
EDITED BY : Guang Chen, Pascual Campoy, Changhong Fu and Caixia Cai

PUBLISHED IN : Frontiers in Neurorobotics

NEW ADVANCES AT THE INTERSECTION
OF BRAIN-INSPIRED LEARNING AND
DEEP LEARNING IN AUTONOMOUS
VEHICLES AND ROBOTICS

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/research-topics/8712/new-advances-at-the-intersection-of-brain-inspired-learning-and-deep-learning-in-autonomous-vehicles
https://www.frontiersin.org/research-topics/8712/new-advances-at-the-intersection-of-brain-inspired-learning-and-deep-learning-in-autonomous-vehicles
https://www.frontiersin.org/research-topics/8712/new-advances-at-the-intersection-of-brain-inspired-learning-and-deep-learning-in-autonomous-vehicles
https://www.frontiersin.org/research-topics/8712/new-advances-at-the-intersection-of-brain-inspired-learning-and-deep-learning-in-autonomous-vehicles
https://www.frontiersin.org/research-topics/8712/new-advances-at-the-intersection-of-brain-inspired-learning-and-deep-learning-in-autonomous-vehicles

Frontiers in Neurorobotics 1 August 2020 | New Advances at the Intersection of Brain-Inspired Learning

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a

pioneering approach to the world of academia, radically improving the way scholarly

research is managed. The grand vision of Frontiers is a world where all people have

an equal opportunity to seek, share and generate knowledge. Frontiers provides

immediate and permanent online open access to all its publications, but this alone

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access,

online journals, promising a paradigm shift from the current review, selection and

dissemination processes in academic publishing. All Frontiers journals are driven

by researchers for researchers; therefore, they constitute a service to the scholarly

community. At the same time, the Frontiers Journal Series operates on a revolutionary

invention, the tiered publishing system, initially addressing specific communities of

scholars, and gradually climbing up to broader public understanding, thus serving

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely

collaborative interactions between authors and review editors, who include some

of the world’s best academicians. Research must be certified by peers before entering

a stream of knowledge that may eventually reach the public - and shape society;

therefore, Frontiers only applies the most rigorous and unbiased reviews.

Frontiers revolutionizes research publishing by freely delivering the most outstanding

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals

Series: they are collections of at least ten articles, all centered on a particular subject.

With their unique mix of varied contributions from Original Research to Review

Articles, Frontiers Research Topics unify the most influential researchers, the latest

key findings and historical advances in a hot research area! Find out more on how

to host your own Frontiers Research Topic or contribute to one as an author by

contacting the Frontiers Editorial Office: researchtopics@frontiersin.org

Frontiers eBook Copyright Statement

The copyright in the text of
individual articles in this eBook is the

property of their respective authors
or their respective institutions or

funders. The copyright in graphics
and images within each article may

be subject to copyright of other
parties. In both cases this is subject

to a license granted to Frontiers.

The compilation of articles
constituting this eBook is the

property of Frontiers.

Each article within this eBook, and
the eBook itself, are published under

the most recent version of the
Creative Commons CC-BY licence.

The version current at the date of
publication of this eBook is

CC-BY 4.0. If the CC-BY licence is
updated, the licence granted by

Frontiers is automatically updated to
the new version.

When exercising any right under the
CC-BY licence, Frontiers must be

attributed as the original publisher
of the article or eBook, as

applicable.

Authors have the responsibility of
ensuring that any graphics or other
materials which are the property of

others may be included in the
CC-BY licence, but this should be

checked before relying on the
CC-BY licence to reproduce those

materials. Any copyright notices
relating to those materials must be

complied with.

Copyright and source
acknowledgement notices may not
be removed and must be displayed

in any copy, derivative work or
partial copy which includes the

elements in question.

All copyright, and all rights therein,
are protected by national and

international copyright laws. The
above represents a summary only.

For further information please read
Frontiers’ Conditions for Website

Use and Copyright Statement, and
the applicable CC-BY licence.

ISSN 1664-8714
ISBN 978-2-88963-971-7

DOI 10.3389/978-2-88963-971-7

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/research-topics/8712/new-advances-at-the-intersection-of-brain-inspired-learning-and-deep-learning-in-autonomous-vehicles
mailto:researchtopics@frontiersin.org
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/

Frontiers in Neurorobotics 2 August 2020 | New Advances at the Intersection of Brain-Inspired Learning

NEW ADVANCES AT THE INTERSECTION
OF BRAIN-INSPIRED LEARNING AND
DEEP LEARNING IN AUTONOMOUS
VEHICLES AND ROBOTICS

Topic Editors:
Guang Chen, Tongji University, China
Pascual Campoy, Polytechnic University of Madrid, Spain
Changhong Fu, Tongji University, China
Caixia Cai, Agency for Science, Technology and Research (A*STAR), Singapore

Citation: Chen, G., Campoy, P., Fu, C., Cai, C., eds. (2020). New Advances at the
Intersection of Brain-Inspired Learning and Deep Learning in Autonomous Vehicles
and Robotics. Lausanne: Frontiers Media SA. doi: 10.3389/978-2-88963-971-7

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/research-topics/8712/new-advances-at-the-intersection-of-brain-inspired-learning-and-deep-learning-in-autonomous-vehicles
http://doi.org/10.3389/978-2-88963-971-7

Frontiers in Neurorobotics 3 August 2020 | New Advances at the Intersection of Brain-Inspired Learning

04 Robust Learning Control for Shipborne Manipulator With Fuzzy Neural
Network

Zhiqiang Xu, Wanli Li and Yanran Wang

15 Mobile Robot Path Planning Based on Ant Colony Algorithm With
A* Heuristic Method

Xiaolin Dai, Shuai Long, Zhiwen Zhang and Dawei Gong

24 Neural Network Based Uncertainty Prediction for Autonomous Vehicle
Application

Feihu Zhang, Clara Marina Martinez, Daniel Clarke, Dongpu Cao and
Alois Knoll

41 SVM-Based Classification of sEMG Signals for Upper-Limb Self-Rehabilitation
Training

Siqi Cai, Yan Chen, Shuangyuan Huang, Yan Wu, Haiqing Zheng, Xin Li and
Longhan Xie

51 Toward a Brain-Inspired System: Deep Recurrent Reinforcement Learning
for a Simulated Self-Driving Agent

Jieneng Chen, Jingye Chen, Ruiming Zhang and Xiaobin Hu

60 Deep Recurrent Neural Networks Based Obstacle Avoidance Control
for Redundant Manipulators

Zhihao Xu, Xuefeng Zhou and Shuai Li

73 A Novel Model for Arbitration Between Planning and Habitual Control
Systems

Farzaneh Sheikhnezhad Fard and Thomas P. Trappenberg

86 From Rough to Precise: Human-Inspired Phased Target Learning
Framework for Redundant Musculoskeletal Systems

Junjie Zhou, Jiahao Chen, Hu Deng and Hong Qiao

100 Robust Event-Based Object Tracking Combining Correlation Filter
and CNN Representation

Hongmin Li and Luping Shi

111 An Investigation of Vehicle Behavior Prediction Using a Vector Power
Representation to Encode Spatial Positions of Multiple Objects and
Neural Networks

Florian Mirus, Peter Blouw, Terrence C. Stewart and Jörg Conradt

Table of Contents

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/research-topics/8712/new-advances-at-the-intersection-of-brain-inspired-learning-and-deep-learning-in-autonomous-vehicles

ORIGINAL RESEARCH
published: 04 April 2019

doi: 10.3389/fnbot.2019.00011

Frontiers in Neurorobotics | www.frontiersin.org 1 April 2019 | Volume 13 | Article 11

Edited by:

Caixia Cai,

Agency for Science, Technology and

Research (A*STAR), Singapore

Reviewed by:

Yingbai Hu,

Technische Universität München,

Germany

Dawei Gong,

Juilliard School, United States

*Correspondence:

Wanli Li

1710213@tongji.edu.cn

Received: 14 January 2019

Accepted: 13 March 2019

Published: 04 April 2019

Citation:

Xu Z, Li W and Wang Y (2019) Robust

Learning Control for Shipborne

Manipulator With Fuzzy Neural

Network. Front. Neurorobot. 13:11.

doi: 10.3389/fnbot.2019.00011

Robust Learning Control for
Shipborne Manipulator With Fuzzy
Neural Network
Zhiqiang Xu, Wanli Li* and Yanran Wang

School of Mechanical Engineering, Tongji University, Shanghai, China

The shipborne manipulator plays an important role in autonomous collaboration between

marine vehicles. In real applications, a conventional proportional-derivative (PD) controller

is not suitable for the shipborne manipulator to conduct safe and accurate operations

under ocean conditions, due to its bad tracing performance. This paper presents a

real-time and adaptive control approach for the shipbornemanipulator to achieve position

control. This novel control approach consists of a conventional PD controller and fuzzy

neural network (FNN), which work in parallel to realize PD+FNN control. Qualitative and

quantitative tests of simulations and real experiments show that the proposed PD+FNN

controller achieves better performance in comparison with the conventional PD controller,

in the presence of uncertainty and disturbance. The presented PD+FNN eliminates the

requirements for precise tuning of the conventional PD controller under different ocean

conditions, as well as an accurate dynamics model of the shipborne manipulator. In

addition, it effectively implements a sliding mode control (SMC) theory-based learning

algorithm, for fast and robust control, which does not require matrix inversions or

partial derivatives. Furthermore, simulation and experimental results show that the angle

compensation deviation of the shipborne manipulator can be improved in the range

of ±1◦.

Keywords: shipborne manipulator, real-time adaptive control, conventional PD controller, fuzzy neural network,

sliding mode control, experiment verification

1. INTRODUCTION

The shipborne manipulator has become the most important tool in achieving autonomous cargo
reloading between marine vehicles. With the use of the shipborne manipulator, onboard physical
labor can be greatly reduced. However, unpredictable ship motion has a great impact on the
maneuverability of the manipulator in real applications due to the complexity of the marine
environment. If the sea state reaches Level-4, i.e., the height of a sea wave is larger than 1.52
m and wind speed exceeds 10.8 m/s, arm movement of the manipulator is extremely limited
because of the influence of sling inertia and non-linear ship pose variation. In this case, the
operational capacity of the manipulator is reduced by more than 50% or the manipulator is even
temporarily suspended.

For the shipborne manipulator, changing boom inclination is realized through the expansion
and contraction of its amplitude cylinder. The energy-saving and vibration-damping function
of its accumulator is of great significance for improving manipulator control. In literature,
the cylinder-accumulator in a manipulator has been studied in different types of engineering
applications (Xiao et al., 2014; Shen et al., 2015; Zhao et al., 2017; Xia et al., 2018).

4

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2019.00011
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2019.00011&domain=pdf&date_stamp=2019-04-04
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:1710213@tongji.edu.cn
https://doi.org/10.3389/fnbot.2019.00011
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00011/full
http://loop.frontiersin.org/people/642104/overview

Xu et al. Robust Learning Control for Manipulator

FIGURE 1 | Cylinder control strategy with the intervention of an accumulator, (A) is the joints of manipulator, (B) is the flow direction indication, (C) is the hydraulic

system diagram with control signals.

Specifically, the accumulator is a key component in the design
of hydraulic hybrid structures, which ensures acceptable shock
absorption performance and system energy consumption. Its
different designs are used in other construction machines such
as a rock drill (Yang et al., 2017), Scraper (Junke and Zhen, 2017),
and Fast Forging Press (Zhang et al., 2016). However, there are
few investigations related to the influence of the accumulator
on the valve control system. According to the valve-controlled
cylinder-accumulator model, the accumulator is used as an
energy-saving and oil damping source in parallel with the rodless
cavity of the amplitude cylinder. Figure 1 shows the details of
connecting the accumulator with the cylinder.

In literature, the conventional PD controller is often used to
control different types of manipulators (Cervantes and Alvarez-
Ramirez, 2001; Alvarez-Ramirez et al., 2003; Su et al., 2010).
However, it is not suitable for controlling the hydraulic system
discussed in this work, due to its high-order non-linearity,
time-varying and hysteresis characteristics. It cannot control the
hydraulic system in time and is vulnerable to environmental
interference. Additionally, a significant steady-state error still
exists, even if plenty of time is used to tune the appropriate

values for the conventional PD controller. In order to control the
manipulator, calculating torque is the simplest control approach,
but this approach relies on the accurate mechanical model of
the system. To overcome this issue, the model-free approach has
gained respectable attention since it does not require the precise
model of the system and ismore robust in response to uncertainty
and disturbance.

The fuzzy logic controller (FLC) is widely applied to handle
uncertainty and disturbance in many systems (Hasanien and
Matar, 2015; Dabbaghjamanesh et al., 2016; Vaidyanathan and
Azar, 2016), especially in different kinds of robots (Fu et al., 2013;
Tai et al., 2016; Sarabakha et al., 2018). However, the FLC also
requires a lot of time in order to tune the proper parameters to
achieve a satisfied control performance. Recently, the FLC has
been combined with an artificial neural network (ANN), i.e.,
fuzzy neural network (FNN), to overcome the aforementioned
weakness of the FLC. In literature, the FNN has been successfully
applied in identification and non-linear system controlling (Lin
et al., 2015; Tang et al., 2017; He and Dong, 2018). At the same
time, the sliding mode control (SMC) theory-based algorithm
has been presented as a faster learning approach for tuning

Frontiers in Neurorobotics | www.frontiersin.org 2 April 2019 | Volume 13 | Article 115

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xu et al. Robust Learning Control for Manipulator

the FNN parameters, due to its faster convergence speed and
higher robustness to uncertainty and disturbance (Lin et al.,
2014). Moreover, the FNN, trained with the SMC theory-based
algorithm, has been successfully used in controlling a spherical
rolling robot (Kayacan et al., 2013), a robotic arm (Wai and
Muthusamy, 2013), and a gyroscope (Yan et al., 2017).

In this work, an FNN is proposed to work in parallel with
a conventional PD controller to achieve a PD+FNN controller.
It not only overcomes the original defects of conventional PD
control but also significantly enhances self-learning abilities and
adaptabilities. In order to validate the proposed control strategy,
simulation and experimental tests have been implemented. The
qualitative and quantitative results show that the presented
strategy is feasible and practical. In addition, it outperforms the
conventional PD controller. The main contributions of this work
are listed below:

• Designing a novel control strategy for real-time control
of shipborne manipulator. The presented control strategy
consists of a conventional PD controller and FNN, which
combines a fuzzy logic controller and artificial neural network.

• Developing online adaptation laws to eliminate the
requirement for precise tuning of the controller in the
shipborne manipulator.

• Qualitative and quantitative tests in the simulation and real
experiments have been conducted to evaluate the control
performance of the presented PD+FNN control strategy.

The organization of this paper is as follows: In section 2, the
dynamic model of the shipborne manipulator is introduced. In
section 3, the PD+FNN control strategy is described. In section
4, different simulation tests are conducted in order to verify the
proposed control strategy. In section 5, the real experimental tests
on the swaying platform are performed to validate the proposed
controller. Finally, conclusions are drawn in section 6.

2. DYNAMIC MODEL

Table 1 shows the simulation parameters. Figure 2 shows the
flow direction of the oil. The accumulator is linked with the
rodless cavity of the cylinder. When the cylinder extends,
the accumulator and the valve supply oil to the cylinder
simultaneously, making the cylinder stretch out faster. The
coupling dynamics model of the parallel accumulator of the
valve-controlled cylinder system is established based on the flow
continuity equation and the dynamic equation.

2.1. Cylinder Dynamic Equation
The cylinder dynamic equation can be obtained by ignoring the
cylinder cavity pressure, which is defined as:

pA = mt ẍ+ BPẋ+ kzx , (1)

where p denotes the working pressure, N/m2; A denotes the
action area of rodless cavity, m2; mt denotes the mass of the
piston, kg; x denotes the displacement of pistol, m; BP denotes
the viscosity damping coefficient, N · s/m; kz denotes the spring
stiffness, N/m.

FIGURE 2 | Connection schematic diagram of valve and accumulator.

2.2. Cylinder Flow Equation
The cylinder flow continuity equation is:

QL = Aẋ+ Cip , (2)

where Ci denotes the internal leakage coefficient, m5/N · s; QL

denotes the total flow into rodless cavity of cylinder,m3/s, which
is defined as:

QL = Q1 + QX , (3)

where Q1 denotes the oil flow from valve, m3/s; QX denotes the
oil flow from the accumulator,m3/s. Accumulator energy release
process can be regarded as interference according to Gaussian
distribution, i.e.,:

QX = N
(

µv, σ
2
v

)

, (4)

where µv and σv are the mean value and the standard deviation
of the accumulator output flow, respectively.

2.3. Valve Flow Equation
The spool flow is a function of the working pressure and the
displacement of the spool. The spool can be viewed as a zero-
open four-way spool valve. The valve flow equation is defined as
follows:

Q1 = Cdwxv

√

2

ρ

(

pS − p1
)

= kqxv , (5)

whereCd denotes the flow coefficient of valve;w denotes the valve
area gradient, m2/m; xv denotes the displacement of valve core,
m; xv = kv ·µ, kv denotes the spool scale factor;µ denotes current
signal; ρ denotes the oil density, kg/m3; ps denotes the system
pressure, N/m2; p1 denotes the pressure of the rodless cavity,
N/m2; kq denotes the flow gain coefficient,m2/s, which is defined
as:

kq = Cdw

√

2

ρ

(

pS − p1
)

, (6)

Frontiers in Neurorobotics | www.frontiersin.org 3 April 2019 | Volume 13 | Article 116

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xu et al. Robust Learning Control for Manipulator

FIGURE 3 | Presented PD+FNN control strategy for shipborne manipulator.

Assume that the state of the system is x1 = x, x2 = ẋ, the
dynamic model of the valve-controlled cylinder system can be
defined as follows:

ẋ1 = x2
ẋ2 = θ1x1 + θ2x2 + gµ + d
x = x1

, (7)

where

θ1 = −
kz
mt

θ2 = −

(

A2+CiBP
mtCi

)

g =
kqkvA

mtCi

d =
N(µv ,σ

2
v)A

mtCi

. (8)

3. PD+FNN CONTROL STRATEGY

3.1. Overview of Control Strategy
Figure 3 shows the presented PD+FNN control strategy, in which
the conventional PD controller works in parallel with the fuzzy-
neuro controller, as the FNN block shows in Figure 3. The PD
controller is utilized to not only trace the target value by system
error, i.e., e = xpref − xp, but also to provide learning errors
to train the FNN online. The FNN is supposed to improve the
control accuracy and offset the effects of system interference.

3.2. Fuzzy Neural Network Construction
The proposed FNN consists of two input signals, i.e., x1 = e and
x2 = ė, and one output signal xf . Takagi-Sugeno-Kang (TSK)
fuzzy model (Lin et al., 2015; Precup et al., 2015) is used in
which the antecedent part is the fuzzy set and the consequent
part consists of only crisp numbers. The rth rule of a zero-order
TSK model with two input variables x1 and x2 can be defined
as follows:

IF x1 isM1i and x2 isM2j , THEN fij = dij , (9)

where fij is the time-varying parameter of the consequent part.
dij is the coefficient of the output function for the rth rule,
and M1i and M2j are fuzzy sets. Therefore, the inputs can be
represented as µ1i and µ2j, respectively. The firing strength of

the rth rule is computed as the T-norm (multiplication) of the
member functions (MFs) in the antecedent part (Imanberdiyev
and Kayacan, 2018):

Wij = µ1i(x1)µ2j(x2) , (10)

The output signal of the system can be derived using the
normalized values of the firing strength W̃ij with the following
form (Biglarbegian et al., 2010):

uf =

I
∑

i=1

J
∑

j=1

fijW̃ij , (11)

where J and I represent the number of MFs for x2 and x1,
respectively. W̃ij is expressed as follows:

W̃ij =
Wij

∑I
i=1

∑J
j=1Wij

. (12)

Overall control input u to the system is defined as follows:

xv = xc − xf , (13)

where xc and xf are the control signals produced by the PD
controller and the FNN controller, respectively.

3.3. Triangular Fuzzy MFs
In the FNN, the fuzzyMFs play the important role of overcoming
environmental interference. These MFs have already shown
promising results for control (Khanesar et al., 2015) and
identification (Khanesar et al., 2011) purposes. In this work,
typical triangular fuzzy MFs are chosen in order to achieve a
faster and robust control performance. The MF is defined as
follows:

µ(x) =

{ (

1−
∣

∣

x−c
d

∣

∣

)

if c− d < x < c+ d

0 otherwise
, (14)

where x is the input, d and c are the width and the center of the
MF. The stability proof can be found in Kayacan and Khanesar
(2015) according to sliding mode control theory.

Frontiers in Neurorobotics | www.frontiersin.org 4 April 2019 | Volume 13 | Article 117

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xu et al. Robust Learning Control for Manipulator

3.4. Sliding Mode Control Theory-Based
Training Approach
In this paper, SMC based parameter update rules are proposed
to guarantee the stability of the system and provide favorable
robustness. By utilizing the principles of the SMC theory, the zero
dynamics of the learning error coordinate xc(t) can be described
as a time-varying sliding surface Sc in the following form:

Sc(xf , xv) = xc(t) = xf (t)+ xv(t) = 0 . (15)

If this condition is satisfied, the FNN structure is trained
to become the non-linear regulator which assists the parallel
controller (in our case PD controller), and the desired
performance of the system can be obtained. Therefore, the sliding
surface for the non-linear system under control is given by

Sp(e, ė) = ė+ χe , (16)

with χ > 0 being a positive parameter which defines the desired
trajectory of the error signal.

The time-varying parameter of the consequent part
ḟij is updated based on the following adaptation law
(Kayacan and Khanesar, 2015):

ḟij = −
W̃ij

∏T ∏

αsign(xc), (17)

where

∏

=

I
∑

i=1

J
∑

j=1

W̃ij

 , (18)

the learning rate α > 0 is updated based on the following
equation:

α̇ = |xc| , (19)

The adaptation law for the premise part is given as follows
(Kayacan and Khanesar, 2015):

ċ1i = −γ1
∣

∣d1i
∣

∣ (1− T1i) sgn (x1 − c1i) × H
(

x1, c1 − d1, c1 + d1
)

,

(20)

ḋ1i = −γ1
(1− T1i)

∣

∣d1i
∣

∣

|x1 − c1i|
sgn

(

d1i
)

×H
(

x1, c1 − d1, c1 + d1
)

,

(21)

ċ2i = −γ1
∣

∣d2j
∣

∣

(

1− T2j
)

sgn (x2 − c2i) × H
(

x2, c2 − d2, c2 + d2
)

,

(22)

ḋ2i = −γ1

(

1− T2j
)
∣

∣d2j
∣

∣

∣

∣x1 − c2j
∣

∣

sgn
(

d2j
)

×H
(

x2, c2 − d2, c2 + d2
)

,

(23)

where

H(x, c, d) =

{

x if c− d < x < c+ d
0 otherwise

, (24)

T1,i =

∣

∣

∣

x1−ci
di

∣

∣

∣

T2,i =

∣

∣

∣

x2−ci
di

∣

∣

∣

. (25)

For the γ1, it needs to be selected as positive (Kayacan and
Khanesar, 2015).

4. SIMULATION AND RESULTS ANALYSIS

4.1. Simulation Parameter
The control gains for the PD controller are chosen as follows:
kp = 10, kd = 5.

4.2. Simulation Results
Table 1 shows the simulation parameters. Figures 4–7 shows
the simulation results without noise. The adaptive learning
capabilities of the PD+FNN structure can provide superior
performance in different conditions. It is able to solve limitations
such as the lack of modeling and existing uncertainties in
the environment and is therefore more suitable for real-time
applications.

As seen from Figure 4, the PD+FNN controller has a faster
and more stable response performance. Figure 5 shows that the
controller has a better adaptive learning property to lessen the

TABLE 1 | Simulation parameters.

Parameter Description Value Unites

name

A action area of rodless cavity 6.36× 10−3 m2

mt mass of the piston 7.0 kg

BP viscosity damping coefficient 0.2 N·s/m

kz spring stiffness 8.0× 102 N/m

Ci leakage coefficient 5.1× 10−7 m5/N·s

kq flow gain coefficient 0.868 m2/s

kv proportional coefficient of core 10−3

FIGURE 4 | Tracking response of step signal.

Frontiers in Neurorobotics | www.frontiersin.org 5 April 2019 | Volume 13 | Article 118

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xu et al. Robust Learning Control for Manipulator

FIGURE 5 | Tracking response of sinusoidal signal.

FIGURE 6 | Euclidean error.

error gradually. As shown in Figure 6, although the PD controller
ensures the error signal is bounded in the neighborhood of
zero, significant steady-state errors that occur from internal or
external interferences cannot be eliminated. Compared to the
PD controller, the PD+FNN controller eliminates the steady-state
error.

Figure 7 shows curves of the overall signal (which is defined
as xv = xc − xf), the output of FNN (xf), and the output
of the conventional PD controller (xc). As seen in Figure 7,
the overall control signal is close to the conventional PD
controller at the beginning of the simulation, then the FNN
learns the dynamics of the system and takes responsibility for the
system. Simultaneously, the output of the PD controller tends to
go to zero.

As discussed in the section 2.2, the accumulator energy
release process can be regarded as interference according to

FIGURE 7 | Control signals of PD+FNN.

Gaussian distribution. In order to create different noise levels,
four different mean values of the accumulator output flow are
chosen, i.e., µv = {100, 150, 200, 300} [L/min]. For the standard
deviation, it is selected as σv = 70 L/min.

Figure 8 shows the manipulator position errors under PD
controller with the noise level from 0.12 to 0.24 m.

Figure 8 shows that the PD controller cannot handle
steady-state errors that occur from internal or external
interferences. However, the PD+FNN controller can
eliminate steady-state errors through an adaptive learning
algorithm, and can be used in a real time control to cope
with noisy measurements and uncertainties in the system
more effectively.

Figure 9 shows the output signals of PD+FNN in different
levels of noise. Figure 9, shows that the overall control signal is
determined by the FNN controller, and the output signal from
PD tends to be close to zero. Therefore, the FNN learns the

Frontiers in Neurorobotics | www.frontiersin.org 6 April 2019 | Volume 13 | Article 119

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xu et al. Robust Learning Control for Manipulator

FIGURE 8 | Euclidean error in different levels of noise, (A) is µv = 100 L/min, σv = 70 L/min, (B) is µv = 150 L/min, σv = 70 L/min, (C) is µv = 200 L/min,

σv = 70 L/min, (D) is µv = 300 L/min, σv = 70 L/min.

FIGURE 9 | Output signals of PD+ FNN in different levels of noise, (A) is µv = 100 L/min, σv = 70 L/min, (B) is µv = 150 L/min, σv = 70 L/min, (C) is

µv = 200 L/min, σv = 70 L/min, (D) is µv = 300 L/min, σv = 70 L/min.

Frontiers in Neurorobotics | www.frontiersin.org 7 April 2019 | Volume 13 | Article 1110

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xu et al. Robust Learning Control for Manipulator

FIGURE 10 | Experimental equipment, (A) is the main equipment, (B) is the relationships between sensors and the control unit.

dynamics of the system and ultimately takes responsibility for
the system.

5. EXPERIMENTAL VERIFICATION

5.1. Introduction of Experimental
Equipment
The crane experimental model was placed on a swaying table
to simulate the sea state. The relationship between each part of
manipulators is shown in Figure 10.

The sensor and controller parameters are shown in Table 2.

5.2. Analysis of Step Signal Response
The test results are shown in Figure 11 with the step
extension signal.

The release process of the accumulator is shown in
Figure 11. When the cylinder is extended, the accumulator
releases the oil non-linearly. The cylinder protrudes quickly,
and the extension time is about 0.25 s. The color block
diagram on the right side of Figure 11 shows that the
energy release rate of the accumulator is significantly
correlated to the rodless chamber pressure and the cylinder
extension speed.

5.3. Experimental Strategy and Data
Analysis
The swaying table was controlled with a sinusoidal signal
in the frequency of 0.11Hz and an amplitude of ±7◦. The
comparison experiment of automatic wave compensation was
performed using a PD algorithm and PD+FNN to control the
angular at 0◦.

Figure 12 shows the wave compensation results of the
conventional PD controller. During the wave compensation
process, the cylinder pressure is stable, and the fluctuation
range is approximately 90–105 Bar. However, the expansion
and contraction movement of the cylinder is irregular due
to the vicious cycle caused by the accumulator intervening.

TABLE 2 | Parameters of components.

Name Content Parameters

Crane
Weight /kg 4.8× 103

Maximum system pressure /Nm 1.8× 107

Luffing mechanism

Maximum operating range /m 1.5

Maximum working velocity /m·s-1 1

The pitching angle /◦ −20 ∼ 58

Maximum lifting weight /kg 1.25× 103

Accumulator

Model type Bladder

Volume /m3 6.3× 10−3

Pre-charge pressure /Nm 6× 106

Cylinder Bore-rod /mm 90–45

Pressure sensor

Range /Nm 0− 6× 108

Response time /ms < 2

Accuracy 0.3%

Linearity ≤ 0.5%

Flow sensor
Range /m3·h-1 0.2–1.2

Accuracy ±1% Range

The performance of the cylinder control varies greatly, and
the delay is severe. The wave compensation angle error
is ±3◦. Figure 13 shows that the accumulator flow output
is irregular.

Figure 14 shows the experimental results of the PD+FNN
controller. The optimization strategy effectively solves the speed
shock caused by the accumulator. The cylinder control signal is
consistent with the motion of the swinging table, which largely
reduces the vibration of the cylinder. The wave compensation
effect has been improved, and the angle compensation deviation
is stable at±1◦.

Frontiers in Neurorobotics | www.frontiersin.org 8 April 2019 | Volume 13 | Article 1111

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xu et al. Robust Learning Control for Manipulator

FIGURE 11 | Outstretch simulation of step signal, (A) is the fluctuation diagram, (B) is the output flow of the cylinder under different angle change rates.

FIGURE 12 | Compensation test with PD strategy.

FIGURE 13 | Accumulator output flow with PD strategy.

Figure 15 shows the highest value of the accumulator flow
output concentrated in the negative angle of the cylinder
(cylinder extension).

6. CONCLUSION

In this work, a novel control strategy, i.e., PD+FNN approach,
is designed to control a shipborne manipulator. Specifically,
it is able to handle the high-order non-linearity, time-varying
and hysteresis characteristics of the valve-controlled cylinder
under the intervention of the accumulator. In addition, it
can solve the overshoot generated by the wave compensation
process when the accumulator releases energy and the cylinder
reacts quickly in the extended stage. Moreover, the presented
control strategy is capable of solving the problem of pressure
fluctuation. The control precision is improved compared to
using a conventional PD controller. Qualitative and quantitative
tests on the simulation and real experiments have shown that
the proposed controller is capable of significantly reducing

Frontiers in Neurorobotics | www.frontiersin.org 9 April 2019 | Volume 13 | Article 1112

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xu et al. Robust Learning Control for Manipulator

FIGURE 14 | Compensation test with PD+FNN strategy.

FIGURE 15 | Accumulator output flow with PD+FNN strategy.

steady state-errors and in overcoming the disturbances caused
by the accumulator and uncertainties. The deviation angle
of compensation is ±1◦ instead of ±3◦ compared to the
conventional PD controller. We believe that the results of this
work will motivate a wider use of the proposed PD+FNN
approach, for autonomous collaboration of marine vehicles with
a shipborne manipulator.

DATA AVAILABILITY

All datasets generated for this study are included in the
manuscript and/or the supplementary files.

AUTHOR CONTRIBUTIONS

ZX and WL conceived and designed the experiments. YW
performed the experiments. ZX and YW analyzed the data and
wrote the paper.

REFERENCES

Alvarez-Ramirez, J., Kelly, R., and Cervantes, I. (2003). Semiglobal stability of

saturated linear pid control for robot manipulators. Automatica 39, 989–995.

doi: 10.1016/S0005-1098(03)00035-9

Biglarbegian, M., Melek, W. W., and Mendel, J. M. (2010). On the stability of

interval type-2 tsk fuzzy logic control systems. IEEE Trans. Syst. Man Cybern. B

40, 798–818. doi: 10.1109/TSMCB.2009.2029986

Cervantes, I., and Alvarez-Ramirez, J. (2001). On the pid tracking

control of robot manipulators. Syst. Control Lett. 42, 37–46.

doi: 10.1016/S0167-6911(00)00077-3

Dabbaghjamanesh, M., Moeini, A., Ashkaboosi, M., Khazaei, P., andMirzapalangi,

K. (2016). High performance control of grid connected cascaded h-

bridge active rectifier based on type ii-fuzzy logic controller with low

frequency modulation technique. Int. J. Electr. Comput. Eng. 6, 484–494.

doi: 10.11591/ijece.v6i2.9442

Fu, C., Olivares-Mendez, M. A., Campoy, P., and Suarez-Fernandez, R.

(2013). “Uas see-and-avoid strategy using a fuzzy logic controller optimized

by cross-entropy in scaling factors and membership functions,” in 2013

International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA:

532–541.

Hasanien, H. M., and Matar, M. (2015). A fuzzy logic controller for autonomous

operation of a voltage source converter-based distributed generation system.

IEEE Trans. Smart Grid 6, 158–165. doi: 10.1109/TSG.2014.2338398

He, W., and Dong, Y. (2018). Adaptive fuzzy neural network control for a

constrained robot using impedance learning. IEEE Trans. Neural Netw. Learn.

Syst. 29, 1174–1186.

Imanberdiyev, N., and Kayacan, E. (2018). A fast learning control strategy

for unmanned aerial manipulators. J. Intell. Robot. Syst. 90, 1–20.

doi: 10.1007/s10846-018-0884-7

Junke, H., and Zhen, C. (2017). “Research on lifting cylinder’s pressure stability

control method of active scraper,” in Mechanical, System and Control

Frontiers in Neurorobotics | www.frontiersin.org 10 April 2019 | Volume 13 | Article 1113

https://doi.org/10.1016/S0005-1098(03)00035-9
https://doi.org/10.1109/TSMCB.2009.2029986
https://doi.org/10.1016/S0167-6911(00)00077-3
https://doi.org/10.11591/ijece.v6i2.9442
https://doi.org/10.1109/TSG.2014.2338398
https://doi.org/10.1007/s10846-018-0884-7
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xu et al. Robust Learning Control for Manipulator

Engineering (ICMSC), 2017 International Conference on, Saint Petersburg,

250–254.

Kayacan, E., Kayacan, E., Ramon, H., and Saeys, W. (2013). Adaptive neuro-

fuzzy control of a spherical rolling robot using sliding-mode-control-

theory-based online learning algorithm. IEEE Trans. Cybern. 43, 170–179.

doi: 10.1109/TSMCB.2012.220290

Kayacan, E., and Khanesar, M. A. (2015). Fuzzy Neural Networks for Real Time

Control Applications: Concepts, Modeling and Algorithms for Fast Learning

(Butterworth-Heinemann), Londan.

Khanesar, M. A., Kayacan, E., Reyhanoglu, M., and Kaynak, O. (2015). Feedback

error learning control of magnetic satellites using type-2 fuzzy neural

networks with elliptic membership functions. IEEE Trans. Cybern. 45, 858–868.

doi: 10.1109/TCYB.2015.2388758

Khanesar, M. A., Kayacan, E., Teshnehlab, M., and Kaynak, O. (2011). “Levenberg

marquardt algorithm for the training of type-2 fuzzy neuro systems with a novel

type-2 fuzzy membership function,” in Advances in Type-2 Fuzzy Logic Systems

(T2FUZZ), 2011 IEEE Symposium on, Paris, 88–93.

Lin, F.-J., Hung, Y.-C., and Ruan, K.-C. (2014). An intelligent second-

order sliding-mode control for an electric power steering system using

a wavelet fuzzy neural network. IEEE Trans. Fuzzy Syst. 22, 1598–1611.

doi: 10.1109/TFUZZ.2014.2300168

Lin, F.-J., Lu, K.-C., Ke, T.-H., Yang, B.-H., and Chang, Y.-R. (2015). Reactive

power control of three-phase grid-connected pv system during grid faults using

takagi–sugeno–kang probabilistic fuzzy neural network control. IEEE Trans.

Indus. Electron. 62, 5516–5528. doi: 10.1109/TIE.2015.2407851

Precup, R.-E., Sabau, M.-C., and Petriu, E. M. (2015). Nature-inspired

optimal tuning of input membership functions of takagi-sugeno-kang fuzzy

models for anti-lock braking systems. Appl. Soft Comput. 27, 575–589.

doi: 10.1016/j.asoc.2014.07.004

Sarabakha, A., Fu, C., Kayacan, E., and Kumbasar, T. (2018). Type-2 fuzzy logic

controllers made even simpler: from design to deployment for UAVs. IEEE

Trans. Indus. Electron. 65, 5069–5077. doi: 10.1109/TIE.2017.2767546

Shen, W., Jiang, J., Su, X., and Karimi, H. R. (2015). Control strategy

analysis of the hydraulic hybrid excavator. J. Franklin Inst. 352, 541–561.

doi: 10.1016/j.jfranklin.2014.04.007

Su, Y., Muller, P. C., and Zheng, C. (2010). Global asymptotic saturated pid control

for robot manipulators. IEEE Trans. Control Syst. Technol. 18, 1280–1288.

doi: 10.1109/TCST.2009.2035924

Tai, K., El-Sayed, A.-R., Biglarbegian, M., Gonzalez, C., Castillo, O., and Mahmud,

S. (2016). Review of recent type-2 fuzzy controller applications. Algorithms 9,

39. doi: 10.3390/a9020039

Tang, J., Liu, F., Zou, Y., Zhang, W., and Wang, Y. (2017). An improved

fuzzy neural network for traffic speed prediction considering periodic

characteristic. IEEE Trans. Intell. Transport. Syst. 18, 2340–2350.

doi: 10.1109/TITS.2016.2643005

Vaidyanathan, S., and Azar, A. T. (2016). Takagi-sugeno fuzzy

logic controller for liu-chen four-scroll chaotic system.

Int. J. Intell. Eng. Informatics 4, 135–150. doi: 10.1504/

IJIEI.2016.076699

Wai, R.-J., and Muthusamy, R. (2013). Fuzzy-neural-network inherited sliding-

mode control for robot manipulator including actuator dynamics. IEEE

Trans. Neural Netw. Learn. Syst. 24, 274–287. doi: 10.1109/TNNLS.2012.

2228230

Xia, L., Quan, L., Ge, L., and Hao, Y. (2018). Energy efficiency analysis

of integrated drive and energy recuperation system for hydraulic

excavator boom. Energy Convers. Manage. 156, 680–687. doi: 10.1016/

j.enconman.2017.11.074

Xiao, Y., Guan, C., and Lai, X. (2014). Research on the design and

control strategy for a flow-coupling-based hydraulic hybrid excavator. Proc.

Inst. Mech. Eng. D J. Automobile Eng. 228, 1675–1687. doi: 10.1177/

0954407013502326

Yan, W., Hou, S., Fang, Y., and Fei, J. (2017). Robust adaptive nonsingular

terminal sliding mode control of mems gyroscope using fuzzy-neural-

network compensator. Int. J. Mach. Learn. Cybern. 8, 1287–1299.

doi: 10.1007/s13042-016-0501-7

Yang, S.-Y., Ou, Y.-B., Guo, Y., and Wu, X.-M. (2017). Analysis and optimization

of the working parameters of the impact mechanism of hydraulic rock drill

based on a numerical simulation. Int. J. Precis. Eng. Manufact. 18, 971–977.

doi: 10.1007/s12541-017-0114-4

Zhang, Q., Fang, J., Wei, J., Xiong, Y., and Wang, G. (2016).

Adaptive robust motion control of a fast forging hydraulic press

considering the nonlinear uncertain accumulator model. Proc. Inst.

Mech. Eng. I J. Syst. Control Eng. 230, 483–497. doi: 10.1177/

0959651816628994

Zhao, P.-Y., Chen, Y.-L., and Zhou, H. (2017). Simulation analysis

of potential energy recovery system of hydraulic hybrid excavator.

Int. J. Precis. Eng. Manufactur. 18, 1575–1589. doi: 10.1007/

s12541-017-0187-0

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Xu, Li and Wang. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 11 April 2019 | Volume 13 | Article 1114

https://doi.org/10.1109/TSMCB.2012.220290
https://doi.org/10.1109/TCYB.2015.2388758
https://doi.org/10.1109/TFUZZ.2014.2300168
https://doi.org/10.1109/TIE.2015.2407851
https://doi.org/10.1016/j.asoc.2014.07.004
https://doi.org/10.1109/TIE.2017.2767546
https://doi.org/10.1016/j.jfranklin.2014.04.007
https://doi.org/10.1109/TCST.2009.2035924
https://doi.org/10.3390/a9020039
https://doi.org/10.1109/TITS.2016.2643005
https://doi.org/10.1504/IJIEI.2016.076699
https://doi.org/10.1109/TNNLS.2012.2228230
https://doi.org/10.1016/j.enconman.2017.11.074
https://doi.org/10.1177/0954407013502326
https://doi.org/10.1007/s13042-016-0501-7
https://doi.org/10.1007/s12541-017-0114-4
https://doi.org/10.1177/0959651816628994
https://doi.org/10.1007/s12541-017-0187-0
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

METHODS
published: 16 April 2019

doi: 10.3389/fnbot.2019.00015

Frontiers in Neurorobotics | www.frontiersin.org 1 April 2019 | Volume 13 | Article 15

Edited by:

Caixia Cai,

Agency for Science, Technology and

Research (A∗STAR), Singapore

Reviewed by:

Wenchao Gao,

Institute for Infocomm Research

(A∗STAR), Singapore

Ran Duan,

Hong Kong Polytechnic University,

Hong Kong

Bonan Huang,

Northeastern University, China

*Correspondence:

Dawei Gong

pzhzhx@126.com

Received: 20 December 2018

Accepted: 25 March 2019

Published: 16 April 2019

Citation:

Dai X, Long S, Zhang Z and Gong D

(2019) Mobile Robot Path Planning

Based on Ant Colony Algorithm With

A∗ Heuristic Method.

Front. Neurorobot. 13:15.

doi: 10.3389/fnbot.2019.00015

Mobile Robot Path Planning Based
on Ant Colony Algorithm With A∗

Heuristic Method
Xiaolin Dai 1,2, Shuai Long 1, Zhiwen Zhang 1 and Dawei Gong 1,2*

1 School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu, China, 2Center of

Robot, University of Electronic Science and Technology of China, Chengdu, China

This paper proposes an improved ant colony algorithm to achieve efficient searching

capabilities of path planning in complicated maps for mobile robot. The improved ant

colony algorithm uses the characteristics of A∗ algorithm and MAX-MIN Ant system.

Firstly, the grid environment model is constructed. The evaluation function of A∗ algorithm

and the bending suppression operator are introduced to improve the heuristic information

of the Ant colony algorithm, which can accelerate the convergence speed and increase

the smoothness of the global path. Secondly, the retraction mechanism is introduced

to solve the deadlock problem. Then the MAX-MIN ant system is transformed into local

diffusion pheromone and only the best solution from iteration trials can be added to

pheromone update. And, strengths of the pheromone trails are effectively limited for

avoiding premature convergence of search. This gives an effective improvement and

high performance to ACO in complex tunnel, trough and baffle maps and gives a better

result as compare to traditional versions of ACO. The simulation results show that the

improved ant colony algorithm is more effective and faster.

Keywords: path planning, ant colony algorithm, A∗ algorithm, bending suppression, retraction mechanism

INTRODUCTION

Path planning is a key issue in the field of mobile robot research. Its main purpose is to find an
optimal or suboptimal, safe and collision-free path from the starting point to the target point in the
environment with obstacle (Cheng et al., 2010; Deepak et al., 2012; Zhou et al., 2013). According
to the degree of intelligence in the process of path planning, mobile robot path planning can be
divided into traditional path planning and intelligent path planning. The traditional path planning
algorithm includes simulated annealing algorithm (Miao and Tian, 2013), potential function theory
(Cetin and Yilmaz, 2014; Nair et al., 2015), fuzzy logic algorithm (Li et al., 2013; Jiang and Li, 2014;
Bakdi et al., 2016) and so on. However, these traditional methods can’t be further improved in path
search efficiency and path optimization. Intelligent path planning algorithm includes Ant Colony
Optimization (ACO) (Jovanovic et al., 2016; Wang et al., 2016), genetic algorithm (Arantes et al.,
2017; Lin et al., 2017), neural network (He et al., 2016a, 2017a,b) and particle swarm algorithm (Das
et al., 2016; Song et al., 2016) and so on. The ant colony algorithm has the advantages of strong
robustness, good global optimization ability and inherent parallelism. Moreover, it easily combines
with multiple heuristic algorithms to improve the performance of algorithms. So it is widely used
in path planning.

15

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2019.00015
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2019.00015&domain=pdf&date_stamp=2019-04-16
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:pzhzhx@126.com
https://doi.org/10.3389/fnbot.2019.00015
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00015/full
http://loop.frontiersin.org/people/660620/overview
http://loop.frontiersin.org/people/676742/overview

Dai et al. Mobile Robot Path Planning

However, due to the randomness of probabilistic transfer
and the inappropriateness of pheromone intensity update, the
traditional ACOwill easily fall into the local optimum and tend to
poor convergence. To this end, many scholars delivered a variety
of improved methods to solve problems regarding pheromone
update and path search strategy (Stützle and Hoos, 2000; Zeng
et al., 2016; Zhao et al., 2016; Zhang et al., 2017). In Stützle
and Hoos (2000), an Ant Colony System (ACS) algorithm was
proposed to speed up the convergence rate of ACO by updating
pheromones on the path of the optimal ant of each generation. In
Zhao et al. (2016), by adaptively changing the volatilization rate
and adjusting the pheromone updating formula, the search ability
of the ant colony and the convergence rate of the algorithm were
improved. In Zhao et al. (2016), some intelligent algorithm was
proposed to generate an initial path, which can be transformed
into the initial pheromone distribution to avoid blind search of
ant colony. In Zhang et al. (2017), the path information (such
as the crowded path and the steep path weight) was added into
the initial pheromone matrix, which could affects the efficiency
of the algorithm. In Zhao et al. (2016), the heuristic function
was adjusted to improve the convergence rate of the algorithm
according to the target point. In Zeng et al. (2016), it unlimited
step length of finding optimal path so that the improved ACO
could find a shorter path and its convergence was better. In
addition, many scholars have combined the ant colony algorithm
with other (intelligent) algorithms (He et al., 2016b; Liu et al.,
2016; Yen and Cheng, 2016; He and Zhang, 2017) to improve the
convergence rate and the smooth of path. In Liu et al. (2016), the
geometric method was used to optimize path. Also in Liu et al.
(2016), the force factor in the artificial potential field method
is transformed into local diffusion pheromone to improve the
ability of the ant colony algorithm to find the obstacle. In Yen
and Cheng (2016), the fuzzy ant colony optimizationmethod was
proposed to minimize the iterative learning error.

