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Biophysical modelling of brain activity has a long and illustrious history and has recently 
profited from technological advances that furnish neuroimaging data at an unprecedented 
spatiotemporal resolution. Neuronal modelling is a very active area of research, with 
applications ranging from the characterization of neurobiological and cognitive processes, 
to constructing artificial brains in silico and building brain-machine interface and 
neuroprosthetic devices. Biophysical modelling has always benefited from interdisciplinary 
interactions between different and seemingly distant fields; ranging from mathematics 
and engineering to linguistics and psychology. This Research Topic aims to promote such 
interactions by promoting papers that contribute to a deeper understanding of neural activity 
as measured by fMRI or electrophysiology.

In general, mean field models of neural activity can be divided into two classes: neural mass 
and neural field models. The main difference between these classes is that field models 
prescribe how a quantity characterizing neural activity (such as average depolarization of 
a neural population) evolves over both space and time as opposed to mass models, which 
characterize activity over time only; by assuming that all neurons in a population are located 
at (approximately) the same point. This Research Topic focusses on both classes of models 
and considers several aspects and their relative merits that: span from synapses to the 
whole brain; comparisons of their predictions with EEG and MEG spectra of spontaneous 
brain activity; evoked responses, seizures, and fitting data - to infer brain states and map 
physiological parameters. 
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Biophysical modeling of brain activity has a long and illustrious
history (Ermentrout, 1998; Deco et al., 2008; Coombes, 2010) and
has recently profited from technological advances that furnish
neuroimaging data at an unprecedented spatiotemporal reso-
lution (Guillory and Bujarski, 2014; Sporns, 2014). Neuronal
modeling is a very active area of research, with applications rang-
ing from the characterization of neurobiological and cognitive
processes, (Jirsa, 2004b,a; Bojak and Liley, 2005; Phillips and
Robinson, 2009; Rolls and Treves, 2011) to constructing artificial
brains in silico and building brain-machine interface and neuro-
prosthetic devices, e.g., Einevoll et al., 2013; Whalen et al., 2013.
Biophysical modeling has always benefited from interdisciplinary
interactions between different and seemingly distant fields; rang-
ing from mathematics and engineering to linguistics and psychol-
ogy. This Research Topic aims to promote such interactions by
promoting papers that contribute to a deeper understanding of
neural activity as measured by fMRI or electrophysiology.

In general, mean field models of neural activity can be divided
into two classes: neural mass and neural field models. The main
difference between these classes is that field models prescribe how
a quantity characterizing neural activity (such as average depolar-
ization of a neural population) evolves over both space and time
as opposed to mass models, which characterize activity over time
only; by assuming that all neurons in a population are located
at (approximately) the same point. This Research Topic focusses
on both classes of models and considers several aspects and
their relative merits that: span from synapses to the whole brain;
comparisons of their predictions with EEG and MEG spectra of
spontaneous brain activity; evoked responses, seizures, and fitting
data—to infer brain states and map physiological parameters.

EXTENSIONS OF MEAN FIELD MODELS AND MODELING OF
ANAESTHETIC ACTION
Some of the contributions consider extensions of neural mass and
field models and their relation with other classes of models, with
a particular focus on modeling the action of anesthetics:

Liley and Walsh (2013) hypothesize that fast-slow dynamics, as
exhibited in individual neuron bursting, dynamically underpins
electroencephalographic bursting. They are able to modify a

well-known mean field model of the electroencephalogram by
adding slow variables. This can be seen as a metaphor for anes-
thetic action, and allows them to produce a wide variety of
burst-like activities. Bojak et al. (2013) look at quantitative modu-
lations of EEG activity resulting from manipulating the anesthet-
ics ketamine and propofol. They are able to determine parameter
ranges that produce observed modulations in alpha peak fre-
quency, and predict antagonistic drug interactions. The action of
anesthetics, in the context of mean field models, is also discussed
by Hutt (2013). The author considers a linear neural population
model and presents an analytic derivation of the power spec-
trum that depends on propofol concentration. He then explains
the anesthetic-induced power increase in neural activity as a
result of an oscillatory instability and derives conditions under
which the power peak shifts to higher frequencies, as observed
experimentally in EEG.

The roles of neural mass, conductance based, and neural field
models in dynamic causal modeling (DCM) are reviewed and
explored by Moran et al. (2013). These authors show that such
models can reproduce the characteristics of spectra and evoked
responses observed empirically, with conductance based models
having a richer repertoire of dynamics than neural mass models.
Neural field models are able to capture lateral interactions and
allow detailed analysis of structure-function relationships in the
cortex.

Modolo et al. (2013) discuss neural masses designed to study
the interaction between power-line magnetic fields and brain
activity. They demonstrate that EEG alpha power could be modu-
lated by weak membrane depolarization induced by the exposure
to power-line magnetic fields and explore the role of input noise
on EEG power modulation. A different use of neural fields is pre-
sented in Wright and Bourke (2013). These authors propose that
both synchronous firing of neurons—and their competition for
limited metabolic resources during neural development—lead to
ultra-small-world neural networks. These networks then exhibit
Möbius strip-like topologies that putatively reflect structure in
striatal visual cortex.

The contribution of Pinotsis et al. (2013) introduces a
conductance-based neural field model combining biologically
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realistic synaptic dynamics with neural field equations. These
authors demonstrate that both the evoked responses and induced
responses show qualitative differences depending on the chosen
model, either neural mass or neural field.

EXPLAINING ACTIVITY OBSERVED IN NEUROLOGICAL
DISORDERS AND COGNITIVE TASKS
Other articles in this Research Topic relate to the use of field
models to explain aberrant neural activity and dynamics recorded
during cognitive tasks: Kerr et al. (2013) integrate field and net-
work models in a multiscale model. This allows the authors to
reveal alterations in cortical information flow between normal
subjects and Parkinsonian patients, quantified by a decrease in
Spectral Granger Causality between cortical layers in the beta
frequency.

Frequency-dependent effects in deep brain stimulation in
epileptic patients are studied using computational modeling and
intracerebral EEG data in Mina et al. (2013). This paper describes
the biophysics of direct stimulation of the thalamic compartment
of an established thalamocortical model at the cellular level. It also
demonstrates that low-frequency and high-frequency stimulation
are beneficial for suppressing epileptic seizures, but that interme-
diate frequencies favor thalamic oscillations and entrain epileptic
dynamics, rather than suppressing them.

Bhattacharya’s paper (Bhattacharya, 2013) also focuses on
explaining brain oscillations in sickness and health. The author
replaces the “alpha function” approximation for synaptic trans-
mission by a kinetic framework of neurotransmitter and receptor
dynamics. The results are compared with experimental studies
and shown to be consistent; they also lead to an order of mag-
nitude improvement in simulation times compared to the alpha
function approach commonly adopted in neural mass models.

In Srinivasan et al. (2013) the authors study an important
phenomenon observed in EEG data, called phase-amplitude cou-
pling, and show how it can be modeled using classical Wilson
and Cowan equations. This is not only a mathematical exercise;
it allows for a description of important top-down influences on
local networks as a result of behavioral (e.g., attentional) or phar-
macological manipulations—and fits well with results from the
animal and human literature.

In another paper, Robinson et al. (2012) explore the functional
neuroimaging measurements required to characterize neocorti-
cal activity. In particular, they show that some state changes can
occur independently of changes in average amplitude, power, or
metabolic indexes. They then introduce a new measure of com-
plexity that can uncover the corresponding dynamical structure
inherent in cortical activity, which would otherwise be difficult or
impossible to detect.

Finally, beim Graben and Rodrigues (2012) reduce a simpli-
fied 3-compartment neuron model into a leaky integrate-and-fire
(LIF) model describing spiking dynamics and derive an obser-
vation model for dendritic dipole currents in extracellular space
that contributes to the local field potential (LFP) of a neural
population. They introduce a new way to predict LFPs in net-
work simulations involving only single-compartment neurons
and compare their method with the results of an earlier approach
(Mazzoni et al., 2008).

THEORY OF MEAN FIELD MODELS
In addition to papers focussing on applications, this Research
Topic includes theoretical papers studying the mathematical
aspects of mean field theory: Bressloff and Wilkerson (2012) study
rigorous aspects of field models using an off-centered connec-
tivity kernel that can serve as a model for direction selectivity.
They prove the existence and stability of stimulus-induced activ-
ity pulses assuming a Heaviside firing rate function and including
spatiotemporal noise. These authors conclude that freely moving
pulses are more sensitive to multiplicative noise than stimulus-
locked pulses.

In Gray and Robinson (2013), the authors address an impor-
tant issue in the literature on neural networks; that is, what are the
effects of time delays and dendritic time constants on the stability
constraints of the network dynamics. They approach this ques-
tion from the perspective of their prior work, in particular the
Robinson, Rennie Wright model (RRW). Within this framework,
they introduce a constant time delay and then systematically ana-
lyze the stability of a network state as a function of time delays
and other parameters.

Roy and Jirsa (2013) show how a novel neurocomputational
unit model qualitatively captures the complex dynamics exhib-
ited by a full network of parabolic bursting neurons. The reduced
representation is mathematically tractable and allows the authors
to derive appropriate boundary conditions for various dynamical
regimes. This approach sheds light on the role of slow oscillations
for determining the global behavior of brain networks. Finally,
Augustin et al. (2013) examine how the dynamics of adaptation
currents contribute to spike rate oscillations in recurrent neural
networks. They find frequency-dependent effects that can have
roles in generation of specific frequencies and selective signal
propagation.

The above anthology of papers provides illustrative examples
of recent advances in biophysical modeling. This line of work
speaks to the hope that such models may help explain neural
dynamics that underpin disorders like epilepsy or Parkinson’s
disease as well as normal functions like attention or working
memory; an endeavor we hope the articles in this volume will
progress.
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We analyze the effects of extrinsic noise on traveling pulses in a neural field model
of direction selectivity. The model consists of a one-dimensional scalar neural field
with an asymmetric weight distribution consisting of an offset Mexican hat function.
We first show how, in the absence of any noise, the system supports spontaneously
propagating traveling pulses that can lock to externally moving stimuli. Using a
separation of time-scales and perturbation methods previously developed for stochastic
reaction-diffusion equations, we then show how extrinsic noise in the activity variables
leads to a diffusive-like displacement (wandering) of the wave from its uniformly translating
position at long time-scales, and fluctuations in the wave profile around its instantaneous
position at short time-scales. In the case of freely propagating pulses, the wandering is
characterized by pure Brownian motion, whereas in the case of stimulus-locked pulses, it
is given by an Ornstein–Uhlenbeck process. This establishes that stimulus-locked pulses
are more robust to noise.

Keywords: stochastic processes, traveling waves, neural field theory, direction selectivity, stimulus-driven

INTRODUCTION
Continuum neural field models represent the large-scale dynam-
ics of spatially structured networks of neurons in terms of non-
linear integro-differential equations, whose associated integral
kernels represent the spatial distribution of neuronal synaptic
connections (Wilson and Cowan, 1972, 1973; Amari, 1977). As
in the case of non-linear partial differential equation (PDE)
models of diffusively coupled excitable systems (Keener, 1981;
Kuramoto, 1984), non-local neural fields can exhibit a diverse
range of spatiotemporal dynamics, including solitary traveling
fronts and pulses, stationary pulses, and spatially localized oscil-
lations (breathers), spiral waves, and Turing-like patterns. See,
for example, the reviews Ermentrout (1998), Coombes (2005),
and Bressloff (2012). In recent years, neural fields have been used
to model a wide range of neurobiological phenomena, includ-
ing wave propagation in cortical slices (Pinto and Ermentrout,
2001; Richardson et al., 2005) and in vivo (Huang et al., 2004),
geometric visual hallucinations (Ermentrout and Cowan, 1979;
Bressloff et al., 2001), EEG rhythms (Nunez, 1995; Robinson
et al., 2001; Liley et al., 2002; Steyn-Ross et al., 2003), orien-
tation tuning in primary visual cortex (V1) (Ben-Yishai et al.,
1995; Somers et al., 1995), short term working memory (Camperi
and Wang, 1998; Laing and Chow, 2002), control of head direc-
tion (Zhang, 1996), direction selectivity (Xie and Giese, 2002),
motion perception (Giese, 1999), and binocular rivalry waves
(Bressloff and Webber, 2012a). One particularly useful feature of
neural fields is that analytical techniques for solving these integro-
differential equations can be adapted from previous studies of
non-linear PDEs. These include regular and singular perturbation
methods, weakly non-linear analysis and pattern formation, sym-
metric bifurcation theory, Evans functions and wave stability, and

homogenization theory (Bressloff, 2012). In particular, we have
recently shown how perturbation methods for studying fluctuat-
ing fronts in reaction-diffusion PDEs (Schimansky-Geier et al.,
1983; de Pasquale et al., 1992; Armero et al., 1998; Sagues et al.,
2007) can be extended to the problem of front propagation in
stochastic neural fields (Bressloff and Webber, 2012b), and have
used this to investigate the effects of noise on binocular rivalry
waves (Webber and Bressloff, submitted). Such methods exploit
a separation of time-scales in which there is a diffusive-like dis-
placement (wandering) of the front from its uniformly translating
position at long time-scales, and fluctuations in the front profile
around its instantaneous position at short time-scales.

In this paper, we extend our theory of wave propagation in
stochastic neural fields to the case of a neural field that supports
traveling pulses rather than fronts. A typical mechanism for gen-
erating traveling pulses in an excitatory network is to include
some form of slow adaptation, such as spike frequency adapta-
tion (Pinto and Ermentrout, 2001; Coombes and Owen, 2005)
or synaptic depression (Kilpatrick and Bressloff, 2010a,b), which
suppresses the trailing edge of the wave. One of the motivations
for considering excitatory neural fields is that traveling pulses
are observed in in vitro cortical slices that have been disinhib-
ited. Here we consider an alternative mechanism for generating
pulses, based on asymmetric excitatory/inhibitory synaptic con-
nections. Such a network architecture supports freely propagating
pulses without any adaptation, and has been proposed as a sim-
ple recurrent mechanism for generating direction selectivity in
a network driven by moving stimuli (Mineiro and Zipser, 1998;
Xie and Giese, 2002). Most classical models for the direction
selectivity of cortical neurons are based on feedforward mecha-
nisms, namely, the linear or non-linear spatiotemporal filtering
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of afferent thalamo-cortical inputs (Reichardt, 1961; Adelson and
Bergen, 1985; Koch and Poggio, 1985; van Santen and Sperling,
1985). Some of these models also involve a combination of lagged
(time-delayed) and non-lagged inputs (Saul and Humphrey,
1990; Baker and Bair, 2012). However, there is now considerable
experimental data demonstrating that the response of cortical
cells is strongly influenced by intracortical circuitry. This has
motivated a number of modeling studies that show how direction
selectivity can be reproduced by recurrent neural network mod-
els with asymmetric lateral excitatory or inhibitory connections
and non-direction-selective inputs (Suarez et al., 1995; Maex and
Urban, 1996; Mineiro and Zipser, 1998; Xie and Giese, 2002).
In this paper, we base our investigation of stochastic traveling
pulses on the particular version introduced by Xie and Giese
(2002).

The main results of the paper are as follows. We first analyze
freely propagating pulses and stimulus-locked pulses in the deter-
ministic case, expanding the analysis of Xie and Giese (2002).
In particular, we construct a stability diagram showing the exis-
tence and stability of stimulus-locked pulses as a function of
stimulus velocity and amplitude. We then turn to a correspond-
ing stochastic version of the model. We show how extrinsic
noise in the activity variable leads to a diffusive-like displace-
ment (wandering) of the wave from its uniformly translating
position at long time-scales, and fluctuations in the wave pro-
file around its instantaneous position at short time-scales. In
the case of freely propagating pulses, the wandering is char-
acterized by pure Brownian motion, whereas in the case of
stimulus-locked pulses, it is given by an Ornstein–Uhlenbeck
process. This establishes that stimulus-locked pulses are more
robust to noise. One major difference between pulses and fronts
is that, in principle, noise could significantly affect both the
location (center-of-mass) and width of the pulse. We find that
fluctuations in the width can be neglected in the case of freely
propagating pulses, whereas the saturation of the mean-square
displacement of the center-of-mass of the pulse for stimulus-
locked pulses means that fluctuations in pulse width can no
longer be ignored.

MATERIALS AND METHODS
NEURAL FIELD MODEL OF DIRECTION SELECTIVITY
In this paper we consider a scalar neural field equation of the form

τ
∂u(x, t)

∂t
= −u(x, t)+

∫ ∞
−∞

w(x − x′)F(u(x′, t))dx′ + h(x, t)

(1)

Here u(x, t) is a measure of activity (current or voltage) within
a local population of excitatory and inhibitory neurons at posi-
tion x ∈ R and time t, τ is a membrane time constant (of order
10 msec), w(x) denotes the spatial distribution of synaptic con-
nections between local populations, F(u) is a non-linear firing
rate function and h(x, t) is an external input. (We fix the time-
scale by setting τ = 1). F is usually taken to be a sigmoid function

F(u) = 1

1+ e−γ(u−κ)
(2)

with gain γ and threshold κ. In the high-gain limit γ→∞, this
reduces to the Heaviside function

F(u)→ H(u− κ) =
{

1 if u > κ

0 if u ≤ κ.
(3)

The function w(x − x′) represents the distribution of synap-
tic weights from the local population at x′ to the population
at x. Usually, w is taken to be a symmetric or even function
such that w(x) = w(−x). A common choice for the weight dis-
tribution is a “Mexican hat” function, with a center excitatory
region surrounded by flanking inhibitory regions. As originally
shown by Amari (1977), symmetric Mexican hat functions tend
to support stationary activity “bumps.” Following Xie and Giese
(2002), however, we will use an asymmetric Mexican hat function
whose maximum is offset by an amount x0, that is w(x − x0) =
w(−[x − x0]); the resulting neural field then supports freely prop-
agating pulses that depend on the degree of offset. Note that such
a choice should be contrasted with a symmetric function w with
peaks offset from zero see e.g., (Hutt and Atay, 2005). In the case
of exponential functions, w takes the form (see Figure 1)

w(x) = aee−σe|x−x0| − aie
−σi|x−x0|, (4)

where ae > ai and σe > σi. Setting x0 = 0 recovers the standard
Mexican hat function. Note that one could equally use other
functions such as a difference-of-Gaussians without changing the
main results of the paper; the advantage of exponentials is that
one can carry out explicit calculations.

Finally, the external input h(x, t) consists of two components:

h(x, t) = I(x − vt)+√εg(u(x, t))ξ(x, t). (5)

Here I(x − vt) represents an external pulse-like stimulus moving
with constant speed v and amplitude I0, whereas the second term
represents an extrinsic, multiplicative noise source. In particu-
lar, ξ(x, t) is a Gaussian process with zero mean and two-point
correlations

〈η(x, t)η(x′, t′)〉 = 2C(|x− x′|/λ)δ(t − t′). (6)

−20 −15 −10 −5 0 5 10 15 20

0

1

2

3

4

w(x)

x

x0 = 0

x0 = 8

x0 = 4

FIGURE 1 | Plot of weight distribution for various values of the shift x0.

Here ae = 5, ai = 1, σe = 0.42, and σi = 0.1.
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Thus the noise is white in time and colored in space with corre-
lation length λ. Formally speaking, η(x, t)dt = dW(x, t) where
dW(x, t) is a corresponding Wiener process.The amplitude of
the noise is determined by the parameter ε, and the function
g(u) incorporates any activity-dependence. Note that (Xie and
Giese, 2002) only considered the deterministic case (ε = 0). They
showed how the deterministic neural field supports freely propa-
gating pulses of fixed speed c when I0 = 0. This then provides a
mechanism for direction selectivity, since these pulses can lock to
a moving stimulus of speed v provided that |c− v| is sufficiently
small; the range of locking depends on the amplitude I0. In this
paper, we develop a more systematic analysis of stimulus-locking
in the absence of noise, and then investigate the effects of noise on
both freely propagating and stimulus-locked pulses.

RESULTS
DETERMINSTIC NEURAL FIELD
We begin by analyzing traveling pulse solutions of the neural field
Equation (1) in the absence of noise (ε = 0). Following the origi-
nal formulation of Amari (1977), we investigate the existence and
stability of traveling pulses by setting the firing rate function to be
the Heaviside (Equation 3).

Freely propagating pulses
For the moment, suppose that there are no external inputs so
that h(x, t) = 0 in Equation (1). A traveling pulse of velocity c is
then defined according to u(x, t) = U(ξ), with ξ = x − ct a trav-
eling wave coordinate such that limξ→±∞ U(ξ) = 0. Moreover,
the wave profile is restricted to be super threshold in a con-
nected interval of width d. Since the neural field is equivariant
with respect to uniform translations (in the absence of external
stimuli), we choose the two threshold crossing points to be

U(0) = κ, U(d) = κ. (7)

Thus, U(ξ) > κ for 0 < ξ < d, U(ξ) < κ for ξ < 0, and ξ > d. It
turns out the wave travels in the same direction as the offset so we
restrict ourselves to the case x0 > 0 and c > 0. Substituting the
traveling pulse solution into Equation (1) gives

−c
∂U(ξ)

∂ξ
= −U(ξ)+

∫ d

0
w(ξ− ξ′)dξ′ (8)

Multiplying both sides by e−ξ/c and integrating gives the follow-
ing equation for the wave solution:

U(ξ) = eξ/c

c

∫ ∞
ξ

W(ξ′)e−ξ′/c dξ′, (9)

where

W(ξ) ≡
∫ ξ

ξ−d
w(x) dx.

It is convenient to express the weight function in piecewise form
as follows:

w(x) =
{

aee−σe(x−x0) − aie−σi(x−x0) ≡ w1(x), if x ≥ x0

aeeσe(x−x0) − aieσi(x−x0) ≡ w2(x), if x ≤ x0
(10)

We then obtain a piecewise expression for W(ξ) of the form

W(ξ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
W3(ξ) ≡

∫ ξ

ξ−dw2(x) dx, if ξ ≤ x0

W2(ξ) ≡
∫ x0
ξ−dw2(x) dx

+ ∫ ξ

x0
w1(x) dx, if x0 ≤ ξ ≤ x0 + d

W1(ξ) ≡
∫ ξ

ξ−dw1(x) dx, if ξ ≥ x0 + d

(11)

We then have

U(ξ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
c eξ/c(M3(ξ)+M1(x0 + d)

+M2(x0)), if ξ ≤ x0
1
c eξ/c (M2(ξ)+M1(x0 + d)) , if x0 ≤ ξ ≤ x0 + d
1
c eξ/cM1(ξ), if ξ ≥ x0 + d

.

where

Mn(ξ) =
∫ ξn

ξ

Wn(ξ
′)e−ξ′/cdξ′ (12)

with ξ1 =∞, ξ2 = x0 + d and ξ3 = x0.
Having obtained the piecewise wave profile U(ξ), the thresh-

old conditions (Equation 7) can now be used to determine the
pulse speed c and width d; the resulting transcendental equa-
tions have to be solved numerically. Figure 2 shows solutions
for the pulse speed and width as functions of the threshold. It
turns out that the solution with slower speed (and larger width)
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FIGURE 2 | (A) Plots of pulse speed c and (B) pulse width d as a function
of the threshold κ. Weight parameters are as in Figure 1 with offset x0 = 3.
Stable (unstable) branches are indicated by black (gray) curves.
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is stable (see below). This differs from traveling pulse solutions
found in adaptive neural fields, where the faster wave (with larger
width) tends to be stable (Pinto and Ermentrout, 2001; Kilpatrick
and Bressloff, 2010a). Figure 3A shows a typical pulse waveform
and Figure 3B shows a numerical simulation of the neural field
Equation (1) using the wave solution as the initial condition. The
pulse propagates at the predicted speed without changing shape
significantly. This occurs because the parameters were chosen to
make the pulse solution linearly stable.

Stability
In order to determine the linear stability of a traveling pulse solu-
tion U(ξ) in the moving frame, we linearize Equation (1) with
h(x, t) = 0 by setting

U(ξ, t) = U(ξ)+ ϕ(ξ, t),

and Taylor expanding to first order in ϕ. This gives

∂ϕ(ξ, t)

∂t
= c

∂ϕ(ξ, t)

∂ξ
− ϕ(ξ, t)+

∫ ∞
−∞

w(ξ− y)

× F′(U(y))ϕ(y, t) dy. (13)
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FIGURE 3 | (A) Plot of traveling wave profile U(ξ) obtained analytically.
Same parameters as Figure 2 for threshold κ = 4. (B) Spacetime plot of a
traveling pulse using the profile of (A) as the initial condition. High (low)
activity indicated by light (gray).

In the case of the Heaviside rate function (Equation 3), we have

F′(U(ξ)) = δ(ξ)

|U ′(0)| +
δ(ξ− d)

|U ′(d)| . (14)

Moreover, differentiating Equation (9) with respect to ξ shows
that

U ′(ξ) = 1

c
(U(ξ)−W(ξ)).

Substituting the previous two results into Equation (13) gives

∂ϕ(ξ, t)

∂t
= Lϕ(ξ, t) (15)

≡ c
∂ϕ(ξ, t)

∂ξ
− ϕ(ξ, t)+ cϕ(0, t)

|κ−W(0)|w(ξ)

+ cϕ(d, t)

|κ−W(d)|w(ξ− d).

where κ is the threshold. Looking for solutions of the form

ϕ(ξ, t) = eλtϕ(ξ). (16)

then leads to the spectral problem

Lϕ(ξ, t) = λϕ(ξ, t). (17)

We take the linear operator L to act on a Banach space B
of continuous, bounded functions ψ(ξ) that are defined for ξ ∈
R, and that decay exponentially as ξ→±∞. Let σ(L) denote
the spectrum of the linear operator L, and define the associ-
ated resolvent operator according to Rλ ≡ (L− λI)−1, where I
is the identity operator. The spectrum can be defined as those
values of λ for which Tλ ≡ L− λI is not bijective. The spec-
trum is composed of three disjoint sets, the point or discrete
spectrum, the residual spectrum, and the continuous spectrum.
The point spectrum is defined as the values of λ (eigenvalues)
for which the resolvent does not exist. The residual spectrum
are the spectral values for which the resolvent exists but is not
defined on a dense subset of B. The continuous spectrum are
the spectral values for which the resolvent exists and is densely
defined but is unbounded (Kreyszig, 1978). Given these defi-
nitions, the traveling pulse is said to be linearly stable if (1)
Re(λ) < 0 for all λ ∈ σ(L),λ �= 0 and (2) the zero eigenvalue
is simple. The existence of a zero eigenvalue with correspond-
ing eigenfunction ϕ(ξ, t) = U ′(ξ) reflects translation invariance,
and immediately follows from differentiating (Equation 9) with
respect to ξ.

We first consider the discrete spectrum by solving the eigen-
value equation

dψ(ξ)

dξ
− λ+ 1

c
ψ(ξ)+ K0ψ(0)w(ξ)+ Kdψ(d)w(ξ− d) = 0,

where we have introduced the constants

K0 = 1

|κ−W(0)| and Kd = 1

|κ−W(d)| .
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Multiplying both sides by e−(λ+1)ξ/c and integrating gives

ψ(ξ) = K0ψ(0)

∫ ∞
ξ

w(y)e(λ+1)(ξ−y)/c dy

+Kdψ(d)

∫ ∞
ξ−d

w(y)e(λ+1)(ξ−d−y)/c dy,

which can be rewritten in the more compact form

ψ(ξ) = K0ψ(0)(w×Pλ)(ξ)+ Kdψ(d)(w× Pλ)(ξ− d) (18)

with

(w×Pλ)(ξ) =
∫ ∞
−∞

w(y)Pλ(ξ− y) dy, Pλ(ξ) = H(−ξ)e(λ+1)ξ/c

(19)
The eigenvalues are now determined by imposing self-consistency
at ξ = 0 and ξ = d. Setting ξ = 0 and ξ = d in Equation (18)
leads to the vector equation⎡⎣K0(w×Pλ)(0)− 1 Kd(w× Pλ)(−d)

K0(w×Pλ)(d) Kd(w× Pλ)(0)− 1

⎤⎦[ψ(0)

ψ(d)

]
= 0

(20)

This has a non-trivial solution if and only if the determinant of
the matrix is zero. The determinant expressed as a function of λ,
E(λ), is a complex analytic function known as the Evans function:

E(λ) = [K0(w×Pλ)(0)− 1] [Kd(w×Pλ)(0)− 1] (21)

−K0Kd(w×Pλ)(d)(w×Pλ)(−d).

Thus, the zeros of the Evans function determine the discrete spec-
trum of the linear operator formed by linearizing the neural field
equation about the pulse solution. Evans functions were orig-
inally introduced within the context of the stability of solitary
pulses in diffusive Hodgkin–Huxley type equations describing
action potential propagation in nerve axons (Evans, 1975). Since
then the Evans function construction has been extended to a
wide range of PDEs, see the review (Sandstede, 2002). It has
also recently been applied to neural field equations (Zhang, 2003;
Coombes and Owen, 2004; Rubin, 2004; Folias and Bressloff,
2005; Pinto et al., 2005; Sandstede, 2007) and more general non-
local problems (Kapitula et al., 2004). An example plot of the real
and imaginary parts of E(λ) = 0 on the complex plane is shown
in Figure 4. It can be seen that there is a zero eigenvalue and
one negative real eigenvalue, indicating that the corresponding
traveling pulse is linearly stable.

To find the essential spectrum, which is the union of the resid-
ual and continuous spectra, we will derive an explicit expression
for the resolvent Rλ. We start by writing an inhomogeneous
equation of the form Tλψ(ξ) = h(ξ), where h(ξ) represents a
general function from the Banach space B. This can be manip-
ulated as before to give

ψ(ξ) = −(h× Pλ)(ξ)+ K0ψ(0)(w×Pλ)(ξ) (22)

+Kdψ(d)(w×Pλ)(ξ− d)
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FIGURE 4 | Graphs of the zero sets of the real (dark curves) and

imaginary (light curves) parts of the Evans function determining the

stability of a freely propagating pulse; intersection points (filled

circles) indicate eigenvalues. The line Im λ = −1 indicates the essential
spectrum. Same parameter values as Figure 3.

By evaluating at ξ = 0 and ξ = d as before, we arrive at the fol-
lowing vector equation, which differs from (Equation 20) only on
the right-hand side:⎡⎣K0(w×Pλ)(0)− 1 Kd(w×Pλ)(−d)

K0(w×Pλ)(d) Kd(w×Pλ)(0)− 1

⎤⎦[ψ(0)

ψ(d)

]

=
[

(h×Pλ)(0)

(h×Pλ)(d)

]
.

Since we are looking for spectral values outside the discrete spec-
trum, the determinant of the matrix satisfies E(λ) �= 0. Therefore,
multiplying both sides by the inverse matrix yields expressions for
ψ(0) and ψ(d) in terms of h:

ψ(0) = S0h

E(λ)
, ψ(d) = Sdh

E(λ)

where

S0h = (Kd(w×Pλ)(0)− 1) (h×Pλ)(0)

−Kd(w×Pλ)(−d)(h×Pλ)(d)

and

Sdh = −K0(w×Pλ)(d)(h× Pλ)(0)

+ (K0(w×Pλ)(0)− 1) (h×Pλ)(d).

Substituting into Equation (22) gives the following expression for
the resolvent operator, of the form Rλh = ϕ:

−(h×Pλ)(ξ)+ K0S0h

E(λ)
(w×Pλ)(ξ)

+KdSdh

E(λ)
(w×Pλ)(ξ− d) = ψ(ξ) (23)
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The resolvent is well-defined for all h in B, so the residual spec-
trum of L is empty. To find the continuous spectrum, we Fourier
transform Equation (23):

−ĥ(k)P̂λ(k)+ K0S0h

ε(λ)
ŵ(k)P̂λ(k) (24)

+KdSdh

ε(λ)
ŵ(k)P̂λ(k)e−2πidk = ψ̂(k)

It follows that the resolvent operator is unbounded when P̂λ is
unbounded. Equation (19) implies that

P̂λ(k) =
∫ ∞
−∞

Pλ(ξ)e2πikξ dξ = 1
λ+ 1

c
+ 2πik

. (25)

Hence, P̂λ is unbounded for λ = −1− 2πikc so that the con-
tinuous spectrum of L is a vertical line in the complex plane at
Re(λ) = −1. Since Re(λ) < 0, the continuous spectrum will not
make any pulse solution of our model unstable.

Stimulus-locked pulses
Now suppose that the neural field is driven by a moving external
pulse stimulus of speed v so that Equation (1) becomes

∂u(x, t)

∂t
= −u(x, t)+

∫ ∞
−∞

w
(
x − y

)
H
(
u
(
y, t
)− κ

)
dy

+ I(x − vt). (26)

In order to study the existence of stimulus-locked pulses, we
will define a “stimulus coordinate” ξ = x − vt and look for pulse
solutions that move at the same speed as the stimulus, that is,
u(x, t) = U(ξ) with

−v
∂U(ξ)

∂ξ
= −U(ξ)+

∫ ∞
−∞

w(ξ− y)H(U(y)− κ) dy + I(ξ).

(27)
For concreteness, the stimulus will be represented by a rectangular
wave of amplitude I0 and width d, defined formally as

I(ξ) =
{

I0, if 0 ≤ ξ ≤ d

0, if ξ < 0 or ξ > d.

Since translation invariance no longer holds, it is necessary to
determine both threshold crossing points, which we denote by
ξ = d1 and ξ = d2. Proceeding in a similar fashion to the case
of freely propagating pulses, we find that

U(ξ) = eξ/v

v

∫ z0

ξ

e−y/vW(y) dy + eξ/v

v

∫ z0

ξ

e−y/vI(y) dy,

where z0 = ∞ if v > 0, z0 = −∞ if v < 0, and

W(ξ) ≡
∫ ξ−d1

ξ−d2

w(x) dx.

The latter can be expressed in the piecewise form

W(ξ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
W3(ξ) ≡

∫ ξ−d1
ξ−d2

w2(x) dx, if ξ ≤ x0 + d1

W2(ξ) ≡
∫ x0
ξ−d2

w2(x) dx

+ ∫ ξ−d1
x0

w1(x) dx, if x0 + d1 ≤ ξ ≤ x0 + d2

W1(ξ) =
∫ ξ−d1
ξ−d2

w1(x) dx, if ξ ≥ x0 + d2

(28)

where w1 and w2 are defined as in Equation (10). After evaluating
the integrals along similar lines to section “Neural Field Model of
Direction Selectivity,” we obtain the following expressions for the
pulse solution, defined independently for positive and negative
stimulus directions:
v > 0 :

U(ξ) =

⎧⎪⎨⎪⎩
U3(ξ), if ξ ≤ x0 + d1

U2(ξ), if x0 + d1 ≤ ξ ≤ x0 + d2,

U1(ξ), if ξ ≥ x0 + d2,

with

U3(ξ) = 1

v
eξ/v (M3(ξ)+M1(x0 + d2)+M2(x0 + d1))+ Z(ξ)

U2(ξ) = 1

v
eξ/v (M2(ξ)+M1(x0 + d2))+ Z(ξ)

U1(ξ) = 1

v
eξ/vM1(ξ)+ Z(ξ),

Mn(ξ) =
∫ ξn

ξ

Wn(ξ
′)e−ξ′/vdξ′

for ξ1 = ∞, ξ2 = x0 + d2, ξ3 = x0 + d1, and

Z(ξ) =

⎧⎪⎨⎪⎩
(
eξ/v − e(ξ−d)/v

)
I0, if ξ < 0(

1− e(ξ−d)/v
)

I0, if 0 ≤ ξ ≤ d.

0, if ξ > d

v < 0 :

U(ξ) =

⎧⎪⎨⎪⎩
U3(ξ), if ξ ≤ x0 + d1

U2(ξ), if x0 + d1 ≤ ξ ≤ x0 + d2,

U1(ξ), if ξ ≥ x0 + d2

with

U3(ξ) = −1

v
eξ/vN3(ξ)+ Z(ξ)

U2(ξ) = −1

v
eξ/v (N2(ξ)+ N3(x0 + d1))+ Z(ξ)

U1(ξ) = −1

v
eξ/v (N1(ξ)+ N2(x0 + d1)+ N3(x0 + d1))+ Z(ξ)

Nn(ξ) =
∫ ξ

ξn

Wn(ξ
′)e−ξ′/vdξ′
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for ξ3 = −∞, ξ2 = x0 + d1, ξ1 = x0 + d2, and

Z(ξ) =

⎧⎪⎨⎪⎩
0, if ξ < 0(
1− eξ/v

)
I0, if 0 ≤ ξ ≤ d.(

e(ξ−d)/v − eξ/v
)

I0, if ξ > d

The threshold crossing points (d1 and d2) are determined in
the same way the pulse speed and width were determined in
the no-stimulus case, which is by numerically solving a system
of two transcendental equations. The first equation is given by
U3(d1) = κ. The second equation is U3(d2) = κ if d2 < x0 + d1,
else it is given by U2(d2) = κ. Figure 5 shows a plot of d1 (black
curves) and d2 (gray curves) vs. the threshold κ. It can be seen that
for a certain range of thresholds there exists more than one sta-
ble/unstable pair of pulses. Figure 6 shows the linear stability and
the number of solutions for different combinations of stimulus
speed (v) and strength (I0). The offset x0 = 3 and the correspond-
ing spontaneous wave speed is c = 4. (Note that for smaller offsets
x0 and thus smaller wave speeds c, one finds stimulus-locked
waves for negative values of v). The stability of solutions in the
presence of a stimulus is determined in much the same way as
without a stimulus. We again define u(x, t) = U(ξ)+ ϕ(ξ, t) and
look at the behavior of the perturbations described by ϕ(ξ, t).
Substituting into Equation (26), the stimulus term drops out
when we perform the linearization, so that

∂ϕ(ξ, t)

∂t
= v

∂ϕ(ξ, t)

∂ξ
− ϕ(ξ, t)+

∫ ∞
−∞

w(ξ− y)

× F′(U(y))ϕ(y, t) dy.

Setting ϕ(ξ, t) = eλtϕ ultimately yields the spectral problem

λϕ(ξ) ≡ Lϕ(ξ) (29)

= v
∂ϕ(ξ, t)

∂ξ
− ϕ(ξ, t)
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FIGURE 5 | Plot of leading threshold crossing position d2 (gray curves)

and trailing threshold crossing position d1 (black curves) of

stimulus-locked pulses as a function of threshold κ. There exists at
most one stable pulse (indicated by arrows) and up to three unstable
pulses. Weight parameters as in Figure 2 and κ = 4. Stimulus parameters
are d = 5, I0 = 5, and v = 5.

+ |v|ϕ(d1)

|κ−W(d1)− I(d1)|w(ξ− d1)

+ |v|ϕ(d2)

|κ−W(d2)− I(d2)|w(ξ− d2).

The corresponding Evans function is now

E(λ) = [K1(w×Pλ)(0)− 1] [K2(w×Pλ)(0)− 1] (30)

−K1K2(w×Pλ)(d2 − d1)(w× Pλ)(d1 − d2),

where

Kn = sgn(v)

|κ−W(dn)− I(dn)| , n = 1, 2,

and

Pλ(ξ) = H(−sgn(v)ξ)e(λ+1)ξ/v.

It is easy to establish as before that the residual spectrum is empty
and that the continuous spectrum consists of a vertical line in the
complex plane at Re(λ) = −1. So the stability is again determined
only by the discrete spectrum, which consists of the zeros of the
Evans function. Figure 7A shows an example of a numerical sim-
ulation of a stable stimulus-locked pulse solution of Equation (26)
with the analytical pulse solution U(x) as an initial condition.
Figure 7B shows the same simulation except with the zero initial
condition u(x, 0) = 0. It can be seen from Figure 7C that both
initial conditions converge to the same pulse profile.

STOCHASTIC NEURAL FIELD
Several recent studies have considered stochastic versions of neu-
ral field equations that are based on a corresponding Langevin

0
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I0 
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FIGURE 6 | Stability diagram for stimulus-locked pulses in

(v, I0)-parameter space. Weight parameters as in Figure 2, κ = 4, and
d = 5. Emerging from the stable pulse solution when I0 = 0 is a tongue
consisting of a stable/unstable pair of pulses (light gray). Similarly, emerging
from the unstable solution when I0 = 0 is a tongue consisting of two
unstable pulses (medium gray). As I0 increases within a tongue an unstable
pulse can disappear due to the development of multiple super-threshold
regions (indicated by solid curves). All solutions coexist when tongues
overlap (dark gray).
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the same wave profile in the large t limit as indicated in (C) for t = 50.
Weight parameters as in Figure 2 and κ = 4. Stimulus parameters are
d = 5, I0 = 8, and v = 3.

equation formulation (Brackley and Turner, 2007; Hutt et al.,
2008; Faugeras et al., 2009; Bressloff and Webber, 2012b).
Motivated by these examples, we consider the following Langevin
equation (or stochastic PDE) for the stochastic activity variable
U(x, t), which is a rewriting of Equation (1) with h(x, t) given by
Equation (5) for I0 = 0 and ε > 0:

dU(x, t) =
[
−U(x, t)+

∫ ∞
−∞

w(x − y)F(U(y, t))dy

]
dt

+ ε1/2g(U(x, t))dW(x, t), (31)

where dW(x, t) is an independent Wiener process with zero mean
and correlation given by

〈dW(x, t)dW(x′, t′)〉 = 2C(|x− x′|/λ)δ(t − t′)dtdt′. (32)

Here λ is the spatial correlation length of the noise such that
C(x/λ)→ δ(x) in the limit λ→ 0, and ε determines the strength
of the noise, which is assumed to be weak. For the sake of gener-
ality, we take the noise to be multiplicative rather than additive;
however, the main results of the paper hold for both. Following
standard formulations of Langevin equations (Gardiner, 2009),
the multiplicative noise term is taken to be of Stratonovich form
in the case of extrinsic noise. Note, however, that an alternative
formulation of stochastic neural field theory has been developed
in terms of a neural master equation (Buice and Cowan, 2007;
Bressloff, 2009, 2010; Buice et al., 2010), in which the underly-
ing deterministic equations are recovered in the thermodynamic
limit N →∞, where N is a measure of the system size of each
local population. In the case of large but finite N, a Kramers-
Moyal expansion of the master equation yields a Langevin neural

field equation with multiplicative noise of the Ito form Bressloff
(2009, 2010). Multiplicative noise in the Stratonovich sense
causes a shift in the speed and width of the pulse. This hap-
pens because 〈g(U)dW〉 �= 0, even though 〈dW〉 = 0. We can
use Novikov’s theorem (Novikov, 1965) to calculate the former
average:

ε1/2〈g(U)dW〉 = εC(0)〈g ′(U)g(U)〉dt.

The average can also be calculated by Fourier transforming
Equation (31) and taking averages using the corresponding
Fokker–Planck equation (Armero et al., 1998; Bressloff and
Webber, 2012b). In the limit that λ approaches 0, we set C(0)→
1/�x, where �x is a lattice cut-off that can be identified with the
spatial discretization step size in numerical simulations (Bressloff
and Webber, 2012b). Following Ref. Armero et al. (1998), we
rewrite Equation (31) so the fluctuating term has zero mean:

dU(x, t) =
[

h(U(x, t))+
∫ ∞
−∞

w(x − y)F(U(y, t))dy

]
dt

+ ε1/2dR(U, x, t), (33)

where
h(U) = −U + εC(0)g ′(U)g(U) (34)

and

dR(U, x, t) = g(U)dW(x, t)− ε1/2C(0)g ′(U)g(U)dt. (35)

The stochastic process R has zero mean and correlation

〈dR(U, x, t)dR(U, x′, t′)〉 (36)

= 〈g(U(x, t))dW(x, t)g(U(x′, t′))dW(x′, t′)〉 +O(ε1/2).

Separation of time-scales
The effects of additive or multiplicative extrinsic noise on
traveling waves can be analyzed using multiple time-scale
methods originally developed for reaction-diffusion equations
(Schimansky-Geier et al., 1983; de Pasquale et al., 1992; Armero
et al., 1998; Sagues et al., 2007), which were recently extended
to neural field equations in Ref. Bressloff and Webber (2012b).
The main idea is to assume that the fluctuating term generates
two distinct phenomena that occur on different time-scales: a
diffusive-like displacement of the traveling wave from its uni-
formly translating position at long time-scales, and fluctuations
in the wave profile around its instantaneous position at short
time-scales. It is important to point out that, in contrast to travel-
ing front solutions of scalar neural field equations (Bressloff and
Webber, 2012b), we are now considering traveling pulse solu-
tions. Thus in addition to the center-of-mass of the traveling
pulse wave, which moves with speed c in the absence of noise,
there is an additional degree of freedom corresponding to the
“width” of the pulse. (In the case of a Heaviside rate function,
the width � is determined by the threshold crossing points).
For simplicity, we assume that the width of the wave is only
weakly affected by the noise; this is consistent with what is found
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numerically. We now express the solution U of Equation (33) as
a combination of a fixed wave profile U0 that is displaced by an
amount �(t) from its uniformly translating position ξ = x − cεt,
where cε is a noise-dependent speed, and a time-dependent
fluctuation � in the wave shape about its instantaneous
position:

U(x, t) = U0(ξ−�(t))+ ε1/2�(ξ−�(t), t). (37)

The wave profile U0 and associated wave speed/width cε, �ε are
obtained by solving the modified deterministic equation

−cε
dU0(ξ)

dξ
− h(U0(ξ)) =

∫ ∞
∞

w(ξ− ξ′)F(U0(ξ
′))dξ′. (38)

The results depend on ε due to the ε-dependence of h.
Equation (38) is chosen so that that to leading order, the stochas-
tic variable �(t) undergoes unbiased Brownian motion with a
diffusion coefficient D(ε) = O(ε) (see below). The next step is to
substitute the decomposition Equation (37) into (33) and expand
to first order in O(ε1/2):

−[cε + �̇]U ′0(ξ�)dt + ε1/2 [d�(ξ�, t)− [cε + �̇]�′(ξ�, t)dt
]

= h(U0(ξ�))dt + ε1/2h′(U0(ξ�))�(ξ�, t)dt

+
∫ ∞
−∞

w(ξ− ξ′)F(U0(ξ
′
�))dξ′dt

+ ε1/2
∫ ∞
−∞

w(ξ− ξ′)F′(U0(ξ
′
�))�(ξ′�, t)dξ′dt

+ ε1/2dR(U0(ξ�), ξ, t)+O(ε).

where we have set ξ� = ξ−�(t) and ξ′� = ξ′ −�(t). We now
use Equation (38) for U0, after shifting ξ→ ξ−�(t), to elim-
inate terms and then divide through by

√
ε. This gives the

inhomogeneous equation to O(ε1/2)

d�(ξ�, t)− L̂�(ξ�, t)dt = ε−
1
2 U ′0(ξ�)d�(t)

+ dR(U0(ξ�), ξ, t) (39)

where the non-self-adjoint linear operator

L̂A(ξ) ≡ cε
dA(ξ)

dξ
+ h′(U0(ξ))A(ξ)

+
∫ ∞
−∞

w(ξ− ξ′)F′(U0(ξ
′))A(ξ′)dξ′ (40)

is defined for all functions A(ξ) in L2(R). Note that for all terms
in Equation (40) to be of the same order we have taken �(t) =
O(ε1/2). It then follows that U0(ξ−�(t)) = U0(ξ)+O(ε1/2)

etc., and Equation (39) reduces to

d�(ξ, t)− L̂�(ξ, t)dt = ε−
1
2 U ′0(ξ)d�(t)+ dRu(U0(ξ), ξ, t)

(41)

If U0(ξ) were a traveling front solution of a neural field model
with a symmetric, excitatory weight distribution w, then it could

be proven that the operator L̂ has a 1D null space spanned by
U ′0(ξ) (Ermentrout and McLeod, 1993). We will assume that such
a result carries over to traveling pulse solutions of a neural field
with w given by an asymmetric Mexican hat function; the fact
that U ′0(ξ) belongs to the null space follows immediately from
differentiating Equation (38) with respect to ξ. We then have the
solvability condition for the existence of a non-trivial bounded
solution of Equation (41), namely, that the inhomogeneous part
is orthogonal to all elements of the null space of the adjoint
operator L̂∗. The latter is defined with respect to the inner product∫ ∞

−∞
B(ξ)̂LA(ξ) dξ =

∫ ∞
−∞

[̂
L∗B(ξ)

]
A(ξ) dξ.

Integrating by parts and using (Equation 14) leads to

L̂∗B(ξ) = −cε
dB(ξ)

dξ
+ h′(U0(ξ))B(ξ)

+ F′(U0(ξ))

∫ ∞
−∞

w(ξ′ − ξ)B(ξ′)dξ′. (42)

We will assume that the null space of the adjoint operator L̂∗ is
also one-dimensional and is spanned by some yet to be deter-
mined function V(ξ). (In the case of a Heaviside firing function,
we will determine the null space explicitly). Hence, we can write
the solvability condition as∫ ∞

−∞
V(ξ)

[
U ′0(ξ)d�(t)+ ε1/2dR(U0(ξ), ξ, t)

]
dξ = 0.

which leads directly to the stochastic differential equation

d�(t) = −ε1/2

∫∞
−∞V(ξ)dR(U0, ξ, t) dξ∫∞
−∞V(ξ)U ′0(ξ)dξ

.

Using the lowest order approximations dR(U0, ξ, t) =
g(U0(ξ))dW(ξ, t), we deduce that [for �(0) = 0]

〈�(t)〉 = 0, 〈�(t)2〉 = 2D(ε)t, (43)

where D(ε) is the effective diffusivity

D(ε) = ε

∫∞
−∞V2(ξ)g(U0(ξ))

2 dξ[∫∞
−∞V(ξ)U ′0(ξ) dξ

]2
. (44)

Explicit results for Heaviside rate function
In order to illustrate the above analysis, we consider a particular
example where the mean speed cε and diffusion coefficient D(ε)

can be calculated explicitly. That is, set g(U) = g0U for the multi-
plicative noise term and take F(U) = H(u− κ). (The constant g0

has units of
√

length/time). Note that the choice for g(U) can be
interpreted physiologically in terms of an effective modification
in the membrane time constant of neurons due to stochastic
background synaptic activity (Bernander et al., 1991; Rapp et al.,
1992; Bressloff, 1994). The deterministic Equation (38) for U0
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then reduces to

−dU0(ξ)

dξ
+ �(ε)U0(ξ) = 1

cε

∫ ∞
∞

w(ξ− ξ′)H(U0(ξ
′)− κ)dξ′,

(45)
where �(ε) = (1− εC(0)g2

0)/cε. Hence,

U(ξ) = e�ξ

cε

∫ ∞
ξ

W(ξ′)e−�ξ′ dξ′. (46)

The deterministic pulse profile can be evaluated along identical
lines to section “Neural Field Model of Direction Selectivity.” In
order to calculate the diffusion coefficient, it is first necessary
to determine the null vector V(ε) of the adjoint linear oper-
ator L̂∗. Substituting F(U) = H(U − κ) and g(U) = g0U into
Equation (42) shows that

dV(ξ)

dξ
+ �(ε)V(ξ) = δ(ξ)

c|U ′0(0)|
∫ ∞
−∞

w(z)V(z)dz (47)

+ δ(ξ−�)

c|U ′0(�)|
∫ ∞
−∞

w(z −�)V(z)dz.

Proceeding along similar lines to Bressloff (2001) and Kilpatrick
et al. (2008), we make the ansatz that

V(ξ) = AH(ξ)e−�ξ + BH(ξ−�)e−�(ξ−�). (48)

Substituting into Equation (47) shows that

A= 1

|U ′0(0)| [Ab(0)+Bb(�)], B= 1

|U ′0(�)| [Ab(−�)+Bb(0)]

where

b(z) ≡ 1

c

∫ ∞
z

e−�(ξ′−z)w(ξ′) dξ′. (49)

Differentiating Equation (46) shows that U ′(ξ) = b(ξ)−b(ξ−�),
so that we obtain the vector equation⎡⎢⎢⎢⎣

b(0)

b(0)− b(−�)
− 1

b(�)

b(0)− b(−�)

b(−�)

b(0)− b(�)

b(0)

b(0)− b(�)
− 1

⎤⎥⎥⎥⎦
[

A
B

]
= 0

The matrix has rank 1, confirming that the linear operator L̂∗ has
a 1D null-space. The latter is spanned by the function

V(ξ) = b(�)H(ξ)e−�ξ − b(−�)H(ξ−�)e−�(ξ−�). (50)

In Figure 8 we show the temporal evolution of a freely propa-
gating stochastic traveling pulse, which is obtained by numerically
solving the Langevin Equation (31) for F(U) = H(U − κ),
g(U) = U and the asymmetric difference-of-exponentials
(Equation 4). Note that the location of the stochastic wave
appears to coincide with the underlying mean solution. However,
over longer time-scales the wandering of the pulse about its

-5

0

5

10

15

20

25

-50 0 50 100 150

U

x

-5

0

5

10

15

20

25

-50 0 50 100 150

U

x

-5

0

5

10

15

20

25

-50 0 50 100 150

U

x

-5

0

5

10

15

20

25

-50 0 50 100 150

U

x

A B

C D

FIGURE 8 | Numerical simulation of freely propagating pulse solution

of the stochastic neural field Equation (31) for a Heaviside rate

function F (U) = H(U−κ) with κ = 4, and weight function (Equation 4)

with ae = 5, ai = 1, σe = 0.42, σi = 0.1, and x0 = 3. The multiplicative
noise is taken to be g(U) = U, the noise strength is ε = 0.005, and
C(0) = 10. The wave profile is shown at successive times (A) t = 0 (B)

t = 12 (C) t = 18, and (D) t = 24, with the initial profile at t = 0 given by
equation U0. In numerical simulations we take the discrete space and time
steps �x = 0.1, �t = 0.01. The deterministic part U0 of the stochastic
wave is shown by the black curves.
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FIGURE 9 | (A) Plot of mean position X (t) of leading (blue) and trailing
(black) edges of pulse as a function of time t averaged over N = 4096 trials.
(B) Corresponding plots of the variance σ2

X (t). Same parameter values as
Figure 8.

mean position would be seen. In Figure 9 we plot the mean
position X(t) and variance σ2

X(t) of the leading and trailing edges
of the pulse as a function of t. It can be seen that they all vary
linearly with t, consistent with the assumption that there is a
diffusive-like displacement of the center-of-mass of the pulse
from its uniformly translating position at long time-scales. The
slopes of these curves then determine the effective wave speed and
diffusion coefficient according to X(t) ∼ cεt and σ2

X(t) ∼ 2D(ε)t.
Both the leading and trailing edges exhibit the same speeds
and diffusivities (after a transient phase). The transients are
caused by fluctuations in the mean width of the pulse which
can be neglected for large t, where the difference in the size of
fluctuations of the leading and trailing edges can be neglected.

In order to find the mean location of the leading or trailing
edge of the pulse as a function of time, we numerically carry out
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a large number of level set position measurements. That is, we
determine the positions Xa(t) such that U(Xa(t), t) = a, for var-
ious level set values a and then define the mean location to be
X(t) = E[Xa(t)], where the expectation is first taken with respect
to the sampled values a and then averaged over N trials. The
corresponding variance is given by σ2

X(t) = E[(Xa(t)− X̄(t))2].
In order to compare the numerical results with our theoreti-
cal analysis, we assume that Xa(t) = �(t)+ cεt + Xa(0) for each
a on either the leading or trailing edge. It then follows that
X̄(t) = cεt + Xa(0) and σ2

X(t) = 〈�(t)2〉. In Figure 10 we plot the
numerically estimated diffusion coefficient for various values of
the threshold κ and compare these to the corresponding theo-
retical curves obtained using the above analysis. It can be seen
that there is excellent agreement with our theoretical predictions.
Finally, note that we can also use the level set data to estimate fluc-
tuations in the width of the pulse. Suppose that Xd(t) and Yd(t)
denote the threshold crossing points of the leading and trailing
edges of the pulse at time t. Then the stochastic width of the pulse
can be defined according to D(t) = Xd(t)− Yd(t). We find that
after a transient phase, 〈D(t)2〉 − 〈D(t)〉2 � σ2

X(t).

Stimulus-locked pulses
We now add a stimulus term I to the stochastic neural field
Equation (33), that is

dU(x, t) =
[

h(U(x, t))+
∫ ∞
−∞

w(x − y)F(U(y, t)) dy

]
dt

+ I(x − vt)dt + ε1/2dR(U, x, t), (51)

where the stimulus is again a rectangular wave of amplitude I0

and width d, moving with speed v. Here h and dR are defined by
Equations (34) and (35). The stochastic activity variable is now
decomposed according to Equation (37), with ξ = x − vt, and the
modified deterministic equation

−v
dU0

dξ
− h(U0(ξ))− I(ξ) =

∫ ∞
∞

w(ξ− ξ′)F(U0(ξ
′)) dξ′.

(52)
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κ

FIGURE 10 | Plot of diffusion coefficient D(ε) as a function of threshold

κ. Numerical results (“+” for leading edge,“X” for trailing edge) are
obtained by averaging over N = 4096 trials starting from the initial condition
given by U0. Corresponding theoretical predictions (solid curves) for D(ε)

are based on Equation (44). Other parameters as in Figure 8.

Through a similar process as in the previous section, we expand
to O(ε1/2) to obtain the inhomogeneous equation

d�(ξ, t)− L̂�(ξ, t)dt = −ε−1/2 [U ′0(ξ)− I′(ξ)
]

d�(t)

−dR(U0(ξ), ξ, t)+O(ε1/2), (53)

where L̂ is defined as in Equation (40) but with cε → v. The
solvability condition is now∫ ∞

−∞
V(ξ)

[
U ′0(ξ)d�(t)+ I′(ξ)d�(t) (54)

+ε1/2dR(U0(ξ), ξ, t)
]

dξ = 0.

This can be manipulated to give, to leading order, the Ornstein–
Uhlenbeck equation (Gardiner, 2009):

d�(t)+ A�(t)dt = dŴ(t), (55)

where

A =
∫∞
−∞V(ξ)I′(ξ)dξ∫∞
−∞V(ξ)U ′0(ξ)dξ

,

and

dŴ(t) = −ε1/2g0

∫∞
−∞V(ξ)U0(ξ)dW(ξ, t) dξ∫∞

−∞V(ξ)U ′0(ξ)dξ
.

Solving the stochastic differential equation in Equation (55)
and taking averages shows that 〈�(t)〉 = �(0)e−At and

〈�(t)2〉 − 〈�(t)〉2 ≈ D(ε)

A

[
1− e−2At] , (56)

where D(ε) is given by Equation (44) except for a modified null
vector V(ξ). Thus the variance of �(t) approaches D(ε)/A in the
large t limit.

As in the case of freely propagating pulses, we can explic-
itly solve for V(ε) and thus calculate the diffusion coefficient
D(ε) when F(U) = H(U − κ) and g(U) = U . Since the steps
are similar to the previous case, we simply present our results
here. In Figure 11 we show the temporal evolution of a single
stimulus-locked front, which is obtained by numerically solving
the Langevin Equation (51) for F(U) = H(U − κ), g(U) = U
and the weight distribution (Equation 4). The external input is
taken to be a square pulse of amplitude I0 = 5, width d = 5,
and speed v = 5. Next we determine the mean X(t) and variance
σ2

X(t) of the position of the leading and trailing edges by averag-
ing over level sets along identical lines to the freely-propagating
case. The results are shown in Figure 12. It can be seen that,
as predicted by the analysis, X(t) varies linearly with t with a
slope equal to the stimulus speed v = 5. Moreover, the vari-
ance σ2

X(t) approaches a constant value as t →∞ for both the
trailing and leading edges. Thus, we find that stimulus-locked
pulses are much more robust to noise than freely propagating
pulses, since the variance of the mean position of the leading and
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FIGURE 11 | Numerical simulation showing the propagation of a

stimulus-locked pulse solution of the stochastic neural field

Equation (51). The external input is taken to be a square pulse with
amplitude I0 = 5, width d = 5, and speed v = 5. All other parameters
are as in Figure 8. The wave profile is shown at successive times (A)

t = 0 (B) t = 6 (C) t = 12, and (D) t = 24, with the initial profile at t = 0
given by the solution U0. In numerical simulations we take the discrete
space and time steps �x = 0.1,�t = 0.01.

trailing edges saturate as t →∞. Consequently, stimulus lock-
ing persists in the presence of noise over most of the parameter
range for which stimulus locking is predicted to occur. However,
the trailing edge has an asymptotic variance that is at least an
order of magnitude larger than the leading edge, which implies
that fluctuations in the width of the pulse can no longer be
neglected.

DISCUSSION
In this paper we have explored the effects of extrinsic noise on
propagating pulses in a one-dimensional scalar neural field with
asymmetric weights. Such a network has previously been pro-
posed as a continuum model of direction selectivity. We have
shown that the effects of noise on the wandering of the mean front
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FIGURE 12 | (A) Plot of mean position X (t) of leading (blue) and
trailing (black) edges of stimulus-locked pulse as a function of time t
averaged over N = 1000 trials. (B,C) Corresponding plots of the
variance σ2

X (t) of the leading and trailing edges. Same parameter
values as Figure 11.

position depends on properties of the underlying deterministic
pulse. In the case of a freely propagating pulse, we find diffusive
wandering with the mean square displacement growing linearly
with time t. Moreover, in the large time limit, fluctuations in the
width of the pulse can be neglected. On the other hand, if the
pulse is locked to a moving pulse-like stimulus, then the wander-
ing is described by an Ornstein–Uhlenbeck process and the mean
square displacement saturates in the long time limit. However,
we find that fluctuations in the pulse width can no longer be
ignored.

In summary, this paper further illustrates how methods devel-
oped for studying wave propagation in stochastic PDEs can be
adapted to study wave propagation in stochastic neural fields. As
we have previously found for fronts, stimulus-locked waves are
more robust to noise, which is a desirable property of a network
performing some form of stimulus-processing such as direction
selectivity.
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We present a biophysical approach for the coupling of neural network activity as resulting
from proper dipole currents of cortical pyramidal neurons to the electric field in extracellular
fluid. Starting from a reduced three-compartment model of a single pyramidal neuron, we
derive an observation model for dendritic dipole currents in extracellular space and thereby
for the dendritic field potential (DFP) that contributes to the local field potential (LFP) of a
neural population. This work aligns and satisfies the widespread dipole assumption that is
motivated by the “open-field” configuration of the DFP around cortical pyramidal cells. Our
reduced three-compartment scheme allows to derive networks of leaky integrate-and-fire
(LIF) models, which facilitates comparison with existing neural network and observation
models. In particular, by means of numerical simulations we compare our approach with
an ad hoc model by Mazzoni et al. (2008), and conclude that our biophysically motivated
approach yields substantial improvement.

Keywords: biophysics, neural networks, leaky integrate-and-fire neuron, current dipoles, extracellular medium,

field potentials

1. INTRODUCTION
Since Hans Berger’s 1924 discovery of the human electroen-
cephalogram (EEG) (Berger, 1929), neuroscientists achieved
much progress in clarifying its neural generators (Creutzfeldt
et al., 1966a,b; Nunez and Srinivasan, 2006; Schomer and
Lopes da Silva, 2011). These are the cortical pyramidal neurons, as
sketched in Figure 1, that possess a long dendritic trunk separat-
ing mainly excitatory synapses at the apical dendritic tree from
mainly inhibitory synapses at the soma and at the perisomatic
basal dendritic tree (Creutzfeldt et al., 1966a; Spruston, 2008).
In addition, they exhibit an axial symmetry and are aligned in
parallel to each other, perpendicular to the cortex’ surface, thus
forming a palisade of cell bodies and dendritic trunks. When both
kinds of synapses are simultaneously active, inhibitory synapses
generate current sources and excitatory synapses current sinks in
extracellular space, hence causing the pyramidal cell to behave
as a microscopic dipole surrounded by its characteristic electri-
cal field, the dendritic field potential (DFP). The densely packed
pyramidal cells form then a dipole layer whose superimposed cur-
rents give rise to the local field potential (LFP) of neural masses
and eventually to the EEG (Nunez and Srinivasan, 2006; Lindén
et al., 2010; Lindén et al., 2011; Schomer and Lopes da Silva,
2011).

Despite of the progress from experimental neuroscience, the-
oretically understanding the coupling of complex neural network
dynamics to the electromagnetic field in the extracellular space
poses challenging problems; some of them have been addressed to
some extent by Bédard et al. (2004); Bédard and Destexhe (2009),
and Bédard and Destexhe (2012).

In computer simulation studies, neural mass potentials, such
as LFP and EEG are most realistically simulated by means of
multicompartmental models (Protopapas et al., 1998; Sargsyan
et al., 2001; Lindén et al., 2010; Lindén et al., 2011). Lindén et al.
(2010) calculated the current dipole momentum of the DFP for
single pyramidal and stellate cells, based on several hundreds
compartments of the dendritic trees. Their results were in compli-
ance with the standard dipole approximation of the electrostatic
multipole expansion in the far-field (more than 1 mm remote
from the dendritic trunk), but they found rather poor agree-
ment with that approximation in the vicinity of the cell body.
For comparison they also computed a “two-monopole” model
of one synaptic current and its counterpart, the somatic return
current, estimated from the current dipole momentum of the
whole dendritic tree. This “two-monopole” model, which corre-
sponds to an electrically equivalent single dipole model, obtained
from the decomposition of the dendrite into two compartments,
better approximates the true current dipole momentum in the
vicinity of the pyramidal neuron. By superimposing the DFPs of
pyramidal cells to the ensemble LFP, Lindén et al. (2011) found
that LFP properties cannot be attributed to the far-field dipole
approximation.

However, realistic multicompartmental models are compu-
tationally too expensive for large-scale neural network sim-
ulations. Therefore, various techniques have been proposed
and employed to overcome computational complexity. These
include networks of point models (i.e., devoid from any spa-
tial representation), based on conductance models (Hodgkin and
Huxley, 1952; Mazzoni et al., 2008), population density models
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beim Graben and Rodrigues Observation models for field potentials

FIGURE 1 | Sketch of a cortical pyramidal neuron with extracellular current dipole between spatially separated excitatory (open bullet) and inhibitory

synapses (filled bullet). Neural in- and outputs are indicated by the jagged arrows. Dendritic current ID causes dendritic field potential (DFP).

(Omurtag et al., 2000), or firing rate models (Wilson and Cowan,
1972), which can be seen as a sub class of population den-
sity models, with uniform density distribution (Chizhov et al.,
2007). In these kinds of models, mass potentials such as LFP or
EEG are conventionally described as averaged membrane poten-
tial. A different class of models are neural mass models (Jansen
and Rit, 1995; Wendling et al., 2000; David and Friston, 2003;
Rodrigues et al., 2010), where mass potentials are estimated either
through sums (or actually differences) of excitatory postsynap-
tic potentials (EPSP) (David and Friston, 2003) or of excitatory
postsynaptic currents (EPSC) (Mazzoni et al., 2008).

In particular, the model of Mazzoni et al. (2008) which is
based on Brunel and Wang (2003), recently led to a series of
follow-up studies (Mazzoni et al., 2010, 2011) addressing the
correlations between numerically simulated and experimentally
measured LFP/EEG with spike rates by means of statistical model-
ing and information theoretic measures. In all of the above point
models and their extension to population models, it is assumed
that the extracellular space is iso-potential and the majority of
studies thereby neglect the effect of extracellular resistance. That
is, the extracellular space constitutes a different and isolated
domain with no effect on neuronal dynamics.

In this article we extend the ad hoc model of Mazzoni
et al. (2008) toward a biophysically better justified approach,
taking the dipole character of extracellular currents and fields
into account. Basically, our model corresponds to the “two-
monopole,” or, equivalent dipole model of Lindén et al. (2010)
which gave a good fit of the DFP close to the cell body of a
cortical pyramidal neuron. However, we aim to keep the sim-
plicity of the Mazzoni et al. (2008) model in terms of com-
putational complexity, by endowing the extracellular space with
resistance and by keeping point-like neuronal circuits. That is,

in our case we do not quite consider point neurons, nor spa-
tially extended models with detailed compartmental morphol-
ogy, yet an intermediate level of description is achieved. To
this end we propose a reduced three-compartmental model of
a single pyramidal neuron (Destexhe, 2001; Wang et al., 2004;
beim Graben, 2008), and derive an observation model for the
dendritic dipole currents in the extracellular space and thereby
for the DFP that contributes to the LFP of a neural popu-
lation. Interestingly, our reduced three-compartmental model
enables us to derive a leaky integrate-and-fire (LIF) mecha-
nism [as for a point model (Mazzoni et al., 2008)], with addi-
tional observation equations for the DFP, which all together
allows to study the relationship between spike rates and LFP.
Our derivations also nicely map realistic electrotonic parame-
ters to phenomenological parameters considered in Mazzoni et al.
(2008).

2. MATERIALS AND METHODS
Mazzoni et al. (2008) consider three populations of neu-
rons, namely excitatory cortical pyramidal cells (population 1),
inhibitory cortical interneurons (population 2), and excitatory
thalamic relay neurons (population 3), passing sensory input to
the cortex that is simulated by a random (Erdős–Rényi) graph of
K = 4000 pyramidal and L = 1000 interneurons with connection
probability P = 0.2.

2.1. THEORY
We describe the ith cortical pyramidal neuron (Figure 1) from
population 1 via the electronic equivalent (reduced) three-
compartment model (Figure 2) (Destexhe, 2001; Wang et al.,
2004; beim Graben, 2008), which is parsimonious to derive our
observation model: one compartment for the apical dendritic
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beim Graben and Rodrigues Observation models for field potentials

FIGURE 2 | Proposed electronic equivalent circuit for a pyramidal

neuron (reduced three-compartmental model). Note that the apical
and basal dendrites are not true compartments since capacitors are not

explicitly represented, rather, these are implicitly taken into account via
EPSP and IPSP static functions, thus keeping computational complexity
low.

tree, another one for soma and perisomatic basal dendritic tree
(Lindén et al., 2010), and the third—actually a LIF unit—for the
axon hillock where membrane potential is converted into spike
trains by means of an integrate-and-fire mechanism.

Excitatory synapses are represented by the left-most branch,
where EPSP at a synapse between a neuron j from population 1 or
3 and neuron i act as electromotoric forces EE

ij . These potentials

drive EPSC IE
ij , essentially consisting of sodium ions, through the

cell plasma with resistance RE
ij from the synapse toward the axon

hillock.
The middle branch describes the inhibitory synapses between

a neuron k from population 2 and neuron i. Here, inhibitory
postsynaptic potentials (IPSP) EI

ik provide a shortcut between the
excitatory branch and the trigger zone, where inhibitory postsy-
naptic currents (IPSC) II

ik (essentially chloride ions) close the loop
between the apical and perisomatic dendritic trees. The resistivity
of the current paths along the cell plasma is given by RI

ik.
The cell membrane at the axon hillock itself is represented by

the branch at the right hand side. Here, a capacitor Ci reflects the
temporary storage capacity of the membrane. The serial circuit
consisting of a battery EM and a resistor RM denotes the Nernst
resting potential and the leakage conductance of the membrane,
respectively (Johnston and Wu, 1997). Finally, a spike generator
(Hodgkin and Huxley, 1952; Mazzoni et al., 2008) (indicated by a
“black box”) is regarded of having infinite input impedance. Both,
EPSP and IPSP result from the interaction of postsynaptic recep-
tor kinetics with dendritic low-pass filtering in compartments one
and two, respectively (Destexhe et al., 1998; Lindén et al., 2010).
Hence the required capacitances, omitted in Figure 2, are already
taken into account by EE

ij , EI
ik. Therefore, we refer to our model as

to a “reduced compartment model” here.

The three compartments are coupled through longitudinal
resistors, RA

i , RB
i , RC

i , and RD
i where RA

i , RB
i denote the resistivity

of the cell plasma and RC
i , RD

i that of extracellular space (Holt and
Koch, 1999).

Finally, the membrane voltage at the axon hillock Ui (the
dynamical state variable) and the DFP Vi, which measures the
drop in electrical potential along the extracellular resistor RD

i
are indicated. For the aim of calculation, the mesh currents
ID
i (the dendritic current), IB

i (the basal current), and IIF
i (the

integrate-and-fire current) are indicated.
The circuit in Figure 2 obeys the following equations:

ID
i =

p∑
j= 1

IE
ij (1)

IB
i =

q∑
k= 1

II
ik (2)

IIF
i = ID

i − IB
i (3)

IIF
i = Ci

dUi

dt
+ Ui − EM

RM
(4)

EE
ij = RE

ijI
E
ij +

(
RA

i + RD
i

)
ID
i +

(
RB

i + RC
i

)
IIF
i

+Ui, 1 ≤ j ≤ p (5)

EI
ik = RI

ikII
ik +

(
RB

i + RC
i

)
IIF
i + Ui, 1 ≤ k ≤ q (6)

Vi = RD
i ID

i . (7)

Here, p is the number of excitatory and q is the number of
inhibitory synapses connected to neuron i.
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The circuit described by Equations (1–7) shows that the neu-
ron i is likely to fire when the excitatory synapses are activated.
Then, the integrate-and-fire current IIF

i equals the dendritic cur-
rent ID

i . If, by contrast, also the inhibitory synapses are active, the
dendritic current ID

i is shunted between the apical and periso-
matic basal dendritic trees and only a portion could evoke spikes
at the trigger zone (Equation 4). On the other hand, the large
dendritic current ID

i flowing through the extracellular space of
resistance RD

i , gives rise to a large DFP Vi.
In order to simplify the following derivations, we gauge the

resting potential (Equation 4) to EM = 0, yielding

IIF
i = Ci

dUi

dt
+ Ui

RM
. (8)

From Equation (5) we obtain the individual EPSC’s as

IE
ij =

1

RE
ij

[
EE

ij −
(
RA

i + RD
i

)
ID
i −

(
RB

i + RC
i

)
IIF
i − Ui

]
. (9)

And accordingly, the individual IPSC’s from Equation (6)

II
ik =

1

RI
ik

[
EI

ik −
(
RB

i + RC
i

)
IIF
i − Ui

]
. (10)

Inserting Equation (9) into Equation (1) yields the excitatory
dendritic current

ID
i =

p∑
j= 1

1

RE
ij

EE
ij − gE

i

[(
RA

i + RD
i

)
ID
i +

(
RB

i + RC
i

)
IIF
i + Ui

]
,

(11)

where we have introduced the excitatory dendritic conductivity

gE
i =

p∑
j= 1

1

RE
ij

. (12)

Likewise we obtain the inhibitory dendritic currents from
Equations (2) and (10) as

IB
i =

q∑
k= 1

1

RI
ik

EI
ik − gI

i

[(
RB

i + RC
i

)
IIF
i + Ui

]
, (13)

with the inhibitory dendritic conductivity

gI
i =

q∑
k= 1

1

RI
ik

. (14)

With these results, we obtain an interface equation for an
observation model as follows. Rearranging Equation (11) yields

ID
i

[
1+ gE

i

(
RA

i + RD
i

)] = p∑
j= 1

1

RE
ij

EE
ij − gE

i

[(
RB

i + RC
i

)
IIF
i + Ui

]
(15)

Next, we eliminate IIF
i through Equation (8):

ID
i

[
1+ gE

i

(
RA

i + RD
i

)] = p∑
j= 1

1

RE
ij

EE
ij − gE

i

×
[

Ci
(
RB

i + RC
i

) dUi

dt
+ Ui

(
1+ RB

i + RC
i

RM

)]
.

Division by 1+ gE
i

(
RA

i + RD
i

)
gives the desired expression for

the extracellular dendritic dipole current:

ID
i =

p∑
j= 1

αijE
E
ij − βi

dUi

dt
− γiUi, (16)

with the following electrotonic parameters

αij = 1

RE
ij

[
1+ gE

i

(
RA

i + RD
i

)] (17)

βi = Cig
E
i

(
RB

i + RC
i

)
1+ gE

i

(
RA

i + RD
i

) (18)

γi = gE
i

(
RM + RB

i + RC
i

)
RM

[
1+ gE

i

(
RA

i + RD
i

)] . (19)

In order to derive the evolution equation we consider the
integrate-and-fire current IIF

i that is given through Equation (3).
The individual EPSCs and IPSCs have already been obtained in
Equations (9) and (10), respectively. Inserting Equation (13) into
Equation (3) yields

IIF
i

[
1− gI

i

(
RB

i + RC
i

)]− gI
i Ui = ID

i −
q∑

k= 1

1

RI
ik

EI
ik.

Next we insert our interface equation Equation (16) and also
Equation (8):[

Ci
dUi

dt
+ Ui

RM

] [
1− gI

i

(
RB

i + RC
i

)]− gI
i Ui

=
p∑

j= 1

αijE
E
ij − βi

dUi

dt
− γiUi −

q∑
k= 1

1

RI
ik

EI
ik

and obtain after some rearrangements

{Ci
[
1− gI

i

(
RB

i +RC
i

)]+ βi}dUi

dt

+ 1− gI
i

(
RB

i +RC
i +RM

)+ RMγi

RM
Ui =

p∑
j= 1

αijE
E
ij −

q∑
k= 1

1

RI
ik

EI
ik

and after multiplication with

ri = RM

1− gI
i

(
RB

i + RC
i + RM

)+ RMγi
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the dynamical law for the membrane potential at axon hillock:

τi
dUi

dt
+ Ui =

p∑
j= 1

wE
ij EE

ij −
q∑

k= 1

wI
ik EI

ik, (20)

where we have introduced the following parameters:

• time constants

τi = ri
{

Ci
[
1− gI

i

(
RB

i + RC
i

)]+ βi
}

(21)

• excitatory synaptic weights

wE
ij = riαij (22)

• inhibitory synaptic weights

wI
ik =

ri

RI
ik

. (23)

Using the result Equation (20), we can also eliminate the tem-
poral derivative in the interface equation Equation (16) through

dUi

dt
= 1

τi

⎡⎣ p∑
j= 1

wE
ij EE

ij −
q∑

k= 1

wI
ik EI

ik − Ui

⎤⎦ (24)

which yields

ID
i =

p∑
j= 1

(
αij − βi

τi
wE

ij

)
EE

ij +
q∑

k= 1

βi

τi
wI

ik EI
ik +

(
βi

τi
− γi

)
Ui.

And eventually, by virtue of Equation (7) after multiplication with
RD

i the DFP

Vi =
p∑

j= 1

w̃E
ij EE

ij +
q∑

k= 1

w̃I
ik EI

ik + ξiUi, (25)

with parameters

w̃E
ij = RD

i wE
ij

(
1

ri
− βi

τi

)
(26)

w̃I
ik = RD

i wI
ik

βi

τi
(27)

ξi = RD
i

(
βi

τi
− γi

)
. (28)

The change in sign of the inhibitory contribution from
Equation (20) to Equation (25) has an obvious physical interpre-
tation: In Equation (20), the change of membrane potential Ui

and therefore the spike rate is enhanced by EPSPs but diminished
by IPSPs. On the other hand, the dendritic shunting current ID

i in
Equation (25) is large for both, large EPSPs and large IPSPs.

From Equation (20) we eventually obtain the neural network’s
dynamics by taking into account that postsynaptic potentials

are obtained from presynaptic spike trains through temporal
convolution with postsynaptic impulse response functions, i.e.,

EE|I
ij (t) =

∫ t

−∞
sE|I
i (t − t′)Rj(t′) dt′ (29)

where sE|I
i (t) are excitatory and inhibitory synaptic impulse

response functions, respectively, and Rj is the spike train

Rj(t) =
∑

tν

δ (t − tν − τL) (30)

coming from presynaptic neuron j, when spikes were emitted at
times tν. The additional time constant τL is attributed to synap-
tic transmission delay (Mazzoni et al., 2008). These events are
obtained by integrating Equation (20) with initial condition

Ui (tν) = E. (31)

where E is some steady-state potential (Mazzoni et al., 2008). If at
time t = tν the membrane reaches a threshold

Ui(t) ≥ θi(t) (32)

[with possibly a time-dependent activation threshold θi(t)] from

below dUi(t)
dt > 0 then an output spike δ(t − tν) is generated,

which is then followed by a potential resetting as follows

Ui(tν+1)← E. (33)

Additionally, the integration of the dynamical law is restarted at
time t = tν+1 + τrp after interrupting the dynamics for a refrac-
tory period τrp.

Inserting Equation (29) into Equation (20) entails the evolu-
tion equation of the neural network

τi
dUi

dt
+ Ui =

p∑
j= 1

wE
ij sE

i (t) ∗ Rj(t)+
q∑

k= 1

wI
ik sI

i(t) ∗ Rk(t), (34)

where the signs had been absorbed by the synaptic weights, such
that wE

ij > 0 for excitatory synapses and wI
ik < 0 for inhibitory

synapses, respectively.
Following Mazzoni et al. (2008) an individual postsynaptic

current IE|I
ij at a synapse between neurons i and j obeys

τ
E|I
d

dIE|I
ij

dt
+ IE|I

ij = xE|I
ij (35)

τE|I
r

dxE|I
ij

dt
+ xE|I

ij = FE|I
ij , (36)

where τ
E|I
d are decay time constants and τ

E|I
r are rise time constants

of EPSC and IPSC, respectively. Auxiliary variables are denoted by
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xE|I
ij , while FE|I

ij prescribes presynaptic forcing

FE|I
ij = τiJijRj(t) (37)

with spike train Equation (30). Here, Jij = vwE|I
ij denotes synaptic

gain with v = 1 mV as voltage unit.
Note that Equation (37) is essentially a weighted sum of delta

functions, such that a single spike can be assumed as particular
forcing

F = F0δ(t), (38)

with some constant F0.
Derivating Equation (35) and eliminating xE|I

ij transforms
Equations (35, 36) into a linear second-order differential equation
with constant coefficients

τ
E|I
d τE|I

r

d2IE|I
ij

dt2
+
(
τ

E|I
d + τE|I

r

) dIE|I
ij

dt
+ IE|I

ij = FE|I
ij . (39)

Equation (39) with the particular forcing Equation (38) is

solved by a Green’s function sE|I
i (t) such that the general solution

of Equation (39) is obtained as the temporal convolution

IE|I
ij (t) =

∫ t

−∞
sE|I
i (t − t′)FE|I

ij (t) dt′. (40)

For t �= 0, Equation (39) assumes its homogeneous form
and is easily solved by means of the associated characteristic
polynomial

τ
E|I
d τE|I

r λ2 +
(
τ

E|I
d + τE|I

r

)
λ+ 1 = 0 (41)

with roots λ1 = −1/τ
E|I
d and λ2 = −1/τ

E|I
r , entailing the Green’s

functions

sE|I
i (t) =

(
AE|Iet/τE|I

r − BE|Iet/τE|I
d

)
�(t) (42)

with the Heaviside step function �(t).
The constants AE|I, BE|I > 0 are obtained from the ini-

tial conditions sE|I
i (t) = 0, reflecting causality, and a suitable

normalization ∫ ∞
0

sE|I
i (t)dt = 1.

The initial condition yields AE|I = BE|I ≡ SE|I, while the
remaining constant

SE|I = 1

τ
E|I
d − τ

E|I
r

,

due to normalization. Therefore, the normalized Green’s func-
tions are those of Brunel and Wang (2003)

sE|I
i (t) = v

τi

τ
E|I
d − τ

E|I
r

(
et/τE|I

r − et/τE|I
d

)
�(t). (43)

Now, we are able to compare our DFP Vi (Equation 25) with
the estimate of Mazzoni et al. (2008) which is given (in our nota-
tion) as the sums of the moduli of excitatory and inhibitory
synaptic currents, i.e.,

VMPLB
i =

∑
j

|IE
ij | +

∑
k

|II
ik| (44)

where “MPLB” refers to the authors Mazzoni et al. (2008).
From Equations (25) and (44), respectively, we compute two

models of the LFP. First, by summing DFP across all pyramidal
neurons (beim Graben and Kurths, 2008; Mazzoni et al., 2008),
and, second by taking the DFP average (Nunez and Srinivasan,
2006), which yields

L1 =
∑

i

VMPLB
i (45)

L2 = 1

K

∑
i

VMPLB
i (46)

L3 =
∑

i

Vi (47)

L4 = 1

K

∑
i

Vi, (48)

where K is number of pyramidal neurons.

2.2. PARAMETER ESTIMATION
Next, we relate the electrotonic parameters of our model to the
phenomenological parameters of Mazzoni et al. (2008). To this
end, we first report their synaptic efficacies in Table 1.

From these, we compute the synaptic weights through

wE
ij = JE

ij /v =
{

0.42 if j “cortical”
0.55 if j “thalamic”

(49)

and

wI
ik = JI

ik/v = 1.7

Next, we determine the factors ri by virtue of Equation (23)
through

ri = wI
ik

ḡGABA
= 1.7

1 nS
= 1.7 G�

using the inhibitory synaptic conductivity ḡGABA = 1 nS, corre-
spondingly, Equation (22) allows us to express αij in terms of the

Table 1 | Parameters laid as in Mazzoni et al. (2008).

Synaptic efficacies/mV On interneurons On pyramidal neurons

GABA 2.7 1.7

Recurrent cortical AMPA 0.7 0.42

External thalamic AMPA 0.95 0.55
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excitatory synaptic weights through

αij =
wE

ij

ri
=
{

0.25 nS if j “cortical”
0.32 nS if j “thalamic”

From αij we can determine the total excitatory synaptic con-
ductivities gE

i according to Equation (17) through

αij = 1

RE
ij

[
1+ gE

i

(
RA

i + RD
i

)]
gE

i

⎡⎣1− (RA
i + RD

i

) p∑
j=1

αij

⎤⎦ = p∑
j=1

αij

gE
i =

∑p
j=1 αij

1− (RA
i + RD

i

)∑p
j=1 αij

(50)

and hence

RE
ij =

1

αij
[
1+ gE

i

(
RA

i + RD
i

)] (51)

Inserting next Equation (18) into Equation (21) yields

τi= riCi
1+ gE

i

(
RA

i +RD
i

)+ (RB
i +RC

i

) {
gE

i − gI
i

[
1+ gE

i

(
RA

i +RD
i

)]}
1+ gE

i

(
RA

i +RD
i

) .

(52)

Equation (52) could constraint the choice of the membrane
capacitance Ci by choosing τi = 20 ms (Mazzoni et al., 2008).

In order to also determine the DFP parameters Equations
(26–28), we finally compute the ratios

βi

τi
= gE

i

(
RB

i +RC
i

)
ri
{

1+ gE
i

(
RA

i +RD
i

)+ (RB
i +RC

i

) {
gE

i −gI
i

[
1+ gE

i

(
RA

i +RD
i

)]}} .

The remaining electrotonic parameters RM
i , RA

i , RB
i , RC

i , and
RD

i are estimated from cell geometries as follows. The resistance
R of a volume conductor is proportional to its length � and
reciprocally proportional to its cross-section A, i.e.,

R = ρ
�

A
(53)

where ρ is the (specific) resistivity of the medium. Table 2 shows
the resistivities of the three kinds of interest which then allows to
evaluate the various volume conductor resistances according to
Equation (53).

We consider a total dendritic length of 2� = 20 μm and a
dendritic radius of a = 7 μm, that are generally subjected to vari-
ation. Equally, parameters that were allowed to vary are the length
and radius of the axon hillock, yet herein we consider a length
of 2� = 20 μm and radius of a = 0.5 μm (Mainen et al., 1995;
Destexhe, 2001; Kole and Stuart, 2012). To evaluate the intracel-
lular (RA, RB) and extracellular (RD, RC) resistances, respectively,
according to Equation (53), we consider a simple implementation

Table 2 | Resistivities of cell membrane, cell plasma and extracellular

space.

Medium ρ/�cm

Cell membrane (at axon hillock) 5× 107

Cell plasma (cytoplasm) 200

Extracellular space 333

Parameters from Rall (1977); Mainen et al. (1995); Kole and Stuart (2012), and

Gold et al. (2007). Note that the resistivity of the cell membrane has to be related

to the constant membrane thickness (≈10 nm).

where the length � is half of the dendritic length (i.e., basal and
apical length are symmetrical, but this can be broken). However,
the cross sectional area for the cytoplasm is simply A = πa2.
Finally, the area of the axon hillock is simply the surface area of a
cylinder.

In order to also determine the cross-section of extracel-
lular space between dendritic trunks we make the following
approximations. We assume that dendritic trunks are parallel
aligned cylinders of radius a and length � that are hexago-
nally dense packed. Then the centers of three adjacent trunks
form an equilateral triangle with side length 2a and hence
area 2

√
3a2. The enclosed space is then given by the difference

of the triangle area and the area of three sixth circle sectors,
therefore

Aspace = 2
√

3a2 − 3

6
πa2 =

(
2
√

3− 1

2
π

)
a2.

Hence, the cross-section of extracellular space surrounding
one trunk is

A = 6Aspace =
(

12
√

3− 3π
)

a2. (54)

2.3. SIMULATIONS
Subsequently, we implement an identical network to the one
considered by Mazzoni et al. (2008) with Brian Simulator, that
is a Python-based environment (Goodman and Brette, 2009).
However, the derivations from the previous section enables the
possibility of setting a dipole observable that measures the local
DFP on each pyramidal neurons, given by Equation (25). This
allows then to define a mesoscopic LFP observable, which can be
equated either as averaged DFP or simply given as the sum of DFP,
given by Equations (45–48). Primarily, we compare our LFP mea-
sure L4, proposed as the average of DFP, with the Mazzoni et al.
LFP L1 which is defined as the sum of absolute values of GABA
and AMPA currents (Equation 44). Additionally, we also com-
pare all possible measures, namely, mean membrane potential
1
K

∑
i Ui, Mazzoni et al. LFP L1, average of Mazzoni et al. DFP L2,

sum of DFP L3, and the average of DFP L4.
For completeness, we briefly summarize the description of the

network [we refer the reader to Mazzoni et al. (2008) for details].
The network models a cortical tissue with LIF neurons, composed
of 1000 inhibitory interneurons and 4000 pyramidal neurons,
which are described by the evolution Equation (34). The thresh-
old crossings given by Equation (32) is considered static with
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θi = 18 mV and the reset potential E = 11 mV. The refractory
period for excitatory neurons is τrp = 2 ms while for inhibitory
neurons it is τrp = 1 ms. The network connectivity is random and
sparse with a 0.2 probability of directed connection between any
pair of neurons. The evolution of synaptic currents, fast GABA
(inhibitory) and AMPA (excitatory) are described via the second
order evolution Equations (35, 36), which are activated by incom-
ing presynaptic spikes represented by Equation (30). The latency
of the postsynaptic currents is set to τL = 1 ms and the rise and
decay times are given by Table 3.

Moreover, synaptic efficacies, JE|I
ij , for simulation were

presented in Table 1. Note that Relation (49) then allows to deter-
mine the synaptic weights. Additionally, all neurons receive exter-
nal thalamic excitatory inputs, that is, via AMPA-type synapses,
which are activated by random Poisson spike trains, with a time
varying rate that is identical for all neurons. Specifically, the thala-
mic inputs are the only source of noise, which attempts to account
for both cortical heterogeneity and spontaneous activity. This is
achieved by modeling a two level noise, where the first level is an
Ornstein–Uhlenbeck process superimposed with a constant sig-
nal and the second level is a time varying inhomogeneous Poisson
process. Thus, we have the following time varying rate, λ(t), that
feeds into inhomogeneous Poisson process:

τn
dn(t)

dt
= −n(t)+ σn

√
2

τn
η(t) (55)

λ(t) = [c0 + n(t)]+ (56)

where η(t) represents Gaussian white noise, c0 represents a con-
stant signal (but equally could be periodic or other), and the
operation [·] is the threshold-linear function, [x]+ = x if x > 0,
[x]+ = 0 otherwise, which circumvents negative rates. The con-
stant signal c0 can range between 1.2 and 2.6 spikes/ms. The
parameters of the Ornstein–Uhlenbeck process are τn = 16 ms
and the standard deviation σn = 0.4 spikes/ms.

For complete exposition, we note that from an
implementation viewpoint (within the Brian simulator), a copy
of the postsynaptic impulse response function (Equation 29)
has to be evaluated to calculate the DFP (Equation 25) with

weights w̃E|I
ij . This implies evaluating the second order pro-

cess (Equations 35, 36) with a different forcing term. Specifically,

starting from IE|I
ij (t) ≡ wE|I

ij EE|I
ij (t) = sE|I

i (t) ∗ FE|I
ij and pre-

multiplying both sides with w̃E|I
ij and subsequently re-arranging

we obtain the desired forcing term F̃E|I
ij = w̃E|I

ij FE|I
ij /wE|I

ij . Note

Table 3 | Synaptic rise (τr) and decay times (τd).

Synaptic times τr/ms τd/ms

GABA 0.25 5

AMPA on interneurons 0.2 1

AMPA on pyramidal neurons 0.4 2

Parameters laid as in Mazzoni et al. (2008).

further that by expanding the term FE|I
ij with Equation (37) and

using Relation (49) we finally obtain F̃E|I
ij = w̃E|I

ij τivRj(t).

3. RESULTS
Following Mazzoni et al. (2008), the network simulations are
run for 2 s with three different noise levels, specifically, receiv-
ing a constant signal with three different rates 1.2, 1.6, and 2.4
spikes/ms as depicted in Figure 3. Note that these input rates
do not mean that a single neuron fires at these high rates.
Rather, it can be obtained from multiple neurons that jointly
fire with slower, yet desynchronized, rates converging at the same
postsynaptic cell. The Poisson process ensures that this is well
represented.

The focus is to compare our proposed measure L4, defined
as mean of the DFP (Equation 48), with the Mazzoni et al. LFP
L1 from Equation (45). In Figure 3 one sees two main strik-
ing differences between the two measures, namely in frequency
and in amplitude. Specifically, L1 responds instantaneously to the
spiking network activity by means of high frequency oscillations.
Moreover, L1 also exhibits a large amplitude. In contrast, our
mean DFP L4 measures comparably to experimental LFP, that is,
in the order of millivolts, and although it responds to population
activity, it has a relatively smoother response. Actually one can
realize that our LFP estimate represents low-pass filtered thalamic
input.

The physiological relevance of this is not yet clear in our work.
However, recent work (Poulet et al., 2012) shows that desyn-
chronized cortical state during active behavior is driven by a
centrally generated increase in thalamic action potential firing
(i.e., thalamic firing controls cortical states). Thus, it seems that
cortical synchronous activity is suppressed when thalamic input
increases, thereby suggesting that cortical desynchronized states
to be related to sensory processing. This work further quantifies
these observations by applying Fast Fourier Transform (FFT) to
cortical EEG and subsequently comparing with thalamic firing
rate by means of Pearson correlation coefficient. Unfortunately
they do not quantify the amount of thalamic oscillations con-
tained within the cortical EEG.

Yet, to keep a comparable comparison between measures,
we also compute the average of the Mazzoni et al. DFP L2

(Equation 48) and additionally the mean membrane potential
(the standard considered in the neuroscientific literature). These
are shown in Figure 4.

Clearly, in terms of time profile, the summed and averaged
observables are similar within the same class of LFP measures.
However, in all cases the Mazzoni et al. LFP L1 exhibits a sig-
nificantly larger order of magnitude, which diverges substantially
from experimental LFP amplitudes, typically varying between 0.5
and 2 mV (Lakatos et al., 2005; Niedermeyer, 2005). In contrast,
although the mean DFP is not contained within the interval from
0.5 to 2 mV it arguably performs better. However, we do concede
further work is required. Some gains in improving the differ-
ent LFP measures can be achieved by applying for example a
weighted average, which would mimic the distance of an electrode
to a particular neuron by means of a lead field kernel (Nunez
and Srinivasan, 2006). For example, a convolution of either L1
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A B C

D E F

J K L

M N O

P Q R

G H I

FIGURE 3 | Dynamics of the network and LFP comparisons: the three

columns represent different runs of the network for three different rates,

1.2, 1.6, and 2.4 spikes/ms. In each column, all panels show the same
250 ms (extracted from 2 s simulations). The first panels (A–C) represent
thalamic inputs with the different rates. The second panels (D–F)

corresponds to a raster plot of the activity of 200 pyramidal neurons. The

third panels (G–I) depict average instantaneous firing rate (computed on a
1 ms bin) of interneurons (blue) and fourth panels (J–L) correspond to
average instantaneous firing rate of pyramidal neurons. The fifth panels
(M–O) show the Mazzoni et al. LFP L1 from Equation (45). Finally, the last
panels (P–R) depict our proposed LFP measure L4, which is the average of
dendritic field potential (DFP) (Equation 48).
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A B C

D E F

J K L

M N O

G H I

FIGURE 4 | Comparison of different LFP measures when the

network receives constant signal with three different rates (1.2,

1.6, and 2.4 spikes/ms). Again, only 250 ms is represented (extracted
from 2 s simulation). The first panels (A–C) corresponding to the
different rates shows the most widespread LFP measure used in the
literature, namely average membrane potential 1

K
∑

i Ui . The second

panels (D–F) shows the Mazzoni et al. LFP L1 from Equation (45).
The third panels (G–I) displays the average of the Mazzoni et al.
DFP L2 (Equation 46). Similarly, the fourth panels (J–L) shows the
total, L3, (Equation 47) and the last panels (M–O) depicts the
averaged, L4, (Equation 48) LFP measure. Note the different
amplitude scales between measures.
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FIGURE 5 | Comparison of power spectra of the various LFP measures

when the network receives constant signal with three different rates

(1.2, 1.6, and 2.4 spikes/ms). The first panels (A–C) corresponding to the
different rates shows the power spectrum of the average membrane
potential 1

K
∑

i Ui . The second panels (D–F) and third panels (G–I) show

power spectra of the total and average of L1 and L2 corresponding to
Mazzoni et al. (2008), respectively. The fourth panels (J–L) and the last
panels (M–O) display power spectra of the L3 and L4 measures from our
model, respectively. Note we show the full spectrum up to 5 kHz only for
convenience due to the fine sample rate.
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or L2 with a Gaussian kernel (representing the distance to a neu-
ron), would yield a measure that captures better the LFP or better
the DFP of the nearest neurons. However, further work will be
required to properly quantify the gain when space is taken into
account.

In Figure 5 we finally contrast the power spectra of the differ-
ent LFP measures.

One interesting feature is that the power spectrum of the
Mazzoni et al. LFP measures decays much more slowly that the
average membrane potential for higher frequencies. This observa-
tion is true for both, L1 and L2. In contrast, our LFP measures L3

and L4 fare better, and in particular, L4 decays at an approximately
similar rate as the average membrane potential.

4. DISCUSSION
In this article we derived a model for cortical dipole fields, such
as DFP/LFP from biophysical principles. To that aim we decom-
posed a cortical pyramidal cell, the putative generator of those
potentials, into three compartments: the apical dendritic tree as
the place of mainly excitatory (AMPA) synapses, the soma and
the perisomatic dendritic tree as the place of mainly inhibitory
(GABA) synapses, and the axon hillock as the place of wave-to-
spike conversion by means of an integrate-and-fire mechanism.
From Kirchhoff ’s laws governing an electronic equivalent circuit
of our model, we were then able to derive the evolution equa-
tion for neural network activity (Equation 34) and, in addition,
an observation equation (25) for the dendritic dipole potential
contributing to the LFP of a cortical population.

In order to compare our approach with another model dis-
cussed in the recent literature (Mazzoni et al., 2008, 2010, 2011)
we aligned the parameters of our model with the model of
Mazzoni et al. (2008) who approximated DFP as the sum of mod-
uli of excitatory and inhibitory synaptic currents (Equation 44).
From both approaches, we computed four different LFP esti-
mates: L1, the sum of Mazzoni et al. DFP, L2, the popu-
lation average of Mazzoni et al. DFP, L3 the sum of our
dipole DFP, and L4 the population average of our dipole DFP
(Equations 45–48).

Our results indicate two main effects between our dipole LFP
measures and those of Mazzoni et al. Firstly, the measures based
on Mazzoni et al. (2008) systematically overestimate LFP ampli-
tude by almost one order of magnitude. One reason for that could
be attributed to the direct conversion of synaptic current into
voltage without taking extracellular conductivity into account,
as properly done in our approach. Yet, another, even more cru-
cial reason is disclosed by our equivalent circuit (Figure 2). In
our approach there is just one extracellular current ID flowing
from the perisomatic to the apical dendritic tree. In the model
of Mazzoni et al. (2008), however, two synaptic currents that
might be of the same order of magnitude are superimposed to the
DFP. Secondly, the measures based on Mazzoni et al. (2008) also
systematically overestimate LFP frequencies. This could probably
be attributed partly to spurious higher harmonics introduced by
computing absolute values. Moreover, taking the power spectrum
shows that the Mazzoni et al. (2008) measure decays much more
slowly than the average membrane potential, which is at variance
with experimental data.

However, at the current stage, both models, that of Mazzoni
et al. (2008) and our own, agree with respect to the polarity of
DFP and LFP. The measures based on Mazzoni et al. (2008) have
positive polarity simply due to the moduli. On the other hand,
also the direction of current dipoles in our model is constrained
by the construction of the equivalent circuit (Figure 2) where
current sources are situated at the perisomatic and current sinks
are situated at apical dendritic tree. Taking this polarity as posi-
tive also entails positive DFP and LFP that could only change in
strength. However, it is well known from brain anatomy that pyra-
midal cells appear in at least two layers, III and VI, of neocortex.
This is reflected in experiments when an electrode traverses dif-
ferent layers by LFP polarity reversals, and, of course, by the fact
that LFP and EEG oscillate between positive and negative polarity.
Adapting our model to this situation could be straightforwardly
accomplished in the framework of neural field theory by fully rep-
resenting space and simulating layered neural fields (Amari, 1977;
Jirsa and Haken, 1996; beim Graben, 2008). By contrast such a
generalization is impossible at all with the model of Mazzoni et al.
(2008) due to the presence of absolute values.

