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Editorial on the Research Topic

Artificial Intelligence in Chemistry

Within our Research Topic, six unique manuscripts which contain different trained machine
and deep learning algorithms to model chemical processes have been published. The
optimized intelligent tools cover applications within several scopes including (i) chemical
and physicochemical molecule property predictions, (ii) compound ranking, identification, and
classification, (iii) monitoring and aiding drug discovery, as well as (iv) quality evaluation and
classification of chemicals and foods.

In the successive paragraphs, each of the accepted publications are presented in chronological
order and briefly described:

1) e-Sweet: A Machine-Learning Based Platform for the Prediction of Sweetener and Its

Relative Sweetness (Zheng et al.). The authors of this work have designed and made available a
free machine learning software platform called “e-Sweet” that predicts the relative sweetness
of different molecules. They used a database containing the structures of many different
compounds, both sweeteners and non-sweeteners, to train an array of machine learning
models (e.g., support vector machine, random forest, or deep neural networks) that label each
molecule tested with a relative sweetness value. Their aspiration is to empower food scientists to
discover and develop new molecules with enhanced sweetness by harnessing the power of their
intelligent platform.

2) Deep Neural Network Classifier for Virtual Screening Inhibitors of (S)-Adenosyl-L-

Methionine (SAM)-DependentMethyltransferase Family (Li et al.). In this study, the research
team developed a deep learning-based neural network model to classify active vs. inactive
compounds in relation to their ability to inhibit SAM-dependent methyltransferases. These
targets are enzymes that possess a relevant epigenetic role and are pharmacologically significant
as they are involved in the pathogenesis of several genetic disorders as well as cancer. To
train their model, 12 unique targets (methyltransferases) were analyzed, using up to 1,740
different ligands (potential inhibitors) as samples to be classified, reaching improved statistical
performances when compared to previous studies.

3) Neural Networks Are Promising Tools for the Prediction of the Viscosity of Unsaturated

Polyester Resins (Molina et al.). Here, a neural network model was designed and optimized
to determine a physicochemical property such as viscosity of unsaturated polyester resins,
which are employed to synthesize composite materials. Viscosities are directly related to the
performance of these materials, which leads to the intrinsic value of the accurate intelligent
mathematical algorithm developed for the industry.

4

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2020.00275
http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2020.00275&domain=pdf&date_stamp=2020-04-09
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jcancilla@scintillon.org
mailto:jstorre@ucm.es
https://doi.org/10.3389/fchem.2020.00275
https://www.frontiersin.org/articles/10.3389/fchem.2020.00275/full
http://loop.frontiersin.org/people/583777/overview
http://loop.frontiersin.org/people/548998/overview
http://loop.frontiersin.org/people/163372/overview
http://loop.frontiersin.org/people/600605/overview
https://www.frontiersin.org/research-topics/8719/artificial-intelligence-in-chemistry
https://doi.org/10.3389/fchem.2019.00035
https://doi.org/10.3389/fchem.2019.00324
https://doi.org/10.3389/fchem.2019.00375


Cancilla et al. Editorial: Artificial Intelligence in Chemistry

4) Prediction of the Antioxidant Response Elements’

Response of Compound by Deep Learning (Bai et al.).
During this research, the authors trained several deep
learning algorithms to identify compounds that can
hypothetically activate antioxidant response elements, which
may lead to elevated toxicities linked to the appearance of
oxidative stress. The strong performance offered by the team’s
optimized deep neural network (their most accurate model)
implies the usefulness of machine learning to assess the safety
of novel drugs and their future development, as molecules
that potentially activate antioxidant response elements could
be screened out.

5) Development of Predictive Models for Identifying

Potential S100A9 Inhibitors Based on Machine Learning

Methods (Lee et al.). In this work, the researchers analyzed a
large dataset containing over six million compounds with the
goal set to identify potential S100A9 inhibitors via machine
learning algorithms including random forest classifiers. Their
intelligent tool is relevant as S100A9 has been identified as
a therapeutic target for various diseases including cancer
and Alzheimer’s, reason why facilitating the discovery of
inhibiting drugs while vastly reducing costs is highly valuable
for the field.

6) Deep Learning Techniques to Improve the Performance of

Olive Oil Classification (Vega-Márquez et al.). In this final
article, the authors cover the use of deep learning neural
networks to classify olive oil samples in terms of quality
by using data gathered via gas chromatography coupled to
ion mobility spectrometry of over 700 samples to train the
algorithms. The basic goal of their work is to reach tools that
can help ensure the safety of olive oils in terms of health
(being suitable for human consumption) and to avoid fraud
(selling lower grade products as high quality ones).

These six articles are great examples which showcase the
application of artificial intelligence in the shape of mathematical
algorithms and machine learning to solve different technological
and/or scientific problems of the chemical field. These
manuscripts help readers understand the usefulness of these
intelligent models and empowers them to design such tools
to extract the most out of their experimental results to
tackle problems of their own specific lines of research or
technological development.

Artificial intelligence is offering alternatives and solutions
that catalyze the creation and implementation of applications
that would have been unconceivable or even impossible
only 10 years ago. For this reason, many novel chemical
industries, research projects, and ideas can greatly benefit
from the inclusion of artificial intelligence, setting new
frontiers while reaching a modernized and intelligent
field of chemistry.
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Artificial sweeteners (AS) can elicit the strong sweet sensation with the low or zero

calorie, and are widely used to replace the nutritive sugar in the food and beverage

industry. However, the safety issue of current AS is still controversial. Thus, it is

imperative to develop more safe and potent AS. Due to the costly and laborious

experimental-screening of AS, in-silico sweetener/sweetness prediction could provide

a good avenue to identify the potential sweetener candidates before experiment. In

this work, we curate the largest dataset of 530 sweeteners and 850 non-sweeteners,

and collect the second largest dataset of 352 sweeteners with the relative sweetness

(RS) from the literature. In light of these experimental datasets, we adopt five

machine-learning methods and conformational-independent molecular fingerprints to

derive the classification and regression models for the prediction of sweetener and its RS,

respectively via the consensus strategy. Our best classification model achieves the 95%

confidence intervals for the accuracy (0.91 ± 0.01), precision (0.90 ± 0.01), specificity

(0.94± 0.01), sensitivity (0.86± 0.01), F1-score (0.88± 0.01), and NER (Non-error Rate:

0.90 ± 0.01) on the test set, which outperforms the model (NER = 0.85) of Rojas et al.

in terms of NER, and our best regression model gives the 95% confidence intervals for

the R2(test set) and 1R2 [referring to |R2(test set)- R2(cross-validation)|] of 0.77 ± 0.01

and 0.03 ± 0.01, respectively, which is also better than the other works based on the

conformation-independent 2D descriptors (e.g., 2D Dragon) according to R2(test set)

and 1R2. Our models are obtained by averaging over nineteen data-splitting schemes,

and fully comply with the guidelines of Organization for Economic Cooperation and

Development (OECD), which are not completely followed by the previous relevant works

that are all on the basis of only one random data-splitting scheme for the cross-validation

set and test set. Finally, we develop a user-friendly platform “e-Sweet” for the automatic

prediction of sweetener and its corresponding RS. To our best knowledge, it is a first

and free platform that can enable the experimental food scientists to exploit the current

machine-learning methods to boost the discovery of more AS with the low or zero calorie

content.

Keywords: sweet taste, sweetener prediction, relative sweetness prediction, machine learning method, QSAR
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INTRODUCTION

Sweet taste, eliciting a pleasant sensation, provides an instinctive
means to find the energy source such as the carbohydrates, which
usually taste sweet. The taste perception of the sweetness is
a complex mechanism involving the multiple disciplines (e.g.,
chemistry, biology, and physiology), however, it is generally
assumed to be predominantly mediated by the taste receptors

type 1 (Tas1Rs) on the taste buds in the oral cavity (Roper and
Chaudhari, 2017). Interestingly, Tas1Rs are also expressed in

numerous different organs (e.g., gut and pancreas), implicating
that they are intricately participated in various physiological

processes such as intestinal absorption, glucose homeostasis, and
metabolic regulation (Laffitte et al., 2014).

Human sweet taste receptor (hSTR) functions as a
heterodimer of two subunits (hTas1R2 and hTas1R3) belonging
to the class C family of G-protein coupled receptors (GPCRs),
whereas each subunit contains three distinct domains: a large
extracellular venus flytrap domain (VFD), a short cysteine-rich
domain (CRD), and seven-transmembrane domain (TMD)
(Meyers and Brewer, 2008). hSTR harbors at least four different
binding sites revealed by the biochemical characterization
such as the chimeras or site-directed mutagenesis experiment,
and thereby can recognize a variety of sweeteners (Masuda
et al., 2012): sugars (e.g., sucrose and glucose), amino acids
(e.g., D-trypotophan and D-glycine), artificial sweeteners (e.g.,
saccharin and aspartame), and sweet proteins (e.g., monellin and
thaumatin). According to the content of calorie, these chemically
diverse sweeteners can be generally categorized into two types

(Dubois and Prakash, 2012): the nutritive sweeteners with the
high calorie (e.g., sucrose), and the non-nutritive sweeteners
(e.g., saccharin and aspartame) with the low or zero calorie that
mainly refer to the artificial sweeteners in this work.

Nowadays, the non-nutritive sweeteners are broadly used as
the food additives to substitute for the nutritive sweeteners such
as sucrose, since the over-consumption of high-calorie nutritive
sweeteners in the functional food and beverage will lead to the
elevated risks of the metabolic disorders (e.g., type II diabetes)
and cardiovascular diseases (Fernstrom, 2015). Therefore, a
multitude of non-nutritive sweeteners with the low calorie yet
preserving the sweetness have been manually synthesized or
directly extracted from the natural plants to prevent these risks.

Hitherto, none of the currently available non-nutritive
sweeteners (especially the artificial sweeteners) can accurately
replicate the same sweetness profile (e.g., concentration/response
function, temporal profile, and adaption behaviors) of the natural
sucrose (Dubois, 2016), since they usually exhibit the slow
sweetness onset, lingering sweetness aftertaste, apparent off-taste,
or moderate/strong adaption upon the iterative tasting, which
are generally not preferred by most of consumers. Moreover, the
heavy use of the artificial sweeteners, one major class of non-
nutritive sweeteners, are reported to cause some side-effects such
as an increased risk of cancer in human (Mishra et al., 2015).
Therefore, it is still desirable to discover more novel and safe
non-nutritive sweeteners.

As we know, the sweetener discovery using the human taste-
panel or cell-based high-throughput screening is an expensive,

laborious and slow process. Hence in-silico sweetener prediction
could be a good alternative to rapidly identify the most likely
sweetener candidates with the high potency prior to the time-
consuming and arduous experiment. Currently, there are two
main computational methods for the sweetener prediction:
structure-based and ligand-based methods. Structure-based
method is to rationally design the compound based on hSTR.
Nevertheless, the crystal structure of full hSTR is still unraveled,
albeit there are several homology models based on the templates
with the limited sequence identities (Shrivastav and Srivastava,
2013; Jean-Baptiste et al., 2017; Kim et al., 2017; Acevedo et al.,
2018). In addition, a compound that can bind with hSTR could
be also a sweetness inhibitor (e.g., lactisole) (Jiang et al., 2005),
rather than the sweetener of our interest. However, the data-
driven machine-learning method, emerging as a vibrant area
of ligand-based method, can directly predict the sweetener and
its relative sweetness (RS), provided that there is sufficient
experimental dataset to build the predictive model. More
specifically, the sweetener/non-sweetener classification models
based on the machine-learning methods can be employed to
predict the sweetener, and the regression models derived from
the machine-learning methods can be utilized to forecast the RS
of the sweetener.

Rojas et al. comprehensively review the sweet/bitter (Rojas
et al., 2016a; Banerjee and Preissner, 2018), sweet/tasteless (Rojas
et al., 2016a), and sweet/sweetless (Rojas et al., 2017) classification
models, and also provide a systematic overview on the regression
models for the RS prediction of sweetener (Rojas et al., 2016a,b,c).
In our study, only the typical works about the sweet/sweetless
classification model on the relatively large dataset are briefly
summarized here, because the sweet/sweetless pair is more
reasonable and practical for the sweetener prediction due to the
inclusion of bitter and tasteless compounds into the sweetless
dataset. Meanwhile, only the representative works regarding to
the regression model also on the basis of the comparatively
large dataset will be shortly recapitulated in our study, while
the pioneering works of the sweeteners prediction model
based on the congeneric systems or small dataset, contributing
significantly to the subsequent works in this research area, have
been thoroughly summarized in Rojas et al. (2016b) and thereby
will be not reviewed here due to the limited space. It should be
noted that only the works about the classification and regression
models on the basis of the comparatively large dataset will be
shortly reviewed in this study and the relatively large dataset here
refers to the dataset with at least two hundreds samples, since the
relatively large dataset affords the more extended applicability-
domain of model.

As for the classification model, Rojas et al. develop the
sweet/sweetless classification model based on the relatively
large dataset (649 compounds) consisting of 435 sweeteners
and 214 non-sweeteners (133 tasteless and 81 bitterants).
In their work, the partial least squares discriminant analysis
(PLSDA) and K-nearest neighbors (KNN) coupled with the
2D Dragon descriptors (https://chm.kode-solutions.net/) are
used to train the models, respectively, which are combined
to form a consensus model. Their consensus model gives the
sensitivity, specificity and NER (Non-Error Rate, the average
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of sensitivity and specificity in the binary classification) of
0.88, 0.82, and 0.85, respectively on the test set including 108
sweeteners and 53 non-sweeteners that are randomly selected
from the whole dataset (Rojas et al., 2017). However, only 81
bitterants are adopted as the sweetless compounds in their work.
Hence the numerous bitterants curated by BitterDB (Wiener
et al., 2012) could be treated as the sweetless compounds to
further leverage the applicability-domain of the sweeteners/non-
sweeteners classification model.

Regarding to the regression model, Zhong et al. (2013) build
the regression models based on the comparatively large dataset
including the 320 sweeteners (214 for the training set and 106
for the hold-out test set) with RS. The regression models are
trained with the multi-linear regression (MLR) and support
vector machine (SVM), respectively in combination with the
mixed 2D and 3D descriptors from ADRIANA.Code program
(Molecular Networks GmbH, Erlangen, Germany). The MLR
and SVM models give the R2 of 0.77 and 0.78, respectively
on the test set consisting of 106 randomly selected sweeteners.
Moreover, Goel et al. harness the genetic function approximation
(GFA) and artificial neural network (ANN) coupled with the
mixed 2D and 3Dmolecular descriptors (e.g., LUMO eigenvalue)
from Material Studio v6.0 (MS6) (BIOVIA, San Diego, USA) to
establish the regression model on the dataset of 455 sweeteners
(319 for the training set and 136 for the hold-out test set),
which is the largest so far. Both GFA and ANN models offer
the impressive performance with the same R2 of 0.83 on the test
set consisting of 136 randomly selected sweeteners (Goel et al.,
2018). However, the conformation-dependent 3D descriptors are
included in both works from Zhong et al. and Goel et al. and
this will hamper the reproducibility of prediction result due
to the versatile conformations for the same flexible compound,
because most of the sweeteners are quite flexible. Moreover, some
other potential issues introduced by the 3D descriptors have been
discussed in the work of Rojas et al. (2016a).

Therefore, the conformation-independent 2D descriptors are
advocated to be used in the prediction of RS, especially for
the rapid and large-scale screening of potent sweeteners. Rojas
et al. employ MLR and 2D Dragon descriptors to establish the
regression model on the dataset of 233 sweeteners (163 for the
training set and 70 for the hold-out test set). This model provides
R2 of 0.70 on the test set including 70 sweeteners, which are
selected by the K-mean cluster analysis (Rojas et al., 2016c).
Ojha et al. utilize the partial least squares regression analysis
(PLSRA) and 2DDragon/PaDEL descriptors (Wei, 2011) to build
the regression model on the dataset of 299 sweeteners (239 for
the training set and 60 for the hold-out test set). This model
achieves R2 of 0.75 on the test set composed of 60 randomly
selected sweeteners (Ojha and Roy, 2017). Cheron et al. make
full use of random forest (RF) and SVMmethods combined with
the 2D and 3D Dragon descriptors, respectively to construct the
regression model on the dataset of 225 sweeteners (134 for the
training set and 91 for the hold-out test set). The RF-2D, SVM-
2D, RF-3D, and SVM-3D models offer R2 of 0.74, 0.83, 0.76,
and 0.85, respectively on the test set comprising of 91 randomly
chosen sweeteners. Nevertheless, their models may be prone
to the over-fitting or under-fitting, since the respective model

performances on the training set and test set differ significantly,
which can be observed from R2 of 0.96, 0.69, 0.98, and 0.69 for
RF-2D, SVM-2D, RF-3D, and SVM-3D models, respectively on
the training set (Chéron et al., 2017). Thus, the performance
evaluation by only R2(test set) is probably not enough.

In spite of the individual merits and pitfalls in each work,
there are several common concerns in the aforementioned works
about the classification and regression models. Firstly, only one
data-splitting scheme for the training set and hold-out test set is
used in those works, which may lead to the biased performance
of the models. Thus, model would be more robust if it can be
trained on the multiple data-splitting schemes to alleviate the
bias from the single random data-splitting. Secondly, all these
works fail to fully comply with the guidelines of Organization for
Economic Cooperation and Development (OECD), since most
of works are short of either Y-randomization test to evaluate the
robustness of their models, or the clear and pragmatic definition
for the domain-applicability of their models. Thirdly, all the
works do not provide any convenient and practical programs
for the users to predict the sweeteners and their RS, which
will greatly restrict the application of their models. At last, all
these works adopt PLSDA, PLSRA, MLR, KNN, SVM, RF, GFA,
or ANN method, while the current state-of-the-art machine-
learning methods such as Deep Neuron Network (DNN) and
Gradient BoostingMachine (GBM), which often demonstrate the
encouraging performance in the Kaggle competitions, were never
exploited in the prediction of sweetener or RS before. Therefore,
it is highly desirable to overcome these issues and develop a
convenient and comprehensive software for the experimental
food scientists to predict the sweetener and its corresponding RS.

In order to tentatively address the problems as mentioned
above, we plan to build the informative models for the prediction
of sweetener and its RS, which will be systematically derived
with diverse machine-learning methods (KNN, SVM, GBM,
RF, and DNN) and conformation-independent 2D molecular
fingerprints based on themultiple data-splitting schemes and will
be completely in accordance with the guidelines of OECD. For
the convenience of the experimental food scientists, a machine-
learning based platform called “e-Sweet” will be developed
to automate the prediction of sweetener and its RS via the
simple mouse-click on the graphic user interface. The detail
of these functions and their implementation will be elaborated
below.

MATERIALS AND METHODS

Sweetener Prediction Based on the

Multiple Machine Learning Methods
In our previous work about the bitterant prediction (Zheng et al.,
2018), we develop a systematic and general protocol to build
the classification model, which makes full use of the multiple
machine-learning methods (KNN, SVM, GBM, RF, and DNN)
by the consensus voting and adopts the Extended-connectivity
Fingerprint (ECFP) (Rogers and Hahn, 2010) as the molecular
descriptor. In practice, this protocol can be further adapted to
generate the regression model. In this work, we will exploit this
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protocol (Figure 1) to derive the machine-learning based models
for the prediction of sweeteners and its RS.

In our work, 530 sweeteners are curated from SuperSweet
(Ahmed et al., 2011) and SweetenersDB (Chéron et al., 2017)
and additionally gathered from the literature (Rojas et al., 2016a;
Banerjee and Preissner, 2018), while 850 non-sweeteners consist
of 718 bitter compounds downloaded from BitterDB (Wiener
et al., 2012) and 132 tasteless compounds retrieved from the
literature (Rojas et al., 2016a). Four criteria are defined for the
data curation above. (1) Only the larger fragment is kept for the
disconnected structures such as salt. (2) Only the compounds
containing the elements C, H, O, N, S, P, Si, F, Cl, Br, or I
are considered. (3) The same compound with the different taste
modalities is excluded. (4) The duplicated compounds from the
different sources are eliminated. Based on these standards, all the
compounds are finally saved as the Tripos mol2 files, which are
integrated into e-Sweet platform for the public access.

In order to train and test the classification model, the whole
dataset is randomly divided into two parts: the dataset for
the cross-validation (Dataset-CV) and the hold-out test set for
the independent validation (Dataset-test). The detailed data-
splitting scheme is given as follows: 80% of sweeteners (339
compounds) and 80% of non-sweeteners (544 compounds)
randomly selected from the whole dataset are adopted to train the
model with the five-fold cross-validation, while the rest of them
(221 compounds) are used as the hold-out test set. Finally, this
whole data-splitting will be repeated for nineteen or three times
to reduce the bias from the random data-splitting. Concretely,
nineteen data-splitting schemes are performed for KNN, SVM,
GBM, and RF, while three data-splitting schemes are carried out
for deep neuron network (DNN) on account of its much higher
computational burden.

Besides the indispensable dataset and its partition above, the
molecular descriptors are also required for the machine-learning
method. Extended-connectivity Fingerprint (ECFP), which is
extensively used in the quantitative structure-activity relationship
(QSAR) studies (Ekins et al., 2010; Chen et al., 2011; Hu et al.,
2012; Koutsoukas et al., 2016; Braga et al., 2017; Rodríguez-Pérez
et al., 2017), is adopted as the molecular descriptor in this work.
Four ECFPs (1024bit-ECFP4, 2048bit-ECFP4, 1024bit-ECFP6,
and 2048bit-ECFP6) are generated for all the curated compounds
in the aforementioned dataset with our own implementation of
ECFP in e-Bitter program (Zheng et al., 2018), which uniquely
offers the intuitive visualization of each “1” bit of ECFP in
the context of 3D structure and is also integrated into e-Sweet
platform.

Furthermore, feature selection is generally applied in the
machine-learningmethod. In this work, both full-feature without
the feature selection and feature-subset with the feature selection
are considered. Here the feature selection is performed according
to the feature importance (Figure 1), which is derived from the
model-training with the random forest (RF) method that will be
described in the following paragraph about the model-training.
In total, 76 runs of model-training with RF are conducted by
considering the combination of four ECFP fingerprints and
nineteen random data-splitting of the dataset, which will lead to
76 models and the attendant 76 sets of feature importance. Then

the feature importance for all the bits in the ECFP fingerprint
is sorted in the descending order and plotted in Figures S1–S4.
Thus the top 512, 256, and 128 important features (Figures S1–
S4) are selected, respectively as the typical feature subsets for
the followingmodel-training, since the exhaustive and systematic
scan of feature-number ranging from 1 to fingerprint-length is
really time-consuming especially for the training of deep neuron
networks (DNN).

Five machine-learning methods (KNN, SVM, GBM, RF, and
DNN) are utilized to train the model, which are minutely
introduced in our previous work about the bitterant prediction
(Zheng et al., 2018) and briefly summarized as follows. K-
nearest neighbors (KNN) method conducts the classification
and regression based on the closest instances in the training
set. Support vector machine (SVM) performs the classification
and regression via constructing the hyper-planes in the high-
dimensional space. Random forest (RF) and gradient boosting
machine (GBM) belong to the decision-tree based ensemble
method. RF builds a multitude of decision trees by the bootstrap-
sampling of training set and random-selection of feature-subset.
GBM generates a series of decision trees in a step-wise manner,
rather than in a randomway as RF. Deep neuron network (DNN)
is a neural network with more than one hidden layer between
the input and output layers. Nowadays, thousands of neurons in
each layer can be routinely adopted in DNN, which can combine
the advanced regularization technique such as the dropout to
avoid the overfitting. In this work, the deep neuron networks
with two hidden layers (DNN2 in Figure S5) and three hidden
layers (DNN3 in Figure S6) are employed. All the key parameters
for each method are listed in Table S1, which will be fine-tuned
in the five-fold cross-validation (CV) to achieve the optimal
performance.

The performance of models on the training set and test set
are evaluated by the following metrics: the accuracy, precision,
specificity, sensitivity, Matthews correlation coefficient (MCC),
non-error rate (NER) and F1-score (Equations 1–6). It should
be noted that F1-score (Equation 1) is adopted as the criterion
to select the best model, albeit F1-score, MCC, and NER are
commonly used to measure the quality of the classification.

F1-score = 2×TP/(2×TP+ FP+ FN) (1)

Accuracy = (TP+ TN)/(TP+ TN+ FP+ FN) (2)

Precision = TP/(TP+ FP) (3)

Specificity = TN/(TN+ FP) (4)

Sensitivity = TP/(TP+ FN) (5)

MCC =
(TP× TN− FP× FN)

√
(TP+ FP) (TP+ FN) (TN+ FP) (TN+ FN)

(6)

1F1-score = |F1-score(cross-validation)
− F1-score(test set)| (7)

NER = (Sensitivity+ Specificity)/2 (8)

TP, TN, FP, and FN are the numbers of true sweeteners,
true non-sweeteners, false sweeteners, and false non-sweeteners,
respectively. NER is short for non-error rate and is the arithmetic
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FIGURE 1 | The protocol to derive the classification and regression model used in this work.

mean of sensitivity and specificity in the binary classification.
1F1-score is calculated to monitor the potential over-fitting or
under-fitting.

Upon completion of the model-training with the five-fold
cross-validation, totally 1312 models including 328 models
without feature selection and 984 models with feature selection
are harvested according to the highest F1-score, and are further
gauged on the respective hold-out test sets with the evaluation
metrics: accuracy, precision, specificity, sensitivity, F1-score,
MCC, and NER, which are listed in Table S2. To reduce the bias
from the random splitting of the whole dataset, 96 averagemodels
(AM) are derived from 1,312 individual models by averaging over
the different data-splitting schemes and are tabulated inTable S3.

Following the guidelines of OECD, Y-randomization test
for our models should be performed and the applicability-
domain of our models should be also defined practically. To
inspect the robustness of all the models, Y-randomization test
is done with the following procedure. Firstly, the experimentally
observed labels for Dataset-CV are randomly shuffled (Table S4).
Subsequently, the five-fold cross-validation on this noisy dataset
is performed with exactly the same molecular descriptors and
the same protocol mentioned in the previous section about the
model-training. The best models are also determined based on
the highest F1-score assessed on the internal validation dataset
during the cross-validation, and further evaluated on the hold-
out test set (Dataset-Test) without any random shuffling. All
the results are collected in Tables S5–S6. Meanwhile, with regard
to the definition of the applicability domain, it is generally
hypothesized that the compound, which is highly dissimilar to all

the compounds used in the model-training, may not be predicted
confidently (Tropsha, 2010). With this assumption in our mind,
the applicability domain of our models is defined on the basis
of the ECFP based Tanimoto-similarity between the compound
of interest and its five closest neighboring compounds in our
training set (Dataset-CV).

Finally, 1,312 individual models (M0001–M1312 in Table S2)
and 96 average models (AM01–AM96 in Table S3) are obtained
after the model training and validation. Based on these models,
four consensus models are proposed according to the criteria
such as the performance, speed and diversity of machine-learning
based models, and are integrated into our e-Sweet platform. All
the constitute models for each consensus model are provided
in Tables S7–S10 and the performances of these four consensus
models are given in Table 1. More specifically, Consensus model
1 (CM01) selects 19 best individual models (Table S7) with
all the methods except DNN purely based on the highest F1-
scores in each data-splitting scheme from the perspective of
performance and speed. Consensus model 2 (CM02) selects 19
best individual models (Table S8) with all the methods including
DNN solely based on the highest F1-scores in each data-splitting
scheme according to the model performance. Consensus model 3
(CM03) considers the top five average models (Table S9) with the
highest F1-scores. Consensus model 4 (CM04) chooses the five
average models (Table S10) considering each machine-learning
methodwith the highest F1-score to balance the performance and
diversity of machine-learning based models. All the evaluation
metrics for each consensus model (Table 1) are obtained by
averaging over all the constituent models.
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Sweetness Prediction Based on Multiple

Machine Learning Methods
In our work, all the sweeteners with RS are gathered from
the literature (Iwamura, 1981; Drew et al., 1998; Kinghorn and
Soejarto, 2002; Vepuri et al., 2007; Yang et al., 2011), and
subjected to the filtering with the following criteria. (1) Only the
larger fragment is saved for the disconnected structures such as
salts. (2) Only the compounds containing the elements C, H, O,
N, S, P, Si, F, Cl, Br, or I are considered. (3) Only one compound
is kept for the duplicated compounds from the different sources.
(4) Only the compound with the experimental RS, which is only
measured relative to the 5% (w/v) sucrose, is taken account. After
the filtering with these conditions, 352 sweeteners are curated for
our subsequent training with the machine learning methods. All
the structures with the Tripos mol2 files, and their corresponding
log10RS (common logarithm of the relative sweetness) used as
the dependent variable (Y) are publicly available in our e-Sweet
platform. To train and validate the model, the whole dataset is
sorted ascendingly according to log10RS. Twenty percent of the
whole dataset (71 compounds) is randomly selected from every
five compounds in the ascending order to form the hold-out test
set (Dataset-Test) with the even distribution of log10RS. The rest
of them (281 compounds) are adopted to train the model with
the five-fold cross-validation (Dataset-CV). Similarly, the whole
data-splitting is repeated for the multiple times as well.

To derive the regression model for RS, nearly the same
protocol (Figure 1) as the sweetener/non-sweetener classification
is adopted. According to this protocol, all the combination of
the molecular fingerprints, feature selection, feature number,
data-splitting schemes, and machine-learning methods is taken
into account in the model-training, and thereby 1,312 best
individual models are also achieved based on the highest R2

(square of the coefficient of determination) after the five-fold
cross-validation, and are further assessed on the respective hold-
out test sets with the evaluation metrics: R2, mean absolute
error (MAE), mean squared error (MSE), and 1R2 (referring
to |R2(test set)–R2(cross-validation)|), which are summarized in
Table S11. Subsequently, 96 average models are also obtained
based on 1,312 individual models by averaging over the
different data-splitting schemes, whose performances are given in
Table S12. Furthermore, Y-randomization test (Tables S13–S15)
and defining the applicability-domain for our models are also
carried out with the similar protocol in the previous section about
the classificationmodel. Finally, three consensus models (CM01–
CM03 in Tables S16–S18) are suggested on the basis of 1,312
individual models and 96 averagesmodels and are embedded into
our e-Sweet platform.

RESULTS AND DISCUSSION

Overview of e-Sweet Platform
e-Sweet is a machine-learning based platform for the automatic
prediction of the sweetener and its RS, which is developed based
on our previous e-Bitter program (Zheng et al., 2018). This e-
Sweet platform can be easily installed via the simple click of
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mouse and can smoothly run both in the modes of graphic user-
interface and command-line, which are well tested on the Win7,
Win8, andWin10. The whole program including the manual and
tutorials can be freely from the link (https://www.dropbox.com/
sh/1fmlv7nf6wofgcp/AADBJzFbbbiNRJUP0806wSyna?dl=0).

In the current version of e-Sweet, there are several major
helpful functions for the food scientists. (1) Visualize and inquiry
our curated datasets for the classification of sweetener/non-
sweetener or the regression of RS. (2) Predict the sweetener and
its RS with the multiple machine-learning methods by evoking
the external scikit-learn (v0.19.1), Keras (v1.1.0), and Theano
(v1.0.1) python libraries fully integrated in the free Anaconda
(v2-5.2.0) that can also be handily installed on the windows in
the simple way. (3) Virtual screening of database to enrich the
possible sweetener candidates. (4) Generate and visualize the
ECFP fingerprint, which is adopted as the molecular descriptor
and is also natively implemented in this platform. (5) View the
fingerprint bit in the context of 3D structure, and synchronously
display the feature importance of fingerprint bit contributing to
the classification of sweetener/non-sweetener or regression of RS.
The detailed usage of all those functions is articulated in the
manual and tutorials, while only the key functions (Figure 2) will
be detailed as follows.

In a nutshell, e-Sweet is the first, free, and convenient
standalone software for the experimental food scientists to
automate the prediction of the sweetener and its corresponding
RS with the machine-learning based classification and regression
models, and also offers several key auxiliary functions relevant to
the prediction.