In this paper, an effective version of ant colony algorithm
is achieved. It utilizes the evaluation function of A∗ algorithm
to improve the heuristic information of Ant colony algorithm,
which accelerates the convergence speed during the search. And
MAX–MIN Ant System is used to make the global search ability
better by updating the path pheromone of the optimal network.
At the same time, the bending suppression operator is introduced
to improve heuristic information, which aims to optimize the
smoothness of the path. The problem of deadlock is solved by
using the retraction mechanism. All these procedures not only
give an effective improvement and better performance to ACO,
but also give the best results as compare to traditional versions of
the algorithm (Zhao et al., 2016) and ACO in complex tunnel,
trough and baffle maps. The simulation results show that the
proposed algorithm is effective and fast.

MATERIALS AND METHODS

Environment Model
The work environment is built by using the grid model, which
divides the robot working space into N∗N squares. As shown in
Figure 1, the gray grids are represented as obstacles (the grid with
barriers) and the white grids are represented as free grid squares

FIGURE 1 | Environment model.

(the robot canmove). In order to identify obstacles, the white grid
cell is represented by 0 and the gray grid unit is represented by 1.
The grid method is simple and effective to create and maintain
grid model. Moreover, the grid method have strong adaptability
for obstacle. This method is convenient for computer storage
and processing.

The grid model was placed into two-dimensional coordinate
system. And then serial number method is adopted to mark each
grid. In N∗N grid map, the starting node is named after Start
and the target node is named afterGoal. The position coordinates
(

x, y
)

corresponding to any grid whose grid number isR as follow:

x =

{

mod (R,N)− 0.5 if mod (R,N)! = 0
N +mod (R,N)− 0.5 otherwise

y = N + 0.5− ceil
(

R
N

)

(1)

Where mod is the surplus operation, ceil rounds the elements to
the nearest integers toward infinity.

Ant Colony Algorithm
Heuristic Strategy With Direction Information
In the traditional ACO, the probability of the next node is selected
by roulette wheel method as follows:

Pkij (t) =

(τij(t))
α
·(ηij(t))

β

∑

s∈allowk
(τis(t))

α ·(ηis(t))
β s ∈ allowk

0 s /∈ allowk

(2)

ηij (t) =
1

dij

dij =

√

(xj − xi)
2 + (yj − yi)

2

Where τij is the pheromone trail of the path grid i to grid j, and
ηij is the heuristic information of the path grid i to grid j. α is the
stimulating factor of pheromone concentration which determine
the relative influence of the pheromone trail. β is the stimulating

Frontiers in Neurorobotics | www.frontiersin.org 2 April 2019 | Volume 13 | Article 1516

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Dai et al. Mobile Robot Path Planning

factor of visibility which determine the relative influence of the
heuristic information. dij is the distance between node i and node
j. (xi, yi) and (xj, yj) is the coordinates of grid i and grid j. allowk is
the collection of grids which ants can choose when ants in the grid
i (in other words, they are the grids around the grid i except the
obstacle grid and taboo grid).

Coverage and Updating Strategy
According to the traditional ACO, the next node is decided by the
roulette wheel method and it is repeated until the target point is
obtained. After each iteration is completed, pheromone trails are
updated in line with the length of path planning. For each trial
during pheromone update, all imperfect pheromones evaporates
and only the best pheromones are updated to trials history,
because it enables ants to neglect all substandard pheromone
trails and improve its coverage efficiency to find a shorter path.
Formula (3) is used to update the pheromone quantity on each
vertex at the end of each cycle:

τij = (1− ρ) τij +1τij

1τij =
m
∑

k=1

1τ kij , 0 < ρ < 1
(3)

wherem is the number of ants. ρ is pheromone evaporation rate.
1τ kij represents the value of pheromone that the ant k leaves in

the path of grid i to grid j. This article uses the ant-cycle-system
model, and1τ kij is defined as follows:

1τ kij
(

k
)

=

{

Q1/Lk (t) if arc
(

i, j
)

is used by k in iteration t
0 otherwise

(4)

Where Q1 is a constant. LK (t) is the length of the path that the
ant k is looking for.

Improved Ant Colony Algorithm
The traditional ACO has the following shortcomings: Due to the
lack of initial pheromone and the unapparent difference of the
heuristic value between adjacent grids, it usually requires a longer
search time, which leads to the slow convergence rate. When grid
model is complex, the robot maybe fall into a deadlock state in
which the robot cannot move to the surrounding grids. In the
gridmap, the path planning with traditional ACOmay havemore
bending times and big cumulative bending angle. To solve the
above problems, this paper makes the following improvements.

Heuristic Information Based on A∗ Algorithm
A∗ algorithm (Duchon et al., 2014) is the most effective direct
search method for solving the shortest path in static road
network. It is developed on the basis of Dijkstra algorithm,
which can avoid blind search to improve search efficiency. In this
paper, A∗ algorithm is used as the heuristic information of path
searching to improve the convergence speed of the algorithm
and obtain the better path. The bending suppression operator is
added to the heuristic information to reduce bending times and
cumulative bending angle.

The heuristic cost of A∗ algorithm is expressed by the
estimated function, and the estimated function equation f (n) is
as follows:

f (n) = g (n)+ h (n) (5)

h (n) =
(

(

nx − gx
)2

+
(

ny − gy
)2

)1/2

g (n) =
(

(nx − sx)
2 +

(

ny − sy
)2

)1/2

where g(n) is the minimum cost from the source node to the
current node. h(n) is the minimum cost from the current node to
the destination node. nx and ny are the coordinates of the current
node n . gx and gy are the coordinates of the target node g, sx,

and sy are the coordinates of the initial node s.
The estimated function of A∗ algorithm is used as heuristic

information to search for global optimal path in ant colony
algorithm, and the bending suppression operator is added to the
heuristic value of ant colony algorithm to reduce the number
of bending times and the large cumulative turning angle. The
improved heuristic information formula is as follows:

ηij (t) =
Q2

h (n)+ g (n)+ cost(bend)
(6)

cost
(

bend
)

= ϕ · turn+ ψ · thita

where Q2 is a constant more than 1. cost(bend) is a bending
suppression operator. turn is the number of turns from node
n− 1(previous node) to node n+ 1 (next node). thita is the angle
between the line segment of node n− 1 to node n (current node)
and the line segment of node n to node n+ 1. ϕ is the coefficient
converting turning times into grid length. ψ is the coefficient
converting angle into grid length.

Solve the Deadlock Problem
When the robot environment is more complex (especially the
ants go into the environment of concave obstacles), due to the
presence of the taboo table, the ants may fall into a deadlock state
without the next grid to move. As shown in Figure 2, when the
ant travels from the grid T to the grid S, the next optional grid is
C. At this time, the ant is trapped in a deadlock state and it cannot
move to its surrounding grid.

For the deadlock problem, Wang and Yu (2011) adopted
the early death strategy, which deleted the ants trapped in a
deadlock state from the ant colony and did not update the global
pheromone. However, when more of the ants are trapped in the
deadlock state, the number of ants that can reach the goal is
significantly reduced, which results in a decrease in the diversity
of solutions and is not conducive to the search of optimal path
for ants. In this paper, the improvement measure is that the ants
adopt retraction mechanism when they fall into the deadlock
state. As shown in Figure 2, the ant, which has walked into
the grid, is trapped in the deadlock state, and the improved
strategy allows the ant to roll back one step and updates the
taboo table information. If the ant is still trapped into a deadlock
state, the ant will continue to rollback untill grid T. At this
moment, the ant escapes the deadlock area. Since the deadlock

Frontiers in Neurorobotics | www.frontiersin.org 3 April 2019 | Volume 13 | Article 1517

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Dai et al. Mobile Robot Path Planning

FIGURE 2 | Deadlock state diagram.

edge may be the part of global optimal path, no pheromone
punishment is carried out on the deadlock edge. The retraction
mechanism cannot prevent ants from entering a deadlock state,
but it lets the deadlocked ants return back to the previous
grid until there is a feasible grid around the ants, so the ACO
with the retraction mechanism has higher efficiency and fewer
iterations. The ACO with the retraction mechanism and without
the retraction mechanism is compared in section The Retraction
Mechanism Results Analysis below.

Max–Min Ant System
As the traditional ant colony algorithm may cause premature
convergence and precocious phenomenon, it needs to improve
algorithm to solve these problem. The MAX-MIN Ant System
(MMAS) (Stützle and Hoos, 2000) can solve these problems well.

(1) Pheromone trail updating. After each iteration trial, the
pheromone is submitted into update history in traditional
ant colony algorithm. While in the MMAS, only the path
pheromone of the optimal network is updated after the iteration
is completed. Accordingly, the modified pheromone trail update
rule is stated by:

τij (t + 1) = (1− ρ) τij (t)+1τ
best
ij (7)

1τ kij (t) =
Q1

Lbest
+

Q3

Cbest
turn

Cbest
turn = ω1Cals

(

l
)

+ ω2Turns
(

l
)

ω1 =
Vrobot

Wrobot

ω2 = Vrobot × ta

where Q3 is a constant more than 1.Lbest denotes to the shortest
path currently found by the algorithm. Cals(l) represents the sum
of all the angles of turning on the best optimized path. Turns(l)
is the sum of the turns on the best optimized path. w1 and w2

represent different weight coefficient and are set by analyzing
the robot’s structure and kinematics (Wu et al., 2013; Li et al.,
2017). The w1 and w2 can convert turning angle and turning
times into grid length, respectively.Vrobot represents the constant
speed of a mobile robot.Wrobot represents the angular speed of a
mobile robot as it turns. ta represents the time of acceleration and
deceleration as the mobile robot turns once.

(2) Pheromone trail limits. In order to avoid the situation that
the traditional ant colony algorithm may falls into local optimal
solution and loses the further search space ability by pheromone
accumulation, the pheromone trail of the MMAS is limited in the
upper limits and lower limits

[

Taumin,Taumax,

]

. The formula is:

Tau =

Taumin, Tau ≤ Taumin

Tau, Taumin < Tau ≤ Taumax

Taumax, Tau > Taumin

(8)

Aco Procedure
To sum up, specific steps of mobile robot path planning based on
the improved ant colony algorithm are as follows:

Step 1: The working environment is modeled by the grid
method, and the starting point start and the target point goal
of the mobile robot are given.
Step 2: Initialize the ant system. Set the number m of
ants, parameter α which determines the relative influence
of the pheromone trail, parameter β which determines the
heuristic value, the global pheromone volatilization coefficient
ρ, pheromone intensity Q1 and other related parameters.
Step 3: Update taboo table. Place the ant k (k = 1, 2, · · · ,m)
on the current node and add the current node to the
corresponding taboo table.
Step 4: Process deadlock. According to the taboo table, it will
judge whether ants are trapped in a deadlock state. If the
ants are in a deadlock state, the retraction mechanism will be
adopted and the deadlock node will be added to the taboo
table. Conversely, it will judge whether the ants reach the target
point. If the ants reach the target point, it will turn to Step 6,
otherwise it will turn to Step 5.
Step 5: Select the next grid. It will calculate the heuristic
function according to formula (6), and calculate the
probability function according to formula (2). Finally, it
will use the roulette method to select the next feasible grid. If
the ants reach the target grid, it will turn to Step 6, otherwise
it will turn to Step 3.
Step 6: If the ants reach the target node, it will repeat Step 3
until each ant completes the search target during its iteration
process and then turn to Step 7.
Step 7: Update pheromone. After each iteration, if the
number of iterations satisfies inequality N ≤ Nmax, it
will update the path pheromone and determine whether it
meets the convergence conditions. If it meets the convergence
conditions, it will withdraw. If it does not meet, it will turn
to Step 3. If the number of iterations satisfies inequality N >

Nmax, it will be not counted further. The final result is output
as long as the end condition is satisfied.

Frontiers in Neurorobotics | www.frontiersin.org 4 April 2019 | Volume 13 | Article 1518

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Dai et al. Mobile Robot Path Planning

The implementation process of improved ant colony algorithm is
as in Table 1.

RESULTS

In order to verify the effectiveness of the improved ant colony
algorithm, this paper uses MATLAB software to simulate. It
is more convincing to use comparative method to carry out
experiments under the same experimental conditions. In the
simulation, the main parameter values of the ACO should be
determined firstly. The main parameters include number of
ants, stimulating factor of pheromone concentration, stimulating
factor of visibility and pheromone evaporation coefficient.
Through parameter analysis method (Wu et al., 2010), the
relationship between each parameter and simulation results (path
length, number of iterations) can be obtained. According to the
relationship between each parameter and simulation results (Shi
et al., 2014), we can get the value of the main parameters in the
ACO. In the simulation, value of each parameter in the ACO is as
in Table 2:

Comparative Analysis of Path
Planning Algorithms
The experiment was divided into four parts according to four
types of maps(the common map, the tunnel map, the trough
map and the baffle map) and three algorithms (the traditional
ant colony algorithm, the algorithm (Zhao et al., 2016) and

TABLE 1 | Description of ACO algorithm for solving path planning.

Algorithm A*MMAS

Begin

create grid environment

initialize the ant colony system

Repeat

for each ant k do

if grid i ∈ allowk then

if grid i ∈ taboodeadlock then

fallback

end if

according to formula (2) and (6) select next grid j

Update taboo

end if

Update pheromone on each iteration by improved MMAS method according to

formula (7) and (8)

Until algorithm convergence

Return best grid serial number

END

TABLE 2 | Values of the main parameters in the ACO.

Number of ants

m

Stimulating

factor of

pheromone

concentration

α

Stimulating

factor of

visibility

β

Pheromone

evaporation

coefficient

ρ

Pheromone

intensity

Q

50 1 5 0.5 10

the improved ant colony algorithm proposed in this paper) are
simulated on each map in turn. The convergence speed, shortest
path length and bending suppression effect of those algorithms
are compared.

(1) Example 1. In this example, the environment of the
robot was built into the 20∗20 grid model and the three
algorithms are tested on the commonmap. The coordinates
of grid Start and grid Goal is (0.5, 19.5) and (19.5, 0.5)
(shown in Figure 3), respectively.

(2) Example 2. In this example, the environment of the
robot was built into the 30∗30 grid model and the three
algorithms are tested on the tunnel map. The coordinates of
grid Start and grid Goal is (0.5, 8.5) and (15.5, 18.5) (shown
in Figure 4), respectively.

(3) Example 3. In this example, the environment of the
robot was built into the 40∗40 grid model and the three
algorithms are tested on the troughmap. The coordinates of
grid Start and grid Goal is (5.5, 34.5) and (28.5, 5.5) (shown
in Figure 5), respectively.

(4) Example 4. In this example, the environment of the
robot was built into the 20∗20 grid model and the three
algorithms are tested on the baffle map. The coordinates
of grid Start and grid Goal is (0.5, 14.5) and (14.5, 14.5)
(shown in Figure 6), respectively.

As shown in Figure 3, the optimized path length of the
improved ant colony algorithm is 29.2133 and the number
of bending times is 6. The improved ant colony algorithm
is basically as same as the path planning effect of the ant
colony algorithm (Zhao et al., 2016) on the path length,
but it is 25% lower on bending times than the ant colony
algorithm (Zhao et al., 2016). Compared with the traditional
ant colony algorithm, it is 73% reduction in the number of
bending times.

As shown in Figure 4, the optimized length of the improved
ant colony algorithm is 37.3849, and the number of bending
times is 7. In the shortest path length, the improved ant colony
algorithm is basically as same as the algorithm (Zhao et al., 2016).
In the number of bending times, it is 50% decrease than the
traditional ant colony algorithm and is 22% decrease than the
algorithm (Zhao et al., 2016).

As shown in Figure 5, the optimized path length of the
improved ant colony algorithm is 51.1128. In Figure 6, the
optimized path length of the improved ant colony algorithm
is 50.7280. But in Figures 5, 6, both the traditional ant colony
algorithm and the algorithm (Zhao et al., 2016) can’t search the
global optimized path. Even as the scale of the problem expands
and the environment map becomes more and more complex, the
improved algorithm can still perform very well.

The results of the three algorithms that run 100 times in
same map environments are shown in Table 3. Compared with
the traditional ant colony algorithm and the algorithm (Zhao
et al., 2016), the improved algorithm has a good performance
on the efficiency. At the same time, it has a good adaptability
in a complicated area. The improved algorithm proposed in
this paper can be used not only in the path planning of mobile
robots, but also in the path planning of robot manipulators
(Yang et al., 2017, 2018).

Frontiers in Neurorobotics | www.frontiersin.org 5 April 2019 | Volume 13 | Article 1519

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Dai et al. Mobile Robot Path Planning

FIGURE 3 | The test results of three algorithms run on common map. (A) Simulation results in 20*20 grid. (B) Convergence curve.

FIGURE 4 | The test results of three algorithms run on tunnel map. (A) Simulation results in 30*30 grid. (B) Convergence curve.

FIGURE 5 | The test results of three algorithms run on trough map. (A) Simulation results in 40*40 grid. (B) Convergence curve. (Other two algorithms is failed in

trough map).

The Retraction Mechanism
Results Analysis
In order to show the function of retraction mechanism, the
ACO with the retraction mechanism and ACO without the

retractionmechanism are tested on the troughmap and the baffle

map, respectively.
As shown in Figures 7A, 8A, ACO with the retraction

mechanism has higher efficiency and fewer iteration than ACO

Frontiers in Neurorobotics | www.frontiersin.org 6 April 2019 | Volume 13 | Article 1520

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Dai et al. Mobile Robot Path Planning

FIGURE 6 | The test results of three algorithms run on baffle map. (A) Simulation results in 20*20 grid. (B) Convergence curve. (Other two algorithms is failed in

trough map).

TABLE 3 | Test results for three algorithms under different maps.

Map Algorithm Optimal solution

of the algorithm

The average of the

shortest distance

Average

iteration times

Average time-

consuming(sec)

Number of

bends

Common map À 37.4143 38.6335 40 9.22 22

Á 29.2133 29.4506 33 7.26 10

Â 29.2133 29.3807 12 4.89 10

Tunnel map À 38.2133 38.6325 47 26.92 17

Á 37.3849 38.4813 35 20.62 12

Â 37.3849 38.1262 16 17.97 10

Trough map À – – – – –

Á – – – – –

Â 51.1128 51.8471 40 88.20 13

Baffle map À – – – – –

Á – – – – –

Â 50.7280 51.0605 15 8.40 13

À: The traditional ant colony algorithm.

Á: The algorithm [20]. Â: the improved ant colony algorithm.

without the retraction mechanism. When ants fall into deadlock
state, the retraction mechanism is used to replace the early death
strategy, which avoids a large number of ant deaths in one
iteration. Therefore, each ant can obtain a path by using the
retraction mechanism, which increases the diversity of results
and is beneficial to find the optimal path. As shown in Figures 7B,
8B, the number of ant retracted in the initial stage of the
algorithm is higher than in the middle and later stage of the
algorithm and the retraction mechanism can effectively suppress
the decline of the number of ants.

DISCUSSION

This paper makes a valuable contribution to the improvement of
ant colony algorithm in complicated maps for the mobile robot,
especially the improvement on convergence speed, shortest path
length and bending suppression effect. The estimated function
of improved A∗ algorithm is used as the heuristic function to
improve search efficiency and smoothness of path. By employing
the retraction mechanism and the improved MAX–MIN Ant

System method, the problem of ant deadlock is solved and the
global search ability of the algorithm is improved.

Three algorithms are researched on path planning in the
common map, tunnel map, trough map and baffle map,
respectively. Compared with the traditional ant colony algorithm
and the algorithm (Zhao et al., 2016), the improved ant colony
algorithm is better in the convergence rate and the bending
suppression effect. Compared with the traditional ant colony
algorithm, the improved ant colony algorithm hasmore than 65%
reduction in number of iterations and 41% decrease in bending
suppression. In addition, the improved ant colony algorithm is
54% lower than the algorithm (Zhao et al., 2016) in number of
iterations. To sum up, this paper proves the effectiveness, rapidity
and adaptability of the improved ant colony algorithm in the
complex map environment.

AUTHOR CONTRIBUTIONS

XD and DG proposed the innovation and designed the
experiment in this study. ZZ and SL performed the simulation
experiment and analyzed the experiment results. XD checked the

Frontiers in Neurorobotics | www.frontiersin.org 7 April 2019 | Volume 13 | Article 1521

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Dai et al. Mobile Robot Path Planning

FIGURE 7 | The test results of two algorithms run on trough map. (A) Path planning comparison. (B) Ant retraction number curve.

FIGURE 8 | The test results of two algorithms run on baffle map. (A) Path planning comparison. (B) Ant retraction number curve.

results. SL wrote the manuscript and DG provided writing advice
of manuscript.

FUNDING

This work was supported by the National Natural Science
Foundation of China (61603076) (51305066), Fundamental
Research Funds for the Central Universities (ZYGX2016J116),

and Science and Technology Support Program of Sichuan
Province (2016GZ0198).

ACKNOWLEDGMENTS

We acknowledge the support of the School of Mechatronics
Engineering and Center of Robot in University of Electronic
Science and Technology of China.

REFERENCES

Arantes, J. D., Arantes, M. D., Toledo, C. F., Júnior, O. T., and Williams,

B. C. (2017). Heuristic and genetic algorithm approaches for UAV path

planning under critical situation. Int. J. Artificial Intelligence Tools 26, 1–30.

doi: 10.1142/S0218213017600089

Bakdi, A., Hentout, A., Boutami, H., Maoudj, A., Hachour, O., and Bouzouia,

B. (2016). Optimal path planning and execution for mobile robots using

genetic algorithm and adaptive fuzzy-logic control. Robot. Autonomous Syst.

89, 95–109. doi: 10.1016/j.robot.2016.12.008

Cetin, O., and Yilmaz, G. (2014). Sigmoid limiting functions and

potential field based autonomous air refueling path planning for

UAVs. J. Intelligent Robot. Syst. 73, 797–810. doi: 10.1007/s10846-013-

9902-y

Cheng, C. T., Fallahi, K., Leung, H., and Tse, C. K. (2010). An AUVs

path planner using genetic algorithms with a deterministic crossover

operator. IEEE Int. Conference Robot. Automat. 2010, 2995–3000.

doi: 10.1109/ROBOT.2010.5509335

Das, P. K., Behera, H. S., and Panigrahi, B. K. (2016). A hybridization

of an improved particle swarm optimization and gravitational search

Frontiers in Neurorobotics | www.frontiersin.org 8 April 2019 | Volume 13 | Article 1522

https://doi.org/10.1142/S0218213017600089
https://doi.org/10.1016/j.robot.2016.12.008
https://doi.org/10.1007/s10846-013-9902-y
https://doi.org/10.1109/ROBOT.2010.5509335
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Dai et al. Mobile Robot Path Planning

algorithm for multi-robot path planning. Swarm Evol. Comput. 28, 14-28.

doi: 10.1016/j.swevo.2015.10.011

Deepak, B. B. V. L., Parhi, D. R., and Kundu, S. (2012). Innate immune based

path planner of an autonomous mobile robot. Procedia Eng. 38, 2663–2671.

doi: 10.1016/j.proeng.2012.06.313

Duchon, F., Babinec, A., Kajan, M., Beno, P., Florek, M., Fico, T., et al. (2014). Path

planning with modified A star algorithm for a mobile robot. Procedia Eng. 96,

59-69. doi: 10.1016/j.proeng.2014.12.098

He, W., Chen, Y., and Yin, Z. (2016a). Adaptive neural network control of an

uncertain robot with full-state constraints. IEEE Trans. Cybernet. 46, 620–629.

doi: 10.1109/TCYB.2015.2411285

He, W., Dong, Y., and Sun, C. (2016b). Adaptive neural impedance control of a

robotic manipulator with input saturation. IEEE Trans. Syst. Man Cybernet.

Syst. 46, 334–344. doi: 10.1109/TSMC.2015.2429555

He, W., Yan, Z., Sun, C., and Chen, Y. (2017a). Adaptive neural network control

of a flapping wing micro aerial vehicle with disturbance observer. IEEE Trans.

Cybernet. 47, 3452–3465. doi: 10.1109/TCYB.2017.2720801

He, W., Yin, Z., and Sun, C. (2017b). Adaptive neural network control of a marine

vessel with constraints using the asymmetric barrier lyapunov function. IEEE

Trans. Cybernet. 47, 1641–1651. doi: 10.1109/TCYB.2016.2554621

He, W., and Zhang, S. (2017). Control design for nonlinear flexible wings

of a robotic aircraft. IEEE Trans. Control Syst. Technol. 25, 351–357.

doi: 10.1109/TCST.2016.2536708

Jiang, K., and Li, C. G. (2014). Path planning based on fuzzy logic algorithm

for robots in hierarchical control. Appl. Mech. Mater. 644–650,701–704.

doi: 10.4028/www.scientific.net/amm.644-650.701-704

Jovanovic, R., Tuba, M., and Vo,ß, S. (2016). An ant colony optimization algorithm

for partitioning graphs with supply and demand. Appl. Soft Comput. 41,

317–330. doi: 10.1016/j.asoc.2016.01.013

Li, Q., Zhang, C., Han, C. W., Zhang, T., and Zhang, W. (2013).

Path planning based fuzzy logic algorithm for mobile robots in dynamic

environments. J. Central South Univ. Sci. Technol. 2013, 105–107.

doi: 10.1109/CCDC.2013.6561434

Li, W. H., Yang, C. G., Jiang, Y. M., and Su, C. Y. (2017). Motion planning

for omnidirectional wheeled mobile robot by potential field method. J. Adv.

Transport. 3, 1–11. doi: 10.1155/2017/4961383

Lin, D., Shen, B., Liu, Y., Alsaadi, F. E., Alsaedi, A., and Cheng, H. (2017).

Genetic algorithm-based compliant robot path planning: an improved

Bi-RRT-based initialization method. Assembly Automat. 37, 261–270.

doi: 10.1108/AA-12-2016-173

Liu, J. , Yang, J., Liu, H., Tian, X., and Gao, M. (2016). An improved

ant colony algorithm for robot path planning. Soft Comput. 1, 1–11.

doi: 10.1007/s00500-016-2161-7

Miao, H., and Tian, Y. C. (2013). Dynamic robot path planning using an

enhanced simulated annealing approach. Appl. Math. Comput. 222, 420–437.

doi: 10.1016/j.amc.2013.07.022

Nair, R. R., Behera, L., Kumar, V., and Jamshidi, M. M. (2015). Multisatellite

formation control for remote sensing applications using artificial potential

field and adaptive fuzzy sliding mode control. IEEE Syst. J. 9, 508–518.

doi: 10.1109/jsyst.2014.2335442

Shi, E., Chen, M., Li, J., and Huang, Y. (2014). Research on method of global path-

planning for mobile robot based on ant-colony algorithm. Trans. Chin. Soc.

Agri. Machinery 45, 53–57. doi: 10.6041/j.issn.1000-1298.2014.06.009

Song, B., Wang, Z., and Zou, L. (2016). On global smooth path planning for mobile

robots using a novel multimodal delayed PSO algorithm. Cogn. Comput. 9,

5–17. doi: 10.1007/s12559-016-9442-4

Stützle, T., and Hoos, H. H. (2000). MAX-MIN ant system. Fut. Gen. Comp. Syst.

16, 889–914. doi: 10.1016/S0167-739X(00)00043-1

Wang, D. S., and Yu, H. F. (2011). Path planning of mobile robot in dynamic

environments. Int. Conference Intelligent Control Info. Process. 2, 691–696.

doi: 10.1109/ICICIP.2011.6008338

Wang, P., Lin, H. T., and Wang, T. S. (2016). An improved ant colony system

algorithm for solving the IP traceback problem. Elsevier Science Inc. 326,

172–187. doi: 10.1016/j.ins.2015.07.006

Wu, J., Li, T., and Xu, B. (2013). Force optimization of planar 2-DOF

parallel manipulators with actuation redundancy considering deformation.

Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 227, 1371-1377.

doi: 10.1177/0954406212458055

Wu, J., Wang, J., and You, Z. (2010). An overview of dynamic parameter

identification of robots. Robot. Computer Integr. Manufacturing 26, 414–419.

doi: 10.1016/j.rcim.2010.03.013

Yang, C., Huang, K., Cheng, H., Li, Y., and Su, C. (2017). Haptic identification by

ELM-controlled uncertain manipulator. IEEE Trans. Syst. Man Cybernet. Syst.

47, 2398–2409. doi: 10.1109/TSMC.2017.2676022

Yang, C., Jiang, Y., He, W., Na, J., Li, Z., and Xu, B. (2018). Adaptive

parameter estimation and control design for robot manipulators with

finite-time convergence. IEEE Trans. Ind. Electronics 65, 8112–8123.

doi: 10.1109/TIE.2018.2803773

Yen, C. T., and Cheng, M. F. (2016). A study of fuzzy control with ant

colony algorithm used in mobile robot for shortest path planning and

obstacle avoidance. Microsyst. Technol. 2016, 1–11. doi: 10.1007/s00542-016-

3192-9

Zeng, M., Xi, L., and Xiao, A. (2016). The free step length ant colony

algorithm in mobile robot path planning. Adv. Robot. 30, 1509–1514.

doi: 10.1080/01691864.2016.1240627

Zhang, W., Gong, X., Han, G., and Zhao, Y. (2017). An improved ant colony

algorithm for path planning in one scenic area with many spots. IEEE Access. 5,

13260–13269. doi: 10.1109/ACCESS.2017.2723892

Zhao, J., Cheng, D., and Hao, C. (2016). An improved ant colony algorithm for

solving the path planning problem of the omnidirectional mobile vehicle.Math.

Prob. Eng. 2016, 1–10. doi: 10.1155/2016/7672839

Zhou, Z., Nie, Y., andMin, G. (2013). Enhanced ant colony optimization algorithm

for global path planning of mobile robots. Int. Conference Comput. Info. Sci.

2013, 698–701. doi: 10.1109/ICCIS.2013.189

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Dai, Long, Zhang and Gong. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 9 April 2019 | Volume 13 | Article 1523

https://doi.org/10.1016/j.swevo.2015.10.011
https://doi.org/10.1016/j.proeng.2012.06.313
https://doi.org/10.1016/j.proeng.2014.12.098
https://doi.org/10.1109/TCYB.2015.2411285
https://doi.org/10.1109/TSMC.2015.2429555
https://doi.org/10.1109/TCYB.2017.2720801
https://doi.org/10.1109/TCYB.2016.2554621
https://doi.org/10.1109/TCST.2016.2536708
https://doi.org/10.4028/www.scientific.net/amm.644-650.701-704
https://doi.org/10.1016/j.asoc.2016.01.013
https://doi.org/10.1109/CCDC.2013.6561434
https://doi.org/10.1155/2017/4961383
https://doi.org/10.1108/AA-12-2016-173
https://doi.org/10.1007/s00500-016-2161-7
https://doi.org/10.1016/j.amc.2013.07.022
https://doi.org/10.1109/jsyst.2014.2335442
https://doi.org/10.6041/j.issn.1000-1298.2014.06.009
https://doi.org/10.1007/s12559-016-9442-4
https://doi.org/10.1016/S0167-739X(00)00043-1
https://doi.org/10.1109/ICICIP.2011.6008338
https://doi.org/10.1016/j.ins.2015.07.006
https://doi.org/10.1177/0954406212458055
https://doi.org/10.1016/j.rcim.2010.03.013
https://doi.org/10.1109/TSMC.2017.2676022
https://doi.org/10.1109/TIE.2018.2803773
https://doi.org/10.1007/s00542-016-3192-9
https://doi.org/10.1080/01691864.2016.1240627
https://doi.org/10.1109/ACCESS.2017.2723892
https://doi.org/10.1155/2016/7672839
https://doi.org/10.1109/ICCIS.2013.189
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

ORIGINAL RESEARCH
published: 10 May 2019

doi: 10.3389/fnbot.2019.00012

Frontiers in Neurorobotics | www.frontiersin.org 1 May 2019 | Volume 13 | Article 12

Edited by:

Changhong Fu,

Tongji University, China

Reviewed by:

Liang Lu,

Polytechnic University of Madrid,

Spain

Chao Zhang,

Shanghai Jiao Tong University, China

Hui Xie,

Western Sydney University, Australia

*Correspondence:

Feihu Zhang

feihu.zhang@nwpu.edu.cn

Received: 08 October 2018

Accepted: 18 March 2019

Published: 10 May 2019

Citation:

Zhang F, Martinez CM, Clarke D,

Cao D and Knoll A (2019) Neural

Network Based Uncertainty Prediction

for Autonomous Vehicle Application.

Front. Neurorobot. 13:12.

doi: 10.3389/fnbot.2019.00012

Neural Network Based Uncertainty
Prediction for Autonomous Vehicle
Application
Feihu Zhang 1*, Clara Marina Martinez 2, Daniel Clarke 3, Dongpu Cao 4 and Alois Knoll 5

1 School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, China, 2 Porsche Engineering

Services GmbH, Bietigheim-Bissingen, Germany, 3Cogsense Technologies Limited, London, United Kingdom, 4Mechanical

and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada, 5Department of Informatics, Technical

University of Munich, Munich, Germany

This paper proposes a framework for uncertainty prediction in complex fusion networks,

where signals become available sporadically. Assuming there is no information of the

sensor characteristics available, a surrogated model of the sensor uncertainty is yielded

directly from data through artificial neural networks. The strategy developed is applied

to autonomous vehicle localization through odometry sensors (speed and orientation),

so as to determine the location uncertainty in the trajectory. The results obtained allow

for fusion of autonomous vehicle location measurements, and effective correction of

the accumulated odometry error in most scenarios. The neural networks applicability

and generalization capacity are proven, evidencing the suitability of the presented

methodology for uncertainty estimation in non-linear and intractable processes.

Keywords: neural network, autonomous driving, uncertainty prediction, localization, odometry

1. INTRODUCTION

Mobility has become a serious challenge in a society with a gradually aging population
and a perpetually increasing traffic. This situation is motivating the automotive industry and
governments to invest heavily in highly automatized vehicles toward full autonomy. Nevertheless,
the progress in autonomous vehicle integration is being hindered from an engineering perspective,
due to limits in vehicle sensing and infrastructure modernization requirements (Ma et al., 2018;
Taeihagh and Lim, 2019). Moreover, considerable advances in electronics and control theory, safety
and robust autonomous driving can only be achieved in conditions that vehicles are fully aware of
the driving scenario (Han et al., 2012; Li et al., 2014).

High quality measurements can be obtained using expensive sensors (Elfring et al., 2016), as
installed in the well-known Google Car. This vehicle includes an advanced laser range finder,
between other sensors, able to process the environment real time (Poczter and Jankovic, 2014).
Nonetheless, these advanced devices are generally associated with elevated cost, and therefore are
not feasible for serial production vehicles. An alternative solution is to compensate measurements
quality with higher redundancy by installing larger number of low cost devices based on different
technologies. As a consequence, the features perception becomes a complex problems where
heterogeneous signals need to be registered, transformed into a common level and conveniently
combined to guarantee safety (Jiang et al., 2011). This process is known as data fusion and usually
involves noisy measurements and highly non-linear transformations.

Data fusion can be executed in either centralized or decentralized architectures. Whilst the
first involves a common processor, and decentralized architectures consist of networks where each

24

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2019.00012
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2019.00012&domain=pdf&date_stamp=2019-05-10
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:feihu.zhang@nwpu.edu.cn
https://doi.org/10.3389/fnbot.2019.00012
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00012/full
http://loop.frontiersin.org/people/384178/overview
http://loop.frontiersin.org/people/42313/overview

Zhang et al. Neural Network Based Uncertainty Prediction

sensor has its own processing unit (Grime and Durrant-Whyte,
1994; Durrant-Whyte et al., 2001; Garcia-Ligero et al., 2012). On
the one hand, centralized architectures need to be re-designed
when changes in the sensing units take place, which implies
costly and time-consuming development. On the other hand,
decentralized solutions are particularly convenient in networks
where sensors can be dynamically added and removed from the
networks as a result of being sporadically available. Nevertheless,
although a plurality of measurements might become accessible
in decentralized architectures, fusion requires knowledge of the
uncertainty associated to them. Furthermore, measurements
are not used directly, but information extracted from them
hereby referred to as features, which generally involves non-
linear transformations. Consequently, the conversion of sensor
noise into feature noise is a complex task that usually involves
arduous mathematical derivations and can be intractable in
many applications.

Several attempts to uncertainty prediction for inertial
measurement units (IMU) have been presented in the literature.
These include methodologies to fuse odometric measurements
with global positioning system measurements, geographical
information systems and laser scanners, between others. Vision
systems are used in Park et al. (2012) and the disparity between
the image space and the Cartesian space is used to derive the
uncertainty mathematical model. Vision based controlled is used
by Fu et al. (2018) in a system based on an onboard camera and
an IMU. The authors use a non-singleton fuzzy logic controller
able to handle high uncertainties. The Kalman filter has been
also widely used to deal with noisy measurement and models.
The parameters estimation was performed using methods such
as random walk, Gaussian-Markov and autoregressive processes
(El-Diasty and Pagiatakis, 2008). Extended Kalman filters have
been proposed by other authors such as Bry et al. (2012) and
Fabrizi et al. (2000), where the noise assumption is taken using
Gaussian white noise.

This paper presents a solution to facilitate data fusion in
decentralized architectures. The proposed paper enhances our
previous system for feature extraction (Martinez et al., 2017),
where either the source of information, or the sensor noise is
unknown. These networks require an appropriate estimation
of the signals uncertainty so as to properly fuse them into an
“improved measurement,” rather than worsen the fusion output.
The uncertainty allows evaluating the quality of the signals
and provides a combined result of higher accuracy where the
information retained is maximized.

Despite its importance, in the literature revised sensor
noise is either assumed to be known, or fitted with simple
Gaussian distributions. Hereby, a methodology directly for
uncertainty prediction from raw data is proposed based on
Artificial Neural Networks (ANN), assuming no information
is prior available about the sensor characteristics. The
applicability of this data-driven strategy extends to highly
non-linear and even intractable feature transformation,
avoiding tedious mathematical derivations. Proof of this is
supported by its implementation for autonomous vehicle
location through odometry data, obtaining satisfactory results in
varied scenarios.

2. PROBLEM DEFINITION

Autonomous driving highly depends on the sensor
measurement, uncertainty and fusion. Nonetheless, sensor
models are not generality provided by sensormanufacturers. This
lack of data significantly increases challenges in decentralized
architectures, where new sensors can be “plugged & played”
within the ad-hoc network.

2.1. Motivation
The operational limits of the sensor technology condition
safety in autonomous driving, as a consequence of their strong
dependence on themeasurements quality (Zheng andMcDonald,
2003; Michalke et al., 2011). The GPS precision limits are a
well-known example of the noise effect in systems performance,
experienced daily by the general public through of the shelf
navigation devices (Schrader et al., 2012). This involves the fusion
of pseudo-range GPS signals of vehicles, used to minimize the
error produced by uncontrolled sources like satellite clock bias,
atmospheric delay, and acquisition noise. Nevertheless, despite
the complexity of the error origin, previous studies model noise
using Gaussian distributions (Liu et al., 2013).

The main barriers for sensor fusion in application, such
as vehicle localization, are found in the uncertainty of sensor
technology integrated in each vehicle. This inevitably affects the
uncertainty characteristics, and the different nature of the signals
to fuse, involving highly non-linear feature transformations
(Xu et al., 2014). Furthermore, incorrect uncertainty estimation
could reduce the fusion accuracy and produce a security hazard
by deteriorating the system performance. Regardless of its
importance, most research in this area has limited the error
prediction to single vehicle model-based approaches usually
using Gaussian distributions, developed either theoretically or
empirically. Therefore, more accurate uncertainty estimation
would be of great benefit for these applications, and would
solve issues that hinder the implementation of the autonomous
technology nowadays.

2.2. Problem Statement
Odometry measurement for vehicle location is subjected to
sensor noise applied to velocity d and orientation θ . This
uncertainty is extended to the features x and y coordinates,
which are calculated from the noisy signals through geometrical
transformations (Choi and Huhtala, 2016). Consequently, the
vehicle location error is accordingly described by non-linear
mathematical equations and accumulates along the path with
every sampling time. The absence of information about the
features uncertainty, x and y covariance, prevents from fusing
odometry data with additional measurements that might become
available along the trajectory. By means for this, the estimation of
the location uncertainty is of great interest to efficiently correct
the accumulated error (Zhang et al., 2013). Hereby a feature noise
estimator is obtained from data with independence of the sensor
characteristics, and complexity of the feature transformation.
This solution allows for sensor noise prediction, avoids the use of
complex mathematical formulations and facilitates sensor fusion
under any use case.

Frontiers in Neurorobotics | www.frontiersin.org 2 May 2019 | Volume 13 | Article 1225

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhang et al. Neural Network Based Uncertainty Prediction

2.3. Data-Driven Modeling
Feature transformations are often difficult to derive in
mathematical terms, and calculations that are usually time
consuming and occasionally intractable. Nevertheless, vehicle
trajectory data collection under real-life conditions is generally
possible using limited resources. These evidences support the
use of data-driven algorithms, methods that can efficiently
manage big data and yield insightful conclusions from unknown
complex processes (McAfee et al., 2012; Hou and Wang,
2013). Various algorithms can be used to derive the so-called
surrogate models without requiring actual understanding of
the relationship between inputs and outputs. These models are
compact, normally inexpensive to evaluate compared to their
homologous strictly mathematically derived. Furthermore, they
are mathematically tractable and can estimate the process with
high-fidelity at least locally to the training set (Gorissen et al.,
2010; Koziel et al., 2011). Some examples of surrogate modeling
techniques include: polynomial regressions, kernel methods,
kriging, support vector machine, Radial Basis Functions (RBF),
and Neural Networks (NN) (Jin et al., 2001; Razavi et al., 2012).
Each method has different characteristics in terms of operation,
complexity, design flexibility and fidelity capability. For instance,
support vectors perform particularly well with high dimensional
spaces when only scarce training data is available (Forrester and
Keane, 2009). Highly non-linear and complex process are better
captured using RBF, kriging, and NN, which require determining
a specific number of parameters by trial and error. From a
high level analysis, the structural limits of RBF are relaxed
with kriging, which assumes the model response has stochastic
behavior and fits it with a statistical basis. In the kriging method
the basis function variance is considered a parameter, providing
larger flexibility and resultant increase in training time.

Artificial Neural Networks allow modeling the relationship
between inputs and outputs from data. This characteristic,
applied to sensor noise, is expected to be able to find the
underlying relation between measurement and noise associated
to them. Furthermore, NN accept multiple inputs, which can
be used to determine additional features affecting the noise and
their correlation. With these precedents, NN offer an exceptional
framework for implementing and testing the suitability of models
generated from data applied to noise magnitude prognosis of
sensor measurements. Hereby, NN are selected within the above
strategies to exploit their potential for sensor noise estimation,
and explore their high level of flexibility owing to their substantial
number of defining parameters: network structure, neuron
function, number of hidden layers, and number of neurons
per layer.

2.4. Design for Surrogate Model
Development
In terms of number of hidden layers, the criterion applied
focuses on the trade-off between accuracy and generalization
capabilities. Sensor fusion algorithmswill benefit from a guidance
to assess the extent of the error covariance of new sensor
measurements. This information will allow the system to identify
the degree of information present in the new measurement

and perform the data fusion accordingly, ensuring the output
maximizes the information content. It is therefore acceptable
to obtain a guidance value of this error covariance and not
highly precise results, reason why the network structure selected
for sensor noise estimation is formed by a single hidden layer.
This simplified structure might prevent from learning accurate
noise behavior as observed in deep learning, but would also
facilitate training and avoid noise fitting when applied to noisy
sensor signals. Generalization capability is hereby prioritize
against results accuracy with the selection of the single hidden
layer structure.

The network layers, named input, hidden and output, can
be connected through either feedforward (FF) configuration or
using a feedback (FB) connection. Layers in FFNNs only receive
information from forward layers, whilst in FBNNs any neurons
can connect with each other. Consequently, signals in FBNN
are repeatedly transformed and lean toward steady state or
vibration state. By introducing feedback delays, this structure is
also able to capture the relationship between past inputs and
current output, influence that is completely ignored in the FF
configuration. In the following, both FF and FB configurations
are examined as candidates of NN structure so as to determine
the most suitable configuration with the support of the training
and test results.

Once the network structure is defined, the size of the
layers need to be determined. Input and output layers are
constrained by the input and output signals selected set,
but the hidden layer is a prior a free parameter, closely
related with the process complexity. By reason of lack of
known mathematical formulation of this particular case, this
number has to be determined by trial and error. The
optimal size criteria should consider a trade-off between
complexity, accuracy, and generalization capability of the
neural network candidates. Excessively complex networks not
only raise training time, but also increase the risk of over
fitting, which would return high accurate results over the
training set and poor generalization capacity on new data
(Hagan et al., 2014). The growing method is used in this
application in order to prevent for over fitting by establishing
an initial network with relative small size, and increasing it
gradually with special attention over both the training and
testing accuracy.

3. TRAINING DATA GENERATION AND
ANALYSIS

To encourage acceptable performance under all possible
scenarios, the amount and variability of the training data should
ideally account for any conceivable use case. The data selected
for training proceeds from six different trajectories that combine
disparate direction, length, orientation, and speed as depicted
in Figure 1.

3.1. Training Data Generation
The trajectories contain highly precise vehicle locations in
Cartesian coordinates, and yaw signals, regarded as Ground

Frontiers in Neurorobotics | www.frontiersin.org 3 May 2019 | Volume 13 | Article 1226

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhang et al. Neural Network Based Uncertainty Prediction

FIGURE 1 | Path followed in all trajectories for training.