On theses grounds we have good indication that our mea-
sure is an improvement to the Mazzoni et al. LFP measures,
and, quite importantly, it is biophysically better motivated than
the ad hoc model of Mazzoni et al. (2008). However, much
considerable effort is still required to underpin all the relevant
LFP mechanisms and to better represent experimental LFP/EEG
dynamics.

Finally, our work provides a new framework where DFPs
and the relationship between firing rates and local fields can be
explored without the extreme demand on computational com-
plexity involved in multicompartmental modeling (Protopapas
et al., 1998; Sargsyan et al., 2001; Lindén et al., 2010; Lindén
et al., 2011) by adopting reduced compartment circuits. For
example, we envisage to extend our recent work which maps
firing rate model (derived from LIF models) to population den-
sity models (Chizhov et al., 2007), but now incorporating our
observational DFP model. In addition, our framework is ana-
lytically amenable and thus can be applied to any linear differ-
ential equation, for instance, GIF (Gif-sur-Yvette Integrate Fire)
models, which are improvements to the LIF models and com-
pute more accurately spike activations (Rudolph-Lilith et al.,
2012). Also resonant membranes (mediated by Ca2+ and a
Ca2+-activated K+ ionic currents) that describe sub-threshold
oscillations and which can be easily expressed by linear equa-
tions (Mauro et al., 1970) can be incorporated in our derivations.
We note, however, that our framework can be applied to non-
linear equations, with Hodgkin and Huxley (1952) type activa-
tion, but it will fall short from explicit and analytical observation
equations.
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What are the functional neuroimaging measurements required for more fully
characterizing the events and locations of neocortical activity? A prime assumption has
been that modulation of cortical activity will inevitably be reflected in changes in energy
utilization (for the most part) changes of glucose and oxygen consumption. Are such a
measures complete and sufficient? More direct measures of cortical electrophysiological
activity show event or task-related modulation of amplitude or band-limited oscillatory
power. Using magnetoencephalography (MEG), these measures have been shown to
correlate well with energy utilization sensitive BOLD fMRI. In this paper, we explore
the existence of state changes in electrophysiological cortical activity that can occur
independently of changes in averaged amplitude, source power or indices of metabolic
rates. In addition, we demonstrate that such state changes can be described by
applying a new measure of complexity, rank vector entropy (RVE), to source waveform
estimates from beamformer-processed MEG. RVE is a non-parametric symbolic dynamic
informational entropy measure that accommodates the wide dynamic range of measured
brain signals while resolving its temporal variations. By representing the measurements
by their rank values, RVE overcomes the problem of defining embedding space partitions
without resorting to signal compression. This renders RVE-independent of absolute signal
amplitude. In addition, this approach is robust, being relatively free of tunable parameters.
We present examples of task-free and task-dependent MEG demonstrating that RVE
provides new information by uncovering hidden dynamical structure in the apparent
turbulent (or chaotic) dynamics of spontaneous cortical activity.

Keywords: magnetoencephalography, neuroscience, cognitive, beamformer, complexity, nonlinear, turbulence,

mixing

INTRODUCTION
ENTROPY AND COMPLEXITY
The term “entropy” is commonly defined as a measure of the
order or disorder in a physical system. In the context of time-
varying electrophysiological brain signals we use the term “com-
plexity” instead of “entropy” in order to emphasize the temporal
fluctuations of information rate rather than the total information
of that signal. Signals having low complexity include synchronous
events and oscillations. Signals with high complexity appear more
chaotic and correspond to a higher information rate.

The topographic characteristics of spatiotemporal fluctuations
in cortical electrophysiological activity are analogous to those
of non-laminar, turbulent flow as visualized by optical imaging
using voltage sensitive dyes (Cohen et al., 1978). On a macro-
scopic scale, the activity of individual neurons is hidden from
external non-invasive measures such as magnetoencephalography
(MEG) (Cohen, 1968) or electroencephalography (EEG) (Berger,
1989), the ensemble behavior of the underlying cortical neural
network exhibits complex emergent and traveling fronts of excita-
tion and inhibition that are supported by both short-range inter-
neuron connections and “small world” longer-range connections.
There have been a variety of experimental approaches that have
been developed to characterize the dynamics of turbulent fluid

flow ranging from visualization of waves and eddies through the
use of fluorescent dyes (Busse and Clever, 1979) and monitoring
heat flux using cryogenic techniques (Swinney and Gollub, 1981)
to laser Doppler techniques that allow measurement of local
field velocities without perturbing the field significantly (Gollub
and Steinman, 1981). The spatiotemporal patterns observed with
changing parameter values include transitions from laminar (lin-
ear) flow via a Hopf bifurcation to periodic oscillations, fol-
lowed by two or more simultaneous irrationally related periodic
flows and finally the aperiodic oscillations of turbulent (chaotic)
dynamics (Ruelle and Takens, 1971). The latter state is char-
acterized by positive entropy generation (Eckmann and Ruelle,
1985) similar to that observed in the MEG record (Mandell et al.,
2011a,b; Robinson et al., 2012).

Brain activity is most commonly modeled by narrow-band
oscillatory regions that are coupled to one another via networks.
Chaos theory is often used as a model to describe complex bio-
logical measurements for which linear theory is incomplete. The
criteria for chaos modeling include sensitivity to initial conditions
and topological mixing. Both of these conditions are satisfied
by local measures of ongoing brain activity. This naturally leads
to combining a measurement of local cortical signals such as a
beamformer estimate derived from MEG to a sensitive and robust
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measure of the broad bandwidth non-linear properties of those
signals such as RVE.

The lack of suitable existing complexity measures for MEG
is our motivation for developing rank vector entropy. First, we
require a method for observing the spatiotemporal structure
of cortical non-linear dynamics. Retaining temporal resolution
allows for the study of the entropy change time-course that is
needed to characterize event and task-related brain activity. The
focus of current MEG complexity measures has been long-term
properties having no temporal resolution such as Lempel-Ziv
complexity (Fernandez et al., 2011), transfer complexity (Vakorin
et al., 2010), and comparisons of multiple entropy/complexity
measures (Bruna et al., 2012). Although there are sliding block
methods for observing temporal changes in entropy (Adler and
Marcus, 1979), this is computationally inefficient when applied
to thousands of voxels for functional brain imaging. The esti-
mated source time-series from beamformed MEG is efficiently
transformed into an entropy time-series by RVE.

The rank vector entropy (RVE) algorithm is a non-
parametric partial analog to metric (Kolmogorov) entropy
(ME) (Kolmogorov, 1958; Crutchfield and Feldman, 2003). Both
methods estimate the entropy of a one-dimensional series of
measurements (e.g., a neurophysiological signal) computed on
probability distributions of short sequence “states” encountered
in the time series. A unique property of the RVE as a metric
entropy lies in its initial encoding of the time series using the
topological property of sequence order (Cornfield et al., 1982;
Bandt and Pompe, 2002). In the more conventional ME, a short
sequence of lagged measurement values from a one-dimensional
time-series are mapped into an N-dimensional phase space
(Ott, 1993). This embedding space is then partitioned into
N-dimensional hypercubes. Each partition represents a state that
the signal can manifest in its trajectory through N-dimensional
space. The metric entropy of the signal is a measure on the
probability distribution of trajectories passing through possible
partitioned spaces. The number of partitions in ME can be
arbitrary and must be sufficient in number, and with sufficient
continuity to accommodate the dynamic range of the signal. In
some implementations, dynamic range compression of the mea-
surements is required in order to limit the number of partitions
to a manageable number. The classical criteria of a “generating
partition”—no more than one entry per partitioned space
(Eckmann and Ruelle, 1985) is impractical in the context of real
biological data. In contrast, in the RVE algorithm the measure-
ment values of a short sequence of samples extracted from the
entire time series are converted to their rank ordered values. The
number of states, as partitions of the one-dimensional sliding
window is quantized according to the number of elements in the
sequence of measurements. Each sequence, with the topological
property of relative “nearness,” is referred to as a “rank vector”
which can also be thought of as a rank ordered one-dimensional
embedding space. The RVE algorithm ignores the absolute signal
amplitude in favor of its relative amplitude within the span of
each sample window. A metric entropy is then computed on the
probability distribution of the finite set of rank sequences. It will
be shown that RVE is relatively free of arbitrarily tunable param-
eters (aside from selection of signal bandwidth, window length,

and a decay time constant). The more conventional ME requires
the investigator to use a variety of schemes, many involving the
Whitney embedding theorem (Milnor, 1997; Temin, 1997), to
determine the number of dimensions and lags for the embedding
space and the size and number of partitions in embedding space.

We measure the spatiotemporal complexity of brain activity by
applying the RVE analysis to sensor mediated brain signals. This
could be accomplished by analyzing the signals from individual
sensors (Vakorin et al., 2010; Gomez et al., 2011), pairs of sensors
(Mandell et al., 2011a,b), or source estimates from MEG using a
scalar LCMV beamformer (Robinson and Black, 1990; Robinson
and Rose, 1993; Van Veen et al., 1997; Vrba and Robinson, 2002).
The latter completes the analogy to characterization of time-series
of turbulent chaotic fluid flow, sampled at multiple spatial points
within the flow.

MAGNETOENCEPHALOGRAPHY
Spontaneous MEG signals are on the order of 10−13 Tesla peak-
to-peak. Despite its small signal strength, MEG has been made
practical by larger DC-SQUID based sensor arrays covering the
entire head in combination with excellent rejection of environ-
mental magnetic interference (Fife et al., 2002). The application
of RVE to MEG signals is a natural one. The magnetoencephalo-
gram is the magnetic counterpart of the electroencephalogram.
MEG is a measure of the magnetic field arising from primary
(impressed) neural currents, whereas EEG measures the electri-
cal potentials on the scalp that arise from the volume currents
and is therefore dependent on tissue conductivity and its bound-
aries (Plonsey, 1981). The major contributor to the observed
primary currents is the potential difference between the dendritic
tree and soma of neocortical pyramidal neurons. Because MEG
is less dependent on tissue conductivity its measurements can
be modeled using simple analytic solutions (Sarvas, 1987). The
accuracy of such analytic solutions for MEG enables the use of
beamformers (detailed in section “Scalar LCMV Beamformer”) to
estimate the source time series for any coordinate within the brain
(Robinson, 1989). Application of the RVE transform (section
“Rank Vector Entropy”) to any source time series yields a corre-
sponding complexity time series of that activity. The relationship
of spatiotemporal RVE to sensorimotor events and cognitive tasks
can then be determined by signal averaging or by comparison of
the RVE signals that have been parsed into active and control state
time segments.

EXAMPLE MEG STUDIES
We have selected four different examples of MEG studies to
explore the properties of spatiotemporal RVE analysis. These
datasets were selected from an archive of normal control studies.
The task-free (resting) MEG dataset was chosen to compare the
spatial distribution and timing relationships of RVE complexity
to power in a 4–150 Hz bandpass. The P300 study, also referred to
as the mismatch negativity (MMN), demonstrates the properties
of evoked signals to frequent and deviant auditory stimuli. In the
EEG, comparison of the frequent to deviant tone signal averages is
characterized by a slow wave after about 250 ms (Naatanen et al.,
1978). The same protocol is also referred to as a P300 study when
a response is required for the deviant tones (Donchin, 1981).
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The working memory (n-back) study is used to compare broad-
band RVE with power in an effortful short-term memory task
(Kirchner, 1958). Lastly, we present a MEG study of self-paced
voluntary finger movement to compare complexity with SCP.
Self-paced voluntary movement is preceded by a slow “readiness”
potential (Bereitschaftspotential) (Kornhuber and Deecke, 1964)
and a corresponding “readiness” field (Bereitschaftsfield) (Deecke
et al., 1982).

METHODS
RANK VECTOR ENTROPY
The RVE algorithm can be described as follow: first, consider
a one-dimensional discretely sampled time series of length K
samples: X = [x1, x2, . . . , xK ]. Let the sample rate and low-pass
“corner” frequency of X be denoted by fS and fC , respectively. For
any given low-pass frequency, X is completely determined at 2fC
samples per second. It is unnecessary for the rank vector to repre-
sent every sample, sequentially. It is sufficient to define the lag ξ

required to avoid oversampling as:

ξ = fS
2fC

. (1)

Thus, for any specified low-pass cutoff and sample rate we need
only process every ξth sample (ξ is rounded up to the nearest
integer). Note the analogy of ξ to the sample lags that are used
to define the dimensionality of the embedding space in conven-
tional ME computations (Eckmann and Ruelle, 1985; Crutchfield
and Feldman, 2003). The selection of lags in ME is usually
based upon the mixing length reflected in the decay of the auto-
correlation function (Walters, 1982). In this way it is biased
in favor of the dominant signal and its ordering. These meth-
ods characteristically assume that the signal is stationary (which
it is not) and it may also have the unfortunate side effect of
aliasing information. Furthermore, it appears that with real bio-
logical data, some investigators have been occasionally arbitrary
in their selection of lags (evaluating several different lags so as
to obtain results more consistent with their expectations). In the
RVE algorithm, the lags are rigorously defined by sample rate
and low-pass corner frequency, thus not justifying any further
modification. If the frequency band of interest is below the data
acquisition bandwidth, the investigator can set the low-pass fre-
quency accordingly, from which the lags are again automatically
determined.

Let us select a sub-window of W samples (at integer ξ inter-
vals) from X, with the window beginning with the kth sample:
Wk =

[
xk, xk+ ξ, . . . , xk+ (W − 1)ξ

]
. The measured signal for each

lagged sample within sub-window Wk is initially converted to its
integer rank values, forming a rank vector Rk of length W : Rk =
[rank1, rank2, . . . , rankW ]. For a window of length W there are
W ! (factorial) unique rank vectors (i.e., vectors of length W for
which the ordered rank values do not repeat). Let there be a table
S to map rank vector sequences to symbols, where the symbol
value is obtained from a “look up” table indexed for matching
rank vectors. For example, let us consider a window length of
W = 5 for which there are 5! = 120 unique rank vectors from
which we derive 120 state symbols, sn. Counting and normaliz-
ing the number of occurrences of each unique symbol can then

generate a probability histogram. Counting these symbols in RVE
is analogous to counting visits of the signal to the higher dimen-
sional hypercube partitions in ME (Ott, 1993). For this example,
we use W = 5, fS = 600 Hz, fC = 100 Hz, and ξ = 3. For exam-
ple, let the measured values of xk through xk+ 4ξ (i.e., Wk) be
(4.07, −3.12, 3.95, 8.51, −1.21). Its rank vector and symbol
value are (2, 5, 3, 1, 4) and 45, respectively (a symbol value of
45 indicates its place in an ascending numerical order of rank
vectors).

As the sub-window of W samples is advanced through X one
sample at a time, a new rank vector Rk and new symbolic repre-
sentation sn is generated. The frequency of occurrence of each of
these symbols is accumulated in a corresponding state histogram:
Fk =

[
f1 (k) , f2 (k) , . . . , fW ! (k)

]
. The resulting histogram con-

tains the cumulative counts of each rank vector (state). Since
our primary interest is in observing the time-dependent, event-
related changes in the rank vector informational entropy, it is
necessary to avoid the reduction in relative temporal sensitivity
by saturation. We prevent this by introducing a time-constant
determining the rate of decay of histogram counts with time.
The integrator decay rate τ (1/e time) is required in order to
measure the fluctuations in entropy over time. The amplitude
of the entropy fluctuations depends on the decay rate (longer
τ yields smaller peak-to-peak fluctuations). The relative rather
than the absolute changes in entropy are of interest for event or
task-related functional imaging (including ICA or resting state
MEG). Provided that τ is longer than the time required to com-
pletely fill all states, the entropy waveform will be independent
of τ—except for its amplitude. As a practical matter, we select a
time constant such that the 1/e time (in samples) corresponds to
three times the number of states. This is implemented by defining
constant α:

α = e−1/(τfS), (2)

in which τ is the time for the counts to decay to 1/e of their initial
values, such that for each time step:

Fk = αFk− 1. (3)

This constitutes what is termed a “leaky integrator.” The his-
togram count corresponding to the current state symbol is the
incremented by one. Based upon the revised count frequencies,
there will be a corresponding set of probabilities for each state:

Pk =
[
p1 (k) , p2 (k) , . . . , pW ! (k)

]
. (4)

If the cumulative entropy over all samples of X is required, then
α = 1. Otherwise, the entropy is estimated as time-dependent.
Finally, for each step k, we compute the Shannon entropy
(Shannon, 1963) over all state probabilities greater than zero, as
normalized by its maximum value, constraining entropy to the
range 0–1:

h (k) = 1

log2 W !
W !∑

n= 1

−pn (k) log2 pn (k). (5)
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The steps in the algorithmic procedure for computing the time
series of RVEs are as follows:

1. Initialize the state count histogram F (set all fn values to 1.0).
2. For each sample index k in time series X, generate a length W

rank vector Rk with lags of ξ samples.
3. Look up state symbol index n corresponding to Rk.
4. Multiply all elements of histogram F by α, thus allowing the

count histories to decay (Equation 3).
5. Increment the corresponding histogram count fn by one

(where n is the index in S corresponding to Rk).
6. Compute the probabilities of each state from the histogram of

counts (Equation 4).
7. Compute the RVE metric entropy for this time step

(Equation 5).
8. Advance sample index by one sample and continue to

repeat steps 2 through 7 and in this way generating
a new entropy value for each cycle of the algorithmic
process.

SCALAR LCMV BEAMFORMER
Synthetic aperture magnetometry (SAM) is a scalar linearly con-
strained minimum variance (LCMV) beamformer estimating
source activity from MEG signals for specified coordinates in
the brain. The mathematics of the beamformer procedure can
be traced to the minimum variance estimator first described by
Gauss (1823). SAM minimizes the variance (power) of all corre-
lated signals observed by an array of SQUID sensors, subject to
a unity gain constraint for a specified coordinate. As such, the
action of the SAM may be regarded as spatially selective noise
reduction, where noise is defined as unwanted environmental or
biological magnetic signals.

The computational procedure has been described in detail
elsewhere but can be summarized briefly, as follows: consider
measured MEG from an array of sensors. Let the signal space
vector at time sample k be denoted by M(k). Given a sufficient
number of time samples, we construct a source estimate Ŝr for
coordinate r as the weighted sum MEG measurements.

Ŝr (k) =WT
r M (k). (6)

To compute the weights using the method of Gauss, we use the
quadratic form: [

Ŝr (k) =WT
r M (k)

]2
, (7)

for which, after integrating over time, we obtain:

Ŝ2
r =WT

r CWr, (8)

where C is the covariance matrix computed over the integration
time:

C =
〈
MMT

〉
, (9)

where <.> denotes the expectation value. We solve for W by
introducing a constraint such that Ŝ2

r (power or variance) is

minimized subject to unit gain for a specified coordinate. One
such constraint is:

WT
r Br = 1, (10)

where Br is the a priori forward solution for the field observed by
an array of M sensors generated by a current dipole source located
at r. That is:

Br =

⎡⎢⎢⎢⎢⎣
b1 (r)
b2 (r)

...

bM ( r)

⎤⎥⎥⎥⎥⎦ . (11)

Suitable methods for computing forward solutions include the
current dipole in a homogeneously conducting sphere model
(Grynszpan and Geselowitz, 1973; Sarvas, 1987; Hari et al.,
1988), multiple local spheres fitted to the surface of the head
(Huang et al., 1999), boundary element methods (De Munck,
1992) or perturbative solutions derived from the spherical har-
monic expansion of the conductive boundary (Nolte et al., 2004).
However, to compute Br we must first estimate the dipole orien-
tation. We do this by finding the dipole orientation yielding the
highest signal-to-noise ratio (SNR) at location r. We define Lr,
the matrix of forward solutions for dipoles oriented in the three
cardinal directions as:

Lr =

⎡⎢⎢⎢⎢⎣
b11 b12 b13

b21 b22 b23
...

...
...

bM1 bM2 bM3

⎤⎥⎥⎥⎥⎦ . (12)

We also define a diagonal matrix � of uncorrelated sensor instru-
mental noise power σ2

m:

� =

⎡⎢⎢⎢⎢⎣
σ2

1 0
σ2

2
. . .

0 σ2
M

⎤⎥⎥⎥⎥⎦ ∼= σ̄2I. (13)

The source power S in each of three cardinal directions is given by:

S2
r =

[
LT

r C−1Lr

]−1
, (14)

and the noise power N by:

N2
r =

[
� LT

r C−2Lr

]−1
. (15)

The SNR is given by a generalized eigensystem of these two 3× 3
matrices (Sekihara and Nagarajan, 2008). By assuming that the
SQUID noise is nearly equal in all sensors, we can neglect �,
as it represents a scalar (σ̄2I) that will not affect determination
of the moment vector. The dipole orientation maximizing SNR
is given by the eigenvector emax corresponding to the maximum
eigenvalue λmax of the generalized eigensystem:

LT
r C−2Lrek = λkLT

r C−1Lrek. (16)
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The forward solution for the dipole vector for the highest SNR is
therefore:

Br = Lremax. (17)

Solving for the optimum scalar LCMV beamformer weights using
Lagrange multipliers results in:

Wr = C−1Br

BT
r C−1Br

. (18)

Substituting Wr into Equation (6) yields an estimate of the source
time series.

APPLICATION OF RVE TO MEG DATA
Subjects
MEG data from four healthy normal control subjects, one per
example study, were randomly selected from a larger group of
NIMH study subjects of both genders, mean age 27.6 years. All
subjects gave written informed consent according to protocols
approved by the NIH CNS Institutional Review Board.

Data acquisition
MEG data were acquired using a 275-channel whole head MEG
(CTF Systems, Inc.) housed within a three layer magnetically
shielded room (Vacuumschmelze AK-3). Three head localization
coils were affixed to subjects at the nasion, right preauricular, and
left preauricular points. The acquisition software energizes these
coils with sinusoidal currents at three different frequencies before
and after data acquisition in order to localize and establish each
subject’s head position relative to the MEG sensors. Data were
sampled continuously, without breaking it into epochs or trials at
600 Hz in a bandpass of DC to 150 Hz, with the subjects in seated
position. Stimulus and response trigger markers for each study
were recorded with the data. Synthetic 3rd-gradient mode was
used during data acquisition to obtain further reduction in mag-
netic noise (Vrba and Robinson, 2002). Raw data were archived
on disk for subsequent analysis.

RVE analysis parameters for all studies were fixed at a 4–150 Hz
bandpass, W = 5 (120 states), lags every two samples, and an
integrator decay time constant of 0.6 s.

All subjects were given a T1-weighted volumetric MRI.
Radiological markers were affixed to the identical fiducial points
as were used for the head localization coils used during MEG
acquisition. Markers were used to transform the MRI to the MEG
head frame for subsequent processing, including segmentation
of the cortical boundary, and coregistration of functional and
anatomical data.

Data analysis
Analyses were applied to the unaveraged continuous data. We use
the single-layer realistic head model (Nolte et al., 2001) to com-
pute the forward solutions. The scalar beamformer processing
includes the steps:

1. Coregister a T1-weighted MRI to the MEG frame and segment
the MRI to extract subject’s brain hull, using AFNI software
(Cox, 1996).

2. Compute the outward-pointing normal vectors for the brain
hull.

3. Estimate the MEG measurement covariance matrix for the
required time segments and frequency bandpass (Equation 9).

4. Compute points (voxel coordinates) on a regular three-
dimensional grid at 5 mm intervals within the head.

5. For each voxel within the hull boundary:

a. Compute the lead-field matrix (Equation 12) using the
brain hull as a single-layer realistic head model (Nolte et al.,
2001).

b. Compute the beamformer coefficients (Equation 18).
c. Estimate the source time series (Equation 6).

The RVE voxel time-series is computed for a 4–150 Hz band-
pass (Equation 1–5). No additional filtering or smoothing is
required as the RVE time-series is inherently smooth. Source
power time-series are computed from the smoothed envelope
of a Hilbert transform following bandpass filtering of the MEG
data. The Hilbert envelope was smoothed using lowpass filter
corresponding to the lowpass corner frequency of each selected
bandpass.

The fluctuations in RVE are relatively small (on the order
of 5–15% for α = 0.6 s). RVE deviation relative to its statistical
mode is used for analysis of the task-free data. For the remain-
ing studies, we compute the Student’s T-value for each latency in
the RVE time, relative to a selected baseline. Static (3D) and spa-
tiotemporal images (3D + time) were assembled and displayed
using AFNI software (Cox, 1996).

Task-free (resting) protocol
Two hundred and forty seconds of task-free (“resting’) MEG data
were recorded from a normal subject (eyes opened), using data
acquisition procedures outlined in section “Data Acquisition.”
Beamformer weights were computed as above for the entire
duration at 5 mm voxel intervals on a three-dimensional grid
occupying the entire head. The envelope of the source power
S2 and the RVE were then computed for each voxel and the
results mapped as three dimensions plus time images at 50 ms
intervals. Because RVE is a measure on temporally hierarchi-
cal brain signals, it is studied using a broad bandwidth of
4–150 Hz. In this way we avoid the potential reduction in com-
plexity that would accompany our narrowing the bandwidth of
observation. In comparing RVE, with the simultaneously stud-
ied envelopes of band width power, the latter was computed
using a smoothed Hilbert transform for a sequence of band-
widths that included: 4–150 Hz, 4–8 Hz (theta), 8–13 Hz (alpha),
15–30 Hz (beta), 35–70 Hz (low gamma), and 70–150 Hz (high
gamma). The RVE time series is inherently smooth and required
no additional filtering.

Auditory P300 (Mismatched Negativity) protocol
The auditory P300 protocol consisted of random presentation
of 200 frequent (1.0 kHz) and 50 rare (1.5 kHz) 50 ms dura-
tion tone bursts delivered binaurally via non-magnetic earphones
(Etymotic), with a 1.0–1.5 s pseudo-random interstimulus inter-
val (ISI). Subjects were instructed to respond to the rare tones by
pressing a response button. MEG data were acquired as noted in
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section “Data Acquisition” and stored to disk together with trigger
markers for identifying the onset of the rare and frequent tone
bursts, along with the button response.

Beamformer weights were computed from the unaveraged
MEG data for each of three conditions: (1) both frequent and rare
tones, (2) frequent tones, and (3) rare tones. The weights were
computed in a 4–150 Hz bandpass. Three-dimensional images
of RVE were then computed at 5 ms intervals over a time win-
dow from −0.2 to +0.8 s relative to the markers for each of
the three conditions. Image maxima and minima coordinates
were determined and additional beamformer weights computed
for a DC to 100 Hz bandpass. These weights were then applied
to the averaged RVE signal of the three conditions in order to
show the time course of the entropy waveforms. Note that we
compute the average of the entropy and not the entropy of the
averaged signal. The RVE functional images and time series are
displayed as Student’s T-values for each voxel, relative to the
selected pre-stimulus baseline.

Working memory (N-back) protocol
The numerals 1 through 4 were randomly presented to the sub-
ject at 1.4-s intervals in 18 blocks of 11 trials each, using a DLP
projector. Preceding each block the subject received instructions
how to respond to via four numbered buttons, that corresponds
to the numbers 1 through 4. For 0-back blocks, the subject sim-
ply pressed the button corresponding to the number presented.
For 1 and 2-back conditions, the subject pressed the button cor-
responding to the numbers that were presented one or two trials
back, respectively. MEG was recorded, along with trigger mark-
ers indicating the task (i.e., respond to 0, 1, or 2-back), which
number was displayed and which response button was depressed,
using the settings in section “Data acquisition.”

The RVE was applied to the continuous source time series of
each voxel, resulting in an RVE time series. The RVE voxel time
series was then parsed into 0.5-s segments (± 0.25 s relative to the
button response) for the 0, 1, and 2-back conditions. The RVE
was integrated over each segment. A Student’s T-test was used
to compare the difference in integrated RVE signal for pairs of
each condition (i.e., 2 vs. 0-back, 2 vs. 1-back) for each individual
voxel. The results were displayed as p-values using AFNI.

In a similar manner, we computed and displayed the compar-
isons for beta-band (14–30 Hz) power using the same conditions.

Self-paced voluntary movement protocol
Subjects performed self-paced button presses at intervals of at
least 10 s while continuous MEG was recorded together with time
markers for each button press, as outlined in section “Data acqui-
sition.” No cues were given to the subjects as to when to press the
button.

Scalar beamformer weights were computed for the entire
unaveraged dataset in a bandpass of 4–150 Hz. Weights were then
applied to the measured MEG data yielding a source estimate time
series for each voxel. The voxel time series was then transformed
to a RVE time series. The mean entropy value over the interval
from −3.0 to −2.5 s prior to the button press was designated
as a baseline for comparison of later entropy changes; the RVE
time-series was averaged relative to the voluntary button press, at

5 ms intervals from −3.0 to 2.0 s. The RVE averaged response is
displayed as its Student’s T-value relative to the selected baseline.
The voxel having the maximum relative RVE prior to the but-
ton press was also used to compute the averaged source strength
time-series.

RESULTS
TASK-FREE (RESTING) PROTOCOL
Comparison of the spatial and temporal patterns in the 4–150 Hz
bandpass reveals very little apparent correlation between RVE and
the Hilbert envelope of power. The fluctuations in entropy are
noticeably slower than that of power. In many cortical locations
the RVE shows transient decreases from its modal value; spon-
taneous entropy increases are not as prominent in the resting
condition (Figure 1 top panel). Changes in power relative to its
modal value (Figure 1 center panel) are much more rapid than
those of the RVE. The spatial distribution of RVE and power also
are seen to differ (Figure 1 bottom panel).

An expanded 30-s view of the time course of the smoothed
Hilbert envelope of power and across multiple frequency bands
shows no apparent correlation with RVE 4–150 Hz (Figure 2).
Changes in entropy clearly show slower, longer wavelength fea-
tures that are not evident in measures of power.

AUDITORY P300 TASK
In this characteristic example, we observed a reduction in entropy
coinciding with the N100M peak (Figure 3B) for frequent and
combined frequent and rare trials (Figure 3A). The reduction in
entropy at 100 ms was much smaller for the rare tones, alone
(Figure 3B). The reduction in entropy was maximal in the vicin-
ity of the left Heschl’s gyrus (Figures 3C,D,E), with a much
smaller reduction in the right hemisphere. Although a flat base-
line was seen in the pre-stimulus interval of −0.2 to 0.0 s in
the averaged overlay of all sensors (Figure 3B), it is absent from
the combined and frequent trial averages (Figure 3A). We also
observed an increase in the entropy T-value after 100 ms for
the rare tones (Figure 3A). At 700 ms this increase was maximal
in anterior cingulate and left temporal cortex (Figure 3F). The
increase does not appear in the sensor signal averaged overlay.

WORKING MEMORY TASK
In the 2 vs. 0-back comparison, we observe a reduction in beta-
band power in the 2-back task relative to the 0-back task, ERD, in
dorsolateral prefrontal cortex (DLPFC) and an increase in power,
ERS, in inferior occipital cortex (Figure 4A). For the identical
comparison, there is a significant increase in entropy (p < 10−5)
in the 2-back condition that is widely distributed throughout the
brain, with the largest changes in the left hemisphere (Figure 4B).

In the 2 vs. 1-back comparison, beta-band ERD is seen
in DLPFC and bilaterally near the inferior temporal pole
(Figure 5A). The same comparison for RVE shows an increase in
entropy in anterior cingulate cortex and a decrease in the right
inferior temporal pole (Figure 5B).

SELF-PACED VOLUNTARY FINGER MOVEMENT
The Bereitschaftsfield (BF), average of 29 trials, appears as a slow
low frequency rise in the source moment in premotor cortex
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FIGURE 1 | Rank vector entropy and noise-normalized source power

differed in both locations and dynamical patterns, i.e., in both time and

space. The time-courses of RVE and power for the 4–150 Hz bandwidth are

shown for a single location in the brain, as indicated by the cross-hairs in the
functional images. The functional images of RVE and power correspond to
activity at the time indicated by the red cursor.

that occurs over the time span from −2.5 s to 0 s, relative to
the button press (Figure 6 top). We observed a peak dipole
moment of about 10 nA -m relative to a mean baseline over the
interval −3.0 to −2.5 s. Signal-to-noise ratio for this source is
low, requiring a lowpass filter of 5 Hz in order to see the slow
changes. By contrast, the averaged RVE (4–150 Hz), displayed as
a T-value relative to baseline, has excellent signal-to-noise and
spans−1.75 to 0 s (Figure 6 bottom). We refer to this wave as the
“Bereitschaftskomplexität” (BK), to emphasize its relationship to
the BF. Both the BF and BK waveforms are similar.

DISCUSSION
Our single most important finding is that the RVE measure of
complexity adds new information about brain dynamics that
was previously hidden within the apparent chaos of spontaneous
cortical signals. Moreover, RVE, when combined with a scalar
beamformer, reveals an underlying spatiotemporal complexity
pattern that is modulated by stimuli and tasks. We have presented
experimental evidence demonstrating that these patterns of com-
plexity are decoupled from conventional measures of amplitude
and oscillatory power. Thus, RVE reveals new information on the
dynamics of brain activity.

Next, we will examine the experimental evidence regarding
what directional changes in entropy signify. MEG measures such
as band-limited oscillatory power or amplitude have been shown
to be concordant with functional imaging by BOLD fMRI (Singh
et al., 2002; Coppola et al., 2004). Induced changes in cortical
activity, particularly for movement, are signaled by event-related
desynchronization (ERD) of power (Taniguchi et al., 2000) and
also by increases in the BOLD signal relative to a resting or control
state. How does one interpret event-related changes in RVE? The
answer is not straightforward. We show that a simple auditory
stimulus induces a decrease in the RVE at a latency correspond-
ing to the N100m and location corresponding to primary auditory
cortex in the left hemisphere. Comparable MEG studies also show
ERD in the beta and alpha bands at the latency and locations
corresponding to the N100m, and fMRI shows a corresponding
increase in the BOLD signal.

In our auditory P300 study the response to the rare tones
elicited later increases in the RVE signal that persisted for over
1 s. The increase was seen broadly in anterior cingulate cortex
and in left temporal cortex in a wide area centered on where the
N100m response appeared. These late responses are not visible in
the averaged overlay of sensors and in the event-related changes
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FIGURE 2 | The time course of rank vector entropy, h(k) (blue

trace), is apparently uncorrelated with changes in the envelope

of source power, in any bandpass. The 4–150 Hz RVE is

compared with source power at the same location in multiple
bandwidths for a 30 s expanded view derived from the waveforms
shown in Figure 1.

in power. We see that the absence of a stable baseline for the fre-
quent tones is a consequence of the slow return to baseline of the
entropy increase evoked by the rare tones. That is, the 1.0–1.5 s
ISI is not sufficient for the induced RVE increase to return to its
resting value.

These P300 results demonstrate that stimuli and tasks can
induce either in increase or a decrease in entropy relative to
its resting value. The RVE of task-free MEG is characterized by
transient decreases in entropy from its modal value of∼0.92, last-
ing two or more seconds. Increases above the modal value are

not as prominent and are more rapid—suggesting that bidirec-
tional modulation of RVE reflects the parabolic character of the
entropy function and/or its governance by at least two different
mechanisms. The N100 evoked component of frequent tones cor-
responds to a transient decrease in the RVE signal that is much
shorter than the observed transients in the task-free MEG record-
ings. The localization of decrease was centered on the left auditory
cortex, but included perisylvian areas. The broad distribution
of the induced entropy changes confirm that the auditory N100

component arises from multiple regions and not simply primary
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FIGURE 3 | Relationship of rank vector entropy to the auditory evoked

response to rare and frequent tone bursts. (A) Average of entropy time
series for left primary auditory cortex; (B) average overlay of 275 MEG

sensors; (C) RVE image of combined rare and frequent tones at 100 ms; (D)

RVE image of frequent tones at 100 ms; (E) RVE image of rare tones at
100 ms; (F) RVE image of rare tones at 700 ms latency.

auditory cortex (Naatanen and Picton, 1987). Although the aver-
aged evoked response to the rare tones showed only a small peak
corresponding to the P300 response, there was a profound slow
increase in the RVE signal starting at about 250 ms. This slow
increase is concordant with the mismatch negativity signal that
is observed in similar protocols involving frequent and deviant
tones. It appears that synchronized cortical activity, such as that
leading to an averaged evoked response component, induces a
transient decrease in entropy in the corresponding regions. By
contrast, the slow and prolonged rise in entropy induced by the
rare tones suggests an increase in asynchronous cortical activ-
ity that signifies attentional mechanisms. It should be noted that
the frequent tone average (Figure 3A) shows what appears to be

activity where the pre-stimulus baseline should instead be flat.
This is an artifact due to the long duration of the slow RVE com-
ponent of the rare tones and the relatively short 1.5 s interstimulus
interval.

RVE’s relatively long time scales (in seconds) and the continu-
ity and differentiability in its time-dependent changes suggests a
relationship of this measure to the family of slow cortical poten-
tials (SCPs), including the contingent negative variation (CNV)
and the Bereitschaftsfield (Birbaumer et al., 1990). This is par-
ticularly evident when comparing BF and BK waveforms seen
in Figure 6. The slow changes in entropy are only partially due
to integration of symbolic state counts. The decay time constant
incorporated into the integrator permits RVE to respond rapidly
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FIGURE 4 | Comparison of event-related changes in beta-band power

and in rank vector entropy for 2 vs. 0-back working memory task

centered on the response. Images are univariate p-values for a
Student’s T -test, with a threshold of 10−5. (A) Event-related

desynchronization of beta band power (14–30 Hz) appears bilaterally in
dorsolateral prefrontal cortex and in left supraorbital prefrontal cortex.
(B) RVE (4–150 Hz) shows widely distributed increases that overlap with
regions of beta-band ERD.

to changing complexity. The observed slow changes in RVE are
significantly longer than the 0.6-s 1/e integration decay time con-
stant used in these analyses. Thus, the slow shifts in entropy are
not an artifact of the analysis but rather reflect cortical processes.
Further studies will be needed to compare RVE with other SCP
phenomena (e.g., the contingent negative variation paradigm and
orienting responses).

The working memory task lends additional insight into how
the RVE complexity measure is modulated by cognitive effort.
The contrast for the 2-back to the 0-back condition for RVE
(Figure 4) shows widespread and highly significant (p < 10−5)
increases in entropy throughout the brain. The 2-back task
engages working memory whereas the 0-back task does not.
Although the RVE spatial distribution is not uniform, it sug-
gests greater and more significant changes than does event-related
beta-band power. These same conditions viewed as beta-band
power show the expected focal changes in DLPFC. The difference
between RVE and beta-band power images suggests that there vast

tracts of cortex that have changed into an “up” state (i.e., activa-
tion of the thalamo-cortical attention circuit), without significant
expenditure of energy. Is this arousal? Is it readiness? One might
speculate that this widespread increase in entropy represents a
decrease in the cortical excitability threshold—necessary for the
efficient performance of the 2-back task. Such a mechanism
would be concordant with our observations of other slow changes
in RVE, such as that seen in the self-paced voluntary finger move-
ment study and late P300 components for the rare tones. By
contrast, the 2-back and 1-back conditions both engage working
memory but with different levels of effort. For this comparison
the RVE demonstrates a number of focal increases bilaterally in
anterior cingulate gyri, supraorbital prefrontal cortex, and a focal
decrease in the left inferior temporal pole (p < 10−11) as shown
in Figure 5. Thus, the contrast for increasing memory workload
can result in both increases and decreases in RVE. The RVE results
are qualitatively different from the same contrasts in task-related
beta-band power (Figures 4 and 5). Beta-band changes appear
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FIGURE 5 | Comparison of event-related changes in beta-band

power and in entropy for 2 vs. 1-back working memory task

centered on the response. Images are univariate p-values for a

Student’s T -test, with a threshold of 10−3. (A) Event-related
desynchronization of beta band power (14–30 Hz) and (B) RVE
(4–150 Hz).

mainly as ERD in dorsolateral prefrontal and parietal cortex for
both 2 vs. 0-back and 2 vs. 1-back. The p-values for these regions
are smaller than those for the RVE. Overall, the working memory
task suggests the higher cognitive load is associated with increases
in RVE.

The results obtained from these MEG studies provide evi-
dence that RVE—specifically increases in complexity—are mea-
sures of attention and intention. The neurophysiological basis of
attentional arises from the non-specific projections from the cen-
tromedian thalamic nucleus to the neocortex (Steriade, 1995).
Activation of these projections depolarizes the apical dendrites
of neocortical pyramidal neurons resulting in a decrease in the
excitability threshold. An increase in asynchronous firing rate of
these neurons will be reflected by an increase in complexity, as
seen in the RVE signal. It should also be noted that this same
mechanism is responsible for the low frequency negative signal
appearing in the scalp EEG—the so-called SCP (Birbaumer et al.,
1990). Detection of the EEG SCP signals requires careful removal
of motion artifacts, eye-blinks, and higher frequency signals and

rhythms. By contrast the RVE signals corresponding to atten-
tion are readily measured in a broad bandwidth with little or
no filtering. Thus RVE is a more sensitive measure of attentional
mechanisms than is the SCP.

The complexity decrease associated with synchronous and
evoked events such as the auditory N100 implies a low information
rate. This calls to question the model that synchronous events rep-
resent transfer of information. Instead, we suggest a new model
in which synchronous activity signifies degradation of the cur-
rent cognitive context in a cortical region so that new information
from sensory or associative sources can be incorporated into a
new cognitive context. Exploration of this model is the subject of
our ongoing research.

The RVE combines some properties of topological (relative
nearness as non-numeric sequences) and metric (probability
measure theoretic) entropies (Cornfield et al., 1982; Ornstein,
1989; Milnor, 1997). The log density of states (Equation 7) is a
metric entropy. These states are a consequence of mapping topo-
logically ordered sequences to vectorial states, then mapping these
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FIGURE 6 | Comparison of the averaged Bereitschaftsfield (DC to 5 Hz) to the averaged Bereitschaftskomplexität RVE (4–150 Hz) for a single voxel in

premotor cortex contralateral to a self-paced voluntary finger movement (button press).

states into a symbolic dynamic topology, eventuating in the met-
ric transformation of the density distribution of these symbolic
states (Pollicott and Yuri, 1998).

The RVE is distinguished from ME in the order of oper-
ations. In ME, the states are defined by discrete partitions in
the embedding space of measured values and the probabilities
are derived from the number of counts in each n-dimensional
partition. It can be difficult to define the boundaries of each
partition—particularly when signals cover a wide dynamic range.
In such cases, signal amplitude compression may be required. By
contrast, RVE reduces the measurements to their rank values for
each length W window. Each rank vector represents a state symbol
(Adler et al., 1977) and partitions, as such, are no longer required;
it only necessary to count the instances of each symbol. This step
not only defines a finite number of available states but also renders
the entropy measure-independent of absolute signal amplitude.

As a consequence of the integrator decay time constant, the
mean of the entropy time series will be smaller than in the limit of
α = 1 for which integration takes place over all samples. A simi-
lar decrement from the maximum entropy was also found in older
methods (Walters, 1982). This decay time constant is required in
order to maintain sensitivity to entropy changes over time. As
expected, RVE approaches its limiting value as the decay con-
stant is increased. At long decay constants fluctuations will be very
small due to the accruing “memory” of the state counts. For MEG
data sampled at 600 Hz and W = 5, we choose a 1/e time con-
stant 0.6 s—corresponding to three times the number of states,
in samples. This is more efficient than the sliding block methods
for which entropy is computed for the number of samples in each
block, and the blocks are advanced one sample at a time (Adler
and Marcus, 1979). It should be mentioned here that altering
the decay time constant changes the peak-to-peak amplitude
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of the entropy fluctuations, but not its waveform (thus the RVE
measure)—provided the time constant is sufficiently long to allow
the state counts to fully populate.

There is an inherent frequency bias in the RVE method.
The duration of the sub-window from which the rank vector is
obtained constitutes a highpass filter on the signal. To a mea-
sureable extent the contribution of the entropy of signals with
wavelengths longer than this sub-window is reduced. This sug-
gests future innovations of the RVE algorithm for the purpose of
better conserving the range of broadband responses. For exam-
ple, one could apply a 6 dB per octave increase in the measured
signal for frequencies below the window cutoff to compensate for
the decline in sensitivity.

The tunable parameters for RVE analysis are the rank vector
length, signal lowpass frequency, and integration decay rate. We
here note practical limitations of rank vector length. Since the
number of possible states is exactly determined by the length of
the rank vector, if W = 4, 5, and 6 there are 24, 120, and 720
possible states, respectively. As a compromise, W = 5 seems most
attractive because it allows for a sufficient number of states to
reflect the probabilities without too many or too few states to be
impractical (i.e., to not fully represent the latent structure in the
time-series). For example, when W = 3, there are only 6 allow-
able states and when W = 7 there are 5040 allowable states. The
latter would require a very large number of samples to accurately
reflect the probabilities of each state, while the former would
provide very poor state resolution. The lags defining the phase
space are determined by the signal lowpass frequency. Since signal
complexity decreases as bandwidth is reduced, it defeats the pur-
pose of complexity analysis to limit the bandwidth. Therefore, the

low pass should reflect the information content of the measured
signal. Lastly, the integrator decay rate is selected so as to allow the
state count histogram to be well-populated (a sufficient number
symbol counts for obtaining a good estimate of the entropy) and
have a short lead-in time (i.e., the time required for the entropy to
approach its asymptotic value). For 120 states, and a sample rate
of 600 Hz, a 1/e time of 0.6 s is sufficient. Note that, as indicated
above, the integrator decay does not lowpass filter the entropy
waveform. It only affects the relative amplitude of the entropy
fluctuations around the asymptotic value.

The normal cerebral cortex is never quiescent—even when
not engaged in specific tasks. We have shown that stimuli and
tasks modulate the regional entropy of cortical activity, inducing
either increases or decreases in our RVE measure. The question
posed initially was whether RVE provides new information on
brain activity that is not obvious when observing only changes
in source power. We conclude that RVE is a sensitive mea-
sure of brain signal complexity that complements other MEG
functional imaging techniques including event and task-related
changes in power.
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The work introduces a linear neural population model that allows to derive analytically
the power spectrum subjected to the concentration of the anesthetic propofol. The
analytical study of the power spectrum of the systems activity gives conditions on
how the frequency of maximum power in experimental electroencephalographic (EEG)
changes dependent on the propofol concentration. In this context, we explain the
anesthetic-induced power increase in neural activity by an oscillatory instability and
derive conditions under which the power peak shifts to larger frequencies as observed
experimentally in EEG. Moreover the work predicts that the power increase only occurs
while the frequency of maximum power increases. Numerically simulations of the
systems activity complement the analytical results.

Keywords: general anesthesia, propofol, neural fields, power spectrum, EEG

1. INTRODUCTION
General anesthesia (GA) is an important medical application in
today’s hospital surgery. Although GA is omnipresent in recent
medicine, its underlying neural interactions have been a long-
standing mystery. In the last decades, the anesthetic phenomena
have attracted theoreticiens, e.g., (Steyn-Ross et al., 1999; Bojak
and Liley, 2005; Hutt, 2011), who aim to describe mathemati-
cally some major experimental phenomena by population mod-
els (Steyn-Ross et al., 2004, 2012; Bojak and Liley, 2005; Hutt
and Longtin, 2009; Hindriks and van Putten, 2012), or spiking-
neuron models (McCarthy et al., 2008; Ching et al., 2010). Most
theoretical studies aim to explain signal features of electroen-
cephalographic (EEG) data observed during anesthesia. Such
features comprise the diminution of α-activity accompanied by
a subsequent enhancement of δ-activity while increasing anes-
thetic concentration (Gugino et al., 2001; Cimenser et al., 2011;
Murphy et al., 2011) and the power enhancement of activity
induced by some anesthetics (McCarthy et al., 2008; Ching et al.,
2010). Another example is the increase of the frequency of maxi-
mum EEG-power to higher values as observed experimentally in
several studies (Gugino et al., 2001; Ching et al., 2010; Murphy
et al., 2011; Boly et al., 2012; Hindriks and van Putten, 2012). The
current work focusses on the power enhancement and the fre-
quency shift of maximum power while increasing the anesthetic
concentration and gives insights into its origin by the analytical
treatment of a linear neural field model.

One of the major objectives of this work is to answer the
question whether it is possible to explain spectral EEG-features
observed during GA by a low-dimensional linear model. The
advantage of such a reduced model is the analytical tractability
and an identification of underlying neural interactions or even the
origin of the spectral feature. Here the difficulty is to find a simple

model, that, however, still involves important, i.e., realistic and
neural interactions. We are convinced that such a model has been
found in a previous work (Hutt and Longtin, 2009). The present
work will simplify further this spatio-temporal model while tak-
ing into account the biophysical effects of the anesthetic propofol
on synaptic receptors and hence retaining the neurobiological
plausibility.

The simplicity of the model will allow to reveal the effect of dif-
ferent actions of the anesthetic propofol on synaptic receptors on
the frequency of maximum spectral power. Moreover, the work
gives criteria under which conditions the frequency of maximum
power increases with increasing propofol concentration and when
it may decreases. In the analytical treatment, we will see that the
power enhancement for larger propofol concentrations may be
explained by an oscillatory instability and we predict that it always
occurs while the frequency of maximum power increases.

2. METHODS
2.1. THE MODEL
The neural field model under study (Hutt and Longtin, 2009)
describes the evolution of the mean membrane potential of
a neural population in a small spatial patch at spatial loca-
tion x and at time t. Similar models have been derived
and studied before (Wilson and Cowan, 1972; Amari, 1977;
Ermentrout, 1998) and applied successfully to explain spatio-
temporal neural activity observed experimentally (Ermentrout
and Cowan, 1979; Huang et al., 2004; Angelucci and Bressloff,
2006; Schwabe et al., 2006). The population includes both excita-
tory and inhibitory neurons and takes into account excitatory and
inhibitory synapses. Assuming that excitatory and inhibitory neu-
rons exhibit identical effective membrane potentials, i.e., an iden-
tical difference between excitatory and inhibitory post-synaptic
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potentials, the mean excitatory and inhibitory post-synaptic
potentials Ve(x, t) and Vi(x, t), respectively, obey

L̂eVe(x, t) = ae

∫
D

Ke(x− y)Se[Ve(y, t)− Vi(y, t)]dy + I(x, t)

L̂iVi(x, t) = ai

∫
D

Ki(x − y)Si[Ve(y, t)− Vi(y, t)]dy (1)

with the circular spatial population domain D of length L,
i.e., assuming periodic boundary conditions. The model under
study differs from some other previous models, e.g., by Liley and
Bojak (2005), by the implementation of synaptic action, gener-
ation of action potentials or axonal connectivity [see also the
work of Coombes et al. (2007) for a comparison of the cur-
rent model and other models]. The functionals Se[·] and Si[·]
are continuously increasing and represent the population fir-
ing rate of excitatory and inhibitory neurons, respectively. In
the population the single neurons are connected by a com-
plex system of axons from neuron somata to synapses. The
kernels Ke(x) and Ki(x) are the probability density of such con-
nections in the population. Here axonal transmission delay is
neglected for simplicity although it is straightforward to include
it in this type of model (Hutt and Longtin, 2009). In addi-
tion, the model considers excitatory and inhibitory synapses,
L̂e = L̂e(d/dt) and L̂i = L̂i(d/dt) denote functional operators
describing the corresponding temporal synaptic response phase
and the factors ae, ai represent the corresponding synaptic
efficacies.

Mathematically, the differential operators are the inverse of the
integral operators in

V(t) =
∫ t

−∞
h(t − τ)P(τ) dτ (2)

where h(t) is the synaptic response function, or more precisely the
electric current response in the synaptic receptor to an impact of
binding neurotransmitters (Koch, 1999). The function P(τ) > 0
is the mean pulse activity arriving at the synapses. In a reasonable
approximation, the response function reads

h(t) = a

τ
e−t/τ

with the decay time constant τ and the synaptic efficacy a > 0.
Then the response amplitude is h(0) = a/τ and the charge trans-
ferred in the receptor ρ = a is the time integral over the current
flow. The corresponding differential operator stipulates L̂V(t) =
aP(t) leading to

L̂

(
∂

∂t

)
= τ

∂

∂t
+ 1

and Equation (2) re-casts to

τ
∂V(t)

∂t
+ V(t) = aP(t).

These expressions hold for excitatory and inhibitory synapses.

The synaptic receptors are major targets of anesthetic agents.
The present work considers the action of propofol on inhibitory
synaptic and extra-synaptic GABAA-receptors. The former recep-
tor is supposed to be a major anesthetic target (Franks and
Lieb, 1994) and there is growing evidence that extra-synaptic
inhibitory receptors may play an important role in anesthesia as
well (Orser, 2006; Hutt, 2012). The subsequent sections consider
effects on synaptic receptors due to the well-established experi-
mental evidence. Hence, the synaptic parameters of inhibitory
synaptic receptors depend on the anesthetic concentration and
are parameterized by the factor p ≥ 1 (Steyn-Ross et al., 2001),
i.e., the decay time of inhibitory synapses τ2 = τ2(p) and the
corresponding synaptic efficacy ai = ai(p) depend on p.

The input in Equation (1) fluctuates randomly in space
and time with ξ(x, t) about a constant value I0 = const, i.e.,
I(x, t) = I0 + ξ(x, t). The random fluctuations are independent
in space and time and thus obey 〈ξ(x, t)〉 = 0, 〈ξ(x, t)ξ(y, T)〉 =
2Dδ(t − T)δ(x− y), where 〈·〉 denotes the ensemble average.

Considering the latter definitions of synaptic properties, anes-
thetic action and external input, the final model equations read

τ1
∂Ve(x, t)

∂t
= −Ve(x, t)+ ae

∫
D

Ke(x− y)Se[Ve(y, t)

−Vi(y, t)]dy + I0 + ξ(x, t)

τ2(p)
∂Vi(x, t)

∂t
= −Vi(x, t)+ ai(p)

∫
D

Ki(x − y)Si[Ve(y, t)

−Vi(y, t)]dy (3)

with the decay time of excitatory synapses τ1.
Assuming that the random fluctuations are small and do not

affect the stationary state [in contrast to recent results gained
from non-linear systems (Hutt et al., 2007; Hutt, 2008)], the sta-
tionary state Ve(x, t) = V0

e = const, Vi(x, t) = V0
i = const obeys

V0
e = aeSe[V−] + I0, V0

i = ai(p)Si[V−] with V− = V0
e − V0

i =
aeSe[V−] − ai(p)Si[V−] + I0 (Hutt and Longtin, 2009).

2.2. THEORETICAL POWER SPECTRUM
To compute the power spectrum, we employ the method of
Greens function. Let us assume the activity variable vector x(t) ∈
RN , the matrix A, the external input vector ξ(t) ∈ RN , the
Greens function matrix G(t) ∈ RN×N and

ẋ(t) = Ax+ ξ(t).

Then, for t →∞, the solution of the system is

x(t) =
∫ ∞
−∞

G(t − τ)ξ(τ)dτ. (4)

and the Greens function obeys

Ġ− AG(t) = 1δ(t)

with te unitary matrix 1 ∈ RN ×N . Applying the Fourier
transform

G(t) = 1√
2π

∫ ∞
−∞

G̃(ω)eiωtdω. (5)
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yields

G̃(ω) = 1√
2π

(iω1− A)−1 (6)

= 1√
2π

F(iω)

P(iω)
(7)

with the matrix F(iω) and the characteristic polynom P(iω). The
matrix F in Equation (7) includes the matrix elements of the
inverse of iω1− A and the characteristic polynom P represents
the corresponding matrix determinant.

Inserting Equation (6) into (5) allows to compute G(t) by the
residue theorem in functional analysis

G(t) = 2πi
r∑

n = 1

Res(zn, t)�(t) (8)

with the Heaviside function �(t) and the residues matrix
Res(zn, t) of F(z)/P(z) at the roots zn of the characteristic equa-
tion P(z) = 0. The condition t > 0 considered by the Heaviside
function is the mathematical condition for the validity of
Equation (8) while it also guarantees the causality of the system
response. Equation (8) together with Equation (4) determines the
time dependence of the solution x and is computed explicitly in
section 3.4.

Finally, the power spectral density matrix S(ω) of x is
the Fourier transform of the auto-correlation function matrix
〈xt(t)x(t − T)〉 (Wiener-Khinchine Theorem) leading to

S(ω) = 2D
√

2πG̃(ω)G̃t(−ω),

where the high index t denotes the transposed vector or matrix.

3. RESULTS
3.1. EFFECT OF PROPOFOL
The effect of the anesthetic propofol on neural properties is
manifold (Alkire et al., 2008). It affects properties of mem-
brane ion channels, synaptic receptors and extra-synaptic recep-
tors, see Franks and Lieb (1994) for a review. Kitamura et al.
(2002) have revealed in an experimental study how propofol
affects post-synaptic phasic responses of inhibitory synapses to
spontaneous neurotransmitter release. They have found that the
decay time constant decreases with increasing anesthetic blood
concentration, the charge transfer increases while the amplitude
of the responses remains constant. Some previous studies (Hutt
and Longtin, 2009; Hindriks and van Putten, 2012) have imple-
mented these effects for a bi-exponential synaptic response func-
tion. The present work considers an exponential decay phase
due to its mathematical simplicity, which nevertheless reflects
the major anesthetic impact. To this end, the phasic response
at inhibitory synapses is determined by the decay time con-
stant and the response amplitude. Introducing the parameter p =
τ2(p)/τ2(1), p = 1 reflects the absence of anesthetic agents and
increases of the anesthetic concentration yields an increase of p.
In addition Kitamura et al. (2002) have shown that the amplitude
in cortical neurons remains constant or changes slightly only, i.e.,

h(0) = a/τ2(p) ≈ const and the charge transfer ρ(p) = a increase
with increasing anesthetic concentration. In the case of constant
the model

τ2(p) = τ2(1)p, ai(p) = H0p. (9)

with the constant H0 > 0. These choices of anesthetic actions
reflect different synaptic mechanism. The first relation reflects
the increase of the time constant with increasing anesthetic con-
centration, and the second one both the constant amplitude and
the resulting increasing charge transfer. However, synapses may
have different properties in different brain areas, e.g., synapses
in cortico-thalamic connections increase their amplitude with
increasing propofol concentrations (Ying and Goldstein, 2005).
Hence the relations (Equation 9) are specific properties of
inhibitory synapses on cortical neurons only.

3.2. THE LINEAR MODEL
The following investigation considers the stability of stationary
states and spectral properties of small deviations about them.
These small deviations represent fluctuating currents on the den-
dritic trees of the neurons in the population generating an electric
field on the scalp. They originate from fluctuations in the neuron
membranes or from spontaneous neurotransmitter emission at
synapses. The generated electric field is measured in terms of volt-
age differences between two spatial locations on the scalp which is
the electroencephalogram (EEG) (Nunez and Srinivasan, 2006).

The small fluctuations about the stationary states ue(x, t) =
Ve(x, t)− V0

e , ui(x, t) = Vi(x, t)− V0
i obey

τ1
due(x, t)

dt
= −ue(x, t)+ aeS′e

∫
D

Ke(x− y)
(
ue(y, t)

− ui(y, t)
)

dy + ξ(x, t)

τ2(p)
dui(x, t)

dt
= −ui(x, t)+ ai(p)S′i

∫
D

Ki(x − y)
(
ue(y, t)

− ui(y, t)
)
dy

with the somatic non-linear gain S′e,i = dSe,i(x)/dx at x =
{V0

e , V0
i }. By virtue of the finite spatial domain, the small

deviations about the stationary state may be expanded into
a discrete infinite Fourier series. The major contribution of
neuronal activity to encephalographic activity on the scalp
is modeled successfully by a spatially constant Fourier mode
ue(x, t) = x(t), ui(x, t) = y(t) (Nunez and Srinivasan, 2006).
Then x(t), y(t) obey

τ1
dx(t)

dt
= (−1+ N1)x(t)− N1y(t)+ γ (t)

τ2(p)
dy(t)

dt
= N2x(t)+ (−1− N2)y(t) (10)

with the synaptic non-linear gains N1 = aeS′eK̃e(0)
√

L, N2 =
N2(p) = ai(p)S′iK̃i(0)

√
L, the spatial Fourier transform of the ker-

nels K̃e(k), K̃i(k) and the spatial Fourier transform of the external
noise at zero wavenumber γ (t). We point out that 〈γ (t)〉 = 0,
〈γ (t)γ (T)〉 = 2Dδ(t − T).
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3.3. STABILITY ANALYSIS
To study the dynamics about the stationary state, at first let us
neglect the external input ξ(t) since in a first approximation the
stability of the linear system does not depend on the external
input. Then the stationary state is asymptotically stable if the
characteristic equation of Equation (10)

λ2 − λTr + det = 0 (11)

with λ ∈ C and

Tr = N1 − 1

τ1
− N2 + 1

τ2
(12)

det = N1N2

τ1τ2
− N1 − 1

τ1

N2 + 1

τ2
. (13)

has solutions Re(λ) < 0. Here Tr and det are the trace and deter-
minant of the linear matrix in Equation (10), respectively. In
addition, the stationary state is a stable focus if Im(λ) = � �= 0,
� ∈ R and

�2 = N1N2

τ1τ2
− 1

4

(
N1 − 1

τ1
+ N2 + 1

τ2

)2

.

We observe immediately from Equation (12), that the stable focus
is asymptotically stable if Tr < 0 or N1 < 1 for all other param-
eters and the system may lose stability only if N1 > 1. Since
the present work aims to give conditions for certain oscillation
frequencies in the population, the subsequent part of the work
considers stable foci only. In addition the inhibitory synaptic
time scale τ2 = τ2(p) depends on the anesthetic concentration,
but not τ1. Thus τ1 is treated as a constant.

The new variables a = (N1 − 1)2, b = N1N2 − N1 + N2 + 1
and c = (N2 + 1)2 depend solely on N1, N2, and simplify the
notation in the following analysis. Then for N1 > 1, stable foci
stipulate

Tr =
√

a

τ1
−
√

c

τ2
< 0 or

τ2

τ1
<

√
c

a
, (14)

� = 1

2

√√√√ 1

τ1

(
2b

τ2
− a

τ1
− cτ1

τ2
2

)
∈ R. (15)

The last equation implies that the determinant is positive defi-
nite, i.e.,

d(τ2) = aτ2
2 − 2bτ1τ2 + cτ2

1 < 0.

A comparison to Equation (15) reveals that d(τ2) = 0 leads to
� = 0 which permits to compute the range of τ2 for which the
system exhibits stable foci:

τ−2
τ1
≤ τ2

τ1
≤ τ+2

τ1
(16)

τ−2
τ1
= b

a

(
1+

√
1− ac

b2

)
,

τ+2
τ1
= b

a

(
1−

√
1− ac

b2

)

inhibitory decay time τ
2

ex
ci

ta
to

ry
 d

ec
ay

 ti
m

e 
τ 1

stable oscillations

unstable 

no oscillations

no oscillations

f=0Hz

f=0Hz

increasing concentration

f=f
max

FIGURE 1 | Illustration of the parameter areas which exhibit stable,

unstable, and no oscillations. The upper and lower solid lines denote
τ−2 /τ1 and τ+2 /τ1, respectively. The dotted line denotes the maximum
frequency fmax = 2πωm with τ2/τ1 = b/c, cf. Equation (20), and the
stability threshold is given by τ2/τ1 = √c/a, see Equation (14).

implying (b/a)2 > c/a. Condition (16) constrains the relation of
both synaptic time scales τ2/τ1 by N1 and N2, see Figure 1 for the
corresponding parameter space.

To learn more about the dynamics of the model, we con-
sider parameters yielding strong oscillations with a predefined
frequency, such as f = 4 Hz (δ-band), f = 10 Hz (α-band),
or f = 15 Hz (β-band) as observed in experiments (Cimenser
et al., 2011). To this end, we fix the frequency � = 2πf in
Equation (15). Then inserting the threshold condition τ2/τ1 =√

c/a given in Equation (14) into (15) for a fixed τ1 yields a rela-
tion between N1 and N2, see Figure 2A. Similarly the condition
� = 0 given by Equation (16) determines the values of N1 and N2

at the threshold of oscillations. Figures 2B–E plot the parameter
space τ2/τ1 − N2 where the system exhibits stable oscillations.
The figure also shows how the values change when increasing
p (arrows in panels), i.e., increasing the propofol concentration,
and it turns out that the system always approaches the stability
threshold.

3.4. THE SPECTRAL POWER
To compute the power spectrum, we employ the method of
Greens function. Equations (10) show that the solutions of the
system obey

x(t) =
∫ ∞
−∞

G11(t − τ)γ (τ)dτ, y(t) =
∫ ∞
−∞

G21(t − τ)γ (τ)dτ

with the Greens functions

G11(t) = 1

2π

∫ ∞
−∞

iω+ (N2 + 1)/τ2

P(iω)
eiωt dω (17)

G21(t) = − 1

2π

∫ ∞
−∞

N2/τ2

P(iω)
eiωt dω (18)
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FIGURE 2 | Conditions for Hopf-instabilities and the effect of propofol

action. (A) threshold of Hopf-instability at 4, 10, and 15 Hz dependent on
N1, N2. Panels (B,C) show parameters for Hopf-instabilities at 4 Hz
dependent on N2 for which the corresponding values of N1 obey
N1 < N1,min = 1.12 and (C) N1 ≥ 1.12, respectively. Panels (D,E) show
parameters for Hopf-instabilities at 10 Hz for N1 < N1,min = 1.45 and
N1 ≥ 1.45, respectively. In each panel (B–E) the top line reflects no

oscillations, i.e., f = 0 Hz, and the bottom line denotes the corresponding
stability threshold. Hence the shaded areas include parameters for which
the system exhibits stable oscillations. The black solid and dotted lines
reflect the situation of no anesthetic action, i.e., p = 1.0. The red-dashed
line denotes the values of τ1/τ2 × p with p = 1.3. The arrows illustrate
how the parameters change when anesthetic action is increased, i.e.,
when p is increased.

and P(iω) = −ω2 − iωTr + det using the definitions of Tr and
det in Equations (12) and (13). In fact, P(iω) in Equations (17)
and (18) is the characteristic polynom in Equation (11) for
λ = iω.

In the following in a good approximation (Nunez and
Srinivasan, 2006) we assume that the experimental encephalo-
graphic data that we want to model originates from the exci-
tatory synapses, i.e., x(t). This assumption is reasonable since
the encephalographic activity is observed due to aligned apical
dendritic branches and more excitatory synapses than inhibitory
synapses are located on the apical branches of dendrites on cor-
tical neurons. However, it is also possible to derive the power
spectral density for the difference of excitatory and inhibitory
potentials x(t)− y(t) (Hutt and Longtin, 2009). Now the appli-
cation of the residue theorem allows to compute the integrals in
Equation (17) by

G11(t) = 1

2πi

2∑
n = 1

Res(zn)�(t)

with the residues

Res(z1) = 1

2πi

λ1 + (N2 + 1)/τ2

λ1 − λ2
eλ1t,

Res(z2) = 1

2πi

λ2 + (N2 + 1)/τ2

λ2 − λ1
eλ2t

and the roots λ1 = λ∗2 = R+ i� of the characteristic polynom
P(λ) = 0 in Equation (11). This solution is valid if and only if
Res(λn) = R < 0. These yields

G11(t) = eRt
(

R+ Z

�
sin(�t)+ cos(�t)

)
�(t)

with Z = −(N2 + 1)/τ2, i.e., the Greens function of x, and hence
x(t) itself oscillates with frequency � and is damped with the fac-
tor |R|. In other words, the solution x oscillates with the imaginary
part of the root of the characteristic equation, and this frequency
is already determined in the stability analysis.
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Finally, the power spectral density S(ω) of x is the Fourier
transform of the auto-correlation function 〈x(t)x(t − T)〉:

S(ω) = 2D
√

2π|G̃11(ω)|2

= 2D
√

2π
Z2 + ω2

(R2 +�2 − ω2)2 + 4R2ω2
(19)

where G̃11(ω) is the Fourier transform of the Greens function
G11(t).

3.5. THE FREQUENCY OF MAXIMUM POWER SPECTRAL DENSITY
According to the reversed-engineering approach motivated in
the previous section, this section aims to derive further con-
ditions on model constants for certain oscillations close to
instabilities. This vicinity to the stability threshold guarantees
a small damping factor R and thus the power peak is located
close to �.

There is a maximum frequency ωm of the oscillation frequency
with respect to τ2 given in Equation (15) and reached at

τ2

τ1
= b

c
→ ωm = 1

2

√
c/τ2

2 − a/τ2
1 if

τ2

τ1
<
√

c/a. (20)

The last condition is identical to the stability condition (14), i.e.,
stable systems always have a non-vanishing maximum frequency
ωm > 0. Together with Equation (16):

• If b/c <
√

c/a, then the frequency � may increase or decrease
while increasing τ2 with

d�

dτ2
> 0 for

τ−2
τ1
≤ τ2

τ2
<

b

c
, (21)

d�

dτ2
≤ 0 for

b

c
≤ τ2

τ2
≤
√

c

a
. (22)

• If b/c ≥ √c/a, then the frequency � increases only while
increasing τ2 with

d�

dτ2
> 0 for

τ−2
τ1
≤ τ2

τ2
≤
√

c

a
. (23)

Figure 1 shows the case b/c <
√

c/a. There increasing τ2 by
increasing p from small frequencies on the left border for constant
τ1 increases the oscillation frequency until reaching the dotted
line, i.e., d�/dτ2 > 0. Then a further increase of p decreases
the frequency of the oscillations again, d�/dτ2 < 0. Although
this reasoning assumes that N2(p) does not change with p, it
gives a first insight into the dependence of the systems oscillation
frequencies on p.

Now considering the power spectral density (Equation 19),
for R4 + R2(2�2 − 3Z2)+�2(�2 + Z2) > 0 S(ω) has a global
maximum at

�peak =
√

�2 + R2

(
1− 4

Z2

R2 +�2 + Z2

)
.

We learn that a vanishing real part of the characteristic root
|R| yields a global maximum of the power spectral density at
the imaginary part of the characteristic root �. From a reversed-
engineer point of view, one could say that a strong peak in
the experimental power spectral density reflects a character-
istic root in the underlying linear system with a small real
part. This way to interpret the spectral results allows to find
analytical conditions for physiological parameters, as will be
seen below.

If R4 + R2(2�2 − 3Z2)+�2(�2 + Z2) < 0, then the system
exhibits a global maximum at �peak = 0. Since R and � depend
on the anesthetic concentration, i.e., the parameter p, it is inter-
esting to examine how �peak depends on R and �:

d�peak

dR
> 0 for R2 > Z2(p)−�2 or R2 < Z2(p)−�2 (24)

d�peak

d�
> 0 for R2 >

√
2|Z(p)|�−�2 + Z2(p)

or R2 < −√2|Z(p)|�−�2 + Z2(p) (25)

Figure 3 illustrates these conditions and shows that �peak

is increased or decreased subjected to values of R and �.
Importantly, we observe in Figure 3 that �peak increases with R
and � for large frequencies �.

It remains to examine how R2 and �2 depend on p to finally
gain the full description how �peak changes with p. To this end, we
consider the specific assumption (Equation 9) on the anesthetic
action yielding the specific dependence of �2 and R2 to p

d2R

dp
= −2

R

τ2(1)

1

p2
> 0

d�2

dp
= − 2

τ2(1)p2

(
A− 1

τ2(1)p

)

FIGURE 3 | Illustration of the conditions (24) and (25). The regions are
marked as follows: (+): d�peak/d� > 0, d�peak/dR > 0; (∓): d�peak/

d� < 0, d�peak/dR > 0; (−): d�peak/d� < 0, d�peak/dR < 0; (±): d�peak/

d� > 0, d�peak/dR < 0.
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with A = (1− N1)/τ1 − N2(1)/τ2(1), N2(p) = N2(1)p, and
τ2 = τ2(1)p. Defining p0 = (N2(1)+ τ2(1)(N1 − 1)/τ1)

−1 and
re-calling p ≥ 1, then there exist two distinct cases:

• If p0 < 1, then d�2/dp > 0 for all p. Specifically, this stipulates

N2(1) > 1+ τ2(1)

τ1
− τ2(1)

τ1
N1.

• If p0 ≥ 1, then there is a small interval 1 ≤ p ≤ p0 for which
d�2/dp ≤ 0. For larger p, d�/dp > 0. For instance, for p0 =
1.3, i.e.,

N2(1) = 1/1.3+ τ2(1)

τ1
− τ2(1)

τ1
N1,

the frequency decreases with increasing p for clinically rea-
sonable concentrations, i.e., 1 ≤ p ≤ 1.3 (Hutt and Longtin,
2009).

Figure 4 illustrates the parameter space where d�2/dp has dif-
ferent signs and we observe that the system may exhibit either
increasing or decreasing frequencies while increasing p.

To elucidate the systems behavior at the stability threshold, we
set τ2(1)/τ1 = (N2(1)+ 1)/(N1 − 1) according to Equation (14)
and find p0 = 1/(2N2(1)+ 1) < 1. Consequently, oscillations
close to the stability threshold always increase their frequencies
with increasing p. In contrast, for 1 < τ2(1)/τ1 � (N2(1)+ 1)/

(N1 − 1), i.e., systems far from the stability threshold, may exhibit
values p0 > 1.

Finally, Figure 5 illustrates the temporal dynamics in
two different frequency bands close to the corresponding

Hopf-instabilities and shows the effect of increased propofol
concentration. The power increases and the peak of maximum
power moves to larger frequencies as predicted by the theory and
as observed in experiments (Hindriks and van Putten, 2012).

4. DISCUSSION
The introduced model considers first-order synaptic responses
and take into account experimental findings on the propo-
fol effect in synaptic GABAA-receptors in cortical neurons. It
describes the evolution of neural populations on a mesoscopic
level involving major properties of underlying neurons and
synapses on the microscopic description level.

The analytical study reveals that the frequency of maximum
power may increase or decrease with increasing anesthetic con-
centration subjected to the physiological constants, cf. Figure 3.
In detail, close to the oscillatory instability the frequency of max-
imum power always increases with increasing p as observed in
EEG (Gugino et al., 2001; Feshchenko et al., 2004; Hindriks
and van Putten, 2012), whereas far from the stability threshold
the maximum power frequency may also decrease as observed
recently in EEG (Ching et al., 2010; Cimenser et al., 2011),
cf. Figures 3, 4. The analytical treatment shows clearly that these
two findings depend strongly on the physiological parameters,
which are derived analytically in section 3.5, i.e., the phenomena
depend on the brain area in which they are generated.

Moreover, the analytically predicted increase of the power at
higher frequencies explains the power enhancement in the α-
and β-band in anesthesia (Gugino et al., 2001; McCarthy et al.,
2008) by a dynamic oscillatory instability. In fact, the analytical
treatment in the present work suggests that power enhance-
ment always starts from oscillatory activity at lower frequencies

2.11
N1

0.5

1

N
2(1

)

dΩ2
/dp>0 for all p

dΩ2
/dp<0 possible 

no oscillations

clinical doses

FIGURE 4 | Parameter space for different signs of d�2/dp. The red line denotes p0 = 1.3 and the parameter space of clinical doses (red) implies
d�2/dp < 0 for clinically reasonable drug doses, i.e., p ≤ 1.3. An additional parameter is r = τ2(1)/τ1 = 1.11 .
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FIGURE 5 | Simulated time series of x(t) + V0
e and the

corresponding power spectrum of x(t). (A) N1 = 1.1, N2 = p×
0.25128, τ2 = τ1 × p/0.10 generating a maximum power in the
δ-band. (B) N1 = 1.1, N2 = 0.2236 × p, τ2 = τ1 × p/0.10 generating a

maximum in the α-band. Other parameters are τ1 = 2 ms, the
noise strength κ = 0.01 mV and V 0

e = −60 mV. The Equation (10) is
simulated with a Euler–Maryuama method for 200 s, time step was

t = 0.05 ms.

and are generated at slightly higher frequencies with increased
concentration (Figure 5). This is in accordance to previous EEG-
studies (Gugino et al., 2001; Hindriks and van Putten, 2012)
showing power enhancement induced in the α- and β-band.

The analytical discussion in section 3.3 also predicts that
decreasing the inhibitory time constant always moves the sys-
tem toward an oscillatory instability, cf. Figure 1, and hence
increases the spectral power, whereas increasing the charge trans-
fer yields a stabilization of the system due to dR/dP < 0 and
consequently a decrease of power. Hence the balance between
decay prolongation and increased charge transfer decides on the
change of the spectral power and the shift of the frequency
peaks. Since many anesthetics share this balance in the major
target GABAA-receptor (Alkire et al., 2008) and exhibit similar
EEG-change (Gugino et al., 2001; Kuizenga et al., 2001), the pre-
sented work suggests that this balance reflects one of the major
underlying mechanisms during the sedation phase in GA.

Previous studies (Bojak and Liley, 2005; Hindriks and van
Putten, 2012) already have explained the power enhancement in
anesthesia by an oscillatory instability in high-dimensional neu-
ral models. As one of the first, the present work gives analytical
conditions on physiological parameters for this effect, while Bojak
and Liley (2005) and Hindriks and van Putten (2012) mainly per-
formed numerical studies. The recent work of Hindriks and van

Putten (2012) resembles in some aspects the analytical approach
of the present work by discussing in some detail the dynamics of
superimposed oscillation modes subjected to the propofol con-
centration. However, no analytical conditions are given due to the
higher model complexity.

It is important to point out that the current model is low-
dimensional, physiologically reasonable and analytically treatable
but still able to explain the neural phenomenon of the frequency
shift to larger values. Bojak and Liley (2005) and Hindriks and
van Putten (2012) have not performed a detailed analytical study
of this phenomenon and have not derived analytical conditions
under which it may occur. The current work shows that already
a rather simple coupling of excitation and inhibition in cortical
neural networks is sufficient to explain this phenomenon. This
is concluded partially by Hindriks and van Putten (2012) based
on a small numerical study, whereas the present work shows this
explicitly. However, Hindriks and van Putten (2012) also argue
that the cortico-thalamic feedback should be negative to gain this
effect. The presented model does not need the thalamic feedback
loop for the explanation.

In principle, the present work extends the work of Bojak
and Liley (2005) studying just numerically a rather complicated
model with tens of unknown parameters, while the current model
allows to achieve some insights into the effect of few parameters.
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For instance, the maximum of spectral power and the corre-
sponding frequency are highly sensitive to modification of the
relation between excitatory and inhibitory synaptic time scales.
This confirms the general observation that many different anes-
thetics share effects on the activity spectrum.

The work both supports the hypothesis of cortical generation
of α-activity and predicts the presence of oscillating neural cir-
cuits where each circuit generates a certain oscillation observed
experimentally. This can be observed in Figure 5 showing emerg-
ing δ- and α-activity for different parameters. Hence two neural
circuits with different properties may explain the occurrence of
both δ- and α-activity observed in experimental data. This inter-
pretation of the results complements the findings of Hindriks
and van Putten (2012) showing implicitly a linear decomposition
into eigenmodes with corresponding eigenvalues and manifests
the notion of interacting oscillation modes generated by interact-
ing networks as observed experimentally (Fries, 2009; Spaak et al.,
2012).

Of course the present model is limited since it cannot explain
the increase of activity in the δ-band as observed in experiments
and modeled by the previous studies. In the present work, we

observe clearly that this synchronous modeling of two rhythms
is not possible since the model is too low-dimensional and just
can describe a single rhythm such as the α- or the δ-rhythm.
Consequently further neural elements should be considered to
gain this additional rhythm such as the thalamic loop. This may
be possible due to the linear superposition of oscillatory activ-
ity originating from different networks. This linear superposition
proposes the interaction of different sub-networks each oscil-
lating in a certain frequency band. Future work will consider
such entangled neural networks on the basis of the presented
neural field to explain the spontaneous emergence or diminu-
tion of spectral peaks in experimentally observed data such
as the δ-rhythms or transient phenomena such as paradoxi-
cal excitation.
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We describe a model for cortical development that resolves long-standing difficulties of
earlier models. It is proposed that, during embryonic development, synchronous firing of
neurons and their competition for limited metabolic resources leads to selection of an
array of neurons with ultra-small-world characteristics. Consequently, in the visual cortex,
macrocolumns linked by superficial patchy connections emerge in anatomically realistic
patterns, with an ante-natal arrangement which projects signals from the surrounding
cortex onto each macrocolumn in a form analogous to the projection of a Euclidean
plane onto a Möbius strip. This configuration reproduces typical cortical response maps,
and simulations of signal flow explain cortical responses to moving lines as functions of
stimulus velocity, length, and orientation. With the introduction of direct visual inputs,
under the operation of Hebbian learning, development of mature selective response
“tuning” to stimuli of given orientation, spatial frequency, and temporal frequency would
then take place, overwriting the earlier ante-natal configuration. The model is provisionally
extended to hierarchical interactions of the visual cortex with higher centers, and a general
principle for cortical processing of spatio-temporal images is sketched.

Keywords: synchronous oscillation, cortical development, synaptic organization, cortical response properties,

cortical information flow

INTRODUCTION
During its embryological development the mammalian brain dif-
ferentiates from a group of stem cells into an organized form
ready to begin a life-long adaptive interaction with signals from
the sensory environment. At the beginning of extra-uterine life,
despite exposure to a limited milieu, it is somehow already orga-
nized to begin this engagement, as tho a matrix of connections
has formed in which signal flows are pre-adapted to learn spe-
cific recurring patterns of the experiential world. A large body
of work, following the pioneering work of Hubel and Wiesel
(1959), has addressed just this issue, taking as the main target for
research the primary visual cortex (V1). The majority of this work
has sought to understand the emerging connections in terms
of stimulus “features”—that is, elementary properties of sen-
sory stimuli—rather than as a process independent of sensation
until the post-natal stage. Our approach depends on alternative
assumptions. Here we summarize and extend our earlier work
(Wright et al., 2006; Wright and Bourke, 2008, 2013; Wright,
2009, 2010) relating the basic dynamics of neuron firing and com-
petition among developing neurons for the resources needed for
their growth, to the emergent connections at birth.

Our model draws on two recent experimental observations.
Firstly, neurons in neonatal cerebral cortical slices show increased
apoptosis when their capacity to enter into synchronous fir-
ing is disrupted by pharmacological means (Heck et al., 2008).
Secondly, embryonic neurons developing in vitro develop syn-
chronous firing, and as their growth proceeds, show self-
organization into “small world” networks (Downes et al., 2012).

We propose that the synchronous firing and protection from
apoptosis are directly causally related, because during cortical
embryogenesis there is competition among developing neu-
rons and synapses, which, although mediated by trophic fac-
tors (Harris et al., 1997; van Ooyen and Willshaw, 1999; van
Ooyen, 2001) is ultimately a competition for available metabolic
energy and/or some other scarce resource needed to promote
metabolism (Montague, 1996; Thomaidou et al., 1997). We sup-
pose that pre-synaptic pulse synchrony increases uptake of crit-
ical metabolic resources by some action not presently specified,
and we argue that the assembly of cells that maximizes syn-
chronous firing, and thus energy uptake, is also that which has
the minimum metabolic cost per neuron in the length of axonal
connections—the combination optimum for their survival.

Synchronous oscillation of pulses and local field potentials
is a ubiquitous aspect of cortical activity (Eckhorn et al., 1988,
1990; Gray et al., 1989; Bressler et al., 1993; Singer, 1999)
and has been proposed as a mechanism solving the “bind-
ing problem” of perceptual grouping and cognitive processing
(Eckhorn et al., 1990; Singer, 1999; Crick and Koch, 2003).
“Synchrony” refers to the broadband cross-correlation of neu-
ron firing and field potentials at zero time-lag. The mech-
anism of origin of synchrony itself is controversial. In this
paper we rely on an explanation that appears best applica-
ble to the synchrony seen in neuron cultures, brain slices, or
the early embryonic brain, and depends on a universal prop-
erty of networks with summing junctions, including dendrites
(Robinson et al., 1998; Wright et al., 2000; Chapman et al.,
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2002). This type of synchrony appears in simulations that
also accurately reproduce spectra, cross-correlations, and excita-
tory/inhibitory timings characteristic of activated cortex (Wright,
2009, 2010).

GEOMETRY OF RESPONSE ORGANIZATION IN THE DEVELOPED BRAIN
Since the discovery that individual cells in the primary visual
cortex (V1) respond with an orientation preference (OP) to
visual lines of differing orientation (Hubel and Wiesel, 1959),
analysis of the response organization and its relationship to cor-
tical function has remained both conceptually influential and
controversial (von der Malsburg, 1973; Willshaw and von der
Malsburg, 1976; Swindale, 1996). The surface organization of
OP in V1 has recently been compared with appropriate ran-
dom surrogates, and shown to exhibit significant hexagonal
rotational periodicity, in which each roughly delineated macro-
columnar unit exhibits all values of OP arrayed around a pin-
wheel (Paik and Ringach, 2011; Muir et al., 2011). Varying
chirality and orientation of the pinwheels achieves continuity
of OP at the columnar margins, thus producing zones of irreg-
ular but continuously varying OP, known as linear zones and
saddles.

Some species exhibit little or no sign of this hexagonal and
continuous ordering, and because of the marked interspecies
variation, serious doubt has been expressed that the pattern
is of functional significance at all, since species showing little
such organization have no apparent deficit in vision (Horton
and Adams, 2005). Interspecies variation seems, in part, to be
related to both variation in size of V1 between species, and a
relative constancy of the size of macrocolumns, independently
of species. Measurements of the average distance of separation
of OP singularities (the singularity taken as demarcating the
center of a macrocolumn) show this distance to be relatively
constant over a 40-fold variation of body size, and related size
of V1 (Kaschube et al., 2010; Keil et al., 2012). Models using
symmetry arguments indicate that macrocolumns must undergo
divisions during cortical development to maintain uniform sur-
face density of singularities (Wolf and Geisel, 1998; Oster and
Bressloff, 2006). Kaschube and colleagues conclude that self-
organization has canalized the evolution of the underlying OP
maps into a single common design—subject to the proviso
that, from further symmetry arguments, this can only be the
case where long-range interactions between developing macro-
columns, suppressing some possible connections, can take place.
Thus, in animals with very small V1, this organization breaks
down, creating a “pepper and salt” OP map pattern (Meng et al.,
2012).

THE SUPERFICIAL PATCH SYSTEM
A related puzzle of V1 organization is posed by the superficial
patch system. This system, composed of relatively long-range,
largely excitatory (Hirsch and Gilbert, 1991; McGuire et al.,
1991) patchy connections (Gilbert and Wiesel, 1979; Rockland
and Lund, 1983) is ubiquitous in cortex (Muir and Douglas,
2011) and has a functional relationship to OP. Patchy connec-
tions develop before sensory afferents reach the cortex (Price,
1986; Callaway and Katz, 1990; Durack and Katz, 1996; Ruthazer

and Stryker, 1996) but do not arise or terminate in the vicin-
ity of OP singularities. Instead, near singularities, connections
are apparently diffuse and local (Sharma et al., 1995; Yousef
et al., 2001; Mariño et al., 2005; Buzás et al., 2006; Muir and
Douglas, 2011). Patchy connections link areas of common OP
(“like-to-like”) over distances several times the diameter of a
macrocolumn (Gilbert and Wiesel, 1989; Buzás et al., 2006; Muir
et al., 2011), are periodic on roughly the same interval as OP, and
are largely patch-reciprocal (Rockland and Lund, 1983; Angelucci
et al., 2002). It has been shown that development of patchy con-
nections must depend on the supply of organizing information
from the neural field, and is not explicable from considerations
of local neural growth per se (Muir and Douglas, 2011). Just
as for maps of response properties, there is variation of patchy
connection orderliness between species. Muir et al. (2011) have
pointed out that those species with less orderliness have smaller
visual cortices and/or less defined organization of “like-to-
like” connections—an argument congruent with the findings on
brain size, orderliness of response maps, and surface density of
OP singularities cited above (viz. Kaschube et al., 2010; Keil et al.,
2012, etc.).

PROBLEMS OF STANDARD MODELS OF FEATURE RESPONSES
Explanation of organization of OP has been undertaken in
a group of now-classical theories, which we will refer to as
“standard models,” following the comparative description of
Swindale (Swindale, 1996). Descriptive dimension reduction
methods (Kohonen, 1982; Durbin and Willshaw, 1987; Durbin
and Mitchison, 1990) show that the response maps of OP, eye
preference (OC), direction preference (DP), and spatial frequency
preference (SF) are consequences of requiring continuity and
completeness of representation of each response property, in a
two-dimensional representation in which every type of response
property occurs within any small area on the surface of V1
(Swindale, 1996; Carriera-Perpiñán et al., 2005). The same order-
ing is also explained as a consequence of competitive Hebbian
learning among small neighborhood assemblies of excitatory
neurons, driven by spatially filtered cortical noise. Separate spatial
filters each distinguish a type of response, and total synaptic gain
is conserved during the training (Grossberg and Olson, 1994).

Classical standard models depend on seeding with oriented
lines, in one way or another (von der Malsburg, 1973; Swindale,
1982, 1992; Durbin and Mitchison, 1990; Obermayer et al., 1990,
1992; Tanaka, 1990; Miyashita and Tanaka, 1992; Grossberg and
Olson, 1994) and recently, initial belief that primary response to
static oriented lines in the visual field forms the basis of OP maps
has been undermined in two ways:

Firstly, in large species particularly, maps of OP appear in
the cortex prior to visual experience (Wiesel and Hubel, 1974;
Blakemore and Van Sluyters, 1975; Sherk and Stryker, 1976). This
problem has been addressed by arguments for the normal occur-
rence of line-like structure in ante-natal retinal input (Albert
et al., 2008; Ringach, 2007; Paik and Ringach, 2011). In contrast
to all the above models, Kang et al. (2003) have proposed a model
which breaks with the traditional dependence on the primacy of
lines, and depends instead on time-invariant correlations in cor-
tical “Mexican Hat” inhibitory surrounds. This model accounts
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successfully for the apparent isotropy of local intracortical con-
nections and the observed uniformity of sharpness of definition
of OP independent of proximity to singularities, and provides a
mechanism which might plausibly operate before eye-opening.
It requires instead, that LGM inputs to cortex become tuned
according to orientation. A further model avoiding the problem
of ascription of OP as a primary, stimulus dependent property,
explains the conjoint development of OP and ocular dominance
columns as a consequence of Hebbian connection formation
driven by correlation of visual inputs as a declining function of
retinotopic distance of separation at short distances, and reversed
correlation of activity in ON and OFF V1 simple cells at greater
distances (Erwin and Miller, 1998). All these models however,
result in the emergence of OP as a property of line orienta-
tion alone, rather than as one attribute of some more complex
mechanism of feature response.

Secondly, and more recently, Basole and colleagues, who tested
OP using stimulus lines moving at different speeds, and oriented
at differing angles to the line of movement of the stimulus, found
OP to be a function of these variables to such a degree that
for lines oriented non-orthogonally to the direction of move-
ment, OP could vary progressively with increments of speed to
an asymptotic limit of 90◦ (Basole et al., 2003, 2006). Longer lines
showed less variation of OP with increasing speed. This finding
challenged all models which depended on OP being a fixed “fea-
ture” of cortical response, whether or not direct visual stimuli was
required to prime the process of self-organization. Basole and col-
leagues at first concluded that the primal stimulus characteristics
are not isolated features such as orientation, direction and speed,
but a single characteristic—the “spatio-temporal energy”—that
is, the combined spatial and temporal Fourier components of the
moving visual stimulus’ projection to V1. Subsequent workers
explained these results by retaining OP as a primary characteris-
tic, and adding separate consideration of the temporal and spatial
frequencies associated with the moving stimuli (Baker and Issa,
2005; Mante and Carandini, 2005; Basole et al., 2006). This anal-
ysis was consistent with earlier single unit results, in which tuning
of V1 neurons to spatial and temporal frequencies was demon-
strated (DeAngelis et al., 1993). Issa and colleagues (Baker and
Issa, 2005; Issa et al., 2008) reported that a total of six param-
eters are required to explain response maps—OP, SF preference,
and temporal frequency preference, and the tuning bandwidths of
all three. This account is referred to as the spatio-temporal filter
model. How these response characteristics arise during cortical
development and how neurons become tuned to just those fea-
tures is the subject of continuing research (Rosenberg et al., 2010),
and of this paper.

In common with the model of Erwin and Miller (1998) and
that of Kang et al. (2003) the model reviewed here depends upon
time-average correlations—that is, the common occurrence of
synchronous oscillation in the cortex—although it does not share
their other assumptions or conclusions. It seeks to avoid the
ascription of “features” as primary characteristics, and to explain
both the findings of Basole et al. (2003) and the empirical reduc-
tion to alternative feature attributes used in the spatio-temporal
model, as well as explaining the emergence of the anatomical
features described above.

DESCRIPTION OF MODEL
NEURAL FIELD EQUATIONS
As alternatives to neural network models, lumped neural models
and neural field equations have been expressed in many forms
(e.g., Wilson and Cowan, 1973; Freeman, 1975; Haken, 1996;
Amari, 1977; Nunez, 1981; van Rotterdam et al., 1982; Jirsa and
Haken, 1996; Robinson et al., 2001; Wright et al., 2003; beim
Graben, 2008; Bressloff, 2012). These offer means of approximat-
ing the properties of ensembles of cells on a larger scale then
neural networks per se. Here we have used a generic form of
neural field equations to represent an idealized, isotropic, neural
field, representing the developing cortex as if it were not subject
to apoptosis—a potentiality from which connections are selected
during development. The scale of the field is that of a corti-
cal area such as V1, representing intracortical connections rather
than cortico-cortical. Thus, the density of connection between
neurons declines with increasing separation of their cell bod-
ies (Braitenberg and Schüz, 1991). The high non-linearity of
synapto-dendritic summations are linearized at the field level, and
axonal conduction speed is considered single-valued. Subject to
these strictures, the following equations include features relevant
to the present context:

ϕ
qr′
p (t) = f

qr′
p ×Qp

(
r′, t −

∣∣q− r′
∣∣

ν

)
(1)

ψ
qr′
p (t) = M

qr′
p ∗ ϕ

qr′
p (t) (2)

�p(q, t) =
∫
r′

ψ
qr′
p (t)dr′ (3)

Vp(q, t) =
∑

p= e∧ p= i

Gp ∗�p(q, t) (4)

Qp(q, t) = f�(Vp(q, t))+ Ep(q, t) (5)

Subscript p = e, i refers to excitatory or inhibitory neurons;
superscript qr′ refers to synaptic connection from r′ to q where
q, r′ are cortical positions occupied by single neurons.

ϕ
qr′
p (t) is the flux of pulses reaching pre-synapses at the neuron

at q, from the neuron at r′.
ψ

qr′
p (t)is the synaptic current generated by ϕ

qr′
p (t).

�p(q, t) is the aggregate synaptic current of type p generated
at q.

Vp(q, t) is the soma membrane potential (relative to the
resting potential) generated at q.

Qp(q, t) is the pulse emission rate at q.

f
qr′

p is the probability density of occurrence of pre-synapses
generated by axons of the neuron at r′ terminating at q.

ν is axonal conduction speed.

Mqr′
p is the steady-state term in a convolution transforming

pre-synaptic flux to synaptic current.
Gp is the steady-state term in a convolution transforming pre-

synaptic flux into dendritic potentials.
f�(Vq(q, t)) is a sigmoid function describing the local conver-

sion of dendritic potentials into the rate of generation of action
potentials.

Frontiers in Computational Neuroscience www.frontiersin.org February 2013 | Volume 7 | Article 4 | 61

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Wright and Bourke Synchrony and synaptic organization

Ep(q, t) is a driving signal noise, arising from intrinsic random
cell action potentials.

Restriction of the field to the scale of a cortical area car-
ries several implications important for the model, all because
the probability of connections between any two neurons declines
with distance of separation. Firstly, descriptively we can con-
sider “reciprocal couplings” as an idealization/representation of
field coupling symmetry, and in many instances reciprocal cou-
plings will in fact exist. Secondly because of more generally
dense connections among near neighbors, smoothing at dendritic
summation requires that Qp(q, t) is spatially and temporally
“brown”—i.e., has high correlation at short distances and times
of separation. Thirdly, the average “degree” of separation—i.e.,
the average number of neighboring cells traversed by synaptic
connections linking one cell to another—will also increase in
proportion to physical distance of separation.

Experimental observations (Freeman, 1975, 1991;
Hassenstaub et al., 2005) show intrinsic cortical oscillation
arises from alternating excitatory cell and inhibitory cell fir-
ing at lags ¼ of the period of oscillation. Simulations of the
oscillations (Wright, 2009, 2010) show that traveling waves are
thus generated, the intersection of which produces broadband
synchrony. In conditions of uniform cortical excitation without
strong perturbation from external inputs the exchange of pulses
between all cells reaches an equilibrium—that is, a steady-state of
symmetrical exchange of signals between excitatory cells at any
two positions on the cortex, so that over sufficient intervals, T,

1

T

∫
T

(
ϕp1(q)− ϕ̄p1

)
dt = 1

T

∫
T

(
ϕp2(r′)− ϕ̄p2

)
dt (6)

where ϕ̄p is the time-average presynaptic flux, uniform through-
out the cortical field. The equilibrium reached implies differences
in timing between the firing of excitatory and inhibitory cells.
The interaction of excitatory and inhibitory cells (p1 ∨ p2 = e,
and p1 ∨ p2 = i,) leads to closely correlated firing of both cells
if they are very closely situated, as a consequence the similar local
values of E(q, t) equation (5), while ¼-cycle-out-of-phase oscil-
lation develops between more separated excitatory and inhibitory
cells. Inhibitory/inhibitory or excitatory/excitatory interactions
(p1 ∧ p2 = e, or p1 ∧ p2 = i,) between reciprocally connected
neurons lead to zero-lag synchrony, and since conduction delays
are short compared to the period of oscillation, the equality of
equation (6) is generally approached even when T is smaller than
the period of oscillation (Chapman et al., 2002). As there are
equal time-lags in both directions of conduction excitatory pulse
trains throughout the cortex have maximum correlation at zero
lag—i.e., where Qe is the time-average firing rate—also uniform
throughout the cortical field -

(Qe − Qe)(r′, t) ≈ (Qe − Qe)(q, t) (7)

Figures 1 and 2 show these properties generated in a simula-
tion of cortical dynamics with physiologically realistic parameters
(Wright, 2009, 2010). In conditions of strong cortical excita-
tion local oscillation is autonomous and corresponds to cortical
gamma rhythm, while in conditions of lower cortical excitation,

damped gamma oscillation, and a predominance of background
1/f 2 is seen.

MAGNITUDE OF PRE-SYNAPTIC PULSE SYNCHRONY
Zero-lag synchronous oscillation thus entails presynaptic pulse
synchrony, with a magnitude of presynaptic flux variation which
can be defined respectively for individual synapses, individual
cells, and in aggregate, as

Jqr′ =
⎡⎣ 1

T

∫
T

(ϕ
qr′
e − ϕ̄e)

2dt

⎤⎦1/2

(8)

Jq =
⎡⎣ 1

T

∫
T

∫
r′

(ϕ
qr′
e − ϕ̄e)

2dtdr′
⎤⎦1/2

(9)

J =
⎡⎣ 1

T

∫
T

∫
r′

∫
q

(ϕ
qr′
e − ϕ̄e)

2dtdr′dq

⎤⎦1/2

(10)

Jqr′ is RMS presynaptic flux variation between q and r′, Jq is the
sum of Jqr′ at a single excitatory neuron, and J is the aggregate of
Jq over the cortex.

SELECTION OF SCALE-FREE SMALL-WORLD CONFIGURATIONS OF
NEURONS
For any given level of cortical excitation, J is greatest for that
ensemble of C connected neurons, in which excitatory pulses
arrive at dendrites, from all sources at differing distances of
separation, as closely in-phase as possible, so as to maximize
their summation. Axonal delays, small compared to the period
of gamma oscillation, contribute a phase difference between cell
firing at r′ and the arrival of presynaptic pulses at q, of

��qr′ = 2π

∣∣q− r′
∣∣

Pν
(11)

where P is the period of oscillation. Therefore that ensemble
selected by its capacity to maximize presynaptic synchrony must
approach minimal total axonal length, L = ∫r′

∫
q

∣∣q− r′
∣∣ dqdr′,

and minimization of this length minimizes the metabolic require-
ments of the axons.

It has been shown generally (Cohen and Havlin, 2003) for all
systems of connected elements, the path length in a topological
sense is at a minimum where degree distribution follows a power
law. As was pointed out in conjunction with equations (1–5), in
our idealized neural field, average degree of separation, in the
topological sense, increases linearly as metric distance of separa-
tion of the cell bodies, so that if L, their total length of axonal
connections, is minimal, then the path length in the topologi-
cal sense is also minimal, and the degree distribution is that of a
scale-free, or ultra-small world. Therefore, the connection density
between cells vs. their metric distance of separation should also be
approximated by a power-law distribution. Further, according to
Cohen and Havlin

L ∼ log log C (12)
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FIGURE 1 | Simulated electrocortical activity in the excited cortex,

from Wright (2010). (A) Power spectrum of a local field potential
time-series, shown in (B). (C) and (D) Cell firing correlations, vs. time-lag.

Dashed line—cells remote from each other. Solid lines—cells adjacent to
each other. (C) Between excitatory cells. (D) Between excitatory and
inhibitory cells.

so the metabolic efficiency of the connection system is further
enhanced if the surviving cells are linked into a continuum, as
opposed to separate pools of neurons.