The Chemical Space of Our Curated

Datasets Embedded in e-Sweet
Our curated datasets for the classification of sweetener/non-
sweetener and the regression of RS are publicly available and
fully integrated into our e-Sweet platform, with which users
can simultaneously visualize the chemical structures and the
corresponding labels (or log10RS) and can conveniently enquiry
our datasets with the compounds of users’ interests by Tanimoto-
similarity based structure search (Figure S7).

Our dataset for the sweetener/non-sweetener classification
consists of 530 sweeteners and 850 non-sweeteners, which is
the largest dataset so far. In the latest sweetener/non-sweetener
classification model from Rojas et al. 435 sweeteners and 214
non-sweeteners are utilized, which is much less than ours.
To examine the difference of chemical spaces between the
sweeteners and non-sweeteners in our dataset, the molecular
weight (MW), logP, and the numbers of hydrogen-bond donor
(NHBD) and hydrogen-bond acceptor (NHBA) are calculated by
OpenBabel v2.4 (Oboyle et al., 2011). The scatter plots of logP
vs. MW (Figure S8) and NHBD vs. NHBA (Figure S9) showcase
that the distributions for the sweeteners are very similar to
the counterpart for the non-sweeteners. Hence the intuitive
discrimination between the sweeteners and non-sweeteners by
the simple descriptors such as logP, MW, NHBD, and NHBA

is not effective. Furthermore, ECFP based similarity-matrix

(Figure S10) illustrates that the overall pairwise Tanimoto-
similarities between the sweeteners and non-sweeteners are
quite low with the average value of 0.08 over the entire
matrix, indicating that ECFP fingerprint may be a promising
molecular descriptor for the classification of sweeteners and
non-sweeteners.

In addition, our dataset for the regression of RS is composed
of 352 sweeteners, and is larger than the datasets utilized in
most of relevant works (Zhong et al., 2013; Rojas et al., 2016c;
Chéron et al., 2017; Ojha and Roy, 2017), but is smaller than the
dataset used in the work of Goel et al. which is made up of 455
sweeteners that is not directly accessible to the other researchers
(Goel et al., 2018). It is worth mentioning that both works glean
the sweeteners with RS from the same source (Iwamura, 1981;
Drew et al., 1998; Kinghorn and Soejarto, 2002; Vepuri et al.,
2007; Yang et al., 2011), thus the different number of sweeteners
used in both works is presumably resulted from the distinct
curation criteria. To check the conformational flexibility of the
sweeteners in this dataset, the numbers of the freely rotatable
bonds (NFRB) for all the sweeteners are computed by OpenBabel
v2.4 and the histogram of NFRB (Figure S11) demonstrates
that most of the sweeteners are quite flexible and have many
conformers, which may bring about the irreproducible result
for the model prediction if the conformation-dependent 3D
molecular descriptors are used to establish the model. Therefore,
ECFP based 2D molecular descriptors are used in this work.

In a word, our dataset for the sweeteners/non-sweeteners
classification is the largest and the dataset for the sweeteners
with RS is the second largest, and both datasets are publicly
available to other researchers. ECFP based similarity-matrix
indicates that ECFP based 2D descriptor could be beneficial to the
classification of sweeteners and non-sweeteners, and the analysis
of conformational flexibility of the sweeteners in this dataset casts
light on the potential weakness of the conformation-dependent
3D molecular descriptors.

Prediction of Sweetener by the

Classification Model in e-Sweet
For the sweetener/non-sweetener classification, 1,312 individual
classificationmodels (M0001–M1312 inTable S2) and 96 average
classification models (AM01–AM96 in Table S3) are harvested.
The scatter-plot of 1F1-score vs. F1-score for all the models is
plotted in Figure 3A, since F1-score is the performance indicator
of the classification model and 1F1-score is used to examine the
possible over-fitting or under-fitting of the classification model.
Figure 3A demonstrates that 1F1-score for most of individual
and average classification models is lower than 0.04, suggesting
that the model performance on the test set and in the cross-
validation is quite similar. Thus, most of our models do not
suffer from the obvious over-fitting or under-fitting from this
perspective. Moreover, the orange dots (Figure 3A) standing for
96 average classification models based on the multiple data-
splitting schemes have much narrower distribution than the blue
dots (Figure 3A) denoting 1,312 individual classification models
on the basis of the single data-splitting scheme, which provides an
important clue that the different random data-splitting schemes
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FIGURE 2 | The main features of e-Sweet platform for the sweetener and sweetness prediction.

have dramatic effects on the model performance. Therefore, it is
a good practice for the machine-learning practitioners to repeat
the data-splitting for the multiple times to gain more objective
models.

To further inspect the robustness of all 1,312 individual and 96
average classification models, Y-randomization test is performed
for all the classification models by the random shuffling of
experimental labels in Dataset-CV (Table S4), and all the results
are tabulated in Tables S5–S6. For the better illustration, the
scatter plot of F1-score(test set) vs. MCC(test set) for all the
models is plotted in Figure S12, which clearly demonstrates
that the model performances after Y-randomization is drastically
decreased relative to the models without Y-randomization.
Accordingly, all our previous models without Y-randomization
are quite robust and not obtained by chance.

However, it is not very efficient to harness all 1,312
individual and 96 average classification models simultaneously
for the pragmatic prediction of sweeteners, consequently four
typical consensus models (CM01–CM04 in Tables S7–S10) are
suggested based on the performance, speed, and diversity of
the models, and are incorporated into our e-Sweet platform.
Observed from Table 1, the overall performances of all these
consensus models on the test set (Table 1) are very promising,
while the best model CM02 with the highest F1-score can achieve
the 95% confidence intervals for the accuracy (0.91 ± 0.01),
precision (0.90± 0.01), specificity (0.94 ± 0.01), sensitivity (0.86
± 0.01), F1-score (0.88 ± 0.01), MCC (0.81 ± 0.01), and NER

(0.90± 0.01) on the test set by averaging over the 19 data-splitting
schemes.

To demonstrate the advantage of our models, CM01–CM04
in Tables S7–S10 are compared with the model in the work
of Rojas et al. which is the only published work about the
sweetener/non-sweeteners classification based on the relatively
large dataset and affords the NER values of 0.85 and 0.83 on
the test set and in the cross-validation, respectively, whereas the
evaluation metrics such as F1-score and MCC are not reported
in their work. The procedure for the statistical comparison is
given as follows. (1) Bland-Altman analysis (Martin Bland and
Altman, 1986) is firstly conducted to examine whether NER(test
set) and NER (cross-validation) of the models from Rojas et al.
match well within the limits of agreement (LoA) in the Bland-
Altman plots based on our consensus classification models. (2)
If NER(test set) and NER (cross-validation) of the models from
Rojas et al. agree well, it indicates that their model probably
does not suffer from the evident over-fitting or under-fitting.
Subsequently, further comparison will be performed to check
whether their model is within the 95% confidence intervals of
1NER (referring to |NER(test set)–NER(cross-validation)|) and
NER(test set), respectively.

According to this comparison protocol, Figure S14 clearly
illustrates that NER(test set) and NER(cross-validation) of the
model from Rojas et al. agree very well in all the Bland-
Altman plots (Figure S14) based on CM01, CM02, CM03, and
CM04. Subsequently, NER(test set) and 1NER will be used as
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FIGURE 3 | (A) the scatter-plot of 1F1-score vs. F1-score for all the

classification models; (B) The scatter plot of 1R2 vs. R2(test set) for all the

regression models. 1F1-score [referring to |F1-score (test

set)–F1-score(cross-validation)|] and 1R2 [referring to |R2(test

set)–R2(cross-validation)|] are used to monitor the potential overfitting or

underfitting.

the performance indicators for the further comparisons. More
specifically, 1NER of the model from Rojas et al. is 0.02, and is
within the 95% confidence intervals of 1NER from our CM01,
CM02, CM03, and CM04, which are 0.03 ± 0.01, 0.03 ± 0.01,
0.02 ± 0.00, and 0.02 ± 0.00, respectively. Meanwhile, NER(test
set) of the model from Rojas et al. is 0.85, and is consistently
lower than the 95% confidence intervals of NER (test set) from
our CM01, CM02, CM03, and CM04, which are 0.90± 0.01, 0.90
± 0.01, 0.88 ± 0.00, and 0.88 ± 0.01, respectively. Therefore, all
four consensus sweetener/non-sweeteners classification models
are better than the model from Rojas et al.

In short, the robust sweetener/non-sweetener classification
models based on the largest dataset, multiple data-splitting
schemes and manifold machine-learning methods are derived,
and our proposed four consensus models are demonstrated to

outperform the model from Rojas et al. that is based on the single
data-splitting scheme.

Prediction of Relative Sweetness by the

Regression Model in e-Sweet
For the prediction of RS, 1,312 individual regression models
(M0001–M1312 in Table S11) and 96 average regression models
(AM01–AM96 in Table S12) are achieved. The scatter plot of
1R2 [referring to |R2(test set)–R2(cross-validation)|] vs. R2(test
set) for all the models is made for the assessment of overall
performance, because R2(test set) is the performance indicator of
regression model and 1R2 is used to monitor the potential over-
fitting or under-fitting of regression model. From Figure 3B,
it illustrates that 1R2 for most of the individual and average
regression models is <0.10, implying that the models achieve
the consistently similar performance on the hold-out test set and
in the cross-validation, respectively. Thus, most of the models
do not exhibit the noticeable over-fitting or under-fitting from
this point of view. In addition, observed from Figure 3B, the
more compact distribution of the average models relative to the
individual models also emphasizes that the average models based
on the multiple data-splitting schemes are more convergent than
the individual models based on the single data-splitting scheme.

To further ensure the robustness of all the individual
and average regression models, Y-randomization test is also
conducted for all the regression models by the random shuffling
of experimental logRS10 in Dataset-CV (Table S13), and all the
outcomes are given in Tables S14, S15. For the sake of intuitive
description, the scatter plot of R2(test set) vs. MAE(test set) for
all the models before and after Y-randomization in Figure S13

unambiguously illustrates that our regression models without
Y-randomization are reliable.

Nevertheless, it is not realistic to utilize all the 1,312 individual
and 96 average regression models at the same time for the
practical prediction of RS, hence three representative consensus
models (CM01-CM03 in Tables S16–S18) are proposed and
integrated into our e-Sweet platform. Table 2 illustrates that our
consensus models (CM01–CM03) on the basis of the individual
and average models afford R2(test set) ranging from 0.77 to
0.78. CM02 has the highest R2(test set) with the 95% confidence
interval of 0.78± 0.02, while CM03 provides the lowest1R2 with
the 95% confidence interval of 0.03± 0.01.

For the sake of the easier comparison with the other works
about the prediction of RS, R2(test set) and R2(cross-validation)
are generally reported in the respective works and compiled
in Table S19, which are all based on only one data-splitting
scheme to prepare the hold-out test set and training set in
the other works. The statistical comparison between ours and
other models is very similar to the aforementioned comparisons
between the classification models and will be carried out as
follows: (1) Bland-Altman method is firstly adopted to check
whether R2(test set) and R2(cross-validation) of the models from
other works agree well within the limits of agreement in the
Bland-Altman plots based on our consensus regression models.
(2) If R2(test set) and R2(cross-validation) of the models from
other works agree well, the 95% confidence intervals of |R2(test
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set)-R2(cross-validation)| and R2(test set) for our models are
used for the further comparison with the models from other
works. Otherwise, the model may suffer from the over-fitting
or under-fitting due to the distinct difference between R2(test
set) and R2(cross-validation) and thereby will be excluded in the
subsequent comparison.

From Figure S15, all the models from other works exceed
the upper or lower limits of agreement (LoA) and their 95%
confident intervals, which reveals that the model performances
of other models on the test set and in the cross-validation do not
agree well compared to the counterpart of our consensus model
CM03. Thus, CM03 is the best model in term of the agreement
between R2(test set) and R2(cross-validation). However, all the
constituent models in CM03 are derived from DNN method,
which are much slower relative to the models derived from the
other machine-learning methods such as KNN, SVM, GBM, and
RF. Therefore, we proposed two other consensus models (CM01
and CM02). CM02 is constructed on 19 best constituent models
in 19 data-splitting schemes. However, in CM02 there is still
one constituent model that comes from the time-consuming
DNN method. Thus, CM01 is suggested also based on 19 best
constituent models by excluding the model from DNN method.
As a result, CM01 has very similar constituent models relative
to CM02, but is much faster than CM02 and thereby is suitable
for the database screening. Thus, it is understandable that Bland-
Altman plots (Figure S15) of CM01 and CM02 are very similar.

Therefore, the Bland-Altman plot (Figure S15A) based on
CM01 is taken as an instance. Five 3D descriptors based models
are very close to the limits of agreement (LoA), however, those
models can be still assumed that R2(test set) and R2(cross-
validation) of these five models are agreeable according to the
Bland-Altman plot based on CM01 (Figure S15A), while only
one 3D descriptors based model completely locates outside the
upper and lower LoA and their 95% confident intervals. These
five acceptable 3D descriptors based models in Bland-Altman
plot (Figure S15A) areMLRmodel fromZhong et al. SVMmodel
from Zhong et al. GFA model from Goel et al. ANN model from
Goel. et al. and SVMmodel from Cheron et al. which afford 1R2

with the values of 0.04, 0.05, 0.03, 0.06, and 0.16, respectively
(Table S19). According to Table 2, the 95% confidence interval
of 1R2 for our CM01 is 0.07 ± 0.02. Consequently, the 1R2

of SVM model from Cheron et al. is much larger than the
95% confidence interval (0.07 ± 0.02) from CM01. Finally, four
remaining models will be further compared with our model
CM01 based on R2(test set). MLR model with R2(test set) value
of 0.77 and SVM model with R2(test set) value of 0.78 from
Zhong et al. (Table S19) are still within the 95% confidence
interval (0.77 ± 0.02) of R2(test set) for our CM01, while GFA
model with R2(test set) value of 0.83 and ANN model with
R2(test set) value of 0.83 from Goel et al. (Table S19) is higher
than the 95% confidence interval (0.77 ± 0.02) of R2(test set)
for our CM01 (Table 2). Therefore, our CM01 has a similar
performance with the MLR and SVM models from Zhong et al.
and shows the lower performance than theGFA andANNmodels
from Goel et al. It is worth mentioning that this conclusion
also holds for CM02. Nevertheless, Goel et al. employed the
conformation-dependent 3D molecular descriptors such as the
LUMO eigenvalue, which requires the time-consuming quantum

mechanical (QM) calculation particularly for the large molecules.
Moreover, the flexible sweeteners usually possess very diverse
conformations due to a number of freely rotatable bonds, which
may provide the totally different molecular descriptors for the
same compound and thereby may lead to the irreproducible
result in the practical prediction. Actually the work of Rojas
et al. also well addresses this issue and suggests to adopt the 2D
molecular descriptors for the simplicity and the fast speed. Thus,
ECFP based 2D molecular descriptors are adopted in our work.

As such, 2D descriptors based models including ours will be
the main focus for the comparison of model performance. Two
2D descriptors based models from other works are very close
to the limits of agreement (LoA), albeit they are still in the
acceptable region. One model from Rojas et al. is trained with
MLR and 2DDragon descriptors, and gives R2(test set), R2(cross-
validation), and 1R2 of 0.70, 0.78, and 0.08, respectively, while
the other from Cheron et al. is built with SVM and 2D Dragon
descriptors, and offers R2(test set), R2(cross-validation), and1R2

of 0.83, 0.69, and 0.14, respectively. However, the 95% confidence
interval of 1R2 for our CM01 model is 0.07 ± 0.02. Hence
only the model from Rojas et al. is within the 95% confidence
interval (0.07 ± 0.02) of 1R2. Finally, the model comparison
based on R2(test set) illustrates that CM01 is better than the
model from Rojas et al. since R2(test set) with the value of 0.70
from Rojas et al. is much lower than the 95% confidence interval
(0.77± 0.02) of R2(test set) from CM01. It is noteworthy that this
conclusion can also apply to CM02.

In sum, our consensus regressionmodel CM03 is prominently
promising than all the models from other works in term
of agreement between R2(test set) and R2(cross-validation)
based on the Bland-Altman plot of CM03, while CM01/CM02
remarkably outperforms the 2D descriptors based models from
other works according to the full analysis of Bland-Altman plot
and the 95% confident intervals of 1R2 and R2(test set), but is
inferior to the 3D descriptors based models from Goel et al. that
are derived from the single data-splitting scheme. However, the
3D descriptors based models are not pragmatic for the prediction
by other users. Furthermore, it still should be taken with caution
that R2(test set) from the single data-splitting scheme is adopted
to compare the model performance, since different data-splitting
schemes have apparent effects on the model performance.

Automatic Inspection of Applicability

Domain in e-Sweet
To comply the guideline of OECD, the applicability domain of
the models should be defined appropriately. In this work, the
applicability domain of our models is defined on the basis of the
concept “average-similarity.” More Concretely , the automatic
procedure implemented in our e-Sweet is given as follows: (1)
each compound in the test set (Dataset-Test) is compared with
all the compounds in the cross-validation dataset (Dataset-CV)
according to the Tanimoto-similarity based on 2048bit-ECFP6;
(2) five most similar compounds from Dataset-CV are retrieved
and treated as five nearest neighbors for the given compound
in Dataset-Test, and the average of five similarities is defined
as the “average-similarity” between this given compound and
these five nearest neighbors; (3) each compound in Dataset-
Test retrieves five nearest neighbors in Dataset-CV to calculate
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TABLE 2 | The performance of three consensus models (CM01–CM03) for the regression of relative sweetness (RS).

Model R2

(test set)

MSE

(test set)

MAE

(test set)

R2

(CV)

1R2

MEAN(STANDARD DEVIATION)

CM01 0.77 (0.05) 0.27 (0.06) 0.39 (0.03) 0.72 (0.05) 0.07 (0.05)

CM02 0.78 (0.05) 0.28 (0.06) 0.40 (0.03) 0.71 (0.05) 0.07 (0.05)

CM03 0.77 (0.01) 0.58 (0.31) 0.58 (0.17) 0.74 (0.01) 0.03 (0.01)

95% CONFIDENCE INTERVAL: MEAN ± MARGIN OF ERROR

CM01 0.77 ± 0.02 0.27 ± 0.03 0.39 ± 0.01 0.72 ± 0.02 0.07 ± 0.02

CM02 0.78 ± 0.02 0.28 ± 0.03 0.40 ± 0.01 0.71 ± 0.02 0.07 ± 0.02

CM03 0.77 ± 0.01 0.58 ± 0.27 0.58 ± 0.15 0.74 ± 0.01 0.03 ± 0.01

(1) The number in each parenthesis is the standard deviation, which is obtained on the basis of the multiple random data-splitting schemes; (2) 1R2 referring to | R2 (test

set)–R2 (cross-validation) | is employed to monitor the potential over-fitting/under-fitting; (3) “CV” is short for the cross-validation.

the average-similarity. Similarly, each compound in Dataset-
CV also finds five nearest neighbors in Dataset-CV to compute
its corresponding average-similarity; (4) the histograms of the
average-similarity for Dataset-Test and Dataset-CV are given in
Figure 4 to address the applicability domain of our models.

For the classification model, Figure 4A shows that the
average-similarity of 0.1 could be used as the threshold for the
definition of the applicability domain of our classificationmodels.
If the average-similarity of the compound of interest is larger than
this threshold (0.1), it means that this compound is located inside
the applicability domain of our models, the prediction for this
compound is a confident inference. Otherwise, this prediction
may be a bold extrapolation. Similarly, for the regression model,
Figure 4B reveals that the average-similarity of 0.1 can also
serve as the threshold to define the applicability domain of our
regression models. In order to automatically check whether the
compound to be predicted is within the applicability domain of
our classification and regression models, we have implemented
a convenient function via simple clicking of the menu in our
e-Sweet platform.

In brief, our classification and regression models for the
prediction of sweetener and its RS have the pragmatically defined
applicability domain, which is not commonly or explicitly
mentioned in other relevant works and can be automatically
inspected by our e-Sweet.

Model Interpretation for our Classification

and Regression Models in e-Sweet
Model interpretation suggested by OECD, will be considered
based on the feature importance, which underscores the
importance of each ECFP fingerprint bit contributing to the
sweeteners/non-sweeteners classification or the regression of RS.
Our e-Sweet platform can advantageously offer the appealing
function to synchronously visualize the structural feature in the
context of 3D structure and the associated feature importance for
the ECFP fingerprint bit “1.”

In order to visualize the structural features and the
corresponding feature importance for all the bits in ECFP, it
would be better to adopt the model trained with the full features,
since the feature selection will obviously lose some ECFP bits and

hamper us to view the complete bits. Hence the average feature
importance, which is from the average classification (AM22 in
Table S3) and regression model (AM22 in Table S12) trained
with RF and full features (2048bit-ECFP6), is embedded in our
e-Sweet for the fully interactive visualization of ECFP fingerprint-
bit, structural feature, and feature importance of ECFP bit.

For the purpose of concise demonstration, visualization of
the feature importance (FI) contributing to the sweeteners/non-
sweeteners classification is taken as an example and only
the structural feature with the largest feature importance is
considered here. In this case, the bit with the largest feature
importance (FI = 0.019821) is 1138-bit (Figure S16). In our
sweeteners/non-sweeteners dataset, the ECFPs of 228 sweeteners
and 20 non-sweeteners contain the “1” in the 1138-bit. Here only
one sweet molecule containing “1” in 1138-bit is taken as an
instance for the better illustration (Figure S16). The structure
feature for 1138-bit is highlighted with the yellow color in the
3D viewer window, the corresponding feature importance for
1138-bit is shown in the window titled “FI.” Based on the feature
importance, it means that 1138-bit is very important for the
sweeteners/non-sweeteners classification.

Concisely, our e-Sweet platform provide a convenient and
intuitive visualization function for the model interpretation,
which makes our classification and regression models fully
conform to the OECD guidelines.

The Limitation and Prospect of This Work
Admittedly, our work has some shortcomings. (1) Our curated
dataset only considers the organic compounds, ignores the
inorganic compounds and mixtures, and also neglects the effects
of purity, moisture content, and temperature. In addition,
the sweet taste assessment results given by the trained taste
panelists have some inevitable noise, because the taste panelists
possess some subjective factors (e.g., some mixed tastes that
are very difficult to be clearly discriminated in qualitative or
quantitative manner) and objective reasons (e.g., the individual
gene-polymorphism of sweet taste receptor). (2) The consensus
strategy is used to balance the pros and cons of each
machine-learning method. However, it will bring some extra
computational burden, because the final prediction is obtained
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FIGURE 4 | The histograms of average-similarity are utilized to define the

applicability-domain of our classification (A) and regression models (B). Both

average-similarity thresholds of 0.1 are defined and implemented in our

e-Sweet platform to automatically check whether the compound to be

predicted is within the applicability domain of our models.

by averaging over all the prediction results from each constituent
model. (3) Applicability domain of the regression model for the
relative sweetness is still limited, because the size of dataset for
the regression model is relatively small compared to the size
of sweetener/non-sweetener dataset for the classification and
thereby needs further expansion.

In spite of these limitations, our work also possesses
several advantages, which may provide some beneficial
advice for the other researchers to develop more informative
sweetener/sweetness prediction model. (1) Different data-
splitting schemes have dramatic effects on the model training
and model performance, which will be more obvious for the
dataset with the limited size. Hence the multiple data-splitting
schemes are highly recommended. (2) 2D descriptors based
models are preferred over 3D descriptors based models for
the practical prediction, because the sweeteners are usually
very flexible molecules with diverse conformations that will
cause the irreproducible outcome for the 3D descriptors based

models. (3) The model evaluation solely based on R2(test set)
or F1-score(test set) may be not convincing enough. Thus, it
is suggested to consider both R2(test set) and |R2(test set)-
R2(CV)| for the regression models and both F1-score(test set)
and |F1-score(test set)-F1-score(CV)| for the classification
model, since the model probably suffers from the over-fitting or
under-fitting if |R2(test set)-R2(CV)| or |F1-score(test set)-F1-
score(CV)| is large. (4) Deep neural network (DNN) method
affords the consensus regression model CM03 with the best
agreement between R2(test set) and R2(CV) compared to all
the models from other works. Thus, more exhaustive parameter
optimization for DNN may offer a very good venue to further
enhance the model performance, although there are so many
hyper-parameters in DNN. (5) Consensus strategy is suggested
to balance the pros and cons of each machine learning based
model. (6) The full compliance with OECD guideline including
the intuitive model interpretation and defined applicability
domain of the model is strongly recommended. (7) Software
development with the in-depth encapsulation of prediction
model, fingerprint generation, and feature selection in the
automatic manner is also very important for other users to apply
the prediction model to their projects.

In the near future, we envision that the machine-learning
based sweetener/sweetness prediction will become more and
more effective and pragmatic, if it can be seamlessly fused with
the other computational methods and experimental techniques.
In our opinions, the performance of machine learning based
model is heavily reliant on the initial high-quality dataset,
which can be sustainably extended by the experimental high-
throughput screening on the sweet taste receptor. Moreover,
the machine-learning based sweetener/sweetness prediction
belongs to the ligand-based approach and is expected to further
combine with the structure-based sweetener prediction such
as the molecular dynamics simulation, free energy calculation
with the enhanced sampling or molecular docking methods on
the basis of the modeled 3D structure of sweet taste receptor,
although solving the crystal structure of the sweet taste receptor
remains challenging so far. Thus, in the near future, the in-depth
integration of machine-learning based sweetener/sweetness
prediction, structure-based sweetener/sweetness prediction,
and the experimental high-throughput screening
based on the sweet taste receptor will provide a good
paradigm for the discovery and development of novel
sweeteners.

CONCLUSION

In this work, we present a machine-learning based platform “e-
Sweet,” which is developed for the experimental food scientists
to automatically predict the sweetener and its corresponding
RS. This platform provides several advantageous functions. (1)
Users can visualize and inquiry our curated datasets that are all
publicly available; (2) Four consensus sweetener/non-sweetener
classification models in e-Sweet, derived from the largest
dataset (530 sweeteners and 850 non-sweeteners), offer the
best performance with the 95% confidence intervals for the
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accuracy (0.91 ± 0.01), precision (0.90 ± 0.01), specificity (0.94
± 0.01), sensitivity (0.86 ± 0.01), F1-score (0.88 ± 0.01), MCC
(0.81 ± 0.01), NER (0.90 ± 0.01), and 1NER (0.03 ± 0.01),
respectively on the test set, and prominently outperforms the
results from the work of Rojas et al. (NER = 0.85); (3) The
RS prediction model is harvested on the basis of the second
largest dataset (352 sweeteners with the RS) and gives the robust
outcome with the 95% confidence intervals for the R2(test set)
and 1R2 of 0.77 ± 0.01 and 0.03 ± 0.01, respectively, which
is also better than other works based on the conformation-
independent 2D molecular descriptors in terms of both R2(test
set) and 1R2. (4) Both the classification and regression models
are trained with the multiple machine-learning methods and
fully comply with the guidelines of OECD. (5) Interactive
visualization of fingerprint bit, 3D structural feature, and
feature importance. Therefore, we hope that this comprehensive
platform can enable the experimental food scientists to
exploit the machine-learning methods to boost the discovery
and development of more novel sweeteners with the high
potency.
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The (S)-adenosyl-L-methionine (SAM)-dependent methyltransferases play essential roles

in post-translational modifications (PTMs) and other miscellaneous biological processes,

and are implicated in the pathogenesis of various genetic disorders and cancers.

Increasing efforts have been committed toward discovering novel PTM inhibitors

targeting the (S)-Adenosyl-L-methionine (SAM)-binding site and the substrate-binding

site of methyltransferases, among which virtual screening (VS) and structure-based drug

design (SBDD) are the most frequently used strategies. Here, we report the development

of a target-specific scoring model for compound VS, which predict the likelihood

of the compound being a potential inhibitor for the SAM-binding pocket of a given

methyltransferase. Protein-ligand interaction characterized by Fingerprinting Triplets of

Interaction Pseudoatoms was used as the input feature, and a binary classifier based

on deep neural networks is trained to build the scoring model. This model enhances

the efficiency of the existing strategies used for discovering novel chemical modulators

of methyltransferase, which is crucial for understanding and exploring the complexity of

epigenetic target space.

Keywords: deep neural network, virtual screening, methyltransferase, epigenetic, drug design

INTRODUCTION

Methyltransferases (MTases) are a class of enzymes that transfer methyl groups to the substrates
including DNA, proteins and small molecules (Zhang and Zheng, 2016). Based on different
substrates, MTases can be divided into three classes: DNA methyltransferases (DNMTs) (Da Costa
et al., 2017), protein methyltransferases (PMTs) (Boriack-Sjodin and Swinger, 2016) and MTases
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for small molecules like catecholamines (Bonifácio et al., 2007).
Most methyltransferases use S-adenosyl-L-methionine (SAM) as
a donor for methyl groups, where all have a SAM-binding pocket
and a substrate-binding pocket (Martin and McMillan, 2002).
These SAM-dependent MTases participate in numerous essential
biological processes, including the epigenetic control of cell fate,
cell signaling and degration of metabolites (Hu et al., 2015;
Schapira, 2016). Consequently, the dysregulation of MTases have
been implicated in diverse diseases including of many types of
cancers (Kaniskan et al., 2015), metabolic disorders (Deng et al.,
2013), cardiovascular disease (Bouras et al., 2013), inflammatory

FIGURE 1 | Overall workflow of model construction.

FIGURE 2 | Histogram showing the distribution of chemical similarity of any two molecules in the dataset.

response (Sun et al., 2015), neurological disorders (Meaney and
Ferguson-Smith, 2010), and so on. Therefore, SAM-dependent
MTases have been considered as a type of intriguing targets
for pharmacological intervention, and interest in developing
potent MTase inhibitors continues to grow in both academic
laboratories and pharmaceutical companies (Hu et al., 2016).
Targeting the SAM-binding pocket is an effective strategy for
designing methyltransferase inhibitors, akin to targeting the
ATP-binding pocket of kinases (Wu et al., 2015). A number of
inhibitors binding to SAM pocket have been reported, including
SGI-1027 (Rilova et al., 2014), CPI-1205 (Vaswani et al., 2016),
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EPZ-6438 (Kuntz et al., 2016), GSK-126 (McCabe et al., 2012),
EPZ-5676 (Stein et al., 2018), and so on (Biswas and Rao,
2018). Among them, pyridone-based EZH2 inhibitors CPI-1205,
EPZ-6438 and GSK-126 have been in phase I clinical trials.
In addition, compound EPZ-5676 has finished phase I clinical
trials for relapsed/refractory leukemias bearing a rearrangement
of the MLL gene, and has modest clinical activity in adult
acute leukemia. So far, there is still no small molecule MTases
inhibitors being approved, and many projects were temporarily
halted partially due to poor in vivo activity or unsatisfactory
bioavailability of current chemo types. Therefore, finding of
MTases inhibitors with novel scaffolds is still a challenging
research area.

To discover and design new MTases inhibitors more
efficiently, a variety of computational methods have been

developed and used in combination with experiment methods
(Kireev, 2016). For example, virtual screening based onmolecular
docking has been widely used to discover potential small
molecule leads (Kireev, 2016). Existing molecular docking
methods typically consists of conformation searching and a
scoring function for complex binding affinity evaluation (Morris
and Lim-Wilby, 2008). These molecular docking methods
can produce the binding poses with acceptable accuracy, but
they are less successful in scoring and active compound
ranking, leading to high false positive rates in virtual screening
campaigns (Berishvili et al., 2018). Furthermore, the performance
of molecular docking for different targets may vary widely,
especially with regard to the complexity of methyltransferase
family targets. Previously our group constructed a knowledge-
based general-purposed scoring function iPMF (Shen et al.,

TABLE 1 | The searched hyperparameters and their performance.