Truth (GT). The GT signals need to be processed to generate
realistic data complying with a real case scenario. Training
data is generated assuming the vehicle velocity and orientation,
identified herewith with the symbols d and θ respectively, are
collected with sensors characterized by white noise. For the
purpose of the following investigations, the standard deviation
values 0.1 and 0.001 are respectively selected for speed and
orientation measurements. These values are based on experience
and are considered representative of general noise measure in
odometry sensors.

• Calculate d and θ GT, dGT and θGT , from xGT and yGT .
•Add white noise artificially to dGT and θGT , through aMonte

Carlo (MC) simulation with 1000 iterations. These results in d
and θ measured (M), dM and θM , and emulates sensor noisy
data acquisition.

• Use the inverse equations to calculate xM and yM from dM
and θM , which in essence is the signal to feature transformation.

• Use the 1000 MC noisy versions of the trajectories to
calculate the location error standard deviation (std) in x and y
and the location covariance (covxy).
Figure 2 illustrates the detailed process in a flow diagram
describing the steps and signals obtained from ground truth
to measured feature data. As included in the respective steps
for geometrical transformations, the signals d and θ could be
obtained along the sampling steps in a cumulative manner as
detailed in following equations (Zhang et al., 2013):

xn =

n
∑

i=1

di · sin

i
∑

j=1

θj

 (1)

FIGURE 2 | Flow diagram illustrating the ground truth data processing to

emulate feature extraction from noisy signals.

yn =

n
∑

i=1

di · cos

i
∑

j=1

θj

 (2)

where n refers to the current time step. By combining Equations
(1) and (2), the variables of interest can be obtained for every
sampling time:

θi+1 = arctan
(

(xi+1 − xi)
/(

yi+1 − yi
))

−

i
∑

j=1

θj (3)

di+1 = (xi+1 − xi)

/

sin

i+1
∑

j=1

θj

 (4)

Noise can be artificially added to the GT results of Equations
(3) and (4) by randomly generating numbers with the previously
designated standard deviation. The results are regarded as sensor
measurements and can be used to obtain the measured features

Frontiers in Neurorobotics | www.frontiersin.org 4 May 2019 | Volume 13 | Article 1227

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhang et al. Neural Network Based Uncertainty Prediction

following Equations (1) and (2), implemented as:

xi+1 = xi + di+1 · sin

i+1
∑

j=1

θj

 (5)

yi+1 = yi + di+1 · cos

i+1
∑

j=1

θj

 (6)

The ground truth original data and measured features
can be compared to determine the uncertainty over
the vehicle location at every point of the trajectories.
This is defined by the standard deviation of the feature
estimation error:

σx =

√

√

√

√

1

N

N
∑

i=1

(exi − µx) (7)

whereN corresponds to the number of MC iterations of the same
trajectory. The estimation error and the mean estimation error
can be calculated as follows:

ex = xGT − xM (8)

µx =
1

N

N
∑

i=1

exi (9)

Similarly, the equations can be applied to y coordinate to obtain
ey,µy, σy. Finally, the covariance of the errors in x and y is
obtained by:

covxy =
1

N

N
∑

i=1

(xi − µx)
(

yi − µy

)

(10)

The uncertainty is defined as σx, σy, and covxy. Mean error in
x and y bias the location measurement, but are not considered
as estimation targets in this particular study. The previous
transformation provides information of the uncertainty of the
vehicle location, when measured through noisy velocity and
orientation sensors subjected to a specific level of white noise.
This measurement allows evaluating the quality of the current
location through odometry, and therefore to which extent this
measure should contribute into a sensor fusion framework when
compared to other sources.

σx obtained for each of the trajectories is illustrated in
Figures 3, 4, by assuming the vehicle is perfectly located at the
initial point. Figure 3 represents σx growth along the entire
trajectories until the end point of the longest one, whilst
Figure 4 illustrates a zoom in the σx to better visualize the
uncertainty accumulated in shorter paths. σx always presents
and increasing trend due to the cumulative characteristics of
the error in the vehicle location. Nonetheless, this tendency
of accumulation differs between trajectories, which suggests
that the shape of the trajectory and the characteristics of

FIGURE 3 | Cumulative error standard deviation in x, σx in all training

trajectories w.r.t.total steps.

FIGURE 4 | Zoom in cumulative error standard deviation in x with shorter

duration.

the displacement affect the uncertainty growth. The curves
are therefore dissimilar between trajectories and presumably
influenced by variables such as 1x,1y, and 1yaw. Analogous
behavior is observed when analyzing σy and covxy, which agrees
with the previous assumption.

The growth of the combined uncertainty in all
directions σx, σy, and covxy is illustrated in Figures 5,
6, which is represented via ellipses that increase in area
as the error accumulates. A first visual examination
allows identifying how larger increments in a specific

Frontiers in Neurorobotics | www.frontiersin.org 5 May 2019 | Volume 13 | Article 1228

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhang et al. Neural Network Based Uncertainty Prediction

FIGURE 5 | Error ellipses in σx , σy , and covxy in trajectory 2.

FIGURE 6 | Error ellipses in σx , σy , and covxy in trajectory 5.

direction affect to the growth of the uncertainty differently,
which also allows drawing a priori hypothesis of the
variables closely related. In the following, the study

concentrates on σx, although the results and conclusions
are expected to be dimension agnostic and applicable to both
σ y and cov xy.

3.2. Training Data Analysis
As aforementioned, one of the remaining design parameters of
the NN is the number of inputs. Ideally, the input variables
should contain the maximum number influencing factors over
the target to estimate, but its scope should be constraint to
prevent from excessive training time and network complexity
and overfitting. The optimal input selection should aim to gather
maximum relevant information for the prediction and minimum
non-relevant data. Non-useful information would increase the
model complexity, and might introduce misleading data that
deteriorate the generalization capability.

Inputs can be selected using common sense in easily
interpretable applications, albeit there are alternative correlation
analysis able to evaluate numerically their level of dependence
with respect to the target (Sudheer and Ramasastri, 2002). In
addition to a prior evaluation of inputs and outputs, NNs can
be themselves used for signals selection. In simple network
structures, the importance of each signal can be identified by
looking into the magnitude of the weights that connect them
to the successive layers. A formal analysis of the signals weights
is included in Giordano et al. (2014), where a criteria for input
selection is derived mathematically and tested.

As a result of the noisy characteristics of the variables used
in this particular application, complex signal evaluation is not
considered of interest. Instead, the procedure follows inputs
selection, by consisting the combination of a correlation analysis
with the training and testing results interpretation of various
input candidates. First, the signals linear correlation is studied
calculating the Pearson correlation coefficient with respect to
the output. The high sampling rate used compared to the
input candidates’ variability, allows assuming no time lag exists
between inputs and outputs, simplifying the evaluation.

Although immediate effect of inputs over the outputs is
impracticable, the study of the signals’ variability with respect
to delayed ones suggests this assumption is acceptable (Maier
and Dandy, 1997). The output of the correlation provides useful
information to select several input candidates, which are later
tested at a second stage to conclude into the most suitable option.
The best candidate is assessed in terms of training and testing
results in an iterative process.

3.3. Inputs vs. Output Correlation
The signals available to use as inputs are: x, y, yaw, θ , d. The use
of values such as real x and y directly impairs generalization, as
the network would learn from training trajectories characterized
by specific absolute location points. Moreover, the incremental
tendency of the uncertainty suggests additive behavior happening
in every trajectory with independence from the initial and relative
vehicle location. This reasoning supports the use of signals
increments between sampling steps, rather than absolute values
with respect to a pre-defined reference system.

Another hypothesis that can be reasonably stated is the effect
of the direction of the displacement over the uncertainty growth;

Frontiers in Neurorobotics | www.frontiersin.org 6 May 2019 | Volume 13 | Article 1229

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhang et al. Neural Network Based Uncertainty Prediction

that is, whether variables increments or absolute variables
increments are suitable for the input set. This conjuncture would
be resolved when determining the effect of the inputs increments
sign on the uncertainty accumulation. It is sensible to assume
that the features uncertainty is affected by the actual magnitude
of the displacement with independence on the direction; the
uncertainty should not be affected by the reference system.
Consequently, it could be deduced that the sign omission would
avoid needless information to be fed into the NN, and therefore
would encourage the generalization capacity.

All previous hypotheses are considered to determine the
signal candidates to evaluate in the correlation analysis.
Table 1 contains the Pearson correlation coefficients between
input candidates and output in all training trajectories.
The formula used is the base line Pearson equation,
where r, cov, and σ represent respectively correlation
coefficient, covariance and variance of the designated signals
(Lee Rodgers and Nicewander, 1988).

rxy = cov(var1, var2)/σvar1σvar2 (11)

Table 1 shows high correlation between σx and the signals yaw, x,
and y. d appears to have secondary importance, although it
proves to be relevant in training trajectories 3 and 4, when
compared to 1 and 5 for instance. These differences are associated
with the mean value and mean absolute value of the speed,
observed to be higher in trajectories 3 and 4. In contrast, θ

correlation seems to be negligible.
The correlation coefficients change substantially when

analyzing variables increments. The weight of 1x and 1y
weights reduce, with respect to the original variables and 1yaw
becomes practically independent to the output. 1y shows
stronger relationship with 1σx when compared to 1x. In
contrast, 1yaw are only tangible in trajectories characterized by
substantial direction changes, as happens in trajectories 4 and 5.
1d also loses relevance when compared to the absolute variable
analysis, and θ influence is barely affected and kept negligible.
When focusing on absolute values of the increments, the
correlation results produce similar values compared to relative
increments, supporting a priori hypothesis over the uncertainty
independence with respect to the sign of the movement. A part
from the magnitude of the correlation coefficients, the sign
can be also interpreted. The broad variety of values and sign
within trajectories prevents from selecting a single preferred
combination of training signals, reason why several candidates
are selected to further pinpoint the suitability.

As a final remark, it is worth highlighting that 1y presents
larger correlation with σx than 1x, and vice versa. That
is, in trajectories with more movements in x direction, σy
grows quicker than σx and similarly, in trajectories with larger
displacement in y direction, σx grows quicker than σy. This
is observed in all trajectories with exception of trajectory
4, where both uncertainties are similar probably due to the
followed direction in repeated circles. An explanation of this
phenomenon might be found, in the relative amplitude of the
actual displacement every sampling and the error magnitude.
Whilst the error might be negligible after a large displacement,

it could be of the same order of magnitude of short movements,
causing larger distortion in the vehicle location. Consequently,
large growth of σx could be associated to low 1x instead of
being related to 1y as it was initially deduced from the results
of the analysis.

3.4. Delayed Signals Correlation
Inputs to output correlation analysis is complemented with the
signals delay study, also evaluated using the Pearson coefficient.
The aim of this test is to determine the possible relationship
between old inputs and current outputs; that is, the influence
of past changes in the vehicle movement and location on
the accumulation of the current uncertainty in the vehicle
positioning. The first correlation test of delayed signals analyses
the relationship between delayed inputs and current output. The
steps used are 0, 1, and 2 sampling times. Next, in order to draw
a holistic understanding of the signals interrelation, a second
correlation test between current input signals and the same ones
delayed 1 and 2 sampling steps is also analyzed.

The results of the first test show similar correlation between
input and outputs with independence of the delay implemented.
Nonetheless, the second test also shows strong correlation
between inputs and the respective delayed inputs. Although from
the first results it could be considered that the output depends on
past input signals, the second analysis discredits this assumption
as they could also be due to the high similarity between current
and past inputs. Consequently, no conclusive assumptions can be
derived from this correlation test.

The results from the second correlation test effectively show
that the inputs and delayed version of the inputs are practically
identical, and consequently show similar correlation with the
output. As previously states, this similarity might be due to
the small sampling step implemented with respect to the input
signals variability in time. Further investigations should be
conducted to arise conclusive answers to the previous hypothesis.
Accordingly, additional study with respect to the delay effect of
the feedback NN states is considered during training.

4. TRAINING SETS CANDIDATES

Hereby, a training set is defined as the union of a specific
combination of input signals, obtained from a selected number
of training trajectories in an enclosed array used as training data.
That is, the training set is defined by the signals used between
the candidates previously analyzed in the correlation analysis and
the trajectories fromwhich signals are extracted. The training sets
can contain data proceeding exclusively from a single trajectory
or from the combination of more than one. Furthermore, the
same trajectory can be repeated in each set in more than one
occasion by implementing different noisy version from the 1000
MC simulations, practice that intents to encourage the response
robustness to the presence of noise in the inputs.

4.1. Training Sets
The input training sets are designed in terms of number of
signals, trajectory characteristics and amount of trajectories
used, and always contain noisy data so as to simulate with

Frontiers in Neurorobotics | www.frontiersin.org 7 May 2019 | Volume 13 | Article 1230

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhang et al. Neural Network Based Uncertainty Prediction

TABLE 1 | Pearson correlation coefficients analysis of input candidate signals, signal increments, and absolute signal increments.

Signal Signal increment Signal absolute increment

Target Traj x y yaw d θ x y yaw d θ x y yaw d θ

x std/Increment x std

[0] –0.8 0.9 –0.7 0.4 0 0.2 0.6 0.1 0 0 0.3 0.6 0.1 0 0.1

[1] –0.9 –1 –0.4 0.1 0 −0.1 −0.5 0 –0.1 0 0.1 0.5 0.1 0.2 0.1

[2] –0.8 1 –0.7 −0.4 0 −0.5 0.6 0 0.1 0 −0.4 0.6 –0.2 0 −0.1

[3] 1 –0.5 –1 −0.8 –0.1 −0.2 0.4 0 0 –0.2 −0.2 0.1 0 0 0.2

[4] –0.7 0.8 0.9 −0.5 0 −0.2 0.6 –0.3 0.3 0 0.4 0.4 0 0.4 0.1

[5] 0.9 0.8 0.7 0.2 0 0.3 −0.1 –0.3 –0.1 0 0.5 0 0.4 0.1 0.1

TABLE 2 | Input sets candidates proposed for training and testing including: signals selected, data used, and hypothesis to verify/reject in the training results.

Set Inputs Data Explanation

1 1xM,1yM,1yawM All trajectories-3 times Input:relative increment

2 1xM,1yM,1yawM Trajectory[0]-10 times Data:generalization capacity

3 abs(1xM,1yM,1yawM) Trajectory[0]-10 times Input:generalization of abs. inc

4 abs(1xM,1yM,1yawM) Traj.[1],[4,][5]-10 times Data:generalization disparate data

5 abs(1xM,1yM,1yawM) Traj.[1],[4,][5]-5 times Data:generalization disparate data

6 abs(1xM,1yM,1yawM and 1θM) Traj.[1],[4,][5]-5 times Input:proof of correction analysis

7 abs(1xM,1yM and 1θM) Traj.[1],[4,][5]-5 times Input:proof of correction analysis

8 abs(1yM and 1θM) Traj.[1],[4,][5]-5 times Input:proof of correction analysis

9 abs(1xM,1yM and 1yawM) All trajectories-3 times Additional testing

10 abs(1yM and 1θM) All trajectories-3 times Additional testing

maximum fidelity real case studies. Table 2 includes the training
set candidates carefully designed to determine: the most suitable
combination of inputs, optimal network structure and size and
data variability requirements.

The second column in Table 2 specifies the input signals
used in each set, where abs and 1 indicates absolute value and
signals increment, respectively. The amount of data used in
each training set is detailed in the third column, alluding to the
variability of trajectories used and amount of MC noisy versions
of each trajectory. For instance, set 1 considers all trajectories
repeated three times each; including therefore three MC noisy
versions of each. The use of larger number of trajectories or
specific ones is thoroughly defined, so as to reflect changes in the
generalization capability with respect to training data variability.
Consequently, by repeating noisy version of the same trajectory,
the data variability should be much less than noisy versions of
different trajectories.

The incremental variables specified in Table 2 are calculated,
with respect to the constant sampling rate in training sets. As
an attempt to encourage generalization, alternative incremental
inputs are proposed by using random dynamic sampling within
the boundary of 1 to 9 sampling steps. Nonetheless, the networks
trained with this data were not able to estimate the target variable,
reason why they are neither included in Table 2 nor in the test
results. The failure to capture the process could be excused in
the data variability and complexity introduced through variable
sampling. The networks trained with this data were presumably
required to emulate a behavior more complicated than the one

described with constant sampling. Consequently, it might be the
case that the amount of training data and network size used
were not suitable to capture efficiently the underlying process.
Figure 7 illustrates a flow diagram that clarifies the design
process and characteristics that define a training set. The input
selection is partitioned in three stages: selection of the key
signals combination, format of the signals preferred (real value,
increments, or absolute increments) and trajectories used to
extract the data.

4.2. Training Candidates
Sets 1 and 2, similarly to 3 and 4, compare the effect
of the data variability on the generalization capacity by
implementing identical input variables, but using data
from different trajectories. Sets 2 and 3 determine the effect
of the inputs sign again with respect to generalization,
and intend to provide numerical support to proof the
independence between uncertainty accumulation and
movement direction. Sets 5 to 8 implement identical data,
but use different input candidates so as to obtain the optimal
signals combination.

5. NN DESIGN AND TRAINING

The NN candidates are compared in terms of: network size,
structural complexity and results output quality. The accuracy
of the estimation is evaluated using various error measurements
applied to both network output, 1σx, and target variable σx.

Frontiers in Neurorobotics | www.frontiersin.org 8 May 2019 | Volume 13 | Article 1231

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhang et al. Neural Network Based Uncertainty Prediction

FIGURE 7 | Training sets generation from signals proceeding from the available trajectories including signals selection (from correlation analysis), signal processing

(true value, increment, or absolute increment), and training trajectories used (data variability).

TABLE 3 | Training results comparison and analysis in terms of structural and data complexity, training time and performance, and accuracy indexes as convey for error

evaluation.

Structure Performance Epochs Data Q RMS rms Cmltv End error

Set 2 100FF 5.99E-06 136 14130 0.059 9 19

Set 2 20LR 9.23E-07 200 14130 0.0447 7.11 9.07

Set 3 20LR 1.07E-06 200 14130 0.0286 4.96 7.46

Set 3 30LR 1.25E-06 82 14130 0.032 4.7 6.6

Set 4 30LR 8.12E-04 67 32900 0.265 119 197

Set 5 30LR 5.92E-05 110 16450 0.22 84.2 67.7

Set 6 30LR 2.60E-05 150 16450 0.24 106.9 88.2

Set 7 30LR 4.50E-05 150 16450 0.27 100.4 80.7

Set 8 30LR 6.15E-05 127 16450 0.18 43.4 30.4

Set 9 40LR 4.67E-06 223 18927 0.0190 2.1 2

Set 10 40LR 4.71E-06 250 18927 0.0220 3.6 4.8

Set 9 30RL 3.56E-06 137 18927 0.0223 3.8 3.9

Set 9 50LR 4.71E-06 300 18927 0.0185 2.6 3.6

5.1. Error Measurements
The results are evaluated by using Root-Mean-Square (RMS)
error and relative error measures between the network output
and reference data, GT variables. The error measurement
include: RMS of σx and relative error of the accumulated
uncertainty obtained at the end of the trajectory, σx(end).
The first assesses the actual performance of the network given
the fact that the target variable is the increment of the
uncertainty, 1σx, and not the cumulative one, σx. The second,
σx RMS, evaluates the variable of interest and determines
the possible predicted error accumulation and the actual one.
Finally, the relative error of the final cumulative uncertainty
analyzes how well the NN would perform in case a new sensor

becomes available at the end of the vehicle path and fusion
is required.

These indicators are calculated for each of the trajectories
separately, so that it is possible to compare the performance in
both, data used for training and data not seen before. It is also
worth mentioning that the data used for training in all cases
consist of 70% of the total amount that defined the training
set, whilst the rest is used for testing and validation during the
training process. None of the sets or NN configurations converge
during the training process, when using the LR architecture
as a consequence of the noisy characteristics of the data used.
Nonetheless, this behavior is not necessarily detrimental due
to the fact that the generalization capability is preferred to the

Frontiers in Neurorobotics | www.frontiersin.org 9 May 2019 | Volume 13 | Article 1232

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhang et al. Neural Network Based Uncertainty Prediction

estimation accuracy of a specific trajectory; it is of importance to
avoid noise fitting. Consequently, the networks are trained up to
a certain performance value or number of iterations, epochs, and
early stopping is used before the training gradient stabilizes. The
output to estimate is the relative increment of the error in x std in
all cases, 1σx.

5.2. Training Algorithms
Two algorithms are used for training, Levenberg-Marquardt
(LM) and Scaled Conjugate Gradient (SCG). These aim to
compensate from deficiencies in terms of robustness, and
convergence time of the well-known Error Backpropagation
(EBP) and Gauss-Newton algorithms (Moller, 1993; Yu and
Wilamowski, 2011). Both differ in the selection of the step size
and direction during convergence. Ideally, longer steps should
be implemented at early stages and gradually smaller ones
should be considered to encourage the result finesse in later
stages. Moreover, the error shape might also change, affecting
simultaneously to the optimal step direction. SCG implements

FIGURE 8 | Final structure to find the hidden layer.

optimized step size and direction, whilst LM alternates EBP
and Gauss-Newton methods depending on the error shape. LM
combines the advantages of both strategies taking advantage
of the speed convergence of Gauss-Newton with quadratic
error, and the robustness of EBP convergence behavior under
conditions of non-advantageous for Gauss-Newton.

The training results usually benefit from LM when compared
to SCG throughout the test cases. Furthermore, LM presents
low µ values, variable that determines the alternation between
methods, but it converges neither into Gauss-Newton nor into
the steepest descent method.

5.3. Training Results: Input Signals
Selection
Table 3 summarizes the results obtained after training specific
network structures, second column, with the training sets
enumerated in the first column. Training set 2 is used to compare
FF and LR networks. In all cases, the training with identical set
and structure is repeated in more than one occasion, typically up
to six times. This practice is recommended due to the possible
effect that the random weights initialization can cause over
the end solution, which can potentially be trapped into local
optima. The results included in Table 3 are taken from the best
network obtained after training several candidates. These figures
are compared between equal amounts of iterations.

Sets 1 and 2 are omitted for brevity, as the conclusion
coincides with the analysis of sets 3 and 4. Set 2 is used to
implement FF and FB configurations as included in the first two
rows of Table 3. The noise filtering capability of FBNN improves
the estimation accuracy notably, reason why the LR structure
is concluded as the most suitable and successively used in the
subsequent training sets.

FIGURE 9 | (Top) x and y coordinates of trajectory 0; (Bottom-Left) 1σx in trajectory 0 with respect to the sensor sampling; (Bottom-Right) 1σx in trajectory 0 with

respect to the sensor sampling.

Frontiers in Neurorobotics | www.frontiersin.org 10 May 2019 | Volume 13 | Article 1233

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhang et al. Neural Network Based Uncertainty Prediction

FIGURE 10 | (Top) x and y coordinates of trajectory 1; (Bottom-Left) 1σx in trajectory 1 with respect to the sensor sampling; (Bottom-Right) 1σx in trajectory 1

with respect to the sensor sampling.

FIGURE 11 | (Middle) σx estimation in MC noisy trajectories (blue) respect to path coordinates (Top) and yaw (Bottom) in trajectory 4.

Six networks trained with set 2 are compared to six networks
trained set 3, to determine the effect of sign in the generalization
capacity. The best candidate from set 3 shows that the error is
30% lower compared to the best candidate provided by set 2. The
results evidence the benefits of reducing non-relevant data in the
input set, and corroborate the independence of the location error
accumulation with respect to the movement direction.

Sets 3 and 4 evaluate the relationship between generalization
and variability of the training sets. The candidates are trained
for similar number of epochs using the same structure and size.
Networks trained with set 4 are expected to have improved
generalization capacity, when compared to the ones trained with
set 3, oppositely to the results detailed in rows four and five.

These results are not conclusive due to the deficient amount of
training time allowed for set 4 network candidates, but show
evident differences between networks complexity when trained
with each set. Larger data variability would presumably imply
also higher network complexity, and therefore longer training
time and number of epochs.

Sets 5 to 8 implement the same data variability, but
use different combination of input signals. The training is
programmed for similar number of epochs in all cases, and
therefore the results are expected to benefit simpler training
sets. By comparing sets 5 and 7 it can be deduced that the
yaw is preferred to θ , and therefore set 6 does not benefit from
the additional information. Nevertheless, the result of set 8 do

Frontiers in Neurorobotics | www.frontiersin.org 11 May 2019 | Volume 13 | Article 1234

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhang et al. Neural Network Based Uncertainty Prediction

not corroborate this hypothesis, reason why extra training is
programmed with sets 9 and 10. These last sets incorporate
maximum data variability, and are trained for a larger number of
iterations up to a satisfactory performance. As expected from the
preliminary results obtained in sets 5, 6, and 7, the combination
of inputs used in sets 5 and 9, 1x, 1y, and 1yaw, is superior
to the other candidates. These results were already anticipated
by looking into the relationship between coordinates x and y
and odometry signals d and θ , which geometrically dependent
through (1) and (2). Consequently, it is reasonable to assume that
the combination of any of the previous pairs would not provide
extra information to the training set. In contrast, yaw proceeds
from a three dimensional displacement incorporating new data
that seems to the valuable for uncertainty prognosis.

5.4. Delay Effect on the Training Results
The effect of the feedback delay over the estimation accuracy
is studied in the LR configuration by implementing: 1 sample
delay, 2 samples delay and the combination of both. The results
obtained do not vary substantially with incremental delays, which
supports the hypothesis of independence between delayed inputs
and current outputs. Nevertheless, the output precision benefit
in all cases from the noise filtering effect of feedback structures,
reason why 1 step delayed is selected.

Figure 8 presents the structure used to find the optimal
hidden layer size, where n corresponds to the number of neurons
in the hidden layer.

5.5. Hidden Layer Optimal Size
Further training with set 9 using 20, 30, 40, and 50 neurons
was programmed to determine the optimal hidden layer size.
Networks with 20 and 30 neurons presented unacceptable error
measures as they were not able to capture the process complexity.
Fifty neurons networks were able to accurately estimate the
cumulative uncertainty in most of the trajectories, but presented
inconsistent behavior in some cases. The estimation results
obtained with 40 and 50 neurons networks are visually compared
in Figures 9, 10. These illustrations are formed by three graphs,
the trajectory shape at the top level and the uncertainty
estimation at the low level, including the uncertainty increment
of the left and the accumulation on the right.

Figure 9 illustrates trajectory 0, in which the 50-neurons
network returns improved results when compared to the 40-
neurons networks. Higher number of neurons are able to filter
the noisy inputs more effectively, as illustrated in the left graph,
and seem to follow better the uncertainty increment, almost
matching the cumulative value at the end of the trajectory. The
estimation results of the 40-neurons network also match the
increments in uncertainty and the shape of the accumulated
error, but it is not able to effectively filter the noise. It
could be deduced from the previous results that the more the
noise is filtered, the better the estimation accuracy obtained.
Nevertheless, this is not the case observed when analyzing
trajectory 1 as illustrated in Figure 10. Although again 50-
neurons networks filter the noise in the uncertainty increments
in the left graph, the tendency of the cumulative uncertainty
diverges from the target variable causing inconsistent behavior.

TABLE 4 | Comparison of training sets 9 and 11 in terms of set characteristics

and testing results in trajectories not used for training.

Set 9 Set 11

Input signals abs(1x,1y,1yaw) abs(1x,1y,1yaw)

Training Train trajectories

Train trajectories 0-5

&

Test trajectories 1,2,3,

4,9,14,22 and 24

TRAINING DETAILS

NN structure 40 neurons LR 40 neurons LR

No.epochs 223 126

Training
4.67·10−6 8.20·10−6

Performance

AVERAGE TEST RESULTS IN ALL TRAJECTORIES

1σx agv.RMS 0.00469 0.004691

σx agv.RMS 0.4 0.45

avg.end error 0.54 0.52

AVERAGE TEST RESULTS IN SET 9 TRAINING TRAJECTORIES

1σx agv.RMS 0.00445 0.004518

σx agv.RMS 0.41 0.35

avg.end error 0.52 0.43

AVERAGE TEST RESULTS IN SET 11 TRAINING TRAJECTORIES

1σx agv.RMS 0.004838 0.004798

σx agv.RMS 0.4 0.51

avg.end error 0.55 0.58

Oppositely, 40-neurons networks are able to both filter the
noise and follow the cumulative uncertainty tendency, returning
reasonably accurate results at the end point of the trajectory.

Although 50-neurons network are able to return very accurate
results in most of the training trajectories, they show inconsistent
behavior at times, which notably diverge from the target. As
previously stated, the generalization capability primes in front
of the estimation accuracy in the specific application of sensor
fusion. Consequently, 40-neurons networks are considered to be
the best candidate to model the uncertainty increment, and are
therefore considered as reference size in the following tests.

These results agree with the so-called Ockham’s Razor
principle, which prefers simpler networks structures able to
provide acceptable level of accuracy, rather than complex and
more accurate ones. The 50-neurons network is able to capture
higher non-linear process than the smaller versions. This extra
modeling capacity could be either trained to fit the process more
accurately, or to capture other processes such as inputs noise,
excusing the divergent results depicted in Figure 10. Nonetheless,
it is not a suitable network size for the characteristics of the
available training data.

6. TEST RESULTS

Given the fact that the NN has seen 70% of the data used
for testing, although different version of the noisy trajectories
are used, these still share similar characteristics which might

Frontiers in Neurorobotics | www.frontiersin.org 12 May 2019 | Volume 13 | Article 1235

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhang et al. Neural Network Based Uncertainty Prediction

FIGURE 12 | (Middle) σx estimation in MC noisy trajectories (blue) respect to path coordinates (Top) and yaw (Bottom) in trajectory 24.

FIGURE 13 | (Middle) σx estimation in MC noisy trajectories (blue) respect to path coordinates (Top) and yaw (Bottom) in trajectory 12.

prevent from yielding final conclusions. Furthermore, NNs can
be considered as blackbox models whose robustness cannot be
tested with conventional methods. In order to further analyze the
candidate performance, 28 new trajectories combining straight
lines, sharp turning and winding routes along urban areas are
used for testing.

6.1. Set Candidate 9
Likewise to the methodology followed to process the training
trajectories, the test trajectories are converted into noisy
features emulating data collection through noisy sensors.
Again 1000 MC noisy versions are generated to model the
uncertainty accumulation along the path. The estimation
performance of the 40-neurons network is tested in all
1000 noisy version of each of the 28 trajectories so as

to obtain the average error: RMS of 1σx, RMS of σx,
and end error of the cumulative uncertainty. Although the
estimation results are in average satisfactory, the network
candidate is not able to fit error accumulation with appropriate
accuracy in all test cases. Due to the characteristics of
blackbox model of the NN, it is difficult to predict in
which case scenarios the network will be able to capture the
uncertainty growth.

Figures 11–13 illustrate the results obtained in test trajectories
4, 24, and 12, respectively. These contain three graphs including
the trajectory coordinates, the cumulative uncertainty and the
yaw signal respectively from top to bottom. The middle graph
illustrates in red the targeted cumulative uncertainty and 1000
estimation outputs of the network in blue. Although the
cumulated uncertainty is well-captured in trajectories 24 and

Frontiers in Neurorobotics | www.frontiersin.org 13 May 2019 | Volume 13 | Article 1236

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhang et al. Neural Network Based Uncertainty Prediction

FIGURE 14 | Test trajectory not used in either set 9 or set 11 where set 11 outperforms set 9. Test trajectory 6 comparison of σx .

FIGURE 15 | Test trajectory not used in either set 9 or set 11 where set 9 outperforms set 11. Test trajectory 12 comparison of σx .

Frontiers in Neurorobotics | www.frontiersin.org 14 May 2019 | Volume 13 | Article 1237

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhang et al. Neural Network Based Uncertainty Prediction

12, this is not the case of trajectory 4. These results can be
explained through the values of the yaw signal in this test
scenarios. The first 200 sampling steps are characterized by
close-to-zero yaw, followed by a large increment in yaw and
a close-to-constant value until the end of the route. When
looking into the tendency of the accumulated uncertainty,
the shape seems to match the growth only in the last 200
sampling steps. This behavior is observed in some of the testing
trajectories, suggesting a consistent response. Furthermore,
when assessing the training trajectories, no scenario with
large yaw changes is observed. As a consequence of this
deficient training data, the network is not able to capture
the uncertainty when these conditions take place in the
testing trajectories.

In contrast to testing trajectory 4, the trajectories 24 and
12 do not present zero yaw values and maintain it mostly
constant along the whole path. As a consequence, the network
is able to accurately fit the uncertainty accumulation, with
accuracy acceptable to allow for sensor fusion at any point
of the route. It can be concluded from the previous that the
generalization capacity of the network could be potentially
improved provided that the training set includes the test
cases missing.

6.2. Set Candidate 11
The deficiencies of training set 9 data variability are corrected
in candidate 11. This implements the same input signals,
absolute value of 1x, 1y, and 1yaw, but includes a larger
amount of trajectories and therefore a larger number of case
scenarios that include possible changes in the yaw signal,
not previously captured. Whilst set 9 only considers data
from the training trajectories 0 to 5, set 11 also includes
some of the trajectories previously used for testing; test
trajectories 1, 2, 3, 4, 9, 14, 22, and 24. Table 4 contains
the details of the sets characteristics, data used, network
structure, training and testing results. This table includes the
results corresponding to the best network trained with sets
9 and 11. Again, new networks are trained with identical
structure and data, and the best is selected to avoid deceiving
results caused by random weights initialization. The results
included in Table 4 evaluate the networks performance in all
testing trajectories, including the ones also used for training
in set 11.

In average, the prediction accuracy of the increment
in the uncertainty, 1σx, is identical in both cases when
analyzing the average accuracy in all test trajectories. This
result suggest that the 40 neurons LRNN has reached
a performance limit with set 9 and does not admit the
further complexity provided in set 11. Moreover, set
9 presents better accuracy when analyzing the average
RMS error in σx and worst results when comparing the
end error.

When looking into the trajectories used to train set 11,
as expected the results provided by the network trained with
set 9 are worse. In this case set 11 has the advantage of
having implemented 70% of those trajectories during training.
Nevertheless, the accuracy of the network trained with set

11 is worse when looking exclusively to the trajectories not
used in any of the sets. This result could be explained
considering the loss of generalization capability, when the
training data complexity overcomes the non-linear capacity of
the network structure.

The networks results are visually compared in Figures 14,
15, where test trajectories 6 and 12 are illustrated. None of
these trajectories have been used to train any of the networks
and therefore, the results can be interpreted as pure testing.
The uncertainty estimation in the 1000 MC using the network
trained with set 9 is represented in green, whilst the respective
results of the network trained with set 11 are illustrated in
blue. The target curve is illustrated in red in both cases.
Figure 14 shows how set 11 outperforms set 9 prediction
results, whilst Figure 15 illustrates the opposite case. Although
the results of both networks are rather similar in terms of
accuracy, set 11 prediction in the 1000 MC noisy versions
of each trajectory are less spread than the equivalent ones
from set 9. The larger variability of data used in set 11 seems
to have the effect to improve the prediction robustness to
noise, and therefore reduce the variability of the prediction
when noisy versions of the same trajectory are used. It can
be deduced that the consistency of the results is improved
when implementing sets with larger variability due to improved
noise robustness.

After identifying the most suitable set for training, the
optimized number of neurons was investigated. The previous
results suggested that the optimal number of neurons is
close to 40, probably situated between 40 and 50 neurons.
Therefore, further tests were performed using 38, 42, 45, and
47 neurons. The training was maintained until stabilization
of the networks performance and allowing generally higher
number of epochs for larger sizes. The results verify the a priori
hypothesis and situate the best candidates within 38 and 42
neurons. In particular the 42-neurons candidate improves the
RMS error in 14 and 18% the 40 and 45-neurons candidates
respectively. The cumulative RMS and end errors are also
noticeable improved. The RMS error is improved by 0.0296 and
0.0184 and the end error by 0.161 and 0.457, when compared
to the 40 and 45-neurons networks respectively. It can be
therefore concluded that the optimal network size is 42-neurons
hidden layer.

7. CONCLUSIONS

This paper proposes a strategy for feature uncertainty
estimation directly from data without prior knowledge of
the sensors characteristics. NNs learning capability of non-
linear processes is tested in the particular application of
vehicle location through odometry measurements. Both
input set and network structure design are based on training
and testing results obtained with various neural network
candidates. The final results confirm NNs as suitable surrogate
modeling technique robust to changes in the testing data,
inputs noise and variable case scenarios, provided that the
training data captures enough data variability and the network

Frontiers in Neurorobotics | www.frontiersin.org 15 May 2019 | Volume 13 | Article 1238

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhang et al. Neural Network Based Uncertainty Prediction

size and structure complexity is able to resemble the process
non-linear characteristics.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (NSFC) under Grants 61703335, the
Fundamental Research Funds for the Central Universities
under Grants G2017KY0302, and the 111 Project under
Grant B18041.

REFERENCES

Bry, A., Bachrach, A., and Roy, N. (2012). “State estimation for

aggressive flight in gps-denied environments using onboard sensing,”

in IEEE International Conference on Robotics and Automation

(St. Paul, MN: IEEE), 1–8.

Choi, J. W., and Huhtala, K. (2016). Constrained global path optimization for

articulated steering vehicles. IEEE Trans. Vehicul. Technol. 65, 1868–1879.

doi: 10.1109/TVT.2015.2424933

Durrant-Whyte, H., Stevens, M., and Nettleton, E. (2001). “Data fusion

in decentralised sensing networks,” in International Conference on Information

Fusion (Montreal, QC: IEEE), 302–307.

El-Diasty, M., and Pagiatakis, S. (2008). Calibration and stochastic modelling

of inertial navigation sensor errors. J. Global Posit. Syst. 7, 170–182.

doi: 10.5081/jgps.7.2.170

Elfring, J., Appeldoorn, R., van denDries, S., and Kwakkernaat,M. (2016). Effective

world modeling: multisensor data fusion methodology for automated driving.

Sensors 16:E1668. doi: 10.3390/s16101668

Fabrizi, E., Oriolo, G., Panzieri, S., and Ulivi, G. (2000). “Mobile robot

localization via fusion of ultrasonic and inertial sensor data,” in In

Proceedings of the 8th International Symposium on Robotics with Applications

(Maui, HI: IEEE).

Forrester, A. I. J., and Keane, A. J. (2009). Recent advances in

surrogate-based optimization. Prog. Aerospace Sci. 45, 50–79.

doi: 10.1016/j.paerosci.2008.11.001

Fu, C., Sarabakha, A., K. Kayacan, E., Wagner, C., John, R., and Garibaldi,

J. M. (2018). Input uncertainty sensitivity enhanced nonsingleton fuzzy

logic controllers for long-term navigation of quadrotor UAVs. IEEE

ASME Trans. Mechatron. 23, 725–734. doi: 10.1109/TMECH.2018.2

810947

Garcia-Ligero, M. J., Hermoso-Carazo, A., and Linares-Perez, J. (2012).

Distributed and centralized fusion estimation from multiple sensors

with markovian delays. Appl. Math. Comput. 219, 2932–2948.

doi: 10.1016/j.amc.2012.09.017

Giordano, F., La Rocca, M., and Perna, C. (2014). Input variable selection

in neural network models. Commun. Stat. Theor. Methods 43, 735–750.

doi: 10.1080/03610926.2013.804567

Gorissen, D., Couckuyt, I., Demeester, P., Dhaene, T., and Crombecq, K. (2010). A

surrogate modeling and adaptive sampling toolbox for computer based design.

J. Mach. Learn. Res. 11, 2051–2055. doi: 10.1007/s10846-010-9395-x

Grime, S., and Durrant-Whyte, H. (1994). Data fusion in decentralized sensor

networks. Control Eng. Pract. 2, 849–863.

Hagan,M. T., Demuth, H. B., Beale,M.H., andDe Jesus, O. (2014).Neural Network

Design. Martin Hagan.

Han, J., Kim, D., Lee, M., and Sunwoo, M. (2012). Enhanced road

boundary and obstacle detection using a downward-looking lidar sensor.

IEEE Trans. Vehicul. Technol. 61, 971–985. doi: 10.1109/TVT.2012.21

82785

Hou, Z. S., and Wang, Z. (2013). From model-based control to data-

driven control: survey, classification and perspective. Inform. Sci. 235, 3–35.

doi: 10.1016/j.ins.2012.07.014

Jiang, L., Wang, Y. P., Cai,B., Jian, W., and Wei, S. (2011). “Multi-sensor

based vehicle autonomous navigation for vehicle infrastructure integration:

Concept and simulation analysis,” in Proc. TMEE (Changchun: IEEE),

698–702.

Jin, R., Chen, W., and Simpson, T. W. (2001). Comparative studies

of metamodelling techniques under multiple modelling criteria.

Struct. Multidiscipl. Optim. 23, 1–13. doi: 10.1007/s00158-001-0

160-4

Koziel, S., Ciaurri, D. E., and Leifsson, L. (2011). Surrogate-

based methods. Comput. Optim. Methods Algorithms 356, 33–59.

doi: 10.1007/978-3-642-20859-1_3

Lee Rodgers, J., and Nicewander, W. A. (1988). Thirteen ways to look at the

correlation coefficient. Am. Stat. 42, 59–66.

Li, Q., Chen, L., Li, M., Shaw, S.-L., and Nuchter, A. (2014).

A sensor-fusion drivable-region and lane-detection system for

autonomous vehicle navigation in challenging road scenarios. IEEE

Trans. Vehicul. Technol. 63, 540–555. doi: 10.1109/TVT.2013.22

81199

Liu, Y., Lim, H.-B. Frazzoli, E., Ji, H., and Lee, V. C. S. (2013). Improving

positioning accuracy using gps pseudorange measurements for cooperative

vehicular localization. IEEE Trans. Vehicul. Technol. 63, 2544–2556.

doi: 10.1109/TVT.2013.2296071

Ma, G., Ghasemi, M., and Song, X. (2018). Integrated powertrain

energy management and vehicle coordination for multiple connected

hybrid electric vehicles. IEEE Trans. Vehicul. Technol. 67, 2893–2899.

doi: 10.1109/TVT.2017.2780268

Maier, H., and Dandy, G. (1997). Determining inputs for neural network

models of multivariate time series. Comput. Aided Infrastruct. Eng. 12,

353–368.

Martinez, C. M., Zhang, F., Clarke, D., Hinz, G., and Cao, D. (2017).

“Feature uncertainty estimation in sensor fusion applied to autonomous

vehicle location,” in International Conference on Information Fusion

(Xi’an: IEEE), 1–7.

McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., and Barton,

D. (2012). Big data. The management revolution. Harvard Bus. Rev. 90,

61–67. doi: 10.1007/s11623-013-0105-2

Michalke, T. P., Jebens, A., and Schäfers, L. (2011). “A dynamic

approach for ensuring the functional reliability of next-generation

driver assistance systems,” in in Proc. ITSC (Washington, DC: IEEE),

408–415.

Moller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised

learning. Neural Netw. 6, 525–533.

Park, J. H., , Shin, Y. D., Bae, J. H., and Baeg, M. H. (2012). Spatial uncertainty

model for visual features using a kinect sensor. Sensors 12, 8640–8662.

doi: 10.3390/s120708640

Poczter, S. L., and Jankovic, L. M. (2014). The google car: driving toward

a better future? J. Bus. Case Stud. 10, 7–14. doi: 10.19030/jbcs.v10i

1.8324

Razavi, S., Tolson, B. A., and Burn, D. H. (2012). Review of surrogate

modeling in water resources. Water Resour. Res. 48, 7401–7423.

doi: 10.1029/2011WR011527

Schrader, D. K., Min, B. C., Matson, E. T., and Dietz, J. E. (2012).

“Combining multiple, inexpensive gps receivers to improve

accuracy and reliability,” in IEEE Sensors Applications Symposium

(Brescia: IEEE), 1–6.

Sudheer, K. P., Gosain, A. K., and Ramasastri, K. S. (2002). A data-

driven algorithm for constructing artificial neural network rainfall-

runoff models. Hydrol. Process. 16, 1325–1330. doi: 10.1002/h

yp.554

Taeihagh, A., and Lim, H. (2019). Governing autonomous vehicles:

emerging responses for safety, liability, privacy, cybersecurity, and

industry risks. Transp. Rev. 39, 103–128. doi: 10.1080/01441647.2018.14

94640

Frontiers in Neurorobotics | www.frontiersin.org 16 May 2019 | Volume 13 | Article 1239

https://doi.org/10.1109/TVT.2015.2424933
https://doi.org/10.5081/jgps.7.2.170
https://doi.org/10.3390/s16101668
https://doi.org/10.1016/j.paerosci.2008.11.001
https://doi.org/10.1109/TMECH.2018.2810947
https://doi.org/10.1016/j.amc.2012.09.017
https://doi.org/10.1080/03610926.2013.804567
https://doi.org/10.1007/s10846-010-9395-x
https://doi.org/10.1109/TVT.2012.21\penalty -\@M {}82785
https://doi.org/10.1016/j.ins.2012.07.014
https://doi.org/10.1007/s00158-001-0160-4
https://doi.org/10.1007/978-3-642-20859-1_3
https://doi.org/10.1109/TVT.2013.2281199
https://doi.org/10.1109/TVT.2013.2296071
https://doi.org/10.1109/TVT.2017.2780268
https://doi.org/10.1007/s11623-013-0105-2
https://doi.org/10.3390/s120708640
https://doi.org/10.19030/jbcs.v10i1.8324
https://doi.org/10.1029/2011WR011527
https://doi.org/10.1002/hyp.554
https://doi.org/10.1080/01441647.2018.1494640
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhang et al. Neural Network Based Uncertainty Prediction

Xu, L., Wang, L. Y., Yin, G., and Zhang, H. (2014). Communication information

structures and contents for enhanced safety of highway vehicle platoons. IEEE

Trans. Vehicul. Technol. 63, 4206–4220. doi: 10.1109/TVT.2014.2311384

Yu, H., and Wilamowski, B. W. (2011). Levenberg-Marquardt Training Industrial

Electronics Handbook, Vol. 5 Intelligent Systems, 2nd Edn. CRC Press.

Zhang, F., Simon, C., Chen, G., Buckl, C., and Knoll, A. (2013). “Cumulative

error estimation from noisy relative measurement,” in in Proc. ITSC (Hague:

IEEE).

