brought higher
prediction accuracy. Only length-based haplotypes with 5 or 10
SNPs showed higher accuracy than SNP-based model in EMA
when 5 × 5 cross validation was used while all haplotypes with 5,
10 or 20 SNPs showed increased accuracy in forward validation.
Also, prediction accuracy increased using haplotypes with 50
SNPs for EMA in forward validation but not in 5 × 5 cross-
validation. This shows that haplotypes can be more effectively
used for predicting the breeding values of younger animals from
older animals, thereby making it more useful for animal
breeding purposes.

Haplotype defining method with highest accuracy were found
to differ in each trait, specifically LD clustering for CWT and
EMA, while length-based haplotypes for BFT. Explicitly, LD
clustering-based haplotypes showed the highest accuracies at all
sizes except 50 SNPs for both CWT and EMA, and 20 SNPs for
BFT. Generally, using LD clustering-based haplotypes resulted in
high prediction accuracies. However, the effect of haplotype size
was greater than the effect of haplotype defining method on
prediction accuracy. In terms of haplotype size, the average five
SNPs for all three traits preformed best. In general, the prediction
accuracy was higher when smaller haplotypes were used. In
larger haplotypes, some redundant markers may be present, for
TABLE 3 | P-values of paired t-tests comparing prediction accuracies using
individual SNPs and haplotypes defined by different methods and sizes.

Average number of SNPs
per haplotype

CWT 5 10 20 50
SNP count-based haplotypes 0.002** 0.01* 0.21 0.98
Length-based haplotypes 0.0008** 0.03* 0.23 0.92
LD clustering-based haplotypes 0.0005** 0.005** 0.09 0.98

EMA 5 10 20 50
SNP count-based haplotypes 0.00004** 0.004** 0.12 0.81
Length-based haplotypes 0.00007** 0.007** 0.09 0.58
LD clustering-based haplotypes 0.0002** 0.002** 0.07 0.86

BFT 5 10 20 50
SNP count-based haplotypes 0.64 0.67 0.77 0.99
Length-based haplotypes 0.07 0.20 0.74 0.99
LD clustering-based haplotypes 0.77 0.52 0.43 1.00
* and ** indicates significant at a = 0.05, 0.01 respectively.
TABLE 4 | Estimated heritabilities using haplotypes defined by different methods
and sizes and using individual SNPs.

Average number of SNPs
per haplotype

CWT 5 10 20 50

SNP count-based haplotypes 0.39 0.39 0.41 0.43

Length-based haplotypes 0.38 0.39 0.40 0.42

LD clustering-based haplotypes 0.39 0.39 0.41 0.43

Individual SNPs 0.36
EMA 5 10 20 50

SNP count-based haplotypes 0.33 0.34 0.35 0.38

Length-based haplotypes 0.33 0.34 0.35 0.38

LD clustering-based haplotypes 0.33 0.34 0.36 0.38

Individual SNPs 0.43
BFT 5 10 20 50

SNP count-based haplotypes 0.45 0.46 0.48 0.52

Length-based haplotypes 0.44 0.45 0.47 0.50

LD clustering-based haplotypes 0.44 0.45 0.46 0.50

Individual SNPs 0.43
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instance, haplotype alleles carried by only few animals which will
result in low prediction accuracy.

The optimal size to define haplotypes for genomic prediction
depends on the distance between SNPs and the LD structure of
the population (Calus et al., 2009). The mean distance between
SNPs was 4,118.24 bp and the mean LD (r2) was 0.43 in the
Hanwoo population used for the study. In this study, the
haplotype size of best performance was 5 SNPs, while in other
studies the optimal numbers of SNPs per haplotype were 4–10,
while genotype sizes ranged from 5,000 to 50,000 SNPs (Calus
et al., 2009; Villumsen and Janss, 2009; Hess et al., 2017).
Further study testing the haplotypes sizes ranging from 2 to 10
may be proceeded to find the optimal haplotype size in Hanwoo.

The number of haplotype alleles indicates the number of
explanatory variables used for genomic prediction. As the
number of explanatory variables increases, the dimension of
the design matrix in the equation becomes larger, taking more
time and memory to solve the mixed model equation. Thereby,
reducing the number of haplotype alleles enables more efficient
calculation of GEBVs. In this study, two methods are possible to
reduce the number of haplotype alleles. The first is LD clustering
to define haplotypes and the second is using smaller sizes of
haplotypes. However, the effect of haplotype size was larger than
the effect of haplotype defining method on number of alleles.
Considering both prediction accuracy and the number of
haplotype alleles, LD clustering was the optimal method for
CWT and EMA.

Higher heritability estimate values were obtained using
haplotypes compared to individual SNPs. Estimated heritability
tended to increase as the number of haplotype alleles increased. As
the number of alleles increases, more markers are used to explain
the phenotypic variance, thus a higher proportion of total variance
can be explained, resulting in higher heritability. However, caution
is needed to interpret genomic heritability since there may be bias
in the likelihood estimate of the variance components caused by
linkage equilibrium between some markers and QTLs (de los
Campos et al., 2015). In this study, the estimated heritabilities did
not differ much with the results of other studies regarding Hanwoo
where the estimated heritability of CWT, BFT and EMA were
0.30–0.33, 0.27–0.41 and 0.35–0.50, respectively (Yoon et al., 2002;
Park et al., 2013; Lee et al., 2014).

The estimation of GEBV from haplotype alleles depends on
the imputation and phasing results from genotypes. Errors from
imputation or phasing may produce wrong alleles that are not
actually carried by the sample. Especially in haplotypes defined
by LD clustering, inaccurate phasing may cause haplotype
boundaries to be differently defined resulting in lower
accuracy. Therefore, finding more accurate phasing methods
can further improve the prediction accuracy by using
haplotypes. Besides, methods modeling the genetic relatedness
from haplotype similarity can be considered to resolve such
inaccuracies occurring from phasing errors (Hickey et al., 2013).
In addition, discarding haplotype alleles of low frequencies by
regarding them to have zero effects can be considered, since the
generation of alleles having an extremely low frequency (e.g. only
Frontiers in Genetics | www.frontiersin.org 8123
one in the population) can be a cause of overfitting, potentially
lowering the prediction accuracy. Also, this can reduce the
computational cost by lessening explanatory variables.

In this study, the advantage of using haplotypes in genomic
prediction was testes in the Hanwoo population. Some studies
that tested other livestock populations reported that haplotypes
can be advantageous for genomic prediction. Applying haplotype
to genomic prediction has been studied in Montbeliarde bulls
(Jónás et al., 2016), New Zealand dairy cattle (Hess et al., 2017),
Nordic Holstein (Cuyabano et al., 2014; Cuyabano et al., 2015),
and Danish Holstein bulls (Edriss et al., 2013). Although
different haplotypes were used in these studies and the design
of the studies may differ, their study still shows the benefits of
using haplotype for genomic prediction. Therefore, we expect
that applying the haplotypes defined in this study can bring
improvement to prediction performance not only in Hanwoo but
also in other livestock populations. However, the optimal size of
haplotype may vary from population to population and most of
the studies about haplotype and genomic prediction were tested
in dairy cattle or beef cattle. Thus, care should be taken when
applying to other species.

In conclusion, genomic prediction using haplotypes in the
Hanwoo population showed increase accuracy for three carcass
traits, CWT, BFT and EMA. Haplotypes used for genomic
prediction were defined by three methods, length, SNP count
and hierarchical clustering based on LD with four different sizes.
The haplotype defining method showing the highest prediction
accuracy was LD clustering-based haplotypes with five SNPs for
CWT and EMA and length-based haplotypes with 5 SNPs for
BFT. LD clustering-based haplotypes had the least number of
alleles, being favorable in terms of computation time. However,
haplotype optimization methods for various traits need to
be continuously.
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Understanding the genetic structure of adaptation and productivity in challenging

environments is necessary for designing breeding programs that suit such conditions.

Crossbred dairy cattle in East Africa resulting from over 60 years of crossing exotic

dairy breeds with indigenous cattle plus inter se matings form a highly variable admixed

population. This population has been subject to natural selection in response to

environmental stresses, such as harsh climate, low-quality feeds, poor management,

and strong disease challenge. Here, we combine two complementary sets of analyses,

genome-wide association (GWA) and signatures of selection (SoS), to identify genomic

regions that contribute to variation in milk yield and/or contribute to adaptation in

admixed dairy cattle of Kenya. Our GWA separates SNP effects due to ancestral

origin of alleles from effects due to within-population linkage disequilibrium. The results

indicate that many genomic regions contributed to the high milk production potential

of modern dairy breeds with no region having an exceptional effect. For SoS, we used

two haplotype-based tests to compare haplotype length variation within admixed and

between admixed and East African Shorthorn Zebu cattle populations. The integrated

haplotype score (iHS) analysis identified 16 candidate regions for positive selection in the

admixed cattle while the between population Rsb test detected 24 divergently selected

regions in the admixed cattle compared to East African Shorthorn Zebu. We compare

the results from GWA and SoS in an attempt to validate the most significant SoS results.

Only four candidate regions for SoS intersect with GWA regions using a low stringency

test. The identified SoS candidate regions harbored genes in several enriched annotation

clusters and overlapped with previously found QTLs and associations for different traits

in cattle. If validated, the GWA and SoS results indicate potential for SNP-based genomic

selection for genetic improvement of smallholder crossbred cattle.
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INTRODUCTION

Exotic dairy breeds have been extensively imported to Kenya
since the 1950s for use in crossbreeding aimed to improve
the productivity of indigenous cattle by combining the
environmental adaptation features of the latter with the high
milk yield potential of the former. This has resulted in a
large population of admixed cattle that, for several decades,
have been subject to natural selection in response to different
environmental stresses, such as harsh climate, low-quality feeds,
poor management, and strong disease challenge. Smallholder
farmers retain the admixed cattle typically in herds of size
one to five cows and breed them mainly through natural
mating to local bulls. A small proportion of matings (∼10%)
are made by AI to imported and locally produced purebred
dairy bulls. There is no record of pedigree or performance of
smallholder cattle and no current genetic improvement program
for crossbred cattle. Genomic technologies can aid smallholder
dairy farmers to develop genetically improved animals when
the genetic improvement by traditional breeding schemes is
impossible (Mrode et al., 2018; Marshall et al., 2019; Ojango et al.,
2019).

With high-density SNP markers, it is possible to identify
genomic regions that may be useful in future selection. This
can be done through genome-wide association (GWA) analysis,
which relies on linkage disequilibrium (LD) between SNPs and
causal variants and requires phenotype plus genotype data, and
by detection of signatures of selection, which only requires
genotypic information. In admixed populations, the LD between
SNP markers and causal variants can arise from the LD that
existed in the parental populations that contributed to the
admixed population and from de novo LD that was created
when crossing populations (Cole and Silva, 2016). Performing
a standard GWA in an admixed population doesn’t have the
same power as that in a purebred population. This is because
the within-population LD is not expected to be the same in all
the ancestral populations, and the ancestral within-population
LD differs from the de novo LD that is created by the crossing
process. However, it is possible to separately map the within-
breed LD with causal variants from the between-breed LD with
causal variants that are fixed or are at very high frequencies for
different alleles in different ancestral populations (the variants
that contribute to the phenotype differences between ancestral
breeds) if alleles in the admixed population can be correctly
assigned to their ancestral origin. The latter can be done through
methods that infer the ancestry of haplotypes, such as LAMP-
LD (Baran et al., 2012). Detecting the presence of causative loci
that differentiate ancestral populations is of particular interest in
crosses between Bos taurus dairy breeds and African indigenous
breeds given their huge (up to 10-fold) difference in milk
production potential.

When a beneficial allele increases in frequency by natural or

artificial selection, the allele frequencies of neighboring loci in LD

are also altered, and this creates extended blocks of haplotypes

with increased LD and reduced variation. The changes in allele
frequencies, LD, and genetic variation accumulate over time and
generate unique patterns at specific regions of genome, which

are referred to as signatures of selection (Walsh and Lynch,
2018). The identification of signatures of selection in modern
livestock populations can help to uncover genes and biological
mechanisms involved in the domestication process, breed
formation, and artificial selection for economically important
traits as well as local adaptation to new environments. Several
genome scans aimed to detect recent and past selection have
been implemented for purebred (e.g., Qanbari et al., 2014)
and composite (e.g., Goszczynski et al., 2018) breeds as well
as admixed livestock populations (Gautier and Naves, 2011;
Bahbahani et al., 2018; Cheruiyot et al., 2018).

In admixed populations generated by crossing genetically
differentiated ancestral breeds, the first generation of crosses
retains intact haplotypes from parental breeds. Recombination
in subsequent generations of within-population matings breaks
down the parental haplotypes and forms mosaicism that expands
as the admixed population ages. The fragmentation of ancestral
haplotypes across generations can be assessed through the
ancestrymapping of closely linkedmarkers to obtain information
about the history of the admixed population (Freeman et al.,
2006). Since a recent admixture can mimic the patterns of
variation left by selection around a selected site and introduce
noise in detection of selection signatures (Lohmueller et al.,
2010), it is necessary to take the admixture process into account
before searching for any post-admixture selection signal in
admixed populations.

Several statistical methods have been developed for detection
of genomic footprints of selection that essentially compare the
patterns of genetic variation within or between populations
and decide on whether one should accept or reject the null
hypothesis of “no selection” and interpret the test statistics as
evidence for selection or not (see review by Vitti et al., 2013).
Among the different approaches designed to identify positive
selection, the haplotype-based methods are more powerful
because they combine information from patterns of allele
frequencies and persistence of LD. The extended haplotype
homozygosity (EHH) statistic developed by Sabeti et al. (2002)
measures the probability of being identical by descent for any two
randomly chosen chromosomes within a population carrying a
core genomic region surrounding a presumably selected allele.
Voight et al. (2006) proposed a within-population variation of
EHH based on the contrast between the integral of the EHH for
derived (selected) and ancestral (control) alleles called integrated
haplotype score (iHS). The iHS test is especially powerful in
detection of recent selection that has swept the selected allele
to moderate frequencies, but the selected allele has not yet been
fixed. A complementary method for iHS to detect sweeps near
fixation is the between-population Rsb test proposed by Tang
et al. (2007). The Rsb statistic compares the integrated EHH
profiles between pairs of populations and searches for alleles that
have been targeted by selection and swept toward fixation in one
population but not in the other. There are several examples of
application of iHS and Rsb statistics for detecting both recent
and ancient positive selections in different livestock population
(Bahbahani et al., 2015; Cheruiyot et al., 2018).

Here, we use 521,362 autosomal SNPs and scan the genome
of 1,475 admixed cattle from Kenya in (1) a GWA analysis
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that separates breed origin SNP effects from effects due to
within-population LD to find SNPs associated with milk yield
and (2) a signature of selection (SoS) analysis to detect signals
of post-admixture selection. The GWA and SoS analyses are
complementary because in relatively young populations, SoS are
not expected to have led to fixation of alleles, and therefore, the
results from one can be used as partial validation of the other.

MATERIALS AND METHODS

Genotypes
The genotypic data included 1,475 admixed and 19 East African
Shorthorn Zebu (EASZ) cattle sampled in Kenya between
2010 and 2014 and genotyped for 777,962 SNP markers using
Illumina BovineHD BeadChip (Illumina, San Diego, CA). More
information on collection of samples can be found in Aliloo
et al. (2018). We retained the autosomal SNPs for analysis. The
genotype calls with a GC score < 0.6 were set as missing, and
then, SNPs with a call rate > 0.95 were kept. A reference set of
high-density genotypes of 105 pure Bos indicus animals (IND)
from 12 Indian breeds were obtained by stratified sampling of
the larger data set analyzed by Strucken et al. (2019). Reference
genotypes were also obtained for six different cattle populations
representing the two other major ancestral groups in East Africa,
i.e., (i) African taurine (AFT) ancestors of indigenous cattle:
NDama (ND, n= 24) and (ii) European taurine (EUT) ancestors
of admixed cattle: Holstein (HO, n = 71), Jersey (JE, n = 46),
Guernsey (GU, n = 21), British Friesian (BF, n = 26), and
Ayrshire (AY, n = 519). All genotypes except BF and AY, which
were provided by the Scottish Rural University College (SRUC)
and CanadianDairy Network (CDN), respectively, were obtained
from the Bovine HapMap Consortium (http://bovinegenome.
org). These genotypes were obtained post-quality control, so
only the common SNPs between them and African and Indian
genotypes were extracted. We sampled an equal number of 21
animals from each EUT breed and considered the five EUT
breeds as recent ancestors of Kenyan admixed dairy cattle. SNPs
with aMAF less than 0.01 across the whole sample were excluded.
Animals were also required to have genotypes for more than
90% of SNPs. These controls resulted to 521,362 SNPs on 1,475
admixed, 19 EASZ, 105 IND, 24 AFT, and 105 EUT animals
distributed over 29 autosomes based on the UMD3.1 bovine
reference genome. Details of the cattle populations in this study
are presented in Table 1.

Phenotypes
Milk yield deviations (MYD) were obtained for the individual
test-days of 1,034 (out of 1,475) Kenyan admixed cows in
smallholder farms from the analyses of Brown et al. (2016).
In their analyses, test-day milk yields (TDMY) were analyzed
using a model that included fixed effects for parity and Legendre
polynomial of order 4 fitted for each of five dairy breed classes.
The dairy breed classes were assigned based on admixture
(Alexander et al., 2009) estimates of total dairy breed proportion
for each animal using SNP genotypes (Ojango et al., 2019).
Random effects were included for contemporary management
group-year-season, animal permanent environment, and animal

TABLE 1 | Details of the different cattle populations used in this study.

Breed group Source Original

population

size

Sample

size

Ancestral

group*

Kenyan

crossbred

Kenya 1,475 1,475 –

East African

Shorthorn

Zebu

Kenya 19 19 –

Dangi India 65 13 IND

Gavlao India 19 4 IND

Gir India 118 24 IND

Hallikar India 27 5 IND

Haryana India 11 2 IND

Khilar India 24 5 IND

Krishnavalley India 17 3 IND

Lalkandhari India 35 7 IND

Malinar Gidda India 14 3 IND

Ongole India 46 9 IND

Sahiwal India 104 21 IND

Tharparkar India 45 9 IND

NDama HapMap 24 24 AFT

Holstein HapMap 71 21 EUT

Jersey HapMap 46 21 EUT

Guernsey HapMap 21 21 EUT

British

Friesian

UK 26 21 EUT

Ayrshire Canada 519 21 EUT

*IND, Bos indicus; AFT, African Bos taurus; and EUT, European Bos taurus.

additive genetic effects, using a genomic relationship matrix
based on VanRaden (2008). The MYD were obtained by
correcting the TDMY for fixed effects plus the random
management group effect (Brown et al., 2016).

Population Structure Analysis
To investigate the population structure of admixed cattle in
relation to the ancestral breeds, a principal component analysis
(PCA) based on all SNP genotypes after quality control (521,362)
was implemented. The PCA was applied to a (co)variance
matrix between all animals’ genotypes (G) constructed using
the VanRaden (2008) method. The first and second principal
component were plotted to visualize the distribution of admixed
cattle across the different ancestral breeds.

Local Ancestry Estimation of Admixed
Sample
To infer the local ancestry of admixed cattle at individual SNPs,
we used LAMP-LD software (Baran et al., 2012) with three groups
of ancestral haplotypes, i.e., IND, AFT, and combined EUT.
The admixed population being analyzed results from crosses
between local indigenous cattle, i.e., the EASZ and EUT breeds.
The indigenous cattle are known to be old, probably ancient,
admixtures of Bos indicus and African Bos taurus cattle (Strucken
et al., 2017). Thus, in the absence of a large sample of the
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indigenous EASZ population, we used IND andAFT as proxies to
track the indigenous haplotypes. The genotypes of all individuals,
i.e., ancestors and admixed animals, were phased together using
Eagle v2.4 (Loh et al., 2016) to provide haplotypes for local
ancestry inference and also for calculation of test statistics for
detection of selection signatures across the admixed genome.
LAMP-LD uses hidden Markov models of haplotype diversity
of ancestral populations within a window-based framework to
trace the origin of alleles in the admixed population (Baran et al.,
2012). We used the default input parameters, i.e., a 300-SNP
window size and 15 as the number of states, to run LAMP-LD
and obtained the local ancestries of admixed animals.

Crossover Events Across the Admixed
Genome
The local ancestry inferences obtained above were used to
calculate the average number of crossover events across the
admixed genome. We defined a recent crossover as the transition
from either IND or AFT ancestry to EUT ancestry and vice
versa. For each haplotype of a given admixed individual, we
counted the number of recent crossovers and standardized it by
chromosome length to obtain the number of crossover events per
Morgan. For this calculation we assumed a recombination rate of
1 Morgan = 100 Mbp. Then we ranked the two haplotypes of
each admixed individual within each chromosome from lowest
to highest number of crossovers. Finally, the average (across all
chromosomes) frequency of crossovers in haplotypes with lowest
number of crossovers was used to rank the admixed animals.

Genome-Wide Association Mapping
A mixed linear model was used to test for associations between
genome-wide SNPs and MYD of the admixed cattle. A single
SNP regression model (fitting one SNP at a time) simultaneously
estimated the effect of the ancestral origin (exotic vs. indigenous)
of the SNP and the residual effects of SNP alleles after accounting
for the ancestral origin. The local ancestry inferences obtained
above were used to assign the ancestral origin of SNP alleles with
ancestral origin coded as 0, 1, and 2 for no copies, one copy,
or two copies coming from the EUT ancestor, respectively. The
GWAmodel was as follows:

y = 1nµ + Xβ +Wu+Wpe+ e,

where y is the vector of MYD of size n, 1n is a vector of ones,
µ is the population mean term, β is a 2 × 1 vector containing
the ancestral origin of allele effect and residual SNP effect, u
contains polygenic effects assumed to be distributed as u ∼

N(0, Gσ 2
g ) with G being the genomic relationship matrix based

on all SNP genotypes except the SNPs on the chromosome of
the marker for which the association is tested (VanRaden, 2008),
pe is the vector of random permanent environment effects with
pe ∼ N(0, Iσ 2

pe), and e is the vector of random residual deviates

assumed to be distributed as e ∼ N(0, Iσ 2
e ). X is an n × 2

design matrix allocating genotypes to ancestral origin of allele
effect and residual marker effect, and W is the incidence matrix
for the random animal and permanent environmental effects. σ 2

g ,

σ 2
pe, and σ 2

e are polygenic additive, permanent environment, and
residual variances, respectively.

The above model was fitted by WOMBAT (Meyer, 2007). The
SNP effects obtained from WOMBAT were tested using a Wald
test and then the associated p-values were supplied to the q-
value package (Storey and Tibshirani, 2003) in R to account for
multiple testing and to generate the corresponding q values (i.e.,
the SNP false discovery rate, FDR) and FDR thresholds.

Detection of Selection Signatures
We used two complementary haplotype-based methods to scan
the genome of the admixed cattle for candidate regions under
selection. The integrated haplotype score (iHS) is an intra-
population measure of the extent of haplotype homozygosity
(Voight et al., 2006), and the Rsb test compares haplotype
homozygosity length between populations (Tang et al., 2007).

iHS
The iHS values were calculated within each chromosome of
admixed genome according to Voight et al. (2006) using the rehh
package (Gautier et al., 2017) for R software. At each locus with
an MAF >0.05, we calculated the integrated extended haplotype
homozygosity for the ancestral (iHHa) and the derived (iHHd)
alleles, and then, the iHS was calculated as iHS = ln ( iHHa

iHHd
).