Hyperparameters Performance

Train Valid

Dropout Learning rate Layer size Stop epoch Recall Precision ROC-AUC PRC-AUC Recall Precision ROC-AUC PRC-AUC

0.1 0.0001 [500, 100] 42 0.75 0.86 0.96 0.91 0.55 0.76 0.82 0.76

0.2 0.0001 [500, 100] 46 0.68 0.67 0.90 0.79 0.57 0.68 0.80 0.72

0.1 0.0001 [100, 500] 50 0.74 0.92 0.97 0.93 0.58 0.74 0.84 0.75

0.2 0.0001 [100, 500] 40 0.59 0.94 0.94 0.88 0.42 0.88 0.81 0.75

0.1 0.0001 [320, 640] 31 0.68 0.93 0.97 0.92 0.47 0.86 0.81 0.76

0.2 0.0001 [320, 640] 40 0.69 0.91 0.96 0.91 0.47 0.86 0.81 0.74

0.1 0.0001 [500, 1,000] 29 0.79 0.87 0.97 0.91 0.58 0.70 0.84 0.76

0.2 0.0001 [500, 1,000] 22 0.42 0.94 0.86 0.77 0.28 0.94 0.75 0.71

0.1 0.001 [500, 100] 29 0.80 0.88 0.98 0.94 0.60 0.70 0.82 0.76

0.2 0.001 [500, 100] 27 0.54 0.84 0.92 0.82 0.49 0.70 0.82 0.74

0.1 0.001 [100, 500] 21 0.66 0.93 0.95 0.91 0.51 0.79 0.82 0.72

0.2 0.001 [100, 500] 78 0.79 0.93 0.98 0.95 0.55 0.78 0.80 0.75

0.1 0.001 [320, 640] 32 0.91 0.90 0.99 0.97 0.60 0.68 0.80 0.74

0.2 0.001 [320, 640] 102 0.83 0.99 0.99 0.98 0.58 0.84 0.81 0.72

0.1 0.001 [500, 1,000] 9 0.74 0.77 0.94 0.85 0.66 0.73 0.87 0.81

0.2 0.001 [500, 1,000] 34 0.85 0.99 0.99 0.98 0.60 0.78 0.83 0.78

0.1 0.0005 [500, 100] 18 0.67 0.80 0.93 0.85 0.60 0.78 0.79 0.74

0.2 0.0005 [500, 100] 21 0.67 0.73 0.92 0.82 0.60 0.73 0.81 0.75

0.1 0.0005 [100, 500] 43 0.88 0.96 0.99 0.99 0.62 0.83 0.83 0.77

0.2 0.0005 [100, 500] 51 0.84 0.93 0.98 0.96 0.57 0.79 0.84 0.77

0.1 0.0005 [320, 640] 28 0.82 0.96 0.99 0.98 0.51 0.71 0.81 0.74

0.2 0.0005 [320, 640] 24 0.77 0.93 0.97 0.94 0.49 0.68 0.80 0.74

0.1 0.0005 [500, 1,000] 17 0.79 0.82 0.95 0.88 0.60 0.65 0.78 0.70

0.2 0.0005 [500, 1,000] 14 0.74 0.84 0.95 0.87 0.60 0.73 0.80 0.74

0.1 0.00005 [500, 100] 82 0.72 0.92 0.97 0.93 0.53 0.78 0.84 0.77

0.2 0.00005 [500, 100] 131 0.69 0.97 0.97 0.94 0.49 0.81 0.83 0.76

0.1 0.00005 [100, 500] 55 0.51 0.94 0.92 0.84 0.36 0.83 0.78 0.72

0.2 0.00005 [100, 500] 87 0.57 0.97 0.95 0.89 0.42 0.92 0.79 0.75

0.1 0.00005 [320, 640] 40 0.57 0.95 0.93 0.87 0.42 0.88 0.77 0.73

0.2 0.00005 [320, 640] 50 0.64 0.83 0.92 0.84 0.43 0.68 0.82 0.71

0.1 0.00005 [500, 1,000] 46 0.68 0.96 0.96 0.93 0.45 0.96 0.81 0.79

0.2 0.00005 [500, 1,000] 71 0.77 0.91 0.97 0.93 0.51 0.75 0.81 0.73
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2011), which utilizes the interative-extracted statistical potentials
from protein-ligand complexes. However, the SAM-binding sites
exhibit great polarity and structural flexibility; therefore, it is
difficult for the general-purpose scoring functions like iPMF to
perform satisfactorily for this system. It is therefore a practical
compromise constructing a scoring function specific for SAM-
dependent MTases. Many target-specific scoring functions have
been constructed through different methods to improve the
performance of existing scoring functions on certain targets to
varying degree (Xing et al., 2017; Berishvili et al., 2018). Recently,
our group developed a SAM-dependent methyl transferase-
specific scoring function SAM-score using ε-SVR, and used this
scoring function in discovery of a new class of DOT1L inhibitors
(Wang et al., 2017). Regrettably, despite a lower rate of false
positive in our in-house use, the SAM-score still leaves large
room for improvement. For example, the Enrichment Factor (EF)
(5%) of SAM-score was only 1.46 in one of our recent tests,
which means that the screening power of the scoring model is
not satisfactory.

Recently, deep learning-based approaches have emerged
in the field of scoring function. For instance, Jiménez et al.
constructed a general-purpose scoring function KDEEP via
3D-convolutional neural networks (Jiménez et al., 2018). There
are clear differences between deep learning and traditional
machine learning methods, for example: traditional machine
learning methods uses sparse representations to describe
the input data, and learning-task related features are further
extracted from the representations, which needs extensive
domain knowledge and time investment, and may lose some
important information in the process; while the representation
learning framework of deep learning methods uses distributed
representations for the dataset and then automatically
extract features, which can extract abstract higher-level
features and finally generate more accurate prediction results
(LeCun et al., 2015).

In this study, we developed a SAM-dependent MTases-
specific classifier based on a fully connected neural network
to accurately distinguish between negative (inactive) and

positive (active) MTases inhibitors. First, crystal structures
of the SAM-dependent MTases and the compounds with
experimental affinity data against these targets were collected.
Decoys for each targets were also generated to expand
the data set in this step. Then, molecular docking was
used to produce protein-ligand interaction conformations.
Here, the Fingerprinting Triplets of Interaction Pseudo atoms
(TIFP) (Desaphy et al., 2013) were used to describe the
predicted complex conformations. In the next step, these
TIFPs were used as inputs to establish a fully connected
neural network model by mining the structure and activity
relationship of previously reported small molecules for different
MTases. The performance of the DNN model were also
compared with Glide, Autodock·vina, and the mixed model
of DNN and Glide. The results showed that DNN model
can significantly improve the screening power of docking
and has the ability to prioritize active molecules with diverse
scaffolds. Moreover, this model can also help to determine the
selectivity of the compounds targeting different MTases, which
may provide insight into developing novel inhibitors of SAM-
dependent MTases.

TABLE 2 | The performances of 10 trained models on the validation set.

Model Recall Precision Accuracy ROC-AUC PRC-AUC

1 0.622 0.742 0.874 0.853 0.689

2 0.800 0.653 0.856 0.876 0.793

3 0.725 0.518 0.782 0.849 0.688

4 0.638 0.750 0.845 0.822 0.746

5 0.738 0.660 0.845 0.856 0.791

6 0.682 0.612 0.810 0.863 0.785

7 0.718 0.718 0.874 0.859 0.760

8 0.547 0.690 0.787 0.817 0.723

9 0.436 0.750 0.776 0.800 0.681

10 0.535 0.767 0.845 0.813 0.714

Average 0.64 ± 0.09 0.69 ± 0.06 0.83 ± 0.03 0.84 ± 0.02 0.74 ± 0.04

FIGURE 3 | (A) Variation tendency of PRC-AUC with epochs in DNN model. (B) Variation tendency of PRC-AUC with epochs in DNN-Glide model. The PRC-AUCs of

the DNN model have reached the peak on the 9th epoch, while the DNN-Glide reached the peak on the 59th epoch.
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RESULTS AND DISCUSSION

This research was aimed to build a target-specific classification
model to distinguish whether a compound is a potential inhibitor
of a given methyltransferase. The workflow contains deep neural
network model construction and model evaluation steps, which
will be explained in details below. The overall workflow of this
study was shown in Figure 1.

Deep Neural Network Model Construction
Data Sources
Based on the previous work of our workgroup, the
data used to build model include the same set of 12
SAM-dependent methyltransferases, which are DNA
(cytosine-5)-methyltransferase 1 (DNMT1), coactivator-
associated arginine methyltransferase 1 (CARM1),
protein arginine N-methyltransferase 1 (PRMT1), protein
arginine N-methyltransferase 3 (PRMT3), protein arginine
N-methyltransferase 5 (PRMT5), protein arginine N-
methyl-transferase 6 (PRMT6), euchromatic histone-lysine
N-methyl-transferase 1 (EHMT1), euchromatic histone-lysine
N-methyltransferase 2 (EHMT2), SET domain containing lysine
methyltransferase 7 (SETD7), SET domain containing lysine
methyltransferase 8 (SETD8), suppressor of variegation 3-9
homolog 2 (SUV39H2) and disruptor of telomeric silencing
1-like histone H3K79 methyltransferase (DOT1L). The crystal
structures in the data set are derived from the Protein Data
Bank (PDB) (https://www.rcsb.org), which are all complex
crystal structures with a ligand occupying the SAM pocket.
The structures and activities data of small molecule ligands
for the 12 targets were collected from the ChEMBL database,
and the IC50, EC50, and Ki values less than or equal to 10
micromole were used as positive data, and that more than 50
micromole as negative data. Totally, there were 919 positive
samples and 366 negative samples. The IC50, EC50, and Ki

values in the activity data were normalized to PIC50, PEC50

or PKi (PActivition = 9 – lg(Activation)). Furthermore, a total
of 1212 decoys were generated in the DUD-E website (http://

dude.docking.org/generate) (Mysinger et al., 2012) to better
correspond to the fact of actual virtual screening where the
negative data are much more than the positive data. Each
molecule, either positive or negative, has at least one of 12
Mtase targets reported. The 211-bit TIFP interaction fingerprints
(Desaphy et al., 2013) were used as inputs to construct the
deep neural network classification model, due to its capability
in characterizing directional molecular interactions such as
hydrogen bonding and pi-pi stacking. Totally, 1740 molecules
were compiled for deriving interaction features, which including
446 positive data and 1294 negative data. Tanimoto coefficients
of Morgan fingerprints of any two molecules in the data set
were calculated by RDKit python package (Figure 2), and
most of them were below 0.2, suggesting that the data set has
diverse chemical structures and would make the DNN model
less biased.

Datasets Partition
(1) The total 1,740 samples were randomly divided into two

parts with the proportion 1:10, in which the smaller one was
used as a test set.

(2) The bigger one was shuffled and randomly divided into
a validation set and a train set with the proportion
of 1:8, which were used in the hyperparameter
optimization processing.

(3) This process of step 2 was repeated for ten times to obtain
ten different training/validation datasets, and the best model

TABLE 3 | The performances of 4 methods on the test set, and the best

performed method and its metrics are shown in bold.

Method ROC-AUC PRC-AUC EF (5%)

Glide 0.75 0.54 2.97

Autodock vina 0.61 0.32 0.99

DNN 0.86 0.67 3.46

DNN-Glide 0.80 0.58 3.46

FIGURE 4 | (A)The ROC curves of Glide, Autodock vina, DNN model and DNN-Glide model on the test set. (B) The PRC curves of Glide, Autodock vina, DNN model

and DNN-Glide model on the test set.

Frontiers in Chemistry | www.frontiersin.org 5 May 2019 | Volume 7 | Article 32424

https://www.rcsb.org
http://dude.docking.org/generate
http://dude.docking.org/generate
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Li et al. Methyltransferases-Specific Scoring Function

FIGURE 5 | Structures of the positive compounds predicted by Glide and DNN model before the intersection. Structures in darkorange and yellow box are predicted

to be positive by Glide; structures in dark, blue and green box are predicted to be positive by DNN model.

among the models trained on the ten datasets was evaluated
with the test set.

Hyperparameter Optimization
Themulti-grid searchingmethod was applied to the optimization
of the hyperparameters. Because the area under Precision-
Recall curve (PRC-AUC) is more informative than the area
under receiver operating characteristic curve (ROC-AUC)
when evaluating classifiers on imbalanced datasets (Saito and
Rehmsmeier, 2015), PRC-AUC on the validation set was used for
the evaluation of the hyperparameters. During training process,
Adam optimizer was used for model optimization and cross-
entropy was utilized as the loss function, which is a common
loss function for classification model. Early stopping with a
stop window size of 15 was used to save training time and to
prevent over-fitting, i.e., training would be stopped if the PRC-
AUC on the validation set did not increase for 15 consecutive
epochs. The performance of evaluated hyperparameters in the
hyperparametric search are shown in Table 1. According to
the best set of hyperparameters, a fully connected three-layer
neural network model with two hidden layers (500 × 1,000)
was established. The input layer had 211 neurons, and the
output layer was softmax-standardized dichotomous probability.
Learning rate, weight decay penalty and dropout were set to
0.001, 0.0001, and 0.1, respectively. The activation function was
set as ReLU. Figure 3A shows the variation tendency of PRC-
AUC with epochs on training set and validation set when the
DNN model was trained with the best set of hyperparameters.
The PRC-AUCs of DNN model have reached the peak on

the ninth epoch, and the model at that epoch was used for
further evaluation.

Model Evaluation and Comparison
DNN Model Evaluation
To validate the feasibility and effectiveness of the models, the
searched best set of hyperparameters were then trained on 10
datasets and evaluated on the validation set. The performances
of these 10 models were similar, as shown in Table 2, among
which the performance of 2nd model has the best PRC-AUC
and ROC-AUC (Bradley, 1997) here, which was selected for
further evaluation on the test set. It showed PRC-AUC, ROC-
AUC and EF (5%) of 0.67, 0.86 and 3.46, respectively, on the
test set.

In order to evaluate the DNN model comprehensively,
Glide and Autodock vina were compared with the DNN
model. The docking score of the Glide SP was added as a
descriptor to the end of interaction fingerprint, which was
used to build a hybrid model named DNN-Glide. The DNN-
Glide model was trained in the same way as DNN model
and on the same datasets, and it obtained the same set of
best hyperparameters as DNN model, although there is a
delay of reaching the best PRC-AUC on the validation set
(Figure 3B). By comparison, both the ROC curves and PRC
curves of the DNN model were above that of the other
models, indicating the high-quality performance of the DNN
model (Figure 4 and Table 3). Especially, the true positive
rate of DNN is consistently higher than that of Glide and
Autodock vina when the false positive rate was extremely
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TABLE 4 | The ligands of DOT1L and their scores valued by Glide, Autodock vina and DNN model.

Label Structure Smiles pIC50 Glide score Vina score DNN score

C170206_10 COC1=CC

=CC(=C1)C1=
NN2C(CN3N=
NC4=CC=CC=
C34)=NN=C

2S1

5.19 −7.627 −8.5 0.8542

C170206_15 C(N1N=NC2

=CC=CC=C1

2)C1=NN=C2

SC(=NN12)C

1=CC=C2OC

OC2=C1

5.40 −7.915 −8.4 0.9927

C170206_16 C(N1N=NC2

=CC=CC=C1

2)C1=NN=
C2SC(=NN12)C

1=CC=C2OC

COC2=C1

5.08 −7.898 −9.9 0.9821

C170206_17 CC(C)(C)C1=
CC=C(C=C1)

C1=NN2C(C

N3N=NC4=C

C=CC=C34)=
NN=C2S1

5.35 −5.374 −8.8 0.555

C170206_39 BrC1=CC

(=CC=C1)C1=
NN2C(CN3C=
NC4=CC=C

C=C34)=
NN=C2S1

5.39 −8.233 −8.8 0.9007

C170206_6 FC1=CC=CC

(=C1)C1=NN2

C(CN3N=NC

4=CC=CC=C

34)=NN=C2S1

5.08 −6.629 −8.7 0.8713

(Continued)
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TABLE 4 | Continued

Label Structure Smiles pIC50 Glide score Vina score DNN score

C170206_9 FC1=CC=
C(C=C1)C1=NN2

C(CN3N=NC

4=CC=C

C=C34)=N

N=C2S1

5.33 −7.839 −8.4 0.9439

C170214_3 NC(=O)CN

C(=O)NC1=C

C2=C(C=C

N2C2=C(Cl)

C=CC=C2)

C=C1

5.05 −8.322 −8.3 0.6092

C170214_4 ClC1=CC=
CC=C1N1C=
CC2=C1C=
C(NC(=O)

NCC(=O)NC

CCN[C@@H]1CC

CN(C1)C1=
C3C=CNC3

=NC=N

1)C=C2

8.4 −9.432 −8.3 0.0141

C170214_5 ClC1=CC=C

C=C1N1C=C

C2=C1C=C

(NC(=O)NCC

(=O)NCCC

CN[C@@H]1CCCN

(C1)C1=C3C=C

NC3=NC=N1)

C=C2

8.4 −7.773 −9.6 0.8417

(Continued)
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TABLE 4 | Continued

Label Structure Smiles pIC50 Glide score Vina score DNN score

C170214_6 CN(CCCNC

(=O)CNC(=
O)NC1=CC2

=C(C=C

N2C2=C

C=CC=C2

Cl)C=C1)[C

@@H]1CCCN(C1)

C1=C2C=C

NC2=NC=N1

9.82 −10.445 −9.2 0.9239

C170214_7 CN(CCCNC(=O)

CNC(=O)NC1=C

C=C2SC(Cl)=C

(C2=C1)C1=C

C=CN=C1C)

[C@@H]1CCC

N(C1)C1=C2

C=CNC2=N

C=N1

8.52 −9.125 −8.8 0.9996

C180224_6 O1C=CC=C

1C=CC1=N

N2C(S1)=NN=C

2C1=CC=
CC=C1

5.15 −5.67 −7.9 0.8878

C180224_7 CC1=CC=C

C(=C1)C1=NN

=C2SC(C=
CC3=CC=
CO3)=NN12

5.03 −7.471 −8.3 0.6535

C180224_9 COC1=C(C=C

C=C1)C1=NN

=C2SC(C=
CC3=CC=
CO3)=NN12

5.01 −6.375 −7.8 0.9412

(Continued)
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TABLE 4 | Continued

Label Structure Smiles pIC50 Glide score Vina score DNN score

C180722_3a CC1=CC(N)=C2

C=C(NC3=NC

(NC4=CC=
C5N=C(C)C

=C(N)C5=
C4)=CC(C)

=N3)C=C

C2=N1

5.82 −6.461 −9.8 0.7206

C180722_3b CC1=NC(NC2

=CC=C3N=
C(C)C=C(O)

C3=C2)=NC

(NC2=CC=
C3N=C(C)C=
C(O)C3=C

2)=C1

5.36 −7.745 −9.1 0.8655

C180722_3d CC1=NC2=C

C=C(NC3=C

C=NC(NC4=C

C=C5N=C

(C)C=C(N)C5

=C4)=
N3)C=C2C

(N)=C1

5.97 −8.945 −10.1 0.7807

C180722_3e CC1=NC2=C

C=C(NC3=CC

(NC4=CC=C

5N=C(C)C=
C(N)C5=C4)

=NC=N3)

C=C2C

(N)=C1

5.97 −6.465 −9.3 0.7952

(Continued)
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TABLE 4 | Continued

Label Structure Smiles pIC50 Glide score Vina score DNN score

C180722_8b CC1=NC(NCCCN

C(=O)NC2=C

C=C(C=C2)

C(C)(C)C)=NC

(NC2=CC=C

3N=C(C)C=C

(N)C3=C2)=C1

5.11 −5.558 −8.3 0.9847

C180722_8f CN(CCNC(=O)NC

1=CC=C

(C=C1)C(C)

(C)C)C1=NC(NC2

=CC=C3N=C

(C)C=C(N)C3=
C2)=CC(C)=N1

5.22 −7.641 −9.9 0.5408

C180722_8h CCN(CCNC(=O)N

C1=CC=C(C=
C1)C(C)(C)

C)C1=NC(NC

2=CC=C3

N=C(C)C=C

(N)C3=C2)

=CC(C)=N1

5.24 −5.082 −8.6 0.2014

C180722_8i CCN(CCCNC(=O)

NC1=C

C=C(C=C

1)C(C)(C)C)C

1=NC(NC

2=CC=C3

N=C(C)C=C

(N)C3=C2)

=CC(C)=N1

5.1 −5.542 −9 0.9797

(Continued)
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TABLE 4 | Continued

Label Structure Smiles pIC50 Glide score Vina score DNN score

C180722_9b CC1=NC(NCC

CNC(=O)NC

2=CC(=
CC(=C2)

C(F)(F)F)C

(F)(F)F)=
NC(NC2=CC

=C3N=C(C)

C=C(N)C3

=C2)=C1

5.06 −7.433 −8.7 0.9993

C180722_9e CC1=NC(NCC

CCCCNC(=
O)NC2=CC(=
CC(=C2)C(F)

(F)F)C(F)(F)F)=
NC(NC2=CC

=C3N=C(C)C

=C(N)C3=
C2)=C1

5.45 −7.664 −9.3 0.9985

low, which is an obvious merit for applications in virtual
screening. Unfortunately, the added Glide SP didn’t improve
the performance of the DNN model. It is noteworthy that the
PRC curve of the Glide and DNN model intersected each other
at (0.14, 0.86), before the point (Recall <0.14), the precision
of Glide is higher than the DNN model. Figure 5 shows the
structures of the positive compounds predicted by Glide and
DNN model before the intersection point. We may find that
Glide tends to retrieve compounds with one or two common
scaffolds, while the DNN model is able to provide more diverse
scaffolds, suggesting its generalization ability on recognizing
active compounds.

To investigate the performance of the DNN model on a
specific target, an external test set containing 25 molecules
was collected, which were reported binding to SAM pocket
of DOT1L recently (Möbitz et al., 2017; Wang et al., 2017;
Song et al., 2018). The structures and the DNN model

scores of the molecules were shown in the Table 4. There
are two molecules “C180722_8h” and “C170214_4” predicted
far lower than the threshold of 0.5, which means that they
were wrongly classified. The reason of the wrong judge was
considered to be improper inputs originated from inaccurate
simulated binding conformations. Since the structure of DOT1L
is flexible, especially in SAM-pocket region, crystal structures
obtained from experiment are quite different, which leads to
various simulated binding conformations in docking (Figure 6),
and different conformations may cause different results. To
prove the guess, a different PDB entry 5MVS (the previous
used one was 1NW3) was used as receptor structure to
generate input data with the two compounds. As expected,
the C170214_4 and C180722_8h was evaluated with high
scores of 0.90 and 0.89, respectively, which suggests that
it is vital to select a suitable receptor structure for more
accurate results.

Frontiers in Chemistry | www.frontiersin.org 12 May 2019 | Volume 7 | Article 32431

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Li et al. Methyltransferases-Specific Scoring Function

FIGURE 6 | (A) Docking poses of the molecule “C170214_4” in PDB entry of 1NW3 (green) and 5MVS (magentas). (B) Docking poses of the molecule “C180722_8h”

in PDB entry of 1NW3 (green) and 5MVS (magentas).

Methods
Ligand-Protein Binding Conformations Generation
Accurate binding poses of protein-ligand complexes are required
for extracting interaction information. In view of the fact that
most collected molecules don’t have available complex crystal
structures with their related target, we used molecular docking
to produce the binding conformations.

Cross docking was carried out to choose an appropriate
receptor structure of each target for generating binding poses. At
first, all the complex crystal structures of each target were aligned
via pymol software (version 1.8.2.2) (Schrodinger, 2015), and
then the Xglide module of Maestro version 10.2 (Schrödinger,
LLC, New York, NY, 2015-2) was used for cross docking. In
this process, every ligand extracted from a crystal structure
was docked to collected crystal structures of the target, and
the root-mean-square deviation (RMSD) values of the docked
poses with reference to the corresponding native poses in the
crystal structures were calculated. For every target, the crystal
structure with the smallest average RMSD of all extracted ligands
of this target was selected as the receptor structure for the next
molecular docking. Selected protein crystal structure structures
and the average RMSD values between the predict ligand binding
conformations and the native conformations in crystal structures
were shown in Table 5. According to the results of cross docking,
the average RMSD between the ultimately chosen docking poses
and the ligand original poses in crystal structures are all less than
1.5 Å, suggesting molecular docking is accurate in generating the
protein-ligand binding conformations for MTases.

Then, all the small molecules in our dataset are docked into
the chosen protein crystal structures in Glide of Maestro version
10.2. Each protein crystal structure was prepared by the Protein
Preparation Wizard module of Maestro version 10.2, including
adding hydrogens, assigning the bond level, creating disulfide
bonds, converting selenomethionines to methionines, and filling
in missing side chains using Prime, hydrogen bond network
optimization and restrained minimization; removing all the
water molecules and metal ions. The protein receptor grids were
generated by the Maestro Receptor Grid Generation module of
Maestro version 10.2, and the grid centers were set as the centroid

of ligands binding in the SAM pocket. All small molecules
were prepared by the LigPrep module of Maestro version 10.2,
including creating 3D coordinates, calculating ionization states,
generating tautomers and stereoisomers, and producing a low
energy ring conformation. Grid docking was completed by the
Glide module of Maestro Version 10.2, precision of which was
set as SP (standard precision) and the number of poses to
write out of which was limited to at most 1 per ligand. All
other parameters were set as default. Only the binding pose
with the best docking score was retained. According to the
result of the molecular docking, some molecules preferentially
bound other sites than the SAM-binding pocket, and some
molecules showed lower docking scores. With the docking
score of −8.2 as the threshold, the lower-scored conformations
may not be the actual binding conformations, which are not
studied in the virtual screening generally. These molecules were
disregarded in the followed study. Similarly, binding conformers
of decoys were generated through molecular docking by the
same process.

Interaction Fingerprint Generation
The Fingerprinting Triplets of Interaction Pseudo atoms
(TIFP) were used to encode the protein-ligand interaction
patterns. Firstly, the interactions between protein and ligand
are recognized, including hydrophobic contacts, aromatic
interactions, hydrogen bonds, ionic interactions and metal
complexation. Then, each interaction was abstract into a pseudo-
atom, which is located in the position of the geometric center of
the interaction, the acceptor interacted atom or the interacted
ligand atom. Then, the number of triples are counted in 6
distance ranges: 0–4, 4–6, 6–9, 9–13, 13–17, 17+Å. Each type of
triples is taken as one characteristic and the 211 most common
characteristics are retained to form a 211-bit vector.

For each complex crystal structure used for docking, residues
within 6 Å of the ligandwere retained as binding site information,
which was needed for the generation of TIFP fingerprints. The
binding sites and selected ligand conformers were converted to
the standard mol2 format using chimera (version 1.13). Standard
formatted 211-bit TIFPs was generated using IChem software.
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TABLE 5 | Protein crystal structure structures including the selected structure in

cross-docking and the average RMSD between the predict ligand binding

conformations and the native conformations.

Target PDB ID Ligand Average RMSD Selected PDB

ID

CARM1 2y1w SFG 0.32 2y1w

5dx1 SFG 0.44

5is6 SFG 0.46

6arv SAH 0.46

5dwq SFG 0.48

5dxa SFG 0.49

5dxj SFG 0.49

5lv3 SAH 0.50

5dx8 SFG 0.56

5dx0 SFG 0.62

6arj SAH 1.83

2v74 SAH 1.84

5ih3 SAH 2.09

5u4x SAH 2.24

6d2l FTG 3.34

2y1x SAH 3.40

4ikp 4IK 3.45

5k8v 6RE 3.48

5is8 SAH 3.59

3b3f SAH 3.65

DNMT1 3swr SFG 0.81 3swr

5gut SAH 0.89

3av5 SAH 0.90

3pta SAH 0.98

3pt6 SAH 1.02

3pt9 SAH 1.13

4wxx SAH 1.27

3av6 SAM 1.32

4da4 SAH 2.09

DOT1L 1nw3 SAM 1.17 1nw3

3sx0 SX0 1.19

4er0 AW1 1.24

4ek9 EP4 1.45

4ekg 0QJ 1.52

5juw 6NR 1.68

4eqz AW0 1.74

4hra EP6 1.74

3uwp 5ID 1.76

4er7 AW3 1.79

4eki 0QK 1.98

3qox SAH 3.68

4er3 0QK 3.75

3sr4 TT8 3.91

3qow SAM 3.97

4er6 AW2 4.03

5mw3 5JT 4.19

4wvl 3US 4.39

4er5 0QK 4.98

5mw4 5JU 5.02

(Continued)

TABLE 5 | Continued

Target PDB ID Ligand Average RMSD Selected PDB

ID

EHMT1 2igq SAH 0.44 2igq

3mo2 SAH 0.74

3mo5 SAH 0.89

3sw9 SFG 0.90

4i51 SAH 0.93

3fpd SAH 0.95

5tuz SAM 0.98

3hna SAH 1.01

5vsd SAM 1.11

3mo0 SAH 1.13

5vsf SAM 1.15

2rfi SAH 1.18

5ttg SAM 2.49

3swc SAH 2.57

5v9j SAM 2.59

EHMT2 3k5k SAH 0.69 3k5k

5t0m SAM 0.71

5vse SAM 0.72

5tuy SAM 0.75

5v9i SAM 0.75

5jhn SAM 0.86

3rjw SAH 0.89

4nvq SAH 0.90

5t0k SAM 0.92

5jj0 SAM 0.97

5jin SAM 0.98

5ttf SAM 1.02

5vsc SAM 1.04

2o8j SAH 1.14

5jiy SAM 1.73

SETD8 2bqz SAH 1.27 2bqz

1zkk SAH 1.33

3f9z SAH 1.34

5teg SAM 1.50

3f9w SAH 1.73

3f9x SAH 2.59

4ij8 SAM 2.63

3f9y SAH 2.66

PRMT1 1or8 SAH 0.65 1or8

1orh SAH 0.94

1ori SAH 0.97

3q7e SAH 3.99

PRMT3 1f3l SAH 0.47 1f3l

2fyt SAH 3.95

PRMT5 5emk SFG 0.76 5emk

5emm SFG 0.91

4gqb 0XU 1.15

6ckc F5J 1.29

4x63 SAH 1.54

5emj SFG 1.56

3ua3 SAH 1.61

(Continued)
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TABLE 5 | Continued

Target PDB ID Ligand Average RMSD Selected PDB

ID

5c9z SFG 2.03

5eml SAM 2.10

4x60 SFG 2.30

5fa5 MTA 2.57

4g56 SAH 2.71

4x61 SAM 3.13

PRMT6 4c04 SFG 0.64 4c04

4y30 SAH 0.70

4qqk 37H 0.89

5wcf SAH 0.89

4c03 SFG 0.92

4hc4 SAH 0.94

4c05 SAH 0.99

5fqo SAH 1.24

4qpp SAH 1.29

5hzm SAH 1.29

5egs SAH 1.37

4y2h SAH 1.61

5fqn SAH 3.03

5e8r SAH 3.78

4lwp SAH 3.91

SETD7 3vv0 KH3 0.72 3vv0

3vuz K15 0.91

4e47 SAM 1.02

4j83 SAM 1.02

3m57 SAH 1.05

3m5a SAH 1.07

1n6a SAM 1.14

3m55 SAH 1.58

3m58 SAH 1.89

3cbm SAH 2.00

3cbo SAH 2.07

3m59 SAH 2.36

4j7i SAH 2.38

4j7f SAH 2.41

5eg2 SAH 2.46

3m53 SAH 2.54

4jlg SAM 2.56

3m56 SAH 2.74

4j8o SAH 2.77

3cbp SFG 2.90

1o9s SAH 3.07

3os5 SAH 3.07

2f69 SAH 3.08

3m54 SAH 3.27

1xqh SAH 3.48

4jds SAM 3.73

5ayf SAM 4.31

1n6c SAM 5.91

1mt6 SAH 7.82

SUV39H2 2r3a SAM 0.69 2r3a

DNN Model Construction and Evaluation
The DNN model was built by the MultitaskClassifier module
of Deepchem (version 2.1.0), and the data set was randomly
divided by the RandomSplitter of Deepchem. The Evaluator
module of Deepchem was used to evaluate the performance of
DNNmodels.