Zheng, P., and McDonald, M. (2003). The effect of sensor errors on

the performance of collision warning systems. Intell. Transp. Syst. 1,

469–474. doi: 10.1109/ITSC.2003.1251998

Conflict of Interest Statement: CM was employed by company Porsche

Engineering Services GmbH, DC was employed by company Cogsense

Technologies Limited. All other authors declare no competing interests.

Copyright © 2019 Zhang, Martinez, Clarke, Cao and Knoll. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 17 May 2019 | Volume 13 | Article 1240

https://doi.org/10.1109/TVT.2014.2311384
https://doi.org/10.1109/ITSC.2003.1251998
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

ORIGINAL RESEARCH
published: 04 June 2019

doi: 10.3389/fnbot.2019.00031

Frontiers in Neurorobotics | www.frontiersin.org 1 June 2019 | Volume 13 | Article 31

Edited by:

Changhong Fu,

Tongji University, China

Reviewed by:

Zhaohui Xia,

Rensselaer Polytechnic Institute,

United States

Dongdong Zheng,

National University of

Singapore, Singapore

Qinyuan Ren,

Zhejiang University, China

*Correspondence:

Longhan Xie

melhxie@scut.edu.cn

Received: 12 February 2019

Accepted: 09 May 2019

Published: 04 June 2019

Citation:

Cai S, Chen Y, Huang S, Wu Y,

Zheng H, Li X and Xie L (2019)

SVM-Based Classification of sEMG

Signals for Upper-Limb

Self-Rehabilitation Training.

Front. Neurorobot. 13:31.

doi: 10.3389/fnbot.2019.00031

SVM-Based Classification of sEMG
Signals for Upper-Limb
Self-Rehabilitation Training

Siqi Cai 1, Yan Chen 1, Shuangyuan Huang 1, Yan Wu 2, Haiqing Zheng 3, Xin Li 3 and

Longhan Xie 1*

1 Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, China, 2 A∗STAR

Institute for Infocomm Research, Singapore, Singapore, 3 The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou,

China

Robot-assisted rehabilitation is a growing field that can provide an intensity, quality,

and quantity of treatment that exceed therapist-mediated rehabilitation. Several

control algorithms have been implemented in rehabilitation robots to develop a

patient-cooperative strategy with the capacity to understand the intention of the user

and provide suitable rehabilitation training. In this paper, we present an upper-limb

motion pattern recognition method using surface electromyography (sEMG) signals

with a support vector machine (SVM) to control a rehabilitation robot, ReRobot,

which was built to conduct upper-limb rehabilitation training for post-stroke patients.

For poststroke rehabilitation training using the ReRobot, the upper-limb motion of

the patient’s healthy side is first recognized by detecting and processing the sEMG

signals; then, the ReRobot assists the impaired arm in conducting mirror rehabilitation

therapy. To train and test the SVM model, five healthy subjects participated in the

experiments and performed five standard upper-limb motions, including shoulder flexion,

abduction, internal rotation, external rotation, and elbow joint flexion. Good accuracy was

demonstrated in experimental results from the five healthy subjects. By recognizing the

model motion of the healthy side, the rehabilitation robot can provide mirror therapy to the

affected side. This method can be used as a control strategy of upper-limb rehabilitation

robots for self-rehabilitation training with stroke patients.

Keywords: surface electromyography, support vector machine, rehabilitation robot, upper limb, motion pattern

recognition

INTRODUCTION

Stroke is the leading cause of adult disability around the world (Burton et al., 2017), with upper-limb
motor impairments being the main factor influencing the quality of life in stroke survivors
(Stinear et al., 2017). Repetitive motor training on movement has a notable curative effect on the
restoration of arm function in stroke patients, and the patients’ degree of recovery is positively
influenced by treatment intensity (Steven et al., 2006; Gittler and Davis, 2018). Conventionally,
stroke patients usually rehabilitate with the assistance of therapists. However, the involvement of
therapists is challenging because rehabilitation training is a time-consuming and labor-intensive
process. Many stroke survivors experience upper-limb impairment with few rehabilitation

41

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2019.00031
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2019.00031&domain=pdf&date_stamp=2019-06-04
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:melhxie@scut.edu.cn
https://doi.org/10.3389/fnbot.2019.00031
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00031/full
http://loop.frontiersin.org/people/686314/overview
http://loop.frontiersin.org/people/687981/overview
http://loop.frontiersin.org/people/537983/overview

Cai et al. Upper-Limb Self-Rehabilitation Training

opportunities due to a lack of rehabilitation therapists. Robot-
assisted therapy devices, which can provide the affected arm with
high intensity and repetitive treatment, have been increasingly
used in rehabilitation training and can potentially enhance
upper-limb functional recovery in stroke survivors (Yoo and
Kim, 2015; Veerbeek et al., 2017).

Various rehabilitation robotic devices have been developed
for upper-limb training in stroke patients. Among them, MIT-
Manus (Krebs et al., 1999) was one of the first systems to
be developed and can provide stroke survivors with plane
movements. Furthermore, MIME (Lum et al., 2006), GENTLE/s
(Coote et al., 2008), T-WREX (Domien et al., 2011), and
NEREBOT (Stefano et al., 2014) were proposed to permit three-
dimensional exercise training for patients with impaired arms.

Different control strategies have been developed and applied
to rehabilitation robots for the recovery of the affected arm.
Motion parameters of the patient’s arm are one of the major
inputs in the rehabilitation robot’s control system. Many types
of mechanical inputs, such as switches (e.g., Aubin et al., 2013;
Artz et al., 2015), force sensors (e.g., Diftler et al., 2014), and
computer vision (e.g., Taati et al., 2012), have been used as
feedback in the controllers of rehabilitation robots. The surface
electromyography (sEMG) signal, which is composed of the
action potentials from groups of muscle fibers, is one of the
major sources of information about neural control and can
reflect the degree of activity of the muscles (Yang et al., 2016).
During the rehabilitation training of the upper limb, sEMG
signals can be captured, interpreted, and used as input for the
control algorithms of rehabilitation robots (Rosen et al., 2001;
Kiguchi and Hayashi, 2012; Peternel et al., 2016). Considering
that rich motor control information and the user’s intention can
be detected from sEMG signals, the sEMG-based control scheme
is one of themost appropriately suited approaches for upper-limb
rehabilitation robots (Singh et al., 2014).

However, the sEMG signal is affected by many factors and
is not stable, which can lead to low accuracy in recognizing
patient motion intentions. Some studies have shown that
machine learning techniques can be employed for classifying
different tasks and improving the robustness and accuracy of
the identification and classification of arm movements through

FIGURE 1 | Human upper-limb motions. (A) Shoulder flexion; (B) shoulder abduction; (C) shoulder internal rotation and external rotation; (D) elbow flexion.

the exploitation of sEMG signals (Lucas et al., 2008; Young
et al., 2013; Suberbiola et al., 2015). The SVM algorithm is a
well-established technique to learn how to classify new data
starting from a collection of classified events and has been widely
applied in machine learning problems (Vapnik, 1995; Suykens
et al., 2015) and sEMG processing (Song et al., 2007) because of
its simplicity and robustness. With the determination of a few
additional tuning parameters, SVM solutions are characterized
by a convex quadratic optimization problem (Platt, 1999).
Considering that the availability and quality of sEMG signals can
vary from patient to patient, it is difficult to obtain a large number
of training samples. SVM is suitable for solving learning tasks
where the number of attributes is large relative to the number
of training examples (Suykens et al., 2002).

Aimed at developing a control strategy for upper-limb
rehabilitation robots with the capacity to understand the
intention of the patients and provide the corresponding
rehabilitation training, this paper proposed an sEMG-based
control framework based on SVM classifiers for intention
identification of the upper limb. The control strategy was applied
to the upper-limb rehabilitation robot, ReRobot, to perform
the rehabilitative exercise training. The motion of the patient’s
healthy side is first recognized from the measured and processed
sEMG signals, and then the ReRobot assists the affected side in
conducting the corresponding rehabilitation therapy. Based on
the developed sEMG-based control strategy, self-rehabilitation
training in stroke patients can be conducted.

METHODS

Data Collection
Many stroke patients have trouble moving their upper limbs

on the affected side, and they must receive much rehabilitation
training to recover motion ability (Merletti et al., 1999).

Stroke patients often show abnormal shoulder motor ability,
so shoulder rehabilitation actions, including shoulder forward
flexion, shoulder level adduction, and shoulder level abduction
(Chen and Zhou, 2015), should be carried out.

The coordinates were defined where the coronal axis of the
patient is the X-axis, the sagittal axis is the Y-axis, the vertical

Frontiers in Neurorobotics | www.frontiersin.org 2 June 2019 | Volume 13 | Article 3142

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Cai et al. Upper-Limb Self-Rehabilitation Training

FIGURE 2 | Locations of the sEMG electrodes: middle deltoid, anterior deltoid, pectoralis major, biceps brachii, brachioradial muscle, ulnar flexor carpal, trapezius,

posterior deltoid, and triceps brachii. Written informed consent was obtained from the individual in this image for the publication.

axis is the Z-axis, and the acromioclavicular joint is the origin of
the coordinates. Five motions were used to test the performance
of this model, including shoulder flexion, abduction, internal
rotation, external rotation, and elbow joint flexion, as shown
in Figure 1.

Five healthy subjects (N = 5, age 25 ± 4 years, body mass

70 ± 5 kg, height 174 ± 6 cm, all male and all right-handed)

participated in the experiments. All subjects gave their informed
consent before participation. The experimental procedures were

conducted in accordance with the Declaration of Helsinki

and approved by the Ethic Board of Medical School, South
China University of Technology. Each subject performed five

repetitions in accordance with five standard motions. Since

stroke patients are mostly elderly people with lower motion
abilities on their healthy side compared to young adults, the

designed motions were imitated as movements of elderly stroke

patients on their healthy side.
For each test, the test subject did not carry weight, and the

movement lasted for 1–2 s. After the end of each movement,
the subject took at least 1min to rest to prevent muscle

fatigue. There are many muscles involved in the movement

of the shoulder and elbow joints. Muscles play two roles in
the movement process: proximal stability and distal activity.

In this paper, eight superficial muscles involved in the distal

shoulder and elbow movements were selected as monitoring
objects. To ensure safety, patients controlled the emergency

stop of the equipment according to their own comfort level. In
this paper, the patient’s clenched fist is used as the emergency
stop action, and the flexor radialis is used as the detection
channel for the emergency stop action. Therefore, a total of
nine muscles were selected as test objects. The sEMG signals

of nine muscles in the upper limb were acquired, including
the middle deltoid, anterior deltoid, pectoralis major, biceps
brachii, brachioradial muscle, ulnar flexor carpal, trapezius,
posterior deltoid, and triceps brachii. The first eight muscles
were used to evaluate how the muscle works while the signal
changes. The ulnar flexor carpal played a role in the subject’s
self-initiation of the safety protection mechanism. When the
subject felt uncomfortable during the test, he or she could
stop the robot by clenching his or her fist and activating the
ulnar flexor.

Figure 2 shows the experimental setup. A 16-channel sEMG
acquisition instrument with 1-kHz sampling frequency in each
channel was used. Each channel was related to a three-channel
differential electrode. After themuscle was disinfected by alcohol,
the electrodes were placed along the direction of the muscle
abdomen with an interval of 2 cm. Figure 3 shows the raw sEMG
signals of the eight muscles without preprocessing from one of
the five healthy individuals.

Data Processing
Preprocessing
sEMG signals are easily disturbed by the external environment
in the acquisition process. Motion artifacts, baseline offset, and
power frequency interference may all lead to distortion of the
sEMG signals, which leads to poor classification accuracy (Chen
et al., 2015). Data preprocessing methods of baseline correction,
20–500Hz bandpass filter, power frequency filter (50Hz notch),
full-wave rectification, and amplitude normalization were
carried out to improve the signal-to-noise ratio (SNR) of the
sEMG signal. All filters used in this paper are fourth-order
Butterworth filters.

Frontiers in Neurorobotics | www.frontiersin.org 3 June 2019 | Volume 13 | Article 3143

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Cai et al. Upper-Limb Self-Rehabilitation Training

FIGURE 3 | Raw experimental data recorded during a single trial of shoulder abduction from one of the five individuals. The unit of the Y coordinate is µV. (T,

trapezius; PM, pectoralis major; PD, posterior deltoid; MD, middle deltoid; AD, anterior deltoid; TB, triceps brachii; BM, brachioradial muscle; BB, biceps brachii).

Signal Segmentation
Although the intensity of the sEMG signal detected in
each channel is different in the different movements, the
signals show good synchronization (Zhang and Zhou, 2012):
if the related muscles did not contract, then the sEMG
signal showed a stable low-amplitude signal before the test;
in contrast, the signal changed dramatically in the course
of executing the action. The characteristic of this type of
signal was that the signal could be segmented by a sample
entropy algorithm (Liu and Zhou, 2013). The sample entropy
algorithm is an efficient and time-consuming algorithm that
can avoid the signal deviation caused by self-matching.
Therefore, we adopted the sample entropy algorithm for
data segmentation.

In the experiments, the action signals of eight channels
were collected, and the muscle signal for the sample entropy
analysis was from the sum of the eight-channel signals,
which is:

sEMG (t) =
∑M

i=1
sEMGi(t) (1)

whereM is the total number of channels, sEMGi(t) is the tth value
of channel i, and sEMG is the sum of all channel signals.

The sample entropy can be calculated as follows:

SampEn (m, r, L) = − ln

[

Bm+1(r)

Bm(r)

]

(2)

where m is the dimension of the sEMG signal, r is the
similar tolerance, L is the length of the muscle signal,
and Bm (r) is the probability of the two signal sequences

FIGURE 4 | Teacher sample labels based on the sample entropy algorithm,

where the label value of the active segment is 1, and the non-action area is 0.

matching m points. In this study, we set m = 2 and
r = 0.25∗σ , where σ is the standard deviation of the
sEMG signal.

s (n) =

{

0, |SampEn < d
1, |SampEn ≥ d

(3)

where d (d = 0.6) is the threshold and s (n) is the judgment
function of the EMG signal. When s (n) = 1, it is the effective
part of the action; when s (n) = 0, it is the invalid part of the
action, as shown in Figure 4.

Feature Extraction and Classification
Because of the short-term stationarity of sEMG signals, the
signals need to be divided into frames. To prevent spectrum

Frontiers in Neurorobotics | www.frontiersin.org 4 June 2019 | Volume 13 | Article 3144

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Cai et al. Upper-Limb Self-Rehabilitation Training

FIGURE 5 | Parameter optimization process based on a genetic algorithm.

FIGURE 6 | The ReRobot system. The system is set up to support seated rehabilitation training in 3D space, and the UR5 robot is the main system used.

leakage, window functions should be used for interception.
Compared with window functions such as the rectangular
window and triangular window, the Hanning window has the
characteristics of fast side lobe attenuation and is suitable
for non-stationary signals. Therefore, this paper adopts a
Hanning window for framing. Hanning windows with window
lengths ranging from 30 to 300ms (Chowdhury et al.,
2013) were used to extract the characteristics of the sEMG
signals. To ensure the implementation of the system and
the stability of the classification, 128ms was selected as
the window length, and the sliding step size was 64ms.
The root mean square (RMS), fourth-order autocorrelation

factor, wavelength, variance, absolute mean, and short-term
energy of each window in each channel are calculated
as follows:

RMSkj =

√

1

N

∑N

i=1
(sEMGij)

2 (4)

VARkj =
1

N

∑N

i=1

(

sEMGij − sEMGj

)

(5)

MAVkj =
1

N

∑N

i=1

∣

∣sEMGij

∣

∣ (6)

Frontiers in Neurorobotics | www.frontiersin.org 5 June 2019 | Volume 13 | Article 3145

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Cai et al. Upper-Limb Self-Rehabilitation Training

FIGURE 7 | Control structure for robot-assisted exercise training based on the SVM classification of sEMG signals.

TABLE 1 | Classification performance—five types of motions.

Motion Precision Recall F1-score

Shoulder flexion 0.933 0.942 0.938

Shoulder external rotation 0.905 0.858 0.881

Shoulder internal rotation 0.906 0.937 0.921

Shoulder abduction 0.964 0.958 0.961

Elbow joint flexion 0.991 0.991 0.991

FIGURE 8 | Mean recognition accuracies for the five healthy subjects (SF,

shoulder flexion; SER, shoulder external rotation; SIR, shoulder internal

rotation; SA, shoulder abduction; and EJF, elbow joint flexion).

SSIkj =
∑N

i=1
(sEMGij)

2 (7)

where k represents the kth window and j is the jth channel.

Support Vector Machine
Support vector machine (SVM) is a machine learning method
based on statistical learning theory. The characteristic behavior

of SVM is to construct a high-dimensional hyperplane for
small samples and non-linear models and to classify samples by
calculating the maximum distance of training data points on the
hyperplane (Ma et al., 2004). Due to the physical limitations of
stroke patients, the sample size of the data that can be collected
is small. In small-sample model training, SVM has advantages
of higher stability and fewer training parameters (Raczko and
Zagajewski, 2017). Therefore, SVM is a better choice than a
neural network. The equation solved by the SVM algorithm after
the Lagrange operator can be expressed as:

{

min 1
2 ‖w‖

2 + C
∑N

i=1 ξi
s.t.yk(w • xk + b) ≥ 1− ξi, k = 1...N

(8)

where (xk, yk) represents the training data of the kth window.
ξi is a slack variable, which represents the magnitude of the
classification error.

The radial basis kernel function can be expressed as (Chung
et al., 2003):

κ(xi, xj) = exp

{
∥

∥xi − xj
∥

∥

2

2δ2

}

(9)

The penalty factor C and kernel function parameter δ

are the main parameters that affect the performance of the
model. Therefore, while training the model, the penalty factor
C and kernel function parameter δ should be optimized.
To optimize parameters C and δ of the model, the genetic
optimization algorithm is used. The accuracy of the time series
prediction is selected as the fitness function. The optimization
steps of SVM parameters based on the genetic algorithm are
shown in Figure 5.

To test the feasibility of the genetic optimization algorithm,
simulations were carried out using MATLAB. Five healthy
subjects (N = 5, age 25± 4 years, bodymass 70± 5 kg, height 174
± 6 cm, all male and all right-handed) were selected for shoulder
flexion, abduction, pronation, and elbow flexion. Each action was
performed five times for data classification and recognition.

The default value of MATLAB is C = 1; σ = 1/numfeatures,
where numfeatures is the number of features. In this paper,

Frontiers in Neurorobotics | www.frontiersin.org 6 June 2019 | Volume 13 | Article 3146

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Cai et al. Upper-Limb Self-Rehabilitation Training

FIGURE 9 | Chaotic matrix of the five healthy subjects (the diagonal value of the matrix is the correct number of classifications, while the non-diagonal value is the

wrong number of classifications).

FIGURE 10 | Experiments for sEMG signal acquisition and SVM-based classification during rehabilitation exercises from the healthy side of the subject. Written

informed consents were obtained from the individuals in this image for the publication.

Frontiers in Neurorobotics | www.frontiersin.org 7 June 2019 | Volume 13 | Article 3147

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Cai et al. Upper-Limb Self-Rehabilitation Training

numfeatures = 40. The value after optimization is C =

0.4579 and σ = 371.6339. The influence of the parameter
optimization is significant. Compared with the default value,
the optimized value has higher classification accuracy. When
the default parameters are used, the classification accuracy is
78.53%. After parameter optimization, the classification accuracy
reached 94.18%.

UPPER-LIMB REHABILITATION ROBOT
PLATFORM

Robot System
The ReRobot is a rehabilitation robot platform developed to
permit training of the upper limb in three-dimensional space,
as shown in Figure 6. The platform is set up to support
and guide the movement of the affected arm using a UR5
robot arm. UR robotic arms are lightweight, fast, easy to
program, flexible, and safe robotic arms with 6 DOF (Kebria
et al., 2017). The configuration can provide positioning and
orientation to a patient’s upper limb in the training tasks. The
transmission control protocol/internet protocol (TCP/IP) was
used to communicate with the robot and the MATLAB user
interface. After attaching to the forearm of a stroke patient,
ReRobot focuses on the rehabilitation exercise of the shoulder
and elbow joints in accordance with the range of movement of
the human arm, including shoulder flexion/extension, shoulder
abduction/adduction, shoulder internal/external rotation, elbow
joint flexion/extension, and forearm supination/pronation. The
rehabilitation data, e.g., data that include the sEMG, forces,
velocities, and positions, are used for analysis and ensure the
safety of subject is collected in real time during the exercises.
To ensure a comfortable fixation to the patient’s arm, a gas bag
is used as the buffer device at the attachment point with the
human arm.

Safety is an important issue in the ReRobot therapy system.
The safety system consists of several components, including an
emergency stop switch, force sensor stops, a hand-controlled
switch, and an sEMG signal stop. The emergency stop button,
which is held by the experimenter, cuts power to the robot
and shuts down all systems. The six-axis force sensor located
at the robot arm measures interaction forces generated during
the tasks. If the interaction force is abnormal, the power of
the system would be automatically cut off. The hand-controlled
switch, which is held by the subject, stops the movement
of the robot. In the event of any abnormality, the robot
stops and the patient’s arm can be easily removed from the
end of the ReRobot by a freely actuating mechanism and
removable ends.

Control Scheme Based on the SVM
Classification of sEMG Signals
The control system of the ReRobot system is intended to develop
a human–machine interface (HMI) that is able to activate the
device as soon as the patient’s motion intention is detected.
By using the SVM system, the upper-limb movements of the
healthy side can be detected and classified automatically through

sEMG signals, and the ReRobot will then assist the impaired arm
with that movement. The control scheme based on the SVM
classification of sEMG signals was thus established, as shown
in Figure 7.

This platform acquires the test subject’s sEMG signals of the
upper limb on the healthy side, and the preprocessed EMG
signals from one to eight channels are used for upper limbmotion
recognition using the SVM classificationmethod. The recognized
action label signals are sent to the robot for motion calculation,
and then the robot actuates the subject’s affected arm with the
position control method to perform the corresponding actions
based on a presupposed trajectory.

When the patient feels discomfort in his or her arm or muscle
abnormalities during the test, the whole system can be safely
stopped by patient through the first clenching motion, and the
sEMG signal from channel 9 is sent to the manipulator. At the
same time, there is an emergency stop button in the test subject’s
hand throughout the test process to ensure safety.

Experiment and Results
To test the feasibility of the upper-limb motion recognition
method based on the SVM classification, simulations were
carried out using MATLAB. Five movements of five normal
people were collected 20 times. After processing feature
extractions and label recognition of the collected data, 10 five-
fold cross-validations were performed. The results are shown in
Figure 8. The classification accuracy of each action is as follows:
average recognition rate, 93.34 ± 0.59%; shoulder flexion, 92.95
± 1.78%; shoulder external rotation, 91.44 ± 0.91%; shoulder
internal rotation, 86.67 ± 1.98%; shoulder abduction, 95.98
± 0.70%; and elbow flexion, 98.89 ± 0.42%. The chaotic
matrix of one of the classifications is shown in Figure 9. The
misclassification rate of shoulder internal rotation and shoulder
external rotation is high. The main reason is that the muscles
involved in the two movements have a high coincidence, so
they are easily confused. However, the overall recognition rate
is high, so the system can be used in the actual operation of the
experimental platform.

Based on the chaoticmatrix, three accuracymetrics (precision,
recall, and F1-score) can be obtained (Sokolova and Lapalme,
2009). Precision describes the accuracy of the detection.
Recall is the detection rate, which refers to how well the
target objects are detected without being missed. The F1-
score combines the precision and recall and provides a single
measure of quality that is easy for end-users to understand.
The precision, recall, and F1-score of SVM algorithm in
classifying five different motions, including shoulder flexion,
shoulder external rotation, shoulder internal rotation, shoulder
abduction, and elbow joint flexion, were calculated to evaluate
the performance, as shown in Table 1. The elbow joint flexion
was detected with excellent performance (F1-score = 0.991),
followed by shoulder abduction (F1-score = 0.961), shoulder
flexion (F1-score = 0.921), and shoulder external rotation (F1-
score = 0.881). The SVM-based classifier generally classified
well and the average F1-score of five types of motions
was 0.9368.

Frontiers in Neurorobotics | www.frontiersin.org 8 June 2019 | Volume 13 | Article 3148

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Cai et al. Upper-Limb Self-Rehabilitation Training

Five subjects (N = 5, age 25 ± 4 years, body mass 70
± 5 kg, height 174 ± 6 cm, all male and all right-handed)
participated in the rehabilitation training experiments, and all
five subjects were able to complete robot-assisted voluntary
exercises, as shown in Figure 10. Since these five subjects are
all right-handed people, the sEMG signals of their right arms
were acquired and processed. Based on the SVM classification
method, their motion intentions were analyzed and used as
input into the control schema of ReRobot. Thus, ReRobot can
understand the desired movement of the subjects and facilitate
its execution, thus providing active support to their left arms.
A total of 100 actions were performed in the actual test, and 92
actions were correctly identified using the SVM-based method.
The robot arm successfully assisted the subject’s arm with
recognized movements. Multiple security guarantees ensure the
safety of the subjects in this process. The experimental results
showed that SVM-based classification achieved good accuracy in
rehabilitation training.

To verify the effectiveness of the safety switch based
on the sEMG signal, a total of 25 tests of safety stops
based on sEMG signals were performed. ReRobot had its
cut power during each test, which proved the feasibility
of using sEMG signals as an emergency stop in the
rehabilitation system.

The experimental results showed that SVM-based
classification can provide good accuracy in upper-limb motion
pattern recognition and enabled patients to choose actions
actively for rehabilitation. It is possible to use sEMG signals as an
emergency stop button in the upper-limb rehabilitation system
to ensure safety.

CONCLUSIONS

In this paper, we investigated the feasibility of SVM classifiers
for intention identification of the upper limb from sEMG
signals. A new human–machine interface for self-rehabilitation
training with stroke patients was developed. The upper-limb
rehabilitation robot, ReRobot, could adequately understand the
desired upper-limb movement and facilitate its execution, thus

providing active support to the impaired arm. Experiments
with the ReRobot showed that the SVM classification based on
sEMG signals can provide good accuracy in upper-limb motion
pattern recognition when a time-dependent multifeature set
was used.

In future research, this method to extract upper-limb
intention from sEMG signals will be tested by experiments with
stroke patients. The application of this classifier to upper-limb
rehabilitation robots will be implemented to achieve successful
clinical verification.

ETHICS STATEMENT

This study was carried out in accordance with the
recommendations of SCUT Research Ethics Guidelines and
Researcher’s Handbook, Ethic Board of Medical school, South
China University of Technology with written informed consent
from all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. The protocol was
approved by the Ethic Board of Medical school, South China
University of Technology.

AUTHOR CONTRIBUTIONS

SC, YC, and LX contributed conception and design of the study.
SH carried out the experiments. SC and YC performed the formal
analysis and methodology part. SC wrote the first draft of the
manuscript. YC, SH, YW, HZ, XL, and LX wrote sections of the
manuscript. All authors contributed to manuscript revision, read
and approved the submitted version.

FUNDING

This work was supported in part by the National Natural
Science Foundation of China (Grant No. 51575188), National
Key R&D Program of China (Grant No. 2018YFB1306201),
Research Foundation of Guangdong Province (Grant No.
2016A030313492 and 2019A050505001), and Guangzhou
Research Foundation (Grant No. 201903010028).

REFERENCES

Artz, E. J., Blank, A. A., and O’malley, M. K. (2015). “Proportional

sEMG based robotic assistance in an isolated wrist movement,” in

ASME 2015 Dynamic Systems and Control Conference. V002T27A011

(Columbus, OH).

Aubin, P. M., Sallum, H., Walsh, C., Stirling, L., and Correia, A. (2013).

“A pediatric robotic thumb exoskeleton for at-home rehabilitation: the

Isolated Orthosis for Thumb Actuation (IOTA),” in IEEE International

Conference on Rehabilitation Robotics (Seattle, WA). doi: 10.1109/ICORR.2013.

6650500

Burton, J. K., Eec, F., Barugh, A. J., Walesby, K. E., Amj, M. L., Shenkin, S.

D., et al. (2017). Predicting discharge to institutional long-term care after

stroke: a systematic review and metaanalysis. J. Am. Geriatr. Soc. 66, 161–169.

doi: 10.1111/jgs.15101

Chen, M., and Zhou, P. (2015). A novel framework based on FastICA for high

density surface EMG decomposition. IEEE Trans. Neural. Syst. Rehabil. Eng.

24, 117–127. doi: 10.1109/TNSRE.2015.2412038

Chen, Y., Yang, Z., and Wang, J. (2015). Eyebrow emotional expression

recognition using surface EMG signals. Neurocomputing 168, 871–879.

doi: 10.1016/j.neucom.2015.05.037

Chowdhury, R. H., Reaz, M. B. I., Ali, M. A. B. M., Bakar, A. A. A., Chellappan,

K., and Chang, T. G. (2013). Surface electromyography signal processing and

classification techniques. Sensors 13, 12431–12466. doi: 10.3390/s130912431

Chung, K. M., Kao, W. C., Sun, C. L., Wang, L. L., and Lin, C. J. (2003). Radius

margin bounds for support vector machines with the RBF kernel. Neural

Comput. 15, 2643–2681. doi: 10.1162/089976603322385108

Coote, S., Murphy, B., Harwin, W., and Stokes, E. (2008). The effect of the

GENTLE/s robot-mediated therapy system on arm function after stroke. Clin.

Rehabil. 22, 395–405. doi: 10.1177/0269215507085060

Diftler, M., Ihrke, C. A., Bridgwater, L. B., Davis, D. R., Linn, D. M., Laske, E. A.,

et al. (2014). RoboGlove—A Robonaut Derived Multipurpose Assistive Device.

Hong Kong: NASA National Aeronautics and Space Administration.

Domien, G., Ilse, L., Lore, K., Geert, A., Els, K., and Peter, F. (2011). The Armeo

Spring as training tool to improve upper limb functionality inmultiple sclerosis:

a pilot study. J. Neuroeng. Rehabil. 8:5. doi: 10.1186/1743-0003-8-5

Frontiers in Neurorobotics | www.frontiersin.org 9 June 2019 | Volume 13 | Article 3149

https://doi.org/10.1109/ICORR.2013.6650500
https://doi.org/10.1111/jgs.15101
https://doi.org/10.1109/TNSRE.2015.2412038
https://doi.org/10.1016/j.neucom.2015.05.037
https://doi.org/10.3390/s130912431
https://doi.org/10.1162/089976603322385108
https://doi.org/10.1177/0269215507085060
https://doi.org/10.1186/1743-0003-8-5
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Cai et al. Upper-Limb Self-Rehabilitation Training

Gittler, M., and Davis, A. M. (2018). Guidelines for adult stroke rehabilitation and

recovery. JAMA 319, 820–821. doi: 10.1001/jama.2017.22036

Kebria, P. M., Al-Wais, S., Abdi, H., and Nahavandi, S. (2017). “Kinematic and

dynamic modelling of UR5 manipulator,” in IEEE International Conference on

Systems, Man, and Cybernetics (Budapest). doi: 10.1109/SMC.2016.7844896

Kiguchi, K., and Hayashi, Y. (2012). An EMG-based control for an upper-limb

power-assist exoskeleton robot. IEEE Trans. Syst. Man Cybern. B Cybern.

42:1064. doi: 10.1109/TSMCB.2012.2185843

Krebs, H. I., Hogan, N., Volpe, B. T., Aisen, M. L., Edelstein, L., and Diels, C.

(1999). Overview of clinical trials with MIT-MANUS: A robot-aided neuro-

rehabilitation facility. Technol. Health Care 7, 419–423.

Liu, J., and Zhou, P. (2013). A novel myoelectric pattern recognition

strategy for hand function restoration after incomplete cervical spinal

cord injury. IEEE Trans. Neural. Syst. Rehabil. Eng. 21, 96–103.

doi: 10.1109/TNSRE.2012.2218832

Lucas, M.-F., Gaufriau, A., Pascual, S., Doncarli, C., and Farina, D. (2008).

Multi-channel surface EMG classification using support vector machines and

signal-based wavelet optimization. Biomed. Signal Process. Control 3, 169–174.

doi: 10.1016/j.bspc.2007.09.002

Lum, P. S., Burgar, C. G., Van, D. L. M., Shor, P. C., Majmundar, M., and

Yap, R. (2006). MIME robotic device for upper-limb neurorehabilitation in

subacute stroke subjects: a follow-up study. J. Rehabil. Res. Dev. 43, 631–642.

doi: 10.1682/JRRD.2005.02.0044

Ma, J., Krishnamurthy, A., and Ahalt, S. C. (2004). SVM training with duplicated

samples and its application in SVM-based ensemble methods. Neurocomputing

61, 455–459. doi: 10.1016/j.neucom.2004.04.004

Merletti, R., Roy, S. H., Kupa, E., Roatta, S., and Granata, A. (1999). Modeling of

surface myoelectric signals—Part II: Model-based signal interpretation. IEEE

Trans. Biomed. Eng. 46, 821–829. doi: 10.1109/10.771191

Peternel, L., Noda, T., Petri, T., Ude, A., Morimoto, J., and Babi, J.

(2016). Adaptive control of exoskeleton robots for periodic assistive

behaviours based on EMG feedback minimisation. PLoS ONE 11:e0148942.

doi: 10.1371/journal.pone.0148942

Platt, J. C. (1999). Fast Training of Support Vector Machines Using Sequential

Minimal Optimization. Cambridge, MA: MIT Press.

Raczko, E., and Zagajewski, B. (2017). Comparison of support vector machine,

random forest and neural network classifiers for tree species classification

on airborne hyperspectral APEX images. Eur. J. Remote Sens. 50, 144–154.

doi: 10.1080/22797254.2017.1299557

Rosen, J., Brand, M., Fuchs, M. B., and Arcan, M. (2001). A myosignal-based

powered exoskeleton system. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 31,

210–222. doi: 10.1109/3468.925661

Singh, R. M., Chatterji, S., andKumar, A. (2014). “A review on surface EMG based

control schemes of exoskeleton robot in stroke rehabilitation,” in International

Conference on Machine Intelligence and Research Advancement (Katra: Shri

Mata Vaishno Devi Univ). 310–315. doi: 10.1109/ICMIRA.2013.65

Sokolova, M., and Lapalme, G. (2009). A systematic analysis of performance

measures for classification tasks. Inf. Process. Manag. 45, 427–437.

doi: 10.1016/j.ipm.2009.03.002

Song, Q., Sun, B., Lei, J., Gao, Z., Yu, Y., Liu, M., et al. (2007). “Prediction of human

elbow torque from EMG using SVM based on AWR information acquisition

platform,” in IEEE International Conference on Information Acquisition.

1274–1278. doi: 10.1109/ICIA.2006.305933

Stefano, M., Mario, A., Gregorio, F., Giulio, R., and Aldo, R. (2014). Randomized

trial of a robotic assistive device for the upper extremity during early

inpatient stroke rehabilitation. Neurorehabil. Neural Repair 28, 377–386.

doi: 10.1177/1545968313513073

Steven, L. W., Carolee, J. W., Philip, M., Edward, T., Gitendra, U., David, M., et al.

(2006). Effect of constraint-induced movement therapy on upper extremity

function 3 to 9 months after stroke: the EXCITE randomized clinical trial.

JAMA 296, 2095–2104. doi: 10.1001/jama.296.17.2095

Stinear, C. M., Byblow, W. D., Ackerley, S. J., Smith, M. C., Borges, V. M., and

Barber, P. A. (2017). Proportional motor recovery after stroke: implications for

trial design. Stroke 48, 795–798. doi: 10.1161/STROKEAHA.116.016020

Suberbiola, A., Zulueta, E., Lopez-Guede, J. M., and Etxeberria-Agiriano, I. (2015).

Arm orthosis/prosthesis movement control based on surface EMG signal

extraction. Int. J. Neural. Syst. 25, 196–203. doi: 10.1142/S0129065715500094

Suykens, J. A. K., Brabanter, J. D., Lukas, L., and Vandewalle, J. (2002). Weighted

least squares support vector machines: robustness and sparse approximation

&z.star. Neurocomputing 48, 85–105. doi: 10.1016/S0925-2312(01)00644-0

Suykens, J. A. K., Gestel, T. V., Brabanter, J. D., Moor,

B. D., and Vandewalle, J. (2015). Least squares support

vector machines. Int. J. Circuit Theory Appl. 27, 605–615.

doi: 10.1002/(SICI)1097-007X(199911/12)27:6<605::AID-CTA86>3.0.CO;2-Z

Taati, B., Wang, R., Huq, R., Snoek, J., and Mihailidis, A. (2012). “Vision-

based posture assessment to detect and categorize compensation during

robotic rehabilitation therapy,” in IEEE Ras and Embs International

Conference on Biomedical Robotics and Biomechatronics (Rome). 1607–1613.

doi: 10.1109/BioRob.2012.6290668

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. New York, NY:

Springer.

Veerbeek, J. M., Langbroek-Amersfoort, A. C., Van Wegen, E. E.,

Meskers, C. G., andKwakkel, G. (2017). Effects of robot-assisted

therapy for the upper limb after stroke: a systematic review and

meta-analysis. Neurorehabil. Neural Repair 31, 107–121. doi: 10.1177/

1545968316666957

Yang, Z., Chen, Y., Tang, Z., and Wang, J. (2016). Surface EMG based handgrip

force predictions using gene expression programming. Neurocomputing 207,

568–579. doi: 10.1016/j.neucom.2016.05.038

Yoo, D. H., and Kim, S. Y. (2015). Effects of upper limb robot-assisted therapy

in the rehabilitation of stroke patients. J. Phys Ther Sci. 27, 677–679.

doi: 10.1589/jpts.27.677

Young, A. J., Smith, L. H., Rouse, E. J., and Hargrove, L. J. (2013). Classification of

simultaneous movements using surface EMG pattern recognition. IEEE Trans.

Biomed. Eng. 60, 1250–1258. doi: 10.1109/TBME.2012.2232293

Zhang, X., and Zhou, P. (2012). Sample entropy analysis of surface EMG for

improved muscle activity onset detection against spurious background spikes.

J. Electromyogr. Kinesiol. 22, 901–907. doi: 10.1016/j.jelekin.2012.06.005

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Cai, Chen, Huang, Wu, Zheng, Li and Xie. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 10 June 2019 | Volume 13 | Article 3150

https://doi.org/10.1001/jama.2017.22036
https://doi.org/10.1109/SMC.2016.7844896
https://doi.org/10.1109/TSMCB.2012.2185843
https://doi.org/10.1109/TNSRE.2012.2218832
https://doi.org/10.1016/j.bspc.2007.09.002
https://doi.org/10.1682/JRRD.2005.02.0044
https://doi.org/10.1016/j.neucom.2004.04.004
https://doi.org/10.1109/10.771191
https://doi.org/10.1371/journal.pone.0148942
https://doi.org/10.1080/22797254.2017.1299557
https://doi.org/10.1109/3468.925661
https://doi.org/10.1109/ICMIRA.2013.65
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1109/ICIA.2006.305933
https://doi.org/10.1177/1545968313513073
https://doi.org/10.1001/jama.296.17.2095
https://doi.org/10.1161/STROKEAHA.116.016020
https://doi.org/10.1142/S0129065715500094
https://doi.org/10.1016/S0925-2312(01)00644-0
https://doi.org/10.1002/(SICI)1097-007X(199911/12)27:6<605::AID-CTA86>3.0.CO;2-Z
https://doi.org/10.1109/BioRob.2012.6290668
https://doi.org/10.1177/1545968316666957
https://doi.org/10.1016/j.neucom.2016.05.038
https://doi.org/10.1589/jpts.27.677
https://doi.org/10.1109/TBME.2012.2232293
https://doi.org/10.1016/j.jelekin.2012.06.005
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

ORIGINAL RESEARCH
published: 28 June 2019

doi: 10.3389/fnbot.2019.00040

Frontiers in Neurorobotics | www.frontiersin.org 1 June 2019 | Volume 13 | Article 40

Edited by:

Caixia Cai,

Agency for Science, Technology and

Research (A∗STAR), Singapore

Reviewed by:

Keyu Wu,

Nanyang Technological University,

Singapore

Jacques Kaiser,

Research Center for Information

Technology, Germany

*Correspondence:

Jieneng Chen

chenjn@tongji.edu.cn

Xiaobin Hu

xiaobin.hu@tum.de

Received: 25 February 2019

Accepted: 28 May 2019

Published: 28 June 2019

Citation:

Chen J, Chen J, Zhang R and Hu X

(2019) Toward a Brain-Inspired

System: Deep Recurrent

Reinforcement Learning for a

Simulated Self-Driving Agent.

Front. Neurorobot. 13:40.

doi: 10.3389/fnbot.2019.00040

Toward a Brain-Inspired System:
Deep Recurrent Reinforcement
Learning for a Simulated Self-Driving
Agent

Jieneng Chen 1*, Jingye Chen 2, Ruiming Zhang 1 and Xiaobin Hu 3*

1Department of Computer Science, College of Electronics and Information Engineering, Tongji University, Shanghai, China,
2 School of Computer Science, Fudan University, Shanghai, China, 3Department of Computer Science, Technical University

of Munich, Munich, Germany

An effective way to achieve intelligence is to simulate various intelligent behaviors in

the human brain. In recent years, bio-inspired learning methods have emerged, and

they are different from the classical mathematical programming principle. From the

perspective of brain inspiration, reinforcement learning has gained additional interest

in solving decision-making tasks as increasing neuroscientific research demonstrates

that significant links exist between reinforcement learning and specific neural substrates.

Because of the tremendous research that focuses on human brains and reinforcement

learning, scientists have investigated how robots can autonomously tackle complex

tasks in the form of making a self-driving agent control in a human-like way. In this

study, we propose an end-to-end architecture using novel deep-Q-network architecture

in conjunction with a recurrence to resolve the problem in the field of simulated

self-driving. The main contribution of this study is that we trained the driving agent using

a brain-inspired trial-and-error technique, which was in line with the real world situation.

Besides, there are three innovations in the proposed learning network: raw screen

outputs are the only information which the driving agent can rely on, a weighted layer

that enhances the differences of the lengthy episode, and a modified replay mechanism

that overcomes the problem of sparsity and accelerates learning. The proposed network

was trained and tested under a third-party OpenAI Gym environment. After training for

several episodes, the resulting driving agent performed advanced behaviors in the given

scene. We hope that in the future, the proposed brain-inspired learning system would

inspire practicable self-driving control solutions.

Keywords: self-driving agent, brain-inspired learning, reinforcement learning, end-to-end architecture, recurrence

1. INTRODUCTION

Recently, research in brain science has gradually received the public’s attention. Given the rapid
progress in brain imaging technologies and in molecular and cell biology, much progress has been
made in understanding the brain at the macroscopic and microscopic levels. Currently, the human
brain is the only truly general intelligent system that can cope with different cognitive functions
with extremely low energy consumption. Learning from the information processing mechanisms
of the brain is clearly the key to building stronger and more efficient machine intelligence

51

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2019.00040
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2019.00040&domain=pdf&date_stamp=2019-06-28
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:chenjn@tongji.edu.cn
mailto:xiaobin.hu@tum.de
https://doi.org/10.3389/fnbot.2019.00040
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00040/full
http://loop.frontiersin.org/people/589422/overview
http://loop.frontiersin.org/people/671827/overview
http://loop.frontiersin.org/people/704573/overview

Chen et al. Brain-Inspired Self-Driving

(Poo et al., 2016). In recent years, some bio-inspired intelligent
methods have emerged (Marblestone et al., 2016; Gershman
and Daw, 2017; Hassabis et al., 2017; Botvinick et al.,
2019), and they are clearly different from the classical
mathematical programming principle. Bio-inspired intelligence
has the advantages of strong robustness and an efficient, well
distributed computingmechanism. It is also easy to combine with
other methods.

The mammalian brain has multiple learning subsystems. Niv
(2009) categorized major learning components into four classes:
the neocortex, the hippocampal formation (explicit memory
storage system), the cerebellum (adaptive control system), and
the basal ganglia (reinforcement learning). Among these learning
components, reinforcement learning is particularly attractive to
research. Nowadays, converging evidence links reinforcement
learning to specific neural substrates, thus assigning them
to precise computational roles. Most notably, much evidence
suggests that the neuromodulator known as dopamine provides
basal ganglia target structures with phasic signals that convey a
reward prediction error which can influence learning and action
selection, particularly in stimulus-driven habitual instrumental
behaviors (Rivest et al., 2005). Hence, many efforts have been
made to investigate the capability of bio-inspired reinforcement
learning by applying them to artificial intelligence-related tasks
(Peters and Schaal, 2008; Mnih et al., 2015; Zhu et al., 2017;
Gu et al., 2017).

In recent years, deep reinforcement learning has contributed
to many of the spectacular success stories of artificial intelligence
(Kober et al., 2013; Henderson et al., 2018). After the initial
success of the deep Q network (DQN) (Mnih et al., 2013), a
variety of improved models have been published successively.
Later on and based on the former discoveries, Mnih et al. (2015)
proposed the Nature DQN in 2015 and introduced the replay
memory mechanism to break the strong correlations between
the samples. Mnih et al. (2016) proposed a deep reinforcement
learning approach, in which the parameters of the deep network
are updated by multiple asynchronous copies of the agent in
the environment. Van Hasselt et al. (2016) suggested the Double
DQN to eliminate overestimation; they added a target Q network
independent from the current Q network. It was shown to
apply to large-scale function approximation (Van Hasselt et al.,
2016). Wolf et al. (2017) applied a deep Q network to a driving
scenario in a physics simulation based track. Newer techniques
included deep deterministic policy gradients and mapping an
observation directly to action, both of which could operate over
continuous action spaces (Lillicrap et al., 2016). Schaul et al.
(2016) suggested prioritized replay, adding priority to replay
memory to relieve the sparse reward and slowly converge on
the problem (Schaul et al., 2016). Reviewed in Hassabis et al.
(2017), experience replay was inspired by theories that seek
to understand how the memory system in the mammalian
brain might interact, and thus has biological plausibility. In the
case of partially observable states, the recurrent neural network
(RNN) and long short-term memory (LSTM) have been proven
to be effective in processing sequence data (Hochreiter and
Schmidhuber, 1997). Hausknecht and Stone (2015) replaced
the last fully connected layer in the network with an LSTM

layer. They integrated information through time and replicated
DQN’s performance on standard Atari games and partially
observed equivalents featuring flickering game screens. Also,
Foerster et al. (2016) proposed to use multi-agent to describe a
state distributively. A recent work (Kahn et al., 2018) adopted
double Q learning with recurrency and computation graphs to
tackle a robotics navigation task. Nevertheless, some previous
studies, such as those with Atari games, focused on the simple
environment and action space. Moreover, the previous studies
do not provide comprehensive comparisons with supervised
learning in a specific scenario. Because of these limitations,
there is an urgent need to further improve the capability of
deep reinforcement learning in a more challenging and complex
scenario such as the simulated driving control problem.