In accord with equation (1), the number of neighboring exci-
tatory cells connected to a given excitatory neuron, as a function

of distance of separation, is proportional to 2π× f
qr′
e (

∣∣q− r′
∣∣)—

so the ensemble of neurons selected by greatest synchrony must
have a connection density function of the form:

f
qr′
e ∼

(
2π
∣∣q− r′

∣∣)−A
A > 0 (13)

Intracortical axonal trees have approximately exponential den-
sity/range relations (Scholl, 1956; Braitenberg and Schüz, 1991)
and a power function is fitted exactly by an infinite sum of
exponential functions—i.e.:

(
2π
∣∣q− r′

∣∣)−A = 1

�(A)

∞∫
0

uA−1exp
[−u2π

∣∣q− r′
∣∣] du (14)

so an ultra-small-world connectivity can be achieved by sets of
populations of cells with differing axonal characteristic lengths.
During embryogenesis primal cells divide sequentially by layer
(Rakic, 1988; Shi et al., 2012) with differences in growth pattern

and characteristic axonal length programmed in sequential cell
divisions. For simplicity, we consider only two populations of
excitatory cells, with cell bodies partially separated by layer, but
with intermingled axonal and dendritic trees, and axonal tree
connection probabilities described by:

f
qr′
α = Nα

N
2πλαexp

[−λα2π
∣∣q− R

∣∣] (15)

f qr′
β
= Nβ

N
2πλβexp

[−λβ2π
∣∣q− r

∣∣] (16)

f
qr′
e = f

qR
α + f

qr
β

f
qR
α refers to the axonal trees with longest axonal extensions,

and f
qr
β refers to the axonal trees with short axonal exten-

sion, thus λα < λβ. N = Nα + Nβ is the number of synapses
received/generated by each cell. Distances from r′ to q are
substituted as r, R to indicate equal distances,

∣∣q− r
∣∣ and∣∣q− R

∣∣, measured along the axonal trees of the respective
populations.

The further defining characteristic of small-world
connectivity—the occurrence of connection nodes—emerges as
a consequence of the formation of the superficial patch system,
as follows.

Frontiers in Computational Neuroscience www.frontiersin.org February 2013 | Volume 7 | Article 4 | 63

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Wright and Bourke Synchrony and synaptic organization

FIGURE 2 | Simulated background electrocortical activity, in conditions of low cortical excitation. Graphical format is the same as in Figure 1.

THE ORIGIN OF THE SUPERFICIAL PATCH SYSTEM
The two populations of cells described by equations (15) and (16),
and the synapses they give rise to can be referred to as α-cells
and synapses, and β-cells and synapses. We first make a provi-
sional assumption (later justified on a species-specific basis) that
Nβ >>> Nα, so that α-cells with long-range axons are embedded
among much more numerous β-cells, all with sparse connectivity.
Equation (10) can be written by separately summing contribu-
tions from α-cells at positions {qα} and β-cells at positions {qβ},
to give:

J =
∫
qα

∫
R

JqRdqαdR+
∫
qβ

∫
r

Jqrdqβdr (17)

so J is at a maximum if
∫

qα

∫
R JqRdqαdR and

∫
qβ

∫
r Jqrdqβdr are

individually at maxima. Applying equations (15) and (16) via
equation (1) to find values of Jqr′ in equation (8) as functions
of
∣∣q− r, R

∣∣, shows that:

Jqr = JqR if
∣∣q− r, R

∣∣ = x

Jqr > JqR if
∣∣q− r, R

∣∣ < x (18)

Jqr < JqR if
∣∣q− r, R

∣∣ > x

where x = − ln
(

Nαλα

Nβλβ

)/
2π(λβ − λα)

Consequently
∫

qβ

∫
r Jqrdqβdr is at a maximum if β-cells are

clustered so they make reciprocal connections at minimum dis-
tance and maximum density (β-clusters). β-cells at the center
of β-clusters, for which Jqr attains the maximum possible value,
must give and receive all their connections as β-connections to a
radial distance of x.

Since β-cells are clustered, α-cells necessarily are also clustered
(α-clusters), and since maximization of reciprocal β-connections
excludes formation of short-range reciprocal α- connections,
α-cells must form reciprocal synaptic connections at distances
greater than x, to maximize

∫
qα

∫
R JqRdqαdR. Similarly, reciprocal

connections between α- and β-cells must occur at cluster margins,
over distances approximate to x. Since we made the provisional
assumption that Nβ >>> Nα, then fitting the sum of equa-
tions (15) and (16) to a power function requires λα <<< λβ.
Consequently α-cells may form multiple patches of synaptic
connections, skipping from α-cluster to α-cluster.

Since β-clusters have radius x and α-clusters are separated
by distance x, α-clusters are necessarily placed at the vertices of
hexagons tiling the cortical surface, with each hexagon embrac-
ing a β-cluster. Analogy to the superficial patch system in some
species is apparent.

As noted earlier, hexagonal symmetry of OP and the super-
ficial patch system is an idealization that is roughly approached
in some species, while in others it is effectively absent (Horton
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and Adams, 2005). Since approximation of a power law distri-
bution by two populations of neurons requires Nα <<< Nβ if
λα <<< λβ, this case is more closely approached for larger cor-
tical sizes, and the patchy connection system will have higher
orderliness and hexagonal rotational symmetry. If λα < λβ by
only a small amount, as in animals with small cortical size, then
Nβ is not necessarily greater than Nα, and an ordered hexagonal
structure need not be apparent. Such reduction of the apparent
orderliness does not imply the absence of “small world” con-
nectivity, nor imply impairment of function. The comparative
invariance of distance between OP singularities across species
reported by Kaschube et al. (2010) and Keil et al. (2012) implies

that x = − ln
(

Nαλα

Nβλβ

)/
2π(λβ − λα) [equation (18)] is also rela-

tively constant over species in the middle to large range of V1 size.
Since the ratios Nβ/Nα, and λα/λβ must vary inversely in value in
different species, according to cortical size, as required if the sum
of the two synaptic distributions maintains a power law distribu-
tion, then comparative invariance of OP singularity density is to
be expected.

LOCAL SYNAPTIC COMPETITION FOR METABOLIC SUPPLY
Turning from optimization of energy demand of axons, to that
of dendrites, we can modify equation (2) to a form representing
complex distinct processes of synaptic adaptation, impulse decay,
and pre-synaptic synergy, including the limiting rate of metabolic
energy supplied to excitatory synapses—viz:

ψ
qr′
e (t) = �qr′Mqr′

e ∗ ϕ
qr′
e (t) (19)

M
qr′
e = D× S (20)

�qr′ is the available fraction of the metabolic supply rate
needed to attain maximum current flow. Since we have assumed
increasing synaptic current in synchronously activated synapses
increases the available metabolic supply, the value of �qr′ must

follow that of ψ
qr′
e .

D = 1

B
exp[−Bt] B > 0 (21)

represents impulse decay following delivery of an afferent action
potential, with time-integral of 1 (after Rennie et al., 2000).

S = 1/(1+ exp[−g(Jq(t))] (22)

is a sigmoid function with range 0–1, representing synaptic adap-
tation to the afferent pulse rate, and including the effect of
pre-synaptic co-operation (Tsukada and Fukushima, 2010) upon
individual synaptic current flow as g(Jq)—a suitable ascending
function in Jq, such that if Jq = 0, there is no current flow at the
synapse.

As well as inter-cellular competition between assemblies of
neurons, we assume competition takes place between adjacent
individual synapses arising from the same neuron. Therefore
those neurons that survive apoptosis must have found an effi-
cient deployment of resource to the synapses best positioned to
maximize the magnitude of synchrony. Any two adjacent synapses

arising from the same pre-synaptic neuron may terminate on the
same, or different, post-synaptic neurons. If they terminate on the
same neuron their conditions are essentially identical in terms of
equations (19–22). If they terminate on different neurons, then
the relevant values of Jq need not identical—and their compe-

tition for resources would lead, via the feedback between ψ
qr′
e

and �qr′ , to low synaptic current at one synapse, and high cur-
rent at the other. Just what the physiological corollary of these
opposite high and low-activity states is, and the critical metabolic
component for which the synapses compete, we do not specify. A
likely, but by no means unique contributing factor is the supply
of extracellular calcium (Montague, 1996). Whatever the critical
component(s), the important consequence is that, at synchronous
equilibrium, closely situated neurons have either high, or low,
pulse correlations with each other.

ORGANIZATION OF PRE-VISION RESPONSE PROPERTIES
We can now term those synapses that are transmitting impulses
more strongly near equilibrium “saturated” synapses, and those
which are more quiescent, but potentially able to be activated,
“sensitive” synapses, and can consider what spatial patterns of
saturated connections would best meet the requirement to max-
imize synchrony. Here a further property of the neural field
commented on in relation to equations (1–5)—higher spatial
cross-correlation of pulses and field potentials at shorter range —
has a decisive impact on the equilibrium pattern of synaptic satu-
rations. These emergent patterns, diagrammed in Figure 3, arise
for the following reasons:

(a) Maximum synchrony generation with highest cross-
correlation among near-neighbors in each β-cluster requires
saturated couplings link near-neighbor cells—but sensitive
connections must also form between closely adjacent β-cells.
Both requirements are met when saturated connections
within each β-cluster form a re-entrant network analogous
to a Möbius strip. A similar argument regarding connections
formed within macrocolumns has been advanced earlier
(Wright et al., 2006; Wright and Bourke, 2008).

(b) The α-cluster system and each of the β-clusters must enter
into maximum joint resonance. This requires the formation
of a homeomorphic projection between scales. The projec-
tion must be homeomorphic, since spatial cross-correlation
is constrained to decline with distance at both scales, and
so if resonance is at a maximum, the projection map must
be one preserving topological identity between scales. This
is possible because a disk can be mapped to a Möbius strip.
Thus saturated α-cell to β-cell synapses must systematically
map limited angular ranges of the surrounding α-system
onto limited angular ranges on the margins of each β-cluster,
and receive reciprocal saturated β-cell to α-cell synapses.
Such a mapping requires specification of an orientation and
chirality for each β-cluster, and requires a reciprocal dis-
tribution of saturated and sensitive synapses from opposite
sides of the α-system to neurons in a limited angular range
within each β-cluster.

(c) Maximum synchrony generation with high cross-correlation
among near-neighbors in the α-system requires α-cells be
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FIGURE 3 | Simulated and real maps of orientation preference in V1,

from Wright et al. (2006). Top: Simulation. Colors of the spectrum, from
red to violet, represent average OP of V1 neurons for slow-moving visual
lines of orientation 0− π. Adjacent macrocolumns, of diameter ∼300 μm
are set within a hexagonal frame (the patch system) with OP forming color
wheels about OP singularities. Orientations and chiralities of the color
wheels are arranged to approach a minimum total of angular disparity from
mirror reflection of OP between each macrocolumn and its neighbors.
Bottom: Real OP. Visualized in the tree shrew by Bosking et al. (1997).
Superficial patchy connections are demarcated in black by a selective stain.
Scale of macrocolumns is approximate to that of the simulation.

linked by saturated synapses. This requirement is concordant
with deployment of the excess sensitive α-connections to
neurons in β-clusters at positions outside the homeomorphic
projection.

(d) Saturated and sensitive β− β connections between adjacent
β-clusters must also be arranged to maximize resonance.
Therefore β-clusters must project to each of their six
neighbors as closely as possible to mirror symmetry, with
both saturated and sensitive synapses linking homologous
points—that is to say, points with similar OP as classically
measured with low object speeds—within each cluster.

Perfect mirror symmetry is not possible between all adjacent
clusters within a hexagonal array, so mirror-symmetry can
be only approximate and irregular and the necessarily broken
symmetry permits the particular pattern generated to be one
of a large set of possible combinations.

Further analogy between the hypothetical α- and β-systems
and real anatomical structures can now be drawn. As well as
the α-system’s congruence with the superficial patch system, the
β-systems, each with a dense system of local connections that
are centrally spared from patchy connections, are analogous to
macrocolumns each centred about an OP singularity. The distri-
bution of OP for lines of orientation 0− π to angles 0− 2π in
pinwheels about a singularity finds analogy in the wrapping of
a Euclidean plane onto a Möbius strip. It has also been earlier
shown that arrangements of adjacent pinwheels in broken mirror
symmetry match classical OP maps (Wright et al., 2006).

The structure of real patchy connections and classical OP
response maps, contrasted with the results of simulating the
arrangement of adjacent macrocolumnar structures in accord
with the description above, are shown in Figure 3, while Figure 4
shows diagrammatically the proposed arrangement of saturated
and sensitive synapses, and foreshadows the effect of structured
visual stimuli, once the post-natal phase of development begins—
to be described in the next section.

Figure 5 shows a further impact upon response map
organization—the emergence of OD columns.

Just as OP organization in some species is apparent before eye
opening, so too is the organization into OD columns (Blakemore
and Van Sluyters, 1975; Erwin and Miller, 1998). Explanation
of this can be included in the present model by an argument
similar to that of Erwin and Miller, who suppose the correla-
tion of cell firing at short distances of separation of V1 cells
to be greater than the correlation of visual inputs over a sim-
ilar distance. This forces a columnar OD organization because
of instability—in the present model’s terms, the resulting dis-
ruption of the synchronous field at equilibrium produced by
binocular inputs to the same cells—resolved by formation of
columns in Turing patterns. A corollary of this effect is impact
on the hexagonal arrangement, with broken mirror symme-
try of OP organization, predicted in (d) above. The required
alternation of OD columns would imposes a frustration on the
approach to hexagonal tiling of the cortical surface—forcing
approach closer to a square tiling. The occurrence of mirror sym-
metry within a square tiling accounts for the way that lines of
OP cross orthogonally between OP columns. (Obermayer and
Blasdel, 1993). Following eyeopening inputs from the two eyes
transmit images which are necessarily cross-correlated at a small
spatial lag, because of angular disparity in their line of focus.
Spatial lag correlation in their inputs at V1 level could then
help maintain the columnar organization (Wright and Bourke,
2008).

WAVE TRANSMISSION OF VISUAL INFORMATION, FOLLOWING
EYE-OPENING
We compactly express the emergent map by which the patchy
connections over a part of V1 link to positions within each
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FIGURE 4 | Equilibrium distribution of synaptic activity, and the

impact of visual inputs disrupting equilibrium from Wright and

Bourke (2013). Top: equilibrium disposition of saturated and sensitive
synapses. Black circles represent cell bodies and dendrites. Synapses
are indicated as saturated (solid) or sensitive (dashed) terminations of
axons. Reciprocal connections between α-patches (patchy connections)
form the hexagonal array. (Other connections, although shown as
unidirectional, are also reciprocal.) A representative pair of connections
from α-cells to the β-patch is displayed in the upper-and lower-aspects
of the figure. At the center of the figure, saturated and sensitive
synapses show the network’s analogy to a Möbius-strip within a
β-patch (macrocolumn). To the right, representative links from the
central macrocolumn to cells at homologous positions in neighboring
macrocolumns. Bottom: exposed to strong transient signals conveyed
over the superficial patch system, summing with direct visual inputs
conveyed to the cRF, the equilibrium configuration breaks down. The
green bar represents the field of excitation of cells by the contextual
signals, within which cells also directly excited in the cRF, fire at high
rates.

FIGURE 5 | Top: Simulation of OD columns in accord with Wright and
Bourke (2008). Bottom: Real OD columns, visualized by Obermayer and
Blasdel (1993). Color coding of OP and scale as for Figure 3. Black lines
demarcate alternation of OD between columns. Fine black lines in the
lower figure trace the way OP is aligned so it matches orthogonally across
OD column boundary.

macrocolumn, as an homeomorphic projection from a disk on a
Euclidean plane, P, to a Möbius strip, p[2]- the square brackets [2]
indicating the map’s resemblance, if viewed from a third dimen-
sion, to a 2:1 map formed by squaring a complex vector. Defined
in polar co-ordinates,

P
(∣∣R− Cj

∣∣, ϑ
)→ p[2]

(∣∣r− Cj

∣∣ ,±ϑ+ ϕ
)

(23)

where Cj is the origin of both P and p[2] for the j− th local
map, and corresponds to the position of the OP singularity in
that macrocolumn. ϑ is the polar angle of R, chirality of the local
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map is indicated by ±ϑ, and ϕ is the orientation of the local map
relative to the global map. ϑ+ ϕ is defined on the range 0− 2π in
both local and global maps, but is represented with apparent angle
doubling in the local map. This describes a topology for “contex-
tual” connections (Li et al., 2000; Angelucci and Bullier, 2003) to
each macrocolumn.

Visual input after eye opening will cause departures from the
equilibrium condition. Let O(P, t) be a visual image projected to
V1 by the direct visual pathway. Laterally traveling waves of pulses
and local field potentials relayed by the patchy connections can
transmit that image to each local map with a point to point delay,
|R−r|

υ
, where ν now represents wave speed, so that

O(P, t)→ O

(
p[2], t + |R− r|

ν

)
(24)

Suppose O(P, t) is a segment of the image of a visual line, trav-
eling with uniform velocity, Vx, along an x−axis directed toward
a macrocolumn with its singularity at Cj. O has a component of
its extension on the x−axis, Ox, and an orthogonal component of
extension, on the y−axis, Oy . Kx is the dominant spatial frequency
of Ox, and Ky is the dominant spatial frequency of Oy . Then the
local map projection of O has a transformed spatial frequency in
the x−axis but not in the y−axis—i.e.:

kx ∝ ν

ν± Vx
Kx (25)

ky ∝ Ky (26)

where kx, ky are the spatial frequencies in the local map projec-
tion of O, and the sign ± in equation (25) depends on whether
O is approaching or departing from Cj. That is, O’s orientation
in the global map is transformed to its projection to correspond-
ing areas in the local map, by Doppler shift, with a difference in
orientation, δϑ;

δϑ = ∣∣tan−1[Ky/Kx] − tan−1[ky/kx]
∣∣ (27)

INTERACTION OF CONTEXTUAL SIGNALS AND THE CLASSIC
RECEPTIVE FIELD
Laterally transmitted contextual signals generally do not trig-
ger cell firing, until the classic receptive field (cRF) is directly

stimulated (Li et al., 2000; Angelucci and Bullier, 2003) via
the visual pathway. Those cells that then fire within a macro-
column are those that reflect the supra-threshold summations
of sub-threshold signals conveyed over the contextual, patchy,
connections, and the direct pathway. We next assume that the
summation of contextual and direct cRF inputs acts as an impulse
causing a transient breakdown of equilibrium, during which
synapses that were in the sensitive state in equilibrium briefly
generate substantial synaptic currents [See Figure 4 (Bottom)
and Figure 6]. Action potentials are triggered in surrounding
cells, and subsequently there is a restoration toward the equi-
librium state on withdrawal of the stimulus. During the break-
down the mapping of activity from the global to the local map
becomes:

O(P, t)→ O

(
p2, t + |R− r|

ν

)
(28)

The change from equation (24) made by removal of the square
brackets from p[2] represents the breakdown’s form, as itself
a map from global to local scale, resembling a 2:1 complex-
multiplication map, as initially described by Alexander et al.
(2004). The 2:1 map implies that single cells would show similar
responses to a stimulus moving in either direction, but because
firing is initiated over contextual connections in a 1:1 mapping,
multi-cellular recordings would show that the spatial and tempo-
ral order of firing of neurons was unique for a given stimulus form
and velocity.

POST-NATAL EFFECTS OF LEARNING, THE SPATIO-TEMPORAL FILTER
MODEL, DIMENSION REDUCTION, AND “LIKE TO LIKE” CONNECTIONS
Equations (2,3,4, 19–22) contain state-variables required by
mathematical expressions of physiological versions of the Hebb
rule, and the spatio-temporal learning rule (Elliott and Shadbolt,
2002; O’Connor et al., 2005a,b; Enoki et al., 2009; Tsukada and
Fukushima, 2010; Elliott, 2011). Following eye opening, stimuli
with regularly repeated spatial and temporal structure reach V1,
so we assume that exposure to a repeated stimulus leads to per-
manent synaptic consolidation of connections, overlaying those
formed in the ante-natal, equilibrium condition. As remarked in
the Introduction, Baker and Issa (2005) have shown that all V1
response features can be described in terms of six variables—
optimal values of OP, spatial frequency preference, and temporal

FIGURE 6 | The effect of increasing stimulus speed on apparent OP, for a

bar of length 6 units, oriented at 45◦ to its direction of motion, and

traveling left to right. Examples shown are freeze-frames, from separate

simulation movies, at similar positions in the visual stimulus’ transit across
the macrocolumn. From left to right, in each example, the bar speed/wave
speed is 0.1, 0.5, 1.0, 1.5, respectively.
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frequency preference, each associated with a Gaussian bandwidth
of tuning of the cortical response to these features. These define
three hypothetical filter proceeses. However, stimulus variables
in the present model have equivalents to those used in the
spatio-temporal filter model. These are:

Spatio-temporal model Present model

Object orientation Orientation relative to the
y-axis defined for equations
(25, 26)

Object velocity Vx

Object drift angle tan−1[Ky/Kx]
Object spatial frequency Kx/

∣∣cos(tan−1[Ky/Kx])
∣∣

Object temporal frequency VxKx

Repeated stimulation with a particular stimulus will there-
fore lead, under Hebbian learning, to maximization of the
response to that stimulus, thus creating an apparent “tun-
ing” of particular neurons to that particular combination of
stimulus features. Thus, the spatio-temporal model can be
regarded as a consequence of the present model. Optimization
by learning of the parameters for each of the three filters
must be competitive between adjacent cells, providing the nec-
essary condition for fitting response maps with continuity
and completeness, by dimension-reduction methods (Kohonen,
1982; Durbin and Willshaw, 1987; Durbin and Mitchison,
1990).

Finally, the consolidation of saturated long-range patchy con-
nections by Hebbian learning would result in mature “like to like”
connections.

SIMULATIONS—A CRITICAL TEST
A critical test of our model, then, is whether we can reproduce
in simulation the results of Basole et al. (2003), without a pri-
ori feature-specific responses to orientation, spatial frequency,
or temporal frequency. Our simulations assume the steady-state
presence of the Mobius synaptic configuration and its pertur-
bation by visual signals, intended to reflect the state of the
visual cortex shortly after birth, when first exposed to visual
stimuli.

Equation (28) was applied in simulations of an hexagonal array
of seven adjacent macrocolumns. Results reported here are for the
central macrocolumn of the array of 7. Examples are shown in
Figure 6, which shows the orthogonal transformation of apparent
OP from the lowest to the highest bar speed for a moving line
stimulus oriented at 45◦ to its line of passage.

Diameter for each macrocolumn is 300 microns, and wave
speed for transcortical polysynaptic propagation 0.1 m/s
(Bringuier et al., 1999). Units of length subsequently referred
to, are multiples of the radius of a macrocolumn—150 microns.
Simulation time-step was 0.1 ms.

A moving line in the visual field, relayed by the direct visual
pathway to the cRF of each macrocolumn is represented as a red
bar. In a single simulation the red bar traveled across the entire
hexagonal array from left to right, with constant speed, direc-
tion and orientation. The orientation of the red bar to the line

of passage is measured as bar angle from 0◦, where the bar is ori-
ented orthogonally to the direction of travel, to ±90◦, where the
bar is oriented in the direction of travel.

The lag-transmitted image of the red bar, relayed as subthresh-
old activation to each macrocolumn via the superficial patch
system, is shown in green, with illumination about the zone of
subthreshold activation, to indicate that input to the cRF from
the direct visual pathway and contextual signals caused triggering
of action potentials. The average angle from the macrocolumn
singularity to the centers of action potential generation (i.e., all
points on the green line with illumination) was calculated at
each time-step, and shown as a black arrow, thus indicating the
part of the macrocolumn with a response preference (apparent
OP) for the particular bar movement. (A change in the sector
of the macrocolumn that is maximally stimulated is equivalent
to an equal change in the angle of approach of the bar needed
to maintain stimulation of the same sector). The black arrow
angle was averaged over a window beginning after the red bar
had passed the center of the macrocolumn by a distance equal
to 10% of macrocolumn radius, and extending from the 10th
percentile to the 20th percentile of that radius, thus obtaining
an estimate of the apparent OP during the cRF activation time.
The standard error (SE) of the black arrow angles was calcu-
lated from 11 equally spaced time steps through the averaging
window.

Combinations of bar-length, orientation of the bar to the
direction of movement, and bar speed, were then systematically
varied in separate simulations, results of which are supplied as
supplementary animated movies. Their effects on OP, measured
at the central local map of the hexagonal group, were obtained as
OP difference, �φ—a measure of the change in OP as a function
of these variables—calculated as

�φ =
⎧⎨⎩

φ1 − φ0 − π

φ1 − φ0

φ1 − φ0 + π

when
when
when

π/2 < φ1 − φ0

−π/2 ≤ φ1 − φ0 ≤ π/2
φ1 − φ0 < −π/2

(29)

The reference OP, φ0 ∈ [0, π), was the OP found at the lowest bar
speed applied (bar speed/wave speed= 0.1) and the apparent OP,
φ1 ∈ [0,π), was the OP found at higher speeds.

Systematic results are shown in Figure 7, which graphs OP
difference vs. bar speed/wave speed, for bar angles 0 to±90◦, cal-
culated for a bar length of 6 units. Variation of bar length showed
progressive lessening of the effect of velocity on OP for greater bar
lengths.

For the case of bar-angle zero degrees (a line oriented orthog-
onally to its direction of passage, as in classical measurements
of OP) no OP difference is seen until, as bar speed approaches
wave speed, a 90◦ change in apparent OP takes place at a single
increment in speed. This corresponds to transition to a “motion
streak,” as object movement blurs resolution in the direction of
motion. Increasing OP difference with bar speed at other bar
angles is a more gradual development of the same effect—that
is, mixing of responses to object speed and to object orientation.
The illuminated field of supra-threshold excitation generated
is not that expected to accompany a Gaussian-shaped tuning
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FIGURE 7 | Change in apparent OP, and standard error of the estimate,

as a function of bar speed to wave speed, for lines at different

orientations to their directions of motion. Bar length 6 units.

curve, but is roughly bimodal at medium speeds—e.g., bar-
speed/wave-speed = 0.5. The form of the field of excitation is
a combination of the classical preferred OP and the orthogo-
nal orientation, expected as a consequence of Doppler shifts in
the laterally-transmitted cortical signals generated by the moving
visual input.

Variation of the window over which the apparent OP was esti-
mated did not affect the qualitative results so long as averaging
was conducted over a window beginning after the center point of
the macrocolumn was crossed by the red bar. Variation of the esti-
mate of wave speed was also without effect, so long as results were
expressed in terms of bar speed/wave speed.

For comparative purposes similar simulations were performed
in which contextual (green bar) responses were constrained to
occur only with a limited angular response within a macrocol-
umn. That is, a restricted response to the line, according only
to its orientation was imposed, in analogy to conventional mod-
els of OP, but with conduction delays of “like to like” fibers
included. Then, systematic variation of OP with bar velocity did
not occur.

These results match the findings of Basole et al. (2003) with
respect to variation of OP peak responses as a function of line
velocity and length. They do not reproduce the form of the
experimentally observed Gaussian tuning curves, but as argued
in the prior section, subsequent post-natal Hebbian learning pro-
gressively over-writing the Mobius configuration, and strength-
ening the peak response to the optimal visual signal, would
concurrently strengthen responses to signals which are close to
the optimum, resulting in Gaussian tuning curves in the more
mature animals studied by Basole et al. (2003) and Issa et al.
(2008).

INTER-AREAL INTERACTIONS OF V1 AND HIGHER VISUAL AREAS
The principle underlying the development of connections
between macrocolumns and the superficial patch system may be
generalized to the emergence of inter-areal connections. To recap,
taking V1 as an example we have argued above that, because
co-variance of activity declines with metric distance at both the
scale of the patchy connections and within a macrocolumn, a
homeotypic mapping between scales can emerge. This requires
that relative distances on the maps at each scale must be in
the ratio of correlation lengths of synchronous oscillation at the
two scales, and adjacent maps must themselves have a correlated
structure over a distance approximate to the correlation length of
the patch system. It then follows that superposition of adjacent
local maps, with appropriate rotation and correction to a com-
mon chirality, would result in a further map with co-variance of
activity declining with metric distance, over the correlation length
of the patch system.

Inter-areal connections, made by cortico-cortical axonal pro-
jections, could permit maps of this type to arise during ante-natal
development, with the composite map at the higher cortical-area
level itself folded into the Möbius configuration. The selection of
saturated connections, projecting between areas with normaliza-
tion of rotations and chiralities, would be possible by selection
from the larger set of possible connections made by branches of
cortico-cortical axons, diverging from their cells of origin to their
cells of termination, overlapping as they terminate, and generally
reciprocal between areas (Braitenberg and Schüz, 1991; Boucsein
et al., 2011). Thus, antenatally, sets of macrocolumns at both
the lower, V1, level and higher levels, could resonate with, and
form preferential connections with, superimposed and overlap-
ping groups at the other level, in accord with the developmental
selection requirement to maximize joint synchrony. With the
occurrence of eye-opening, Hebbian learning would then begin to
overwrite the equilibrium resonance configuration between areas,
in analogy to the process at intra-areal level—with the added
property of associating concurrent patterns of activity in the V1
macrocolumns.

Illustrating this effect, Figure 8 shows, at the bottom, a system
of seven macrocolumns at V1 level, driven via the direct visual
pathway by a pair of intersecting lines in the visual field.

The top part of the figure shows a projection of activity in
conjointly activated macocolumns in V1, to a higher visual area,
in which responses in the seven macrocolumns in V1 have been
superimposed, with disparities in their orientation and chiral-
ity eliminated. Summations of points stimulated by both lines,
shown by highlighted white points, occur frequently in the for-
ward projection—much more so than at the level of V1 itself.
These indicate response to angles of intersection of the lines at
the lower level, and, commonly at the higher level, summating
responses to time-lagged correlations between disparate posi-
tions of the moving visual stimulus. This effect is consistent
with the preferential responses to angular and complex stimuli,
characteristic of higher cortical levels (Merigan and Maunsell,
1993).

Conversely, since connections between higher and lower levels
are generally reciprocal, a possible mechanism permitting con-
trol of attention (Rao and Ballard, 1997; Kveraga et al., 2007;
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FIGURE 8 | Projection of a complex object (a double bar) from V1

(bottom) to a large macrocolumn in, e.g., V2 (top). Brightened dots
show the intersections of lines, producing more frequent enhanced
responses to stimulus angles in V2 than V1.

Swindale, 2008; Naci et al., 2012) is suggested, since the back-
ward flow would continuously modify the forward flow of sensory
information.

CONCLUSION
The model of cortical development we have outlined above is
efficient from both energetic and information-processing per-
spectives, and has considerable anatomical and physiological
explanatory power. It leads to an explanation of the spatial
organization of signal flow in the cortex that differs from any
other model. The proposed antenatal self-organization of cor-
tical synapses leads to the creation of a tabula rasa on which
homeomorphic maps, in a form disguised by the Möbius-strip-
like folding of connections, occur in lateral connections at
the millimetric scale, embedding the statistics of spatial orga-
nization of the sensory world to first approximation, before
any detailed sensory inputs are received. The assumptions and

findings of the model overlap with, and although not nec-
essarily contradictory to, are not identical to, those of other
models (Erwin and Miller, 1998; Wolf and Geisel, 1998; Kang
et al., 2003; Oster and Bressloff, 2006). Distinguishing fea-
tures include the explanation of the relationship of superficial
patch connections to macrocolumn centers, and their hexago-
nal rotational symmetry, and crucially, the findings of Basole
et al. (2003), which cannot be explained by any model depen-
dent on “like-to-like” connections between feature-specific neu-
rons. Nor can any model with otherwise similar assumptions
about the self-organizing effect of synchrony be formulated with-
out introducing a Möbius configuration to the connections,
since an equivalent model utilizing only Euclidian conformations
would represent a given OP twice, rather than once, around a
singularity.

In review, the assumptions and conclusions reached, were as
follows. By assuming that cells surviving apoptosis are selected by
competition for metabolic substrates, and that synchronous oscil-
lation mediates the uptake of metabolic substrates, we showed
the outcome was a neural system with ultra-small world axonal
configuration. Further assuming the small world connections
were necessarily constructed from neuron populations charac-
terized by respective axonal length, we showed that long range
patchy connections and regular macro-column-like areas with
central sparing of patchy connections emerge, with some degree
of hexagonal rotational symmetry, with species variation in order-
liness according to cortical size, and were able to show that
this result was consistent with anatomical observations of lim-
ited interspecies variation of singularity density. A crucial fur-
ther assumption made, was that metabolic competition between
synapses from the same neuron leads to particular configura-
tion of synaptic current flows at equilibrium, in which active
connection networks within each macrocolumn are arranged in
a Möbius-strip-like conformation. Then, with the introduction
of visual inputs, signals conveyed by contextual fibers transfer a
visual image from the global map to each local map, determin-
ing the pattern of neuron firing induced by activation of the cRF,
and synaptic consolidation on Hebbian principles begins—thus
storing information based on visual experience—explaining how
response maps for OP, SF, and TF become organized in accord
with the spatio-temporal filter model (Baker and Issa, 2005;
Issa et al., 2008), and how “like to like” anatomical connections
emerge, as well as providing conditions for dimension-reduction
description of response features. The model is also compati-
ble with explanation of ocular columns and direction preference
fractures, as proposed in our earlier work (Wright et al., 2006).

The resulting synaptic storage of learned information in local
topological maps of Möbius configuration offers a further com-
pression of format, adding to the efficiency of the “small world”
arrangement, by minimizing the distance which need be spanned
by connections between positions on the local map representing
positions widely separated on the global map. The development
of cross-links also offers large potential information storage, since
the regular spatial organization of links in the Möbius configu-
ration implies the synaptic connections have low joint entropy
in their ante-natal state. With visual experience, and the stor-
age of image information in cross-links, joint entropy could, in
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principle, increase to a limit where all synaptic states are inde-
pendent, and equally distributed about some mean connection
strength, as implied by Montague’s (1996) resource consumption
principle. In effect, before eye-opening, the cortex has “learnt”
the underlying statistical structure of visual space—that of cross-
correlation declining with metric distance—and subsequently
stores information about departures from this “first component”
of structure in the visual world.

The antenatal development of response maps (Wiesel and
Hubel, 1974; Blakemore and Van Sluyters, 1975; Sherk and
Stryker, 1976) presents no paradox in this model, since emergence
of organized response properties within the Möbius configuration
does not depend upon structured visual stimuli. EEG activity pro-
gressively matures toward alternating alert and sleeping states in
the later antenatal period (Marks et al., 1995; Mirmiran, 1995)
providing the widespread co-ordination of pre-synaptic activity
required for initial synaptic self-organization. Conversely, over-
writing by learning in the immediate and later post-natal periods
explains why representation in adult response maps of stimuli to
which the subject as has not been exposed would not be present—
as also seen experimentally (e.g., Blakemore and Van Sluyters,
1975).

No direct evidence yet exists of Möbius-like patterns of con-
nections in cortex, yet this is scarcely surprising if transient
dynamic couplings, present only in the equilibrium state, are
overwritten by post-natal learning-related changes. However,
relaxation toward the equilibrium condition is still to be expected
in the mature state, so it is important whether or not some
anatomical substrate exists in which the dynamic state of synapses
may be capable of transient assembly into Möbius patterns.
Markram and colleagues (Perin et al., 2011) found that pyrami-
dal neuron networks cluster into multiple groups of a few dozen
neurons each, with the neurons composing each group typically
more than 100 μm apart, allowing for multiple groups to be inter-
laced in the same space. Connections within groups were largely
reciprocal, and those between groups relatively sparse. Transient
interlinkages between such interwoven linked groups could form
Möbius-like networks. The temporal plasticity of synaptic con-
nections near singularities (Dragoi et al., 2001) is also consistent
with this interpretation. As well as plasticity of responses near
OP singularities, Dragoi and colleagues found lack of plasticity in
linear zones—the areas of strong patchy connection termination.
This is to be expected if the patch system is composed of well con-
solidated connections suitable for consistent transmission with
delay from fixed points in V1, while of the other hand, more
complex, continually modified, information processing goes on
in the areas around singularities. Consequently, an anatomical
test of the model may be possible, in regard to the terminations
of patchy connections in the periphery of the patch-free areas
about singularities. As indicated in Figure 3, two populations
of synaptic connections should be demonstrable in principle,
by double injection/staining methods, near the singularity/patch
edge. If some Hebbian consolidation occurs both antenatally and
postnatally, then, in principle it should be possible to observe
Möbius-like connections within macrocolumns antenatally, and
the overwriting of these connections during post-natal learning.

If later testing supports this model, current conceptions
of cortical information processing will require modification.
Synchronous oscillation has been regarded as a mechanism for
feature-binding—requiring that groups of cells in synchrony
stand out in some way against a non-synchronized background.
Instead, this model emphasizes synchrony as the organizer of a
matrix of connections within which each macrocolumn gathers
information from its surround, and organizes these connec-
tions systematically according to spatial position and time-lag, as
functions of distance from each singularity. The topology of sig-
nal organization is markedly different to that of the association
of “feature” neurons embedded in neural connections that are
deployed on a Euclidean plane, as it implies that sensory images
are not broken up into “features” which are subsequently asso-
ciated in an abstract feature space, but retain, in modified form,
an organization representing sensory space and time. Upon this
more complicated matrix of connections, moment-by-moment
states of autonomous local firing could interact with each other
via traveling waves, generating internal images adding to those
arising from sensation—all selectively strengthening preferred
pathways by Hebbian learning, under the supervision of moti-
vational systems. This gives a modified basis to Sherrington’s
“enchanted loom” (Sherrington, 1906, 1940), and a stage for the
kind of neuro-dynamic events progressively observed and envis-
aged by Freeman for many years (Freeman, 1975; Freeman and
Quiroga, 2013).

Hierarchical interaction of V1 with higher visual areas, by
superposition of spatio-temporal images transmitted over con-
vergent and divergent pathways might proceed to higher levels
of abstraction, at higher cortical levels, and feedback interactions
of ascending and descending signals in such a system might per-
mit very complex image manipulation. Analogous processes may
apply to other modalities throughout the cortex in general, since
all sensory input systems are analogous to the visual system, in as
much as they encode the sensory world by imposing a topolog-
ical order to inputs as they arrive at the sensory cortices. Again,
the ubiquitous distribution of patchy connections throughout the
cortex, and the basic modular similarity of the paleo- and neo-
cortex throughout, supports the notion that a single schema of
information flow may be characteristic of all. The principle of
organization might even extend to the motor cortex, with the
efferent pyramidal motor neurons simply reversing the role of
neurons in the direct visual pathway.
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Neural mass signals from in-vivo recordings often show oscillations with frequencies
ranging from <1 to 100 Hz. Fast rhythmic activity in the beta and gamma range can be
generated by network-based mechanisms such as recurrent synaptic excitation-inhibition
loops. Slower oscillations might instead depend on neuronal adaptation currents whose
timescales range from tens of milliseconds to seconds. Here we investigate how
the dynamics of such adaptation currents contribute to spike rate oscillations and
resonance properties in recurrent networks of excitatory and inhibitory neurons. Based
on a network of sparsely coupled spiking model neurons with two types of adaptation
current and conductance-based synapses with heterogeneous strengths and delays we
use a mean-field approach to analyze oscillatory network activity. For constant external
input, we find that spike-triggered adaptation currents provide a mechanism to generate
slow oscillations over a wide range of adaptation timescales as long as recurrent
synaptic excitation is sufficiently strong. Faster rhythms occur when recurrent inhibition is
slower than excitation and oscillation frequency increases with the strength of inhibition.
Adaptation facilitates such network-based oscillations for fast synaptic inhibition and leads
to decreased frequencies. For oscillatory external input, adaptation currents amplify a
narrow band of frequencies and cause phase advances for low frequencies in addition
to phase delays at higher frequencies. Our results therefore identify the different key roles
of neuronal adaptation dynamics for rhythmogenesis and selective signal propagation in
recurrent networks.

Keywords: spike frequency adaptation, adaptation, oscillations, rate models, network dynamics, Fokker–Planck,

mean-field, recurrent network

INTRODUCTION
A prominent characteristic of cortical activity is its rhythmicity
as shown by electroencephalography or the local field potential.
Dominant oscillation frequencies in these signals range from <1
to 100 Hz and reflect synchronous activity of populations of neu-
rons. Such oscillations are linked to behavioral states (Wang,
2010) and involved in a variety of cognitive functions (Engel et al.,
2001; Fries, 2001; Melloni et al., 2007; Ghazanfar et al., 2008;
Wang, 2010) as well as pathological conditions (Hammond et al.,
2007; Zijlmans et al., 2009; Uhlhaas and Singer, 2010). It is there-
fore important to understand the mechanisms of oscillations in
neuronal networks, how they are initiated and terminated, and
how their frequency is determined.

Fast rhythmic activity in the beta and gamma band (>20 Hz)
can be generated by network-based mechanisms, such as synap-
tic excitation-inhibition loops or by feedback inhibition alone
(Isaacson and Scanziani, 2011). In these scenarios the oscilla-
tion frequency is largely determined by the inhibitory decay
time constant (Brunel and Wang, 2003; Tiesinga and Sejnowski,
2009). Low-frequency oscillations, on the other hand, could
depend on slow transmembrane outward currents (Compte et al.,
2003; Gigante et al., 2007b; Destexhe, 2009), which are medi-
ated by low-threshold voltage-dependent muscarinic (M) and
high-threshold calcium-gated afterhyperpolarization (AHP) K+

channels, respectively (Brown and Adams, 1980; Connors et al.,
1982; Stocker, 2004). These currents cause spike frequency adap-
tation and are typically more pronounced in cortical regular
spiking pyramidal (excitatory) neurons compared to fast spiking
(inhibitory) interneurons (La Camera et al., 2006). Both, the M
and AHP type K+ currents, are susceptible to cholinergic mod-
ulation (McCormick, 1992). Their kinetic time constants range
from milliseconds to seconds (Abel et al., 2004; Manuel et al.,
2005) and can be pharmacologically manipulated (Pedarzani
et al., 2001).

Here we study the interplay of the dynamics of such adapta-
tion currents with synaptic excitation and inhibition in recurrent
networks of excitatory and inhibitory neurons. Specifically, we
ask (1) how adaptation can generate slow oscillations, (2) how it
modulates faster rhythms based on synaptic interaction, and (3)
how adaptation affects resonance properties of the network.

In-vivo recordings from behaving animals have revealed that
even when the population activity oscillates, the spike trains of
the constituent neurons are rather irregular and display Poisson-
like characteristics (Fries, 2001; Wang, 2010). This stochasticity
in neuronal responses allows us to derive a mean-field model
from a recurrent network of adaptive spiking model neurons
coupled through conductance-based synapses with heteroge-
neous strengths and delays. Our approach is based on the
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Fokker–Planck (FP) formalism (Brunel, 2000; Deco et al., 2008)
and efficiently describes the activity of large networks where the
features of the spiking neurons (i.e., the model parameters) are
retained. Using this method we analyze network responses to
constant as well as rhythmic external input. In particular we
describe asynchronous irregular states with constant steady-state
activity as well as oscillatory states and their properties. We val-
idate our mean-field results qualitatively by large-scale network
simulations.

METHODS
We first describe our network model containing two popula-
tions (excitatory and inhibitory) of adaptive spiking neurons
with delayed conductance-based synaptic coupling. Based on that
model we then derive mean-field model equations and solve them
numerically to obtain distributions of the membrane potentials
and instantaneous spike rates.

NETWORK MODEL
We consider a network of N = NE + NI adaptive exponen-
tial integrate-and-fire neurons (aEIF) proposed by Brette and
Gerstner (2005), where NE and NI are the numbers of excita-
tory and inhibitory neurons, respectively. The dynamics of the
i-th neuron of population α ∈ {E, I} is described by

C
dVα

i

dt
= Iion(Vα

i )− wα
i + Iα

syn,i(Vα
i , t) (1)

τw
dwα

i

dt
= a(Vα

i − EL)− wα
i (2)

with reset condition

if Vα
i > Vcut then

{
Vα

i := Vr

wα
i := wα

i + b.
(3)

The first Equation (1) is for the membrane potential Vα
i , where

the capacitive current through the membrane with capacitance C
equals the sum of ionic currents Iion, the adaptation current wα

i
and the synaptic current Iα

syn,i. The ionic currents are given by

Iion(V) := gL(EL − V)+ gL�Te
V−VT

�T , (4)

where the first term on the right-hand side describes an Ohmic
leak current with conductance gL and reversal potential EL. The
exponential term with threshold slope factor �T and threshold
potential VT approximates the Na+-current which is responsi-
ble for the generation of spikes, assuming that the activation of
Na+-channels is instantaneous and neglecting their inactivation
(Fourcaud-Trocme et al., 2003). Equation (2) governs the dynam-
ics of the adaptation current wα

i , where τw denotes the adaptation
time constant and a quantifies a conductance that mediates sub-
threshold adaptation. A spike is said to occur at the time when
Vα

i diverges to infinity, but in practice a finite “cutoff” value
Vcut is chosen. When Vα

i crosses Vcut from below, Vα
i is set to

the reset potential Vr and wα
i is incremented by b, cf. condi-

tion (3). In this way spike-triggered adaptation is included in the

model. Immediately after the reset, Vα
i and wα

i are clamped for a
refractory period Tref.

The aEIF model has been shown to reproduce a broad range of
subthreshold dynamics (Touboul and Brette, 2008) and spike pat-
terns of cortical neurons (Naud et al., 2008) and can well predict
their spike times (Jolivet et al., 2008) and post-stimulus time his-
tograms (Pospischil et al., 2011). Importantly, the subthreshold
and spike-triggered adaptation components of this model have
been shown to capture the effects of the M and AHP currents
in a detailed biophysical neuron model, respectively (Ladenbauer
et al., 2012).

Neuron i of population α receives total synaptic current

Iα
syn,i(Vα

i , t) :=
∑

j

Iα,ext
ij +

∑
j

Iα,E
ij +

∑
j

Iα,I
ij , (5)

which is the superposition of synaptic inputs Iα,ext
ij from Kext

external excitatory neurons, Iα,E
ij from KE excitatory neurons of

the network and Iα,E
ij from KI inhibitory neurons of the network.

j is the index of the respective presynaptic neuron. The synaptic
current Iα,γ

ij caused by neuron j of population γ ∈ {ext,E, I} is
modeled using delta functions,

Iα,ext
ij (Vα

i , t) := CJα,ext
ij

∑
k

δ(t − tk
j )
(
EE − Vα

i

)
(6)

Iα,β

ij (Vα
i , t) := CJα,β

ij

∑
k

δ(t − tk
j − dα,β

ij )
(
Eβ − Vα

i

)
, (7)

where β ∈ {E, I} denotes the presynaptic population. Jα,γ

ij are
dimensionless synaptic efficacies drawn from a Gaussian distri-
bution with mean Jα,γ and standard deviation �Jα,γ. Here we
consider that Jα,γ ≡ Jγ and �Jα,γ ≡ �Jγ depend only on the
presynaptic population γ. tk

j is the k-th spike time of neuron j
from the respective population. EE and EI denote the excitatory

and inhibitory reversal potentials, respectively. dα,β

ij is the synaptic
delay, sampled using a bi-exponential probability density

pα,β

d (d) := 1

τd − τr

(
e
− d− d0

τd − e
− d− d0

τr

)
(8)

for positive delays d, where d0 is the minimal delay and τr , τd are
the rise and decay time constants, for each pair of populations.
In the model we use two different delay distributions pEd and pId
which do not depend on the postsynaptic population as for the
synaptic weights. For a schematic diagram of the network, see
Figure 1.

We assume the neurons from the external population gener-
ate spike times according to Poisson processes with rates rα

ext(t).
The spike rate of each population α ∈ {E, I} at time t is given by
the average number of spikes of neurons from the corresponding
population in the interval [t, t +�t],

r�t
α (t) := 1

Nα�t

Nα∑
j= 1

∫ t+�t

t

∑
k

δ(s− tk
j )ds. (9)
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FIGURE 1 | Network architecture. Each of NE excitatory and NI inhibitory
neurons receives excitatory input from Kext external neurons with mean
synaptic strength Jext as well as synaptic input from KE (KI ) excitatory
(inhibitory) neurons of the network with mean strength JE (JI ) and delays
distributed according to pE

d (pI
d ).

In the mean-field limit N →∞, �t→ 0 we obtain a continuous
population spike rate rα(t) (see below).

We selected the following parameters for the neuron model:
C = 200 pF, gL = 10 nS, EL = −70 mV, �T = 1 mV, VT =
−50 mV, Vr = −70 mV, Vcut = −40 mV, and Tref = 1.4 ms
(Badel et al., 2008; Destexhe, 2009). For excitatory neurons the
adaptation parameters were varied within reasonable ranges:
τw ∈ [5, 1000]ms, a ∈ [0, 10]nS, b ∈ [0, 50] pA. For inhibitory
neurons adaptation was neglected (a = b = 0) since it was found
to be weak in fast spiking interneurons compared to pyramidal
cells (La Camera et al., 2006).

The network parameter values were NE =40,000, NI =
10,000, Kext = 1600, KE = 1600, KI = 400, EE = 0 mV, EI =
−80 mV, Jext = 0.003, JE = 0.003, and �Jγ = 0.1Jγ with γ ∈
{ext,E, I} (Brunel and Wang, 2003). To adjust the balance of
recurrent synaptic excitation and inhibition we introduce the
parameter

g := JI |EL − EI |
JE |EL − EE | , (10)

which is the ratio of total charges induced at rest (Kumar et al.,
2008). g determines JI and thus �JI for fixed JE and was var-
ied in [0.8, 4] which yields a physiological range of inhibitory
postsynaptic potential amplitudes (Tamas et al., 1997). Note
that the value of g that corresponds to balanced mean recur-
rent excitatory and inhibitory synaptic currents depends on the
mean membrane potential for each population. The effect of
a spike of presynaptic neuron j on neuron i is mediated by
a delayed instantaneous increment or decrement of the post-
synaptic membrane potential, cf. Equations (1), (5), and (7).

This implies that dα,β

ij reflects the conduction delay as well as
delays in the synaptic kinetics. We therefore chose the parame-
ter values of pEd and pId such that conduction delays as well as
typical time courses of excitatory AMPA and inhibitory GABAA

synaptic receptors are taken into account. The values we selected
were d0 = 1 ms, τE

r ∈ [1.25, 1.5]ms, τE
d ∈ [1.5, 2]ms, τI

r ∈
[0.55, 1.25]ms, and τI

d ∈ [1.5, 5]ms. The input rate of the exci-
tatory population rEext was varied in [1, 12.5]Hz. rIext was chosen

such that rE = rI in case of uncoupled populations of neurons,
i.e., JE = JI = 0.

MEAN-FIELD MODEL
We reduce the two-population network of aEIF neurons to the
mean-field model in three steps. First, we replace the synap-
tic current fluctuations by a Gaussian white noise process via
the diffusion approximation. Next, we take a mean-field limit
to formulate the stochastic network model in terms of two cou-
pled deterministic scalar partial differential equations (PDE).
Finally, to allow for efficient numerical computation we reduce
the number of variables in these equations using an adiabatic
approximation.

Diffusion approximation
We approximate the total synaptic current Iα

syn,i of Equation (5)

by its mean plus a fluctuating Gaussian part, which is jus-
tified by the following physiologically plausible assumptions:
(1) The number of synaptic inputs to a neuron is large, i.e.,
Kext, KE , KI � 1 (Destexhe et al., 2003) and (2) the postsynaptic
potential amplitudes elicited by individual presynaptic spikes are
small, i.e., Jext|EE − V |, JE |EE − V |, JI |EI − V | � Vcut − Vr

(Williams and Stuart, 2002). We further assume that (3) the
network connectivity is random and sparse, i.e., KE , KI � N,
and that (4) presynaptic spike times are represented by Poisson
processes which are homogeneous in each small time interval.
The total synaptic current can then be written as (Brunel, 2000;
Nykamp and Tranchina, 2000; Renart et al., 2004; Richardson,
2004; Gigante et al., 2007b)

Iα
syn,i ≈ μα,i(Vα

i , t)+ σα,i(Vα
i , t)ηi(t), (11)

where μα,i and σα,i are the infinitesimal mean and standard
deviation of Iα

syn,i, respectively, and ηi is a Gaussian white

noise process with δ-autocorrelation. The infinitesimal mean is
given by

μα,i := lim
�t→0

〈∫ t+�t
t Iα

syn,i(s)ds
〉

�t
(12)

= μext
α,i + μE

α,i + μI
α,i

with

μext
α,i = C(EE − Vα

i )JextKextr
α
ext(t) (13)

μ
β

α,i = C(Eβ − Vα
i )JβKβ(rβ ∗ pβ)(t), (14)

where 〈·〉 denotes the expectation operator. The infinitesimal
variance is

σ2
α,i := lim

�t→0

〈(∫ t+�t
t Iα

syn,i(s)ds
)2
〉
+ O(�t2)

�t
(15)

= (σext
α,i)

2 + (σEα,i)
2 + (σIα,i)

2
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with

σext
α,i = C(EE − Vα

i )

√(
J2
ext +�J2

ext

)
Kextrext(t) (16)

σ
β

α,i = C(Eβ − Vα
i )

√(
J2
β +�J2

β

)
Kβ(rβ ∗ pβ)(t), (17)

where β ∈ {E,I} and ∗ denotes convolution. In Equations (13),
(14), (16), and (17) we have used that the presynap-
tic Poisson processes, the synaptic weights and delays are
independent.

Mean-field limit
We analyze networks of sparsely coupled neurons, i.e., the prob-
ability for a connection between any pair of neurons is low,
cf. assumption (3) above. For large N correlations between the
fluctuations of synaptic currents of different neurons become
negligible, i.e., 〈ηi(t)ηj(t)〉 = 0 for i �= j. In the mean-field limit
N →∞ the network model Equations (1)–(4), Equations (11)–
(17) can be described by two FP equations—one for each popu-
lation α—which are delay-coupled by the population spike rates
rE and rI ,

∂pα

∂t
+ ∂SV

α

∂V
+ ∂Sw

α

∂w
= 0 (18)

with

SV
α :=

(
Iion(V)− w + μα

C
− σα

2C2

∂σα

∂V

)
pα (19)

− σ2
α

2C2

∂pα

∂V

Sw
α :=

a(V − EL)− w

τw
pα. (20)

pα(V, w, t) is the probability density to find a neuron of popula-
tion α in the state (V, w) at time t. SV

α (V, w, t) and Sw
α (V, w, t) are

the probability fluxes in positive V and w direction, respectively.
Note that we used the Stratonovich interpretation of the under-
lying stochastic equations (Risken, 1996; Richardson, 2004). To
account for the reset condition (3) the flux through the cutoff
voltage Vcut at w is re-injected after the refractory period Tref at
Vr, w + b, i.e.,

lim
V↓Vr

SV
α (V, w + b, t)− lim

V↑Vr

SV
α (V, w + b, t) (21)

= SV
α (Vcut, w, t − Tref) ∀w ∈ R.

This implies that in general pα is not differentiable at the
line V = Vr . The boundary conditions are reflecting for
w→±∞, V →−∞ and absorbing for V = Vcut,

lim
w→±∞ Sw

α (V, w) = 0 ∀V ∈ (−∞, Vcut] (22)

lim
V→−∞ SV

α (V, w) = 0 ∀w ∈ R (23)

pα(Vcut, w) = 0 ∀w ∈ R (24)

The spike rate of population α is given by the integral of the cutoff
fluxes,

rα(t) =
∫

R

SV
α (Vcut, w, t)dw. (25)

At any timepoint t the histogram of the membrane potentials of
neurons in population α can be seen as a sample drawn from
the probability density pα(V, t) which is governed by the FP
equation.

Adiabatic approximation
Solving the 2 + 1 dimensional PDE (Equations 18–20) with cor-
responding reset and boundary conditions (21)–(24) numerically
is possible but computationally demanding. We therefore reduce
the dimensionality of the FP system Equations (18)–(20) assum-
ing the timescales of membrane voltage and adaptation current
dynamics are separable. This is justified by the observation that
the dynamics of neuronal adaptation is significantly slower than
the other in the model system such as membrane time con-
stant and average inter-spike interval (Womble and Moises, 1992;
Stocker, 2004). Under this assumption, the adaptation current
of each neuron can be seen as an efficient integrator that filters
the fluctuations in the neuronal activity. We approximate wα

i (t)
in Equation (2) by its population average wα(t), which evolves
according to

τw
dwα

dt
= a(〈V〉pα(V,t) − EL)− wα + τw b rα(t), (26)

where 〈·〉p denotes the average over the density p (Brunel et al.,
2003; Gigante et al., 2007b). The probability density pα(V, t) then
satisfies the 1+ 1 dimensional FP equation

∂pα

∂t
+ ∂SV

α

∂V
= 0, (27)

where again SV
α is the probability flux defined in Equation (19)

and w := wα(t) appears as a system parameter. The reset condi-
tion is

lim
V↓Vr

SV
α (V, t)− lim

V↑Vr
SV
α (V, t) (28)

= SV
α (Vcut, t − Tref).

and the boundary conditions (23)–(24) become

lim
V→−∞ SV

α (V) = 0, (29)

pα(Vcut) = 0. (30)

The population spike rates are given by the corresponding fluxes
through the cutoff voltage,

rα(t) = SV
α (Vcut, t). (31)

Note that the adiabatic approximation described above could be
applied repeatedly for additional slow variables.
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NUMERICAL SOLUTION
We solved the reduced FP Equation (27) subject to con-
ditions (28)–(30) and mean adaptation current dynamics
(Equation 26) forward in time until either steady states r∞E , r∞I
with r∞α := limt→∞ rα(t) or stable oscillatory states were reached.
The probability densities pE , pI were initialized using normal-
ized Gaussians with mean 0.5 · (Vr + VT) and standard devi-
ation 0.2 · (VT − Vr). We applied a first-order finite volume
method on a finite and non-uniform grid V0 < V1 < · · · < VNV

using upwind-fluxes to stabilize the numerical solution (LeVeque,
2002). Time was discretized using the implicit Euler method
on an equidistant grid, i.e., tn+ 1 − tn ≡ �t. The resulting lin-
ear equation systems were solved with a preconditioned Krylov
subspace method in each time step. Specifically, BiCGSTAB
(van der Vorst, 1992) was used in combination with an incom-
plete LU decomposition preconditioner (Saad, 2003) that strongly
improved the convergence speed.

wE was initialized with values wE (0) ∈ [0, 500] pA (and
wI ≡ 0). The other parameters were �t = 50 μs, minm �Vm =
1 μV with �Vm := Vm+1 − Vm, V0 := −100 μV, VNV = Vcut

and NV = 256.
We complemented the mean-field results with numerical sim-

ulations of the network model Equations (1)–(4) using a Runge–
Kutta second order method implemented in Brian 1.4 (Goodman
and Brette, 2009) with a time step of 50 μs.

In case of stable periodic population spike rates the oscilla-
tion frequency was determined by the dominant frequency of the
Fourier spectrum of rE over the last 2 s of runtime.

RESULTS
ADAPTATION MEDIATES OSCILLATIONS
To examine how the interplay of adaptation and recurrent synap-
tic input shapes network dynamics we vary the type, strength and

timescale (parameters a, b, and τw) of adaptation for excitatory
neurons as well as the strength of synaptic inhibition (parame-
ter g) across networks. Adaptation currents are disregarded for
inhibitory neurons, which is supported by experimental obser-
vations, see the section Methods. We consider constant rates
rEext, rIext for the external Poisson-inputs and identical delay dis-
tributions pEd ≡ pId . First, we examine steady-state spike rates,
oscillation amplitudes and frequencies for networks with differ-
ent values of spike-triggered adaptation b and inhibition strength
g, see Figure 2A. All networks without adaptation (a = b = 0)
settle into asynchronous states with constant population rates
that decrease with increasing g. For networks with increased b
slow oscillatory states become stable if recurrent excitation is suf-
ficiently strong. The larger b is, the less recurrent excitation is
necessary for sustained oscillations. Amplitude and period of the
oscillatory rate decrease with an increase of b and g, respectively.
Thus, in networks where recurrent synaptic excitation dominates
inhibition at least slightly, spike-triggered adaptation b generates
spike rate oscillations. The dynamics of an example network is
shown in Figure 2B. The evolution of the population spike rates
rE , rI , membrane potential probability densities pE , pI and adap-
tation current wE display periodic bursts of population activity.
As a validation of the findings above using the mean-field model
the activity of simulated large networks of spiking neurons is
shown in Figure 2C. The raster plots reveal population bursts
when b is increased and g is small. An asynchronous state with
low population activity occurs if g is increased. If in addition
adaptation is removed (a = b = 0) the network settles into an
asynchronous state with increased spike rates.

The mechanism that generates these oscillations is a loop of
recurrent excitation, build up and decay of adaptation current as
indicated in Figure 2B. A low level of population activity is ini-
tiated by the external input rEext and recurrent synaptic excitation

FIGURE 2 | Population bursts caused by spike-triggered adaptation.

(A) Top: Spike rate rE of the excitatory population as a function of the
strength of inhibition g for networks without spike-triggered adaptation
(b = 0, black) and with increased levels of b (0.025 nA, brown and 0.05 nA,
red). In case of stable oscillatory states the maxima and minima of the
periodic rE are shown by dashed lines. Solid lines represent asynchronous
states. Arrows indicate balance of recurrent excitation and inhibition for
both populations. Bottom: Corresponding oscillation frequencies f.
τw = 200 ms, a = 0, and rEext = 6.25 Hz. The parameter values for both delay
distributions pE

d , pI
d were τr = 1.5 ms and τd = 2 ms. For other model

parameters see the section Methods. (B), Top: Time-dependent spike rates
rE (t) (green) and rI(t) (orange, dashed) for the parameter values
b = 0.05 nA and g = 1, as indicated in (A) by red dots. Center:
Corresponding membrane potential density pE (V, t). Bottom: Corresponding
mean adaptation current wE (t). (C): Raster plots of simulated networks of
N = 50,000 aEIF neurons for b = 0.05 nA, g = 0.85 (top), b = 0.05 nA,
g = 1.05 (center) and b = 0, g = 1 (bottom). The spike times of 200
excitatory neurons and 50 inhibitory neurons, all randomly selected, are
shown by green and orange dots, respectively. τw = 200 ms, a = 0, and
rEext = 3.75 Hz. Other parameter values as in (A).
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boosts the activity, thereby increasing the adaptation current wE
through b in a spike rate dependent way. The adaptation current
in turn acts as a negative feedback which eventually outweighs
the recurrent excitation. The population activity drops rapidly
and the adaptation current decays slowly. Upon recovery from the
adaptation current the cycle starts again.

Next, we investigate how these oscillations are affected by
the external input rEext, the subthreshold adaptation conduc-
tance a and the adaptation timescale τw, see Figure 3. The
existence of adaptation-induced oscillations is quite sensitive to
the level of rEext (Figure 3A). Periodic activity is stable for small
values of rEext (above threshold). While oscillation frequencies
increase monotonically with increasing rEext, oscillation ampli-
tudes increase initially for a small interval of rEext values and
decrease over the following interval. For larger values of rEext
oscillatory activity is destabilized and asynchronous states occur.
Interestingly, an increase in a does not lead to oscillations. On
the contrary, periodic population bursts are destabilized by a.
The dependence of oscillation amplitude and frequency on τw

is shown in Figure 3B. Stable oscillations exist for a large range
of values of τw, where the frequencies decrease with increasing
τw. Oscillations are unstable for small adaptation timescales in
the range of the membrane time constant and for very large
values of τw.

ADAPTATION MODULATES FREQUENCIES OF NETWORK-BASED
OSCILLATIONS
Here we study the influence of adaptation on oscillations gen-
erated by recurrent synaptic excitation-inhibition (E-I) loops.
The pace of such oscillations is believed to be largely deter-
mined by the decay of inhibition. To describe their dependence
on the timescale of inhibition for various recurrent network
regimes (from excitation dominated to inhibition dominated) we
first consider networks of neurons without an adaptation cur-
rent (a = b = 0), see Figures 4A,B. By varying the decay τI

d of
inhibition and its strength (by parameter g) across networks we
find that stable oscillatory states occur if inhibition is sufficiently
slow in comparison to excitation. The oscillation frequencies
increase with increasing external input spike rate rEext, increas-
ing g and decreasing τI

d , respectively. A low value of rEext leads
to frequencies in the low beta band (Figure 4A), for a higher
value of rEext the frequencies span the beta and low gamma bands
(Figure 4B). Note that the network parameters can be adjusted to
obtain higher oscillation frequencies. The generating mechanism
underlying the oscillations is a loop of recurrent synaptic exci-
tation and inhibition, initiated by the excitatory external input.
We verified this by removing the recurrent excitatory input to the
inhibitory population, which lead to a destabilization of the oscil-
lations. For larger values of g as the ones used in Figure 4, the

FIGURE 3 | Effects of subthreshold adaptation, external input, and

adaptation timescale on population bursts. (A), Top: Spike rate rE
depending on the external input rEext for networks without subthreshold
adaptation (a = 0, red) and with increased levels of a (5 nS, violet and
10 nS, dark blue). Maxima and minima of oscillating rE are shown by

dashed lines. Bottom: Corresponding frequencies f. b = 0.05 nA,
τw = 200 ms, g = 1, and other parameter values as in Figure 2A. (B):
Maxima and minima of rE (top) and oscillation frequency as a function of
the adaptation time constant τw . a = 0, rEext = 6.25 Hz, and other
parameter values as in (A).
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FIGURE 4 | Influence of synaptic inhibition and adaptation on

network-based oscillations. (A–D): Existence of oscillatory states (OSC)
and corresponding frequencies f as a function of the strength g and
timescale τI

d of synaptic inhibition for networks with adaptation parameters
and external input strengths as specified. Asynchronous states (ASYN) are

indicated by white regions in the parameter space. Arrows mark balance of
recurrent excitation and inhibition. On the left pE

d (green) and pI
d (orange) are

shown for τI
d = 1.5 ms, τI

d = 5 ms. τI
r was chosen such that the peaks of pE

d
and pI

d occur at the same delay value. τw = 200 ms, τE
r = 1.25 ms, and

τE
d = 1.5 ms. For other parameter values see the Methods section.

E-I-loop mechanism is replaced by an I-I-loop that does not
depend on recurrent excitation (not shown). Since adaptation is
only exhibited by excitatory neurons, we disregard the parameter
space where I-I-loop-based rhythmic activity occurs and focus
on E-I-loop-based oscillations instead.

An increase of spike-triggered adaptation or subthreshold cur-
rent stabilizes oscillatory states also for faster recurrent inhibition,
see Figures 4C,D. This change in single neuron dynamics causes
oscillations in large parts of explored (g, τI

d )-space. In particular,
for spike-triggered adaptation asynchronous states only occur in a
small region of the parameter space. Interestingly, the oscillation
frequencies are significantly reduced by either type of adaptation.

Next, we investigate how the timescale of adaptation τw affects
oscillations mediated by an E-I-loop. In Figure 5A we show
the dependence of amplitude and frequency of such oscillations
on τw for networks with both adaptation components increased
(a = 5 nS, b = 0.05 nA) and either dominant recurrent excitation
(g = 1.05) or inhibition (g = 1.5). In both cases, stable oscilla-
tory states exist for a large range of time constants. As τw increases
the oscillation frequencies decrease while the amplitudes first
increase abruptly and then decrease. The networks settle into
asynchronous states for small τw (in the order of the membrane
time constant) or large τw (several hundreds of milliseconds).
Note that these effects of τw are similar if either a or b is increased
individually (not shown). We validated these effects by simula-
tions of aEIF neuron networks, see Figure 5B. The raster plots
show that an increase in τw leads to a decrease in oscillation
frequency and amplitude.

ADAPTATION PROMOTES PERIODIC SIGNAL PROPAGATION
To analyze how the resonance properties of recurrent networks
in asynchronous states are influenced by adaptation currents, we
here consider external Poisson-inputs with oscillatory rates with
frequency f . Gain of input spike rate and phase difference between
network and input spike rates as a function of input frequency
for networks without (a = b = 0) and with adaptation (a = 5 nS,

b = 0.05 nA) considering two adaptation time constants are pre-
sented in Figures 6A,B. Excitation dominated networks without
adaptation do not exhibit resonance at any frequency and show
only phase delays. The presence of an adaptation current leads to a
significant amplification of oscillations in the input which is par-
ticularly strong at lower frequencies (of the beta band). This effect
is pronounced for an increased adaptation timescale. In addition,
adaptation causes a phase advance for low oscillation frequencies.

In networks where recurrent inhibition dominates excitation
on the other hand even in the absence of adaptation currents res-
onance is shown for a high frequency band and phase advances
for lower frequencies. Adaptation greatly enhances resonance and
shifts the preferred frequency band to the high gamma range.
The resonance effect is even stronger if the adaptation current
is slower, i.e., τw increased. Although these effects of adaptation
on resonance properties of recurrent networks are similar when
either the subthreshold (a) or spike-triggered adaptation compo-
nent (b) is increased individually, the dominant contribution to
the frequency amplifications comes from b (not shown). We addi-
tionally examined the response of single neurons to oscillatory
noisy inputs using our mean-field model and found that adap-
tation mediates resonance even in the absence of recurrent input
(not shown). These results emphasize the importance of adap-
tation for the amplification and thus propagation of oscillatory
signals in neuronal networks.

DISCUSSION
In this work we have investigated the role of neuronal adaptation
currents in shaping spike rate oscillations in large recurrent net-
works of excitatory and inhibitory neurons. Based on a network
of aEIF model neurons sparsely coupled through conductance-
based synapses with heterogeneous delays and strengths driven by
noisy external input, we used a mean-field method taking advan-
tage of the FP equation. We simplified the problem by applying
an adiabatic approximation and solved the resulting equations
numerically. Using this method we obtain membrane potential
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FIGURE 5 | Effects of adaptation timescale on network-based

oscillations. (A) Top: Spike rate rE as a function of the adaptation
time constant τw for networks with dominant recurrent excitation
(g = 1.05, violet) and inhibition (g = 1.5, blue). Dashed lines indicate
maxima and minima of oscillating rE , solid lines represent constant
rE . Bottom: Corresponding oscillation frequencies f. a = 5 nS and

b = 0.05 nA. rEext = 7.5 Hz, τE
r = 1.25 ms, τE

d = 1.55 ms, τI
r = 0.98 ms,

and τI
d = 2 ms. Other parameters as in Figure 4. (B): Raster plots of

simulated networks of size N = 50,000 with g = 1.5 and τw = 100 ms
(top) as well as τw = 400 ms (bottom), showing the spike times of
200 excitatory and 50 inhibitory aEIF neurons. Other parameter values
as in (A).

distributions and population averages of spike rates and adapta-
tion currents. At the same time, the dynamical properties of single
neurons, i.e., the neuron model parameters, are retained in the
derived mean-field network model.

Alternative mean-field methods have been developed for
conductance-based model neurons (Robinson et al., 2008) and
recurrent networks thereof in asynchronous states (Shriki et al.,
2003), where spike rates are obtained without having to solve a
PDE. Our approach based on the FP equation on the other hand
treats noise in the synaptic inputs in more detail and allows for
the calculation of membrane potential distributions in addition
to spike rates.

We chose the aEIF model because it provides a rich yet low-
dimensional description of neuronal dynamics and includes a
proper phenomenological description of the M and AHP adapta-
tion currents. The effects of subthreshold (a) and spike-triggered
adaptation (b) on response properties of aEIF neurons (measured
by spike rate-input current relationships and phase response
curves) match those of M and AHP adaptation currents in a
Hodgkin–Huxley type neuron model, respectively (Ladenbauer
et al., 2012). Furthermore, fitting the aEIF model parameters to
a detailed biophysical model using standard electro-physiological
paradigms revealed a clear relationship between parameter a and
the conductance for the M current as well as between parameter
b and the AHP current (not shown).

Our method is based on several assumptions which allow to
derive the mean-field equations. The Poisson approximation of
spike train statistics is justified by experimental findings (Tolhurst

et al., 1983; McAdams and Maunsell, 1999) although spiking
seems to be more regular in some cortical areas (Maimon and
Assad, 2009). The sparse random connectivity implies vanishing
noise correlations between neurons in the large network limit and
an experimental study in primary visual cortex of awake monkeys
has reported almost zero noise correlations (Ecker et al., 2010).
However, there is an ongoing debate about the strength of corre-
lations in experimental data (Cohen and Kohn, 2011). We have
used an adiabatic approximation, which relies on separable time
scales of adaptation current and membrane voltage. Although this
assumption is violated for small values of τw, numerically solv-
ing the unreduced FP system, Equations (18)–(24), showed that
our results are robust regarding the violation of this assumption.
The results we obtained by simulations of aEIF networks and
the mean-field results show quantitative differences. However,
the presented effects described using the mean-field model are
validated qualitatively by the network simulations.

We have shown that spike-triggered adaptation provides a
mechanism to generate spike rate oscillations in a low frequency
range (alpha band and lower) if recurrent excitation is suffi-
ciently strong. Increased subthreshold adaptation on the other
hand does not contribute to this mechanism but rather damp-
ens such oscillations. The type of adaptation current therefore
strongly determines rhythmic activity in excitation dominated
networks. The importance of activity-driven adaptation for slow
oscillations is consistent with results from simulations of detailed
(thalamo-)cortical spiking neuron network models (Bazhenov
et al., 2002; Compte et al., 2003; Destexhe, 2009), mean-field
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FIGURE 6 | Effects of adaptation on resonance properties of recurrent

networks. Gain (top) and phase shift (bottom) of the spike rate rE for
networks with dominant recurrent excitation [g = 1.05, (A)] and inhibition
[g = 1.5, (B)] as a function of the input frequency f . The gain is defined as the
quotient of the oscillation amplitude in rE for the input with frequency f and
the amplitude for the lowest frequency (fmin = 0.5 Hz). Adaptation parameter
values are a = b = 0 (black), a = 5 nS, b = 0.05 nA, τw = 100 ms (dark red),

and a = 5 nS, b = 0.05 nA, τw = 400 ms (orange). Delay distributions are
identically parameterized (pE

d ≡ pI
d ) with τr = 1.25 ms and τd = 1.5 ms. The

Poisson-input rates rEext, rIext each consist of a baseline rate plus a sinusoidal
component of small amplitude (1/1000th of the baseline) with frequency f.
The baseline of rEext is chosen to yield a steady-state spike rate r∞E of 50 Hz
with constant input rate. The baseline rate of rIext is chosen as explained in
the Methods section.

studies based on networks of excitatory neurons under the
assumption sparse (Gigante et al., 2007b) and all-to-all con-
nectivity (Nesse et al., 2008), as well as phenomenological rate
models (Latham et al., 2000). We have further shown that reduc-
ing inhibitory synaptic strength leads to a reduction on oscillation
frequency, which is in agreement with similar experimental find-
ings (Sanchez-Vives et al., 2010).

The M and AHP K+ currents, which mediate spike frequency
adaptation in pyramidal neurons, are known to be deactivated by
acetylcholine (McCormick, 1992), with the AHP current show-
ing higher sensitivity. Since the adaptation parameter b is strongly
related to AHP type adaptation, our results support the hypoth-
esis that the cholinergically induced activating transition from
slow-wave oscillations to asynchronous irregular states (Lee and
Dan, 2012) is mediated (at least in part) by a reduction of
spike-triggered adaptation (Destexhe, 2009).

We have demonstrated that an increase of either type of adap-
tation current leads to a reduction in the frequency of oscillations
generated by a loop of recurrent excitation and inhibition. This
shows that the dynamical properties of neurons in addition to
coupling characteristics strongly affect the network frequency.
Also the passive (integrative) membrane properties significantly
influence such networks oscillations as has been described previ-
ously (Geisler et al., 2005). Our additional finding of decreased

frequencies for increased adaptation time constants is consistent
with the results from a computational study on clustering effects
of spike-triggered adaptation in gamma oscillations (Kilpatrick
and Ermentrout, 2011).

Low input frequencies have been shown to be suppressed in the
output of single excitatory neurons with increased spike-triggered
(Gigante et al., 2007a) or subthreshold adaptation (Richardson
et al., 2003; Prescott and Sejnowski, 2008), which we confirmed
using our aEIF-based mean-field model. Such a high pass prop-
erty of single neurons has also been found using a more general
model of adaptation (Benda and Herz, 2003). We have demon-
strated that both adaptation currents cause spike rate resonance
in excitation dominated recurrent networks. Inhibition domi-
nated networks, on the other hand, exhibit resonance without
adaptation and we have shown that increased adaptation of exci-
tatory neurons strongly amplifies this resonance. A similar effect
has been described for purely inhibitory networks (Richardson,
2009). In addition, our results show that adaptation shifts the
resonance frequency to lower values.

In excitation dominated networks, adaptation further leads to
phase advances for low input frequencies in addition to phase
delays for higher frequencies as observed in previous studies
on single excitatory neurons (Fuhrmann et al., 2002; Gigante
et al., 2007a). These adaptation-induced phase advances enable
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synchronization of periodic activity between distant neurons (and
populations of neurons) in different areas of the brain if the
strength of adaptation is controlled appropriately, e.g., through
cholinergic neuromodulation.

Here we have considered one adaptation current for each neu-
ron of the excitatory population. To account for the multimodal
distribution of adaptation timescales found experimentally (La

Camera et al., 2006) our approach can be easily extended to
include multiple adaptation currents.
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Computational models at different space-time scales allow us to understand the
fundamental mechanisms that govern neural processes and relate uniquely these
processes to neuroscience data. In this work, we propose a novel neurocomputational
unit (a mesoscopic model which tell us about the interaction between local cortical nodes
in a large scale neural mass model) of bursters that qualitatively captures the complex
dynamics exhibited by a full network of parabolic bursting neurons. We observe that the
temporal dynamics and fluctuation of mean synaptic action term exhibits a high degree of
correlation with the spike/burst activity of our population. With heterogeneity in the applied
drive and mean synaptic coupling derived from fast excitatory synapse approximations
we observe long term behavior in our population dynamics such as partial oscillations,
incoherence, and synchrony. In order to understand the origin of multistability at the
population level as a function of mean synaptic coupling and heterogeneity in the firing rate
threshold we employ a simple generative model for parabolic bursting recently proposed
by Ghosh et al. (2009). Further, we use here a mean coupling formulated for fast spiking
neurons for our analysis of generic model. Stability analysis of this mean field network
allow us to identify all the relevant network states found in the detailed biophysical model.
We derive here analytically several boundary solutions, a result which holds for any number
of spikes per burst. These findings illustrate the role of oscillations occurring at slow time
scales (bursts) on the global behavior of the network.

Keywords: multispikes, self-organization, transients, firing rate, parabolic burst, network synchrony, generative

model, oscillations

1. INTRODUCTION
The neuronal spike-burst activity is characterized by recurrent
transitions between rest state and firing state where bursts are
temporal groupings of multiple spikes. Certain cells in the mam-
mal brain, for example, neurons in the thalamus during periods of
drowsiness, attentiveness, and sleep are known to exhibit this type
of spike-burst behavior (Sherman and Koch, 1986; Steriade and
Llinás, 1988; McCormick and Feeser, 1990; Steriade et al., 1993;
Amzica and Steriade, 1998). Autonomously bursting neurons
are found in a variety of neural systems, from the mammalian
cortex (Morris and Lecar, 1981; Dhamala et al., 2004a,b) to brain-
stem (Hindmarsh and Rose, 1984; Wang, 1994; Izhikevich, 2007;
Jirsa and McIntosh, 2007; Jirsa, 2008). When neurons are cou-
pled with each other, they produce different modes of behavior,
including synchrony and phase-locking, which have been impli-
cated in memory, cognition, sensory processing, motor planning,
and execution (McCormick and Feeser, 1990; Wang, 1994; Jirsa
and McIntosh, 2007). Many neurological diseases, on the other
hand, including Parkinson, schizophrenia, and epilepsy, are the
result of abnormal synchronization (Uhlhaas and Singer, 2006;
Jensen et al., 2007), which suggests that a better understand-
ing of the basic mechanisms producing synchrony and phase
locking will be a stepping stone toward the repair of brain func-
tion. Modeling attempts using large scale networks to understand

emergence of cognitive states rely heavily on the approximation
of the dynamics as a neural ensemble. The concept of a neu-
ral mass like abstraction (Hebb, 1949; Beurle, 1956) designates a
group of Co-activated neurons capable of acting like a closed sys-
tem when performing a certain function. A small scale network
of this kind is sometimes referred to as a “neurocomputational
unit.” In large scale brain networks, these mesoscopic units of
operation serve as the network nodes (see for instance, Deco
et al., 2008, 2011; Ghosh et al., 2008). On intermediate spatial
scales of few cm, neural activations along the spatially continuous
cortical sheets are described by neural fields, for which the con-
nectivity is assumed to be translationally invariant (see, Wilson
and Cowan, 1972; Nunez, 1974; Amari, 1977; Jirsa and Haken,
1997; Feng et al., 2006; Jirsa, 2009; Robinson, 2011). To define
such small neurocomputational units, simplified neuron models,
known as phase models, offer an attractive tool for the study of
network modes, since they allow for detailed mathematical analy-
sis of network dynamics (Breakspear et al., 2010). As an example,
Carbal et al. have explored the role of local network oscillations
in resting-state functional connectivity by using such phase oscil-
lators in the respective nodes of the simulated network. They
have shown when these oscillatory units are integrated in the net-
work, they behave as weakly coupled oscillators. Moreover, for a
set of network parameters they found subsets of nodes tend to
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synchronize although the network is not globally synchronized
(Cabral et al., 2011). For the present work we use a recently
proposed phenomenological model that admits parabolic burst-
ing in one dimension, which is a type of bursting observed
in the R-15 neuron in abdominal ganglion of aquatic mollusc
Aplysia Californica (Ermentrout and Kopell, 1986; Izhikevich,
2000; Ghosh et al., 2009). This type of bursting can arise even
without bistability in the generation of spikes. The investigation
carried out in this work with a detailed neuron model capable of
displaying spiking and bursting behavior and a minimal model
that not only reproduces the mean field amplitude of the original
networks but also capture the most important temporal features
of its dynamics. The detailed model used here is extensively dis-
cussed in Rinzel and Ermentrout (1989). On the other hand, our
phase model is a minimal model that captures the generality of
the mechanism of bursting present in the detailed model. As we
vary network parameters including mean field coupling strength
and dispersion, both networks display various temporal dynam-
ics. In order to understand these states in mathematically tractable
terms we take advantage of the mean field coupled network of
phase model. Our goal is to identify to what degree this mean field
model serves as a reliable neurocomputational unit and captures
the qualitative features of temporal dynamics of the full network
as a function of the investigated network parameters. Mean field
analysis for singleton burst reveals solutions such as incoherence
and partial oscillation which can be completely described ana-
lytically. However, as we are interested in a multispike system
where analytical calculation is rather non-trivial and therefore,
we combine semi-analytical approach with numerics to derive
the stability diagram. Mean field phase network allow us to iden-
tify the mechanism of transitions between various network states
that appear as solutions of the full network. Stability diagram
is independent of number of spikes per burst and qualitatively
commensurates well with the findings in our full network. The
paper is structured as follows. In the next section, we introduce
the Rinzel–Ermentrout model (Rinzel and Ermentrout, 1989) for
parabolic bursting and describe the model in details. In the fol-
lowing section, we couple individual neurons via global coupling
and present our analysis of this network model. In the subse-
quent section, we set up a generic network of bursters coupled to
their mean field and derive semianalytically all the network states
and corresponding phase transition boundaries. In the next sec-
tion, we derive numerically a stability diagram using global phase
coherence measure. In the final section, we summarize the results
obtained from mean field descriptions and link them systemat-
ically with the network states obtained from biophysical model
network.

2. MATERIALS AND METHODS
2.1. SINGLE NEURON MODEL
A dynamical system with multiple time scales (for example, a
neuron with spiking-bursting behaviors) can be written in a sin-
gularly perturbed form: ẋ = f (x, y), ẏ = rg(x, y), where x is the
vector of fast variables, y the vector of slow variables that modu-
late the fast activity, and r � 1 is a ratio of fast/slow time scales.
A system which has been proposed to describe parabolic burst-
ing behavior is known as Rinzel model (1989). Single neuron

model parameters used here are exactly as described in Rinzel and
Ermentrout (1989).

V̇ = (I − ICa − (gKw + gkcaz)(V − VK)− gl(V − Vl))/c

ẇ = φ(w∞ − w)/τw

Ċa = ε(−μICa − Ca)

ṅ = ε(n∞(V)− n)/τn (1)

where ICa = (gCam∞(V)+ gsCan)(V − VCa), z = Ca
Ca+Ca0

and
gating functions are

m∞(V) = 0.5(1+ tan h((V − v1)/v2))

w∞(V) = 0.5(1+ tan h((V − v3)/v4))

n∞(V) = 0.5(1+ tan h((V − v5)/v6))

τw(V) = 0.5(1+ tan h((V − v3)/2v2)) (2)

where V is the membrane potential, w is associated with the
fast current, Na+ or K+, Ca and n are the two slow currents,
Model parameters which are held fixed throughout our sim-
ulations are, VK = −84, Vl = 60, VCa = 120, gK = 8, gl = 2,
c = 20, v1 = 1.2, v2 = 18, v6 = 24, v5 = 12, v3 = 12, v4 = 17.4,
τn = 0.05, φ = 0.06666666, gCa = 4.0, μ = 0.025, Ca0 = 1, ε =
0.0005, and gkCa = 1, gsCa = 1.

I is the applied input current. The ionic currents are given
by an ohmic leak current, determined by the leak conductance
gl and leak reversal potential Vl, and a Na+ current which is
responsible for the generation of spikes. The dynamics of this
model which is relevant to our study is outlined as follows. When
the input current I exceeds a critical value Ic a single neuron
described by Equation (1) undergoes a Saddle-node bifurcation
on an invariant circle (SNIC). This same system for two differ-
ent parameterization of I and in the presence of the slow currents
can exhibit both spiking as well as parabolic bursting behavior.
Spiking behaviors are elicited for a slightly higher value of the
external drive. For example, to observe a typical burst-like pat-
tern in this system we held the input current to the values I = 68
and for spikes I ≥ 70. Figure 1 displays the relationship between
the applied input current and a parabolic bursting pattern that is
observed in the single neuron dynamics.

2.2. PHASE MODEL
The generality of the underlying mechanism for parabolic burst-
ing is investigated in details by numerous authors (Ermentrout
and Kopell, 1986; Baer et al., 1995; Izhikevich, 2000). In many
such formulations, parabolic bursting neurons are typically in
their canonical form described as:

θ̇ = [1− cos(θ)+ f (x, y)]
ẋ = μx[xη(θ)− x]
ẏ = μy[yη(θ)− y] (3)

where function f (x, y) in the above equation couples to spike gen-
erative mechanism depending on the slow variables x, y dynamics,
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respectively. The function f (x, y) is a smoothly varying peri-
odic function alternating signs such that the system undergoes
a SNIC to generate parabolic burst at the single neuron level.
Recently Ghosh et al. (2009) has also proposed a simpler model
that in principle captures the underlying mechanism of parabolic
bursting involving only a circular phase variable θ and more-
over, involve only one slow term to allow the fast dynamics to
enter or get out of repetitive firing. Motivation for using such a
model is primarily mathematical tractability. Parameter space of
this model cannot be directly linked to the biophysical parame-
ters, however, qualitatively it may account for the transient and
longterm behavior of more detailed biophysical models. In this
model a single neuron is described by the following equation,

θ̇ = I − cos θ− cos
θ

n
(4)

In Equation (4) a slow variable activation term is represented by a
modulation term cos( θ

n ) which mimics the entire slow subsystem
instead of describing it as a separate dynamical system, I is the
applied input current and n is an integer, which determines the
number of spikes per burst. In our simulation with this model
all the results are for n = 5 spikes per burst unless otherwise
specified.

2.3. FULL NETWORK MODEL
Golomb and Rinzel (1993) considered a heterogeneous net-
work of all-to-all coupled inhibitory bursting neurons and
found regimes of synchronous, anti-synchronous and asyn-
chronous behavior when the width of the heterogeneity was
changed (Golomb and Rinzel, 1993; Stefanescu and Jirsa, 2008,
2011; Smeal et al., 2010; Jirsa and Stefanescu, 2011). We describe
our network equations via a fast instantaneous coupling. N
synaptically coupled (all-to-all) parabolic bursting neurons are
described by a similar set of non-linear differential equations with
fast chemical synapse. To this end we formally describe:

V̇i = (bIi − ICa − (gKw + gkcaz)(Vi − Vk)

− gl(Vi − Vl)+ KS(Vi − Vth))/c

ẇi = φ(w∞ − wi)/τw

Ċai = ε(−μIca − Cai)

ṅi = ε (n∞(V)− ni) /τn

ṡi = as(Vi)(1− si)− si

β
(5)

where all the parameters and the gating variables inherit from
the single neuron model Equation (1, 2) and b is a rescaling fac-
tor to applied drive to cross the threshold and elicit spike/burst
in the uncoupled system. Stimulus that all the neurons see Ii >

0 are drawn from a uniform distribution assumed to be sym-
metrically distributed over the interval Ii ∈ [2.1−�I, 2.1+�I].
Where �I is the spread of the applied stimulus parameter. �I
introduces a heterogeneity in the spike threshold. The synaptic
coupling appears as an ensemble average given by S = 1

N

∑N
i= 1 si,

where asi(Vi) = 1
(1+ exp(−Vi/2))

is a sigmoidal activation function.

The synaptic strength K is the same for all the neurons. For the
entire simulation, we fixed the reversal potential of potassium
ions to vth ≈ 0.0 (for purely excitatory connectivity).

Analysis is carried out for a fast synapse (AMPA-type glu-
tamate receptors), such as those found in the auditory system,
the rise time is instantaneous, and post-synaptic responses com-
mence almost instantaneously after the start of presynaptic action
potential (Nunez, 1974; Morris and Lecar, 1981). This brisk com-
munication is a consequence of rapid calcium-channel kinetics,
which allows significant calcium entry during the upstroke of
the presynaptic action potential (Sabatini and Regehr, 1996).
Under the fast synapse approximation the variable si relaxes
much more rapidly than Vi, in which case we may apply a
quasi-static approximation to (Equation 5) (e), ṡi ≈ 0, allow-
ing us to adiabatically eliminate the synaptic variable via si =

β
(1+ β+ exp(−Vi/2))

. The time course of the postsynaptic conduc-

tivity caused by an activation of AMPA receptors can be captured
by a rise time βrise = 0.09 ms and decay time βdecay = 1.5 ms
(Gabbiani et al., 1994; Parnas and Parnas, 1994). Numerical
results in Figure 3 provides a good approximation for β in the
range between [0.01 ms, 0.5 ms]. Although, we have provided
here the details about the fast excitatory synaptic connectivity,
our approach can be readily extended to inhibitory connec-
tivity as well. In the continuum limit, a mean field formula-
tion with inhibitory synaptic coupling is provided in details in
Appendix.

2.4. MEAN FIELD COUPLED PHASE MODEL
Each generic neuron is coupled to this mean field and typi-
cally their response to the mean field expressed as R(θ) explicitly
dependent on θ, and implicitly on time. In absence of any cou-
pling, their vector field flow on a real line is governed by F(θ) =
ω− cos(θ)− cos(θ)/n. In the absence of the term cos(θ)/n
expression reduces to a mathematical description used in Roy
et al. (2011). Together, we can write for N (still finite) such
neurons:

θ̇i = F(θi)− �R(θi), (6)

Recently, we have proposed a formulation for mean synaptic acti-
vation term under fairly general setting and taking advantage of
instantenous activation, deactivation between pre and postsynap-
tic events. It allows one to describe synaptic activation variable

si = β

1+β+exp
(−Vi

2

) as a non-linear transfer function of membrane

voltage (Roy et al., 2011). Moreover, we have described how the
mean field coupled spiking neurons can be described mathe-
matically with this synaptic coupling. Details of this formulation
is described elsewhere, (Roy et al., 2011). Collective activity of
synapses is described by a mean field. For a given population of
neurons is expressed more formally as,

� = K

N

N∑
l= 1

β(
1+ β+ exp

(
− cos θl

2

)) , i �= l. (7)

where � is the mean field influence function. Coupling K is
the same for all the neurons. In our previous work, response to
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such mean field coupling explicitly described as R(θi) = sin θi

(cos θi − vth),

θ̇i = F(θi)− � sin θi(cos θi − vth)+ O(ε), (8)

where O(ε) contains non-circular deviations of the order ε that
results due to perturbations. vth ≈ 0.0 for all simulations and
analytical calculations unless mentioned otherwise. It is impor-
tant to note that the couplings in the phase descriptions retain
their mathematical expression in the full model plus some linearly
added correction terms, which scale with the degree of order of
deviation from the circle (Roy et al., 2011). Hence, in application
it is rather suitable when phase perturbations are close to the cir-
cular orbit. The above equation further can be written combining
the terms containing a single Fourier harmonic in the coupling
plus the higher order Fourier terms.

θ̇i = ωi − sin θi − sin(θi/n)+ P(θl) sin θivth

+O(2θi)+ O(ε), (9)

P(θl) = K

N

N∑
l= 1

β(
1+ β+ exp

(
− cos θl

2

)) , i �= l. (10)

See for details (Roy et al., 2011). Where, in Equation (6) the
frequencies Ii ≥ 0 are assumed to be symmetrically distributed
over the interval Ii ∈ [I −�I, I +�I] according to a uniform
probability distributions.

2.5. CHARACTERIZATION OF SPIKE/BURST COHERENCE IN
BIOPHYSICAL NETWORK MODEL WITH MEAN FIELD COUPLING

The bursting coherence and incoherence is quantitatively charac-
terized in terms of a statistical-mechanical spike-based measure.
We consider an excitatory population of neurons coupled to a
common mean field drive and heterogeneity in their thresh-
old for spikes/bursts. By varying the strength of the coupling
K and the stimulus spread �I we investigate the emergence of
spike/burst coherence. Emergence of collective spiking/bursting
coherence may be well described by the (population-averaged)
global potential,

Vmean(t) = 1

N

N∑
i= 1

Vi (11)

In the thermodynamic limit (N →∞), a collective state becomes
coherent if δVmean(t) ≡ [Vmean(t)− Vmean(t)] is non-stationary
(i.e., an oscillating global potential Vmean appears for a coher-
ent case), where the overbar represents the time average, and
also, the correlated mean field �(t) activity appears oscillatory.
Otherwise (i.e., when Vmean is time independent or stationary),
it either becomes incoherent (IN) or partial oscillatory (PO). In
N →∞ limit both these states converges to a stationary solu-
tion. Thus, the mean square deviation of the global potential is
a global marker for mean burst coherence for the entire pop-
ulation described here. More formally one can write it as (i.e.,
time-averaged fluctuations of Vmean),

R(t) = (Vmean(t)− Vmean(t))2 (12)

plays the role of an order parameter used for describing the
coherence-incoherence transition (Manrubia et al., 2004). For the
coherent (IN) state, the order parameter R(t) approaches a non-
zero (zero) limit value as N goes to the infinity. We compute R(t)
in Equation (12) as a function of mean field coupling strength K
and dispersion parameter �I for the full system. We vary both
K, �I from 0 to 1 in a step size of 0.01. Subsequently, computed
values of R(t) is plotted in grid size of 100× 100. Contour plot
is colorcoded from low values at zero (blue) to high values at 1
(red). Nearly (in phase or anti phase) synchronized population
spike/burst activity is lumped into a regime with labeled as SR and
IN population spike/burst activity is lumped into a regime called
IN activity. In the IN regime as described above R(t) values stays
close to zero with substantial subthreshold fluctuations. Partial
bursty regime is labeled as PO observed for R(t) values stationary
and close to values other than zero. This regime displays dynami-
cal behaviors far from synchrony, such as multi-clustering (some
of the neurons are firing incoherently while others are not firing
at all) in the phase for instance. Depending on the heterogeneity
in stimulus spread we get random distribution of phases such that
individual members can exhibit cluster hopping. Multiclustering
in our model can reliably be captured using an ensemble average
quantity rotation number ρi given by Equation (14).

2.6. CHARACTERIZATION OF SPIKE/BURST COHERENCE IN PHASE
NETWORK MODEL WITH MEAN FIELD COUPLING

The bursting coherence and incoherence is quantitatively charac-
terized in terms of statistical mechanical order parameter coher-
ence measure. As an alternative to storing and plotting many
time series data θi(t), i = 1, . . . , N for all N = 1000 variables, we
define an order parameter

Rθ(t) = 1

N

N∑
i= 1

cos θi (13)

Equation (13) measures the population dynamics. The advan-
tage of using such a formulation becomes apparent immedi-
ately. Let’s say our model system has periodic orbit then θi(t)
θi(t + T), where T periodic pacing spikes or bursts (latency).
Then in order parameter space one can can detect this state in
a straight forward manner as a solution Rθ(t)Rθ(t + T). This
result holds for all i, t. In this case, Rθ dynamics is dominated
mostly by the x co-ordinate dynamics. Absolute values of mean
order parameter mod Rθ ≤ 1. There is a mathematical rela-
tionship of macroscopic global phase measure with macroscopic
Vmean(t) in Equation (11). The interval between each micro-
scopic spike/burst in an arbitrary ith stripe of spike/burst can be
determined in a statistical-mechanical way by taking into con-
sideration its contribution to the macroscopic global membrane
potential Vmean(t). In this interpretation, the time series of the
global potential Vmean(t) has a local maxima and minima, respec-
tively and strictly bounded between [0,1]. The global cycle in the
suprathreshold regime starting from the minimum of Vmean(t)
which appears first after the transient time is regarded as the first
global cycle, which is denoted by G1. The 2nd global cycle G2

begins from the next following right minimum of G1, and so on.
Then, we can introduce an instantaneous global phase measure
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θ(t) of Vmean(t) via a linear interpolation in the two successive
subregions forming a complete global cycle (Lim and Kim, 2011).
A microscopic spike makes the most constructive (inphase) con-
tribution to Vmean when the corresponding global phase θk for
kth cycle of spikes/burst is 2nπ (n = 0, 1, 2, . . .), while it makes
the most destructive (anti-phase) contribution to Vmean(t) when
θi for an arbitrary ith cycle of burst is 2(n1/2)π. By averaging the
contributions of all microscopic spikes within a burst in the ith
burst stripe to Vmean, we can obtain the following degree of order-
ing of spikes/bursts. Hence, the contribution of kth microscopic
burst occurring at the time tk is ordered by Rθ(tk). If the degree of
synchrony is high between the bursts/spikes then Rθ(tk)→ 1. We
quantify the average firing frequency to compare the long-term
behavior of individual neurons in the population model. We com-
pute the average frequency (also known as the rotation number)
of population of neurons using

ρi = lim
t→∞

θi

t
, i = 1, . . . , N. (14)

Averaging is carried out over about 1000 neurons starting from
random initial conditions after the transient have died out.
Collective states of ensemble of N = 1000 neurons with spikes per
burst n = 5 as indicated by their rotation numbers with uniform
distribution of frequency I in the interval [2.1−�I, 2.1+�I].
Different branch of rotation index indicate different dynamical
states of the network as a function of mean field coupling strength
K, �I. We carry out a grid search in the 2D parameter space K,
�I. Our goal is to obtain a phase transition diagram to under-
stand long-term collective behavior of Equation (8) for large N, as
a function of the coupling strength K ≥ 0 and the stimulus spread
�I ∈ [0, 1). Global order parameter Rθ(t) is computed for differ-
ent parameterization of K, �I and embedded on a contour plot.
Color spectrum is the same as the one used for displaying phase
diagram in the full network. The values which are high and close
to 1 are indicated by red and the values which are close to zero are
indicated by blue.

2.7. CLUSTERING ANALYSIS IN N COUPLED FULL AND PHASE
NETWORK MODEL

We describe firing patterns in large networks (finite N) with exci-
tatory mean field coupling in terms of array diagrams. Array
diagrams are obtained by simulating a coupled system consisting
of mean field coupled biophysical neurons (N = 100) governed
by the Equation (5). All the coupling coefficients are the same
K where i = 1, . . . , N. In the arrays the intensity of the voltage
variables V1, . . . , Vi have been encoded in color spectrum. Two
different color spectrums are used for the biophysical network
(see Figure 4). In the first color spectrum blue part of the array
values implies the quiescent activity of the spikes where the volt-
age variables have relatively lower values. All the other colors in
the spectrum indicates the higher values for the voltage variables,
consequently these pixels in the array imply the spike activity.
The horizontal line of the array shows the time with increasing
epoches of activity. The second color spectrum used here shows
burst depiction in the nearly coherent parameter regime. Green
colors in the array indicate completely silent neurons. Purple pix-
els on the green background shows burst activity. On the vertical

axis neuron index are aligned and again, on the horizontal axis
gives the direction of time. These diagrams were obtained from
a phase network by monitoring phases of individual neurons
i = 1, . . . , N and aligning them on the vertical axis. The choice
of the color spectrum used for phases is given by a colorbar with
uniformly distributed phase values. In Figure 9 red color index
in the spectrum corresponds to higher phase values of θ (close
to π) and orange color index are for lower phase values (close
to −π). First initial conditions θi(0) is generated randomly and
then they are sorted according to their neuron index and subse-
quently distributed uniformly about [−π, π]. The parameters K,
�I, for both realizations are chosen from SR, IN regime of the
respective phase diagrams.