The evaluation indexed used to evaluate the performance
of these modules were area under the precision-recall
curve (PRC-AUC) and area under the Compute Receiver
operating characteristic curve (ROC-AUC), which are
widely used in evaluation the enrichment of scoring model.
The closer that the AUC is to 1, the more likely it is
that the model is an ideal classification model. Especially,
when the ROC-AUC is close to 0.5, the model is close
to a random classifier. When the PRC curve reports the
evolutions of Recall and Precision, the ROC curve shows
the changes of true positive rate (TPR) and false positive
rate (FPR):

Recall =
NTP

NTP + NFN
(1)

Precision =
NTP

NTP + NFP
(2)

TPR =
NTP

NTP + NFN
(3)

FPR =
NFP

NFP + NTN
(4)

where NTP, NTN, NFP, and NFN refer to the numbers
of true positives, true negatives, false positives, and false
negatives, respectively.

The performance of Autodock vina in the test set was
also compared with that of DNN model. Before applying
Autodock vina (Version 1.1.2), the protein receptor structures
and ligand structures were prepared using python scripts
named “prepare_receptor4.py” and “prepare_ligand4.py” in
AutoDockTools, respectively, which included standard steps
such as adding hydrogens and electrons. The grid was also
centered on the centroid of the ligand. The grid size was set to 25
Å× 25 Å× 25 Å, and the energy range was set to 4, and all other
parameters were used the default settings. The conformation with
the best affinity score of each ligand was selected for further
study. All figures in this article were produced by Matplotlib and
Seaborn python package.

CONCLUSIONS

In this study, we have developed a target-specific classifier
for methyltransferases based on protein ligand interaction
fingerprint and deep neural network. Binding poses of active
and inactive compounds for 12 methyltransferase were generated
via molecular docking. TIFP interaction fingerprints were
employed as input features of full-connected deep neural
network models. The performance of the DNN model on
the test set showed that our classifier can classify active
and inactive compounds more accurately. In comparison with
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Glide Autodock vina and DNN-Glide hybrid model, the DNN
model improved both classification performance and compound
ranking capability.

Currently, the scoring model can be used in virtual
screening and experimentally verified. As a target-specific
classifier, this neural network model may be applied to
other targets through transfer learning, or if the data used
for training is appropriate, the classifier of other targets or
even the general classifier can be constructed through the
same workflow.
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Unsaturated polyester resins are widely used for the preparation of composite materials

and fulfill the majority of practical requirements for industrial and domestic applications

at low cost. These resins consist of a highly viscous polyester oligomer and a reactive

diluent, which allows its process ability and its crosslinking. The viscosity of the initial

polyester and the reactive diluent mixture is critical for practical applications. So far, these

viscosities were determined by trial and error which implies a time-consuming succession

of manipulations, to achieve the targeted viscosities. In this work, we developed a

strategy for predicting the viscosities of unsaturated polyesters formulation based on

neural networks. In a first step 15 unsaturated polyesters have been synthesized through

high-temperature polycondensation using usual monomers. Experimental Hansen

solubility parameters (HSP) were determined from solubility experiment with HSPiP

software and glass transition temperatures (Tg) were measured by Differential Scanning

Calorimetry (DSC). Quantitative Structure—Property Relationship (QSPR) coupled to

multiple linear regressions have been used to get a prediction of Hansen solubility

parameters δd, δp, and δh from structural composition. A second QSPR regression has

been done on glass transition temperature (prediction vs. experimental coefficient of

determination R² = 0.93) of these unsaturated polyesters. These unsaturated polyesters

were next diluted in several solvents with different natures (ethers, esters, alcohol,

aromatics for example) at different concentrations. Viscosities at room temperature

of these polyesters in solution were finally measured in order to create a database

of 220 entries with 7 descriptors (polyester molecular weight, Tg, dispersity index –D,
polyester-solvent HSP RED, molar volume of the solvent, δh of the solvent, concentration

of polyester in solvent). The QSPR method for predicting the viscosity from these

6 descriptors proved to be ineffective (R² = 0.56) as viscosities exhibit non-linear

phenomena. A Neural Network with an optimized number of 12 hidden neurons has

been trained with 179 entries to predict the viscosity. A correlation between experimental

and predicted viscosities based on 41 testing instances gave a correlation coefficient R²

of 0.88 and a predicted vs. measured slope of 0.98. Thanks to Neural Networks, new

developments with eco-friendly reactive diluents can be accelerated.

Keywords: unsaturated polyester, viscosity, neural network, QSPR, hansen solubility parameters, prediction
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INTRODUCTION

Today composite materials find many applications in the fields
of transport, construction as well as in sports and leisure (Biron,
2013). The unsaturated polyester resins used for the preparation
of these composite materials have several advantages, mainly
a favorable price ratio with respect to the mechanical and
thermal properties (Mishra et al., 2003), good durability and
a relatively good resistance to corrosion (Dagher et al., 2004),
a low maintenance cost as well as good electrical, phonic and
thermal insulation properties. It also lightens the structures
compared to conventional metallic materials allowing to obtain
better energy performances (Song et al., 2009). The investment
cost related to machining composite materials by hand lay-up is
also low (Biron, 2013).

The unsaturated polyesters are synthesized by high
temperature polycondensation of diols with saturated and
unsaturated diacids. The most used unsaturated monomers are
maleic anhydride or fumaric acid. The water produced by the
esterification reaction is eliminated by condensation in a Dean-
Stark during the reaction. The number average molecular weight
of the obtained polyesters are ∼1,000 g.mol−1 (Fink, 2013).
Depending on the monomers used in the polycondensation,
the properties of polyester resins differ. For applications where
the resin must be resistant to hydrolysis, monomers such as
neopentyl glycol and isophthalic acid are particularly suitable.
The use of diethylene glycol or dipropylene glycol makes possible
to obtain flexible resins (Zaske and Goodman, 1998; Fink,
2013). Thus, there is a multitude of possible chemical structures
depending on the intended application.

In order to be manipulated at room temperature and to be
crosslinked, the polyesters are diluted in polymerizable solvents.
The most commonly reactive diluent is styrene because it
effectively reduces the viscosity of the unsaturated polyester
in solution and efficiently copolymerizes with the fumarate
units (Lewis and Mayo, 1948; Cousinet et al., 2015). However,
styrene has been classified by the US Department of Health
and Human Services as “reasonably anticipated to be a human
carcinogen.” It is a very volatile monomer that has also been
classified as a hazardous air pollutant by the US Environmental

Protection Agency (Cousinet et al., 2015). In Europe, styrene
has been classified as “reproductive toxicity category 2” by the
European Chemicals Agency (ECHA). Methacrylate monomers
are commonly used to replace styrene (Fink, 2013). However,
monomers such as methyl, ethyl or butyl methacrylates have
strong odors. This is a disadvantage for open mold applications.
In addition, their reactivity ratio with fumarate units does
not allow good crosslinking (Bengough et al., 1967). Many
publications deal with the search for alternative reactive diluents,
sometimes bio-sourced, in order to be able to eliminate styrene
and to provide resins with less volatile and less toxic organic
compounds (Sadler et al., 2012; Cousinet et al., 2014, 2015; Li
et al., 2014; Dai et al., 2017; Panic et al., 2017; Yadav et al., 2018).

To develop a new resin, it is now necessary to multiply time-

consuming manipulations. Firstly a polyester with a defined

structure is synthesized, then diluted in a reactive solvent and

finally crosslinked. The properties of the resin such as its viscosity

at room temperature and its mechanical properties need to
be measured for assessing its performance. Performing all of
these steps take several days for a single try. The multitude
of possible chemical structures as well as the diversification of
available reactive diluents considerably extends the time required
for the development of a new resin. The viscosity of polyester
resins at room temperature is an important parameter to be
respected in a specification. Indeed, the resin must be in a
certain range of viscosity depending on its mode of application
(Fink, 2013). Developing property prediction tools that use only
theoretical values without manipulation is therefore a strategic
issue, particularly in the industrial sector.

Neural networks are machine learning tools for connecting
non-linear data with one or more target properties (Gasteiger
and Zupan, 1993; Svozil et al., 1997). This type of algorithm
has been used effectively in many scientific fields, especially in
environmental or chemical applications (Behler, 2011; Torrecilla
et al., 2013; Wei et al., 2016). Several studies have already been
published on the prediction of polymer properties using neural
networks, such as the glass transition temperature (Joyce et al.,
1995; Mattioni and Jurs, 2002; Chen et al., 2008; Liu and Cao,
2009), intrinsic viscosity (Gharagheizi, 2007a) or lower critical
solution temperature (Gharagheizi F., 2007b).

In this work, a neural network was set up in order to
predict the viscosity of unsaturated polyester resins from
simple descriptors. Once a polyester is synthesized, its number
average molecular weight and its glass transition temperature
are measured. The experimental Hansen solubility parameters
(HSP) (Hansen, 2002) of the polyester are then obtained
by solubilization of the polymer in 40 solvents followed by
processing results on the HSPiP software (Abbott, 2013). Then,
the polyester is solubilized by varying its concentration in
solvents of different natures among those previously used. A
database of 220 entries of polymer-solvent combination was set
up including for the polyesters, their number average molecular
weight, their glass transition temperatures and their Hansen
parameters, for the solvents their molar volumes, their δh and the
concentration of the polyester in solution. The resulting viscosity
of the polyester in solution was measured with a rheometer for
each entry. The neural network was subsequently optimized and
trained with this database.

To be able to predict unsaturated polyester viscosity
exclusively based on theoretical values without manipulation,
the glass transition temperature as well as Hansen parameters
of unsaturated polyesters have been correlated according to
the theoretical chemical structure of the polyesters. Prediction
methods have already been described in the literature for the
glass transition temperature (Katritzky et al., 1996; Bicerano,
2002; Camacho-Zuñiga and Ruiz-Treviño, 2003; Krevelen and
Nijenhuis, 2009) as well as the Hansen solubility parameters
of polymers (Stefanis and Panayiotou, 2008; Krevelen and
Nijenhuis, 2009). However, these methods generally relate to
high average molecular weight polymers and are not necessarily
adapted to unsaturated polyesters. In this work, a Quantitative
Structure—Property Relationship (QSPR) method was applied
to propose a simple method for determining the glass transition
temperature and Hansen solubility parameters for unsaturated
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polyesters. The experimental values used in the neural network
can be replaced in the future by the predicted values obtained
by QSPR.

Data capitalization and processing has become a strategic
topic for predicting phenomena (Dong et al., 1996; Zhang et al.,
1998; Marengo et al., 2004). Being able to predict the viscosity of
polyester resins to see if they fulfill specifications and minimize
the number of tests is undoubtedly of high added value for
thermoset resins industrial companies. Today, the establishment
of a machine learning system has become more accessible,
so its use in chemical companies will certainly grow in the
coming years.

MATERIALS AND METHODS

Reagents
Propylene glycol (PG), dipropylene glycol (DPG), neopentyl
glycol (NPG), cyclohexanedimethanol also known as 1,4-
bis(hydroxymethyl)cyclohexane (CHDM), 2-ethylhexanol (EH),
benzyl alcohol (AB), maleic anhydride (AM), itaconic acid (IT),
fumaric acid (AF), phthalic anhydride (PA), adipic acid (AA)
were provided by the Mäder group. They were used as received
without further purification.

All solvents used for the determination of Hansen parameters
are laboratory grade and were used as received without
further purification.

Synthesis of the Prepolymer
The prepolymer was synthesized by the melt polycondensation
between diols and diacids. The components were mixed in a
1 L four-necked round-bottom flask connected with a stirrer, a
temperature probe connected to the heater, a Dean–Stark, and
a N2 gas inlet. No catalyst was used in this work. The reaction
was carried out at a temperature of 200◦C under a nitrogen
atmosphere. The reaction was carried out until the acid value
reached 30. The acid value (AV) is defined as the number of
milligrams of KOH needed to neutralize 1 g of resin and was
measured according to ASTMD465-01. Around 1 g of resins was
titrated with a KOH solution in isopropanol (0.1 M).

Prepolymer Characterization
The size exclusion chromatography (SEC) used was a Shimadzu
Prominence fitted with a Refractive Index (RI) detector (RID-
20A) and an UV detector (SPD-20A). The columns (KF-802
and KF-803L from Shodex) were eluted with tetrahydrofuran
(THF) at a flow rate of 1 mL/min at 30◦C. The samples were
previously prepared by dissolving 10mg of sample in 1mL THF.
The solution was then filtered through a PTFE filter with a
pore diameter of 0.45µm. A volume of 20 µL was injected
into the size exclusion chromatography to carry out the analysis.
The SEC has been calibrated with poly(styrene) standards. The
number average molecular weights were determined from the
UV detector absorbance.

The glass transition temperature (Tg) of the prepolymers was
measured by differential scanning calorimetry, DSC, using a Q20
TA Instruments in hermetic aluminum capsules with a scan rate
of 10◦C/min from −80◦C to 150◦C under N2 (50 mL/min). The

second heating run was used to determine the Tg with the TA
Instruments software.

Hansen Solubility Parameter
Experimental Determination
The solubility of the polymers was assessed by dissolving
100mg in 1mL of solvent at room temperature. Solubility
was assessed after 24 h of agitation using a Vortex-Genie 2
from Scientific Industries. The 40 solvents tested were acetic
acid, acetone, acetonitrile, aniline, benzonitrile, benzyl alcohol,
γ-butyrolactone, m-cresol, cyclohexane, cyclohexanone, o-
dichlorobenzene, diethylene glycol, dimethyl formamide,
1,4-dioxane, ethanol, ethyl acetate, ethylene glycol, ethylene
glycol monomethyl ether, formamide, formic acid, furan, hexane,
isobutyl alcohol, methanol, methyl ethyl ketone, N-methyl
formamide, methyl methacrylate, N-methyl-2-pyrrolidone,
methylene dichloride, morpholine, nitrobenzene, 1-pentanol,
1-propanol, propionitrile, propylene carbonate, propylene glycol
monomethyl ether, styrene, tetrahydrofuran, toluene, water
(Delgove et al., 2017). The Hansen solubility parameters δd, δp, δh
and the solubility sphere radius R0 of the unsaturated polyesters
were obtained using the HSPiP software. A sphere centered on
the HSP of the polyester and radius R0 constitutes the sphere
of solubility of the polyester. Solvents whose HSP are inside the
sphere allow the solubilization of the polyester. The polyester is
insoluble in solvents having HSP outside the sphere.

Unsaturated Polyester—Solvent
Compatibility Determination
Once the HSP of the polyesters were obtained, the compatibility
of each polyester in solvents of different natures was quantified.
Firstly, the distance Ra in a three-dimensional space between
the Hansen parameters of the polyester (P) and the Hansen
parameters of the solvent (S) was calculated using the Equation
(1) (Krevelen and Nijenhuis, 2009).

R2a = 4.0× (δdP − δdS)
2 +

(

δpP − δpS
)2 + (δhP − δhS)

2 (1)

The Relative Energy Difference (RED) was then calculated
by performing the ratio of Ra to R0 (Equation 2)
corresponding to the solubility radius of the unsaturated
polyester (Krevelen and Nijenhuis, 2009).

RED =
Ra

R0
(2)

Thus, the RED gives a simple numerical value for
characterizing the compatibility of a polymer in a solvent.
According to Hansen’s theory, two compounds are very
compatible if their RED approaches 0 because their Hansen
solubility parameters are very close. If their RED is equal to
1, it means that the polyester is at the limit of solubility in
the solvent and therefore almost incompatible. A RED >1
means that the polyester is not soluble in the solvent tested
(Krevelen and Nijenhuis, 2009).
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Creation of the Polyester Resin Database
In order to develop the database, the unsaturated polyesters
synthesized were diluted in various solvents among those used
in Part 2.3 and at different concentrations. Apparent viscosities
were measured at 23◦C as a function of shear rate over the range
1–100 s−1 using the viscometry function of a controlled stress
and strain rheometer (Anton Paar MCR 301). A parallel plate
geometry has been used with a diameter plate of 25mm (PP25)
and a gap of 1 mm.

The database contains 220 entries including for each of
them the number average molecular weight of the polyester
Mn (obtained by SEC), its index polydispersity Ð, and its glass
transition temperature Tg (obtained by DSC), the RED polymer-
solvent compatibility (obtained via HSPiP), the molar volume of
the solvent Mvol(obtained via HSPiP), the concentration of the
polyester in the solution and the measured viscosity at 23◦C of
the polyester in solution. This database is provided in Table S1.

QSPR Modeling With Multiple Linear
Regression (MLR)
Quantitative Structure—Property Relationship (QSPR)
modelizations were carried out by multiple linear regression.
Different descriptors xi are correlated with one or more
responses. The linear relation linking the descriptors to this
response is given in Equation 3.

y = a0 + a1x1 + a2x2 + . . . + aixi + e (3)

The values ai are the regression coefficients. The purpose
of multiple linear regression is to determine the value
of these coefficients by the least squares method. These
modelizations were realized with the software Cosmoquick
version 1.7 (COSMOlogic, Leverkusen, Germany)
(Loschen and Klamt, 2012).

Artificial Neural Network
Neural networks are a type of machine learning tool which
link several input data with output data by non-linear relations
(Gasteiger and Zupan, 1993; Svozil et al., 1997). They present a
real advantage over conventional linearmathematical approaches
(Díaz-Rodríguez et al., 2014; Cancilla et al., 2016). The use of
neural networks allows to find physico-chemical models already
described in the literature or even to discover original models
(Behler, 2011; Díaz-Rodríguez et al., 2015).

A neural network is divided into several layers, each composed
of neurons and interconnected by synapses (Díaz-Rodríguez
et al., 2014). The first layer, called the input layer, introduces
into the neural network the values of the different descriptors
influencing the target property at the output of the neural
network. In this study, several physicochemical data describing
both the polyesters as well as the solvents properties were used in
this input layer.

The second part of the neural network is the hidden learning
layer. It contains neurons that allow non-linear calculations to
obtain the relationship between input and output data (Gasteiger
and Zupan, 1993; Cancilla et al., 2014a,b). Each learning neuron

performs a linear combination of input data multiplied by the
weight of the synapses associated with that data. An additional
constant, called bias, is added to this linear combination in order
to add an extra degree of freedom to the neural network to better
match input and output data. A function that can be linear or
not transforms the value obtained in order to obtain the output
signal of the neuron. The most common non-linear functions
are the hyberbolic tangent or the sigmoid. A multitude of other
activations functions exist and research are still on-going on the
development of new functions (Xu et al., 2015). This output value
is then introduced as an input value for the next layer of neurons.

The number of neurons in the hidden layer must be optimized
in order to have the best learning and to get the best prediction
accuracy. A low number of learning neurons will tend to limit
the learning ability of complex problems by the neural network
whereas an excessive number of neurons can lead to an over-
fit of prediction and an increase in the gap compared to the
experimental target values. Although different rules emerge to
fix the number of hidden neurons based on the number of
input and output data, it is also possible to test the evolution
of the prediction error with respect to the experimental one by
changing the number of learning neurons (Sheela and Deepa,
2013). In the initial state, values of the synapses weights are fixed
randomly. The training protocol is based on an algorithm seeking
to reduce the difference between the experimental target values
compared to the values predicted by successive iterations that
modify the weight of the synapses. There are different types of
training algorithms, each of which is more suitable for a kind
of applications (Torrecilla et al., 2008). A neural network can
continue the iterations until the predicted values fit perfectly with
the training data. However, this can cause over-fit due to the
consideration of non-general trends such as experimental errors
or noise. Verification of the reliability of the neural network can
be performed with a set of data that have not been used for
the modification of synaptic weights during training (Cancilla
et al., 2014a). When the error between experimental values and
predicted values begins to increase, it means that the training
phase has undergone too many iterations.

Neural designer desktop version 2.9.5 (Artelnics, Salamanca,
Spain) has been employed for the neural network design and
its optimization.

RESULTS AND DISCUSSION

Unsaturated Polyesters Synthesis
Fifteen unsaturated polyesters have been synthesized from the
monomers conventionally used in industry. The stoichiometric
ratio between the reagents called r corresponds to the initial
molar amount of carboxylic acid groups on the initial molar
amount of alcohol groups provided by the diacids and glycols
of the polycondensation reaction. These different structures are
listed in Table 1. They were characterized initially by DSC and
SEC in order to obtain the glass transition temperature Tg , the
number average molecular weightMn and the dispersity indexÐ.

During the reaction, the maleate units are isomerized into
fumarate units. However, the isomerization rate depends mainly
on the monomer composition of the resin (Curtis et al., 1964).
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TABLE 1 | Structures of the unsaturated polyesters synthesized.

Polyester Monomer 1 (mol%) Monomer 2 (mol%) Monomer 3 (mol%) Monomer 4 (mol%) Monomer 5 (mol%) r Tg(
◦C) Mn (g/mol) –D

1 PG 80% DPG 20% AM 67% AP 27% AA 6% 0.97a 3.9 1,880 3.90

2 NPG 70% PG 30% – AF 100% / 0.93 9.1 2,678 2.23

3 NPG 70% PG 30% – AM 60% AP 40% 0.90 16.3 1,560 2.13

4 NPG 70% PG 30% – AM 50% AP 50% 0.90 24.4 1,652 2.51

5 NPG 70% PG 30% – AM 70% AP 30% 0.90 11.7 1,640 1.90

6 NPG 70% PG 30% – AM 60% AP 40% 0.91 16.0 1,780 1.87

7 NPG 50% PG 50% – AM 60% AP 40% 0.96 20.1 2,530 2.90

8 NPG 70% PG 30% – IT 60% AP 40% 0.98 12.1 1,205 2.64

9 PG 100% – – AM 60% AP 40% 0.90 22.0 1,610 3.69

10 PG 100% – – AM 60% AP 40% 0.91 23.6 1,760 1.5

11 NPG 70% PG 30% EH 5% AM 60% AP 40% 0.94 2.4 1,220 2.09

12 NPG 70% PG 30% – AM 60% AP 40% 0.96 21.2 1,960 2.59

13 CHDM 70% PG 30% – AF 60% AP 40% 0.92 22.6 2,420 1.84

14 DPG 100% – – AF 60% AP 40% 0.92 −6.5 1,409 2.47

15 DPG 50% NPG 50% – AF 60% AP 40% 0.91 1 1,330 2.20

16 NPG 70% PG 30% – AM 60% AP 40% 0.75 −2.5 950 1.84

17 NPG 70% PG 30% – AM 60% AP 40% 0.93 20.9 2,090 2.70

18 CHDM 100% – – AF 60% AP 40% 0.92 29.4 1,995 2.21

19 NPG 70% PG 30% AB 5% AM 60% AP 40% 0.94 11.2 1,410 2.23

20 NPG 30% CHDM 70% / AF 60% AP 40% 0.92 23.5 1,760 2.16

21 NPG 70% PG 30% / AF 60% AA 40% 0.9 −20.7 1,350 2.38

aFinal acid number = 50 mgKOH/g (instead of 30 mgKOH/g).

Diols with secondary alcohols such as propylene glycol promote
isomerization in contrast to diols having only primary alcohols.
The presence of phthalic anhydride also promotes isomerization.
Maleate units (Z-double bond) do not have the same properties
as fumarate units (E-double bond) (Ebewele, 2000; Krevelen and
Nijenhuis, 2009). In order to minimize the presence of maleates
in the reaction, fumaric acid has been used in syntheses with
primary diols or without phthalic anhydride.

The glass transition temperature Tg of the polyesters depends
on the structure of the monomers used during the synthesis
as well as the final average molecular weight obtained. The
introduction of monomers comprising ether bridges such as
dipropylene glycol or diethylene glycol allows the flexibilization
of the polyester chains and therefore the lowering of the glass
transition temperature of the polyesters (Young and Lovell,
1996; Zaske and Goodman, 1998; Ebewele, 2000). In order to
be able to compare the impact of these monomers on the
glass transition temperature, the acid monomer composition
as well as the targeted degree of polymerization was fixed for
polyesters described in polyesters 3, 14, and 15. The polyester
4 composed solely of dipropylene glycol has a Tg of −6.5◦C
whereas the polyester 15 comprising 50% of neopentyl glycol and
50% of dipropylene glycol has a Tg of 1

◦C. A polyester without
ethers monomers such as the one described in polyester 3 has
a higher Tg of 16.3◦C. The use of aromatic monomers such
as orthophthalic anhydride also modulate the glass transition
temperature of the unsaturated polyesters (Zaske and Goodman,
1998; Ebewele, 2000). The degree of polymerization as well as the
glycol composition of the polyesters described in polyester 4-6

are similar while the ratio of maleic anhydride to orthophthalic
anhydride has been varied. The increase in the ratio in favor
of orthophthalic anhydride within the polyester induces an
increase in the glass transition temperature. On the contrary,
the introduction of long aliphatic chain within the polyester
has a plasticizing action and thus induces a decrease in the
glass transition temperature (Young and Lovell, 1996; Zaske
and Goodman, 1998; Ebewele, 2000). When the orthophthalic
anhydride is replaced by adipic acid, which has an aliphatic chain,
the glass transition temperature drastically decreases (polyester
21: Tg =−20.7◦C vs. polyester 3: Tg = 16.3◦C). In the same way,
the incorporation of a mono-functional aliphatic alcohol such as
2-ethylhexanol has a plasticizing action and a decrease in the glass
transition temperature is observed (polyester 11: Tg = 2.4◦C vs.
polyester 3: Tg = 16.3◦C).

The use of branched monomers such as neopentyl glycol or
propylene glycol induces a steric hindrance and thus restricts
the polymer chain rotation (Young and Lovell, 1996; Ebewele,
2000). Neopentyl glycol also has a symmetry with its two
CH3 groups in comparison to propylene glycol which has
only one CH3 group. Despite a larger steric hindrance, this
symmetry induces a drop in the glass transition temperature
(Mark, 2007). Moreover, neopentyl glycol has an additional
CH2 group relative to propylene glycol which makes the
polyester more flexible. The polyester 9 composed solely of
propylene glycol for the glycol portion has a glass transition
temperature of 22.0◦C. When 70 mol% of propylene glycol
is replaced by neopentyl glycol (polyester 3), the glass
transition temperature decreases to 16.3◦C. The introduction
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TABLE 2 | Hansen solubility parameter of the synthesized unsaturated polyesters.

Polyester δd δp δh δ R0

1 16.6 14.2 3.9 22.1 13.1

2 19.0 9.2 8.5 21.0 6.0

3 17.8 13.4 4.4 22.7 12.7

4 18.7 14.6 5.1 24.3 13.6

5 17.8 13.5 4.4 22.7 12.7

6 18.8 12.8 5.8 23.5 12.1

7 18.8 13.7 5.4 23.9 12.9

8 17.7 13.5 4.4 22.7 12.7

9 17.5 13.7 4.5 22.7 12.5

10 18.0 13.2 5.9 23.1 11.6

11 17.5 13.8 4.4 22.6 12.6

12 18.7 14.6 5.1 24.2 13.5

13 19.4 7.0 7.8 22.1 8.6

14 17.3 13.6 4.0 22.4 12.9

15 17.7 13.5 4.4 22.7 12.7

16 17.2 11.7 6.9 21.9 11.5

17 18.1 13.2 5.1 23.0 12.3

18 19.1 6.7 7.4 21.5 6.6

19 17.4 13.8 4.4 22.6 12.6

20 17.9 8.0 8.5 21.4 8.7

21 18.7 13.4 5.1 23.6 12.6

Average 18.1 12.4 5.5 22.7 11.6

Standard deviation 0.7 2.4 1.4 0.9 2.14

of cycloaliphatic monomers such as cyclohexanedimethanol,
for example, stiffens the polyester chains (Turner et al.,
2001). The replacement of propylene glycol of polyester 3

by cyclohexanedimethanol involves an increase in the glass
transition temperature (20 Tg = 23.5◦C vs. 3 Tg = 16.3
◦C). The polyester 18 containing only cyclohexanedimethanol
has a glass transition temperature of 29.4◦C. The influence
of the number average molecular weight of the polyester was
also studied. The monomer composition of the polyesters
3, 16, 17 was kept constant while varying the molecular
weight. Obviously, the glass transition temperature increases
as the average molecular weight of the polymer increases

(Ebewele, 2000; Mark, 2007).

Hansen Solubility Parameter
Experimental Determination
In order to predict the solution viscosity of a polyester,
it is important to know its compatibility with different
types of solvent (Flory, 1942; Hillyer and Leonard, 1973;
Young and Lovell, 1996). Indeed, a polyester containing a
large number of polar groups adopt a different behavior
in an apolar solvent (i.e., xylene) or in a polar solvent
(i.e., water or ethanol). The Hansen solubility parameters
(Krevelen and Nijenhuis, 2009) were therefore measured
in order to be able to compare them with the solubility
parameters of the various solvents subsequently tested for
the prediction of viscosities. The measured parameters are
listed in Table 2.

The δd of the 21 unsaturated polyesters synthesized, does
not seem to be influenced by the variation of the monomers
used. The standard deviation is low compared to the average
of measured δd. Polyesters 13 and 18 have the highest
δd (19.4 and 19.1 MPa1/2). Both of these polyesters have
cyclohexanedimethanol units within their chains. The polyester
13 has 70mol% of cyclohexanedimethanol relative to total glycols
while polyester 18 is composed of 100% cyclohexanedimethanol.
These cycloaliphatic units have a high density of carbon relative
to other glycols which induces the high value of δd. The
number average molecular weight of polyesters has an influence
on δd. The higher the number average molecular weight, the
more δd increases. This can be explained by the fact that
an increase in the number of average units in the polyester
gives rise to a lesser importance of the functions allowing the
hydrogen bonds (alcohols or terminal acids) with respect to the
aliphatic functions.

The different δp measured have an average of 12.4 MPa1/2

with a standard deviation of 2.4 MPa1/2. There is therefore a
greater variation compared to the δd of the different polyesters.
Polyesters 1, 4, 12 have the highest δp values with respective
values of 14.2, 14.6, 14.6 MPa1/2. They also have the greatest
number of functional groups CH and quaternary C compared to
other polyesters. These two types of groups induce asymmetries
as well as an increase of the rigidity of the polyesters. These
functional groups prevent the packing of the polyester chains
by the irregularities they create within the polyester chain
(Ebewele, 2000).

Polyesters 2, 13, 18, and 20 have the lowest δp. Firstly polyester
2 has a structure composed only of maleate/fumarate units
for the acid part. This singularity increases the regularity of
the polyester chain with respect to a maleate/aromatic mixture.
This regularity brings the polyester chains closer together. It is
also composed mainly of neopentyl glycol which does not have
asymmetric carbons. The polyesters 13, 18, and 20 have a high
content of cyclohexanedimethanol at the origin of the low δp.
The cyclohexanedimethanol do not have asymmetry centers and
are therefore more regular than typical propylene glycol units
(Turner et al., 2001).

The variation of δh is more important. It has indeed a
significant standard deviation (1.4) with respect to its average
of 5.5 for the 21 unsaturated polyesters. Polyesters 2, 13, 18,
and 20 which have structures without asymmetric functions also
have the highest values of δh. However, these four resins also
have the lowest R0 of all the polyesters. They have the spheres of
the smallest solubilities and are therefore soluble in less solvents
than other polyesters (Krevelen and Nijenhuis, 2009). A small
solubility radius indicates that the polyester prefers to create
inter-molecular bonds instead of bonding with the solvent in
which it is in solution. In order to be able to create inter-
molecular bonds, however, the polyester must be regular and
free of asymmetric functions so that the chains are close to one
another (Young and Lovell, 1996; Ebewele, 2000; Delgove et al.,
2017). This proximity allows the establishment of inter-molecular
links. On the contrary, if the polyesters have many asymmetric
functions, the polyester chains will not be able to get closer.
Solventmolecules can thusmore easily establish interactions with
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the polymer chains. The cyclohexanedimethanol unit does not
have asymmetric functions. In polyester 13, 18, and 20 chains,
it allows the packing of the chains and thus the lowering of the
radius of the solubility sphere. Polyesters which possess a large
number of asymmetric functions, such as in propylene glycol
or dipropylene glycol, have their solubility ranges increased.
Indeed, polyester 1, composed of 80% propylene glycol and 20%
dipropylene glycol, has a solubility radius of 13.1, which is above
the average.