The iHH was defined as the area under the extended haplotype
homozygosity (EHH) curve at a core allele within a chromosome
using a homozygosity decay threshold of 0.05. The EHH for each
core allele was calculated based on Sabeti et al. (2002) as

EHHas ,t =
1

nas (1− nas )

Kas ,t
∑

k=1

nk(nk − 1),

where Kas,t is the number of distinct haplotypes from the core
SNP s to SNP t carrying the core allele as, nk is the number of
times the kth haplotype is observed, and nas is the total number

of haplotypes carrying as and is calculated as
∑Kas ,t

k=1
nk. The iHS

values were standardized to have a mean of 0 and a standard
deviation of 1 according to the allele frequency bins to which
they belonged. The frequency bins were determined by varying
the frequency of the derived allele with a step of size 0.025. Then,
the iHS values were transformed into p-values of “no selection”
hypothesis according to Gautier and Naves (2011):

piHS = − log [1− 2|8 (iHS) − 0.5|],

where Φ(iHS) represents the Gaussian cumulative distribution
function of iHS values. To define the ancestral allele for each
locus, we calculated allele frequencies in the entire data set and
assigned the most common allele as the ancestral allele.

Rsb
The Rsb values between admixed and EASZ cattle populations
were calculated within each chromosome according to Tang
et al. (2007) using the R software rehh package (Gautier et al.,
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2017). The site-specific extended haplotype homozygosity was
calculated for admixed and EASZ cattle populations separately:

EHHSs,t =
1− hs,t

1− hs
,

hs,t =
ns

ns − 1



1−
1

n2s

Kas ,t
∑

k=1

n2as



, and

hs =
ns

ns − 1



1−
1

n2s

2
∑

as=1

n2as



 ,

where ns is the total number of haplotypes carrying as and is
calculated as

∑2
as=1 nas for ancestral (as = 1) and derived (as

= 2) alleles, and Kas,t is the number of distinct haplotypes from
the core SNP s to SNP t carrying the core allele as. The iES was
defined as the area under the EHHS curve at a core allele within
a chromosome using a homozygosity decay threshold of 0.05.
The Rsb score between admixed and EASZ cattle populations
was defined as Rsb = ln (

iESadmixed
iESEASZ

) for each focal SNP and then

standardized as

Rsb(s) =
Rsb− medRsb

σRsb
,

wheremedRsb and σRsb are the median and standard deviation of
Rsb across all SNPs within genome. The p-values for Rsb(s) were
calculated according to Gautier and Naves (2011):

pRsb(s) = − log [1− 2|8
(

Rsb
)

− 0.5|],

where Φ(Rsb(s)) represents the Gaussian cumulative distribution
function of Rsb(s) values. The qvalue package (Storey and
Tibshirani, 2003) in R software was used to correct p-values
for multiple testing in iHS and Rsb(s) by generating the
corresponding q-values and FDR thresholds.

We calculated measures of selection signatures in two
scenarios. In the first scenario, all the admixed samples were used
to obtain estimates of iHS. In the second scenario, admixed cattle
with less than three crossovers were removed prior to iHS and
Rsb analyses because they were deemed to be recently admixed
individuals in which selection has not had enough time to leave a
signature on their genome.

Annotation and Tracking of Candidate
Regions
A candidate region detected by the SoS analyses was defined by
first identifying SNPs with a q value < 0.1 and then searching
within the 500-Kbp interval downstream and upstream (1 Mbp
window) of the identified SNP for SNPs with q value < 0.5 and q
value < 0.25 for iHS and Rsb analyses, respectively. We extended
the detected region (with a 500-Kbp step size) until there was no
SNP with a q value less than the suggestive thresholds within the
500-Kbp interval from the last identified SNP. The boundaries
of the candidate region were determined based on the base pair
positions of the last-identified SNP in each direction. The same
procedure was used for iHS and Rsb analyses. Where GWA

results were used for partial validation of SoS analyses (see
below), we used a suggestive p-value threshold of 10−3 to define
the candidate regions from GWA, and to define the boundaries
of each candidate region, we searched the 500-Kbp upstream
and downstream intervals for SNPs whose p-values were smaller
than 10−3 and extended the region until there was no SNP p-
value less than our suggestive threshold. The candidate regions
designated by iHS and Rsb analyses were then annotated using
the Ensemble Biomart 94 based on the UMD v3.1 bovine genome
assembly for the underlying genes, and the biological functions
of the discovered genes were evaluated and compared to the
existing literature. We also calculated the ancestral allele dosages
for the identified candidate regions in order to track the candidate
regions under selection to each of the ancestral populations
described above. In an attempt to validate SoS regions in the
admixed cattle, we looked for overlap between the candidate
regions identified in each of the SoS analyses, i.e., iHS or Rsb, and
those identified by GWA.

The QTL and SNP association data mapped on the
UMD3.1 bovine reference genome were obtained from the cattle
QTL database (https://www.animalgenome.org/cgi-bin/QTLdb/
BT/index) on July 8, 2019, and was used to compare the results of
the present study with the reported QTL regions in the literature.
We compared the genes within our identified candidate regions
for selection from iHS and Rsb analyses to the whole bovine
genome background using functional annotation clustering by
DAVID online bioinformatics resource v 6.8 (Huang et al., 2009)
to find the pathways that are significantly overrepresented.

RESULTS

Genetic Structure of Admixed and
Ancestral Cattle Populations
The PCA revealed a complex population structure for the
admixed cattle in relation to their ancestral breeds (Figure 1).
The Kenyan admixed cattle was found to be an unstabilized
population with very high genetic diversity. Samples ranged
along the axis from pure exotic dairy breeds through to pure
indigenous EASZ. The EASZ animals formed a tight cluster on
the axis between IND and AFT reference samples consistent
with EASZ being an old or ancient admixture of IND and AFT
ancestors that has a higher proportion of IND than AFT. The
three ancestral breeds, i.e., EUT, AFT, and IND, were separated
by the first PC explaining around 90% of the total variation
between all genotypes. The second PC only explained around
1.6% of the variation and separated AFT fromEUT. The locations
of crossbred animals in Figure 1 suggest that most animals
were of Ayrshire, Holstein, and/or British Friesian ancestry with
little contribution from Jersey and Guernsey, consistent with the
previous findings of Strucken et al. (2017).

Local Ancestry of Admixed Cattle
The ancestral haplotypes from the three groups (i.e., IND, AFT,
and EUT) were used to infer the local ancestries of the admixed
cattle at the individual loci level. The majority of haplotypes
in the admixed cattle were found to be originated from EUT
ancestor (≈0.73), and IND and AFT ancestral populations
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FIGURE 1 | The first two principal components showing the distribution of admixed cattle in relation to their ancestral breeds. IND, Bos indicus; AFT, African Bos

taurus; AY, Ayrshire; HO, Holstein; BF, British Friesian; GU, Guernsey; JE, Jersey; EASZ, East African Shorthorn Zebu; and XX, Admixed cattle.

FIGURE 2 | The genome-wide average ancestries of the admixed cattle contributed by the three ancestral groups. IND, Bos indicus; AFT, African Bos taurus; and

EUT, European Bos taurus.

contributed smaller proportions of admixed haplotypes (≈0.24
and ≈0.03, respectively). The genome-wide average ancestries
of the three ancestral populations for each crossbred animal are
shown in Figure 2. This confirms the wide range of admixture
inferred from Figure 1. The distribution of local ancestries
across different chromosomes of the admixed cattle (Figure S1)
were, in general, agreement with genome-wide average ancestries
showing that the admixture was relatively uniform across
all chromosomes.

The distribution of number of recent crossovers on haplotypes
with the lowest number of crossovers in different chromosomes
is shown in Figure S2, and the corresponding distribution of
genome average number of crossovers is shown in Figure 3A.
For the majority of the admixed cattle, the number of recent
crossovers was calculated to be small (<2 per Morgan) on almost
all chromosomes. Only 55 animals passed a threshold of three
or more crossovers per Morgan. The distribution of the number
of recent crossovers on haplotypes carrying the highest number
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FIGURE 3 | The distribution of genome-wide average number of crossovers per Morgan on the admixed cattle haplotypes carrying the lowest (A) and highest (B)

number of crossovers.

of crossovers across different chromosomes and the distribution
of corresponding genome average number of crossovers are
shown in Figure S3 and Figure 3B, respectively. The animals
with very low numbers of crossovers (<2 per Morgan) in
Figure 3B are predominantly animals with high EUT ancestral
proportion, in which most of the genome is homozygous
EUT. However, most haplotypes presented a high number of
recent crossovers (Figure 3B) with some individual chromosome
haplotypes showing more than 20 crossovers (Figure S3).

The distribution patterns for the average local ancestries of
admixed cattle with three or more recent crossovers per Morgan
in haplotypes carrying the lowest number of crossovers are shown
in Figure 4. The average contributions (calculated as average
breed proportions) from IND + AFT (i.e., indigenous) vs. EUT
ancestors were 0.52 and 0.48, respectively. This reflects that the
ability to detect recombination events is highest in animals with
∼50% EUT vs. indigenous ancestry because, in animals with
a high proportion of either indigenous or EUT ancestry, most
historical crossover events occur within the dominant ancestral
genome and, thus, are not detectable.

Genome-Wide Associations for SNP Allele
and Ancestral Origin of SNP Allele
The Manhattan plots of SNP allele effects and ancestral origin
effects for MYD are presented in Figures 5A,B, respectively. No
SNP passed an FDR threshold of <0.1 for these effects. For SNP
allele effects, six SNP had the minimum observed FDR of 0.112
although, for ancestral origin effects, 518 SNP had the minimum
observed FDR of 0.229. With an FDR threshold of <0.35, a
total of 35 and 918 SNP passed the threshold for SNP allele
effects and ancestral origin effects, respectively. The distribution
of the estimated effects of SNP alleles and ancestral origin with
a FDR < 0.35 are shown in Figures S4A,B, respectively. The
estimated effects of SNP alleles on milk yield (Figure S4A)
were approximately equally distributed on either side of zero
as expected in GWA when the allele assignment is random.

The estimated effects of ancestral origin in Figure S4B were
predominantly positive, indicating that the alleles coming from
the EUT ancestor had a positive effect on milk yield.

Detection of Signals of Positive Selection
Within Population
The Manhattan plots of p-values for genome-wide iHS scores
calculated using all samples of admixed cattle as well as when
using only the admixed cattle with three or more crossovers per
Morgan on the chromosomes with lowest frequency of crossovers
are given in Figures 6A,B, respectively. Although including all
admixed cattle for calculation of iHS scores was not successful
in detection of any candidate region at an FDR threshold of 0.1
(Figure 6A), removing admixed cattle with a genomic average
crossover of less than three per Morgan identified 16 candidate
regions across seven autosomes (Figure 6B). The size of these
candidate regions ranged from only 112.25 Kbp on BTA 12 up
to 0.68 Mbp on BTA 7 and together encompassed 106 genes. The
details of the identified candidate regions from the iHS analysis of
the filtered admixed cattle are in Table 2. BTA 7 had the highest
number of candidate regions for selection (five regions), and BTA
3 contained 43 genes, which was the highest among all BTAs.
Across all candidate regions, 10 genes were deemed as candidate
genes for selection because there was at least 1 SNP with a FDR
< 0.1 located within them. The ancestry of all candidate regions
in BTA 3 was dominated by EUT, and for other chromosomes
with more than one candidate region, the dominant ancestry was
either IND or EUT.

Between Populations
The distribution of p-values from Rsb analysis between the
admixed cattle with a minimum number of three crossovers on
the haplotype carrying the lowest number of crossovers across
their genome and the EASZ population is shown in Figure 7.
At FDR < 0.1, we identified 24 candidate regions for divergent
selection between the admixed cattle and EASZ, indicating active
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FIGURE 4 | Average local ancestries of the admixed cattle with three or more crossovers per Morgan in the haplotype carrying the lowest number of crossovers. The

gray, yellow, and blue lines represent Bos indicus, African Bos Taurus, and European Bos taurus ancestry, respectively.

selection in the admixed population on 15 autosomes. These
regions together harbored 15 candidate genes. BTA 23 contained
the shortest candidate region with only 1 SNP, and the longest

candidate region of 0.81 Mbp was found on BTA 6 (93 SNPs).
The strongest selection signature with smallest SNP q value

and highest peak in the Manhattan plot of Figure 7 was on

BTA 3, followed closely by another candidate region on the

same chromosome. The strongest candidate region for selection
on BTA 3 also encompassed the highest number of candidate
genes (a total of four) among all BTAs, whereas there was no
candidate genes found in BTAs 2, 6, 9, 12, 13, 16, 21, and
29 (Table 3). The dominant ancestry of all candidate regions
was EUT except four regions with IND ancestry on BTAs 3, 8,
21, and 29.

Validation of Candidate Regions for
Selection With GWA
Because the SoS showed lower FDR than the results from the
GWA analysis, for the purpose of investigating possible candidate
genes, we chose to cross-validate the SoS that passed FDR <

0.1 with the GWA results. We used only the estimates of SNP
allele effects because the confidence intervals for ancestral origin
effects were very large. Four candidate regions from GWA, on
BTAs 1, 7, and 20, overlapped with four candidate regions for
selection obtained from iHS and Rsb analyses (shown in red
boxes in Figure 5A). A candidate region for GWA on BTA 7
spanning from 44.12 to 44.96 Mbp covered around 0.04 Mbp
of a selection signature discovered from iHS analysis (Table 2).
In addition, two candidate regions for selection identified by
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FIGURE 5 | (A) The Manhattan plot of p-values for SNP allele effects and (B) the Manhattan plot of p-values for ancestral origin effects. The red boxes in (A) are the

candidate regions for selection signatures that overlap with GWA regions. The colored horizontal lines are false discovery rate thresholds at 0.112 [−log10(p-value) =

5.88] and 0.35 [−log10(p-value) = 4.53] in (A), and at 0.229 [−log10(p-value) = 3.55] and 0.35 [−log10(p-value) = 3.11] in (B), from top to bottom, respectively. The

dashed line in (A) is the suggestive p-value threshold of 10−3.

Rsb on BTA 1 and distributed from 19.76 to 10.27 Mbp and
from 58.74 to 59.22 Mbp overlapped with a candidate regions
for GWA spanned from 20.09 to 20.60 Mbp and 1 SNP on
58.96 Mbp, respectively. Another candidate region identified
by Rsb on BTA 20 also intersected with a candidate region
from GWA that covered between 31.32 and 31.87 Mbp of the
chromosome (Table 3).

Functional Characterization of Candidate
Regions for Selection
A total of 106 genes from iHSmethod (Table S1) are grouped into
13 annotation clusters, of which five are significantly enriched
(enrichment score > 1.3 in Table S2). The enriched annotation
terms from iHS analysis are associated with different biological
functions, namely olfactory receptor activity, potassium ion
transport, immunoglobulin molecules structure, SPRY domain,
and innate immunity. The 119 genes within the candidate
regions detected by Rsb analysis (Table S1) are categorized into
12 annotation clusters, of which two clusters are significantly
enriched (Table S2). The significantly enriched annotation
clusters from Rsb are involved in potassium ion transport and
ephrin receptor signaling pathway.

The 16 and 24 candidate regions for selection identified by
iHS and Rsb intersect with 208 and 373 QTLs or associations

for different traits among which are reproduction, health,
conformation, and meat and milk traits (Table S3).

DISCUSSION

The distribution of admixed individuals in relation to the
purebred ancestral breeds and the estimated ancestral breed
proportions of the admixed cattle (Figures 1, 2) confirms the
previously reported findings that the Kenyan crossbred dairy
cattle form an unstabilized and highly diverse admixture of local
indigenous cattle and exotic dairy breeds (Strucken et al., 2017).
It has been shown in the same population that it is important
to take the variation in breed composition into account when
undertaking genetic evaluations of admixed individuals (Ojango
et al., 2019).

The method of assigning ancestry of admixed cattle at
individual loci using haplotypes from three reference breed
groups (i.e., IND, AFT, and EUT) appeared to work very
well, yielding similar levels of indigenous vs. exotic admixture
to previous Admixture analyses (Alexander et al., 2009) of
the same population (Weerasinghe, 2014; Strucken et al.,
2017). The number of available samples for AFT was limited,
and fewer samples were used compared to the other two
ancestral populations. This might have led to the observed
underestimation of AFT relative to IND when compared to
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FIGURE 6 | (A) The Manhattan plot of p-values for genome-wide iHS scores calculated using all samples and (B) the Manhattan plot of p-values for genome-wide iHS

scores calculated using only admixed cattle with three or more crossovers per Morgan. The red and blue horizontal lines are false discovery rate thresholds at 0.05

[−log10(p-value) = 6.25] and 0.10 [−log10(p-value) = 5.06], respectively. Green points are the SNPs within the candidate regions identified as being under selection.

whole-genome admixture analyses of the same population
(Weerasinghe, 2014; Strucken et al., 2017). When we compared
results of genome-wide admixture analyses (results not shown)
to the genome-wide average of local ancestries from LAMP-
LD, we observed a very high correlation (∼0.99) between
all components of ancestry inference from the two analyses,
notwithstanding that the estimated AFT ancestry was higher
from admixture compared to LAMP-LD (0.08 vs. 0.03). Of
the reduced AFT estimate, 0.03 appeared in the IND estimate
and 0.02 in the EUT estimate. The small proportion of
AFT ancestry that appears to have flowed into the EUT
estimate may have caused a small error in the assignment
of ancestral haplotypes and, hence, crossover events, in
these analyses.

The Manhattan plot of the GWA analysis of SNP effects
(Figure 5A) consisted of relatively sharp peaks that are typical
of a within-population GWA. Thirteen peaks passed an FDR
of 0.35, giving an expectation that 65% (i.e., approximately
eight) of these peaks are real effects. The Manhattan plot
of the GWA analysis of ancestral origin effects (Figure 5B)
consisted of very broad peaks. This is expected because mapping
ancestral origin effects is analogous to QTL mapping in crosses
between inbred lines, where the confidence interval for location
of a QTL effect is very large in early-generation crosses and
reduces as the number of recombination events between ancestral
haplotypes increases with increasing number of generations of

inter se crossing (Lynch and Walsh, 1998). The situation in
this crossbred cattle population is more complicated than inter
se mating in populations created from inbred lines because
the low frequency use of AI and the wide variation in breed
compositions cause the number of recombination events on
a given chromosome copy to vary from very few for recent
crosses to purebred or high-grade animals to very many
for chromosomes resulting from many generations of inter
se matings.

Depending on what is deemed to be a single peak vs.
multiple peaks, at FDR of 0.35, between 15 and 18 peaks for
ancestral effects were detected with an expectation that 65%
(i.e., 10 to 11) are real effects. The distribution of ancestral
origin effects (Figure S4B) showed that the vast majority of
positive effects on milk yield came from the exotic dairy breed
ancestors. These estimates should be independent of effects
of breed composition across the whole genome because the
data had been pre-corrected for breed composition classes, and
the statistical model used here included a GRM to account
for whole genome relationships, which would also account
for any residual additive effects on breed composition. The
present results, therefore, indicate that there are many genomic
regions that determine the high genetic milk potential of modern
dairy breeds and that no one region carries an exceptionally
large effect. The estimates of ancestral origin effects are allele-
substitution effects so that the estimates of homozygous exotic
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TABLE 2 | Candidate regions for selection obtained from iHS analyses in

admixed cattle.

BTA Region Top SNP Dominant Candidate

(Mbp) q-value ancestry* genes

2 5.46–6.00 0.0378 IND –

3 9.58–9.80 0.0995 EUT –

3 17.18–17.70 0.0861 EUT –

3 18.80–19.29 0.0578 EUT S100A10

3 22.07–22.71 0.0390 EUT ACP6, RF00100

6 4.91–5.29 0.0578 IND –

6 90.70–91.12 0.0861 EUT MTHFD2L

7 38.55–38.92 0.0861 IND –

7 41.40–42.00 0.0390 IND BTNL9, NLRP3

7 43.84–44.16 0.0861 EUT LYPD8

7 46.56–46.99 0.0006 EUT –

7 49.91–50.25 0.0390 IND –

11 36.81–37.13 0.0578 IND ACYP2,

ENSBTAG00000046563

12 28.64–29.05 0.0578 IND –

12 76.82–76.93 0.0390 EUT CLDN10

16 4.52–4.89 0.0995 IND –

*IND, Bos indicus; AFT, African Bos taurus; and EUT, European Bos taurus. Bold regions

overlap with regions identified in the genome-wide association analysis.

dairy vs. indigenous effects are mostly between 0.44 and 0.56 kg
milk per day. The average yield in this crossbred population,
which has a breed composition average of about 70% exotic
dairy, has been estimated around 5 kg milk per day (Ojango
et al., 2019). The milk yield of indigenous cattle is not known
but can reasonably be expected to be about 2 kg per day.
Although the estimates of ancestral genomic effects are subject
to ascertainment bias and need to be independently validated,
it is possible that, collectively, they could explain much of the
difference between exotic vs. indigenous cows in the smallholder
production environment.

The distribution of estimated SNP effects (Figure S4A) shows
the expected equal allocation of positive and negative SNP
effects but has a proportion of estimates substantially higher
in magnitude than those for ancestral origin effects. This likely
reflects that the power of estimating ancestral origin effects is
essentially uniform across the genome while that of estimating
SNP effects is highly dependent on the allele frequency of each
SNP so that some SNPs will be subject to substantially higher
ascertainment bias than other SNPs (Lynch and Walsh, 1998).

Work is currently underway to phenotype and genotypemuch
larger populations of crossbred dairy cows in East Africa. This
will provide a future opportunity to validate the GWA results
presented here. If some of these results are validated, it will be
possible to identify groups of SNPs that track genomic region
effects due either to within-population LD with causal variants
or to ancestral genomic effects. In the latter case, SNPs can
be chosen to provide a high accuracy of assigning ancestral
haplotype allocation to the relatively large confidence regions
encompassed by the ancestral QTL effects.

When mapping signatures of selection, the null hypothesis of
“no selection” typically implies a lack of statistical significance
in situations where there is no disturbance from common
demographic factors. Therefore, the ability to clearly distinguish
positive selection from neutral effects is a challenge given the high
sensitivity of the test statistics for detection of selection (Tang
et al., 2007). In this study, we employed a method based on the
decay of ancestral haplotypes to remove the impact of recent
admixture and continuous gene flow on detection of selection
signatures in Kenyan admixed cattle. Our method relies on the
fact that first-generation admixed individuals inherit two intact
haplotypes, one from each inputting founder populations, and as
mating happens within the admixed population, recombination
mixes these haplotypes and creates a mosaic genome in
subsequent generations.Wemeasure the degree of fragmentation
of ancestral haplotypes according to the distribution of crossover
events across the admixed genome. We consider a shift in local
ancestry of haplotypes carried by an admixed individual as a
recombination event where individuals from later generations
are expected to express higher numbers of recombination events
generating a more fragmented genome. Since the ancestral
populations of admixed cattle are highly diverged and show
significantly different allele frequencies, it is possible to assign
the ancestry to each allele of an admixed individual with high
confidence. This was tested in a cross-validation approach for
the local ancestry mapping of only ancestral breeds, and it
was found that LAMP-LD was able to assign the ancestry
origin of haplotypes with very high accuracies (results are
not shown).