2.8. NUMERICAL PROCEDURES AND VISUALIZATION OF THE SYSTEM
DYNAMICS

Two network models were implemented in Matlab, numerically
integrated using second order Runge Kutta routine and Euler–
Maruyama (EM) method (Higham, 2001). The simulations were
performed with a fixed time step of dt = 0.05. The first 200 time
points of the simulation are disregarded to set the network to
a steady state. Thus, the results within this time were ignored.
The membrane potential V(t), standard deviation of membrane
potential std V , mean field �(t), order parameters R(t), Rθ(t) are
captured for the entire population. For full network, simulation
is carried out for N = 100 neurons and for the phase network
for N = 1000 neurons. Numerical Phase diagrams are obtained
using parallel for loops implemented in Matlab. Coupled mean
field Phase model represented in Equation (8) can be visualized
as a collection of N points rotating around the unit circle, where
the estimated phase for each neuron θi(t) denotes their position
on a ring or a circle at time t. This alternate representation of
the dynamical system (as N points moving along a circular refer-
ence frame, instead of a single point tracing out a trajectory in an
N-dimensional phase space) is possible because the system’s state
space, the N-torus, is equivalent to N copies of the unit circle. It
is worth noting that for most other N-dimensional state spaces
such a reduced representation is not feasible. In order to distin-
guish between oscillators with different natural frequencies, we
color the dots according to the standard color spectrum: the neu-
rons correspond to the low end of the spectrum (close to -π)(red),
neurons at the high end (close to π) (blue), while those in between
occupy the middle part of the spectrum (orange/yellow/green).
To show how the system evolves from one instant to the next,
we plot a series of snapshots of the system at different times
(see Figures 11B–D, for example). This allows us to observe the
behavior of individual neurons at the same time as we witness the
collective evolution of the system toward an attractive state.

3. RESULTS
3.1. SINGLE NEURON BURST DYNAMICS
We first examine the behavior of single neuron model
Equation (2.1) as the applied input current I is brought close
to the threshold for generating spikes or bursts. For the given
parameters In Equation (2.1) a neuron is excitable. Figure 1
depicts the relationship between applied input and parabolic
bursting pattern. We are only interested in the behavior of this
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FIGURE 1 | Shown here trace of membrane potential and calcium

dynamics. Fast spikes rides on a slow modulation of calcium. Slow
subsystem moves Ca back and forth across SNIC bifurcation points

(A,C). In (B,D) membrane potential dynamics is shown for two
different cases (A) I < Ic and (B) I > Ic in the single neuron
model.

system for low current values where the resting state of mem-
brane voltage is sufficiently depolarized below −40 mV. When
the applied input current I is below a critical value membrane
potential V(t) maintains their steady state value and for val-
ues greater than the threshold exhibits bursting behavior. For
the parameterization used here we find that at I ≥ 60 steady
state destabilizes exhibiting multispikes. When the applied input
current is further increased a neuron make transition from burst-
ing to spiking behavior. In order to observe a typical spiking
behavior we set I ≥ 70. To get an intuitive understanding about
the relationship between slow and fast subsystems, Rinzel and
Lee analyzed this model by varying ca (a variable in the slow
subsystem) as a bifurcation parameter to report that parabolic
bursting is obtained from an oscillation in the slow subsystem
that periodically moves the ca variable back and forth across the
SNIC bifurcation, to link the steady state solution of this sys-
tem to (quiescence state in Figure 1A) the branch of periodic
solutions (Figure 1B) and vice versa. Time series of fast variable
shows that the interspike interval is relatively longer at the begin-
ning and end of each burst. As has been shown by numerous
authors oscillation for the fast dynamics is obtained when the
slow variables are held fixed; it is where the saddle-node-loop

bifurcation occurs. There is a clear threshold below which there
is a unique stable fixed point. Parabolic bursting can occur with-
out having any bistability in the spike generating process. One
way to achieve parabolic bursting behavior without requiring any
bistability in the generating process and moreover, mathemati-
cally tractable would require a generic description like the one
shown in Equation (2.2) (see section 2). From numerical results
we find that as the applied input current I→ 2, time period
T →∞. Applied input current can be tuned such that it is pos-
sible to obtain parabolic bursts of desired interburst gap. The
time evolution of a single neuron activity is shown in Figure 2,
where a membrane potential like variable V(t) = − cos[θ(t)]
is plotted by numerically integrating Equation (2.2). Temporal
dynamics shows regular parabolic bursting behavior. For I < Ic

a neuron fires few spikes before it settles into a steady state.
For I > Ic (I = 2.01, n = 5) neurons exhibits parabolic burst-
ing behavior. Based on the qualitative similarity in the burst
pattern with parabolic bursting neurons (At the start and the
end of the active phase the spike frequency is smaller com-
pared to the middle of the active phase as can be seen in
Figure 2 detailed model is substituted to investigate the network
effects.
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FIGURE 2 | The temporal dynamics of the phase model of spike-burst neuron. V (t) = − cos[θ] is plotted as a function of time, Ic = 2.01, n = 5, for
(A) I < Ic and for (B) I > Ic .

3.2. NETWORK DYNAMICS OF PARABOLIC BURSTING NEURONS WITH
HETEROGENEITY

To understand the influence of heterogeneity in the applied input
current and the coupling strength in a network of single neurons
exhibiting parabolic bursting we use Equation (5) and parameters
as described in section 2.4. We use fast excitatory synapses to cou-
ple these units. When the synaptic coupling is sufficiently fast, the
coupling tends to push the neurons toward anti-synchrony (Wang
and Rinzel, 1992; Friesen, 1994; Van Vreeswijk et al., 1994).
Moreover, several studies have observed emergence of multistable
solutions in their mean field network with parameter heterogene-
ity (Assisi et al., 2005; Jirsa and Stefanescu, 2011). Our motivation
is to go toward this particular direction to capture the rele-
vant network dynamics at the population level. In particular to
understand the combined effect of heterogeneity in the firing
rate threshold (biophysical model) with the fast time scale of
activation-deactivation of synapses in the coupling; the interplay
between these two critical factors in spike/burst timing at the
population level is largely unknown. In our formalism their indi-
vidual and combined influence on the network dynamics become
clearly visible. Typical time course of such responses of synap-
tic variable in our model simulation are shown in Figure 2). Fast
synapse approximation holds as long as the variable si relaxes
much more rapidly than Vi, in which case we may apply a qua-
sistatic approximation to reduce si further in Equation (5), si � 0
allowing us to adiabatically eliminate β, and set the synaptic

variable via an approximation as si = β

1+ β+ exp
(−Vi

2

) . The mean

synaptic action can be formulated as � = 1
N

∑N
i= 1 si, where

as(Vi) = 1
(1+ exp(−Vi/2))

. The synaptic constant K is the same
for all the neurons. Figures 3A–D shows kinetics of excitatory
synaptic variable si (plotted with black solid lines) for different
β values. Mean synaptic variable (plotted with dotted lines) for
the same set of values of time constant β shows dissimilar tempo-
ral response compared to si for higher time constant values. For
smaller time constant values simulation provides relatively better
aggrement as can be seen from Figure 3. We numerically integrate
the above network to investigate how the mean population burst
changes with time as a function of spread of applied stimulus �I
and mean field coupling strength K. Firing patterns in this net-
work are shown with array diagrams in Figures 4A,B. For small
spread in the applied stimulus and sufficient coupling strength
�I = 0.001, K = 0.7 nearly burst synchronization takes place.
Moreover, in the array diagram we detect clusters of synchronous

FIGURE 3 | Shown here trace of synaptic variable and approximated

synaptic variable. Traces are plotted for a spiking regime of our network at
I = 80, this external current is applied to each neurons in this population.
Panels (A–D) are generated for low to high β synaptic time constant values.
figure shows approximation breaks down progressively as we go to higher
β values or access slower time scale. Approximation holds for faster time
scale of oscillations.

states which fires in a wave-like pattern. Corresponding time
series of mean quantities such as the membrane potential
Vmean(t) in Equation (11), mean field �(t) shows periodic activ-
ity in Figure 4C. Membrane potential spiking activity is nearly
synchronized across population of neurons in Figure 4. On the
other hand, for the IN state mean membrane potential fast decays
to zero and shows subthreshold fluctuations about mean zero.
Response of mean membrane potential is more suppressed com-
pared to their mean field oscillations between [0,1]. Amplitude
of mean field �(t) changes in time systematically but fluctuates
about the mean value of 0.5 instead of approaching zero val-
ues as can be seen in Figure 4D. Population burst synchrony is
observed for many different parameterization, for one such choice
of parameter �I = 0.002, K = 0.8, an array diagram is computed
and plotted in Figure 5A. As can be seen in the figure a wave-
like spread of activity. In Figure 5B various time series plots of
population burst synchrony is shown across 10 neurons. In order
to identify different network states for all possible combination
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FIGURE 4 | Array diagrams are shown in (A,B) for two distinct network

states. In a nearly coherent states with clusters of synchronous bursting
activity �I = 0.001, K = 0.7, in (B) incoherent states for �I = 0.12, K = 0.01.
Nearly coherent states showing dynamical clustering effects and wave-like
activity spread. Membrane potential time series is shown for all the neurons

exhibiting spiking dynamics both in the coherent and incoherent states.
Mean membrane potential amplitude decreases and converge to a stationary
solution. Standard deviation shown in (C,D) shows growth in time. Mean
field traces shows periodic activation and deactivation in the coherent state.
In the incoherent state mean field amplitude systematically decrease in time.

of two parameters K, �I we carry out a grid search and com-
pute the values of R in Equation (12). Global order parameter
measure identifies three distinct network states in the parameter
space as shown in Figure 6A. For low coupling values K, order
parameter shows fluctuations about mean zero. In this regime
each neurons activity is mainly driven by their firing rate thresh-
old and displays largely incoherence. For medium values of both
coupling strength K and stimulus spread �I network exhibits
a hybrid state (some neurons are firing and some of them are
silent). For very small values of stimulus spread and medium to
high K values nearly burst synchrony appears. Temporal dynam-
ics of membrane potential activity V(t) for four neurons are
plotted in Figures 6B–D for three arbitrary parameterization of
our network model. In Figures 6B,D PO state is shown where

one neuron is spiking or bursting and three neurons are silent. In
Figure 6C all neurons are showing nearly synchronized parabolic
bursting behavior.

3.3. NETWORK DYNAMICS OF PARABOLIC BURSTING PHASE MODEL
WITH HETEROGENEITY

In this section, we use a phase network with mean field cou-
pling to get some insights about the novel network states observed
in (K, �I) the parameter space of the full network model.
Coupling between each phase neuron via a mean field is formu-
lated in section 2.4. Numerically we integrate Equation (6) to
compute time averaged membrane potential, mean field � as in
Equation (10) (see section 2), global measure of coherence Rθ as
a function of K, �I a parameter combination which is used in
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FIGURE 5 | In (A) array diagram showing firing pattern in a population of

100 neurons. Only 10 neuron index are shown for clarity. Horizontal axis
is always time and vertical axis is labeled as neuron index. Green color
corresponds to no firing activity or quiescence. Purple pixels corresponds to

parabolic bursting activity of each individual neurons which are locked in time.
In (B) time series data for membrane potential of V (t), Vmean(t), �(t), and std
Vmean(t) are plotted for 10 neurons. Mean population burst synchronizes in
time.

the detailed network model. Time evolution of the above quan-
tiles are shown in Figure 7 for a parameterization K = 0.8, �I =
0.001. The parameter choice is the same as the full network inves-
tigations. With this combination of parameters all the neurons
synchronously spikes. Mean membrane potential-like quantity
Vmean(t) oscillates in phase with synchronized spike activity as
plotted in Figure 7B. Here, n a quantity which determines the
number of spikes per burst is kept at n = 1. Mean field � also
shows up and down states (Locked in time) and act as an oscil-
lating drive to each individual neurons. The time series of the
global order parameter Rθ(t) for synchronized spiking is periodic
in Figure 7E. Next, we show in Figure 8 temporal evolution of the
mean quantities for the choice of K = 0.8, �I = 0.5. For medium
values of mean field coupling strength and stimulus spread net-
work shows PO behavior, where some of the neurons are firing
incoherently and others are completely silent. This means for
some parameterization network has two stable branches of solu-
tions. It is important to note PO state of the network was
observed in the full network for a comparable parameterization
(see Figure 6). Time series for 10 neurons and their order param-
eter evolution in time is plotted in Figure 8. Three neurons are
completely silent while other seven neurons are bursting with
variable inter-burst intervals. As there is no noise in this system

and coupling magnitude is set at high values as in the case of sync,
this variability must be introduced by the heterogeneity in their
individual firing rate threshold via stimulus spread.

Figure 6 shows the parameter space diagram for the full and
phase models presented in Equations (5) and (6–9). Phase bound-
aries are calculated by computing the mean field for both full
and the phase model for different combination of (K, I) values
on a two-dimensional grid. In the following subsection we would
lay out the details for obtaining the phase transition boundaries
semi analytically. Interestingly, Over a wide range of (K −�I)
values the collective dynamics of the two networks primarily
show three distinct regions of interest which are close to each
other in the parameter space. For sufficiently large K values hold-
ing �I fixed to a narrow range of values near zero, the system
converges to a state of partial oscillations in which the some of
the neurons are not firing altogether, while the others display
IN oscillations. Very large K values result in damping of oscil-
lation activity and all the neurons stops firing altogether. The
stability state of locking is much more difficult to achieve and in-
fact we found distinct branches in their rotation number, these
states should all be regarded as variants of 1:1 locking, and there-
fore we lump them together in the locked region of the stability
diagram. With further increase in �I, parameter heterogeneity,
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FIGURE 6 | Phase diagram of mean synaptic action variable is shown

as a function of 2D parameter space of stimulus spread �I and

excitatory coupling strength K. In the partial burst regime labeled as
PO in (A), a subset of neurons are not firing at all as their respective
drives are below their individual firing thresholds. Heterogeneous
dynamics between synchronized population spiking activity and oscillation
frequency death response for PO state is displayed in (B). Nearly

synchronized population of spike/burst activity lumped in a regime labeled
as SR [corresponding time series is displayed in (C)] and incoherent
population spike/burst activity is lumped into a regime called IN. In the
incoherent regime mean field values stay close to zero with substantial
subthreshold fluctuations. In (D) multi stability of PO state is displayed
again; now between population burst and fixed point dynamics for an
entirely different parameterization.

successively more neurons peel away until eventually the entire
population is IN.

4. PHASE DIAGRAM USING SEMI ANALYTICAL METHODS
FOR MEAN FIELD PHASE MODEL

Mean field coupled neurons in phase model is described in
Equation (6). Let’s rewrite the mean field equation explicitly.

θ̇i = (F(θi)− � sin θi(cos θi − Vth)) (15)

where � = K
N

∑N
j= 1

β(
1+ β+ exp

(
− cos θj

2

)) .

In a semianalytical approach we would like to understand the
phase transitions between three distinct network states discov-
ered in two networks. For the IN states where the average firing
frequency increases monotonically plotted in Figure 10, the θi

are all distributed across the closed orbit in a unit circle. This
leads to the following phase evolution equation SR state may
undergo instability either through parameter changes of K or
�I and make phase transition to either IN or PO state. Mean
field � approaches a stationary density as the number of neurons
are increased in both PO and IN state (see Figure 4D). Hence,

� approaches some positive real number for these two states.
When varying K, we consider small perturbations μ to the
SR solution θ = θi = 0. With θ = θi = 0+ μ Equation (15)
becomes θ̇i = μ̇ = F(μ)+ �

2 sin (2μ) and linearization yields

θ̇i = (F′(0)+ �)μ. Moreover, SR state may gets phase locked at
θ = π (subpopulation clusters). Hence, θ = π may get destabi-
lized as we changed the width of heterogeneity by changing �I
or the coupling strength K. Similarly, we consider small per-
turbations μ about solution θ = π. Hence, we can write θi =
π+ μ, θ̇i = μ̇ = F(π+ μ)+ �

2 sin(2π+ 2μ) and linearization

yields θ̇i = (F′(π)+ �)μ. With F(θ) ≈ I − cos θ− cos θ
n for the

SR state, we find that F′(θ) ≈ − sin(θ)− 1
n sin θ

n will be gener-
ally small for θ = 0,π. SR state solution hence becomes unstable
when F′(0,π)+ � = 0, which suggest almost a vertical critical
line between SR and PO, IN state. The bifurcation route from PO
(multistable state) to IN solutions as the parameter �I increases
is less conclusive in the framework of the circular approximation,
since in the previous stability analysis the only I-dependent term
is F′(0,π), which is very small, hence higher orders of the approx-
imation must be considered. We use the following ansatz: If r is
the radius of a unit circle, any smooth deformation from a unit
circle can be approximated as, r(θi) = 1+ εh(θi). Hence we can
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FIGURE 7 | Time series of (A) V(t) = − cos θi (t), (B) Vmean(t), (C) std Vmean(t), (D) mean field �, and (E) order parameter Rθ(t) are plotted for 10

neurons. All neurons are spiking in synchrony and time locked. The parameter values are K = 0.8, �I = 0.001.

compute the non-linear flow contribution with the above first
order correction term as F(θi)+ εH(θi). It is possible to explic-
itly determine H(θi) for a certain choice of h(θi) and moreover,
H(θi) has a periodicity of π, that is H(θ+ π) = H(θ). Thus the
linear stability analysis about the fixed point θ∗i = 0+ μ gives

μ̇ = (F′(0)+ εH′(0)+ �)μ = (F′(π)+ εH′(π)+ �)μ (16)

From the above equation with F′(0) ≈ 0 and the π-periodicity
of H(θi), we find that the two fixed points at 0,π lose stability
at the same time for increasing �I and as a result leads directly
to the IN state. Since H′(θi) ∼ I, scales linearly for fixed μ, we
can also estimate the critical line of transition in the parame-
ter space in Figure 11 which separates PO state from IN state.
For the critical line: H′(θi) = m(I − Ic)

p where m is the slope
of this line and m > 0 allows for destabilization. Hence the
critical condition is εH′(0)+ � = 0. By substituting the depen-
dence of H′(θi) on (I, Ic) and in turn dependence on �I one
can write εm(I − Ic)

p + � = 0. This implies coupling strength
K = −ε(�I +�Ic)

p for (m > 0) and p is some exponent repre-
senting a scaling relationship near saddle-node bifurcation. Thus
the critical condition is |K| = εm(�I −�Ic), which serves as a
convenient guide to numerically compute the stability line sep-
arating PO region from IN. Next we try to obtain analytically

the stability boundary between INC and PO oscillation states in
the infinite-N limit. it turns out that the IN and partial oscilla-
tion states can be made steady in our system. The possibility of
doing so was suggested by the numerical results. In numerics we
observed that as the number of neurons N is increased, the order
parameter Rt approaches a constant for both these states Figure 8
and the oscillators tend to arrange themselves in a stationary
distribution around the circle Figure 11. The way to approach
these two states analytically, therefore, is to first write down the
appropriate infinite-N analog of our model.

∂

∂t
f + ∂

∂θ

{[
F(θ)−

((∫ 2π

0

∫ I+�I

I−�I
�p(θ′, t, I′)g(I′)dI′dθ′

))

× sin(2θ)

]
p

}
= 0 (17)

The above equation is the infinite-N analog of continuity
equation introduced earlier. It is a non-linear partial integro-
differential equation for the number density f (θ, t,ω). In addi-
tion we demand f to be non-negative, 2π periodic in θ, and we
impose the normalization∫ 2π

0
f (θ, t, I)dθ = 1, (18)
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FIGURE 8 | Temporal evolution Vi (t) for N = 10 neurons are shown here

for an arbitrary parameterization K = 0.8, �I = 0.5. K value is unchanged
from previous figure. Stimulus spread �I is changed. Time series of order

parameter Rθ(t) undergoes statistical fluctuations of magnitude O( 1√
(N)

)

about some positive constant value. After 8000 time points, dynamics is
truncated assuming network dynamics settles into a steady state.

For incoherence and partial oscillation the above system
tends toward a stationary distribution of phases in time.
The above two states are the fixed points of the station-
ary density in the continuum limit. To solve for the fixed
points we set ∂

∂ t f = 0 in Equation (10). let’s assume that
f0(θ,ω) be the stationary phase density and v0 = [F(θ)−
((
∫ 2π

0

∫ I+�I
I−�I �f (θ′, t, I′)g(I′)dI′dθ′)) sin(2θ)] be the velocity

field. Then one can write

∂

∂θ
(f0v0) = 0⇒ f0v0 = L(I) (19)

where L(I) is a constant which is determined exactly by
using normalization condition. Depending on it’s applied drive
I, neuron’s steady state behavior falls in the following two
categories:

Case (i) When I << � implies

v0(θ, I) = F(θ)− � sin(2θ) = 0 (20)
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FIGURE 9 | In (A,B) an array diagram is shown for phase network model

for a parameter combination. In (A) K = 0.61, �I = 0.001, n = 1 spikes
only and in (B) K = 0.001, �I = 0.15, n = 3 bursts only. Almost always, near
synchronous burst states are observed for high K and low �I values. In (C)

corresponding time evolution of Vi (t) is shown for all 10 bursting neurons. In
(D) temporal response of Vmean is shown for the coherent state of our

network. In (E) standard deviations of Vmean is plotted as a function of time.
In (F) mean field � vs. time for the coherent state is shown. (G) displays
temporal dynamics of order parameter. Average firing frequency as described
in Equation (14) is plotted in (H) for the parameter combination of K = 0.001,
�I = 0.15. Panel (H) further demonstrates phase locking behavior among all
the neurons.

Case (ii) When I >> � neuron fires incoherently and typically
individual phases follows an uniform distribution about the unit
circle. In this case the velocity field turns out to be,

v0(θ, I) = F(θ)− � sin(2θ) (21)

Fixed point solution demands that the density must be inversely
proportional to the velocity:

f0(θ, I) = L(I)

F(θ)− � sin(2θ)
(22)

In the IN state, neurons driven by different external drives are fir-
ing at different phases, however, their collective state is close to
being stationary. Every neuron belong to Case (ii) as described
above. Further, it is possible to derive nearly an exact relation-
ship between K, �I that gives the transition from case (i) to
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FIGURE 10 | In (A) time evolution of Vi (t), std Vmean, order parameter

Rθ(t), Vmean, mean field �, Average frequency are shown for the choice of

K = 0.6, �I = 0.3. In (B) time evolution of the same quantities are shown for

K = 0.01, �I = 0.1. In (A), average firing frequency plot shows clusters of neurons
firing incoherently while another cluster of neurons are completely silent. In (B)

same subfigure shows a monotonic increase in average firing frequency.

case (ii) as described above. As shown before, in case of a finite
size network such a relationship in the first order perturbation
εm(I − Ic)

p + � = 0 does exist. In this scenario those neurons
with a minimum bound on their applied drive Imin reach cessa-
tion of firing as we find from numerical simulations. They then
fall into the Case (i) above where mean field � exerts much bigger
influence on the dynamics and overall effect is damping of fir-
ing activity. The first neurons to stop firing are the ones which do
not cross the threshold for firing which in this case I > 2. Then
the boundary that separates IN from PO in the phase diagram is
almost a straight line given by,

|K| = εm(�I −�Ic) (23)

Hence, both finite and infinite analog of our network iden-
tifies the putative transition boundary between IN and PO
states. Now from numerical simulations we find Andronov–
Hopf (AH) bifurcations leads to the transition from INC to
SR solutions in the Figure 6 near K, I values close to zero.
It is equivalent to look at the imaginary eigensolutions that
arise due to the instability of the IN state. This instability
requires calculation of higher order perturbation terms of the
stationary density obtained at the IN state of our network.
This is out of the scope of our paper, however, we show a
numerical fitting result which gives an empirical relationship
between K and �I to quantify the transition boundary between
IN and SR states. Assuming ε is the perturbation to the IN
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FIGURE 11 | (A) Parameter space diagram for K ,�I are shown. Color coded
computed values of Rθ shows primarily three distinct network states, labeled
as SR, PO, and IN. (B–D) For three arbitrary pixel values corresponding firing

frequency of individual neurons are shown in a unit circle. Each position in a
circle corresponds to a particular phase and color coded according to the
scheme described in section 2.8.

solution we can express a relationship between K and �I as
follows,

|K| = a0ε+ a1ε
2 + a2ε

3 + O(ε4) (24)

Equation (24) gives us an empirical relationship between param-
eters upto fourth order perturbations for the bifurcation of a
limit cycle. Optimization of the above equation gives coefficients
a0 = 8

π
, a1 = 0, a2 = 128

π3 , respectively. Next, we substitute the
amount of dispersion �I into the perturbative term ε to obtain
the boundary between IN and SR state. Taken together we can
write,

|K| = 8

π
�I + 128

π3
�I3 + O(�I4) (25)

Results are shown in Figure 12 in the (K, �I) plane using
Equations (25) and 23. Critical lines obtained semi analytically
qualitatively agrees well with the numerical results that cap-
tures various network states in both these models with purely

excitatory coupling. In Appendix, we show a stability calcu-
lation for an inhibitory coupled mean field network in the
infinite analog limit. From numerical simulations we find that
the results are independent of the number of spikes n per
burst.

5. DISCUSSION
One of the most frequent assumption employed in simulations of
large neural networks is that the whole network can be lumped
into small aggregates of collective unit (sometimes called a “neu-
rocomputational unit”) exhibit a sufficiently similar dynamical
behavior. Consequently, the network that instantiates this ensem-
ble, consisting of thousands of excitatory and inhibitory neurons,
it is considered to display a synchronized behavior with no other
significant temporal features for the dynamics of the large scale
network. The main reason for this assumption, is the imprac-
tical large computational time arising from too many details
considered in the large network properties. In this paper, we
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FIGURE 12 | Parameter boundaries are shown in (K , �I) parameter

space using analytic results. Critical lines separates three distinct
network states, labeled as SR, PO, and IN. Critical line separating PO, IN
states corresponds to a saddle-node bifurcation and the line that separates
IN, SR states corresponds to a Hopf bifurcation.

have analyzed the behavior of a neural network that serves as
a good example of such a unit, namely a mean field coupled
bursting ensemble. First, we have investigated a Hodgkin–Huxley
type detailed biophysical model widely employed in theoreti-
cal and computational neuroscience with global coupling. We
found that the dynamical features of the network are far more
complex then the ones corresponding to synchronized or rest
state behavior. The network dynamics depends critical on the
balance between firing rate threshold dispersion and mean field
synaptic coupling strength; in fact, the synchronized state can be
found only for a specific range of parameters typically involving a
large or medium values for the coupling strength and low val-
ues of dispersion. On the other hand, for large dispersion and
weak coupling strength values both networks display purely IN
behavior. In the IN state, individual neurons are driven by differ-
ent external drives results in firing at different phases, however,
their collective state is close to being stationary. This stationarity
in the density distribution led us to formulate scaling relation-
ship between coupling strength and dispersion parameter. One
interesting finding is that, when mean field exerts a greater influ-
ence than parameter dispersion; it causes shutting down of the
neural activity in some neurons. In this parameter range, we
find interesting dynamical behavior such as partial activity. In
order to address the problem of the high computational cost
of such an implementation, we have further developed a self-
consistent mathematically tractable mean field coupled phase
model following (Assisi et al., 2005; Ghosh et al., 2009; Jirsa and
Stefanescu, 2011), but incorporating a higher degree of realism.
Rather than finding the most appropriate type and number of
dimensions that could minimize certain error functions or cap-
ture statistical variance in the full network, we have focused our
attention on understanding a phenomenological burst genera-
tion model system which captures the most important network
dynamics of bursting units at the population level. Collective
activity of synapses is described by a mean field which relies on
instantaneous rise and decay time (Roy et al., 2011). This mean
field is then employed in the coupling to individual neurons

to describe phase network. Together, we investigate this popu-
lation of neurons coupled to a common mean field drive and
heterogeneity in their threshold for spikes/bursts. Our detailed
analysis demonstrated that the reduced representation manages
to recreate correctly the topology of the mean field amplitudes
of the original system for various parameter scenarios. In the
full network, In the thermodynamic limit (N →∞), a collective
state becomes coherent if δVmean(t) ≡ [Vmean(t)− Vmean(t)] is
non-stationary (i.e., an oscillating global potential Vmean appears
for a coherent case) and also, the correlated mean field �(t)
activity appears oscillatory. In the phase network, global order
parameter is computed by averaging the contributions of all
microscopic spikes within a burst in order to obtain a simi-
lar degree of ordering of spikes/bursts as in the full model for
identical parameterization. Hence, for a dynamical behavior such
as coherence-incoherence transition macroscopic order param-
eter gives us a crude approximation of burst timing. From a
more general perspective, despite its limitations because of the
consideration of purely excitatory or inhibitory network, it can
be readily extended to study networks with mixed coupling.
Moreover, the analytical approach to estimate the scaling rela-
tionship and transition boundaries between the IN-PO-SR states
is not restricted to small scale network only. With global cou-
pling, as the size of the network grows the boundaries may shift
leading to a different parameterization than the one displayed
here; however, underlying bifurcations remain the same. We have
demonstrated this in our work by analytically deriving a low
dimensional mean field amplitude reduction for a inhibitory cou-
pled mean field network in the continuum limit. In this case,
all the relevant dynamics of an infinite dimensional network
in Equations (29) and (30) is captured by a two dimensional
representation of the reduced mean field population given by
Equation (40). Thus, using this approach, we derive analytically
a low dimensional representation of the network dynamics and
we show that the main features of the neural population’s col-
lective behavior can be captured well by the dynamics of a few
cortical nodes exhibiting spiking as well as bursting behavior.
While it is true that strong reductionist assumptions are common
(sacrificing many of the biological realism of a network node’s
dynamics) in large-scale network modeling, these assumptions
are usually made ad-hoc on the network node’s dynamics and
limit the network dynamics to a small range. We emphasize here
that because of the “near to synchrony” assumption, neural mass
models cannot capture complex dynamical features such as multi-
clustering, oscillator death or multi-time scale synchronization.
Evidently a reduced small scale network model is desirable to
serve as a node in a large scale network simulation whereby dis-
playing a sufficiently rich dynamic repertoire. Here it is of less
importance to find a quantitatively precise reduced description
of a neural population; rather more importantly, we seek a com-
putationally inexpensive population model (this means typically
low-dimensional) which is able to display the major qualitative
dynamic behaviors (synchronization, rest state, multi-clustering,
etc.) for realistic parameter ranges as observed in the total pop-
ulation of neurons. Our approach may offer a viable alternative
to the neural mass models currently used in the literature. By
comparison, our model offers the possibility to account for such
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features (temporal details of their spiking activity considered
irrelevant for the dynamics of the large network) at a very low
computational cost. Therefore, the type of reduced representa-
tion discussed in this paper qualifies as a good candidate for a
“neural unit” in computational simulations of large scale neural
networks.

ACKNOWLEDGMENTS
We would like to thank Anandamohan Ghosh and Mohit
Adhikari for the helpful corrections on this manuscript. The
research reported herein was supported by the Brain Network
Recovery Group through the James S. McDonnell Foundation
and the FP7-ICT BrainScales.

REFERENCES
Amari, S. (1977). Dynamics of pat-

tern formation in lateral-inhibition
type neural fields. Biol. Cybern. 27,
77–87.

Amzica, F., and Steriade, M.
(1998). Electrophysiological
correlates of sleep delta
waves. Electroencephalogr. Clin.
Neurophysiol. 107, 69–83.

Antonsen, T. M., Faghih, R. T., Girvan,
M., Ott, E., and Platig, J. (2008).
External periodic driving of large
systems of globally coupled phase
oscillators. Chaos 18:037112. doi:
10.1063/1.2952447

Assisi, C. G., Jirsa, V. K., and Kelso,
J. A. S. (2005). Synchrony and
clustering in heterogeneous net-
works with global coupling and
parameter dispersion. Phys. Rev.
Lett. 94:018106. doi: 10.1103/
PhysRevLett.94.018106

Baer, S. M., Rinzel, J., and Carrillo, H.
(1995). Analysis of an autonomous
phase model for neuronal parabolic
bursting. J. Math. Biol. 33,
309–333.

Beurle, R. L. (1956). Properties of a
mass of cells capable of regenerating
pulses. Philos. Trans. R Soc. Lond. B
Biol. Sci. 240, 55–94.

Breakspear, M., Heitmann, S., and
Daffertshofer, A. (2010). Generative
models of cortical oscillations:
neurobiological implications of
the Kuramoto model. Front. Hum.
Neurosci. 4:190. doi: 10.3389/
fnhum.2010.00190

Cabral, J., Hugues, E., Sporns, O.,
and Deco, G. (2011). Role of local
network oscillations in resting-state
functional connectivity. Neuroimage
57, 130–139.

Deco, G., Jirsa, V. K., and McIntosh,
A. R. (2011). Emerging concepts
for the dynamical organization of
resting-state activity in the brain.
Nat. Rev. Neurosci. 12, 43–56.

Deco, G., Jirsa, V. K., Robinson, P. A.,
Breakspear, M., and Friston, K.
(2008). The dynamic brain: from
spiking neurons to neural masses
and cortical fields. PLoS Comput.
Biol. 4:e1000092. doi: 10.1371/
journal.pcbi.1000092

Dhamala, M., Jirsa, V., and Ding, M.
(2004a). Enhancement of neural
synchrony by time delay. Phys. Rev.
Lett. 92, 6–9.

Dhamala, M., Jirsa, V. K., and Ding, M.
(2004b). Transitions to synchrony
in coupled bursting neurons. Phys.
Rev. Lett. 92, 2–5.

Ermentrout, G. B., and Kopell, N.
(1986). Parabolic bursting in an
excitable system coupled with a slow
oscillation. SIAM J. Appl. Math. 46,
233–253.

Feng, J., Jirsa, V. K., and Ding, M.
(2006). Synchronization in net-
works with random interactions:
theory and applications. Chaos
16:015109. doi: 10.1063/1.2180690

Friesen, W. O. (1994). Reciprocal
inhibition: a mechanism underlying
oscillatory animal movements.
Neurosci. Biobehav. Rev. 18,
547–553.

Gabbiani, F., Midtgaard, J., and
Knöpfel, T. (1994). Synaptic inte-
gration in a model of cerebellar
granule cells. J. Neurophysiol. 72,
999–1009.

Ghosh, A., Roy, D., and Jirsa, V. K.
(2009). Simple model for burst-
ing dynamics of neurons. Phys. Rev.
E Stat. Nonlin. Soft Matter Phys.
80(4 Pt 1):041930. doi: 10.1103/
PhysRevE.80.041930

Ghosh, A., Rho, Y., McIntosh,
A. R., Kötter, R., and Jirsa,
V. K. (2008). Cortical network
dynamics with time delays reveals
functional connectivity in the
resting brain. Cogn. Neurodyn. 2,
115–120.

Golomb, D., and Rinzel, J. (1993).
Dynamics of globally cou-
pled inhibitory neurons with
heterogeneity. Phys. Rev. E 48,
4810–4814.

Hebb, D. O. (1949). The Organization
of Behavior: A Neuropsychological
Theory. Vol 44. New York, NY:
Wiley.

Higham, D. J. (2001). An algorith-
mic introduction to numerical
simulation of stochastic differ-
ential equations. SIAM Rev. 43,
525–546.

Hindmarsh, J. L., and Rose, R. M.
(1984). A model of neuronal burst-
ing using three coupled first order
differential equations. Proc. R Soc.
Lond B 221, 87–102.

Izhikevich, E. M. (2000). Neural
excitability, spiking and bursting.
Int. J. Bifurcat. Chaos 10,
1171–1266.

Izhikevich, E. M. (2007). Dynamical
Systems in Neuroscience: The
Geometry of Excitability and
Bursting. Vol 25. Cambridge: MIT
press.

Jensen, O., Kaiser, J., and Lachaux, J. P.
(2007). Human gamma-frequency
oscillations associated with atten-
tion and memory. Trends Neurosci.
30, 317–324.

Jirsa, V. K. (2008). Dispersion and time
delay effects in synchronized spike-
burst networks. Cogn. Neurodyn. 2,
29–38.

Jirsa, V. K. (2009). Neural field dynam-
ics with local and global connec-
tivity and time delay. Philos. Trans.
R Soc. A Math. Phys. Eng. Sci. 367,
1131–1143.

Jirsa, V. K., and Haken, H. (1997).
A derivation of a macroscopic
field theory of the brain from the
quasi-microscopic neural dynamics.
Physica D 99, 503–526.

Jirsa, V. K., and McIntosh, A. R. (2007).
Handbook of Brain Connectivity.
Berlin: Springer.

Jirsa, V. K., and Stefanescu, R. A.
(2011). Neural population modes
capture biologically realistic large
scale network dynamics. Bull. Math.
Biol. 73, 325–343.

Lim, W., and Kim, S.-Y. (2011).
Statistical-mechanical measure of
stochastic spiking coherence in a
population of inhibitory subthresh-
old neurons. J. Comput. Neurosci.
31, 667–677.

Manrubia, S. C., Mikhailov, A.
S., and Zanette, D. H. (2004).
Emergence of Dynamical Order.
Synchronization Phenomena in
Complex Systems, Singapore: World
Scientific Publishing Co.

McCormick, D. A., and Feeser, H. R.
(1990). Functional implications of
burst firing and single spike activity
in lateral geniculate relay neurons.
Neuroscience 39, 103–113.

Morris, C., and Lecar, H. (1981).
Voltage oscillations in the barnacle
giant muscle fiber. Biophys. J. 35,
193–213.

Nunez, P. L. (1974). The brain wave
equation: a model for the eeg. Math.
Biosci. 21, 279–297.

Ott, E., and Antonsen, T. M. (2009).
Long time evolution of phase oscil-
lator systems. Chaos 19:023117. doi:
10.1063/1.3136851

Parnas, H., and Parnas, I. (1994).
Neurotransmitter release at fast
synapses. J. Mem. Biol. 142,
267–279.

Rinzel, J., and Ermentrout, G. (1989).
Analysis of Neural Excitability and
Oscillations. Cambridge, MA: MIT
Press.

Robinson, P. A. (2011). Neural field
theory of synaptic plasticity. J.
Theor. Biol. 285, 156–163.

Roy, D., Ghosh, A., and Jirsa, V. K.
(2011). Phase description of neural
oscillators with global electric and
synaptic coupling. Phys. Rev. E Stat.
Nonlin. Soft Matter Phys. 83, 1–10.

Sabatini, B. L., and Regehr, W. G.
(1996). Timing of neurotrans-
mission at fast synapses in the
mammalian brain. Nature 384,
170–172.

Sherman, S. M., and Koch, C. (1986).
The control of retinogeniculate
transmission in the mammalian
lateral geniculate nucleus. Exp.
Brain Res. 63, 1–20.

Smeal, R. M., Ermentrout, G. B., and
White, J. A. (2010). Phase-response
curves and synchronized neural net-
works. Philos. Trans. R Soc. Lond. B
Biol. Sci. 365, 2407–2422.

Stefanescu, R. A., and Jirsa, V. K.
(2008). A low dimensional descrip-
tion of globally coupled heteroge-
neous neural networks of excita-
tory and inhibitory neurons. PLoS
Comput. Biol. 4:e1000219. doi: 10.
1371/journal.pcbi.1000219

Stefanescu, R. A., and Jirsa, V. K.
(2011). Reduced representations of
heterogeneous mixed neural net-
works with synaptic coupling. Phys.
Rev. E 83, 1–12.

Steriade, M., and Llinás, R. R. (1988).
The functional states of the tha-
lamus and the associated neu-
ronal interplay. Physiol. Rev. 68,
649–742.

Steriade, M., McCormick, D.,
and Sejnowski, T. J. (1993).
Thalamocortical oscillations in the
sleeping and aroused brain. Science
262, 679–685.

Uhlhaas, P. J., and Singer, W. (2006).
Neural synchrony in brain dis-
orders: relevance for cognitive
dysfunctions and pathophysiology.
Neuron 52, 155–168.

Van Vreeswijk, C., Abbott, L. F.,
and Ermentrout, G. B. (1994).

Frontiers in Computational Neuroscience www.frontiersin.org March 2013 | Volume 7 | Article 20 | 103

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Roy and Jirsa Network time scale and dynamics

When inhibition not excitation syn-
chronizes neural firing. J. Comput.
Neurosci. 1, 313–321.

Wang, X. J. (1994). Multiple dynam-
ical modes of thalamic relay neu-
rons: rhythmic bursting and inter-
mittent phase-locking. Neuroscience
59, 21–31.

Wang, X. J., and Rinzel, J. (1992).
Alternating and synchronous
rhythms in reciprocally inhibitory

model neurons. Neural Comput.
4, 84–97.

Wilson, H. R., and Cowan, J. D. (1972).
Excitatory and inhibitory inter-
actions in localized populations
of model neurons. Biophys. J.
12, 1–24.

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any

commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 28 January 2013; accepted: 05
March 2013; published online: 26 March
2013.
Citation: Roy D and Jirsa V (2013)
Inferring network properties of cortical
neurons with synaptic coupling and
parameter dispersion. Front. Comput.

Neurosci. 7:20. doi: 10.3389/fncom.
2013.00020
Copyright © 2013 Roy and Jirsa. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in other
forums, provided the original authors
and source are credited and subject to any
copyright notices concerning any third-
party graphics etc.

Frontiers in Computational Neuroscience www.frontiersin.org March 2013 | Volume 7 | Article 20 | 104

http://dx.doi.org/10.3389/fncom.2013.00020
http://dx.doi.org/10.3389/fncom.2013.00020
http://dx.doi.org/10.3389/fncom.2013.00020
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Roy and Jirsa Network time scale and dynamics

APPENDIX
MEAN FIELD REDUCTION FOR INHIBITORY SYNAPTIC COUPLING
Here, we extend our network in the continuum limit in the
presence of inhibitory coupling. Vth is held negative. (N →∞),
where the state of the coupled system can be described by a den-
sity function f (θ, I, t), where f is defined such that the fraction
of neurons with phases lying between θ and dθ and applied drive
between I and dI is given by f (θ, I, t)dθdI (Antonsen et al., 2008;
Ott and Antonsen, 2009). The applied stimulus are drawn from a
distribution g(I) such that

∫ ∞
−∞

∫ 2π

0
f (θ, I, t)dθdI = 1 (26)

∫ 2π

0
f (θ, I, t)dθ = g(I) (27)

For the conservation of currents I the continuity equation is
written as

∂f

∂t
+ ∂( f v)

∂θ
= 0. (28)

In order to make the coupling amenable to analytical study we
use a pulse-like function for the mean field � = a1+ b1(1+
cos θ). Response to the mean field by individual neuron’s R(θ) =
Vth sin(θ), containing only single Fourier component, a choice
motivated primarily due to the tractability of the resulting model.
Further, Vth = −1 for the convenience of calculations without
losing any generality of our results. The velocity v(θ, I, t) in
Equation (28) is now written as

v(θ, I, t) = a+ ε

∫ ∞
−∞

∫ 2π

0
(1+ cos(θ̂))(− sin θ) f (θ̂, Î, t)dθ̂dÎ

− F sin(θ)− F sin(θ/n) (29)

where without loss of any generality we are using sin functions
instead of cos functions in Equation (6).

In the continuum limit the order parameter z can be
defined as

z(t) =
∫ ∞
−∞

∫ 2π

0

(eiθ + e−iθ)

2
f (θ, I, t)dθdI (30)

It’s a linear sum of two complex order parameters and one could
in principle unfold the entire dynamics of the network in any one
of the manifold given above. Here,

z1(t) =
∫ ∞
−∞

∫ 2π

0
eiθf (θ, I, t)dθdI (31)

z2(t) =
∫ ∞
−∞

∫ 2π

0
e−iθf (θ, I, t)dθdI (32)

Using the above it is easy to see that the expression for velocity
becomes

v(θ, I, t) = I + 1

2i

[(
1+ ε

2
(z2+ z1∗) + F

)
e−iθ

−
(

1+ ε

2
(z1+ z2∗)+ F

)
eiθ
]

− F

(
eiθ/n

2i
− e−iθ/n

2i

)
(33)

∗ indicates the complex conjugate. The distribution function can
be expressed as a Fourier series

f (θ, I, t) = g(I)

2π

[
1+

∞∑
k= 1

fk(I, t)eikθ + c.c.

]
(34)

The above infinite dimensional system is difficult to analyze.
However, the “amazing” anstaz of Ott and Antonsen (2009) has
been shown to be successful in obtaining the low-dimensional
description of the globally coupled phase oscillators. The anstaz
impose a restriction on the fourier coefficients:

fk(I, t) = (ψ(I, t))k (35)

for k ≥ 1 and has been shown to be a reasonable guess under
different scenariors (Ott and Antonsen, 2009). This restricted
class of functions readily reduces our continuity equation to an
θ-independent form

dψ

dt
= 1

2

(
1+ ε

2
z1+ F

)∗ − iIψ

− 1

2

(
1+ ε

2
z1+ F

)
ψ2

− F

(
ψ1+ 1/n

2
− ψ1− 1/n

2

)
(36)

with z1 satisfying

z1(t) =
∫ ∞
−∞

ψ∗(I, t)g(I)dI. (37)

If we assume that g(I) is a Lorentzian distribution function

g(I) = 1

π[(I − I0)2 + 1] . (38)

z(t) can be evaluated by contour integration with poles at I =
I0 − i and we obtain the exact evolution equation of order
parameter z

dz1

dt
= iI0z1− z1+ 1+ ε

2 z1+ F

2
− 1+ ε

2 z1∗ + F

2

− F

(
z11+ 1/n

2
− z11− 1/n

2

)
(39)
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The above equation can be expressed in polar coordinates if
we substitute z1 = ρ1exp(iφ1) giving evolution equations for
ρ1 and φ1

dρ1

dt
= ε

2
ρ1
(
1− ρ2

1

)− ρ1 + F

2

(
1− 2ρ2

1

)
cos φ1 + 1

2
cos (φ1)

+ Fρ1

2

(
ρ
−1/n
1 − ρ

1/n
1

)
cos(φ1/n) (40)

dφ1

dt
= I0 − F

2

(
ρ1 + 1

ρ1

)
sin φ1 − ρ1

2
sin(φ1)

− F

2

(
ρ

1/n
1 + 1

ρ
1/n
1

)
sin(φ1/n). (41)

For the Lorentzian distribution function the above equation is
exact, However, we do not find any deviation of the above results
for any other unimodal distributions of our firing threshold
(such as uniform distribution) such as the one considered in the
numerical simulations with excitatory coupling. The above two
dimensional system can be solved numerically to identify the full
network states and the corresponding transition boundaries.
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Ketamine and propofol are two well-known, powerful anesthetic agents, yet at first sight
this appears to be their only commonality. Ketamine is a dissociative anesthetic agent,
whose main mechanism of action is considered to be N -methyl-d-aspartate (NMDA) antag-
onism; whereas propofol is a general anesthetic agent, which is assumed to primarily
potentiate currents gated by γ-aminobutyric acid type A (GABAA) receptors. However, sev-
eral experimental observations suggest a closer relationship. First, the effect of ketamine
on the electroencephalogram (EEG) is markedly changed in the presence of propofol: on
its own ketamine increases θ (4–8 Hz) and decreases α (8–13 Hz) oscillations, whereas ket-
amine induces a significant shift to beta band frequencies (13–30 Hz) in the presence of
propofol. Second, both ketamine and propofol cause inhibition of the inward pacemaker
current Ih, by binding to the corresponding hyperpolarization-activated cyclic nucleotide-
gated potassium channel 1 (HCN1) subunit. The resulting effect is a hyperpolarization of
the neuron’s resting membrane potential. Third, the ability of both ketamine and propofol
to induce hypnosis is reduced in HCN1-knockout mice. Here we show that one can theo-
retically understand the observed spectral changes of the EEG based on HCN1-mediated
hyperpolarizations alone, without involving the supposed main mechanisms of action of
these drugs through NMDA and GABAA, respectively. On the basis of our successful EEG
model we conclude that ketamine and propofol should be antagonistic to each other in
their interaction at HCN1 subunits. Such a prediction is in accord with the results of clini-
cal experiment in which it is found that ketamine and propofol interact in an infra-additive
manner with respect to the endpoints of hypnosis and immobility.

Keywords: ketamine, propofol, EEG, HCN1, neural field theory, drug interaction, anesthesia, infra-additivity

INTRODUCTION
Ketamine, a phenylcyclohexylpiperidine (PCP) derivative, is a
powerful psychoactive drug that is predominantly used as a seda-
tive and general anesthetic agent in humans and animals (Sinner
and Graf, 2008). Ketamine occurs as two stereoisomers, R(−) and
S(+), in which the latter is found to be some three to four times
more potent (White et al., 1985), but despite such differences in
potency the drug is generally made available clinically as a race-
mate (racemic mixture) that contains both stereoisomers in equal
proportion. Ketamine is classified as a dissociative agent due to
its ability to induce hallucinations and perceptual/environmental
detachment (Wolff and Winstock, 2006). Because of these prop-
erties it has become popular recreationally. At sufficiently high
doses it has been reported to induce a state of dissociation compa-
rable to that of schizophrenia, and as a consequence has found use
as a pharmacological model for psychosis (Bubenikova-Valesova
et al., 2008; Corlett et al., 2011). More recently its therapeutic
use has been re-evaluated in light of evidence suggesting that
sub-anesthetic doses may aid in the treatment of bipolar affective
disorder and major depression (Mathew et al., 2012; Murrough,
2012; Murrough et al., 2012).

While ketamine is widely believed to act principally through the
non-competitive antagonism of N -methyl-d-aspartate (NMDA)
receptor mediated glutamatergic activity (Irifune et al., 1992; Oye
et al., 1992), two significant pieces of empirical evidence have
emerged that challenge such a unitary view. Firstly, dizocilpine
(also known as MK801), an even more potent non-competitive
NMDA antagonist, produces no significant hypnotic effect (Kel-
land et al., 1993; Irifune et al., 2007). Secondly, ketamine’s effect on
spontaneous electroencephalogram (EEG) activity is qualitatively
altered when administered in the presence of propofol, a widely
used intravenous general anesthetic agent that, at clinically mean-
ingful concentrations, has little or no effect on NMDA mediated
currents. Ketamine alone has been shown to reduce spectral edge
frequencies, an effect that is driven predominately by increases
in absolute θ band (4–8 Hz) power at the expense of α band
(8–13 Hz) power (Schuttler et al., 1987; Kochs et al., 1996), see
Figure 1A. In contrast, ketamine administered in the presence of
steady state propofol levels is associated with a definite acceleration
of α band activity; increasing its peak frequency by up to 4.7 Hz
(Hayashi et al., 2007; Tsuda et al., 2007), see Figure 1C. Propo-
fol on its own roughly maintains the α peak frequency with an
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FIGURE 1 | Experimentally described EEG power spectral changes
induced by ketamine and propofol. (A) A single bolus dose of ketamine
(0.25 mg/kg) is associated with resting α activity being transiently replaced by
θ band activity. Data shown is the mean power spectral density (PSD) of EEG
recorded in three subjects from a Cz-A1/A2 (vertex-linked ears) montage.
Figure adapted and used with permission from Kochs et al. (1996). (B)
Average spectra of EEG recorded during two sequential target concentrations
of propofol in a single subject. BL=baseline, M =1.25 µg/ml propofol,
H =2.5 µg/ml propofol. α band EEG recorded from parietal (P4) and occipital
(O2) electrodes reveals minimal changes in peak frequency with increasing

propofol concentration. At medium propofol concentrations (M ) the α rhythm
shifts to central and frontal areas (figure not shown) without any significant
change in frequency. Figure adapted and used with permission from
Feshchenko et al. (2004). (C) Fifteen minutes after the administration of a
ketamine bolus (1 mg/kg; bold line labeled B), in the presence of a steady
state target controlled propofol level (3.5 µg/ml; thin line labeled A), peak α

band EEG activity is markedly shifted to higher frequencies. Data shown is
mean PSD recorded at Fp1-A1, with an Fpz reference, from nine subjects
undergoing elective abdominal surgery. Figure used with permission from
Tsuda et al. (2007).

anteriorization of power (decrease occipital, increase frontal), see
Figure 1B; though an additional broadband “beta buzz” just above
α frequencies, “biphasic” response dynamics and smooth transi-
tions to lower frequencies can confound the picture (Schwender
et al., 1996; Kuizenga et al., 1998, 2001; Feshchenko et al., 2004;
Breshears et al., 2010; Cimenser et al., 2011). We assume here
from previous theoretical studies (Liley et al., 2003; Hutt and
Schimansky-Geier, 2008; Hutt and Longtin, 2010; Hindriks and
van Putten, 2012) that these complications can be accounted for by
mechanisms not considered in this work, in particular the promi-
nent γ-aminobutyric acid type A (GABAA) agonism of propofol
that affects dominantly inhibitory postsynaptic currents (Kita-
mura et al., 2003). Furthermore, the acceleration due to ketamine
observed by Hayashi et al. (2007) and Tsuda et al. (2007) that we
wish to describe occurred on top of a clear α rhythm at steady
propofol concentration, see Figure 1C. Thus we assume in the
following that the action of propofol is largely neutral concerning
the α peak frequency (while unspecified concerning total α band
spectral power).

Recently a number of alternative, behaviorally relevant, mole-
cular targets for ketamine action have been identified (Schnoebel
et al., 2005; Hevers et al., 2008; Chen et al., 2009). Of particu-
lar significance is the identification of hyperpolarization-activated
cyclic nucleotide-gated (HCN) potassium channel subunits as a
target for ketamine action (Chen et al., 2009). HCN subunits,
of which there are four isoforms (HCN1–4), assemble to form
a tetrameric ion channel that mediates an inward (i.e., depolariz-
ing) hyperpolarization-activated pacemaker current I h implicated
in neuronal rhythmogenesis (Biel, 2009; Biel et al., 2009). In

particular the HCN1 isoform has been identified as a molecular
substrate for the actions of ketamine (Chen et al., 2009): keta-
mine causes inhibition of HCN1-mediated I h currents, and hence
membrane hyperpolarization, in pyramidal neurons from wild-
type but not HCN1-knockout mice. The potency of ketamine to
provoke a loss of the righting reflex (the ability to regain footing
from a back position), which is a behavioral correlate of hypno-
sis, is also strongly reduced in HCN1-knockout mice. Hence a
causal relationship between ketamine-induced membrane hyper-
polarization and its clinical effects can be made. The existence of
such a causal relationship is made more likely by evidence indi-
cating that the hypnotic potency of propofol is also reduced in
HCN1-knockout mice, in approximate proportion to its ability to
inhibit HCN1-mediated membrane depolarization (Chen et al.,
2009).

It should be noted though that the hypnotic response was not
abolished entirely in HCN1-knockout mice by either ketamine
or propofol (Chen et al., 2009), thus other effects like the men-
tioned GABAA agonism will be required to fully understand the
hypnotic action of these agents. However, etomidate, which has
no effect on HCN1 channels, showed no loss of hypnotic effect
in HCN1-knockout mice (Chen et al., 2009), suggesting the spe-
cific involvement of HCN1-mediated I h currents for ketamine and
propofol. The identification of a shared molecular target for keta-
mine and propofol action could offer a new possibility to account
for the qualitatively disparate electroencephalographic effects of
ketamine alone and in the presence of propofol. On this basis we
hypothesized that by modeling the differential effects of ketamine
and propofol on neuronal membrane hyperpolarization, in the
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context of an established theory of resting EEG (Liley et al., 2002,
2010, 2011; Bojak and Liley, 2005), we would be able to describe the
observed effects on the EEG at least qualitatively. Because current
depth of anesthesia monitoring approaches are either insensitive
(Faraoni et al., 2009; Nonaka et al., 2012), or respond anomalously
(Hans et al., 2005; Sengupta et al., 2011), to the hypnotic effects
of ketamine, understanding the mechanism by which ketamine
and propofol interact electroencephalographically will ultimately
assist in the development of improved approaches to clinically
monitor the hypnotic effects of combinations of these drugs.
The combination of propofol and ketamine (often referred to
as ketofol) is becoming increasingly important in the procedural
sedation setting where rapid and effective sedation and analge-
sia, with minimal cardiorespiratory/hemodynamic compromise,
is required (Hui et al., 1995; Frizelle et al., 1997; Sakai et al., 1999;
Phillips et al., 2010).

MATERIALS AND METHODS
MODELING DRUG RESPONSE AND INTERACTIONS
The simplest pharmacodynamic model of drug effect involving
two or more agonists is that of competitive ligand-receptor bind-
ing. It is easily shown for two full agonists competing for the same
receptor binding site, that the fractional receptor occupancy θ, as a
function of the respective drug concentrations (D1, D2) is (Shafer
et al., 2008)

θ =
k2D1 + k1D2

k2D1 + k1D2 + k1k2
, or (1)

θ

1− θ
=

D1

k1
+

D2

k2
. (2)

For D1→∞ and/or D2→∞, one then finds θ→ 1, i.e.,
full receptor occupancy. k1, k2 > 0 are the respective drug-
receptor dissociation constants, which are equivalent to single
drug concentrations that produce 50% receptor occupancy, i.e.,
θ= 1/2. In general a pharmacodynamic effect E is assumed to
be some monotonic function of θ, i.e., E = f(θ)≡ g (D1, D2). For
a fixed effect E the locus of points (D1, D2) defines a response
isobole and E = g (D1, D2) a response surface. Now consider the
case of competitive binding and drug interaction (Greco et al.,
1995)

θ

1− θ
=

D1

k1
+

D2

k2
+

ηD1D2

k1k2
, (3)

where η defines an interaction term. It can be easily demonstrated
that

θ−1
θ

< η < 0 ⇒ infra-additivity / antagonism,
η = 0 ⇒ additivity,
η > 0 ⇒ synergy.

(4)

Inspired by these considerations, we chose here to describe
the general pharmacodynamic effect of our two ligands by the
following bilinear form

E = c1D1 + c2D2 + c12D1D2. (5)

This ansatz represents the simplest extension beyond the purely
additive; and the sign of c12 then has the same interpretation
as the sign of η in Eq. 4. We will use this bilinear form below
to parameterize the dependence of the induced hyperpolariza-
tions on normalized concentrations of propofol and ketamine,
respectively.

One can however relate Eqs 3 and 5 more directly. Assume first
that the pharmacodynamic effect is directly proportional to recep-
tor occupancy, i.e., E ∝ θ. Then k1 and k2 become the respective
“half maximum effective concentrations”(EC50s) at which 50% of
the maximum response is observed for each drug applied alone.
Furthermore, assume that the receptor occupancy remains rela-
tively small θ ≈ θ/(1− θ) = D1/k1 + D2/k2 + ηD1D2/(k1k2) <

1/2, so that the effect E < Emax/2. The half-maximal inhibition
of HCN1 subunit-mediated ionic currents by racemic ketamine
occurs at a concentration of approximately 16 µM (Chen et al.,
2009), which is significantly greater than the estimated minimum
free plasma concentrations of 2.9 µM required to produce sur-
gical anesthesia in humans (Grant et al., 1983). Data for the
half-maximal inhibition of HCN1-mediated ionic currents by
propofol is to our knowledge not available. However, because
HCN1-knockout mice are significantly less sensitive to the effects
of propofol than wild-type ones, we can speculate that the ED50
(the “half maximum effective dose”) for unresponsiveness with
propofol in wild-type mice corresponds roughly to the half max-
imum of the neuronal changes (EC50). Chen et al. (2009) found
this to be approximately 7 mg/kg. Using the volume of distrib-
ution of 1.38 l/kg (Cox et al., 1998) in the rat (murine values
not available), EC50 is then about 5.1 mg/l or 29 µM, which is
significantly greater than the minimum free plasma concentra-
tion ∼8.5 µM for surgical anesthesia. Thus Dketamine/kketamine +

Dpropofol/kpropofol+ηDketamineDpropofol/(kpropofolkketamine) < 1/2

is approximately satisfied as long as η < 1
2 . While the Emax

for ketamine-induced membrane hyperpolarization in murine
pyramidal neurons is of the order of −4 mV, the actual value
of Emax will depend on the species and the recording condi-
tions/preparation. In the absence of any information to the con-
trary one can assume that E < Emax/2. Thus our ansatz Eq. 5 can
be considered as following from Eq. 3 under a range of reasonable
assumptions.

LILEY MODEL AND EIGENSPECTRUM CALCULATION
We base our investigation in this paper on the Liley et al.
(2002) model, which is a typical neural field model (Deco
et al., 2008; Coombes, 2010; Bressloff, 2012; Liley et al., 2012).
In Bojak and Liley (2005) 73,454 different parameter sets,
which produce biologically plausible resting state activity, were
found for this model. We use here also the “eigenspectrum”
approach introduced in Bojak and Liley (2005) to directly pre-
dict EEG power spectral densities (PSDs) from a given para-
meter set. In the following we will briefly review a few key
features of the Liley et al. (2002) model and of the eigenspec-
trum approach that will play a role for the analysis in this
paper, and refer the reader to the original reference for more
detail. The Liley et al. (2002) model can be written concisely as
follows:
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τk
∂

∂t
hk (x, t ) = hr

k − hk (x, t )+
∑
l=e,i

h
eq
lk − hk (x, t )∣∣heq

lk − hr
k

∣∣ Ilk (x, t ) ,

(6)(
1

γlk

∂

∂t
+ 1

)2

Ilk (x, t )

=
Γlk e

γlk

 N β

lk Smax
l

1+ e
√

2[hl (x,t )−µl ]
/

σl

+Φlk (x, t )+ plk (x, t )

 ,

(7)[(
1

vlkΛlk

∂

∂t
+ 1

)2

−
3

2

1

Λ2
lk

∇
2

]
Φlk (x, t )

=
N α

lk Smax
l

1+ e
√

2[hl (x,t )−µl ]
/

.σl

. (8)

In all these equations l, k = e, i serve as indices for excitatory
and inhibitory neural populations, respectively, and x gives their
position on a two-dimensional cortical sheet. The mean excitatory
soma membrane potential he(x, t ) of Eq. 6 is taken to predict the
EEG. In the absence of postsynaptic inputs these potentials hk(x,
t ) decay to their resting values hr

k . The inputs Ilk(x, t ) correspond
to postsynaptic potentials and are weighted by ionic driving forces
h

eq
lk − hk (x, t ), where the h

eq
lk are the respective Nernst poten-

tials. These weights are normalized at rest to +1 (excitatory) and
−1 (inhibitory), respectively. A postsynaptic input in Eq. 7 uses
double indices to indicate source and target (for example, Iei(x,
t ) is excitatory input to an inhibitory neural population). Γlk is
the mean peak amplitude induced by a single presynaptic pulse
δ(t − t p), and 1/γlk the corresponding rise time to this peak of a
postsynaptic “α form” response I (x, t )∝ γ2te−γt Θ(t − t p), where
Θ is the Heaviside step function and δ the Dirac delta function.
Extra-cortical input is given by plk(x, t ), and is here assumed to
be shaped noise (pee), static (pei), or absent (pik). The noise repre-
sents the average of uncorrelated input to the many neurons in the
neural mass. For simplicity it is imposed only on the excitatory
extra-cortical input to excitatory neurons, which is sufficient to
generate the full dynamical range of the model. Finally, activity
is propagated cortico-cortically via Eq. 8 with a standard damped
wave equation (Jirsa and Haken, 1996; Robinson et al., 1997). The
activity propagation through Φlk(x, t ) represents a synaptic foot-
print which falls off exponentially with characteristic distance scale
Λlk, and fibers having conduction velocity νlk. Since there are no
long-range inhibitory fibers, we can set Φik≡ 0 in the following.
Short range connectivity is both excitatory and inhibitory, and is
represented by the first term in the curly brackets of Eq. 7. Note
that Eq. 8 can be improved upon (Bojak and Liley, 2010), but its
main role is in this case to include a larger variety of EEG wave-
lengths as will become apparent. Our main conclusions are not
affected even for the radical choice of an entirely homogeneous
cortex, i.e., upon removing all spatial dependence.

The eigenspectrum approach (Bojak and Liley, 2005) assumes
that Eqs 6–8 have a “fixed point” solution for a homogeneous
cortex with static pee. All variables are then linearly expanded
around this solution, and auxiliary variables Ĩlk = ∂Ilk/∂t and
Φ̃ek = ∂Φek/∂t are used to turn Eqs 6–8 into 14 first order ODEs.

One can then Fourier-transform in space and time, and obtains
an equation for the 14-dimensional state vector s in the form

iωs (ω, k) = J
(

k2)
· s (ω, k)+ P (ω, k) , (9)

where J is the Jacobian matrix and P(ω, k) contains the remainder
of the extra-cortical input, i.e., the variation of pee with subtracted
mean. Note that the only spatial derivative here is the Laplacian
in Eq. 8, hence the Fourier-transformed Jacobian is a function of
the square of wavenumber k. One can then show (Bojak and Liley,
2005) that

|he (ω, k)|2 =

∣∣∣∣∣
14∑

n=1

cn (k)

iω− λn (k)

∣∣∣∣∣
2

, (10)

where both the coefficients cn and the eigenvalues λn can be
obtained from a decomposition of the Jacobian in both left and
right eigenmatrices, and k ≡ |k|.

Furthermore, if one makes the simplifying assumption that
an EEG electrode aggregates the contributions of a disk-shaped
part of the cortical sheet with radius R, then one can compute a
prediction of the PSD as follows (Bojak and Liley, 2005)

PSD
(
f
)
= 2πR2

∞∫
0

dk

k
J2
1 (kR)

∣∣he
(
ω ≡ 2πf , k

)∣∣2, (11)

where J1 is a Bessel function of the first kind. In practice we evaluate
the integral Eq. 11 numerically using a 64 point 0 < ki < 14.14/cm
Gauss–Legendre quadrature, and hence need to evaluate Eq. 10 for
all these k = ki. PSDs calculated in this manner from 10 parameter
sets selected out of the 73,454 in Bojak and Liley (2005) are shown
in Figure 2. We call a solution stable if for all 64 k = ki, as well as for
homogeneous cortex k = 0 cm, the eigenvalues are such that ∀n:
<λn(k) < 0. Only for stable cases do all the approximations lead-
ing up to Eq. 11 make sense. The largest contributions to Eq. 10
arise when ω==λn(k); and if one disregards the cn(k), then the
“least stable” eigenvalue with largest <λn(k) < 0 will contribute
most.

Consider now only those λm that have non-zero frequencies
fm≡=λm(k = 0/cm)/(2π) 6= 0: due to the selection process (Bojak
and Liley, 2005), the “least stable” λmax of these λm will have
8 Hz≤ fmax≤ 13 Hz, i.e., a frequency in the α rhythm range. If
we change from parameter set {P1} to {P2}, we can compute the

resulting frequency shift ∆f ≡ f {P2}
max − f {P1}

max of this eigenvalue
α frequency. We find that for the parameter changes considered
below, this “theoretical” α frequency shift ∆f estimated directly
from the eigenvalues provides a reasonable approximation for a
more“experiment-like”calculation of the α peak shift. In an exper-
iment one would typically seek the maxima of the measured PSDs
in the 8–13 Hz range, and then compute their difference in fre-
quency in order to determine an α frequency shift, cf. Figure 1C
(Hayashi et al., 2007; Tsuda et al., 2007). We can do something sim-
ilar here by evaluating the full PSDs with Eq. 11 for {P1} and {P2},
respectively, and then compute the difference of the maxima of
these theoretical predictions. However, we use the “theoretical”∆f
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FIGURE 2 | Eigenspectra of 10 parameter sets. The panels show
eigenspectra estimated with Eq. 11 from 10 different parameter sets in
Bojak and Liley (2005). These 10 sets are selected for the behavior of their α

peak frequency under hyperpolarization, see text and Figures 3B,D.

Table 1 | α peak frequency shifts predicted from the leading eigenvalue

(∆f ) and the full PSD, respectively, for the parameter sets of Figure 2.

Propofol only Ketamine only Both

P = 1.2, K = 0 P = 0, K = 1.4 P = 1.2, K = 1.4

∆f (Hz) PSD (Hz) ∆f (Hz) PSD (Hz) ∆f (Hz) PSD (Hz)

I 0.25 0.07 −1.42 −1.70 1.84 1.85

II 0.40 0.29 −1.60 −1.69 2.70 2.61

III 0.24 0.13 −1.37 −1.69 1.91 2.27

IV 0.45 0.37 −1.10 −0.96 2.55 2.54

V −0.20 −0.21 −1.39 −1.30 1.51 1.40

VI 0.12 −0.18 −1.00 −1.44 1.47 1.44

VII 0.10 0.16 −2.12 −2.11 2.72 2.81

VIII 0.02 −0.15 −1.33 −1.50 1.45 1.59

IX 0.20 −1.46 −1.89 −3.02 2.09 2.05

X 0.15 0.15 −1.38 −1.66 1.86 2.14

P and K are normalized propofol and ketamine concentrations, respectively.

in the following. It is much easier to compute, since it involves only
one eigendecomposition for k = 0/cm compared to 64 for k = ki

needed in the numerical PSD integration Eq. 11. Furthermore, the
“theoretical”∆f separates the change of the α peak frequency from
other changes to the spectrum. “Experiment-like” calculations of
shifts directly from local maxima in the full spectrum can be con-
founded easily by other spectral changes, and a prior subtraction
of the spectral “background” around these maxima would closely
match our “theoretical” procedure. For the parameter sets shown
in Figure 2, a comparison between “theoretical” and “experiment-
like” frequency shifts is provided by Table 1. How these shifts are
generated will be discussed in the following, but note for now that
most results are quite similar. The big discrepancies for parameter

set IX are caused precisely by a rise of the spectral “background,”
as discussed.

DRUG EFFECT PARAMETERIZATION AND SELECTION OF SETS
The effect of the action of both ketamine and propofol on HCN1
channels is to hyperpolarize the resting membrane potentials of
pyramidal (excitatory) cells (Chen et al., 2009). Consider Eq. 6 in
the absence of synaptic inputs Ilk(x, t )≡ 0, then limt→∞hk(x, t ) =
hr

k . Thus hr
e and hr

i parameterize the excitatory and inhibitory
resting membrane potentials, respectively. In the spirit of Eq. 5 we
hence use the following ansatz:

∆hr
e ≡ hr

e

∣∣
P ,K − hr

e

∣∣
P=K=0 = − (a1P + a2K + a12PK )

= −∆h cos θ, (12)

∆hr
i ≡ hr

i

∣∣
P ,K − hr

i

∣∣
P=K=0 = − (b1P + b2K + b12PK )

= −∆h sin θ, (13)

where P, K are normalized (dimensionless) concentrations of
propofol and ketamine, respectively; and ∆hr

e , ∆hr
i are changes

of the excitatory and inhibitory resting membrane potentials,
respectively, due to these drugs. For convenience we have fac-
tored out the sign corresponding to hyperpolarization, and we
have assumed that inhibitory neurons would react qualitatively
like the pyramidal cells, i.e., ∆hr

e , ∆hr
i ≤ 0 mV in the consid-

ered ranges 0≤ P ≤ Pmax and 0≤K ≤K max, while quantitative
differences are expressed by potentially different coefficients. Since
the drugs applied individually lead to hyperpolarization, we must
have coefficients a1, a2, b1, b2 > 0, whereas the sign of the inter-
action coefficients a12, b12 carries the same meaning as that of
η in Eq. 4. In the following it often will be useful to express
the “Cartesian” ∆hr

e , ∆hr
i ≤ 0 mV in the corresponding “polar

coordinate” form as ∆h ≡
√(

∆hr
e

)2
+
(
∆hr

i

)2
≥ 0 mV and

θ ≡ arctan
∆hr

i
∆hr

e
∈ [0◦, 90◦].

As a first step, we have investigated which of the 73,454 human
α rhythm sets from Bojak and Liley (2005) can be extended viably
via Eq. 12 and Eq. 13. Chen et al. (2009) found for rat pyra-
midal neurons that ∆hr

e = −4.0 mV for ketamine at 20 µM
concentration and ∆hr

e = −3.7 mV for propofol at 5 µM con-
centration. Assuming that in humans (and in inhibitory neu-
rons) hyperpolarizations of similar sizes occur, we varied both
hr

e and hr
i away from their original values in steps of −0.05 mV

up to a hyperpolarization of −6 mV, while the remaining para-
meters were left unchanged. This leads to a grid of 121× 121
hyperpolarization combinations

(
∆hr

e , ∆hr
i

)
, for which we tested

whether the changed parameter sets remain stable, i.e., we com-
puted eigendecompositions for 64+ 1 values of k and made sure
that all eigenvalues had negative real parts. We also calculated the
resulting shift in the α peak frequency as compared to the orig-
inal parameter set in the “theoretical” manner discussed above:

∆f (∆hr
e , ∆hr

i ) ≡ f
{P(∆hr

e ,∆hr
i )}

max − f {P(0,0)}
max .

We find that of the 73,454 parameter sets only 1,627 remain
stable for all 121× 121 combinations of hyperpolarizations up
to −6 mV. This does not mean that the other parameter sets
are thereby rejected on biological or physiological grounds;
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rather their PSDs cannot be calculated with the eigenspectrum
approximation used here, but would have to be estimated from
explicit simulations with the fully non-linear Eqs 6–8. This ordi-
nary numerical procedure is several orders of magnitude slower
and hence not employed here. Figure 3A displays the average〈
∆f (∆hr

e , ∆hr
i )
〉

over the 1,627 stable sets. The color bar indicates
the corresponding frequency values. We can see that in this average
there is little effect of ∆hr

i , whereas decreasing ∆hr
e (increasing the

hyperpolarization of the pyramidal neurons) leads to an increas-
ingly negative 〈∆f 〉. The lowest average value for the 1,627 sets
in Figure 3A is 〈∆f(−6 mV, −6 mV)〉=−2.03 Hz, whereas the
highest is 〈∆f(0 mV,−6 mV)〉= 0.336 Hz.

Since more substantial increases in frequency are expected for
the interaction of ketamine and propofol (Hayashi et al., 2007;
Tsuda et al., 2007), we introduce the following cut: a set will be kept
only if for at least one of the 121× 121 hyperpolarization combi-
nations

(
∆hr

e , ∆hr
i

)
we find ∆f > 1.6 Hz. Similarly, since ketamine

on its own should introduce a decrease in ∆f (Schuttler et al., 1987;
Kochs et al., 1996), we require that for at least one other hyper-
polarization combination ∆f <−0.8 Hz. Finally, propofol on its
own is assumed here to not change the α frequency significantly
∆f≈ 0 Hz (Schwender et al., 1996; Kuizenga et al., 1998, 2001; Fes-
hchenko et al., 2004; Breshears et al., 2010; Cimenser et al., 2011),
at least not by a HCN1-mediated mechanism, as was discussed
in the Introduction. It is more difficult to introduce a simple cut
for this property, since for small hyperpolarizations by definition
one finds ∆f≈ 0 Hz. We orient ourselves here to ∆hr

e = −3.7 mV
for propofol from Chen et al. (2009), and require that at least for
one combination with ∆hr

i ≤ −4.3 mV one has |∆f(−3.7 mV,
≤4.3 mV)| < 0.4 Hz. Considered individually, the low frequency
cut for ketamine eliminates only 80 parameter sets, whereas the
high frequency cut for the interaction of ketamine and propo-
fol leaves only 66 parameter sets. Combining these two cuts then
leaves 64 parameter sets in total. Individually, the cut for propofol
limiting the frequency shift leaves 149 parameter sets. Combined
with the other two cuts, we arrive at 10 parameter sets. Their orig-
inal PSDs are the ones that were displayed previously in Figure 2,
and we display their parameter values in Table A1 in the Appen-
dix. We show the resulting 〈∆f 〉, now averaging over only the 10
selected sets, in Figure 3B. It is immediately apparent that there
are now three zones: for small ∆hr

e but large (negative) ∆hr
i one

sees large increases in frequency, for large (negative) ∆hr
e but small

∆hr
i large decreases in frequency, and in between there is a cor-

ridor with little change in frequency. This same basic structure is
found in all 10 selected sets individually.

Now we can use this structure to determine the coefficients in
Eq. 12 and Eq. 13. Starting with the case of giving ketamine only,
we can write

P = 0 : tan θK =
b2

a2
. (14)

Thus the effect of increasing ketamine concentration in
the plane of hyperpolarizations is to move out along a line
through the origin with angle θK. Ketamine on its own is sup-
posed to deliver shifts to low frequencies, for which we have
set a cut ∆f <−0.8 Hz above. We now determine for every

hyperpolarization combination how many of the 10 selected para-
meter sets have ∆f

(
∆hr

e , ∆hr
i

)
< −0.8 Hz. This leads to a

121× 121 grid of values between 0 and 10. In Figure 3C this
is shown by blue contour lines for 4, 7, and 10 sets fulfilling
this cut. We choose the mean of all

(
∆hr

e , ∆hr
i

)
in the “maxi-

mal fulfillment” (10 sets) region (tip of blue arrow) to determine
tan θK= 0.315. Given that we do not know the dependence of
hyperpolarizations on ketamine concentrations in humans, we
choose ∆hr

e ≡ −4 mV at K = 1 and thus consequently a2≡ 4 mV.
This implies an unknown normalization K ≡ cK /c∗K , so that
at a ketamine concentration c∗K one finds ∆hr

e = −4 mV in
humans. Given this choice, we have b2≡ 1.26 mV from the ket-
amine angle tan θK= 0.315. Since a2 > b2, we can now also find
K max= (6 mV)/a2= 1.5 as the largest value for the normalized
ketamine concentration for which both hyperpolarizations remain
below−6 mV.

In a similar manner we can deal with the case of propofol as
the sole drug. Then we find the angular dependence:

K = 0 : tan θP =
b1

a1
. (15)

Figure 3C shows contour lines for 4, 7, and 10 parameter sets
fulfilling the cut for an α frequency shift

∣∣∆f
(
∆hr

e , ∆hr
i

)∣∣ <

0.4 Hz, this time in green color. Since the cut was evaluated for
∆hr

e = −3.7 mV only to find these sets, we determine the mean
of combinations

(
∆hr

e ≡ −3.7 mV, ∆hr
i

)
that have “maximal ful-

fillment” (10 sets) in order to obtain tan θP= 1.297, indicated
by the tip of the green arrow. We choose ∆hr

e ≡ −3.7mV at
P≡ cP/c∗P = 1, so that a1≡ 3.7 mV and at an unknown propofol
concentration c∗P one finds ∆hr

e = −3.7 mV in humans. Then
b1≡ 4.8 mV, and since b1 > a1 it follows that Pmax= (6 mV)/
b1= 1.25.

Finally, Figure 3C shows red contour lines for 4, 7, and 10 para-
meter sets fulfilling ∆f (∆hr

e , ∆hr
i ) >1.6 Hz. Again we find the

mean of “maximal fulfillment” (10 parameter sets), as indicated

by the tip of the red arrow. These mean values are ∆h
r
e ≡ −0.177

mV and ∆h
r
i ≡ −5.903 mV in this case. We now extend to the

−6 mV hyperpolarization limit by setting ∆h
max
i ≡ −6 mV and

∆h
max
e ≡ (−6 mV)(−0.177 mV)/(−5.903 mV)=−0.180 mV. We

can now solve the following two equations

∆h
max
e = − (a1Pmax + a2Kmax + a12PmaxKmax) , (16)

∆h
max
i = − (b1Pmax + b2Kmax + b12PmaxKmax) . (17)

This will then mean that our entire hyperpolarization grid
−6 mV ≤ ∆hr

e , ∆hr
i ≤ 0 mV will be projected onto a rectan-

gular area bounded by 0≤ P ≤ Pmax and 0≤K ≤K max, respec-
tively. Solving Eq. 16 and Eq. 17 with our previous results yields
a12=−5.57 mV and b12=−1.01 mV. Figure 3D shows the pro-
jected 〈∆f(P, K )〉. Clearly the intended α frequency shifts are now
achieved: negative ones for only ketamine, none for only propofol,
and positives ones for propofol and ketamine together.

RESULTS
We have parameterized the HCN1-mediated hyperpolariza-
tions of neuron membrane potentials in order to reproduce
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FIGURE 3 | Parameterization of the hyperpolarization effects of
propofol and ketamine. (A) Shift of the α peak frequency, average
over all 1,627 sets estimated as described below Eq. 11. (B) Likewise,
but averaged over the 10 sets shown in Figure 2, which were selected
for having large up (∆f > 1.6 Hz) and down (∆f <−0.8 Hz) shifts of α

peak frequency, as well as a lack of shift for some large
hyperpolarizations (|∆f (−3.7 mV, ≤4.3 mV)| < 0.4 Hz). (C) Blue contours

indicate areas where 4, 7, or 10 sets have the required down-shift. A
blue arrow points to the midpoint of this area, and drug effect
parameters for Eq. 12 and Eq. 13 derived from this are listed in blue
text. Likewise, parameters are derived for up-shift in red and a lack of
shift in green. (D) These are the same results as in (B), but now plotted
against normalized propofol P and ketamine K concentrations using
the drug effect parameters found in (C).

the observed EEG effects of ketamine and propofol, and in
particular of their interaction when concurrent. The coeffi-
cients that we have obtained for Eqs 12–13 afford the fol-
lowing interpretation: pyramidal neurons react similarly to

ketamine and propofol (a1= 0.925× a2), whereas inhibitory
neurons react much more strongly to propofol than to keta-
mine (b1= 3.81× b2). Furthermore, and perhaps most interest-
ingly, there is an antagonism of ketamine and propofol (a12,
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b12 < 0), which leads to infra-additivity in the investigated effect
of HCN1-mediated hyperpolarization, cf. Eq. 4. This antagonism
is stronger in pyramidal neurons a12/(a1Pmax+ a2K max)= 4.10
b12/(b1Pmax+ b2K max), though the precise proportion depends
on the given concentrations of the drugs. Intuitively it makes sense
however that in inhibitory neurons, where one drug is much more
effective than the other, the antagonism between the drugs is less
pronounced.

To illustrate these results we look again at the “theoretical” esti-
mates of the α peak frequency in Figure 4, where we compare
now the effects of changing propofol and ketamine concentra-
tion on the 10 selected sets (red) with those computed for all
the valid 1,627 sets (gray). Note that the 1,627 sets include the
10 selected ones. Quantile bands are computed to summarize the
results for the individual parameter sets, as indicated by the leg-
end. Starting from a baseline without drugs, four phases are being
considered: first, propofol concentration is increased linearly; then
propofol is maintained at maximum concentration and ketamine

concentration is increased linearly; next propofol concentration
is decreased linearly while ketamine is maintained at maximum
concentration, and finally ketamine concentration is decreased
linearly for a return to the baseline. It should be noted that no
attempt at modeling the pharmacodynamics/pharmacokinetics
of ketamine and propofol drug action beyond drug interaction
has been made here. Furthermore, the eigenspectrum approach
assumes that the system has reached equilibrium for the given
parameters. Thus every single fmax(P, K ) predicted here, and con-
sequently every single quantile band value, represents a “steady
state” result for that particular drug concentration combination.
Hence one can for example view Figure 4 from right to left, begin-
ning with an increase in ketamine concentration, followed by an
increase in ketamine at maximum propofol concentration, and so
forth.

Comparing now the red with the gray quantile bands, we see
that our cuts selected sets that react particularly dramatically to
the concurrence of propofol and ketamine (phases 2 and 3), while

FIGURE 4 | Estimated α peak frequency shifts. Shifts of the α peak
frequency for normalized propofol P and ketamine K concentrations
estimated as described below Eq. 11, using the hyperpolarizations in
Eq. 12 and Eq. 13. Either all 1,627 (gray) or the 10 selected sets (red)
are used to compute quantile bands, as indicated by the legend. The
median value is shown by a thick black or red line, respectively. There
are four phases of drug variation, as indicated by the titles and dotted

lines, quantified by bars below the main panel: first, P =0→1.2
linearly, while K =0. Then K =0→1.4 linearly, while P =1.2. Next
P =1.2→0, while K =1.4. Finally, K =1.4→0, while P =0. No
pharmacodynamics has been modeled here, so every (P, K )
combination yields an independent “steady state” result. Hence for
example an increase of P at high K is shown by the third phase
viewed from right to left.
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being unresponsive to propofol alone (phase 1). Nevertheless, it is
not the case that the results for the 1,627 sets show a totally diver-
gent response pattern. In fact, the median rise of estimated α peak
frequency in phase 2 (upon introducing ketamine at maximum
propofol concentration) is comparable: 1.88 Hz for the selected
sets (from 11.48 to 13.36 Hz) vs. 1.56 Hz for all sets (from 9.37 to
10.93 Hz). Thus the predicted boost of α peak frequencies due
to the interaction between ketamine and propofol is a robust
result for all sets given our drug effect parameterization, which
is infra-additive concerning HCN1-mediated hyperpolarization.
The main difference appears to be rather that the α peak fre-
quencies of the selected sets do not react significantly to propofol,
whereas they are similar to all other sets in the reaction to ketamine
and the interaction between these drugs.

Turning to results for full PSDs from Eq. 11, we will consider
the 10 selected sets only due to the higher computational demands.
Figure 5 shows results for one individual set (Set III of Figure 2)
under three variations of drug concentration. In Figure 5A we
see that as desired and estimated, the α peak frequency stays
roughly the same during propofol anesthesia (Schwender et al.,
1996; Kuizenga et al., 1998, 2001; Feshchenko et al., 2004; Breshears
et al., 2010; Cimenser et al., 2011). The damping seen here would
be more characteristic of occipital than frontal regions, though
other processes in particular related to the GABAA agonism could

modify these results. The “theoretical” ∆f= 0.24 Hz at P = 1.2 is
larger than the “experiment-like” shift of 0.13 Hz. In Figure 5B
we can see the reaction to increasing ketamine concentration. As
expected, the α peak gets shifted to lower frequencies. The “the-
oretical” ∆f=−1.37 Hz estimate at K = 1.4 is somewhat lower
than the “experiment-like” shift of the local maxima of the PSDs
of −1.69 Hz. While the α oscillations get dampened, they con-
tribute to a net increase in the θ frequency range (Schuttler et al.,
1987; Kochs et al., 1996) thanks to their downward frequency shift.
But one sees also a general rise in power at lower frequencies.
Figure 5C shows that adding ketamine in the presence of high
doses of propofol leads to a shift of the α peak into the beta band,
as observed by Hayashi et al. (2007) and Tsuda et al. (2007). The
“theoretical” ∆f= 1.91 Hz at P = 1.2 and K = 1.4 is smaller than
the “experiment-like” shift of 2.27 Hz. We predict here an increase
in power, unlike the experiment, which observed a small but sig-
nificant reduction, and our frequency shift of 2.27 Hz is less than
half the observed 4.7 Hz. But this could be explained easily by
the missing GABAA and NMDA mechanisms, or the precise cir-
cumstances of the experiment. A bolus of ketamine was given by
intravenous injection in the experiment, whereas here we calcu-
late “steady state” results. Furthermore, while the frequency shifts
from our “theoretical” ∆f method are largely in agreement with
those obtained from the local α maxima of the PSDs, they do not

A B

C D

FIGURE 5 | Power spectral densities for Set III under drug variations.
(A) PSDs for increasing normalized propofol concentration from none
(thinnest green line) to 1.2 (thickest green line). (B) PSDs for increasing
normalized ketamine concentration from none (thinnest blue line) to 1.4
(thickest blue line). (C) PSDs for increasing normalized ketamine concentration

from none (thinnest red line) to 1.4 (thickest red line), while normalized
propofol concentration is held constant at 1.2. (D) Comparison of the PSDs
representing the highest normalized concentrations from (A) in green, (B) in
blue, and (C) in red. The black curve is the PSD without drugs. In all four
panels the dotted line represents the position of the α peak of this curve.
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agree perfectly – in spite of both being derived using the same
eigenspectrum technique. The difference is that by looking at the
maxima the results are influenced by changes to the overall spec-
trum, which provide the “background” on which the α resonance
sits. Table 1 gives ∆f and “experiment-like”α peak frequency shifts
for the 10 sets at the three highlighted drug concentrations.

Finally, in Figure 6 we show similar results for all the 10 selected
sets. We follow here the same scheme of changing drug concentra-
tions as in Figure 4. We see that the α peaks of the full PSDs (here
shown in decibels by color) of the individual sets indeed follow the
“zigzag” shape we saw in the quantile bands of Figure 4. Panel III
in Figure 6 can be directly compared to Figure 5, which we have
just discussed. For example, Figure 5A corresponds to the first
phase in panel III here. Overall we see that while the sets clearly
change in a similar way, they all have individual features that set
them apart from the others. For example, parameter set IV shows
particularly strong changes in the low frequency range, whereas
parameter set VII reacts with a particularly strong lowering of the
α peak frequency in the presence of ketamine. These variations
can be considered as representing the variations that one can also
observe in humans.

DISCUSSION
We have shown that observed changes of the EEG α peak fre-
quency induced by the presence of the anesthetic agents propofol

and ketamine, but in particular also by their interaction when
given concurrently, can be explained based on the modeling of
HCN1-mediated hyperpolarizations alone, at least qualitatively.
This is surprising, since the main mechanism of action of these
drugs is supposed to be through NMDA antagonism (ketamine)
and GABAA agonism (propofol), respectively. However, since
HCN1-knockout mice are indeed less sensitive to the hypnotic
effects of both drugs (Chen et al., 2009), this would indicate that
the EEG remains useful as an indicator of anesthetic action. It
is perhaps interesting to note that while ketamine is famous for
its hallucinatory action (Wolff and Winstock, 2006), and hence
is considered a dissociative anesthetic agent, propofol as a classic
general anesthetic agent is also capable of inducing a range of hal-
lucinatory phenomena (Balasubramaniam and Park, 2003). Hence
it is possible that psychotropic HCN1-mediated effects are simply
masked behaviorally more by propofol’s GABAA agonism than by
ketamine’s NMDA antagonism, but that the EEG is particularly
sensitive to these underlying changes.

Only a fraction of all considered parameter sets (1,627 of the
73,454 parameter sets from Bojak and Liley (2005) proved “sta-
ble” under the HCN1-mediated hyperpolarization changes up to
−6 mV on both excitatory and inhibitory neurons. However, this
is at least partly due to the computational methods used here:
the eigenspectrum method (Bojak and Liley, 2005) can only be
used for “fixed point” dynamics. Rejected sets could follow the

FIGURE 6 | Power spectral densities for all 10 selected parameter sets
under drug variation. We use here the same four phases of drug variation
as in Figure 4, as indicated by the dotted lines and quantified by bars
below the main panels: first, P =0→1.2 linearly, while K =0. Then
K =0→1.4 linearly, while P =1.2. Next P =1.2→0, while K =1.4. Finally,
K =1.4→0, while P =0. Every panel corresponds to 1 of the 10 selected
parameter sets, as indicated by a white roman numeral. The PSD for one

specific (P, K ) combination is indicated in the panel by a colored vertical
line corresponding to frequencies from 0 to 20 Hz. Colors here indicate
decibels of the PSD, with dark red corresponding to large, green to
medium and dark blue to small values. (The “jet” colormap of Matlab has
been mapped for each panel individually, to the full range of PSD decibel
values shown in the panel.) A white dashed line indicates the α peak
frequency in the absence of drugs.
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same kind of drug-induced changes, but be inaccessible with our
method chosen for its computational speed. In principle it would
be desirable to carry out fully non-linear calculations instead, but
under extra-cortical noise input it takes about a minute to estimate
a sufficiently detailed and accurate power spectrum on a regular
PC. For the 121× 121 hyperpolarization changes of Figure 3 that
would lead to about 10 days of calculations even for a single para-
meter set – but we investigate here 73,454 different ones. The
eigenspectrum method is several orders of magnitude faster even
for a single neural mass. Yet we include here also effects due to
the spatial distribution of neural masses, see Eq. 11. The computa-
tional load scales roughly linearly with the number of integration
points for the eigenspectrum method, but roughly as a square for
an equivalent fully non-linear simulation based on spatial grids.
This increases the difference in computation speed even further.
Thus for the investigations carried out here only the eigenspec-
trum method proves practicable. In addition, limit cycle or chaotic
dynamics are often more representative of seizures or other patho-
logical brain states, which in clinical practice would lead to the
termination of the pharmacological intervention that we intend
to describe here. Other than by numerical simulation in every sin-
gle case, we do not know how to determine the characteristics of
the dynamics past the point of instability.

Furthermore, our current investigation does not include the
NMDA and GABAA actions commonly assumed to be dominant
in these drugs. We speculate that a more complete simulation
could allow the use of a larger fraction of the 73,454 parameter
sets, since these omitted actions can affect the required stabil-
ity. A prolongation of the inhibitory postsynaptic potentials due
to GABAA, for example, could suppress excessive excitation and
thus stabilize a parameter set. These neglected stabilizing effects
would increase also in due proportion to the agent concentration,
just as the potentially destabilizing hyperpolarizations we have
modeled here do. In order to obtain spectral changes that demon-
strate clearly the expected frequency shifts, we introduced three
further selection cuts, leaving us with only 10 parameter sets out
of the 1,627. Again we speculate that NMDA and GABAA actions
may ameliorate this reduction. If this is not the case, then this may
point to underlying correlations between neural parameters or
functional properties that were not considered in Bojak and Liley
(2005), but which now prove crucial for a realistic description.
Note that in terms of the hyperpolarizations, cf. Figures 3B,C, the
non-reactivity to propofol means that for the 10 selected parame-
ter sets an increase in the hyperpolarization of excitatory neurons
can be compensated by an increase in the hyperpolarization of
inhibitory neurons. This could suggest a particular intrinsic bal-
ance of excitation and inhibition maintaining functional stability
against extrinsic disturbances.

As is apparent from Figure 2, most of our 10 selected sets
have relatively high α peak frequencies. However, this simply
reflects an underlying bias in the original 73,454 parameter sets,
cf. Figure 8 in Bojak and Liley (2005); and we were able to lower
base α frequencies through the adjustment of a few parameters

(e.g., cortico-cortical connectivity N β

lk ) within physiological lim-
its, without thereby qualitatively changing the relative frequency
shifts due to propofol and ketamine. Other spectral features that
could be selected for are also unlikely to affect the α frequency

shifts here qualitatively. The constraints used by Bojak and Liley
(2005) leave plenty of room for such adjustments: effectively only
four out of 14 system eigenvalues were used to establish the “1/f”
background and the α resonance. Adding a weak beta frequency
resonance to enhance realism, for example, would only require the
adjustment of two further system eigenvalues. Thus we expect that
our results here would hold true if one were to redo the parame-
ter space search of Bojak and Liley (2005) first with additional
constraints on the base power spectra. Finally, for concurrent
application of propofol and ketamine we predict increases of the
α peak frequency of around 2 Hz, falling short of the 4.7 Hz seen
experimentally (Hayashi et al., 2007; Tsuda et al., 2007). Yet our
calculations were for “steady state” concentrations, and for rapid
increases in dosage, as in the experimental injection of a single
ketamine bolus here, one often finds a more complex response
due the pharmacodynamics and transient neural responses. The
so-called biphasic responses to anesthetic agents (Kuizenga et al.,
1998, 2001) has received theoretical attention from several groups
(Bojak and Liley, 2005; Wilson et al., 2006; Molaee-Ardekani et al.,
2007; Hutt and Longtin, 2010; Steyn-Ross and Steyn-Ross, 2010),
see also the review in Foster et al. (2008). Hints of such a biphasic
response could be visible in Figure 5 of Tsuda et al. (2007), which
shows a significant drop of the α peak shift with time from the
initial 4.7 Hz to values around 2 Hz. However, this would have to
be disentangled from the decrease in ketamine concentration due
to natural clearance after the bolus. We intend to investigate all the
mentioned issues in future work.

We found that we could account for the heterogeneous effects
of ketamine on the EEG if we assumed that propofol and ket-
amine interacted in an infra-additive or antagonistic manner in
their inhibition of HCN1-mediated neuronal membrane hyperpo-
larization. While most anesthetic and sedative agents are reported
to interact synergistically ketamine is well-known to be a major
exception (Hendrickx et al., 2008). The interaction between ket-
amine and GABAA agonists (most sedative/anesthetic agents) to
produce hypnosis is reported to range from additivity to infra-
additivity/antagonism (Hendrickx et al., 2008). On the basis of the
limited clinical data available it appears that the GABAA agonist
propofol can interact infra-additively to produce a given hypnotic
endpoint. For instance Hui et al. (1995), in a study involving 180
female patients presenting for minor gynecological surgery, cal-
culated quantal dose-response curves for propofol and ketamine
administered alone and in combination. On the basis of logarith-
mic regression of a response surface model, it was first suggested
that the dose-response for the combination was best explained
by additivity, but on reanalysis (Hendrickx et al., 2008), by infra-
additivity (significantly so for immobility, as trend for hypnosis).
In apparent contradiction, Sakai et al. (1999) claim a significantly
additive interaction between propofol and ketamine for the end-
points of unresponsiveness to vocal command and the loss of
eyelash reflex. However, the former study determined the prob-
ability of a given hypnotic endpoint in response to single doses
of fixed proportions of ketamine and propofol, whereas the latter
gave continuous infusions of ketamine and propofol until a given
hypnotic endpoint was reached. Another study by Frizelle et al.
(1997) used smaller doses of ketamine and targeted a lower level
of sedation (rousable to verbal stimuli) with a bolus of propofol
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and ketamine followed by concomitant infusion. They found no
statistical evidence that the addition of ketamine reduced the
required amount of propofol to reach their intended sedation
level, suggesting once more infra-additivity. Clearly, additional
work regarding the pharmacodynamic interactions of ketamine
and propofol are required, as it is difficult to reconcile the results
of these studies.

The use of neural field/mass approaches to modeling drug
action on the EEG is emerging as a powerful explanatory frame-
work (Liley and Bojak, 2005; Foster et al., 2008; Hutt, 2011),
which is able to retain meaningful connections to the brain’s
physiology despite its mesoscopic scale of description. Because
neural field/mass models generally have much smaller parame-
ter and state spaces than biophysically plausible neural network

models, they are not only much easier to parameterize and simu-
late, but offer a simpler framework from which to make predictions
and derive hypotheses that can be empirically tested. Our ability
to account qualitatively for the effects that propofol and keta-
mine have on the EEG adds to a growing list of phenomena
that are amenable to neural field/mass description (Deco et al.,
2008; Coombes, 2010; Bressloff, 2012; Liley et al., 2012). Ulti-
mately it is hoped that by accounting for large scale phenomena
using neural field/mass models, genuine and enduring insights
into brain function and physiology will emerge.
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APPENDIX

Table A1 |The 10 selected parameter sets, whose PSDs are shown in Figure 2.

I II III IV V VI VII VIII IX X

hr
e (mV) −68.718 −70.286 −69.774 −78.169 −63.407 −60.745 −67.15 −64.128 −64.061 −60.588

hr
i (mV) −71.115 −78.148 −69.325 −79.978 −72.375 −70.488 −79.864 −79.399 −70.777 −69.941

τe (ms) 149.16 83.072 125.02 104.53 69.026 86.932 134.75 77.855 96.538 109.63

τi (ms) 125.78 122.72 116.58 112.75 118.65 50.200 66.766 137.77 43.662 76.350

heq
ee (mV) 1.8642 −16.433 3.2177 8.7034 −2.5551 1.9520 −18.571 −9.8354 8.4179 0.83573

heq
ei (mV ) −13.716 5.2227 8.2845 −14.231 −17.725 −15.828 −19.572 −4.4417 4.0220 2.4429

heq
ie (mV ) −86.369 −85.969 −86.775 −86.941 −85.466 −83.939 −86.449 −87.012 −82.833 −87.292

heq
ii (mV) −80.439 −85.348 −77.200 −86.445 −83.047 −79.708 −87.791 −87.906 −78.523 −78.755

Γee (mV) 0.22666 0.15856 0.17189 0.11073 0.25964 0.18606 0.31401 0.11187 0.10671 0.15192

Γei (mV) 0.72933 1.8661 1.7385 1.8429 1.7030 0.91706 1.7073 1.2797 0.60619 1.7838

Γie (mV) 1.9579 1.6800 1.5436 1.6612 1.8285 1.1699 0.53775 1.2751 0.31684 1.2942

Γii (mV) 1.0898 0.68575 0.61488 0.53105 0.87001 0.38026 0.10299 0.59535 0.38033 1.2539

γee (s−1) 768.09 979.20 626.91 494.19 399.13 848.11 964.40 795.80 689.20 355.38

γei (s−1) 128.26 399.71 357.24 170.95 246.39 219.24 238.50 191.63 224.39 258.87

γie (s−1) 192.29 178.41 135.36 411.10 251.74 82.043 468.53 221.95 133.21 203.10

γii (s−1) 57.060 58.091 52.773 53.437 49.217 50.113 43.132 57.302 59.581 49.348

Nβ
ee 3393.0 2552.5 2337.7 4557.9 3571.9 2945.1 2002.9 3941.9 2061.2 2718.0

Nβ

ei 4520.7 4183.2 4168.8 4922.0 4290.5 2771.2 3297.8 4833.0 4357.1 4964.4

Nβ

ie 270.31 674.75 566.64 934.52 927.91 520.26 703.66 838.55 835.88 607.11

Nβ

ii 125.69 453.59 594.80 141.53 472.96 658.36 294.98 890.80 314.72 147.19

Nα
ee 4223.4 2234.3 4974.3 2517.6 2871.9 2230.2 2678.3 2874.7 4781.7 4128.1

Nα
ei 2892.3 1559.1 2837.9 2412.1 2952.9 1441.3 1693.6 2896.0 2095.3 2078.7

Λ (cm−1) 0.69280 0.27742 0.2529 0.76041 0.16148 0.22388 0.84812 0.56276 0.83448 0.51625

ν (cm−1) 116.05 137.60 483.12 158.20 156.22 283.76 483.97 504.36 790.03 325.52

Smax
e (s−1) 311.08 201.57 474.21 126.59 88.686 103.54 280.25 422.80 190.77 246.41

Smax
i (s−1) 249.73 280.48 287.93 171.23 227.44 238.74 473.82 294.99 485.67 411.64

µ̄e (mV) −45.365 −49.195 −53.432 −54.004 −44.616 −46.851 −46.811 −43.850 −47.622 −51.391

µ̄i (mV) −49.046 −45.093 −51.480 −44.165 −48.954 −47.996 −51.395 −50.619 −42.285 −44.831

σ̂e (mV) 6.5908 6.7284 5.2051 6.8209 6.9030 5.9824 5.9045 6.6268 5.6959 5.0919

σ̂i (mV) 4.3224 4.7270 4.4501 4.1542 5.4314 3.0605 5.4229 5.8536 5.6195 6.6326

p̄ee (s−1) 7795.9 7344.6 7966.7 5876.2 4496.4 3882.5 6781.8 2649.9 9342.5 2833.6

pei (s−1) 329.39 2554.0 999.87 2120.3 2188.8 2337.9 1196.8 2063.5 914.37 1339.4
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Neural mass models are an appropriate framework to study brain activity, combining a
high degree of biological realism while being mathematically tractable. These models have
been used, with a certain success, to simulate brain electric (electroencephalography,
EEG) and metabolic (functional magnetic resonance imaging, fMRI) activity. However,
concrete applications of neural mass models have remained limited to date. Motivated
by experimental results obtained in humans, we propose in this paper a neural
mass model designed to study the interaction between power-line magnetic fields
(MFs) (60 Hz in North America) and brain activity. The model includes pyramidal cells;
dendrite-projecting, slow GABAergic neurons; soma-projecting, fast GABAergic neurons;
and glutamatergic interneurons. A simple phenomenological model of interaction between
the induced electric field and neuron membranes is also considered, along with a
model of post-synaptic calcium concentration and associated changes in synaptic weights
Simulated EEG signals are produced in a simple protocol, both in the absence and
presence of a 60 Hz MF. These results are discussed based on results obtained previously
in humans. Notably, results highlight that (1) EEG alpha (8–12 Hz) power can be modulated
by weak membrane depolarizations induced by the exposure; (2) the level of input noise
has a significant impact on EEG power modulation; and (3) the threshold value in MF
flux density resulting in a significant effect on the EEG depends on the type of neuronal
populations modulated by the MF exposure. Results obtained from the model shed new
light on the effects of power-line MFs on brain activity, and will provide guidance in future
human experiments. This may represent a valuable contribution to international regulation
agencies setting guidelines on MF values to which the general public and workers can be
exposed.