Unsaturated Polyesters Properties
Prediction by QSPR Method
Manipulations to get Hansen solubility parameters of polyesters
are repetitive and time-consuming. Each polyester should be
diluted in 40 solvents for 24 h and the solubilization results
should be interpreted for each solvent. Similarly, measurement
of the glass transition temperature requires a DSC and may
take more than 1 h for each polymer. It is therefore very
useful to develop an easy method to predict these properties
in order to save time. To provide a method without the
need for extensive analyzes for determination of the glass
transition temperature and Hansen parameters of unsaturated
polyesters, it was chosen to rely on the initial experimental
molar quantities of the monomers introduced into the reactor
to calculate the QSPR input descriptors. In order to obtain
the final conversion of the synthesized polyesters, the final
acid number was recorded for each synthesis. To keep reliable
predictions, this method of determination must therefore be
limited to unsaturated polyesters with similar monomers and
synthetic conditions to the study. Moreover, an additive method
already used in literature methods has been chosen (Stefanis
and Panayiotou, 2008; Krevelen and Nijenhuis, 2009) and
each theoretical structure of polyesters as a function of simple
functional groups were decomposed (-CH2-, -CH3, -COO-,
-CH2 =CH2-, -orthophtalic-, etc. ...). In order to obtain the
number of theoretical functional groups of a polyester, the
Carothers equation on the average degree of polymerization of
a step polymerization, nature and the quantity of the monomers
introduced into the polycondensation reactor were coupled. In
a first step, the stoichiometric ratio between the reagents called
r was calculated between the initial molar amount of carboxylic
acid groups on the initial molar amount of alcohol groups
provided by the diacids and glycols of the polycondensation
reaction. The conversion of the reaction called p was calculated
by the ratio of the molar amount of carboxylic acids per gram
of resin during the reaction to the initial molar amount per
gram of resin. This conversion is followed by the acid number
of the polycondensation reaction. The final conversion thus
corresponds to the remaining amount of carboxylic acids per
gram of resin over the initial amount per gram of resin. The
average degree of polymerization is obtained thanks to the
Carothers Equation (4).

DPntheo =
1+ r

1+ r − 2rp
(4)

Once the average degree of polymerization is obtained, the
polyester chain was divided into three distinct parts, the two
terminal diols from one end to the other of the chain, the
repeating units (diols+ diacids) and finally a diacid unit binding
one of the terminal diols with the first diol repeating unit. To
simplify the calculation, the ester functions were integrated in
the diacid patterns. The formula to calculate the number of
theoretical functional groups is given by Equation (5).

FGtheo = (
∑n

i=1
2.0× FGendgroup−glycoli ×%molglycoli)

+ (
∑n

i=1

(DPntheo − 3.0)

2
× FGrepetition unit−glycoli ×%molglycoli)

+
(

∑m

j=1

(DPntheo − 3.0)

2
×FGrepetition unit−diacidj ×%moldiacidj

)

+
(

∑m

j
FGlink−diacidj ×%moldiacidj

)

+ 2.0

×
(

100.0−%molmonoalcool
)

× FGOH (5)

The value %molglycoli corresponds to the molar part represented
by one of the glycols on all the glycols used in the reaction.
The value %moldiacidi is the equivalent for the diacid part of the
synthesis. As an example for the number of functional groups
in the diols, the propylene glycol comprises a –CH3 group, a -
CH2- group and a -CH- group. The -OH end-of-chain groups
must also be added. If the polycondensation reaction comprises
monofunctional alcohols, these must be added to the terminal
glycols in proportion to their molar ratios with respect to the
total molar quantity of the glycols of the reaction. The addition
of mono-alcohols also has an impact on the amount of alcohol
functional groups at the end of the chain. As regards the diacids,
itaconic acid comprises for example two -COO- groups, a -
CH=CH2 group and a -CH2- group. The list of functional groups
according to the different theoretical structures of the synthesized
unsaturated polyesters is given in Table S2.

Hansen Solubility Parameter Prediction by

QSPR Method
As for the determination of the glass transition temperature, a
QSPR method was also applied for the prediction of the δd, δp,
and δh components of the Hansen solubility parameters. The
values of the coefficients of the functional groups obtained by the
QSPR method are listed in Table 3.

The coefficients obtained for the δh prediction of unsaturated
polyesters confirm the hypotheses depicted in section
Unsaturated polyesters properties prediction by QSPR method.
Indeed, each -CH- and -C- group within the polyester chain,
respectively, decreases the δh of −52.9 and −80.5. These groups
decrease the linearity of the polyester chains and inhibit the
creation of hydrogen bonds between the chains. On the other
hand, the other groups such as -CH3, -cyclohexane-, -OH, and -
O- are the groups which bring themost regularity to the polyester
chains and thus increase the creation of polyester bonds.

Unlike the Stephanis-panayiotou or Hoftyzer-Van Krevelen
methods, the QSPR method effectively predicts whether a
polyester can be soluble in a wide range of solvents or not
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TABLE 3 | Coefficients of the linear regression for HSP prediction.

Functional Group δd δp δh Ra

-CH3 12.8 −22.4 26.5 −21.5

-CH2- 0.4 −0.25 0.7 −0.2

-CH- −26.0 44.56 −52.9 42.8

-C- −39.2 67.4 −80.5 64.9

-Cyclohexane- 37.7 −67.4 77.4 −64.36

-CH=CH- 0.4 −0.83 1.2 −1.1

-CH=CH2 0.2 −0.79 0.95 −1.1

-O- 12.8 −21.7 25.1 −20.8

-COO- 6 −10.4 11.8 −10.0

-OH 21.8 −34.8 43.2 −32.9

-Ortho- 1.5 −1.0 3.2 −1.0

via the determination of R0. This possibility of prediction is
critical in the industrial world in order to save handling time
and to be able to quickly develop new resins. Indeed, it will be
possible to know in advance the solubility or otherwise of an
unsaturated polyester in a new solvent whose Hansen parameters
are known. The influence of each functional group on the
solubility radius of the unsaturated polyesters is obtained by
means of the coefficients of the multiple linear equation. The
groups -CH- and -C- have positive coefficients, respectively, of
42.8 and 64.9. They therefore have a positive influence on the
solubility radius and allow solubilization of the polyesters inmore
solvents. As stated in section Unsaturated Polyesters Properties
Prediction by QSPRMethod, these groups introduce rigidity and
asymmetries into the polyester chain. This prevents the polyester
chains from associating and favors the polymer-solvent bonds.
On the contrary, the -cyclohexane-, -CH2-, and -CH3- type units
favor the association of the chains by their regularity. The groups
-O-, -COO-, and -OH are groups allowing the hydrogen bonds.
When the polyester is solubilized in a solvent which does not
have the capacity to form hydrogen bonds, the polyester will
therefore tend to form these hydrogen bonds interchain way and
thus promote the association and non-solubilization.

Two techniques described in the literature on the prediction of
Hansen solubility parameters of polymers, namely theHoftyzer—
Van Krevelen (Krevelen and Nijenhuis, 2009) and Stefanis—
Panayiotou (Stefanis and Panayiotou, 2008) methods, allow to
obtain the coefficient of each functional group to use them next
in a multilinear equation. The division of the structure of the
synthesized polyesters into simple functional groups has been
resumed to perform the parameters calculation for the three
methods. The comparison of the mean absolute error (MAE)
and correlation coefficient R² of the calculation compared to the
experimental values of these three methods is made in Table 4.

The MAE of the three prediction methods for δd are almost
equivalent. The QSPR method adapted to unsaturated polyesters
therefore has a limited interest on this parameter. However,
correlation coefficient for δdis much better for the QSPRmethod.
On the other hand, the QSPR method has a much lower absolute
error on the δp parameter than the two other methods described
in the literature as well as a better correlation coefficient than

TABLE 4 | Comparison of the MAE and correlation coefficient R² for the three

methods of HSP prediction.

δd δp δh

Methods MAE R2 MAE R2 MAE R2

Hoftyzer—Van Krevelen 0.7 0.08 10.2 0.00 5.5 0.49

Stephanis—Panayiotou 0.7 0.00 1.9 0.74 1.1 0.89

QSPR method (This work) 0.5 0.55 0.3 0.96 0.4 0.85

TABLE 5 | Evolution of the correlation coefficient (R²) depending of the descriptors

used for Tg modeling.

Descriptor(s) used R2 prediction vs. experimental

-Ortho- 0.37

-Ortho-, -CH3 0.56

-Ortho-, -CH3, -O- 0.67

-Ortho-, -CH3-, -O-, -CH- 0.72

-Ortho-, -CH3-, -O-, -CH-, -CH2- 0.74

-Ortho-, -CH3-, -O-, -CH-, -CH2-, -C- 0.93

the methods found in literature. Mean absolute error for δh is
the lowest with QSPR method but Stephanis-Panayiotou method
has a slightly better R² for δh prediction than the QSPR method.
Globally, the QSPR method is more accurate with unsaturated
polyester HSP prediction. The prediction method Hoftyzer-
Van krevelen is particularly suitable for high molecular weight
polymers of different natures which is not the case for oligomeric
unsaturated polyesters. The Stephanis-Panayiotou method is also
more reliable for this kind of polymers. Our QSPRmethod which
has been developed specifically on unsaturated polyester proved
to be more reliable than the two other models for prediction of
the Hansen solubility parameters of the same polymers.

Glass Transition Temperature Prediction by

QSPR Method
Methods of predicting the glass transition temperature already
exist in the literature (Katritzky et al., 1996; Bicerano, 2002;
Krevelen and Nijenhuis, 2009). However, in the same way as
for the prediction of Hansen parameters, these are optimal for
high molecular weight polymers. Thus, a QSPR method applied
to unsaturated polyesters may also be particularly suitable to
predict Tg . In order to correlate the impact of each functional
group on the glass transition temperature of the polyesters, a
multiple linear regression is set up again in order to obtain the
best coefficient of correlation R². The evolution of the correlation
coefficient as a function of the functional groups introduced into
the equation is described in Table 5.

With the six descriptors which are the -Ortho-, -CH3-, -O-, -
CH-, -CH2-, and -C- groups, the prediction of the glass transition
temperature of the synthesized unsaturated polyesters is effective
(Figure 1) and practical.

The mean absolute error is 2.7◦C. The list of coefficients
of each descriptor with respect to the regression equation is
given in Table 6.
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FIGURE 1 | Tg prediction accuracy vs. experimental via QSPR method.

TABLE 6 | Coefficients of the linear regression for Tg prediction.

Descriptor(s) Coefficient

Intercept −5.44

-CH2- −4.60

-CH3 −4.03

-CH- 11.54

-C- 18.79

-O- −7.92

-Ortho- 6.91

In addition to provide a linear equation allowing the
extrapolation of the glass transition temperature of unsaturated
polyesters with structures which are different from those already
tested, these coefficients validate the concepts stated in part 3.1.
The group -CH2- having a coefficient of −4.60, the aliphatic
chains such as adipic acid or 2-ethylhexanol do indeed have a
plasticizer effect within the polyester chains. It is the same for the
ether groups with, for example, dipropylene glycol or diethylene
glycol. The introduction of -CH3 groups within the polyester
also has a negative effect on the glass transition temperature
of the polyester (coefficient at −4.03) by the introduction of
free volume between the chains. The groups -CH- and -C- by
their steric hindrance have a mobility much smaller than a -
CH2- group or a -CH3 group. In the polyester chain, they
induce additional rigidity which results in an increase in the
glass transition temperature. The same principle also applies
when aromatic groups are introduced within the polyester chains.
Until now, this prediction model is suitable for unsaturated
polyesters with alcohol endings as well as aromatic groups
based on orthophthalic anhydride. In fact, polyesters with acid
terminations do not have the same hydrogen bonding capacity as
the alcohol chain-ends. This difference must certainly play a role
in establishing the glass transition temperature of polyesters. On
the other hand, the impact on the glass transition temperature
of the type of introduced aromatic acid, namely ortho-, iso-,
tere-phthalate, within the polyester is significant because of the
difference in steric hindrance. This prediction model does not

FIGURE 2 | Prediction accuracy of UP viscosity in solution according to the

QSPR method.

take into account these constraints. These should be studied in
a future work.

Unsaturated Polyester (UP) Viscosity
Prediction by QSPR Method
A QSPR method was also applied to see if it was effective
in predicting the viscosity of the unsaturated polyester resins
in the database. The input data correspond to the number
average molecular weight of the polyesterMn (obtained by SEC),
its dispersity index Ð (obtained by SEC), its glass transition
temperature Tg (obtained by DSC), the RED polymer-solvent
compatibility (obtained via HSPiP), the molar volume of the
solvent Mvol (obtained via HSPiP), the concentration of the
polyester in the solution. The target property of the QSPR
method is the measured viscosity of each entry in the database.
The coefficients of the multiple linear equation obtained from
the 80% of the database were used to predict the viscosities of
the remaining 20% of the database. The comparison between
predicted and experimental viscosities is shown in Figure 2.

The prediction accuracy of the solution viscosity of polyesters
by QSPR is low. The coefficient of correlation R² obtained by
QSPR is 0.56. Themean absolute error (MAE) is 0.22 Pa.s−1. This

inefficiency of the prediction is explained by the limitation of the
QSPRmodel to linear phenomena. However, the descriptors used
maybe have a non-linear influence. Neural networks are therefore
of great interest in this type of application and were tried in the
next step.

Setup of the Neural Network
Inputs Selection
In order to set up a neural network allowing the future
prediction of unsaturated polyesters viscosities in solution,
several descriptors have been chosen as factors having potentially
an impact on the viscosity. Seven descriptors were chosen,
namely the number average molecular weight Mn (polystyrene
equivalent) of the polyester (Ebewele, 2000; Mark, 2007), its
dispersity index Ð (Lundberg et al., 1960; Cross, 1969), its
glass transition temperature Tg (Young and Lovell, 1996;
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TABLE 7 | Linear correlation coefficient R² of each descriptor one by one on

unsaturated polyester viscosity in solution.

Descriptor R2

Concentration 0.495

Tg 0.383

Mn 0.328

Mvol 0.289

δH 0.097

–D 0.049

RED 0.037

Ebewele, 2000; Mark, 2007), the polyester-solvent compatibility
denoted RED (Flory, 1942; Hillyer and Leonard, 1973; Krevelen
and Nijenhuis, 2009), the molar volume of the solvent Mvol

(Louwerse et al., 2017), the δh of the solvent (Krevelen and
Nijenhuis, 2009) and the concentration of the polyester in the
resin (Hillyer and Leonard, 1973; Louwerse et al., 2017). This
choice was based on the existing literature describing the physical
chemistry of polymers. However, it is important to check that
these factors really have an impact and that they allow the neural
network to build a reliable model based on these factors. In a first
step, the impact of each descriptor is tested by calculating the
linear correlation coefficients of each descriptor one by one on
the measured viscosities (Table 7).

In order to test the quality of each descriptors in the neural
network, 80% of the database was used for the training of the
neural network and the remaining 20% to test the impact of
the number of descriptors used on the normalized squared error
obtained between the predicted viscosity and the experimental
viscosity. Firstly, the neural network is trained only with the
descriptor with the most important linear correlation coefficient
R² (Table 7). The normalized squared error (NSE) following the
training is calculated on both the training and test values. Then
the second descriptor with the most important R² was added to
the first one to see if it reduces the NSE. The third descriptor was
then added to see again if the NSE still improve. This procedure
was repeated until the integration of all the descriptors of the
database. This test proved that there were no useless descriptors
or no over-fitting during the test phase of the neural network. The
results of these trainings are shown in Figure 3.

The evolution of the NSE according to the descriptors added
for the training of the neural network makes it possible to see that
there are two descriptors which do not improve the performances
of the neural network. These two descriptors are the number
average molecular weight Mn (descriptor 3) and the dispersity
index Ð (descriptor 6). In order to check the performance of
the neural network without these two descriptors, a new test was
launched only with the remaining five descriptors (Figure 4).

Without the number average molecular weight Mn and the
dispersity index Ð, the decrease in NSE is much more regular.
In addition, the neural network goes from 7 descriptors in input
to only 5 while keeping identical performances. The reduction
of the descriptors number is beneficial for the neural network
since this may avoid over-fitting phenomena when there are too
many descriptors. In addition, from a practical point of view, the

FIGURE 3 | Evolution of the normalized squared error depending of

descriptors used for training.

FIGURE 4 | Evolution of the normalized squared error depending of

descriptors (without Mn and –D) used for training.

limitation of the number of descriptors required allows to set up
and enrich an important database by reducing the number of
information required for each manipulation.

Optimization of the Number of Neurons
The number of neurons in the hidden learning layer is an
important parameter to optimize (Díaz-Rodríguez et al., 2014).
Indeed, if there are too few neurons in relation to the complexity
of the problem, there is a risk of under-fitting due to a lack of
parameters. On the other hand, if there are too many neurons
hidden in the learning layer, there is a risk of over-fitting during
the prediction phase of the target property. In order to have a
correct number of learning neurons, the database was randomly
divided again with 80% of the inputs intended for learning and
20% for the test. Then the neural network was trained and then
tested with a growing number of learning neurons. Three training
and selection tests per number of neurons were performed to
obtain the lowest normalized squared errors. The results are
shown in Figure 5.

Between 0 and 3 learning neurons, under-fitting problems
occur because the errors found are the highest in the range of the
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FIGURE 5 | Evolution of the normalized squared error depending of the

number of neurons.

number of neurons tested. As the number of neurons increases,
the errors decrease until they become stable. Similar tests have
been conducted up to 40 hidden learning neurons without errors
in the learning or testing phases indicating the occurrence of
an over-fitting phenomenon. However, the multiplication of the
number of neurons also implies the increase of the number of
calculations and therefore a greater need for computation needs.
As part of this work, the number of neurons was set at 12.

Training of the Neural Network
The neural network was trained with 80% randomly selected
from the database created. The neural network is composed
of 5 inputs, namely the glass transition temperature Tg of the
polyester, the RED (polymer-solvent compatibility), the δh of
the solvent, its molar volume Mvol and the concentration of the
polyester in the solvent. The hidden learning layer has 12 neurons
and consequently 85 synapses. The neural network used in this
study is illustrated in Figure 6.

The activations functions used are the hyperbolic tangents.
The training algorithm chosen is the quasi-Newton method
(Setiono and Hui, 1995) with a normalized squared error.
This algorithm is based on Newton’s method but does not
require the computation of the second derivative to find the
local minimum of the error. Instead, the quasi-newton method
computes an approximation of the inverse Hessianmatrix at each
iteration of the algorithm, by only using gradient information. A
regularization coefficient of 0.01 was applied in order to have a
better generalization of the model.

Influence of Each Descriptor on Viscosity
Once the neural network is trained, it is possible to isolate
the influence of each descriptor on the viscosity by fixing the
others by their average. This provides valuable information
for understanding the phenomena influencing unsaturated
polyester viscosity in concentrated solution. The results are
shown in Figure 7.

The evolution of the viscosity as a function of the polyester
concentration in the solution is represented by Figure 7A.
This model obtained via the neural network corresponds to

FIGURE 6 | Neural network used for unsaturated polyester resin viscosity

prediction Input data are introduced through yellow neurons, the 12 learning

neurons are represented in blue. One neuron in a second layer sum up linearly

the outputs of the first layer. The orange neuron is the viscosity output neuron.

the models conventionally described in the literature (Yang,
1996). Indeed, taking into account other fixed descriptors, the
viscosity of the polyester in solution slowly changes to 58.5%
by weight of the polyester and the slope increases substantially
thereafter. This phenomenon is due to the overrun of the critical
concentration of the polyester in a solvent (Takahashi et al.,
1985). At a concentration below the critical concentration, the
number of chain entanglements of polymers is low with respect
to concentration. While this number of entanglements increases
drastically above the maximum critical concentration which
causes the increase in the viscosity slope after 58.5% by weight
of polyester in the solution.

The influence of polymer-solvent compatibility (RED)
on viscosity is shown in Figure 7B. The viscosity of the
polyester decreases progressively when the RED goes from 0.2
to 0.7 and then increases again from 0.7 to 1. This evolution
of the viscosity can be explained from the point of view of the
hydrodynamic volume occupied by the polymer in solution.
When it is a dilute solution of polymer, the more it will be
compatible with its solvent, the higher its hydrodynamic volume
will be. Indeed, the number of polymer-solvent interactions
being de facto high, the polymer chains will be relaxed. The
entanglements of chains in the solution will therefore be
maximized and the viscosity of the polymer in solution will
increase. On the contrary, if the solvent is very poor compatible
with the polymer, it will minimize these interactions with
the solvent. It will shrink in the form of a globule, reduce its
hydrodynamic volume, generate less entombment and thus
reduce the viscosity in solution (Hillyer and Leonard, 1973).
It is this phenomenon which explains the decrease of the
viscosity for the RED from 0.2 to 0.7. However, in the case of
unsaturated polyester resins, the polymer concentrations are
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FIGURE 7 | Influence of each descriptor used in the neural network on the unsaturated polyester viscosity in solution [(A) influence of concentration; (B) influence of

RED; (C) influence of δh; (D) influence of Tg; (E) influence of Mvol ].

high. When the solvent become incompatible, the globule-like
polymer chains will agglomerate to further minimize interactions
with the solvent. This agglomerate of globule therefore has a
larger hydrodynamic volume than the isolated globule, which
implies a slight increase in viscosity from 0.7 in RED up to 1.
This phenomenon has already been described in the literature
(Burrell, 1973; Hillyer and Leonard, 1973) but the use of a neural
network allows to find this result thanks to the processing of the
data obtained.

Regarding the influence of δh on the polyester viscosity
in solution represented in Figure 7C, the viscosity decreases
between 4.1 and 7.0 MPa1/2 and then increases significantly
between 7.0 and 13.7MPa1/2. This phenomenon has already been
described in the literature by Nelson who has taken over the
classification of solvents from Pimentel and McClellan (Burrell,
1973). The solvents are classified in four categories namely: (a)
proton donors (chloroform for example), (b) proton acceptors
(ketones, esters, ethers, aromatic hydrocarbons for example),

(c) proton donors and acceptors (alcohols, carboxylic acids,
water for example), and (d) absence of hydrogen bonds (such
as aliphatic hydrocarbons). The solvents used in the database
of polyesters in solution with δh values between 4.1 and 7.0
MPa1/2 are in category (b) some non-exhaustive examplesof
which are styrene (δh = 4.1 MPa1/2), cyclohexanone (δh = 5.1
MPa1/2), methyl methacrylate (δh = 5.4 MPa1/2), acetone (δh =
7.0 MPa1/2). Since the polyesters are acceptors and donors of
hydrogen bonds (terminal alcohol functions and ester functions),
the proton acceptor solvents allow the hydrogen bonds between
the polyester chains to be broken. The slight decrease in the
viscosity between 4.1 and 7.0MPa1/2 is due to the greater capacity
of solvents such as ketones, esters or ethers (δh = 5.0–7.0MPa1/2)
to accept hydrogen bonds with respect to typical solvents such as
aromatic hydrocarbons (δh = 4.0–5.0 MPa1/2). On the contrary,
the solvents possessing the higher δh belong to category (c) and
are both acceptors and proton donors (acetic acid δh = 13.5
MPa1/2, benzyl alcohol δh = 13.7 MPa1/2). Before they can break
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the established hydrogen bonds between the polyester chains, the
solvents with high δh must first break their own hydrogen bonds.
This phenomenon leads for the polyester a longer and harder
dissolution in these kind of solvents. In addition, there is also
formation of a denser network of hydrogen bonds between the
polyester chains and the solvent molecules. This network is at
the origin of the drastic increase in viscosity for solvents with δh
between 7 and 14 MPa1/2.

The glass transition temperature of the polyester also
influences the viscosity of the unsaturated polyester in solution
(Figure 7D). Indeed, the higher the glass transition temperature
(constant molecular weight), the higher the viscosity. The glass
transition temperature is directly related to the rigidity of the
chain. Thus, when the polyester chains are in solution at high
concentration, the energy required for the mobility of the rigid
chains will be greater compared to flexible chains. Rigid chains
will therefore have a higher viscosity with respect to these flexible
chains (Berry and Fox, 1968).

Regarding the influence of the molar volume of the solvent
(Figure 7E), the viscosity increases as the molar volume of
the solvent increases (Flory, 1942; Louwerse et al., 2017). This
evolution can be explained by the entropy of mixing (solvent +
polymer) (Equation 6).

1Smix = −R× (xlnx+ (1− x) ln (1− x)) (6)

The value x is the molar fraction of the polymer and R is the
ideal gas constant. Solvents with small molar volumes give a
greater entropy of mixture per liter of solvent. They are therefore
better solvents.

Prediction of Unsaturated Polyester
Viscosity in Solution With Neural Network
In order to compare the prediction efficiency of the neural
network with the QSPR method, the neural network was trained
with the same 80% of the database used for the QSPR method.
The remaining 20% of the database was tested to compare
the predicted viscosity with the experimental viscosity. The
prediction accuracy of the trained neural network is represented
in Figure 8.

A correlation coefficient R² = 0.88 was obtained thanks
to the trained neural network. The mean absolute error is
0.115 Pa.s−1. The prediction efficiency is much higher with the
neural network compared to the QSPR method. This method is
therefore particularly suitable for this type of application.

K-Fold Cross-Validation
K-Fold cross-validation is a method of validating the neural
network to determine predictability. Indeed, all entries in the
database are used to check the model. The database is divided
into K fractions. In this work, the database was divided into 5
fractions (K = 5). The neural network was initially trained with
4 fractions of the database. The fifth fraction, which was not used
for training, was used for the neural network prediction test.
This operation was repeated 5 times with a different K fraction
each time for the test phase. The averages of the correlation

FIGURE 8 | Prediction accuracy of UP viscosity in solution according to the

trained Neural Network.

TABLE 8 | Results of the K-fold cross validation (K = 5) method for the viscosities

prediction.

Viscosities range (Pa.s−1) R2 MAE (Pa.s−1)

0.003–1.889 0.85 0.116

coefficients R² and the mean average error (MAE) obtained are
given in Table 8.

The R² and MAE values obtained by the K-fold cross
validation method allow the validation of the neural network
stability as well as its ability to effectively predict the viscosity of
unsaturated polyester resins. The current database includes 220
entries divided between 179 entries for training and 41 entries
for testing the trained neural network. The latter has already
shown to be very effective compared to aQSPRmodel. It might be
interesting to extend this comparison by expanding the database.
To do this, other polyester resins can be synthesized to teach
the neural network new structures and new solvents can also
be added.

CONCLUSION

The viscosity of unsaturated polyester resins is a very important
criterion in the industrial field. Indeed, a viscosity out of
specifications can interfere with the handling of the resin and
make it impossible to process. This viscosity depends on the
chemical structure of the polyester, the nature of the solvent and
the concentration of the polyester in solution. The great diversity
of existing diols and diacids as well as the current growth of
the number of reactive diluents therefore implies a variation of
the viscosity which is extremely difficult to predict simply by
mathematical or physical laws.

Firstly, in order to avoid experimental input descriptors and to
be able to predict the viscosity of polyester resins from theoretical
and easily accessible values, a QSPR method has been applied
to predict Hansen parameters as well as temperature of glass
transition of unsaturated polyesters. This method has proved
to be particularly effective compared to other existing methods
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in the literature because these described methods are based on
high molecular weight polymers. However, the QSPR method
has proved ineffective for predicting the viscosity of unsaturated
polyesters in solution. A classical linear prediction method does
not allow non-linear phenomena to be taken into account. It is
therefore wise to use machine learning tools.

In this work, a neural network has been set up to verify the
ability of such a machine learning process to predict the viscosity
of these resins from 21 unsaturated polyesters and 220 mixtures
with solvents. This network composed of five descriptors and
12 learning neurons allowed the successful prediction of the
viscosity of 41 test resins with an R² correlation coefficient of 0.88
and an MAE of 0.116 Pa.s−1. These results are very promising
given the amount of data available to date. The regular update
of the database with the manipulations carried out over time will
undoubtedly allow the improvement of the prediction.
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The antioxidant response elements (AREs) play a significant role in occurrence of

oxidative stress and may cause multitudinous toxicity effects in the pathogenesis of a

variety of diseases. Determining if one compound can activate AREs is crucial for the

assessment of potential risk of compound. Here, a series of predictivemodels by applying

multiple deep learning algorithms including deep neural networks (DNN), convolution

neural networks (CNN), recurrent neural networks (RNN), and highway networks (HN)

were constructed and validated based on Tox21 challenge dataset and applied to

predict whether the compounds are the activators or inactivators of AREs. The built

models were evaluated by various of statistical parameters, such as sensitivity, specificity,

accuracy, Matthews correlation coefficient (MCC) and receiver operating characteristic

(ROC) curve. The DNN prediction model based on fingerprint features has best prediction

ability, with accuracy of 0.992, 0.914, and 0.917 for the training set, test set, and

validation set, respectively. Consequently, these robust models can be adopted to predict

the ARE response of molecules fast and accurately, which is of great significance for the

evaluation of safety of compounds in the process of drug discovery and development.

Keywords: antioxidant response elements (AREs), deep learning, toxicity, prediction, machine learning

INTRODUCTION

Antioxidant response elements (AREs), a series of momentous regulators of redox homeostasis
and activators of cytoprotection during oxidative stress, can be activated by the exogenous
sources of oxidative stress to participate in a variety of diseases ranging from cancer to
neurodegeneration diseases (Raghunath et al., 2018). AREs are crucial in a variety of physiological
functions and interact with numerous transcription factors to arrange the expression of a batch
of cytoprotective genes in a spatio-temporal manner (Ney et al., 1990). More specifically, AREs
profoundly contribute to the pathogenesis and progression of carbohydrate metabolism, cognition,
inflammation, iron metabolism, metastasis, reduced nicotinamide adenine dinucleotide phosphate
(NADPH) regeneration, lipid metabolism, and tissue remodeling (Hayes and Dinkova-Kostova,
2014). As such, AREs are the vital targets of the signal transduction pathway in eukaryotic
cells responded to oxidative stress and the prevention of potential chemical toxicity. Therefore,
determining if one compound can activate AREs is crucial for the assessment of potential risk
of compound.
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Generally, the in vitro and in vivo evaluations of interactions
between a large number of compounds and the AREs are
expensive, time-consuming and labor intensive. Relatively, the
in silico approaches can be used as an alternative way to predict
if a compound can activate AREs with lower cost. Based on
the advantages of in silico approaches, some machine learning-
basedmethods have been proposed to predict the AREs activators
in the environment (Huang et al., 2016). However, there are
some problems to be solved in the development of prediction
model, such as high false positive and low precision. Several
model optimization strategies were also applied, such as bagging,
consensus modeling, and feature selection (Drwal et al., 2015;
Filip, 2015; Abdelaziz et al., 2016; Gergo, 2016; Yoshihiro, 2016).
Although these strategies can be effective on some degree, the
predictive performance of traditional machine learning-based
methods still needs to be improved. Undoubtedly, the process
of feature filtering avoids dimensional disasters, but results in
the loss of relevant information. One of the most promising
models for AREs’ response prediction is the DeepTox developed
by Mayr et al. (2016). Based on the Tox21 challenge data, they
used deep neural network methods to predict AREs’ response.
The best model has the area under the Receiver Operating
Characteristic (ROC) curve (ROC-AUC)with 0.840 and balanced
accuracy with 0.677 on the validation set. Moreover, othermodels
based on traditional machine learning methods, such as random
forest (RF), support vector machine (SVM) and Naive Bayesian
etc., displayed ROC-AUC ranging from 0.768 to 0.832 and the
balanced accuracy ranging from 0.519 to 0.729 (Huang et al.,
2016). From above all, themore reliable models for the prediction
of AREs’ response are still needed.