Continuous admixture and gene flow can leave different
patterns of ancestry in the two haplotypes carried by an admixed
individual. Backcrossing to pure parents will produce progenies
with one copy of the mosaic genome and a copy of intact
chromosomes inherited from pure parents. We found evidence
for such patterns in our results when we observed very different
distributions for the number of recent crossovers across the
two haplotypes of admixed cattle (Figures S2, S3). One of the
admixed haplotypes showed less than one crossover for the
majority of individuals (Figure S2). This suggested that the
majority of admixed cattle in Kenya have at least one ancestor
that resulted from a recent cross with either an indigenous
or an exotic breed. The other copy of the admixed haplotype
showed higher number of crossovers (Figure S3) with an average
of around five (Figure 3B). This provided additional evidence
for the high rate of recent introgression of an exotic breed
genotype in the region and recurrent admixture between them
and the existing admixed cattle. Given this, we rank the two
haplotypes of admixed cattle across different chromosomes based
on the number of recent crossovers they incur and use the
haplotype carrying the lowest number of recombination to
quantify the degree of fragmentation of ancestral segments in
the sampled genome and to measure the age of admixture in
our samples.

Our results showed that the iHS analysis didn’t detect any
candidate region for positive selection at an FDR threshold of 0.1
when all admixed samples were included (Figure 6A). Using an
empirical threshold of at least three for the genome-wide average
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FIGURE 7 | The Manhattan plot of p-values for Rsb analysis between the admixed cattle with a minimum number of three crossovers per Morgan and the East

African Shorthorn Zebu population. The red and blue horizontal lines are false discovery rate thresholds at 0.05 [−log10(p-value) = 4.35] and 0.10 [−log10(p-value) =

3.80], respectively. Green points are the SNPs within the candidate regions identified as being under selection in the crossbred population.

number of recent crossovers per Morgan in haplotypes carrying
the lowest number of recombinations improved the detection of
signatures of selection by making the signals stronger. When we
excluded samples with less than three crossovers per Morgan,
the iHS method was successful in detecting 16 candidate regions
at the same FDR threshold (Figure 6B). Excluding individuals
with some recent admixture from the analysis ensures that
the sample analyzed has had sufficient time for selection to
act to produce detectable signatures, thus increasing the power
of the analysis. However, imposing more stringent thresholds
greatly reduces the number of animals available, leading to a
subsequent decrease in power. In such studies, there will be
a threshold for data selection that optimizes power, and that
threshold will be dependent on the size, structure, and history of
the population.

Cross-Validation of SoS With GWA
We employed a low-stringency criterion to define regions from
GWA that might overlap with SoS, and this resulted in four
overlapping regions. There was no overlap between the GWA
and SoS that are deemed to be significant, and the low-stringency
threshold we used for GWA regions in the cross-validation would
implicate a substantial proportion of the genome being involved
in genetic variation in milk yield. Thus, having just four regions
overlapping between GWA and SoS provides no more than
suggestive evidence that the same regions are involved.

The SoS and GWA regions are expected to overlap where
regions controlling genetic variation in milk yield have been
under selection and already yielded SoS while still segregating
in the population and, hence, detectable in GWA analysis. In
relatively young populations, it is likely that regions under
selection are still segregating and, hence, detectable as SoS and
GWA, but SoS are expected to result from selection on many
traits other than milk yield, and so even with large data sets and
very high power, only a proportion of SoS and GWA regions are
expected to overlap. Given the modest statistical power of the
current data set there could be many regions that do overlap but
are not detected in either or both of the SoS and GWAS analyses.

Functional Characterization of Candidate
Regions for Selection
In the context of localizing the identified candidate regions
under selection in Kenyan admixed cattle, we classify them into
two groups with related functions in (1) productivity and (2)
adaptation, recognizing that some regions might have pleiotropic
effects in both categories. In the following, we characterize the
functions of our identified regions in more detail.

Productivity
Several candidate regions from iHS and Rsb analyses intersected
with previously reported QTLs and associations for milk
and meat production traits in the literature. Milk and milk
composition encompassed the highest number of overlaps
among all traits for both methods. Given that there is no
genetic improvement program for milk yield in the population of
smallholder cows analyzed here, this might be due to phenotypic
selection by farmers who preferentially keep progeny from their
best yielding cows. However, it should be noted that the milk
production under these poor-quality environments relies on
other factors, such as the ability of cows to achieve acceptable
growth and reproductive performance with restricted feed and
in the presence of disease pathogens.

Bovine chromosome 20 has been associated with several milk
traits in dairy cattle (e.g., Nayeri et al., 2016). Our Rsb analysis
identified two regions of selection signature on this chromosome
by contrasting haplotype diversity between admixed and EASZ
cattle. The region spanning from 31.68 to 32.17 Mbp overlaps
with the growth hormone receptor (GHR) gene that has been
proved to play a central role in variation of milk production
in dairy cattle (Georges et al., 1995; Blott et al., 2003; Viitala
et al., 2006). The findings of several genome-wide association
studies (e.g., Pryce et al., 2010; Iso-Touru et al., 2016) as well
as a genome scan for selection signatures in dairy cattle (Flori
et al., 2009) strongly support the important function of GHR
gene for milk traits. Both selection signatures on BTA 20 show
an EUT ancestry, which supports the role of selection in favoring
the EUT haplotypes.
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TABLE 3 | Candidate regions for selection obtained from RSB analyses between

the admixed and East African Shorthorn Zebu cattle populations.

BTA Region Top SNP Dominant Candidate

(Mbp) q-value ancestry* genes

1 1.67–2.16 0.0805 EUT ENSBTAG00000047288

1 19.76–20.27 0.0665 EUT –

1 58.74–59.22 0.0463 EUT SIDT1

2 83.56–84.07 0.0657 EUT –

3 0.26–0.74 0.0369 EUT TBX19

3 9.45–9.76 0.0033 EUT COPA, PEX19,

ATP1A2, KCNJ10

3 15.38–15.96 0.0037 EUT GBA, MTX1

3 67.54–68.09 0.0387 EUT AK5

3 90.34–90.83 0.0921 IND –

6 77.36–78.17 0.0204 EUT –

8 79.64–79.99 0.0514 EUT NTRK2

8 108.09–108.64 0.0880 IND –

9 43.55–43.95 0.0521 EUT –

12 64.41–64.92 0.0556 EUT –

13 11.76–12.27 0.0103 EUT –

16 58.34–58.77 0.0070 EUT –

18 2.69–2.99 0.0881 EUT CFDP1

18 44.29–44.78 0.0324 EUT –

20 23.95–24.20 0.0053 EUT CDC20B

20 31.68–32.17 0.0472 EUT –

21 33.23–33.66 0.0297 IND –

23 39.00–39.00 0.0859 EUT RNF144B

28 33.40–33.87 0.0160 EUT KCNMA1

29 35.67–36.19 0.0072 IND –

*IND, Bos indicus; AFT, African Bos taurus; and EUT, European Bos taurus, Bold regions

overlap with regions identified in the genome-wide association analysis.

Chromosome 6 plays a major role in determining protein
composition of cow milk (Martin et al., 2002). The casein cluster
of four tightly linked genes mapped on BTA 6 at around 87
Mbp is close to an iHS candidate region (90.70–91.12 Mbp) and
lies within the scatter of points constituting the broader peak
within which the candidate region sits. Buitenhuis et al. (2016)
has reported several significant SNPs for variation inmilk protein
percentage of dairy cattle that lie within our candidate SoS region.
These authors inferred their significant SNPs as possibly being in
association with genes in the casein cluster. However, smallholder
farmers have no information about the milk protein content,
and there has been no genetic improvement program in this
population, so it is unclear why polymorphisms controlling milk
protein would have been under selection.

Four regions on BTA 7 identified by iHS, including the region
overlapping with the GWA region spanning from 43.84 to 44.16
Mbp, have been associated with several milk traits in dairy cattle
(Chamberlain et al., 2012; Marete et al., 2018). Some studies have
also reported the same regions for various beef traits (Akanno
et al., 2018).

The candidate regions on BTA 3, all from EUT ancestry,
overlap with regions for meat-related traits (e.g., Seabury et al.,

2017). The region spanning from 18.80 to 19.29 Mbp was
found to have an effect on maternal weaning weight of Angus
cattle (Saatchi et al., 2014). This region overlaps with several
important genes involved in cell growth and proliferation
(OAZ3), regulation of lipid metabolism (THEM5), and cell cycle
progression and differentiation (S100A10) where the latter gene
has also been reported as a candidate gene for residual feed intake
in Angus (Al-Husseini et al., 2014).

A candidate region for selection with IND origin was mapped
by iHS on BTA 2 extending from 5.46 to 6.00 Mbp. This region
overlaps with the HIBCH gene, which is involved in amino
acid metabolism in humans (Loupatty et al., 2007) and is in
close proximity to bovine myostatin gene (MSTN at around 6.28
Mbp). MSTN, also known as growth and differentiation factor-
8 (GDF-8), has an important role in muscle development in
cattle (Sharma et al., 1999). Given that feed efficiency, muscle
development, and growth are very important factors in low-
input smallholder production systems, it is reasonable that
these genes might have been the target of selection in the
African environment.

Adaptation
Genes with functional importance in immunity were identified
on BTAs 7 (SPOCK1, NLRP3) and 21 (CSPG4). A candidate
region on BTA 7 with a dominant IND ancestry extends from
41.40 to 42 Mbp and harbors the NLRP3 gene. This gene encodes
a protein that is involved in regulation of inflammation, immune
response, and apoptosis. It is also a candidate gene for Crohn’s
disease (Villani et al., 2009) and Johne’s disease (Scanu et al., 2007;
Mallikarjunappa et al., 2018) in human and livestock populations,
respectively. Other candidate regions originated from IND and
associated with health traits of Kenyan admixed cattle were
mapped on BTA 7 (49.91–50.25 Mbp) and 21 (33.23–33.66 Mbp)
from iHS and Rsb analyses, respectively. The region on BTA 7
overlaps with a previously reported region for Mycobacterium
paratuberculosis susceptibility in U.S. Holsteins (Settles et al.,
2009) and encompasses the SPOCK1 gene, which has been
shown to be associated with cancer in humans (Miao et al.,
2013). The region on BTA 21 has been associated with somatic
cell score in Norwegian Red cattle (Sodeland et al., 2011) and
contains the CSPG4 gene, which is also linked to cancer in
humans (Ilieva et al., 2017). Given that the selection sweeps
harboring these genes are of IND ancestry, it is possible that the
Bos indicus ancestors of admixed cattle may have contributed
versions of genes conferring resistance to environmental
disease challenges.

Evidence for EUT contribution to immunity of admixed cattle
in Kenya were found on BTAs 7, 23, and 28. In a candidate
region identified by iHS on chromosome 7 is the gene LYPD8,
which has been reported to be differentially expressed between
cows with vs. without subclinical mastitis (Song et al., 2016),
and it provides defense against Gram-negative bacteria in the
colon of non-ruminants. A candidate SNP on BTA 23 with EUT
origin was found to be located in the RNF144B gene, which is
involved in the innate immune system in humans (e.g., Ariffin
et al., 2016). Further evidence for the functional importance
of its surrounding region has been reported by Raphaka et al.
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(2017) who found several nearby SNPs with large effects on two
indicator traits for bovine tuberculosis susceptibility. Another
candidate region on BTA 28 from Rsb analysis overlaps with
the POLR3A gene, which provides instructions for making a
protein that acts as a sensor to detect foreign DNA and trigger an
innate immune response. The above regions are all of EUT origin,
suggesting possible EUT contribution to disease resistance in the
admixed population.

Heat stress can have adverse effects on reproductive
performance of cattle (Folman et al., 1983). Therefore, the
ability of animals to express enhanced reproduction under
heat stress conditions can be deemed as an adaptive feature
targeted by natural selection in the African environment. In
the present study, we found several overlaps between our
identified candidate regions for selection on BTAs 3, 7, 11,
12, 18, and 20 and genomic regions previously reported to
affect reproduction in cattle. Chromosome 3 had the largest
number of overlaps where four regions each from iHS and Rsb
analyses intersected with several genomic segments from the
literature. The iHS analysis identified a candidate region on this
chromosome spanning from 18.80 to 19.29 Mbp. This region
harbors several important genes (TDRKH, OAZ3, and CELF3)
that are involved in spermatogenesis and early embryonic
development in humans (Dasgupta and Ladd, 2012; Saxe et al.,
2013) and mice (e.g., Tokuhiro et al., 2009). The same region
also contains a significant peak in a large GWA on gestation
lengths of U.S. Holsteins (Maltecca et al., 2011). Another region
on the same chromosome (BTA 3; 9.45–9.76 Mbp) but identified
by Rsb has been shown to be associated with a number of
reproduction traits in Holstein cows (Cole et al., 2011). This
region also covers the IGSF8 gene, which produces a protein
with the same name that has been shown to be essential in
sperm-egg fusion in humans (Glazar and Evans, 2009). An iHS
identified region of IND origin on BTA 7 (41.40–42.00 Mbp)
overlaps with several regions reported for fertility-related traits
from the literature, including genomic scans of tropical beef
(Hawken et al., 2012) and Nelore (Irano et al., 2016) cattle.
The iHS analysis also identified two regions of IND genetic
background on BTAs 11 and 12 being important for reproduction
traits of dairy cattle (Cole et al., 2011; Suchocki and Szyda,
2015; Parker Gaddis et al., 2016). The region on chromosome 12
(28.64–29.05) encompassed two genes that are especially active
in ovaries (BRCA1 and ZAR1L) and regulate some important
functions for reproduction. These findings suggest an advantage
for inheriting genes of IND origin for fertility under heat
stress conditions.

The admixed cattle may have benefited from haplotypes
descended from EUT ancestors on BTA 18. Chromosome 18
has been identified as an influential chromosome for fertility
traits in dairy cows (e.g., Muller et al., 2017). We found two
regions on this chromosome based on Rsb analysis both showing
an EUT origin. The region spanning from 44.29 to 44.78 Mbp
overlaps with previously reported regions for cow fertility (Parker
Gaddis et al., 2016; Muller et al., 2017) and encompasses the
CHST8 gene. This gene, which ismainly expressed in the pituitary
gland, encodes a protein that is involved in production of
sex hormones.

CONCLUSIONS

By explicitly mapping the regions that differentiate the exotic
dairy from indigenous breeds, our GWA results, for the first
time, indicate that the evolution of modern dairy breeds
likely involved many genomic regions with no single region
having an exceptional effect on milk production, at least under
smallholder production conditions. Although clearly requiring
to be validated, the results suggest that there are many regions
involved in genetic variation within and between ancestral
populations that might be used in genomic selection in future.
The signatures of selection results provide evidence that the
genome of Kenyan admixed dairy cattle has been shaped by
adaptive selection in response to the low-input environment in
which they exist. Exploration of genes in the candidate regions
revealed a number of genes of possible functional importance.
Our results also indicate that different ancestral backgrounds
(indigenous vs. exotic breed genotypes) are advantageous in
different regions of the genome. If confirmed, it may be
possible to use beneficial haplotypes in genetic improvement of
crossbred performance.
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The Jiangquhai (JQ) pig breed is one of the most widely recognized pig populations
in China due to its unique and dominant characteristics. In this study, we examined
the extent of Linkage disequilibrium (LD) and haplotype block structure of the JQ pig
breed, and scanned the blocks for possible genes underlying important QTLs that could
either be responsible for some adaptive features in these pigs or might have undergone
some selection pressure. We compared some of our results with other Chinese and
Western pig breeds. The results show that the JQ breed had the highest total block
length (349.73 Mb ≈ 15% of its genome), and the coverage rate of blocks in most of its
chromosomes was larger than those of other breeds except for Sus scrofa chromosome
4 (SSC4), SSC6, SSC7, SSC8, SSC10, SSC12, SSC13, SSC14, SSC17, SSC18, and
SSCX. Moreover, the JQ breed had more SNPs that were clustered into haplotype
blocks than the other breeds examined in this study. Our shared and unique haplotype
block analysis revealed that the Hongdenglong (HD) breed had the lowest percentage of
shared haplotype blocks while the Shanzhu (SZ) breed had the highest. We found that
the JQ breed had an average r2 > 0.2 at SNPs distances 10–20 kb and concluded that
about 120,000–240,000 SNPs would be needed for a successful GWAS in the breed.
Finally, we detected a total of 88 genes harbored by selected haplotype blocks in the
JQ breed, of which only 4 were significantly enriched (p-value ≤ 0.05). These genes
were significantly enriched in 2 GO terms (p-value < 0.01), and 2 KEGG pathways (p-
value < 0.02). Most of these enriched genes were related to health. Also, most of the
overlapping QTLs detected in the haplotype blocks were related to meat and carcass
quality, as well as health, with a few of them relating to reproduction and production.
These results provide insights into the genetic architecture of some adaptive and meat
quality traits observed in the JQ pig breed and also revealed the pattern of LD in the
genome of the pig. Our result provides significant guidance for improving the statistical
power of GWAS and optimizing the conservation strategy for this JQ pig breed.
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INTRODUCTION

The pig population in China (435 million) accounts for 45%
of the total population of pigs in the world (FAOSTAT, 2017)
and the Jiangquhai (JQ) pig breed is one of the most widely
recognized pig populations in the country due to its unique and
dominant characters. This pig breed is found in Jiangsu Province,
in the eastern part of China where the giant Taihu lake is located.
The JQ breed is known for its high performing economic traits
like reproduction, adaptability, disease resistance, and the quality
of its meat (China National Commission of Animal Genetic
Resources, 2011).

The JQ pig breed has existed since the early 19th century
and has many characteristics such as strong fat deposition
and excellent tasting, high-quality meat. It is a well known
local pig breed used in producing ham in China (China
National Commission of Animal Genetic Resources, 2011),
where there are three popular types of ham: Yun ham,
Jinhua ham, and Rugao ham. While Yun hams are produced
from three Yunnan province pig breeds, Jinhua ham is
produced from Jinhua pig, and Rugao ham is produced
from Jiangquhai (JQ) pig (Miao et al., 2009; Toldrá et al.,
2014). Apart from JQ pigs, other pig populations such as
Huaibei (HB), Hongdenglong (HD), Shanzhu (SZ), Dongchuan,
Erhualian, Fengjing, Huai, Mi, and Shawutou are also distributed
throughout Jiangsu province.

Recent studies had revealed high genetic diversity within
the JQ pig breed (Hua et al., 2014; Xiao et al., 2017b;
Xu et al., 2019). Genomic analysis also revealed that this
breed might have undergone selection in the past, which
could account for some adaptive traits in the breed (Meng
et al., 2018; Xu et al., 2019). However, there is still a
dearth of information on the genetic architecture of some
economically important traits in this pig breed. Moreover,
the adaptation of this breed to its environment is strongly
supported by empirical evidence indicating that the genetic
basis of its population differentiation is non-additive for
fitness trait and that its adaptive gene complexes would be
different from those of other breeds (Crnokrak and Roff, 1995).
Therefore, it is imperative to understand the non-random
genetic relationship between loci within the JQ pig population.
This relationship is usually reflected by the pattern and extent
of linkage disequilibrium (LD) that are inferred from the
haplotypes in the genome.

Advancement in high-throughput genotyping technologies
enables the use of large numbers of single nucleotide
polymorphism (SNPs) in detecting haplotypes, which are
products of introgression or selection during the domestication
process of pigs (Amaral et al., 2008). These haplotypes can
be inherited from one generation to the other as single units
called haplotype blocks (Gabriel et al., 2002). Haplotype
blocks are sections of the chromosome with high LD, low
haplotype diversity, and low recombination rate (Luikart
et al., 2003; Phillips et al., 2003). Many haplotype blocks
may arise as a result of several factors such as chromosomal
recombination, selection, population bottlenecks, population

admixture, and mutations (Phillips et al., 2003; Guryev et al.,
2006). Previous studies have reported a low level of admixture
in the JQ pig breed, however, the degree of admixture of
this breed by possible sources of admixtures is unknown.
Therefore, the identification of the percentage of foreign
haplotypes in the JQ breed could serve as a useful framework
of future breeding actions and decisions when setting up
a conservation program for the breed. Moreover, since the
evolutionary history of a breed can be inferred from the
pattern of LD in the genome (Hayes et al., 2003), the
characterization of the patterns of LD across the genome
of JQ pigs could potentially improve our understanding
of the biological pathway of recombination in the breed,
and also help to detect some selection footprints in the
genome. Furthermore, characterizing the LD structure in
the genome is particularly important for the interpretation
and application of results of genome-wide association studies
(GWAS) (Meuwissen and Goddard, 2000).

Over the years, haplotypes have proven to be more powerful
in association studies than single-marker methods (Lin et al.,
2009). Thus, they have a point of reference in GWAS, especially
in the case of ungenotyped SNPs. Haplotype blocks can be
used to identify significant variants in GWAS and also for
predicting the genomic breeding values (GEBV) of animals
in genomic selection (GS) programs (Meuwissen et al., 2001;
Calus et al., 2008; Cuyabano et al., 2015; Chen et al., 2018).
Therefore, the characterization of LD patterns in the genome of
JQ pigs has a potential application in future studies of complex
traits and the development of genomic tools for the breed
(Corbin et al., 2010).

Since the extent of LD and haplotype blocks are of critical
importance for genomic selection, marker-assisted selection, and
conservation of animal genetic resources, the importance of
constructing the haplotype blocks in the JQ pig breed and
identifying the genes involved in them, especially those associated
with economically important traits, cannot be overemphasized.
Such information would help in understanding the genetic
basis of breed distinction and adaptation and guide against
incorporating haplotype blocks with deleterious gene effects into
selection programs (Salem et al., 2018). To our knowledge, no
haplotype block study has been conducted on this pig breed
despite its unique characteristics and there is still a knowledge
gap on the genetic basis of its phenotypic distinction. To this
end, this research was conducted to (1) analyze the haplotype
block structure of the JQ pig breed and compare it with seven
other pig breeds (five Chinese and two western breeds), (2)
examine the pattern of linkage disequilibrium (LD) in the JQ
breed, and (3) scan the blocks for possible genes underlying
important QTLs that span across the blocks. Our result provides
a theoretical basis for designing breeding programs aimed
at conserving economically important traits in the JQ breed
and potential genetic improvement programs for this breed in
the future.
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MATERIALS AND METHODS

Animal Samples, Genotyping and Quality
Control
A total of 192 pigs were used in this study. Of the total pig
population, thirty-eight (38) were Jiangquhai (JQ) pigs from the
pig conservation farm in Jiangsu province. Other pig breeds
used as a reference population were; Huaibei (HB, n = 34),
Shanzhu (SZ, n = 20), and Hongdenglong (HD, n = 30) breeds,
also from Jiangsu Province; Middle Meishan (MMS, n = 20)
and PudongWhite (PD, n = 20) pigs from Shanghai province;
and, Duroc (D, n = 10) and Yorkshire (Y, n = 20), which
are western pig breeds. The Jiangsu pig samples from the
conservation pig farms have been described in previous studies
(Xiao et al., 2017b; Zhang et al., 2018). In these previous
studies, the individuals were genotyped using the genotyping
by genome reducing and sequencing (GGRS) protocol1 (Chen
et al., 2013). Briefly, genomic DNA samples were extracted
from ear tissue, using a Lifefeng blood and tissue extraction
kit [Lifefeng Biotech (Shanghai) Co., Ltd., China], digested with
a restriction enzyme (AvaII), and then ligated with a unique
adapter barcode after which the samples were pooled and
enriched through PCR to construct a sequencing library. Finally,
the DNA sequence libraries (fragments lengths of 300–400 bp,
including the adapter barcode sequence) were sequenced using
an Illumina HiSeq2500 (100 paired-end) sequencing platform
according to the manufacturer’s protocol.