Keywords: neural mass models, power-line magnetic fields, electroencephalogram (EEG), synaptic plasticity, brain

stimulation

INTRODUCTION
Since the pioneering work of Wilson and Cowan (1973) and
Amari (1977), neural field models have been increasingly used,
expanded and studied by a developing multidisciplinary com-
munity including: mathematicians, physicists, neuroscientists,
medical imaging scientists etcetera. Neural field models provide a
concise, yet insightful description of cortical activity. This theory
has not only led to successful reproduction of numerous exper-
imental results, but also to the prediction of a certain number
of phenomena that have been observed in vivo (for a review of
these phenomena, see Modolo et al., 2010). A popular simplifi-
cation of neural field models consists in neglecting the role of
space, consider neural populations present in cortical columns
(such as pyramidal neurons) and to consider a connectivity
matrix between the different neural masses considered (Wendling
et al., 2002; Sotero and Trujillo-Barreto, 2008; Bojak et al., 2010).
This approach has been used to build large-scale models of
brain activity, including models simulating the electroencephalo-
gram (EEG), or the blood oxygen level-dependent signal (BOLD)
reflecting metabolic activity of brain tissue (Wendling et al., 2002;

Sotero and Trujillo-Barreto, 2008; Bojak et al., 2010). Indeed,
since neural mass models are tractable and make the link between
local variables and observables, these models appear as an excel-
lent comprise between biological realism and computational
complexity. Therefore, here we present an application of neu-
ral mass model to a specific question that many teams over the
world have been tackling for a number of years using various
neuroimaging modalities: how do power-line frequency (60 Hz
in North America) magnetic fields (MFs) interact with human
brain activity (interaction mechanisms), and how does it trans-
late into observable outcomes (neuroimaging data such as EEG,
motor/cognitive performance)?

The effects of extremely low-frequency (categorized as being
<300 Hz) MF such as power-line MF on human neurophysiol-
ogy have been studied for several decades. Despite an impressive
amount of experimental data in vitro, in vivo, and in humans,
a complete understanding of the interaction mechanisms and
associated effects is still to be achieved. One complication in
comparing outcomes from these studies is the wide range of
MF flux densities, MF exposure setups, and exposure protocols
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used (Crasson, 2003). First, significant work has been done has
been done in vivo and in vitro in order to characterize the effects
of electric fields in terms of membrane potential perturbation,
excitability and neural network oscillations (Jefferys et al., 2003;
Bikson et al., 2004; Deans et al., 2007; Fröhlich and McCormick,
2010; Reato et al., 2010). These studies have highlighted the role
of neuronal morphology and orientation were critical in under-
standing the interaction with electric field, but also that mem-
brane depolarization far below the firing threshold can influence
the activity of neuronal networks. Second, among the reported
effects in humans, let us mention the modulation of pain thresh-
old (Ghione et al., 2005), effects on resting tremor (Legros and
Beuter, 2005), modulations in functional brain activity as mea-
sured by BOLD (Legros et al., 2011), interference with learning in
a short-term memory test (Corbacio et al., 2011). The most estab-
lished interaction mechanism of MF exposure consists in induced
currents, resulting from Faraday’s law of induction, stating that a
time-varying MF induces a time-varying electric field. This elec-
tric field will induce charge movement, creating a current. This
is termed as the induced current mechanism (National Institute
of Environmental Health Sciences of the National Institutes of
Health, 1998). The induced current mechanism will be the mech-
anism considered in this paper. Interestingly, several studies have
reported lasting effects associated with ELF MF exposure, i.e., an
effect that is still detectable after cessation of the exposure. Using
a specific pulsed MF, modulations of the EEG have been observed
post-exposure (Cook et al., 2004, 2005). In the case of 60 Hz MF
in the millitesla range (1.8 and 3 mT), modulations of the BOLD
signal measured in humans during motor (finger tapping) and
cognitive (mental rotation) tasks (Legros et al., 2010; Miller et al.,
2010) have been found to be modulated post-exposure.

The interest for the interaction between power-line MF and
human neurophysiology is twofold. First, there is a growing con-
cern from the general public regarding the possible deleterious
effects of power-line MF on human health, even if such negative
effects remain to be demonstrated. Second, international regu-
lation agencies such as ICNIRP (International Commission on
Non-Ionizing Radiation Protection, http://www.icnirp.de) need
results from the scientific literature to set their exposure guide-
lines (ICNIRP, 2010), aiming to protect the general public and
workers, that are used by governments. One of the most long
awaited data is the threshold in MF flux density at 60 Hz result-
ing in detectable effects in humans. One well-known effect of ELF
MF exposure is magnetophosphenes, the perception of flickering
lights in the visual field in the presence of a sufficiently strong MF.
ICNIRP states that: “Since the perception of magnetophosphenes
constitutes the most reliable effect of MF exposure on human biol-
ogy, this serves as a basis for the ICNIRP guidelines” (ICNIRP,
2010). However, no data is available at 60 Hz regarding threshold
values, therefore new approaches that could assist in the interpre-
tation of existing experimental results, but also in the prediction
of new results such as an estimation of threshold values that could
be tested experimentally, would constitute significant advances in
the field.

In order to shed light on the mechanisms involved in lasting
effects of 60 Hz MF exposure on human neurophysiology, and
also provide an estimate of the threshold value resulting in

detectable changes in EEG caused by 60 Hz MF exposure, we
present in this paper a neural mass model aiming to model
brain tissue dynamics at different time scales, bridging biophysi-
cal mechanisms with changes in observables. Among the panel of
brain tissue dynamics models available, the approach initiated by
Jansen and Rit (1995), consisting in considering sub-populations
of neurons synaptically connected; later extended and improved
by Wendling et al. (2002), provides a meaningful and accurate
description of cortical dynamics. Indeed, such models have been
successfully applied to understand the transition between baseline
EEG and epileptic activity (Wendling et al., 2002, 2005; Molaee-
Ardekani et al., 2010). First, we present an extension of the neural
mass model developed by Sotero and Trujillo-Barreto (2008), by
including a population of fast GABAergic neurons as suggested
by Wendling et al. (2002). Second, we include a simple biophysical
model of interaction between the 60 Hz MF and neuronal activity,
along with a model of synaptic plasticity changes related to post-
synaptic calcium concentration levels (Shouval et al., 2002a,b).
Third, we use this model to investigate in silico the effects of
60 Hz MF on cortical dynamics, notably to evaluate the thresh-
old in MF flux density resulting in detectable changes in variables
of interest. The role of synaptic input noise, neuronal popula-
tions modulated by the exposure, and synaptic plasticity are also
explored. Finally, we discuss future directions of research using
this modeling approach.

MATERIALS AND METHODS
NEURAL MASS MODEL
In order to develop a biologically grounded model to study
the effect of 60 Hz MF on neuronal activity, we have extend
the thalamo-cortical model proposed by Sotero and Trujillo-
Barreto (2008) by including a population of soma-projecting, fast
inhibitory γ-amino-butyric acid (GABA) interneurons to extend
the possible dynamical repertoire of the model [as shown by
Wendling et al. (2002)]. The proposed modification of the block
diagram proposed by Sotero and Trujillo-Barreto (2008) used to
describe the thalamo-cortical model is the following:

Model equations are obtained by using the fact that the synap-
tic response function (Green’s function) for a type of synapse i
(e.g., glutamatergic) writes as Vi(t) = Ai.ai.t. exp(−ai.t), where
Ai is the response amplitude and ai the response time constant.

Considering the temporal operator L̂ = d2

dt2 + 2ai
d
dt + a2

i , and
using the fact that the synaptic response is a Greens’ function
for the temporal operator, we can use L̂Vi(t) = δ(t) to write the
following neural mass equation:

d2

dt2
Vi(t)+ 2.a.

d

dt
Vi(t)+ a2 .Vi(t) = A.a.υi(t) (1)

where υi(t)is the incoming firing rate. It is often practical to
write Equation (1) under the form of a system of two first-order
differential equations:

d

dt
Vi(t) = yi(t)

(2)
d

dt
yi(t) = A.a.υi(t)− 2.a.

d

dt
yi(t)+ a2 .Vi(t)
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FIGURE 1 | Proposed extension of the Sotero et al. model of cortical dynamics (figure modified from (Sotero and Trujillo-Barreto, 2008); with

permission). The inclusion of the new population of fast GABAergic neurons and its connectivity with other neuronal populations is highlighted in red.

Using this principle for each block of EPSP/IPSP presented in
Figure 1, it is possible to formulate our extended thalamo-cortical
model as a system of 22 differential equations (6 new equations
corresponding to the new population of fast inhibitory interneu-
rons, its feedback loop with pyramidal neurons, and its inhibitory
input from slow inhibitory interneurons) presented below:

ẏ
nj
1 (t) = y

nj
12(t)

ẏ
nj
2 (t) = y

nj
13(t) (3)

ẏ
nj
3 (t) = y

nj
14(t)

ẏ
nj
4 (t) = y

nj
15(t)

ẏ
nj
5 (t) = y

nj
16(t)

ẏ
nj
6 (t) = y

nj
17(t)

ẏ
nj
7 (t) = y

nj
18(t)

ẏ
nj
8 (t) = y

nj
19(t)

ẏ
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9 (t) = y

nj
20(t)

ẏ
nj
10(t) = y

nj
21(t)

ẏ
nj
11(t) = y

nj
22(t)

ẏ
nj
12(t) = A.a.

{
c5.S

[
y

nj
1 (t)− y

nj
2 (t)− y

nj
9 (t)

]
+ c2.S

[
y

nj
3 (t)

]
+ Kth,nct

3.S [x4(t)]
}

+A.a.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
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m �= j

(
k

mj
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[
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mj
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ẏ
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The equations describing the activity of the thalamus, composed
of a population of thalamocortical cells and a population of
reticular cells are [modified from Sotero and Trujillo-Barreto
(2008)]:

ẋ1(t) = x7(t)

ẋ2(t) = x8(t)

ẋ3(t) = x9(t)

ẋ4(t) = x10(t)

ẋ5(t) = x11(t)

ẋ6(t) = x12(t)

ẋ7(t) = At .at.

⎧⎨⎩
N∑

i= 1

Kth,i
Mi∑

m= 1

c6.S
[

yim
5 (t)+ pth(t)

]⎫⎬⎭
− 2.at.x7(t)− a2

t x1(t)

ẋ8(t) = Bt .bt .c2t .S [c1tx3(t)]− 2.bt .x8(t)− b2
t x2(t)

ẋ9(t) = At .at .S [x1(t)− x2(t)]− 2.at .x9(t)− a2
t x3(t)

ẋ10(t) = At .ad1t.S [x1(t)− x2(t)]− 2.ad1t.x10(t)− a2
d1tx4(t)

ẋ11(t) = At .ad2t.S [x1(t)− x2(t)]− 2.ad2t.x11(t)− a2
d2tx5(t)

ẋ12(t) = At .ad3t.S [x1(t)− x2(t)]− 2.ad3t.x12(t)− a2
d3tx6(t)

(4)

The physical meaning and values of model parameters are
detailed in Table A1 (Appendix section). For more details, the
reader can refer to Sotero and Trujillo-Barreto (2008). Overall,
the model is composed of 22 differential equations describing
cortical dynamics of four different neuronal populations (pyra-
midal neurons, glutamatergic interneurons, fast/slow GABAergic
neurons, and 12 differential equations defining thalamic activ-
ity). Therefore, this set of 34 differential equations describes
the thalamocortical activity including time delays between cor-
tical areas, connectivity parameters, synaptic responses derived
from neurophysiology, and a biologically plausible (even if it
is obviously simplified) circuitry between the neuronal popula-
tions considered. Table A1 provided in Appendix summarizes the
parameters used in the model, with new parameters added due
to the population of fast inhibitory interneurons that have been
highlighted.

MODEL OF INTERACTION BETWEEN 60 Hz EXPOSURE AND NEURON
MEMBRANES
In order to model the interaction between the electric field
induced by 60 Hz MF exposure and neural tissue, we have used
the� λ · E�model in order to simulate the modulation of neu-
ron membrane polarization (Molaee-Ardekani et al., 2013). In
this model, the membrane depolarization dV in the presence of
an electric field E is a function of a constant λ termed “polariza-
tion length” (Radman et al., 2009). More precisely, the membrane
depolarization is expressed as dV =λ · E, where λ is a vector ori-
ented along the neuron fibre, and E is the electric field vector. This
expression is valid for a static electric field. In the case of a time-
varying electric field (such as the electric field induced by 60 Hz
MF), a frequency-dependent term needs to be included (Gianni
et al., 2006), resulting in:

dV = λ · E√
1+ ω2τ2

(5)

where ω = 2πf , f being the frequency (in our case, f = 60 Hz),
and τ is the polarization time constant. In order to use Equation
(5), describing membrane depolarization induced by the induced
electric field, at the level of a neuronal population, we made
the following assumptions: (1) the induced 60 Hz electric field is
homogeneous in space at the level of the neural mass (i.e., the
MF flux density is constant at each point of the cortical column);
(2) the MF-induced membrane depolarization is applied to pyra-
midal neurons only because of their large size compared to other
types of neurons in the human cortex; (3) pyramidal neurons in
a given neural mass all have the same spatial orientation. Taken
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together, assumptions (1) and (3) result in identical dV values
for all pyramidal neurons in a neural mass at a given time. These
assumptions lead to the use Equation (3) in the context of a neural
mass model.

This was achieved by modifying the expression of the total
post-synaptic potential at the level of pyramidal neurons:

y1(t)− y2(t)− y9(t)→ y1(t)− y2(t)− y9(t)+ dV(t) (6)

As it is commonly calculated in neural mass model, the EEG sig-
nal was computed as the summation of excitatory and inhibitory
post-synaptic potential at the level of pyramidal neurons:

EEG(t) = y1(t)− y2(t)− y9(t)+ dV(t) (7)

Let us mention that, even if the MF-induced depolarization is
included in the model as a simple additive perturbation, it has the
potential to induce non-linear effects. Indeed, the effective poten-
tial at the level of pyramidal neurons (7) is used as an input for
other neuronal populations, and is transformed from a potential
to a firing rate using a sigmoid function, which is fundamentally
non-linear. In the “Results” section, we have used arbitrary val-
ues for the field-induced membrane depolarization dV, guided
by preliminary simulation results. Based on dV values resulting
in significant changes in the EEG alpha power with or without
synaptic plasticity in the model, we will provide an estimate of the
corresponding level of 60 Hz MF flux density. This will provide us
with an order of magnitude of the 60 Hz MF flux density thresh-
old value that should result in effects detectable experimentally in
humans.

In our simulations, we focused specifically on the EEG alpha
rhythm (8–12 Hz). The reason of this choice is twofold. First,
as mentioned in the Introduction, there is converging evidence
that extremely low-frequency MF in the millitesla range, such as
60 Hz MF, can induce EEG alpha activity modulation. Second,
the model we have developed is basically an extension of the
Jansen and Rit model, designed to model EEG alpha activity.
It is possible to reproduce other types of EEG rhythms (e.g.,
beta −13 to 30 Hz), for example by introducing heterogeneity
in the time constant of neural populations over different neural
masses (Wendling et al., 2002), which exceeds the scope of this
paper.

BIOPHYSICAL MODEL OF SYNAPTIC PLASTICITY
In order to investigate the hypothesis that 60 Hz MF exposure
might modulate with human neurophysiology by modulating
synaptic plasticity, we have implemented a simplified model
of synaptic plasticity, based on the biophysical model devel-
oped by Shouval et al. (2002a,b). It is now well accepted that
the mechanisms of long-term synaptic potentiation and depres-
sion (LTP/LTD, respectively) involve changes in post-synaptic
calcium concentration and the trafficking of α-amino-3-hydroxy-
5-methyl-4-isoxazole-propionic acid (AMPA) glutamate recep-
tors between the intracellular medium and the synapse site.
Depending on the calcium concentration, AMPA receptors can
either insert into the membrane at the level of the synaptic cleft,
or undergo an endocytosis, which is termed receptor trafficking

(Collingridge et al., 2004). An increase in the number of AMPA
receptors at the synaptic level will increase the number of glu-
tamate molecules that can bind on post-synaptic membranes,
thereby increasing membrane depolarization during a synaptic
event. Consequently, the number of post-synaptic AMPA recep-
tors is directly proportional to the synaptic weight. The model
proposed by Shouval et al. (2002a,b) has been a significant
progress in the modeling of the biophysical processes at play
during LTP/LTD. This model is based on the “calcium control
hypothesis,” according to which the level of post-synaptic calcium
is the main factor regulating the exocytosis/endocytosis rate of
AMPA receptors, and therefore the dynamics of synaptic plasticity
changes.

We have adapted the model by Shouval et al. (2002a,b) to
our neural mass model, and despite some simplifications with
respects to the original model; our synaptic plasticity model
captures some of its essential features. Based on the experi-
mental literature on 60 Hz MF exposure effects on the EEG
alpha rhythm, we assume that (1) no qualitative changes of EEG
dynamics will occur due to 60 Hz MF exposure, changes will be
purely quantitative (i.e., EEG alpha rhythm amplitude/spectral
power changes, but no qualitative change in dynamical regime
such as a transition toward high-amplitude, low-frequency spik-
ing); (2) the coupling between the synaptic plasticity model
and the 60 Hz MF is via the equation linking the EEG with
the post-synaptic calcium concentration, occurring on long
timescales (depending on the opening of N-methyl-D-aspartate
(NMDA) glutamate receptors, not represented in the model).
Therefore, the model offers the possibility to test the hypoth-
esis that 60 Hz MF exposure can modulate synaptic plasticity
by interfering with the calcium fluxes at the level of synapses.
However, it does not take into account possible effects of
60 Hz MF exposure on spike timing (see the “Discussion”
section).

Let us consider the average calcium post-synaptic concen-
tration in a neural mass. The model proposed by Shouval
et al. (2002a,b) links the calcium current at the level of NMDA
receptors with the calcium concentration, and finally to a
differential equation describing the dynamics of synaptic weight
change as a function of two different calcium-dependent func-
tions. The time constant of calcium concentration dynamics
is long (on the order of minutes), and the calcium concen-
tration increases with the membrane potential. Therefore,
it appears reasonable to approximate calcium dynamics
by a low-pass filtering of the mean potential of a given
neural mass:

τCa2+
d

dt
[Ca2+] + [Ca2+] = γ(y1 − y2 − y9) (8)

where y1 − y2 − y9 is the “EEG” signal at the level of a neural
mass (e.g., summation of post-synaptic potentials at the level of
pyramidal neurons as defined previously). Once the post-synaptic
dendritic calcium concentration is obtained, it is possible to eval-
uate the calcium-dependent functions η and � present in the
Shouval et al. (2002a,b) model, used to express the dynamics of
the synaptic weight ci (i denoting the type of synapse in the neural
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mass, e.g., afferent glutamatergic synapses on pyramidal neurons)
at the level of a given neural mass:

dci(t)

dt
= η(t) · [�Ca2+(t)− ci(t)] (9)

The function � was approximated by a combination of piecewise-
linear and quadratic functions (see Appendix, Figure A1 for
details) similar to the function proposed in Shouval et al. (2002b).
The function � used in our model differs quantitatively from
the one proposed in Shouval et al. (2002a,b), since the authors
were linking with this function the level of post-synaptic calcium
concentration with the relative change in synaptic weight, where
we directly link the post-synaptic calcium concentration with
the synaptic weight itself. Nevertheless, the � used in this paper
captures the most important qualitative properties proposed by
Shouval et al. (2002a,b). In our simulations, we have assumed
that was η(t) a constant, [Ca2+(t)] being bounded between 0
and 1 μM. We assumed that the synapses modulated were the
synapses terminating on pyramidal neurons, pooled in the con-
stant c5, becoming the variable c5(t) in our model. Numerical
implementation for the neural mass model was performed using
Matlab 2010 (The Mathworks, USA) on a quad-core Apple iMac
(2.66 GHz/CPU) with 8 GB of RAM. The simulation of a neural
mass using the complete model during 2 h with a time step of
dt = 1 ms took typically 8 min.

60 Hz MF EXPOSURE PROTOCOL
In order to study the effects of 60 Hz MF on the simulated EEG,
we used the following protocol: the neural mass was simulated
during 2 h overall with a 1 ms resolution, which was decomposed

as (1) 30 min without 60 Hz MF exposure (termed “sham,” of
sufficient duration to reach a steady state); (2) 60 min with
60 Hz MF exposure (sufficient to reach the new steady state);
and (3) 30 min without 60 Hz MF exposure. Previous research in
our team using fMRI to image the functional changes in brain
activity due to 60 Hz MF exposure involved comparable dura-
tions (notably, a 60 min exposure period and fMRI acquisitions
performed before and after, see Legros et al., 2010). Simulations
were performed both (1) using the synaptic plasticity model,
and (2) using a fixed synaptic weight value taken as the steady
state value when synaptic plasticity was taken into account. By
doing so, we aimed at decomposing the respective contribution
of the 60 Hz sinusoidal perturbation in membrane potential one
the one hand, and of possible calcium-related synaptic plasticity
modulations on the other hand.

RESULTS
EFFECT OF 60 Hz MF ON THE EEG IN THE MODEL
As an example, we present in Figure 2 an example of simu-
lated EEG data, and associated mean post-synaptic calcium con-
centration and synaptic weight obtained by solving Equations
(3, 4, 8, 9).

We have investigated the effect of increasing values (125, 250,
500, and 1000 μV) for the MF-induced membrane depolarization
on the EEG alpha power. EEG alpha spectral power was computed
before, during and after the 1-h 60 Hz MF exposure. 10 runs of
7200 s were performed for each tested value of dV. The averaged
EEG alpha power for each condition (before, during, and after
exposure) is presented in Figure 3.

From the results presented in Figure 3, it appears that increas-
ing values of dV gradually decreases EEG alpha power during

FIGURE 2 | Example of neurophysiological signals (EEG, post-synaptic calcium concentration, synaptic weight) simulated using the model, both

without and with exposure to a 60 Hz MF.
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FIGURE 3 | (A–D): Spectral power in the EEG alpha (8–12 Hz) band as a
function of the MF-induced membrane polarization dV ; before (blue),
during (red) and after (blue) the 1-h 60 Hz MF exposure period.
(A) dV = 125 μV; (B), dV = 250 μV; (C) dV = 500 μV; (D) dV = 1000 μV.

A decrease in EEG alpha power is observed as the value of dV
(proportional to the MF flux density) increases. (E) Example of average
power spectrum before, during and after exposure to the 60 Hz MF, for
dV = 500 μV.
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exposure. In order to test the significance of the amplitude of
dV on the EEG alpha power during 60 Hz MF exposure, we
conducted a statistical analysis of the results. We performed a
4× 3× 2 ANOVA for repeated measures (SPSS 21, IBM, USA),
respectively testing for the effects of “dV” (125, 250, 500, and
1000 μV), “time” (before, during and after), and “plasticity”
(with/without synaptic plasticity). The standard p-value of 0.05
(Greenhouse-Geisser) was chosen as the threshold for signifi-
cance, and p-values were corrected for multiple comparisons.
The statistical results reveal a significant decrease of the EEG
alpha power for dV = 500 μV as compared to the other val-
ues of dV (p < 0.001). This indicates that the threshold for a
significant decrease of EEG alpha power due to 60 Hz MF expo-
sure lies between induced membrane depolarization values of
250–500 μV. In the next section, we attempt to link the mem-
brane depolarization values to the corresponding MF flux density
at 60 Hz.

Due to the possibility that the weak 60 Hz membrane depo-
larization can be seen as an additive noise, we have tested the
influence of the input noise level [p(t) in the model, see Table A1
of the Appendix] variance on EEG alpha power modulation due
to the exposure. Since the dynamics of the model itself depend
critically on the input noise level, we have indeed investigated the
possibility that the 60 Hz MF exposure has an effect of variable
amplitude depending on input noise. The interest is that model
predictions could be tested experimentally (e.g., in an experimen-
tal setting where different levels of visual input would be tested).
Therefore, the objective was not to study the influence of the noise
level on the model dynamics, but rather how the effects of the
60 Hz MF on model dynamics are dependent on the noise level.
Four different values of noise variance were tested (σ = 120, 150,
180, and 210 spikes/s) for the same maximal dV value of 0.5 mV.
10 runs of 7200 s following the same protocol than previously
were run for each noise level value (40 runs total). The influence
of the input noise level on EEG alpha power modulation by the
60 Hz MF is presented in Figure 4.

The results presented in Figure 4 highlight the importance
of the input noise level of the model. If the input p(t), rep-
resenting external noisy input to the neural mass, is too high;
then the effect induced by the 60 Hz MF on EEG alpha power
modulation decreases. This has an immediate consequence on
threshold values of MF flux density resulting in detectable effects
in brain activity: the MF flux density needed to elicit a response
in brain tissue will be lower in the presence of a low level of noise.
Interestingly, there is experimental evidence that the visual input
can play a role on the effects of MF exposure in humans, with an
higher effect when the eyes are closed (Legros et al., 2011). EEG
alpha oscillations increase dramatically eyes closed, and decrease
in the presence of a visual input, that increases the input noise to
the occipital cortex. Therefore, even if there is a considerable gap
between the model and human data, it is tempting to make a par-
allel between smaller effects of 60 Hz MF in the model with high
levels of noise, and smaller effects of 60 Hz MF exposure eyes open
with an increased input noise level. One advantage of using our
neural mass over interpreting experimental results is the possibil-
ity to point at precise mechanisms by which the observed decrease
in EEG alpha activity occurs due to the 60 Hz MF exposure. From

FIGURE 4 | Effect of the input noise level variance on EEG alpha power

modulation caused by the 60 Hz MF exposure in the presence of the

simplified synaptic plasticity model. Noise variance σ was varied as
follows: yellow, 120 spikes/s; orange: 150 spikes/s; red, 180 spikes/s; blue:
210 spikes/s. The value of dV was fixed to 500 μV in all simulations. The
EEG alpha power is presented for each noise variance value before, during
and after 60 Hz MF exposure. The impact of the 60 Hz MF exposure on EEG
alpha power decreases with increased input noise amplitude, likely since
the weak 60 Hz membrane potential perturbation becomes “buried” in
noise.

a physiological point of view, it is relevant to investigate which
neuronal pathways are mainly modulated by the exposure. In the
model, we observe an immediate decrease in the activity of the
loop between pyramidal neurons and slow GABAergic neurons,
likely increasing the effect of excitatory input. To complement this
observation, it is relevant to note that, using a bifurcation the-
ory analysis of the Jansen and Rit model (the core of our model),
Grimbert and Faugeras (2006) have shown that increasing the
input noise level at the level of pyramidal neurons in the alpha
oscillations regime (corresponding to a Hopf bifurcation) had the
effect to decrease the amplitude of alpha oscillations. Therefore,
the 60 Hz MF stimulus used in our model seems to have a similar
effect than an additive, positive constant membrane depolariza-
tion on pyramidal neurons. This results physiologically speaking
from an efficiency decrease of the slow inhibitory GABAergic
feedback at the pyramidal neurons level. In terms of dynamical
systems theory, this seems to be the natural result of increased
input level in a specific dynamical system on a Hopf cycle.

In order to distinguish between the contribution of the
MF-induced membrane polarization on the one hand, and
changes in synaptic plasticity on the other hand, we ran the same
simulations than previously for four different values of dV (125,
250, 500, and 1000 μV), with a constant value for the synaptic
weight c5. The objective was to identify if synaptic plasticity was
affecting the direction (increase/decrease of EEG alpha spectral
power) or amplitude of the effects. In the following, the value c5

of was chosen as the steady-state value in the case where synap-
tic plasticity was considered. 10 simulations of 7200 s were ran for
each value of dV. The results are presented in Figure 5.
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FIGURE 5 | Effect of synaptic plasticity on EEG alpha power

modulation by 60 Hz MF exposure compared to the case where

synaptic plasticity is not taken into account. The conditions are

Before, During, and After 60 Hz MF exposure, with (1, 3, 5) and
without (2, 4, 6) synaptic plasticity. (A) dV = 125 μV; (B) dV = 250 μV;
(C) dV = 500 μV; (D) dV = 1000 μV.

From the results in Figure 5, it appears that the modulation of
post-synaptic calcium concentration and corresponding changes
in synaptic weight plays a minimal role in EEG alpha power mod-
ulation due to the 60 Hz MF exposure, and does not impact
qualitatively the result (the direction of the effects is the same,
and the amplitude of the effects is minimally affected). Indeed,
the results from the ANOVA shows no significant interaction
effect between synaptic plasticity and dV values (p = 0.253). This
indicates that the presence of the synaptic plasticity mechanisms
included in the model does not significantly change the effect
of the membrane depolarization. It seems however to induce a
non-significant increase the amplitude of the 60 Hz MF exposure
effect. Different choices for the function linking the post-synaptic
calcium concentration level with the updated synaptic weight �

lead to similar results (not shown). Therefore, it seems that, if a
modulation of synaptic plasticity explains lasting effects of 60 Hz
MF exposure, it does not occur primarily by the modulation of
post-synaptic calcium currents. However, it is still plausible that
receptor trafficking and synaptic plasticity could be impacted by
a perturbation of spike timing due to the 60 Hz MF exposure, a
mechanism not included in the present model, which we discuss
later.

In the model develop by Molaee-Ardekani et al. (2013), inves-
tigating the effects of transcranial direct current stimulation
(tDCS), the neurons being modulated by the induced field were
pyramidal neurons and inhibitory interneurons. Since the sim-
ulated EEG could result in different outcomes due to the expo-
sure depending on the neuronal populations simulated, possibly
assisting in discriminating between different interaction mecha-
nisms; we have also simulated the EEG in the case of a 60 Hz
MF exposure modulating the activity of different populations
of inhibitory interneurons. To do so, in a similar fashion to
Equation (7) describing the membrane depolarization of pyra-
midal neurons, we simulated different scenarios: (1) slow and
fast GABAergic interneurons are involved, (2) slow GABAergic
interneurons are involved, and (3) fast inhibitory neurons are
involved. Depending on the scenario, we also added the variable
dV(t) to y4(t) (slow GABAergic interneurons), or to y10(t)-y11(t)
(fast GABAergic interneurons), and to both of these quanti-
ties for scenario (1). We have simulated the EEG for a similar
protocol than previously (30 min without exposure, 1 h of expo-
sure, 30 min without exposure), with a maximal value of dV =
1000 μV. The resulting EEG alpha power before, during and after
exposure for each of these scenarios is presented in Figure 6.
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FIGURE 6 | Effect of the 60 Hz MF exposure on EEG alpha power

depending on which populations of neurons are modulated by the

induced electric field. The exposure protocol is the same than previously
(1-h exposure, with 30 min before and after without exposure). The maximal
value of the MF-induced membrane depolarization was dV = 1 mV.
Pyramidal neurons are considered to be modulated in each scenario. Pyr,
pyramidal neurons only; slow+fast, pyramidal neurons, slow and fast
GABAergic interneurons; slow, pyramidal neurons, slow GABAergic
neurons; fast, pyramidal neurons, fast GABAergic neurons.

The results presented in Figure 6 show that, if the fast
GABAergic interneurons are modulated by the 60 Hz MF in addi-
tion to pyramidal neurons, the difference in the EEG is minimal.
However, if the slow GABAergic interneurons are modulated, the
decrease in EEG alpha power is much smaller, dropping from
17% (pyramidal neurons only) to 5%. Therefore, if the slow
GABAergic interneurons are also modulated by the induced elec-
tric field due to the 60 Hz MF exposure, the threshold leading to
a systematic EEG alpha power modulation will be higher. From
the interpretation on the decrease in EEG alpha power when
the pyramidal neurons alone are stimulated, where a decrease
in the efficiency of the loop between pyramidal neurons and
slow inhibitory interneurons is observed, we can speculate that
the effect of modulating the slow GABAergic interneurons in
addition to pyramidal neurons has an opposite effect of increas-
ing the activity of this loop. Consequently, if slow GABAergic
interneurons are modulated by the exposure to the 60 Hz MF
exposure, the model suggests that it would result in a compen-
sation of the modulation of pyramidal neurons’ activity alone,
thereby increasing the threshold in MF flux density leading to
a systematic decrease in alpha. In other words, the modulation
of pyramidal neurons and slow GABAergic interneurons activity
would have competing effects regarding the decrease in EEG alpha
power.

THRESHOLD OF 60 Hz MF FLUX DENSITY RESULTING IN DETECTABLE
EFFECTS
Based on the expression of the electric field induced by a time
varying MF at the level of a sphere of radius R (approximat-
ing the brain in that scenario), we can obtain an estimate of

FIGURE 7 | MF flux density curves as a function of the MF-induced

membrane depolarization dV, computed for different values of the

polarization time constant τ. The input noise variance to the model was
taken as 180 spikes/s. Different noise variance values will result in different
MF threshold curves.

the corresponding MF flux density at 60 Hz. Let us approximate
the head as a sphere of radius R, and let us write the 60 Hz MF
as B(t) = B0 sin(ωt + φ). From Maxwell-Faraday’s law of mag-
netic induction, the induced electric field expresses as E = R

2
dB
dt =

πRfB0. By using this expression in Equation (5), we obtain B =
dV(1+ω2τ2)1/2

λπRf , linking the MF-induced membrane depolarization

to the MF flux density. We used the following values to estimated
the threshold values: R = 0.15 m, λ = 10−3 m, and f = 60 Hz.
The MF flux density value as a function of the MF-induced
membrane depolarization dV, depending on different τ values,
is shown in Figure 7.

We have shown based on our statistical analysis that a sig-
nificant EEG alpha power modulation occurs in the model for
a dV value between 250 and 500 μV. Given the uncertainty on
the polarization time constant, it is only possible to provide an
estimate of the MF flux density threshold at 60 Hz which should
result in a significant decrease of EEG alpha activity. Assuming
an intermediate dV value as a threshold value (375 μV), the cor-
responding threshold MF flux density would range between 15
and 75 mT, for polarization time constants between 1 and 15 ms.
Let us also mention that this threshold value is, as shown above,
depending on the input noise level. Uncertainties on the values
of the polarization time constant and on the input noise level are
problematic to estimate a more precise MF flux density thresh-
old value. Depending on the neural elements activated by the
induced electric field, this polarization time constant can be very
different (higher for the whole soma than for fibers for exam-
ple). For a neuron soma, the polarization time constant would
be of several milliseconds; whereas if the membrane depolariza-
tion occurs at the level of Ranvier nodes, than the polarization
time constant is considerably smaller, around 20 μs (Gianni et al.,
2006). Therefore, it is reasonable to assume that the polarization
time constant is in the low millisecond range. As an example, a
polarization time constant between 1 and 5 ms would result in
a threshold value between 15 and 25 mT for a 60 Hz MF. The
validation of these values will require experimental recordings
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performed in humans, which will be performed in the near future
in our group (Legros et al., 2012a,b).

DISCUSSION
In this paper, we have developed an innovative application of neu-
ral mass models, i.e., the study of how extremely low-frequency
MF such as power-line MF interact with brain activity. Indeed,
this is the first time that this problem is tackled using neural
mass modeling. We have shown that 60 Hz MF exposure can
result in a modulation of the EEG alpha rhythm, even for small
membrane depolarization values (<1 mV). For reasonable polar-
ization time constant values, the model predicts that 60 Hz MF
between 15 and 25 mT could induce a systematic decrease in
EEG alpha power. Furthermore, the neural mass model that we
have developed includes, in a simplified manner, a contribu-
tion of synaptic plasticity processes. To our knowledge, this is
the first attempt to include a contribution of calcium-related
processes into changes of effective connectivity in neural mass
models. The contribution of calcium currents on synaptic weights
changes is obviously overly simplified in our model since the
calcium concentration is modeled as a low-pass filtered version
of the EEG. Nevertheless, it represents a first step that could
serve as a basis in future models integrating more biophysi-
cally detailed models of synaptic plasticity. Let us mention that
Robinson (2011) proposed a neural field model including synap-
tic plasticity, though in a different manner. Indeed, this model
used the relative phase between pre- and post-synaptic neu-
ral populations to compute the synaptic weight changes due to
an STDP rule. In the present paper, we have intended to pro-
vide the bases for mechanism-based neural mass models, on the
grounds of a reliable synaptic plasticity model (Shouval et al.,
2002a,b). Expanding our model using modeling principles of
Robinson (2011) could be a solution so include the effect of
spike timing perturbation induced by 60 Hz MF on neural mass
activity.

One hypothesis investigated was that changes in post-synaptic
calcium concentration could modulate synaptic weights, resulting
in a lasting modulation of brain tissue dynamics. Obviously, our
model of synaptic plasticity is still simplified and does not explic-
itly model the voltage-dependence of calcium currents through
NMDA receptors. From our results, it appears that, despite a
modulation in post-synaptic calcium concentration taking some
time to build up, and lasting several minutes after the exposure,
these changes are too small to impact neural mass dynamics.
However, there is another important mechanism by which recep-
tor trafficking and synaptic plasticity could be modulated by
60 Hz MF exposure. There is indeed a convergence of theoret-
ical (Reato et al., 2010; Stodilka et al., 2011) and experimental
(Radman et al., 2007) studies that illustrate the possibility for
weak membrane depolarizations induced by electric fields to
impact spike timing. Indeed, Radman et al. (2007) have shown
that, due to the non-linear properties of neuron membranes,
small membrane depolarizations can modulate spike timing.
Since post-synaptic calcium currents play the role of “coincidence
detector” between pre- and post-synaptic spikes, a perturbation
of spike timing could impact receptor trafficking and synaptic
weight changes. The challenge is to consider these mechanisms in

neural mass or neural field models, which are rate-coding based
and not time-coding based. A recent study proposed how to con-
sider plasticity rules based on spike timing in neural field theory
(Robinson, 2011), providing a possibility to investigate the impact
of 60 Hz MF perturbation on spike timing at a mesoscopic scale.
The perturbation of spike timing by 60 Hz MF exposure will be
considered in a future extension of the model presented in this
paper, since this synaptic plasticity pathway could be more prone
to small membrane perturbations due to the 60 Hz MF exposure,
and could induce lasting effects in neural dynamics.

Using our model, we have also investigated the effect of the
small 60 Hz membrane depolarization induced by 60 Hz MF
exposure depending of the input noise level of the model. Our
suggests that the threshold value in MF flux density for which
significant changes can be detected in the EEG alpha frequency
band is a function of the model input noise level. More specif-
ically, for lower values of input noise level, the decrease in EEG
alpha power is higher than for higher input noise level values.
However, these results do not imply that stochastic resonance
effects are present, which could be tested however by testing
many different values of dV, and identify a range of dV val-
ues for which the modulation of EEG alpha power would be
present. The stochastic resonance mechanism has been already
explored in the literature to explain the effects of 60 Hz MF
exposure, and constitutes a possibility of future study using our
model. This result on the importance of the input noise level
has also important implications for the detection of EEG alpha
power modulation in humans due to 60 Hz MF exposure. We
predict that the threshold in MF flux density at 60 Hz, required
to modulate systematically the EEG in the occipital cortex, is
lower a condition when the ambient light is low, compared to
the effects of the same exposure using a high ambient light level.
Indeed, EEG alpha oscillations decrease in the occipital cortex in
humans due to the higher input noise level. Therefore, it might
be relevant to study a variation of 60 Hz MF threshold values
in humans at the level of the occipital cortex using different
intensities of ambient light. If such experimental evidence was
provided, that would be a precious piece of information that
could be of interest to agencies such as ICNIRP. Another indi-
cation that the prediction that the level of input is important
in the physiological outcome is that the perception of magne-
tophosphenes and the threshold at which they can be observed
is light intensity-dependent (Lövsund et al., 1980). This moti-
vates a future human experimental study using in parallel our
neural mass model in order to provide an improved knowl-
edge on the underlying interaction mechanisms. Another valu-
able insight from the model is the differential effect observed
on EEG alpha activity depending on the neuronal populations
modulated (pyramidal neurons only, or pyramidal neurons and
slow/fast inhibitory interneurons). Since the model predicts a
different outcome in the case where slow inhibitory interneu-
rons are also modulated (smaller decrease in alpha activity),
this offers a possibility to discriminate in future EEG data
acquired in humans which neuronal populations are modulated
by the MF exposure. This adds further support for the use
of neural mass models to study the effects of power-line MF
on human brain activity, since they can offer a deeper insight
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into the experimental data in order to clarify the interaction
mechanisms involved.

Among the limitations of our approach, let us mention first the
absence of ephactic interactions. It has been indeed demonstrated
that post-synaptic potentials can induce in neighboring cells a
small but measurable polarization (for a review, see Weiss and
Faber, 2010). In the cortex, where the axons of pyramidal axons
have a similar and consistent orientation, it is likely that ephactic
interactions could enhance the effect of weak membrane depolar-
izations. Therefore, the presence of ephactic interactions should
lower the threshold for detectable modulations of neuronal activ-
ity, and should be included in future biophysical models studying
the effects of low-frequency MF on cortical activity. Second,
our model of synaptic plasticity is a significant simplification
compared to the biophysically detailed model by Shouval et al.
(2002a,b). The present model could be extended by including a
more detailed model of the detailed processes underlying recep-
tor trafficking at the synaptic level. Third, the exact orientation of
pyramidal axons with respect to the induced electric field was not
taken into account, since it was assumed that the orientation was
“ideal” (electric field parallel to pyramidal neuron axons). Fourth,
we assumed that the power-line MF interacts with brain tissue via
the induced electric field. However, there is evidence that the MF
itself could interact with cellular signaling, and induce biological
effects (Pilla, 2012). Studying such phenomena appears however
out of reach with our proposed model. Let us note that the pos-
sibility that either the MF or the induced electric field modulate
neuronal activity is not exclusive, and both mechanisms might
even turn out to be complementary and have effects on different
cellular components.

Finally, let us mention that, in most studies investigating the
effects of low-frequency MF on the human EEG, the data ana-
lyzed is from before or after exposure, not during. There is indeed
an experimental difficulty in recording the EEG during expo-
sure to low-frequency MF. However, it is possible to compensate
using specific signal processing techniques, such as wavelet-based
methods (Modolo et al., 2011). We believe that such signal pro-
cessing techniques applied to EEG acquired during 60 Hz MF

exposure, combined with the neural mass model proposed in
this paper, could provide an integrated framework for a thor-
ough understanding of power-line frequency MF on human brain
activity.

CONCLUDING REMARKS
We have presented a novel application of neural field models,
in the context of brain exposure to 60 Hz MF. The model takes
into account different neural populations in cortical tissue, synap-
tic kinetics proper to each type of synapse considered, synaptic
connectivity patterns inspired from neuroanatomy, and a simpli-
fied model of synaptic plasticity based on the “calcium-control”
hypothesis. The model includes the interaction with the electric
field induced by 60 Hz MF exposure, and results in a time-varying
membrane depolarization. Using this model, we have shown that
membrane depolarization between 250 and 500 μV at 60 Hz is
sufficient to induce a significant decrease in EEG alpha power. We
also conclude that the modulation of post-synaptic calcium cur-
rents by 60 Hz MF exposure does not appear to predict the lasting
effects observed experimentally. Future work should investigate
the role of spike timing perturbation by the induced electric field
during 60 Hz MF exposure, which is another candidate mecha-
nism to induce plastic changes and lasting changes in neuronal
activity. The models provides predictions that can, and will be,
tested in experimental protocols during which humans will be
exposed to increasing levels of 60 Hz MF exposure up to 50 mT
(Legros et al., 2012a,b). Thorough comparison of experimental
data with model predictions will constitute a unique opportu-
nity for the validation and calibration of this neural mass model,
which might become a relevant tool in the assessment of public
and workers exposure to environmental MF, and assisting in the
development and evaluation of guidelines developed by ICNIRP.
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APPENDIX

Table A1 | Summary of the parameters used in the model with their physiological meaning and their values.

Parameter Physiological significance Value

c1 Number of synaptic contacts from pyramidal to exc. Interneurons 135

c2 Number of synaptic contacts from exc. interneurons to exc. interneurons 0.8 × c1

c3 Number of synaptic contacts from pyramidal to slow inh. Interneurons 0.25 × c1

c4 Number of synaptic contacts from slow inh. interneurons to pyramidal cells 0.25 × c1

c5 Number of synaptic contacts between pyramidal cells in the same cortical column 0.25 × c1

c6 Number of synaptic contacts from pyramidal cells to other areas 200

c7 Number of synaptic contacts from pyramidal cells to pyramidal cells in the same brain area 100

c8 Number of synaptic contacts from exc. interneurons to pyramidal cells in the same brain area 100

c9 Number of synaptic contacts from slow inh. interneurons to pyramidal cells in the same brain area 100

c10 Number of synaptic contacts from pyramidal cells to fast inh. interneurons 0.3 × c1

c11 Number of synaptic contacts from slow inh. interneurons to fast inh. interneurons 0.8 × c1

c12 Number of synaptic contacts from fast inh. interneurons to pyramidal cells 0.1 × c1

r Slope of the sigmoidal function 0.56

e0 Maximum of the sigmoid function 2.5 Hz

v0 Threshold of the sigmoid function 6 mV

A Amplitude of glutamatergic EPSPs 3.25 mV

B Amplitude of GABAa slow and GABAb IPSPs 22 mV

G Amplitude of GABAa fast IPSPs 10 mV

a Synaptic time constant for excitatory connections 100/s

b Synaptic time constant for slow inhibitory connections 50/s

g Synaptic time constant for fast inhibitory connections 350/s

ad1 Time constant of efferent connections 33/s

ad2 Time constant of efferent connections 100/s

ad3 Time constant of efferent connections 100/s

bd4 Time constant of efferent connections 40/s

c1t Number of synaptic contacts from TC to RE cells 50/s

c2t Number of synaptic contacts from RE to TC cells 50/s

c3t Number of synaptic contacts from TC to pyramidal cells 80/s

c4t Number of synaptic contacts from TC to exc. Interneurons 100/s

c5t Number of synaptic contacts from TC to inh. Interneurons 80/s

At Amplitude of thalamic excitatory EPSPs (TC cells) 3.25 mV

At Amplitude of thalamic excitatory EPSPs (TC cells) 3.25 mV

Bt Amplitude of thalamic inhibitory IPSPs (RE cells) 22 mV

at Synaptic time constant of TC cells 200/s

bt Synaptic time constant RE cells 40/s

p(t) Input noise to pyramidal cells 120 pulses/s

K Coupling constant between the thalamic and cortical modules of the model 0.2

KCx Coupling constant between the cortical and thalamic modules of the model 10

K Coupling constant between different areas 3.33

τCa Time constant of calcium current dynamics 0.05 s

γ Sensitivity of calcium concentration to EEG changes 0.055

η Time constant of synaptic weight changes 0.054 ms

Novel parameters compared to Sotero and Trujillo-Barreto (2008) are highlighted in red.
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FIGURE A1 | Function � used in our model as a piecewise-linear

approximation of the function used by Shouval et al. (2002b),

preserving the main properties of this function, i.e., the level of

post-synaptic calcium concentration regulating LTP and LTD processes.
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Stability is an important dynamical property of complex systems and underpins a broad
range of coherent self-organized behavior. Based on evidence that some neurological
disorders correspond to linear instabilities, we hypothesize that stability constrains
the brain’s electrical activity and influences its structure and physiology. Using a
physiologically-based model of brain electrical activity, we investigated the stability and
dispersion solutions of networks of neuronal populations with propagation time delays
and dendritic time constants. We find that stability is determined by the spectrum of the
network’s matrix of connection strengths and is independent of the temporal damping
rate of axonal propagation with stability restricting the spectrum to a region in the
complex plane. Time delays and dendritic time constants modify the shape of this region
but it always contains the unit disk. Instabilities resulting from changes in connection
strength initially have frequencies less than a critical frequency. For physiologically
plausible parameter values based on the corticothalamic system, this critical frequency
is approximately 10 Hz. For excitatory networks and networks with randomly distributed
excitatory and inhibitory connections, time delays and non-zero dendritic time constants
have no impact on network stability but do effect dispersion frequencies. Random
networks with both excitatory and inhibitory connections can have multiple marginally
stable modes at low delta frequencies.

Keywords: brain networks, stability, network spectra, random matrices, mean-field modeling

INTRODUCTION
The brain is possibly the most complicated example of a sys-
tem of interacting dynamical units whose activity self-organizes
to produce complex global behavior. The human brain performs
cognitive functions through the transmission of action potentials
within a vast structurally dynamic network consisting of approx-
imately 1011 neurons and up to 1015 synaptic interconnections
(Kandel et al., 2000; Koch, 2004; Sporns et al., 2005). The aggre-
gate of all neural firings within this network results in large-scale
coherent electrical activity and the performance of high-level cog-
nitive functions. Understanding the structure and physiology of
the brain thus gives insight into its overall behavior.

At large scales the excitatory and inhibitory neurons in the
brain are organized into a complex large-scale network of distinct
anatomical and functional structures (Sporns et al., 2004, 2005;
Bullmore and Sporns, 2009; van den Heuvel and Sporns, 2011)
We can represent this structure as a complex network—the struc-
ture of which has been studied extensively in recent times with
a number of experimental cortical connection networks deter-
mined for the cat and the macaque monkey (Felleman and van
Essen, 1991; Scannell et al., 1995; Jouve et al., 1998; Hilgetag et al.,
2000a,b; Sporns, 2011). These networks have a modular hier-
archical structure with the small-world properties of high local
clustering and short path length between structures (Hilgetag
et al., 2000a,b; Sporns et al., 2000, 2004, 2005; Young, 2000;

Sporns and Zwi, 2004; Bassett and Bullmore, 2006; Bullmore and
Sporns, 2009, 2012).

Reasons for why the brain has evolved this particular large-
scale structure are currently unknown. A number of investiga-
tions have concentrated on the effect of physical constraints on
brain structure. Such constraints include brain volume, wiring
length, and energy consumption or metabolic demands (Laughlin
et al., 1998; Attwell and Laughlin, 2001; Lennie, 2003). Other
studies have looked at functional constraints such as minimizing
the conduction delay or processing steps for a signal to travel from
one neuron to another (Wen and Chklovskii, 2005). Alternatively,
the dynamics of the brain’s electrical activity may constrain the
brain’s structure. If the physiology and structural characteris-
tics of the brain produce adverse electrical activity resulting in
seizures, tremors, or other neurological disorders then it is likely
the structural characteristics of the brain will be constrained to
limit these disorders.

One of the most important dynamical properties of com-
plex systems such as the brain is stability. It has been associ-
ated with pattern formation (Turing, 1952; Murray, 2002), syn-
chronized activity (Kuramoto, 1984; Pecora and Carroll, 1998;
Jirsa and Ding, 2004; Acebrón et al., 2005; Feng et al., 2006),
the complexity and diversity of ecosystems (May, 1972, 1974;
Hogg et al., 1989; McCann, 2000; Allesina and Tang, 2012), the
functioning of biological systems (Murray, 2002; Taverna and
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Goldstein, 2002; Steuer, 2007), and the generation of coher-
ent self-organized behavior. Stability is also an important aspect
of the design and control of advanced technological systems
(Bechhoefer, 2005).

A common approach to studying the large-scale dynamics of
the brain’s electrical activity is to use a continuum mean-field
approximation for neural activity. This approach has been exten-
sively studied over the past 30 years producing numerous models
for the electrical activity within the brain (Wilson and Cowan,
1973; da Silva et al., 1974; Nunez, 1974, 1995; Freeman, 1975;
Steriade et al., 1990; Jirsa and Haken, 1996; Wright and Liley,
1996; Robinson et al., 1997, 2003a; Wright et al., 2001; Robinson,
2005). This work has been reviewed recently (Deco et al., 2008;
Bressloff, 2011). These models have been used extensively to per-
form stability analysis and understand pattern formation, oscilla-
tions and waves in the brain’s electrical activity (Deco et al., 2008;
Bressloff, 2011).

Measurements of brain activity suggest that the brain oper-
ates close to marginal stability, permitting a wide range of
flexible, adaptable, and complex behavior (Stam et al., 1999;
Robinson et al., 2001b; Breakspear, 2002; Breakspear et al., 2003).
Physiological modeling also suggests that linear instabilities in
the brain’s electrical activity correspond to neurological disorders,
such as epilepsy (Robinson et al., 1998, 2002; Breakspear et al.,
2006; Kim and Robinson, 2007; Deco et al., 2008). It is there-
fore possible that stability is a dynamical property that imposes
constraints on the brain’s physiology and structure.

In previous work we have used a simplified version of the
Robinson, Rennie, Wright (RRW) physiologically-based contin-
uum (mean-field) model (Robinson et al., 1997, 1998, 2003a;
Wright et al., 2001; Rennie et al., 2002; Robinson, 2003, 2005) to
study the dynamics of the electrical activity in large-scale struc-
tural brain networks. Based on the hypothesis that stability is a
dynamical constraint on the structure and physiology of struc-
tural brain networks we have investigated the effect of stability of
large-scale structural brain networks (Gray and Robinson, 2006,
2008, 2009b,a; Robinson et al., 2009).

Our previous work ignored the dendritic time constants of
neurons and the propagation time delays for signals to travel
between neural populations. However, time delays due to axonal
propagation affect stability and the possible physiology of neu-
ronal networks (Atay and Hutt, 2004; Jirsa and Ding, 2004;
Coombes, 2005; Coombes et al., 2007; Qubbaj and Jirsa, 2007,
2009; Venkov et al., 2007; Jirsa, 2009). This previous work has
generally used integro-differential neural field equations with
connectivity within a neural mass described by homogeneous
or heterogeneous kernels. Our approach here is to focus on the
temporal dynamics of the overall electrical activity of arbitrarily
connected large-scale structural brain networks, ignoring the spa-
tial spread and propagation of electrical activity within individual
neuronal populations.

In this study, we increase the physiological realism of our struc-
tural brain network model by allowing propagation time delays
and non-zero dendritic time constants. After reviewing the sta-
bility of structural brain networks, we aim to investigate how
these physiological features might affect the dynamics and sta-
bility of networks of neuronal populations where the connection

patterns between populations are arbitrary—ignoring the spatial
and geometric placement of the populations and simply focusing
on which populations are inter-connected.

We also investigate the dispersion frequencies of marginally
stable modes of electrical activity using plausible physiological
parameters. The incorporation of non-zero dendritic time con-
stants generalizes the work in (Jirsa and Ding, 2004) which, by
including time delays, extended May’s original analysis on the
stability of complex systems (May, 1972, 1974).

METHODS
A structural brain network of n neural populations is represented
by a directed graph N whose vertices and edges represent specific
neural populations and inter-population connections, respec-
tively. Neural populations within a network are collections of
neurons with an assumed effective range and of sufficient number
for a mean-field approximation to be valid. For example, a neu-
ral population can represent all the neurons in a distinct region
or nuclei of the brain (e.g., cortical area, thalamus), a particular
neuron type (e.g., interneuron, pyramidal cell), or a particu-
lar neurotransmitter type (e.g., glutamate, GABA, dopamine).
Neurons in one population do not have to be separated geomet-
rically or physically within the brain and can be intermixed with
the neurons of another population (e.g., excitatory and inhibitory
neurons in the cortex).

The structure of N is represented by a connection matrix
C(N) = [Cab]; where Cab = 1 if there is a connection from popu-
lation b to population a, Cab = 0 otherwise. If Cab = Cba for all a
and b, the network is symmetric; otherwise it is asymmetric. Self-
connections in structural brain networks correspond to non-zero
diagonal entries in C(N). The connection matrix simply records
whether one neuronal population sends neural signals to another
neuronal population. Properties of connections are not included
in C(N).

PHYSIOLOGICALLY-BASED STRUCTURAL BRAIN NETWORK DYNAMICS
In this section we outline the physiological model used to describe
the dynamics of a brain network. If a neural population con-
tains a sufficient number of neurons a continuum approxima-
tion can be used, whereby the properties of population neurons
are averaged over. This approximation is valid for length scales
greater than a few tenths of a millimeter and is thus suitable
for investigating the dynamics of large-scale structural brain
networks.

The continuum approximation allows the use of a previously
developed model, the RRW model, for the brain’s electrical activ-
ity (Robinson et al., 1997; Wright et al., 2001; Rennie et al.,
2002; Robinson et al., 2003b, 2004; Robinson, 2005). This con-
tinuum model incorporates and describes three features of neural
dynamics: (1) the synapto-dendritic dynamics resulting in the
cell body potential; (2) from the mean cell body potential an
average firing rate is determined via a non-linear sigmoid func-
tion; and (3) the population firing rate generates a neural pulse
forming a field φ(t) that propagates along the populations out-
going connections. The field within a population is temporally
described using a damped wave equation. Implicitly the neurons
in each population are assumed to have an effective range which
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gives a rate at which spikes reach axonal terminals and cease
existance.

This model has been extensively used to model the corti-
cothalamic system with the linear version having been shown
to produce excellent agreement with EEG spectra, ERP, and
other neurophysical phenomena (Robinson et al., 1997, 2001a,b;
Rennie et al., 2002; Robinson, 2003). To apply this continuum
model to brain networks we previously used a number of sim-
plifying assumptions. In particular, we assumed that all neural
populations have instantaneous dendritic response times and
there is no time delay for a signal to be sent from one popu-
lation to the other (Gray and Robinson, 2006, 2008, 2009b,a;
Robinson et al., 2009). For this study we relax some of these
assumptions.

Firstly we assume time delays τ for a signal to be sent from
one population to another are equal. Secondly, we assume each
population in a network has the same dendritic decay rate α

and rise rate β. The values of 1/α and 1/β equal the dendritic
decay and rise time constants, respectively; instantaneous rise
and decay times imply 1/α = 1/β = 0. These assumptions are
unrealistic for real structural brain networks but improve our
previous analysis and allow us to analytically determine stabil-
ity. Though for some structural brain networks these assumptions
may be good approximations of the networks physiology. Another
weakness of these assumptions is self-connections have the same
time delay as connections between distinct populations—if τ �= 0
then self-connections in a network also involve a delay. Generally,
self-connections represent interconnections within a neural pop-
ulation and would be expected to have zero time delay. However,
for cortical networks self-connections can be used to represent
feedback from underlying structures such as the thalamus. Time
delayed self-connections would be appropriate for this type of
feedback. We will generalize the assumption of equal time delays
in future work.

The neurophysics and neurophysiology incorporated into the
general RRW model and the equations for the linear perturba-
tions of the neural field φa, for each neural population a, are
described and derived in detail elsewhere (Robinson et al., 1997;
Wright et al., 2001; Rennie et al., 2002; Robinson et al., 2003b,
2004; Robinson, 2005). This study uses the notation and equa-
tions derived in (Robinson, 2005). Under the assumptions used
here the RRW equations describing linear perturbations of the
neural field φa of population a about the assumed steady state in
Fourier space reduce to

(1− iω/γ)2 φa(ω) =
∑

b

L(ω)Gabeiωτφb(ω), (1)

= L(ω)eiωτ
∑

b

Gabφb(ω), (2)

where ω is the angular frequency and

L(ω) = αβ

(α− iω)(β− iω)
= 1

(1− iω/α)(1− iω/β)
. (3)

The gain Gab is a dimensionless quantity describing the effect
of changes in the firing rate of neurons in population b on the

neurons of population a. Physiologically, Gab is the number of
extra action potentials produced in a per extra action potential
incident from b. Hence, Gab is a measure of how sensitive and
responsive a is to changes in b’s activity. In the general RRW
model γ is a damping rate equal to the velocity of the φ’s prop-
agation within a neural population divided by the characteristic
range of the axons that carry it. In the spatially uniform case used
here, γ represents a temporal damping rate.

Letting G = [Gab] be the matrix of gains and setting

D(ω) = [L(ω)]−1(1− iω/γ)2e−iωτ, (4)

= (1− iω/α)(1− iω/β)(1− iω/γ)2e−iωτ, (5)

which is a complex analytic function. Equation (1) can be written
in matrix form as

�(ω)�(ω) = G�(ω), (6)

where � is a column vector of the φa and �(ω) = D(ω)I, where
I is the identity matrix. Setting A = G−�, Equation (6) can be
simplified to

A(ω)�(ω) = 0. (7)

The linear stability of a network is then determined by the
solutions ω of the dispersion relation,

det[A(ω)] = 0. (8)

The gain matrix G = [Gab] encodes all of the information in
C, since Gab �= 0 implies Cab �= 0, as well as the strength of
connections between populations. No assumptions (such as
homogeneity or isotropy) are made for the characteristics of a
connection and any attenuation or phase shifting of an incom-
ing signal due to time delays are reflected in the exponential
term of Equation (1). However, the model implicitly assumes
an effective range for neurons within a population. If Gab > 0
then the connection is excitatory and if Gab < 0 the connection
is inhibitory. Note that Equation (5) shows that if the values of α

and β are exchanged, the brain network has the same dynamics
and stability.

REALISTIC PARAMETER VALUES FOR LARGE-SCALE STRUCTURAL
BRAIN NETWORKS
Physiologically plausible parameter values for γ, α, β, and τ are
shown in Table 1. These values are based on the parameters used
in the corticothalamic model (Robinson et al., 2003a, 2004), with
the specific values taken from (Robinson et al., 2004). The nom-
inal values in Table 1 are the default model parameters used to
illustrate our results under our assumptions α and β are the
same value for all populations and τ is the same for all con-
nections. The values for γ are based on the cortical excitatory
neurons which form the long range connections within the cor-
tex. Inhibitory inter-neurons in the cortex are short range (Nunez,
1995) and therefore have γ ≈ ∞. Under the assumptions used
here all neural populations are given the same γ value.

In real structural brain networks dendritic time constants and
propagation time delays may vary. The spatial distribution and
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Table 1 | Physiologically plausible ranges and nominal values of

parameters.

Parameter Range Nominal value Unit

γ 30–220 100 s−1

α 5–200 60 s−1

β 17–2500 240 s−1

β/α 1–10 4 –

τ 0–50 10 ms

Based on the corticothalamic model parameters in Robinson et al. (2004). The

nominal values are the default model parameters we use in this work.

physical separation of structures within the brain will lead to
distinct time delays. The values of τ in Table 1 are physiologi-
cally plausible values for the time delays based on corticothalamic
modeling. The nominal value is a realistic value for the average
delay between the large-scale neural populations (or areas) in the
cerebral cortex.

RANDOMLY CONNECTED LARGE-SCALE STRUCTURAL BRAIN
NETWORKS
To illustrate our results we investigate randomly connected struc-
tural brain networks where neural populations are connected
randomly with probability p. The size n and probability of
connection we use is based on experimentally determined corti-
cal connection networks for animals. These have been analyzed
with graph-theoretical methods and all of these networks have
less than 100 neural populations with a connection density (per-
centage of existing connections out all possible connections) of
20–40% (Felleman and van Essen, 1991; Scannell et al., 1995;
Hilgetag et al., 2000a; Sporns et al., 2000, 2004; Bullmore and
Sporns, 2009; Rubinov and Sporns, 2010; Sporns, 2011). We
use random networks with n = 50 and p = 0.5 to illustrate our
results, allowing comparisons with real cortical networks. These
values of p ensure the networks are strongly connected (Bollobás,
1985) and all populations have at least one input and one out-
put with high probability; i.e., there are no sources or sinks of
electrical activity.

The specific random networks we investigate are the same
random networks we have previously investigated (Gray and
Robinson, 2006, 2008, 2009a,b). These networks consist of exci-
tatory and inhibitory connections. The probability that a con-
nection is inhibitory is given by pi and such a connection has
a negative gain. Excitatory gains are given values from a nor-
mal distribution with a mean μe > 0 and variance σ 2

e . Similarly,
inhibitory connections have a gain sampled from a normal distri-
bution with μi < 0 and variance σ 2

i . In terms of the gain matrix
G all positive entries are sampled fromN (μe, σ 2

e ) and all negative
entries are sampled from N (μi, σ 2

i ).
Based on these parameters we investigated the stability of

three types of networks: random networks with fixed excitatory
gains (RENs), random connection networks (RCNs) with excita-
tory and inhibitory connections distributed randomly within the
network (Gray and Robinson, 2009b), and random population
networks (RPNs) (Gray and Robinson, 2009a). RPNs represent
random networks with excitatory and inhibitory populations of

neurons, this implies the outgoing connections of a given popula-
tions are all excitatory or all inhibitory. The gain matrix of RPNs
consists of columns with either all entries ≤ 0 or all entries ≥ 0.

We determine the dispersion solutions for these structural
brain networks numerically using a FORTRAN program called
CROOT (Botten et al., 1983). This program finds dispersion
solutions by implementing a recursive algorithm that employs
Cauchy’s integral formula (Mitrinović and Kec̈kić, 1984) within
a specified annulus or disk.

RESULTS
Our results describe the stability of structural brain networks by
determining the criteria for a network to stable—starting from
simple excitatory networks and then adding time delays and
dendritic time constants. For our network model we show that
stability is determined by the eigenvalues of the gain matrix with
stability constraining the eigenvalues to a specific zone in the
complex plain. The first subsections translate the results from
previous work into the current context. In particular, when time
delays are included we produce a similar tear-drop shaped sta-
bility zone found by others (Jirsa and Ding, 2004; Feng et al.,
2006; Qubbaj and Jirsa, 2007; Jirsa, 2009; Qubbaj and Jirsa, 2009).
However, we show the addition of dendritic time constants mod-
ifies the shape of the stability zone. Finally, we use our results
to assess how stability constrains the physiology of randomly
connected networks with excitatory and inhibitory connections.

STABILITY OF STRUCTURAL BRAIN NETWORKS
The solutions ω of the dispersion relation Equation (8) determine
the linear stability of a network. Setting λ = D(ω), the dispersion
relation is

det (G− λI) = 0. (9)

Therefore, network stability is determined by the spectrum of G,
which we denote Sp(G). All the dispersion solutions ω of the
network can be obtained by solving

λ− D(ω) = 0 (10)

for each λ in Sp(G). If all the λ in Sp(G) have corresponding ω

[given by Equation (10)] with Imω < 0 then the network is stable.
However, if there exists one λ which has a corresponding disper-
sion solution with Imω ≥ 0 then the network is unstable. The set
of dispersion solutions of a brain network is termed the dispersion
spectrum. Taking the complex conjugate of Equations (4, 10)
show that if ω1 = Reω+ iImω = ωr + iωi is solution for λ then
ω2 = −ωr + iωi is a solution for the complex conjugate λ of
λ. Therefore, since both λ and λ are in Sp(G), the dispersion
spectrum is symmetric about the real axis.

Solving Equation (10) for ω is equivalent to solving
λ−D(	) = 0 for 	 where

D(	) = D(γ	) = (1− i	γ/α)(1− i	γ/β)(1− i	)2e−i	γτ,

(11)

and 	 = ω/γ is a dimensionless frequency parameter. From
the 	 solutions the dispersion solutions for the network are
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ω = γ	. Since D and D are analytic, the dispersion spec-
trum can be obtained by numerically solving Equation (10)
for each λ.

Boundary between unstable and stable states
As the stability of a network is determined by Sp(G) we are
interested in the zone of the complex plane where the all the
eigenvalues of G must lie for the network to be stable. If a dis-
persion solution has Imω = 0 (i.e., ω is real and marginally
stable) then the λ corresponding to ω lies on the critical bound-
ary between the unstable and stable zones in the complex plane.
Therefore, the stability boundary is given by D(ω) for real ω rang-
ing from −∞ to ∞. To describe the stability boundary we use
D(	) with real 	. This function traces out a continuous curve
in the complex plane as 	 ranges from −∞ to ∞. Points on
this curve represent λ in Sp(G) with real dispersion solutions
ω = γ	. The stability boundary of a network is a segment of
this curve since, in general, D(	) can intersect itself to form
loops.

Since D is a re-parameterization of D using 	 = ω/γ, a
brain network with model parameters γ = γ′, α = α′, β = β′,
and τ = τ′ has the same stability boundary as a network with
γ = 1, α = α′/γ′, β = β′/γ′, and τ = γ′τ. However, the disper-
sion spectra of these networks will differ. If an initially stable
network becomes unstable due to changes in its connection gains,
its spectrum initially lies in the stability zone before at least one
eigenvalue moves across the stability boundary from the stable
to unstable zones. The λ that crosses the boundary is an insta-
bility with frequency ω/2π = γ	/2π, where λ = D(	) on the
boundary.

We now describe some general properties of the stability
boundary for structural brain networks with time delays and
non-zero dendritic time constants. In the following sections we
investigate particular cases. Firstly, D �= 0 for all real−∞ < 	 <

∞, thus λ = 0 does not lie on the stability boundary. If λ = 0 is
substituted into Equation (11) then

(1− i	)2 = 0, (1− i	γ/α)2 = 0, or (1− i	γ/β)2 = 0, (12)

for complex 	. The only solutions to Equation (12) are 	 = −i,
	 = −iα/γ, or 	 = −iβ/γ giving the dispersion solution ω =
−iγ, ω = −iα, and ω = −iβ. These solutions all lie in the lower
half plane for α, β, γ > 0 and hence λ = 0 is a stable eigenvalue.
If ω = 	 = 0 then D(	) = 1, since L(0) = 1, and λ = 1 lies on
the stability boundary. This implies that if λ = 1 is in Sp(G) then
the network has a zero frequency marginally stable dispersion
solution. Furthermore, if we consider

|λ| = |L(	)|−1|e−i	γτ||1− i	|2, (13)

= |1− i	γ/α||1 − i	γ/β||e−i	γτ||1− i	|2, (14)

then |λ| < 1 implies at least one of the factors on the right of
Equation (14) is less than 1. Since α, β, γ, and τ are all posi-
tive, this condition can only be satisfied if Imω < 0. Therefore,
the unit disk is always contained in the stability zone and if all
the eigenvalues of a gain matrix lie in the unit disk the network is
stable independent of α, β, γ, and τ.

Stability of excitatory networks
If the all the connections in a structural brain network are
excitatory then Gab ≥ 0 and G is a non-negative matrix. The
Perron–Frobenius theorem (Horn and Johnson, 1985; Cvetković
et al., 1995) then implies that G has a real eigenvalue λp such that
|λi| ≤ λp for all λi in Sp(G). Therefore, an excitatory brain net-
work is stable if and only if λp < 1; i.e., all the eigenvalues are in
the unit disk. This stability criteria follows from the discussion at
the end of the previous section and the fact that if λp = 1 then
ω = 0 is a solution to Equation (11). Since 0 lies on the stabil-
ity boundary this implies if λp ≥ 1 then Imω ≥ 0. This means
the stability of an excitatory brain network is independent of
α, β, γ, and τ (as described in the previous section). In general,
structural brain networks have inhibitory connections and the
Perron–Frobenius theorem does not apply. This implies the pres-
ence of inhibitory connections allows the stability zone to extend
beyond the unit disk.

IMPACT OF TIME DELAYS AND DENDRITIC TIME CONSTANTS ON
NETWORK STABILITY
Stability of networks with no time delays and instantaneous rise
and decay times
For networks with no time delays and instantaneous dendritic rise
and decay times (i.e., 1/α = 1/β = τ = 0)

D(	) = (1− i	)2, (15)

and hence, for each λ in Sp(G) there are two dispersion solutions
given by

ω = γ	 = −γ(i± i
√

λ). (16)

Taking the imaginary part of Equation (16) we obtain

Imω = −γ(1± Re
√

λ). (17)

The stability condition Imω < 0 implies that −γ(1± Re
√

λ) or
Re
√

λ ≤ 1 since γ > 0. Thus the stability of a network with
1/α = 1/β = τ = 0 is independent of γ and all λ must sat-
isfy Re

√
λ ≤ 1 or alternatively Reλ+ |λ| ≤ 2 [since (Re

√
λ)2

equals (Reλ+ |λ|)/2, with equality corresponding to the stability
boundary].

If λr = Reλ and λi = Imλ then the stability zone is a parabolic
zone in the complex plane given by

λ2
i ≤ 4− 4λr (18)

with equality giving the stability boundary. The axis of the
parabolic boundary is along the real axis with a turning point at
(λr, λi) = (1, 0) and imaginary axis intercepts at λi = ±2. This
stability zone is the light gray zone in Figure 1 and is the sta-
bility region described previously in (Gray and Robinson, 2008,
2009a,b).

Stability of networks with equal time delays
We now consider the effect of time delays on the stability of net-
works with 1/α = 1/β = 0. In this section we determine how the
addition of a time delay to structural brain networks modifies the
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parabolic stability zone described by Equation (18) and describe
the characteristics of the stability boundary. As noted previously,
under our assumptions any self-connection in a brain network
has the same time delay as connections between populations.

In this case L(ω) = 1, τ �= 0, and

D(	) = (1− i	)2e−i	γτ. (19)

Due to the exponential in Equation (19), λ−D(	) = 0 has
an infinite number of solutions for each eigenvalue of the gain
matrix. If λ = Reλ+ iImλ = λr + iλi then λ = D(	) (for real
	) implies

λr = ReD(	) = (1−	2) cos(	γτ)− 2	 sin(	γτ), (20)

and

λi = ImD(	) = (	2 − 1) sin(	γτ)− 2	 cos(	γτ), (21)

FIGURE 1 | Stability zone for a brain network with 1/α = 1/β = τ = 0. The
gray zone is where all the eigenvalues λ of the brain network must lie for the
network to be stable. The dark region within this zone is the unit disk.

these equations can be combined giving

λi = − tan(	γτ)[λr + 2	cosec(	γτ)], (22)

which gives the stability boundary in the complex plane. For
	 ≥ 0, Equation (22) describes a spiral curve in the complex
plane starting at the point (λr, λi) = (1, 0), centered on the ori-
gin, and spiraling in a clockwise direction as 	 increases, as seen
in Figure 2A. For 	 < 0, Equation (22) describes a similar coun-
terclockwise spiral curve, corresponding to a reflection of the
curve in Figure 2A about the imaginary axis.

Using Equations (20–22) we now describe the characteristics
of the stability boundary and the resulting stability zone. The
D(	) curve crosses the real axis when λi = 0. Substituting λi = 0
into Equation (21) and (22) gives

(	2 − 1)sin(	γτ) = 2	cos(	γτ), (23)

and
λr = −2	cosec(	γτ), (24)

respectively. The values of 	 for which λi = 0 can be obtained
by solving Equation (23) numerically. Note that Equation (24) is
only valid if 	γτ �= ±mπ/2 for integers m. Due to the periodicity
of the sine and cosine functions there is an infinite number of 	

that satisfy these equations.
Thus the stability boundary consists of two spiral curves

produced by bending the arms of the parabola described by
Equation (18) inwards. These spiral curves intersect an infinite
number of times on the real axis enclosing larger and larger
regions of the complex plane as |	γτ| increases. The intersec-
tion of all these enclosed regions, corresponding to the inner-
most zone, represents the stability zone for the network. The
reason eigenvalues outside this innermost zone are instabilities
is because they correspond to eigenvalues outside the stabil-
ity zone described by Equation (18) when transformed through
multiplication by ei	γτ (which removes the effect of the time
delay).

FIGURE 2 | Stability boundaries and stability zones for networks

with 1/α = 1/β = 0. The curve D(	) for 	 ≥ 0 (A) and
corresponding stability boundary (B) for networks with 1/α = 1/β = 0
and γτ = 3.0. The shaded zone in (B) is the stability zone for a
network and the dark region within this zone is the unit disk. The

dot-dashed line is the boundary for 1/α = 1/β = τ = 0. (C) Stability
boundaries for brain networks with 1/α = 1/β = 0 and γτ = 0.1, 0.5,
1.0, and 5.0. The values of γτ are written slightly above and to the
left of the corresponding boundary. The dark gray region within this
zone is the unit disk.
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We define the smallest ω = γ	 > 0 that gives λi = 0 the
critical ω value. This critical value is denoted by ωc with the corre-
sponding 	 and λr denoted 	c and λc

r , respectively. The stability
zone is defined by

|Imλ| < |Im[D(	)]|, (25)

for 0 ≤ 	 ≤ 	c. This zone has a boundary defined by
Equation (19) for −	c ≤ 	 ≤ 	c . The real axis intercepts
of the stability boundary are given by λr = 1 and λr = λc

r =
−2	ccosec(	cγτ). As seen in Figure 2B the stability zone has a
teardrop shape containing the unit disc. Note that Equation (25)
also defines the stability zone in Figure 1 with 	c = ∞. As
γτ→ 0 then λr → (1−	2) in Equation (20), λi →−2	 in
Equation (21), and the stability boundary converges to the
parabola λ2

i = 4− 4λr , as expected.
The effect of increasing τ on the stability boundary is shown

in Figure 2C. As γτ increases, the stability boundary converges
to the unit circle with the stability zone converging to the unit
disk, shaded dark gray. The values of 	c in Figure 2C for the
four values of γτ shown are 3.0 (γτ = 0.1) , 1.92 (γτ = 0.5), 1.31
(γτ = 1.0), and 0.46 (γτ = 5.0), respectively. The correspond-
ing λc

r are −9.4 (intersection not seen), −4.6, −2.7, and −1.2.
For γ = 100 s−1 and τ = 0.01 s (the nominal values in Table 1)
ωc/2π ≈ 30 Hz.

Overall, the presence of time delays bends the parabola
described by Equation (18) inward, forming a teardrop-shaped
stability zone containing the unit disk. As τ→∞ the stability
boundary wraps around the unit circle an infinite number of
times and the stability zone converges to the unit disk, restricting
the critical frequency.

Stability of networks with non-zero dendritic rise and decay time
constants and no time delays
The teardrop shaped zone and the time-delay effects on
stability described in the previous section produce similar
results to those seen in other studies (Marcus and Westervelt,
1989; Jirsa and Ding, 2004; Feng et al., 2006). However,
our model also incorporates dendritic rise and decay time
constants. In the next two sections we describe the stabil-
ity of structural brain networks with non-zero dendritic time
constants.

We first investigate brain networks with dendritic time con-
stants and no propagation time delays. In this case τ = 0, α �= 0,
and β �= 0. Hence L(ω) �= 1 and

D(	) = (1− i	γ/α)(1− i	γ/β)(1− i	)2. (26)

From Equation (26) the stability boundary is given by

λr = 1− [1+ 2γ(1/α+ 1/β)+ γ2/(αβ)]	2 + γ2/(αβ)	4,

(27)
and

λi = −[2+ γ(1/α+ 1/β)]	 + [γ(1/α+ 1/β)+ 2γ2/(αβ)]	3.

(28)

where λr = Reλ, Imλ = λi, and 	 is real. In this case λ−
D(	) = 0 only has a finite number of solutions since D(	) is
a polynomial of degree four. From Equation (28) the values of 	c

and ωc are given by

	2
c =

2αβ+ γ(α+ β)

2γ2 + γ(α+ β)
, (29)

and

ωc =
√

2αβγ+ γ2(α+ β)

α+ β+ 2γ
, (30)

respectively. An equation similar to Equation (30) was previously
derived to describe gamma resonances produced by a similar
mechanism (Robinson, 2005). If αβ < γ2 then Equation (30)
implies ωc < γ.

Unlike the case for time delays in the previous section, the
D(	) curve only crosses the real axis once for real 	 > 0; an
example of such a D(	) curve is shown in Figure 3A. However,
the region enclosed by D(	) for −	c ≤ 	 ≤ 	c is again the
stability zone and defined by Equation (25). The corresponding
stability zone for the D curve in Figure 3A is shown in Figure 3B.

The stability zone in Figure 3B contains the unit disk and has
a similar teardrop shape to the zone in Figure 2B with the arms
of the parabola given by Equation (18) bent inward. In terms of
stability, this implies non-zero 1/α and 1/β have similar effects to
a propagation time delay. This is consistent with previous work on
the corticothalamic model and highlights the low-pass filter effect
of L(ω) (Robinson et al., 1997, 2001a,b; Rennie et al., 2002). The
effective time delay resulting from γ/α and γ/β can be obtained
by solving

e−i	cγτ = (1− i	cγ/α)(1− i	cγ/β), (31)

for τ.
In the remainder of this section we explore the effect of vary-

ing γ, α, and β on the stability zone. We illustrate these effects by
setting β/α to a positive constant. Firstly, for fixed β/α and large
γ/α, Equations (27, 29) imply

λr ≈ 1+ (γ/α)2	2(	2 − 1), (32)

and
	2

c ≈ α/γ, (33)

respectively. From Equation (33), ωc ≈ 0 for large γ/α and
substituting Equation (33) into (32) shows that λc

r →−∞ as
γ/α→∞. These results are illustrated in Figures 3C, 4.

The change in the stability zone for fixed β/α and varying γ/α

is shown in Figure 3C. All the stability zones contain the unit
circle, and for γ/α = 0.1 and 1.7 the stability zone is contained
within the parabolic zone defined by Equation (18). However,
the zone for γ/α = 100 has expanded so that its boundary inter-
sects the parabolic boundary at λr ≈ −11. The 	c in Figure 3C
for γ/α = 100, 0.1, and 1.7 are 0.15 , 4.0, and 1.08, respectively.
The corresponding λc

r are −66 (intersection not seen), −19, and
−4.9. For γ/α = 1.7, the nominal value from Table 1, the critical
frequency is ωc/2π ≈ 17 Hz.
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FIGURE 3 | Stability boundaries and stability zones for networks

with non-zero dendritic rise and decay time constants and no time

delays. The curve D(	) for real 	≥0 (A) and corresponding stability
zone and boundary (B) for networks with α = 60 s−1, β = 240 s−1 and
γ = 100 s−1 and τ = 0 s. The stability zone is shaded gray and the dark
region within this zone is the unit disk. The dot-dashed line is the

boundary for 1/α = 1/β = τ = 0. (C) Stability boundaries for β = 4α and
γ/α = 100, 0.1, and 1.7. The values of γ/α are written next to their
corresponding boundary. (D) Stability boundaries for γ/α = 1.7 and
β/α = 1, 4 (dashed curve), and 10. The dot-dashed line in (C,D) is the
boundary for 1/α = 1/β = τ = 0 and the dark gray region in (C,D) is the
unit disk.

The effect of changing β/α on the stability zone, while γ/α

remains fixed, is shown in Figure 3D. The 	c (λc
r) in Figure 3D

for β/α = 1 and β/α = 10 are 0.77 (λc
r = −4.3) and 1.26

(λc
r = −6.2), respectively. Note that if β/α < 1, then the values

of α and β can be swapped and the results in Figure 3 are repro-
duced. This is because exchanging γ/α and γ/β in Equation (4)
has no effect on the dynamics and stability of a network. This
implies the smallest stability zone with the minimum λc

r occurs
when α = β. Note that experimental measurements of dendritic
time constants in the brain give β/α ≈ 4–10 (Robinson et al.,
2003a, 2004), the upper range in Table 1, and hence, a larger
stability zone for brain activity.

Figure 3 suggests that as β/α increases the stability zone
expands in a similar way to decreasing τ. However, as τ→ 0 the
stability zone converges to the parabolic zone (Equation 18), this
is not the case for γ/β→∞ and fixed γ/α. If γ/α is fixed to a pos-
itive constant and γ/β
 γ/α then, from Equation (29), 	2

c � 1
and therefore

λr ≈ 1− γ	2/β, (34)

and
λi ≈ −γ	/β. (35)

When λr = 0, Equation (34) implies 	 ≈ √β/γ and λi ≈
−√γ/β. Therefore as γ/β→∞, the imaginary axis intercepts
converge to±∞ and the stability zone expands to cover the entire
region of the complex plane defined by Reλ < 1. Note that in this
case, even though the eigenvalues can lie anywhere to the left of
Reλ = 1, the dispersion solutions have an angular frequency ω <

γ. These results explain the intersection of the stability boundary
with the parabolic boundary in Figure 3C.

With Figure 3C these convergence results suggest that as γ/α

increases from 0, the stability zone contracts toward the unit cir-
cle, and then expands again. Figure 4 shows the values of λc

r and
ωc as a function of γ/α and β/α. As γ/α increases from 0, λc

r
rapidly increases from −∞ to a maximum value and then slowly
decreases back to −∞; this decrease is greatest for the β/α = 1
curve which intersects the other two curves in Figure 4A. The
maximum turning point for λc

r occurs when γ ≈ α for each β/α,
with maximum λc

r decreasing as β/α increases. When β/α = 4
(which is the nominal value in Table 1), λc

r is approximately con-
stant for 1 � γ/α � 3, with a maximum at γ/α ≈ 1.7, the nom-
inal value. The corresponding ωc curves in Figure 4B all show
similar monotonic decreases as γ/α increases. The curves do not
intersect or have a turning point as in Figure 4A. This decrease
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FIGURE 4 | Change in stability boundary real axis intercept and critical

frequency as a function of γ/α. (A) λc
r and (B) ωc as a function of γ/α for

γτ =0 and β/α =1 (solid lines), 4 (dotted lines), and 10 (dot-dashed lines). In
(B) ωc is determined with γ = 100 s−1. The dotted lines represent the
nominal γ/α from Table 1.

from ∞ is initially very rapid, before gradually decreasing to 0
as γ/α→∞. This change approximately occurs at the nomi-
nal γ/α value in Table 1, where ωc/2π � 20 Hz for each β/α.
Note that when β/α is a fixed constant, Equation (33) shows that
ωc → 0. Figure 4B also shows that increasing γ/α and decreasing
γ/β results in a decreased value for ωc.

In this section we have shown that physiologically realistic den-
dritic time constants have an effect on network stability similar to
that of propagation time delays restricting, the critical frequency
and the stability zone to a teardrop-shaped zone in the complex
plane. However, unlike τ, for particular values of γ/α and γ/β the
stability zone can expand to enclose an area outside the parabolic
region described by Equation (18).

Stability of networks with time delays and non-zero dendritic time
constants
The effect of having both time delays and non-zero dendritic
time constants on stability is now described. In this case each
of the parameters γ, 1/α, 1/β, and τ are non-zero and D is
given by Equation (11). As in the previous section, the stabil-
ity boundary for these networks is defined by λr = ReD(	) and
λi = ImD(	) for −∞ < 	 <∞. Analysis of these equations
gives the properties of the stability boundary and zone. However,
the effects on stability of having equal time delays and dendritic
time constants are easily understood qualitatively as a combi-
nation of our previous results. Beginning with a network that
has γ/α = γ/β = γτ = 0 and a parabolic stability zone, given
by Equation (18), adding a time delay τ contracts the stability
zone toward the unit circle, by “pulling in” the parabolic bound-
ary, forming a teardrop-shaped zone within the original parabolic
region. Adding dendritic rise and decay constants then, depend-
ing on their value, expands or contracts this stability zone. In all
cases the stability zone is defined by

|Imλ| < |Im[D(	)]|, (36)

for 0 ≤ 	 ≤ 	c. Note that for large γτ, γ/α, and γ/β the con-
traction caused by γτ is greater than the expansion effects due to
γ/α and γ/β because of the exponential in Equation (11).

In Figure 5 the stability zone of a brain network with plausible
time delays and dendritic time constants (from Table 1) is shown.
This shows that for realistic parameter values brain networks have

FIGURE 5 | Stability boundaries for brain networks with γ/α = 1.7,

β/α = 4 and γτ = 0.1, 1.0, and 5.0. The values of γτ are written slightly to
the left of their corresponding boundary. The gray region is the unit disk.

a teardrop-shaped stability zone completely within the parabolic
zone (Equation 18). For large realistic τ the stability zone is only
slightly larger than the unit disc. The 	c in Figure 5 for increasing
γτ are 1.02, 0.72, and 0.35, respectively. The corresponding criti-
cal frequencies ωc/2π for γ = 100 are then 16, 11.3, and 5.5 Hz,
respectively.

STABILITY AND DISPERSION SOLUTIONS OF RANDOMLY CONNECTED
NETWORKS
We now investigate the stability and dispersion solutions of the
randomly connected structural brain networks defined in the
“Methods” section. For these networks we fix the model parame-
ters γ, α, β, and τ to their nominal values in Table 1. The stability
and dispersion solutions of this networks are determined from
Sp(G). If all the eigenvalues λ in Sp(G) satisfy Equation (25)
then the network is stable. The corresponding dispersion solu-
tions are obtained numerically by solving Equation (10) for
each λ using CROOT (Botten et al., 1983) (as described in
“Methods”).

The spectrum of a RENs consists of one eigenvalue at npμe

with the other n− 1 eigenvalues uniformly distributed in a disc
of radius μe

√
np(1− p) < npμe. The spectrum of RCNs and

RPNs with maximum μe and μi allowed by stability is distributed
within the unit disk, see (Gray and Robinson, 2009a), with mul-
tiple eigenvalues near the stability boundary. Therefore, stability
constrains the spectrum of random brain networks to the unit
disk and the stability of random brain networks is independent
of the γ, α, β, and τ. However, the frequencies of the dispersion
solutions do depend on the model parameters.

In Figure 6 the spectrum and dispersion solutions for a REN,
RCN, and RPN with the nominal model parameters are shown.
The parameters of each network are set so that the networks are
marginally stable and μe and |μi| are as large as possible while
maintaining stability. Note the larger values of μe and |μi| for the
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FIGURE 6 | Spectrum and dispersion solutions for a REN, a RCN,

and a RPN. Each network has n = 50, p = 0.5, and the nominal
parameters in Table 1, other parameters are set so that the network
is close to marginal stability. The left column is the spectrum
(crosses), the middle column shows the dispersion solutions

(diamonds), and the right column shows an expanded view of the
dispersion solutions near the imaginary axis with dotted lines
representing the critical frequencies ± ωc/2π. (A) REN with
μe = 0.04, (B) RCN with pi = 0.5, μe = −μi = 0.2, σe = σi = 0, and
(C) RPN with pi = 0.5, μe = −μi = 0.22, σe = σi = 0.

RPN, compared to the RCN. This highlights that RPNs can have
larger μe and |μi|, and hence be more responsive, before becom-
ing almost certainly unstable as shown in (Gray and Robinson,
2009a). This suggests stability may have an effect on the arrange-
ment of inhibitory and excitatory neurons and their physiology in
structural brain networks.

Each network has an infinite number of dispersion solu-
tions because τ �= 0. The second column of Figure 6 shows the
dispersion spectrum is symmetrically placed around the real
axis. Each network has a qualitatively similar dispersion spec-
trum, with a finite cluster of solutions near the origin and a
broad “arrowhead” of solutions for Imω � 800 s−1; this arrow-
head has an infinite number of solutions with Imω decreas-
ing as |Reω| increases. The third column shows the dispersion
solutions near the imaginary axis. In Figure 6A3 one solution,
ω = ω1, lies on the origin, separate from the other dispersion
solutions. This solution corresponds to the eigenvalue at λ ≈ 1
that is separated from the rest of the spectrum in Figure 6A1.
This implies the dynamics of an REN will be dominated by a
zero-frequency mode. Since the rest of the dispersion solutions

have Imω� 0 all other modes rapidly decay to zero amplitude.
However, the RCN and RPN in Figure 6 have a very simi-
lar dispersion spectrum with multiple dispersion solutions near
the imaginary axis. The solutions closest to the imaginary axis
have small frequencies � 5 Hz. This shows that the presence of
inhibitory connections allows random networks to have multi-
ple marginally stable low frequency modes (Gray and Robinson,
2008, 2009a,b).

DISCUSSION
We increased the physiological realism of a structural brain net-
work model we studied previously in (Gray and Robinson, 2006,
2008, 2009a,b; Robinson et al., 2009) by allowing the network
to have equal time delays τ for propagation between neuronal
populations and non-zero dendritic rise 1/β and decay 1/α time
constants. Under these assumptions the stability of an arbitrar-
ily connected network of neural populations is determined by the
network’s gain matrix. The addition of time delays changed the
stability zone in the complex plane from a parabolic region to a
teardrop-shaped zone, dependent on α, β, τ, and the temporal
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damping rate γ. Our results are similar to previous work investi-
gating the effect of time delays on stability of electrical activity
within spatially continuous networks of neural tissue (Marcus
and Westervelt, 1989; Jirsa and Ding, 2004; Feng et al., 2006;
Qubbaj and Jirsa, 2007, 2009; Jirsa, 2009). This previous work
has generally used integro-differential neural field equations with
connectivity within a neural mass described by homogeneous
or heterogeneous kernels. While in principle this work could be
applied to large-scale connection topologies of discrete neural
masses, as we have investigated here, this has generally not been
done as it is difficult to incorporate arbitrary connectivity pat-
terns (Qubbaj and Jirsa, 2009). In this work we have investigated
the temporal dynamics of the overall electrical activity of arbi-
trarily connected structural brain networks, ignoring the spatial
spread and propagation of electrical activity within individual
neuronal populations.

In terms of stability the effect of non-zero dendritic time con-
stants is similar to a time delay, further suggesting that dendrites
act as a low-pass filter on synaptic inputs (Robinson et al., 1997,
2001a,b; Rennie et al., 2002). However, dendritic time constants
can change the shape of the stability zone even allowing it to
expand and enclose areas outside the parabolic stability region for
networks with zero time delays and instantaneous dendritic rise
and decay times. For all values of γ, α, β, and τ the stability zone
contains the unit disk. This result implies that the stability criteria
originally derived by May (1972, 1974) (that a network is stable if
all its eigenvalues lie in the unit disk) is a sufficient condition for
the stability of structural brain networks.

We also explored the dispersion solutions and frequencies
of structural brain networks. If an initially stable brain net-
work becomes unstable through a change in its connection gains,
then at least one eigenvalue moves across the stability bound-
ary and the network has an instability at a frequency given by
the eigenvalue’s corresponding dispersion solution. For networks
with time delays and non-zero dendritic time constants there is
a maximum frequency, the critical frequency ωc/2π, at which
initially stable networks will become unstable. For example, if all
the gain matrix eigenvalues of a networks are initially inside the
stability zone but then move across the stability boundary (e.g.,
due to changes in connection gains) then the frequency of these
instabilities will be less than the critical frequency.

Measurements of brain activity (Stam et al., 1999; Robinson
et al., 2001b; Breakspear, 2002; Breakspear et al., 2003) suggest
the brain operates near marginal stability allowing the brain to
have rich dynamics and a wide range of complex behavior. A
network near marginal stability has eigenvalues near the stabil-
ity boundary with corresponding modes that are the slowest to
decay back to the steady state dominating the network’s dynam-
ics. These modes have a frequency less than the critical frequency.
Using physiologically plausible parameter values in our struc-
tural network model (see Table 1) we would expect the electrical
dynamics to be dominated by frequencies �100 Hz. When the
nominal parameter values of α, β, γ, and τ are used the critical
frequency is approximately 10 Hz and decreases as γτ increases
(see Figures 4, 6).

For the randomly connected structural brain networks we
investigated previously (Gray and Robinson, 2006, 2008, 2009a,b)

the spectrum of the gain matrix is almost certainly contained in
a disk centered on the origin with a radius dependent on the
network’s architecture and the average values of its excitatory
and inhibitory gains. Thus, the stability zone of these networks
is the unit disk and their stability is independent of time delays
and dendritic time constants. Therefore, the results of that work
remain valid in the more general case studied here. However, for
the critical frequency is dependent on dendritic time constants,
temporal damping rate, and time delays. We showed marginally
stable randomly connected networks with inhibitory connec-
tions have multiple marginally stable low frequency dispersion
solutions.

The primary goal of this and our previous work on structural
brain networks is to understand how stability potential con-
strains the structure physiology of networks. For the randomly
connected networks studied in (Gray and Robinson, 2006, 2008,
2009a,b), we have shown that time delays and non-zero dendritic
time constants have minimal effect on their stability. One network
type whose stability could be affected by these physiological prop-
erties is networks with inhibitory self-connections. The spectrum
of these networks, even if they are randomly connected, is no
longer restricted to a disc by stability but can have eigenvalues dis-
tributed within the teardrop-shaped region. Such networks could
have marginally stable modes with frequencies (up to the criti-
cal frequency) in the alpha, beta, and gamma ranges. This will be
explored in future work.

LIKELY EFFECTS OF DISTRIBUTED OR VARYING PARAMETERS ON
STABILITY
Assuming structural brain networks have equal γ, α, and β

for each neural population and equal τ for each connection
is unrealistic. Different neuronal populations in the brain have
different parameter values; for example, excitatory cortical neu-
rons have γ ≈ 100 s−1 while for inhibitory cortical neurons
γ ≈ 103–104 s−1 (Robinson et al., 2004). Also, the time delay
in real cortical networks is expected to vary from τ = 0 for
self-connections to a large value for areas physically far apart.
A realistic model of a structural brain network would therefore
allow the model parameters γ, α, β, and τ to vary across neu-
ral populations. This variation could possibly be represented as a
distribution.

The effect of distributed time delays on network stability has
been studied using general models for network activity (Yi and
Tan, 2002; Atay, 2003; Jirsa and Ding, 2004; Feng et al., 2006).
In (Feng et al., 2006) and (Jirsa and Ding, 2004) networks with
a distributed time delay with mean τ were shown to have a sta-
bility zone that contained the stability zone of networks with an
constant delay equal to τ. These results are applicable to the brain
networks studied here, since our model without dendritic time
constants can be described as a specific case of the model studied
in (Jirsa and Ding, 2004; Feng et al., 2006). This implies brain net-
works with distributed delay are more stable than networks with
equal time delays; in the sense that a stable network with a distri-
bution of delays could be unstable if its delays were replaced with
a constant delay equal to the distribution mean. Hence, the equal
time delay case is the least stable case and yields a bound on the
stability of a structural brain network.
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Here we have shown that plausible dendritic time constants
have similar effects on stability as a time delay. This suggests that
similar results to those found in (Jirsa and Ding, 2004; Feng et al.,
2006) will likely be observed for distributed α and β. Also, we have
shown that γ only affects the dispersion frequencies of a network,
not its stability. A distributed γ is therefore expected to have no
effect on the stability, only on the dispersion frequencies but this
needs to be confirmed numerically.

Given the previous results investigating distributed parameter
values we argue our results are still informative. But the exact
effect of distributed γ, α, and β on structural brain network
dynamics needs to be determined, particularly to understand the
critical frequency and the dynamics of marginally stable modes in
a networks electrical activity. To fully understand the stability and
dynamics of structural brain networks with varying time delays
and dendritic time constants requires a numerical approach. This
will be investigated using CROOT (Botten et al., 1983) in future
work.

CONCLUSIONS
We investigated the stability of discrete networks of neuronal
populations using a simplified physiologically-based mean-field
model of brain electrical activity. Incorporating time delays and
non-zero dendritic time constants affects the stability of arbi-
trarily connected structural brain networks by constraining the
eigenvalues of the gain matrix to a teardrop-shaped region in
the complex plane. The stability of randomly connected networks
of excitatory and inhibitory neuronal populations is unaffected
by time delays and dendritic time constants; as stability con-
strains the gain matrix eigenvalues to the unit circle. However,
the dispersion frequencies of instabilities are affected by net-
work physiology. Randomly connected brain networks with the
largest average excitatory and inhibitory gains allowed by stability
can have multiple marginally stable low-frequency modes. Such
networks would be highly responsive and adaptable to external
stimuli while remaining stable, and have a wide range of flexible,
adaptable, and complex behavior.
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The response of a population of cortical neurons to an external stimulus depends not only
on the receptive field properties of the neurons, but also the level of arousal and atten-
tion or goal-oriented cognitive biases that guide information processing. These top-down
effects on cortical neurons bias the output of the neurons and affect behavioral outcomes
such as stimulus detection, discrimination, and response time. In any physiological study,
neural dynamics are observed in a specific brain state; the background state partly deter-
mines neuronal excitability. Experimental studies in humans and animal models have also
demonstrated that slow oscillations (typically in the alpha or theta bands) modulate the
fast oscillations (gamma band) associated with local networks of neurons. Cross-frequency
interaction is of interest as a mechanism for top-down or bottom up interactions between
systems at different spatial scales. We develop a generic model of top-down influences
on local networks appropriate for comparison with EEG. EEG provides excellent temporal
resolution to investigate neuronal oscillations but is space-averaged on the cm scale.Thus,
appropriate EEG models are developed in terms of population synaptic activity.We used the
Wilson–Cowan population model to investigate fast (gamma band) oscillations generated
by a local network of excitatory and inhibitory neurons. We modified the Wilson–Cowan
equations to make them more physiologically realistic by explicitly incorporating background
state variables into the model.We found that the population response is strongly influenced
by the background state. We apply the model to reproduce the modulation of gamma
rhythms by theta rhythms as has been observed in animal models and human ECoG and
EEG studies.The concept of a dynamic background state presented here using theWilson–
Cowan model can be readily applied to incorporate top-down modulation in more detailed
models of specific cortical systems.