Recently, deep learning (Lecun et al., 2015), as a promising
machine learning method, has been applied in a wide range
of fields, such as physics, life science and medical science
(Gulshan et al., 2016). There were also some researches in
biology (Mamoshina et al., 2016; Dang et al., 2018; Hou et al.,
2018) and drug design areas (Gawehn et al., 2016; Hughes
and Swamidass, 2017). Furthermore, deep learning methods
have been also applied in small molecule toxicity assessment
(Blomme and Will, 2016). For example, deep neural networks
(DNN) was applied to predict drug-induced liver injury (Xu
et al., 2015; Fraser et al., 2018). Convolution neural networks
(CNN) was applied to predict the acute oral toxicity (Xu et al.,
2017). Relative to other machine learning methods, deep learning
methods (Wu and Wei, 2018) have some special advantages. For
example, deep learning does not require feature selection, which
can make the maximum use of extracted molecular features.
Secondly, deep learning integrates a multi-layered network that
enables the integration and selective activation of molecular
features to avoid overfitting problems. Thirdly, deep learning
includes many different network structures and can analyze and
classify the problems from different perspectives. All of these
suggests that the emerging deep learning algorithms may help
us build more reliable models to predict AREs’ response of the
studied compounds.

In this study, to build more reliable prediction model of
AREs’ response, a series of deep learning methods including
deep neural networks (DNN), recurrent neural network (RNN),

highway networks (HN), convolution neural networks (CNN)
were applied on a large date set (Tox21 challenge data) including
8,630 compounds. For comparison, the traditional machine
learning methods, random forest (RF) and support vector
machine (SVM), were also applied to predict AREs’ response.

MATERIALS AND METHODS

Data Collection and Preparation
Tox21 challenge data1 (shown in Supporting Information)
was used to build model. The structures of compounds
was downloaded from PubChem2 according to the SID of
compound. The AREs’ response of compound was detected by
CellSensor ARE-bla HepG2 cell line (Invitrogen), which was
widely used to analyze the Nrf2/antioxidant response signaling
pathway. To get the reliable data, each compound was tested
in parallel by measuring the cell viability using CellTiter-Glo
assay (Promega, Madison, WI) in the same wells. According
to the test results, the molecules were categorized as “active,”
“inactive,” or “inconclusion.” To keep the built models reliable,
the molecules with label of “inconclusion” were removed. The
three-dimensional conformations of molecules play a pivotal
role in the development of prediction model (Foloppe and
Chen, 2009). Therefore, all compounds used in this study were
initially subjected to full geometry optimization in LigPrep
(Schrödinger, 2015). During the geometry optimization, the
energy minimization was carried out using OPLS2005 force field
(Kaminski et al., 2001). The inorganic compounds, mixtures,
counterions, tautomers, and the duplicates were removed to
make sure each compound has only one optimized conformation.
The ionizable groups were taken into consideration and the
distinct conformations were produced with the pH window of
7.0 ± 0.2. In particular, the molecules were deleted if there
were some unreasonable or improper structures. After these
pretreatments, the remaining compounds include 1,136 active
and 6,299 inactive compounds.

Molecular Representation
The conventional molecular descriptors and molecular
fingerprint features calculated by DRAGON 7.0 software
(Kode srl, 2017) were used to describe the structural features
of studied compounds. The calculated molecular descriptors
include 0D (constitutional descriptors), 1D (functional groups
counts, atom-centered fragments), 2D, and 3D-descriptors.
The descriptors with missing values were removed. After this
procedure, the number of remained molecular descriptors was
5,024. In general, the chemical features shared with those most
active samples would be recognized to develop predictionmodels
in the construction phase, while other chemical features shared
with the least active molecules would be removed in order to
avoid the complexity and increase the efficiency of models. The
most relevant descriptors correlated with ARE toxicity were
selected by Gini Index3.

1https://tripod.nih.gov/tox21/challenge/data.jsp
2https://pubchem.ncbi.nlm.nih.gov/
3https://en.wikipedia.org/wiki/Gini_coefficient
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TABLE 1 | The statistical summary of the data sets.

Training set Test set External validation set

Activation 756 190 190

Inactivation 4,199 1,050 1,050

Molecular fingerprints (FPs) encode the structural
information of a molecule by exploding its structure in all
the possible substructure patterns. By this method, a molecule
is described as a binary string of substructure keys. Different
substructure patterns with SMARTS lists are predefined in a
dictionary, within which substructures are created as atom-
centered fragments using a variant of Morgan’s extended
connectivity algorithm. For a SMARTS pattern, if a substructure
was presented in the given molecule, the corresponding bit
was set to “1” and otherwise set to “0.” In this study, the 1,024
bits extended connectivity fingerprints (ECFP) (Rogers and
Hahn, 2010) were calculated by the DRAGON 7.0 program
(Kode srl, 2017).

Data Splitting
To build the reliable model, the representative data set should
be selected to build and test model. For this aim, we divided
the data set into training set, test set and validation set with
the ratio of 4:1:1 by the Kennard and Stone algorithm (Kennard
and Stone, 1969) by considering the structural features and
activity of compound. The statistical summary of the data set was
presented in Table 1. To show the distribution of compounds in
training set and test set , principal component analysis (PCA)4

was performed based on the fingerprint features of compounds
and the obtained results were shown in Figure 1, indicating that
the compounds in training set and test set are well-distributed in
the whole compound space.

Machine Learning Methods
Recently, deep learning (Lecun et al., 2015) algorithms have been
widely applied in a variety of areas and gave promising results
(Mamoshina et al., 2016). Deep learning methods comprise
a lot of architectures, such as deep neural networks (DNN),
recurrent neural network (RNN), highway networks (HN), and
convolution neural networks (CNN). The principle of the used
deep learning methods was described as below. Due that the RF

(Breiman, 2001) and SVM (Mavroforakis and Theodoridis, 2006)
have been introduced elsewhere, here, their principle was not
given again.

DNN Classifier

The DNNs (Lecun et al., 2015) are developed from the structure
of artificial neural networks with a large number of hidden layers.
In the canonical deployment, the data are fed into the input
layer and then transformed in a non-linear way through multiple
hidden layers, and the final results are calculated and produced
to the output layer. Neurons of hidden and output layer are
connected to all neurons of the previous layer’s. Each neuron

4https://en.wikipedia.org/wiki/Principal_component_analysis

FIGURE 1 | The distribution of samples in the training set and test set by

principle component analysis (PCA) based on the molecular fingerprint

features.

FIGURE 2 | The structure of deep neural network (DNN). Neurons are

represented by circles. The colored circles indicate the activated neurons while

the circles without color are inactivated neurons. In addition, the arrows

represent heavy-weight transmissions between neurons, and the dashed

arrows mean the invalid neuronal connections.

calculates a weighted sum of its inputs and applies a non-linear
activation function to generate its output as shown in Figure 2.

HN Classifier

The HNs (Srivastava et al., 2015) allows unimpeded information
flow across several layers on information highways. The
architecture is characterized by the use of gating units learning
to regulate the flow of information through a network. HNs
increases the possibility of studying extremely deep and efficient
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architectures for that it can be trained hundreds of layers directly
with a variety of activation functions.

RNN Classifier

RNNs (Williams and Zipser, 1989) dedicates to process sequence
data as it delivers state-of-the-art results in cursive handwriting
and speech recognition. Its recent application in protein intrinsic
disorder prediction demonstrated its significant ability to capture
non-local interactions in protein sequences (Hanson et al.,
2017). RNN processes an input sequence one element at a
time, maintaining in its hidden units as a “state vector” that

implicitly contains information about the history of all the
past elements of the sequence. However, the training process
becomes problematic for the backpropagated gradients either
grow or shrink at each time step. After a batch of time steps
they typically exploded or vanished (Hochreiter, 1991; Bengio
et al., 2002). To solve the problem, a strategy was developed to
augment the networks with an explicit memory-the long short-
term memory (LSTM) networks. LSTM networks define special
hidden units to remember the inputs for a long time (Hochreiter
and Schmidhuber, 1997). A special unit called the memory cell
acts like an accumulator or a gated leaky neuron. The cell has
a connection to itself, so it copies its own real-valued state
and it also accumulates the external signal at the same time.
This self-connection mechanism decides whether to clear the
content of the memory according to the other units states. LSTM
networks have subsequently proved to be more effective than
conventional RNNs, especially in several layers for each time step
(Graves et al., 2013).

CNN Classifier

The CNNs (Krizhevsky et al., 2012) is a kind of multi-layer
neural networks designed to process data fed in the form
of multiple arrays. CNNs can exploit the property of many
compositional hierarchies natural signals, owing to its ability
of extracting higher-level features from lower-level ones. The
architecture of typical CNN consists of three types of layers,
which are convolutional, pooling, and fully-connected layers.
Units in a convolutional layer are organized in feature maps.
Each unit is connected to local patches of feature maps as well
as previous layer through a set of weights called filter bank. After
the process of convolutional layer, the new feature maps are
obtained by applying a non-linear activation function, such as
ReLU. The pooling layer is utilized to create an invariance filter
to get small shifts and distortions by reducing the dimension
of the feature maps. Each feature map of a pooling layer is
connected to its preceding corresponding convolutional layers.
The pooling layer computes the maximum of local patch of
units in each feature map. And then the convolution and
pooling layers are stacked by one or more fully-connected
layers aiming to perform high-level reasoning feature generation
(Hinton et al., 2012; Zeiler and Fergus, 2014).

The Implementations of Machine Learning

Methods
For deep learning methods, the MinMaxScaler was utilized to
transform features, by which each feature was scaled into a given

range between zero and one. The nodes in the network used both
rectified linear units (ReLUs) and tanh functions as activation
functions. The dropout algorithm (Hinton et al., 2012; Dahl et al.,
2014) and L2 regularization were used to prevent overfitting. The
model was trained using Adam (Adaptive Moment Estimation)
optimizer (Tieleman and Hinton, 2012). Xaiver initialization was
applied to initialize the parameters (Glorot and Bengio, 2010; He
et al., 2015). Grid search method was employed to search the
best hyperparameters. It should be noted that CNN model was
built based on fingerprint features but not the descriptors, for
the reason that CNN could only process highly correlated local
regions of input sequences (Lecun et al., 2015). The other models
were constructed based on both fingerprints and descriptors. All
Deep Learning methods were implemented in Deep Learning
framework of Tensorflow (version 1.5.0). All deep learning
methods had 3 layers and with dropout rate of 0.1. The loss
function was cross entropy. The other hyperparameters of the
deep learning methods are listed in Table 2. The RF and SVM
proceeded in Python scikit-learn (version 0.19.0) (Pedregosa
et al., 2011). There were 80 trees in RF models. For SVMmodels,
the kernel function was set as polynomial with gamma 0.1.

The Evaluation of Model Performance
The performance of generated models was evaluated by several
statistic metrics, such as sensitivity (SE), specificity (SP), accuracy
(ACC), Matthews correlation coefficient (MCC) (Fang et al.,
2013), F1-score, and Precision. The formulas are shown as below:

SE =
TP

TP + FN

SP =
TN

TN + FP

ACC =
TP + TN

TP + TN + FP + FN

MCC =
TP × TN − FN × FP

√
(TP + FN)(TP + FP)(TN + FN)(TN + FP)

F1 =
2TP

2TP + FP + FN

Precision =
TP

TP + FP

Where TP, TN, FP, and FN refer to the numbers of true positives,
true negatives, false positives, and false negatives, respectively.
All these various validation requirements have been suggested
to evaluate the model performance. The Receiver Operating
Characteristic (ROC) curve and the area under ROC curve

(ROC-AUC) were also calculated to evaluate the predictive ability
of built model.

RESULTS AND DISCUSSION

Performance Evaluation of

Descriptors-Based Classification Models
In this study, firstly, we employed various algorithms to
build classification models based on molecular descriptors. The
statistical evaluation of these models on the training set, test set
and validation set are summarized in Table 3. For clarity, we have
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TABLE 2 | The hyperparameters of deep learning methods.

Models Activation_function Number of hidden units Learning rate Dropout rate L2 weight decay Epoches

DNN Tanh, relu, softmax 5,024, 32, 32 0.00001 0.1 0.01 30,000

HN Tanh, relu, softmax 5,024, 32, 32 0.0001 0.1 0.01 3,000

RNN Tanh, relu, softmax 5,024, 32, 32 0.0001 0.1 0.01 3,000

CNN Relu, relu, softmax Patch size 10*10 0.0001 0.1 none 2,000

TABLE 3 | The performance of constructed models based on the general molecular descriptors.

Methods Group TP TN FP FN SE SP MCC F1 Precision ACC ROC_AUC

RF Tr 723 4,186 13 33 0.9563 0.9969 0.9638 0.9692 0.9823 0.9907 –

Tst 75 1,050 0 115 0.3947 1.0000 0.5965 0.5660 1.0000 0.9073 0.8055

Val 73 1,049 1 117 0.3842 0.9990 0.5828 0.5530 0.9865 0.9048 0.8298

SVM Tr 751 3,689 510 5 0.9934 0.8785 0.7198 0.7447 0.5956 0.8961 –

Tst 93 933 117 97 0.4895 0.8886 0.3631 0.4650 0.4429 0.8274 0.7755

Val 98 958 92 92 0.5158 0.9124 0.4282 0.5158 0.5158 0.8516 0.7659

DNN Tr 525 4,161 38 231 0.6944 0.9910 0.7766 0.7961 0.9325 0.9457 –

Tst 75 1,046 4 115 0.3947 0.9962 0.5766 0.5576 0.9494 0.9040 0.8281

Val 64 1,047 3 126 0.3368 0.9971 0.5321 0.4981 0.9552 0.8960 0.8573

HN Tr 704 4,158 41 52 0.9312 0.9902 0.9270 0.9380 0.9450 0.9812 –

Tst 99 1,043 7 91 0.5211 0.9933 0.6627 0.6689 0.9340 0.9210 0.7942

Val 95 1,031 19 95 0.5000 0.9819 0.6008 0.6250 0.8333 0.9081 0.8267

RNN Tr 693 4,151 48 63 0.9167 0.9886 0.9127 0.9259 0.9352 0.9776 –

Tst 120 964 86 70 0.6316 0.9181 0.5320 0.6061 0.5825 0.8742 0.8287

Val 110 949 101 80 0.5789 0.9038 0.4628 0.5486 0.5213 0.8540 0.8122

FIGURE 3 | Radar plot of the descriptors-based classification models.

grouped all the metrics by training, test and validation sets and
presented them as radar plots. A perfect score on all metrics
would be represented by a circle the size of the complete plot.
The shape of the plots can also be indicative of the quality of the
models. The larger the circle is, the better the model is. The radar
plots of ARE toxicity model based on the structural descriptors
are shown in Figure 3.

For the training set, all models gave very good SE, SP, MCC,
F1-score, Precision, and ACC values. It should be noted that

the SVM model showed lowest precision while DNN model
exhibited lowest SE level. For the test and validation set, the
indexes of all models exhibited a similar tendency, which tends
to predict the compounds as inactivation due to the imbalanced
distribution of active and inactive compounds. Among these
models, the RNN model gave the highest SE value, while other
indicators were not so well. It is worth noting that all indexes of
the HN model were better than other models. In addition, the
ROC-AUC is critical index for models performance and the ROC
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FIGURE 4 | ROC curve of descriptors-based model (the left one is test set, the right one is validation set).

TABLE 4 | 20 molecular descriptors selected by the RF method and Gini index analysis.

Name Meaning Bolck Sub-block

TPC Total path count Walk and path counts ID numbers

piPC09 Molecular multiple path count of order 9 Walk and path counts Multiple path counts

PCR Ratio of multiple path count over path count Walk and path counts ID numbers

ChiA_G Average Randic-like index from geometrical matrix 3D matrix-based descriptors Geometrical distance matrix (G)

Eig02_EA (bo) Eigenvalue n. 2 from edge adjacency mat. weighted by bond order Edge adjacency indices Eigenvalues

StCH Sum of tCH E-states Atom-type E-state indices E-State sums

piPC08 Molecular multiple path count of order 8 Walk and path counts Multiple path counts

SM12_AEA (ri) Spectral moment of order 12 from augmented edge adjacency mat.

weighted by resonance integral

Edge adjacency indices Spectral moments

SpDiam_B (m) Spectral diameter from Burden matrix weighted by mass 2D matrix-based descriptors Burden matrix weighted by mass (B (m))

SM13_AEA (ri) Spectral moment of order 13 from augmented edge adjacency mat.

weighted by resonance integral

Edge adjacency indices Spectral moments

P_VSA_e_1 P_VSA-like on Sanderson electronegativity, bin 1 P_VSA-like descriptors Sanderson electronegativity

GATS4s Geary autocorrelation of lag 4 weighted by I-state 2D autocorrelations Geary autocorrelations

SM02_AEA (bo) Spectral moment of order 2 from augmented edge adjacency mat.

weighted by bond order

Edge adjacency indices Spectral moments

SM5_B (e) Spectral moment of order 5 from Burden matrix weighted by

Sanderson electronegativity

2D matrix-based descriptors Burden matrix weighted by Sanderson

electronegativity (B (e))

TDB01i 3D Topological distance based descriptors—lag 1 weighted by

ionization potential

3D autocorrelations TDB autocorrelations

Eta_betaS_A Eta sigma average VEM coun ETA indices Basic descriptors

P_VSA_ppp_ar P_VSA-like on potential pharmacophore points, ar—aromatic atoms P_VSA-like descriptors Potential Pharmacophore Points

SM5_B (i) Spectral moment of order 5 from Burden matrix weighted by

ionization potential

2D matrix-based descriptors Burden matrix weighted by ionization

potential (B (i))

SM4_B (v) Spectral moment of order 4 from Burden matrix weighted by van der

Waals volume

2D matrix-based descriptors Burden matrix weighted by Van der Waals

volume (B (v))

piPC02 Molecular multiple path count of order 2 Walk and path counts Multiple path counts

of all models are shown in Figure 4. For the test set, the RNN
exhibited highest ROC-AUC (0.829), while for the validation set,
DNN gave the highest ROC-AUC value of 0.857. Compared with
the previous models, our models displayed a higher ROC value
and ACC values.

In general, the DNN model performed well for the external
validation set predictions from the ROC-AUC metric, while the

HN exhibited the higher ACC (0.908) than DNN as well as the
MCC and F1 with 0.601 and 0.625, respectively. The RF model
gave higher SP (0.999) and Precision (0.986). On the contrary, the
RNN method gave higher SE value (0.579) than other models.

We further analyzed what kinds of molecular properties will
affect the ARE toxicity of compounds. The Gini index was
applied to sort the importance of molecular descriptors. The
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FIGURE 5 | The frequency of fingerprints occurred in compounds.

TABLE 5 | The performance of constructed models based on the fingerprints.

Methods Group TP TN FP FN SE SP MCC F1 Precision ACC ROC_AUC

RF Tr 723 4,191 8 33 0.9563 0.9981 0.9678 0.9724 0.9891 0.9917 –

Tst 88 1,045 5 102 0.4632 0.9952 0.6269 0.6219 0.9462 0.9137 0.9613

Val 86 1,047 3 104 0.4526 0.9971 0.6277 0.6165 0.9663 0.9137 0.9241

SVM Tr 756 4,159 40 0 1.0000 0.9905 0.9699 0.9742 0.9497 0.9919 –

Tst 55 1,040 10 135 0.2895 0.9905 0.4525 0.4314 0.8462 0.8831 0.8967

Val 61 1,036 14 129 0.3211 0.9867 0.4650 0.4604 0.8133 0.8847 0.9049

DNN Tr 725 4,190 9 31 0.9590 0.9979 0.9686 0.9732 0.9877 0.9919 –

Tst 107 1,044 6 83 0.5632 0.9943 0.6977 0.7063 0.9469 0.9282 0.9607

Val 106 1,046 4 84 0.5579 0.9962 0.7020 0.7067 0.9636 0.9290 0.9167

HN Tr 743 4,172 27 13 0.9828 0.9936 0.9691 0.9738 0.9649 0.9919 –

Tst 116 1,017 33 74 0.6105 0.9686 0.6415 0.6844 0.7785 0.9137 0.9329

Val 119 1,021 29 71 0.6263 0.9724 0.6652 0.7041 0.8041 0.9194 0.8794

RNN Tr 670 4,157 42 86 0.8862 0.9900 0.8982 0.9128 0.9410 0.9742 –

Tst 106 1,026 24 84 0.5579 0.9771 0.6291 0.6625 0.8154 0.9129 0.9296

Val 100 1,011 39 90 0.5263 0.9629 0.5585 0.6079 0.7194 0.8960 0.8534

CNN Tr 746 4,169 30 10 0.9868 0.9929 0.9692 0.9739 0.9613 0.9919 –

Tst 86 1,037 13 104 0.4526 0.9876 0.5851 0.5952 0.8687 0.9056 0.9329

Val 92 1,032 18 98 0.4842 0.9829 0.5917 0.6133 0.8364 0.9065 0.8967
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FIGURE 6 | Radar plot of the fingerprints-based classification model.

FIGURE 7 | ROC curve of fingerprints-based model (left: test set, right: validation set).

top 20 descriptors and their corresponding meanings are shown
in Table 4. From the information of selected descriptors, it is
clearly that the walk and path count descriptors hold a great
impact on the ARE toxicity of compound. The 3D matrix-based
descriptors, the edge adjacency indices as well as the atom-
type E-state indices are also significant for the ARE toxicity
of compound. Besides, the 2D matrix-based descriptors and
2D autocorrelations P_VSA-like descriptors also have a close
correlation with ARE toxicity of compound.

Performance Evaluation of

Fingerprints-Based Classification Models
In addition to the general molecular descriptors, the molecular
fingerprint is another effective method to represent the structural
features of molecules. A typical frequency of fingerprints
occurred in the 1,024 bins of the compounds in the data set
is shown in Figure 5. The fingerprints features were applied to
build the six models including DNN, HN, RNN, CNN, RF, and
SVM. The results are presented in Table 5 and the radar plots are
presented in Figure 6.

For the training set, 5 out of all 6 models performed very well,
except for the RNN method. According to the prediction results

for test set, the value of SP, ACC, and precision were relatively
stable, while the SE, F1-score and MCC showed different
performance. The HNmodel exhibited the highest SE value while
the SVM gave the lowest one. For the validation set, HN also
performed better than other models on SE. As shown in Figure 7,
all 6 models presented good ROC and large ROC-AUC, which
were better than descriptor-based models. RF model has the

highest ROC-AUC with 0.924 better than the DNN model with
0.917. However, the ACC of RF was lower than DNN model. But

for the external validation set, Deep Learning methods had better

generalization ability. Overall, the fingerprints-based models can
give better prediction results than those based on molecular

descriptors. The fingerprints of compounds were more useful

than the descriptors for ARE toxicity prediction of compounds.
Compared with the traditional machine learning methods,

deep learning methods had better learning ability and they
could extract the inherent characteristics of the data. For the

models based on the molecular descriptors, DNN showed

highest ROC_AUC and ACC, while the HN exhibited the
best SE performance. Considering the fingerprints features, the
performance of DNNmodel was still well and HN showed higher
SE than other models.

Frontiers in Chemistry | www.frontiersin.org 8 May 2019 | Volume 7 | Article 38559

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Bai et al. Predicting AREs’ Response by Deep Learning

TABLE 6 | The reported top 10 prediction models of ARE toxicity prediction in Tox

21 challenge data set.

Methods ROC-AUC Balanced accuracy

DNN based on FPa 0.917 0.777

Bioinf@JKU 0.840 0.677

Bioinf@JKU-ensemble4 0.832 0.716

Bioinf@JKU-ensemble3 0.832 0.650

Bioinf@JKU-ensemble2 0.830 0.729

Bioinf@JKU-ensemble1 0.827 0.650

AMAZIZ 0.805 0.715

Microsomes 0.804 0.605

T 0.801 0.696

NCI 0.783 0.711

dmlab 0.768 0.519

aFP means Fingerprints.

The Comparisons Between Our Models

and Other Models
We also compared the performance of our models with other
reported models5. For the ARE toxicity prediction of Tox21
challenge data, the deep neural network models developed by
Mayr et al. (2016) gave the best prediction results compared
with other models. The best results they obtained had ROC-
AUC 0.840, Balanced Accuracy 0.677 for the validation set. Other
models displayed ROC-AUC ranging from 0.768 to 0.832 with
the balanced accuracy between 0.519 and 0.729 using traditional
machine learning methods, such as RF, SVM, and Naive Bayesian
(shown in Table 6). Compared to their models and other models,
our prediction models can give better prediction results. For the
validation set, our best DNN model had ROC-AUC 0.917 and
Accuracy 0.929.

5https://tripod.nih.gov/tox21/challenge/leaderboard.jsp

CONCLUSIONS

In this study, multiple deep learning algorithms were used
to predict the ARE toxicity of compounds based on two
kinds of molecular features including the general molecular
descriptors and fingerprints. The DNN model based on
fingerprints had an outstanding performance with ROC-
AUC 0.917 and ACC 0.929, while the DNN model based
on the general molecular descriptors had relative lower
predictive ability with ROC-AUC 0.857 and ACC 0.896,
suggesting that the fingerprints can represent the structural
features of compounds related to their ARE toxicity more
comprehensively. Compared with the traditional machine
learning model, the deep learning models had much better
predictive ability. Our constructed accurate predictive models
on ARE toxicity will be valuable to the assessment of toxicity
of compounds.
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S100A9 is a potential therapeutic target for various disease including prostate cancer,

colorectal cancer, and Alzheimer’s disease. However, the sparsity of atomic level data,

such as protein-protein interaction of S100A9 with RAGE, TLR4/MD2, or CD147

(EMMPRIN) hinders the rational drug design of S100A9 inhibitors. Herein we first report

predictive models of S100A9 inhibitory effect by applying machine learning classifiers on

2D-molecular descriptors. The models were optimized through feature selectors as well

as classifiers to produce the top eight random forest models with robust predictability and

high cost-effectiveness. Notably, optimal feature sets were obtained after the reduction

of 2,798 features into dozens of features with the chopping of fingerprint bits. Moreover,

the high efficiency of compact feature sets allowed us to further screen a large-scale

dataset (over 6,000,000 compounds) within a week. Through a consensus vote of the

top models, 46 hits (hit rate= 0.000713%) were identified as potential S100A9 inhibitors.

We expect that our models will facilitate the drug discovery process by providing high

predictive power as well as cost-reduction ability and give insights into designing novel

drugs targeting S100A9.

Keywords: S100,machine learning, random forest, ligand-based virtual screening, feature selection, classification,

consensus vote, Alzheimer’s disease

INTRODUCTION

Drug R&D is currently facing a productivity crisis to overcome low productivity as well as high
risk/high return in the context of economics (Scannell et al., 2012; Mullard, 2014; Mignani et al.,
2016; Bendtsen et al., 2017). In order to develop an efficient and cost-effective R&D process
(Bendtsen et al., 2017), computing and simulations have decreased the traditional resource demand
for drug R&D (Kapetanovic, 2008; Bendtsen et al., 2017). In particular, an early stage of drug
discovery involves virtual screening (VS) to identify therapeutic targets or hit compounds (Walters
et al., 1998; Bajorath, 2002; Oprea and Matter, 2004; Shoichet, 2004). Successful VS depends on
the predictive power of predictors and the quality of the virtual library and dataset used. When
the 3D-structure of a molecular target is available, structure-based virtual screening (SBVS) is
considered prior to ligand-based virtual screening (LBVS) or SBVS/LBVS in combination due to
an easy understanding of the predictive (atomic level) model and empirical evidence on bioactive
conformation as well as the activity resulting from interaction between a target and a compound
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(Lavecchia and Di Giovanni, 2013; Sliwoski et al., 2014; Gadhe
et al., 2015; Lavecchia, 2015; Jang et al., 2018; Lee et al., 2018;
Yadav et al., 2018). Recently, the conceptual advance of drug
targeting from “single target” to “protein-protein interactions
(PPI),” it is unsatisfactory to obtain atomic level confidence of a
novel druggable target with only partial structural information. It
is therefore very difficult for researchers to propose a druggable
binding site of a new molecular target for drug design without
the background science or evidence. Therefore, when promising
drug targets have insufficient information or when multiple
targets need to be considered together, LBVS is commonly used,
where the known active small molecules are used as screening
templates. With improvement in the volume, quality, velocity,
and accessibility of molecular data, versatile machine learning
(ML) algorithms like support vector machine (SVM) (Cortes and
Vapnik, 1995), Naïve Bayes (NB) (Domingos and Pazzani, 1997),
decision tree (DT) (Breiman, 2017), and ensemble methods,
such as random forest (RF) (Breiman, 2001) have contributed to
the improvement of LBVS predictors (Geppert et al., 2010; Lo
et al., 2018). With these advances, we can expect a diversity of
training data like the heterogeneous property of activity index (or
assay methods) and structural diversity beyond the congenericity
of active compounds. In the case of classification models,
selection methods for molecular descriptors (selectors) as well as
classification algorithms (classifiers) decide the predictive power
and coverage of models (Melville et al., 2009). Therefore, it is
natural that multiple trials on various combinations of learning
methods and feature sets coupled with raw dataset can facilitate
the best performance of classifiers (Stahura and Bajorath, 2005;
Domingos, 2012).

The S100 protein family is one of the challengeable drug
target candidates (Donato, 2001; Ryckman et al., 2003). They are
low molecular weight (ca. 100 amino acids) proteins with high
similarity within the subfamily, and comprise two metal-binding
EF-hands and a hinge. Due to their biophysical properties,
they tend to form protein complexes (e.g., heterodimer like
S100A8/S100A9, homodimer like S100B/S100B Donato, 1999),
ligand-protein complex like S100A/RAGE complex (Yatime et al.,
2016) rather than remaining as a single protein in a cell.
Therefore, in the spite of many biological and pathological
studies on several S100A9-mediated diseases, such as prostate
cancer (Hermani et al., 2005), colorectal cancer (Kim et al.,
2009), Alzheimer’s disease (Horvath et al., 2015), and other
neurodegenerative disorders (Gruden et al., 2017; Iashchishyn
et al., 2018), atomic level knowledge is limited for SBVS or
structure-based drug design of S100A9 inhibitors. Notably,
the characterization of S100A9 complex has been updated,
such as the hydrophobic binding of V-RAGE domain into
S100A9 homodimer (Chang et al., 2016), V-RAGE domain into
S100A9/S100A12 heterodimer (Katte and Yu, 2018) following
the first X-ray report (Itou et al., 2002). However, the small
molecule, CHAPS of the reports is a detergent (for protein
stabilization or solubilizing) rather than a drug inducing
functional change of S100A9. In addition, the SPR measurement
of Q-compounds recently produces the question, whether the
inhibition of Q-compounds is non-specific or specific (Björk
et al., 2009; Yoshioka et al., 2016; Pelletier et al., 2018).

Therefore, a ligand-based model can is required to compensate
current insufficient characterization for targeting S100A9. For
the purpose, maximum collection of the available data and
selection of the most relevant features should be considered.
Very delightfully, competitive inhibitors binding to S100A9 in
the presence of the target receptors, such as RAGE, TLR4/MD2,
and EMMPRIN (CD147) were reported in three patents
(Fritzson et al., 2014; Wellmar et al., 2015, 2016). However, the
patents proposed neither a druggable binding site nor different
interaction mode between the target receptors. In other words,
despite the presence of the inhibitors, no reliable predictive
model has been reported to identify novel S100A9 inhibitors.

Based on the S100A9 competitive inhibitors of the patents,
we present herein, the first predictive models using multi-
scaffolds of competitive inhibitors (binding to the complex of
S100A9 with rhRAGE/Fc, TLR4/MD2, or rhCD147/Fc) as a
training set. For the purpose, highly efficient feature sets was
considered in this study. Even though the input data matrix
consisting of a low number of rows (data points/compounds)
and a large number of columns (features) is never special in
2D/3D-QSAR or classification models built from limited and
insufficient biological data (Guyon and Elisseeff, 2003; Muegge
and Oloff, 2006), data processing (filtering, suitability, scaling)
and feature selection were considered to remove irrelevant and
redundant data (Liu, 2004; Yu and Liu, 2004). Adding a few
other features to a sufficient number of features often leads to
an exponential increase in prediction time and expense (Koller
and Sahami, 1996; Liu and Yu, 2005), and whenever a large
screening library is generated, feature generation of the library
can be a practical burden. Further, because more irrelevant
features hinder classifiers from identifying a correct classifying
function (Dash and Liu, 1997), the feature optimization process
is essential to increase the learning accuracy of the classifier
and to escape the curse of dimensionality that emerge in a
consequence of high dimensionality (Bellman, 1966). In addition,
versatile machine learning models were built resulting from 5
× 4 × 3 trials: (1) five IC50 thresholds between activeness and
inactiveness, (2) four feature selectors, and (3) three classifiers,
thereby resulting in comprehensive validation of 60 models. The
overall workflow depicted in Figure 1 was designed to select
the optimal classification models with the best predictive ability
and efficiency. In particular, we tried to gain a golden triangle
between cost-effectiveness, speed, and accuracy. For this purpose,
compact feature selection was critical for more than six million
library screening showing the original data matrix of six million
compounds (rows)× ca. 3,000 features (columns).