Quality control of sequences was performed using NGS QC
Toolkit v2.3 and the parameters were set according to a report
from Chen et al. (2013). The sequencing reads were aligned to the
pig reference genome (Sscrofa11.1) using BWA (Li and Durbin,
2009). The BAM files from the alignments were used to call and
genotype SNPs using SAMtools (Li et al., 2009). These variants
were then filtered and SNPs with a quality score greater than or
equal to 20 (i.e., more than 99% accuracy), average sequencing
depth > 5x, and minor allele frequency (MAF) greater than or
equal to 0.03 were retained for imputation (Chen et al., 2013;
Wang et al., 2015). To ensure the precision of imputation and
density of SNPs, only those genotyped in >30% of samples were
retained (Wang et al., 2015). BEAGLE v4.1 was used to impute
the missing genotypes in this study with default parameters
(Browning and Browning, 2016). A total of 486,018 SNPs, which
passed the filtering threshold, were later separated into different
populations and filtered for MAF ≥ 0.05. After discarding SNPs
on the Y Chromosome, a total of 270,935, 223,897, 317,597,
210,277, 204,790, 237,962, 173,678, and 221,957 SNPs, with
MAF ≥ 0.05, were retained in JQ, HB, SZ, HD, MMS, PD, D and
Y breed, respectively. The alignment and variant calling statistics
are presented in Supplementary Tables S1, S2.

Genetic Relationships and Population
Structure
To estimate the genetic distances within breeds, the average
proportion of alleles shared, Dst, was calculated using PLINK v1.9

1http://klab.sjtu.edu.cn/GGRS/

(Chang et al., 2015). The definition of Dst is as follows (Chang
et al., 2015):

Dst =
IBS2 + 0.5∗IBS1

N

IBS1 and IBS2 are the numbers of loci that share 1 or
2 alleles identical by state (IBS), respectively, and N is the
number of loci tested. The genetic distance (D) between all
pairwise combinations of individuals was calculated as follows:
1-Dst. Pairwise genetic differentiation (fixation index, FST)
(Weir and Cockerham, 1984) between all pairs of pig breeds
were calculated using the R package “diversity” (Keenan et al.,
2013). Based on the matrix of pairwise FST values, a Neighbor-
Net tree was constructed using SplitsTree 4.14.5 software
(Huson and Bryant, 2006).

To illustrate the population structure and infer genetic
admixture between populations, a total of 91,092 SNPs, which
discarded SNPs that were with extreme deviations from Hardy-
Weinberg equilibrium (p-value ≤ 1 × 10−6), MAF < 0.05, and
LD (linkage disequilibrium) greater than 0.5 across populations
(command: PLINK indep-pairwise 50 5 0.5), were used for
population structure analysis using ADMIXTURE v1.3 software
(Alexander et al., 2009). The number of ancestral clusters (K)
was set from 2 to 9, and a five-fold cross-validation was run
to determine the K value with the lowest cross-validation error.
The result was displayed using the web-based software, Clumpak2

(Kopelman et al., 2015).

Effective Population Size
The historical effective population size (Ne) of each breed was
estimated using the SNP data from the admixture analysis. Ne
was estimated using the software SNeP (Barbato et al., 2015).
SNeP estimates Ne at different t generations based on the LD
between SNPs, where t = [2f (ct)]−1, and ct is the recombination
rate for specific physical distance between markers, measured
in Morgan (Hayes et al., 2003) (assuming 100 Mb = 1Morgan).
The following options were also used in SNeP: (1) sample
size correction; (2) correction to account for the occurrence of
mutation; (3) Sved and Feldman’s recombination rate modifier
(Sved and Feldman, 1973).

Linkage Disequilibrium
Linkage disequilibrium, r2 value was used as a measure of LD
between each locus because of its preference in association
studies (Wall and Pritchard, 2003; Bohmanova et al., 2010). We
estimated pairwise LD (r2) for all retained SNPs within each
breed using the command line “–ld- window-r2 0” in PLINK v1.9
(Chang et al., 2015). This procedure used a default maximum
window size of 1 Mb between the estimated pair of SNPs on a
chromosome. The extent and decay of LD in each breed were also
predicted using the following equation (Sved, 1971; Heifetz et al.,
2005; Amaral et al., 2008; Ai et al., 2013):

LDijk =
1

1+ 4βjkdijk
+ eijk

2http://clumpak.tau.ac.il/distruct.html
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Where LDijk is the observed LD for marker pair i of breed
j in genomic region k, dijk is the distance in base pairs for
marker pair i of breed j in genomic region k, βjk is the coefficient
that describes the decline of LD with distance for breed j in
genomic region k and eijk is a random residual. The LDijk,
βjk, and eijk for each genomic region within each breed were
estimated using the Beta.nonlinear fit function in R3 (Amaral
et al., 2008). They were fitted for the following genomic distances;
0, 4, 8, 12, 20, 30, 40, 60, 80, 100, 120, 160, 200, 250, 300, 360,
460, 620, 800, and 1000 kb. The decay of LD was plotted for
both, autosomes and SSCX of each breed. To further assess the
extent of LD across breeds, the LD (r2) between all autosomal
SNPs was, however, divided into the following bin distances:
0–10, 10–20, 20–40, 40–60, 60–100, 100–200, 200–500, and
500–1000 kb.

Haplotype Block Construction and
Haplotype Diversity
A Hidden Markov Model implemented in the program BEAGLE
v4.1 software (Browning and Browning, 2016) was used to
reconstruct the haplotype phase. Hereafter, haplotype blocks were
estimated separately in each breed using PLINK v1.9 (Chang
et al., 2015) following the default procedure in HAPLOVIEW
(v4.1) (Barrett et al., 2005). The method followed for block
definition was previously described by Gabriel et al. (2002).
Furthermore, to investigate the pattern of LD within blocks, a
haploview plot was constructed for some haplotype blocks, based
on LD (r2) value between SNP pairs, using the HAPLOVIEW
software (Barrett et al., 2005).

As a measure of genetic diversity, we estimated haplotype
diversity across breeds. First, we calculated the haplotype
frequency for each breed using PLINK v1.07 (Purcell et al.,
2007) (because PLINK v1.9 does not currently support the –
hap flag which is needed to calculate the haplotype frequency).
Afterward, the haplotype diversity across breeds was estimated.
Haplotype diversity is defined as 1−

∑
f 2
i where fi is the

frequency of the ith haplotype. To gain insight into the
haplotype diversity within the block region (with the maximum
number of SNPs in JQ breed), we applied the “four-gamete
rule block definition algorithm” implemented in haploview
software. This algorithm computes the observed frequency
of the four possible two-marker haplotypes for each pair of
SNPs and defines a block when the frequency is 0 (i.e.,
no recombination event has occurred) (Wang et al., 2002).
A frequency of at least 0.01 between computed four marker-
haplotypes indicates that a recombination event between the two
markers likely occurred.

The shared and unique haplotype block regions between
breeds were also detected. Shared haplotype blocks were defined
as the overlapping block regions shared by two populations
or more, while the unique haplotype blocks were the block
regions specific to each population. Both the shared and unique
haplotype block regions were detected and visualized using the R
Bioconductor package “GenomicRanges” (Lawrence et al., 2013)
and ‘ggbio’ (Yin et al., 2012), respectively.

3http://www.r-project.org/

QTLs and Functional Gene Set
Enrichment Analysis
To detect the possible genes and important QTLs that span the
haplotype blocks, we hypothesized that important traits under
selection for adaptation of the JQ pig breed could be harbored
in haplotype block regions with the highest block length. We also
theorized that haplotype blocks with the highest number of SNPs
could reveal some important genetic variations in the JQ breed.
Therefore, we chose the first ten haplotype block regions within
each respective criterion for functional annotation. In total, 20
block regions were annotated for possible QTLs and genes.

The QTL regions spanned by the haplotype block of the JQ
breed were detected by mapping selected haplotype block regions
onto QTL sections using data from the Pig QTL database4. To
ensure efficient processing and control the volume of QTLs
detected, we filtered out QTL regions to lengths ≤ 10 Mb,
afterward, a Perl homemade script was used to detect haplotype
block regions with more than 50% overlap with the filtered QTL
regions. The QTLs that fall within the selected haplotype block
regions or the haplotype block regions that fall within the QTLs
are defined as overlap.

Furthermore, we performed a gene set enrichment analysis
(GSEA) to further elucidate the biological function of the
selected haplotype block regions above. We mapped the selected
haplotype block regions and genes using gene annotation data
for pigs from the Ensembl gene database 985. Thereafter, the
detected genes were functionally annotated by performing the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
(Kanehisa et al., 2012) and Gene Ontology (GO) (Ashburner
et al., 2000) enrichment analysis using Database for Annotation,
Visualization and Integrated Discovery (DAVID v6.8)6 (Huang
et al., 2009). We defined a significant threshold p-value to be 0.05
(based on EASE score: a modified Fisher’s exact test), and then
selected the most significantly enriched genes with FDR (False
Discovery Rate) < 15%. We also established the relationship
between the likely candidate genes and QTLs detected in the
haplotype blocks. This result potentially reveals the genes and
characters that might have either undergone artificial or natural
selection pressure in the JQ breed or the genes involved in
complex traits of the breed.

RESULTS

Genetic Relationship and Population
Structure
The average genetic distances (Dst) within the 8 populations
were 0.210 (JQ), 0.181 (HD), 0.198 (HB), 0.255 (SZ), 0.164
(MMS), 0.203 (PD), 0.133 (D), and 0.167 (Y). The highest genetic
differentiation (0.441) between breeds was found between MMS
and D breed, while the lowest was found between MMS and PD
breed (0.093) (Supplementary Table S3). A Neighbor-Net tree

4https://www.animalgenome.org/cgi-bin/QTLdb/SS/index
5http://asia.ensembl.org/Sus_scrofa/Info/Index
6https://david.ncifcrf.gov/home.jsp
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constructed based on this pairwise Fst value between breeds is
presented in Figure 1A. Our admixture analysis revealed some
level of introgression between the Chinese breeds in this study
(Figure 1C). We observed the lowest cross-validation error when

K = 7 (Figure 1B), before PD separated from MMS into a
different cluster. Suggesting a continuous gene flow between
PD and the MMS breed (Xiao et al., 2017a). Consistent with
previous findings and the genetic origins of worldwide pig breeds

FIGURE 1 | Population structure of the studied pigs. (A) Neighbor-Net tree showing genetic differentiation (Fst) between breeds. (B) Cross-validation errors of the
admixture analysis at different K values (lowest k-value = 7). (C) Population structure of the 8 breeds analyzed based on Admixture analysis. Hongdenglong (HD),
Shanzhu (SZ), Huaibei (HB), Jiangquhai (JQ), Duroc (D), Yorkshire (Y), MiddleMeishan (MMS), and PudongWhite (PD).
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(Fan et al., 2002; Ai et al., 2013; Zhang et al., 2018), K = 2
shows the ancient divergence between Asian and European pigs,
indicating that the MMS breed was the ancestral population of the
Chinese pigs examined in our study. This could explain why there
are still some ancestral haplotypes of MMS in current Chinese
pig populations.

Effective Population Size
The estimated Ne trend of each pig breed across different
generations is shown in Figure 2. This estimate can improve our
understanding of the demographic history of each population in
the recent past (Barbato et al., 2015). While the extent of LD
over longer recombination distances reflected more recent Ne,
that over shorter distances provided ancestral Ne (Hayes et al.,
2003). The result showed that all the breeds had experienced
a decrease in Ne estimate over time, especially from 900 to
about 50 generations ago. We observed the nearest anti-climax
points between 900 and 1000 generations ago, which indicated
the nearest starting point of human-driven artificial selection
that might have caused a population bottleneck in the breeds.
In general, the western pig breeds had smaller Ne compared
to the Chinese pigs and this can be attributed to the higher
LD observed in western pig breeds (Amaral et al., 2008). In
particular, we observed that the effective population size in the
last 13 generations of the JQ breed was about 109 and about

3,871 in ∼1000 generations ago. This reduction might be due
to an increase in inbreeding rate and a reduced genetic diversity
usually observed in animals with a small population size (Food
and Agriculture Organization, 2013).

The Extent of Linkage Disequilibrium
Across Breeds
A total of 268,369, 221,481, 313,100, 208,264, 202,599, 234,967,
171,952, and 219,248 autosomal SNPs were found in the JQ, HB,
SZ, HD, MMS, PD, D and Y pig breeds, respectively. While, on
the SSCX, we obtained 2,566, 2,416, 4,497, 2,013, 2,191, 2,995,
1,726, 2,709 SNPs in the respective breeds. These SNPs (on SSCX)
were only utilized in characterizing the LD and haplotype block
structure of the breeds.

The average r2 between adjacent SNPs on the autosomes was
largest for D breed (r2 = 0.39), followed by Y (r2 = 0.34), whereas
other pigs exhibited a smaller average r2, ranging from 0.22 (SZ)
to 0.32 (HD). The average autosomal LD (r2) for the following bin
distances 0–10, 10–20, 20–40, 40–60, 60–100, 100–200, 200–500,
and 500–1000, is presented in Figure 3. On the SSCX, the average
r2 value observed for both D (r2 = 0.45) and Y (r2 = 0.37) breed
was also the highest. However, the average LD (r2) decreased in
other breeds; PD (r2 = 0.32), HD (r2 = 0.32), SZ (r2 = 0.31), MMS
(r2 = 0.29), HB (r2 = 0.27), and JQ (r2 = 0.23). Overall, on the

FIGURE 2 | The estimate of the effective population size (Ne) trend of each pig breed from 13 to about 1000 generations ago. The genome-wide estimate of Ne was
based on the linkage disequilibrium between SNPs and corrected for sample size, mutation, and recombination rate. Each line shows the trend in effective
population size across generations. The result showed that the JQ breed had experienced a rapid decline in its population, including the most recent generation.
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FIGURE 3 | The averaged LD (r2) value at SNP distances 0–10, 10–20, 20–40, 40–60, 60–100, 100–200, 200–500, and 500–1000 kb across breeds. Jiangquhai
(JQ), Huaibei (HB), Hongdenglong (HD), Shanzhu (SZ), MiddleMeishan (MMS), PudongWhite (PD), Duroc (D), and Yorkshire (Y). This LD estimate is non-fitted.

autosome of the JQ breed, about 28% of adjacent SNP pairs had
r2 > 0.3 and 36% had r2 > 0.2. The corresponding percentages
for HB, SZ, HD, MMS, PD, D, and Y were about 32 and 41%, 25
and 33%, 40 and 41%, 34 and 41%, 32 and 39%, 48 and 56%, 42
and 50%, respectively.

In general, the genome-wide average LD (r2) across breeds
decreased with increasing SNP pair distance (Figure 3 and
Supplementary Figure S1). A lower LD, which rapidly decayed
with increasing genomic distance, especially for distances greater
than 10 kb, was observed across breeds. As expected, large LD
differences were observed between the Western (especially D)
and Chinese breeds. Interestingly, we found that the LD decay on
SSCX, across each breed, was slower compared to the autosomes’
(Supplementary Figure S1). We also observed that the LD decay
on the SSCX of D breed was slower than other breeds, while that
of the JQ breed was faster. Apart from D and Y breeds, the PD
breed also had a slower LD decay on the SSCX compared to other
breeds in the study.

Haplotype Block Structure and
Haplotype Diversity
To gain insight into the systematic difference in the level of LD
across each pig breeds, we characterized their haplotype blocks.
Among all the pig breeds analyzed in this study, the JQ breed had
the highest total autosomal block length, 345.30 Mb (14.18% of
its total genome) while HB, SZ, HD, MMS, PD, D, and Y had
300.83 Mb (12.35%), 92.20 Mb (3.79%), 330.41 Mb (13.57%),
167.88 Mb (6.90%), 211.38 Mb (8.68%), 33.04 Mb (1.36%), and
176.35 Mb (7.24%) total autosomal block length, respectively.
Moreover, fewer haplotype blocks (2,286) were observed on the
autosome of D breed compared to others (Table 1), possibly

due to a bias in its small sample size and a high percentage
of fixed markers that were not involved in the haplotype block
construction. On the SSCX, the total lengths of block (and average
block size) were 4.43 Mb (15.32 kb), 6.49 Mb (23.09 kb), 2.75 Mb
(12.31 kb), 5.61 Mb (21.50 kb), 2.62 Mb (22.75 kb), 1.96 Mb
(14.52 kb), 1.51 Mb (47.05 kb), and 3.40 Mb (15.76 kb) for JQ,
HB, SZ, HD, MMS, PD, D, and Y breed, respectively (Table 2
and Supplementary Tables S4–S10). We also found that the
number of maximum haplotype block size per chromosome
across breeds was larger in both JQ and HB except for SSC3,
SSC4, SSC5, SSC8, SSC9, SSC12, SSC15, SSC16, SSC18, and
SSCX (Figure 4).

Furthermore, the coverage rate of blocks per chromosome
in the JQ breed was higher than those of other breeds
except for Sus scrofa chromosome 4 (SSC4), SSC6, SSC7,
SSC8, SSC10, SSC12, SSC13, SSC14, SSC17, SSC18, and SSCX
(Supplementary Table S11). The average block size in JQ
breed was 10.90 kb (ranging from 0.002 to 199.97 kb)
(Table 2). The average block size distribution across breeds is
presented in Figure 5B. We also investigated the pattern of
LD in the haplotype block region with the highest number
of SNPs in the JQ breed. This block displayed a moderate
LD (Figure 6) and high haplotype diversity (Figure 7C)
suggesting that several recombination events might have
occurred in this haplotype block. Furthermore, we observed
a low LD level in the haplotype block with the maximum
block length (199.97 kb), and a complete LD in the block
with the minimum number of SNPs and block size (0.002 kb)
(Figures 7A,B).

Generally, we found that the haplotype frequency and
diversity across breeds (Table 1) were lower in all the Jiangsu
pig breeds (JQ, HB and HD) except for SZ breed which
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TABLE 1 | The number of haplotype blocks, haplotype frequency, and diversity across breeds.

Breed JQ HB SZ HD MMS PD D Y

No. of haplotype blocks 31146 26619 19362 25645 12312 14861 2286 16649

Haplotype frequency 0.25 0.26 0.34 0.27 0.29 0.29 0.36 0.30

Haplotype diversity 0.464 0.465 0.483 0.467 0.482 0.489 0.525 0.484

Results in the table are derived from autosomal blocks.

TABLE 2 | Block statistics of JQ breed.

Block size (kb) SNPs (n)
Total block No. of SNPs % of SNPs

SSC Blocks (n) length (kb) Mean Min Max in blocks (n) Mean Min Max in blocks

1 2336 43176.07 18.48 0.002 199.95 10587 4.53 2 44 7.50

2 1908 28761.04 15.07 0.002 199.56 9326 4.89 2 52 6.61

3 2385 24841.31 10.42 0.002 198.34 10883 4.56 2 37 7.71

4 1741 18151.28 10.43 0.002 198.69 7621 4.38 2 40 5.40

5 1662 14397.77 8.66 0.002 197.18 7353 4.42 2 51 5.21

6 2838 34404.52 12.12 0.002 199.91 13751 4.85 2 55 9.75

7 2003 17262.21 8.62 0.002 198.72 8767 4.38 2 48 6.21

8 1330 13453.34 10.12 0.002 199.18 5594 4.21 2 32 3.96

9 1955 22753.54 11.64 0.002 199.19 9091 4.65 2 43 6.44

10 1398 8856.84 6.34 0.002 195.37 5995 4.29 2 35 4.25

11 997 9979.21 10.01 0.002 195.15 4327 4.34 2 27 3.07

12 1514 8364.55 5.53 0.002 178.76 6515 4.30 2 26 4.62

13 1681 22458.83 13.36 0.002 199.97 7277 4.33 2 41 5.16

14 2362 25559.27 10.82 0.002 199.91 10891 4.61 2 43 7.72

15 1688 24085.86 14.27 0.002 199.60 7493 4.44 2 33 5.31

16 1064 11134.99 10.47 0.002 198.01 4456 4.19 2 33 3.16

17 1268 10090.86 7.96 0.002 199.97 5647 4.45 2 55 4.00

18 1016 7565.22 7.45 0.002 195.75 4349 4.28 2 80 3.08

X 289 4427.64 15.32 0.002 198.11 1177 4.07 2 23 0.83

Total 31435 349724.35 10.90 141100 100.00

exhibited a higher haplotype frequency and diversity similar to
that of Y.

Distribution of SNPs in Haplotype Blocks
The density of SNPs in the Chinese and western pig population
in this study is presented in Supplementary Figures S2, S3. The
summary of SNPs distribution and proportion involved in the
haplotype block formation per chromosome across breeds was
also presented in Table 2 and Supplementary Tables S4–S10.
In summary, a total of 139,923, 116,377, 74,629, 113,762, 61,489,
77,729, 12,080, 75,997 SNPs located on the autosomes of JQ, HB,
SZ, HD, MMS, PD, D, and Y breed were clustered into haplotype
blocks respectively. These SNPs account for about 52.14, 52.55,
23.84, 54.62, 30.35, 33.08, 7.03, and 34.66% of all the autosomal
SNPs in the respective breeds.

The frequency distribution of SNPs in the haplotype blocks
for each breed is presented in Figure 5A. Generally, we
observed a small proportion of haplotype blocks with more
than 10 SNPs across each breed in this study. However, JQ
and HD breeds had the highest number of blocks, with at
least 10 SNPs. Intriguingly, among all the Chinese breeds in
our study, the JQ breed had the highest number of SNPs

in a block, with 80 SNPs in Block 22 of Chromosome 18
(923784 bp – 1002867 bp). This block overlaps the protein
tyrosine phosphatase receptor (PTPRN2) gene, which suggests
that it is associated with oncogenic processes (Bourgonje et al.,
2016). This gene is also predominantly expressed in endocrine
and neuronal cells, where it functions in exocytosis (Sorokin et al.,
2015). Generally, JQ pigs are known for their high resistance to
porcine reproductive and respiratory syndrome virus (PRRSV)
infection (Meng et al., 2018).