To clarify the biological plausibility, Lake et al. (2017) state
that there is indeed substantial evidence that the brain uses
similar model-free RL learning algorithms in simple associative
learning or discrimination learning tasks. In particular, the
phasic firing of midbrain dopaminergic neurons is qualitatively
and quantitatively consistent with the reward prediction error
that drives updating of value estimates. In the process of
reinforcement learning, the agent’s attempt in each state was
like the regulation process of dopamine in the brain (Dolan and
Dayan, 2013). To the best of our knowledge, there is rare work
studying the behavior difference between supervised learning and
RL in a specific scenario. In the kart driving case in this work,
the proposed learned agent shows stronger biological plausible
learning capability than the supervised learned agent, in respect
to dealing with specific situations and its adaptability.

One supervised learning-based study looked at the simulated
self-driving game (Ho et al., 2017). However, three problems
existed in their implementation. First, they created a handcrafted
dataset. Obviously, one can never create this ideal benchmark
dataset that includes all the bad situations encountered by the
driving agent during training. At best, one can include the
best behavior that the driving agent should implement in each
step. The driving agent was reported to perform well when it
had a good position in the driveway. However, the behavior
deteriorated rapidly when the driving agent deviated from the
driveway. Such behaviors indicated the dissimilar distribution
and instability even though correctional measures were taken on
the dataset. Second, they trained and supervised their network in
a supervised way. As there are many possible scenarios, manually
tackling all possible cases using supervised learning methods
will likely yield a more simplistic policy (Shalev-Shwartz et al.,
2016). Third, their experiments were built on ideal conditions;
for example, they assumed that the brakes were ignored. In our
experiments, we take the brakes into consideration. Moreover, to
support autonomous capabilities, a robotic driven agent should
adopt human driving negotiation skills when braking, taking left
and right turns, and pushing ahead in unstructured roadways.
It comes naturally that a trial-and-error way of study is more
suitable for this simulated self-driving game. Hence, the bio-
inspired reinforcement learning method in the study is a more
suitable way for the driving agent to learn how to make decisions.

In our study, we proposed a deep recurrent reinforcement
learning network to solve simulated self-driving problems.

Frontiers in Neurorobotics | www.frontiersin.org 2 June 2019 | Volume 13 | Article 4052

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Chen et al. Brain-Inspired Self-Driving

Rather than creating a handcrafted dataset and training in
a supervised way, we adopted a bio-inspired trail-and-error
technique for the driving agent to learn how to make decisions.
Furthermore, this paper provides three innovations. First,
intermediate game parameters were completely abandoned, and
the driving agent relied on only raw screen outputs. Second, a
weighting layer was introduced in the network architecture to
strengthen the intermediate effect. Third, a simple but effective
experience recall mechanism was applied to deal with the sparse
and lengthy episode.

The rest of this study is organized as follows: section 2
describes deep Q-learning, recurrent reinforcement learning,
network architecture, and implementation details. Section 3
verifies experimental results. The conclusion of this study is
drawn in section 4.

2. METHODOLOGY

Deep Q-learning is used to help AI agents operate in
environments with discrete actions spaces. Based on the
knowledge of Deep Q-learning, we proposed a modified
DRQN model in order to infer the full state in partially
observable environments.

2.1. Deep Q-Learning
Reinforcement learning manages learning policies for an agent
interacting in an unknown environment. In each step, an agent
observes the current states of the environment, makes decisions
according to a policy π , and observes a reward signal rt (Lample
and Chaplot, 2017). Given the current states and a set of
available actions, the main aim of the DQN is to approximate
the maximum sum of discounted rewards. According to the
Bellman equation, it gives the approximating form of Q-values
by combining the reward obtained with the current state-action
pair and the highest Q-value at the next state st+1, and the best
action a′:

Q(st , at)← rt + γ ∗ argmax
a′

Q (st+1, a′) (1)

We often use the form involving an iterative process:

Q(st , at)← Q(st , at)+ α

(

rt + γ ∗ argmax
a′

Q
(

st+1, a
′
)

− Q(st , at)

)

(2)

In the assignments above, α stands for the learning rate and γ

stands for the discounted factor.
The agent chooses the action following a ε-greedy exploration

policy. The value of ε ranges from 0.0 to 1.0. In order to
encourage the agent to explore the environment, the ε was set
to 1.0 at first. During the training process, the value decreased
gradually as the experience accumulated. Then, the agent could
use experience to complete the task.

When we sample a sequence (st , at , rt , st+1) from the replay
memory unit, the target value yt is calculated as:

yt =

{

rt for terminal st+1
rt + γ argmaxa′ Q

(

st+1, a
′|θ
)

for non-terminal st+1
(3)

The network was trained to approximate the expected Q-value,
which led to the loss function, with parameters θ in the model:

Loss(θ) =
∑

(

yt − Q(st , at|θ)
)2

(4)

2.2. Recurrent Reinforcement Learning
For some special games which are three-dimensional and
partially observable, the DQN lacks the ability to solve the
problem. In partially observable environments, the agent only
receives an observation ot of the current environment, which
is usually insufficient to infer the full state of the system. The
real state st is the combination of the current observation ot
and an unfixed length of history states. Hence, we adopted
the DRQN model on top of the DQN to deal with such
conditions (see Figure 1). The last fully connected layer was
replaced by the LSTM in the DRQN model in order to record
former information. Figure 2 shows the sequential updates in the
recurrent network.When updating the DRQNmodel, a sequence
S was randomly sampled from the replay memory unit, and the
beginning time step t was also randomly chosen according to the
maximum length l. Then the cut sequence St,t+1,...,l−1,l was sent
to the DRQN model. An additional input ht−1 standing for the
previous information was added to the recurrent model. At the
zero time step, ht−1 was set to zero. The output of the LSTM
z
(

ot , ht−1
)

, which combined the current observation ot and the
history information ht−1, was used to approximate the Q-value
Q
(

ot , ht−1, at
)

. The history information was updated and passed
through the hidden state to the network in the next time step:

ht = LSTM
(

ht−1, ot
)

(5)

2.3. Network Architecture
In the beginning, we used the baseline DRQN model (Lample
and Chaplot, 2017) to make an agent perform self-driving.
However, we obtained unsatisfied results with the same model.
Hence, we have made three improvements in our modified
model to make things work better. The whole architecture is
shown in Figure 3. First, the network was built on top of the
NVIDIA’s autopilot model (Krizhevsky et al., 2012). To reduce
overfitting, the original model was modified by adding several
batch normalization layers. We used a four-layer stronger CNN
for feature extraction. The input size was resized to 320∗240. The
first convolutional layer contained 32 kernels, with a size size of
8∗8 and a stride of 4. The second convolutional layer contained
64 kernels, with a size of 4∗4 and a stride of 4. The third layer
contained 128 kernels, with a size of 3∗3 and a stride of 1. The
last convolutional layer contained 256 kernels with a size of 7∗7
and a stride of 1. Relu was used as the activated function in the
network, and the sizes of the pooling layers were all 2∗2. Second,
we abandoned the fully connected layers before the LSTM layer
in the original DRQN model and fed the LSTM directly with the

Frontiers in Neurorobotics | www.frontiersin.org 3 June 2019 | Volume 13 | Article 4053

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Chen et al. Brain-Inspired Self-Driving

FIGURE 1 | The modified DRQN model. The value function was divided into two categories: the current value function Q and target value function Q′. The parameters

in Q were assigned to Q′ per N episodes. The state contained two elements: ot gained from the current environment and ht−1 gained from former information. The

agent performed action a using a specific policy, and the sequence (ot, a, r, ot′) was stored in the replay memory unit. We used a prioritized experience replay memory

unit here. During training, the sequence was randomly chosen from the replay memory unit. We trained the network using gradient descent to make the current value

function Q approach Q′ given a specific sequence. The loss function was shown in Equation (4).

FIGURE 2 | Sequence updates in the recurrent network. Only the scores of the actions taken in states 5, 6, and 7 will be updated. The first four states provide a more

accurate hidden state to the LSTM, while the last state provides a target for state 7.

high-level feature. The number of units in LSTM was set to 900.
Third, the subsequent structure was divided into two groups for
different purposes. One was mapped to the set of possible actions,
and the other was a set of scalar values. The final action value
function was value function was acquired using both of them.We
will introduce their functions respectively.

We used two collateral layers rather than a single DRQN
network to approximate the value function. The auxiliary layer
also had a five-dimensional output as the action space layer.
The original target was to balance the impact of the current

and history. The agent could make a suitable action with a
fully observing perspective. Nevertheless, we wanted to focus
on the precise instantaneous changes of the current scene. The
output of the auxiliary layer was mapped to [0, 1.0] using
the softmax function, thus suggesting the correction for the
raw approximations using the DRQN model. Because of this
intervention, the network would not only learn the best action
for a state but also understand the significance of taking actions.
If an agent drove in a straight line and had an obstacle far ahead,
an original DRQN model could learn that it was time to make

Frontiers in Neurorobotics | www.frontiersin.org 4 June 2019 | Volume 13 | Article 4054

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Chen et al. Brain-Inspired Self-Driving

FIGURE 3 | An illustration of the architecture of our model. The input image is assigned to four convolution layers. The output of the convolution layers is split into two

streams. The first stream (bottom) flattens the output and feeds it to an LSTM. The second one (top) flattens the output and feeds it to a fully connected layer. Then,

we obtained an importance stream and value stream individually and multiplied them as the output. We stored the information in prioritized experience memory unit.

As was shown in Figure 1, the network was trained using the DRQN loss function.

the driving agent move a bit to avoid hitting the obstacle. The
modified model would also have insight into when it was the best
time to move, with the knowledge that the danger of the obstacle
increases as it gets closer. V(s, a) was used to represent the
original output of the DRQN, and I(s, a) was used to represent the
importance provided by the auxiliary layer. We used the formula
to express the final strengthen of the Q-value (see Figure 3):

Q(s, a) = V(s, a)T ∗ I(s, a) (6)

The result was stored in the prioritized experience memory unit.
During training, the sequence in the memory unit was removed,
and we used Equation (4) to calculate the loss.

2.4. Implementation Details
Reinforcement learning consists of two basic concepts: action
and reward. Action is what an agent can do in each state. Given
that the screen is the input, a robot can take steps within a
certain distance. An agent can take finite actions. When a robot
takes an action in a state, it receives a reward. Here, the term
reward is an abstract concept that describes the feedback from
the environment. A reward can be positive or negative. When
the reward is positive, it corresponds to our normal meaning of
reward. However, when the reward is negative, it corresponds
to what we usually call punishment. We also describe the
training details such as the hyperparameters, input size selection,
frameskip, and prioritized replay.

2.4.1. Action Space
The agent could perform five actions, including Left, Right,
Straight, Brake, and Backwards. The range of the joystick reflects
the numerical value of the speed control, which is mapped into
a region of –80 to 80. The speed section was discretized into
a set of [0, 20, 40, 80] for speed control. We considered that
only the turning control had a high requirement for precision to
keep the model simple. Another three actions, including forward
flag, backward flag and brake, were represented by 1/0 flag.
Thus, we used 5-dimensional vectors to represent each action as
shown below:

actions = [40, 0, 1, 0, 0], left

= [−40, 0, 1, 0, 0], right

= [0,−80, 0, 1, 0], go backwards

= [0, 0, 1, 0, 0], go straight

= [0, 0, 0, 0, 1], brake

The meaning of each dimension in the vector represented
forward speed, backward speed, backward flag, forward flag, and
brake. For forward speed, a positive value indicates to the left and
a negative value indicates to the right. When the backward flag
was set to 1, the agent would move backwards at a specific speed.

Frontiers in Neurorobotics | www.frontiersin.org 5 June 2019 | Volume 13 | Article 4055

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Chen et al. Brain-Inspired Self-Driving

2.4.2. Reward
Mnih et al. (2015) states that end-to-end human-level RL
control draws on neurobiological evidence that reward signals
during perceptual learning may influence the characteristics
of representations within the primate visual cortex. The AI
trained in a supervised way would only respond to visual
information. If the kart picks the wrong direction, it would
likely drive straight since the scenes of the correct and wrong
direction are mostly the same. In other words, the supervised
learned agent does not understand risky situations that are

likely to lead into error states during real-time play. In contrast,
an agent receiving reward and punishment signals can avoid
the noted situation efficiently. Under most circumstances, the
driving agent cannot explore a path with big rewards initially.
The driving agent often gets stuck somewhere in halfway
through and waits for the time to elapse before resetting. We
have to make the rewards of these cases variant in order to
make these experiences meaningful. Hence, we set a series of
checkpoints along the track. A periodical reward was given to
the driving agent when each checkpoint was reached. The closer

FIGURE 4 | There are reward trends for two different maps. (A) corresponded to Farm and (B) corresponded to Raceway. After training for 1,750 episodes, we

obtained the reward tendency. At about 400 episodes, the stability of the driving agent began to increase. After 1,400 episodes, the reward stabilized at a high level.

FIGURE 5 | We visualized the first layer and obtain a direct view (left). However, many grids contain unreadable information such as the grid marked with a green

frame. Because the first layer’s output was quite abstract, we then visualized the last layer using deconvolution and obtained the right picture. It seemed to represent

the wall element in the original graph. That means the agent could pay attention to the wall and then take suitable actions. Panel (A) shows the direct view visualization

of the first layer of CNN. Panel (B) shows the visualization of the last layer of CNN using deconvolution.

Frontiers in Neurorobotics | www.frontiersin.org 6 June 2019 | Volume 13 | Article 4056

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Chen et al. Brain-Inspired Self-Driving

the distance between the checkpoint and the destination, the
bigger the phased reward was given. We have established a more
precise reward system to increase density, such as giving the
driving agent a slight punishment when it moves backwards.
At each step, the agent will also get a little punishment.
The detailed component of the reward will be introduced in
section 2.4.4.

2.4.3. Prioritized Replay
Hassabis et al. (2017) states that experience replay was
directly inspired by theories that seek to understand how
the memory systems in the mammalian brain might interact.
According to the biological plausibility mentioned in Hassabis
et al. (2017) and Schaul et al. (2016), we modified the
original replay mechanism. In most cases, there was little
replay memory with high rewards, which would be time-
consuming with a huge replay table and many sparse rewards.
As prioritized replay was a method that can make learning
from experience replay more efficient, we simply chose the
important experiences in proportion to their rewards and
stored them into the replay memory. That way, memories
with high rewards would have a greater opportunity to
be recalled.

2.4.4. Hyperparameters
The original screen outputs were three channel RGB images.
They were first transformed into gray-scale images and then
fed to the network to train. The network was trained using the
RMSProp algorithm. The size of minibatch was set to 40. The
size of replay memory was set to contain 10,000 recent frames.
The learning rate α was set to 1.0 in the beginning and followed
a linear degradation and finally was fixed at 0.1. The exploration
rate ε was set to 0 when we evaluated the model. When the agent
finished the game, it would get 1,000 scores as reward. Whenever
it crossed each lap, it would get 100 scores. The agent would get
0.5 scores as it got to a checkpoint. If the agent moved backwards,
it would get –0.5 scores as punishment. At each time step, it
would get –0.1 scores as punishment because we wished the agent
to finish the game as quickly as possible.

2.4.5. Other Details
To accelerate training and save running memory, the original
640∗480 screen resolution was resized to 160∗120 in the
beginning. After several hours of trials, the driving agent still got
stuck in most cases and could not complete one lap. The resulting
rewards oscillated for not finishing the game in the limited
number of steps, thus indicating the resolution was too low for
the model to recognize. To enrich the visual information and
address the above problems, the input size was set to 320∗240.
We also attempted to reduce the punishments to encourage
positive rewards. After the observation of the same length of
time, the distribution of the resulting rewards became steady and
started to turn positive over the baseline. Hence, the input size
of the resolution was finally set to 320∗240 in the experiment in
spite of the memory consumption. The system started to learn
successfully within the acceptable limit of time.

Since slight change occurs between adjacent frames, we
utilized the frame-skip technique (Bellemare et al., 2013). We
took out one frame as the network input by every k + 1 frame, and
the same action was repeated over the skipped frames. When k
became higher, the training speed became high as well. However,
the information the agent got became imprecise as well. In order
to achieve the balance of low computing resource consumption
and smooth control, we finally choose a frame skip of k = 3 by
relying on our experience.

3. EXPERIMENTS

The model was trained using three different tracks, which cover
all the track that Stanford used for comparison. An individual
set of weights was trained separately for each model because
each track has different terrain textures. The rewards were low
initially because it is equivalent to a random exploration at the
beginning of training and because the driving agent would get
stuck somewhere without making any significant progress. After
about 1,400 episodes of training, the driving agent finished the
race. Under most circumstances, the driving agent did not finish
the race in given steps so the reward was positive but not as high
as receiving the final big reward. We set this step limit because
of a lack of a reset mechanism for dead situations, which was
very useful in the early stage of training. In Stanford’s report,
they created a DNF flag to represent the driving agent getting
stuck. In our experiment, the driving agent had learned better
policy and displayed better behaviors, proving better robustness
of the system.We also visualized the CNN in order to validate the
ability of the model.

3.1. Experimental Environment
We chose the car racing game to carry out our simulated
self-driving experiment. In order to play the car racing game
autonomously, we used a third-party OpenAI Gym environment
wrapper for the car racing game developed by Bzier1. With
the assistance of the API, we accessed the game engine directly
and ran our code while playing the game frame-by-frame. By
means of the API, we can easily get the game information,
whether it is screen output intermediate game parameters,
such as its location in the small map. Our models proved
to efficiently handle the observable gaming environments. To
demonstrate the agent’s driving status, we include a Youtube link
at https://youtu.be/KV-hh8N5x3M.

3.2. Rewards Analysis
For comparison, the model was trained and tested using the
same tracks like those used by Stanford in their supervised
learning method. Figure 4 shows the rewards trends for two
different maps. From the rewards trends we can observe that
at about 400 episodes, the stability of the driving agent began
to increase. The reward stabilized at a high level after 1400
episodes, where the agent performed a good driving behavior and
finished the tracks well. Each track has different terrain textures
and difficulty routes. Therefore, an individual set of weights was

1https://github.com/bzier/gym-mupen64plus

Frontiers in Neurorobotics | www.frontiersin.org 7 June 2019 | Volume 13 | Article 4057

https://youtu.be/KV-hh8N5x3M
https://github.com/bzier/gym-mupen64plus
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Chen et al. Brain-Inspired Self-Driving

TABLE 1 | Performance comparison.

Track Our model Stanford model (Ho et al., 2017) Human

Farm 98.33 97.46 94.07

Raceway 166 129.09, 1 DNF* 125.30

Mountain 213 138.37, 2 DNF* 129.50

For each track, we run 10 races in real time and calculate the mean race times as the final

result. The Stanford results were borrowed from the Stanford report. Human results are

obtained by real human participants playing each track twice: The first time is to get used

to the track, and the second time is to record the time they finish the game. DNF* signifies

that the autopilot got stuck and was unable to finish some number of races.

TABLE 2 | System comparison between our work and Stanford’s

supervised model.

Aspect Details Our

agent

Stanford’s

agent

Skills Turning left/right, driving forward X X

Driving backward X

Brake X

Turning around X

Bad situation Driving reverse X

Getting stuck X

Performance comparison Less time-consuming X

Finishing the tracks X X

Data-consuming Handcrafted dataset X

Annotation X

Unlabeled data X

Self-adaptability X

Online learning paradigm X

trained separately for each model. The experiments were carried
out on a common configured portable laptop, and all models
converged after spending over 80 h each.

3.3. CNN Visualization
CNN layers were used to extract abundant information in
the scene, and the result of the high-level feature was the
critical measurement of the training process. In the traditional
supervised learning, the network could be evaluated from many
methods such as the validation accuracy and the loss function.
However, in the reinforcement learning, we did not have this
kind of method to provide a quantitative assessment of the
model. Hence, we visualized the output of the first layer and
the last layer (see Figure 5), with the aim of ascertaining the
quantitative features that are captured by the network. The high-
level low-level layer output seemed quite abstract through direct
observation. Thus, we visualized the high-level features through
deconvolution. Through the visualization procedure, we were
sure that the network could capture the important element in
the scene.

3.4. Result and Discussion
The test results are shown in Table 1. The driving agent
was tested on several tracks in line with those of Stanford’s
experiment such as Farm, Raceway, andMountain. We evaluated

our model based on the time. For each track, we ran 10
races in real-time and calculated the mean race times as
the final result. The human results (Ho et al., 2017) and
the Stanford results were borrowed from the Stanford report.
Human results are obtained by real human participants playing
each track two times: The first time is to get used to the
track, and the second time is to record the time they finish
the game.

The proposed model shows some advantages via a
comprehensive comparison in Table 2. Firstly, some of the
actions such as braking and going backwards are important
in the driving kart scenario. Stanford’s paper reported that
the agent is unable to handle situations where the agent may
have to turn around or drive backward, and thus would
lead to getting stuck. Secondly, their AI is more sensitive
to positive visual information. If the kart picks the wrong
direction, it would likely drive straight since the visual scenes
of the true and wrong direction are mostly the same. In
other words, their AI does not understand risky situations
that are likely to lead to error states during real-time play.
Thirdly, the Stanford model was trained in a handcrafted
dataset collected from 18,658 training examples across four
tracks, three of which were also used for testing. If they want
to generalize their model to other tracks, they need to collect
new data and annotations, which might be expensive and
unfeasible. Intuitively, our proposed model attempts to learn
actions by trial and error without a huge amount of labels and
handcrafted datasets.

By analyzing the route the agent runs, we found that the
route was not as smooth as that in Stanford’s experiment, for
which there are two reasons. On one hand, ǫ decayed too
fast. As shown in Figure 5, the value of ǫ rapidly decreased
to 0.1 while the rewards increased. Then, during the latter
phase of training, the agent depended mainly on experiences
even though there were still many better state-action sets to
explore. On the other hand, the actions was discretized roughly.
We used a set of [0; 20; 40; 80] as the choices for speed.
Through observation, speeds of 20 and 40 both produce a tiny
effect while a speed of 80 would make a radical change. More
efforts should put on the selection of numerical value of the
joystick parameter. However, compared with the experiment
done by the Stanford group, our experiments performed well
even if the driving agent deviated from the driveway. We
considered the brake and trained the driving agent using a trial-
and-error method, which was more in line with the real situation.
Hence, the bio-inspired reinforcement learning method in the
study was a more suitable approach for the driving agent to
make decisions.

4. CONCLUSION

Brain-inspired learning has recently gained additional interest
in solving control and decision-making tasks. In this paper,
we propose an effective brain-inspired end-to-end learning
method with the aim of controlling the simulated self-driving
agent. Our modified DRQN model has proven to manage

Frontiers in Neurorobotics | www.frontiersin.org 8 June 2019 | Volume 13 | Article 4058

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Chen et al. Brain-Inspired Self-Driving

plenty of error states effectively, thus indicating that our
trial-and-error method using deep recurrent reinforcement
learning could achieve better performance and stability. By
using the screen pixels as the only input of the system, our
method highly resembles the experience of human beings
solving a navigation task from the first-person perspective.
This resemblance makes this research inspirational for real-
world robotics applications. Hopefully, the proposed brain-
inspired learning system will inspire real-world self-driving
control solutions.

DATA AVAILABILITY

No datasets were generated or analyzed for this study.

AUTHOR CONTRIBUTIONS

JieC, JinC, RZ, and XH carried out the conception and design of
the study, the analysis and interpretation of the data, and drafted
and revised the article.

FUNDING

This work was financially supported by the German Research
Foundation (DFG) and the Technical University of Munich
(TUM) in the framework of the Open Access Publishing
Program. This research was also funded by the Chinese Ministry
of Education’s National University Student Innovation and
Entrepreneurship Training Program (2018).

REFERENCES

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade

learning environment: an evaluation platform for general agents. J. Artif. Intell.

Res. 47, 253–279. doi: 10.1613/jair.3912

Botvinick, M., Ritter, S.,Wang, J., andHassabis, D. (2019). Reinforcement learning,

fast and slow. Trends Cogn. Sci. 23, 408–422. doi: 10.1016/j.tics.2019.02.006

Dolan, R. J., and Dayan, P. (2013). Goals and habits in the brain. Neuron 80,

312–325. doi: 10.1016/j.neuron.2013.09.007

Foerster, J. N., Assael, Y. M., de Freitas, N., and Whiteson, S. (2016). “Learning

to communicate to solve riddles with deep distributed recurrent q-networks,”

in Advances in Neural Information Processing Systems (NeurIPS) (Barcelona:

Curran Associates, Inc), 2137–2145.

Gershman, S. J., and Daw, N. D. (2017). Reinforcement learning and episodic

memory in humans and animals: an integrative framework.Annu. Rev. Psychol.

68, 101–128. doi: 10.1146/annurev-psych-122414-033625

Gu, S., Holly, E., Lillicrap, T., and Levine, S. (2017). “Deep reinforcement learning

for robotic manipulation with asynchronous off-policy updates,” in Robotics

and Automation (ICRA), 2017 IEEE International Conference on (Singapore:

IEEE), 3389–3396.

Hassabis, D., Kumaran, D., Summerfield, C., and Botvinick, M. (2017).

Neuroscience-inspired artificial intelligence. Neuron 95, 245–258.

doi: 10.1016/j.neuron.2017.06.011

Hausknecht, M., and Stone, P. (2015). “Deep recurrent q-learning for partially

observable mdps,” in AAAI (Austin, TX).

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., andMeger, D. (2018).

“Deep reinforcement learning that matters,” in AAAI (New Orleans, LA).

Ho, H., Ramesh, V., and Montano, E. T. (2017). Neuralkart: A Real-Time Mario

Kart 64 AI. Available online at: http://cs231n.stanford.edu/reports/2017/pdfs/

624.pdf (accessed June 20, 2019).

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural

Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Kahn, G., Villaflor, A., Ding, B., Abbeel, P., and Levine, S. (2018). “Self-supervised

deep reinforcement learning with generalized computation graphs for robot

navigation,” in 2018 IEEE International Conference on Robotics and Automation

(ICRA) (Brisbane, QLD: IEEE), 1–8.

Kober, J., Bagnell, J. A., and Peters, J. (2013). Reinforcement learning in robotics: a

survey. Int. J. Robot. Res. 32, 1238–1274. doi: 10.1177/0278364913495721

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification

with deep convolutional neural networks,” in Advances in Neural Information

Processing Systems (NeurIPS) (Lake Tahoe, NV), 1097–1105.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman, S. J. (2017).

Building machines that learn and think like people. Behav. Brain Sci. 40:e253.

doi: 10.1017/S0140525X16001837

Lample, G., and Chaplot, D. S. (2017). “Playing fps games with deep reinforcement

learning,” in AAAI (San Francisco, CA), 2140–2146.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2016).

“Continuous control with deep reinforcement learning,” in International

Conference on Learning Representations (ICLR) (San Jun).

Marblestone, A. H., Wayne, G., and Kording, K. P. (2016). Toward an integration

of deep learning and neuroscience. Front. Comput. Neurosci. 10:94.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., et al. (2016).

“Asynchronous methods for deep reinforcement learning,” in International

Conference on Machine Learning (San Juan), 1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,

et al. (2013). Playing atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

et al. (2015). Human-level control through deep reinforcement learning.Nature

518:529. doi: 10.1038/nature14236

Niv, Y. (2009). Reinforcement learning in the brain. J. Math. Psychol. 53, 139–154.

doi: 10.1016/j.jmp.2008.12.005

Peters, J., and Schaal, S. (2008). Reinforcement learning of motor skills with policy

gradients. Neural Netw. 21, 682–697. doi: 10.1016/j.neunet.2008.02.003

Poo, M.-M., Du, J.-L., Ip, N. Y., Xiong, Z.-Q., Xu, B., and Tan, T. (2016).

China brain project: basic neuroscience, brain diseases, and brain-inspired

computing. Neuron 92, 591–596. doi: 10.1016/j.neuron.2016.10.050
Rivest, F., Bengio, Y., and Kalaska, J. (2005). “Brain inspired reinforcement

learning,” in Advances in Neural Information Processing Systems (NeurIPS)

(Vancouver, BC), 1129–1136.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016). “Prioritized experience

replay,” in International Conference on Learning Representations (ICLR) (San

Jun).

Shalev-Shwartz, S., Shammah, S., and Shashua, A. (2016). Safe, multi-

agent, reinforcement learning for autonomous driving. arXiv preprint

arXiv:1610.03295.

Van Hasselt, H., Guez, A., and Silver, D. (2016). “Deep reinforcement learning with

double q-learning,” in AAAI, Vol. 2 (Phoenix, AZ), 5.

Wolf, P., Hubschneider, C., Weber, M., Bauer, A., Härtl, J., Dürr, F., et al. (2017).

“Learning how to drive in a real world simulation with deep q-networks,” in

2017 IEEE Intelligent Vehicles Symposium (IV) (Redondo Beach, CA: IEEE),

244–250.

Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A., Fei-Fei, L., et al. (2017).

“Target-driven visual navigation in indoor scenes using deep reinforcement

learning,” in Robotics and Automation (ICRA), 2017 IEEE International

Conference on (Singapore: IEEE), 3357–3364.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Chen, Chen, Zhang and Hu. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 9 June 2019 | Volume 13 | Article 4059

https://doi.org/10.1613/jair.3912
https://doi.org/10.1016/j.tics.2019.02.006
https://doi.org/10.1016/j.neuron.2013.09.007
https://doi.org/10.1146/annurev-psych-122414-033625
https://doi.org/10.1016/j.neuron.2017.06.011
http://cs231n.stanford.edu/reports/2017/pdfs/624.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/624.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1017/S0140525X16001837
https://doi.org/10.1038/nature14236
https://doi.org/10.1016/j.jmp.2008.12.005
https://doi.org/10.1016/j.neunet.2008.02.003
https://doi.org/10.1016/j.neuron.2016.10.050
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

ORIGINAL RESEARCH
published: 04 July 2019

doi: 10.3389/fnbot.2019.00047

Frontiers in Neurorobotics | www.frontiersin.org 1 July 2019 | Volume 13 | Article 47

Edited by:

Changhong Fu,

Tongji University, China

Reviewed by:

Haifei Zhu,

Guangdong University of Technology,

China

Yongping Pan,

National University of Singapore,

Singapore

*Correspondence:

Shuai Li

shuaili@ieee.org

Received: 15 April 2019

Accepted: 17 June 2019

Published: 04 July 2019

Citation:

Xu Z, Zhou X and Li S (2019) Deep

Recurrent Neural Networks Based

Obstacle Avoidance Control for

Redundant Manipulators.

Front. Neurorobot. 13:47.

doi: 10.3389/fnbot.2019.00047

Deep Recurrent Neural Networks
Based Obstacle Avoidance Control
for Redundant Manipulators
Zhihao Xu 1, Xuefeng Zhou 1 and Shuai Li 2*

1Guangdong Key Laboratory of Modern Control Technology, Guangdong Institute of Intelligence Manufacturing, Guangzhou,

China, 2 School of Engineering, Swansea University, Swansea, United Kingdom

Obstacle avoidance is an important subject in the control of robot manipulators, but

is remains challenging for robots with redundant degrees of freedom, especially when

there exist complex physical constraints. In this paper, we propose a novel controller

based on deep recurrent neural networks. By abstracting robots and obstacles into

critical point sets respectively, the distance between the robot and obstacles can be

described in a simpler way, then the obstacle avoidance strategy is established in form

of inequality constraints by general class-K functions. Usingminimal-velocity-norm (MVN)

scheme, the control problem is formulated as a quadratic-programming case under

multiple constraints. Then a deep recurrent neural network considering system models

is established to solve the QP problem online. Theoretical conduction and numerical

simulations show that the controller is capable of avoiding static or dynamic obstacles,

while tracking the predefined trajectories under physical constraints.

Keywords: recurrent neural network, redundant manipulator, obstacle avoidance, zeroing neural network,

motion plan

1. INTRODUCTION

As industrial automation develops, robot manipulators have been used in a wide range of
applications such as painting, welding, assembly, etc., (Cheng et al., 2009; Yang et al., 2018a).
With the evolution of intelligent manufacturing, the way robot works is also changing. In order
to fulfill more difficult tasks in complex environment, the robot is required to have better execution
capabilities (Pan et al., 2018). Therefore, robots with redundant DOFs have attracted much
attention in the field of robotic control since its wonderful flexibility (Chan and Dubey, 1995;
Zhang, 2015).

Obstacle avoidance is a core problem in the control of redundant manipulators, in order
to realize human-machine collaboration and integration, robots no longer work in a separate
environment that is completely isolated (Ge and Cui, 2000; Sugie et al., 2003; Lee and Buss, 2007).
Instead, collaboration is required between human or other robots, as a result, the obstacle avoidance
control is becoming a matter of urgency: robots need to achieve real-time avoidance of static or
dynamic obstacles while completing given motion tasks.

Many obstacle avoidance methods for robot manipulators haven been reported, which are
designed online or off-line. Based on stochastic sampling algorithm, a series of obstacle avoidance
methods are proposed, these methods could obtain effective solutions even in ultra-redundant
systems. In Wei and Ren (2018), Wei et al. propose a modified RRT based method, namely
Smoothly RRT, in which a maximum curvature constraint is built to obtain a smooth curve when
avoiding obstacles, simulation results also show that the method achieves faster convergence than

60

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2019.00047
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2019.00047&domain=pdf&date_stamp=2019-07-04
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:shuaili@ieee.org
https://doi.org/10.3389/fnbot.2019.00047
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00047/full
http://loop.frontiersin.org/people/721438/overview

Xu et al. DRNN Based Obstacle Avoidance Control

traditional RRT based ones. InHsu et al. (2006), Hsu discusses the
probabilistic foundations of PRM based methods, a conclusion is
drew that the visibility properties rather than dimensionality of
C has a greater impact on the probability, and the convergence
would be faster if extract partial knowledge could be introduced.
However, due to the large computational costs, those methods
can be hardly used online.

Different from stochastic results obtained by abovementioned
methods, artificial potential field methods plan the same path
each time in the same environment, which is important in
industrial applications (Khatib, 1986). The basic idea of artificial
potential field methods is that the target bears as an attractive
pole while the obstacle creates repulsion on the robot, then
the robot will be controlled to converge to the target without
colliding with obstacles. At the same time, artificial potential field
methods have shown great ability in tracking dynamic targets
as well as avoiding dynamic obstacles. In Csiszar et al. (2011),
a modified method is proposed, which describes the obstacles
by different geometrical forms, both theoretical conduction and
experimental tests validate the proposed method. Considering
the local minimum problem that may be caused by multi-link
structures, in Badawy (2016), a two minima is introduced to
construct potential field, such that a dual attraction between links
enables faster maneuvers comparing with traditional methods.
Other improvements to artificial potential field method can be
found in Tsai et al. (2001); Tsuji et al. (2002); Wen et al. (2017).
Taking advantage of redundant DOFs, obstacles can be avoided
by the self-motion in the null space, by calculating pseudo-
inverse of Jacobian matrix, the solution can be formulated as the
sum of a minimum-norm particular solution and homogeneous
solutions (Cao et al., 1999; Moosavian and Papadopoulos, 2007;
Krzysztof and Joanna, 2016).

The application of artificial intelligence algorithms based on
neural networks provide a new idea for robotic control, these
methods are considered to be very promising since its excellent
learning ability (Jung and Kim, 2007). For instance, in Pan et al.
(2017), the authors propose a command-filtered back-stepping
method, in which a neural network based learning scheme is
introduced to deal with functional uncertainties. In Pan and Yu
(2017), a biomimetic hybrid controller is established, in which
the control strategy consist of a feed-forward predictive machine
based on a RBF Neural Network and a feedback servo machine
based on a proportional-derivative controller. In Fu et al. (2018),
a fuzzy logic controller is proposed for long-term navigation of
quad-rotor UAV systems with input uncertainties. Experiment
results show that the controller can achieve better control
performance when compared to their singleton counterparts.
In Fu et al. (2019), an online learning mechanism is built for
visual tracking systems. The controller uses both positive and
negative sample importances as input, and it is shown that the
proposed weighted multiple instance learning scheme achieves
wonderful tracking performance in challenging environments.
Typically, the structure of a neural network may be complex
in order to achieve better performance. Although the model of
robot manipulator is highly nonlinear, by introducing the priori
information of the system model, the neural network can be
optimized, i.e., the number of nodes in neural networks can

be reduced effectively while maintaining the learning efficiency
(Fontaine and Germain, 2001). Inspired by this, a series dynamic
neural networks are proposed to realize robotic control in
realtime (Zhang et al., 2004; Li et al., 2017; Yang et al.,
2018b). Based on the idea of constraint-optimization, quadratic-
programming approaches haven been introduced for kinematic
control of redundant manipulators. The designed outer-loop
controller is described as equality constraints, and objective
functions are established to describe certain performance of
the system. Using the learning and parallel calculation ability,
dynamic neural networks are established to solve the quadratic-
programming problem online. The kinematic control is thus
achieved by ensuring the equality constraints, and the flexibility
is used by optimizing the objective functions. On the other hand,
these methods is capable of handling inequality constraints and
model uncertainties (Zhang et al., 2018; Li et al., 2019; Xu et al.,
2019b). In Cheng et al. (1993), the obstacle avoidance strategy
is described as equality constraints, but the parameters of escape
velocity is difficult to obtain. In Zhang and Wang (2004), Zhang
et al. propose an inequality based method, in which the distance
between the robot and obstacles are formulated as a group of
distances from critical points and robot links. On this basis, an
improved method is proposed by Guo et al. in Guo and Zhang
(2012), which is capable of suppressing undesirable discontinuity
in the original solutions.

Motivated by the above observations, in this paper, we
proposed a novel obstacle avoidance strategy based on deep
recurrent neural networks. By abstracting robot and obstacles
as a set of critical points, the distances between the robot and
obstacles are approximately described by a group of point-
to-point distances. And the obstacle avoidance is realized by
inequality constraint described by class-K functions. Then the
obstacle avoidance problem is reformulated as a QP problem in
the speed level, and a deep recurrent neural network is designed
to solve the QP online. Numerical results show that the robot is
capable of avoiding the obstacles while tracking the predefined
trajectories. Before ending this section, the main contributions of
this paper are summarized as below

• The proposed deep RNN based controller is able to achieve
both path tracking and obstacle avoidance, at the same time,
physical constraints such as angular joints and velocities
are satisfied.

• In this paper, we propose a class-K function based obstacle
avoidance strategy, which has a more general form of
description than traditional linear escape velocity methods.

• By abstracting robots and obstacles into critical point sets
respectively, the distance between the robot and the obstacle
can be described in a simpler way. Besides, numerical results
show that the control algorithm can realize the avoidance of
static and dynamic obstacles.

2. PROBLEM FORMULATION

2.1. Basic Description
When a redundant robot is controlled to track a particular
trajectory in the cartesian space, the positional description of the

Frontiers in Neurorobotics | www.frontiersin.org 2 July 2019 | Volume 13 | Article 4761

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xu et al. DRNN Based Obstacle Avoidance Control

end-effector can be formulated as:

x = f (θ), (1)

where x ∈ R
m and θ ∈ R

n are the end-effector′s positional vector
and joint angles, respectively. In the velocity level, the kinematic
mapping between ẋ and θ̇ can be described as:

ẋ = J(θ)θ̇ , (2)

where J(θ) ∈ R
m×n is the Jacobian matrix from the end-effector

to joint space.
In engineering applications, obstacles are inevitable in

the workspace of a robot manipulator. For example, robot
manipulators usually work in a limited workspace restricted by
fences, which are used to isolated robots from humans or other
robots. This problem could be even more acute in tasks which
requires collaboration of multiple robots. Let C1 be the set of all
the points on a robot body, and C2 be the set of all the points on
the obstacles, then the purpose of obstacle avoidance of a robot
manipulator is to ensure C1 ∪C2 = ∅ at all times. By introducing
d as a safety distance between the robot and obstacles, the obstacle
avoidance is reformulated as

|OjAi| ≥ d, ∀Ai ∈ C1,∀Oi ∈ C2. (3)

where |OjAi| =

√

(Ai − Oj)T(Ai − Oj) is the Euclidean norm of

the vector AiOj.
Equation (3) gives a basic description of obstacle avoidance

problem in form of inequalities. However, there are too many
elements in sets C1 and C2, the vast majority of which are
actually unnecessary. Therefore, by uniformly selecting points
of representative significance from C1 and C2, and increasing d
properly, Equation (3) can be approximately described as below:

|OjAi| ≥ d, (4)

with Ai, i = 1, . . . , a and Oj, j = 1, . . . , b being the representative
points of the robot and obstacles, respectively. The schematic
diagram of Equation (4) in shown in Figure 1.

Remark. 1 In real implementations, there are many ways
to measure |OjAi|. For instance, since physical structure of

FIGURE 1 | The basic idea of obstacle avoidance in this paper.

the a manipulator is known, the key points Ai are available
in advance, both positions and velocities of those points can
be calculated directly using the feedback of robot joints. The
real-time measurement of obstacles can be achieved through
industrial cameras. Therefore, the information of Ai and Bj are
all available. As to measurement noise, by introducing a bigger
safety distance d, e.g., d = 1.5(d1+d2), the safety can be ensured.

2.2. Reformulation of Inequality in Speed
Level
In order to guarantee the inequality (4), by definingD = |OjAi|−

d, an inequality is rebuilt in speed level as:

d(|OjAi|)/dt ≥ −sgn(D)g(|D|), (5)

in which g(•) belongs to class-K. Remarkable that the velocities
of critical points Ai can be described by joint velocities:

Ȧi = Jai(θ)θ̇ , (6)

where Jai ∈ R
m×n is the Jacobian matrix from the critical point

Ai to joint space. If Oj is prior known, the left-side of Equation
(5) can be reformulated as:

d

dt
(|OjAi|) =

d

dt
(
√

(Ai − Oj)T(Ai − Oj))

=
1

|OjAi|
(Ai − Oj)

T(Ȧi − Ȯj)

=
−−−→
|OjAi|

TJai(θ)θ̇ −
−−−→
|OjAi|

TȮj, (7)

where
−−−→
|OjAi| = (Ai − Oj)

T/|OjAi| ∈ R
1×m is the unit vector

of
−−−−→
Ai − Oj. Therefore, the collision between critical point Ai and

object Oj can be obtained by ensuring the following inequality:

Joiθ̇ ≤ sgn(D)g(|D|)−
−−−→
|OjAi|

TȮj, (8)

where Joi = −
−−−→
|OjAi|

TJai ∈ R
1×n. Based on the inequality

description (8), the collision between robot and obstacle can be
avoided by ensuring:

Joθ̇ ≤ B, (9)

where Jo = [JTo1, · · · , J
T
o1

︸ ︷︷ ︸

b

, · · · , JToa, · · · , J
T
oa

︸ ︷︷ ︸

b

]T ∈ R
ab×n is the

concatenated form of Joi considering all pairs between Ai and
Oj, B = [B11, · · · ,B1b, · · · ,Ba1, · · · ,Bab]

T ∈ R
ab is the vector

of upper-bounds, in which Bij = sgn(D)g(|D|)−
−−−→
|OjAi|

TȮj.
Remark 2: According to 5 the definition of class-K functions,

the original escape velocity based obstacle avoidance methods in
Zhang andWang (2004); Guo and Zhang (2012) can be regarded
as a special case of 5, in whichG(|D|) is selected asG(|D|) = k|D|.
Therefore, in this paper, the proposed obstacle avoidance strategy
is more general than traditional methods.

Frontiers in Neurorobotics | www.frontiersin.org 3 July 2019 | Volume 13 | Article 4762

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xu et al. DRNN Based Obstacle Avoidance Control

2.3. QP Type Problem Description
As to redundant manipulators, in order to take full advantage
of the redundant DOFs, the robot can be designed to fulfill
a secondary task when tracking a desired trajectory. In this
paper, the secondary task is set to minimize joint velocity while
avoiding obstacles. In real implementations, both joint angles
and velocities are limited because of physical limitations such
as mechanical constraints and actuator saturation. Because of
the fact that rank (J) < n, there might be infinity solutions
to achieve kinematic control. In this paper, we aim to design
a kinematic controller which is capable of avoiding obstacles
while tracking a pre-defined trajectory in the cartesian space. For
safety′s sake, the robot is wished to move at a low speed, on the
other hand, lower energy consumption is guaranteed. By defining
an objective function scaling joint velocity as θ̇Tθ̇/2, the tracking
control of a redundant manipulator while avoiding obstacles can
be described as:

min θ̇Tθ̇/2, (10a)

s.t. x = xd, (10b)

θ− ≤ θ ≤ θ+, (10c)

θ̇− ≤ θ̇ ≤ θ̇+, (10d)

Joθ̇ ≤ B. (10e)

It is remarkable that the constraints 10b–10e and the objective
function 10a to be optimized are built in different levels, which
is very difficult to solve directly. Therefore, we will transform
the original QP problem (10) in the velocity level. In order to
realize precise tracking control to the desired trajectory xd, by
introducing a negative feedback in the outer-loop, the equality
constraint can be ensured by letting the end-effector moves at a
velocity of ẋ = ẋd + k(xd − x). In terms with (10c), according
to escape velocity method, it can be obtained by limiting joint
speed as α(θ− − θ) ≤ θ̇ ≤ α(θ+ − θ), where α is a positive
constant. Combing the kinematic property (2), the reformulated
QP problem is:

min θ̇Tθ̇/2, (11a)

s.t. J(θ)θ̇ = ẋd + k(xd − x), (11b)

max(α(θ− − θ), θ̇−) ≤ θ̇ ≤ min(θ̇+,α(θ+ − θ)), (11c)

Joθ̇ ≤ B. (11d)

It is noteworthy that both the formula (11a) and (11d) are
nonlinear. The QP problem cannot be solved directly by
traditional methods. Using the parallel computing and learning
ability, a deep RNN will be established later.