ALGORITHMS AND METHODS

Datasets
Through patent searching, S100 inhibitors and their respective
IC50 values were collected from three different patents. In the
patents, even though the inhibitory effect on every complex
(the binding complex of S100A9 with hRAGE/Fc, TLR4/MD2,
or hCD147/Fc) was measured through the change of resonance
units (RU) in surface plasmon resonance (SPR) (Fritzson et al.,
2014), IC50 was calculated through the AlphaScreen assay of
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FIGURE 1 | Workflow depicting the process of the top classification model development.

several concentrations in only biotinylated hS100A9 complex
with rhRAGE-Fc (Fritzson et al., 2014; Wellmar et al., 2015,
2016). Therefore, the predicted inhibitory effect of our model
means competitive inhibition of S100A9-RAGE in this study. The
assaymethod for IC50 was identical in the three patents. The total
number of molecules collected was 266: 115 compounds from
WO2011184234A1, 97 compounds from WO2011177367A1,
and 54 compounds from WO2012042172A1. The three distinct
scaffolds led to the structural diversity of the dataset which was
confirmed through the principal component analysis (PCA) of

patent molecules (Figure 2). To investigate a more reasonable
decision boundary between the activity and inactivity of the
inhibitory effect on S100A9, five datasets (SET01, SET02,
SET03, SET04, and SET05) were generated with different
thresholds of activity (respectively 4, 3, 2, 1, and 11.4µM
of IC50). Insufficient numbers of inactive molecules were
compensated by decoys from the DUD-E database (Mysinger
et al., 2012), in order to obtain the same size for each
dataset (N = 402), with a ratio of 66.17% (N = 266)
patent molecules and 33.83% (N = 136) inactive decoy
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FIGURE 2 | Three-dimensional principal component analysis(PCA) of hits and patent molecules. Patent 1, Patent 2, and Patent 3 refers to WO2015177367A1,

WO2014184234A1, and WO2016042172A1.

molecules (see Table S1 and Datasheet 1 in Supplementary
Materials for SMILES information of the dataset). The activity
property was converted to a binominal value according to
the threshold of each set for a dichotomous classification.
In particular, the activity threshold of 11.4µM in SET05 is
the highest IC50 value among patent molecules, thus making
every patent molecule active, and every decoy molecule inactive
in SET05.

Descriptor and Fingerprint Calculation
Useful descriptors provide a better understanding of the
molecules, and are widely used to construct models to

predict certain molecular properties (Glover and Kochenberger,
2006). In our study, 2,798 features were generated using
PaDEL-Descriptor ver. 2.21 (PaDEL-Descriptor, Pharmaceutical
Data Exploration Laboratory) (Yap, 2011). All kinds of 1D
and 2D descriptors were calculated to produce 1,444 features.
The remaining features are from three kinds of fingerprints:
MACCSFP, 166 bits; PubChemFP, 881 bits; SubstructureFP,
307 bits.

Dimensionality Reduction
To avoid the curse of dimensionality and to enhance the
efficiency of the overall predicting process, we applied several
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TABLE 1 | The number of features.

Initial

features

Low-variance

filter

Low-variance filter and

high-correlation filter

1D/2D descriptors 1,444 1,218 1,017

Fingerprints 1,354 855 855

MACCSFP 166 147 147

PubChemFP 881 598 598

SubstructureFP 307 110 110

Total 2,798 2,073 1,872

The numbers of descriptors and bits of fingerprints generated initially, and the selected

numbers of features after the removal of unnecessary features by certain filtration methods

are listed. Note that each bit of a fingerprint was considered as a single feature.

strategies to greatly reduce the number of features. Notably,
each bit of fingerprint was considered as a single feature in our
study; thus, the optimal feature set comprises hybrid fingerprints
and descriptors after the feature reduction process. By removing
irrelevant bits from the original intact fingerprint, a hybrid
fingerprint can achieve increased prediction accuracy as well
as reduced computational cost (Williams, 2006; Nisius and
Bajorath, 2009, 2010; Singla et al., 2013; Smieja and Warszycki,
2016; Warszycki et al., 2017).

Low-Variance Filter and High-Correlation Filter
In our pre-processing step, we applied two steps of filtering:
the low-variance filter and the high-correlation filter. First, to
avoid redundancy, features with low variance were removed
after normalization. Among 2,797 features, 724 columns with
zero variance were removed (Table 1) to obtain a small feature
set without reducing the prediction performance. Second, the
correlation between two random variables was ranked to
obtain Kendall’s Tau-a coefficient matrix. Features with strong
dependency (τ > 0.9) were removed to ensure maximum
dissimilarity between features (Ding and Peng, 2005). Here, 201
columns were removed, leaving 1,872 independent features that
were de-normalized for further processing (Table 1).

Correlation-Based Feature Subset Selection
In addition to the correlation filter, we used a correlation-based
feature subset selection method (Hall, 1999) to obtain a compact
number of features. Merit, composed of Pearson’s correlation
formula, is used to evaluate the correlation-based feature
selection (CFS) algorithm. To determine subsets containing
features that are highly correlated with the class but are
uncorrelated with each other, the following merit is calculated
along a search:

Merits =
krcf

√

k+ k(k− 1)rff

(1)

where Merits is the heuristic merit of subset S containing k
features, rcf is the average correlation with the class, and rff
is the average inter-correlation. The subset with the highest
merit is selected to obtain features with high predictive ability
and low redundancy. Various search algorithms are applicable

for improving the efficiency of feature selection (FS) methods.
Herein we applied four different search algorithms: best first,
genetic search, particle swarm optimization search, and subset
size forward selection. To assess the effectiveness of the FS
methods, two measurable indexes were selected: the rate of
feature reduction and the merit of the best subset found. All
calculations were performed in Weka software packages (Weka
Environment for Knowledge Analysis ver. 3.6, The University of
Waikato, Hamilton, New Zealand) (Hall et al., 2009).

Best First (BF)
Best first search is one of general algorithms for exploiting
heuristic information to reduce search times. The general strategy
assesses the merit of every candidate feature set exposed during
the search, and then continues exploration along the direction
of the highest merit (Kohavi and John, 1997). In our study, the
search was terminated when an improved node was not found in
the last 5 expansions. Also, backtracking was applied to reduce
the size of the search space and to allow the algorithm to move
toward a more promising subset (Freuder, 1988). Because the
running times for the backward search starting from the full
set of features could render the approach infeasible, especially if
there are many features, forward selection was applied here to
achieve cost-effectiveness.

Genetic Search (GS)
The genetic algorithm was first introduced by John Holland
(Holland, 1992), and David Goldberg presented an application
in 1989 (Goldberg, 1989) that triggered a wide variety of
modifications and developments to genetic algorithms (Glover
and Kochenberger, 2006). Genetic algorithms derive their name
from the fact that they are inspired by the mechanism of natural
selection, where the fittest individuals survive to the following
generations (Man et al., 1996). Although the searchmethod using
genetic theory may result in higher computational costs than
other methods, such as best first, it remains popular, because it
is relatively insensitive to noise and is well-suited for problems
where little knowledge is provided (Vafaie and De Jong, 1992). In
this study, the total number of generations was 20, with 20 feature
subsets in each generation. The probability of crossover and the
mutation rate were set to 0.6 and 0.33, respectively.

Particle Swarm Optimization Search (PSO)
Particle swarm optimization (PSO), suggested by Kennedy and
Eberhart in 1995 (Eberhart and Kennedy, 1995), is based on
social-psychological principles. Because only a few lines of code
and primitive mathematical operators are required, this method
has been proved to be highly efficient for application to numerous
areas (Shi, 2001). Herein we utilized the geometric particle swarm
optimization (GPSO) (Moraglio et al., 2007), where a convex
combination was applied to update the positions of particles. In
GPSO, three convex weights w1, w2, and w3 are employed, where
w1, w2, w3 > 0 and w1+w2+w3 = 1. The function of GPSO can
be defined as:

xi = CX
(

(xi,w1) ,
(

ĝ,w2

)

,
(

x̂i,w3

))
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where ĝ is the global optimum and x̂i is the local optimum. Each
convex weight represents the inertia weight (w1), social weight
(w2), and individual weight (w3), which were set to 0.33, 0.33,
and 0.34, respectively in our study. The number of particles in the
search space and the number of populations in each generation
were both set to 20.

Subset Size Forward Selection (SSFS)
Subset size forward selection (SSFS) is an extension of linear
forward selection. Through this method, a compact feature set
can be obtained from large-scale features with a relatively small
number of instances (Gutlein et al., 2009). The optimal size
was determined through 5-fold cross-validation with fixed-set
linear forward selection, resulting in a reduced error compared
to searching in a single training and test set. The number of
top-ranked features forming a search space was set to 50.

Machine Learning Classifiers
After selecting the optimal feature sets, three different classifiers
(decision tee, random forest, and naïve Bayes) were applied to
develop and determine the best classification model for S100

inhibitors. All ML processes and calculations were performed
using the KNIME software.

Decision Tree (DT)
The decision tree classifier is a simple and widely comprehensive
method that can be constructed relatively quickly compared to
other well-known classifiers (Kotsiantis et al., 2007). The scalable
parallelizable induction of decision trees (SPRINT) (Shafer et al.,
1996), a modified form of the well-known C4.5 (Quinlan, 2014),
was applied in this study so that the model can take a large-
scale database as an input. The Gini index was measured to
determine the root node, which is the best feature that divides
the dataset. To avoid overfitting problems, we applied both pre-
pruning and post-pruning strategies. For post-pruning process,
minimum descriptor length (MDL) pruning was applied here
(Rissanen, 1978).

Random Forest (RF)
Random forest (Breiman, 2001) was developed by introducing
bootstrap aggregating to decision tree. Trees are built with
randomly sampled features to form a forest, and the most voted
tree is selected as the optimal classifier. This ensemble learning
method can handle high-dimensional data with numerous
features. In addition, it is less susceptible to noise and builds
a robust model, often outperforming other classifiers (Verikas
et al., 2011; Khuri et al., 2017). In this study, features were
evaluated based on the information gain ratio to obtain the
best splits.

Naïve Bayes
Along with decision trees, naïve Bayes is one of the most
popular machine learning methods for classification models.
Unlike the canonical Bayesian method, naïve Bayes assumes that
all features are independent of each other. Although this “naïve”
assumption rarely fits in practice, it has been verified to perform
reasonably well in various situations, without the requirement of
independence between features (Domingos and Pazzani, 1997).

TABLE 2 | The optimized parameters for random forest models and the AUC of

ROC values of test set prediction.

Applied

feature selector

Dataset maxDeptha numTreesb AUC of ROC

BF SET01 5 52 0.971

SET02 6 42 0.961

SET03 10 215 0.956

SET04 10 203 0.912

SET05 2 15 1

GS SET01 3 82 0.932

SET02 10 164 0.935

SET03 10 112 0.948

SET04 6 105 0.867

SET05 3 36 1

PSOS SET01 8 76 0.952

SET02 5 45 0.915

SET03 9 185 0.952

SET04 10 84 0.882

SET05 4 13 1

SSFS SET01 7 97 0.967

SET02 6 59 0.966

SET03 9 236 0.963

SET04 8 245 0.896

SET05 2 50 1

None SET01 5 25 0.954

SET02 7 96 0.941

SET03 7 124 0.949

SET04 7 60 0.872

SET05 5 79 1

This occurs because the strong false assumption may lead to
reduced overfitting (Domingos, 2012). Another advantage of this
method is its simplicity and low computational cost (Kotsiantis
et al., 2007), which allows one to search in very large databases
with high efficiency.

Parameter Optimization
To achieve the best performance, several parameters were
optimized prior to the development of predictive models. For
each optimization, 10-fold cross-validation was performed with
the training set (65% of the original dataset), where the optimal
parameters exhibiting the largest area under the curve (AUC) of
receiver operating characteristics (ROC) curves were exported to
construct the model. The optimized parameters and AUC values
are listed in Table 2.

Model Validation
To assess the prediction performance of the models, two
validation methods were employed: (i) evaluation by test set
(35% of the original dataset) and (ii) 10-fold cross-validation
of the training set. The AUC of ROC curve and the Matthews
correlation coefficient (MCC) were calculated to obtain the top
models among every combination of feature selectors and ML
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TABLE 3 | The number of molecules from eMolecules database in each subset.

Subset Number of molecules

Subset01–subset09 100,000

Subset10–subset18 200,000

Subset19–subset32 250,000

Subset33 247,184

Total 6,447,184

classifiers. The MCC value can be defined as:

MCC =
TP × TN − FP × FN

√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

,

where TP, TN, FP, and FN refers to true positive, true negative,
false positive, and false negative.

In silico Screening of the eMolecules
Database
Over past decade, large drug discovery companies have been
actively applying high-throughput screening (HTS) to search
potent hit molecules (Stahura and Bajorath, 2004; Reddy et al.,
2007). However, HTS often demands prior validation and
preparation time as well as great expense and facilities. To aid
or complement HTS, the VS method should have the ability to
select only a small number of potent molecules from a huge
database. Thus, the top models that we have chosen previously
were further evaluated by in silico screening of a large-scale
dataset (N = 6,447,184) from the eMolecules database (http://
www.emolecules.com/).

Screening Library
eMolecules provides almost eight million unique compound
structures along with the information of vendors of the respective
molecules assembled from more than 150 suppliers and
manufacturers (Williams, 2008). Many studies have successfully
discovered potential hits by screening molecules from this
database (Bisignano et al., 2015; Lenselink et al., 2016; Shehata
et al., 2016). In our study, 6,447,184 molecules were collected for
screening, and split into 33 subsets in order to reduce computing
(memory) burdens (Table 3). Features of each subset molecules
could be generated based on the optimal features of the top
models. First, the upper class of necessary descriptors were
calculated, because only the upper class of descriptors can be
selected rather than each single feature in PaDEL-Descriptor.
Then, using KNIME software, the features needed were chosen
to generate the exact same kind of feature set, which was used in
top model building.

Prediction and Identification of Hits
Each subset with each respective feature set was then used as an
input to the random forest predictor, which was built through
the learning of patent molecules. Then, the predictor was used
to assign possibility as S100A9 inhibitors among the screened
molecules. Only molecules with a higher probability than 0.9
of being active than were selected. Overlapped molecules from

TABLE 4 | The number of selected features after each FS method.

BF GS PSO SSFS

SET05 51 852 591 47

SET01 37 940 552 29

SET02 50 751 602 23

SET03 66 741 600 24

SET04 70 667 610 28

the consensus of eight top models were collected to obtain the
final hits.

Prediction of ADME Properties
Since poor pharmacokinetic profiles and high potential of toxicity
are one of the main reasons of failure in drug development, it
is crucial to consider such absorption, distribution, metabolism,
excretion (ADME) properties in advance to encourage further
assays and clinical trials of final hits. Thus, we predicted several
drug-likeness and ADME properties of hit molecules using the
QikProp module of Maestro 11.4 (Schrodinger Release 2017-
4: QikProp, Schrödinger, LLC, New York, NY, 2017). QikProp
computes pharmaceutically relevant properties of molecules
to help eliminate those with unsatisfactory ADMET profiles.
Here, we generated computational properties to ensure the
drug-likeness of hits, including molecular weight (MW), LogP,
hydrogen bond donor, hydrogen bond acceptor, number of N and
O, polar surface area (PSA), and violation of Lipinski’s rule of five
as well as Jorgensen’s rule of three. Also, the apparent Caco-2 cell
permeability and MDCK cell permeability was also calculated to
investigate intestinal absorption and oral absorption abilities.

RESULTS AND DISCUSSION

Reasonable Compression of Features for
Predictive Models
In order to compare the performances before and after FS,
we could consider predictive power and cost-effectiveness. The
efficiency of each feature selection method was evaluated by
calculating two measurements: the rate of feature reduction, and
the merit.

Feature Reduction
Feature reduction can play an important role in model building
due to its ability to greatly reduce computational burden and to
increase classification accuracy. Herein the cost-reducing effect
of each FS method was evaluated through feature reduction
ability. After two serial filtrations which removed 926 features
from 2,798 original features, we applied CFS with four different
search methods to further obtain a compact and optimal feature
sets. The reduction ability of each FS method was evaluated
and compared to determine optimal approaches. The selected
number of features after each FS method is presented in Table 4.
The rates of feature reduction are also shown in Figure 3, which
are the number of excluded features divided by the number of
features before CFS.
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FIGURE 3 | The rates of feature reduction. The reduction rate is the ratio between the number of features removed after FS method and the original number of

features before FS method.

As shown in Table 4 and Figure 3, BF and SSFS excluded
most of the features with over 96% removal in all five datasets.
However, a relatively high number of features remained after GS
or PSO, and especially, GS showed the least consistency between
subsets (49.786%∼64.37%). When comparing between BF and
SSFS, the actual number of features is less through SSFS than
BF, yet the rates of reduction are similar. In SET03, the number
of features remaining after SSFS was 36.36% (N = 24) of that
after BF (N = 66). Thus, SSFS is expected to achieve the greatest
effectiveness regarding cost reduction, and since the number of
features selected is also small enough in BF, it is also expected to
have a high efficiency similar to SSFS. The composition of each
feature set is shown in Figure 4. See Table S2 in Supplementary
Materials for detailed information of the selected features. Due

to the large number of original features, autocorrelation (e.g.,

ATS, AATS, ATSC), Pubchem fingerprint (e.g., PubchemFPxxx),
and atom type electrotopological state (e.g., SpMax1_Bhm)
could also show the highest relative frequency ratio among 63
descriptor types of 2,798 original features. In addition, with the

three type descriptors, burden modified eigenvalues, molecular
linear free energy relation, path count, MACCS fingerprint, and
substructure fingerprint were commonly chosen through four FS
methods. Because fragmented fingerprints and burden modified
eigenvalues have relatively large number of original features
(96–489 features), molecular linear free energy relation (with 6
features) and path count (with 22 features) are more impact per
feature than other descriptors but the descriptors could not exist
in every subset (5 subsets× 4 FS method).

Merit
The predictive performance of a model strongly depends on the
usefulness of the features. After feature selection, the remaining
features may not fully represent the original features. Therefore,
the merit of a feature set is measured as shown in Figure 5

to determine which FS method produce the best discriminative
ability for model building. Despite this ability, the merit value
itself does not consider the size of the dataset and a standard of a
“high enough” merit value cannot be defined. Only a comparison
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FIGURE 4 | The composition of each feature set. The number of each kind of descriptor and fingerprint bit after each FS method is shown here. SET0N refers to the

different IC50 threshold (SET01:4µM; SET02:3µM; SET03:2µM; SET04:1µM; SET05:11.4µM). Note that the maximum value of horizontal axis of the graph differs

between each FS method.
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between methods with the same dataset is valid and therefore, as
described later, we further examined the effects on classification
accuracy. A general observation is that the merit improved with
an increase in the activity threshold.When every compound from
a same resource is classified into the same class, it seems that the
merit value tends to be enhanced, as shown in Figure 5, where
the merit was the highest in SET05 among all datasets. Themerits
of BF and SSFS were higher than those of GS and PSO in every
dataset, although they decreased rapidly (0.917–0.395 and 0.903–
0.31, respectively) as the range of activity narrowed. GS and PSO
selected feature sets with relatively poor merits, lower than 0.3
in every dataset, and almost near to zero in SET04. The results
indicate that BF and SSFS achieve efficiency as well as enhance
the predictive ability of the model, whereas GS and PSO barely
improve the prediction ability.

Evaluation of Classification Performance
To assess the performance of the classification models, two
validation approaches, external validation using the test set (35%
of initial dataset) and internal 10-fold cross-validation, were used
to acquire the AUC of ROC curve and MCC. Effectiveness of 5×
3× 4 models: (1) five type activity thresholds between activeness
and inactiveness, (2) three FS methods (selectors), and (3) four
ML methods (classifiers) were evaluated. The 60 models were
also compared with the models without a CFS process as control
groups to evaluate the effectiveness of FS on the classification
performance. Mean values of measurements in each dataset
were calculated to better focus on the comparison between FS
methods. The control group, where FS was not treated, is labeled
as “none.” Every dataset used in all models contain identical
molecules but differently assigned activity.

AUC of ROC
The AUC values of ROC curve of each model are illustrated
in Figure 6. Generally, AUC declined as the IC50 threshold
narrowed. Nevertheless, the RF models produced the highest
AUC values in all combinations of activity thresholds and the FS
methods in both external test set validation and 10-fold cross-
validation. On the other hand, the AUC values were dramatically
reduced as the activity threshold narrowed in NB or DT models,
especially when built without feature selection process. This
indicates that RF models have the most robust predictive ability
among classifiers, showing a constantly high AUC ranging from
0.859 to 1 and from 0.839 to 1 in test set validation and
cross-validation, respectively. Regarding FS methods, BF or SSFS
exhibited relatively higher AUC than PSO or GS, as well as
none (without CFS methodology). In addition, they produced
the highest AUC when built with the RF classifier. The NB
models appears to get the largest benefit from BF and SSFS
methods, achieving substantial increase compared to the model
without CFS process. However, GS or PSO methods could not
greatly enhance the AUC values of NB models, producing only
a slight increase compared to the model built without them,
especially when the activity threshold was low. This suggests
that RF models built with BF or SSFS feature selection methods
have strong possibility to be the optimal model and exhibit the
greatest robustness.

MCC
In general, the MCC values exhibited similar tendencies to
the AUC (Figure 7). Here also, RF achieved the highest MCC
for every combination except for the cross-validation result of
models applying GS or no feature selector with SET04. The
overall MCC values of RF classifier with other datasets except
for SET04 were reasonably high, ranging from 0.693 to 0.984 in
external test set validation, and from 0.721 to 0.994 in 10-fold
cross-validation. Among FS methods, BF and SSFS also achieved
the best performance for all combinations. In particular, they
exhibited enhanced MCC values when combined with the RF
classifier. On the other hand, the NB classifier with the GS or PSO
feature selector exhibited considerably lower values compared to
other methods, and a rapid decline could be seen as the IC50
threshold narrowed. Even when combined with BF or SSFS, the
NBmodels resulted in relatively lowMCC compared to the RF or
DT models.

In summary, “RF classifier + BF selector” or “RF classifier +
SSFS selector” under their optimal hyperparameters presented
the best predictive ability. Obviously, RF was more distinguished
than other classifiers with a robust performance in all IC50
thresholds. BF and SSFS enhanced the classification performance,
obtaining higher AUC and MCC values than other selectors.
It is thus observed that the IC50 activity threshold has non-
negligible influences on prediction performance. As the threshold
narrowed, the accuracy and MCC values declined without any
exception, implying the toughness of distinguishing between
patent molecules with low IC50 values. Nevertheless, models
built with low activity threshold may lead to the discovery of
highly potent molecules selectively. Among all IC50 thresholds
(SET01 to SET05), 1µM (SET04) was excluded to generate the
Top models: four IC50 activity thresholds (11.4, 4, 3, and 2µM)
and two feature selectors (BF and SSFS) under the optimal RF
classifier. Through the consensus vote of the top 8 models,
potential S100A9 inhibitors could be obtained.

Quality, Cost, and Effectiveness of Screening Hits
Ligand-based virtual screening was performed using a large-scale
dataset (N = 6,447,184) derived from the eMolecules database.
We finally obtained 46 potential S100A9 inhibitors through
unanimous votes from top models (hit rate = 0.000713%).
The 2D structures of hits are presented in Table S3. Notably,
the prediction probabilities of selected hits were similarly high
compared with patent molecules, ranging from 0.902 to 1 with
little differential between models (Figure 8). In order to qualify
the hit compounds, their structure novelty also was evaluated.
For this purpose, the Tanimoto similarity between each hit
compound and the nearest neighbor was presented (Table 5).

In the view of structural novelty, our virtual screening
could certainly guarantee similarity, such as the level of recent
generative model-based de novo design (Popova et al., 2018). Our
hits not only retain the structural diversity of active molecules,
but also exhibit differentiation from patents, thereby suggesting
our models’ ability to elicit novel S100A9 inhibitors (Figure 2).
Furthermore, our model is economical in the view of cost. The
overall screening process including feature generation of the 6M
size library took ca. 161 h under 1 CPU and 8 GB memory
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FIGURE 5 | The merits of feature sets after feature selection method in each dataset with different IC50 threshold.

FIGURE 6 | Heat-map depicting the AUC of ROC curve of the classification models.
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FIGURE 7 | Heat-map depicting the MCC of the classification models.

FIGURE 8 | Prediction probability of top 8 models on patent molecules, decoy molecules, and hits. Each label of horizontal axis represents each top random forest

model. The FS method and the dataset (SET0N) used in the model is indicated as “FS method_N”. For example, SSFS_3 refers to the random forest model built with

the feature set chosen by SSFS with dataset SET03. *Note that every patent molecules were considered as active in BF_5 and SSFS_5.

condition for being to show 40 times faster than the screening
using S100A9 docking models in the same computing resource.
It proved strong cost-reduction ability and efficiency enough to
apply to the real-world drug R&D.

In sequence, binding mode of the hit compounds was
compared with known S100A9 inhibitors, 266 dataset under in-
house docking model. For the docking simulations, homodimer
of the mutant S100A9 (C3S) was gain from PDB 5I8N code
(Chang et al., 2016). The S100A9 inhibitors were docked to
S100A9-RAGE V dining domain to share the common region

surrounded by Glu52 (at the hinge between H2 and H3),
Arg85 (at H4), and Trp88 (at H4) in Figures S1–S3. 46 hit
compounds also presented similar binding modes: (1) pi-pi or
pi-cation interaction with residues at H4 (e.g., Trp88, Arg85)
or (2) hydrogen bonding with hinge (e.g., Glu52 or Asn55) in
Figures S4, S5 to add promising evidence of the hit compounds.
Finally, since poor pharmacokinetic profiles and high potential
toxicity are likely to fail in clinical trials, it is also crucial
to predict such properties in advance to encourage further in
vivo validation of hit molecules. We calculated the molecular
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TABLE 5 | Drug-likeness, ADME parameters prediction for 46 hits using QikProp and their Tanimoto similarity between the nearest neighbor.

Molecule

index

MWa LogPo/wb dHBc aHBd No.

N&Oe

PSAf Lo5g Jo3h Caco2i MDCKj Simk

1 438.81 4.64 2 5.25 6 83.28 0 1 883.32 6500.64 0.723

2 447.52 1.88 1 10.25 8 110.03 0 0 169.49 217.42 0.733

3 475.58 2.45 1 10.25 8 107.08 0 0 212.80 254.04 0.725

4 459.55 3.35 2 9 7 109.44 0 1 252.94 277.07 0.709

5 357.35 2.21 1 6.5 6 79.76 0 0 662.83 1251.4 0.803

6 475.54 2.06 2 12 10 152.60 0 0 74.61 50.07 0.686

7 369.37 2.66 2 5.5 7 112.07 0 0 123.62 120.63 0.823

8 489.56 2.35 2 12 10 152.60 0 1 74.59 50.05 0.685

9 463.57 2.06 3 9.5 9 138.29 0 0 31.69 26.88 0.763

10 399.25 2.08 1.25 7.75 7 102.73 0 0 310.52 651.41 0.831

11 394.81 2.23 1.25 7.75 7 102.66 0 0 338.55 628.45 0.757

12 376.82 1.93 1.25 7.75 7 103.25 0 0 371.75 355.25 0.767

13 394.81 2.10 1.25 7.75 7 103.88 0 0 336.23 499.24 0.757

14 449.54 2.32 3 9.5 9 134.36 0 0 78.22 41.92 0.711

15 463.57 2.57 2 9.75 8 110.80 0 0 245.98 297.80 0.708

16 396.39 3.56 1.25 5.25 6 93.24 0 1 414.29 1915.26 0.727

17 378.42 0.73 3 10 8 136.31 0 0 55.49 35.38 0.747

18 408.45 0.61 2 11.75 10 140.34 0 0 89.51 46.28 0.738

19 388.46 2.35 2 6.5 7 120.67 0 0 135.00 195.05 0.633

20 392.47 3.46 2 5.25 6 88.54 0 0 274.13 938.46 0.663

21 379.41 0.81 3 9.25 8 135.31 0 0 48.47 31.86 0.833

22 488.49 4.53 1 8.7 8 90.37 0 2 1243.59 3476.5 0.697

23 374.43 3.01 2.25 5.75 6 96.24 0 0 317.78 825.75 0.718

24 376.86 2.93 2.25 5.75 6 95.44 0 0 309.55 1326.69 0.721

25 376.86 2.92 2.25 5.75 6 95.45 0 0 344.43 1241.09 0.721

26 360.41 2.61 2.25 5.75 6 94.32 0 0 309.07 1006.01 0.721

27 424.44 3.73 2.25 5.75 6 98.39 0 0 240.41 1826.54 0.704

28 410.41 3.34 2.25 5.75 6 94.30 0 0 309.14 2445.21 0.706

29 394.81 1.97 1.25 7.75 7 101.41 0 0 336.23 484.57 0.757

30 397.52 2.51 2 8 6 90.69 0 0 823.95 875.59 0.753

31 378.46 2.15 2 7.7 7 110.06 0 0 286.99 254.97 0.776

32 382.82 2.67 1 6.75 8 111.06 0 0 226.09 236.12 0.783

33 427.46 0.74 1 11 10 129.95 0 0 146.33 120.44 0.747

34 410.41 2.18 2 9 7 115.79 0 0 223.42 411.72 0.744

35 410.41 2.15 2 9 7 116.40 0 0 182.76 361.39 0.744

36 357.79 1.93 2 7 6 92.65 0 0 276.14 510.66 0.828

37 357.79 1.93 2 7 6 93.28 0 0 259.64 489.39 0.828

38 357.79 1.86 2 7 6 93.79 0 0 240.46 428.65 0.828

39 371.81 2.37 1 7.5 6 81.06 0 0 544.41 1089.44 0.780

40 374.43 3.67 1.25 5.75 6 84.30 0 1 922.94 2328.24 0.750

41 370.79 1.97 2 6.5 7 111.17 0 0 122.26 206.45 0.759

42 399.87 3.14 1 7.5 6 82.38 0 0 625.21 1265.93 0.791

43 412.80 2.35 1.25 7.75 7 101.92 0 0 323.45 793.95 0.757

44 398.40 4.57 2 4.5 6 80.90 0 1 1275.28 3912.14 0.671

45 379.42 2.24 2 8.5 6 101.90 0 0 319.42 418.38 0.759

46 348.39 0.82 2 9.5 7 114.57 0 0 141.61 101.70 0.783

Standard

valuel
130.0

–725.0

−2.0

–6.5

0.0

–6.0

2.0

–20.0

2–15 7.0

–200.0

Maximum

is 4

Maximum

is 3

<25 poor,

>500 great

<25 poor,

>500 great

aMolecular weight.
bOctanol/water partition coefficient.
cNumber of HB donors.
dNumber of HB acceptors.
eNumber of N and O atoms.
fPolar surface area.
gNumber of violation of Lipinski’s rule of five.
hNumber of violation of Jorgensen’s rule of five.
iApparent Caco-2 cell permeability (nm/s).
jApparent MDCK cell permeability (nm/s).
kTanimoto coefficient of the entry between the nearest neighbor among 266 active molecules from patents.
lStandard values from 95% of known drugs based on results of Qikprop.
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parameters regarding drug-likeness and ADME properties to
ensure that the hit compounds are suitable for further drug
development processes (Table 5). Hopefully, all predicted values
of 46 molecules are within the acceptable range. Neither
Lipinski’s rule of five nor Jorgensen’s rule of three was violated
by almost all hits. Even though we did not implement any
physicochemical predictor into our model, the physicochemical
property of the dataset could be transferred into screening
hits through a structure-property relationship. If our model
can be linked with a powerful inverse design model, we can
expect our model can also provide powerful predictability with
a physicochemical property range.