Keywords: EEG, population dynamics, neural mass models, top-down control, ECoG

INTRODUCTION
A fundamental question in any neurophysiological study is
whether observed modulations of neural responses in cortex
by cognitive processes are the result of the action of a local
network or due to the interactions between this local network
and the rest of the brain in global networks. This conceptual
framework of local and global networks interacting in cognitive
processes is salient to the interpretation of physiological sig-
nals obtained from the brain with any technique – EEG, MEG,
fMRI, LFPs, or unit activity and to models of the underly-
ing cognitive processes. That is, even when signals are recorded
from a small number of neurons (or even just one neuron)
the observed dynamics result both from the intrinsic properties
of the local network and from the influence of other neurons
located in nearby or even distant cortex (Mountcastle, 1997).
This simple distinction can be understood in terms of behav-
ior – the response of neurons to inputs depends not only on the
receptive field of the neurons but also on the level of arousal,
typically by the action of neuromodulators, and attention or

goal-oriented cognitive biases that guide information processing.
The latter are sometimes called top-down effects (Engel et al.,
2001), which bias the output of the neurons and affect behavioral
outcomes such as stimulus detection, short term memory, and
reaction time.

The objective of this paper is to develop a model of local net-
works with which we can investigate the effect background brain
state or top-down signaling on the local network. In order to
develop this model, we have to make choices of spatial scale and
physiological detail to incorporate into the model. Very detailed
models have the potential to provide more information about
specific neural systems, e.g., details models of the visual sys-
tem (Lumer et al., 1997). However, detailed model parameters
are not available in humans, where the competition/interaction
between global and local dynamics is expected to be the most
robust (Nunez, 1995, 2000; Nunez and Srinivasan, 2006). In addi-
tion, detailed models may not lead to generalized principles that
can potentially guide experimental studies in a variety of behav-
ioral contexts; detailed cellular models are not easily compared
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to electrocorticogram (ECoG) and electroencephalogram (EEG)
data obtained in humans.

Electroencephalogram is uniquely positioned to differenti-
ate local and global processes and to examine their interactions
in human subjects. EEG provides excellent temporal resolution
allowing us to separate processes at different time scales at elec-
trodes over cortex while allowing for sufficient spatial cover-
age to investigate interactions of sensory neurons with neural
processes in other areas of the brain. The main limitation of
EEG is spatial resolution; EEG signals are space-averaged on the
cm scale (Nunez, 1981; Nunez and Srinivasan, 2006) by vol-
ume conduction through the tissues of the head. An active area
of research is to improve our understanding of the structure
of cortical sources and connectivity from EEG data (Pinotsis
et al., 2012). ECoG in humans combines the temporal dynam-
ics of EEG with the greater spatial detail and (depending on
the patient) partial coverage of the cortex (Schalk and Leuthardt,
2011). Although ECoG is only available in limited cases in patients
with intractable epilepsy, these data are a useful source of infor-
mation on the nature of dynamics of localized population of
neurons.

EEG signals span a frequency range of 1–50 Hz while ECoG sig-
nals span a broader frequency range of 1–150 Hz (Canolty et al.,
2010; Schalk and Leuthardt, 2011). The lower portion of this spec-
trum (below 20 Hz) has strongly global properties with spatial
distribution across the brain that depends strongly on the fre-
quency (von Stein and Sarnthein, 2000; Nunez et al., 2001; Nunez
and Srinivasan, 2006). For example human alpha rhythms, which
are quite robust in alert subjects, may be recorded over nearly all of
the upper scalp or cortex with a visible peak in the power spectrum
near 10 Hz. Alpha rhythm power and phase synchronization (usu-
ally measured as coherence) are modulated in specific large-scale
cortical networks by a wide variety of different cognitive processes
including attention (Thut et al., 2006; Thorpe et al., 2012) and
working memory (Sarnthein et al., 1998; Sauseng et al., 2005).
Consistent with this “global” picture of low frequency EEG sig-
nals are studies using periodic visual input to elicit steady-state
visual evoked potentials (SSVEPs). SSVEPs are responses to visual
flicker at the flicker frequency (and harmonics). Low frequency
(<20 Hz) SSVEPs elicit “resonant” responses in large-scale net-
works whose spatial distribution depends strongly on the input
temporal frequency (Ding et al., 2006; Srinivasan et al., 2006).
These large-scale networks have both distinct characteristic fre-
quencies and functional properties (Ding et al., 2006; Bridwell
and Srinivasan, 2012).

At higher frequencies (>30 Hz) the spatial distribution of EEG
and ECoG signals is (apparently) localized at the cm scale. EEG
studies have shown task dependent modulations of gamma net-
works in networks localized in sensory and motor cortex. These
studies were inspired by single-unit and LFP studies in animal
models, most notably by Singer and colleagues (Engel and Singer,
2001; Fries et al., 2007) that demonstrate localized networks syn-
chronizing at gamma band frequencies. This local view of the
origin of gamma rhythms is supported by ECoG studies that
show relatively low coherence between electrodes at gamma band
frequencies (Menon et al., 1996). SSVEP data at gamma band
frequencies are consistent with this localized picture of fast EEG

rhythms – γ-SSVEPs appear to be local processes in the visual
cortex (Thorpe et al., 2011).

The distinct spatial and dynamical property of EEG oscillations
in low (<20 Hz) and high (>20 Hz) frequency bands suggests the
need for different types of models to explain these phenomena.
Given any unknown physical or biological system that produces
oscillations at some preferred (or resonant) frequency f=ω/2π, a
reasonable starting point for developing a model is the origin of
the implied underlying time delay τ roughly estimated as

τ ∼ ω−1 (1)

The implied physiological time scale for the (8–13 Hz) alpha
rhythm is τ= 12–20 ms. More generally, the most robust human
EEG rhythms recorded from the scalp (1–20 Hz) correspond to
time delays τ= 8–160 ms. How does this delay range compare
with mammalian physiology? Whereas early studies of membrane
time constants in mammalian cortex were very short, typically
less than 10 ms, more modern studies with improved recording
methods report a wider range up to 100 ms (Koch et al., 1996).
While synaptic delays (PSP rise and decay times) lie in a general
range (within a factor of perhaps 5 or 10) that might account for
dominant EEG frequencies, claims of close agreement between
the details of observed EEG spectra and dynamic theories based
on membrane time constants are not by themselves a critical val-
idation of a model. Model parameters can always be chosen to
“match” EEG data, which, in any case, varies widely between brain
states.

Local network theories refers to models of cortical or thalamo-
cortical interactions in which signal propagation delays in axons
are neglected. For example, coupled non-linear oscillators inter-
act without any transmission delay in a local theory. In contrast,
models that incorporate the spatial extent of the cortex and the
transmission delays between neural populations are global the-
ories. Global theories predict spatially coherent oscillations over
the surface of the cortex with wave-like properties that depend
primarily on the transmission delays between cortical populations
and the size (surface area) of the cortex (Nunez, 1981, 1995, 2000).
The dominant modes of these spatially distributed oscillations
are predicted to lie below 15 Hz in the theta and alpha bands.
While both global and local network theories have been devel-
oped independently, their interaction across spatial and temporal
scales is less well understood. Previous studies have focused on
how local networks influence global networks (Jirsa and Haken,
1996; Nunez, 2000), and a recent study investigates the interaction
between local connectivity and long-range interactions (Pinot-
sis et al., 2013). In this paper we consider how global network
dynamics may influence local networks.

The underlying time scales in local network theories are typ-
ically postsynaptic potential rise and decay times due to mem-
brane capacitive-resistive properties (Wilson and Cowan, 1972,
1973). Local theories typically predict EEG signals with frequen-
cies above 20 Hz. These results are consistent with more detailed
studies of spiking neuron models (Izhikevich, 2006; Izhikevich
and Edelman, 2008) that predict fast frequency oscillations in
cortical populations unless coupled with delays as in a global net-
work. Physiologically realistic compartment models incorporating
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the interactions between excitatory and inhibitory populations
in cortex give rise to fast oscillations at gamma band frequen-
cies (Bush and Sejnowski, 1996; Traub et al., 1997; Whittington
et al., 2000). In these types of model, the dynamics are determined
primarily by the synaptic rise and decay times and the strength
of excitatory and inhibitory synaptic connections. More specific
local models in sensory systems incorporate the essential spiking
dynamics and connectivity of thalamocortical networks (Lumer
et al., 1997) also giving rise to gamma band oscillations. While
the physiological detailed models are useful to compare to data
in animal models, comparisons to EEG and ECoG require model
development in macroscopic variables that describe synaptic mass
action.

The Wilson–Cowan model is one of the earliest and most often
cited dynamic models based on local (PSP rise and decay) delays
(Wilson and Cowan, 1972, 1973). The Wilson–Cowan model
produces either sustained (limit cycle) or damped oscillations
over a broad range of physiologically realistic parameter space in
response to a step function input to the excitatory population.
The oscillations in all parts of the network are highly corre-
lated, as there is no independent noise in each population. The
rate of damping of the oscillations is largely determined by the
ratio of excitatory to inhibitory weights with higher inhibition
leading to damped oscillations. The frequency of the oscillation
is determined primarily by the membrane time constants and
connectivity strength.

In this paper, we will make use of the Wilson–Cowan model
to investigate how properties of high frequency (gamma band)
oscillations generated by a local network in response to input is
influenced by modulation of the background state by top-down
influences. Our objective here is to formalize the general principles
by which local networks in cortex are influenced by modulatory
signals. For this purpose, we have modified the Wilson–Cowan
equations to make more physiologically realistic by incorporating
background state parameters into the model. In any physiologi-
cal study neural dynamics are observed in a specific brain state
(e.g., asleep, awake, alert, attentive, etc.) determined partly by neu-
romodulatory action at much longer time scales. As brain state
changes, the background state partly determines the excitability
of the network (Fellous and Linster, 1998; Romei et al., 2008).
Experimental studies in humans and animal models have also
demonstrated that top-down influences in cognitive processes
involve the action of slower oscillations typically in the alpha or
theta bands which appear to reflect the coherent behavior of global
networks distributed across the cortex. We believe that the mostly
likely underlying time scale for such global oscillations is trans-
mission delays in corticocortical axons, and we have proposed
a specific global model that predicts global standing waves with
frequencies in the general range at the slower end of the EEG
spectrum (Nunez, 1995, 2000; Nunez and Srinivasan, 2006). Our
analysis here depends only on the existence of such global, low
frequency oscillations as has been commonly observed for almost
100 years with scalp EEG and not any specific global field theory of
EEG. Using the modified Wilson–Cowan model, we identify cross-
frequency coupling as an EEG or ECoG signature of the effects of
background state changes by top-down signals on local network
dynamics.

MATERIALS AND METHODS
THE MODIFIED WILSON–COWAN MODEL
Wilson and Cowan (1972) derived a model neural population
containing both excitatory and inhibitory neurons with dynamics
described by a set of coupled, non-linear differential equations,
herein labeled WC. The solution of these equations gives the pro-
portion of cells in each subpopulation (excitatory/inhibitory) that
become active per unit time. The cells comprising the population
are assumed to be in close spatial proximity, with interconnections
dense enough so that any two cells within it are path-connected.
Furthermore, the model assumes that local interactions between
neurons within the population are largely random, but that this
local randomness gives rise to structure at larger spatial scales.
The situation is analogous to an example taken from thermody-
namics, in which a fluid with a macroscopically structured flow
can be observed to be undergoing stochastic Brownian motion
at the molecular level. The same framework set forth by Wilson
and Cowan has been extended in a number of straightforward
ways to models with more general connectivity, and an arbitrary
number of spatially distinct neural populations (Campbell and
Wang, 1996; Borisyuk et al., 2000). Extensions of the WC frame-
work have been developed to model interacting thalamic (reticular
formation) and cortical structures involved in the generation of
spindle oscillations (7–14 Hz) in early sleep stages (Yousif and
Denham, 2005). Jirsa and Haken (1997), used a WC model inter-
acting with a global model to interpret MEG data in a syncopated
tapping audio-motor task. Other model developments related to
the WC model have incorporated spatially extended models with
axonal delays and more detailed physiological parameters (Jirsa
and Haken, 1996, 1997; Robinson et al., 1997; Liley et al., 1999).

Here we adopt a modified version of WC to make it more
physiologically realistic as outlined in the Appendix. The basic
dependent variables are the fractions of excitatory and inhibitory
active cells (action potential densities) E(t ), I (t ), which can evi-
dently exhibit high frequency jitter not treated in this analysis.
Rather, the WC equations are expressed in terms of coarse grained
excitatory 〈E(t )〉 and inhibitory 〈I (t )〉 action potential densities.
The basic model is illustrated in Figure 1. We introduce the new
dependent variables XE(t ), XI(t ), which provide perturbations
about the critical (equilibrium) point (E0, I 0), which we have
interpreted as the background brain state which is controlled by
various neuromodulators or top-down signaling. Thus, we express

〈E(t )〉 = E0 + XE (t )

〈I (t )〉 = I0 + XI (t ) (2)

Since the excitatory action potential densities are defined as
fractions of the total cell populations, we require

0 ≤ E0 + XE (t ) ≤ 1

0 ≤ I0 + XI (t ) ≤ 1 (3)

The basic WC equations then become

dXE

dt
= −E0 − XE + (1− E0 − XE ) SE (XE , XI , P)

A
dXI

dt
= −I0 − XI + (1− I0 − XI ) SI (XE , XI ) (4)
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FIGURE 1 | Schematic of the modified Wilson–Cowan model. The
localized population consists of excitatory and inhibitory neurons that
interact with each other with negligible transmission delays. The population
receives afferent input P (t ). Simultaneously, the population is subject to
influences from both nearby and distant cortex. This top-down modulation
of the neural population is the result of feedback from large-scale networks
and/or global synaptic fields spanning the cortex. The model consists of an
Excitatory (E ) and Inhibitory (I) subpopulations with membrane time
constants τE and τI , which interact with each other via the connection
weights wEI and wIE. The neurons within each subpopulation also interact
with each other, reflected in the self-excitation wEE and self-inhibition wII

weights. The influence of other cortical areas on the population is reflected
in the background state of the excitatory E 0 and inhibitory I0 subpopulation.
The Wilson–Cowan model was modified to incorporate the background
state variables (see Appendix).

Here A = τI
τE

is the ratio of inhibitory to excitatory time con-
stants, and P(t ) is an excitatory external (driving) input from
another cortical population or potentially input to the population
from the thalamus. The set of parameters (wEE, wIE, wEI, wII) are
gain parameters that give the strength of connections between the
excitatory and inhibitory populations as indicated in Figure 1. As
shown in the Appendix for the special case P(t )= 0, the sigmoid
functions SE, SI in Eq. 4 then take the forms

SE =
1

1+
(

1
E0
− 2

)
exp (−wEE XE + wIE XI − P)

E0 <
1

2
(5)

SI =
1

1+
(

1
I0
− 2

)
exp (−wEI XE + wII XI )

I0 <
1

2
(6)

PARAMETER CHOICES
For our simulations the main parameters of interest are the back-
ground state variables E0 and I 0, which we will vary as described
in the following sections. The free parameters in our analysis are
the set of connection weights (wEE, wEI, wIE, wII) which are deter-
mined by the following physiological considerations: (1) In the
cortex, excitatory connections are estimated to be 4–5 times more
common than inhibitory connections (Bush and Sejnowski, 1996)
and (2) Inhibitory connections are more typically found on the
cell body possibly increasing their effectiveness in comparison to

excitatory connections on dendritic trees (Mountcastle, 1997).
Taking these two points into consideration we first fixed the
two parameters wEI= 50 and wIE= 15. We set the self-inhibition
wII= 0, as we found little practical effect for the small values of
this parameter, other than to increase damping in the system, and
shift the critical point for transition from a damped oscillation to
a limit cycle regime.

Equation 4 produce stable limit cycle solutions about the criti-
cal point (E0, I 0) for a wide range of the parameters. For example,
setting A= 1 and E0= I 0 the necessary condition for oscillatory
solutions about E0, I 0 is

wEE < 2
√

wIE wEI (7)

This oscillatory solution is unstable (e.g., an unstable spiral
allowing for a stable limit cycle) if

wEE >
2

E0 (1− 2E0)
(8)

From Eq. 8 we were always able to find the critical value of wEE

below which the system produced damped oscillations in response
to a step function input,while above this value the system produced
limit cycle oscillations.

TOP-DOWN (GLOBAL) INFLUENCES ON A LOCAL WC NETWORK
We explicitly consider two types of top-down influences on the
local WC network developed in section “The Modified Wilson–
Cowan Model”: (1) the effect of neuromodulators setting the
background state (E0, I 0) of the population. For the purpose of
the analysis here we consider this effect on the background state to
be static as it takes place at very long time scales as compared to the
frequency of the oscillations and (2) the effect of dynamic modu-
lation of the background state of the local network (top-down) by
oscillations in larger scale networks that incorporate the cells that
constitute the local network. For simplicity of analysis we presume
that the larger scale networks (or global synaptic fields) generate
oscillations at frequency ωα that modulate the background state
of the WC oscillator; that is

E0 → E0 + αE cos (ωαt )

I0 → I0 + αI cos (ωαt + φα) (9)

Here the amplitudes (αE, αI) of the background modulations
are constrained to be less than the constant background (E0, I 0).
We introduce a phase offset φα to allow for differences in local pro-
cessing of the modulatory input by the excitatory and inhibitory
subpopulations, as might occur if they have different membrane
time constants.

SIMULATIONS AND DATA ANALYSIS
All of the simulations carried out here were performed using the
built in ode solver in MATLAB (Natick, MA, USA), ode23. We
considered several types of inputs P(t ) – step function, impulse,
sinusoidal, and random noise and found the essential characteris-
tics of the system response were represented by the step function
input. The spectrum of the model output was analyzed using a
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FIGURE 2 | Damped oscillation regime of the model. In all of the
simulations, the following parameters are fixed: (1) The ratio of time
constants A= τI /τE =1, (2) the background state E 0(t )= I0(t )=0.25, (3)
the connection weights are (wEI, wIE, wII)= (50,15,0) and (4) the input
P (t )=0.1 is a step function at time 0. Damped oscillation observed with

(Continued)

FIGURE 2 | Continued
self-excitation wEE =12. The time series of the excitatory and inhibitory
subpopulations are shown in (A). In these plots time is normalized by
excitatory membrane time constant τE . Phase-plane plots for the excitatory.
subpopulation are shown in (B). Amplitude spectra obtained by the FFT are
shown in (C). Normalized frequency is f τE . If τE =20 ms, a normalized
frequency of 1 corresponds to 50 Hz.

FFT in MATLAB (Mathworks, Natick, MA, USA). For sustained
oscillations in the limit cycle regime, we also analyzed the model
outputs either by using Hilbert Transforms to estimate the fre-
quency and amplitude of the oscillation or by a complex Morlet
wavelet transform. For the damped oscillations, we fit the oscil-
lation to a damped sinusoid exp(j2 πft (1+ jγ)) where f is the
frequency of the oscillation and γ is the damping coefficient. We
obtained direct estimates of frequency using zero crossings and
estimated the damping coefficient by fitting an exponential to the
decay of amplitude across cycles of the oscillation.

RESULTS
BASIC RESPONSE PROPERTIES OF WC OSCILLATOR
We first examined the behavior of the system with identical exci-
tatory and inhibitory time constants (A= τ1/τE = 1) and a fixed
background state (E0= I 0= 0.25). The specific value of wEE sep-
arating limit cycle from damped oscillations depends on the back-
ground excitability as in Eq. 8; with E0= I 0= 0.25 the critical
value is wEE= 15. The limit cycle is observed if the self-excitation
is sufficiently large (wEE > 15); smaller values lead to damped oscil-
lations of higher frequency. An example of numerical solutions for
the model with the self-excitation (wEE) parameter in the damped
oscillation range is shown in Figure 2. In the time series plot
(Figure 2A), the time variable is normalized with respect to the
excitatory membrane time constant τE and in the amplitude spec-
tra (Figure 2C) the frequency variable f is normalized as f τE For
example, if τE falls in the range of 10–20 ms range, the damped
oscillation corresponds to a gamma band oscillation in the 35–
70 Hz band. The limit cycle is observed if the self-excitation is
sufficiently large (Figure 3). The limit cycle has a lower funda-
mental frequency as shown in the spectrum in Figure 3C; if τE

falls in the range of 10–20 ms range, the dominant frequency is in
the 25–50 Hz range and also exhibits harmonics (Second harmonic
shown).

The ratio of inhibitory to excitatory time constants A influences
both the frequency and damping of the oscillations. Figures 4A,B
show the oscillation frequency and damping coefficient in the
damped oscillation regime for self-excitation in the damped oscil-
lation range (wEE= 12). When the inhibitory time constant is
smaller than the excitatory time constant (A < 1) the oscilla-
tions are highly damped, but if the inhibitory time is constant
is larger than the excitatory time constant (A > 1) the oscillations
are weakly damped. Thus, in order to observe the damped oscilla-
tions, it must be the case that inhibitory time constants are longer
than the excitatory time constant. As the ratio A increases further
the system will eventually transition to a limit cycle oscillation.

Figures 5A,B shows an example with the self-excitation para-
meter in the limit cycle regime (wEE= 18). As A increases the
frequency of the oscillation decreases and the amplitude increases
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FIGURE 3 | Limit cycle regime of the model. In all of the simulations, the
following parameters are fixed: (1) The ratio of time constants A= τI /τE =1,
(2) the background state E 0(t )= I0(t )=0.25, (3) the connection weights are
(wEI, wIE, wII)= (50,15,0) and (4) the input P (t )=0.1 is a step function at

(Continued)

FIGURE 3 | Continued
time 0. Limit cycle oscillation observed with self-excitation wEE =20. The
time series of the excitatory and inhibitory subpopulations are shown in
(A). In these plots time is normalized by excitatory membrane time
constant τE . Phase-plane plots for the excitatory subpopulation are shown
in (B). Amplitude spectra obtained by the FFT are shown in (C). Normalized
frequency is f τE . If τE =20 ms, a normalized frequency of 1 corresponds to
50 Hz.

FIGURE 4 | Effect of the ratio of inhibitory to excitatory time constants
(A = τI /τE ) on the damped oscillations. System connection weights are
fixed as (wEI, wIE, wII, wEE)= (50,15,0, 12). The background state is fixed as
E 0(t )= I0(t )=0.25. Input is a step function of magnitude P (t )=0.1.
Frequency was estimated by analyzing zero crossings. Damping was
estimated by fitting an exponential decay to the peaks of a rectified
(absolute value) of the time series. (A) Normalized frequency is f τE . If
τE =10 ms, a normalized frequency of 1 corresponds to 100 Hz. (B)
Damping coefficient.

consistent with reduced damping in the system. Essentially, for any
level of self-excitation wEE, as inhibitory time constant increases,
damping is reduced, and frequency decreases. The frequency range
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FIGURE 5 | Effect of the ratio of inhibitory to excitatory time constants
in the limit cycle regime. The background state is fixed as
E 0(t )= I0(t )=0.25. Input is a step function of magnitude P (t )=0.1. System
connection weights are fixed as (wEI, wIE, wII)= (50,15,0) and wEE =18 to fix
the system in the limit cycle regime. Frequency and amplitude estimated
using a Hilbert Transform of the period from of 100τE to 200τE . Normalized
frequency is f τE . If τE =10 ms, normalized frequency of 1 is 100 Hz. For A
smaller than the range shown for each plot the limit cycle transitions to a
damped oscillation. The main result is that increasing τE relative to τI

reduces damping (increasing amplitude) and lowers the frequency of the
oscillation. (A) Normalized frequency (B) Amplitude.

of the limit cycle oscillations is much lower than the damped
oscillation. For τE = 10 ms the damped oscillations are in the
high gamma band frequency range (60–100 Hz) when A ranges
from 0.5–1.5. In contrast, for the same range of τE and A ranging
from 1–2 the limit cycle oscillations range is in the lower gamma
frequency range (20–50 Hz).

EFFECT OF BACKGROUND STATE
The frequency and damping of the WC oscillator is strongly influ-
enced by the background state. Figures 6A,B shows the frequency
and damping as a function of background state variables E0= I 0

FIGURE 6 | Dependence of frequency and damping on background
state for the damped oscillations. System connection weights are fixed
as (wEI, wIE, wII, wEE)= (50,15,0, 15). Input is a step function of magnitude
0.1. We have verified that the curves are the same for step functions up to
0.3 Frequency was estimated by analyzing zero crossings. Damping was
estimated by fitting an exponential decay to the peaks of a rectified
(absolute value) of the time series. Normalized frequency is f τE . If
τE =20 ms, normalized frequency of 1 corresponds to a 50 Hz oscillation.
(A) Normalized frequency (B) Damping coefficient.

for an example in the damped oscillation regime (wEE= 12;
A= 1). At very low levels of background activity the system
exhibits low frequency rapidly damped oscillations. As the back-
ground activity increases above E0= I 0= 0.1 the oscillations
become weakly damped and frequency increases as damping
decreases. Damping reaches a minimum at E0= I 0= 0.25 and
the frequency of the oscillation reaches a peak at E0= I 0= 0.3. At
higher levels of background activity, the oscillations decrease in
frequency and are again highly damped. Thus only at the center of
the range, at around 0.2–0.3 can we observe high frequency weakly
damped oscillations.

If the system is in the limit cycle regime the same essential
damping behavior is observed as shown for an example in
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Figures 7A,B (wEE= 18; A= 1). The limit cycle amplitude is sup-
pressed above and below E0= I 0= 0.25; at very large or very small
values of the background state the limit cycle disappears and is
replaced by a damped oscillation. The range of background activity
over which the limit cycle is observed can be expanded by increas-
ing the self-excitation parameter (wEE). However, in contrast to
the damped oscillation regime, in the limit cycle the frequency of
the oscillations is much less dependent on the background activity
level, remaining stable over the range of background states with
the high amplitude.

FIGURE 7 | Dependence of frequency and amplitude of limit cycle
oscillations on the background state. System connection weights are
fixed as (wEI, wIE, wII, wEE)= (50,15,0, 20) (dashed line) or (wEI, wIE, wII,
wEE)= (50,15,0, 25) (solid line). Input is a step function of magnitude 0.1.
Frequency and amplitude estimated using a Hilbert Transform of the period
from of 100τE–200τE. Normalized frequency is f τE. If τE =20 ms, normalized
frequency of 1 corresponds to a 50 Hz oscillation. Outside the range of
background states shown there are no limit cycle oscillation for each level
of wEE and the oscillations damp out. The main point is that the amplitude of
the limit cycle oscillations depend strongly on the background state.
Compared to the damped oscillations (Figure 6) the limit cycle frequency
does not depend strongly on the background state. (A) Normalized
frequency (B) Amplitude.

EFFECTS OF TOP-DOWN SIGNALING
It is increasingly appreciated that neural populations are subject
to top-down signals reflected in oscillations in large-scale cortical
networks. We modified the WC system equations to incorporate
dynamic modulation of background state as in Eq. A12. For sim-
plicity we modulated the background state variables (E0, I 0) with a
sinusoidal signal of fixed frequency; these modulatory frequencies
are much slower than the intrinsic frequencies of the WC oscilla-
tor. The presence of the modulatory signal alone was not sufficient
to drive the system – excitatory input P(t ) was always required.

Figure 8 shows some example simulations of the model with the
self-excitation parameter set in the limit cycle regime (wEE= 18).
The main effect of the dynamic modulation of background state
is to modulate the amplitude and frequency of the oscillation.
Figures 8A,B show the time course of a modulatory signal and the
oscillation in the WC model. In this example, the modulatory sig-
nal is an oscillation about a background state E0= I 0= 0.2 with
normalized frequency fτE = 0.03. The oscillation in population
activity can be seen to modulate in amplitude at the rate of
the modulatory signal, with higher amplitude when background
activity increases. Thus the phase of the modulatory signal modu-
lates the amplitude of the oscillation. Figures 8D,E show another
example where the modulatory signal is an oscillation about a
background state E0= I 0= 0.3. Here a different phase relationship
is evident with higher amplitude when the background activity
decreases. For each example, the temporal evolution of the spec-
trum obtained with wavelet transform is shown in Figures 8C,F.
In these examples, the population oscillates at roughly fτE = 0.5
with amplitude modulated at fτE = 0.03. If τE = 10 ms, the under-
lying oscillation frequency is in the gamma band at approximately
50 Hz and the modulation is in the theta band at 3 Hz. In both
cases, during each cycle of the modulatory signal as the amplitude
of the population activity increases the frequency decreases.

We carried out simulations over a broad range of parameters
to determine if we could produce the apparent effect of amplitude
modulation of the intrinsic limit cycle oscillation by adding a sinu-
soidal modulation at low frequencies to the input P(t ). In no case
were we able to reproduce the amplitude modulation shown in
Figure 8, and the limit cycle show stable amplitude and frequency.

DISCUSSION
In this paper we have revised the Wilson–Cowan model of the
interactions within a population of excitatory and inhibitory neu-
rons in order to investigate the impact of background activity on
the dynamics of neural populations. In our model this background
state is determined statically at very long time scales (presumably
by neuromodulator systems) and dynamically at faster time scales
by the activity of other cortical systems that exert top-down control
on the neural population. We find that our model formalizes the
mechanisms by which background state can influence local pop-
ulation dynamics consistent with observations in experimental
studies in different behavioral contexts and recording methods.

DYNAMICS OF THE WILSON–COWAN SYSTEM
The basic response properties of the system around a fixed
background state indicate that the system produced damped oscil-
lations or sustained limit cycle oscillations depending on the
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FIGURE 8 | Dynamic modulation of background state produces
cross-frequency coupling in the model. Model parameters are in the limit
cycle regime (wEI, wIE, wII, wEE)= (50,15,0, 18). (A–C) correspond to a

background state E 0 = I0 =0.2 while (D–F) correspond to a background state
E 0 = I0 =0.3. (A,B,D,E) show the time series while (C,F) show the wavelet
spectrum.

level of self-excitation of the excitatory neurons and the relative
value of excitatory and inhibitory time constants. Linear analy-
sis about critical (equilibrium, fixed) points indicates that for
lower values of self-excitation damped oscillations will be observed
while at higher values of self-excitation limit cycle oscillations
are observed. In addition, sustained oscillations are more likely
to be observed within local populations with longer inhibitory
time constants than excitatory time constants. When excitatory
time constants are longer than the inhibitory time constants,

rapidly damped high frequency oscillations are observed in the
system. Inhibitory time constants that are longer than the excita-
tory time constants in the 10 ms range result in higher amplitude
lower frequency oscillations in the gamma band (30–100 Hz)
and generally support limit cycle oscillations rather than damped
oscillations. In cases where the inhibitory time constants are
much longer these sustained oscillations can be produced at even
lower frequencies in the beta (13–30 Hz) and alpha (8–12 Hz)
ranges.
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Whereas early studies of membrane time constants in mam-
malian cortex were very short, typically less than 10 ms, more
modern studies with improved recording methods report the wide
range up to 100 ms (Koch et al., 1996). In particular, very long
inhibitory time constants have been reported for thalamic and
cortical populations. Thus, we can reasonably expect the ratio of
inhibitory to excitatory time constants to be significantly larger
than one, supporting the existence of linear instability and cor-
responding limit cycle oscillations over a broad range of model
parameters. Such self-sustained dynamics may contribute locally
to the generation of spontaneous EEG rhythms.

EFFECTS OF BACKGROUND STATE ON POPULATION DYNAMICS
The dynamics of the model population depend very strongly on
the background state in both limit cycle and damped oscillation
ranges of the parameters. At very low levels of background activity
(E0, I 0 < 0.2), the population does not respond to the external
input. As background activity increases the system responds to
external input. In the limit cycle regime, the amplitude of the
oscillation depends strongly on the background activity while in
the damped oscillation regime the frequency of the oscillations
depends strongly on the background activity.

The overall level of background activity is determined by the
neuromodulatory systems that control the sleep-wake cycles, level
of arousal, and the response to reward and/or threat. Although
there are variations in the densities of neuromodulator inputs to
different cortical areas, almost all cortical areas receive neuromod-
ulatory input (Goldman-Rakic et al., 1990). Changes in these states
occur over very long time scales; in an awake, behaving animal (or
human) these tonic influences are generally considered constant.
Thus in general, we can expect that the background level is con-
stant over a responsive level of the population, although there
are also phasic modulations of the cholinergic and dopaminergic
neuromodulator systems that may play a role in stimulus response
and reward seeking behavior (Sarter and Bruno, 1997; Chuhma
et al., 2004; Zhang and Sulzer, 2004), and can be expected to have
dynamic influences on local networks.

MODULATION OF POPULATION DYNAMICS BY TOP-DOWN SIGNALS
The dynamic modulation of background state creates amplitude
and frequency modulation of the intrinsic gamma oscillations
of the WC system. The most salient effect is amplitude modu-
lation by the phase of slow modulations of the background states.
In the experimental literature this phenomenon is explained as
dynamic modulation of the excitability of the population (Jensen
and Colgin, 2007). Our model captures this essential behavior,
and provides a plausible mechanism to incorporate these types
of effects in computational models. In our model, the specific
phase/amplitude relationship was influenced by the overall activ-
ity level; the specific phase of the modulation that produced robust
oscillations was arbitrary. The experimental literature is consistent
with this picture, with different studies reporting different phases
of the modulation signal for peak amplitude of the local oscillation
as shown in Figure 1 of (Lisman and Buzsaki, 2008).

This essential phenomenon of cross-frequency coupling has
been observed in animal models in a number of experimental
contexts (Buzsaki and Draguhn, 2004; Scheffzuk et al., 2011) and

human ECoG recordings (Canolty and Knight, 2010; Voytek et al.,
2010). These findings have since been confirmed in human EEG
where the phase of the theta rhythm is shown to modulate the
amplitude of the gamma rhythm (Demiralp et al., 2007). It has
long been known that the phase of the alpha rhythm at stimu-
lus onset influences amplitude and phase of the evoked potential
(Dustman and Beck, 1965; Jansen and Brandt, 1991; Gruber et al.,
2005; Hanslmayr et al., 2007). Moreover, there are a number of
studies that have shown that the state of the cortex (as measured
by EEG oscillations) can predict the perception of a sensory stimu-
lus, presumably by modulating the sensory evoked response (Haig
and Gordon, 1998; Hanslmayr et al., 2007).

LOCAL-GLOBAL INTERACTIONS
We have proposed a conceptual framework in which local net-
works (cell assemblies) are embedded in a global environment that
produces standing waves due to propagation in the corticocortical
(white matter) fibers and periodic boundary conditions (Nunez,
1995, 2000; Nunez and Srinivasan, 2006). That is, the neocortex
and underlying white matter are modeled as a closed loop or spher-
ical shell. In this paper, we have a proposed a method to model the
top-down influences of such systems on a local network. These
top-down influences may be the result of feedback from global
network. In our analysis we have isolated the local network from
the global system, and only analyzed the local network dynamics.
Similarly, global models typically assume that the local network
is sufficiently localized such that its (bottom up) influence on the
global dynamics may be neglected to first approximation. This
condition might be satisfied in the eyes closed resting state, for
example. On the other hand, the (eyes open) processing of sub-
stantial visual input or complex cognitive functions may involve
multiple local thalamocortical networks that act (bottom up) to
modify the global networks that are influencing the local networks.
Future work must explicitly consider in more detail how the local
networks and global networks interact.

Our study suggests that models of these local networks must
incorporate the idea that the response properties of the networks
can be modified by modulatory inputs. In our modified WC
model, the addition of oscillatory afferent input does not modify
the system dynamics. We explicitly incorporated dynamic mod-
ulation of the system properties by making the background state
an explicit part of the model. In most models (including the orig-
inal WC) the background state of the neurons is mathematically
removed, and the dynamics of the system is studied without fur-
ther consideration of the background state. This approximation is
limiting; modification of the background state may be an impor-
tant mechanism of top-down signaling in the cortex, especially in
the control of goal-oriented behavior such as attention. Local net-
works in the cortex experience dynamic background states which
can be readily incorporated into most model formulations. This
may also have importance in specific models that seek to make a
distinction between feedforward and feedback connections in sen-
sory systems (Mountcastle, 1997; Lamme and Roelfsema, 2000).

CONCLUSIONS
Since the first human recording in the early 1920s the physiolog-
ical bases for the wide range of rhythmic EEG activity has been
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somewhat of a mystery. As one important “window on the mind,”
EEG has long provided a critical tool in pursuit of connecting
neural dynamics to cognitive processes. Human brains produce a
proverbial “spectral zoo” that is closely correlated to behavior and
cognition. A major obstacle in this quest is a shortage of robust
and widely appreciated theoretical support for EEG’s dynamic
behavior in time and spatial location over the scalp. The concep-
tual framework facilitated by such theory could have a substantial
influence on the design of new EEG-cognitive experiments. In this

paper, we propose an approach to incorporate global (top-down)
influences on local networks. The essence of our approach is to
immerse the local network in a dynamic background state. These
dynamics could be generated by a global model of interactions
across the cortex; they could also be modeled from experimental
EEG data. This approach is sufficiently general to be applied to
other theoretical formulations of population dynamics in neural
populations and to models of specific cognitive influences on local
circuit dynamics.
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APPENDIX
THE BASIC WC ANALYSIS
The classical WC model (Wilson and Cowan, 1972, 1973) applies
to populations of interacting excitatory and inhibitory neurons in
some local neocortical region as indicated in Figure 1. An impor-
tant WC assumption is that axon propagation delays are negligible;
that is, all WC delays are due to PSP rise and decay times. WC is
then a strictly local model and represents the opposite limiting
case to global models in which delays are axonal, especially in
the longer corticocortical axons forming most of human white
matter (Nunez, 1974; Nunez and Srinivasan, 2006). These distinct
local and global models have been shown to be fully compatible
and may be combined into local/global models (Jirsa and Haken,
1996; Nunez, 2000).

The basic WC dependent variables are the fractions of excitatory
and inhibitory active cells (dimensionless action potential densi-
ties) E(t ), I (t ), which can evidently exhibit very high frequency
jitter not treated in the analysis. Rather, the WC equations are
expressed in terms of coarse grained (in time) excitatory 〈E(t )〉
and inhibitory 〈I (t )〉 action potential densities, where the critical
point 〈E(t )〉, 〈I (t )〉= (0,0) is considered by WC to be an equi-
librium background state occurring when the external (afferent)
driving function P(t )= 0. Thus, the variables 〈E(t )〉, 〈I (t )〉 are
allowed to take on negative values by WC, an inaccurate and (as
we show here) unnecessary approximation to their physiological
interpretation as fractions of active cells. The WC equations (1.3.1
and 1.3.2 from the 1973 paper) are

τE
d 〈E(t )〉

dt
= −〈E(t )〉 + [1− rE 〈E(t )〉] SE [P(t )

+wEE 〈E(t )〉 − wIE I (t )]

τI
d 〈I (t )〉

dt
= −〈I (t )〉 + [1− rI 〈I (t )〉] SI [wEI 〈E(t )〉

−wII 〈I (t )〉] (A1)

Here we drop the spatial dependence x of all variables since
axon speeds are assumed to be infinite implying that neural spatial
separations have no effect on dynamic behaviors in this approxi-
mation. We also distinguish between the excitatory and inhibitory
membrane time constants τE , τI . In addition, we only allow
excitatory afferent input P(t ).

SOME ISSUES WITH THE ORIGINAL WC ANALYSIS
1. WC write the proportion of sensitive excitatory cells (neurons

currently firing or in their refractory periods rE) as RE (t ) =

1 −
t∫

t−rE

E(t ′)dt ′. This is not dimensionally correct and leads

to the dimensionally incorrect Eq. A1. The WC equation also
yields the incorrect result RE(t )→ 1 as the refractory period
rE→ 0. The correct expression is

RE (t ) = 1−
1

rE

t∫
t−rE

E(t ′)dt ′

RE (t )→ 1− E(t ) when rE → 0 (A2)

In this limit, the sensitive population RE(t ) consists of all cells
not firing at time t. The excitatory and inhibitory integrals
should have been divided by the refractory times rE, rI, equiva-
lent to setting rE, rI= 1, in Eq. A1, a simple corrective step often
adopted by others using the WC model.

2. Negative values of 〈E(t )〉, 〈I (t )〉 are not realistic physiologi-
cally for essentially the same reason. During times when E(t ),
I (t ) < 0, the fractions of sensitive cells RE(t ), RI(t ) > 1, which
is also inconsistent with realistic physiology. By contrast, the
modified WC model presented here forces

〈E (t )〉 , 〈I (t )〉 ≥ 0, for −∞ < t < +∞.

3. WC choose sigmoid response functions such that SE(0)= SI(0)
= 0 in order to force (0,0) to be a critical (equilibrium) point
where the variable time derivatives equal zero. Such critical
points may be either state or unstable. If a critical point is sta-
ble, any brain dynamic state coming sufficiently close to this
point will become fixed (forever static or “brain dead”). Of
more interest to us are unstable critical points associated with
on-going oscillations (limit cycles),possibly underlying EEG. In
WC, the tissue response functions can become negative, a phys-
iological impossibility; thus, in our following modified analysis,
the WC conditions are replaced by

SE [P(t ), 〈E(t )〉 , 〈I (t )〉] ≥ 0

SI [〈E(t )〉 , 〈I (t )〉] ≥ 0 (A3)

4. WC interpret the WC parameter µ as a single membrane time
constant. Based on the classic solution of the cable equation
and the distribution of excitatory synapses on dendrites with
inhibitory synapses typically near cell bodies and our increased
appreciation of wide ranges of excitatory and inhibitory time
constants τE, τI , we consider casesτE 6= τI .

A MODIFIED VERSION OF THE WC ANALYSIS
Define the non-dimensional time t1 =

t
τE

and time constant ratio

A = τI
τE

so that with rescaled variables Eq. A1 become

d 〈E〉

dt1
= −〈E〉 + (1− 〈E〉) SE (P + wEE 〈E〉 − wIE 〈I 〉)

A
d 〈I 〉

dt1
= −〈I 〉 + (1− 〈I 〉) SI (wEI 〈E〉 − wII 〈I 〉) (A4)

Here the non-dimensional parameter A may range from some-
what less than one to as high as perhaps 5. For convenience we
drop the subscript 1 on the non-dimensional time variable. We
introduce the new dependent variables XE(t ), XI(t ), which provide
perturbations about the critical point (E0, I 0)

〈E(t )〉 = E0 + XE (t )

〈I (t )〉 = I0 + XI (t ) (A5)

We assume that the input function P(t ) is exclusively excitatory
such that P(t )≥ 0 at all times. The following conditions follow
from the variable definitions

Frontiers in Computational Neuroscience www.frontiersin.org April 2013 | Volume 7 | Article 29 | 161

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Srinivasan et al. Top-down influences on local networks

0 ≤ E0 + XE (t ) ≤ 1

0 ≤ I0 + XI (t ) ≤ 1 (A6)

Equations (A4) then yield

dXE

dt
=− E0 − XE + (1− E0 − XE ) SE [P + wEE (E0 + XE )

−wIE (I0 + XI )]

A
dXI

dt
=− I0 − XI + (1− I0 − XI ) SI [wEI (E0 + XE )

−wII (I0 + XI )] (A7)

The sigmoid functions SE, SI are chosen here such that (E0, I 0)
is a critical point when P(t )= 0. Thus, we choose the following
alternate sigmoid tissue response functions.

SI =
1

1+ exp [−wEI (E0 + XE )+ wII (I0 + XI )+ KI ]
(A8)

SE =
1

1+ exp [−wEE (E0 + XE )+ wie(I0 + XI )+ KE ]
(A9)

The constants KE, KI are added to the original WC sigmoid
functions, thereby determining the response range during oscilla-
tions about fixed points. This choice of the forms of the sigmoid
response functions insures that (1) (E0, I 0) or (X,Y )= (0,0) is a
critical point and (2) 0≤ SE≤ 1 and 0≤ SI≤ 1. Substitution of
Eqs A8 and A9 into Eq. A7 and setting XE(t )=XI(t )= 0 yields the
sigmoid constants in terms of the critical point

KI = wEI E0 − wII I0 + Log

[
1

I0
− 2

]
(A10)

KE = wEE E0 − wIE I0 + Log

[
1

E0
− 2

]
(A11)

Substitution of Eqs A10 and A11 into Eqs A8 and A9 yields

SI [wEI (E0 + XE )− wII (I0 + XI )]

=
1

1+
(

1
I0
− 2

)
exp (−wEI XE + wII XI )

I0 <
1

2
(A12)

SE [wEE (E0 + XE )− wIE (I0 + XI )]

=
1

1+
(

1
E0
− 2

)
exp (−wEE XE + wIE XI )

E0 <
1

2
(A13)

PHASE-PLANE ANALYSIS
We assume wII

∼= 0 in all of the following analyses based on our
preliminary studies: In simulations with non-zero wII the effect is
only to set the activity level of the system and has no significant
influence on the dynamics. The first step in the analysis of Eq. A7 is
to find the nature of the critical point (0,0). To accomplish this we
expand the functions F(XE, XI) and G(XE, XI) about (0,0), where
these functions are the expressions on the right sides of Eq. A7,
that is

F(XE , XI ) = −E0 − XE + (1− E0 − XE ) Se

G(XE , XI ) = [−I0 − XI + (1− I0 − XI ) Si]/A (A14)

Taylor expansion about the critical point (0,0) yields equations
of the general form

dXE

dt
= F(XE , XI ) ∼= F(0, 0)+

(
∂F

∂XE

)
0
XE +

(
∂F

∂XI

)
0
XI

≡ aXE + bXI

dXI

dt
= G(XE , XI ) ∼= G(0, 0)+

(
∂G

∂XE

)
0
XE +

(
∂G

∂XI

)
0
XI

≡ cXE + dXI (A15)

Here we have forced F(0,0)=G(0,0)= 0 by proper choice of
the constants KE, KI in Eqs A10 and A11. The partial deriva-
tives are evaluated at (0,0) yielding the parameters (a, b, c, d).
Eq. A15 then consist of two first order linear equations gov-
erning the dynamic behavior of the non-linear system close
to (0,0). Define the parameters β= a+ d and γ= ad − bc ; the
eigenvalues λ1,2 of the linear system satisfy λ2

− βλ+ γ=0 with
solution

λ1,2 =
1

2

(
β±

√
β2 − 4γ

)
(A16)

We are mainly interested in oscillatory solutions about the crit-
ical point (0,0); that is, stable limit cycle solutions. These are
expected when (0,0) is an unstable spiral, which occurs when β > 0
and β2 < 4γ. By contrast, stable spirals result in damped oscilla-
tions. Saddle points and nodes result in non-oscillatory solutions
(stable or unstable) that are of minimal interest here.

Consider the following example with E0= I 0. The critical point
(E0, I 0) is unstable if the following condition is met

wEE >
A + 1

AE0 (1− 2E0)
0 < E0 <

1

2
(A17)

Note that A = τI
τE

so if inhibitory time constants are much
shorter than excitatory time constants, larger values of wEE are
required to produce linear instability. For the physiologically inter-
esting range 0.1 < E0 < 0.4 and A= 1, all wEE > 25 cause the fixed
point to be unstable.

For the case E0= I 0 and A= 1, the fixed point is a spiral if

wEE < 2
√

wIE wEI (A18)

By combining Eqs A17 and A18 we find the necessary (but pos-
sibly not sufficient) conditions for a stable limit cycle about (E0,
E0) when A= 1, that is

2

E0 (1− 2E0)
< wEE < 2

√
wIE wEI (A19)

If this condition is met, the corresponding spiral frequency is

ωspiral = N (E0)

√
4wIE wEI − w2

EE (A20)

Here the numerical factor lies in the range 0.00790 < N (E0)
< 0.0294 if 0.1 < E0 < 0.4. An unstable spiral point at (E0, I 0)
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suggests a likely stable limit cycle, but the limit cycle frequency will
not generally equal the (linear) spiral frequency. If wEE exceeds
the upper limit in Eq. A19 an unstable node or saddle point will

occur. In this case the solutions XE(t ), XI(t ) are likely to grow
beyond physiologically realistic ranges, implying that the basic
WC equations are no longer valid.
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The basal ganglia play a crucial role in the execution of movements, as demonstrated
by the severe motor deficits that accompany Parkinson’s disease (PD). Since motor
commands originate in the cortex, an important question is how the basal ganglia influence
cortical information flow, and how this influence becomes pathological in PD. To explore
this, we developed a composite neuronal network/neural field model. The network model
consisted of 4950 spiking neurons, divided into 15 excitatory and inhibitory cell populations
in the thalamus and cortex. The field model consisted of the cortex, thalamus, striatum,
subthalamic nucleus, and globus pallidus. Both models have been separately validated in
previous work. Three field models were used: one with basal ganglia parameters based
on data from healthy individuals, one based on data from individuals with PD, and one
purely thalamocortical model. Spikes generated by these field models were then used
to drive the network model. Compared to the network driven by the healthy model,
the PD-driven network had lower firing rates, a shift in spectral power toward lower
frequencies, and higher probability of bursting; each of these findings is consistent with
empirical data on PD. In the healthy model, we found strong Granger causality between
cortical layers in the beta and low gamma frequency bands, but this causality was largely
absent in the PD model. In particular, the reduction in Granger causality from the main
“input” layer of the cortex (layer 4) to the main “output” layer (layer 5) was pronounced.
This may account for symptoms of PD that seem to reflect deficits in information flow,
such as bradykinesia. In general, these results demonstrate that the brain’s large-scale
oscillatory environment, represented here by the field model, strongly influences
the information processing that occurs within its subnetworks. Hence, it may be preferable
to drive spiking network models with physiologically realistic inputs rather than pure
white noise.

Keywords: neural field model, spiking neural networks, Parkinsons’s disease, thalamus, cortex, basal ganglia,

Granger causality, interlaminar processing

1. INTRODUCTION
Parkinson’s disease (PD) is a multiscale phenomenon, encom-
passing pathology at the level of single neurons, local networks,
large neuronal ganglia, and the complex interactions between
these ganglia and the cortex. PD is caused by the degeneration
of dopaminergic neurons in the substantia nigra pars compacta,
with the damage later spreading to dopaminergic neurons in
the ventral tegmental area (Cools, 2006). The loss of dopamin-
ergic input alters the dynamics of the striatum, which then
affects the dynamics of large portions of the thalamus and cor-
tex, which in turn affects the spinal cord and muscles (Bolam
et al., 2002). Striatal dynamics are crucial to several large-scale
projection pathways, including the well-characterized direct and
indirect pathways. Dopaminergic input to the striatum increases

transmission in D1-expressing striatal neurons involved in the
direct pathway. These neurons inhibit the globus pallidus inter-
nal segment (GPi). Dopaminergic input also decreases input to
D2-expressing striatal neurons involved in the indirect pathway.
These neurons inhibit the globus pallidus external segment (GPe),
which in turn inhibits the GPi. Thus, alterations to the direct
and indirect pathways in PD are both thought to increase the fir-
ing rate of the GPi, which in turn inhibits the thalamus. There
is also a hyperdirect pathway from the cortex to the GPi via
the subthalamic nucleus (STN), as well as other lesser pathways
(Figure 1).

Numerous models of PD and the basal ganglia have been
proposed, using either field or network approaches. Van Albada
and Robinson (2009) developed a field-based model of the basal
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FIGURE 1 | Schematic of the field model, showing excitatory

populations and connections (light colors, diamond arrows) and

inhibitory ones (dark colors, round arrows). The key efferent nucleus of
the basal ganglia is the internal globus pallidus (GPi), which receives cortical
input via direct, indirect, and hyperdirect pathways. The field model drives a

spiking network model, shown here schematically (dots at left); the inputs
from the field model to the spiking model are indicated by the thin lines. The
substantia nigra pars compacta modulates parameters, but is not explicitly
modeled. Inputs to the thalamus (yellow arrow) were modeled as white
noise.

ganglia/thalamocortical system. This model was shown to repro-
duce realistic firing rates of each neuronal population in both
healthy and PD states. One early network model was that of
Terman et al. (2002), which represented a small network of
neurons in the GPe and STN. A considerably larger and more
complex (non-spiking) network model was developed by Leblois
et al. (2006). This model explored both basal ganglia and thala-
mocortical cell populations, looking at competition between the
direct and hyperdirect pathways. They suggested that PD dis-
rupted this competitive balance, resulting in loss of the network’s
ability to select motor programs. Another network model focus-
ing on motor-selection abilities was developed by Humphries
et al. (2006), who also found that decreased dopamine interfered
with the basal ganglia’s capacity for selecting actions. Network
models have also been used to analyze and predict the effects
of deep brain stimulation on basal ganglia nuclei (Hahn and
McIntyre, 2010; Guo and Rubin, 2011; Dovzhenok et al., 2013).

Previous neuronal network models of PD have either not
included a cortex at all (Terman et al., 2002; Rubchinsky et al.,
2003; Park et al., 2011), approximated it as a random Poisson pro-
cess (Humphries et al., 2006), or considered it as a single layer
with a single cell type (Leblois et al., 2006). The thalamus has also
either been omitted or treated as a single population. In this work,

we sought to fill this gap by exploring the interactions of the large-
scale dynamics of basal ganglia, represented by a field model, with
a far smaller but more spatially detailed network model of the
thalamus and six-layered cortex.

1.1. COMPOSITE MODEL
The primary aim of this paper is to determine how the large-
scale dynamics of the brain affect the information flow in small
networks of neurons. Most previous brain modeling efforts have
been directed at one of these two scales, rather than their interac-
tion. These efforts have consisted of either (1) neural field models
that describe the dynamics of the whole brain, without explicitly
modeling the activity of individual neurons (Nunez, 1974; Jirsa
and Haken, 1996; Robinson et al., 1997; Destexhe and Sejnowski,
2009), or (2) spiking neuronal network models that capture indi-
vidual neurons’ dynamics, but are many orders of magnitude
smaller than the brains of even the simplest vertebrates (Lumer
et al., 1997; Neymotin et al., 2011b). Several large network mod-
els have also been published that have roughly as many “neurons”
as the full mammalian brain (Izhikevich and Edelman, 2008;
Ananthanarayanan et al., 2009). However, these models have
not yet reproduced large-scale dynamics with the same degree
of fidelity as neural field models. For example, the model of
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Izhikevich and Edelman (2008) showed simultaneous peaks in
the delta and alpha bands, whereas experimentally these peaks
are characteristic of sleep and wakefulness, respectively, and are
hence rarely observed simultaneously (Niedermeyer and Lopes
da Silva, 1999). Such infidelity may be because the enormous
computational resources required to run these models makes it
impractical to constrain their parameters by fitting their dynamics
to experimental data.

Recently, both Deco and Jirsa (2012) and Wilson et al. (2012)
described approximations that allow small and large spatial scales
to be spanned at a mesoscopic level of description, allowing large-
scale dynamics (e.g., BOLD signals) to be related to small-scale
network properties (e.g., criticality). Robinson and Kim (2012)
took a different approach: they described the theoretical basis
of combining spiking network and neural field components into
a single model. The fundamental challenge in combining these
two modeling approaches is to create a common representation
of neuronal activity, since individual spikes are used in network
models, while field models use average firing rates. Converting
individual spikes into an average firing rate is a straightforward
reduction of dimensionality: one simply needs to average over
multiple neurons in the model. In contrast, converting an average
population firing rate into individual spikes in multiple neurons
requires an increase in dimensionality. This is a degenerate prob-
lem, so additional assumptions must be made. One approach,
described in Robinson and Kim (2012), is to treat each neuron as a
phase oscillator. The average firing rate then represents the instan-
taneous rate of phase change, with a given neuron firing whenever
its phase advances by 2π radians. However, here we used an alter-
native approach, in which the average firing rate is taken as the
instantaneous rate for an ensemble of Poisson processes. These are
then used to generate individual spike times (Dayan and Abbott,
2001; Leblois et al., 2006; Chadderdon et al., 2012). This approach
produces variability in spike timings even with a constant average
firing rate, as is seen in real neuronal populations.

2. METHODS
The model we used consisted of a network of spiking neurons
that was “embedded” in a neural field model. The embedding
consisted of having the field model generate spikes (via an ensem-
ble of Poisson processes) that were used to drive the network
model. Except where otherwise noted, all analyses were per-
formed on the network model. The complete model is publicly
available via ModelDB: https://senselab.med.yale.edu/modeldb/
ShowModel.asp?model=147366.

2.1. NEURAL FIELD MODEL
The neural field model was based on the work of Van Albada and
Robinson (2009) and Van Albada et al. (2009). The neuronal pop-
ulations and connections that constitute this model are shown in
Figures 1 and 3A respectively. The basal ganglia nuclei modeled
were the striatum, internal and external pallidal segments, and
STN. The internal pallidal population can be thought of as includ-
ing the substantia nigra pars reticulata, which has very similar
connections and properties. The substantia nigra pars compacta
was not explicitly modeled, except through its effects on the
other nuclei. The thalamus was modeled as two populations: the

inhibitory thalamic reticular nucleus (TRN) and the excitatory
thalamocortical relay nuclei (TCR). The cortex was also mod-
eled as two populations, representing inhibitory interneurons
and excitatory pyramidal neurons. Since together these neuronal
populations comprise a large portion of the brain, a network
formulation would be computationally intractable. Except for a
unitless normalization constant, all parameter values were based
on anatomical and physiological data, as listed in Table 2 of Van
Albada and Robinson (2009).

In neural field models, neuronal properties are spatially aver-
aged. The dynamics are then governed by a set of equations relat-
ing the mean firing rates of populations of neurons to changes
in mean cell-body potential, which are in turn triggered by mean
rates of incoming spikes. The neural field model used here was
based on a previously published model of the electrophysiology
of the thalamocortical system (Robinson et al., 1997, 2001, 2002,
2005; Rennie et al., 1999), which in turn was based on earlier field
models (Wilson and Cowan, 1973; Nunez, 1974; Freeman, 1975;
Steriade et al., 1990; Wright and Liley, 1996).

The first component of the model is the description of the
average response of populations of neurons to changes in mean
cell-body potential. The mean firing rate Qa of each population
a is the maximum attainable firing rate Qmax

a times the propor-
tion of neurons with a membrane potential Va above the mean
threshold potential θa. This can be approximated by the sigmoid
function

Qa(r, t) = Qmax
a

1+ e−[Va(r,t)−θa]/σ′ , (1)

where r is the spatial coordinate, t is time, and σ′ is
√

3/π times
the standard deviation of the distribution of firing thresholds
(Wright and Liley, 1995). This function increases smoothly from
0 to Qmax

a as Va changes from −∞ to∞.
The change in the mean cell-body potential due to afferent

activity depends on the mean number of synapses Nab from neu-
rons of population b to neurons of population a (note that the
direction of projection b→ a follows the conventions of control
theory and matrix multiplication). The change in potential also
depends on sab, the time-integrated change in cell-body poten-
tial per incoming spike. Defining νab = Nabsab, the change in the
mean cell-body potential in neurons of population a is (Robinson
et al., 2004).

Dαβ(t)Va(t) =
∑

b

νabφb(t − τab), (2)

Dαβ(t) = 1

αβ

d2

dt2
+
(

1

α
+ 1

β

)
d

dt
+ 1. (3)

Here, φb(t − τab) is the incoming firing rate, τab represents the
axonal time delay for signals traveling from population b to pop-
ulation a neurons, and α and β are the decay and rise rates of mean
cell-body potential. The differential operator Dαβ(t) represents
dendritic and synaptic integration of incoming signals (Robinson
et al., 1997; Rennie et al., 2000). The synapses and dendrites form
an effective low-pass filter with a cut-off frequency between 1/α

and 1/β.

Frontiers in Computational Neuroscience www.frontiersin.org April 2013 | Volume 7 | Article 39 | 166

https://senselab.med.yale.edu/modeldb/ShowModel.asp?model=147366
https://senselab.med.yale.edu/modeldb/ShowModel.asp?model=147366
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Kerr et al. Composite model of Parkinson’s disease

In this model, neuronal activity spreads along the cortex in
a wavelike fashion. This reflects previous models (Nunez, 1995;
Jirsa and Haken, 1996; Bressloff, 2001) as well as experimental
observations of such waves following cortical stimulation (Burns,
1951; Nunez, 1974; Rubino et al., 2006). Estimates of charac-
teristic axonal ranges and propagation speeds suggest that these
waves are significantly damped on the scale of the human cortex
(Robinson et al., 2001, 2004; Wright and Liley, 1995). Assuming
that the range distribution of corticocortical fibers decays expo-
nentially at large distances, activity propagates according to a
2D damped-wave equation of the form (Robinson et al., 1997)

Qa(r, t) =
[

1

γ2
a

∂2

∂t2
+ 2

γa

∂

∂t
+ 1− r2

a∇2
]

φa(r, t), (4)

where γa = va/ra is the damping rate, consisting of the aver-
age axonal transmission speed va (�10 m·s−1) and the char-
acteristic axonal range ra. In practice, most types of axons
are short enough to justify setting γa = ∞, which has been
termed the local interaction approximation (Robinson et al.,
2004). We therefore take only γe, the damping rate of cortical

pyramidal neurons, to be finite. This turns all wave equa-
tions except the cortical one into delayed one-to-one map-
pings. The model was implemented on a 5× 5 grid of nodes
with coupling to nearest-neighbor nodes via this damped-wave
equation.

2.2. SPIKING NETWORK MODEL
The spiking network was based on several previous models devel-
oped by our group (Lytton and Stewart, 2005; Lytton et al.,
2008b; Neymotin et al., 2011b; Kerr et al., 2012; Song et al.,
2013). It consisted of 4950 event-driven integrate-and-fire neu-
rons. These were divided into three types (excitatory pyramidal
cells E, fast-spiking inhibitory interneurons I, and low-threshold
spiking interneurons IL), which were in turn distributed across
the six layers of the cortex, plus two thalamic cell populations
(excitatory thalamocortical relay TCR and inhibitory thalamic
reticular TRN), for 15 distinct neuronal populations in total.
The numbers and locations of each neuronal population are
illustrated in Figure 2, and were as follows: E2 (i.e., excitatory
pyramidal neurons of layer 2/3), 1500; I2, 250; IL2, 150; E4, 300;
I4, 200; IL4, 150; E5R, 650; E5B, 150; I5, 250; IL5, 150; E6, 600; I6,
250; IL6, 150; TCR, 100; and TRN, 100. The pyramidal neurons

FIGURE 2 | Layout of the 4950 neurons in the spiking network model

(1980 cells shown). Shapes show type (triangle = excitatory pyramidal, E;
circle= fast-spiking interneuron, I; star= low-threshold spiking interneuron, IL;

square= thalamic reticular, TRN; diamond= thalamocortical relay, TCR). The 28
efferent connections from a single layer 5 pyramidal neuron are shown (black
lines). The distance from the thalamus to the cortex is not shown to scale.
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in layer 5 are divided into two populations, R (regular firing)
and B (bursting), since these have different cellular properties and
connectivity patterns.

Connectivity (shown in Figure 3B) and the relative numbers
of neurons per layer were based on published models (Traub
et al., 2005; Neymotin et al., 2011a,b) and anatomical studies
(Thomson et al., 2002; Binzegger et al., 2004; Song et al., 2005;
Lefort et al., 2009; Adesnik and Scanziani, 2010). Connectivity
was strongest between populations within a given layer, as seen
from the four clusters visible along the diagonal of Figure 3B.
Overall, excitatory neurons had more projections than inhibitory
ones, but inhibitory projections were typically stronger. This bal-
anced excitation and inhibition such that the overall gain of
the system (the number of additional output spikes for every
additional input spike) was close to unity. Such balance is nec-
essary for avoiding the stable but undesirable states of seizure

FIGURE 3 | Connectivity of the models. Color shows normalized effective
connectivity (probability × weight) from rows to columns, with red denoting
excitation and blue denoting inhibition. (A) Connections in the field model
(CE, cortical excitatory; CI, cortical inhibitory; TCR, thalamocortical relay;
TRN, thalamic reticular nucleus; SD1, striatal D1; SD2, striatal D2; GPi,
internal globus pallidus; GPe, external globus pallidus; STN, subthalamic
nucleus). (B) Connections in the network model. Approximate diagonal
symmetry shows that most connections are reciprocal; relatively strong
connections along the diagonal indicate high intralaminar connectivity.

(pathologically high firing) and quiescence (pathologically low
firing).

Individual neurons were modeled as event-driven, rule-based
units. Since computing resources are finite, a tradeoff must be
made between the complexity of neurons vs. the complexity of
the network. The neuron model used was complex enough to
replicate key features found in real neurons, including adap-
tation, bursting, depolarization blockade, and voltage-sensitive
NMDA conductance (Lytton and Stewart, 2005, 2006; Lytton and
Omurtag, 2007; Lytton et al., 2008a,b; Neymotin et al., 2011b),
yet was simple enough to connect into large (103−106 neuron)
networks.

Each neuron had a membrane voltage state variable (Vm)
with a baseline value determined by a resting membrane poten-
tial parameter (VRMP, set at −65 mV for pyramidal neurons
and low-threshold-spiking interneurons, and at−63 mV for fast-
spiking interneurons). This membrane voltage was updated by
one of three events: synaptic input, threshold spike generation,
and refractory period. These events are described briefly below;
further detail can be found in the papers and code cited above.

2.2.1. Synaptic input
The response of the membrane voltage to synaptic input was
modeled as an instantaneous rise and exponential decay: Vn(t) =
Vn(t0)+ ws(1− Vn(t0)/Ei)e

− t− t0
τi , where Vn is the membrane

voltage of neuron n; t0 is the synaptic event time (i.e., t − t0 is
the time since the event); ws is the weight of synaptic connection
s; Ei is the reversal potential of ion channel i, relative to rest-
ing membrane potential (where i = AMPA, NMDA, or GABAA;
and EAMPA = 65 mV, ENMDA = 90 mV, and EGABAA = −15 mV);
and τi is the receptor time constant for ion channel i (where
τAMPA = 20 ms; τNMDA = 30 ms; and τGABAA = 10 or 20 ms for
somatic and dendritic GABAA, respectively).

2.2.2. Action potentials
A neuron fires an action potential at time t if Vn(t) > Tn(t)
and Vn(t) < Bn, where Vn, Tn, and Bn are the membrane volt-
age, threshold voltage (−40 mV for pyramidal neurons and
fast-spiking interneurons, −47 mV for low-threshold-spiking
interneurons), and blockade voltage (−10 mV for interneurons
and −25 mV for pyramidal neurons), respectively, for neuron
n. Action potentials arrive at target neurons at time t2 = t1 +
l(n1, n2)/v + τs, where t1 is the time the first neuron fired, τs is
the delay due to synaptic conduction effects, l(n1, n2) is the axon
length between neurons n1 and n2, and v is the axonal conduction
velocity (�1 m·s−1, which is smaller than in the field model, since
long-range fibers tend to be more heavily myelinated).

2.2.3. Refractory period
After firing, a neuron cannot fire during the absolute refrac-
tory period, τA (10 ms for interneurons and 50 ms for pyra-
midal neurons). Firing is reduced during the relative refractory
period by two effects: first, an increase in threshold potential,

Tn(t) =
(

1+ Re
− t− t0

τR

)
Tn(t0), where R is the fractional increase

in threshold voltage due to the relative refractory period (0.25
for interneurons and 0.75 for pyramidal neurons) and τR is its
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time constant (1.5 ms for interneurons and 8 ms for pyramidal
neurons); and second, by hyperpolarization, Vn(t) = Vn(t0)−
He
− t− t0

τH , where H is the amount of hyperpolarization (0.5 mV
for interneurons and 1 mV for pyramidal neurons) and τH is its
time constant (50 ms for interneurons and 400 ms for pyramidal
neurons).

Local field potentials (LFPs) were computed for each corti-
cal layer as the average membrane voltage across all neurons
in that layer; after baseline removal and normalization, this
approach is roughly equivalent to summing over all synaptic cur-
rents (Mazzoni et al., 2010). While this approach does not take
into consideration synaptic and dendritic geometry, this is not
possible in the event-driven point-neuron model used here.

Simulations were run in NEURON 7.3 (Hines and Carnevale,
2001; Carnevale and Hines, 2006) on a Linux workstation with
an Intel Xeon 2.7 GHz CPU; each 20 s simulation took approxi-
mately 10 min to run on a single core. To avoid edge effects, the
first and last 2 s of simulated data were discarded. All analyses
were performed on the remaining 16 s of simulated data. Since
the model is at steady-state and does not incorporate plasticity
effects, longer runs produced similar results (data not shown).
Model parameters were tuned manually (within physiological
limits) to match experimentally observed firing rates, dynamics,
and information-theoretic properties, as described in Song et al.
(2013).

2.3. INPUT DRIVE
The composite model consisted of the spiking network model
being driven by (“embedded in”) the activity of the field model.
Since the field model represents a brain region much larger than
the network model, the field causally influences the network, but
not vice versa. The key methodological novelty of this work is that
the spiking network model is thus embedded in an environment
with physiologically realistic dynamics (as provided by the field
model), rather than the white noise environment such models are
typically embedded in.

To obtain realistic firing rates in the network model, the input
spiking rate each neuron receives must be bounded. Hence, the
firing rate from each neuronal population in the field model
was normalized so that the minimum and maximum input spik-
ing rates were 225 and 1125 s−1 for excitatory neurons and 30%
lower for inhibitory neurons. The input drive was obtained by
treating each of these normalized instantaneous firing rates as
the rate of an ensemble of Poisson processes for generating
spikes. These spikes were then used to drive each population
of spiking neurons, using the same connections as used in the
field model itself (e.g., excitatory cortical neurons in the net-
work model received input from the excitatory cortical field,
the inhibitory cortical field, and the thalamic field); relative
connection weights were also set to match those of the field
model. Thus, each neuron belonging to a given population in
the network model receives the same average rate of input from
the field model, but from a separate Poisson process, thereby
avoiding artificial correlations in input spike times between
neurons.

Four different inputs were explored in this work. First, all neu-
rons in the network were driven by spikes drawn from a spectrally

white distribution (“WN”, the white noise model). This represents
the control condition, and is identical to the approach used in
previous work with the network model (Neymotin et al., 2011b).
Second, neurons were driven by the thalamocortical version of
the field model (“TC”, the thalamocortical model); i.e., connec-
tion strengths to and from the basal ganglia neuronal populations
were set to zero. Third, neurons were driven by the full basal gan-
glia/thalamocortical model described above (“BG”, the healthy
basal ganglia model). Finally, neurons were driven by the full basal
ganglia/thalamocortical model, using parameter values shown by
Van Albada and Robinson (2009) to best match the electrophysio-
logical changes associated with the degeneration of dopaminergic
projections to the striatum (“PD”, the Parkinson’s disease model).

2.4. ANALYSIS
2.4.1. Fano factor
The Fano factor, a common measure of spiking variability
(Churchland et al., 2010), is the ratio of the variance to the mean
of the spike rate:

F = σ2

μ
, (5)

where σ is the standard deviation and μ is the mean of the time
series of binned spiking activity across all neurons. To explore
spiking variability on a range of different time scales, the time bin
size was varied from 1 ms (resulting in 16,000 bins, with an aver-
age of roughly 10 spikes per bin) to 8 s (resulting in 2 bins, with
roughly 80,000 spikes per bin).

2.4.2. Population burst probability
A population burst (Benayoun et al., 2010) was defined as ≥2
neurons firing within a given 10 ms time bin. The probability of
a burst of size N was defined as the number of time bins with N
cells firing divided by the total number of time bins. The relative
burst probability was calculated by dividing the observed number
of bursts of each size by the number of bursts of that size expected
from uncorrelated activity, which in turn was determined via the
observed firing rate (averaged over the entire simulation) and the
binomial probability distribution.

2.4.3. Spectral granger causality
Information flow was quantified in terms of spectral Granger
causality, also called the directed transfer function (Kaminski
et al., 2001). Although many alternative tools for inferring causal-
ity exist, such as directed transfer entropy (Lizier et al., 2011), no
others allow the spectral properties of the signals to be analyzed
in detail.

As in standard Granger causality analysis, spectral Granger
causality of α( f )→ β( f ) is non-zero if prior knowledge of vari-
able α at frequency f reduces error in the prediction of β at
frequency f . The directionality of the causation arises from the
fact that Granger causality quantifies how much the history of
time series α can be used to predict the future of time series β:
if α has a strong causal influence on β, then the prediction error
will be reduced.

Spectral Granger causality is calculated by Fourier trans-
forming the multivariate autoregressive model used in standard
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Granger causality. Hence, the spectral Granger causality from
time series α(t) to time series β(t) is defined as (Cui et al., 2008)

Gα→β(f ) = − log

⎛⎜⎜⎝1−

(
Nαα − N2

βα

Nαα

)
|Hβ, α(f )|2

Sβ, β(f )

⎞⎟⎟⎠ , (6)

where N is the noise covariance, H(f ) is the transfer function,
and S( f ) the spectral matrix, as derived from the bivariate autore-
gressive model of α(t) and β(t). This analysis was performed in
Matlab 2012a using code based on the BSMART toolbox, available
via http://www.brain-smart.org.

3. RESULTS
The neural field model results were similar to those reported pre-
viously (Van Albada and Robinson, 2009; Van Albada et al., 2009),
and are briefly presented here for completeness. We then present
the overall dynamics of the spiking network model (Kerr et al.,
2012), comparing its dynamics for each of the four drives (white
noise, the thalamocortical model, the healthy basal ganglia model,
and the PD model). Finally, we focus more closely on the alter-
ations that occur in the PD-driven model and their implications.
We have split the results into these sections in order to better
accomplish our dual goals of (1) presenting the new compos-
ite model, and (2) applying this model to help understand the
pathophysiology of PD.

3.1. FIELD MODEL DYNAMICS
Firing rates in each neuronal population were similar to those
reported previously (Van Albada and Robinson, 2009; Van Albada
et al., 2009). Because the drive from the field model to the network
model was normalized to a range that provided realistic firing
rates in the latter, tonic firing rates had negligible effect on the
simulations.

Changes in coherence are a commonly reported finding in PD.
In the PD model, coherence between the GPe and the GPi was
lost, and high frequency power (>10 Hz) in the GPi was reduced
(Figure 4). In the healthy state, activity in the GPe and GPi is
strongly correlated (r2 = 0.9). Following dopamine loss, this cor-
relation is substantially reduced (r2 = 0.3). This is because the
GPe and GPi are both mostly influenced by the striatum in the
healthy state, whereas the GPi is strongly driven by the STN in
the parkinsonian state, resulting in strong coherence between the
GPi and STN in the PD model. Increased STN-GPi coherence at
frequencies up to about 35 Hz has indeed been found in PD off
levodopa compared to the on-levodopa condition (Brown et al.,
2001). Since the GPi is the only nucleus of the basal ganglia that
projects to the thalamus or cortex (Figure 1), all changes observed
in the network model in the healthy versus PD cases are due to the
altered dynamics of the GPi.

To characterize the overall dynamics of the different field mod-
els, we looked at their power spectra. In the absence of the
basal ganglia, cortical excitatory neurons had a strong alpha peak
(10 Hz), and a weaker harmonic in the beta range (20 Hz), as
shown in Figure 4B. Cortical inhibitory neurons were driven
strongly by thalamocortical cells, evident both in the phase

locking between the two populations (Figure 4A), and in the
similarity of their power spectra below 70 Hz (Figure 4B). The
addition of the basal ganglia (Figure 4B, middle panel) reduced
the strength of the alpha peak in cortical excitatory neurons and
reduced the slope of the power law spectral fall-off at high fre-
quencies; in cortical excitatory neurons, this slope changed from
P( f ) ∝ f−5.3 to P( f ) ∝ f−4.3. Reduced dopamine corresponding
to PD reduced the power of higher frequencies (>10 Hz) relative
to lower frequencies (<10 Hz) in the cortical, thalamic, and GPi
spectra. For example, the GPi showed a 2% decrease in power at
10 Hz compared to a 76% decrease at 20 Hz. In contrast, reduced
dopamine increased power in the STN at frequencies >10 Hz
(e.g., 2.2 times larger at 20 Hz), a result also reported experi-
mentally (Brown et al., 2001; Cassidy et al., 2002; Priori et al.,
2004).

3.2. NETWORK MODEL DYNAMICS
The field drive into the network model strongly modulated its
spiking activity (Figure 5). Firing rates varied from near zero
during the troughs of input activity to >10 Hz during the
peaks (Figure 5A). The temporal structure of the spiking activity
depended strongly on the type of input drive used (Figure 5B).
As a control, white noise produced no consistent temporal struc-
ture. The TC-driven model input produced some structure, with
a characteristic time scale below 500 ms. The BG-driven model
added some features on longer time scales (of order 1 s) to the
activity produced by the TC-only field model. Variability in fir-
ing rate, as measured by the Fano factor, was lowest in the
WN-driven model (Figure 5D)—as would be expected since the
white noise had the lowest variability of the four inputs. On
time scales <1 s, the PD-driven model had the greatest variabil-
ity, while the BG-driven model had the greatest variability on
scales >1 s.

The power spectra of the network model, shown in Figure 6A,
were broadly similar to those of the input drives, but with several
interesting differences. The basic filter properties of the network
model are apparent from the shape of spectrum of the WN-driven
model; to a first approximation, the network acts like a low-pass
filter, with P(f ) ∝ f−4.0 for f > 20 Hz. However, actual afferent
activity in the brain is already low-pass filtered due to dendritic
properties, so a more realistic input (the thalamocortical drive)
results in even greater low-pass filtering. For example, the WN-
driven model predicts 5.4 times more power at 10 Hz than the TC-
driven model. Both BG- and PD-driven models differed markedly
from the TC-driven model in the 20–30 Hz band, where many
basal ganglia nuclei have their peak power. Interestingly, this
peak was much sharper in the network model than in the input
drive, demonstrating a resonance effect (compare Figure 4A with
Figure 6B).

To quantify synchrony in the model on a population level, we
used population burst size (Benayoun et al., 2010). All of the field-
driven models showed substantially higher population bursting
than the WN-driven model (Figure 6B). This is because the field
drive applies a global modulatory signal to the network, which
organizes the firing of its neurons into up and down states (as
evident from the bands of spikes in Figure 5A); in contrast, the
WN-driven model has a constant, intermediate level of activation.
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FIGURE 4 | Dynamics of the three field models (without the network

model). TC, thalamocortical field model; BG, healthy basal ganglia model;
PD, Parkinson’s disease model; white noise model not shown.
“Excitatory” and “inhibitory” refer to cortical subpopulations. (A) Local
field potential (LFP) time series, showing phase relationships between
populations. Activity in the globus pallidus internal (GPi) and external

(GPe) segments is normally in phase (red arrows), but this relationship is
lost in PD, since the GPi entrains to the subthalamic nucleus instead
(blue arrows). (B) LFP spectra. Except for the subthalamic nucleus,
healthy basal ganglia nuclei spectra are similar to the spectrum of the
thalamic relay nuclei from 10–40 Hz. This is disrupted in PD (green
arrows), especially in the GPi.

3.3. DYNAMICAL CHANGES IN THE PARKINSON’S DISEASE MODEL
The Parkinson’s disease model (PD-driven model) showed a
number of changes that suggest possible mechanisms underly-
ing the clinical dysfunctions of the disease. Compared to the
healthy control (BG-driven model), the PD-driven model showed
a shift in the LFP spectrum toward lower frequencies, with higher
delta power and a lower beta peak frequency (Figure 6), consis-
tent with clinical findings (Stoffers et al., 2007). These changes
were also readily apparent looking at the LFP time series, which
showed a flattening of activity between the slow, high-amplitude
features (Figure 5B). Soikkeli et al. (1991) noted such slowing
in 10 out of 18 non-demented PD patients, as well as in all 18
demented PD patients studied [see Figure 1 in Soikkeli et al.
(1991)].

The PD-driven model showed an 18± 2% decrease in fir-
ing rates compared to the healthy model (Figure 5C), consistent
with changes in fMRI indicators of activity (Monchi et al., 2007).
The PD-driven model also showed greater firing variability than
the healthy model on most time scales. For example, with a bin
size of 1 ms, the Fano factor was 41% higher in the PD-driven
model (Figure 5D). However, it showed less variability on very
long time scales: with a bin size of 8 s, the Fano factor was 2.4
times higher in the BG-driven model. The increased variability in
the PD-driven model on all but the longest timescales is consis-
tent with the enhanced oscillations and synchrony associated with
PD (Goldberg et al., 2002). Note that maximal dynamical richness
does not necessarily correspond to maximal variability in firing
rates: for example, tonic firing will have low dynamical richness
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FIGURE 5 | Temporal dynamics of the network model with each type of

input drive (WN, white noise; TC, thalamocortical; BG, healthy

thalamocortical/basal ganglia; PD, Parkinson’s disease). (A) Example
spike raster from the BG-driven model. Low-frequency oscillations are clearly
visible. (B) LFPs from layer 2/3 of each model. The BG case corresponds to
the raster shown in (A); peaks in voltage are correlated with peaks in spiking
activity. (C) Mean firing rates by cell type (averaged over both cortical and

thalamic populations). Overall, the PD-driven model had considerably lower
firing rates, which result from excessive inhibition of the thalamic nuclei.
(D) Variability in neuronal firing rates on different time scales. The PD- and
BG-driven models (which receive the most highly structured input) show the
most variability on short and long time scales, respectively; the WN-driven
model (which receives the least structured input) shows the least variability
on all scales.

and low variability on all time scales, while strong, seizure-like
oscillations will also have low dynamical richness, despite very
high variability (at least on the time scale of the oscillation).

The concentration of activity in large population bursts was a
prominent feature of the PD-driven model. For example, bursts
consisting of 40 neurons were 60% more common in the PD-
driven model than in the healthy model, while 70-neuron bursts
were three orders of magnitude more common. (Population
bursts smaller than 30 neurons were more common in the healthy
model, a result of its higher firing rate.) Although it is tempting

to consider these large population events in the context of parkin-
sonian tremor, we did not note a clear periodicity in their
occurrence.

A crucial question in PD is the mechanism by which infor-
mation flow is disrupted from higher cortical areas (e.g., those
involved in motor planning) to primary areas (e.g., those involved
in motor execution). Although information flow between cortical
layers is bidirectional, a dominant direction of information flow is
suggested by both anatomical and functional studies (Bollimunta
et al., 2008). This dominant information pathway is believed to
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FIGURE 6 | Spectral and information-theoretic characteristics of the

network model as driven by each field model. (A) Power spectra. The
WN- and TC-driven models have fairly featureless spectra, but with different
fall-off characteristics at high frequencies. BG- and PD-driven models are
similar to the TC-driven spectrum, except for the pronounced peak at
∼20 Hz. Spectral power is slightly shifted toward lower frequencies in PD.
(B) Population burst frequency, defined as the probability of a given number
of cells firing within a 10 ms time window, divided by the corresponding
probability for uncorrelated processes. All models are many orders of
magnitude more likely to show large bursts than would be predicted from
uncorrelated activity; large population bursts are most likely in the
PD-driven model.

stream from thalamic inputs to layer 4 (or upper layer 5 in agran-
ular motor cortices), up to layer 2/3 for processing, and thence to
layer 5, which in turn produces outputs to multiple sites including
the thalamus, basal ganglia, and brainstem. We hypothesized that
damage to this dominant pathway would represent a pathology
with major functional consequences. We therefore used Granger
causality to quantify information flow between the cortical layers
that comprise this pathway.

Overall, interlaminar spectral Granger causality was high-
est in the BG-driven model, and lowest in the WN-driven
model (Figure 7). Most notably, the BG-driven model showed
a prominent peak in causality in the high-beta/low-gamma
band (20–35 Hz). This peak was almost entirely absent in the

PD-driven model; for example, peak causality from layer 4 to layer
5 in this frequency range was only half that of the BG-driven
model (0.23 and 0.45 for PD- and BG-driven models, respec-
tively), even though these models had similar spectral power
(Figure 6A). As shown in Figure 7, similar results were seen in
other layer pairs (e.g., 4→ 2/3, 2/3→ 5, and 6→ 2/3).

4. DISCUSSION
We have explored the effects of driving a spiking network model
with several different types of input, including those corre-
sponding to the healthy brain and to PD. Many of the differ-
ences between the healthy and PD models accord with prior
experimental findings. For example, we found a modest but
consistent reduction in firing rates of cortical neurons in PD.
Although there are no direct studies of cortical firing rates dur-
ing PD in humans, several indirect measures from functional
imaging suggest such a decrease (Jenkins et al., 2004; Monchi
et al., 2004, 2007). We also found a shift toward lower LFP
frequencies, a finding consistent with PD electroencephalogra-
phy (Soikkeli et al., 1991; Bosboom et al., 2006; Stoffers et al.,
2007). We found increased synchrony between neurons in our
PD model, as measured by population burst size and probability;
increased synchrony among basal ganglia neurons is a commonly
reported finding in PD (Raz et al., 1996), and increased synchrony
among cortical neurons has also been reported (Goldberg et al.,
2002).

Our major finding was the loss of Granger causality between
cortical layers in the high-beta/low-gamma band. The Granger
causality for the PD-driven model was more similar to the TC-
and WN-driven models than to the BG-driven model, suggesting
that the dynamical properties of the basal ganglia that facilitate
cortical information flow are almost entirely lost in PD. The fre-
quency range of this disrupted information flow is thought to
be crucial for encoding motor commands, especially limb move-
ments (Van Der Werf et al., 2008; Muthukumaraswamy, 2010).
Gamma has also been implicated in many cognitive processes
(Fries et al., 2007), including the perceptual binding underlying
sensorimotor coordination (Lee et al., 2003) and consciousness
(Llinas et al., 1998). Hence, our observation of disrupted causality
might also partially account for some of the cognitive symp-
toms of PD, including bradyphrenia and planning deficits (Morris
et al., 1988; Chaudhuri and Schapira, 2009).

The fact that Granger causality was disrupted in the PD-
driven model (Figure 7) while the power spectrum was nearly
unchanged in the same frequency band (Figure 6A) shows that
the changed input drive has reorganized the dynamics of the net-
work in complex ways. Since the GPi does not project directly
to the cortex, these changes are entirely mediated by the thala-
mus; indeed, thalamic lesions alone are sufficient for producing
parkinsonian symptoms in rats (Oehrn et al., 2007). Since the tha-
lamus projects differentially to the different layers of the cortex, a
major change in thalamic input is sufficient explanation for why
the causality would shift so dramatically. Specifically, the thala-
mus normally projects strongly to layer 4; the peak in causality
at 20–35 Hz is consistent with thalamic modulation by the GPi.
In PD, inhibition to the thalamus is increased, which results in
weaker drive to the cortex and thus a loss of information flow.
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FIGURE 7 | Spectral Granger causality between cortical layers in each

of the models. (A) The BG-driven model shows strong causality from
layer 4 to 2/3 in the delta (<5 Hz) and high-beta/low-gamma (20–35 Hz)
bands; causality in the latter band is almost entirely lost in Parkinson’s
disease. (B) The causality from layer 2/3 to layer 5 is slightly reduced in
this band in Parkinson’s disease. (C) These two effects combine to

significantly reduce the total Granger causality from layer 4 to layer 5 in
PD, especially in the high-beta/low-gamma band. (D) Similar reductions of
Granger causality in this band were seen in other layer pairs, such as
layer 6 to layer 2/3. In each case, the high-beta/low-gamma band Granger
causality is significantly higher in the BG-driven model than in any of the
other models.

Our findings suggest that therapeutic interventions, such as deep
brain stimulation (Deuschl et al., 2006), may be more effective if
they restore both the dynamics and the tonic level of activity of
the GPi, rather than just the latter.

Several of our findings are qualitatively consistent with exper-
imental results pointing to a loss of complexity in EEG time
series from patients with a variety of cognitive disorders, includ-
ing PD (Stam et al., 1994, 1995; Vaillancourt and Newell, 2002).
For example, in the healthy model, the slope of the Fano fac-
tor increases roughly linearly on time scales from 1 ms to 10 s,
indicating dynamical structure across a wide range of time scales
(Figure 5D). This result can be seen qualitatively in the LFP time
series of the healthy model, which appeared to show meaning-
ful structure over a broader range of time scales than any of
the other models (Figure 5B). We speculate that these proper-
ties may reflect the number of possible states that the network
can assume, which may in turn be related to the number of
different motor programs that can be implemented by the net-
work. This principle is closely related to the concept of φ, defined
as “the repertoire of causal states available to a system as a
whole” (Balduzzi and Tononi, 2008). While φ cannot be eas-
ily computed for moderately large networks such as ours, we

expect that it will be manifested in terms of the network’s abil-
ity to perform real motor tasks—a topic we will explore in future
work. Specifically, we predict that the BG-driven model will per-
form better on simulated reaching tasks than the WN-, TC-, or
PD-driven models.

Beta-band activity (15–30 Hz) was predominantly generated
by the thalamic and inhibitory cortical neuronal populations in
our model (Figure 4B, top panel), in agreement with previous
experimental and modeling studies (Brown and Williams, 2005;
Hahn and McIntyre, 2010). Most empirical studies of beta activ-
ity in PD have focused on the basal ganglia nuclei, with increased
power in the STN being a commonly reported finding (Brown
and Williams, 2005; Kühn et al., 2005; Weinberger et al., 2006).
In our model, we found that beta power in the STN was indeed
enhanced in PD (Figure 4B, middle and bottom panels), which
may reflect an idling or antikinetic state (Brown and Williams,
2005; Engel and Fries, 2010).

4.1. LIMITATIONS
Several experimentally observed features of PD, such as increased
coherence among neurons in the STN, can only be explicitly
represented using a neuronal network model of the basal ganglia
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(Terman et al., 2002)—a major benefit of that modeling
approach. However, it is not known whether these phenomena are
causally linked to parkinsonian symptoms. Hence, in the present
context, the benefits of using a neural field model for the basal
ganglia outweigh the drawbacks of this approach. In future, a
spiking network model of the basal ganglia would be desirable in
order to account for these and other phenomena, such as rein-
forcement learning. An explicit representation of dopamine in
such a mode—rather than the implicit representation used here—
would also allow the effects of pharmacological interventions to
be modeled directly.

Due to the eloquence of the motor system, movement disor-
ders are the most obvious symptoms of PD. Yet the pathophysiol-
ogy of the disease is widespread; even the retina is affected (Hajee
et al., 2009). We stress that the spiking network model used here
was designed as a model of association cortex, not primary motor
cortex; for example, our model includes layer 4 cells, which are
absent from the latter. However, since the thalamus and striatum
have broad projections to the cortex, we expect the dynamical
and information-theoretic changes in PD (such as increased syn-
chrony and reduced complexity) to extend to motor areas as well.
In the future, we will explore the effects of PD in a model of pri-
mary motor cortex controlling a virtual arm (Chadderdon et al.,
2012), with the aim of directly demonstrating classical parkinso-
nian motor symptoms. By incorporating sensory feedback into
this model, the white noise that was used to drive the neural field
component can be replaced with more realistic input, thereby
addressing another obvious limitation of the method used here.

4.2. MULTISCALE DYNAMICS IN A COMPOSITE MODEL
To our knowledge, this work represents the first composite spik-
ing network/neural field model of the brain. This is a multiscale
model that spans spatial scales from 10 μm to 30 cm and tempo-
ral scales from 1 ms to tens of seconds. The composite method
provides a way of linking two types of models that provide access
to different spatial scales—a network model than spans scales
from individual neurons (10 μm) to a cortical column (600 μm),
and a field model encompassing the whole diencephalon (30 cm).

Temporally, both network and field models are valid over many
orders of magnitude (approximately 10−3−104 s).

The mechanism used here to couple the field and network
models is just one of several alternatives (Wilson et al., 2012).
In the present case, the coupling was unidirectional; the net-
work model did not affect the dynamics of the field model. While
this can be easily justified in terms of the effective size of each
model, an alternative approach generates the neural field based
on the dynamics of the network model, using the new neuron-
in-cell approach of Robinson and Kim (2012). Because spiking
network models are still limited in their capacity to generate
accurate dynamics on a large scale, this approach cannot yet be
used in place of neural field models. However, this may change
if scientific advances and improved computing facilities enable
the development of larger and more realistic spiking network
models.

Many spiking network models that are too small to show self-
sustaining activity are driven by white noise (Hill and Tononi,
2005; Vogels and Abbott, 2005; Oswald et al., 2009; McDonnell
et al., 2011; Volman et al., 2011; Kerr et al., 2012; Muller and
Destexhe, 2012; Vijayan and Kopell, 2012). Here we demonstrated
that using physiologically realistic input instead of white noise
has a major impact on multiple measures of network activity,
including power spectra, spiking variability, burst probability,
and Granger causality. Thus, white-noise-driven spiking network
models are an abstraction away from the physiological environ-
ment, and should perhaps be considered as being analogous to
artificially driven slice preparations rather than in vivo activity.
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The burst-suppression pattern is well recognized as a distinct feature of the mammalian
electroencephalogram (EEG) waveform. Consisting of alternating periods of high ampli-
tude oscillatory and isoelectric activity, it can be induced in health by deep anesthesia as
well as being evoked by a range of pathophysiological processes that include coma and
anoxia. While the electroencephalographic phenomenon and clinical implications of burst
suppression have been studied extensively, the physiological mechanisms underlying its
emergence remain unresolved and obscure. Because electroencephalographic bursting
phenomenologically resembles the bursting observed in single neurons, it would be rea-
sonable to assume that the theoretical insights developed to understand bursting at the
cellular (“microscopic”) level would enable insights into the dynamical genesis of bursting
at the level of the whole brain (“macroscopic”). In general action potential bursting is the
result of the interplay of two time scales: a fast time scale responsible for spiking, and
a slow time scale that modulates such activity. We therefore hypothesize that such fast-
slow systems dynamically underpin electroencephalographic bursting. Here we show that
a well-known mean field dynamical model of the electroencephalogram, the Liley model,
while unable to produce burst suppression unmodified, is able to give rise to a wide vari-
ety of burst-like activity by the addition of one or more slow systems modulating model
parameters speculated to be major “targets” for anesthetic action. The development of a
physiologically plausible theoretical framework to account for burst suppression will lead to
a more complete physiological understanding of the EEG and the mechanisms that serve
to modify ongoing brain activity necessary for purposeful behavior and consciousness.

Keywords: burst suppression, anesthesia, electroencephalogram, mean field model, neuronal hyperexcitability

1. INTRODUCTION
Prior to the development of the modern intensive care unit in
the early 1960s, that featured intubation, artificial respiration, and
comprehensive physiological monitoring, reports of the electroen-
cephalographic pattern of burst suppression (BS) were confined
to animal studies involving deep anesthesia and the occasional
case of psychosurgery (Niedermeyer, 2009). Since then the burst-
suppression pattern has become well recognized as a major diag-
nostic feature of the EEG waveform that is encountered in a range
of encephalopathic conditions, in addition to its appearance in
health during deep anesthesia. Typically the BS pattern consists of
bursts of high amplitude slow, sharp, or spiking electroencephalo-
graphic activity separated by periods of electroencephalographic
suppression (isoelectricity). The oscillatory features of the bursts,
together with their duration and the duration of suppressed peri-
ods show a high degree of variability (see Figure 1 for examples)
that presumably reflects its myriad of initiating causes. First iden-
tified during deep anesthesia with tribromoethanol in cats (Der-
byshire et al., 1936), labeled burst-suppression pattern by Swank
and Watson (1949) during barbiturate and ether anesthesia in
dogs, it is now associated with cortical deafferentation (Henry
and Scoville, 1952), cerebral anoxia and hypoxia, various types
of intracortical lesions (Fischer-Williams and Cooper, 1963), deep

coma, various infantile encephalopathies, the final stages of deteri-
orated status epilepticus (Treiman et al., 1990), hypothermia, and
high levels of many sedative and anesthetic agents (Schwartz et al.,
1989; Akrawi et al., 1996).

Burst suppression in the absence of anesthesia is in general
associated with a very poor prognosis. For example in neonates
(Grigg-Damberger et al., 1989) the appearance of BS, even if tran-
sient, is a portent of death or severe neurodevelopmental disability.
In contrast, in adult populations while an anoxic/hypoxic BS pat-
tern signals a serious pathophysiological event the outcome is not
necessarily fatal and recovery with or without severe neurological
damage is possible (Niedermeyer, 2009). Consistent with this are
results of experimental work with EEG monitoring in rats reveal-
ing that animals with greater rates of high amplitude bursts have a
better survival and neurological outcome compared to those with
lower rates of low amplitude bursts (Geocadin et al., 2002).

While the electroencephalographic phenomenon and clinical
implications of BS have been studied extensively (Brenner, 1985;
Niedermeyer, 2009) the physiological mechanisms underlying its
emergence remain in general unresolved and obscure.

Burst suppression is typically thought to be spatially homoge-
neous with burst onset and termination reported to occur near
simultaneously across the entire scalp (Brenner, 1985; An et al.,
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FIGURE 1 | Example traces of electroencephalogram and
electrocorticogram illustrating the heterogeneity of BS patterns.
(A) Changes in neocortical electroencephalogram in the rat, recorded
using dural surface electrodes, in response to a 5 mg/kg/min thiopental
infusion [figure reproduced with permission from Lukatch and MacIver
(1996)]. (B) Electroencephalogram recorded in acute anoxia showing a
clear burst-suppression pattern with grouped spikes [figure reproduced
with permission from Hockaday et al. (1965)]. (C) BS pattern during
closed loop target controlled propofol infusion at a target level of

approximately 15µg/ml (data courtesy of Professor Michel Struys,
Groningen). Note the bursts consist of fast activity (>10 Hz) on a slow
wave background. (D) Electrocorticogram obtained from an adult
merino sheep during deep enflurane anesthesia, demonstrating high
amplitude spikes interspersed with isoelectric periods of variable
length [figure reproduced with permission from Voss et al. (2006)]. (E)
Electroencephalogram recorded from a 3-month-old infant suffering
from infantile myoclonic encephalopathy [reproduced with permission
from Niedermeyer (2005)].
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1996; Ching et al., 2012), indicating that low level subcortical
mechanisms may be playing a decisive role. However arguing
against this is the fact that this pattern persists subsequent to corti-
cal deafferentation (Lukatch and MacIver, 1996), indicating that it
probably represents an intrinsic, though physiologically abnormal,
dynamical mode of cortex. Indeed the phenomenal resemblance of
the patterns of BS to disorders of neuronal hyperexcitability sug-
gests the involvement of similar physiological mechanisms. For
example the bursting during burst suppression is often associated
with myoclonic jerks resembling those seen during epileptic fits.
Like generalized epileptiform activity, bursts are recorded simul-
taneously at multiple electrode derivations, implying the wide
synchronization of neuronal activity.

At the cellular level a commonly reported finding is that hyper-
polarization of the membrane potential of cortical neurons reli-
ably precedes any overt electroencephalographic activity of BS
(Steriade et al., 1994). Such hyperpolarization, which has been
attributed to an increase in neuronal membrane potassium con-
ductance (Steriade et al., 1994), has been hypothesized to play a
major role in the induction of BS. This implied importance of
inhibition in the genesis of BS is further supported by results
involving rat neocortical brain slice micro-EEG preparations in
which the application of a direct acting GABAA agonist, musci-
mol, readily induces BS. However contradicting this result is work
reporting that inhibition is diminished during isoflurane-induced
BS, in an in vivo feline preparation, as evidenced by increases in
cortical neuronal input resistance and extracellular chloride con-
centration (Ferron et al., 2009). Of course it may be that slow
periodic modulations in inhibition, rather than singular increases
or decreases in inhibition, underpin BS. In support of this view
is the recent model of Ching et al. (2012), in which alterations
in brain metabolism, due to the effects of hypoxia or anesthesia,
parametrically regulate an activity dependent slow modulation of
an adenosine triphosphate-gated potassium channel conductance
to give rise to BS. However modulations in inhibitory activity
alone may not be sufficient to account for BS and more consider-
ation might need to be given to other mechanisms. For example
Kroeger and Amzica (2007) present empirical evidence suggest-
ing that modulations in excitatory synaptic efficiency, due to the
progressive depletion of interstitial calcium during the periods of
high amplitude electroencephalographic activity and its recovery
during isoelectric periods, might account for BS. Consistent with
this are reports involving laboratory slice preparations in which
burst suppression induced by thiopental, propofol, and isoflurane
is abolished by the application of glutamate receptor antagonists
(Lukatch and MacIver, 1996). Whatever the pathophysiology of BS
is it is reasonably clear that it is unlikely to be accounted for by a
unitary physiological perturbation. That the physiological factors
identified to date in BS all lead to a single well defined state sug-
gests the possibility of an unifying dynamical mechanism. Thus
the best hope for progress in understanding the phenomena of BS
may be theoretical.

How might we theoretically approach BS? The well studied
dynamical mechanisms of action potential bursting (Izhikevich,
2007) may be able to provide vital insights into the mechanisms of
bursting in the EEG. In general the dynamical mechanisms under-
lying bursting can be divided into two broad classes (i) fast-slow

bursters in which there is a clear separation of the underlying
time scales, with a fast system responsible for the fast spiking, and
a slow system its slow modulation, and (ii) “hedgehog” bursters
(Izhikevich, 2000) in which there is no clear separation of time
scales. In terms of developing a theory of BS the former might
represent the preferable starting point as the little empirical evi-
dence that is available (Ching et al., 2012), at least in humans,
suggests that alphoid activity, indicative of normal resting EEG, is
preserved during the bursts of BS. Thus a theoretical starting point
to understanding BS might be to consider the slow modulation of
a dynamical system developed to describe the resting EEG.