This study also discovered that the highest amount of SNPs
involved in block formation on chromosomes is observed in
the JQ and other Jiangsu pig breeds (13,751, 12,403, 6,966,
and 11,738 SNPs on Chromosome 6 of JQ, HB, SZ, and HD,
respectively), while the lowest amount of SNPs on the autosomes
of these pig breeds was 4,327, 3,083, and 3,013 on chromosome
11 of JQ, HB, and HD; and 2,276 on chromosome 16 of SZ
breed. Conversely, the highest number of SNPs in other pigs
was 7,940 and 6,274 on chromosome 6 of PD and MMS;
1,183 on chromosome 1 of D; and 7,799 on Chromosome 6
of Y breed. However, the lowest (total) number of SNPs in
blocks (formed on the autosome) was 2,488, 1,580, 338, and
2,070, and was found on chromosome 16, 16, 18, and 16
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FIGURE 4 | Distribution of maximum haplotype block length per chromosome across breeds. Jiangquhai (JQ) and Huaibei (HB) had more chromosomes with
maximum block length compared to other breeds.

of PD, MMS, D, and Y breed, respectively (Supplementary
Tables S7–S10).

Shared and Unique Haplotype Block
Regions Between Breeds
As shown in Table 3, among all the pig breeds considered in this
study, HD had the lowest percentage of shared haplotype blocks
(with other breeds) while the SZ and MMS breed had the highest
percentage of shared haplotype blocks. This result could be linked
to the ancestral origin of MMS and the high admixture observed
in SZ (Figure 1C). Among all the Chinese pig breeds in our study,
the SZ breed had the highest percentage of shared haplotype block
(18.12%) with Y (Table 3), indicating a high introgression of
Y haplotype into the SZ breed. This result is also in line with
our admixture analysis (Figure 1C) which suggests that the SZ
breed might have been introgressed with different breeds in the
past. JQ, HB, and PD breeds also shared a considerably high
percentage of haplotype blocks with the western breeds (D and
Y), suggesting an introgression between western pigs and these
Chinese breeds. All the pig breeds included in our study, shared
the highest percentage of their haplotype block with the JQ breed,
which suggests a common ancestry (or introgression) between
JQ, the western breeds (Bosse et al., 2014), and other Chinese
pigs in our study. This could also be because the JQ breed had
the highest number of haplotype blocks (Table 3).

In general, the total length of haplotype block shared across the
autosome of all the Jiangsu province pigs (JQ, HB, SZ, and HD)
was 7.89 Mb (Supplementary Data). These shared haplotype
blocks could indicate the existence of conserved genomic regions
that are a product of intensive and directional natural or artificial
selection in the Jiangsu pig population. The plot of shared and

unique haplotype block region in the Jiangsu pig population is
presented in Supplementary Figures S4–S6.

Functional Annotation of Overlapping
QTLs and Genes
We detected the QTLs spanned by the haplotype block regions
of JQ breed by finding the overlapping regions with 25,388
QTLs (length ≤ 10 Mb) downloaded from the pig QTL database.
Consequently, 112 porcine QTLs were detected to overlap with
the haplotype block regions of this breed. Interestingly, we found
that most of the detected QTLs were related to meat and carcass
quality, health, and a few reproduction and production-related
QTLs. We detected QTLs related to traits such as feed conversion
ratio, loin muscle area, body weight, intramuscular fat content,
scrotal/inguinal hernia, teat number, total number born alive,
change in Mycoplasma hyopneumoniae antibody titer, and toll-
like receptor 9 level (Table 4), which suggest that the pig breed
might have previously undergone selection for meat quality and
health (an indication of the environmental adaptability of the
breed). Specifically, about 13% of the QTLs (based on QTL
IDs reported in the Pig QTL database), overlapping in the
20 scanned blocks in the JQ pig breed were related to drip
loss (DRIPL) (water holding capacity of pork meat), and loin
muscle area (LMA).

Furthermore, we identified a total of 88 genes harbored
by the selected haplotype blocks (Supplementary Table S12),
of which only 4 were significantly enriched (p-value ≤ 0.05).
These genes were significantly enriched in 2 GO terms and 2
KEGG pathways (Table 5) which were related to a variety of
molecular functions linked to immunity. It is of note that two
of the enriched genes (ACVRL1 and ACVR1B) found on SSC5
were enriched (GO:0003840) in the molecular functional process
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FIGURE 5 | (A) Histogram plot showing SNP distribution in haplotype blocks across breeds. Jiangquhai (JQ) had more SNPs clustered into haplotype blocks than
other breeds. (B) Box plot of haplotype block size distribution in different breeds. Shanzhu (SZ) had the shortest average haplotype block size while PudongWhite
(PD) had the longest.

(p-value ≤ 0.01) associated with activin receptor activity, type I.
However, the other 2 genes (GGT5 and GGT1) which are located
on SSC14 were enriched in the molecular functional process
gamma-glutamyltransferase activity (p-value ≤ 0.01). These 2
genes (GGT5 and GGT1) were also enriched in the signaling
pathway related to ssc00460: Cyanoamino acid metabolism, and
ssc00430: Taurine and hypotaurine metabolism (p-value ≤ 0.02).

DISCUSSION

The evolutionary history of some pigs in certain regions
of developing countries like China is poorly understood.
The emergence of new breeds or sub-populations is a
result of natural (adaptation) or artificial selection and this
selection pressure plays a major role in shaping the genetic
architecture and gene pool of extensively raised livestock species
(Amaral et al., 2008; Khanyile et al., 2015). Despite recent
research on the JQ pig population, there is still a dearth
of information on the genetic architecture of economically
important breed traits. This study, as one of the first reports
on the haplotype block structure in the JQ pig breed, aimed

to reveal the effects of selection pressure on its genome.
We characterized the pattern of LD in the genome of the
breed and detected various QTLs and genes spanned by
haplotype blocks. We compared most of our results with the
ones obtained in three other breeds from the same province
(region) (HB, SZ, and HD breeds); two from Shanghai province
(MMS and PD); and two western breeds (D and Y). From
this comparison, JQ showed a higher level of variation in
block structure and the number of SNPs involved in the
block formation.

Overlapping QTLs and Genes Detected
in the JQ Breed
Conservation of animal genetic resources from a global
perspective, focuses not only on endangered breeds but also
on those that are not well utilized. Locally adapted breeds are
always at risk of extinction, particularly when local populations
have a preference for imported breeds. Generally, only a small
proportion of breeds, particularly in developing countries, are
involved in planned genetic improvement programs that aim
to ensure efficient and sustainable utilization of these breeds.
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FIGURE 6 | Haploview plot of linkage disequilibrium (r2) between SNPs on chromosome 18 of JQ breed. This block is 79.084 kb in size and has the maximum
number of SNPs (80) in JQ blocks. Values in the diamond are LD values in percentages and diamonds without a value shows a complete LD (r2 = 1) between SNPs.

Therefore, developing countries like China should ensure that
commercial pig strains are developed, while also maintaining the
genetic diversity within the purebred population.

In our study, we detected a high percentage of haplotype
blocks overlapping QTLs related to meat and carcass quality, and
a few related to health. This suggests that these haplotype blocks
may be potentially associated with economic traits like side fat
thickness, intramuscular fat content, average backfat thickness,
cooking loss, meat firmness, lean meat weight, and response
to Mycoplasma hyopneumoniae in the JQ breed (Table 4).
Various studies have already reported most of these QTLs in
the pig quantitative trait loci (QTL) database. For example, on
SSC1, Stratz et al. (2018) reported a highly significant QTL
for Dressing percentage (ID = 161054); on SSC6, Le et al.
(2017) identified significant QTL for top line conformation
(ID = 126140); Choi et al. (2010) detected highly significant QTL
for lean meat weight (ID = 16910); Liu et al. (2008) detected
significant QTL for average backfat thickness (ID = 5980); and
Choi et al. (2011) also detected highly significant QTL for meat
firmness (ID = 21367). On SSC17, Stratz et al. (2013) detected
significant QTL for pH 24 hr post-mortem (loin) (ID = 21865),
while on SSC18, Uddin et al. (2010) identified significant QTL
for Mycoplasma hyopneumoniae antibody titer (ID = 12330)
and changes in Mycoplasma hyopneumoniae antibody titer
(ID = 12331). Generally, JQ pigs are excellent producers of quality
meat, used in the production of Rugao ham, and characterized
by large body size and high lean percentage (Toldrá et al., 2014).
We believe that this result might aid the further genomic study of
meat quality and health-related traits in the JQ breed.

In our gene enrichment analysis, we also detected 4 health-
related genes involved in various molecular functions in JQ

pigs. These include ACVRL1, ACVR1B, GGT5, and GGT1 gene.
The ACVRL1 gene is a TGFb/BMP type I receptor that plays
a key role in the regulation of endothelial cell proliferation
and maintenance of vascular integrity (Tual-Chalot et al.,
2014), while ACVR1B acts in a paracrine manner on skin
epithelial cells to suppress tumorigenesis (Qiu et al., 2011).
These two genes also play essential roles in bone growth and
morphogenesis (Merino et al., 1999), suggesting a pleiotropic
SNP in the haplotype block region harboring these genes
(Solovieff et al., 2013; Zhang et al., 2016). Furthermore, GGT5
has been found to code for a cell surface protein that helps in
the hydrolysis of the gamma-glutamyl bond of glutathione and
glutathione S-conjugates (Wickham et al., 2011). It is expressed
by macrophages throughout the body and may play an important
role in the immune system (Hanigan et al., 2015). An increase in
the expression of GGT5 has also been found to impair testicular
steroidogenesis by deregulating local oxidative stress (Li et al.,
2016). The GGT1 gene plays a major role in cleaving glutathione
and its conjugate (Hanigan et al., 2015). In our study, GGT5
and GGT1 genes were also found to be enriched in the KEGG
term (KEGG: ssc00430) related to Taurine and hypotaurine
metabolism. Taurine is known to affect the cholesterol level in
the body and can be found in various meat products (Laidlaw
et al., 1990; Woollard and Indyk, 1993; Wójcik et al., 2010; Ripps
and Shen, 2012). Interestingly, we found that this genomic region
(Chromosome 14: 49585363 bp – 49722310 bp) overlapped the
QTL that is suggestively associated with cholesterol levels in meat
(CHOL) (Table 4). This suggests an association of this haplotype
block with some meat quality traits in the JQ breed.

Although the haplotype block with the highest number of
SNPs in this study was found within the Protein Tyrosine
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FIGURE 7 | Haploview plot of linkage disequilibrium (r2) between SNPs located on (A) Chromosome 17 (42665098 bp – 42865069 bp) of JQ breed, with the
maximum block length (199.97 kb) and (B) chromosome 1 (1936544 bp – 1936545 bp) of the same breed, with the minimum number of SNPs and block size
(0.002 kb). This block overlapped the UNC93A gene (C) Haplotype block structure of chromosome 18 of JQ breed (with the Maximum number of SNPs (80snps).
Marker numbers are shown across the top, with highlighted tag SNPs. The population frequencies of each haplotype are shown next to them with lines showing the
most common crossings from one block to the next. The thicker lines indicate more common crossings than thinner lines and below the crossing lines is the
multi-locus D prime between two blocks. Lower D prime value indicates a greater amount of historical recombination between two blocks (Barrett et al., 2005).

Phosphatase Receptor Type N2 (PTPRN2) gene in the JQ breed,
to our surprise, it was not significantly enriched in any pathway
or ontology. We infer that there could be more health-related
genes in this block region (Figure 6) that are yet to be annotated
as there were a lot of health-related QTLs, like Mycoplasma
hyopneumoniae antibody titer (MHT), Change in Mycoplasma
hyopneumoniae antibody titer (MHTC), and Toll-like receptor 9
level (TLR9), spanned by the block (Table 4). A previous study
had investigated the degree of resistance to M. hyopneumoniae
in JQ porcine lean strain (JQHPL) and concluded that JQHPL
pigs exhibited higher resistance to M. hyopneumoniae than the
western strains in the study, possibly due to the faster and
stronger mucosal immunity phenotype of the strain (Hua et al.,
2014). However, we also premise that this haplotype block could
be harboring some disease susceptibility traits in the JQ breed,
as the average MAF of its SNPs was about 0.20 (ranging from
0.07 to 0.5) (Supplementary Table S13). Generally, common
variants (MAF > 5%) have been found to contribute to complex
diseases more than rare variants (MAF < 1%) (Gibson, 2012;
Bomba et al., 2017). Therefore, further study of this genomic
region could help in understanding the genomic architecture
of complex diseases in the JQ breed and also prevent the
incorporation of such haplotype block into selection programs.

In a bid to establish a relationship between the candidate
genes and QTLs detected in haplotype blocks, we linked
the genomic regions of the detected candidate genes to the

corresponding QTL region. Surprisingly, we found that only one
gene overlapped these QTL regions. This is because the length
of each QTL in these regions is greater than 10 Mb (ranging
from 33.11 to 131.16 Mb). We premise this observation on the
filtering of all QTLs with length > 10 Mb during our QTL
annotation. However, we made some compromises (in QTL
length) to enable us to have an overview of the quantitative
traits in these genomic regions. In summary, ACVRL1 and
ACVR1B gene overlapped QTLs linked to CD4-positive leukocyte
percentage (CD4LP), C3c concentration (C3C), and Hemolytic
complement activity (alternative pathway) (AH50), while, GGT5

TABLE 3 | The percentage of common haplotypes shared across populations.

JQ HB SZ HD MMS PD D Y

JQ 100 27.81 12.09 25.86 18.73 22.17 2.60 13.00

HB 31.93 100 10.65 27.04 18.16 20.74 2.73 12.95

SZ 45.28 34.76 100 27.46 23.10 27.72 2.34 18.12

HD 27.03 24.62 7.66 100 16.43 18.28 2.36 12.00

MMS 38.52 32.55 12.69 32.34 100 31.12 2.44 12.46

PD 36.21 29.51 12.09 28.57 24.72 100 2.45 13.20

D 27.15 24.82 6.54 23.55 12.41 15.68 100 15.25

Y 25.44 22.09 9.48 22.48 11.86 15.82 2.86 100

Each row represents the percentage of common haplotype blocks between the
breed (on the first column) and other breeds across the row.
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TABLE 4 | QTLs associated with haplotype block regions in the JQ Breed.

SSC No. of Haplotypes Location (bp) Size (kb) No. of SNPs QTLs

1 6 57754743–57954471 199.730 9 DRESS%, LMA, FEEDIN, AFR, SHEAR, FA-C20:1, FA-C18:0

1 17 100151813–100351758 199.946 26 DRIPL

1 17 145630575–145788505 157.931 44 –

2 23 150363020–150561606 198.587 52 LMA, BLACT

5 24 17274912–17439428 164.517 51 –

6 4 48308117–48507976 199.860 5 TOPLC, IHERN

6 8 52898408–53098319 199.912 5 TOPLC, FEEDIN

6 18 64203148–64347705 144.558 55 IMF, HAPT, C3C, NEUT, LEANWT, EBPC, FIRM, BFT, SHOUFATD,
CTISSP, BFS, GLYPO, LMA, COOKL

6 27 65204715–65346283 141.569 41 LEANCUTP, LEANP, DRESS%

6 9 107929215–108129083 199.869 12 FAPC

7 20 57703699–57797277 93.579 48 TNUM

9 20 41012098–41114458 102.361 43 LVNUM, HDL

13 7 71557016–71756980 199.965 19 –

14 12 47714888–47914794 199.907 18 ANDR

14 13 49585363–49722310 136.948 43 TVNUM, CHOL

14 9 50940408–51140288 199.881 11 SCF, AGEP, RTNUM, TNUM, TNUMD

14 21 51322222–51522048 199.827 33 PLTCT

17 8 42665098–42865069 199.972 11 ACTH2, 34RIBBFT

17 13 62089019–62255688 166.670 55 pH

18 23 923784–1002867 79.084 80 MHT, MHTC, TLR9, DIAMF, FIB1DIAM, FIB2ADIAM, LIVWT,
FEEDCON, ADG, BW, WWT, NBA, TNB

List of full names of QTLs: DRESS%, dressing percentage; LMA, loin muscle area; FEEDIN, daily feed intake; AFR, average feeding rate; SHEAR, Shear force; FA-C20:1,
cis-11-Eicosenoic acid content; FA-C18:0, stearic acid content; DRIPL, drip loss; BLACT, lactate level; TOPLC, top line conformation; IMF, intramuscular fat content;
HAPT, haptoglobin concentration; C3C, C3c concentration; NEUT, neutrophil count; IHERN, scrotal/inguinal hernia; LEANWT, lean meat weight; EBPC, empty body
protein content; FIRM, firmness; BFT, average backfat thickness; SHOUFATD, shoulder subcutaneous fat thickness; CTISSP, connective tissue protein; BFS, side fat
thickness; GLYPO, average glycolytic potential; LMA, loin muscle area; COOKL, cooking loss; LEANCUTP, lean cuts percentage; LEANP, lean meat percentage; FAPC,
fat area percentage in carcass; TNUM, teat number; LVNUM, lumbar vertebra number; HDL, HDL cholesterol; TVNUM, thoracic vertebra number; AGEP, age at puberty;
TNUM, teat number; TNUMD, teat number, difference between sides; RTNUM, right teat number; PLTCT, platelet count; SCF, backfat between 3rd and 4th last ribs;
ANDR, androstenone, laboratory; CHOL, cholesterol level in meat; ACTH2, post-stress ACTH level; 34RIBBFT, backfat thickness between 3rd and 4th rib; pH, pH
24 h post-mortem (loin); TLR9, toll-like receptor 9 level; DIAMF, diameter of muscle fibers; FIB1DIAM, diameter of type I muscle fibers; FIB2ADIAM, diameter of type IIa
muscle fibers; BW, body weight (birth); FEEDCON, feed conversion ratio; LIVWT, liver weight; ADG, average daily gain; WWT, body weight (weaning); MHT, mycoplasma
hyopneumoniae antibody titer; MHTC, change in mycoplasma hyopneumoniae antibody titer; TNB, litter size; NBA, total number born alive.

TABLE 5 | Candidate Genes detected in the haplotype blocks of JQ pig population.

SSC Haplotype block position (Mb) ID Term P-value Candidate Genes

5 17.275–17.439 GO:0016361 Activin receptor activity, type I 0.009 ACVRL1, ACVR1B

14 49.585–49.722 GO:0003840 Gamma-glutamyltransferase activity 0.009 GGT5, GGT1

KEGG:ssc00460 Cyanoamino acid metabolism 0.011 GGT5, GGT1

KEGG:ssc00430 Taurine and hypotaurine metabolism 0.017 GGT5, GGT1

and GGT1 gene overlapped QTLs linked to Interferon-gamma
to interleukin-10 ratio (IFNGIL10), Calcium level (BCAL),
Creatinine level (CREAT), Potassium level (BPOTASS), C3c
concentration (C3C), Haptoglobin concentration (HAPT), and
Melanoma susceptibility (MELAN). This suggests an association
of the haplotype blocks in these genomic regions with health-
related traits in the JQ breed.

The Extent of Linkage Disequilibrium in
the Pigs and Application in GWAS
A full understanding of the LD properties in domesticated
animals like pigs is of importance because it underlies all
forms of genetic mapping (Nordborg and Tavaré, 2002) and

can be used for fine mapping genes associated with complex
diseases in pigs. To increase the power of SNP-based association
studies (GWAS), the extent of LD in a breed must be
considered. A knowledge of this can be used to predict
the average number of markers required in quantitative trait
association studies (GWAS).

In this study, we looked at the extent of LD in the JQ
breed and compared it to the one obtained in other breeds.
We used r2 value as a measure of LD between each locus of
a chromosome. Generally, we observed a lower LD level, at
larger SNP distances, on both autosomes and SSCX of JQ breed.
A similar result was also found in the SZ breed (Figure 3 and
Supplementary Figure S1). However, our result contradicts that
of Xu et al. (2019), which reported a higher LD extent greater
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than 0.3, at SNPs distance of 99.66 kb in the JQ breed using
Porcine 80 K SNP chips. This difference might be due to the larger
sample size, density, and type of SNP data used in the study (as
reviewed by Qanbari, 2020). Generally, SNP chips (or genotyping
array) data tends to underrepresent rare variants that are likely to
be detected in sequence data like the one used in this study. Since
the extent of LD (r2) depends on MAF, it is expected that there
would be a little difference in the r2 value obtained from both
studies, partly due to SNP ascertainment bias on SNP chip data
(Lachance and Tishkoff, 2013; Geibel et al., 2019). This kind of
bias was reduced in a recent study by Huang et al. (2020) which
had more Chinese breeds represented in the design of the SNP
array used. The study reported an LD (r2 > 0.3) at SNPs-distance
of 36.10 kb for the JQ breed. Moreover, using the MUC4 (Mucin
4, Cell Surface Associated) gene sequences, Yang et al. (2012) also
reported that r2 > 0.3 extended up to 20 kb distance in the JQ
breed, validating to some extent, the reliability of the LD value
obtained in our study.

To assess the differences in LD extent on the autosome and
SSCX across breeds, we predicted the extent of LD decay for
different genomic distances. The result showed a noticeable
difference in the LD extent across breed, especially on the SSCX
(Supplementary Figure S1). As expected, we observed a longer
LD extent on the SSCX compared to the autosome (Schaffner,
2004). Generally, the SSCX is known to have a low recombination
rate and tends to preserve demographic events longer than the
autosome (Schaffner, 2004; Laan et al., 2005). Among the Chinese
pigs in this study, we observed a longer LD extent on the
SSCX of the PD breed, suggesting that this breed might have
recently evolved or experienced a bottleneck. This result is also
in line with our admixture analysis which had the lowest cross-
validation error when K = 7 (Figure 1B), before PD separated
from MMS into a different cluster (Figure 1C). This result
might also be useful in mapping sex-related traits in the Chinese
pigs in our study.

According to previous studies, a mean r2
≥ 0.3 is considered

as a strong LD sufficient for QTL mapping (Farnir et al., 2000).
However, to detect a QTL in GWAS and estimate the genomic
breeding value (GEBV) of an animal, an average r2 of at least
0.2 is required to achieve power and accuracy ≥ 0.8 (Meuwissen
et al., 2001; Meuwissen et al., 2001). In our study, we found that
moderate LD (r2

≥ 0.2) extended up to 500–1000 kb in HD
(0.23), D (0.29), and Y (0.26) breeds (Figure 3). This suggests
that an association study performed within these breeds using
an average inter-marker r2

≥ 0.20 would require about 12,000
SNPs. Although the average r2 (for bin distance 500–1000 kb),
reported for the D and Y in our study was higher compared
to the one reported by Grossi et al. (2017) using a 60 K SNP
panel (0.23 and 0.17 for D and Y, respectively), we found that the
average r2 for the autosomes of these breeds is still comparable
to a previous study that used larger sample sizes (>100) (Badke
et al., 2012). These differences in LD could be attributed to
population structure, selection, sample size or density of the
markers used in the study. On the other hand, r2

≥ 0.20 extended
only up to 0–10 kb in the SZ breed, and 10–20 kb in JQ
(Figure 3), indicating that about 120,000 to 240,000 SNPs would
be required for effective GWAS in these breeds. For the HB

breed, the average inter-marker r2 extended up to 40–60 kb,
meaning that about 40,000 to 60,000 SNPs would be needed for
GWAS. While for MMS and PD, r2 extended up to 60–100 kb
distances, and about 24,000–40,000 evenly spaced SNPs would
be sufficient for a successful association study in the breeds. This
result could be particularly useful in designing breed-specific SNP
array panels for future genomic study and selection programs for
these pig breeds.