CONCLUSION

In summary, through extensive validation of 60 models built
from multi-scaffold ligand information, we optimized the
machine learning classifier as well as the feature selector to obtain
highly predictive classification models for identifying S100A9
inhibitors. Unlike many other reports employing only several
kinds of descriptors or a whole bits of fingerprint, we combined
various kinds of descriptors with a hybrid fingerprint to generate
a compact and effective feature set. Ultimately, this high efficiency
allowed us to further obtain 47 hits from over six million
compounds through the consensus vote of models within a
week, indicating the high cost-reduction ability of the models. In
addition, our study is the first example of reasonable classification
models for S100A9 inhibitors. Regarding the clinical importance
of S100A9, as well as the difficulty of generating models for its
unique characteristics, we expect that our study will further aid
in developing the first S100A9 agents and guide new paths of
curing diverse diseases, including Alzheimer’s disease and other
neurodegenerative diseases.
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The olive oil assessment involves the use of a standardized sensory analysis according

to the “panel test” method. However, there is an important interest to design novel

strategies based on the use of Gas Chromatography (GC) coupled to mass spectrometry

(MS), or ion mobility spectrometry (IMS) together with a chemometric data treatment

for olive oil classification. It is an essential task in an attempt to get the most robust

model over time and, both to avoid fraud in the price and to know whether it is suitable

for consumption or not. The aim of this paper is to combine chemical techniques and

Deep Learning approaches to automatically classify olive oil samples from two different

harvests in their three corresponding classes: extra virgin olive oil (EVOO), virgin olive oil

(VOO), and lampante olive oil (LOO). Our Deep Learning model is built with 701 samples,

which were obtained from two olive oil campaigns (2014–2015 and 2015–2016). The

data from the two harvests are built from the selection of specific olive oil markers from

the whole spectral fingerprint obtained with GC-IMS method. In order to obtain the

best results we have configured the parameters of our model according to the nature

of the data. The results obtained show that a deep learning approach applied to data

obtained from chemical instrumental techniques is a good method when classifying oil

samples in their corresponding categories, with higher success rates than those obtained

in previous works.

Keywords: olive oil classification, chemometric approaches, GC-IMS method, machine learning, deep learning,

feed-forward neural network

1. INTRODUCTION

Olive oil is a fatty substance which is obtained from the fruit of the olive tree Olea europea L..
There are three different olive oil categories that in descending order of quality are named as extra
virgin olive oil (EVOO), virgin olive oil (VOO), and lampante olive oil (LOO). The first two are
edible while the last one should be refined prior to be consumed. The EVOO flavor is characterized
by a pleasant balanced flavor of green and fruity sensory characteristics. In the VOO and LOO,
some negative attributes (chemical compounds associated to defects) can be detected in different
proportions. The EVOO is the only non-defective olive oil and therefore it is the most appreciated
and expensive. Moreover, selling lower quality olive oils as EVOO is one of the most common olive
oil commercial frauds. The classification of olive oil depends on (i) chemical parameters such as free
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acidity, peroxide value and absorbance (K270 and K232) defined
by the current European Union Regulation (EEC, 1991) and (ii)
a sensory assessment by trained tasters. The sensory assessment
methodology is slow and expensive. Consequently, instrumental
analytical measurements used in conjunction with chemometric
methodologies represent an alternative for reducing costs in the
task of differentiating between olive oil categories.

Few studies (Borràs et al., 2015; Borràs et al., 2016; Garrido-
Delgado et al., 2015; Sales et al., 2017; Contreras et al., 2019b) can
be found to demonstrate the potential of analytical instruments
in order to complement the sensorial analysis to classify olive
oil samples as EVOO, VOO, and LOO. To demonstrate the
usefulness of these methods, the amount of analyzed samples of
different harvests should be high in order to obtain representative
conclusions. Also, the accuracy of the classification models could
be assessed by splitting the total number of analyzed samples in
training and testing sets. And finally, the selection of the correct
chemometric approaches would be a key point to offer a method
which could classify olive oil with guarantee.

Machine learning algorithms have been used in chemistry for
several decades obtaining successful results (Svetnik et al., 2003;
Du et al., 2008). The massive use of these algorithms has been
due to the fact that they create intuitive models which transform
complex input chemical data to an explainable output. However,
in more sophisticated chemical problems, the relationships
between input data and output solutions are not so easy to
identify. Apart from that, some machine learning algorithms
are not efficient enough in dealing with high-dimensional data
when no dimension reduction is performed. Neural networks
solve most of the problems that arise with the use of machine
learning algorithms: firstly, they solve the problem of searching
and identifying existing relationships, resulting black-boxmodels
that are not so interpretable, but with a high level of accuracy.
Lastly, there is no problem with the amount of data, that’s why
they can work efficiently with high-dimensional data.

The use of artificial intelligence to detect the quality of
gastronomic and agricultural products is not a new research field.
In particular, Deep Learning techniques are being used for similar
classification tasks with promising results, for example in the
detection of different types of wine using taste sensors and neural
networks (Riul et al., 2004) and in food classification (Dȩbska
and Guzowska-Świder, 2011). There are also several works with
the objective of determining the quality of olive oil with artificial
neural networks, as expressed in the review from Gonzalez-
Fernandez et al. (2019), however, none of them distinguishes
among the three currently existing categories (EVOO, VOO, and
LOO), they only distinguish between two (EVOO/non EVOO,
LOO/non LOO).

Our aim in this study has been the application of
Deep Learning techniques to a group of significant markers
obtained by analytical instrumentation, specifically based on
gas chromatography coupled to ion mobility spectrometry (GC-
IMS). This approach has been applied to 701 samples of the
categories EVOO, VOO, and LOO, from two different olive oil
harvests (2014–2015 and 2015–2016). The study has been divided
in two parts: on the one hand we have studied the two crops
covering the years 2014–2016 with the aim of improving the

results obtained in a work related to the same dataset (Contreras
et al., 2019b) and on the other hand we have applied well known
algorithms in the literature to these same harvests in order to
compare them with our methodology.

The article is organized as follows: section 2 provides a
detailed description about the technique used to obtain the
data and the algorithm and methodologies applied to carry
out the classification task. Section 3 shows the results obtained
with the previous techniques, and finally, section 4 samples the
conclusions that have been obtained after the study.

2. MATERIALS AND METHODS

In this study, we aimed at providing a data mining approach
based on Deep Learning techniques to classify olive oil
samples based on chemical data. The main goal is to provide
a computational methodology to help and complement the
standardized sensory analysis according to the panel test method
(Circi et al., 2017). The process followed is known as Knowledge
Discovery in Databases (KDD). According to Lara Torralbo
(2014), the KDD process pursues the automated extraction of
non-trivial, implicit, previously unknown and potentially useful
knowledge from large volumes of data. In summary, it can be said
that KDD is a term that refers to the whole process of knowledge
extraction encompassing certain phases or stages as can be seen
in Figure 1.

The stages can be summarized as follows:

• Data acquisition and selection: In this phase, data from
different sources are integrated into a single data repository,
creating a target dataset with interesting variables or data
samples, on which discovery is to be performed.

• Preprocessing: It might not be possible to perform datamining
on the data collected in the dataset, because the data may not
be clean, may contain irrelevant attributes, etc. Different types
of data selection, cleaning and transformation techniques are
applied in this phase, e.g., feature selection, data cleaning.

• Transformation: The data mining algorithms that will be used
in the later phase sometimes need to have a specific data input
format. The transformation phase is in charge of this task, with
techniques such as normalization or auto-scaling.

• Data Mining: this part of the process is in charge of solving
the main problem presented, using classification, regression,
among others.

• Evaluation: After obtaining the data mining models, the last
step of the KDD process consists of evaluating the quality
of these models and interpreting them to obtain the desired
knowledge. In general, in order to evaluate a model, a small
subset of the data (test set) is reserved and used to validate
the model built with the rest of the data (training set). This
approach is known as simple validation.

This process is not static, that is, it can vary depending on
the problem, taking into account the nature of the data chosen
to decide whether to follow all phases, add extra phases or
just follow some of them. We have mainly carried out four
stages: data acquisition, data visualization techniques, data
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FIGURE 1 | Steps in the data analysis methodology.

preprocessing, classification models and finally a validation stage
of the proposed model.

2.1. Data Acquisition
2.1.1. GC-IMS Analysis
Analyses of olive oil samples were carried out with a GC-IMS
commercial instrument (FlavourSpecr). The IMS module was
equipped with a tritium radioactive ionization source of 6.5
KeV and a drift tube of 5 cm long (Gesellschaft für Analytische
Sensorsysteme mbH, G.A.S., Dortmund, Germany). A non-polar
column (94% methyl-5% phenyl-1% vinylsilicone) with 30 m of
length, an internal diameter of 0.32 mm and 0.25 µm of film
thickness (SE-54-CB of CS-Chromatographie Service GmbH,
Düren, Germany) was coupled to the IMS device. In addition, an
automatic sampler unit (CTC-PAL, CTCAnalytics AG, Zwingen,
Switzerland) was employed to improve the reproducibility of
measurements. The GC-IMS method for olive oil analysis was
obtained from a previous work by Contreras et al. (2019b). The
sample introduction system employed was a headspace generated
in a 20 mL glass vial closed with magnetic cap and silicone
septum. Then, 1 g of olive oil was placed in that vial and the
sample was heated at 60◦C for 8 min. The automatic injection
of 200 µL of headspace was carried out with a heated syringe
(80◦C) into the heated injector (80◦C). The injected headspace
was driven into the GC column by using nitrogen 5.0 as carrier
gas at 5 mL min−1 the first 6 min and then it was increased
to 25 mL min−1 until the end of the analysis (23 min). Neutral
analytes were separated at 40◦C. Later, this neutral volatiles were
introduced into the IMS ionization chamber to generate their
corresponding ions. The generation of ions of this IMS device
takes place due to the presence of an excess reagent whose
signal is called reactant ion peak (RIP) which is always registered
in the measurements. In positive polarity, the RIP consist on
hydrated protons generated due to the collision of primary

electrons emitted by the tritium source with nitrogen, and a
subsequent series of reactions. When one analyte (M) enters
into the ionization chamber, the corresponding ion is formed
due to the association of M to this hydrated proton resulting
in the displacement of water molecules (Jurado-Campos et al.,
2018). Then, the ions were separated in the drift tube working
at a constant temperature and voltage of 55◦C and 400 V cm−1,
respectively. A counter-current gas flow of nitrogen was also used
(drift gas) at a 250 mL min−1 rate. This flow is necessary to
eliminate neutral molecules in the drift tube and influences the
separation of ions in it. The values of different IMS parameters
were set at: 32 for average of scans for each spectrum acquired,
100 µs for grid pulse width, 21 ms for repetition rate and 150
kHz for sampling frequency. Finally, two-dimensional GC-IMS
data were acquired in positive mode, represented as topographic
plots in LAV software (version 2.0.0) from G.A.S. So that,
each individual signal or marker included in these 2D maps is
characterized by the retention time of the neutral compound in
the GC column, the drift time of the ion generated in the IMS
(the time that the swarm of ions spend traveling along the drift
tube) and its intensity value which depends on the concentration.
The intensity of each marker can be automatically obtained from
the topographic plots using LAV quantification module tool of
the software.

2.1.2. Datasets
We analyzed 292 olive oil samples from the 2014–2015 harvest
and 409 samples from the 2015-2016 harvest, henceforth named
datasets D1, and D2. For D1, the 292 olive oil samples are divided
in 98 EVOO, 159 VOO and 35 LOO samples. D2 harvest was
composed by 92 EVOO examples, 196 VOO and 121 LOO.

The structure of the dataset for harvest D1 and D2 is the
same, i.e., the datasets have a total of 118 attributes, with
113 being intensity of the markers (Contreras et al., 2019b)
and the remaining others indicate the identifier of the sample
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FIGURE 2 | Number of instances for each olive oil class in harvests from 2014 to 2016.

(“Name”), the class (EVOO, LOO, VOO) to which it belongs
(“Class”), the base value (“Baseline”), the position of the RIP
(“RIP Position”) and the maximum intensity of the RIP (“RIP
Height”) respectively.

2.2. Visualization
Before applying data analysis techniques it is important to know
the nature of the data. The stage of visualization undertakes this
task. In this section we provide some graphical information about
the dataset analyzed. In particular, two different visualizations
have been carried out: first, we show the proportion of each type
of olive oil sample using pie charts and second, we reported
results from principal component analysis to describe possible
partitions in the dataset.

Figure 2 reports the proportion of each type of olive oil
in the different harvests using a pie plot graphic. It can be seen
that the two harvests have very few instances of EVOO compared
to the last. For this reason we decided tomerge these harvests into
one. This union serves to improve the classification algorithm
results since the training set will have more instances. After this
union the distribution of instances is 190 EVOO, 355 VOO, and
156 LOO.

Furthermore, a principal component analysis (PCA) has been
carried out. This study aims at a priori determination of the
number of possible existing partitions. Figure 3 illustrates data

distribution into the first two components of PCA-analysis for

2014–2016 harvest. According to these figures there is not an a

priori clear separation among classes, and therefore we decide to
apply Deep Learning techniques to this problem. Deep learning

techniques are able to learn a meaningful latent space, i.e., find

and represent relationships among attributes that are not known
a priori and are suitable for the olive oil classification problem.

2.2.1. Preprocessing
Two fundamental tasks were carried out in the preprocessing

phase: the normalization of samples with respect to RIP Height

FIGURE 3 | PCA for the 2014–2016 harvest.

in order to reduce potential instrumental variations and auto-
scaling of markers that may improve the results obtained in the
classification task. First, the normalization is made by dividing
each of the values of markers for the maximum value of the RIP,
in order to work with more homogeneous data. Second, after
carrying out several tests, we found out that the auto-scaling
(sometimes also called, standardization, or z-transformation) of
markers resulted in slightly improved classification results. Thus,
each column of the dataset was auto-scaled, i.e., numeric columns
will have zero mean and unit variance. The equation used to do
this task is the following:

z1 =
xi − x̄

s
(1)
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FIGURE 4 | An example of and architecture of two hidden layers for a dataset with three attributes and two possible classes.

where:

• z1: marker auto-scaled,
• x1: marker we want to auto-scale,
• x̄: mean of the values for the marker,
• s: sample standard deviation.

2.2.2. Classification Task
For the classification task, a feed forward artificial neural network
was used. An artificial neural network is a computational learning
algorithm based on the architecture of the biological neural
networks of the brain (Gibson and Patterson, 2016). These
networks seek at finding a function that approximates data
input into a desired output (DeepAI contributors, 2018). The
architecture of an artificial neural network is determined by
three main elements, nodes, connections between nodes and
layers. Nodes are elements that try to model the neurons of
the biological brains. The connections between nodes, such as
synapses in brains, allow signals to be transmitted from one node
to another. The combination of neurons are called a layer, the
set of one or more layers constitutes the neural network. There
are three types of layers: input, hidden and output. The input
layer is composed of neurons that receive data of the problem
that is under study. In this case, the input layer obtains the data
of each of the features of the dataset, in our problem markers
of the harvests. The hidden layers are those between the input
and the output, so they do not have a direct connection to the
environment. The output layer is the one that is responsible
for providing the classification result obtained after applying
the learning algorithm. Depending on the number of layers and
the direction in which the information flows, several types of
neural networks can be distinguished (Larranaga et al., 2019). A
multilayer feed forward network (Gibson and Patterson, 2016)

has been used to classify olive oils in our study. Amultilayer feed-
forward network is a neural network with an input layer, one or
more hidden layers, and an output layer where each layer has one
or more artificial neurons as can be seen in Figure 4.

Input layer. This is the first layer of a feed forward neural
network. It receives the information of the problem, i.e., the input
dataset. The number of neurons in this layer is usually the same as
the number of attributes of the problem under study. Input layers
in classical feed-forward neural networks are fully connected to
the next hidden layer.

Hidden layer. The number of hidden layer in a feed forward
neural network depends on the problem. Hidden layers are in
charge of encoding and transporting the information extracted
from the dataset to the following layers. These layers are also the
key that allow neural networks to model non-linear functions.

Output layer. This layer is the one that allows to obtain the
prediction of the model on the data. Depending on the nature of
the problem, this prediction can be a real value (regression) or
a set of probabilities (classification). To obtain these values, the
corresponding activation function is chosen. In our case we have
chosen the softmax function that represents the distribution of
probability over K different outputs. In our example, the output
is a vector with three values (or two values depending on whether
the model is ternary or binary) that indicates the probability that
an example belongs to one class or another.

2.2.3. Validation
The previous study carried out on this same dataset (Contreras
et al., 2019b) used the accuracy as the validation metric. In order
to compare with the previous results we decided to take this
measure to validate the generated model. Accuracy is defined as
the percentage of correctly classified examples from the dataset.
To calculate it, it is necessary to take a look at the confusion
matrix. If we define two variables, P for the positive instances
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FIGURE 5 | Distribution of averages of each marker for each of the harvests.

and N for the negative ones, a confusion matrix is a table that
allows for the visualization of the performance of an algorithm,
typically a supervised learning one. It is a table with four different
combination values: the rows indicate the predicted values by
model and the columns represent the actual value of the class.

Taking into account the values of the confusion matrix, the
accuracy score can be defined as follows:

accuracy =
TP + TN

TP + FP + FN + TN
(2)

where:

• TP (True Positive): values correctly classified as positive.
• FP (False Positive): Predicted values with negative label but

which actually belong to the positive class.
• FN (False Negative): incorrectly predicted as negative values

because their real value is positive.
• TN (True Negative): correctly predicted values as negative

since they actually belong to the negative class.

In multi-class classification with N classes, the confusion matrix
has N*N different values and the accuracy score can be obtained
in two different ways by the one vs. all approach or by the one vs.
one. The one vs. all approach involves training a single classifier
per class, with the samples of that class as positive samples and
the remaining as negatives. Finally, accuracy is obtained as a
mean of each of the accuracy obtained individually for each
class. In the other hand, the one vs. one approach considers
each binary pair of classes and trains the classifier on a subset
of data containing those classes. During the classification task,
each classifier predicts one class, and the class which has been
predicted the most is the answer (voting scheme). In this case,
one vs. all methodology was used.

Due to the imbalance between the classes, we have also
decided to take into account other more appropriate measures:
sensitivity and specificity. This measures can be defined
as follows:

sensitivity =
TP

TP + FN
(3)

specificity =
TN

FP + TN
(4)

2.3. Software and Experimental Setting
The neural networks used in this study have been implemented
with the Keras library (Chollet et al., 2015). Keras is a high-
level neural networks API (application programming interface),
written in Python and capable of running on top of Tensorflow.
The standardization of the data as well as the division of the
training set in train and test has been carried out with the scikit-
learn library (Pedregosa et al., 2011). The selection of parameters
of the model for each of the harvests involved executing the
code as many times as the number of possible neurons in
the hidden layer. Due to the large amount of data available,
the executions were performed on an Intel machine, specifically
Intel(R) Core(TM) i7-8700 CPU@ 3.20 GHz, with 64 GB of RAM
and 12 cores. The source code with the different tests performed
in this study can be found in Vega (2019).

3. RESULTS

3.1. Preprocessing of the Data
First, a preprocessing step was performed, this step includes
two sub-processes: in the first place a normalization of the data
with respect to the maximum height of the RIP was carried
out, i.e., each one of the samples is divided by the maximum
value of intensity found in each one of them, in order to
avoid the variations that can be introduced by the instrumental
equipment used. Second, an auto-scaling of the data was carried
out since as a previous study (Han et al., 2003) showed that data
auto-scaling is a necessary step to improve final classification
results. Furthermore, LeCun et al. (2012) have shown that the
convergence of Deep Learning models is usually greater if the
mean of each of the variables of the training set is close to zero.
Because of this, we have auto-scaled the data in order to obtain
better results with Deep Learning techniques.

As we mentioned before, the chemical method used to obtain
the data from D1 and D2 are the same being the number of
markers equal for each case. Thus, after data auto-scaling, a union
of the datasets D1 and D2 was carried out in order to study them
as a whole, henceforth named D1–D2. We could observe in the
Figure 5 that the distribution of averages for each column of the
dataset were very similar between D1 and D2, which is another
motivation behind our decision to merge the two crops.
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3.2. Use of Deep Learning Models for
Classification of Olive Oil Samples
The capabilities of a neural network to make good predictions
depends on its architecture and its parameters, it is an essential
task to define a well structured network before implementing
the model. Parameters which define the model architecture are
known as hyperparameters and the process of assessing the
best configuration for those parameters is called hyperparameter
tuning (Diaz et al., 2017).

For the present study, multilayer and unidirectional (feed-
forward) neural networks have been used, with an input layer,
a hidden and an output layer, with a flow of information that run
from the entrance to the exit, only in one direction.

The first step was to improve the classification of the model
varying the values for the activation function and optimization
algorithm. The best results were obtained with Rectified Linear
Unit function (RELU) and Adam algorithm, respectively. The
second step was to choose the optimal number of hidden layers
for this particular problem. Finally, the number of the neurons
in the hidden layers was optimized. Taking as a guide the rules of
thumb (Heaton, 2008) and the geometric pyramid rule (Masters,
1993) that will be explained below, experiments were performed
for datasets D1–D2 as a whole. In each of these experiments
tests were made varying the number of neurons looking for the
number that provided the best results.

3.2.1. Choosing the Number of Hidden Layers
The universal approximation theorem (Csáji, 2001) states that a
feed-forward network with only a single hidden layer containing
a finite number of neurons can approximate continuous
functions as well as other interesting functions when appropriate
parameters are given. The use of more than one hidden layers are
better for complex datasets than involves time-series or computer
vision. The dataset of this study does not belongs to any of these
two categories, so we considered that one hidden layer is the
best approach.

3.2.2. Choosing the Number of Neurons in the

Hidden Layer
Deciding the correct number of hidden layers is only one part
of the problem. The correctness of the model also depends on
the number of the neurons in the hidden layers. There are
a lot of theorems that provide a first approximation for this
issue. The one selected for our research is called “geometric
pyramid rule” proposed by Masters in Masters (1993). Basically,
this rule asserts that there is no magic formula for selecting
the optimum number of hidden neurons although it provides a
rough approximation for different structure, e.g., for a three layer
network with n input and m output neurons, the hidden layer
would have

√
n×m neurons.

Besides the geometric pyramid rule, a few rules of thumb
methods (Heaton, 2008) have been considered for determining
an acceptable number like the following:

• The number of hidden neurons should be between the size of
the input layer and the size of the output layer.

TABLE 1 | Number of neurons chosen for the hidden layer.

2014–2016 (D1-D2)

Non-standardized Standardized

EVOO/VOO/LOO 32 40

EVOO/non-EVOO 10 3

LOO/non-LOO 68 53

• The number of hidden neurons should be 2/3 the size of the
input layer, plus the size of the output layer.

• The number of hidden neurons should be less than twice the
size of the input layer.

Taking into account these previous rules, we decided to train
the model for each of the possible combinations of neurons
considering the inputs and outputs of the neural network
according to the harvests under study: for D1-D2, tests were
carried out varying the neurons from 2 to 3 to 113 depending
on whether the model distinguishes between two classes (binary
model), that is, between lampante and no lampante (LOO/non-
LOO) or extra or no extra (EVOO/non-EVOO), or between three
(EVOO/VOO/LOO). The Table 1 shows among all the possible
values of neurons, the one that maximizes the accuracy value for
each of the tests. As it can be seen in this table, the number of
neurons for each case is completely different, there is no single
number that ensures the total quality of the model. Although this
process has been very time consuming, it is totally necessary since
it is the first time that Deep Learning techniques have been used
with these specific data, so it was convenient to see each one of the
cases. For future studies we propose training the neural network
with many more examples in order to further homogenize the
parameter selection of the model.

3.3. Training the Model
A train-test split method was used for the validation of themodel.
A training set containing 80% of the samples was used for the
calibration of the models and the remaining 20% of the samples
were used as a validation or blind test. The performance of the
neural network was shown by the accuracy score.

A total of 6 tests with the data from D1 to D2 has been carried
out. The models were tested with auto-scaled and non auto-
scaled data, as well as the division of tests according to the type
of oil. For each of the tests the optimum number of neurons in
the hidden layer has been calculated, so that for each test a model
has been made for each of the possible neurons in the hidden
layer according to the rules described above, specifically 110
iterations for the model that discriminates between the 3 classes
(the number of neurons must be between the output number and
the number of input neurons) and 111 for those that distinguish
between two classes.

3.3.1. Results Obtained for 2014–2016 Harvests
A total of 701 samples from 2014–2016 harvests were studied.
The Deep Learning model was built using 80% of these samples
(a total of 531 olive oil samples, of which 286 where VOO,
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TABLE 2 | Results obtained for 2014–2016 harvests.

Previous

results

Our Results Rate of

increase

(%)Non

standardized

Standardized

EVOO/VOO/LOO 74.29 80.71 81.42 9.59

EVOO/non-EVOO 85.72 88.57 90.00 4.99

LOO/non-LOO 90.71 94.28 95.00 4.72

149 EVOO, and 126 LOO) and the remaining 20% to evaluate
the model (69 VOO, 41 EVOO, and 30 LOO). To compare
our results to those obtained by Contreras et al. (2019b), we
have replicated each of their tests, obtaining 3 different models:
2 binary models and 1 ternary model. The first binary model
allows to differentiate between EVOO and non-EVOO examples,
the second model discriminates between LOO and non LOO,
and finally, the ternary model discriminates between all classes,
i.e., among EVOO, LOO, and VOO. As mentioned above, auto-
scaling seemed to be a good preprocessing task that should
be carried out with this dataset, so the three models obtained
have also been carried out in two different ways, first without
auto-scaling the data and second with auto-scaled data.

Table 2 shows the comparison of results between our study
and the existing previous study as well as the accuracy
increase ratio. We can observe that our results improve the
results obtained without auto-scaling (see column 2 and 3).
Furthermore, the part in which our results are shown verifies that
a previous preprocessing of the data is a good technique, as it
improves the results in comparison to those obtained without this
preprocessing. On the other hand, if we compare our results with
the previous results, we see a significant improvement for each of
the threemodels studied, with the rate of increase always positive.

3.4. Comparison to Other Methods
Ourmethodology has been compared to five different benchmark
methods: K-Nearest Neighbors (Altman, 1992), Support Vector
Machine (Boser et al., 1992), Decision Tree Classifier (Safavian
and Landgrebe, 1991), Logistic Regression (Scott et al., 1991)
and XGBoost (Chen and Guestrin, 2016). The data used for
comparison are the auto-scaled data, since the objective of this
comparison is to provide a comparative framework on the best
results obtained with the proposed methodology.

We have evaluated these methods for D1-D2 harvest data.
Firstly, for accuracy score (Table 3), in EVOO/VOO/LOOmodel,
among the five models used for comparison, XGBoost offers
the best performance. In the case of EVOO/non-EVOO model,
XGBoost is as good as k-NN. Lastly, LOO/non-LOO model
gets higher performance with Logistic Regression. Although the
results are quite satisfactory with benchmark algorithms, none
of the models achieves better results than our Deep Learning
proposal if we take into account the average of the three models
(last row). It can be seen that the best value (in bold) is always the
one in the first column, which is the one corresponding to Deep
Learning. Lastly, for sensitivity (Table 4) and specificity (Table 5)

TABLE 3 | Accuracy comparison with other methods for 2014–2016 (D1-D2)

harvests.

Deep

learning

SVM k-NN Tree Regressor XGBoost

EVOO/VOO/LOO 81.42 73.57 77.14 68.57 77.85 80.71

EVOO/non-EVOO 90.00 85.71 85.71 82.14 85.71 86.42

LOO/non-LOO 95.00 90.00 90.71 84.28 92.85 90.00

88.81 83.09 84.52 78.33 85.47 85.71

TABLE 4 | Sensitivity comparison with other methods for 2014–2016 (D1-D2)

harvests.

Deep

learning

SVM k-NN Tree Regressor XGBoost

EVOO/VOO/LOO 63.47 55.82 59.33 49.76 61.52 64.11

EVOO/non-EVOO 68.29 68.29 63.41 60.97 68.29 68.29

LOO/non-LOO 80.00 56.66 63.33 60.00 76.66 63.33

70.58 60.25 62.02 56.91 68.82 65.24

TABLE 5 | Specificity comparison with other methods for 2014–2016 (D1-D2)

harvests.

Deep

learning

SVM k-NN Tree Regressor XGBoost

EVOO/VOO/LOO 87.55 83.57 85.45 80.00 86.58 87.81

EVOO/non-EVOO 93.93 92.92 94.94 90.90 92.92 93.93

LOO/non-LOO 98.18 99.09 98.18 90.09 97.27 97.27

93.22 91.86 92.85 86.99 92.25 93.00

our proposal is the best if we also take into account the average of
the three models.

4. DISCUSSION

Deep Learning techniques are proving to be one of the best tools
when performing complex tasks that require expert knowledge
(Arel et al., 2010; LeCun et al., 2015). In this study we used
Deep Learning techniques to provide an automatic complement
to the panel test method. This is an essential task to avoid
fraud in the price and to know whether the olive oil is suitable
for consumption or not. This work has shown the feasibility
of a feed forward artificial neural networks-based model as a
classifier to differentiate EVOO, VOO, and LOO oil from GC-
IMS spectroscopy data.

The preprocessing step should be highlighted since the auto-
scaling of data has been a fundamental part of the study carried
out. This step has meant an improvement in the classification
algorithms as can be seen in Table 2.

This study also shows that the neural network architecture
must be different for each of the potential models. The fact that
the number of neurons in the hidden layer is different for each
of the models (binary or ternary) is not surprising; indeed, we
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would even say it is necessary, due the fact that the network must
be adapted to the input data.

Until now, the best works on oil classification (Contreras et al.,
2019b; Gonzalez-Fernandez et al., 2019) worked in a similar way
to our proposal: they first made a chemical treatment to obtain
the data, and then applied some mathematical model to carry out
the olive oil classification. The main advantage of our approach
is that there is a searching for the most suitable parameters, thus
achieving a better adaptation to the input data to achieve themost
accurate results.

One of the objectives of this work has been trying to improve
the results obtained by Contreras et al. (2019a) with D1 and D2
harvests. Considering that in that previous work they obtained
an accuracy of the 74.29% using techniques such as PCA and
OPLS-DA, our work, with an accuracy of 81.42%, has shown that
Deep Learning techniques are a very useful tool to classify olive
oil samples from GC-IMS data.

Additionally, regardless of the number of neurons used, the
best results are obtained for binary models, especially the model
that classify between LOO and non-LOO. This may be due to
the fact that in the case of the ternary model, the elements are
more difficult to split since the VOO is at the crossroads between
EVOO and LOO, which means that the separation between
classes is not so clear.

We have also studied the performance obtained by five
different benchmark methods: k-Nearest Neighbors, Support
Vector Machine, Logistic Regression, Decision Tree Classifier
and XGBoost. Although the performance of these algorithms is
satisfactory, in none of the cases they have improved our Deep
Learning approach.

Finally, some limitations of our study should be noted
and discussed. First, it is known that the success of a Deep
Learning algorithm lies in the amount of data available to
train. In this case, we have only a total of 701 examples.

For further studies, we propose to create synthetic data with
Conditional Generative Adversarial Networks as proposed in
Vega-Márquez et al. (2020). Lastly, another major problem we
have encountered is the imbalance between classes, in olive oil
industry is common to have more instances from VOO that LOO
and EVOO. In order to address this issue we propose to employ
Machine Learning algorithms as SMOTE (Chawla et al., 2002) to
balance classes.
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