3. DEEP RNN BASED SOLVER DESIGN

In this section, a deep RNN is proposed to solve the obstacle
avoidance problem (11) online. To ensure the constraints (11b),
(11c), and (11d), a group of state variables are introduced in the
deep RNN. The stability is also proved by Lyapunov theory.

3.1. Deep RNN Design
Firstly, by defining a group of state variables λ1 ∈ R

m, λ2 ∈ R
ab,

a Lagrange function is selected as:

L = θ̇Tθ̇/2+ λT1 (ẋd + k(xd − x)− J(θ)θ̇)+ λT2 (Joθ̇ − B), (12)

λ1 and λ2 are the dual variables corresponding to the constraints
(11b) and (11d). According to Karush-Kuhn-Tucker conditions,
the optimal solution of the optimization problem (12) can be
equivalently formulated as:

θ̇ = P�(θ̇ −
∂L

∂θ̇
), (13a)

J(θ)θ̇ = ẋd + k(xd − x), (13b)
{

λ2 > 0 if Joθ̇ = B,

λ2 = 0 if Joθ̇ ≤ B,
(13c)

where P�(x) = argminy∈�||y − x|| is a projection operator

to a restricted interval �, which is defined as � = {θ̇ ∈

R
n|max(α(θ− − θ), θ̇−) ≤ θ̇ ≤ min(θ̇+,α(θ+ − θ))}. Notable

that Equation (13c) can be simply described as:

λ2 = (λ2 + Joθ̇ − B)+, (14)

where (•)+ is a projection operation to the non-negative space,
in the sense that y+ = max(y, 0).

Although the solution of (13) is exact the optimal solution of
the constrained-optimization problem (11), it is still a challenging
issue to solve (13) online since its inherent nonlinearity. In this
paper, in order to solve (13), a deep recurrent neural network is
designed as:

ǫθ̈ = −θ̇ + P�(J
Tλ1 − JTo λ2), (15a)

ǫλ̇1 = ẋd + k(xd − x)− J(θ)θ̇ , (15b)

ǫλ̇2 = −λ2 + (λ2 + Joθ̇ − B)+, (15c)

with ǫ is a positive constant scaling the convergence of (15).
Remark. 3 As to the established deep RNN (15), the first

dynamic equation is also the output dynamics, which combines
the dynamics of state variables λ1 and λ2, as well as the physical
limitations including joint angles and velocities. State variable λ1
is used to ensure the equality constraint (11b), as shown in (15b),
λ1 is updated according to the difference between reference speed
ẋd + k(xd − x) and actually speed J(θ)θ̇ . Similarly, λ2 is used
to ensure the inequality constraint 11d, which will be further
discussed later. It is remarkable that ǫ plays an important role
in the convergence of the deep RNN. The smaller ǫ, the faster the
deep RNN converges.

Remark. 4 By introducing the model information such as
J, Jo, etc., the established deep RNN consists of three class of
nodes, namely θ̇ , λ1 and λ2, and the total number of nodes is
n+m+ab. Comparing to traditional neural networks in Jung and
Kim (2007), the complexity of neural networks is greatly reduced.

Frontiers in Neurorobotics | www.frontiersin.org 4 July 2019 | Volume 13 | Article 4763

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xu et al. DRNN Based Obstacle Avoidance Control

3.2. Stability Analysis
In this subsection, we offer stability analysis of the obstacle
avoidance method based on deep RNN based. First of all, some
basic Lemmas are given as below.

Definition 1: A continuously differentiable function F(•) is
said to be monotone, if∇F+∇FT is positive semi-definite, where
∇F is the gradient of F(•).

Lemma 1:A dynamic neural network is said to converge to the
equilibrium point if it satisfies:

κ ẋ = −x+ PS(x− ̺F(x)), (16)

where κ > 0 and ̺ > 0 are constant parameters, and PS =

argminy∈S||y− x|| is a projection operator to closed set S.

Lemma 2: (Slotine and Li, 2004) Let V :[0,∞) × Bd → R be
a C1 function, α1, α2 be class-K functions defined on [0, d) which
satisfy α1(||x||) ≤ V(t, x) ≤ α2(||x||), ∀(t, x) ∈ [0, d) × Bd, then
x = 0 is a uniformly asymptotically stable equilibrium point if
there exist some class-K function g defined on [0, d), to make the
following inequality hold:

∂V

∂t
+

∂V

∂x
f (t, x) ≤ −α(||x||), ∀(t, x) ∈ [0,∞)× Bd, (17)

About the stability of the closed-loop system, we offer the
following theorem.

Theorem 1: Given the obstacle avoidance problem for a
redundant manipulator in kinematic control tasks, the proposed
deep recurrent neural network is stable and will globally converge
to the optimal solution of (10).

Proof: The stability analysis consists of two parts: firstly, we
will show that the equilibrium of the deep RNN is exactly the
optimal solution of the control objective described in (11), which
prove that the output of deep RNNwill realize obstacle avoidance
while tracking a given trajectory, and then we will prove that the
deep recurrent neural network is stable in sense of Lyapunov.

Part I. As to the deep recurrent neural network (15),
let (θ̇∗, λ∗1 , λ

∗
2) be the equilibrium of the deep RNN, then

(θ̇∗, λ∗1 , λ
∗
2) satisfies:

−θ̇∗ + P�(J
Tλ∗1 − JTo λ∗2) = 0, (18a)

ẋd + k(xd − x)− J(θ)θ̇∗ = 0, (18b)

−λ∗2 + (λ∗2 + Joθ̇
∗ − B)+ = 0, (18c)

with θ̇∗ be the output of deep RNN. By comparing Equation (18)
and (13), we can readily obtain that they are identical, i.e., the
equilibrium point satisfies the KKT condition of (10).

Then we will show that the equilibrium point(output of
the proposed deep RNN) is capable of dealing with kinematic
tracking as well as obstacle avoidance problem. Define a
Lyapunov function V about the tracking error e = xd − x as V =

eTe/2, by differentiating V with respect to time and combining
(11b), we have:

V̇ = eTė = eT(ẋd − J(θ)θ̇∗)

= −keTe ≤ 0, (19)

in which the dynamic Equation 18b is also used. It can readily
obtained that the tracking error would eventually converge to 0.

It is notable that the dynamic (Equation 18c) satisfies:

λ∗2 + Joθ̇
∗ − B− (λ∗2 + Joθ̇

∗ − B)+ = Joθ̇
∗ − B. (20)

According to the property of projection operator (•)+, y−(y)+ ≤

0 holds for any y, then we have Joθ̇
∗ − B ≤ 0, together with (5),

the inequality (5) is satisfied. Notable that (5) can be rewritten as:

Ḋ ≥ −sgn(D)g(|D|). (21)

As to (21), we first consider the situation when equality holds.
Since g(|D|) is a function belonging to class K, it can be
easily obtained that D = 0 is the only equilibrium of Ḋ =

−sgn(D)g(|D|). Define a Lyapunov function as V2(t,D) = D2/2,
and select two functions as α1(|D|) = α2(|D|) = D2/2. It
is obvious that α1(|D|) = α2(|D|) belong to class-K, and the
following inequality will always hold:

α1(|D|) ≤ V2(t,D) ≤ α2(|D|). (22)

Taking the time derivative of V2(t,D), we have:

∂V2

∂t
+

∂V

∂D
Ḋ = −|D|g(|D|) ≤ 0. (23)

According to Lemma 2, the equilibrium x = 0 is uniformly
asymptotically stable. Then we arrive at the conclusion that if the
equality d(|OjAi|)/dt = −sgn(D)g(|D|) holds, |D| = 0 will be
guaranteed, i.e., |OjAi| − d for all i = 1 · · · a, = 1 · · · b. Based
on comparison principle, we can readily obtain that |OjAi| ≥ d
when d(|OjAi|)/dt ≥ −sgn(D)g(|D|).

Part II. Then we will show the stability of the deep RNN
(15). Let ξ = [θ̇T, λT1 , λ

T
2]

T be the a concatenated vector of
state variables of the proposed deep RNN, then (15) can be
rewritten as:

ǫξ̇ = −ξ + P�̄[ξ − F(ξ)], (24)

where PS(•) is a projection operator to a set S, and F(ξ) =

[F1(ξ), F2(ξ), F3(ξ)]
T ∈ R

n+m+ab, in which:

F1
F2
F3

 =

θ̇ − JTλ1 + JTo λ2
Jθ̇ − ẋd − k(xd − x)

−Joθ̇
∗ − B

 .

Let ∇F = ∂F/∂ξ , we have:

∇F(ξ) =

I −JT JTo
J 0 0

−JTo 0 0

 . (25)

According to the definition of monotone function, we can readily
obtain that F(ξ) is monotone. From the description of (24), the
projection operator PS can be formulated as PS = [P�;PR;P3],
in which P� is defined in (13), PR can be regarded as a projection

Frontiers in Neurorobotics | www.frontiersin.org 5 July 2019 | Volume 13 | Article 4764

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xu et al. DRNN Based Obstacle Avoidance Control

operator of λ1 to R, with the upper and lower bounds being±∞,
and P3 = (•)+ is a special projection operator to closed set R

ab
+ .

Therefore, PS is a projection operator to closed set [�;R
m;R

ab
+].

Based on Lemma 1, the proposed neural network (15) is stable
and will globally converge to the optimal solution of (10). The
proof is completed.

4. NUMERICAL RESULTS

In this section, the proposed deep RNN based controller
is applied on a planar 4-DOF robot. Firstly, a basic case
where the obstacle is described as a single point is discussed,
and then the controller is expanded to multiple obstacles
and dynamic ones. Comparisons with existing methods are
also listed to indicate the superiority of the deep RNN
based scheme.

4.1. Simulation Setup
The physical structure of the 4-link planar robot to be simulated
in shown in Figure 2, in which the critical points of the robot are
alsomarked. As shown in Figure 2A, critical pointsA2,A4,A6 are
selected at the joint centers, and A1, A3, A5, A7 are selected at the
center of robot links. The D-H parameters are given in Figure 2B.
It is notable that Ai and the Jacobian matrix Joi are essential in
the proposed control scheme. Based on the above description
of Ai, the D-H parameters of A1 is a1 = 0.15, a2 = a3 = 0,
α1 = α2 = α3 = 0, d1 = d2 = d3 = 0, then both the position
and Jacobian matrix Ja1 of A1 can be calculated readily. Based on
the definition in Equation 8, Jo1 can be obtained. Ai and Joi can be
calculated similarly. The control parameters are set as ǫ = 0.001,
α = 8, k = 8. As to the physical constraints, the limits of joint
angles and velocities are selected as θ−i = −3rad, θ+i = 3rad,
θ̇−i = −1rad/s, θ̇+i = 1rad/s for i = 1 . . . 4. The safety distance d
is set to be 0.1m.

4.2. Single Obstacle Avoidance
In this simulation, the obstacle is assumed to be centered
at [−0.1, 0.2]Tm, the desired path is set as xd = [0.4 +

0.1cos(0.5t), 0.4+ 0.1sin(0.5t)]Tm, and the initial joint angles are
set to be θ0 = [π/2,−π/3,−π/4, 0]Trad. The class-K function is
selected as G(|D|) = K1|D| with K1 = 200. In order to show

the effectiveness of the proposed obstacle avoidance method,
contrast simulations with and without inequality constraint
(10e) are conducted. Simulation results are shown in Figure 3.
When ignoring the obstacle, the end-effector trajectories and
the corresponding incremental configurations are shown in
Figure 3A, although the robot achieves task space tracking to
xd, obviously the first link of the robot would collide with the
obstacle. After introducing obstacle avoidance scheme, the robot
moves other joints rather than the first joint, and then avoids
the obstacle effectively (Figure 3B). Simultaneously, the tracking
errors when tracking the given circle are shown in Figure 3C.
From the initial state, the end-effector moves toward the circle
quickly and smoothly, after that, the tracking error in stable
state keeps < 1 × 10−4m, showing that the robot could achieve
kinematic control as well as obstacle avoidance tasks. To show
more details of the proposed deep RNN based method, some
important process data is given. As the obstacle is close to the
first joint, critical points A1 and A2 are more likely to collide
with obstacle, therefore, as a result, the distances between the
obstacle O1 and A1, A2 are shown in Figure 3D, from t = 2s
to t = 6.5s, ||A1O1|| remains at the minimum value d = 0.1,
that is to say, using the proposed obstacle avoidance method, the
robotmaintainsminimumdistance from the obstacle. The profile
of joint velocities are shown in Figure 3E, at the beginning of
simulation, the robot moves at maximum speed, which leads to
the fast convergence of tracking errors. The curve of joint angles
change over time is shown in Figure 3F.

4.3. Discussion on Class-K Functions
In this part, we will discuss the influence of different class-
K functions in the avoidance scheme (5). Four functions are
selected as G1(|D|) = K|D|2, G2(|D|) = K|D|, G3(|D|) =

Ktanh(5|D|), G4(|D|) = Ktanh(10|D|), Figure 4A shows the
comparative curves the these functions. Other simulation settings
are the same as the previous one. Simulation results are shown
in Figure 4B. When selecting the same positive gain K, the
minimum distance is about 0.08m, which shows the robot
can avoid colliding with the obstacle using the avoidance
scheme (5). The close-up graph of the tracking error is also
shown, it is remarkable that the minimum distance deceases,
as the gradient of the class-K function increases near 0.

FIGURE 2 | The planar robot to be simulated in this paper. (A) is the physical structure and critical points, (B) is the corresponding Dh parameters.

Frontiers in Neurorobotics | www.frontiersin.org 6 July 2019 | Volume 13 | Article 4765

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xu et al. DRNN Based Obstacle Avoidance Control

FIGURE 3 | Numerical results of single obstacle avoidance. (A) is the motion trajectories when ignoring obstacle avoidance scheme, (B) is the motion trajectories

when considering obstacle avoidance scheme, (C) is the profile of tracking errors when considering obstacle avoidance scheme, (D) is the profile of distances

between critical points and obstacle, (E) is the profile of joint velocities, (F) is the profile of joint angles.

Therefore, one conclusion can be drawn that the function
can be more similar with Sign function, to achieve better
obstacle avoidance.

4.4. Multiple Obstacles Avoidance
In this part, we consider the case where there are two obstacles
in the workspace. The obstacles are set at [0.1, 0.25]Tm and
[0, 0.4]Tm, respectively. Simulation results are shown in Figure 5.
The desired path is defined as xd = [0.45 + 0.1cos(0.5t), 0.4 +

0.1sin(0.5t)]T. The initial joint angle of the robot is selected as
θ0 = [1.5,−1 − 1, 0]T. To further show the effectiveness of
the proposed obstacle avoidance strategy 5, g|D| is selected as
g|D| = K1/(1 + e−|D|) − K1/2 with K1 = 200. When λ2
is set to 0, as shown in Figure 5A, the inequality constraint
(11d) will not work, in other words, only kinematic tracking
problem in considered rather than obstacle avoidance, in this
case, the robot would collide with the obstacles. After introducing
online training of λ2, the simulation results are given in
Figures 5B–H. The tracking errors are shown in Figure 5C,
with the transient time being about 4s, and steady state error
< 1 × 10−3m. Correspondingly, the robot moves fast in the
transient stage, ensuring the quick convergence of the tracking
errors. It is remarkable that the distances between the critical
points and obstacle points are kept larger than 0.1m at all times,
showing the effectiveness of the proposed method. At t =

14s, from Figures 5D,G, when the distance between A3 and O1

is close to 0.1m, the corresponding dual variable λ2 becomes
positive, making the inequality constraint (11d) hold, and the

boundedness between the robot and obstacle is thus guaranteed.
After t = 18s, ||A3O1|| becomes greater, then λ2 converges to
0. Notable that although λ1 and λ2 do not converge to certain
values, the dynamic change of λ1 and λ2 ensures the regulation
of the proposed deep RNN.

4.5. Enveloping Shape Obstacles
In this part, we consider obstacles of general significance.
Suppose that there is a rectangular obstacle in the workspace,
with the vertices being [0, 0.5]T, [0.4, 0.5]T, [0.4, 0.6]T and
[0.5, 0.6]T, respectively. By selecting the safety distance d =

0.1m, and obstacle points as O1 = [0.05, 0.55]T, O2 =

[0.15, 0.55]T, O3 = [0.25, 0.55]T and O4 = [0.35, 0.55]T. It
can be readily obtained that the rectangular obstacle is totally
within the envelope defined by Oi and d. The incremental
configurations when tracking the path while avoiding the
obstacle are shown in Figure 6B, in which a local amplification
diagram is also given. showing that the critical points A3

is capable of avoiding O2 and O3. It is worth noting that
by selecting proper point group and safety distance, the
obstacle can be described by the envelope shape effectively.
While in Figure 6A, when obstacle avoidance is ignored, the
collision emerges. Figures 6C–H also give important process
data of the system under the proposed controller, including
tracking errors, joint angles, angular velocities, and state
variables of deep RNNs. We can observe that the physical
constraints as well as kinematic control task are realized using
the controller.

Frontiers in Neurorobotics | www.frontiersin.org 7 July 2019 | Volume 13 | Article 4766

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xu et al. DRNN Based Obstacle Avoidance Control

FIGURE 4 | Discussions on different obstacle avoidance functions. (A) is the comparative curves of different obstacle avoidance functions. (B) is the profile of

minimum distance of the robot and obstacle using different obstacle avoidance functions.

FIGURE 5 | Numerical results of multiple obstacle avoidance. (A) is the motion trajectories when ignoring obstacle avoidance scheme, (B) is the motion trajectories

when considering obstacle avoidance scheme, (C) is the profile of tracking errors when considering obstacle avoidance scheme, (D) is the profile of distances

between critical points and obstacles, (E) is the profile of joint velocities, (F) is the profile of λ2, (G) is the profile of joint angles, (H) is the profile of λ1.

Frontiers in Neurorobotics | www.frontiersin.org 8 July 2019 | Volume 13 | Article 4767

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xu et al. DRNN Based Obstacle Avoidance Control

FIGURE 6 | Numerical results of enveloping shape obstacles. (A) is the motion trajectories when ignoring obstacle avoidance scheme, (B) is the motion trajectories

when considering obstacle avoidance scheme, (C) is the profile of tracking errors when considering obstacle avoidance scheme, (D) is the profile of distances

between critical points and obstacles, (E) is the profile of joint velocities, (F) is the profile of joint angles, (G) is the profile of λ2, (H) is the profile of λ1.

4.6. Dynamic Obstacles
In this part, we consider dynamic obstacles moving in the
workspace. In real applications, pedestrian or other obstacles
always tend to be mobile. Obstacle avoidance for dynamic
obstacles is of more general significance. In real time, static
obstacles can be considered a special case. In this simulation,
the simulation duration is selected as 20s, and the trajectory of
a dynamic obstacle is defined as xd = [−0.1 + 0.01t, 0.3]T.
The snapshots in the control process are shown in Figure 8.
While ensuring effective tracking of the defined path, the robot
is able to use its self-motion to avoid the dynamic obstacle
effectively, and maintain a safe distance. The distances between
critical points and the dynamic O is shown in Figure 7B. At

the beginning of simulation, the tracking error is big, in order
to ensure the convergence of tracking error, the joints move a
big range except J1. It is worth noting that since the critical
point A2 is next to O, joint 1 rotates in the direction which
conforms to themovement ofO. In the stable state, tracking error
is < 5 × 10−4m (Figure 7A). At about t = 14s, A2O decreases
to 0.1m, accordingly, the joint velocities change obviously (as
shown the significant change of joint velocities in Figure 7C, the
tracking error changes to 10−3m, and then converges quickly.
At t = 18s, although A2 and A3 are near O, the robot is still
capable of avoiding the dynamic obstacle. During the control
process, joint angles are ensured not to exceed the limits, as
shown in Figure 7D.

Frontiers in Neurorobotics | www.frontiersin.org 9 July 2019 | Volume 13 | Article 4768

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xu et al. DRNN Based Obstacle Avoidance Control

FIGURE 7 | Numerical results of enveloping shape obstacles. (A) is the profile of tracking errors when considering obstacle avoidance scheme, (B) is the profile of

distances between critical points and obstacles, (C) is the profile of joint velocities, (D) is the profile of joint angles.

FIGURE 8 | Snapshots when robot avoiding a dynamic obstacle. (A) is the snapshot when t = 0s, (B) is the snapshot when t = 6s, (C) is the snapshot when t = 12s,

(D) is the snapshot when t = 18s.

Frontiers in Neurorobotics | www.frontiersin.org 10 July 2019 | Volume 13 | Article 4769

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xu et al. DRNN Based Obstacle Avoidance Control

FIGURE 9 | Comparative results when the proposed controller is used on a 7-DOF manipulator iiwa in 3-dimensional space. (A) is the tracking trajectory and the

corresponding joint configurations when obstacle avoidance scheme is introduced. (B) is the tracking trajectory and the corresponding joint configurations when

obstacle avoidance scheme is not introduced.

4.7. Obstacle Performance on 7-DOF
Manipulator in 3-Dimensional Space
To further verify the effectiveness of the control scheme, another
simulation on a 7DOF manipulator iiwa is carried out. The
desired path to be tracked is also a planar circular, which
is centered at [0,−0.6, 0.1]Tm with radius being 0.15m. The
physical parameters can be found in Xu et al. (2019a). Suppose
that there exist a cylinder obstacle in the workspace, the obstacle
is centered as [−0.13,−0.3, 0]Tm, with the radius and height
being 0.15m and 2m, respectively. Simulation results are shown
in Figure 9. It can be readily found that the proposed schemes
can obtain satisfying performance in 3-dimensional spaces.

4.8. Comparisons
To illustrate the priority of the proposed scheme, a group
of comparisons are carried out. As shown in Table 1, all the
controllers in Zhang and Wang (2004); Csiszar et al. (2011);
Guo and Zhang (2012); Krzysztof and Joanna (2016) achieve the
avoidance of obstacles. Comparing to APF method in Csiszar
et al. (2011); Krzysztof and Joanna (2016) of JP based method in
Csiszar et al. (2011); Krzysztof and Joanna (2016), the proposed
controller can realize a secondary task, at the same time, we
present a more general formulation of the obstacle avoidance
strategy, which is helpful to gain a deeper understanding of
the mechanism for avoidance of obstacles. Moreover, in this
paper, both dynamic trajectories and obstacles are considered.
The comparisons above also highlight the main contributions of
this paper.

5. CONCLUSIONS

In this paper, a novel obstacle avoidance strategy is proposed
based on a deep recurrent neural network. The robots are
obstacles are presented by sets of critical points, then the
distance between the robot and obstacle can be approximately
describes as point-to-points distances. By understanding the
nature escape velocity methods, a more general description

TABLE 1 | Comparisons among different obstacle avoidance controllers

on manipulators.

Method Convergence Secondary

task

Handling

physical

constraints

Dynamic

obstacles

obstacle

avoidance

description

This paper Yes Yes Yes Yes Inequalities

Guo and Zhang,

2012

Yes Yes Yes * Inequalities**

Zhang and

Wang, 2004

Yes Yes Yes * Inequalities**

Csiszar et al.,

2011

Yes No No Yes Repulsion

Krzysztof and

Joanna, 2016

Yes No No * Null space

*In Zhang and Wang (2004); Guo and Zhang (2012); Krzysztof and Joanna (2016),

dynamic obstacles are not considered.

**Regular escape velocity method is used, which is only a special case of 5.

of obstacle avoidance strategy is proposed. Using minimum-
velocity-norm (MVN) scheme, the obstacle avoidance together
with path tracking problem is formulated as a QP problem, in
which physical limits are also considered. By introducing model
information, a deep RNN with simple structure is established
to solve the QP problem online. Simulation results show that
the proposed method can realize the avoidance of static and
dynamic obstacles.

DATA AVAILABILITY

All datasets analyzed for this study are included in themanuscript
and the supplementary files.

AUTHOR CONTRIBUTIONS

Theoretical derivation was done by ZX. Simulation research was
performed by ZX, with important advice from XZ. The paper was
revised by XZ and SL. All authors approved the manuscript.

Frontiers in Neurorobotics | www.frontiersin.org 11 July 2019 | Volume 13 | Article 4770

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xu et al. DRNN Based Obstacle Avoidance Control

FUNDING

This work is supported by the GDAS′ Foundation of National
and Provincial Science and Technology Talent (Grant No.
2018GDASCX-0603), Guangdong Province Applied Science
and Technology Research Project (Grant No.2015B090922010),
Guangzhou Science and Technology Planning Project(Grant
NO.201803010106), Guangdong Province Science and
Technology Major Projects (Grant No. 2016B090910003),

Guangdong Province Science and Technology Major Projects
(Grant No. 2017B010116005), Guangdong Province Key Areas
R&D Program (Grant No. 2019B090919002).

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their valuable
comments and suggestions.

REFERENCES

Badawy, A. (2016). Dynamic and interactive path planning and collision

avoidance for an industrial robot using artificial potential field based

method. Alexandria Eng. J. 55, 1235–1241. doi: 10.1016/j.aej.201

6.03.042

Cao, B., Dodds, G., and Irwin, G. (1999). Redundancy resolution and obstacle

avoidance for cooperative industrial robots. J. Robot. Syst. 16, 405–417.

Chan, T., and Dubey, R. (1995). A weighted least-norm solution based scheme

for avoiding joint limits for redundant joint manipulators. IEEE Trans. Robot.

Automat. 11, 286–292.

Cheng, F., Chen, T., Wang, Y., and Sun, Y. (1993). “Obstacle avoidance

for redundant manipulators using the compact qp method,” in IEEE

International Conference on Robotics and Automation (Atlanta, GA: IEEE),

41–50. doi: 10.1109/ROBOT.1993.292186

Cheng, L., Hou, Z. G., and Tan, M. (2009). Adaptive parameter estimation

and control design for robot manipulators with finite-time convergence.

Automatica 45, 2312–2318. doi: 10.1016/j.automatica.2009.06.007

Csiszar, A., Drust, M., Dietz, T., Verl, A., and Brisan, C. (2011). Dynamic

and interactive path planning and collision avoidance for an industrial

robot using artificial potential field based method. Mechatronics 1, 413–421.

doi: 10.1007/978-3-642-23244-2-50

Fontaine, J., and Germain, A. (2001). Model-based neural networks. Comput.

Chem. Eng. 25, 1045–1054. doi: 10.1016/S0098-1354(01)00679-2

Fu, C., Duan, R., and Kayacan, E. (2019). Visual tracking with online structural

similarity-based weighted multiple instance learning. Informat. Sci. 481, 292–

310. doi: 10.1016/j.ins.2018.12.080

Fu, C., Sarabakha, A., Kayacan, E., Wagner, C., John, R., and Garibaldi, J. (2018).

Input uncertainty sensitivity enhanced non-singleton fuzzy logic controllers for

long-term navigation of quadrotor uavs. IEEE/ASME Trans. Mech. 23, 725–734.

doi: 10.1109/TMECH.2018.2810947

Ge, S., and Cui, Y. (2000). New potential functions for mobile robot path planning.

IEEE Trans. Robot. Automat. 16, 615–620. doi: 10.1109/70.880813

Guo, D., and Zhang, Y. (2012). A new inequality-based obstacle-avoidance mvn

scheme and its application to redundant robot manipulators. IEEE Trans. Syst.

Man Cybernet. Part C 42, 1326–1340. doi: 10.1109/TSMCC.2012.2183868

Hsu, D., Latombe, J., and Kurniawati, H. (2006). On the probabilistic

foundations of probabilistic roadmap planning. Int. J. Robot. Res. 25, 627–643.

doi: 10.1177/0278364906067174

Jung, S., and Kim, S. (2007). Hardware implementation of a real-time neural

network controller with a dsp and an fpga for nonlinear systems. IEEE Trans.

Indust. Electr. 54, 265–271. doi: 10.1109/TIE.2006.888791

Khatib, O. (1986). Real-time obstacle avoidance system for manipulators and

mobile robots. Int. J. Robot. Res. 5, 90–98.

Krzysztof, T., and Joanna, R. (2016). Dynamically consistent jacobian inverse

for non-holonomic robotic systems. Nonlinear Dynam. 85, 107–122.

doi: 10.1007/s11071-016-2672-x

Lee, K. K., and Buss, M. (2007). “Obstacle avoidance for redundant robots

using jacobian transpose method,” 2007 IEEE/RSJ International Conference on

Intelligent Robots and Systems (San Diego, CA: IEEE), 3509–3514.

Li, S., Zhang, Y., and Jin, L. (2017). Kinematic control of redundant manipulators

using neural networks. IEEE Trans. Neural Netw. Learn. Syst. 28, 2243–2254.

doi: 10.1109/TNNLS.2016.2574363

Li, Y., Li, S., and Hannaford, B. (2019). A model based recurrent neural network

with randomness for efficient control with applications. IEEE Trans. Indust.

Informat. 15, 2054–2063. doi: 10.1109/TII.2018.2869588

Moosavian, S. A. A., and Papadopoulos, E. (2007). Modified transpose

jacobian control of robotic systems. Automatica 43, 1226–1233.

doi: 10.1016/j.automatica.2006.12.029

Pan, Y., Sun, T., Liu, Y., and Yu, H. (2017). Composite learning from

adaptive backstepping neural network control. Neural Netw. 95, 134–142.

doi: 10.1016/j.neunet.2017.08.005

Pan, Y., Yang, C., Pan, L., and Yu, H. (2018). Integral sliding mode control:

Performance, modification, and improvement. IEEE Trans. Indust. Informat.

14, 3087–3096. doi: 10.1109/TII.2017.2761389

Pan, Y., and Yu, H. (2017). Biomimetic hybrid feedback feedforward neural-

network learning control. IEEE Trans. Neural Netw. Learn. Syst. 28, 1481–1487.

doi: 10.1109/TNNLS.2016.2527501

Slotine, J., and Li, W. (2004). Applied Nonlinear Control. Beijing: China Machine

Press.

Sugie, T., Kito, Y., and Fujimoto, K. (2003). Obstacle avoidance of manipulators

with rate constraints. IEEE Trans. Robot. Automat. 19, 168–174.

doi: 10.1109/TRA.2002.807554

Tsai, C., Lee, J., and Chuang, J. (2001). Path planning of 3-d objects using a

new workspace model. IEEE Trans. Syst. Man. Cybernet. Part C 31, 405–410.

doi: 10.1109/5326.971669

Tsuji, T., Tanaka, Y., Morasso, P., Sanguineti, V., and Kaneko, M. (2002). Bio-

mimetic trajectory generation of robots via artificial potential field with

time base generator. IEEE Trans. Syst. Man. Cybernet. Part C 32, 426–439.

doi: 10.1109/TSMCC.2002.807273

Wei, K., and Ren, B. (2018). A method on dynamic path planning for robotic

manipulator autonomous obstacle avoidance based on an improved rrt

algorithm. Sensors 18, 571–578. doi: 10.3390/s18020571

Wen, G., Ge, S., Tu, F., and Choo, Y. (2017). Artificial potential based adaptive h∞

synchronized tracking control for accommodation vessel. IEEE Trans. Indust.

Elect. 64, 5640–5647. doi: 10.1109/TIE.2017.2677330

Xu, Z., Li, S., Zhou, X., and Cheng, T. (2019a). Dynamic neural networks

based adaptive admittance control for redundant manipulators with model

uncertainties. Neurocomputing 1, 1–22. doi: 10.1016/j.neucom.2019.04.069

Xu, Z., Li, S., Zhou, X., Yan, W., Cheng, T., and Huang, D. (2019b).

Dynamic neural networks based kinematic control for redundant

manipulators with model uncertainties. Neurocomputing 329, 255–266.

doi: 10.1016/j.neucom.2018.11.001

Yang, C., Jiang, Y., He, W., Na, J., Li, Z., and Xu, B. (2018a). Adaptive

parameter estimation and control design for robot manipulators with

finite-time convergence. IEEE Trans. Indust. Electr. 65, 8112–8123.

doi: 10.1109/TIE.2018.2803773

Yang, C., Peng, G., Li, Y., Cui, R., Cheng, L., and Li, Z. (2018b).

Neural networks enhanced adaptive admittance control of optimized

robot-environment interaction. IEEE Trans. Cybern. 49, 2568–2579.

doi: 10.1109/TCYB.2018.2828654

Zhang, Y. (2015). Singularity-conquering tracking control of a class of chaotic

systems using zhang-gradient dynamics. IET Control Theory Appl. 9, 871–881.

doi: 10.1049/iet-cta.2014.0931

Zhang, Y., Chen, S., Li, S., and Zhang, Z. (2018). Adaptive projection

neural network for kinematic control of redundant manipulators with

Frontiers in Neurorobotics | www.frontiersin.org 12 July 2019 | Volume 13 | Article 4771

https://doi.org/10.1016/j.aej.2016.03.042
https://doi.org/10.1109/ROBOT.1993.292186
https://doi.org/10.1016/j.automatica.2009.06.007
https://doi.org/10.1007/978-3-642-23244-2-50
https://doi.org/10.1016/S0098-1354(01)00679-2
https://doi.org/10.1016/j.ins.2018.12.080
https://doi.org/10.1109/TMECH.2018.2810947
https://doi.org/10.1109/70.880813
https://doi.org/10.1109/TSMCC.2012.2183868
https://doi.org/10.1177/0278364906067174
https://doi.org/10.1109/TIE.2006.888791
https://doi.org/10.1007/s11071-016-2672-x
https://doi.org/10.1109/TNNLS.2016.2574363
https://doi.org/10.1109/TII.2018.2869588
https://doi.org/10.1016/j.automatica.2006.12.029
https://doi.org/10.1016/j.neunet.2017.08.005
https://doi.org/10.1109/TII.2017.2761389
https://doi.org/10.1109/TNNLS.2016.2527501
https://doi.org/10.1109/TRA.2002.807554
https://doi.org/10.1109/5326.971669
https://doi.org/10.1109/TSMCC.2002.807273
https://doi.org/10.3390/s18020571
https://doi.org/10.1109/TIE.2017.2677330
https://doi.org/10.1016/j.neucom.2019.04.069
https://doi.org/10.1016/j.neucom.2018.11.001
https://doi.org/10.1109/TIE.2018.2803773
https://doi.org/10.1109/TCYB.2018.2828654
https://doi.org/10.1049/iet-cta.2014.0931
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xu et al. DRNN Based Obstacle Avoidance Control

unknown physical parameters. IEEE Trans. Indust. Electr. 65, 4909–4920.

doi: 10.1109/TIE.2017.2774720

Zhang, Y., Ge, S., and Lee, T. (2004). A unified quadratic-programming-

based dynamical system approach to joint torque optimization of physically

constrained redundant manipulators. IEEE Trans. Syst. Man Cybernet. Part B

34, 2126–2132. doi: 10.1109/TSMCB.2004.830347

Zhang, Y. and Wang, J. (2004). Obstacle avoidance for kinematically

redundant manipulators using a dual neural network. IEEE Trans.

Syst. Man Cybernet. Part B 34, 752–759. doi: 10.1109/TSMCB.2003.8

11519

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Xu, Zhou and Li. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 13 July 2019 | Volume 13 | Article 4772

https://doi.org/10.1109/TIE.2017.2774720
https://doi.org/10.1109/TSMCB.2004.830347
https://doi.org/10.1109/TSMCB.2003.811519
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

ORIGINAL RESEARCH
published: 11 July 2019

doi: 10.3389/fnbot.2019.00052

Frontiers in Neurorobotics | www.frontiersin.org 1 July 2019 | Volume 13 | Article 52

Edited by:

Florian Röhrbein,

Technical University of Munich,

Germany

Reviewed by:

Eiji Uchibe,

Advanced Telecommunications

Research Institute International (ATR),

Japan

Yangwei You,

Institute for Infocomm Research

(A*STAR), Singapore

*Correspondence:

Thomas P. Trappenberg

tt@cs.dal.ca

Received: 27 February 2019

Accepted: 28 June 2019

Published: 11 July 2019

Citation:

Sheikhnezhad Fard F and

Trappenberg TP (2019) A Novel Model

for Arbitration Between Planning and

Habitual Control Systems.

Front. Neurorobot. 13:52.

doi: 10.3389/fnbot.2019.00052

A Novel Model for Arbitration
Between Planning and Habitual
Control Systems
Farzaneh Sheikhnezhad Fard and Thomas P. Trappenberg*

Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada

It is well-established that human decision making and instrumental control uses multiple

systems, some which use habitual action selection and some which require deliberate

planning. Deliberate planning systems use predictions of action-outcomes using an

internal model of the agent’s environment, while habitual action selection systems learn to

automate by repeating previously rewarded actions. Habitual control is computationally

efficient but are not very flexible in changing environments. Conversely, deliberate

planning may be computationally expensive, but flexible in dynamic environments.

This paper proposes a general architecture comprising both control paradigms by

introducing an arbitrator that controls which subsystem is used at any time. This

system is implemented for a target-reaching task with a simulated two-joint robotic arm

that comprises a supervised internal model and deep reinforcement learning. Through

permutation of target-reaching conditions, we demonstrate that the proposed is capable

of rapidly learning kinematics of the system without a priori knowledge, and is robust

to (A) changing environmental reward and kinematics, and (B) occluded vision. The

arbitrator model is compared to exclusive deliberate planning with the internal model and

exclusive habitual control instances of the model. The results show how such a model

can harness the benefits of both systems, using fast decisions in reliable circumstances

while optimizing performance in changing environments. In addition, the proposed model

learns very fast. Finally, the system which includes internal models is able to reach the

target under the visual occlusion, while the pure habitual system is unable to operate

sufficiently under such conditions.

Keywords: machine learning, reinforcement learning, supervised learning, habitual controller, planning, internal

models, decision making

1. INTRODUCTION

Much of the current reinforcement learning (RL) literature implements model-free control. Such a
learning agent learns a value function from interacting with the environment, usually updating
a proposed value function from a temporal difference between the previous expectation and a
new experience (Mnih et al., 2013, 2015). The value function is like a big lookup-table that can
quickly supply evaluations for possible actions and hence provide guidance for actions in a fast
and somewhat automated way. Such a decision system can be characterized as habitual. While
habitual action selection takes time to learn and requires that similar previous situations have
been encountered sufficiently, the advantage is that decisions and corresponding actions can be
generated in a timely manner.

73

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2019.00052
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2019.00052&domain=pdf&date_stamp=2019-07-11
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tt@cs.dal.ca
https://doi.org/10.3389/fnbot.2019.00052
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00052/full
http://loop.frontiersin.org/people/595564/overview
http://loop.frontiersin.org/people/11686/overview

Sheikhnezhad Fard and Trappenberg Arbitration Between Planning and Habitual Control

In contrast, a system that has some internal models of the
environment can be used to derive a value function on demand
for a specific situation. A prime example is a Markov decision
problem where the reward function and transition function of
the agent are known so that the Bellman equations can be
used to calculate the optimal value function for every state
action pair without the need to explore the environment. Of
course, this system requires learning of the internal models,
which requires previous interactions with the environment. The
learning of internal models can be achieved through some form
of supervised learning. Once the models have been learned, the
model-based system is able to calculate a value function on the fly.
This resembles some form of internal deliberation. The advantage
of such a system is its flexibility to new situations. However,
deliberations take time so that a habitual system is preferable
when it comes to situations that benefit from a higher degree
of automation.

In this paper, we introduce a learning system that we call
the Arbitrated Predictive Actor-Critic (APAC) that combines
a habitual reinforcement learning system with a supervised
learning system of internal models. Most importantly, we
introduce an arbitration system that mediates between their
usage. We specifically discuss a situation in which both systems
alone can solve an exemplary task so that we can study the
consequences of their direct interactions in relation to their
exclusive use. We show that this system is responsive to changes
in the environment and that it can learn the reward function very
fast. Our results demonstrate how the learning paradigm tend to
rely on habits after learning the reward function. Our results are
in line with evidence of human behavior mentioned above.

2. THEORETICAL PREMISES

There is a lot of behavioral and neurophysicological evidence
for different types of control systems in the brain that are
usually termed habitual or model-free and goal-directed or
model-based (Balleine and Dickinson, 1998; Gläscher et al.,
2010; Daw et al., 2011). In particular, one control system
associated with the prefrontal cortex (Miller and Cohen, 2001)
predicts action-outcomes using an internal model of the agent’s
environment and hence can be associated with a control system
that uses deliberative planning. We will use in this paper the
term deliberative planning instead of goal directed model-based
control tominimize the possible confusion between themodels of
the environment from the models of the value function. Another
control pathway in the brain is associated with the dorsolateral
basal ganglia (Houk and Barto, 1995) learns to repeat previously
rewarded actions that resemble a habitual system.

Some research showed that the two different control systems
are used in different situations and can be simultaneously active
(Poldrack et al., 2001; Lengyel and Dayan, 2008). For example, in
the brain, the cortical system represents a generalized mapping
of input distributions while hippocampal learning is an instance-
based system (Lengyel and Dayan, 2008). Moreover, when the
model of the environment is known and there is sufficient time
to plan, the best strategy is deliberate planning (Daw et al., 2005),

but when the decision should be taken very fast the habitual
controller is used (Blundell et al., 2016). Other work shows that
cooperation and competition between different control systems
in the brain happens especially when outcomes of each control
system disagree, that is, if a deliberated planning task does not
align with a habitual skill (Daw et al., 2005, 2011; Daw and
O’Doherty, 2013; Lee et al., 2014).

Moreover, feedback to learning systems can differ in different
situations and can be provided from different modalities
such as vision or auditory input. In machine learning, it is
common to distinguish different learning paradigms. One is
supervised learning where a teacher gives feedback from the
knowledge of a desired behavior. The system can be trained
by comparing the actual output of a leaner to the desired
output provided by the teacher. The teacher is basically a critic
who can quantify an objective function that a leaner needs to
optimize. Another slightly more general learning paradigm is
reinforcement learning where the environment only provides
some indication of value, often only after a series of actions
have been chosen by a learning agent. Reinforcement learning
is thus more general in that it can be applied to a lot of
more typical learning situations of an agent in an environment.
The subsystems in our model align in our implementation
with a supervised paradigm to learn internal models and a
reinforcement learning paradigm to learn habitual control.

Habitual reinforcement learning which is based on TD
learning (Sutton, 1985) has been very successful in explaining
experimental evidence from the animal learning literature and
dopamine-based learning in the brain (Barto, 1995; Schultz
et al., 1997). Such models which have originally been formulated
with tubular methods based on discrete state action spaces are
now commonly combined with neural networks as a function
approximator that broadens the range of practical applications
to be solved using RL, especially for control problems with
continuous states/actions spaces (Waltz and Fu, 1965; Barto
et al., 1990). Barto, Sutton and Anderson introduced the Actor-
Critic architecture that was implemented by neural networks
(Barto et al., 1983). Later, Barto (1995) represented an adaptive
critic which has similar behavior to the dopamine neurons
projection to the Striatum and frontal cortex. The adaptive
critic uses the internal sensory information to learn an effective
reinforcement signal.

It has long been hypothesized that the brain builds an internal
representation of the world and its body (Miall et al., 1993;
Miall and Wolpert, 1996; Wolpert et al., 1998; Kawato et al.,
2003), and evidence shows that “forward” and “inverse models”
exist in the brain (Miall et al., 1993; Kawato et al., 2003). The
internal model is used to perform in the environment and
learn a new task. Flanagan and Wing (1997) showed that the
internal model can predict the load force and the kinematics of
a hand movement that depends on the load. Moreover, when
learning how to use a new tool, humans make a transient
change in the internal model of the arm as well as making an
internal model of the tool (Kluzik et al., 2008). Furthermore,
imitation experiments show that a direct mapping develops
between observation and the internal model (Iacoboni et al.,
1999). Another advantage of having an internal representation

Frontiers in Neurorobotics | www.frontiersin.org 2 July 2019 | Volume 13 | Article 5274

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Sheikhnezhad Fard and Trappenberg Arbitration Between Planning and Habitual Control

FIGURE 1 | Overview of the Arbitrated Predictive Actor-Critic (APAC) model.

is obtaining a reliable source of information for the agent
to perform accurately even if there are no other sources of
information (e.g., visual information) available (Wolpert et al.,
1998; Kawato et al., 2003).

In this paper, we propose a model to study the cooperation
and competition between a habitual and planning-based
control components with an arbitrator component. The general
architecture of the proposed Arbitrated Predictive Actor-Critic
(APAC) is shown in Figure 1. In this model, each control
paradigm implies a specific type of teaching feedback. The
deliberative planning controller incorporates internal models
that are usually trained with supervised errors so that we
consider here an explicit state predictions error. In contrast,
the habitual action selection system is a common deep
reinforcement learner which learns from reward prediction
errors. The new component here is an arbitrator that mediates
between these systems that can select the command given
to the controlled system, the agent or in the plant in the
common language of control theory. Of course, it is possible
that both decision systems are trained with a combination
of supervised and reinforcement learning, but this is not
the crucial point in this paper. The model is designed to
study how a combined control system behaves in different
environmental situations. In the following section we apply
this general model to a specific motor control task in which
both systems can be trained on the same feedback signal,
but in which the execution would follow a habitual or
planning implementation.

3. APAC FOR TARGET REACHING

In this section, we apply the APAC model to the motor
control task of target reaching. We choose this task as it is a
good example of a minimal control task while being complex
enough to highlight the advantages and disadvantages of the two
principle control architectures discussed in this paper. Target
reaching lives in a continuous state and action space with 6
degrees of freedom when considering a shoulder and elbow
yaw, pitch and roll, although we simplify this here even more
to a 2-dimensional system with only one angle for the elbow
and one the shoulder. Learning the reaching task in this 2D
environment is learning a non-linear mapping function that

FIGURE 2 | The robotic arm set up in the environment. The solid black line

indicates the robot arm. Blue and red circles display the end-effector and the

target locations respectively. Colored contours illustrates reward function.

Black circle shows the target zone. The dashed green line represents the

internal model of the arm at very early stages of learning.

maps joint angles of the robot arm onto a location of the
end-effector in the environment. An example image of our
simulated robot arm is shown in Figure 2 with the black line.
The contour plot shows the distance to the target while the
dotted green line shows an internal model of the robot arm early
in learning.

The refined control architecture of our APAC model for the
reaching tasks is shown in Figure 3. For this application, the
state is defined as the position of the elbow, the end-effector,
and the target. The planning component is now implemented
as a combination of deep forward and inverse models, while the
habitual system is implemented as a deep actor-critic model. An
integrator is used to derive the training signals that are used
for the feedback. In the following, we specify each subsystem
in detail.