Haplotype Block Structure
The ability of an animal to survive in a changing environment,
and also keep up with changes in selection preference, depends
on the richness (genetic diversity) of its gene pool. This can be
affected by several occurrences, including natural and artificial
selection. There are various parameters for measuring genetic
diversity in a population, including population-gene-frequency
based statistics like average expected heterozygosity (He), the
proportion of polymorphic loci (Pn), and allelic richness (Ar).
However, alternative statistics based on allelic diversity (i.e.,
number of different allele types present at a locus) can also
provide insight into the genetic diversity in a population and
be a better predictor of long-term adaptation and total response
to selection in an unpredictable future scenario (Caballero and
García-Dorado, 2013; Vilas et al., 2015). Therefore, our study
examined haplotype diversity as a measure of genetic diversity
across breeds, since haplotypes are multi-allelic markers and can
be treated as an allele in a haplotype-based study. To our surprise,
we found that D pigs had higher haplotype diversity than the
other Chinese pig breeds in this study (Table 1) despite having
experienced high selection pressure in the past. Interestingly,
among the Jiangsu province pigs in our study, the SZ breed
had the highest haplotype diversity compared to JQ, HB, and
HD (Table 1). Its haplotype diversity (0.483) (Table 1) was
similar to that of Y with which it shared the highest haplotype
block (18.12%) in comparison with other breeds (Table 3).
This result is in agreement with our previous research (Zhang
et al., 2018), which suggested that Y might have been used
to improve the SZ breed and that the SZ breed might have
originated from different genomic sources, therefore increasing
the diversity of haplotypes in the breed’s genome. Furthermore,
the higher haplotype diversity observed in the highly selected
western pig breeds in our study could be because the sample size
was selected from a larger population of western breeds (more
than 1,000) in China, and a limited population of Jiangsu pig
breeds (about 140 individuals) kept in the conservation pig farm
in Jiangsu province, China. Therefore, we can also infer that
the diversity of haplotypes in a population can be influenced
by its population size. Moreover, recent studies had reported
ongoing selection processes in Chinese pig breeds (Quan et al.,
2020), which calls for the strategic management of these breeds
to prevent the loss of important traits or genes. Although many
studies had reported high genetic diversity in the JQ breed (Fan
et al., 2002; Xu et al., 2019), most of these reported metrics
do not perfectly reflect the ability of the breed to cope with
a future unexpected change in breeding preference or disease
outbreak. Therefore, the lower haplotype diversity observed in
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the JQ breed could be an indicator of a reduction in their genetic
diversity, indicating a need for proper management of the JQ
population in conservation pig farming. This result is also in
line with the findings of Quan et al. (2020), which reported
a lower haplotype diversity (0.752) in the mtDNA sequences
of the JQ breed compared to that of Duroc (0.794), Yorkshire
(0.837), and Meishan pigs (0.811). In line with our admixture
and haplotype sharing result (Figure 1C and Table 3), the
conservation farms could design breeding programs that restrict
the level of contribution of the highly admixed JQ individuals to
the next generation of the breed.

Furthermore, our block analysis revealed that the JQ breed
had more SNPs that were clustered into haplotype blocks than
any other breed in this study (Figure 5A), an indication that the
breed contains a lot of variants that are inherited in the form
of haplotype blocks. This could improve the fine mapping of
QTLs and association studies in this indigenous pig breed. Our
result also revealed that the JQ breed had a moderate block size
(Figure 5B), which implies that the breed could have undergone
moderate selection. This is also in line with the extent of LD
observed in the breed (Figure 3). Besides, the smaller average
haplotype block size observed in the SZ breed could be the
result of historical admixture with western pig breeds, which
is strongly supported by our Neighbor-Net tree (Figure 1A),
admixture analysis (Figure 1C), and haplotype block sharing
result (Table 3). Although our results showed variations in
haplotype block structure across breeds, we were unable to detect
some known haplotype blocks on the SSCX of each breed (Reimer
et al., 2018) (shown in Supplementary Figure S7). This might be
because the density of the SNPs on the SSCX (Supplementary
Figures S2, S3) was not enough to track these SNPs and the
resulting haplotype blocks.

The variation in the number of unique haplotype blocks
within a population can shed more light on the independent
genomic sub-structuring and evolution of such populations
(Khanyile et al., 2015). Moreover, haplotype sharing allows
the generational transfer of genomic materials between breeds
(Khanyile et al., 2015). Our shared and unique haplotype
block result showed different variations across breeds and
reveals the level of uniqueness of each breed in our study. To
strategically manage a pig population for conservation purposes,
it is necessary to perform a SWOT (Strength, Weakness,
Opportunity, and Threat) analysis of each breed. The strengths
of a breed might be, for example, its genetic uniqueness, its
adaptation to a particular system of production, or its past
and present function in human culture (Food and Agriculture
Organization, 2013). JQ pigs are generally well adapted to their
local environment while they serve as a major source of meat
for ham production in China (Toldrá et al., 2014). Breed-specific
haplotype blocks in this pig could be considered a useful tool
in characterizing and protecting its genetic diversity, as they
potentially indicate a genomic source of unique phenotypic
characters in the breed. Consistent with our admixture result
(Figure 1C), a higher percentage of JQ blocks was (found in or)
shared with D (Table 3), suggesting that the JQ breed might have
experienced high introgression from D breed. This result is also
in line with the known history of the breed. Generally, Chinese

pigs, despite their superior meat quality and high prolificacy, have
a slower growth rate compared to western pig breeds, and local
pig farmers tend to supplement this by crossing indigenous pig
breeds with commercial lines. However, if this is not properly
managed in the JQ population, it might lead to a complete genetic
erosion in the breed and also minimize their natural ability to
adapt to local environmental stresses and disease outbreak.

The present study confirms previous findings (Fan et al.,
2002; Xiao et al., 2017b; Xu et al., 2019) and contributes
additional evidence that suggests that the JQ breed is indeed an
important genetic resource. However, continuous genetic erosion
and decline in the population, increases the risk of losing some
economically important traits of the breed. We believe our result
has provided more information that could guide the development
of breeding programs to ensure the conservation and utilization
of this genetic resource. In addition, the SZ breed showed the
highest level of introgression from the Y breed and might be
at the point of losing its genetic uniqueness. This indicates the
weakness of this breed and should be taken into consideration
when planning conservation programs in the future.

CONCLUSION

We analyzed the LD and haplotype block structure of the JQ
pig breed and also detected some underlying QTLs and genes
spanned by these blocks. The present study revealed some blocks
that might be associated with some quantitative or adaptive traits
of the JQ pig and also provides useful information that could
contribute to more informed, strategic management decisions
in conserving and utilizing this breed. This result might also
be useful in selecting variants for further association studies of
these traits. We also reported a high level of introgression of Y
haplotypes into the SZ pig breed and concluded that the later
breed might be at the point of losing its genetic uniqueness.
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We introduce a hierarchical model to estimate haplotype effects based on phylogenetic

relationships between haplotypes and their association with observed phenotypes. In a

population there are many, but not all possible, distinct haplotypes and few observations

per haplotype. Further, haplotype frequencies tend to vary substantially. Such data

structure challenge estimation of haplotype effects. However, haplotypes often differ

only due to few mutations, and leveraging similarities can improve the estimation of

effects. We build on extensive literature and develop an autoregressive model of order

one that models haplotype effects by leveraging phylogenetic relationships described

with a directed acyclic graph. The phylogenetic relationships can be either in a form of a

tree or a network, and we refer to the model as the haplotype network model. The model

can be included as a component in a phenotype model to estimate associations between

haplotypes and phenotypes. Our key contribution is that we obtain a sparse model, and

by using hierarchical autoregression, the flow of information between similar haplotypes

is estimated from the data. A simulation study shows that the hierarchical model can

improve estimates of haplotype effects compared to an independent haplotype model,

especially with few observations for a specific haplotype. We also compared it to a

mutation model and observed comparable performance, though the haplotype model

has the potential to capture background specific effects. We demonstrate the model

with a study of mitochondrial haplotype effects on milk yield in cattle. We provide R code

to fit the model with the INLA package.

Keywords: genealogy, haplotype, DAG, autoregression, INLA, Bayesian

1. INTRODUCTION

This paper develops a hierarchical model to estimate haplotype effects based on phylogenetic
relationships between haplotypes and their association with observed phenotypes. With current
technology we can readily obtain genome-wide information about an individual, either through
single-nucleotide polymorphism array genotyping or sequencing platforms. Since the genome-
wide information has become abundant, modelling this data has become the standard in animal
and plant breeding as well as human genetics. The application of this modelling has been shown
to improve genetic gains in breeding (Meuwissen et al., 2001; Ibanez-Escriche and Simianer, 2016;
Hickey et al., 2017), and has potential for personalised prediction in human genetics and medicine
(de los Campos et al., 2018; Lello et al., 2018; Maier et al., 2018; Begum, 2019).

160

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.531218
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.531218&domain=pdf&date_stamp=2021-01-15
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:maria.selle@ntnu.no
https://doi.org/10.3389/fgene.2020.531218
https://www.frontiersin.org/articles/10.3389/fgene.2020.531218/full


Selle et al. Modelling Haplotype Effects on Phylogeny

Geneticists aim to infer which mutations are causing variation
in phenotypes and what are their effects. This aim is nowadays
approached with genome-wide association studies of regressing
observed phenotypes on mutation genotypes (Morris and
Cardon, 2019). However, mutations arise on specific haplotypes
passed between generations, which limits accurate estimation due
to low frequency of mutations, correlation with other mutations
and limited ability to observe all mutations with a used genomic
platform (e.g., see Gibson, 2018; Simons et al., 2018; Uricchio,
2019). Further, most mutations do not affect phenotypes, while
some mutations have background (haplotype) specific effects
(e.g., Chandler et al., 2017; Steyn et al., 2019; Wojcik et al., 2019).

Instead of focusing on mutation effects we here focus on
haplotype effects and their differences to estimate the effect of
mutations on specific haplotypes. There is extensive literature
on estimating haplotype effects (Balding, 2006; Thompson,
2013; Morris and Cardon, 2019). One issue with estimating
haplotype effects is that there is usually an uneven distribution of
haplotypes in a population (Ewens, 1972, 2004;Walsh and Lynch,
2018), and estimating the effects of rare haplotypes is equally
challenging as estimating the effect of rare mutations. However,
the described genetic processes in the previous paragraph create
a “network” of haplotypes (sometimes referred to as genealogy
or phylogeny), which suggests that effects of similar haplotypes
are similar. This observation inspired (Templeton et al., 1987)
to cluster phylogenetically similar haplotypes. Others have used
similar approaches to account or leverage haplotype similarities
(Balding, 2006; Thompson, 2013; Morris and Cardon, 2019).

We here approach the problem of estimating haplotype effects
by leveraging phylogenetic relationships between haplotypes
described with a directed acyclic graph (DAG) (Koller and
Friedman, 2009) and developing a hierarchical model of
haplotype effects on this graph. We were inspired by recent
advances in building phylogenies on large data sets (Kelleher
et al., 2019), and aimed to develop a hierarchical model
that could scale to a large number of haplotypes. Our
work extends the phylogenetic mixed modelling of the whole
genome (Lynch, 1991; Pagel, 1999; Housworth et al., 2004;
Hadfield and Nakagawa, 2010) to a specific region. This
region specific modelling could be applied either across species
(macroevolution) or within a species (microevolution).

A potentially important modelling aspect with respect to
across and within species modelling is that the phylogenetic
mixed model assumes Brownian motion for evolution of
phenotypes along a phylogeny (Felsenstein, 1988; Huey et al.,
2019). Brownian motion is a continuous random-walk process
with variance that grows over time (is non-stationary) (Gardiner,
2009; Blomberg et al., 2019), which makes it a plausible model
of evolution due to mutation and drift. There are alternatives to
Brownian motion, in particular the Ornstein-Uhlenbeck process
that can accommodate various forms of selection (Lande, 1976;
Hansen and Martins, 1996; Martins and Hansen, 1997; Paradis,
2014). The Ornstein-Uhlenbeck process is also a continuous
random-walk, but with an additional parameter that reverts the
process to the mean (is a stationary process; e.g., Gardiner, 2009;
Blomberg et al., 2019). Both of these models imply Gaussian
distributions for the initial state and increments. The differences

between the two processes might be important in the context
of modelling haplotypes that likely manifest less variation than
whole genomes, particularly when considering haplotypes within
a species or even a specific population.

The aim of this paper is to develop a hierarchical model
for haplotype effects by leveraging phylogenetic relationships
between haplotypes. We assume that such relationships are
described with a DAG encoded network and therefore call the
model the haplotype network model. Since haplotypes differ due
to a small number of mutations and very few mutations have
an effect we expect that phylogenetically similar haplotypes will
have similar effects. Furthermore, the small discrete number
of mutation differences suggest discrete-time analogues of
Brownian and Ornstein-Uhlenbeck processes. Therefore, we
have modelled the effect of a mutated haplotype given its parental
haplotype with a stationary autoregressive model of order one
following the phylogenetic structure encoded with a DAG. The
results show that the haplotype network model improves the
estimation of haplotype effects compared to an independent
haplotype model due to sharing of information. The results also
show that it is comparable to a mutation model, but has the
potential to capture background specific effects.

2. MATERIALS AND METHODS

We present the haplotype network model and show how to
use it as a component in a phenotype model. We also describe
simulations, a case study of modelling mitochondrial effects on
milk yield in cattle, and the chosen method to perform inference
and model evaluation.

2.1. The Haplotype Network Model
We present the haplotype network model, which is a hierarchical
model for haplotype effects based on phylogenetic relationships
between haplotypes encoded with a DAG. The phylogenetic
relationships can be either in a form of a tree or a more general
network. We also present two generalisations of the model—first
due to multiple parental haplotypes and second due to genetic
recombination. By multiple parental haplotypes we mean the
situation where two different haplotypes in a phylogeny mutate
into the same haplotype.

We assume throughout that the phylogeny between
haplotypes is known and that it can be encoded with a DAG. The
haplotype network model can in principle deal with different
types of mutations, but for simplicity we focus only on biallelic
mutations with the code 0 used for the ancestral/reference allele
(commonly at a higher frequency in a population), and the code
1 used for the alternative allele that arose due to a mutation.

2.1.1. Motivating Example
To motivate the haplotype network model, we use the example
from Kelleher et al. (2019) that presents 5 haplotypes spanning 7
biallelic polymorphic sites (Table 1). Note that the 5 haplotypes
are just a sample of the 27 = 128 possible haplotypes over
the 7 sites. An example of a phylogeny for the haplotypes is
shown in Figure 1, where haplotypes are denoted as nodes (we
also show their allele sequence), relationships between haplotypes
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TABLE 1 | Example of 5 haplotypes spanning 7 mutations from Kelleher et al.

(2019).

Site

1 2 3 4 5 6 7

H
a
p
lo
ty
p
e

a 1 0 0 1 1 0 0

b 1 0 0 0 1 1 0

c 1 0 0 0 1 1 0

d 0 1 0 0 0 0 1

e 0 1 1 0 0 0 1

The ancestral (reference) alleles are coded as 0 and alternative alleles are coded as 1.

FIGURE 1 | Phylogenetic relationship of haplotypes in Table 1.

are denoted as edges, and mutated sites are denoted with a
number on edges. For example, the ancestral haplotype i has
allele sequence 0000000, and the haplotype g with sequence
1000100 differs from the ancestral haplotype due to mutations
at the sites 5 and 1.

Assuming that similar haplotypes have similar effects, we
model dependency between parent-progeny pairs of haplotypes
with an autoregressive Gaussian process of order one. For
haplotypes in Table 1 and Figure 1 this model implies the
following set of conditional dependencies:

hi ∼ N
(

0, σ 2
hm

)

hg′ |hi ∼ N
(

ρhi, σ
2
hc

)

hg |hg′ ∼ N(ρhg′ , σ
2
hc
)

ha|hg ∼ N
(

ρhg , σ
2
hc

)

hf , hb, hc, |hg ∼ N
(

ρhg , σ
2
hc

)

hh′ |hi ∼ N
(

ρhi, σ
2
hc

)

hh, hd|hh′ ∼ N
(

ρhh′ , σ
2
hc

)

he|hh ∼ N
(

ρhh, σ
2
hc

)

where hi, hg , . . . , he indicate the effect of haplotypes i, g, . . . , e,
and h∗′ indicates the effect of haplotypes that occur between
haplotypes separated by multiple mutations, for example, g′ is
the additional haplotype between the haplotypes i and g due to
two mutations between i and g; we describe the other model

parameters
(

ρ, σ 2
hm
, σ 2

hc

)

in the following.

2.1.2. The Model
Assume a known general phylogenetic network of haplotypes
described with a DAG with haplotype effects as nodes and
relationships between the haplotype effects as edges as in
Figure 1, and let repeated identical haplotypes be handled as the
same haplotype. We model the effect of a chosen “starting” (this
could be either a central, ancestral, most common or some other
choice) haplotype 1 with mean-zero and marginal variance σ 2

hm
:

h1 ∼ N (0, σ 2
hm
), (1)

and any other haplotype j in the phylogenetic network as a
function of its one-mutation-removed parental haplotype p

(

j
)

assuming the autoregressive Gaussian process of order one with
the autocorrelation between haplotype effects of ρ (|ρ| < 1 to
ensure stationarity) and conditional variance of σ 2

hc
as:

hj|hp(j) ∼ N (ρhp(j), σ
2
hc
). (2)

We consider the autoregressive Gaussian process of order one
that is stationary both in mean and variance, which is achieved
by setting the marginal variance to σ 2

hm
= σ 2

hc
/(1 − ρ2), so

σ 2
hc

= σ 2
hm
(1 − ρ2). The variance parameter is capturing scale

(spread) of haplotype effects and the autocorrelation parameter
is capturing dependency between haplotype effects. This is the
standard autoregressive model of order one used in time-series
analysis (e.g., Rue and Held, 2005). The difference here is that we
are applying the model onto a phylogenetic network described
with a tree or more generally with a DAG (Basseville et al., 1992;
Wu et al., 2020).

The set of distributions in Equation (1) and Equation (2) give
a system of equations for all n haplotype effects h = (h1, ..., hn)

T :

h = T (ρ) ε, (3)

T (ρ)−1 h = ε, (4)

where the matrices T (ρ) and T (ρ)−1 of dimension n × n
respectively represent marginal and conditional phylogenetic
regression between haplotype effects h and the vector ε

represents haplotype effect deviations, ε ∼ N (0,D (ρ) σ 2
hc
). The

expression T (ρ) indicates that the matrix T depends on the
value of ρ. Since haplotype effect deviations are independent,
the matrix D (ρ) is diagonal and has value 1/(1 − ρ2) for the
“starting” haplotype and 1 for the other haplotypes. Following the
assumed autoregressive process of order one (2), the non-zero
elements of T (ρ)−1 are 1 along the diagonal and −ρ between
a haplotype effect (row index) and its parental haplotype effect
(column index). This simple sparse lower-triangular structure
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of the matrix T (ρ)−1 arises from the Markov properties of the
autoregressive process (Rue and Held, 2005).

From Equation (3), the covariance between haplotype
effects is:

Var(h) = Var(T (ρ) ε), (5)

= T (ρ)Var(ε)T (ρ)T = T (ρ)D (ρ)T (ρ)T σ 2
hc

(6)

= H (ρ) σ 2
hc

= Vh

(

ρ, σ 2
hc

)

, (7)

The covariance expression in Equation (5) shows that haplotype

covariances Vh

(

ρ, σ 2
hc

)

depend on the autocorrelation and

variance parameters, while the covariance coefficients H (ρ)

depend only on the autocorrelation parameter. Note that the
parameters ρ and σ 2

hc
are correlated by definition σ 2

hc
= σ 2

hm
(1−

ρ2).When ρ = 0 there is no covariance between haplotype effects
due to phylogenetic relationships, which suggests a model where
haplotype effects are identically and independently distributed,
h ∼ N (0, Iσ 2

hm
). When ρ 6= 0 effects of phylogenetically related

haplotypes covary due to shared mutations.
For completeness, the joint density of all n haplotype effects h

is multivariate Gaussian:

h|ρ, σ 2
hc

∼ N (0,Vh

(

ρ, σ 2
hc

)

), (8)

with the probability density function:

p(h|ρ, σ 2
hc
) =

(

1
√
2π

)n

σ−n
hc

(1− ρ2)1/2

exp

(

−
1

2σ 2
hc

hTH (ρ)−1h

)

. (9)

The expression in Equation (9) involves inverse of the covariance
coefficient (precision) matrix H (ρ)−1, which we can obtain
without computationally expensive inverse of the H (ρ) (5).
Following the definition in Equation (5), inverting both sides and
using the described structure of T (ρ)−1 available from the DAG
andD (ρ), we can efficiently get this inverse by:

H (ρ)−1 =
1

σ 2
hc

T (ρ)−1TD (ρ)−1T (ρ)−1. (10)

Inspection of the structure of Equation (10) shows that this is a
very sparse matrix with a structure. We can compute the non-
zero elements of σ 2

hc
H(ρ)−1 directly with the following simple

algorithm where we loop over all haplotypes:

if the haplotype is the “starting” haplotype then
add 1− ρ2 to the diagonal element

else

add 1 to the diagonal element
end if

if the haplotype has a parental haplotype then
set off-diagonal element between the haplotype and its
parental haplotype to−ρ

add ρ2 to the diagonal element of the parental haplotype
end if

To fully specify the model for h in Equation (8), prior
distributions must be assigned to the autocorrelation parameter
ρ and the marginal variance σ 2

hm
or the conditional variance σ 2

hc
.

Because most mutations do not have an effect we can expect

that most parent-progeny pairs of haplotypes will have similar
effects, which suggests that the autocorrelation parameter will
be close to 1. This knowledge can be incorporated in the prior
distribution for ρ. For the variance parameters theremay be some
prior knowledge about the size of haplotype effects relative to
other effects, which can also be taken into account when choosing

the prior distribution.Wewill specify prior distributions for these
parameters in later sections.

2.1.3. Multiple Parental Haplotypes
Sometimes phylogenetic inference cannot resolve bifurcating
trees with dichotomies (one parental haplotype and two progeny
haplotypes) and outputs a multifurcating tree with polytomies
(one parental haplotype and multiple progeny haplotypes) or
even just a network [multiple parent haplotypes and multiple
progeny haplotypes (e.g., Schliep et al., 2017; Uyeda et al., 2018)].
The multiple progeny case works out of the box with the initial
model, and we will here present an extension of the model
presented in section 2.1.2, that can accommodate the multiple
parent haplotypes and multiple progeny haplotypes case where
the trees or networks can be described with a DAG.

We assume that the effects of all ancestral haplotypes, the
haplotypes at the top of the network, are independent and come
from the same Gaussian distribution N (0, Iσ 2

hm
). We further

assume conditional independence between a haplotype and all
previous haplotypes in the network given the parents of that
haplotype. In the model where each haplotype had only a single

parent haplotype it was assumed that the haplotype effect was

ρ times the parental haplotype effect plus some Gaussian noise.
When a haplotype has multiple parents, we now assume that

the effect is the average over each of these processes from each

parental haplotype.