One such dynamical system is the mesoscopic electrocortical
model of Liley et al. (Liley et al., 1999, 2002, 2011; Bojak and Liley,
2005; Frascoli et al., 2011). This model is capable of accounting
for a range of resting electroencephalographic phenomena that
includes the alpha rhythm (Liley et al., 2002), the modulation of
resting activity by sedative and anesthetic action (Bojak and Liley,
2005) as well as the proconvulsant properties of the latter (Liley
and Bojak, 2005), all within a physiologically plausible/admissible
parameter space. This model is therefore well suited as a founda-
tion from which to explore the physiological and dynamical genesis
of BS. However, because in this model rhythmogenesis emerges
from a strong coupling between cortical excitatory and inhibitory
population activity, in its present form it has a restricted ability to
exhibit BS through the parametric separation of time scales, either
through the simulated actions of anesthetics or through other
parametric routes. Here we show that BS can however emerge in
this model by the addition of a slow system driven by one or more
of the originally defined mean fields. We speculate that such a
slow system represents a mathematical ansatz for the slow neuro-
modulation of activity by a variety of intracortical, inter-cortical,
and subcortical systems that include thalamus and the ascending
neurotransmitter modulatory systems.

2. MATERIALS AND METHODS
2.1. MESOSCOPIC MEAN FIELD MODELING OF ELECTROCORTICAL

ACTIVITY
The electroencephalogram and electrocorticogram arise out of
the cooperative activity of many thousands of neurons. A sin-
gle electroencephalographic electrode records the synaptically
induced currents of well over a 100,000 neurons (Nunez and Srini-
vasan, 2005) and thus detailing each neurons contribution to this
summed activity would appear superfluous. For this reason it is
preferable instead to model the activity of populations of neurons.
One general way of achieving this, in which known stochastic fluc-
tuations can be included, is to dynamically evolve the probability
distributions associated with the states of the neuronal ensemble.
While in principle providing a rigorous way forward the formula-
tion of such stochastic equations of motion entails a great deal of
physiological uncertainty. For this and other reasons (Deco et al.,
2008) a more resolute path is to dynamically evolve some average
quantity such as the mean soma membrane potential or the mean
firing rate of some suitably defined neuronal ensemble. In this
manner a mesoscopic level model can be developed which acts as
a bridge between cellular (or microscopic) level activity and whole
brain (or macroscopic) level behavior. While the current math-
ematical approach for formulating the equations of motion for
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the activity of neuronal populations or masses, stems principally
from the works of Wilson and Cowan (1972, 1973), Nunez (1974),
Freeman (1975), and Amari (1975), they are not particularly suc-
cessful in articulating the genesis of rhythmic activity in the EEG
and its modulation by pharmacological agents, due to a range of
mathematical simplifications that cannot be justified by an appeal
to physiology. For this reason a range of biologically more refined
neuronal populations models have been developed (Deco et al.,
2008) that form a more appropriate basis from which to model
the physiological genesis of the electroencephalogram. The model
of Liley et al. (Liley et al., 1999, 2002, 2011; Bojak and Liley, 2005;
Frascoli et al., 2011) is one such model and will be the focus of our
attempts to account for the phenomenon of BS.

The model of Liley et al. is able to account for the major features
of the mammalian electroencephalogram in the context of a para-
meterization that accords with physiological measurement and
experiment. Because it aims to provide a dynamical description
of the electroencephalogram the model is spatially coarse-grained
over the approximate extent of a cortical macrocolumn, reflecting
the general physiological wisdom that such columniation signi-
fies populations of neurons having similar functional behavior
and anatomical connectivity. The multiple interactions between
individual neurons are replaced by effective feed-forward and feed-
back interactions between the mean activity (or mean fields) of
excitatory and inhibitory populations of neurons over the spa-
tial extent of the column. In this way mammalian neocortex is
conceived as consisting of localized populations of excitatory and
inhibitory neurons interacting by all possible combinations of
feed-forward and feed-back connectivity interacting globally via
long-range excitatory connections (Figure 2).

Thus the response of the mean soma membrane potential
hk (k = e, i) at position r on a two-dimensional cortical sheet,
in response to induced post synaptic activity Ilk (l = source,
k = target population) is given by

τk
∂hk(r , t )

∂t
= hr

k − hk(r , t )+
∑
l=e,i

h
eq
lk − hk(r , t )∣∣heq

lk − hr
k

∣∣ Ilk(r , t ) (1)

The postsynaptic response to a single pre-synaptic action
potential (at t = 0) is modeled by the well-known synaptic alpha
function of cable theory as 0lkγ lkt exp(1− γ lkt )2(t ) where 0lk

is peak amplitude (occurring at t = t peak= 1/γ lk) of the respec-
tive excitatory (l = e) or inhibitory (l = i) postsynaptic potential
(PSP), and 2(t ) is the Heaviside step function. Thus we assume
that the time course of the synaptically induced excitatory and
inhibitory currents is described by a critically damped oscillator
driven respectively by the mean rate of incoming excitatory and
inhibitory axonal pulses:(

∂

∂t
+ γlk

)2

Ilk(r , t ) = exp(1)0lkγlk Alk(r , t ), (2)

with

Aek(r , t ) = N β

ek Se [he(r , t )] + φek + pek(r , t ), (3)

and

Aik(r , t ) = N β

ik Si[hi(r , t )] + pik(r , t ), (4)

FIGURE 2 | Schematic overview of the essential intracortical and
cortico-cortical interactions between excitatory and inhibitory
neuronal populations in the model of Liley et al. (Liley et al., 1999,
2002, 2011; Bojak and Liley, 2005; Frascoli et al., 2011). Following
conductance based approaches typically used to model networks of
synaptically interacting networks of individual model neurons, excitatory
and inhibitory neuronal populations are modeled as single passive
resistive-capacitive compartments into which all synaptically induced
postsynaptic currents flow. Functionally these populations are equivalent to
the excitatory and inhibitory KO sets of Freemans K-set hierarchy (Freeman,
1975). Cortical activity is then described by the mean soma membrane
potentials of the spatially distributed excitatory (he) and inhibitory (hi)
neuronal populations. The connection with physiological measurement is
obtained through he, which is assumed to be linearly related to the surface
recorded electroencephalogram (Freeman, 1975; Nunez and Srinivasan,
2005). Figure reproduced with permission from Frascoli et al. (2011).

where Alk comprises the different sources of pre-synaptic spikes:

N β

lk Si (input from local cortical neuronal populations), φek (input
from long-range excitatory cortico-cortical fibers), and plk (extra-
cortical sources). While the present consensus is that extra-cortical
sources (thalamo-cortical afferents) are purely excitatory in nature
and thus pik= 0, we choose to retain these terms as when time
independent they can be utilized to include the effects of tonic
inhibition that are known to be induced by anesthetic action. The
time courses of the synaptically induced currents, 1/γ lk are taken
to describe the time course of “fast” excitatory [l = e: α-amino-3-
hydroxl-5-methyl-4-isoxazole-propionate (AMPA) and kainate]
and inhibitory [l = i: γ -amino-butyric-acid type A (GABAA)]
neurotransmitter kinetics. Thus each type of PSP (excitatory,
inhibitory) is described by two parameters 0lk, γ lk. However, as
we will describe later, a parametrically more flexible description
of the PSP is required to meaningfully model the effects of anes-
thetics in which we can independently vary peak amplitude, rise
(t peak) and decay times. Mean neuronal population firing rates,
Sl, are assumed to instantaneous sigmoid functions of the mean
soma membrane potential i.e.,

Sl [hl(r , t )] = Smax
l /{1+ exp[

√
2(hl(r , t )− µ̄l/σl)]} (5)

The axonal pulses φek propagated by the exclusively excitatory
long-range cortico-cortical fiber system is in the simplest case
described by the following two-dimensional telegraph equation,(

∂

∂t
+ vek3ek

)2

φek(r , t )−
3

2
v2

ek∇
2φek(r , t )

= v2
ek3

2
ek N α

ek Se [he(r , t )] (6)
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where N α
ek is the total number of excitatory connections formed by

long-range cortico-cortical axons on long on local population k,
and assumes a single axonal conduction velocity vek and an expo-
nential fall off with distance (characteristic scale= 1/3ek) of the
strength of cortico-cortical connectivity. For simplicity, and given
the fact that at least in anesthesia BS appears to have a degree of spa-
tial uniformity, we chose to only study the spatially homogeneous
case, i.e.,52

= 0.
Equations (1)–(4) and (6) represent a system of 8 coupled

non-linear partial differential equations that typically defines the
Liley model of electrocortical rhythmogenesis, which is capable of
reproducing the main features of spontaneous human electroen-
cephalogram (alpha resonance,“1/f” activity). Table 1 summarizes
all model parameters, their definitions, and approximate ranges.

2.2. MODEL PARAMETERIZATION: GENERATION OF NORMATIVE
PARAMETER SETS

Because BS activity (at least that induced by anesthetic and seda-
tive action) is assumed to ultimately arise out of a background of
normal electroencephalographic activity it is important to define
parametrically normative states in order to study how they may
be perturbed during health and disease. We therefore chose to

Table 1 | List of spatially averaged parameters for different types k, l ∈

{e, i } of neuronal target populations in the electrocortical model of

Liley et al. (Liley et al., 1999, 2002, 2011; Bojak and Liley, 2005; Frascoli

et al., 2011), with typical ranges that are assumed to be

physiologically admissible.

Definition Min Max Units

hr
k Resting membrane potential −80 −60 mV

τ k Passive membrane decay

time

5 150 ms

heq
ek Excitatory reversal potential −20 10 mV

heq
ik Inhibitory reversal potential −90 hr

k − 5 mV

0ek EPSP peak amplitude 0.1 2.0 mV

0ik IPSP peak amplitude 0.1 2.0 mV

1/γ ek EPSP rise time to peak 1 10 ms

1/γ ik IPSP rise time to peak 2 100 ms

Nα
ek Number of excitatory

cortico-cortical synapses

1000 5000 –

Nβ

ek Number of excitatory

intracortical synapses

2000 5000 –

Nβ

ik Number of inhibitory

intracortical synapses

100 1000 –

vek Axonal conduction velocity 0.1 1 mm ms−1

1/3ek Decay scale cortico-cortical

connectivity

10 100 mm

Smax
k Maximum firing rate 0.05 0.5 ms−1

µ̄k Mean firing threshold −55 −40 mV

σ k Firing threshold standard

deviation

2 7 mV

plk Extra-cortical synaptic input

rate

0 10 ms−1

Table adapted from Liley et al. (2011). EPSP, excitatory PSP; IPSP, inhibitory PSP.

utilize previously defined parameter sets (Bojak and Liley, 2005)
that have the following properties: (i) are confined to the physio-
logically admissible parameter space (see Table 1), (ii) give rise to
electroencephalographically and physiologically plausible activity
(“1/f” decay at low frequencies plus a relatively sharp peak at alpha
frequencies, 8–13 Hz; mean excitatory/inhibitory neuronal firing
rates <20 s−1) and (iii) that exhibit transient increases in total
power and monotonic reductions in mean frequency with respect
to modeled anesthetic action (see below). In general such sets can
be found by randomly searching the high dimensional physio-
logically admissible (and plausible) parameter space. For further
details see Bojak and Liley (2005).

2.3. MODELING ANESTHETIC ACTION
The range of molecular and cellular targets identified to date as
sites of anesthetic action is so varied that a unitary biological mech-
anism for anesthetic effect seems unlikely. Nevertheless, at least
functionally, at the level of cortex anesthetics seem to act princi-
pally by enhancing the actions of inhibitory activity (Liley et al.,
2011). Indeed from the perspective of the mean field model we
have described many of its parameters can be related in a fairly
straightforward way to these alterations in inhibitory activity and
other identified sites of anesthetic action in cortex (see Table 2).
However a parametrically more flexible description of the PSP,
than is presently incorporated, is required to meaningfully model
the effects of anesthetics in which we can independently vary peak
amplitude, rise (t peak) and decay times. For example isoflurane,
a volatile halogenated anesthetic, has been shown to prolong the
decay time of the unitary IPSP without altering its time to peak.
Fortunately a simple modification of the equation describing the
dynamics of the PSP enables independent adjustment of the peak
amplitude, rise (t peak) and decay times. By defining Ilk to satisfy

[
∂

∂t
+ γlk(εlk)

] [
∂

∂t
+ γ̃lk(εlk)

]
Ilk(r , t )

= γ̃lk(εlk) exp[γlk(εlk)/γ
0
lk ]0lk Alk(r , t ), (7)

γlk(εlk) = εlkγ
0
lk/(e

εlk − 1), γ̃lk = γlk(ε)e
εlk (8)

Table 2 | Relationship between major experimentally identified sites

of cortical anesthetic action and parameters of the electrocortical

model of Liley et al. (Liley et al., 1999, 2002; Bojak and Liley, 2005).

Site of action Main anesthetic effect Parameters

2PK channels and

extrasynaptic GABAA

Increase in tonic inhibition pik, hr
k

nACh receptors Reduction in tonic excitation pek, hr
k

Synaptic GABAA Increase of IPSPs γ ik, 0ik

AMPA/kainate receptors and

NMDA receptors*

Reduction of EPSPs γ ek, 0ek

Myelinated axons Slowdown of conduction
†

vek

Na channels Alteration of neuronal firing Smax
k , µ̄k , σ k

*Parameters will depend on membrane potential in this case.
† Effect demonstrated in periphery, speculative in cortex (Swindale, 2003).
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where 1/γ 0
lk defines the time to peak, we can control the decay of

the unitary PSP by altering εlk> 0. Increasing εlk will monoton-
ically increase the decay time of the tail of the unitary PSP (see
lower left panel, Figure 6). Empirically it is found that increas-
ing the aqueous concentration of a range of GABAergic anesthetic
agents leads to a progressive increase in the decay time of the uni-
tary inhibitory PSP (e.g., Banks and Pearce, 1999) and thus εik

will be a monotonic function of anesthetic concentration c, i.e.,
εik(c). Liley et al. (2011), based on a range of empirical evidence,
have numerically estimated εik(c) for the volatile anesthetic agent
isoflurane. However because εik(c) is not currently known for
other GABAergic anesthetic agents we will assume that in general
εik∝ c.

It is worth noting that equation (7) reduces to equation (2) as
εlk→ 0. Further details regarding this formulation can be found
in Bojak and Liley (2005).

2.4. DEFINING A THEORETICAL BASIS FOR BURSTING
We call a bursting system fast-slow if it can be written in the
following form

ẋ = f (x , y) (fast oscillatory system) (9)

ẏ = µg (x , y) (slow modulatory system) (10)

where x ∈Rm describes the m-dimensional system responsible for
the fast oscillatory (spiking in single neuron models) dynamics
and y ∈Rn the n-dimensional slow system that modulates the fast
oscillations (or spiking behavior). The parameterµ represents the
ratio of the time scales between the slow and fast system. It is
typically assumed that µ� 1. Because µ can be made as small as
we like equations (9) and (10) represent a singularly perturbed
system.

We will assume that equations (1)–(4) and (6), which puta-
tively describe the genesis of the “fast oscillatory” resting EEG,
correspond to the m-dimensional fast system. To motivate the
slow n-dimensional slow modulatory system we will make a plau-
sible appeal to the biophysics of synaptic resource depletion and
recovery during periods of sustained neuronal population activity.
During periods of high firing neural activity a variety of factors
come into play to diminish synaptic efficiency. The most important
of these are receptor desensitization and synaptic vesicle deple-
tion. Tsodyks and Markram (1997) developed a model to account
for the biophysics of such activity dependent short term synaptic
depression estimating that its onset is rapid, of the order of mil-
liseconds, but that its recovery is quite slow, of the order of 800 ms.
Given that such a time scale is approximately at least an order of
magnitude greater than the characteristic time scales associated
with resting EEG activity, this may represent a candidate slow
EEG modulatory system. On this basis we choose to include this
activity dependent short term synaptic depression using the fol-
lowing two different formulations, referred respectively to as SS1
and SS2,

0̇lk = µl [θl − kl Sl(hl)], (SS1) (11)

0̇lk = µl [0
0
lk/(1+ exp[κl(hl − ξl)])− 0lk ], (SS2) (12)

where 1/µl is the characteristic time scale of the respective slow
modulatory system. Based on Tsodyks and Markram (1997) we
will fix 1/µl to 1000 ms. The advantage of the first formulation is
that the rates of synaptic recovery (µlθ l) and depletion (µlkl) can
be separately specified. The advantage of the second formulation
is that 0lk remains bounded between 00

lk (the resting value) and
zero decreasing monotonically with increasing mean soma mem-
brane potential hl, with 00

lk remaining as a free parameter. For
low levels of the respective neuronal activity (hl) there is very little
decrease in 0lk until a threshold ξ l is reached, with the parame-
ter κ l controlling the sensitivity of the change at this threshold to
variations in neuronal activity. This formulation has previously
been used by Tabak and Rinzel (2005) in their mean field model
for spontaneous electrical bursting activity in embryonic chick
spinal cord.

2.5. COMPUTATIONAL METHODS
All numerical integrations and one-dimensional dynamical con-
tinuations were performed using the XPPAUT package (Ermen-
trout, 2002). A 4-th order Runge-Kutta scheme with a time step of
0.1 ms was used to numerically integrate the differential equations.
Because of the multiple time scales our differential system may
suffer from stiffness and numerical solutions may not converge.
In these cases we have used the recommended “stiff” integra-
tor CVODE (Cohen and Hindmarsh, 1994) as implemented in
XPPAUT.

3. RESULTS
All numerical simulations were performed using a single model
parameter set having a physiologically plausible white noise fluctu-
ation spectrum (see top left panel Figure 3) and a single stable fixed
point. This parameter set was found using the methods described
in section 2.2. The parameters used, all within the physiologically
admissible domain, can be found in the Table 3.

Figure 3 shows the effects of the activity dependent modulation
of 0ii on simulated mean field EEG activity using SS1 [equation
(11)]. Bursts emerge periodically, with intervening near isoelec-
tric intervals, apparently driven by slow variations in 0ii (red line,
top right panel). A spectrogram of a sufficiently long simulated
time series reveals that the frequency of the model EEG activity
decreases from low beta (∼= 15 Hz) to high alpha (∼= 12 Hz) over
the period of the bursts. Such intra-burst “chirping” is a common
feature of many of the topologically identified single neuronal
bursters (Izhikevich, 2007). Of interest are the multiple harmonics
of this dominant oscillatory activity.

Figure 4 illustrates how we might dynamically account for the
transition to, and cessation from, bursting and follows the now
standard method of the dissection of neural bursting pioneered by
Rinzel (1985). Here we have setµi= 0 and consider how the “fast”
EEG system responds. Figure 4 shows a one-dimensional bifurca-
tion diagram of this “fast” EEG system with 0ii as the bifurcation
parameter. Thick black lines show the fixed points as a function
of 0ii. For small values of 0ii there is a single stable fixed point.
As 0ii is increased this fixed point loses stability by a super-critical
Hopf bifurcation, thus signaling the onset of limit cycle activity.
Periodic continuations of this low amplitude activity reveals that
it, and a stable fixed point, co-exist with a higher amplitude limit
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FIGURE 3 | Effects of the slow, activity dependent modulation of
IPSPs on the inhibitory neuronal population, 0ik using the SS1
model of equation (11). The top left panel shows the fluctuation
spectrum of the unmodulated “fast” EEG system (Bojak and Liley,
2005). When 0 ik of this system is slowly modulated (µi =0.001 ms−1,
θ i =0.1818 mV, ki =10 mV s) bursting emerges (top right panel). Bursting

is associated with the periodic modulation of 0 ii (red line, top right panel)
on a much longer time scale than that of intra-burst oscillatory activity.
Time-frequency analysis (bottom right panel) reveals that intra-burst
activity sweeps down through a range of frequencies from low beta
(13–30 Hz) to high alpha (8–12 Hz). Parameter values used for the “fast”
EEG system can be found inTable 3.

cycle, thus suggesting that an activity dependent hysteresis drives
the system between a fixed point and a high amplitude oscilla-
tion, thus giving rise to the bursting activity observed. This can be
better seen by superimposing on this diagram the trajectory of a
single burst (thin solid black line). Here we can see that the burst
terminates through a fold-limit cycle bifurcation. At this stage it
is not clear what bifurcation accounts for the emergence of the
burst.

A well described feature of anesthetic action is the reduc-
tion in cerebral blood flow and metabolism (Kaisti et al.,
2003). Therefore during anesthetic action it would be reason-
able to assume that the recovery of pre-synaptic neurotransmit-
ter levels will be impaired. In particular as the anesthetic level
increases then the rate of synaptic recovery should decrease.
Figure 5 shows the effects of systematic reductions in the synap-
tic recovery rate for the SS1 model. As θ i (synaptic recovery)
is decreased the burst duration decreases and the period of
non-oscillatory isoelectric activity increases until the model EEG
becomes fully isoelectric. This trend is also observed clinically
during anesthesia.

Short term synaptic depression would be expected to affect all
synapses, though the depression would not be expected to be uni-
form. So far we have assumed that the synaptic depression would
principally affect inhibitory synapses between inhibitory neu-
rons. Will such bursting survive when all types of “fast” synaptic
activity is subject to the biological forces of short term synap-
tic depression? Figure 6 reveals that bursting does occur when
both excitatory and inhibitory synaptic activity undergoes activity
dependent short term synaptic depression. Further, the bursting
that emerges is strongly modulated by parameters of the “fast”

Table 3 | Model parameter set used in simulations of Figures 3–8.

Parameter Value Parameter Value

hrest
e (mV) −68.1355 Nα

ee 4994.4860

hrest
i (mV) −77.2602 Nα

ei 2222.9060

heq
ee (mV) −15.8527 Nβ

ee 4582.0661

heq
ei (mV) 7.4228 Nβ

ei 4198.1829

heq
ie (mV) −85.9896 Nβ

ie 989.5281

heq
ii (mV) −84.5363 Nβ

ii 531.9419

τe (ms) 138.3660 vek (cm ms−1) 0.1714

τ i (ms) 89.3207 3ek (cm−1) 0.2433

0ee (mV) 0.3127 Smax
e (ms−1) 0.2801

0ei (mV) 0.9426 Smax
i (ms−1) 0.1228

0ie (mV) 0.4947 µe (mV) −47.1364

0ii (mV) 1.4122 µi (mV) −45.3751

γ ee (ms−1) 0.4393 σ e (mV) 2.6120

γ ei (ms−1) 0.2350 σ i (mV) 2.8294

γ ie (ms−1) 0.0791 pee (ms−1) 3.6032

γ ii (ms−1) 0.0782 pei (ms−1) 0.3639

Parameter set taken from Bojak and Liley (2005). Because parameters were

obtained as part of a numerical search their full precision had been detailed,

however their sensitivity to perturbation is much less than the precision reported

(Bojak and Liley, 2005).

EEG system (see Table 2) that have been identified as targets
for the action of anesthetic agents. Prolonging the decay of the
unitary IPSP and reducing subcortical input are both found to
significantly modulate modeled EEG bursting. In particular it is
found that reducing excitatory extra-cortical input (pee), which
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FIGURE 4 | One-dimensional continuation of the “fast” EEG system in
he suggests how we might account for the dynamics of bursting. Thick
black lines (solid= stable, dashed=unstable) shows the fixed points (fp) as
a function of 0 ii. Solid black circle indicates fixed point for the default
parameter values for “fast” EEG system (parameters as for Figure 3). Solid
blue lines indicate the locus of maximum and minimum amplitudes
respectively of stable limit cycle (lc) activity, whereas solid red lines
correspond similarly to locus of unstable limit activity. Transitions between
stable and unstable lc activity is predominantly through fold-limit cycle
bifurcations, except for middle limit cycle branch where transition is through
a torus bifurcation. Superimposed on this one-dimensional bifurcation
diagram is the trajectory of a single burst.

presumably dominantly arises from thalamus, leads to very long
quiescent (isoelectric) periods.

One of the limitations in using SS1 is that the PSPs are, in prin-
ciple, free to take any value whereas physiology would dictate that
they should remain bounded. To explore the effects of this restric-
tion we chose to define an alternative slow modulating system [SS2,
equation (12)]. Figure 7 shows the effect of utilizing this system
to provide a slow activity dependent modulation of excitatory and
inhibitory synaptic efficacy of our “fast” EEG system. In the left
panel of this figure we have plotted ce≡0el/0

0
el as a function of

time. The interesting thing to note is that in contrast to Figure 3
excitatory synaptic efficacy decreases during the quiescent inter-
burst period and increases during the burst. The left hand panel
however shows that there is a significant phase difference between
the normalized excitatory synaptic efficacy ce≡0el/0

0
el and the

FIGURE 5 |The effect of parametrically varying the rate of recovery of
synaptic efficacy in modulating the modeled burst duration and the
quiescent (isoelectric) period. If θ i is made small enough the bursting
solutions will undergo a bifurcation to a non-oscillatory state. All parameters
as per Figure 4.

normalized inhibitory synaptic efficacy ci≡0il/0
0
il . This suggests

that there is an important dynamical interplay between excitatory
and inhibitory synaptic efficacy to regulate neuronal population
excitability such that bursting occurs. This may explain why there is
confusion in the empirical literature regarding the role alterations
in synaptic efficiency have in the genesis of BS.

An important difference between SS2 and SS1 is that parameters
hypothesized to be important targets of anesthetic action pee and
εil are able not only to parametrically regulate bursting but appear
also able to switch bursting on (presumably through a bifurcation
from a stable fixed point). Figure 8 illustrates this. If the inhibitory
neuronal IPSP decay time is not long enough then a single fixed
point dominates which has an associated white noise fluctuation
spectrum. But as the IPSP decay time increases (beyond εii> 1.8
for the parameter set chosen) then bursting emerges. However
if pee is decreased, as we would expect during anesthesia, then
the isoelectric period is prolonged until at some critical value of
pee bursting is extinguished to be replaced by an infinitely long
quiescent/isoelectric period.

4. DISCUSSION
We have described here how a well-known model of the “fast”
dynamics of the EEG can be modulated by a number of slow sys-
tems to produce bursting activity that bears some resemblance to
BS seen clinically. The slow systems that we used were all based
on some form of activity dependent short term plasticity that has
been empirically observed, and used successfully in other models
of macroscopic level bursting (Tabak and Rinzel, 2005). While we
were able to clearly show the existence of bursting, because we
did not include any additive or multiplicative noise sources, we
were unable to account for the quasi-periodicity of BS. Thus all
our busting arises from purely deterministic processes, presum-
ably involving a range of well described bifurcations (Izhikevich,
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FIGURE 6 |The effects of short term synaptic depression of both
excitatory and inhibitory cortical synapses in the genesis of burst
suppression and its modulation by variations in extra-cortical input (pee)

and the IPSP decay time (εii, εie) (see section 2.3 for further details).
Parameters: θ e =0.1818 mV, θ i =0.07 mV, ke =14 mV s. All other parameters
as for Figure 3.

FIGURE 7 | Bursting produced by the activity dependent slow
modulation of excitatory and inhibitory synaptic efficacy
according to SS2 [equation (12)]. Left panel shows he (solid black
line) and normalized excitatory synaptic efficacy ce ≡0el/00

el (solid red

line) as a function of time. The left hand panel shows the phase
relationship between normalized excitatory and inhibitory (ci ≡0 il/00

il )
synaptic efficacies. Parameters: κe =0.2 mV−1, κ i =0.1 mV−1, εii =1.8,
εie =1.5.
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FIGURE 8 | Parametric variability of bursting produced by the activity dependent slow modulation of excitatory and inhibitory synaptic efficacy
according to SS2 [equation (12)]. For εii <1.8 simulated EEG was isoelectric as was the case for labeled combinations of εii and pee. Parameters as for Figure 7.

2007). However because our system clearly exhibited bistability
(see Figure 4) it is almost certain that our system will be able to
exhibit some form of burst excitability in response to stochastic
forcing. Such burst excitability has been described experimentally.
For example during BS induced by various halogenated anes-
thetic agents, bursts can be readily evoked by auditory, visual,
or somatosensory stimuli (Hartikainen et al., 1995). Neverthe-
less while burst onset and duration may be random variables it
would seem that the bursts themselves should reveal a high degree
of determinism (weak non-linearity) when compared to EEG in
which bursting or epileptiform activity is not evident.

Because the parameter space of the underlying “fast” EEG
model is potentially extremely large it is not possible to system-
atically explore its dynamical repertoire and it may be possible
that this system, not augmented with one of the slow systems
described, is able to burst. Nevertheless, on the basis of our
results, and what is known regarding the dynamical mechanisms

of bursting, it would seem likely that multiple pathways to BS
exist through a variety of activity dependent slow modulatory
systems.

Further we might hypothesize that such slow modulatory sys-
tems might span a number of functional scales in the brain.
Figure 9 diagrammatically illustrates some possible candidate sys-
tems. An obvious activity driven slow modulatory system would
be that associated with thalamus and the corresponding thalamo-
cortical feed-back. Mean field models of the EEG that incorporate
thalamo-cortical feed-back have been developed (Rennie et al.,
2002) and it will be interesting to see if they are structurally config-
ured to support BS. In addition to synaptic fatigue another obvious
cortical system that might be marshaled to provide slow activity
dependent modulation is the cortico-cortical conduction system.
Although at this stage there is currently little evidence to suggest
anesthetics slow conduction velocities, it is widely documented
that axonal conduction velocities are significantly decreased in
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FIGURE 9 | Diagram illustrating a number of hypothesized,
physiologically plausible, multiple scale slow modulatory systems
that could be important in the genesis of electroencephalographic
bursting in the context mean field model of Liley et al. (A)
Thalamo-cortical feed-back (B) changes in the conduction properties of the
long-range cortico-cortical fiber system (C) slow changes in the efficacy of
synaptic function due to activity dependent resource depletion and
restitution. See accompanying text for symbol definitions.

hypothermia. Decreases of up to 5% per ˚C for conduction veloc-
ity have been reported (Waxman, 1980). As BS has been observed
to occur in hypothermia (Schwartz et al., 1989; Akrawi et al., 1996)
we can conclude that a slow system emerging in the long-range

coupling via a slowing of axonal conduction velocity is a possible
route to BS.

Our attempts to account for the dynamical pathogenesis of
burst suppression differ from other approaches, most notably
Ching et al. (2012). Ching et al. described the scalp EEG in terms of
the activity of a small scale, biophysically detailed, computational
model of interacting populations of cortical and thalamic neurons.
Burst suppression was modeled as arising from metabolically
induced alterations in an ATP-gated slow neuronal membrane
potassium current (IKATP ) on the basis that the reduction in cere-
bral metabolic rate (CMRO2) induced by anesthetic agents and
hypoxia was associated with the depletion of ATP, and hence mem-
brane hyperpolarization. While on this basis they claim to have
accounted for a number of defining features of BS that included
(i) the spatial synchrony of burst onset (ii) the parametric variabil-
ity of burst duration/isoelectricity and (iii) the characteristically
long time scales associated with bursting/isoelectricity compared
to resting EEG, some caution needs to be exercised.

Firstly their model of resting/spontaneous EEG is constructed
on the basis of the activity of no more than 20 model neurons.
Because EEG is a distributed large scale phenomena such a model
is unlikely to meaningfully account for resting/spontaneous activ-
ity particularly given the absence of any long-range excitatory
cortico-cortical coupling. This has important implications for the
propagation of burst activity particularly given that the onset of
bursts, when examined at fine temporal scales, is probably not
truly spatially homogeneous.

Secondly while the relationship between CMRO2 and ATP pro-
duction cannot be reasonably disputed, not all anesthetic agents
that produce reductions in CMRO2 produce BS. For example the
noble gas xenon has been reported to reduce CMRO2 by up to
33% in human participants (Rex et al., 2006) yet is not associated
with any discernable BS.

Thirdly the approach they have taken to producing BS essen-
tially depends on the slow modulation of a faster system, the
approach we have adopted here. The modeled time scales of IKATP

variability are very long, of the order of tens of seconds.
For clarity and tractability the current investigations have

focused on the spatially homogeneous case for the model of Liley
et al. [i.e.,52

= 0 in equation (6)]. Clearly the emergence of BS in
the spatially extended case will need to be investigated through the
appropriate numerical solution of the defining partial differen-
tial equations. Because the cortical phase synchrony (Hartikainen
et al., 1995) of burst suppression has not, as far as we are aware,
been explicitly investigated it will be crucial to empirically deter-
mine the spatiotemporal emergence of bursts in order to assess
the importance of excitatory cortico-cortical connectivity in the
emergence and modulation of BS as implied by the model and as
we have suggested. This will require recording high density EEG
during anesthesia in which BS is present.
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Dynamic causal modeling (DCM) provides a framework for the analysis of
effective connectivity among neuronal subpopulations that subtend invasive
(electrocorticograms and local field potentials) and non-invasive (electroencephalography
and magnetoencephalography) electrophysiological responses. This paper reviews
the suite of neuronal population models including neural masses, fields and
conductance-based models that are used in DCM. These models are expressed in
terms of sets of differential equations that allow one to model the synaptic underpinnings
of connectivity. We describe early developments using neural mass models, where
convolution-based dynamics are used to generate responses in laminar-specific
populations of excitatory and inhibitory cells. We show that these models, though
resting on only two simple transforms, can recapitulate the characteristics of both evoked
and spectral responses observed empirically. Using an identical neuronal architecture, we
show that a set of conductance based models—that consider the dynamics of specific
ion-channels—present a richer space of responses; owing to non-linear interactions
between conductances and membrane potentials. We propose that conductance-based
models may be more appropriate when spectra present with multiple resonances. Finally,
we outline a third class of models, where each neuronal subpopulation is treated as a
field; in other words, as a manifold on the cortical surface. By explicitly accounting for
the spatial propagation of cortical activity through partial differential equations (PDEs),
we show that the topology of connectivity—through local lateral interactions among
cortical layers—may be inferred, even in the absence of spatially resolved data. We also
show that these models allow for a detailed analysis of structure–function relationships
in the cortex. Our review highlights the relationship among these models and how the
hypothesis asked of empirical data suggests an appropriate model class.

Keywords: dynamic causal modeling, electroencephalography, magnetoencephalography (MEG), local field

potential (LFP), neural mass models

INTRODUCTION
Over the past two decades, BOLD neuroimaging techniques have
been successfully applied in human studies to identify regions
of functional specialization, to within a scale of a few millime-
ters (Ashburner, 2012). Electrophysiological recordings includ-
ing magneto- and electro-encephalography (M/EEG) offer an
aggregate measure of neuronal activity (in the order of hun-
dreds of thousands of neurons) but at a millisecond timescale
(Baillet et al., 2001; Nunez and Srinivasan, 2006). Though local-
izing activity is mathematically ill-posed in these electromagnetic
modalities, the wealth of spatial information from fMRI studies
can now support M/EEG as a powerful modality for the analysis
of functional integration in the human brain.

Dynamic causal modeling (DCM) is designed to probe the
mechanisms of effective connectivity (the influence of one brain
region on another) that underlie multi-region network responses
in neuroimaging (fMRI, M/EEG) data. The approach uses a
neurobiologically motivated model which is inverted or fitted
to empirical observations using Bayesian techniques (Daunizeau
et al., 2011). These comprise separate generative processes at the

neuronal level and at the observation level. For M/EEG, neural
mass and neural field models in particular are used, to sup-
port this analysis by quantifying the temporal and spatiotemporal
evolution of macroscopic brain activity, using physiologically
plausible dynamics. In DCM; as implemented in the SPM soft-
ware (Litvak et al., 2011), neural mass and field models are used
as generative models to infer the synaptic parameters and effective
connectivity that constitute active brain networks. More recently,
these models have been applied in (single-region) DCMs as a
“mathematical microscope”—to test synaptic hypotheses at the
level of specific laminae and receptors (Moran et al., 2011b),
and disambiguate between structural and functional hypotheses;
for example, explaining intersubject variations in gamma oscil-
lations (Pinotsis et al., 2013b). In this review, we summarize
the state-of-the-art in modeling such population-based activity
and demonstrate their use in the context of DCM. The devel-
opment of these modeling approaches has been underpinned by
pioneering developments several decades ago that produced gen-
erative models of EEG data characteristics based on neural masses
(Wilson and Cowan, 1972; Nunez, 1974; Freeman, 1975, 1987;
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Jansen and Rit, 1995; Valdes et al., 1999; Wendling et al., 2000).
These models have since been refined and extended (Wright and
Liley, 1996; Rennie et al., 2000) to examine a myriad of neurobi-
ological processes including anesthesia (Steyn-Ross et al., 1999),
epilepsy (Breakspear et al., 2006; Marten et al., 2009; Nevado-
Holgado et al., 2012), “resting state” brain dynamics (Deco and
Jirsa, 2012), and so on. The types of models we will review here
have played a direct implementational role in DCM and do not
represent an exhaustive overview—a non DCM-centric treatment
is provided in Deco et al. (2008). Here we consider, in par-
ticular, how DCM treats ensemble neuronal activity as a point
process (neural mass models) or explicitly incorporate a spatial
dimension (neural field models). Both types describe so-called
“mesoscopic” properties of neural activity, employing statisti-
cal mechanics to transform single unit activity into population
activity—where appropriate composites can be used to gener-
ate macroscopic data. Since this mesoscale is hidden from direct
observation, we demonstrate how these models rely upon and
exploit knowledge about synaptic and cell physiology, as well as
neuroanatomy.

Two distinct biological perspectives have informed the devel-
opment of neural models, leading to a taxonomy of “convolution”
or “conductance-based” models. These distinctions arose from
the consideration of cortical mesocolumns—convolution mod-
els (Freeman, 1975); and separately from the consideration of a
single cell’s electrophysiological properties—conductance mod-
els (Hodgkin and Huxley, 1952). Early work by Wilson and
Cowan (1973) derived a sigmoidal relationship for transforming
population membrane potential to an average population firing
rate. These models consisted of sigmoidal and convolution-based
operators and were refined on the basis of empirical observa-
tions by Freeman, Wendling and others (Freeman, 1987; Jansen
and Rit, 1995; Wendling et al., 2000). In contrast, conductance
based models were formulated as an equivalent circuit model of
an excitable cell membrane: Hodgkin–Huxley’s original descrip-
tion of the giant squid axon is the classical example of this
sort of model—and was reduced to a two dimensional form by
Morris and Lecar (1981). Their reduced circuit has been scaled
up for M/EEG analysis in DCM using the Fokker-Planck for-
malism (Breakspear et al., 2010) to describe the evolution of
population densities (Marreiros et al., 2009). In this setting,
when only the first order statistics (e.g., mean) of the popula-
tion density are considered, the model describes a neural mass
(where the population density can be regarded as a point of
mass). When higher order statistics are considered, we obtain a
“mean-field” model (where the full density of one population
depends on the mean of another). We note that the terminol-
ogy here is rather specific to DCM; the focus of this review.
In other settings, and in other treatments of neuronal activ-
ity (Coombes, 2010; Buice and Chow, 2013), mean-field mod-
els often refer to population dynamics with interacting means
only. However, here we use the term neural-mass to refer to
an interaction in population means and mean-field to higher-
order interactions to remain consistent with the DCM litera-
ture and to acknowledge the early neural-mass nomenclature
developed by Valdez-Sosa and other pioneering work in this
field (Valdes et al., 1999). Both neural mass and mean field

formulations can be applied to convolution and conductance
based models: The choice of either convolution or conductance
based model depends on the type of inference required (when
applying the model to real data), with the latter offering a
richer and biologically more realistic parameterization of synaptic
currents.

The deployment of neural mass (or mean field) models
of populations in DCM entails further neurobiological plausi-
bility, through a laminar specification of cell types and their
interconnectivity. For neocortical studies, a laminar architecture
is populated with neuronal ensembles, so that forward (e.g.,
thalamo-cortical), backward or lateral (e.g., inter-hemispheric)
extrinsic connections impinge upon pyramidal, spiny stellate or
inhibitory interneurons (David et al., 2006). This construction is
motivated by tracing studies in the macaque (Felleman and Van
Essen, 1991) and demonstrates the first constraint under which
these models were developed for DCM. Namely; that they con-
form to known physiological and anatomical principles. A second
constraint is that they must be able to generate stereotypical
features of empirical macroscopic measurements; for example,
dominant alpha rhythms (David and Friston, 2003) or late poten-
tials in evoked transients (Garrido et al., 2007a). In this sense,
none of the models are “right” or “wrong”—but can be usefully
compared to test a particular hypothesis (Box, 1976).

In addition to the distinction between neural mass and mean
field formulations of either convolution or conductance based
models, we also have to consider the distinction between models
based upon ordinary differential equations and partial differential
equations (PDEs) that endow neuronal populations with spa-
tial attributes: incorporating the spatial domain into DCM was
motivated by the advent of spatially resolved population record-
ing modalities (Pinotsis et al., 2012). This use of neural fields,
was proposed as a semi-quantitative treatment of electromag-
netic brain activity by Jirsa and Haken (1996, 1997) and Robinson
(2006). Crucially neural fields enable local axonal arborization
to be modeled directly and can generate topological data fea-
tures. These may be particularly resolved in high-density subdural
grid electrodes (electrocorticography) and optical imaging tech-
niques and also contribute to the topographical distribution of
sensor/scalp space measurements in M/EEG.

In this review, we hope to provide a didactic treatment of
the neural mass and neural field models available in DCM and
highlight application studies that exemplify their use. This com-
plements more general treatments of neural population modeling
(Deco et al., 2008). The first section considers convolution-based
neural mass models. We will demonstrate their use in inferring
causal interactions among multiple brain regions and highlight
the minimal assumptions needed to form—and test—competing
hypotheses. In this section, we will also introduce the impor-
tant distinction between different models and different data fea-
tures; noting that the same models can be used for (and indeed
should be capable of generating) different data features. We will
focus on the distinction between time and frequency domain
responses—highlighting the use of identical neural mass models
when modeling evoked and steady state responses. In the sec-
ond section, we examine conductance-based models and how
new currents can be added to enhance physiological detail at
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the synaptic level. We also examine the impact of second-order
interactions among neuronal ensembles in mean field models,
particularly in the spectral domain. The third section introduces
the spatial parameterization in the form of partial differential or
neural field equations—and how these have been applied to test
alternative explanations for gamma activity in the visual cortex.
In this example, we reconsider lateral connections and the role
of distinct pyramidal cell populations. This final model recapit-
ulates “a canonical microcircuit” and provides a framework for
investigating differences in directed oscillations. This develop-
ment was motivated by theoretical considerations about message
passing in the brain; namely predictive coding and implica-
tions for spectral asymmetries in laminar specific communication
(Friston, 2005, 2009). Important asymmetries of the sort are
evident in several recent empirical observations (Maier et al.,
2010; Buffalo et al., 2011; Bastos et al., 2012) on the laminar
specificity of oscillation frequencies. In principle, these sorts of
observations can be used with DCM, to address key questions
about reciprocal message passing in the brain and its hierarchical
architecture.

CONVOLUTION BASED NEURAL MASS MODEL
GENERATIVE MODELS OF EVOKED RESPONSES: THE ERP MODEL
In DCM, event related potentials are modeled as the response
of a dynamic input–output system to exogenous (experimental)
inputs (David et al., 2006; Kiebel et al., 2006; Garrido et al.,
2007b). The DCM generates a predicted ERP as the response
of a network of coupled sources to sensory (thalamic) input—
with the form of a narrow (16 ms) Gaussian impulse function
that accounts for some temporal smoothing in thalamic volleys.
Each source is modeled as a point source (c.f., equivalent cur-
rent dipole) comprising three subpopulations, each assigned to
a particular cortical layer. For simplicity, we place an inhibitory
subpopulation in the supragranular layer. This receives inputs
from excitatory deep pyramidal cells in an infra-granular layer
which are, in turn, driven by excitatory spiny cells in the gran-
ular layer; layer IV. These three subpopulations are connected
with intrinsic coupling parameters as shown in Figure 1. Though
these models operate as a point process, by specifying different
layers we can call on anatomical rules of extrinsic (region to
region) connectivity (Felleman and Van Essen, 1991). Specifically,

FIGURE 1 | Convolution-based neural mass models: “ERP” and “LFP”.

Neural mass model used to represent a cortical source. Three cell
subpopulations contribute to the ongoing dynamics. These include spiny
stellate cells in granular layer IV, pyramidal cells and inhibitory interneurons
in extra granular layers (II and III; V and VI). Intrinsic connections, γ1,2,3,4,5

link subpopulations in each source. Neuronal states include currents, i, and
membrane potentials v. Extrinsic connections enter at specific cortical

layers (see main text). Right: The functions controlling ongoing dynamics
and their parameterization are summarized by synaptic kernels, which are
used to convolve presynaptic (firing) input [a sigmoidal function of
presynaptic membrane depolarization σ(v)] to produce postsynaptic
depolarization (v), dependent on membrane time constants (1/ κe/i ) and
average post-synaptic depolarizations (He/i ) at excitatory (e) and inhibitory
(i ) synapses.
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the “ERP” and “LFP” convolution based models can be assem-
bled within a generative network using three distinct types of
connections. Forward connections correspond to afferent pyra-
midal axons and synapse on layer IV stellate cells, while back-
ward afferents impinge upon pyramidal and inhibitory interneu-
rons outside of layer IV. Lateral, inter-hemispheric connections
are modeled with a postsynaptic response that is elicited in
all layers.

The evolution of neuronal activity in this anatomical archi-
tecture is controlled by two simple operations following Jansen
and Rit (1995). The first is a convolution operation (Figure 1)
that lends the model its name and models the average mem-
brane depolarization response as a low-pass impulse response.
This transforms the average density of pre-synaptic firing arriv-
ing at the population into the average postsynaptic membrane
potential (PSP). This response is specified by two biologically
informed parameters; one tunes the maximum amplitude of
PSPs and represents the receptor density and the second is a
lumped representation of the sum of synaptic rate constants
(of passive membrane and other spatially distributed delays in
the dendritic tree). The output operator (Figure 1) then trans-
forms this average membrane potential into the average rate of
action potentials fired by the population. This transformation is
assumed to be instantaneous and is described by a sigmoid func-
tion with parameters that determine its shape and location. These
parameters model the voltage sensitivity or gain of the subpopu-
lation and its average threshold. It is this function that endows
the model with non-linear behaviors that are crucial for phe-
nomena like phase-resetting of the M/EEG. The sigmoid form
for these activation functions was originally motivated as aris-
ing from a unimodal distribution of threshold potentials within
a population of Heaviside response units (Wilson and Cowan,
1973). More recent formulations that connect directly to full
mean field (population density) treatments consider the sigmoid
form to arise from the distribution of depolarizations within
a population, under a fixed threshold. This output of this sig-
moid function (presynaptic input) is scaled by intrinsic and
extrinsic connectivity parameters from subpopulations within a
source or from pyramidal cell afferents that arise from other
sources in the network. Thus activity promulgates and reverber-
ates throughout the network (Figure 1). Delays along these con-
nections are also parameterized with values that correspond to
the time taken for axonal propagation between layers (∼2 ms) and
regions (∼16 ms).

A pair of ordinary differential equations completely describes
the dynamics of each subpopulation within a source (Figure 1).
These are deterministic and—for a DCM of ERPs—a thalamic
impulse timed to correspond to some experimental stimulus per-
turbs the sources. The spatial arrangement of pyramidal cell
dendrites (perpendicular to the cortical surface) renders them
the prominent sources of measurable electromagnetic signals and
are thus harvested from each source in the network and passed
through a lead field, to produce the spatiotemporal patterns
observed in M/EEG sensors.

Early applications of this model led to a series of EEG-based
investigations into oddball effects by Garrido et al. (2007a, 2008,
2009). The mismatch negativity (MMN) is a negative change

in the auditory evoked potential that occurs after an unpre-
dictable change in the acoustic stream. It is elicited, for example,
when deviant frequency tones are embedded in a stream of
repeated tones. The MMN has a fronto-temporal topology and
is thought to reflect the updating of an internal model of the
sensorium, where by a sensory prediction error is registered and
a new prediction formed (Näätänen et al., 2005). Competing
“ERP” neural mass models were compared (in terms of their
model evidence, using standard Bayesian techniques) to probe
the type of extrinsic connection changes that mediate the MMN.
Indicating both a bottom-up sensory prediction error and a top-
down change in predictions, a stimulus specific modulation of
both forward and backward connections among hierarchically
deployed sources exhibited trial specific (deviant compared to
standard) modulation (Garrido et al., 2007b). This network and
paradigm has since been investigated in pathological settings.
A striking example by Boly et al. (2011) used the same model
comparison procedure to distinguish between top-down and
bottom-up extrinsic connections and their changes with levels of
consciousness.

GENERATIVE MODELS OF EVOKED AND SPECTRAL RESPONSES: THE
LFP MODEL
A second convolution-based model, named the “LFP” model was
developed from the “ERP” model. The model was augmented
to address the neurotransmitter basis of changes in intracorti-
cal local field potentials from rat prefrontal cortex (Moran et al.,
2007)—and now also serves as a generative model for non-
invasive EEG and MEG studies (Boly et al., 2012). The model
differed from the “ERP” model in two ways: first, based on
biophysical models by Whittington et al. (1995) of gamma oscil-
lations in the hippocampus, the role of inhibitory interneurons
was augmented with recurrent self-connections (Figure 1). This
subtle addition was important from the perspective of a new set
of questions. Here our goal was to develop a generative model
of spectral responses can exhibit high-frequency oscillations. A
second extension refined the neurophysiological input-output
transforms; whereby spike-rate adaptation was modeled at the
input stellate cell population. This involves the addition of cur-
rents based on the phenomenological model described by Benda
and Herz (2003) and combined several ionic currents modulating
spike generation—including voltage-gated potassium currents
(M-type currents), the interplay of calcium currents and intracel-
lular calcium dynamics with calcium-gated potassium channels
(AHP-type currents) and the slow recovery from inactivation of
the fast sodium current.

Practically these additions lead to a larger dynamic repertoire
using an identical connectivity architecture (three subpopula-
tions within a source and extrinsic forward, backward and lateral
connections with laminar specificity) as that described above.
The focus of the LFP model was the reproduction of fast syn-
chronous activity as summarized with the steady-state spectral
density (Fourier transform) of time series data. In order to gen-
erate steady-state spectral responses, we linearized the model’s
differential equations around an equilibrium point. This equi-
librium or operating point is obtained by integrating the system
over a protracted time window. The linearity assumption will
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accommodate parameter spaces in the region of fixed points and
local bifurcations (Friston et al., 2012), known to emerge from
this sort of model (Grimbert and Faugeras, 2006). In DCM,
the neural masses are treated as a system that is perturbed by
white and pink noise; which is explicitly parameterized. This
provides a compact summary of the system, where the system’s
spectral responses can be obtained from its transfer functions,
which depend on the physiological parameters of the model (and
neural noise) (Nunez, 1974; Steyn-Ross et al., 1999; Robinson
et al., 2001; Moran et al., 2007). In other words, the transfer
function links unobserved physiological processes to measured
spectral responses and is an essential part of forward or gen-
erative models of spectral measures. This “LFP” neural mass
model was first used in a single-region DCM analysis to demon-
strate how one can make inferences about synaptic function at
the neuronal level, using macroscopic electrophysiological mea-
surements. This proof of principle used microdialysis measures
of extracellular neurotransmitter for validation (Moran et al.,
2008) and extended the breadth of applications of DCM—in
this case by inferring condition specific modulations of synaptic
parameters.

CONDUCTANCE BASED NEURAL MASS MODELS
THE NMM AND MFM
In DCM, the first biophysical model of ensemble activity to
receive the three-letter acronym “NMM” was described in
Marreiros et al. (2008, 2009). These models parameterize neu-
ronal dynamics at the level of a single neuron and employ density-
based flow (the time derivative of neural activity) mechanics to
represent the dynamics of a population of neurons. In coupling
multiple subpopulations with different characteristics within and
between regions, the framework used a mean-field reduction
(assumption); where each type of population comprises a prob-
ability density and is only affected by the main activity of
other neuronal populations or ensembles in the model. This
formal population treatment was applied in the context of a
conductance-based model predicated on the Morris–Lecar equiv-
alent RC-circuit description of oscillatory membrane properties
in barnacle muscle fiber (Morris and Lecar, 1981). These models
equate capacitive current (according to Kirchhoff ’s current law)
with the summed active and passive currents across the mem-
brane. Morris–Lecar models can be thought of as reductions of
Hodgkin and Huxley’s model of the squid axon. They include
active currents that describe ligand-gated excitatory (Na+) and
inhibitory (Cl−) ion flow, mediated through fast glutamatergic
and GABAergic receptors, with a potassium leak current used to
account for all passive ionic currents (Gutkin et al., 2003); where
the conductance of the active channels display first order dynam-
ics that depend on the time constant of the channel and their
current state (Figure 2).

It may seem that we are conflating the introduction of mean
field (versus neural mass) formulations with the introduction
of conductance-based models. However, there is a fundamen-
tal reason for doing this: in full mean field treatments, the
ordinary differential equations describe the dynamics of first
and higher-order statistics of population densities—such as the
covariance among neuronal states within a population. Crucially,

the covariance depends upon the mean of the neuronal states
when, and only when, the equations are non-linear in the
states (i.e., where the states interact multiplicatively). In other
words, the weakly non-linear (sigmoidal) equations of motion
of convolution-based models mean that the covariances are not
functions of the population averages and therefore do not change
with time. This is why one only has to consider first-order statis-
tics in neural mass models based upon (linear) synaptic convo-
lution operators. However, when we move to conductance-based
models, there is a necessary interaction between conductance and
depolarization, which renders the models intrinsically non-linear.
This means that the covariances depend upon the means (and
vice versa). It therefore only makes sense to consider mean field
treatments of conductance-based models.

Mean field treatments start with a description of a single
neuronal response in terms of stochastic differential equations
(presented in Figure 2) that accommodate noise or fluctuations
in neuronal states (Note: In physics generally a mean-field reduc-
tion refers to any statistical summary i.e., to first or higher order,
to describe population responses. In the context of neuronal pop-
ulation models of brain function, the literature has a adopted a
standard where a neural-mass refers to first order and a mean-
field; first and higher order interactions (Deco et al., 2008).
Marreiros et al. (2009) used these stochastic differential equa-
tions to form a set of non-linear ordinary differential equations by
applying the Fokker-Planck formalism using the Laplace assump-
tion (or method of moments). This meant that ensemble activity
could be modeled without the need to simulate individual unit
activity with noisy fluctuations—the neuronal fluctuations are
implicit in the population density dynamics. Heuristically, the
population density approach is important because it provides a
unique prediction or generative model of an empirical response.
Mean field formulations of conductance-based models are there-
fore invertible (can be fitted to data) in the setting of DCM. The
resulting expression for the population dynamics; the evolution of
the population’s mean and variance, decomposes into determinis-
tic flow and diffusion. In turn, these reduce to simple forms under
Gaussian (Laplace) assumptions about the population density—
where first order population dynamics are a function of flow
and the curvature of the flow, and the second order statistics a
function of the gradients of flow. However, a DCM of a single
source typically comprises three coupled populations (David and
Friston, 2003).

For conductance based models in DCM, we employed a similar
structure to the “ERP” and “LFP” mass models—with inter-
acting populations of excitatory spiny stellate cells, pyramidal
cells and inhibitory interneurons, coupled through intrinsic con-
nections (Figure 2). The mean field partition means that these
operations can be applied to each population in turn, and lead
to simple expressions; given that the gradient and curvature of
the equations of motion are only non-zero within a particu-
lar ensemble. These equations describe a mean-field model; the
“MFM,” in which the first and second order sufficient statistics
interact, influencing each other when the curvature (derivative
of the flow) is non-zero. The formally reduced model, where
only first order interactions are considered is termed the “NMM”.
This point mass interaction is identical to the ERP and LFP
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FIGURE 2 | Conductance-based neural mass models: “NMM” and

“MFM”. This figure shows Morris–Lecar-type differential equations
describing the time evolution of a single cell current (capacitance ×
change of membrane potential: CV̇ ) and conductance (g) at inhibitory
interneurons (extra granular layers), spiny stellate cells (granular layers) and
pyramidal cells (extra granular layers). In this model, all cell types possess
AMPA receptors, GABAA; with ion-channel time constants (1/ κe/i ). Layers

are connected with strengths parameterized by γ VL, VE, and VI are
reversal potentials for leak potassium channels, sodium, and chloride
channels, respectively, at VT is the threshold potential. NMDA receptors at
pyramidal cells and inhibitory interneurons can be added using a
conductance equation of similar form, weighted by a voltage dependent
switch (Moran et al., 2011a,b). For a full population Fokker-Planck
characterization see Marreiros et al. (2008).

models in terms of the effects different subpopulations exert on
others, but have a different dynamic form through the equiva-
lent RC circuit description. Unlike the NMM, the MFM allows
for expansion (dynamic increase in the variance of the state’s
associated probability distribution) and contraction (dynamic
reduction in the variance of the state’s associated probability dis-
tribution) of dispersed neuronal states to influence the average
flow.

Marreiros et al. (2010) compared DCM using mean-field mod-
els (MFM) with dynamically coupled means and variances to
a model where the variance was fixed (NMM). In the time
domain, a simulated evoked potential elegantly demonstrated
the effect of this coupling with the variance of the pyrami-
dal cell population’s depolarization contracting to close to zero
when the mean approaches its maximum. Within the spec-
tral domain, they similarly showed qualitative differences in
the dynamic repertoire—with the MFM displaying limit-cycle
attractors after bifurcation from a fixed-point (Marreiros et al.,

2009). In this setting, the mean-field model is inherently more
non-linear, because it entails non-linear interactions between
the first and second order statistics of the hidden states (i.e.,
dynamic processes that affect the observations, but cannot be
directly measured. the activity in interneurons affect signal prop-
agation within regions but due to the random pattern of their
dendrites do not directly contribute to the measured field).
This speaks to many similar investigations of non-linearity in
neural systems (Lopes Da Silva et al., 1989; Destexhe and
Babloyantz, 1991; Daffertshofer et al., 2000; Breakspear, 2002;
Breakspear and Terry, 2002; Stam, 2005), where the emer-
gence of quasiperiodic, chaotic and itinerant attractors belies a
rich set of dynamic phenomena with physiologically plausible
interpretations.

THE NMM AND MFM WITH VOLTAGE GATED NMDA RECEPTORS
An extension to the NMM and MFM was presented in Moran
et al. (2011a) through the inclusion of a third ligand-gated
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ion channel to model conductances controlled by the NMDA
receptor. NMDA receptor controlled ion channels were con-
sidered in a separate treatment since they are both ligand-
and voltage-gated. For an NMDA channel to open, following
the binding of glutamate, there must first be a large trans-
membrane potential to remove a magnesium ion blocking the
channel. Hence, the dynamics for this particular current are
given by an extended equation, which includes the magnesium
component using a voltage gated function (Figure 2). By intro-
ducing NMDA ion channels to pyramidal cells and inhibitory
interneurons (Brunel and Wang, 2001), we further constrained
and distinguished laminar specific responses. This type of chan-
nel afforded another source of non-linearity due to its voltage
dependency (Jahr and Stevens, 1990), and required an exten-
sion of the steady-state linearization, for both the NMM and
MFM case.

To characterize the dynamic repertoire of these models, we
examined steady-state responses in the frequency domain to iden-
tify regimes where the system settles to a fixed point (i.e., the
average activity reaches steady-state) or a limit cycle. In the first
regime the spectrum observed is generated by noise, where neu-
ronal populations act as a filter—shaping the noise spectrum to
produce a profile of output frequencies. In the second dynamic
regime, the average neuronal states themselves may oscillate. In
this situation, the system exhibits what is known as a quasiperi-
odic attractor and the frequency response to noise changes with
different points on the attractor (Moran et al., 2011a). This
means one has to take the average frequency response over the
attractor manifold (i.e., over the limit cycle). Crucially, the fre-
quencies that are preferentially passed by the system are also the
frequency of the oscillation (limit cycle). This means the pre-
dicted spectral responses to noise under steady state can be seen
(and treated mathematically) as a special case that obtains when
the attractor collapses to a fixed point. This second regime was
particularly evident in the MFM case, where attractor subspaces
characteristic of heteroclinic channels were observed—and pro-
duced bimodal spectral peaks from local and global state space
trajectories.

This richly parameterized neural mass model was then used
to examine distinctions among the type of receptors underly-
ing empirical neural activations in EEG and MEG. In Moran
et al. (2011b), we tried to recover pharmacologically induced
changes in receptor processing using MEG, during a visuo-spatial
working memory task. Specifically, parameter estimates from the
spectral response in superior frontal gyrus, disclosed an effect
of L-Dopa on delay period activity—in terms of how L-dopa
changed specific synaptic (connectivity) parameters (Figure 2).
These effects were exactly commensurate with predictions from
the animal and computational literature (Goldman-Rakic, 1996;
Durstewitz et al., 2000; Gorelova and Yang, 2000; Gonzalez-Islas
and Hablitz, 2003; Durstewitz and Seamans, 2008) and revealed
the dual mechanisms of dopaminergic modulation of gluta-
matergic processing; where L-Dopa increased the non-linearity
of post-synaptic responses mediated by NMDA receptors, and
decreased AMPA coupling between pyramidal cells and stellate
cells. In this study, we also found an L-Dopa-dependent change
in exogenous input into the frontal region, which effectively

suppresses this region during delay-related reverberatory pro-
cessing. Moreover, individual parameter estimates from the
DCM correlated with individual performance indices (Moran
et al., 2011b), a crucial finding that is often used to show
that parameter estimates from an NMM reflect real neuronal
processes.

SPATIAL HARMONICS AND THE NEURAL FIELD
THE NFM
Pinotsis et al. (Pinotsis and Friston, 2011; Pinotsis et al., 2012)
introduced the spatial domain into DCM with neural field mod-
els. Neural fields model current fluxes as continuous processes
on the cortical sheet, using PDEs. The key advance that neural
field models offer, over conventional neural mass models, is that
they embody spatial parameters (like the density and extent of
lateral connections). This means that, in principle, one can infer
the spatial parameters of cortical infrastructures generating elec-
trophysiological signals (and infer changes in those parameters
over different levels of an experimental factor) from empirical
data. This rests on modeling responses not just in time but also
over space. This sort of model should be ideally suited to exploit
the temporal dynamics of observed cortical responses with a high
spatial resolution; for example, with high-density recordings, at
the epidural or intracortical level. However, as demonstrated in
early DCM-NFM, the impact of spatially extensive dynamics is
not restricted to expression over space but can also have profound
effects on temporal (e.g., spectral) responses at one point (or
averaged locally over the cortical surface) (Pinotsis et al., 2012).
This means that neural field models may also play a key role in
the modeling of non-invasive electrophysiological data that does
not resolve spatial activity directly. Although, neural mass mod-
els can describe patterns in sensor space, the spatial attributes of
these patterns result from the coupling among states at different
points in source space and not from hidden states that are func-
tions space (i.e., they are described by equations that are time
dependent but not spatially dependent).

In terms of anatomical and physiological constraints, func-
tional specialization demands that cells with common functional
properties are grouped together. This architectural constraint
necessitates both convergence and divergence of cortical con-
nections (Zeki, 1990), of the sort that can be modeled with a
neural field model. To model these spatial aspects of connectiv-
ity one needs partial differential or integro differential equations
that accommodate lateral interactions over spatially extended
cortical manifolds. In Pinotsis and Friston (2011), the reper-
toire of steady state regimes engendered by sparse (patches of)
intrinsic connections was examined. Specifically, we considered a
bimodal, non-centric distribution and showed (through a Turing
instability analysis) that the dispersion relation from this par-
ticular arrangement of spatial delays leads to infinite branches
of complex spectra. These branches undergo similar conforma-
tional changes, under both increased propagation velocity and
decreased spatial separation (range) of lateral connections. The
resulting fall in the amplitude of high frequency oscillations was
also apparent in the spectral summaries of these responses, in
terms of cross spectral densities. For example, as the separation of
coupled neuronal populations increases, the total spectral power
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decreases and falls faster for higher frequencies in a manner simi-
lar to local coherence functions based on primate recordings (see
Leopold et al., 2003) In brief, both the spatial deployment and
the speed of lateral connections can have a profound effect on the
behavior of spatial harmonics over different scales. Interestingly,
it turned out that only synaptic gain was capable of producing
phase-transitions: when increasing gain, the system was driven to
an unstable regime and oscillations appeared as a result of a Hopf
bifurcation.

This neural field model was later extended to a three lay-
ered architecture comprising pyramidal cells, inhibitory interneu-
rons and spiny stellate cells (Figure 3), where spatial delays
result from signals propagating with finite conduction speeds
along axonal arbors (Pinotsis et al., 2012). These arbors were
arranged with a central distribution of synaptic densities, which
decayed exponentially in space. Spatial delays operated along the
same intrinsic connections used in ERP neural mass models:

the cortical micro circuitry in the “ERP” and “NFM” models.
This means that the neural mass and field models are essen-
tially the same; describing the same neurobiological dynamics
over time, but where the “NFM” is equipped with spatially
extended hidden states that characterize presynaptic input as a
spatially-extended process that is propagated along axonal arbors.
In contrast the hidden states in a neural mass model are a
function of time only. As with the “ERP” and “LFP” models,
this model (“NFM”) uses a convolution operator to characterize
post synaptic filtering and a sigmoid function to accommodate
the dispersion of the hidden states of the afferent population
(Figure 3).

The advantage of neural field models is that they can accom-
modate spatially extended activity on cortical manifold or patches
that endows the predicted responses with a complicated fre-
quency dependency. This allows one to distinguish between spa-
tial effects and other factors (such as intrinsic cell properties) on

FIGURE 3 | Canonical microcircuit neural field model: “CMC”. This figure
shows the evolution equations that specify a canonical microcircuit (CMC)
neural mass model of a single source. This model contains four populations
occupying different cortical layers: the pyramidal cell population of the Jansen
and Rit model is effectively split into two subpopulations allowing a
separation of the neuronal populations that elaborate forward and backward
connections in cortical hierarchies. As with the ERP and LFP models,
second-order differential equations (shown earlier in Figure 1 decomposed
into two first order ODEs), mediate a linear convolution of presynaptic activity

[a sigmoidal function of presynaptic membrane depolarization σ(v)] to
produce postsynaptic depolarization (v), dependent on membrane time
constants (1/ κe/i ) and average post-synaptic depolarizations (He/i ) at
excitatory (e) and inhibitory (i ) synapses. This depolarization gives rise to firing
rates within each sub-population that provide inputs to other populations.
Replacing connectivity parameters d, with a connectivity matrix over space
and time D(x,t) enables one to generalize the neural mass model to a neural
field model. This effectively converts the ordinary differential equations in this
figure into partial differential equations or neural field equations.

Frontiers in Computational Neuroscience www.frontiersin.org May 2013 | Volume 7 | Article 57 | 197

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Moran et al. Neural models in DCM

the basis of observed (empirical) responses. The incorporation
of neural field models in the DCM framework allowed spatial
parameters of the sources—like the spatial decay rate of synap-
tic connections and intrinsic conduction speed—to be optimized
even using spatially unresolved data, like a time series from a sin-
gle LFP channel. For example, Bayesian model selection (BMS)
correctly distinguished between mass and field models. This type
of comparison was formalized using DCM and Bayesian model
evidence in the context of invasive local field potentials from rat
auditory cortex. With these invasive data, the neural-field model
had a much greater evidence than the equivalent neural mass
variant; this could be attributed to the increased repertoire of pre-
dictions that these models afford and indicates a key role for—and
parameterization of—spatial as well as temporal dynamics on the
cortical manifold.

STRUCTURE, FUNCTION, AND THE CANONICAL MICROCIRCUIT (CMC)
Pinotsis et al. (2013b) showed that DCM with neural fields
can provide a detailed analysis of correlations between cortical
structure and function. This analysis was motivated by previous
results suggesting two hypotheses regarding the biophysical basis
of inter-individual differences in peak gamma frequencies—one
based on functional differences and one based on structural dif-
ferences: Muthukumaraswamy et al. (2009) suggested that peak
gamma frequency is determined by the level of inhibition in
V1, as described by resting GABA concentration measured with
MR spectroscopy. Later, Schwarzkopf et al. (2012) found a cor-
relation between peak gamma frequency and the surface area
of primary visual cortex as measured with retinotopic mapping.
These authors suggested that the size of V1 and associated differ-
ences in structural microanatomy could be true determinants of
peak gamma frequency. The above two hypotheses suggest that
both GABA concentration and V1 size can influence gamma fre-
quency; however, these factors may or may not be causally linked.
In other words, a larger V1 may have a higher GABA concen-
tration that may or may not be due to a higher local GABA
density.

DCM with neural fields incorporate parameters pertaining to
both microanatomy and the density of GABA receptors (that
determine inhibitory intrinsic connection strengths) and allow
one to investigate alternative explanations for differences in
gamma peak frequency. These differences could be mediated by
either a kinetic (functional) parameter, summarizing the level
of cortical inhibition or the (structural) macrocolumn width
or both of these parameters. Pinotsis et al. (2013b) looked at
the correlations over subjects between peak gamma frequency,
V1 surface area and the Bayesian estimates of these structural
and functional parameters and found that both hypotheses were
confirmed. In brief, they found correlations between columnar
width, gamma peak and V1 size and also between the GABAergic
parameter and the gamma peak. This correlation remained sig-
nificant when controlling for V1 size and width. This suggests
that the correlation between gamma peak and V1 inhibition can-
not be accounted for completely by the spatial parameters (at the
microscopic or macroscopic level). Structural equation modeling
was used to characterize the causal dependencies among observed
quantities and the model parameters: in the winning structure

equation model, peak gamma frequency was mediated proxi-
mately by excitatory drive to inhibitory (GABAergic) interneu-
rons and the strength of this drive was determined, in part, by
the size of macrocolumns. In turn, the size of the macrocol-
umn was constrained by the macroscopic (retinotopic) size of
V1 (under the assumption that V1 size is determined geneti-
cally or epigenetically). These results suggested that both cortical
microstructure and excitability may be important for visual per-
ception and are in accord with empirical studies showing that the
size of V1 is negatively correlated with the strength of visual illu-
sions (Schwarzkopf et al., 2010)—and that GABA concentration
correlates with orientation discrimination ability (Edden et al.,
2009).

This work also introduced an expanded neuronal architecture
based upon the canonical microcircuit. These models comprise
four subpopulations (as opposed to three subpopulations in mass
and field models above, see Figure 3). The canonical microcircuit
or “CMC” models a refinement of the Jansen and Rit convolu-
tion models that explicitly accommodates the neuronal sources of
forward and backward connections in cortical hierarchies (Bastos
et al., 2012). These are distinct superficial and deep pyramidal
cell populations, respectively that, crucially, may exhibit differ-
ent spectral outputs. Specifically gamma responses have been
recorded in superficial layers, while slower dynamics (in the alpha
and beta range) arise concurrently in infra granular populations
(Maier et al., 2010; Buffalo et al., 2011; Bastos et al., 2012). The
CMC proposes an intrinsic connectivity architecture to account
for this non-linear transformation though dendritic and pop-
ulation effects (Bastos et al., 2012). The canonical microcircuit
model is based upon intracellular recordings in cat visual cor-
tex by Douglas and Martin (1991) who investigated the laminar
propagation of afferent signals and produced pathways that are
thought to reflect canonical input–output processing streams for
forward and backward signals throughout the cortex. These mod-
els are currently being used to test hypotheses about asymmetries
in forward and backward message passing that may shed light
on the distributed neural processing that underlies perceptual
synthesis and inference.

SUMMARY
The basic idea behind DCM is that neural activity propagates
through brain networks in a way that can be modeled as an
input-state-output-system, where causal interactions within the
system are mediated by unobservable (hidden) dynamics. The
resulting multi-input-multi-output (MIMO) neuronal model
is then supplemented with a observation model (e.g., classi-
cal electromagnetic forward model) that describes the mapping
from neural activity to observed responses (Daunizeau et al.,
2011). It is the dynamics of the hidden states that are pre-
scribed by the neural mass and neural field models outlined
above. The type of data and data features determine the com-
bination of neuronal and observation models. For example,
EEG and MEG data require a different observation model than
LFP data, while evoked responses necessitate a parameterized
Gaussian pulse input—in contrast with spectral density data
features that require parameterized neuronal noise spectra. In
all of these different applications, the underlying “LFP,” “ERP,”
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“NMM,” “MFM,” “NFM,” and “CMC” models are, in principle,
interchangeable.

The choice of the appropriate neuronal model should reflect
the research question at hand: for example, whether the focus is
on topographic as opposed to intrinsic neurotransmitter prop-
erties or drug effects etc. This choice may also be informed
by previous applications, where a particular model has already
proven useful within a DCM context (for example, fast oscilla-
tions in the gamma band for the “CMC” model). One generally
designs a DCM study to assess the effects of task manipula-
tion, group, pathology or drug on a particular parameter or set
of parameters of interest. In other words, the choice of model
should be evident at the outset and often conforms to the “mini-
mal model approach” necessary to access that parameter—this is
because, in general, a simpler model has more constraints and can
use the degrees of freedom in the data to estimate model parame-
ters and evidence more efficiently. For example, where differences
in effective extrinsic connectivity are of interest, a convolution
based model—that is agnostic to specific intrinsic ion channel
mediators—will suffice to address the hypothesis (Campo et al.,
2012). The direction of empirical research using DCM as a “math-
ematical microscope” of synaptic processes—where particular
receptor and neurotransmitter changes are important—may call
for the finer grained physiological details of the NMM or MFM
(Moran et al., 2011b). In other cases the form of the dynam-
ics, for example whether field (or propagation) effects should
be considered, may itself embody the central hypothesis. In this
case, as demonstrated in Pinotsis et al. (2013b), BMS may be
sufficient to disambiguate among competing hypotheses about
neuronal architecture (Penny et al., 2004). In effect, BMS usurps
all other arguments as the best method to test which model should
be applied to which data; though computational and time con-
straints, particularly as the suite of options in DCM is expanded,
may determine the extensiveness and overall feasibility of such a
search. In principle, researchers may employ their own neuronal
model (or feature extraction process) by compositing a parame-
terized state space and utilizing the modularity of SPM’s source

code. Wrapper routines which specify parameter priors, integra-
tion schemes and variational expectation maximization can be
applied to a function of neuronal activity that is user-specified (In
SPM’s DCM toolbox: http://www.fil.ion.ucl.ac.uk/spm/, The cur-
rent routines are described in files “spm_fx_nmm”) (Kiebel et al.,
2009; Litvak et al., 2011). Construct validity would then need to
be tested by simulating data from different regions of parameter
space and investigating parameter identify ability i.e., whether the
framework can recover the simulated parameters given different
initializations. These tests are particularly important in the case
of highly nonlinear state space models, given the potential of the
gradient ascent to converge to local maxima (Friston et al., 2012).

The models we have reviewed in this paper may also be use-
ful beyond the DCM inference framework. For example, in the
study of large scale generative processes underlying resting-state
networks in fMRI, neural mass (Deco and Jirsa, 2012) and neu-
ral field models (Pinotsis et al., 2013a) have been embedded
in anatomical graphs to study emergent behaviors and dynamic
properties (Gray et al., 2009; Robinson et al., 2009). This suggests
that these models may have some utility as neural state equations
in DCM for fMRI, though currently we deploy coarser models
with far less physiological detail (Daunizeau et al., 2011). The
field of inquiry using these types of models is varied and rich,
with DCM applications including the locus of consciousness and
unconsciousness in vegetative state patients (Boly et al., 2011),
diaschisis in temporal lobe epilepsy (Campo et al., 2012) and the
effects of ketamine on synaptic plasticity (Schmidt et al., 2012).
The set of distinct dynamics within which these types of effects
can be parameterized will no doubt grow beyond the current suite
of models available. Indeed their exchangeability within the DCM
framework allows researchers to define their own favorite or inter-
esting model and proceed in the usual Bayesian way (Friston et al.,
2003).
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A novel direction to existing neural mass modeling technique is proposed where
the commonly used “alpha function” for representing synaptic transmission is
replaced by a kinetic framework of neurotransmitter and receptor dynamics.
The aim is to underpin neuro-transmission dynamics associated with abnormal
brain rhythms commonly observed in neurological and psychiatric disorders. An
existing thalamocortical neural mass model is modified by using the kinetic
framework for modeling synaptic transmission mediated by glutamatergic and GABA
(gamma-aminobutyric-acid)-ergic receptors. The model output is compared qualitatively
with existing literature on in vitro experimental studies of ferret thalamic slices, as
well as on single-neuron-level model based studies of neuro-receptor and transmitter
dynamics in the thalamocortical tissue. The results are consistent with these studies:
the activation of ligand-gated GABA receptors is essential for generation of spindle
waves in the model, while blocking this pathway leads to low-frequency synchronized
oscillations such as observed in slow-wave sleep; the frequency of spindle oscillations
increase with increased levels of post-synaptic membrane conductance for AMPA
(alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic-acid) receptors, and blocking this
pathway effects a quiescent model output. In terms of computational efficiency, the
simulation time is improved by a factor of 10 compared to a similar neural mass model
based on alpha functions. This implies a dramatic improvement in computational resources
for large-scale network simulation using this model. Thus, the model provides a platform
for correlating high-level brain oscillatory activity with low-level synaptic attributes, and
makes a significant contribution toward advancements in current neural mass modeling
paradigm as a potential computational tool to better the understanding of brain oscillations
in sickness and in health.

Keywords: neural mass model, thalamocortical circuitry, kinetic framework, brain oscillations, AMPA, GABA

1. INTRODUCTION
Neural mass computational models mimicking synchronous
behavior in populations of thalamocortical neurons are often
used to study brain oscillations (David and Friston, 2003;
Suffczyński et al., 2004; Breakspear et al., 2006; Sotero et al.,
2007; Deco et al., 2008; Izhikevich and Edelman, 2008; Pons
et al., 2010; Robinson et al., 2011; de Haan et al., 2012).
The term “neural mass” was coined by Freeman (1975), while
the neural mass modeling paradigm is based on the math-
ematical framework proposed by Wilson and Cowan (1973);
each cell population in a neural mass model represents a
neuronal “ensemble” of mesoscopic-scale (104–107), which are
densely packed in space and work at the same temporal-scale,
so that for all practical purposes, they can be mathemati-
cally treated as a single entity (Liljenström, 2012), whence
“mass”. In a seminal work, da Silva et al. (1974) used a neu-
ral mass model of a simple thalamocortical circuitry to sim-
ulate EEG (Electroencephalography) alpha rhythms (8–13 Hz).

Subsequently, this model has been the basis of several research
(Zetterberg et al., 1978; Stam et al., 1999; Suffczyński, 2000;
Bhattacharya et al., 2011a), albeit with modifications and
enhancements; of special mention is the modification introduced
by Jansen and Rit (1995) where the model is expressed as a set
of ordinary differential equations (ODE). This modification, in
turn, has been the basis of many significant research (Wendling
et al., 2002; Grimbert and Faugeras, 2006; Ursino et al., 2010).
However, the computational basis of the models remain the
same—the conversion from firing rate to membrane potential
by excitatory and inhibitory neurotransmitters is simulated by
convolution of the input from a pre-synaptic neuronal mass
with an exponential function, commonly known as the “alpha
function”, proposed by Rall (1967). Although the alpha func-
tion is a fair estimate of the synaptic process (Bernard et al.,
1994), it does not allow an insight into the underlying cellular
mechanisms of synaptic transmission associated with abnormal
brain oscillations—an aspect emphasized to be crucial as an
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aid to research in brain disorders (McCormick, 1992; Basar and
Guntekin, 2008). The importance of understanding the neuro-
transmission mechanisms in slow wave synchronized as well as
spindle oscillations is also discussed in several relevant experi-
mental studies (Steriade et al., 1993; von Krosigk et al., 1993).
Moreover, correlating synaptic kinetics with brain oscillatory
activity has the potential to aid neuropharmacological advances
in treating the diseased brain (Aradi and Erdi, 2006). Along
these lines, Destexhe et al. (1998) argue that the alpha func-
tion is inappropriate for representing post synaptic events other
than the originally proposed post-synaptic potential in spiking
neural networks; they propose a kinetic framework as a more
biologically plausible method of modeling synaptic transmis-
sion compared to the alpha function (Destexhe et al., 2002).
The ability of such a modeling framework to capture the phys-
iological properties of synaptic transmission was demonstrated
by fitting the model outputs to experimental data from hip-
pocampal slices. Moreover, kinetic modeling is reported to be
computationally efficient (Destexhe et al., 1994), a vital pre-
requisite in large-scale computational models. Subsequently,
the kinetic models of neurotransmission was used in several
single-neuronal-level model-based studies—to investigate thala-
mic oscillations (Destexhe et al., 1996) and corticothalamic influ-
ence on brain oscillatory activity (Destexhe, 2008); to investigate
network synchrony (Breakspear et al., 2003); to simulate syn-
chronous behavior observed during in vitro experimental studies
on ferret thalamic slice by Wang and Rinzel (1992), Golomb et al.
(1994, 1996) and Wang et al. (1995).

A significant modification to current neural mass model-
ing framework was proposed by Suffczyński et al. (2004) by
applying single-neuronal-level model based techniques. Toward
this, they proposed an “ensemble” representation of the mem-
brane conductance and post-synaptic current in a neuronal mass
model of the thalamocortical circuitry; an integrator is used
to generate the “ensemble” post-synaptic membrane potential.
In the work presented here, a similar approach is adopted to
implement the kinetic framework of synaptic transmission in
neural mass models—each post-synaptic attribute is assumed to
be an “ensemble” representation corresponding to a “neuronal
mass”. For brevity, only two-state (“open” and “closed”) ion-
channels (Destexhe et al., 1998) are considered, the desensitized
state is ignored. While two-state models are a significant sim-
plification of the very complex nature of ion channel dynamics
in biology, they have shown a remarkable fit to biological data
compared to more-than-two-state models (Destexhe et al., 1998,
2002). This work aims to interface an abstraction of the ion chan-
nel dynamics, such as the two-state ion channel kinetic models,
with an abstraction of the population level neuronal behavior,
such as neural mass models. The goal is to enable the correlation
of higher-level brain dynamics observed in EEG with cellular-level
dynamics.

The work is presented thus: first, the kinetic frame-
work for modeling AMPA (α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic-acid) and GABA (γ-amino-butyric-acid)
receptor mediated synapses is introduced in an existing thala-
mocortical neural mass model (section 2); second, a qualitative
comparison of the model behavior with experimental studies on

ferret thalamocortical tissue reported in von Krosigk et al. (1993)
as well as to single-neuronal-level model based observations
reported in Golomb et al. (1996; section 3) is presented; the lack of
a quantitative study is mainly to avoid erratic conclusions as dif-
ference in model structure and simulation techniques are bound
to induce mismatch in numerical results. The model behavior is
observed to be consistent with these studies (von Krosigk et al.,
1993; Golomb et al., 1996)—The post synaptic membrane con-
ductance in both the thalamocortical relay (TCR) and thalamic
reticular nucleus (TRN) cell population plays a role in effecting a
bifurcation in model behavior from spindling mode [oscillations
with the characteristic waxing-and-waning pattern seen in early
stages of sleep (Steriade et al., 1993; Hughes et al., 2004) as well as
in alpha rhythmic oscillations during resting brain state (da Silva
et al., 1973)] to a limit-cycle mode (synchronized oscillations as
seen in later stages of sleep or during absence seizures). The post-
synaptic membrane conductance for both AMPA and GABA in
the TRN cell population is responsible for sustaining and mod-
ulating spindle oscillations in the model output. Blocking the
GABA-ergic synapses in the self-inhibitory loop of the TRN cell
population effects a low-frequency synchronized oscillation in
the model; this is aided by the secondary-messenger-gated GABA
synapses in the TCR cell population. In addition, the reverse rate
of transmitter binding plays a role in increasing or decreasing the
frequency of synchronized oscillations, besides functioning as a
bifurcation parameter, an observation that has not been reported
in experimental studies. A comparison of the simulation time of
the model with previous research using neural mass models based
on alpha functions show a factor of 10 improvement in simulation
time. This is a dramatic improvement on computational effi-
ciency and emphasizes the appropriateness of the model proposed
herein toward building large-scale software models for investi-
gating neuronal disorders. The observations from this study as
well as issues related to the modeling approach are discussed in
section 4.

2. MATERIALS AND METHODS
2.1. FROM ALPHA FUNCTION TO KINETIC MODEL: A BRIEF OUTLINE
A single neuronal mass structure as used commonly in neu-
ral mass models is shown in Figure 1 and is defined in
Equations (1–5):

hw̄(t) = Hw̄

τw̄
texp(−t/τw̄) (1)

yN(t) =
∑

hw̄(t)⊗ EN
w̄ (t) (2)

ÿN(t) = Hw̄

τw̄
EN

w̄ (t)− 2

τw̄
ẏN(t)− 1

τ2
w̄

yN(t) (3)

VP(t) =
∑

N ∈ {1, 2, 3,...n}
CN .yN(t) (4)

EP
w̄(t) = S(VP) = 2e0

1+ eν(s0 −VP)
(5)

where w̄ ∈ {e, i} represents pre-synaptic neuronal populations
which make excitatory (e) and inhibitory (i) synapses on a
post-synaptic neuronal population; τw̄ is the time constant and
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FIGURE 1 | Block diagram of a single “neuronal mass” in current state-of-the-art neural mass models.

Hw̄ is the amplitude of the synapse; EN
w̄ (t), N ∈ {1, 2 . . . n} is the

firing frequency of an extrinsic or intrinsic cell population that is
pre-synaptic to the population P; CN is a percentage of the total
number of synapses from all afferents to P; VP is the “ensemble
post-synaptic membrane potential”; EP

w̄ is the “ensemble firing
rate” of P and is defined by a sigmoid function where 2e0 is the
maximum firing rate of the population, s0 is the threshold poten-
tial at which the neurons spike and ν is the sigmoid steepness
parameter.

2.1.1. A modified neural mass representation
In a recent work, Suffczyński et al. (2004) modified the neu-
ral mass representation of a cell population and introduced
post-synaptic current mediated by the ligand-gated glutamater-
gic receptors AMPA, and the ligand- and secondary-messenger-
gated GABA-ergic receptors GABAA and GABAB, respectively.
The input EN

ξ̄
(t), ξ̄ ∈ {AMPA, GABAA, GABAB}, is the firing rate

of an excitatory (AMPA) or inhibitory (GABAA and GABAB)
pre-synaptic neuronal population N ∈ {1, 2 . . . , n}. The model
(Figure 2A) is defined in Equations (6–11):

hξ̄(t) = Hξ̄

(
exp

(
−t/τa

ξ̄

)
− exp

(
−t/τb

ξ̄

))
, τb

ξ̄
> τa

ξ̄
(6)

gN
ξ̄

(t) =
∑

hξ̄(t)⊗ EN
ξ̄

(t) (7)

g̈N
ξ̄

(t) = 1

τa
ξ̄
τb
ξ̄

[
Hξ̄

(
τa
ξ̄
− τb

ξ̄

)
EN

ξ̄
(t)−

(
τa
ξ̄
+ τb

ξ̄

)
ġN
ξ̄

(t)

− gN
ξ̄

(t)
]

(8)

IN
ξ̄

(t) = gN
ξ̄

(t)
(

VP(t)− Vξ̄

)
(9)

κmV̇P(t) = −
∑

N ∈ {1,2,3,...,n}
CN .IN

ξ̄
(t)− Iλ(t) (10)

Iλ(t) = gλ

(
VP(t)− Vλ

)
(11)

where hξ̄(t) is the synaptic transmission function with τa
ξ̄

and

τb
ξ̄

as the rise and decay times, respectively; gN
ξ̄

denote the post-

synaptic “ensemble” membrane conductance; Vξ̄ is the reversal

potential for the synapse mediated by ξ̄; VP is the ensemble

post synaptic membrane potential of the population P due to
PSC from all pre-synaptic cell populations N ∈ {1, 2 . . . , n}; κm

is the ensemble membrane capacitance; CN is the synaptic con-
nectivity parameter; Iλ, gλ and Vλ are the ensemble leakage
current, conductance and reversal potential, respectively for P.
The ensemble firing rate EP

ξ̄
(t) is as defined in Equation (5)

and is the pre-synaptic firing rate input to other neuronal
populations.

2.1.2. Introducing kinetic model of synapses in a neural mass
representation

The single neuronal mass structure presented in Figures 1, 2A is
modified by replacing the alpha function with kinetic models of
AMPA, GABAA, and GABAB synapses; the enhanced representa-
tion (Figure 2B) is defined in Equations (12–19):

[T]χ(Vχ) = Tmax

1+ e−
Vχ − θs

σs

(12)

drξ̄1
χ (t)

dt
= αξ̄1 [T]χ

(
1− rξ̄1

χ (t)
)
− βξ̄1 rξ̄1

χ (t) (13)

dRξ̄2
χ (t)

dt
= αξ̄2 [T]χ

(
1− Rξ̄2

χ (t)
)
− βξ̄2 Rξ̄2

χ (t) (14)

d[X](t)

dt
= αξ̄2 Rξ̄2

χ (t)− βξ̄2 [X](t) (15)

rξ̄2
χ ((t)) = [X]n(t)

[X]n(t)+ Kd
(16)

Iξ̄
χ(t) = g ξ̄rξ̄

χ(t)
(

VP(t)− V ξ̄
)

(17)

κm
dVP(t)

dt
= −

∑
χ∈{1,2}

Iξ̄
χ(t).Cχ − Iλ

P(t) (18)

Iλ
P(t) = gλ

P

(
VP(t)− Vλ

P

)
(19)

Let Vχ, χ ∈ {1, 2} be the “ensemble” membrane potential of two
pre-synaptic neuronal population that are afferent to the post-
synaptic population P such that the synapses made by χ = 1 is
mediated by a ligand-gated receptor ξ̄1 ∈ {AMPA, GABAA} while
that made by χ = 2 is mediated by a secondary-messenger-gated
receptor ξ̄2 ∈ {GABAB}. The concentration of neurotransmitters
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FIGURE 2 | Block diagram of (A) Suffczyński et al. (2004)’s modification

of the structure in Figure 1 by introducing “ensemble” representation of

post-synaptic membrane conductance and current. (B) Neuronal mass
structure with the kinetic framework implemented for modeling synaptic

transmission as an alternative to the alpha function (hw̄ (t) in Figure 1). A
diagrammatic representation of the ion-channel kinetics during synaptic
transmission is presented in Figures 3A,B. (C) A thalamocortical circuitry
implementing the modified neuronal mass representation in (B).
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FIGURE 3 | The state transition diagrams for (A) AMPA and GABAA

neuro-receptor dynamics defined in Equation (13); α and β are rate of

transitions between the two states and α is a function of the

transmitter concentration in the synaptic cleft [T ] defined in

Equation (12); (B) GABAB neuro-transmission as defined in

Equations (14–16)—the neurotransmitter T binds to the inactivated

receptor R0; a fraction of activated receptors R act as a catalyst to

transform the G-protein from an inactivated form X0 to an activated

form X , which binds at n independent sites to open a fraction of the

ion channels. The desensitized state of the ion-channels are ignored in this
work for brevity (see Destexhe et al., 1998 for a detailed comparison of
kinetic models with more than two-states).

[T]χ in the synaptic cleft is defined as a function of Vχ and is
expressed by a sigmoid function (Equation 12) where Tmax is
the maximum neuronal concentration in the synaptic cleft and
is well approximated by 1 mM (Destexhe et al., 1998), θs rep-
resents the threshold at which [T] = 0.5Tmax and σs denote the
steepness of the sigmoid. The proportion of open ion-channels
due to the bound receptors ξ̄1 on the ensemble membrane of
the post-synaptic cell population corresponding to the synapse
made by the population χ = 1 is defined in Equation (13) where

αξ̄1 and βξ̄1 are the forward and backward rate constants, respec-
tively for transmitter binding. The transition diagram is shown
in Figure 3A. However, GABAB mediated synapses, unlike AMPA
and GABAA synapses, activate G-proteins which in turn act as the
“secondary messengers” and initiate the opening of ion channels.

The process is defined in Equations (14–16) where Rξ̄2
χ is the frac-

tion of activated ξ̄2 receptors, which acts as a catalyst in activating
the secondary-messenger G-protein (guanine nucleotideŰbind-
ing proteins); [X] is the concentration of the activated G-protein;

rξ̄2
χ is the fraction of open ion channels caused by binding of

X with independent binding sites; αξ̄2 and βξ̄2 are the binding
rate constants; n is the number of bound receptor sites and Kd

is the dissociation constant of binding of X with the ion chan-
nels. The transition diagram of this process is shown in Figure 3B.
The resulting ensemble PSC mediated by the receptor ξ̄ ≡ ξ̄1 ∪ ξ̄2

due to a synapse from the pre-synaptic population χ is defined in

Equation (17) where g ξ̄ and V ξ̄ are the maximum conductance
and reverse potential, respectively corresponding to ξ mediated
synapse. VP (Equation 18) is the ensemble post-synaptic poten-
tial (PSP) of P, where κm is the ensemble membrane capacitance
of P, Cχ, χ ∈ {1, 2} is the synaptic connectivity parameter. Iλ

P
(Equation 19) is the ensemble leak current of the post-synaptic
membrane, where gλ

P and Vλ
P are conductance and reverse poten-

tial, respectively, corresponding to “non-specific” leak (Golomb
et al., 1996; Suffczyński et al., 2004) in the ensemble membrane
of the post synaptic cell population. In the following section,
we implement this framework in a neural mass model of the
thalamocortical circuitry.

2.2. NEURAL MASS MODEL OF A THALAMOCORTICAL CIRCUITRY
WITH KINETIC SYNAPSES

The thalamocortical circuitry is shown in Figure 2C and con-
sists of the two thalamic cell populations that communicate
with the cortex viz. the TCR and TRN. The third group of
cells viz. the Interneurons (IN) participate in intra-thalamic
communications and are ignored here for brevity. The synap-
tic structure and connectivity are informed from experimental
data based on the dorsal thalamic Lateral Geniculate Nucleus
(LGNd) (Horn et al., 2000). The input to the model is assumed
to be the ensemble membrane potential of pre-synaptic reti-
nal cells (Vret) in a resting state with no sensory input and is
simulated using a Gaussian white noise (da Silva et al., 1973).
The TCR cells make AMPA receptor mediated glutamatergic
synapses on the TRN cells (other types of glutamatergic recep-
tors are ignored in this work for brevity); the TRN cells make
GABA-ergic synapses on the TCR cells mediated by both the
ligand-gated GABAA and the secondary-messenger-gated GABAB

receptors. Furthermore, the TRN cells make GABAA receptor
mediated synapses within the population. The model is defined
in Equations (20–27); all variables and parameters in the model
are assumed to be the ensemble representation corresponding to a
neural mass:

[T]�̄ (V�̄(t)) = Tmax

1+ exp
(
−V�̄ (t)−θs

σs

) (20)

drη̄1

�̄
(t)

dt
= αη̄1 [T]�̄

(
1− rη̄1

�̄
(t)
)
− βη̄1 rη̄1

�̄
(t) (21)

dRη̄2

�̄
(t)

dt
= α

η̄2
1 [T]�̄

(
1− Rη̄2

�̄
(t)
)
− β

η̄2
1 Rη̄2

�̄
(t) (22)

d[X](t)

dt
= α

η̄2
2 Rη̄2

�̄
(t)− β

η̄2
2 [X](t) (23)

rη̄2

�̄
((t)) = [X]n(t)

[X]n(t)+ Kd
, (24)

Iη̄

�̄
(t) = g η̄rη̄

�̄
(t)
(

Vϒ̄ (t)− V η̄
)

(25)

κm
dVϒ̄ (t)

dt
= −

∑
�̄ ∈ {ret, trn, trn}

Iη̄

�̄
(t).Cūv̄w̄ − Iλ

ϒ̄
(t), (26)

Iλ
ϒ̄

(t) = gλ
ϒ̄

(Vϒ̄ (t)− Vλ
ϒ̄

), (27)

where �̄ ∈ {ret, trn, trn} represent the afferent cell popula-
tions; ϒ̄ = {trn, trn} represent the efferent cell populations; η̄1 ∈
{AMPA, GABAA}, η̄2 ∈ {GABAB}, η̄ ≡ η̄1 ∪ η̄2; Cūv̄w̄ are con-
nectivity parameters where ū ∈ {t, n} and v̄ ∈ {r, t, n, s} denote
the post-synaptic and pre-synaptic cell populations, respectively
of the retina (r), TCR (t), TRN (n), while s denote an intra-
population afferent; w̄ ∈ {e, i} represent an excitatory (e) or an
inhibitory (i) synapse. All other parameter nomenclatures are as
defined in section 2.1. The initial parameter values are mentioned
in Table 1.
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Table 1 | Initial values of the parameters defined in Equations (21–27).

Neuroreceptors→ AMPA GABAA GABAB

Units↓

(A) NEUROTRANSMISSION PARAMETERS

mM.msec−1 αη̄1 = 2 αη̄1 = 2
α

η̄2
1 = 0.02

α
η̄2
2 = 0.03

msec−1 βη̄1 = 0.1 βη̄1 = 0.08
β

η̄2
1 = 0.05

β
η̄2
2 = 0.01

mS gη̄ = 0.1
gη̄

TRN to TCR = 0.1
gη̄ = 0.06

gη̄

TRN to TRN = 0.2

mV Vη̄ = 0
Vη̄

TRN to TCR = −85
Vη̄ = −100

Vη̄

TRN to TRN = −75

Kd = 100

n = 4

(B) CELL MEMBRANE PARAMETERS

TCR TRN

gλ
ϒ̄

(mS) 0.01 0.01

Vλ
ϒ̄

(mV) −55 −72.5

Vrest (mV) −61 −84

(C) CONNECTIVITY PARAMETERS

Efferents→
TCR

TRN
Retinal

Afferents ↓ GABAA GABAB

TCR X
Ca

tni Cb
tni Ctre

3
4 of 30.9 1

4 of 30.9 7.1

TRN
Cnte Cnsi X X
35 20

Data in (A) and (B) are as in Golomb et al. (1996) and Suffczyński et al. (2004).

In Equation (20), both θs and σs act as bifurcation parameters in the model

(see Bhattacharya et al., 2012). However, the emphasis here is on post-synaptic

membrane attributes as in von Krosigk et al. (1993) and Golomb et al. (1996).

Thus these parameters (θs = −35 and σs = 2) are set by trial and error at values

just before the model undergoes bifurcation from a “point-attractor” mode to

a “limit-cycle” mode, based on a recent study where we observed rich model

dynamics and power spectral behavior around the bifurcation point (Bhattacharya

et al., 2013); Tmax = 1 mM (Destexhe et al., 1994). The input noise mean

μ = −45 mV and standard deviation ϕ = 20 mV2 are set by trial and error and

represents the resting state membrane potential fluctuations in retinal cells.

While the total number of GABA-ergic synaptic count on TCR cells is reported

as 30.9%, specific data on GABAA and GABAB are not available in literature

to the best of our knowledge. Thus, values for Ca
tni , Cb

tni and Cnsi in (C) are

selected, within the reported biological range [see Bhattacharya et al. (2011b) for

details], when the model output showed an increased frequency content within

the theta (4–7 Hz) and alpha (8–13 Hz) bands. Ctre and Cnte are as in Bhattacharya

et al. (2011b). All variables in the ODEs are initialized to an arbitrarily small value

0.0002.

3. RESULTS
The ODEs are solved using the 4th/5th order Runge-Kutta-
Fehlberg method (RKF45) in Matlab for a total duration of 600 s
(10 min) at a resolution of 1 ms. The output voltage time series is

averaged over 20 simulations, each simulation run with different
seed for the noisy input. For frequency analysis, an epoch from
100–599 s of the output signal is sampled every 4 ms (250 Hz) and
bandpass filtered between 3.5–14 Hz with a Butterworth filter of
order 10. Short Time Fourier Transform (STFT) is done with a
Hamming window of duration 10 s and overlap of 50%.

The model displays a point-attractor mode behavior (initial
transient oscillations before settling down to a low amplitude
noisy output, which reflects the noisy input of the model) cor-
responding to initial parameter values (Figure 4A). There is a
behavioral transition in the model to a limit cycle mode with
increasing values of βampa, which correlates with a decrease in
the fraction of open ion channels in the post-synaptic ensem-
ble membrane (Figures 4B,C). Varying αampa, on the other hand,
does not affect the model behaviour (Figures 4D,E). A transi-
tion from the limit cycle mode to a spindling mode is effected
in the model by increasing gampa, the post-synaptic membrane
conductance for AMPA mediated synapses in both TCR and TRN
cell population, and shown in Figures 4F,G. STFT of the output
time series indicates the non-stationary behavior of the model
(Figures 4H–K). A decrease and increase, respectively of the theta
and alpha band components imply an overall increase in fre-
quency with increasing values of gampa ≡ {gampa

TCR , g
ampa
TRN }, where

g
ampa
TCR and g

ampa
TRN correspond to the incoming signal from the

retina (to the TCR) and TCR (to the TRN), respectively in the
model. These observations are consistent with similar reports of a
transition in the state of the model output with increasing values
of gampa in Golomb et al. (1996; pp. 756–757), accompanied by
an abrupt increase in the ratio of the frequency of oscillation of
the TCR and the TRN cell populations; we have not studied the
latter aspect in this work. A more detailed study on the model pre-
sented herein where g

ampa
TCR and g

ampa
TRN are varied separately specify

the g
ampa
TCR as the control parameter that causes a bifurcation in

the model output from a limit cycle mode to the spindling mode
with an increase in its value. On the other hand, the g

ampa
TRN does

not effect any behavioral change in the model output, rather, it is
effective in increasing the inter-spindle frequency with an increase
in its value when the model is in a spindling mode. This observa-
tion implies that a change in AMPA receptor related attributes
in the TRN plays a role in modulating thalamocortical spin-
dle oscillations, which finds strong support in the experimental
study by von Krosigk et al. (1993), where “activation of AMPA-
kainate receptors on the PGN” (Peri-geniculate nucleus—the part
of the TRN associated with the LGNd) is described as “critical
to the generation of spindle waves”. Furthermore, this observa-
tion is in line with the TRN being widely implicated as being
the key “ingredient” in the generation of thalamocortical spindle
oscillations (McCormick, 1992; Steriade et al., 1993).