3.1. Habit Learning Control System
The habitual controller is implemented as a deep deterministic
policy gradient model (DDPG) following the work of
Lillicrap et al. (2015). The arm position is given by the
vector X with two vector components, the position of the
end-effector Xend and the position of the elbow Xelbow.
The arm position together with the target location Xtarget

defines the current state st = [Xend,Xelbow,Xtarget] of
the agent.

The critic Q(st , at; θ
Q) is implemented as a deep neural

network, where st is the current state at time t, at is the
action taken at time t, and θQ are the parameters of the
critic network. The goal of the critic is to approximate the
accumulation of the environmental reward (sometimes called
return) that can be expected from a certain state action

Frontiers in Neurorobotics | www.frontiersin.org 3 July 2019 | Volume 13 | Article 5275

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Sheikhnezhad Fard and Trappenberg Arbitration Between Planning and Habitual Control

FIGURE 3 | Arbitrated predictive actor critic: The actor receives the current state defined as the current location of the robot arm and the target location, and provides

an action that is the change in angles for shoulder and elbow. The inverse model takes the current state and predicts another action. The output of the inverse model

and the actor goes to the arbitrator. Then the arbitrator selects one of these actions. The output of the arbitrator along with the current state is the input to the critic

from which the critic predicts a reward. The forward model receives the selected action and the current position of the agent and predicts the future state of the agent.

The agent takes the selected actions and transfers to the next state. The predicted future state from the forward model is integrated with the estimation of the actual

state of the plant after taking the action and obtains a new current state for the system.

combination. The critic is learned through temporal difference
(TD) learning (Sutton, 1988; Schultz et al., 1997).

Q(st , at; θ
Q)← Q(st , at; θ

Q)+ l1δ, (1)

δ = rt + γ max
a′

Q
′(st+1, a

′; θQ)

︸ ︷︷ ︸

estimated reward

−Q(st , at; θ
Q)

︸ ︷︷ ︸

actual reward

, (2)

where l1 is the learning rate of the critic network, rt is the actual
immediate reward received from the environment at time t, γ is
a discount factor, and Q′ represents the estimation of the value
of a state-action pair. As in DDPG, we use the main network for
training but we use a target network for predicting, which is a less
frequently updated copy of the main network to avoid oscillation.
More precisely, DDPG actually has two target networks, one for
the critic network and one for the actor network. We follow
directly the smooth update for the target networks as in DDPG
(Lillicrap et al., 2015),

θ ′ = θ ′ × (1− τ)+ θ × τ , (3)

with change parameter τ ≪ 1. The parameters θ ′ represents the
target network parameters, and θ is the parameter of the main
network, either the actor or the critic.

The computation in Equation (2) is done in the TD
component. To train the critic using the TD rule, the error needs
to be back-propagated through the critic. The error between
estimated value and the actual value is used to compute the loss
function of the critic (Equation 4),

LQ = 1/N
∑

(δ)2. (4)

DDPG takes advantage of the experience memory replay which
is a memory to store and reuse past experiences. The memory
replay is in form of R(st , at , rt , st+1,Tt), where st is the current
state at time t, at is the action taken at time t, st+1 is the next
state, rt is the reward received at time t, and Tt indicates whether
the state at time t + 1 is a terminal or not. The replay memory is
a queue-like buffer with a finite size. The agent will forget older
experiences and it will update its parameters based on its recent
experiences. At each time step, a random batch of N samples is
selected from the experience memory replay, and this batch is
used to train both the actor and the critic.

The actor (π) receives the current state (st) and predicts future
actions to be taken (at).

π(st; θ
π) = at , (5)

where at = [α1,β1] and α1 and β1 are motor commands sent to
the shoulder and elbow, respectively. The actor is implemented
as a deep network where θπ indicates the parameter of the actor
network and is trained using the deterministic policy gradient
method (Silver et al., 2014). Note that the main actor network
is used for training, however, the target network of the actor is
used for the action prediction.

The changes of the weights of the actor corresponded to the
changes in expected reward with respect to the actor’s parameters,

θπ
t ← θπ

t + l2
∂Q(st , at; θ

Q)

∂π(st; θ
π
t)

∂π(st; θ
π
t)

∂θπ
t

, (6)

where l2 here is the learning rate of the actor. The plant, which
is the simulated arm in our example, takes the action and

Frontiers in Neurorobotics | www.frontiersin.org 4 July 2019 | Volume 13 | Article 5276

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Sheikhnezhad Fard and Trappenberg Arbitration Between Planning and Habitual Control

transitions to its new position [Zend
t+1,Z

elbow
t+1], which forms the

new state st+1 when combined with the target location. Like
DDPG we apply noise to the environment using an Ornstein-
Uhlenbeck process (Uhlenbeck and Ornstein, 1930) that results
in new samples.

3.2. Internal Models for Planning
For the planning controller, we need to learn the transition
function of the plant to build the model of the environment. Here
we use supervised learning to learn the internal representation
of the agent. More specifically, we used a supervised learning
controller that uses past experiences to generalize an inverse
model of the arm and a forward model of the arm. The training
examples used in our implementation are obtained from the same
experience replay memory that is used for the habitual controller.

A combination of a forward and an inverse model is used
for planning the next actions. The forward model fF is a
neural network that receives the current position of the arm
[Xend

t ,Xelbow
t] and the action at and predicts the future position

of the arm [X′endt+1 ,X
′elbow
t+1]. We can train the network from the

discrepancy between the predicted future position [Zend
t+1,Z

ellbow
t+1]

and the actual position from visual feedback. For training we use
the loss function

LfF =
1

N

∑

t

([X′endt+1 ,X
′ellbow
t+1]− [Zend

t+1,Z
ellbow
t+1])2, (7)

where N is the number of selected samples in a batch of
experiences stored in the replay memory. The size of the batch
to train the forward model and the inverse model is the same as
the one used for the actor and the critic.

An inverse model is another deep network, fI(st; θ
fI). The

aim of the inverse model is to provide a proper action to reach
the target by minimizing the error between predicted action (a′t)
with the actual action taken (at) that transfers the agent from the
current position to its next position. This network is then trained
on the loss function:

LfI =
1

N

∑

t

(at − a′t)
2. (8)

The aim of having the forward model is learning to predict
future positions of the agent by taking specific actions. Such a
model enables the agent to perform the task even with occluded
vision. When the inverse model has been trained well, it can
be used to produce a suitable action to transfer the agent
from its current state to the target location by replacing Xtarget

with Zend
t . Hence, the inverse model can be trained with the

input [Xend
t−1,X

elbow
t−1 ,Zend

t] and predicting the proper actions on

[Xend
t−1,X

elbow
t−1 ,Xtarget]. Note that [Xend

t−1,X
elbow
t−1] are part of states

st in the replay memory while Zend
t is taken from st+1 in the

replay memory.
Another component of the overall system is “the integrator”

module. In general, the integrator could be a Bayes filter such
as a Kalman filter which estimates the best estimated position
from the available information that combines an internal model
prediction with external sensory feedback. Since we use a reliable

visual feedback in our case study we simplify this to an integrator
that passes the actual location of the plant in case visual
information is available. With occluded vision, the prediction of
the forward model is used as the estimated actual position of
the agent. In our previous work (Fard et al., 2015), we showed
how to implement a Kalman Filter with Dynamic Neural Fields
(Amari, 1977). The integrator is the explicit critic in this example,
which provides the state prediction error for the forward model
(see Figure 1).

A training session of the system includes an infant phase that
uses “motor babbling” (Iverson and Fagan, 2004; von Hofsten,
2004; Demiris and Dearden, 2005; Iverson et al., 2007; Caligiore
et al., 2008). During the babbling phase, the plant produces
random movements with random actions to produce actual
samples to be stored in the experience memory. In the babbling
phase, the actual position of the arm after taking an action is
considered the target location. Therefore, all samples in this case
reach the terminal state and will gain the maximum reward value.
The babbling phase is used to provide valid examples to train both
control systems.

3.3. Arbitration Between Habitual and
Planning Controllers
A novel component of APAC is an arbitrator. The arbitrator
receives action predictions from the deliberative planning
module (the inverse model), and the habitual action selection
module (the actor), and makes the final decision of which action
to use. This selected action is transferred to the actuators of
the plant to bring the agent into its new position resulting
in a new state when combined with the target location. The
arbitrator’s decision is also fed into the forward model and the
critic for training purposes. As inDDPG, noise from anOrnstein-
Uhlenbeck process is added to both proposal actions provided by
the inverse model and the actor.

In our implementation of the APAC, we consider discrete
action steps so that both controllers (habitual and planning)
create actions at each step. However, it is known that the habitual
controller is faster than deliberative planning. Therefore, to imply
the time constraint we set the arbitrator to give priority to the
habitual controller. Moreover, the arbitrator is set to always take
the action that is provided by the habitual system for the first two
steps of every episode. However, from the third step on, the actor’s
prediction is taken if the habitual controller is reliable, meaning
that the reward prediction error for the last experience is smaller
than a threshold.We use abs(δ) < 1 in the following experiments.
Otherwise, the action from the inverse model is selected.

The implementation of the arbitrator here is somewhat
a minimal model suitable for our experimental setting and
to highlight the consequences of such arbitration. Of course,
it is possible to implement a more dynamic realization of
such an arbitrator. For example, the threshold could itself be
modulated according to the tasks and in this way produces a
more rich speed-accuracy trade-off (Satel et al., 2005). Indeed,
such modeling will open the possibility to discuss behavioral
consequences with different system settings a ultimately compare
them to variations in populations or psychiatric disorders such

Frontiers in Neurorobotics | www.frontiersin.org 5 July 2019 | Volume 13 | Article 5277

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Sheikhnezhad Fard and Trappenberg Arbitration Between Planning and Habitual Control

as eduction and eating disorders (Huys et al., 2016). However,
the simple implementation discussed in this paper captures the
minimal assumptions as outlined above and is sufficient for the
following simulations.

3.4. Experimental Conditions and
Environment
To test the APAC model on a simulated robot arm with a target
reaching task (Figure 2), we simulated a two-joint robotic arm
whose range of motion at each joint was constrained to 180
degrees. The arm’s motion was limited to a 2D plane of width
30 and height 30, upon which the arm’s “shoulder” was fixed in
the center (15,15). The initial length segment from the shoulder
to the elbow was set to l1 = 5, and the initial length of the lower
segment (“hand” to “elbow”) is l2 = 8.

All experiments described herein had an episodic trial
structure. At the beginning, the arm’s position was set to zero-
degree angle at the shoulder and 180-degree angle at the elbow.
Time was discretized in the simulations, and the learning agent
was given only 30 action-steps per trial to achieve the designated
goal. We define a “target zone” as a circle centered at the target
location with a radius rtarget = 0.5. The target is defined as
“reached” once the robot arm is inside the target zone. If the goal
was not reached within 30 time-steps, the trial was aborted and a
new trial was started.

Importantly, the reward function is defined as the negative
Euclidean distance between the end-effector and the center of the
target area. This is for this example tasks the same information
as is given to the supervised learner. This was deliberatively done
so that the different systems are compared on the same feedback
situation. It is possible to learn this task from much simpler
feedback such as some reward if the target area is reached vs. no
reward otherwise, although this would then also need more time
to train the habitual system. The point of our study here is rather
the direct comparison of decision components based on a value
lookup vs. learning internal models.

Within this environment we define several conditions that
defined the variety of the different target-reaching tasks studied
here. These conditions include the target position (static target
vs. changing target at each episode), kinematics (arm dimensions
as static kinematics vs. changing kinematics), and vision
(occluded vision vs. perfect vision). We tested all combinations
of these factors.

Each experiment consisted of 1,000 episodes of maximal 30
action steps each. In the static target condition, the target is
initialized randomly and stays unchanged for all 1,000 episodes.
For the changing target condition, the target is located at a
random location at the beginning of every episode. As discussed
above, each episode was terminated when either (A) the target
was reached, or (B) 30 time steps had elapsed. Targets were
only placed within a reachable distance for the arm. The arm
dimensions were kept fixed in the case of static kinematics;
however, the length of both the upper and lower arm segments
were increased by 0.001 at each time step for the changing
kinematics condition. These changes were only started after the
100th episode of target reaching to provide some time for basic

training. As already mentioned, an environmental noise was
included in all experiments. In the occluded vision condition, the
location of the arm and the target was unavailable for the agent
during the movement. This task is also known as memory guided
target reaching (Westwood et al., 2003; Heath et al., 2004). We
repeated all static/changing kinematics and static/changing target
conditions with our proposed models for the reaching-target task
in the occluded vision condition. To examined the generalization
of the models under each condition, we trained each model when
targets are located only in a specific area that represents 2/3 of
whole reaching area, and tested with targets located in the other
part of the environment, which is the rest 1/3 of the reaching area.

4. RESULTS

We considered three versions of APAC that represent (a)
exclusive habits, (b) exclusive deliberate planning, and (c)
arbitration between habit and planning. Exclusive habit is when
the arbitrator is set to always pick the action from the habitual
system. In this case, the APAC behaves exactly like DDPG. If
the arbitrator always selects the action from the inverse model
for each step, then the APAC becomes an exclusive deliberate
planning controller which we call supervised predictive actor-
critic (SPAC) (Fard et al., 2017). The third model is when the
APAC is able to arbitrate between the actions provided by the
inverse model and the actor.

For each condition, we trained 50 independent instances of
each model for a total of 1,000 episodes. At the end of the
1000th episode, all network parameters were frozen and no more
training was applied. Subsequently, each of the independent
model instances performed 100 target reaching episodes under
the respective training conditions. In the case of the occluded
vision, sensory input (i.e., visual target position) was initially
presented at time step 0, and subsequently rendered unavailable.
Since DDPG has no internal model and requires visual input
throughout the task, we only compare APAC with SPAC in
the experiments with occluded vision. All experiments were
implemented and tested in Python (3.5) using the TensorFlow
(1.3) package (Abadi et al., 2016) on an NVIDIA GeForce GTX
960 graphical processing unit.

Figure 4 illustrate the percentage of trials that reach the target
within 30 action steps during training under different conditions
for 1,000 episodes each. The pure deliberate planning model
SPAC reaches almost near perfect performance very fast after 100
episodes. Furthermore, SPAC’s performance is very robust under
different conditions and neither changes in reward function
nor in kinematics effects the performance of SPAC very much.
DDPG learns to reach almost 100% of the targets only under
static target/static kinematics condition. Performance of DDPG
drops slightly under changing kinematics compared to static
kinematics; however, its performance drops dramatically (about
20%) under changing target conditions. This is of course expected
as habits become invalid solutions under changing environments.
Our point here is that APAC can reach almost all of the targets
both under static and changing targets as good as SPAC, although
it tends to use more habits than planning after a few trials of

Frontiers in Neurorobotics | www.frontiersin.org 6 July 2019 | Volume 13 | Article 5278

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Sheikhnezhad Fard and Trappenberg Arbitration Between Planning and Habitual Control

FIGURE 4 | Comparison of the proportion of trials in which the target was successfully reached during training between DDPG, SPAC, and APAC. (Top) highlights

differences in each respective model’s performance across the Target/Kinematic experimental combinations. APAC that arbitrates between planning and habits can

resist to changes in the target position and kinematic changes, while DDPG is not flexible under either changing condition. (Bottom) plots highlight differences

between models within each experimental combination of target position and kinematics. Performance of DDPG (pure habits) drops when target location is changing,

while this has no effect on SPAC (exclusive planning) and APAC (arbitrated).

FIGURE 5 | Success rate to reach targets during testing by three models

under different conditions, where “ss,” “sc,” “cs,” and “cc” stand for static

target/static kinematics, static target/changing kinematics, changing

target/static kinematics, and changing target/ changing kinematics,

respectively. The plot also displays the average number of steps to reach 100

targets after training.

learning(see Figure 6). The speed of learning in APAC is also
very high and comparable to SPAC. In this sense it combines the
benefits of DDPG and SPAC.

The above curves give an example of behavior of the
models during one learning trials. To study how these results
generalize we tested the performance of all three models after
learning over 50 different learning trials with random initial
conditions for the networks. For the static target location
we tested on the target location, that was randomly chosen

for each learning trial. However, with the changing target
location we decided to cover the possible target locations
more systematically and set target points on a regular grid
in angle space. Figure 5 displays average success rate over
the 50 learning trials to reach these targets. All three models
under the static target/static kinematics condition reach 100%
of the targets. DDPG and APAC have slightly less success
under static target/changing kinematics, while SPAC stays flexible
under this condition. The major difference between DDPG
and APAC become clear under changing target conditions,
where DDPG’s performance drops dramatically, while APAC
obtains very good performance. SPAC is still very flexible to
reach targets under changing target conditions. Overall it is
remarkable how close APAC stays to the overall performance
of SPAC in a situation where deliberative planning is the
better choice.

The overall success rate does show the entire range of the
solutions. We thus included the individual performances in
terms of the average number of steps to reach the target. As
can be seen, APAC needs to take sometimes more corrective
steps to reach the target while an exclusive planning system
can optimize the number of steps. This is interesting as this
allows for different strategies in solving the task, that of relying
somewhat on habitual control when the cost of the movement
initiation might be small vs. more deliberate planning when the
number of action steps might matter. This can explain a form of
speed-accuracy trade-off.

Frontiers in Neurorobotics | www.frontiersin.org 7 July 2019 | Volume 13 | Article 5279

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Sheikhnezhad Fard and Trappenberg Arbitration Between Planning and Habitual Control

FIGURE 6 | Arbitration between habitual and planning by the APAC: For each condition, the blue line indicates the average number of actions which are selected by

the habitual controller (i.e., the actor), while the red line demonstrates the average number of actions selected by the planning controller (i.e., inverse model). Results

illustrate that planning controller is used early in the training, while later agent tends to use the habits more.

FIGURE 7 | (Top) Average action steps to complete the reaching task by each model under different conditions. (Bottom) Average time steps to complete the

reaching task at each episode under different conditions when a three-times higher cost for a planning control compared to the habitual control is taken into account.

Figure 6 illustrates how APAC gradually shifts from a
planning to a habitual control approach with increasing
experience. After around 300 episode, more than 80% of APAC
actions were taken from the habitual controller.Of course, SPAC
uses planning control throughout the entirety of the task, so no
commensurate figure was generated for it.

Since a habitual system should be faster than deliberate
planning, this figure also illustrates that APACwould be less time-
consuming than the SPAC at the same task and under the same
condition. To visualize average time consumption by each model
under different conditions, we assumed that each action selected
by the deliberative planning takes three times longer than an
action selected by the habitual controller. The number here is
arbitrary and only chosen visualize the general effect. The top
row of plots in Figure 7 show the average number of action steps

that each of the three models need to complete the task at each
episode under different conditions. These plots demonstrate that
the number of steps are almost the same under static target/static
kinematics conditions. Under changing target conditions DDPG
needs more steps to complete the task than APAC and SPAC.
However, when including a higher cost for deliberative planning
in the plots shown in the bottom row of the Figure 7, the picture
for the average number of time that is needed to complete the
task changes. In this case, DDPG needs shorter time under static
target conditions. However, under changing target conditions,
APAC completes the task of reaching targets faster. DDPG takes
longer to finish the task as it needs more corrective actions.

Figure 8 shows all 50 runs to reach 100 targets of a reaching
test under changing target conditions, with (bottom row) and
without (top row) changing kinematics, for all three models.

Frontiers in Neurorobotics | www.frontiersin.org 8 July 2019 | Volume 13 | Article 5280

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Sheikhnezhad Fard and Trappenberg Arbitration Between Planning and Habitual Control

FIGURE 8 | Reaching examples of three models under changing target conditions. Blue lines show position of the end-effector at each time step toward the target,

while red dots are target locations during the testing phase.

The plots illustrate that DDPG has some difficulty reaching the
locations at the edges of the possible target area due to non-
linearity of the mapping between angles and locations. SPAC can
learn the mapping functionmuch better, and the quality of APAC
is similar to SPAC. Interestingly, although APAC tends to use
more habits than deliberate planning, this model can still reach
many more targets than DDPG, almost as good as SPAC.

We also tested a form of generalization of each model where
a whole area of the target zone was not seen during training.
This is a case of extrapolation compared to the interpolation trials
in the previous generalization experiments. More specifically, we
trained each model to reach the target located at a specific region
in the environment and we tested each model to reach targets
that are located on the unseen area of the environment (see the
left most plot in the Figure 9). The same distribution of target
locations has been used here and only those that are located in
the blue area are set as targets for this experiments. Therefore,
there are about 39 targets under static kinematics conditions
and 42 targets under changing kinematics conditions (because
of changing kinematics more targets will locate in the testing
area). The results show that under static target training, neither
model can reach even half of the targets. Their performance is
worse under static target and changing kinematics. However,
under changing target conditions, all models have obtained
a good generalization but they need to take more than one

step to reach any target. SPAC has again the best performance
among other models under all conditions, while DDPG has the
worst performance compared to other two models. These results
indicate that learning with a static target hinders generalization
as the learner overfits this specific target location.

Finally, we want to show results with occluded vision. Since
the habitual controller (DDPG) requires sensory input at all
times, only the SPAC and APAC models were compared under
this condition. In these experiments, the arm moves toward the
target when the target location is only visible at the first step.
When the forward model indicates that the agent has reached
the target it stops and the actual distance from the agent (here
the arm) is measured. Results of these occluded vision test are
summarized in Figure 10 under changing target conditions, since
the performance of bothmodels under static target conditions are
near perfect.

The target zone is marked by the red line in each plot, while
the average distance from the agent to the target location is
drawn as a black line. The blue area shows the range of the
distances that the arm has experienced during the occluded
trials when the forward model thinks that it has reached
the target. SPAC shows better performance under occluded
vision compared to APAC under all conditions. The average
actual distance of the end-effector to the target location under
changing target/ static kinematic with SPAC is only about a

Frontiers in Neurorobotics | www.frontiersin.org 9 July 2019 | Volume 13 | Article 5281

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Sheikhnezhad Fard and Trappenberg Arbitration Between Planning and Habitual Control

FIGURE 9 | (Left) The reaching area for arm under static kinematics conditions. The red area is used for training while the blue region is for testing. Around edges are

more colored since these points can be reached with many more sets of angles. (Right) Performance of each model is shown under different conditions to reach

about 40 targets located in the blue region. All models obtain a good generalization under changing target conditions.

FIGURE 10 | The actual distance from the agent to the target location under changing target conditions are shown for SPAC and APAC to reach 100 targets after

training over 50 runs. The black line shows the average distance to the target. The area between minimum distance to the maximum distance is colored in blue. The

red line indicates the target zone. In general, SPAC performs better under the dark compared to APAC.

distance of 0.4, which is less than the target zone radius.
However, the APAC model under the same conditions stays
about a distance of 1 away from the target. Under changing
target/changing kinematics, this average actual distance from
end-effector to the target is around 0.7 for SPAC and about
1.5 for APAC. It thus seems that any form of habit should be
suppressed in such situations, which could be achieved by a more
advanced arbitrator.

5. CONCLUSION

This paper is about the study of a hybrid system with deliberate
planning system and habitual control. Habitual control will, of
course, be very good after long training in static environments.
It was hence important to study the model in changing
environments. We investigated the behavior of our proposed
model (APAC) under changing target conditions (to manipulate
the environmental reward function), changing kinematics of

the agent (to manipulate the learned transitional model), and
with and without vision. We also tested the model under
various generalization conditions to see how good they can
interpolate and extrapolate. The main results are classified
as below:

Adaptive to changes: Results show significant improvement
in performance when planning is available compared to the
pure habitual system under the conditions when of changing

environments that includes changing reward conditions and
changing kinematics of the agent. In comparison, SPAC and

APAC are flexible under these changes. These experiment shows

that having an internal model is a key to robustness on
changing environment.

Moving from planning to habits: By considering that
planning is costly, having another control system that is able to
provide less costly solutions can be useful. In this paper, there
is no inherent time constraint or computation time difference
between the habitual and planning controller. However, if we

Frontiers in Neurorobotics | www.frontiersin.org 10 July 2019 | Volume 13 | Article 5282

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Sheikhnezhad Fard and Trappenberg Arbitration Between Planning and Habitual Control

take this time constraint into account, the APAC is a better
model than pure planning (SPAC). Indeed, the overall number of
actions taken based on a planned action takes less time than the
arbitratedmodel than the number of planned actions taken by the
non-arbitrated model when considering some cost of planning.

Reaching under occluded vision: Since DDPG has no
internal model, it can not use any sort of planning to move
under occlusion. However, systems like SPAC and APAC build
an internal model of the environment that enables them to
anticipate and plan a target even when there is no visual
information available. Results show that SPAC can perform better
in the dark. This is a good example to show that a more
sophisticated arbitrator could take different circumstances into
account. For occluded vision, such an arbitrator should suppress
habitual actions.

Our application example focused on the implementation of
the habitual system as an actor-critic for reinforcement learning
and a planning system with a forward and inverse model
using supervised learning. There have been previous examples
of combining both, some form of supervised learning with
RL systems and the use of the internal model. In particular,
Dyna-Q (Sutton, 1991) and supervised actor-critic (Rosenstein
and Barto, 2002; Barto and Rosenstein, 2004) are examples
of models that bring the capacity of planning into a model-
free reinforcement learning space. For example, the supervised
actor-critic (Rosenstein and Barto, 2002; Barto and Rosenstein,
2004) is able to tune the actor manually and very fast when
it is needed. This solution is beneficial when dynamics of the
system changes dramatically or a new policy is needed to be
learned in a very short time. These authors used a gain scheduler
that weights the control signal provided by the actor from the
reinforcement learner and the supervised actor. In contrast to
supervised actor-critic, our proposedmodel autonomously learns
the internal model and arbitrates between the two controllers
automatically and not manually. The intention of our model
is to study the interaction of habitual and planning systems
in form of an arbitrator and ultimately to understanding
human behavior.

Sutton proposed Dyna-Q that is an integrated model for
learning and planning (Sutton, 1991). With respect to our
model, Dyna-Q is also a blend of model-free and model-
based reinforcement learning algorithms. Dyna-Q can build a
transition function and the reward function by hallucinating
random samples. Therefore, although it uses a model-free
paradigm at the beginning it becomes a model-based solution by
learning the model of the world using the hallucination. In our
model, the internal model is used to predict the future state of
the agent unlike Dyna-Q that uses the model to train the critic
and anticipate the future reward. Moreover, Dyna-Q starts from
model-free controller and becomes a model-based controller.
Hence, while Dyna-Q has focused on the utilization of internal
models to learn a reinforcement controller, our model and study
here is concerned with the arbitration of two control systems.
However, since APAC tend to select actions from the planning
controller that it learns very fast, it provides more accurate

samples in the experience replay memory. Therefore, similar to
the Dyna-Q, the habitual system takes advantage of learning from
more valuable samples that lead the habitual controller to a better
performance compared to the time that it is trained stand alone
(in pure habitual paradigm).

Another interesting approach by Uchibe and Doya (2005)
explores a collection of different controllers. Their work takes
also different times constrains into account. In contrast to
our model, the controllers are combined probabilistically in
a more collaborative way while our approach focuses more
specifically on understanding the competitive decision making
of a deliberative vs. habitual systems. The experiments are also
somewhat different. Even though the barriers in their experiment
are static, it seems that their habitual controller can not learn
this task. In our experiment we made sure that the experimental
task is learnable by both controllers in the static case. In
addition we study the performance with changing kinematics and
changing targets.

Not only have human decision-making studies supported
the notion that both habitual and planning controls are used
during decision-making (Daw et al., 2011; O’Doherty et al.,
2015), there is evidence that arbitration may be a dynamic
process involving specific brain regions Lee et al. (2014). Our
APAC model results suggest that such an arbitration strategy,
wherein the planning paradigm is used until the habitual system’s
predictions become reliable can result in performance that
is non-inferior to exclusive planning control in most cases.
Thus, our APAC model supports (A) the importance and
value of implementing predominantly planning control early
in behavioral learning and (B) the diminishing importance
of planning control with greater experience in a relatively
static environment.

DATA AVAILABILITY

All datasets generated for this study are included in the
manuscript and/or the Supplementary Files.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

ACKNOWLEDGMENTS

The authors would like to thank Abraham Nunes for valuable
input and acknowledge funding from Natural Science and
Engineering Research Council of Canada (NSERC, Grant
number 249885) and NS graduate scholarship.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnbot.
2019.00052/full#supplementary-material

Frontiers in Neurorobotics | www.frontiersin.org 11 July 2019 | Volume 13 | Article 5283

https://www.frontiersin.org/articles/10.3389/fnbot.2019.00052/full#supplementary-material
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Sheikhnezhad Fard and Trappenberg Arbitration Between Planning and Habitual Control

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al.

(2016). Tensorflow: large-scale machine learning on heterogeneous distributed

systems. arXiv [Preprint]. arXiv:1603.04467.

Amari, S.-I. (1977). Dynamics of pattern formation in lateral-inhibition type neural

fields. Biol. Cybern. 27, 77–87. doi: 10.1007/BF00337259

Balleine, B. W., and Dickinson, A. (1998). Goal-directed instrumental

action: contingency and incentive learning and their cortical substrates.

Neuropharmacology 37, 407–419. doi: 10.1016/S0028-3908(98)00033-1

Barto, A. G. (1995). Adaptive Critics and the Basal Ganglia. Computer Science

Department Faculty Publication Series. 7. Amherst, MA: University of

Massachusetts. Retrieved from: https://scholarworks.umass.edu/cs_faculty_

pubs/7

Barto, A. G., and Rosenstein, M. T. (2004). “J. 4 supervised actor-critic

reinforcement learning,” in Handbook of Learning and Approximate Dynamic

Programming, Vol. 2, eds S. Jennie, A. G. Barto, and B. Warren (Powell, OH),

359.

Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike adaptive

elements that can solve difficult learning control problems. IEEE Trans. Syst.

Man. Cybern. 5:834–846. doi: 10.1109/TSMC.1983.6313077

Barto, A. G., Sutton, R. S., andWatkins, C. J. (1990). “Sequential decision problems

and neural network,” in Advances in Neural Information Processing Systems

(Denver, CO), 686–693.

Blundell, C., Uria, B., Pritzel, A., Li, Y., Ruderman, A., Leibo, J. Z., et al. (2016).

Model-free episodic control. arXiv [Preprint]. arXiv:1606.04460.

Caligiore, D., Ferrauto, T., Parisi, D., Accornero, N., Capozza, M., and Baldassarre,

G. (2008). “Usingmotor babbling and hebb rules for modeling the development

of reaching with obstacles and grasping,” in International Conference on

Cognitive Systems, E1–E8.

Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., and Dolan, R. J. (2011).

Model-based influences on humans’ choices and striatal prediction errors.

Neuron 69, 1204–1215. doi: 10.1016/j.neuron.2011.02.027

Daw, N. D., Niv, Y., and Dayan, P. (2005). Uncertainty-based competition

between prefrontal and dorsolateral striatal systems for behavioral control.Nat.

Neurosci. 8, 1704–1711. doi: 10.1038/nn1560

Daw, N. D., and O’Doherty, J. P. (2013). “Multiple systems for value

learning,” in Neuroeconomics: Decision Making and the Brain, 2nd Edn,

eds W. P. Glimcher and E. Fehr (San Diego, CA: Elsevier Inc.), 393–410.

doi: 10.1016/B978-0-12-416008-8.00021-8

Demiris, Y., and Dearden, A. (eds.) (2005). From Motor Babbling to Hierarchical

Learning by Imitation: A Robot Developmental Pathway. Lund: Lund University

Cognitive Studies.

Fard, F. S., Hollensen, P., Heinke, D., and Trappenberg, T. P. (2015).

Modeling human target reaching with an adaptive observer implemented with

dynamic neural fields. Neural Netw. 72, 13–30. doi: 10.1016/j.neunet.2015.

10.003

Fard, F. S., Nunes, A., and Trappenberg, T. (2017). “An actor critic with an internal

model,” in Inaugural Conference on Cognitive Computational Neuroscience

(CCN) (New York, NY).

Flanagan, J. R., and Wing, A. M. (1997). The role of internal models in

motion planning and control: evidence from grip force adjustments

during movements of hand-held loads. J. Neurosci. 17, 1519–1528.

doi: 10.1523/JNEUROSCI.17-04-01519.1997

Gläscher, J., Daw, N., Dayan, P., and O’Doherty, J. P. (2010). States

versus rewards: dissociable neural prediction error signals underlying

model-based and model-free reinforcement learning. Neuron 66, 585–595.

doi: 10.1016/j.neuron.2010.04.016

Heath, M., Westwood, D. A., and Binsted, G. (2004). The control of memory-

guided reaching movements in peripersonal space. Motor Control 8, 76–106.

doi: 10.1123/mcj.8.1.76

Houk, J. C., Adams, J. L., and Barto, A. G. (1995). “A model of how

the basal ganglia generates and uses neural signals that predict

reinforcement,” in Models of Information Processing in the Basal Ganglia,

249–274.

Huys, Q. J., Maia, T. V., and Frank, M. J. (2016). Computational psychiatry as a

bridge from neuroscience to clinical applications. Nat. Neurosci. 19, 404–413.

doi: 10.1038/nn.4238

Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., and

Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science 286,

2526–2528. doi: 10.1126/science.286.5449.2526

Iverson, J. M., and Fagan, M. K. (2004). Infant vocal–motor coordination:

precursor to the gesture–speech system? Child Dev. 75, 1053–1066.

doi: 10.1111/j.1467-8624.2004.00725.x

Iverson, J. M., Hall, A. J., Nickel, L., and Wozniak, R. H. (2007). The relationship

between reduplicated babble onset and laterality biases in infant rhythmic arm

movements. Brain Lang. 101, 198–207. doi: 10.1016/j.bandl.2006.11.004

Kawato, M., Kuroda, T., Imamizu, H., Nakano, E., Miyauchi, S., and Yoshioka, T.

(2003). Internal forward models in the cerebellum: fmri study on grip force and

load force coupling. Prog. Brain Res. 142, 171–188. doi: 10.1016/S0079-6123(03)

42013-X

Kluzik, J., Diedrichsen, J., Shadmehr, R., and Bastian, A. J.

(2008). Reach adaptation: what determines whether we learn

an internal model of the tool or adapt the model of our

arm? J. Neurophysiol. 100, 1455–1464. doi: 10.1152/jn.90334.

2008

Lee, S. W., Shimojo, S., and O’Doherty, J. P. (2014). Neural

computations underlying arbitration between model-based and

model-free learning. Neuron 81, 687–699. doi: 10.1016/j.neuron.2013.

11.028

Lengyel, M., and Dayan, P. (2008). “Hippocampal contributions to control: the

third way,” in NIPS, Vol. 20 (Denver, CO), 889–896.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al.

(2015). Continuous control with deep reinforcement learning. arXiv [Preprint].

arXiv:1509.02971.

Miall, R., Weir, D., Wolpert, D. M., and Stein, J. (1993). Is the cerebellum a smith

predictor? J. Motor Behav. 25, 203–216. doi: 10.1080/00222895.1993.9942050

Miall, R. C., and Wolpert, D. M. (1996). Forward models for physiological

motor control. Neural Netw. 9, 1265–1279. doi: 10.1016/S0893-6080(96)

00035-4

Miller, E. K., and Cohen, J. D. (2001). An integrative theory of

prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202.

doi: 10.1146/annurev.neuro.24.1.167

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,

et al. (2013). Playing atari with deep reinforcement learning. arXiv [Preprint].

arXiv:1312.5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,M. G., et al.

(2015). Human-level control through deep reinforcement learning.Nature 518,

529–533. doi: 10.1038/nature14236

O’Doherty, J. P., Lee, S. W., Mcnamee, D., O’Doherty, J. P., Lee, S. W.,

and Mcnamee, D. (2015). The structure of reinforcement-learning

mechanisms in the human brain. Curr. Opin. Behav. Sci. 1, 1–7.

doi: 10.1016/j.cobeha.2014.10.004

Poldrack, R. A., Clark, J., Pare-Blagoev, E., Shohamy, D., Moyano, J. C., Myers,

C., et al. (2001). Interactive memory systems in the human brain. Nature 414,

546–550. doi: 10.1038/35107080

Rosenstein, M. T., and Barto, A. G. (2002). Supervised Learning Combined with

an Actor-Critic Architecture. Department of Computer Science, University of

Massachusetts, Tech. Rep, 02–41.

Satel, J., Trappenberg, T., and Klein, R. (2005). “Motivational modulation of

endogenous inputs to the superior colliculus,” in IJCNN’05, Proceedings of 2005

IEEE International Joint Conference on Neural Networks, 2005 (IEEE), Vol. 1

(Montreal, QC: IEEE), 262–267.

Schultz, W., Dayan, P., and Montague, P. R. (1997). A neural

substrate of prediction and reward. Science 275, 1593–1599.

doi: 10.1126/science.275.5306.1593

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M.

(2014). “Deterministic policy gradient algorithms,” in Proceedings of the 31st

International Conference on Machine Learning (ICML-14), 387–395.

Sutton, R. S. (1985). Temporal credit assignment in reinforcement learning (Ph.D.

dissertation). University of Massachusetts, Amherst.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences.

Mach. Learn. 3, 9–44. doi: 10.1007/BF00115009

Sutton, R. S. (1991). Dyna, an integrated architecture for learning, planning,

and reacting. ACM SIGART Bull. 2, 160–163. doi: 10.1145/122344.

122377

Frontiers in Neurorobotics | www.frontiersin.org 12 July 2019 | Volume 13 | Article 5284

https://doi.org/10.1007/BF00337259
https://doi.org/10.1016/S0028-3908(98)00033-1
https://scholarworks.umass.edu/cs_faculty_pubs/7
https://scholarworks.umass.edu/cs_faculty_pubs/7
https://doi.org/10.1109/TSMC.1983.6313077
https://doi.org/10.1016/j.neuron.2011.02.027
https://doi.org/10.1038/nn1560
https://doi.org/10.1016/B978-0-12-416008-8.00021-8
https://doi.org/10.1016/j.neunet.2015.10.003
https://doi.org/10.1523/JNEUROSCI.17-04-01519.1997
https://doi.org/10.1016/j.neuron.2010.04.016
https://doi.org/10.1123/mcj.8.1.76
https://doi.org/10.1038/nn.4238
https://doi.org/10.1126/science.286.5449.2526
https://doi.org/10.1111/j.1467-8624.2004.00725.x
https://doi.org/10.1016/j.bandl.2006.11.004
https://doi.org/10.1016/S0079-6123(03)42013-X
https://doi.org/10.1152/jn.90334.2008
https://doi.org/10.1016/j.neuron.2013.11.028
https://doi.org/10.1080/00222895.1993.9942050
https://doi.org/10.1016/S0893-6080(96)00035-4
https://doi.org/10.1146/annurev.neuro.24.1.167
https://doi.org/10.1038/nature14236
https://doi.org/10.1016/j.cobeha.2014.10.004
https://doi.org/10.1038/35107080
https://doi.org/10.1126/science.275.5306.1593
https://doi.org/10.1007/BF00115009
https://doi.org/10.1145/122344.122377
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Sheikhnezhad Fard and Trappenberg Arbitration Between Planning and Habitual Control

Uchibe, E., and Doya, K. (2005). “Reinforcement learning with multiple

heterogeneous modules: a framework for developmental robot learning,” in

Proceedings of the 4th International Conference on Development and Learning

(Osaka: IEEE), 87–92.

Uhlenbeck, G. E., and Ornstein, L. S. (1930). On the theory of the brownian

motion. Phys. Rev. 36:823. doi: 10.1103/PhysRev.36.823

von Hofsten, C. (2004). An action perspective on motor development. Trends

Cogn. Sci. 8, 266–272. doi: 10.1016/j.tics.2004.04.002

Waltz, M., and Fu, K. (1965). A heuristic approach to reinforcement

learning control systems. IEEE Trans. Autom. Control 10, 390–398.

doi: 10.1109/TAC.1965.1098193

Westwood, D. A., Heath, M., and Roy, E. A. (2003). No evidence for

accurate visuomotor memory: systematic and variable error in memory-

guided reaching. J. Motor Behav. 35, 127–133. doi: 10.1080/0022289030

9602128

Wolpert, D. M., Miall, R. C., and Kawato, M. (1998). Internal models in

the cerebellum. Trends Cogn. Sci. 2, 338–347. doi: 10.1016/S1364-6613(98)

01221-2

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Sheikhnezhad Fard and Trappenberg. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 13 July 2019 | Volume 13 | Article 5285

https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1016/j.tics.2004.04.002
https://doi.org/10.1109/TAC.1965.1098193
https://doi.org/10.1080/00222890309602128
https://doi.org/10.1016/S1364-6613(98)01221-2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

ORIGINAL RESEARCH
published: 31 July 2019

doi: 10.3389/fnbot.2019.00061

Frontiers in Neurorobotics | www.frontiersin.org 1 July 2019 | Volume 13 | Article 61

Edited by:

Changhong Fu,

Tongji University, China

Reviewed by:

Chenguang Yang,

University of the West of England,

United Kingdom

Zhihao Xu,

Guangdong Institute of Intelligent

Manufacturing, Guangdong Academy

of Sciences, China

*Correspondence:

Hong Qiao

hong.qiao@ia.ac.cn

Received: 12 April 2019

Accepted: 15 July 2019

Published: 31 July 2019

Citation:

Zhou J, Chen J, Deng H and Qiao H

(2019) From Rough to Precise:

Human-Inspired Phased Target

Learning Framework for Redundant

Musculoskeletal Systems.

Front. Neurorobot. 13:61.

doi: 10.3389/fnbot.2019.00061

From Rough to Precise:
Human-Inspired Phased Target
Learning Framework for Redundant
Musculoskeletal Systems
Junjie Zhou 1,2,3, Jiahao Chen 2,3,4, Hu Deng 1,3 and Hong Qiao 1,2,5*

1 State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of

Sciences, Beijing, China, 2 School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China, 3Beijing

Key Laboratory of Research and Application for Robotic Intelligence of “Hand–Eye–Brain” Interaction, Beijing, China,
4 Research Center for Brain-Inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China,
5CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China

Redundant muscles in human-like musculoskeletal robots provide additional dimensions

to the solution space. Consequently, the computation of muscle excitations remains

an open question. Conventional methods like dynamic optimization and reinforcement

learning usually have high computational costs or unstable learning processes when

applied to a complex musculoskeletal system. Inspired by human learning, we propose

a phased target learning framework that provides different targets to learners at varying

levels, to guide their training process and to avoid local optima. By introducing an extra

layer of neurons reflecting a preference, we improve the Q-network method to generate

continuous excitations. In addition, based on information transmission in the human

nervous system, two kinds of biological noise sources are introduced into our framework

to enhance exploration over the solution space. Tracking experiments based on a

simplified musculoskeletal arm model indicate that under guidance of phased targets,

the proposed framework prevents divergence of excitations, thus stabilizing training.

Moreover, the enhanced exploration of solutions results in smaller motion errors. The

phased target learning framework can be expanded for general-purpose reinforcement

learning, and it provides a preliminary interpretation for modeling the mechanisms of

human motion learning.

Keywords: musculoskeletal system, human-inspired motion learning, noise in nervous system, reinforcement

learning, phased target learning

1. INTRODUCTION

Research on human-like musculoskeletal robots has become multidisciplinary in recent years,
as it involves fields such as neuroscience and materials science for modeling and implementing
musculoskeletal motor systems. In fact, this branch of robotics mainly comprises muscle models
(actuators), skeletal systems (supporting structure), and methods for motion control and learning
(control systems). Related work can roughly be divided into two types, namely, muscle dynamics
modeling along with hardware design (Jäntsch et al., 2013; Kurumaya et al., 2016; Asano et al.,
2017) and musculoskeletal robot control (Pennestrì et al., 2007; Jagodnik and van den Bogert, 2010;
Tahara andKino, 2010). Althoughmost studies have been focused on the first type, the development
of neuroscience has gradually increased the research on human-inspired control.

86

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2019.00061
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2019.00061&domain=pdf&date_stamp=2019-07-31
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:hong.qiao@ia.ac.cn
https://doi.org/10.3389/fnbot.2019.00061
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00061/full
http://loop.frontiersin.org/people/662518/overview
http://loop.frontiersin.org/people/777598/overview
http://loop.frontiersin.org/people/726950/overview
http://loop.frontiersin.org/people/210408/overview

Zhou et al. Phased Target Learning Framework

As a multibody mechanical system (Stoianovici and
Hurmuzlu, 1996; Shi and McPhee, 2000) comprising muscles
and joints, the human musculoskeletal system has several
advantages. For instance, muscle redundancy maintains the
reliable operation of the musculoskeletal system when some
muscles are fatigued or even damaged. Under control of
the central nervous system, the musculoskeletal system can
accomplish accurate and fine manipulation (Rasmussen et al.,
2001; Chen et al., 2018). To unveil the mechanisms that provide
such advantages, Hill studied the contraction properties of
muscles, establishing the Hill model (Hill, 1938). From this
fundamental work, a series of muscle dynamic models have
been proposed (Huxley and Niedergerke, 1954; Eisenberg et al.,
1980; Zahalak and Ma, 1990), but all of them present specific
limitations. For instance, the simple second-order model (Cook
and Stark, 1968; Agarwal et al., 1970) lacks independent nodal
locations for external input signals, which indirectly affect the
output. The Huxley contraction model (Huxley, 1957) is highly
complex and no general-purpose method has been developed to
obtain its parameters (Winters and Stark, 1987). The Hill model
presents difficulties in measuring the fiber length during motion
(Arnold and Delp, 2011).

Research has also been devoted to design hardware for
emulating muscle characteristics. The Anthrob muscle unit
(Jäntsch et al., 2013) and the sensor–driver integrated muscle
module (Asano et al., 2015) try to resemble muscular structures.
However, the weight and size of motors make hardware
models notably diverge from biological muscles. Furthermore,
resembling tiny human muscles through hardware design is
difficult, thus undermining their applicability. In materials
science, the synthesis of ideal materials for artificial muscles is
being pursued to achieve the characteristics of biological muscles
regarding size, weight, stiffness, and dynamic behavior. New
materials for artificial muscles usually share some problems,
including unsafe voltages and low strain. Accessory equipment
can partly adjust the characteristics of materials. For instance,
liquid-vapor transition has been used on a soft composite
material (Miriyev et al., 2017) for implementation as an actuator
in a variety of robotic applications. In addition, a coiled
polymer muscle (Haines et al., 2014) controlled by varying
water temperature prevents dependence on electricity. Hence,
advanced design methods and materials seem promising to
develop artificial muscles that closely reflect the dynamics of their
biological counterparts.