We illustrate this with a small example which implies the
model construction used. Let haplotype segment d have parental
haplotypes segments a, b, and c. We denote the contribution from
each of these parental segments hda , hdb , hdc , and assume:

hda =ρha + εda

hdb =ρhb + εdb

hdc =ρhc + εdc

where (εda , εdb , εdc )
T ∼ N (0, Iσ 2

hc
). Further, we assume that

the resulting effect of haplotype hd is the average over all
parent processes:

hd =
ρ

3
(ha + hb + hc)+

1

3
(εda + εdb + εdc ).
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The distribution of hd conditional on ha, hb, and hc becomes:

hd|hda , hdb , hdc ∼ N

(

ρ

3
(ha + hb + hc),

σ 2
hc

3

)

.

In general this means that hi|h1, ..., hk ∼ N ( ρ

k

∑k
j=1 hj,

σ 2
hc
k
),

for haplotype i with parental haplotypes 1, ..., k. This model
construction corresponds to a model where one first takes
every path down through the DAG and assigns separate
stationary autoregressive processes of order one to each such
path, and then assume conditionally independent but identical
autoregressive processes of order one, that is, the processes have
the same parameters.

Multiple parental haplotypes change the structure of the
T (ρ)−1 matrix to having−ρ/ki value between a haplotype effect
(row index) and its parental haplotype effect (column index) and
D (ρ)−1 matrix diagonals for “non-starting” haplotypes to ki,
where ki is the number of parental haplotypes of the haplotype
i. The algorithm to setup the σ 2

hc
H(ρ)−1 matrix is then (looping

over all haplotypes)

if the haplotype is the “starting” haplotype then
add to the diagonal element 1− ρ2

else

add ki to the diagonal element
end if

if the haplotype has a parental haplotype then
set off-diagonal element between the haplotype and its
parental haplotype to−ρ

set off-diagonal elements between all parental haplotypes
that share that progeny haplotype to ρ2/ki
add ρ2/ki to the diagonal element of the parental
haplotype(s)

end if

The model presented in this section is only one of many
possible choices for a model accommodating multiple parental
haplotypes. There are other options that could model such graph
structures, for example by modelling it as a mixture distribution
with variable probabilities between parental haplotypes.

2.1.4. Expanding to Multiple Regions Due to

Recombination
Haplotype phylogeny can differ along genome regions due
to recombination—the process of swapping genome regions
between haplotypes during meiosis. We accommodate this in the
haplotype network model by considering each haplotype region
separately, but still within the framework of the samemodel. This
means that the effect of haplotype hi is modelled as the sum of
effects for all haplotype regions. Consider haplotypes spanning
three regions. The effect of haplotype i, is then assumed to be
the sum of the effects of haplotype segments in each of the
three regions:

hi = h1,i + h2,i + h3,i.

We assume the haplotype network model for each haplotype

region, but with joint hyper-parameters
(

ρ, σ 2
hc

)

. Let h =

(h1,1, . . . , h1,n1 , h2,1, . . . , hm,nm ) be the effect of all haplotypes in
all regions, wherem is the number of regions and n is the number
of haplotypes in each region. The joint probability density for the
haplotype effects h is then:

p(h|ρ, σ 2
hc
) =

(

1
√
2π

)n1+...+nm

σ
−(n1+...+nm)
hc

(1− ρ2)m/2

exp

(

−
1

2σ 2
hc

hTH (ρ)−1h

)

,

with:

H (ρ)−1 =







H (ρ)
−1
1

. . .

H (ρ)−1
m






. (11)

Although recombination is common, we have focused on the
special case of no recombination in this study, where the
haplotypes are connected in one phylogeny, as presented in
section 2.1.2. We address recombination in discussion.

2.2. Phenotype Model With Haplotype
Effects
We now show how the haplotype effects can be included in a
model for phenotypic observations. We also present a phenotype
model that includes independent haplotype effects or mutation
effects rather than the haplotypes.

Let yp×1 be phenotype observations of p individuals and
let hn×1 be the effect of n haplotypes obtained from phasing
genotypic data of the individuals. We assume the following
model (Gaussian likelihood) for the centred and scaled
phenotypic observations:

yp×1 = Xp×rβr×1 + f 1p×1 + ...+ f sp×1 + Zp×nhn×1 + ep×1,

(12)

where β ∼ N (0, I1000) is a vector of r fixed effects with
covariate matrix X, f ∼ N (0, Iσ 2

f
) are random effects, h are the

haplotype effects with incidencematrixZ that maps haplotypes to
individuals, and the residual effect is e ∼ N (0, Iσ 2

e ). In the case of
diploid individuals there will be two entries in every row of Z, and
a single entry for haploid individuals or male sex chromosome
or mitogenome.

We have assumed three different models for the haplotype
effects h. The first is a base model with independent haplotype

effects (IH model), where h ∼ N

(

0, Iσ 2
hm

)

. The second is the

haplotype network model presented in section 2.1.2 (HNmodel),

where h ∼ N

(

0,Vh

(

ρ, σ 2
hc

))

. The third is an alternative

way of estimating haplotype effects via a linear combination of
mutation effects (mutation model). Assume h = Uv with v ∼

N
(

0, Iσ 2
v

)

being mutation effects and U is the matrix containing
the haplotype allele sequence with reference alleles coded as 0
and alternative alleles coded as 1. The effects described so far
consist of the latent field of a Bayesian hierarchical model, and
are assigned Gaussian prior distributions.

Frontiers in Genetics | www.frontiersin.org 5 January 2021 | Volume 11 | Article 531218164

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Selle et al. Modelling Haplotype Effects on Phylogeny

The models do not have a common intercept because a
common intercept and the mean level in the haplotype effects
are not identifiable when ρ approaches 1. Instead the mean
level in the observations is captured by the haplotype effects,
for computational reasons. A sum-to-zero constraint can be
specified for the haplotype network part of the model if a
common intercept is required, though this changes the model
interpretation if ρ is close to 1. This problem is not specific to
this model, but occurs for all autoregressive models when they
are used as part of a structured mixed effects model. When the
goal is tomake predictions about the haplotype effects, this model
choice will not influence the results.

2.2.1. Prior Distributions
We assigned penalised complexity (PC) prior distributions to
the variance parameters and the autocorrelation parameter. PC
priors are proper prior distributions developed by Simpson
et al. (2017) that penalise increased complexity as measured by
deviation from a simpler base model to avoid over-fitting. For
a random effect with a variance parameter the base model has
variance of this random effect zero. For the autoregressive model
of order one we have assumed a base model with ρ = 1.
We could have assumed a base model with ρ = 0, but it is
more likely that phylogenetically similar haplotypes have similar
effects than completely independent effects. The PC prior can be
specified through a parameter u and a probability α which satisfy
Prob(x > ux) = αx for the parameter x. We emphasise that the
parameter u here is not an element of the allele sequence matrix
Umentioned above.

Although the precision matrix of the haplotype effects is
specified with the conditional variance in Equation (10), the
prior is specified for the marginal variance since we often have a
better intuition for the marginal variance than for the conditional
variance. Specifically, we specify the prior for the marginal
standard deviation σhm , and assume the conditions uσhm

> 0
and 0 < ασhm

< 1. For the autocorrelation parameter we use
the PC prior developed for stationary autoregressive processes
(Sørbye and Rue, 2017) with basemodel at ρ = 1, and parameters
satisfying −1 < uρ < 1 and

√

(1− uρ)/2 < αρ < 1. We
highlight that the prior by Sørbye and Rue (2017) was developed
for a stationary autoregressive process with different model
assumptions than the models presented in this paper. Ideally, the
prior for the autoregressive parameter would be tailored to the
haplotype network model.

2.3. Inference and Evaluation
We describe the used method for statistical inference—the
Integrated nested Laplace approximations (INLA)—and the
methods used for evaluating model fit in the simulation study.

2.3.1. Inference
All models in this study fit in the framework of hierarchical latent
Gaussian models, which makes INLA (Rue et al., 2009) a suitable
choice to perform inference as implemented in the R (R Core
Team, 2018) package INLA (available at www.r-inla.org).
We give a brief introduction to latent Gaussian models and how
INLA is used to approximate the marginal posterior distributions

in such models. For an in-depth description of INLA (see Rue
et al., 2009, 2017; Blangiardo and Cameletti, 2015).

The class of latent Gaussian models includes several models,
for example generalised linear (mixed) models, generalised
additive (mixed) models, spline smoothing methods, and the
models presented in this article. Latent Gaussian models are
hierarchical models where observations y are assumed to be
conditionally independent given a latent Gaussian random field x
and hyper-parameters θ1, meaning p(y|x, θ1) ∼ 5i∈Ip(yi|xi, θ1).
The latent field x includes both fixed and random effects and
is assumed to be Gaussian distributed given hyper-parameters
θ2, that is p(x|θ2) ∼ N (µ(θ2),6(θ2)). The parameters θ =

(θ1, θ2) are known as hyper-parameters and control the Gaussian
field and the likelihood for the data. These are usually variance
parameters for simple models, but can also include other
parameters, for example the ρ parameter in the autoregressive
model. We must also assign prior distributions to the hyper-
parameters to completely specify the model.

The main aim of Bayesian inference is to estimate the
marginal posterior distribution of the variables of interest, that
is, p(θj|y) for hyper-parameters and p(xi|y) for the latent field.
INLA computes fast approximations to these densities with
high accuracy. The INLA methodology is based on numerical
integration and utilising Markov properties. Hence, for the
computations to be both fast and accurate, the latent Gaussian
models have to satisfy some assumptions. The number of non-
Gaussian hyper-parameters θ should be low, typically less than
10, and not exceeding 20. Further, the latent field should not
only be Gaussian, it must be a Gaussian Markov random field.
The conditional independence property of a Gaussian Markov
random field yields sparse precision matrices which makes
computations in INLA fast due to the use of efficient algorithms
for sparse matrices. Lastly, each observation yi should depend on
the latent Gaussian field only through one component xi.

The R package INLA is run using the inla() function
with three mandatory arguments: a data frame or stack object
containing the data, a formula much like the formula for the
standard lm() function in R, and a string indicating the
likelihood family. Prior distributions for the hyper-parameters
are specified through additional arguments. Several tools to
manipulate models and likelihoods exist as described in
tutorials at www.r-inla.org and the books by Blangiardo
and Cameletti (2015), and Krainski et al. (2018). In the
Supplementary Material (Supplemental 1), we have included a
script showing how we simulated the data from the haplotype
network model and how we fitted the model to the data.

2.3.2. Evaluation of Model Performance
We evaluated the model fit with the continuous rank probability
score (CRPS) (Gneiting and Raftery, 2007). The CRPS is a proper
score which takes into account the whole posterior distribution.
It is negatively oriented, so the smaller the CRPS the closer
the posterior distribution is to the true value. The full Bayesian
posterior output from inla() for these models are mixtures
of Gaussians, for which there is no closed form expression for
CRPS. The mixtures here are similar to plain Gaussians, so we
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approximate the exact CRPS with the Gaussian CRPS using only
the posterior mean and variances provided in the results.

We calculated the CRPS for estimated haplotype effects with
the IH, HN and mutation models. To ease the comparison we
have then calculated a relative CRPS (RCRPS) score as the log of
the ratio between the averages of the CRPS from the HN model
and IH model, and correspondingly for the mutation model
relative to the IH model. The score is computed as:

log

(

∑n
i=1 CRPS(ĥi)HN

∑n
i=1 CRPS(ĥi)IH

)

,

where CRPS(ĥi)HN is the CRPS of the posterior distribution for
haplotype effect hi with the HNmodel. We will refer to this score
as the RCRPS.

We also calculated the root mean square error (RMSE)
between the mean posterior haplotype effect and true haplotype
effects, but the results for the relative RMSE and RCRPS
were qualitatively the same. We therefore only present the
RCRPS results.

In addition to comparing the haplotype estimates, we
compared the estimatedmutation effects from the HNmodel and
the mutation model, using the RCRPS (HN model vs. mutation
model). Although the HN model estimates the haplotype effects
h, we can obtain mutation effects via v = (UTU)−1UTh. We
could also obtain mutation effects through linear combinations
of haplotype effects.

2.4. Simulation Study
To test the proposed HN model, we first used simulated data.
Here, we present data simulated from two different models—
the HN model with varying degree of autocorrelation, and a
more realistic mutation model where only some mutations have
causal effect. We also present the models that were fitted to
the simulated data, and how the model fit was evaluated. In
the Supplementary Material (Supplemental 1), we provide an R
script and the data file to simulate from and fit the haplotype
network model.

2.4.1. Simulation From the Haplotype Network Model
We used the coalescent simulator msprime (Kelleher et al.,
2016) to simulate the phylogeny shown in Figure 2 with n = 107
unique haplotypes. A script showing how this was performed is
provided in the Supplementary Material (Supplemental 1) We
then simulated phenotypes y for p = 400 individuals from
the model:

yp×1 = Zp×nhn×1 + ep×1, (13)

where h ∼ N

(

0,Vh

(

ρ, σ 2
hc

))

with Vh

(

ρ, σ 2
hc

)

built from

the DAG describing the phylogeny (Figure 2 Equation 5),
and e ∼ N (0, Iσ 2

e ).
We tested 15 parameter sets, from weak to strong haplotype

effect dependency, and from low to high residual variance relative

FIGURE 2 | The DAG describing the phylogeny of simulated haplotypes.

to the conditional haplotype variance:

ρ = {0.1, 0.3, 0.5, 0.7, 0.9},

σ 2
e /σ 2

hc
= {0.5, 1, 2}.

We simulated a haploid system for simplicity, so the incidence
matrix Z was a zero matrix with a single 1 on each row indicating
which individuals had which haplotype. We were particularly
interested in estimating the haplotype effect with few or no direct
phenotype observations. This is the extreme scenario where the
haplotype network model could be beneficial. To achieve this, we
designed the incidence matrix to create two different scenarios.
In the first scenario, all haplotypes had associated phenotype
observation, but some haplotypes only had one observation. We
assigned a random sample of 15% of the haplotypes only to one
individual each and the rest of the haplotypes randomly to the
remaining individuals. In the second scenario, some haplotypes
did not have phenotype observations. We selected a random
sample of 15% of the haplotypes that did not have phenotype
observations and assigned phenotype observations to the rest of
the haplotypes. The values of the simulated observations ranged
between−7.2 and 7.3.

2.4.2. Simulation From the Mutation Model
We also simulated haplotype effects from amutationmodel using
the same phylogeny as in the previous section, shown in Figure 2,
and using p = 400 individuals. For the 107 unique haplotypes
we had 106 mutations in the haplotypes. We used the variants
at these mutations to simulate haplotype effects and phenotypes
according to the model:

yp×1 = Zp×nhn×1 + ep×1, (14)
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where h = Un×106v106×1, v was the mutation effect, U a
matrix containing ancestral (reference) alleles coded as zero and
alternative alleles coded as 1, and e ∼ N (0, Iσ 2

e ). We sampled the
mutation effect v from:

v =

{

N (0, σ 2
v ), with probability λ

0, with probability (1− λ)

where we chose σ 2
v so that the empirical variance of h,

Var(h), was 1.
Again, we tested 15 parameter sets, from few to many causal

variants, and from low to high residual variance relative to
empirical haplotype variance:

λ = {0.1, 0.3, 0.5, 0.7, 0.9},

σ 2
e /Var(h) = {0.5, 1, 2}.

We again simulated haploid individuals, so the incidence matrix
Z was a zero matrix with a single 1 on each row indicating which
individuals had which haplotype. The incidence matrix was
designed to create the same scenarios as for the data simulated
from the HN model in section 2.4.1. The values of the simulated
observations ranged between−8.4 and 8.9.

2.4.3. Models Fitted to the Simulated Data
We fitted the HN model, IH model and the mutation model to
the simulated data:

yp×1 = Zp×nhn×1 + ep×1, (15)

where h was assumed to be distributed according to:

h ∼ N

(

0,Vh

(

ρ, σ 2
hc

))

for the HN model,

h ∼ N
(

0, Iσ 2
I

)

for the IH model and
h = Uv, v ∼ N

(

0, Iσ 2
v

)

for the mutation model.

The residual effect was e ∼ N
(

0, Iσ 2
e

)

. We used PC priors for the
ρ parameters with uρ = 0.7 and αρ = 0.8, and for all variance
parameters with u = 0.1 and α = 0.8.

2.4.4. Evaluation
For each parameter set, we performed the same experiment 50
times. In 4% of the experiments when the data was simulated
from the HN model, the optimisation method with the HN
model did not converge. We report results only for cases where
all models were successfully fitted. There was no trend for any
parameter set causing the inference method to break down.

Since we created different scenarios for how phenotype
observations were distributed among the haplotypes, we stratified
the results for haplotype effects based on how many times a
haplotype was phenotyped. For the first scenario, where some
haplotypes were phenotyped either once or multiple times, we
have computed the RCRPS for these two groups separately.
For the second scenario, where some haplotypes were not
phenotyped, we present the RCRPS only for haplotypes that
were not phenotyped. In both cases, RCRPS less than zero
indicates that the HN/mutation model was better than the IH

model on average.We present the RCRPS for estimatedmutation
effects only for the mutation model simulation, because the true
mutation effects were not generated when simulating from the
haplotype network model.

2.5. Case Study: Mitochondrial Haplotypes
in Cattle
We present a case study using the haplotype network model to
estimate the effect of mitochondrial haplotypes on milk yield in
cattle. We first briefly describe the data and then the fitted model.

2.5.1. Data
We demonstrate the use of the haplotype network model with
a case study estimating the effect of mitochondrial haplotypes
on milk yield in cattle from Brajković (2019). We chose this
case study because mitochondrial haplotypes are passed between
generations without recombination and are as such a good
case for the haplotype network model. The phenotyped data
comprised of information about the first lactation milk yield,
age at calving, county, herd-year-season of calving for 381 cows.
Additionally, the data comprised of pedigree information with
6,336 individuals (including the 381 cows) and information about
mitochondrial haplotypes (whole mitogenome with 16,345 bp)
variation between maternal lines in the pedigree. We inferred
the mitochondrial haplotypes by first sequencing mitogenome,
aligning it to the reference sequence and calling 363 single-
nucleotide mutations as described in detail in Brajković (2019).
We used PopART (Leigh and Bryant, 2015) to build a phylogentic
network of mitochondrial haplotypes. For simplicity we used
the median-joining method to show that the haplotype network
model can be fit to the output of a standard phylogentic method.
In this process we assumed that the ancestral alleles were
the most frequent alleles. The phylogeny contained 63 unique
mitochondrial haplotypes each separated by one mutation. Of
the 63 haplotypes only 16 haplotypes were observed in the 381
phenotyped cows. There were five haplotypes that did not have
a parent haplotype, meaning we treated them as a “starting”
haplotype in the haplotype network model.

2.5.2. Model
Let hn×1 be the effect of the n = 63 mitochondrial haplotypes,
and let yp×1 be the phenotypes of the p = 381 cows. We fitted the
following model to centred and scaled phenotypes:

yp×1 = Xp×rβr×1 + cp×1 + ap×1 + Zp×nhn×1 + ep×1

where β ∼ N (0, I1000) contained effects of age at calving as a
continuous covariate effect and county as a categorical covariate
effect with corresponding design matrix X, c ∼ N

(

0, Iσ 2
c

)

was
the random effect of herd-year-season of calving (contemporary
group), a ∼ N

(

0,Aσ 2
a

)

was additive genetic effect for the
whole nuclear genome with the covariance coefficient matrix
A derived from the pedigree (Henderson, 1976; Quaas, 1988),
and lastly the mitochondrial haplotype effects were fitted with

the haplotype network model h ∼ N

(

0,Vh

(

ρ, σ 2
hc

))

with the

covariance matrix Vh

(

ρ, σ 2
hc

)

derived from the phylogeny and

Frontiers in Genetics | www.frontiersin.org 8 January 2021 | Volume 11 | Article 531218167

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Selle et al. Modelling Haplotype Effects on Phylogeny

using the expanded model that accommodates multiple parental
haplotypes from section 2.1.3. We assumed that residuals were
distributed as e ∼ N (0, Iσ 2

e ). We assigned PC priors to the ρ

parameter with uρ = 0.7 and αρ = 0.8 and to the σ 2
hm

parameter

with uσhm
= 0.1 and ασhm

= 0.3, and to all remaining variance
parameters with uσ∗ = 0.1 and ασ∗ = 0.8.

3. RESULTS

We present results from the simulation study testing the behavior
of the haplotype network model and the case study estimating
the effect of mitochondrial haplotypes on milk yield in cattle.
In the results from the simulation study, we present the
RCRPS between the haploptype network (HN) model and the
independent haplotype (IH) model, and between the mutation
model and the IH model for the different parameter sets. In
the results from the case study, we present the mean and
standard deviation of the posterior mitochondrial haplotype
effects mapped onto the phylogenetic network, and posterior
estimates for the hyper-parameters.

3.1. Simulation Study
3.1.1. Simulation From the Haplotype Network Model
We start by considering the results with the data simulated from
the HNmodel from section 2.4.1 that were fitted with the models
from section 2.4.3.

The RCRPS (smaller values indicate that the HN or mutation
models, respectively, are better than the reference IH model)
is presented in Figure 3. This figure has three panels denoting
haplotypes that were observed in (Figure 3A) several phenotyped
individuals, (Figure 3B) only one phenotyped individual and
(Figure 3C) were not observed in a phenotyped individual. The
full lines show the RCRPS between the HN model and the
IH model, while the dashed lines show the RCRPS between
the mutation model and the IH model. Along the x-axis the
autocorrelation parameter ρ for the simulated haplotype effects
increases from weak to strong phylogenetic dependency, and the
three colored lines indicate the amount of phenotypic variation
due to residual relative to the variation from haplotype effects.

Figure 3 shows that (1) the HN model outperforms the
IH model across a range of parameter values, (2) the HN
model is more important for haplotypes with fewer phenotypic
observations, (3) the HN model is more important for
noisy phenotypic data, and (4) when haplotypes are more
phylogenetically dependent, the HN model and the mutation
model have similar performance. We go through each of these
findings in detail.

The HN model outperforms the IH model for almost all 15
parameter sets. In all panels of Figure 3 almost all points with
the full line are below zero, meaning that the HN model gave
better estimates of haplotype effects than the IHmodel.When the
haplotype dependency due to phylogeny was low, the RCRPS was
around zero, meaning that the two models performed similarly,
which was expected. As the phylogenetic dependency became
stronger, the HN model improved relative to the IH model, as
seen from the decreasing RCRPS as ρ approaches 0.9.

The improvement in CRPS with the HN model relative to
the IH model increased when haplotypes were observed in a
smaller number of phenotyped individuals. This is indicated
by the decreasing RCRPS when we compare panels (A), (B),
and (C) in Figure 3. The decrease in RCRPS was the largest in
Figure 3C followed by Figure 3B and Figure 3A. This means
that modelling phylogenetic dependency between haplotypes
is most useful when there are some haplotypes with few
phenotypic observations, or if we want to predict the effect of
new haplotypes. Especially for haplotypes that do not have a
direct link to observed phenotypes, the IH model is not useful,
because it assigns the average effect of haplotypes with direct
link to observed phenotypes to haplotypes without such links,
whereas the HN model can assign the haplotype effect based
on a phylogenetic network. When the haplotype effects had
low phylogenetic dependency (ρ is low), there was not much
difference in RCRPS between the three panels.