Varying the GABA-ergic synaptic attributes when the model
is in a point-attractor mode does not show any change in model
behavior. When the model is in a spindling mode (Figure 5A),
increased synchronization within the limit cycle mode with

increasing values of g
gabaA
TRN to TCR (Figures 5B,C) is observed. An

increase in the parameter βgabaA affects the output only when
the model is in a limit-cycle mode and counters the effect

of increase in g
gabaA
TRN to TCR (Figure 5D). However, varying αgabaA
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FIGURE 4 | The model output time series with (A) all parameters at their

initial values as in Table 1. (B) The model displays a bifurcation in output
behavior when βampa is increased to 0.2; (C) a further increase in the
parameter shows sustained oscillations with increased magnitude and
decreased frequency. The frequency behavior may be observed qualitatively
in the embedded line plots displaying the respective time-series in each plot
for an arbitrarily selected period of 60 s. (D) An increase in αampa has a
reverse effect resulting in reduced magnitude and increased frequency in the
limit-cycle mode; (E) further increase in the parameter do not show any
significant effect on the magnitude or the limit-cycle behavior while there is a

slight increase in frequency. (F) Maintaining these modified values of
αampa = 20 and βampa = 1, an increase in gampa brings a bifurcation in model
behavior from a limit-cycle mode to a “spindling” mode. A “zoomed-in” plot
from the 3rd minute to the 9th minute is shown; the initial transient
oscillations are neglected. (G) The frequency of spindle oscillations increase
with increasing values of gampa. This is indicated by a distinct (H,I) decrease
(more blue pixels) in theta band components and (J, K) increase (more red,
orange and yellow pixels) in alpha band components in the corresponding
output time series plots. The abscissa in the figures denote (A–G) time
(seconds) (H–K) time windows (seconds).

does not affect the model output. For g
gabaA
TRN to TCR � 0.5, which

is the approximate bifurcation point (Figure 5B), increasing

g
gabaA
TRN to TRN causes the model to revert back to the spindling

mode; the frequency of the inter-spindle oscillations increase
with increasing values of the parameter (Figures 5E,F). This
is also indicated by a decrease (Figures 5H,I) and increase
(Figures 5J,K) of theta and alpha band components respectively
in the STFT of the output time series. In other words, decreas-

ing values of the parameter g
gabaA
TRN to TRN causes increased syn-

chronization within the spindling mode behavior of the model
along with a decrease in the inter-spindle frequency. However,

blocking g
gabaA
TRN to TRN effects a switch in the model behavior to

a very low-frequency oscillatory state (Figure 5G). These results
are consistent with experimental findings (von Krosigk et al.,
1993) where application of GABAA inhibitor either “abolished
spindle waves or decreased within-spindle frequency,” which
correspond to the condition of either blocking or decreasing,

respectively of g
gabaA
TRN to TRN in our model. Thus, the model impli-

cate the intra-TRN synaptic activity to be a key factor in sus-
taining spindle oscillations in the thalamocortical circuitry, an
observation which conforms to those made in Golomb et al.

(1996; p. 755). Furthermore, a “frequency jump” with increas-
ing ggabaA , and associated transition in model behavior is also
reported in Golomb et al. (1996; see Figure 7) as a comparative
study between the TCR and TRN cells. This is similar with the
increase in frequency of the spindle oscillations corresponding to

increasing g
gabaA
TRN to TRN in the present model, although we have not

done a comparative study with the TRN cell population behavior.
However, the current study implicate the increased post-synaptic
conductance for GABAA receptors in the TCR cell population

(g
gabaA
TRN to TCR) to play a significant role in effecting state-transition

between spindle and slow-wave oscillations, an observation that
is yet to find support from experimental or model-based studies.

A quiescent state is observed corresponding to blocking

either AMPA (gampa = 0) or both GABAA (g
gabaA
TRN to TCR = 0) and

GABAB (g
gabaB
TRN to TCR = 0) mediated synapses in the TRN to TCR

pathway (not shown). This is consistent with both experimen-
tal (von Krosigk et al., 1993) and model-based (Golomb et al.,
1996) studies. The role of the synaptic parameters in the GABAB

pathway in our model was minimal—to sustain a non-quiescent
model behavior with blockage of GABAA; to sustain a high
amplitude of limit-cycle oscillations in the model. Again, this

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 81 | 208

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Bhattacharya Synaptic transmission in neural mass models

0 100 200 300 400 500 600
−60

−50

−40

−30

A

m
od

el
 o

ut
pu

t (
m

V
)

0 100 200 300 400 500 600

−70

−60

−50

−40

−30

B

240 300

0 100 200 300 400 500 600
−80

−70

−60

−50

−40

−30

C

240 300

0 100 200 300 400 500 600

−70

−60

−50

−40

−30

D

240 300240 300

αgaba
A=2 βgaba

A=0.08 ggaba
An2r =0.5 αgaba

A=2 βgaba
A=0.08 ggaba

An2r =1 αgaba
A=2 βgaba

A=0.2 ggaba
An2r =0.5αgaba

A=2 βgaba
A=0.08 ggaba

An2r =0.1

0 100 200 300 400 500 600

−70

−60

−50

−40

−30

E

m
od

el
 o

ut
pu

t (
m

V
)

240 300

0 100 200 300 400 500 600

−60

−50

−40

−30

F

240 300

0 100 200 300 400 500 600
−80

−70

−60

−50

−40

−30

G

αgaba
A=2 βgaba

A=0.08 ggaba
An2r =1  ggaba

An2n =2

αgaba
A=2 βgaba

A=0.08 ggaba
An2r =1 ggaba

An2n =0

αgaba
A=2 βgaba

A=0.08 ggaba
An2r  =1 ggaba

An2n  =1

H

Fr
eq

ue
nc

y 
(H

z)

10 20 30 40

4

5

6

7

I

10 20 30 40

4

5

6

7

J

10 20 30 40
8

9

10

11

12

13

K

10 20 30 40
8

9

10

11

12

13

FIGURE 5 | (A) The model output (corresponding to the “zoomed-in” plot in
Figure 4G) when αampa = 20, βampa = 1, gampa = 0.3). Retaining these
parameter values, (B) increasing ggabaA

n2r , where “n2r” denotes the TRN to
TCR pathway, from its initial value effects a bifurcation in model behavior
from a spindling mode to a limit-cycle mode, indicating highly synchronized
oscillations in the thalamocortical circuitry. (C) Synchronization increases with
increase in ggabaA

n2r , indicated by increased magnitude and decreased

frequency of oscillation. For ggabaA
n2r � 0.5 [approximate point of bifurcation,

shown in (B)], (D) increasing βgabaA effects an increase in frequency within the

limit-cycle mode, while (E) increasing ggabaA
n2n , where “n2n” denotes the self

inhibitory pathway of the TRN, effects a transition from the limit-cycle mode
to the spindling mode. (F) Further increase in ggabaA

n2n causes an increase in the
frequency of the spindle oscillations, indicated by (H,I) a decrease (more blue
pixels) in theta band components and (J,K) increase (more red, orange and
yellow pixels) in alpha band components in the corresponding output time
series plots. (G) Blocking of ggabaA

n2n shows a very low-frequency (≈0.03 Hz)
synchronized oscillation whose magnitude decreases with time. The abscissa
in the figures denote (A–G) time (seconds) (H–K) time windows (seconds).

is in agreement with experimental studies (von Krosigk et al.,
1993), where activation of GABAB receptors are reported as
“not essential” for generating synchronized oscillations, while
application of GABAB antagonist abolished “evoked or sponta-
neous slowed oscillations.” The model in Golomb et al. (1996; see
in Discussion p. 763) is also mentioned as being consistent with
these experimental results.

In a recent work (Bhattacharya et al., 2012), a simple neural
mass model implementing kinetic modeling for synaptic trans-
mission is presented; the synaptic connectivity parameters in
the model correlate directly to that of an alpha function based
neural mass model [modified Alpha Rhythm model (modARm)
from Bhattacharya et al. (2011a)]. The model behavior is studied
corresponding to changes in the synaptic connectivity parame-
ters as well as transmitter concentration related parameters, and
a relevant comparison is made with the modARm. However,
the model presented in this work has a larger set of synaptic
connectivity parameters; model behavior corresponding to this
parameter space and its usefulness in understanding neurological
disorders will be the topic of a future work.

4. DISCUSSION
The work presented here explores a novel approach toward corre-
lating current neural mass model based studies with underlying

cellular mechanisms during synaptic transmission. The aim is
to underpin the synaptic correlates of abnormal brain oscilla-
tions in neurological and psychiatric disorders such as observed
in Electroencephalogram (EEG). A kinetic framework for mod-
eling AMPA and GABA receptor mediated synapses is imple-
mented in an existing thalamocortical neural mass model con-
sisting of an excitatory and an inhibitory neural mass, repre-
senting cell populations of the thalamocortical relay (TCR) and
the thalamic reticular nucleus (TRN), respectively. Parameters
in the model are assumed to be “ensemble” representations
of the corresponding attributes in a single neuron. A prelim-
inary observation is made on the model behavior by varying
the parameters corresponding to the post-synaptic membrane
conductance of the cell populations as well as the forward and
reverse rates of synaptic reaction; of specific interest is the
transition of the model behavior between the spindle oscilla-
tory mode and the limit-cycle mode, the latter resembling the
slow-wave (high-amplitude, low-frequency) synchronized oscil-
lations that are signatures of absence seizures as well as slow-
wave sleep. Furthermore, only the alpha (8–13 Hz) and theta
(4–7 Hz) frequency bands of the output power spectra are stud-
ied here, as EEG alpha and theta bands are believed to have
a strong correlation with thalamocortical oscillations (Hughes
et al., 2004).

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 81 | 209

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Bhattacharya Synaptic transmission in neural mass models

The results indicate that: (1) The post synaptic membrane con-
ductance for both AMPA and GABAA receptors in the TRN cell
population play a role in sustaining spindle oscillations of the
TCR cell population (the model output). (2) Blocking the GABAA

mediated synapses in the self-inhibitory feedback pathway of the
TRN cell population effects synchronized oscillations with high
amplitude and increased time-period of oscillation (≈0.03 Hz).
(3) The post-synaptic membrane conductance for GABAB in the
TCR cell population does not play any role in generating or
sustaining spindle oscillations, but is responsible for sustaining
the slow-wave oscillations in the model associated with blocking
of the intra-TRN GABAA synapses. (4) Blocking both GABAA

and GABAB or only the AMPA mediated synapses in the TCR
cell population results in a quiescent model output. These find-
ings are consistent with in vitro studies based on multiple unit
recordings from ferret thalamic slices (von Krosigk et al., 1993)
as well as single-neuron-level model based studies (Golomb et al.,
1996). In addition, this study identifies—(a) the reverse rate of
transmitter binding as an important attribute in effecting thala-
mocortical synchronized oscillations that can be induced in the
model by increasing (decreasing) the fraction of open channels
due to GABAA (AMPA) mediated synapses in the TCR (TRN)
cell populations; (b) the post-synaptic membrane conductance
for GABAA in the TCR cell population as a control parameter for
effecting a behavioral transition in the model.

It may be noted that the above-mentioned observations are
only a qualitative comparison with single-neuron-level model-
based (Golomb et al., 1996) and experimental (von Krosigk et al.,
1993) studies; a drawback of the current work is a lack of quan-
titative comparison with these studies. The neural mass model
presented in this work is at a mesoscopic scale, representation
of a population of ≈104−107 neurons, unlike that in Golomb
et al. (1996), which is at single-neuronal-level. Similarly, the mul-
tiple unit recording based study in von Krosigk et al. (1993)
observes neuronal behavior of either a single neuron or a popula-
tion of <102 neurons. In addition, the modeling and simulation
methods in the current work and that in Golomb et al. (1996)
are not similar. Thus, a quantitative comparison of the cur-
rent work with these studies may lead to erroneous conclusions.
However, model validation with experimental data is a crucial
criteria when investigating brain disorders. Along these lines, an
ongoing work is investigating ways to validate the model pre-
sented herein with EEG data, and will be the topic of a future
study.

The model structure in the current work is a consider-
ably simplified representation of the thalamocortical circuitry.
The role of the thalamocortical circuitry in generating slow
wave brain oscillations is discussed at length in Steriade et al.
(1993), based on in vivo and in vitro studies. More recently,
three parameters in the thalamo-cortico-thalamic loop viz. the
cortico-thalamic, thalamo-cortical and intra-thalamic pathways
are specified in Breakspear et al. (2006) for generating insta-
bilities in the thalamocortical circuitry, leading to synchronized
oscillations such as seen during absence seizures. Furthermore, a
non-linear dynamical analysis of the model is shown to predict
seizure onset by validating with patient EEG data. In a previ-
ous research (Bhattacharya et al., 2011b), we have proposed a

more elaborate alpha-function based neural mass model that have
considered these vital pathways in the thalamocorticothalamic
loop. Also, we have performed a non-linear dynamical analy-
sis of a simple thalamocortical model based on alpha functions
in Bhattacharya et al. (2013) to understand EEG power spectra
abnormalities associated with several neurological disorders. Such
research directions will be considered as an extended work based
on the model presented herein.

It is worth mentioning here that biologically plausible param-
eterizations has been a major constraint in neural mass modeling
of brain dynamics. This is largely due to insufficient experimental
data, published or otherwise, as well as to a lack of “homogene-
ity” of published data from different experimental laboratories.
The trend thus far has been to use biologically plausible data
if and when available; otherwise, i.e., for parameter values that
cannot be availed from experimental data, the models are tuned
to estimated parameter values which provide a desirable out-
put in context to the objectives of the research [the reader may
refer to Robinson et al. (2004) for a model parameterizations
related work and discussion]. Thus, the model in Breakspear et al.
(2006) was based on neurophysiological parameters obtained
from Robinson et al. (2002), which in turn are based on inverse
parameterizations during model validation with EEG data from
patients of epileptic seizures. The parameterizations of the model
presented in this work is largely based on neurophysiological
parameters obtained from experimental studies: the cellular-level
parameters, including those of the synaptic kinetics, are based on
in vitro studies and model-based studies of thalamocortical tissue
by von Krosigk et al. (1993) and Golomb et al. (1996), respec-
tively; the model connectivity parameters are based on experi-
mental studies of the cat and rat thalamus obtained from Horn
et al. (2000); Sherman and Guillery (2001). On the other hand,
the extrinsic (retinal) input and neuro-transmitter concentration
parameter values are adjusted to maintain a “dynamically active”
model behavior (this is as opposed to a continuous “quiescent”
state of the model corresponding to certain parameter values, and
does not conform to biology). However, technological advances
in the field of neuro-imaging during the last decade such as func-
tional Magnetic Resonance Imaging (fMRI), Diffusion Tensor
Imaging (DTI) and Transcanial Magnetic Stimulation (TMS) are
paving the way for biologically-realistic mapping of parameter
values in computational models; for example as in Izhikevich and
Edelman (2008).

The observations made herein support the motivation toward
this preliminary work, which is to correlate higher-level brain
dynamics with underlying cellular-level synaptic mechanisms. It
may be noted that in all our previous works using alpha function
based neural mass models, the emphasis has been on studying
the model behavior with varying values of synaptic connec-
tivity parameters toward a meaningful mapping to Alzheimer
disease-related EEG anomalies. However, such “synaptic parame-
ter variation only” studies are highly constrained and do not make
much sense when trying to understand generic brain-state con-
ditions e.g., the sleep-awake cycle, or several other neurological
and psychiatric disorders e.g., absence seizures, which rely heav-
ily on various aspects of cellular dynamics in the thalamocortical
circuitry. Rather, the emphasis of this work is on laying the

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 81 | 210

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Bhattacharya Synaptic transmission in neural mass models

ground-work for a more elaborate, and yet computationally effi-
cient scheme, whereby large-scale computational models may be
simulated to mimic brain rhythms, which can then be correlated
to model parameters emulating cellular dynamics. The synaptic
transmission kinetics and subsequent post-synaptic membrane
parameters are some of the key constituents of brain signaling,
and are affected significantly in various brain diseases. Clearly,
the alpha-function based neural mass models are inadequate in
dealing with research directions where model parameters can be
mapped in a biologically plausible manner to synaptic attributes.
In terms of computational efficiency, the time for simulating

20 trials with the model presented in this work takes 60 s; this
may be contrasted with 600 s for simulating a similar model [the
modified Alpha Rhythm model in Bhattacharya et al. (2011a)]
based on alpha functions. This is a dramatic improvement in
computational efficiency and highlight the plausibility of using
the kinetic-model based neural mass modeling framework in
simulating large-scale computational models toward mimicking
real-time EEG signals. This in turn will provide a powerful tool
for specifying cellular pathways that need be targeted for symp-
tomatic alleviation of anomalous brain rhythms as well as to
inform effective neuropharmacological research directions.
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A number of studies showed that deep brain stimulation (DBS) can modulate the activity
in the epileptic brain and that a decrease of seizures can be achieved in “responding”
patients. In most of these studies, the choice of stimulation parameters is critical to
obtain desired clinical effects. In particular, the stimulation frequency is a key parameter
that is difficult to tune. A reason is that our knowledge about the frequency-dependant
mechanisms according to which DBS indirectly impacts the dynamics of pathological
neuronal systems located in the neocortex is still limited. We address this issue using both
computational modeling and intracerebral EEG (iEEG) data. We developed a macroscopic
(neural mass) model of the thalamocortical network. In line with already-existing models,
it includes interconnected neocortical pyramidal cells and interneurons, thalamocortical
cells and reticular neurons. The novelty was to introduce, in the thalamic compartment,
the biophysical effects of direct stimulation. Regarding clinical data, we used a quite unique
data set recorded in a patient (drug-resistant epilepsy) with a focal cortical dysplasia
(FCD). In this patient, DBS strongly reduced the sustained epileptic activity of the FCD
for low-frequency (LFS, < 2 Hz) and high-frequency stimulation (HFS, > 70 Hz) while
intermediate-frequency stimulation (IFS, around 50 Hz) had no effect. Signal processing,
clustering, and optimization techniques allowed us to identify the necessary conditions
for reproducing, in the model, the observed frequency-dependent stimulation effects.
Key elements which explain the suppression of epileptic activity in the FCD include: (a)
feed-forward inhibition and synaptic short-term depression of thalamocortical connections
at LFS, and (b) inhibition of the thalamic output at HFS. Conversely, modeling results
indicate that IFS favors thalamic oscillations and entrains epileptic dynamics.

Keywords: DBS, thalamocortical model, computational, centromedian nucleus, FCD, premotor cortex, epilepsy

INTRODUCTION
Deep brain stimulation (DBS) for Parkinson’s disease (PD) and
other movement and psychiatric disorders—including dystonia,
tremor, and depression—is clinically used today as a conventional
therapeutic procedure for the alleviation of symptoms (Sillay and
Starr, 2009). Since the early 90s, neurologists also attempted to
apply DBS to other neurological disorders, typically to intractable
epilepsies in order to suppress—or at least dramatically reduce—
the occurrence of seizures [see recent review in Boon et al.
(2009)]. These studies followed early scientific evidence showing
potentially beneficial effects of DBS on epileptic neural dynam-
ics in animal models (Reimer et al., 1967; Hablitz, 1976) as well
as in patients (Cooper et al., 1973; Davis et al., 1982; Wright and

Abbreviations: CMN, Centromedian Nucleus; DBS, Deep Brain Stimulation;
EPSP, Excitatory Postsynaptic Potentials; FCD, Focal Cortical Dysplasia; FFI, Feed-
Forward Inhibition; GPi, Globus Pallidus; HFS, High Frequency Stimulation; iEEG,
Intracerebral EEG (depth electrodes); IFS, Intermediate Frequency Stimulation;
IPSP, Inhibitory Postsynaptic Potentials; LFP, Local Field Potential; LFPsFCD, Local
Field Potentials recorded in the FCD; LFS, Low Frequency Stimulation; NS,
No Stimulation; PMC, Premotor cortex; RtN, Reticular thalamic Nucleus, STD,
Short-Term Depression; STN, Subthalamic Nucleus.

Weller, 1983). However, contrary to PD, the optimal “antiepilep-
tic parameters” of DBS for reducing the frequency of seizures are
much more variable among patients and the number of non-
responders to stimulation still perplexes scientists. Moreover, in
responding patients, the fine tuning of stimulation parameters in
a patient-specific manner remains indispensable for maximizing
antiepileptic effects. On that account, many fundamental ques-
tions are frequently raised: where and when to stimulate, at which
frequency, at which current intensity, and with which current
waveform?

The answers to these questions remain bound to our cur-
rent, and still limited, understanding of the mechanisms by which
DBS modulates neuronal dynamics, whether normal or patholog-
ical. Today, the precise mechanisms of neuronal modulation by
DBS remain elusive. In addition, these mechanisms are controver-
sial as observed effects are sometimes opposite (McIntyre et al.,
2004b). Among the many studies reported over the last decade,
identified mechanisms regarding HFS include: local depolariza-
tion blockade by HFS (Beurrier et al., 2001), synaptic depres-
sion due to neurotransmitter depletion (Shen et al., 2003; Kim
et al., 2012), synaptic inhibition (Filali et al., 2004), disruption of
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the thalamocortical network’s dysrhythmia (McIntyre and Hahn,
2010; Kendall et al., 2011). As far as LFS is concerned, some stud-
ies described a transient synaptic depression that alters synaptic
transmission (Jiang et al., 2003; Speechley et al., 2007). Finally,
IFS is routinely used in the context of presurgical evaluation of
patients with drug resistant epilepsy to map epileptogenic and
functional brain areas. It has long been observed that this type of
stimulation is prone to trigger epileptic afterdischarges (Goddard,
1967). This brief overview shows that the spectrum of involved
mechanisms is very large and that distinct stimulation frequencies
trigger distinct cellular/network processes. More precise insights
into these processes will come with increased knowledge about
both biophysical and neurophysiological effects of stimulation
currents on underlying neuronal systems.

However, the access to cellular and network mechanisms
induced by DBS is rather difficult in animal models of epilepsy
and (almost) impossible in patients especially in large-scale sys-
tems like the thalamocortical loop. An alternative approach is
the use of computational models based on physiological data to
first reproduce and then explain changes in cerebral activity as
a function of stimulation conditions (stimulation site, intensity,
and frequency). This is precisely the objective of this study, with a
special focus on the distinct effects of DBS frequency on cortical
epileptic dynamics.

Our investigation combines computational modeling and clin-
ical data. We explored stimulation effects in a lumped-parameter
mesoscopic neural mass model of the thalamacortical loop,
inspired from previously published models (Suffczynski et al.,
2004; Lopes Da Silva, 2006; Roberts and Robinson, 2008; Crunelli
et al., 2011).

Although these models are lumped representations of under-
lying neuronal systems, they offer a number of advantages in the
context of this study. First, neural mass models include subpop-
ulations of principal excitatory cells and inhibitory interneurons.
Second, these models were shown to produce realistic activity as
observed in LFPs or EEG under normal (Freeman, 1973; Lopes
Da Silva et al., 1974) or epileptic conditions [review in Lytton
(2008); Wendling (2008)]. Third, main parameters (mean mem-
brane potential and firing rate) provide access to the investigation
of several stimulation-induced (patho)physiological mechanisms.
For instance, a neural mass model was successfully used in the
context of direct low-intensity pulse stimulation in the hippocam-
pus to explain the behavior of evoked responses during the
transition to seizures (Suffczynski et al., 2008).

In particular, using this model, we analyzed the neurophysio-
logical effects induced by direct thalamic stimulation on epileptic
cortical dynamics at low frequency (LF, < 20 Hz), intermediate
frequency (IF, 20–70 Hz) and high frequency (HF, 70–130 Hz).
Model parameters were tuned to reproduce a typical pathological
oscillatory activity observed in a neocortical lesion (focal corti-
cal dysplasia, or FCD) in a patient with drug-resistant epilepsy.
Intracerebral EEG (iEEG) signals observed during thalamic stim-
ulation (centromedian nucleus) of this patient revealed particu-
larly pronounced frequency-dependent modulation of the FCD
pathological activity. Therefore, this data set offered the unique
opportunity to identify key model parameters for which such
a frequency-dependent modulation could be reproduced and,

subsequently to get insights regarding the mechanisms under-
lying the modulatory effects, in the FCD, of thalamic stimu-
lation. Results revealed that LFS favors feed-forward inhibition
and short-term depression at the cortical level and that HFS
inhibits the thalamic activity, while IFS reinforces reticulotha-
lamic oscillations thus entraining cortical pathological epileptic
dynamics.

MATERIALS AND METHODS
In this section, we present (1) the neurophysiologically-relevant
computational model that we developed to study thalamic DBS,
(2) the real depth-EEG dataset used for model tuning and, (3)
the signal processing methods used for characterizing real and
simulated EEG signals.

MODEL OF THE THALAMOCORTICAL LOOP
In order to study the effects of thalamic DBS on cortical dynamics,
we implemented a physiologically-plausible mesoscopic model
of the thalamocortical loop. This model accounts for the aver-
age activity of both cortical and thalamic compartments which
include various types of neuronal populations interacting via
synaptic transmission. This modeling approach was first pro-
posed in the early 70s (Wilson and Cowan, 1972) and further
enriched in order to interpret electrophysiological recordings and
study brain dynamics, in the olfactory (Freeman, 1973) and the
thalamocortical (Lopes Da Silva et al., 1974) system, for instance,
as well as the dynamics of cortical oscillations (Nunez, 1974). This
approach was then developed by other research groups in the con-
text of state changes in brain dynamics (Wright et al., 1985), visual
evoked potentials (Jansen et al., 1993), dynamics of the human
alpha rhythm (Stam et al., 1999) or pathophysiological mecha-
nisms of ictal transitions in epilepsy (Wendling et al., 2000, 2002;
Suffczynski et al., 2001; Robinson et al., 2002; Liley and Bojak,
2005; Breakspear et al., 2006). Later, neural mass models were
also used in studies dealing with the connectivity among cortical
regions and the impact of model parameters on the power spec-
trum of EEG or MEG signals (Robinson et al., 1997; David and
Friston, 2003; Zavaglia et al., 2006).

Model architecture
The model architecture was inspired from previously published
models of the thalamocortical loop (Suffczynski et al., 2004; Lopes
Da Silva, 2006; Roberts and Robinson, 2008; Crunelli et al., 2011).
In a global view, the model was built of three interconnected
compartments: a cortical compartment, a thalamic compartment,
and a reticular compartment, in accordance with previously pub-
lished models (Figure 1A) and with anatomical data (Figure 1B).
Each compartment includes one or several subpopulation(s) of
neurons, either excitatory or inhibitory. Generally speaking, the
input/output functions of a considered subpopulation are rep-
resented by two mathematical equations that were respectively
named “pulse-to-wave” (input) and “wave-to-pulse” (output) by
Walter Freeman (Freeman, 1992). The former is a linear transfer
function that converts the presynaptic average density of affer-
ent action potentials into an average postsynaptic membrane
potential (PSP), either excitatory (EPSP) or inhibitory (IPSP).
The output function is a static nonlinear function (sigmoid) that
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FIGURE 1 | Model of the thalamocortical loop. (A) The model
architecture comprises three main compartments: cortical, thalamic, and
reticular. The cortical compartment includes three subpopulations: P
(pyramidal principal neurons), IC1 (soma- and proximal-dendrite targeting
interneurons mediating GABAA, fast currents), and IC2 , (dendrite-targeting
interneurons mediating GABAA, slow currents). The thalamic compartment
represents a generic thalamic nucleus including a subpopulation of
excitatory thalamocortical (TC) cells. The reticular nucleus (RtN)

compartment is made up of two GABAergic neuronal populations
(IRt

1 , GABAA, fast currents and IRt
2 , GABAA, slow ). Excitatory synaptic

transmission among the considered subpopulations is glutamatergic
(GLU). (B) Anatomical connectivity of the CMN, PMC, and RtN. This
diagram represents the anatomy of a particular thalamocortical loop
interconnecting the CM thalamic nucleus, the PMC, and the RtN.
Connectivity patterns were inferred from the literature. It is compatible
with the thalamocortical model diagram presented in (A).

provides the average pulse density of action potentials fired by
neurons depending on the sum of EPSPs and IPSPs at the input.
This non-linear function accounts for threshold and saturation
effects that take place at the somas and initial axonal segments of
considered cells.

Formally, the input function is represented by a second order
low-pass filter H(s) = W/(s+1/τw)2 (where s is the Laplace
variable). The impulse response of this filter is given by

h(t) = W

τw
· t · e−t/τw (1)

Parameters W and τw are tuned such that h(t) approxi-
mates the shape of real excitatory (glutamatergic) or inhibitory
(GABAergic) postsynaptic potentials (Lopes Da Silva et al., 1976).
The quantity W .τ2

w is the static gain of filter h. Lumped param-
eter τw (expressed in s) is linked to the kinetics of synaptic
currents. It determines both the rise time (trise = τw) and the
decay time (tdecay = 3.146τw) of the second order filter impulse
response h and it is usually adjusted with respect to the phys-
iological rise and decay times of actual PSPs (Molaee-Ardekani
et al., 2010). Given the time constantτw, parameter W can be used
to adjust the sensitivity of synapses (the maximal PSP amplitude
is W.e−1). An alternative implementation of the h function was
introduced in Bojak and Liley (2005) and is described in detail
in Molaee-Ardekani et al. (2013). It is based on a bi-exponential
pulse-to-wave function with two time constant parameters. This
implementation allows for the separate adjustment of the rise
and decay times of PSPs, and therefore a better approximation of
actual PSPs in some circumstances. Besides, the output function

is represented by S(v) = 2e0

1+er(v0−v) , where 2e0 is the maximum fir-

ing rate, v0 is the postsynaptic potential corresponding to a firing
rate of e0 and r is the steepness of the sigmoid.

The cortical compartment
The cortical compartment was inspired from an existing model
of the neocortex which proved its capability of generating both
normal and epileptiform activity. Readers may refer to Molaee-
Ardekani et al. (2010) for details. In brief, the cortical com-
partment integrates a subpopulation of pyramidal cells (P, W =
AC, τw = τac in Equation 1) and two inhibitory neuronal popu-
lations (Ic

1 and Ic
2, Figure 1A) representing soma- and proximal-

dendrite targeting interneurons (GABAA, fast currents, W =
GC, τw = τgc in Equation 1) and dendrite-targeting interneu-
rons (GABAA, slow currents, W = BC, τw = τbc in Equation 1),
respectively. Pyramidal collateral excitation was implemented as
in Jansen et al. (1993).

In addition, these three cortical subpopulations receive exci-
tatory input from the thalamic compartment. Therefore, feed-
forward inhibition (FFI) is represented in the model as the two
subpopulations of interneurons project to the pyramidal subpop-
ulation (see The Thalamic and Reticular Compartments paragraph
below).

Short-term synaptic depression (STD)
STD is present in the neocortex (Boudreau and Ferster, 2005). It
can be potentially involved in the context of direct stimulation
of the thalamus as TC cells directly project to cortical pyrami-
dal cells. Consequently, this mechanism was implemented at the
interface of thalamic/cortical compartments. To our knowledge,
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an implementation of STD in neural mass models has not been
proposed before.

In our model, we represented a modulatory effect of the
amplitude of the average EPSP (parameter AC ’) at the level of
subpopulation P depending on the density of action potentials
[dAP(t)] coming from the thalamic compartment. This modu-
latory effect was obtained by multiplying AC ’ by a time-varying
coefficient κ(t) ∈ [0.6, 1] where the function describing the evo-
lution of κ(t) was derived from Chung et al. (2002). This study
shows that: (i) cortical EPSPs drop by 40% under periodic low-
frequency intense thalamocortical (TC) cell firing and, (ii) this
drop in cortical EPSP is directly linked to transient depression of
thalamocortical monosynaptic projections to pyramidal neurons.

In line with these observations, STD was implemented as fol-

lows. First, signal d(t)
AP is low-pass filtered (cutoff frequency =

10 Hz) to restrict the STD effect to LFS. Then, from each time tη at

which the filtered signal d
f
AP(t) exceeds a firing rate equal to η, the

κ(t) coefficient undertakes an exponential decay given by κ(t) =
κη · e−t/τ where κη = κ(t−η ) and where t−η is the time instant that
just precedes tη. The decrease of κ(t) is limited to the time inter-
val [tη + 0.45 s] and cannot exceed 40%, total. Parameters η and
τ were set to 0.8 and 8 s, respectively.

The thalamic and reticular compartments
The thalamic compartment was limited to one population of exci-
tatory neurons (known as glutamatergic thalamocortical - TC
- cells) receiving glutamatergic EPSPs (W = ATh, τw = τaTh in
Equation 1) from cortical pyramidal cells (P) and GABAergic
IPSPs with slow (W = BTh, τw = τbTh in Equation 1) and fast
(W = GTh, τw = τgTh in Equation 1) kinetics from the reticular
compartment (RtN). Here, we increased the time constant (τbTh)
with respect to τbc to account for both GABAA, slow- and GABAB-
receptor mediated currents in a single variable. TC cells directly
target both cortical pyramidal cells and interneurons. The acti-
vation of these GABAergic interneurons subsequently promotes
inhibition of pyramidal cells after a di-synaptic delay. Therefore,
TC cells activation induces first an EPSP followed later on by an
IPSP on cortical pyramidal cells, resulting in feed-forward inhibi-
tion (FFI). The RtN compartment comprised two inhibitory sub-
populations, namely IRT

1 and IRT
2 which both receive excitatory

input from the cortical (W = ARt, τw = τaRt in Equation 1) and
the thalamic (W = ARt , τw = τaRt in Equation 1) compartments.

Simulation of stimulation effects
Stimulation currents induce a perturbation of the membrane
potential of neurons. At cellular level, this effect can be accounted
for by the “λE model”, which is well grounded in the bio-
physics of compartment models (Rattay, 1998; McIntyre et al.,
2004a; Manola et al., 2005, 2007) (see Miranda et al., 2009 for
a review) and supported by in vitro experiments (Bikson et al.,
2004; Frohlich and McCormick, 2010). This model �V ≈ �λ.�E
approximates the membrane potential variation �V as a linear
function of the electrical field �E induced by stimulation (�λ repre-
senting the membrane space constant). In our neural mass model,
the situation is less straightforward as space is not explicitly rep-
resented, conversely to detailed or mean-field models. However,
within a certain range of intensity values, it has been shown that

the membrane potential variation �V is modified in a linear way
with respect to the electrical field which is itself proportional
to the stimulation intensity (Bikson et al., 2004). These consid-
erations led us to also assume a linear variation for the mean
membrane potential as a function of stimulation intensity, in
stimulated sub-populations of neurons. In addition, stimulation
was represented by a train of periodic monophasic depolarizing
pulses. The pulse width was fixed to 1 ms (as in clinics). Pulses
were low-pass filtered to account for the average time of repolar-
ization (set to 4.8 ms) in stimulated sub-populations of cells. The
resulting stimulation signal was added to the mean membrane
potential of neuronal sub-populations included in the thalamic
(TC) and reticular (IRT

1 and IRT
2 ) compartments of the proposed

model. The depolarizing effect was weighted by three coefficients
STC , SRt1 and SRt2 (Table 1) accounting for the possibly different
stimulation impact at the thalamic and reticular level.

Model parameters, outputs, and implementation
Parameter values as well as physiological interpretation are pro-
vided in Table 1. Note that each synaptic connection in the model
is weighted by a connectivity constant denoted by CSP1−SP2 where
SP1 and SP2, respectively, denote the source and target subpopu-
lations. In addition, two Gaussian noise inputs pP(t)∼ N(μP, σP)
and pTC(t)∼ N(μTC, σTC) were used to represent nonspecific
inputs on pyramidal and thalamocortical cell subpopulations.
Finally, signals simulated at the level of pyramidal cells in the
cortical compartment and at the level of TC cells in the thalamic
compartment were chosen as model outputs. They correspond
to the sum of PSPs at each compartment respectively. The tem-
poral dynamics of these signals provide a good approximation
of actual LFPs. The model was implemented in Simulink®,
and all other complementary scripts were implemented
in MATLAB®.

REAL DATA FOR MODEL TUNING
We used real clinical data to tune the model into a func-
tioning mode which simulates pathological activity. The clin-
ical data set was limited to a unique patient who underwent
thalamic DBS during the presurgical intracerebral EEG explo-
ration (iEEG performed with depth electrodes implanted under
stereotaxic conditions) at the Epilepsy Surgery Unit, Rennes
University Hospital. This particular patient was chosen for
two main reasons: (1) the pronounced frequency-dependent
stimulation effects observed during his preoperative diagnos-
tic iEEG exploration at LF, IF and HF in addition to (2) the
existence of an epileptogenic zone in a limited area of the
premotor cortex (PMC).

In brief, this patient suffered from partial drug-resistant
epilepsy since the age of two. MRI scans and EEG recordings
pointed out the existence of a neuronal malformation known
as FCD in the PMC at the origin of seizures. This type of
cortical malformation is known for its epileptogenic features
like neuronal hyperexcitability and hypersynchronization and its
characteristic epileptiform discharges (continuous, rhythmic or
semirhythmic spikes, and polyspikes) (Avoli et al., 2003; Palmini,
2010) as shown in Figure 2C. Based on various clinical stud-
ies reporting the modulation of epileptic cortical activity by the
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Table 1 | Model parameters, values and interpretation.

Parameter Value Interpretation

AC 6 (optimized, pathological)
3 (normal) mV

Amplitude of the cortical average EPSP

AC’ κ(t).AC mV Amplitude of the cortical average EPSP in response to thalamic input (only on
subpopulation P)

BC 14 (optimized, pathological)
50 (normal) mV

Amplitude of the cortical average IPSP (GABAA,slow mediated currents)

GC 16.5 (optimized,
pathological)
22 (normal) mV

Amplitude of the cortical average IPSP (GABAA,fast mediated currents)

ATh 3.5 mV Amplitude of the thalamic average EPSP

BTh 30 mV Amplitude of the thalamic average IPSP (GABAA,slow and GABAB receptors)

GTh 22 mV Amplitude of the thalamic average IPSP (GABAA,fast receptors)

ARt 3.5 mV Amplitude of the reticular average EPSP

τac 1/80 s Time constant of cortical glutamate-mediated synaptic transmission.

τbc 1/35 s Time constant of cortical GABA-mediated synaptic transmission (GABAA, slow receptors)

τgc 1/180 s Time constant of cortical GABA-mediated synaptic transmission (GABAA, fast receptors)

τaTh 1/100 s Time constant of thalamic glutamate-mediated synaptic transmission

τbTh 1/20 s Time constant of thalamic GABA-mediated synaptic transmission (GABAA, slow and
GABAB receptors)

τgTh 1/150 s Time constant of thalamic GABA-mediated synaptic transmission (GABAA, fast receptors)

τaRt 1/100 s Time constant of reticular glutamate-mediated synaptic transmission

ν0, e0, r ν0 = 6mV, e0 = 2.5 s−1

r = 0.56mV−1
Parameters of the nonlinear sigmoid function (transforming the average membrane
potential to an average density of action potentials)

CP−P ′ 135 Collateral excitation connectivity constant

CP ′−P 108 Collateral excitation connectivity constant

CP−IC2
33.75 P to IC2 connectivity constant

CIC2 −P 33.75 IC2 to P connectivity constant

CP−IC1
40.5 P to IC1 connectivity constant

CIC2 −IC1
13.5 IC1 to IC2 connectivity constant

CIC1 −P 91.125 IC1 to P connectivity constant

CTC−P 120 TC to P connectivity constant

CTC−IC1
30 TC to IC1 connectivity constant

CTC−IC2
45 TC to IC2 connectivity constant

CTC−IRt
1

20 TC to IRt
1 connectivity constant

CTC−IRt
2

20 TC to IRt
2 connectivity constant

CP−IRt
1

30 P to IRt
1 connectivity constant

CP−IRt
2

30 P to IRt
2 connectivity constant

CP−TC 20 P to TC connectivity constant

CIRt
1 −TC 35 IRt

1 to TC connectivity constant

CIRt
2 −TC 5 IRt

2 to TC connectivity constant

μP1 0 Mean of nonspecific cortical input

μP2 70 Mean of nonspecific subcortical input

σP1 20.v6 Standard deviation of nonspecific cortical input

σP2 35.v6 Standard deviation of nonspecific subcortical input

STC 5 Stimulation impact on subpopulation TC

SRt1 4 Stimulation impact on subpopulation IRt
1

SRt2 4 Stimulation impact on subpopulation IRt
2

fs 1Hz – 150Hz Frequency of the stimulation signal (pulse train)

Afs 1 Stimulation signal amplitude

Model parameters used to reproduce LFPsFCD. Stimulation impact parameters STC , SRt1 and SRt2 are set to zero during the simulation of the NS scenario. These

parameters are held constant for all other stimulation scenarios.
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FIGURE 2 | Frequency-dependent stimulation effects: real data. iEEG
signals recorded during presurgical depth-EEG exploration in a patient with
drug-resistant epilepsy. (A) MRI data showing the FCD (focal cortical
dysplasia in the PMC) and the electrode trajectory. The red dot marks the
position of the depth electrode in the FCD. (B) Zoom on the FCD. (C) DBS
of the CMN modulated the pathological activity of the FCD in a
frequency-dependent manner. LFS (2 Hz) and HFS (≥70 Hz) suppressed
pathological oscillations. IFS (50 Hz) had no effects.

stimulation of the CM nucleus (Velasco et al., 1995, 1997, 2000,
2001, 2007), it was decided by neurologists and neursosurgeons to
implant a depth electrode in this nucleus, as potentially beneficial
for the patient who gave his informed consent.

During the presurgical exploration, the stimulation of the tha-
lamic CM nucleus (CMN) induced frequency-dependent modu-
lation of the pathologic activity of the FCD (Figure 2). Readers
may refer to (Pasnicu et al., 2013) for detailed information.
Interestingly, LFS (2 Hz, 4 mA) and HFS (70, 100, and 150 Hz,
0.8 mA) desynchronized the pathological activity of the FCD,
while IFS (50 Hz, 0.8 mA) barely affected it. These segments of

signals corresponding to either typical pathological activity or
modulated activity (depending on stimulation conditions) were
used to optimize the model parameters.

PROCESSING OF REAL AND SIMULATED SIGNALS
The use of signal processing techniques was necessary (i) to
quantify the above-described effects of stimulation in real iEEG
signals, and (ii) to define a feature-vector-based cost function for
model parameter optimization. Figure 3A illustrates the feature
extraction methodology. iEEG signals recorded in the FCD in
absence of stimulation (LFPsFCD) and under different stimulation
conditions were decomposed using an orthogonal matching pur-
suit algorithm [matching pursuit toolkit—MPTK—(Krstulovic
and Gribonval, 2006)]. First introduced in 1993 (Mallat and
Zhifeng, 1993), matching pursuit is signal processing algorithm
used to decompose any time series into a linear sum of wave-
forms selected from a predefined dictionary based on a mother
wavelet. To proceed, a proper multi-scalar dictionary of Gabor,
Fourier, and Dirac atoms was first defined to account for real
iEEG signal components (time-frequency atoms are waveforms
well localized in both the time and the frequency domains). In line
with (Krstulovic and Gribonval, 2006), the multi-scalar dictio-
nary was formed by translation in time and amplitude/frequency
modulation of atoms (defined as Gabor and Fourier functions
in our case), over ten different user-defined time scales (i.e. the
atom durations, ranging from 0.125 to 5 s). Then, the algorithm
provided a table of time-frequency parameters associated to the
detected atoms (atom type, central frequency, phase, scale, ampli-
tude, position). Identified atoms were reconstructed using the
extracted parameter table and their analytical expression. They
were then associated to a given frequency band depending on
their central frequency. These frequency bands corresponded to
the classical EEG bands as defined in normal adults (δ1 [0 –
1.9Hz], δ2 [1.9 – 3.4 Hz], θ1 [3.4 – 5.4 Hz], θ2 [5.4 – 7.4 Hz], α1

[7.4 – 10 Hz], α2 [10 – 12 Hz], β1 [12 –18 Hz], β2 [18 – 24 Hz],
γ [24 – 128 Hz]) (Figure 3A, blue). Finally, a 9D feature vector
VF was defined from the normalized energy distribution in these
frequency bands, itself computed as the sum of averaged (over
time) atom energies relative to the total signal energy (Figure 3A,
green).

MODEL OPTIMIZATION UNDER THE “NO STIMULATION” CONDITION
In order to simulate LFPsFCD, we optimized the excita-
tion/inhibition ratio of the cortical compartment. Thus, the
average EPSP/IPSP amplitude parameters of the cortical com-
partment {AC , BC , GC} were considered as free parameters
while all other model parameters were set to fixed values
(Table 1). The optimization method is illustrated in Figure 3B.
For each triplet {AC , BC , GC}, the feature vector VF, model of
the model’s output signal (cortical compartment’s LFP) was cal-
culated and compared to VF, real, i.e., the feature vector com-
puted from the average of the 20 feature vectors, each com-
puted on a 5 s signal segment of real LFPsFCD. Feature vectors
VF, model and VF, real were computed as described in section
Processing of Real and Simulated Signals. The optimization pro-

cedure aimed at finding the triplet
{�

AC,
�

BC,
�

GC

}
that min-

imizes a cost function simply corresponding to the Euclidean
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FIGURE 3 | iEEG signal processing. (A) Feature vector extraction. Input
signals were characterized using the matching pursuit (MP) method
(dictionary of Gabor, Fourier, and Dirac atoms). Parameters of detected atoms
(atom type, central frequency fc , scale, phase, amplitude, and position) are
extracted by MP from input signals. Detected atoms are then associated with
frequency bands (δ1 to γ) depending on their proper central frequency.
Sub-band (δ1 to γ) signals were reconstructed from the sum of corresponding

atoms, themselves obtained by fitting parameters into their analytic
expression (see top left: input and reconstructed signals). The normalized
energy vector [E(δ1) . . . E(γ)]/(E(δ1) + . . .+ E(γ)] was chosen as the feature
vector for further optimization of model parameters. (B) The model’s free
parameters AC , BC , and GC were optimized by minimizing the distance
between the feature vector VF, model of the simulated cortical LFP and the
average of real feature vectors VF, real of LFPsFCD.

distance d(VF, real, VF, model) when parameters AC , BC , and GC

span pre-defined ranges of values according to a Brute-Force
procedure.

RESULTS
In this section, results regarding the identification of cellu-
lar mechanisms underlying the modulation of cortical activity
by thalamic DBS are reported. First, the model capability to
reproduce signals similar to those recorded from the FCD in
the patient was assessed, under two conditions (no stimula-
tion and during stimulation). Three mechanisms contributing
to frequency-dependant stimulation effects could be identified.
Then, simulations were performed to analyze the marginal or
joint contribution of these mechanisms at low, intermediate or
high frequency stimulation.

SIMULATION OF LFPsFCD UNDER NO STIMULATION CONDITION
As a first step, we verified the ability of the model to gen-
erate signals that resemble those recorded from the FCD in
the considered patient (LFPsFCD). This procedure, described in
sections Processing of Real and Simulated Signals and Model
Optimization Under the “No Stimulation” Condition, led us to
identify a minimal distance (Figures 4A–C) and thus an optimal

parameter vector
{�

AC,
�

BC ,
�

GC

}
= {6, 14, 16.5} for which sim-

ulated signals under the no stimulation condition have similar
features as compared with those of real signals (Figure 4D).

SIMULATION OF LFPsFCD UNDER STIMULATION CONDITIONS
Actual LFPsFCD recorded at various stimulation frequencies (2,
50, 70, 100, and 150 Hz) were first characterized using the
matching pursuit method described in section Processing of
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FIGURE 4 | Model parameter optimization. Normalized Euclidian
distance between VE, real and VE, model . Best fit (gray disk) between
simulated and real LFPsFCD was obtained for (A) AC = 6, (B) BC = 14,
and (C) GC = 16.5. (D) For these modified values of excitation and

inhibition, the simulated signal exhibits similar characteristics as the iEEG
signal recorded in the FCD. For standard values of excitation and
inhibition (AC = 3, BC = 50, GC = 22), the model generates background
EEG activity.

Real and Simulated Signals (Figure 3A). Results are shown in
Figure 5A where feature vectors of segments of LFPsFCD are
represented in a 3D space where axes correspond to merged typ-
ical EEG frequency bands (δ2 to θ1, θ2 to β1, β2 to γ). Results
show that the distribution of points in the 3D frequency space
is not random but clustered, indicating that the frequency con-
tent of LFPsFCD segments depends on the stimulation frequency.
In addition, some clusters are very close. This is typically the
case for i) the no stimulation (yellow) and the 50 Hz stimula-
tion conditions (red) on the one hand, and ii) the 70 Hz (violet)
and 150 Hz (cyan) stimulation conditions on the other hand.
To go beyond the qualitative clustering performed by visual
inspection of 3D plots, a K-means clustering algorithm imple-
mented in MATLAB and using a Mahalanobis distance was used
to automatically detect the three types of stimulation effects.
Initial centroids were randomly chosen. The optimal cluster-
ing that globally minimizes intra-cluster inertia is presented in
Figure 5B. LFPsFCD segments were automatically classified into
three subgroups. The first subgroup contains LFPsFCD segments
obtained for low-frequency stimulation (LFS). The second sub-
group gathers all segments recorded for high frequency stim-
ulations (HFS, > 70 Hz). And finally, in the third subgroup,
segments obtained under the no stimulation and the interme-
diate stimulation frequency (IFS, 50 Hz) conditions are merged

together, suggesting that this stimulation frequency does not
reduce the “epileptiform aspect” of the activity reflected in the
LFP.

Based on this characterization of local field potentials recorded
in the FCD (LFPsFCD), parameters STC , SRt1 and SRt2 were man-
ually tuned to lead the model to generate simulated signals which
have spectral characteristics similar to those of actual LFPsFCD.
Such a manual procedure was sufficient to reproduce stimulation
effects observed in one patient. However, extending the study to
a larger group of patients would have made imperative an auto-
mated parameter fitting procedure based on the spectral charac-
teristics of real EEG signals as in Rowe et al. (2004). Figure 5B
shows the projection of representative simulated LFPsFCD in the
3D frequency space (“M” triangles). As depicted, simulated sig-
nals obtained for LFS, IFS and HFS were close to corresponding
clusters obtained from real signals for the exact same computation
of feature vectors. Shown in Figure 5C, these representatives sim-
ulated LFPsFCD do not perfectly match actual signals. However,
qualitatively similar bifurcations were observed in the model
when the stimulation conditions are changed. Indeed, under the
no stimulation (NS) and the IFS condition the model generates
rhythmic slow oscillations (δ) with superimposed faster activity
(β, γ), as observed in real data. For LFS and HFS conditions,
strong modulation of this activity was also obtained in the model.
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FIGURE 5 | Characterization and classification of real and simulated

data. (A) 3-dimensional (3D) projection of feature vectors (VF, real )
corresponding to different stimulation conditions. This projection was
obtained by summing some coordinates of initial 9D feature vectors to
get 3D vectors [E(δ2)+E(θ1), E(θ2)+E(α1)+E(α2)+E(β1),
E(β2)+E(γ)]/ [E(δ1)+ · · · + E(γ)]. Each vector was then represented by a
point in the 3D space (δ2+θ1, θ2 + α1 + α2 + β1, β2 + γ).Three main
classes can be visually identified. (B) Clusters obtained using the

k-means algorithm (Mahalanobis distance). The three clusters correspond
to (i) low-frequency stimulation (LFS) effects (green squares), (ii) no
stimulation (NS) and intermediate-frequency stimulation (IFS) effects
(yellow squares), and (iii) high-frequency stimulation (HFS) effects (blue
squares). Simulated signals corresponding to the four types of scenarios
(NS, LFS, IFS, and HFS) were also projected in the same space
(triangles). (C) Two-second segments of real and simulated signal during
NS, LFS, IFS, and HFS.

At LFS, in the model, the slow wave activity was strongly reduced
but spike events occurred in the signals at the instant times of
stimulation, mimicking, to some extent, comparable events also
present in actual LFPsFCD. Finally, at HFS, slow oscillations (δ)
were abolished in the model which generates quasi-normal back-
ground activity. This simulated activity was also comparable to
real activity observed for HFS stimulation but disclosed less γ

activity. Note that these are the effects which were quantified in
Figure 5B. The qualitative optimization procedure of parame-
ters STC , SRt1, and SRt2 was then complemented by an evaluation
of parameter sensitivity aimed at studying the impact of ran-
dom changes affecting the parameter vector � = {AC , BC , GC ,
ATh, BTh, GTh, ARt} on simulated signals. Parameter vector �

determines the excitability properties in the three model com-
partments. As shown in Figure 6, results show that the simulated
signals obtained under the four stimulation conditions (NS, LFS,
IFS, HFS) stay “quite robust” (in the sense that waveforms are

conserved) when parameters stay in the range [
�

� ± ζ.
�

�] with
0 ≤ ζ ≤ 0.2.

MECHANISMS UNDERLYING FREQUENCY-DEPENDANT STIMULATION
EFFECTS
Three main mechanisms implemented in the model are required
to mimic actually observed effects of the CM nucleus stimula-
tion. These mechanisms are the following: (i) the presence of
feed-forward inhibition (FFI) at the level of thalamic projections

to the FCD, (ii) the presence of short-term depression (STD) at
the level of the thalamocortical glutamatergic synapses and, (iii)
the depolarization of RtN inhibitory interneurons targeting TC
cells.

This result raises an additional question: to what extent
the joint effect of these mechanisms is necessary to reproduce
frequency-dependant stimulation effects (LFS, IFS, and HFS).
In order to assess their individual contribution, we performed
simulations where each mechanism was either present in—or
removed from—the model (the model parameters remaining
unchanged). Results are displayed in Figure 7. First, they con-
firmed that both FFI and STD mechanisms are jointly nec-
essary in the model to suppress the epileptic activity in the
FCD when LFS is being used since the withdrawal of either
STD or FFI leads the model to generate epileptic activity at
LFS. Second, results indicated that the RtN inhibitory interneu-
rons targeting TC cells (both IRT

1 and IRT
2 subpopulations)

must be affected (i.e., depolarized) by the stimulation to obtain
a suppression of epileptic activity when HFS is being used,
as observed in the patient. Third, and interestingly, an unex-
pected effect was observed at IFS when the depolarization of
IRT
2 interneurons was removed from the model. Indeed, epilep-

tic activity was abolished in this case, which is really unlikely
to occur during actual stimulation as both subtypes of neurons
are expected to be affected by the direct stimulation of the CM
nucleus.
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FIGURE 6 | Evaluation of parameter sensitivity. Model output sensitivity to
variations of excitatory and inhibitory key parameters. Realizations of
parameter vector � = {AC , BC , GC , ATh, BTh, GTh, ARt } were randomly
(uniform law) generated around the optimal parameter vector �0 over a

variation domain defined by (1 ±ζ). �0. For ζ ≤ 0.2 (±20% variation),
stimulation effects are preserved in the model for (A) no stimulation,
(B) low-frequency stimulation, (C) intermediate-frequency stimulation, and
(D) high-frequency stimulation.

These results were complemented by a deeper analysis of the
thalamic output (i.e., the firing rate of TC cells) in response to
stimulation at low, intermediate and high frequency. Results are
provided in Figure 8. First, they showed that the thalamic out-
put dramatically differs depending on the stimulation frequency
(Figure 8A). Under the no stimulation condition, the firing rate
continuously oscillates around a certain value (referred to as
�, Figure 8A). At LFS, the firing rate was found to be lower,
except at the stimulation times where it abruptly and transiently
increased. At IFS, a balance was observed between time inter-
vals for which the TC firing is above and below �. Finally, at
HFS, the output of TC cells was found to be very low, i.e., sys-
tematically under the threshold �. From these observations, we
could define (i) two time intervals, �1 and �2, for which the
TC cells firing rate is either below �(�1) or above � (�2)
and (ii) a “high to low firing” ratio (HtoLR) which provides
an indication on the amount of time the TC cells spend fir-
ing (up state) relatively to the amount of time they do not fire
(down state). Figure 8B provides the evolution of the HtoLR
when the stimulation frequency is progressively changing from 0
to 150 Hz in the model. As depicted, these simulations indicated
that three stimulation frequency ranges have dramatic effects on
the firing of TC cells. First, from 0 to 20 Hz, the down state

is predominant. Then, an abrupt jump was observed around
22 Hz indicating that beyond this value, the firing rate dramat-
ically increased. Interestingly, from 55 to 65 Hz, a progressive
decrease of the HtoLR was observed. Then, after 70 Hz, the ratio
is equal to zero indicating that TC cells did not fire anymore.
Finally, in order to relate the thalamic activity with the corti-
cal activity, we plotted the phase portraits (TC cell firing vs.
cortical LFP) as illustrated in Figure 8C. Results confirmed the
visual inspection of signals simulated at the two sites. For the
no stimulation (NS) and for the intermediate frequency stimu-
lation (IFS) conditions, phase portraits were found to be quite
similar. They indicated the presence of mixed slow/fast oscilla-
tions in both signals. For the low frequency stimulation (LFS)
condition, oscillations in the simulated LFP in the FCD were
reduced. They came along with short-duration, abrupt and rhyth-
mic augmentations of the TC firing corresponding to stimulation
pulses. Finally, for the high frequency stimulation (HFS) condi-
tion, oscillations in both types of activity stayed confined to small
amplitude values.

DISCUSSION
We modeled the thalamocortical loop in order to investigate
frequency-dependent effects of electrical stimulation performed
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FIGURE 7 | Conditions to reproduce frequency-dependent

stimulation effects. Model output in the case where one of the
implemented mechanisms (FFI, STD, depolarization of IRt

2 , and IRt
1 „

respectively) is removed at a time. LFS effects are not reproduced
when the model does not account for FFI and STD. HFS effects

require the depolarization of both reticular populations IRt
2 and IRt

1 .
Suppression of epileptic activity is observed at IFS when IRt

2
interneurons are removed. Red dotted lines indicate situations where
simulated signals do not match real ones for given stimulation
condition.

in the thalamus and aimed at modulating the neocortical activ-
ity. We chose to elaborate our model at a mesoscopic level, i.e.,
intermediate between microsocopic and macroscopic.

Regarding the model architecture, we followed a similar
approach to that used in previously proposed models of the tha-
lamocortical loop (Robinson et al., 2002; Suffczynski et al., 2004;
Breakspear et al., 2006; Roberts and Robinson, 2008; Marten et al.,
2009; Crunelli et al., 2011). Our model includes three main com-
partments: cerebral cortex, reticular nucleus and thalamic relay.
Subpopulations of neurons and interneurons located in these
three structures interact via excitatory and/or inhibitory synaptic
connections. The novelty with respect to aforementioned stud-
ies is threefold. First, we modified the cortical compartment in
order to better approximate the temporal dynamics of epileptic
signals recorded in the FCD. This modification consisted in the
use of two types of interneurons (mediating GABAergic IPSPs
with slow and fast kinetics on cortical principal cells), as reported
in a previous study (Molaee-Ardekani et al., 2010). Second, our
model accounts for the direct effects of electrical stimulation. At
this stage, we used the �V ≈ �λ.�E assumption according to which
the perturbation of the mean membrane potential of neurons
is a linear function of the electrical field magnitude induced by
bipolar stimulation. This “λE” assumption was already used in
neural mass models in the context of low-intensity direct hip-
pocampal stimulation to anticipate seizures (Suffczynski et al.,
2008) as well as in the analysis of the stimulus-response relation-
ship of DBS in healthy animals (Adhikari et al., 2009). However,
it is worth mentioning that in our model, the three subtypes of
neurons (TC cells and both subpopulations of inhibitory neurons
in the RtN) are depolarized by the stimulation, as suggested in

(Molaee-Ardekani et al., 2013) and conversely to (Adhikari et al.,
2009) where only principal cells are impacted. And third, our
model includes two well-known mechanisms at the cortical level:
feed-forward inhibition (FFI) and short-term depression (STD).

As in any modeling approach, our approach has some limita-
tions. First, the chosen modeling level does not allow for analyzing
sub-cellular mechanisms involved in stimulation-evoked changes.
Similarly, it does not account for direct activation of axons by
stimulation versus somatic inhibition (McIntyre et al., 2004b),
nor for the mechanisms of orthodromic/antidromic propaga-
tion of action potentials due to stimulation (Degos et al., 2005;
Hammond et al., 2007; Dorval et al., 2008). Second, a strong
assumption in the type of model we used (neural mass) is related
to the intrinsic synchronization among neurons included in a
given sub-population. This assumption does not allow for rep-
resenting either de- or weakly-synchronized firing patterns that
may be observed during epileptic activity, in particular during
high frequency oscillations that can be encountered in FCDs
(Brázdil et al., 2010). Nevertheless, we could accurately repro-
duce the abnormal rhythms generated in the FCD suggesting that
main pyramidal cells have a relatively synchronized activity in
this epileptogenic tissue. Third, regarding plasticity-related mech-
anisms, we only implemented short-term effects (i.e., STD) and
neglected long-term plastic changes that may be induced by DBS
(Shukla et al., 2013).

Despite these limitations, we could identify a number of
mesoscopic factors which could explain the frequency-dependent
mechanisms of thalamic stimulation. The model was tuned using
electrophysiological data recorded in a patient in whom the cen-
tromedian nucleus (CMN) stimulation was particularly efficient
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FIGURE 8 | Model behavior as a function of the stimulation

frequency. (A) The firing rate of TC cells depends on the
stimulation frequency (�1: time interval for which this firing is
lower than a threshold �, �2: time interval for which this firing is

higher than �). (B) Evolution of the “High to Low firing Ratio”
(HtoLR) as a function of stimulation frequency. (C) Phase portraits
(FCD activity vs. CM firing) for the four stimulation conditions (NS,
LFS, IFS, and HFS).

to reduce the epileptic activity of a FCD located in the premo-
tor cortex, in a frequency-specific manner. The main findings are
summarized in Figure 9.

“NO STIMULATION” (NS) CONDITION
In the model, under the NS condition, excitation among pyra-
midal cells had to be increased and inhibition had to be reduced
in the cortical compartment for producing “pathological” oscilla-
tory rhythms, as observed in the FCD. The thalamocortical loop
was found to be responsible for these pathological dynamics,
characteristic of FCDs. These findings are in line with histologi-
cal studies showing that these typical oscillations are generated in
altered brain tissue, where inhibition is partially deteriorated or
dysfunctioning (Calcagnotto et al., 2005), and where excitation is
heavily increased (Avoli et al., 2003). In addition to neuron alter-
ations in the dysplastic tissue (Sisodiya et al., 2009), FCD keeps
sufficient projections to—and input from—other brain struc-
tures to propagate pathological dynamics (Avoli et al., 2003). As
mentioned, the presence of connections with subcortical struc-
tures was a necessary condition in the model for producing

pathological oscillations resembling those actually recorded in the
FCD (Figure 9A).

LOW-FREQUENCY STIMULATION (LFS) CONDITION
For the low-frequency stimulation (LFS, f < 20 Hz) condition,
two mechanisms were found to play a major role for the abor-
tion of epileptic activity in the FCD: short-term depression (STD,
i.e., decreased excitatory synaptic efficacy in thalamus-to-cortex
connections) and feed-forward inhibition (FFI, i.e., excitation of
inhibitory cortical interneurons by TC cells) (Figure 9B).

STD was reported in previous studies concerning cortical
adaptation to thalamic stimulation, and suggesting that electrical
LFS of TC cell axons in vivo resulted in a 40% reduction in cor-
tical EPSPs (Chung et al., 2002). In the same context, LFS trains
in adult anaesthetized rats provoked transient long-term depres-
sion of thalamocortical synapses; this was measured by up to 40%
drop in cortical EPSPs after LFS trains and under the effect of
GABA antagonist (Speechley et al., 2007).

As mentioned above, the LFS effects could not be repro-
duced by the model without incorporating also FFI. Actually,
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FIGURE 9 | Frequency-dependent mechanisms underlying DBS. (A)

Under the no stimulation (NS) condition, the thalamocortical loop is
responsible for pathological oscillatory rhythms observed in the FCD. (B) For
low-frequency stimulation (LFS), feed-forward inhibition (FFI, i.e., excitation of
inhibitory cortical interneurons by TC cells) and short-term depression (STD,
i.e., decreased excitatory synaptic efficacy in thalamus-to-cortex connections)
was found to play a major role for the abortion of epileptic activity in the FCD.

(C) For the intermediate-frequency stimulation (IFS) condition, thalamic
output is reinforced (increase of TC cells firing) leading to an increase of the
average excitatory post-synaptic potential (EPSP) on cortical pyramidal cells
and to no “anti-epileptic” effect. (D) For high-frequency stimulation (HFS), the
direct and sustained excitation of reticular nucleus (RtN) interneurons leads
to dramatic decrease of TC cells firing rate and to a suppression of epileptic
activity.

thalamocortical ascending fibers directly target pyramidal neu-
rons as well as cortical GABAergic interneurons inducing EPSPs
in both cell types (Pouille and Scanziani, 2001). In the model,
while less efficient (STD) thalamic EPSPs arrive directly onto
pyramidal neurons, IPSPs induced by thalamic stimulation also
arrive on pyramidal neurons (FFI) lagging by 1–2 ms. This short
latency between the onset of thalamocortical excitation and
the onset of feed-forward inhibition presents a temporal “win-
dow of opportunity” for pyramidal cells to integrate excitatory
and inhibitory inputs, thus keeping the transmembrane poten-
tial below firing threshold. In the literature, neuroanatomical
and neurophysiological studies (Isaacson and Scanziani, 2011)
showed the functional importance of FFI in regulating corti-
cal dynamics by controlling cortical excitability (Gabernet et al.,
2005). Our study suggests that LFS regulates cortical excitability
by a dual mechanism of FFI and STD (Figure 9B).

INTERMEDIATE-FREQUENCY STIMULATION (IFS) CONDITION
For the intermediate-frequency stimulation (IFS, 20 <

f < 70 Hz) condition, results indicated that the thalamic
output is reinforced (increase of TC cells firing) and leads to an
increase of the average excitatory post-synaptic potential (EPSP)
on cortical pyramidal cells (Figure 9C). This effect corresponds
to an increase of the spatiotemporal summation of unitary
EPSPs. In this case, both the cortical excitability and the gain in
the excitatory thalamocortical loop is increased, leading to “no
anti-epileptic” effect. We did not find much studies using DBS
stimulation in the intermediate frequency range of (20–60 Hz) in
the context of epilepsy. Nevertheless, it is noteworthy that 50 Hz
stimulation frequency is classically used during the presurgical
evaluation of patient with intractable partial epilepsy in order to

trigger seizures and delineate the epileptogenic zone (Talairach
et al., 1974; Jayakar et al., 1992). The same frequency range is also
known to provoke afterdischarges and was actually used in the
kindling model of epilepsy (Goddard, 1967; Racine, 1972).

HIGH-FREQUENCY STIMULATION (HFS) CONDITION
Finally, for the high-frequency stimulation (HFS, f > 70 Hz) con-
dition, the direct and sustained excitation of reticular nucleus
(RtN) interneurons leads to strong inhibition of TC cells and
thus to dramatic decrease of their firing rate. Despite the fact
that TC neurons are also affected by stimulation, the response
of reticular GABAergic neurons to stimulation and the higher
efficiency of GABA-mediated currents ensure that IPSPs over-
ride EPSPs on TC cells. In this case, the reduced excitatory
input to cortical pyramidal cells also leads to a suppression of
epileptic activity (Figure 9D). This result corroborates reported
stimulation studies where HFS (>100 Hz) was associated with
significant decrease in epileptiform discharges in vitro, and reduc-
tion in seizure frequency in responding patients (Velasco et al.,
2006; Fisher et al., 2010). This hypothesis is in line with recent
findings suggesting that HFS of the globus pallidus (GPi) in dys-
tonia patients decreased its firing by stimulation-evoked GABA
release from afferent fibers and thereby the enhancement of
inhibitory synaptic transmission by HFS (Liu et al., 2012).
Similarly, HFS (100 Hz–130 Hz) of the STN neurons in vitro
showed a suppression of the activity of the majority of neu-
rons by the reinforcement of inhibitory responses (Filali et al.,
2004). Other HFS studies also provided evidence on the inhibi-
tion of GPi output during HFS in human patients (Dostrovsky
et al., 2000) as well as the disruption thalamocortical network’s
dysrhythmia (McIntyre and Hahn, 2010; Kendall et al., 2011).
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CONCLUSION
In epilepsy research, it is well-admitted that there is, unfor-
tunately, a lack of tangible results regarding the effects of
electrical stimulation in the brain. Therefore, the very crucial
issue of choosing the “optimal” stimulation parameters remains
unsolved, whatever the stimulation procedure. Although com-
putational models are always based on a number of simplifying
assumptions, we think that they provide an efficient framework to
(i) account for the many and essential factors that may intervene
during stimulation procedures and (ii) analyze the links between
these factors in a formal manner. This approach is particularly
fruitful when models are well grounded in experimental/clinical
data (Wendling et al., 2012). This is somehow a weak point of this
study since we could make use of data sets recorded in one patient
only. However, it should be mentioned that these very informa-
tive data sets stay relatively rare since many conditions have to be
met (patient candidate to surgery, FCD, electrodes positioned in
appropriate structures).

At this stage, the face value of the model is satisfactory. The
next step is obviously to test the model predictions using animal

models. Experiments can be undertaken in rodents with elec-
trodes implanted in the cerebral cortex and in the thalamus.
First, we could start with control animals to assess the modula-
tion of cortical rhythms during/after direct thalamic stimulation
at various frequencies and for controlled vigilance states (sleep,
awake, resting, exploratory). In these controls, some drugs can
be used to alter some parameters related to synaptic transmission
(in a more or less specific manner) which have a correspondence
in the model, on the other hand. Then, refined experimental
models could be introduced to get closer to the epilepsy context
including models of developmental dysplastic lesions [see review
in Schwartzkroin and Wenzel (2012)]. Hopefully, this combined
computational/experimental approach will help us to disclose
some of the highly intricate effects of DBS either at local or at
network level.
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This technical note introduces a conductance-based neural field model that combines
biologically realistic synaptic dynamics—based on transmembrane currents—with neural
field equations, describing the propagation of spikes over the cortical surface. This
model allows for fairly realistic inter-and intra-laminar intrinsic connections that underlie
spatiotemporal neuronal dynamics. We focus on the response functions of expected
neuronal states (such as depolarization) that generate observed electrophysiological
signals (like LFP recordings and EEG). These response functions characterize the model’s
transfer functions and implicit spectral responses to (uncorrelated) input. Our main finding
is that both the evoked responses (impulse response functions) and induced responses
(transfer functions) show qualitative differences depending upon whether one uses a
neural mass or field model. Furthermore, there are differences between the equivalent
convolution and conductance models. Overall, all models reproduce a characteristic
increase in frequency, when inhibition was increased by increasing the rate constants
of inhibitory populations. However, convolution and conductance-based models showed
qualitatively different changes in power, with convolution models showing decreases
with increasing inhibition, while conductance models show the opposite effect. These
differences suggest that conductance based field models may be important in empirical
studies of cortical gain control or pharmacological manipulations.

Keywords: neural field theory, mean field modeling, electrophysiology, conductance based models, dynamic

causal modeling

INTRODUCTION
This paper introduces a conductance-based neural field model
that accounts for spatial variations in synaptic transmission
among neural ensembles on the cortical surface. Our model-
ing draws from computational neuroscience, in which spiking
models are described by population density dynamics. Generally,
in these mean field approaches, population activity is expressed
in terms of mean post-synaptic voltages and currents; however,
conductance based models that consider the geometry and topog-
raphy of neuronal interactions are relatively rare in the literature
(Goldstein and Rall, 1974; Ellias and Grossberg, 1975; Somers
et al., 1995; Ermentrout, 1998); in other words, the spatiotem-
poral dynamics of conductance models are often simplified to
neural mass approximations, such that the population density
depends upon time only. In our model, we make the statistics
of neuronal states a function of space, thereby characterizing
mean spike rates as fluctuations propagating over horizontal cor-
tical connections. This involves using wave equations to describe
interactions between spatially extended neuronal populations, in
terms of changes in the flow of post-synaptic currents, the history
of pre-synaptic inputs and the action of certain neuromodulators.

Conductance-based models have a long history in mathemat-
ical neuroscience; for a detailed review, see (Tuckwell, 2005).
Within the setting of dynamic causal modeling, a treatment of
conductance-based models (that ignores the spatial distribution
of sources over the cortex) can be found in (Marreiros et al.,
2010) that was later applied to characterize synaptic function
empirically (Moran et al., 2011b). These models regard a neuron

as an electrical circuit, where the membrane response follows
the inflow or outflow of current through ionic channels. These
channels are associated with conductances that depend upon elec-
trochemical gradients across the membrane and the configuration
of various ion channels and receptors. The standard kinetic model
for conductance dynamics comprises two sorts of equations: (1)
an equation for the rate of change of transmembrane potential
as an aggregate current flux—consisting of Ohmic components
and (2) equations for the channel conductances that depend upon
pre-synaptic spiking and the proportion of open channels. This
form of modeling necessarily entails non-linear terms, in which
changes in post-synaptic potential involve the product of synaptic
conductances and potential differences associated with different
channel types. In other words, the equations of motion for neu-
ronal states are necessarily non-linear and second-order (with
respect to the hidden neuronal states), in accord with electro-
magnetic laws. This should be contrasted with the alternative
approach to neural mass and mean field modeling based upon
convolution operators. In these models, post-synaptic depolariza-
tion is modeled as a (generally linear) convolution of pre-synaptic
spiking input. Crucially, this convolution can be formulated in
terms of linear differential equations.

In short, the key distinction between conductance and con-
volution based models is that conductance based models have
non-linear dynamics and, in principle, provide a degree of bio-
logical realism that can incorporate neuromodulatory and other
conductance-specific physiological effects. Here, we use this basic
form of model to describe the depolarization and conductances
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of neural fields on the cortical sheet—and recast pre-synaptic
spike rates as fluctuations obeying a wave equation that propa-
gates along axon collaterals. We adopt a neural mass approach,
where the input to each neuron of the population is the expected
firing over all neurons around a point on a local cortical surface
or patch. We thus obtain a conductance-based cortical field model
linking population dynamics to synaptic neurotransmission. This
paper focuses on the operational aspects of this model and its abil-
ity to reproduce typical cortical responses such as event–related
potentials (ERPs) and cross-spectral densities.

The use of conductance based models to simulate large net-
works of neurons has enjoyed recent developments, involving
both direct simulations of large numbers of neurons (which can
be computationally expensive); e.g., (Izhikevich, 2004) and prob-
abilistic approaches; e.g., (De Groff et al., 1993; Nykamp and
Tranchina, 2000). Probabilistic approaches model the population
density directly and bypass direct simulations of individual neu-
rons. We follow a similar approach that exploits a neural mass
approximation. This effectively replaces coupled Fokker-Planck
equations describing population density dynamics, with equa-
tions of motion for expected neuronal states; that is, their first
moments. These equations are formulated in terms of the mean
of the population density over each neuronal state, as a function
of space.

Recent work has considered the link between networks of
stochastic neurons and neural field theory by using convolution
models (with alpha type kernels) to characterize post-synaptic
filtering: some studies have focused on the role of higher order
correlations, starting from neural networks and obtaining neu-
ral field equations in a rigorous manner; e.g., (Buice et al., 2010;
Touboul and Ermentrout, 2011), while others have considered a
chain of individual fast spiking neurons (Rose and Hindmarsh,
1989), communicating through spike fields (Wilson et al., 2012).
These authors focused on the complementary nature of spiking
and neural field models and on eliminating the need to track
individual spikes (Robinson and Kim, 2012). Our focus is on the
behavior of neuronal populations, where conductance dynamics
replace the convolution dynamics—and the input rate field is a
function of both time and space. This allows us to integrate field
models to pre-dict responses and therefore, in principle, use these
models as generative or observation models of empirical data.

When modeling pre-synaptic firing rate, we use the approx-
imation of (Robinson et al., 1997) that yields broad temporal
pulses in response to a delta input. Crucially, we character-
ize the neuronal input as fluctuating mean spiking activity that
conforms to a wave equation. Our model is non-linear in the
neuronal states, as with single unit conductance models and
the model of (Liley et al., 2002). This model entails a multi-
plicative non-linearity, involving membrane depolarization and
pre-synaptic input and has successfully reproduced the known
actions of anaesthetic agents on EEG spectra, see e.g., (Steyn-
Ross et al., 2001, 2011; Liley et al., 2003; Bojak and Liley, 2005;
Wilson et al., 2006). Our model is distinguished by the fact that
it incorporates distinct cell types with different sets of conduc-
tances and local conduction effects. More specifically, it comprises
three biologically plausible populations, each endowed with exci-
tatory and inhibitory receptors. It focuses on the propagation
of spike rate fluctuations over cortical patches and the effect

this spatiotemporal dynamics has on membrane dynamics gated
by ionotropic receptor proteins. We consider laminar specific
connections among two-dimensional populations (layers) that
conform to canonical cortical microcircuitry. The parameteriza-
tion of each population or layer involves a receptor complement
based on findings in cellular neuroscience. However, this model
incorporates lateral propagation of neuronal spiking activity that
is parameterized through an intrinsic (local) conduction velocity.

This note comprises three sections. In the first, we review the
mathematical formalism that underlies conductance based neu-
ral field models and introduce a generative model that accounts
for both conductance effects on membrane dynamics and prop-
agation of activity along intrinsic connections. In the second,
we compare the behavior of this model with the correspond-
ing behavior of convolution field models and consider the effect
of changing model parameters. We also compare and contrast
responses obtained by the neural mass reductions of these (con-
ductance and convolution) models; in other words, models that
consider dynamics over time only. Our focus here is on the effect
that propagating fluctuations along horizontal (intrinsic) con-
nections have on spatiotemporal dynamics. We conclude with a
discussion of how the neural field model based upon first-order
statistics—used in this paper—relates to formal treatments of
population dynamics.

A CONDUCTANCE-BASED NEURAL FIELD MODEL
We consider a group of NR interacting neuronal populations
or layers. The collective dynamics (activity) of each population
evolve according to a set of coupled differential equations that
depend on some scalar quantities or neuronal states q(x, t) ∈
{v(x, t), gk(x, t), μk(x, t)} that are continuous functions of the
location on the cortical surface x ∈ X. These neuronal states
include the transmembrane potential v(x, t), a set of synaptic
conductances gk(x, t) modeling distinct membrane channel types
and the pre-synaptic input to which they are exposed μk(x, t).

The resulting populations can be viewed as a set of coupled RC
circuits, where channels open in proportion to pre-synaptic input
and close in proportion to the number already open. Changes
in conductance produce changes in depolarization in propor-
tion to the potential difference between transmembrane potential
and a reversal potential vk that depends upon the channel type.
Open channels result in hyperpolarizing or depolarizing currents
depending on whether the transmembrane potential is above or
below the reversal potential. These currents are supplemented
with exogenous current u(x, t) to produce changes in the trans-
membrane potential (scaled by the membrane capacitance C).
The first order moments or means of neuronal states at a location
x on a cortical patch evolve according to the following system of
differential equations:

Cv̇(x, t) =
∑

k
gk (vk − v(x, t))

ġk(x, t) = λk
(
μk (x, t)− gk(x, t)

)
(1)

μk(x, t) =
�

d
(
x − x′, t − t′

)
σk
(
v
(
x′, t′

))
dt′dx′ + u(x, t)

where pre-synaptic input to point x arises from a spatiotemporal
convolution of a sigmoid activation function of depolarizations
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in other locations x′ (in the past at time t′) and k = E, I
denote excitatory and inhibitory synaptic conductances or inputs.
This model assumes that each neuron senses all others, so
that endogenous input is the expected firing of contributing
locations summarized with a sigmoid function σk(v) of their
transmembrane potential. It is this function that accommo-
dates the stochastic dispersion of neuronal states: see (Marreiros
et al., 2010) for a detailed discussion. The rate constants λk

characterize the response of each channel type to afferent
input. Finally, d(x, t) is a connectivity kernel that accommo-
dates axonal propagation delays. It is this connectivity kernel
that specifies the spatial aspects of the ensuing spatiotemporal
dynamics.

A ubiquitous choice for the connectivity kernel (Wilson and
Cowan, 1973; Jirsa and Haken, 1996) is based on the assumption
that the number of synaptic connections between populations
decays exponentially with some characteristic spatial scale c;
namely, d(x, t) = ae−c·|x|δ(t − |x|/s), where a scales connection
strengths and s is the speed at which neuronal spikes propagate
down connections. This assumption means that we can express
the dynamics of the mean firing rates as (see e.g., Pinotsis et al.,
2012):

μ̈k(x, t)+ 2scμ̇k(x, t)− s2 (∂xxμk(x, t)− c2μk(x, t)
)

= as2cσ (v(x, t))+ u (2)

Combining Equations (1) and (2) gives us the equations of
motion for all neuronal states:

q̇(x, t)=

⎡⎢⎢⎣
v̇
ġk

μ̇k

μ̇′k

⎤⎥⎥⎦=
⎡⎢⎢⎢⎢⎢⎢⎣

1
C

∑
k gk (vk − v(x, t))

λk
(
μk(x, t)− gk (x, t)

)
μ′k(x, t)

−2scμ′k(x, t)+ s2 (∂xxμk(x, t)
− c2μk(x, t)

)+ as2cσ(v(x, t))+ u

⎤⎥⎥⎥⎥⎥⎥⎦ (3)

for the quantitative purposes of this paper, we solve Equation
(3) using a simple finite differences scheme for the second-order
spatial derivatives.

Figure 1 illustrates the model for a spatially extended cor-
tical source, which we will call a conductance-based neural
field. In this model, the source consists of three layered popu-
lations; namely, spiny stellate cells, inhibitory interneurons and
pyramidal cells. Each population is assigned to a cortical layer
and is connected to other layers according to the principles
of a typical cortical microcircuit (as described in e.g., Pinotsis
et al., 2012). Each layer is equipped with neural states q(x, t) ∈
{v(i)(x, t), g(i)

k (x, t), μ(i)
k (x, t), μ′(i)

k (x, t)}, where the superscript
i indexes different laminar populations—and the states evolve
according to a system of coupled equations of the form of
Equation (3). When this model is augmented with a mapping
from source to sensor space, we obtain a generative model

FIGURE 1 | A conductance-based neural field model. This schematic
summarizes the equations of motion or state equations that specify a
conductance based neural field model of a single source. This model
contains three populations, each associated with a specific cortical layer.
These equations describe changes in expected neuronal states (e.g.,
voltage or depolarization) that subtend observed local field potentials or

EEG signals. These changes occur as a result of propagating pre-synaptic
input through synaptic dynamics. Mean firing rates within each layer are
then transformed through a non-linear (sigmoid) voltage-firing rate function
to provide (pre-synaptic) inputs to other populations. These inputs are
weighted by connection strengths and are gated by the states of synaptic
ion channels.
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of electrophysiological responses that can be used to infer the
parameters of both synaptic kinetics—and intrinsic or lateral
interactions, through the parameters of the connectivity kernel.
Crucially, because of the biologically realistic construction of this
model, one can examine the dependency of spatially extended
dynamics of particular conductances and receptor subtypes.

RELATION TO CLASSICAL NEURAL FIELD MODELS
Equation (3) is an equation of motion, describing a neuronal
field in terms of expected neuronal states. This sort of equa-
tion can accommodate both convolution and conductance based
neural field models. Convolution neural field models involve
kernels that are linear in the states; for example q(x, t) ∈
{v(x, t), v′(x, t),μ(x, t),μ′(x, t)}. These models can also be cast
in a form similar to Equation (3):

q̇(x, t) =

⎡⎢⎢⎢⎣
v̇

v̇′
μ̇

μ̇′

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v′

−2λv′(x, t)− λ2v(x, t)

+Hλμ(x, t)

μ′(x, t)

−2scμ′(x, t)+ s2(∂xxμ(x, t)

− c2μ(x, t)
)+ as2cσ(v(x, t))+ u

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4a)

Indeed, this equation can be rewritten as

v̈(x, t)+ 2λv′(x, t)+ λ2v(x, t) = Hλμ(x, t)

μ̈(x, t)+ 2scμ̇(x, t)− s2(∂xxμ(x, t)− c2μ(x, t)) = as2cσ(v(x, t))+ u
(4b)

These equations describe neural fields with constant coefficients
in homogeneous media; see e.g., Pinotsis and Friston, 2011;
Pinotsis et al., 2012, 2013. In a previous paper, we introduced
a neural field model involving the three laminar populations
depicted in Figure 1, which we called a Jansen and Rit neural
field model. This model is similar to the classical Wilson and
Cowan or Amari models (Wilson and Cowan, 1972; Amari, 1977).
The model in Equation (4) assumes an alpha-type synaptic con-
volution kernel. This is simply the Green’s function associated
with a linear filtering of pre-synaptic input to produce changes
in depolarization. In these mean field models, passive mem-
brane dynamics and dendritic effects are summarized by lumped
parameters (λ and H in the above equations) that model the rate
that depolarization increases to a maximum and synaptic efficacy
(or maximum post-synaptic potential), respectively. However,
this sort of description neglects the timescales of synaptic currents
that are implicit in conductance based models: in Equations (3)
these timescales are characterized in terms of the rate constants λ

and C; namely, channel response and membrane capacitance.
The crucial difference between these (linear and non-linear)

parameterizations is that in the conductance models, the param-
eters characterize the response of each population to distinct
excitatory and inhibitory inputs: in other words, there is a set of
synaptic rate constants (each corresponding to a distinct channel)
associated with each population. The corresponding dynamics
are defined over timescales that result from the parameters used

and the non-linear interaction between membrane potential and
conductance. These timescales may be crucial in pharmacological
manipulations that selectively affect one sort of current in a recep-
tor specific fashion. This means that conductance-based models
may be more appropriate candidates to study synaptic function
at the level of specific neurotransmitter systems (Faulkner et al.,
2009; Moran et al., 2011a).

SIMULATIONS
In the following, we focus on simulated responses generated by
convolution and conductance variants of neural mass and field
models—where these two variants incorporate fundamentally
different descriptions of post-synaptic filtering. We investigate the
dependence of simulated responses on model parameters with
neurobiological or pharmacological significance. Specifically, we
examine: (1) the effects of changing synaptic parameters and (2)
the qualitative differences in the behavior of convolution and
conductance based models. In this technical note, we focus only
on the phenomenology of the models in the domains of the
parameter space that are dynamically stable.

We generated synthetic electrophysiological responses by inte-
grating equations (3) or (4) from their fixed points and char-
acterized the responses to external (excitatory) impulses to
spiny stellate cells, in the time and frequency domain. The
spectral responses correspond to the model’s transfer function.
Electrophysiological signals (LFP or M/EEG data) were simulated
by passing neuronal responses through a lead field that varies with
location on the cortical patch. The resulting responses in sensor
space (see Figures 5–7) are given by a mixture of currents flowing
in and out of pyramidal cells in Figure 1:

y(t, θ) =
∫

L(x, θ)Q · v̇(x, t)dx (5)

In this equation, Q ⊂ θ is a vector of coefficients that weight the
relative contributions of different populations to the observed sig-
nal and L(x, θ) is the lead field. This depends upon parameters θ

and we assume it is a Gaussian function of location—as in previ-
ous models of LFP or MEG recordings: see (Pinotsis et al., 2012).
This equation is analogous to the usual (electromagnetic) gain
matrix for equivalent current dipoles. We assume here that these
dipoles are created by pyramidal cells whose current is the pri-
mary source of an LFP signal. With spatially extended sources
(patches), this equation integrates out the dependence on the
source locations within a patch and provides a time series for each
sensor.

We modeled a cortical source (approximated with 11 grid
points) and used the model equations (see Figure 1) to gener-
ate evoked responses (impulse response functions) and associated
transfer functions (their Fourier transform). The parameters of
this model are provided in Table 1. The results reported below
were chosen to illustrate key behaviors in terms of ERP (impulse
response) and frequency responses (transfer functions) in sensor
space, following changes in parameter values. We compare and
contrast results from the two classes of models (conductance and
convolution models). We also consider the corresponding result
for their mass variants, which use the same equations but assume
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Table 1 | Parameters of conductance-based neural field and mass

models.

Parameter Physiological Value

interpretation

gL Leakage conductance 1

α13, α23, α31, α32 Amplitude of intrinsic
connectivity kernels

(1/10, 1, 1/2, 1)∗3/10 (field)
1/2, 1, 1/2, 1 (mass)

cij Intrinsic connectivity decay
constant

1 (mm−1)

vL, vE , vI Reversal potential −70, 60, −90 (mV)

vR Threshold potential −40 (mV)

C Membrane capacitance 8 (pFnS−1)

s Conduction speed 0.3 m/s

λ, λ̃ Post-synaptic rate
constants

1/4, 1/16 (ms−1)

� Radius of cortical patch 7 (mm)

that all neurons of a population are located at (approximately) the
same point.

The resulting mass models include the well-known Jansen and
Rit mass model, see (David and Friston, 2003) and the simplified
Morris-Lecar type model (that neglects fast voltage-dependent
conductances) introduced in (Marreiros et al., 2010). This
conductance-based model is based on the Rall and Goldestein
equations (Goldstein and Rall, 1974) and is formally related to
Ermentrout’s (Ermentrout, 1998) reduction of the (Somers et al.,
1995) model. Mass models have often been used to character-
ize pharmacological manipulations and the action of sedative
agents (Traub et al., 1999; Liley et al., 2003; Bojak and Liley,
2005; Moran et al., 2008; Hutt and Longtin, 2010; Steyn-Ross
et al., 2011). This usually entails assuming that a neurotransmit-
ter manipulation changes a particular parameter, whose effects
are quantified using a contribution or structural stability analysis,
where structural stability refers to how much the system changes
with perturbations to the parameters.

Our aim here was to illustrate changes in responses with
changes in the parameters of the convolution and conductance
field models. A range of anaesthetics has been shown to increase
inhibitory neurotransmission. This effect has been attributed to
allosteric activators that sensitize GABAA receptors. In the con-
text of our models, these effects correspond to an increase of the
strength of inhibitory input to pyramidal cells a32. We here focus
on spectral responses in the alpha and beta range, as this is the
range of interest for many applications involving drug effects.

We first consider generic differences in non-linear processes
mediated by conductance and convolution based models. To do
this, we integrated the corresponding equations for (impulse)
inputs of different amplitudes and plotted temporal responses
resulting from fixed point perturbations. Linear models are insen-
sitive to the amplitude of the input, in the sense that the impulse
responses scale linearly with amplitude. Our interest here was
in departures from linearity—such as saturation—that belie the
non-linear aspects of the models. Figure 2 shows the responses
of the mass models to an impulse delivered to stellate cells. Note
that these responses have been renormalized with respect to the

FIGURE 2 | Responses to impulses of different amplitudes for

convolution (top) and conductance (bottom) based neural mass

models. The responses are normalized with respect to the amplitude of
each input. The blue lines illustrate responses to small perturbations. The
red lines illustrate responses to intermediate sized inputs, where
conductance based models show an augmented response, due to their
non-linearity. The green lines show responses for larger inputs, where the
saturation effects due to the sigmoid activation function are evident.

amplitude of each input. The red (green) curves depict responses
to double (ten times) the input reported by the blue curves. We
used the same parameters for both models: see Table 1; where
additional parameters for the Jansen and Rit model are provided
in Table 2 below.

It can be seen that there are marked differences between the
model responses. The top panel depicts the response of the con-
volution mass model and the lower panel shows the equivalent
results for the conductance model. One can see that large inputs
produce substantial sub-additive saturation effects (blue vs. green
lines in Figure 2): for the convolution model, increasing the input
amplitude produces a sub additive increase in response ampli-
tude; whereas for the conductance model, the non-linearities
produce an inverted U relationship between the amplitude of
the response, relative to the input. In summary, the form of the
input-output amplitude relationship differs quantitatively for the
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Table 2 | Parameters of convolution-based neural field and mass

models.

Parameter Physiological

interpretation

Prior mean

HE , HI Maximum post-synaptic
depolarizations

8 (mV)

α13, α23, α31, α32 Amplitude of intrinsic
connectivity kernels

(1/2, 1, 1/2, 1)∗3/10 (field)
1, 4/5, 1/4, 1 (mass)

Other parameters as in Table 1.

conductance (inverted U) and convolution (decreasing) models
(see Figure 2).

Figure 3 shows the impulse responses of the field models
described by Equations (3) and (4). Here we observe sub-additive
saturation effects that are similar to the responses of the convo-
lution mass model—with relatively stronger attenuation of the
response amplitude than the mass model even for intermediate
input amplitudes.

We next characterized the spectral responses of convolution
and conductance-based neural fields and their mass variants. It
should be noted that this analysis is purely phenomenological
and a complete bifurcation analysis will be presented elsewhere.
Here, we focus on transfer functions associated with the models.
These are shown in subsequent figures for a range of physiolog-
ical parameters. The transfer functions can be regarded as the
spectral density that would be seen if the field and mass models
were driven by independent fluctuations. It is interesting that—
for the biologically plausible parameter values we use—both field
and mass models exhibit alpha peaks (as opposed to a 1/f scale
invariant form) that are typical of neural field models (Nunez,
1995; Robinson et al., 2001; Liley et al., 2002). Note that the
transfer function characterizations used below assume a lineariza-
tion around the fixed point and therefore do not capture the
non-linear behavior of the models.

We varied the inhibitory intrinsic connectivity, a32 and exci-
tatory time constant, 1/λ, of the inhibitory populations between
10 and 36% and between 10 and 270%, respectively, of the values
in Tables 1, 2 (this corresponds to a log-scaling of between minus
two and minus one and minus one and plus one, respectively). We
denote these new values by ā32and 1/λ̄, respectively. The trans-
fer functions for the neural mass variants of the convolution and
conductance models are shown in Figures 4, 5, respectively. The
images in subsequent figures report the peak frequency of the
spectral and response as a function of the two model parameters
(the peak frequency corresponds to maximum system response).
Exemplar transfer functions for selected parameter value pairs are
shown as functions of frequency. We focus on spectral responses
produced by fixed point perturbations; where lack of convergence
to a fixed point is encoded by dark blue regions in the images.

In mass models, the peak frequencies of the spectra reflect the
alpha and beta activity that these models are known to produce.
It is interesting that the most parsimonious among all mod-
els considered (the convolution mass model) seems to support
the widest range of simulated peak frequencies; this is, how-
ever, not a conclusive result as it is heavily dependent on the

FIGURE 3 | Impulse response of conductance and convolution field

models to inputs of various amplitudes distinguished by different

colours as in Figure 2. The system’s flow is generated by Equations (3)
and (4a) and the model parameters are given in Tables 1, 2. Non-linear
effects are more pronounced—with attenuation of the response amplitude,
even for intermediate input amplitudes.

particular parameterization chosen—a fuller exploration of the
parameter space will be the focus of future work. A common
pattern observed in all models is an increase of peak frequen-
cies with smaller time constants of the inhibitory populations.
In other words, as the strength of inhibition increases, activity
becomes progressively faster (power shifts to higher frequencies).
Conversely, convolution and conductance mass models showed
quantitatively different changes in power, with convolution mod-
els showing decreases with increasing inhibition, while conduc-
tance models show the opposite effect. The transfer functions for
the corresponding field models are shown in Figures 6, 7. Here,
one observes that responses of the convolution model are simi-
lar to those obtained from the mass models above—dominated
by changes in the rate λ̄ parameter with less sensitivity to changes
in the connectivity parameter. Again, we see a common increase
in frequency as the inhibitory rate parameter is increased (or
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FIGURE 4 | Transfer functions associated with a convolution mass

model when changing the excitatory time constant and the

connection driving the pyramidal cells over a log-scaling range of

(−2, 1) x (−2, −1) (from top to bottom and left to right). The image
format summarizes the transfer function in terms of its peak frequency.
Transfer functions can be regarded as the spectral response that would be
seen if the model was driven by independent (white) fluctuations. They are
also the Fourier transform of the impulse response functions of the
previous figures.

FIGURE 5 | This figure shows the transfer functions of a cortical source

described by a conductance mass model. Here, the intrinsic connectivity
and excitatory time constant are changed as in Figure 4. Note the alpha
and beta peaks that are typical of these models.

the time constant is decreased)—and the opposite effects under
convolution and conductance models, in terms of power.

The above illustrations of system’s predictions assume that
spectral responses result from fixed point perturbations. For con-
ductance models, a change in the parameters changes both the
expansion point and the system’s flow (provided the flow is non-
zero). Figure 8 shows the dependence of the conductance model’s

FIGURE 6 | Transfer functions associated with a convolution field

model. These are equivalent to the transfer functions shown in Figure 4,
where we now model spatial propagation effects with a wave equation.
Here, one observes the characteristic increase in frequency when the time
constants decrease.

FIGURE 7 | This figure shows the changes in the transfer function of a

conductance field model. This is the equivalent to the results for the mass
model in Figure 5, where we now include spatial propagation effects.

fixed points on parameter perturbations. The model parameteri-
zation used here renders the expansion point relatively insensitive
to changes in the synaptic time constant. Figure 8 shows the
results for the conductance mass model; results for its field variant
were very similar.

DISCUSSION
In this paper, we have introduced a conductance based neural field
model that combines biologically realistic synaptic dynamics—
based explicitly on transmembrane currents—with neural field
equations, describing the propagation of spikes over the cortical
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FIGURE 8 | (Top) Mean depolarization of the pyramidal population of

the conductance neural mass model as a function of parameter

changes. This corresponds to the fixed point around which the transfer
functions in Figure 5 were computed.

surface. This model allows for fairly realistic inter- and intra-
laminar intrinsic connections over a spatially extended cortical
surface that give rise to neuronal dynamics. We have focused
on the time evolution of expected neuronal states that under-
lie observed electrophysiological signals (such as LFP recordings
and EEG). This time evolution characterizes the model’s transfer
functions and implicit spectral responses to uncorrelated input.
Our main finding is that both the evoked responses (impulse
response functions) and induced responses (transfer functions)
show quantitative differences depending upon whether one uses
a neural mass or field model. It is interesting that field models do
not always produce a wider range of spectral responses for equiv-
alent changes in their parameters (despite their greater degrees
of freedom, compare Figures 4, 6). Similarly, conductance field
models do not necessarily show a greater sensitivity to small
parameter perturbations in comparison with their convolution
counterparts (that appear more parsimonious). Although, over-
all, all models reproduce the characteristic increase in frequency
when the rate constants of inhibitory populations increase, the
precise frequency dependency depends sensitively on model type.
The choice of the appropriate model might therefore depend on
the particular research question at hand: for example, whether the
focus is on topographic as opposed to intrinsic neurotransmitter
properties or drug effects etc. This choice may also be informed by
previous applications, where similar models have already proven
useful along with the particular modality considered (see also
the discussion in Pinotsis et al., 2013). Conductance field models
may be useful in applications such as dynamic causal modeling,
that try to quantify changes in gain control in cortical circuits or
explain pharmacological manipulations.

The models considered in this paper deal only with the
expected values (means) of neuronal states. This contrasts with
higher order field treatments that would consider not just fluctua-
tions in the means or first-order statistics of population dynamics
but also higher-order statistics—such as the covariance among
different neuronal states within a population or ensemble. In
principle, it is relatively easy to extend the formalism described in
this paper to cover the dynamics of both means and covariances
using the Laplace approximation (a.k.a. the method of moments).

In these generalizations, one considers the distribution over the
neuronal states of a given population to have a Gaussian form
N (q(x, t),�(x, t)). Crucially, the equations of motion now per-
tain to both the expectations and the covariances (Marreiros et al.,
2010). The interesting challenge for the neural field variants of
these Laplace models is that the covariances have a spatial dimen-
sion and, essentially, become spatial covariance functions (cf.,
Gaussian processes or random fields). The implicit covariance
functions of space have a smoothness that is determined by the
intrinsic connectivity kernels and the dynamics of the first order
statistics.

These equations of motion for the means and covariances
reduce to the neural fields considered in this paper when the
off-diagonal terms of the covariance matrix �(x, t) are zero. In
this special case, the dynamics of the means and covariances
are uncoupled and one can assume a fixed covariance (as in
Equations 3 and 4): see Marreiros et al. (2010) for details. More
generally, full mean field treatments can provide higher order cor-
rections to stochastic neural field models and offer an alternative
description of the motion of their sufficient statistics, cf., (Buice
et al., 2010; Touboul and Ermentrout, 2011).

The conductance based model introduced in this paper
describes the propagation of spikes over the cortical surface
and how their effects on post-synaptic responses can be mod-
eled in a channel-specific fashion. In principle—as illustrated
in the transfer function analyses—changes in the balance of
cortical excitation and inhibition may be modeled more appro-
priately with conductance based models, relative to classical
convolution based models. In particular, these sorts of neu-
ral field models characterize the geometry and spatiotemporal
dynamics that are supported by intrinsic or lateral interac-
tions on the cortical surface and, implicitly, pharmacological
effects on these interactions (such as anaesthetic administra-
tion). In the next phase of this work, we will use the con-
ductance based field model described here as an observation
or generative model of empirical electrophysiological responses
to establish its validity, within the setting of dynamic causal
modeling.
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