The improvement with the HNmodel relative to the IHmodel
increased when the phenotypic data was noisier. In Figures 3A,B,
the RCRPS was lower with larger residual variance. This indicates
that the HNmodel does a better separation of the environmental
and genetic sources of variation than the IH model. We did not
observe the same in Figure 3C, because the IH model performed
equally poorly in predicting new haplotypes regardless of the
amount of residual variance. The HN model on the other hand,
performed slightly better as there was less variation due to
residual effects for some values of ρ and similar for other values
of ρ compared to the IH model.

As haplotypes became phylogentically more dependent with
the increasing ρ, the HN model and the mutation model
performed similarly. In all panels the dashed lines indicate a
worse fit for the mutation model than for the IH model and
HN model when ρ was low. When ρ increased, the mutation
model improved relative to the IH model, but not better than
the HN model.

3.1.2. Simulated Data From the Mutation Model
Now, we consider the results with the haplotype effects simulated
from a more realistic mutation model in section 2.4.2, and
fitted with the models from section 2.4.3. Here we varied the
probability of mutations having a causal effect λ and we present
results using only λ = 0.1, since the results were qualitatively
similar for all tested λ values.

The RCRPS is presented in Figure 4 for the three
different levels of phenotype observations per haplotype
and three different values of residual variance relative
to the empirical haplotype variance which was always
1. The full lines show the RCRPS between the HN
model and the IH model, while the dashed lines
show the RCRPS between the mutation model and
the IH model.

In general, the results align with the results from the previous
section except for the mutation model; (1) the HN model
outperforms the IH model, (2) the HN model is more important
for haplotypes with few phenotypic observations, (3) the HN
model is more important for noisy phenotypic data and (4) the
mutation model was marginally better than the HN model in
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FIGURE 3 | RCRPS (smaller values indicate that the HN or mutation models, respectively, are better than the reference IH model) between the HN model and the IH

model (solid line) and between the mutation model and the IH model (dashed line) for data simulated from the HN model with varying ρ parameter and ratio between

the residual σ 2
e and conditional haplotype variance σ 2

hc
. The three panels show RCRPS for the haplotypes that were observed in (A) several phenotyped individuals,

(B) only one phenotyped individual, and (C) were not observed in a phenotyped individual.

FIGURE 4 | RCRPS (smaller values indicate that the HN or mutation models,

respectively, are better than the reference IH model) between the HN model

and the IH model (solid line) and between the mutation model and the IH

model (dashed line) for data simulated from the mutation model with varying

residual variance σ 2
e and empirical haplotype variance 1 [Var(h) = 1]. The three

scenarios show RCRPS for the haplotypes that were observed in (Several)

several phenotyped individuals, (Once) only one phenotyped individual, and

(Never) were not observed in a phenotyped individual.

estimating haplotype effects. We go through each of the findings
in detail.

The HN model outperformed the IH model for all tested
parameter sets. In Figure 4, all RCRPS values, are well below zero.
For haplotypes observed in several or one phenotyped individual,
the RCRPS was lower than what was seen in Figures 3A,B. For
haplotypes with no direct links to phenotype observations, the
RCRPS was not improving as much as seen in Figure 3C.

The improvement with the HNmodel relative to the IHmodel
increased with fewer phenotype observations per haplotype. The
RCRPS in Figure 4 is lowest for haplotypes with no direct links to
phenotype observations, second lowest for haplotypes with one
direct link to a phenotype observation, and highest for haplotypes
that were observed in several phenotyped individuals.

The improvement with the HNmodel relative to the IHmodel
increased with increasing residual variation. In Figure 4, the
RCRPS for haplotypes observed in several or one phenotyped
individual decreases with increasing residual variance. This
was again not the case for haplotypes with no direct links to
phenotype observations. As mentioned in the previous section,
the IH model is predicting new haplotypes equally poorly
irrespective of the residual variance. The HN model on the
other hand, improves the prediction of new haplotypes when the
phenotypic data is less noisy.

Themutationmodel wasmarginally better than theHNmodel
in estimating haplotype effects. The dashed lines in Figure 4

indicate the RCRPS between the mutation model and the IH
model, and the full lines indicate the RCRPS between the HN
model and the IH model. The dashed lines and full lines follow
each other closely, and the dashed lines are slightly lower than the
full lines, indicating that the mutation model was slightly better
than the HN model, although not by much.

In Table 2, we present the average RCRPS between the HN
model and the mutation model for the estimated mutation
effects. This table has the RCRPS for the two scenarios where
either all haplotypes had associated phenotype observation, or
most haplotypes had associated phenotype observation and the
rest did not, with different proportions of mutations with causal
effect and for different residual variance. RCRPS above zero
indicate that the mutation model had better CRPS, and averages
below zero indicate that the HN model had better CRPS. Overall
the difference between the two models is small. The mutation
model had the best performance when there were few causal
mutations, and the HN model had the best performance when
there were many causal mutations.
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TABLE 2 | RCRPS between the HN model and the mutation model for mutation

effects by different values of residual variance σ 2
e , proportion of causal mutations

and for the two scenarios where either all or most haplotypes have direct links to

observed phenotypes.

Prop. of causal mut. All observed Most observed

σ 2
e = 0.5

0.1 0.060 0.071

0.3 0.019 0.025

0.5 −0.002 −0.004

0.7 −0.019 −0.021

0.9 −0.027 −0.029

σ 2
e = 1

0.1 0.123 0.111

0.3 0.043 0.037

0.5 0.004 0.000

0.7 −0.024 −0.022

0.9 −0.041 −0.034

σ 2
e = 2

0.1 0.168 0.214

0.3 0.067 0.101

0.5 0.006 0.018

0.7 −0.025 −0.026

0.9 −0.042 −0.048

3.2. Case Study: Mitochondrial Haplotypes
in Cattle
We present results for the case study of estimating the effect
of mitochondrial haplotypes on milk yield in cattle presented
in section 2.5. We present the posterior mean and standard
deviation for the effect of mitochondrial haplotypes mapped onto
the phylogeny, the posterior distribution for the autocorrelation
parameter ρ, and the mean and 95% confidence interval of the
posterior variances in the model.

In summary, the results show (1) that there was sharing
of information between the mitochondrial haplotypes, (2) that
haplotypes without a direct link to observed phenotyopes were
estimated with larger uncertainty, (3) indications of strong
phylogenetic dependency between the haplotypes, and (4) a
significant proportion of the total phenotypic variation explained
by mitochondrial haplotypes.

The HN model enabled sharing of information from the
haplotypes that had a direct link with observed phenotypes
to the other haplotypes. In Figure 5, we present the posterior
mean for the effect of mitochondrial haplotypes with node color.
Haplotype effect estimates are similar for phylogenetically similar
haplotypes, meaning that there was sharing of information
between the haplotypes, even though haplotypes that had direct
links with phenotype observations (nodes labelled with 1)
were separated from each other with a substantial number
of mutations.

Haplotypes without direct links to observed phenotypes were
estimated with larger uncertainty. In Figure 5, we present the
posterior standard deviation for the effect of mitochondrial

FIGURE 5 | Posterior mean and standard deviation for mitochondrial

haplotype effects on milk yield in cattle. Posterior means are denoted with

node color, while posterior deviations are denoted by the node size. The

numbers on each haplotype node indicate if the haplotype had a direct link to

the observed phenotype (1) or not (0).

haplotypes with node size. Haplotypes with direct links to
observed phenotypes (nodes labelled with 1) have smaller
posterior standard deviation than the other haplotypes (nodes
labelled with 0). The posterior standard deviation decreased
slightly as the haplotypes without direct links were closer (in
number of mutations) to the haplotypes with direct links, which
was expected.

The posterior distribution for the autoregression parameter
ρ indicated strong dependency between haplotype effects. The
posterior distribution (full line) of ρ is shown in Figure 6

together with the prior distribution (dashed line). The mode of
the distribution lies around 0.85, and the mean lies around 0.73,
indicating that neighboring haplotypes had similar effects, which
is related to the sharing of information between haplotypes seen
in Figure 5. We also note that the posterior distribution shifted
to slightly lower values of ρ than the prior distribution. This
means that the data contained information that the model could
learn from.

A significant amount of the total phenotypic variation was
explained by the mitochondrial haplotypes. In Table 3, we
present the posterior mean and 95% confidence interval of
each variance component in the model, and how much of
the total variation in the model (σ 2

c + σ 2
a + σ 2

hm
+ σ 2

e )

was explained by each variance component. The posterior
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FIGURE 6 | Prior (dashed line) and posterior (solid line) distribution for the

autocorrelation parameter ρ for mitochondrial haplotype effects on milk yield in

cattle.

TABLE 3 | Posterior mean, 95% confidence interval (CI) for variance parameters,

and the proportion of variation explained by each variance component for the

case study estimating mitochondrial haplotype effects on milk yield in cattle.

Variance parameter Mean 95% CI Prop. of variance explained

σ 2
c 0.035 (0.005, 0.090) 0.047

σ 2
a 0.329 (0.194, 0.533) 0.444

σ 2
hm

0.113 (0.033, 0.264) 0.152

σ 2
hc

0.048 (0.007, 0.154) 0.065

σ 2
e 0.265 (0.171, 0.416) 0.357

σ 2
c , variance of contemporary group effects; σ 2

a , variance of nuclear-genome additive

effects; σ 2
hm
, marginal variance of mitogenome haplotype effects; σ 2

hm
, conditional variance

of mitogenome haplotype effects; σ 2
e , variance of residuals.

distribution of the conditional haplotype variance was obtained
by computing σ 2

hc
= σ 2

hm
(1 − ρ2), using 10,000 samples from

the posterior distributions of the marginal haplotype variance
and the autocorrelation parameter. We see that the marginal
haplotype variance σ 2

hm
and conditional haplotype variance σ 2

hc

is smaller compared to the additive genetic variance σ 2
a , and

the residual variance σ 2
e . This was expected as the mitogenome

(∼ 1 × 16Kbp) is much smaller than the nuclear genome
(∼ 2 × 3Gbp). In the light of this difference we can say
that mitochondrial haplotypes captured a significant amount
of phenotypic variation. The variance for the random effect
of herd-year-season of calving σ 2

c was also smaller compared
to σ 2

a and σ 2
e .

It should be noted that this is a small data set with few
haplotypes with direct links to observed phenotypes, which
means that the posterior standard deviations for haplotype effects
were relatively large. This also causes posterior estimates to
be strongly influenced by the prior distributions, especially the
posterior for ρ which we can see in Figure 6. However, we still
chose to assign an informative prior to ρ, since it is expected that
most mutations have no causal effect and that phylogenetically
similar haplotypes have similar effects.

3.3. Computation Time
The models were run on a computation server with Linux
operating system, 24 cores (4x6 core 2.66 GHz Intel Xeon X7542)
and 256 GB memory, fitting up to seven models in parallel. The
R version used to produce the results was 3.6.0, and the INLA
package version was 18.07.12. INLA was allowed to use as many
threads as were available.

In the simulation study, the average computation time was
359.3 s with the HN model, 3.4 s with the IH model, and 4.4 s
with the mutation model when the data were simulated from the
haplotype network model. When the data were simulated from
the mutation model, the average computation time was 310.4 s
for HN model, 3.2 s for the IH model and 1.4 s for the mutation
model. For the case study with mitochondrial haplotypes, the
computation time with the HN model was 119 s.

4. DISCUSSION

The objective of this paper was to propose a hierarchical model
that leverages haplotype phylogeny to improve the estimation
of haplotype effects. We have presented the haplotype network
model, evaluated it using simulated data from two different
generative models, and applied it in a case study of estimating
the effect of mitochondrial haplotypes on milk yield in cattle. We
highlight three points for discussion in relation to the proposed
haplotype network model: (1) the importance of the haplotype
network model, (2) future development and possible extensions
and (3) limitations.

4.1. The Importance of the Haplotype
Network Model
We see three important advantages of the haplotype network
model; the ability to share information between related
haplotypes, computational advantages when modelling a single
region of a genome, and the potential to capture background
specific mutation effects.

The haplotype network model utilises phylogenetic
relationships between haplotypes and with this improves
estimation of their effects. From the simulation study, we
saw the importance of this information sharing when there is
limited information per haplotype. In the haplotype network
model the autocorrelation parameter ρ and the conditional
variance parameter σ 2

hc
reflect the covariance between effects

of phylogenetically similar haplotypes. As the autocorrelation
approaches 1, haplotype effects become more dependent.
Further, if the conditional variance is small the large dependency
and small deviations lead to similar effects for phylogenetically
similar haplotypes, suggesting that mutations separating the
haplotypes have very small or no effect compared to other shared
mutations between haplotypes. If on the other hand conditional
variance is large, the large dependency and large deviations lead
to haplotype effects that change rapidly along the phylogeny,
suggesting that mutations separating the haplotypes have large
effects. On the other hand, if the autocorrelation parameter
approaches 0, the covariance between effects of phylogenetically
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similar haplotypes is decreasing, suggesting that haplotypes
should be modelled independently.

The three extreme scenarios of hyper-parameter values could
denote three real cases. The first case with high autocorrelation
and small conditional variance could reflect a situation where the
whole haplotype sequence would be used to build a phylogeny
and since most mutations do not have a causal effect, but some
do, it is expected that similar haplotypes will have similar effects
with small differences between the haplotypes. The second case
with high autocorrelation and large conditional variance could
reflect the situation when the number of causal mutations would
be high compared to all mutations (because only such mutations
are analysed) and therefore change of effects along the phylogeny
would be larger. The third scenario with no autocorrelation could
reflect the situation where phylogeny does not correlate with
phenotype change.

As mentioned in the introduction, modelling phenotypic
variation as a function of haplotype variation has extensive
literature (Templeton et al., 1987; Balding, 2006; Thompson,
2013; Morris and Cardon, 2019). The prime motivation for
this work is the recent growth in the generation of large scale
genomic data sets and methods to build phylogenies (Kelleher
et al., 2019). We aimed to develop a general model that
could exploit phylogenetic relationships between haplotypes in a
computationally efficient way. The computational benefits come
from the sparse precision matrix V−1

h
, which is due to the

conditional independence structure encoded in the DAG of a
network of haplotypes (Rue and Held, 2005). The computational
benefits are not critical when the number of haplotypes is small.
In that case the matrix Vh is small and easy to invert, though
for the autoregressive model we would have to invert it many
times during the estimation procedure due to dependency on
the autocorrelation parameter. However, it is better to avoid
inversions if possible because it can lead to numerical errors and
loss of precision (e.g., Misztal, 2016).

While the haplotype network model is different to the
pedigree mixed model (Henderson, 1976; Quaas, 1988) (where
we model the inheritance of whole genomes in a pedigree
without (fully) observing the genomes) or the phylogenetic
mixed model (Lynch, 1991; Pagel, 1999; Housworth et al., 2004;
Hadfield and Nakagawa, 2010) (where we model the inheritance
of whole genomes in a phylogeny without (fully) observing the
genomes), the principles of conditional dependence between
genetic effects and the resulting sparsity are the same (Rue and
Held, 2005). The key difference of the haplotype network model
is that it estimates the effect of observed haplotype sequences
as compared to unobserved or partially observed inheritance
of whole genomes in a pedigree or phylogeny. To improve the
estimation of the haplotype effects we take into account the
phylogenetic relationships. A similar model has also been used
in spatial disease mapping (Datta et al., 2019), showing potential
of this kind of model in several applications.

While the use of phylogenetic relationships might seem
redundant if we know (most of) the haplotype sequence, the
simulations showed that it improves estimation in most cases,
even marginally compared to the mutation model where we
directly model mutation effects. The haplotype network model

can be seen as a hybrid between the mutation model (that models
variation between the columns of a haplotype matrix) and the
independent haplotypemodel (that models variation between the
rows of a haplotype matrix). This hybrid view might improve
genome-wide association studies (see reviews by Gibson, 2018;
Simons et al., 2018; Morris and Cardon, 2019; Uricchio, 2019).

The haplotype network model has the potential to capture
background specific mutation effects, which are effects observed
when the effect of amutation depends on othermutations present
in an individual (e.g., Chandler et al., 2017; Steyn et al., 2019;
Wojcik et al., 2019). If there are background specific mutation
effects the haplotype effect differences will capture this, while a
mutation model only estimates an average effect of a mutation
across multiple backgrounds (haplotypes). However, we must
point that the haplotype network model captures only local
effects, that are due to interactions between mutations present
on a haplotype (e.g., Clark, 2004; Liu et al., 2019). We have
not evaluated how well the model captures background specific
mutation effects in this study, and more simulations to a range of
data are needed to evaluate this aspect.

4.2. Future Development and Possible
Extensions
There is a number of areas for future development with the
haplotype network model. We are looking into four areas:
making the model more flexible in the number of mutations
separating phylogentically similar haplotypes, modelling
haplotype differences in a continuous way utilising branch
lengths, incorporating biological information and phylogenetic
aspects of haplotype relationships.

We have developed the haplotype networkmodel by assuming
the differences between similar haplotypes is due to onemutation
to simplify model definition. However, in the observed data there
might not be haplotypes that are separated for just one mutation.
We handle this situation by inserting phantom haplotypes, to
ensure that we do not model haplotypes as more similar than
they actually are. The order of mutations in such situations
is uncertain and a model could be generalised to account for
these larger number of mutations between haplotypes. However,
the current “one-mutation” difference model setup has a useful
property of inferring the value of unobserved haplotypes and
the sparse model definition does not increase computational
complexity of the model.

The haplotype network model could be generalised to utilise
time calibrated distances between haplotypes rather than using
the number of mutations. The Ornstein-Uhlenbeck (OU) process
is the continuous-time analogue of the autoregressive process
of order one used in this study, and plays a major role in the
analysis of the evolution of phenotypic traits along phylogenies
(Lande, 1976; Hansen and Martins, 1996; Martins and Hansen,
1997; Paradis, 2014). Relatedly, if the autocorrelation parameter
of the autoregressive process of order one is set to 1 we get the
non-stationary discrete randomwalk process, whose continuous-
time analogue is the Brownian process that is the basic model of
phylogenetic comparative analysis (Felsenstein, 1988; Huey et al.,
2019). There is a scope to improve computational aspects for
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these continuous models too by employing recent developments
from the statistical analysis of irregular time-series (Lindgren and
Rue, 2008).

In the haploptype network model presented in this study,
the same autocorrelation parameter has been assumed for all
mutations. However, the autocorrelation parameter could be
allowed to vary as Beaulieu et al. (2012) did in the context
of adaptive evolution. For example, different autocorrelation
parameters for different types of mutations could incorporate
biological information, which could combine the quantitative
analysis of mutation and haplotype effects with molecular
genetic tools such as Variant Effect Predictor (McLaren et al.,
2016).

We have assumed that the phylogenetic network is given
and described with a DAG. There is a large body of literature
on inferring phylogenies in the form of strict bifurcating trees,
more general trees or networks and recent developments in
genomics are rapidly advancing the field (e.g., Anisimova, 2012;
Puigbò et al., 2013; Schliep et al., 2017; Uyeda et al., 2018).
The haplotype network model can work both with phylogenetic
bifurcating and multifurcating trees and phylogenetic networks.
The only condition is that we describe the haplotype relationships
with a DAG, an output provided by many tools (e.g., Leigh
and Bryant, 2015; Suchard et al., 2018; Kelleher et al., 2019).
We have generalised the model construction to allow for
network structures. This generalisation enables the model to
describe haplotype relationships without paying attention to
the directionality as long as there are no directed loops
in the graph. The proposed model does not depend on
which allele is ancestral, major or minor, but we believe
that the most logical is to work with ancestral alleles as the
starting point.

It is beneficial to know the order of mutations, and therefore
which haplotypes are parental to other haplotypes, because this
leads to a tree structure and a sparse precision matrix structure
in the model (Rue and Held, 2005). An example of non-optimal
sparsity can be seen in our case study. In Figure 5, the “central”
haplotype with the largest uncertainty is modelled as a progeny
haplotype of four surrounding haplotypes, which means that
there is a dense 5 × 5 block in the precision matrix V−1

h
. The

block is dense because the “central” haplotype is modelled as
a function of the other four “parental” haplotypes. If however
the “central” haplotype was used as the parental haplotype
the 5 × 5 block would be sparse since all other haplotypes
would be conditionally independent given the “central/parental”
haplotype. The same applies also for the other parts of the
haplotype network in Figure 5.

The haploptype network model could also work with
probabilistic networks where edges have associated uncertainty
(weights). By encoding such a network with a DAG, the edge
weights can be used in model construction—for example, in the
same way uncertain parentage is handled in pedigree models
(Henderson, 1976). An alternative would be to construct a
model for each possible realisation of a network, run separate
models and combine haplotype estimates in the spirit of Bayesian
model averaging.

4.3. Limitations
The haplotype network model also has some limitations that
merit further development. We highlight three areas: is the
haplotype network model necessary given that we can model
mutation effects, Gaussian assumption and causal mutations, and
modelling recombining haplotypes.

For the haplotype network model to achieve its full potential,
the data need to have a certain structure. We saw from fitting
the haplotype network model to a real data set, that having
few haplotypes with direct links to observed phenotypes and
many haplotypes without, lead to large uncertainty in estimated
haplotype effects. We also saw from fitting simulated data,
that the mutation model was slightly better at estimating the
mutation effects than the haplotype network model, when the
data were simulated from a mutation model, but the magnitude
of difference was minimal. In the future, different data structures
should be tested to find optimal scenarios, in order for the
haplotype network model to achieve its full potential.

The haplotype network model assumes that the haplotype
effects follow a Gaussian distribution. If all, or very many,
of the haplotypes have the same effect, the distribution may
be quite different from Gaussian, which breaks the model
assumptions and perhaps other models should be proposed.
Blomberg et al. (2019) describe the underlying theory behind
the common Gaussian processes, such as Brownian motion and
Ornstein-Uhlenbeck process, and present general methods for
deriving new stochastic models, including non-Gaussian models
of quantitative trait macroevolution. See also (Landis et al., 2012;
Schraiber and Landis, 2015; Duchen et al., 2017; Bastide et al.,
2020).

Scaling the haplotype network model to multiple recombining
haplotype regions is challenging for two reasons. First, while
phasing methods have improved substantially in the last years
(Marchini, 2019), determining a recombination breakpoint is
challenging due to a limited resolution to resolve exact locus
where recombination occurred (Johnsson et al., 2020). Second,
the sparsity of the haplotype network model comes from the
sparsity of the precision matrix V−1

h
. In the extension for

recombining haplotypes the sparsity in the prior is maintained
also for multiple consequitive haplotype regions along a
chromosome as shown in Equation (11) in section 2.1.4.
However, the design matrices that link phenotype observations
with multiple haplotype regions create dense cross-products in
the system of equations as we increase the number of regions
and the sparsity advantage is lost. To this end we are exploring
alternative ways of formulating the haplotype network model
following data structures in Kelleher et al. (2019), with the aim to
improve upon the existing haplotype based genomicmodelling of
whole genomes (e.g., Villumsen et al., 2009; Hickey et al., 2013).
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