Based on the abovementioned models, control systems
developed for musculoskeletal robotics also face challenges.
Redundant muscles and extremely complex tendon forces
impose several barriers for direct solutions of muscle excitation.
Widely used methods, such as inverse dynamics with static
optimization (Crowninshield and Brand, 1981), computed
muscle control (Thelen et al., 2003), proportional-derivative
control (Jagodnik and van den Bogert, 2010), and PI-type
iterative learning control (Tahara and Kino, 2010), are used to
regulate musculoskeletal systems. Although some conventional
methods, such as computed muscle control, theoretically
compute muscle excitation signals, they also demand intensive
computations for sophisticated processes (Chen et al., 2018).

In addition, these control strategies are hardly supported by
biological evidence showing that they resemble the approach of
human motion learning.

In recent years, reinforcement learning has become a popular
control method in robotics as it provides a natural-like approach
to learn from the environment. In fact, as a method that
fosters interaction with uncertain environments, reinforcement
learning allows a learner to observe the environment and then
execute appropriate actions. The environment provides rewards
for each action, and the learner aims to maximize its rewards
during decision-making. This learning process is similar to that
of humans and animals (Sutton and Barto, 2018). Studies in
neuroscience (Schultz et al., 1997; Law and Gold, 2009) verify
this principle, and hence it is reasonable to consider human-
like learning from the viewpoint of reinforcement learning
(Tesauro, 1995; Diuk et al., 2008; Riedmiller et al., 2009).
Deep neural networks are adopted to implement reinforcement
learning. Specifically, the deep Q-network (Mnih et al., 2015)
uses a deep convolutional neural network to estimate the
action-value function, making deep reinforcement learning a
powerful weapon for a myriad of applications (Van Hasselt
et al., 2016; Wang et al., 2016; Hou et al., 2017). However,
when applied to the musculoskeletal system, the performances of
deep neural networks can be unstable. Given muscle redundancy
in the musculoskeletal system, the additional dimensions
expand the solution space, hindering optimization through
reinforcement learning.

In this study, we focused on the unstable training of
musculoskeletal systems and the expanded solution space of
excitations to provide three contributions. (1) The learning
goal of humans, changes stepwise as learning proceeds over
advancing levels. For example, running requires higher physical
coordination than walking, and one cannot run before learning
to walk. Thereby, the learner target evolves from walking
to running during this process. Based on this principle, we
propose the phased target learning (PTL) framework that
reduces the computational cost for exploration in a high-
dimensional solution space. In addition, phased targets guide
the convergence of excitations to the expected value during
training. (2) As sensory information may be encoded by opposite
tuning neurons (Romo and de Lafuente, 2013), we improve
an MLP-based Q-network by introducing an extra layer of
neurons reflecting preference and using various relative action
probabilities from value functions for obtaining continuous
outputs to control a musculoskeletal arm model. (3) As noise
exists in the nervous system (A Aldo et al., 2008) and
based on information transmission in the human nervous
system (Dhawale et al., 2017), we introduce two noise sources
at the sensor and execution levels into the proposed PTL
framework. These noise sources increase the exploration capacity
in the solution space during training and strengthen the
control robustness.

In this paper, in section 2, we introduce the muscle dynamics,
the structure of the arm model, and detail the musculoskeletal
system considered in this study. Moreover, optimization of the
proposed PTL framework is outlined. Then, the PTL framework
with the biological noise sources is introduced in section 3.

Frontiers in Neurorobotics | www.frontiersin.org 2 July 2019 | Volume 13 | Article 6187

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhou et al. Phased Target Learning Framework

FIGURE 1 | Structure of a Hill-type muscle model. FCE and FPE are the active

and passive forces, respectively, and FT is the tendon force (Hill, 1938; Thelen,

2003).

Experimental results and conclusions are presented in sections
4 and 5, respectively.

2. MUSCULOTENDON MODEL AND
MUSCULOSKELETAL ARM MODEL

Modeling muscles is difficult because most parameters cannot
be measured precisely in real time (Arnold and Delp, 2011).
According to the Hill model (Hill, 1938), which defines that
a muscle is made up of separate elements, such as contractile
elements (CE), passive elements (PE), and series elastic elements
(SEE) (Zajac, 1989; Thelen et al., 2003), we design a control
framework for musculoskeletal systems.

2.1. Musculotendon Model
To determine the way a human can control complex muscle
systems, a muscle dynamic model is necessary. Let u ∈ [0, 1]
denote an idealized muscle excitation signal. According to a
nonlinear first-order differential Equation (1), muscle activation
signal a can be computed (Thelen, 2003):

da

dt
=

u− â

τ (u, a)
, (1)

where τ varies according to idealized muscle excitation signal
u and activation signal a (Winters, 1995), â is the activation
signal after normalization, and a is transmitted to the muscle
contraction dynamic model as a final control signal.

Before introducing the muscle contraction dynamics, the
structure of a Hill-type muscle model is shown in Figure 1,
where lT and lM are the lengths of the tendon and muscle
fiber, respectively, and α is the muscle pennation angle (Garner
and Pandy, 2003). When the activation signal a is transmitted
to the muscle, the corresponding muscle force is generated
by contraction. Then, the muscle force pulls the skeletons to
generate motion or to maintain the balance of forces.

Suppose that signal u is known. To calculate tendon force FT ,
some assumptions are required. First, FT , FCE, FPE > 0 because
muscles move the skeleton by tension instead of thrusting.
Second, the change ofmuscle width can be ignored duringmuscle

contraction (Matthew et al., 2013). Third, muscle mass can
be ignored. Using these assumptions, the dynamics of muscles
can be described. Specifically, a pennation angle α can be
obtained from

lMs sin(α0) = lM(t) sin(α(t)) , (2)

where lMs and α0 are the slack length of a muscle fiber and
initial pennation angle, respectively, which also define the initial
muscle width, lM(t) and α(t) are the length of the muscle
fiber and pennation angle at time t, respectively. From α(t),
tendon force FT can be computed by a piecewise nonlinear
equation (Proske and Morgan, 1987; Thelen, 2003). In addition,
the contraction velocity of a muscle fiber is necessary for the
model. To determine this velocity, active force FCE produced
by the contractile element should be obtained first. According
to the geometric relationship between tendon and muscle fiber
(Figure 1), FCE can be calculated indirectly as follows:

FCE =
FT

cos(α)
− FPE , (3)

where FPE is the passive force of the muscle fiber. During
simulations, the muscle length sometimes causes numerical
problems that result in FCE < 0, which clearly violate the first
assumption about muscles. Therefore, a constraint should be
added to avoid exceptional cases:

FCE = max{FCE, 0} . (4)

Then, contraction velocity vM can be computed by another
piecewise non-linear equation (Matthew et al., 2013):

vM = f−1
v

(

FCE

afl(lM)

)

, (5)

where fv is the force–velocity function, f
−1
v is its inverse function,

and fl is a Gaussian function with variable lM (Winters, 1990).
As a key variable in the muscle dynamics model, vM(t) affects
lM(t+1) at every timestep. Variable lM is the fiber length and lMT

is the muscle length, which comprises fiber and tendon. Length
lM can be calculated directly using vM and FT , whereas lMT can be
measured. Consequently, if signal u(t) is known, the contraction
states of the muscle and tendon force FT(t) can be computed.

2.2. Musculoskeletal Arm Model
In the remainder of this section, we first establish a simplified
arm model to connect muscles and bones. Then, we analyze
the kinematic relationship between the arm model and muscle
model. Finally, a control framework is outlined using this
relationship.

According to the Newton–Euler equation (Zixing, 2000;
Hahn, 2013), we establish a two degree-of-freedom model
(Figure 2) that consists of two segments and four muscles. Then,
expected torque τn at the joints can be calculated as

τn =
∂W

∂θ
= M(θ)θ̈ + C(θ , θ̇)θ̇ + G(θ) , (6)

Frontiers in Neurorobotics | www.frontiersin.org 3 July 2019 | Volume 13 | Article 6188

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhou et al. Phased Target Learning Framework

FIGURE 2 | (A) Human arm model with four main muscles. (B) Simplified arm model with four muscles.

where W is the work from external forces, θ̇ is the vector of
rotational velocity, θ̈ is the vector of rotational acceleration,
M(θ) ∈ R

n×n and C(θ , θ̇)θ̇ ∈ R
n is the inertia matrix and

the centripetal and Coriolis force, respectively, and G(θ) ∈ R
n

is the gravitational force vector of our model. During forward
calculation, Equation (6) provides a way to compute expected
torques for known motion states. During inverse calculation, it
can be used to compute actual angular acceleration.

2.3. Musculotendon Model Into Arm Model
In this section, we obtain the relationship between torques and
motion states and define the adopted learning approach.

Unlike conventional robots that use a single joint motor to
generate torque, each joint in a musculoskeletal system is usually
affected by more than one muscle. Let τi be the muscle torque
generated by muscle i:

τi = FTi li2 sin γi, i = 1, 2, ..., n , (7)

where FTi is the tendon force of muscle i and γi is the
angle between the muscle and related bone. Figure 3 provides
geometric details of the muscles and bones. We set m1 = 2
and d1 = 0.3 as the mass and length of the upper arm,
respectively, whereas m2 = 1.8 and d2 = 0.3 are the mass and
length of the forearm, respectively. For the given geometry of the
musculoskeletal model, the muscle torque can be written as

{

τ ′n1 = τ1 − τ2 = FT1 l12 sin γ1 − FT2 l22 sin γ2

τ ′n2 = τ3 − τ4 = FT3 l32 sin γ3 − FT4 l42 sin γ4
. (8)

FIGURE 3 | Geometry and parameters of musculoskeletal arm model.

Muscles 1 and 2 are defined by straight lines, whereas muscles 3 and 4 are

defined by polylines.

In addition, the geometric parameters can be used to compute
sin γi:

sin γ1 =
l11 cos θ1√

l211+l212−2l11l12 sin θ1

sin γ2 =
l21 sin θ1√

l221+l222−2l21l22 cos θ1

sin γ3 =
d33 cos

θ2
2

√

l232+d233−2l32d33 sin
θ2
2

sin γ4 =
d43 cos

θ2
2

√

l242+d243+2l42d43 sin
θ2
2

. (9)

In muscles 3 and 4 (Figure 2), we introduce two turning points
at the angular bisector of the elbow to design polyline muscles,
where d33 and d43 are the distances from the elbow to the

Frontiers in Neurorobotics | www.frontiersin.org 4 July 2019 | Volume 13 | Article 6189

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhou et al. Phased Target Learning Framework

turning points of muscles 3 and 4, respectively. From Equation
(9), it is clear that sin γi is a nonlinear function of θi. By
substituting Equation (9) into Equation (8), we obtain muscle
torque functions τ ′n1(F

T
1 , F

T
2 , θ1) and τ ′n2(F

T
3 , F

T
4 , θ2).

For the muscle description in our arm model, it is difficult
to determine its inverse function, because FT and Equation (5)
are piecewise functions with complicated expressions. Therefore,
we usually cannot calculate ui by directly using muscle force, but
instead we adopt an indirect method.

We assume that expected states θi, θ̇i and θ̈i are given.
Expected torque τn can be calculated by Equation (6) as a
learning target. On the other hand, actual tendon force FT is
known when corresponding excitation signals u are generated,
and hence actual torque τ ′n is calculable. To obtain actual angular
accelerations θ̈i, Equation (6) can be computed reversely. In

general, θ̈ can be rewritten as θ̈(τn, θ , θ̇). Considering θ̇ = dθ
dt

and θ̈ = dθ̇
dt
, joint angle θ at time (t + 1) can be obtained as

θt+1(τn, θt(θ̈t−1), θ̇t(θ̈t−1), θ̈t) . (10)

If tendon force vector FT satisfies

τn(θ , θ̇ , θ̈) = τ ′n(F
T , θ) , (11)

we can rewrite Equation (11) as

θt+1(τ
′
n(F

T
t , θt), θt(θ̈t−1), θ̇t(θ̈t−1), θ̈t) . (12)

The purpose of our framework is to find appropriate excitation
signals u to generate tendon forces that satisfy Equation (11). As a
result, the expectedmotions will be generated during exploration.
Based on Equation (12), we establish a training framework for
the musculoskeletal arm model. When excitation signal u is
given, corresponding activation signal a and tendon force FT

can be calculated by muscle dynamics. Then, new motion states
can be solved using the arm model. If excitation signal u is
unknown, we should explore candidate solutions to generate
FT satisfying (Equation 11).

3. HUMAN-INSPIRED PHASED TARGET
LEARNING FRAMEWORK

We design a learning framework to solve signal ui. Conventional
learning frameworks use expected states as the learning target.
However, these targets can cause unforeseen problems during
the solving process, and solutions can fall into local optima. In
contrast, the proposed PTL framework can avoid local optima
by guiding the learning process. Specifically, different learning
targets are designed according to the learner’s level, additionally
providing high efficiency during training. We consider the
musculoskeletal system, optimization model, and expected target
state as the most essential aspects in our framework (Figure 4)
and detail the last two parts in the sequel.

3.1. Phased Target Learning
3.1.1. Simplified Target Setup
Consider a beginner who starts to learn dancing or practicing
a sport. It is difficult for him to acquire all the professional

postures and skills at once. Instead of trying to enhance memory
or learning skills, the simplest solution is reducing the quality
requirements and perform intensive practice through gradual
improvement. This way, the beginner will easily improve by
establishing simple learning targets that are gradually set at
different levels as learning proceeds. In this study, we calculated
precise motion states to be expected targets. Then, we designed
different simplified states as easier targets for learning. Formally,
let s ∈ S be the expected states of the arm model, and sT ∈ ST be
the simplified states. sT can be calculated by simplifying s:

sT(t) = s(ceil(
t

d
) · d) · δ(0) , t = 1, 2, ...,T , (13)

where δ(t) is an impulse function, and d ∈ N+ satisfying d
T ∈

[1T , 1] is a forgetting factor. When d = T, sT only reflects the
endpoint state of expected state s, and when d = 1, sT = s,
indicating that sT reflects all the states of S .

Obviously, simplification induces errors with respect to
expected states. Suppose that θ ∈ S is the expected joint angle of
the arm model, and θT ∈ ST is the simplified joint angle. Then,
we define the average allowed error between s and sT as

eT =
1

T

T
∑

t=1

|θ(t)− θT(t)| . (14)

According to Equations (13) and (14), average allowed error eT
depends only on the forgetting factor d. Geometrically, eT can be
considered as the width of the equivalent error region. Figure 5
shows the width and effect of d on simplified joint angle curve θT .

PTL provides different simplified targets for learning at
varying training phases. When the motion accuracy achieves
the average allowed error range, eT , a new and smaller average
allowed error range is given to guide training. Then, we define
actual average error eR of motion as

eR =
1

T

T
∑

t=1

|θT(t)− θR(t)| . (15)

Unlike Equation (14), Equation (15) uses the actual joint angle,
θR. In addition, eT is updated after each training iteration. A new
average allowed error is computed only when

eT − eR > 0 . (16)

d =

D(d), eT − eR > 0,D(d) > 1;

1, eT − eR > 0,D(d) < 1;

d, eT − eR 6 0;

(17)

Equation (17) is the update rule of forgetting factor d, whereD(d)
is a function that satisfies D(d) < d. It is convenient to maintain
the value of |d − D(d)| small, because a large difference between
adjacent simplified states vanishes the gradual learning effect.

Frontiers in Neurorobotics | www.frontiersin.org 5 July 2019 | Volume 13 | Article 6190

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhou et al. Phased Target Learning Framework

FIGURE 4 | Schematic of proposed PTL framework for motion control of musculoskeletal robots. A vision sensor collects motion information. Then, visual stimuli are

transmitted to the optimization model and performance evaluation module. During optimization, state information is processed by a multi-layer perceptron. Then,

perceptual decisions (excitation signals) are transmitted to the arm model as optimization results. During performance evaluation, different phased targets are

designed to guide arm motion states. Finally, the evaluation results are transmitted to the optimization model for improved decision-making. In addition, two biological

noise sources are considered during learning for improved exploration ability.

FIGURE 5 | Effect of forgetting factor d on equivalent error region. The thin blue line represents expected angles θ , and the dotted orange line represents simplified

state θT . The equivalent error region is depicted with light orange and obtained as
∑T

t=1 |θ (t)− θT (t)|.

3.1.2. Performance Evaluation Function
Conventional temporal-difference learning methods are highly
suitable for model-free learning. Considering Equation (11), the
inverse function of τ ′n should be determined and can be set
as a model-free problem. In this study, we aimed to improve
the Q-network to estimate the continuous excitation signal u
for musculoskeletal systems. Then, we combined it with PTL to
calculate appropriate control signals.

Let T be the number of finite timesteps and ui be the
excitation signal for muscle i. Each signal ui(t) at time t has two
possible actions; either increase [ai,1(t)] or decrease [ai,2(t)]. The

adjustment of ui affects the muscle and musculoskeletal model at
time (t + 1).

However, the two actions only determine the increment sign,
and additional parameters are required to calculate the step
sizes. Furthermore, the difference between adjacent states can
hinder perceptron learning from input states during training.
Moreover, incorrect adjustments can lead to signal oscillation in
the redundant musculoskeletal model.

In human cortical circuits, sensory information is encoded
by neurons via opposite tuning (Romo and de Lafuente, 2013).
Based on this mechanism, we redefine action-value functionQui ,j

Frontiers in Neurorobotics | www.frontiersin.org 6 July 2019 | Volume 13 | Article 6191

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhou et al. Phased Target Learning Framework

as a probability of signal ui executing action ai,j. Equation (18)
defines ui as

ui =
1

∑2
j=1 Qui ,j

(Qui ,1umax + Qui ,2umin), i = 1, 2, ..., n (18)

and action-value function Qui ,j is redefined as

Qui ,j(st , ai,j,t) = E
[

Eui (st+1, ai,j,t+1)+ γQui ,j(st+1, ai,j,t+1)
]

,

i = 1, 2, ..., n; j = 1, 2, (19)

where Eui is an evaluation function related to arm motion.
According to Equations (18) and (19), a specific action value
of a function is not enough to obtain the excitation signal
in our method. Instead, relative values of different functions
determine an excitation signal, and thus Qui ,1 and Qui ,2 should
be maintained balanced. In addition, note that Eui is used in
Equation (19) instead of conventional reward function Rui . This
is because the Rui is a decreasing function of the action error, and
during training, reducing action errors increases Rui and Qui ,j.
In this case, the balance of action-value functions is affected by
increasing Qui ,j. Therefore, we employ evaluation function Eui ,
which is an increasing function of the action error. Reducing
errors therefore imply smaller Eui and a weaker effect than Rui on
the balance of action-value functions. Furthermore, (Eui)min > 0
promotes stability, as detailed in section 3.1.3.

We obtain the performance evaluation function as follows:

Eui (eR) = p · exp
[

m · g2(eR)
]

+ k (20)

g(eR) = min [|eR|, e0] , (21)

where p,m, k > 0 are parameters of Eui and function g(eR)
prevents exploding gradients under large errors.

3.1.3. Learning by Gradient Descent
We define the loss function by summing the squared errors
between expected action value Q′

ui ,j
and actual action value

Eui ,j + γ Q′
ui ,j

:

L(θ) =
1

2
E

n
∑

i=1

2
∑

j=1

(

Eui ,j + γQ′
ui ,j

(s′, a′; θ ′)− Qui ,j(s, a; θ)
)2

 ,

(22)

where γ is a factor to discount the future action value. The
gradient of the loss function is given by

▽L(θ) = E

n
∑

i=1

2
∑

j=1

γ

(

Eui ,j + γQ′
ui ,j

(s′, a′; θ ′)− Qui ,j(s, a; θ)
)

▽Q′
ui ,j

(s′, a′; θ ′)
]

. (23)

During backpropagation, the outputs of multi- layer perceptron
in our model can be easily obtained. We suppose that Q′

ui ,j

represents the result of the output layer and can be expressed as

Q′
ui ,j

= f

(

nh
∑

h=1

ωhkyh

)

, (24)

where f (x) is the sigmoid activation function, ωhk is the weight
of the edge from the h-th node in the hidden layer to the k-th
node in the output layer. Consider ωhk as an example, the weight
increment is given by

△ωhk = −η
∂L

∂ωhk
(25)

= −η

n
∑

i=1

2
∑

j=1

γ (Eui ,j + γQ′
ui ,j

− Qui ,j)
∂Q′

ui ,j

∂ωhk
(26)

= −η

n
∑

i=1

2
∑

j=1

γ (Eui ,j + γQ′
ui ,j

− Qui ,j)f
′

(

nh
∑

h=1

ωhkyh

)

nh
∑

h=1

yh ,

(27)

where yh is the output of the h-th node in the hidden layer.
When the excitations become stable, the expected increment is
1ωhk → 0 such that1Qui ,j → 0, and hence Eui ,j+γQ′

ui ,j
= Qui ,j

at this time. Factor γ is known as a decimal, and we can infer
γQ′

ui ,j
< Qui ,j, which explains why the performance evaluation

function should satisfy (Eui ,j)min > 0.

3.2. Noise in Nervous System
Noise is ubiquitous in real-world systems, especially during
information transmission. As motion learning consists of
information transmission, noise is present. Recent research
roughly identified noise sources in the nervous system at the
sensor and action levels (A Aldo et al., 2008). We considered
these noise sources in the proposed PTL framework.

3.2.1. Noise at Sensor Level
During the collection of visual information, photoreceptors
receive photons reflected by objects under the influence of
Poisson noise, which reduces the accuracy of optical information
(Bialek, 1987). Although sensory noise is inevitable (Bialek and
Setayeshgar, 2005), it also mitigates sensitivity of the redundant
musculoskeletal system.

When motion tracking is performed on the redundant
musculoskeletal arm model, the Q-network method can exhibit
unstable training, because joint angles are affected by the action
of many muscles, likely falling into local optima. Then, any
small fluctuation of excitation signals can be amplified and cause
divergent signals. However, when target motion is considered
as a region, fluctuations are tolerated. We use Poisson noise to
conform tolerance regions and prevent rapid fluctuations:

sRN = sR + N1 , (28)

N1 ∼ Pois(λ) , (29)

where sR is the actual arm state, sRN is the observed arm state
observed by the vision sensor, and N1 is Poisson noise in the
visual information. In our algorithm, let sR = sRN represents the
inputs of the improved Q-network.

3.2.2. Noise at Execution Level
Noise at the sensor level is also called planning noise, as it
affects decision-making. In addition, execution noise exists and is
superimposed on the original decision signals. In fact, execution

Frontiers in Neurorobotics | www.frontiersin.org 7 July 2019 | Volume 13 | Article 6192

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhou et al. Phased Target Learning Framework

noise describes an uncontrollable noise whose standard deviation
is linearly related to the meanmuscle force (Hamilton et al., 2004;
Dhawale et al., 2017) and can be expressed as

uNi = min[max[ui + N2, 0], 1] , (30)

where N2 ∼ N(0, (vFT)2) simulates noise in the motor system
periphery, ui and uNi are undisturbed and noisy signals from
perceptron, respectively, and v is a scale coefficient of tendon
force FT . Note that the square of vFT defines the variance of
execution noise, and like noise in sensor level, let ui = uNi
represent the final outputs of the proposed network.

4. SIMULATION EXPERIMENTS

We conducted simulation experiments on the musculoskeletal
system model to verify the performance of different algorithms.
Moreover, the equilibria of action values are analyzed to explain
the learning process of the proposed PTL framework.

4.1. Experimental Setup
As mentioned above, we designed a simplified musculoskeletal
arm model to verify and evaluate the proposed learning method.
After analyzing its dynamics (Equation 12), a basic control
framework is devised. To validate the formulation and analyze
performance, optimization should be performed.

In this study, the proposed PTL is applied to a point-to-
point motion task with constant angular velocity as temporal-
difference learning approach. For a final state of target motion,
we calculated midpoints and required constraints using inverse
kinematics. Then, we used joint angles as motion states to design
the simplified target states. Assuming a constant angular velocity,
four types of control strategies were evaluated: (1) Q-network,
(2) Q-network with noises, (3) PTL, and (4) PTL with noises. The
implemented method including PTL is detailed in Algorithm 1.

We set maximum number of iterations K = 500 and number
of timesteps T = 10, 000 to simulate 10 s. All the errors and
control signals were recorded at each timestep.

4.2. Results and Analysis
We considered average error e = 1

T

∑T
t=1 |θ(t) − θR(t)| as a

key performance indicator, where θ(t) is the precise expected
joint angle at time t. As e reflects the average error, motion
performance can be evaluated from this measure.

Figure 6 shows the average error e according to iteration k.
Clearly, the Q-network method, Q-network with noises, and PTL
are trapped at local optima and unstable during training. Still,
phased targets improve learning by increasing the randomness of
exploration, and noises during training enhance fault tolerance
and the exploration ability during control.

Assume that the ratio of action-value functions is convergent
to local optimum bi, which is defined as

bi =
Qui ,1

Qui ,2
. (31)

Algorithm 1: PTL with Noises for Motion Learning in
Musculoskeletal System.

Require: Given precise motion states s(t) ∈ S . Initialize
parameters: interval d, maximum number of iterations K,
excitation signal ui. Obtain simplified motion state sT(t) ∈

ST using Equation 13.
1: for k=1 to K do

2: Compute average allowed error eT = 1
T

∑T
t=1 |s(t)− sT(t)|

3: if eR < eT and k 6= 1 then
4: Reduce d gradually (d ∈ N+, dmax < T)
5: Set new target states ST by simplifying S
6: end if

7: for t=0 to T do

8: Calculate activation signal ai(ui(t)) and tendon force FTi
9: Performmotion corresponding to sR(t+1) caused by FTi
10: Obtain actual motion error eR(t) = |sT(t)− sR(t)|
11: Introduce noise at sensor level into motion states via

Equation 28. Let sR(t) = sRN(t) be the inputs of improved
Q-network

12: Estimate Q′
ui ,j

by improved Q-network method

13: Update weights ω to obtain new action values Qui ,j via
Equation 23

14: Obtain signal ui(t) using Equation 18
15: Introduce noise at execution level into excitation signals

via Equation 30. Let ui(t) = uNi(t) be the outputs of
improved Q-network

16: end for

17: end for

Then, ui can be rewritten as

ui =
1

∑2
j=1 Qui ,j

(Qui ,1umax + Qui ,2umin) (32)

=
1

bi + 1
(biumax + umin) , (33)

and hence the equilibrium point bi is the only parameter
that affects excitation signal ui. We prescribe that the control
method adjusts Qui ,1 and Qui ,2 in an opposite way. In addition,
increment 1Qui ,j satisfies 1Qui ,j > 0 and 1Qui ,j ≪ Qui ,j at
simulation onset. The next equilibrium point at time (t + 1)
is b′i = (Qui ,1 ∓ 1Qui ,1)/(Qui ,2 ± 1Qui ,2), whose increment is
given by

bi − b′i =
Qui ,1

Qui ,2
−

Qui ,1 ∓ 1Qui ,1

Qui ,2 ± 1Qui ,2
, (34)

=
±(Qui ,11Qui ,2 + 1Qui ,1Qui ,2)

Qui ,2(Qui ,2 ± 1Qui ,2)
. (35)

For (−1Qui ,1,+1Qui ,2), we obtain bi − b′i > 0, and excitation
signal ui becomes smaller. For (+1Qui ,1,−1Qui ,2), as Qui ,2 −

1Qui ,2 > 0, we obtain bi − b′i < 0, and excitation signal ui
becomes larger.

However, with reducing motion error, the increment of
function Qui ,j is smaller for Qui ,j ≈ 1Qui ,j. From Equation

Frontiers in Neurorobotics | www.frontiersin.org 8 July 2019 | Volume 13 | Article 6193

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhou et al. Phased Target Learning Framework

FIGURE 6 | Average error for different methods to control musculoskeletal arm model for motion tracking. Curves correspond to average errors over 10 trials.

(35), when (+1Qui ,1,−1Qui ,2), the sign of (bi − b′i) depends
on the sign of (Qui ,2 − 1Qui ,2). Nevertheless, it is difficult
to guarantee either (Qui ,2 6 1Qui ,2) or (Qui ,2 > 1Qui ,2).
The uncertain sign causes chattering on the excitation signal
(Equation 33), which can cause signal divergence at the
final state.

In addition, random factors like ǫ and noise can give rise to
fluctuations of 1Qui ,j, which may increase the adjustment extent.
For example, if (+1Qui ,1,+1Qui ,2) or (−1Qui ,1,−1Qui ,2), the
increment of bi is given by

bi − b′i =
Qui ,1

Qui ,2
−

Qui ,1 ± 1Qui ,1

Qui ,2 ± 1Qui ,2
(36)

=
±(Qui ,11Qui ,2 − 1Qui ,1Qui ,2)

Qui ,2(Qui ,2 ± 1Qui ,2)
, (37)

where (Qui ,11Qui ,2 − 1Qui ,1Qui ,2) with an uncertain sign can
seriously undermine performance, as it is directly related to
the sign of (bi − b′i). Furthermore, performance may decay
even without condition Qui ,j ≈ 1Qui ,j, and the method will
be unreliable under its influence. Fortunately, with appropriate
training, performance degradation by random effects can almost
be eliminated.

Another problem is early convergence during learning.
Figure 7 shows the evolution of the average allowed error.
The four evaluated methods terminate searching when reaching
different local optima. Generally, premature convergence occurs
through the insufficient exploration of solutions. Given its
exploration ability, the proposed PTL with noises was guided by
simplified targets to avoid premature convergence. This method
achieved the lowest error (average e < 0.746cm) and the most

advanced learning level throughout repeated experiments.

bi =
Qui ,1

Qui ,2
+ 1bi (38)

We define 1bi in Equation (38) as a small increment of
the equilibrium point caused by the allowed error eT . As
Qui ,1

Qui ,2
is not at the expected equilibrium point bi, Qui ,j cannot

easily generate large fluctuations. According to the analyses

above,
Qui ,1

Qui ,2
will converge to the final equilibrium point bi

when t = T.
Figure 8 shows signal ui learned using PTL with noises and

the corresponding tendon force, FTi . Figure 9 shows the final
position of the arm and joint angles. These results show that
the most substantial errors occur at motion onset, and only
slight fluctuations remain afterwards. At motion onset, it is
reasonable to believe that unexpected muscle forces, especially
passive forces of muscles 1 and 3, disturb the force balance. As
the simulation proceeds, the arm model returns to a balance
state by adjusting ui. Therefore, PTL extends learning and
guides toward the next expected solutions. In addition, the
noises foster an extensive exploration of the solution space
during training.

To further evaluate PTL framework, we consider point-
to-point motion through two scenarios. First, motion
begins from a stable position (θi = 0) and finishes at
another position (Figure 10).

When motion starts from a stable position, the next state
st+1 does not considerably change if FT = 0. Therefore, the
algorithm should not deal with large and rapid fluctuations, and
the PTL performance is high. In contrast, in the second scenario,
motion starts from an unstable position, and st+1 exhibits a
large difference when compared with st in the initial period

Frontiers in Neurorobotics | www.frontiersin.org 9 July 2019 | Volume 13 | Article 6194

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhou et al. Phased Target Learning Framework

FIGURE 7 | Average allowed error during training. Most algorithms stop learning before processing all the simplified targets.

FIGURE 8 | Execution signals trained using PTL with noises after 500 iterations. All excitation signals are filtered with a Butterworth lowpass filter to separate signals

from execution noise.

FIGURE 9 | Tracking performance of PTL with noises. Point P is the terminal point for arm motion.

Frontiers in Neurorobotics | www.frontiersin.org 10 July 2019 | Volume 13 | Article 6195

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhou et al. Phased Target Learning Framework

FIGURE 10 | Scenario 1: Motion with constant angular velocity begins from a stable position and reaches another position in the motion space. (A–E) are five different

trajectories selected randomly from operation space. Especially, all the initial states are the same (θ1 = 0, θ2 = 0). In each situation, Left: actual motion trajectory of

endpoint achieved by PTL. Right: (Top) corresponding tendon forces caused by signal µ. (Middle) Actual joint angles during the motion. Remember that each

trajectory task is required a constant angular velocity. (Bottom) Allowed error during training, which can be considered as phased target of motion learning.

even if FT = 0, as the gravitational torque contributes
to a large angular acceleration. Consequently, learning
is unstable.

The performance in the second scenario (Figure 11) confirms
our prediction of large initial fluctuations. In fact, inappropriate
initial parameters in musculotendon model will also degrade the
performance. As inappropriate parameters lead to inappropriate
muscle force, and some timesteps are necessary to adjust those
parameters. In addition, the trajectory length is notably shorter

than that in the first scenario, leading to a shorter trajectory
for adjustment and learning. Consequently, errors increase in
this scenario.

5. CONCLUSIONS

In this paper, we propose a human-inspired motion learning
framework for a musculoskeletal system, called PTL. We
analyze the learning process and equilibrium point of Qui ,j,

Frontiers in Neurorobotics | www.frontiersin.org 11 July 2019 | Volume 13 | Article 6196

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhou et al. Phased Target Learning Framework

FIGURE 11 | Scenario 2: Motion with constant angular velocity begins from an unstable position and reaches another position in the motion space. (A–D) are five

different trajectories selected randomly from operation space. In each situation, Left: actual motion trajectory of endpoint achieved by PTL. Right: (Top) corresponding

tendon forces caused by signal µ. (Middle) Actual joint angles during the motion. Remember that each trajectory task is required a constant angular velocity. (Bottom)

Allowed error during training, which can be considered as phased target of motion learning. To evaluate performance, situation (E) is designed particularly to move

from a unstable state to the stable position (θ1 = 0 and θ2 = 0).

determining that phased targets guide excitation signals toward
expected values during learning. Two types of biological
noise sources are considered in the PTL framework to
increase the exploration ability in an expanded solution
space, making the algorithm suitably follow the guidance
of phased targets. Theoretically, as PTL is based on a
human learning process, it can be expanded as a general-
purpose learning framework if we find appropriate ways to

simplify different kinds of tasks, such as capture and pattern
recognition tasks.

In future work, we will apply advanced methods in PTL
to improve performance, especially when motion starts from
an unstable position. Furthermore, better approaches for
simplifying tasks and more biological mechanisms of motion
control should be investigated to expand the application scope
of the PTL framework.

Frontiers in Neurorobotics | www.frontiersin.org 12 July 2019 | Volume 13 | Article 6197

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhou et al. Phased Target Learning Framework

DATA AVAILABILITY

All datasets generated for this study are included in the
manuscript and/or the supplementary files.

AUTHOR CONTRIBUTIONS

JZ provided the main ideas of this research, wrote the manuscript
and codes of experiments. JC andHD provided suggestions about
PTL framework. HQ and other authors discussed and revised
the manuscript.

FUNDING

This work was supported in part by the National
Key Research and Development Program of China
(2017YFB1300200, 2017YFB1300203), the National
Natural Science Foundation of China under Grants
91648205 and 61627808, the Strategic Priority Research
Program of Chinese Academy of Science under Grant
XDB32000000, and the development of science and
technology of Guangdong Province special fund project
under Grant 2016B090910001.

REFERENCES

A Aldo, F., Selen, L. P. J., and Wolpert, D. M. (2008). Noise in the nervous system.

Nat. Rev. Neurosci. 9, 292–303. doi: 10.1038/nrn2258

Agarwal, G. C., Berman, B. M., and Stark, L. (1970). Studies in postural control

systems part I: Torque disturbance input. IEEE Trans. Syst. Sci. Cybern. 6,

116–121. doi: 10.1109/TSSC.1970.300285

Arnold, E. M., and Delp, S. L. (2011). Fibre operating lengths of human lower

limb muscles during walking. Philos. Trans. R. Soc. B Biol. Sci. 366, 1530–1539.

doi: 10.1098/rstb.2010.0345

Asano, Y., Kozuki, T., Ookubo, S., Kawasaki, K., Shirai, T., Kimura, K., et al. (2015).

“A sensor-driver integrated muscle module with high-tension measurability

and flexibility for tendon-driven robots,” in 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) (Hamburg: IEEE), 5960–

5965.

Asano, Y., Okada, K., and Inaba, M. (2017). Design principles of a human mimetic

humanoid: humanoid platform to study human intelligence and internal body

system. Sci. Robot. 2:eaaq0899. doi: 10.1126/scirobotics.aaq0899

Bialek, W. (1987). Physical limits to sensation and perception. Annu. Rev. Biophys.

Biophys. Chem. 16, 455–478. doi: 10.1146/annurev.bb.16.060187.002323

Bialek, W., and Setayeshgar, S. (2005). Physical limits to biochemical signaling.

Proc. Natl. Acad. Sci. U.S.A. 102, 10040–10045. doi: 10.1073/pnas.0504321102

Chen, J., Zhong, S., Kang, E., and Qiao, H. (2018). Realizing human-like

manipulation with musculoskeletal system and biologically inspired control.

Neurocomputing 339, 116–129. doi: 10.1016/j.neucom.2018.12.069

Cook, G., and Stark, L. (1968). The human eye-movement mechanism:

experiments, modeling, and model testing. Arch. Ophthalmol. 79, 428–436.

doi: 10.1001/archopht.1968.03850040430012

Crowninshield, R. D., and Brand, R. A. (1981). A physiologically based

criterion of muscle force prediction in locomotion. J. Biomech. 14, 793–801.

doi: 10.1016/0021-9290(81)90035-X

Dhawale, A. K., Smith, M. A., and Ölveczky, B. P. (2017). The role

of variability in motor learning. Annu. Rev. Neurosci. 40, 479–498.

doi: 10.1146/annurev-neuro-072116-031548

Diuk, C., Cohen, A., and Littman, M. L. (2008). “An object-oriented representation

for efficient reinforcement learning,” in Proceedings of the 25th International

Conference on Machine Learning (ACM), 240–247.

Eisenberg, E., Hill, T. L., and Chen, Y.-D. (1980). Cross-bridge model

of muscle contraction. quantitative analysis. Biophys. J. 29, 195–227.

doi: 10.1016/S0006-3495(80)85126-5

Garner, B. A., and Pandy, M. G. (2003). Estimation of musculotendon properties in

the human upper limb. Ann. Biomed. Eng. 31, 207–220. doi: 10.1114/1.1540105

Hahn, H. (2013). Rigid Body Dynamics of Mechanisms: 1 Theoretical Basis. Springer

Science & Business Media.

Haines, C. S., Lima, M. D., Li, N., Spinks, G. M., Foroughi, J., Madden, J. D.,

et al. (2014). Artificial muscles from fishing line and sewing thread. Science 343,

868–872. doi: 10.1126/science.1246906

Hamilton, A. F. D. C., Jones, K. E., andWolpert, D.M. (2004). The scaling of motor

noise with muscle strength and motor unit number in humans. Exp. Brain Res.

157, 417–430. doi: 10.1007/s00221-004-1856-7

Hill, A. V. (1938). The heat of shortening and the dynamic constants of muscle.

Proc. R. Soc. Lond. Ser. B Biol. Sci. 126, 136–195. doi: 10.1098/rspb.1938.0050

Hou, Y., Liu, L., Wei, Q., Xu, X., and Chen, C. (2017). “A novel ddpg method

with prioritized experience replay,” in 2017 IEEE International Conference on

Systems, Man, and Cybernetics (SMC) (IEEE), 316–321.

Huxley, A. F. (1957). Muscle structure and theories of contraction. Prog.

Biophys. Biophys. Chem. 7, 255–318. doi: 10.1016/S0096-4174(18)30

128-8

Huxley, A. F., and Niedergerke, R. (1954). Structural changes in muscle during

contraction: interference microscopy of living muscle fibres. Nature 173, 971–

973. doi: 10.1038/173971a0

Jagodnik, K. M., and van den Bogert, A. J. (2010). Optimization and

evaluation of a proportional derivative controller for planar arm

movement. J. Biomech. 43, 1086–1091. doi: 10.1016/j.jbiomech.2009.

12.017

Jäntsch, M., Wittmeier, S., Dalamagkidis, K., Panos, A., Volkart, F., and Knoll,

A. (2013). “Anthrob-a printed anthropomimetic robot,” In 2013 13th IEEE-

RAS International Conference on Humanoid Robots (Humanoids) (Atlanta, GA:

IEEE), 342–347.

Kurumaya, S., Suzumori, K., Nabae, H., andWakimoto, S. (2016). Musculoskeletal

lower-limb robot driven by multifilament muscles. Robomech J. 3:18.

doi: 10.1186/s40648-016-0061-3

Law, C.-T., and Gold, J. I. (2009). Reinforcement learning can account for

associative and perceptual learning on a visual-decision task. Nat. Neurosci. 12,

655–663. doi: 10.1038/nn.2304

Matthew, M., Thomas, U., Ajay, S., and Delp, S. L. (2013). Flexing computational

muscle: modeling and simulation of musculotendon dynamics. J. Biomech. Eng.

135:021005. doi: 10.1115/1.4023390

Miriyev, A., Stack, K., and Lipson, H. (2017). Soft material for soft actuators. Nat.

Commun. 8:596. doi: 10.1038/s41467-017-00685-3

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,M. G., et al.

(2015). Human-level control through deep reinforcement learning.Nature 518,

529–533. doi: 10.1038/nature14236

Pennestrì, E., Stefanelli, R., Valentini, P., and Vita, L. (2007). Virtual musculo-

skeletal model for the biomechanical analysis of the upper limb. J. Biomech.

40, 1350–1361. doi: 10.1016/j.jbiomech.2006.05.013

Proske, U., and Morgan, D. L. (1987). Tendon stiffness: methods of measurement

and significance for the control of movement. A review. J. Biomech. 20, 75–82.

doi: 10.1016/0021-9290(87)90269-7

Rasmussen, J., Damsgaard, M., and Voigt, M. (2001). Muscle recruitment by the

min/max criterion–a comparative numerical study. J. Biomech. 34, 409–415.

doi: 10.1016/S0021-9290(00)00191-3

Riedmiller, M., Gabel, T., Hafner, R., and Lange, S. (2009). Reinforcement

learning for robot soccer. Auton. Robots 27, 55–73. doi: 10.1007/s10514-009-

9120-4

Romo, R., and de Lafuente, V. (2013). Conversion of sensory

signals into perceptual decisions. Prog. Neurobiol. 103, 41–75.

doi: 10.1016/j.pneurobio.2012.03.007

Schultz, W., Dayan, P., and Montague, P. R. (1997). A neural

substrate of prediction and reward. Science 275, 1593–1599.

doi: 10.1126/science.275.5306.1593

Shi, P., and McPhee, J. (2000). Dynamics of flexible multibody systems using

virtual work and linear graph theory. Multibody Syst. Dyn. 4, 355–381.

doi: 10.1023/A:1009841017268

Frontiers in Neurorobotics | www.frontiersin.org 13 July 2019 | Volume 13 | Article 6198

https://doi.org/10.1038/nrn2258
https://doi.org/10.1109/TSSC.1970.300285
https://doi.org/10.1098/rstb.2010.0345
https://doi.org/10.1126/scirobotics.aaq0899
https://doi.org/10.1146/annurev.bb.16.060187.002323
https://doi.org/10.1073/pnas.0504321102
https://doi.org/10.1016/j.neucom.2018.12.069
https://doi.org/10.1001/archopht.1968.03850040430012
https://doi.org/10.1016/0021-9290(81)90035-X
https://doi.org/10.1146/annurev-neuro-072116-031548
https://doi.org/10.1016/S0006-3495(80)85126-5
https://doi.org/10.1114/1.1540105
https://doi.org/10.1126/science.1246906
https://doi.org/10.1007/s00221-004-1856-7
https://doi.org/10.1098/rspb.1938.0050
https://doi.org/10.1016/S0096-4174(18)30128-8
https://doi.org/10.1038/173971a0
https://doi.org/10.1016/j.jbiomech.2009.12.017
https://doi.org/10.1186/s40648-016-0061-3
https://doi.org/10.1038/nn.2304
https://doi.org/10.1115/1.4023390
https://doi.org/10.1038/s41467-017-00685-3
https://doi.org/10.1038/nature14236
https://doi.org/10.1016/j.jbiomech.2006.05.013
https://doi.org/10.1016/0021-9290(87)90269-7
https://doi.org/10.1016/S0021-9290(00)00191-3
https://doi.org/10.1007/s10514-009-9120-4
https://doi.org/10.1016/j.pneurobio.2012.03.007
https://doi.org/10.1126/science.275.5306.1593
https://doi.org/10.1023/A:1009841017268
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Zhou et al. Phased Target Learning Framework

Stoianovici, D., and Hurmuzlu, Y. (1996). A critical study of the applicability of

rigid-body collision theory. J. Appl. Mech. 63, 307–316. doi: 10.1115/1.2788865

Sutton, R. S., and Barto, A. G. (2018). Reinforcement Learning: An Introduction.

Cambridge, MA: MIT Press.

Tahara, K., and Kino, H. (2010). “Iterative learning scheme for a redundant

musculoskeletal arm: Task space learning with joint and muscle redundancies,”

in 2010 International Conference on Broadband, Wireless Computing,

Communication and Applications (Fukuoka: IEEE), 760–765.

Tesauro, G. (1995). Temporal difference learning and td-gammon.Commun. ACM

38, 58–69. doi: 10.1145/203330.203343

Thelen, D. G. (2003). Adjustment of muscle mechanics model parameters to

simulate dynamic contractions in older adults. J. Biomech. Eng. 125, 70–77.

doi: 10.1115/1.1531112

Thelen, D. G., Anderson, F. C., and Delp, S. L. (2003). Generating dynamic

simulations of movement using computed muscle control. J. Biomech. 36,

321–328. doi: 10.1016/S0021-9290(02)00432-3

Van Hasselt, H., Guez, A., and Silver, D. (2016). “Deep reinforcement learning

with double Q-learning,” in Thirtieth AAAI Conference on Artificial Intelligence

(Phoenix, AR).

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., Freitas, N.

(2016). “Dueling network architectures for deep reinforcement learning,” in

Proceedings of the 33rd International Conference on Machine Learning (New

York, NY: PMLR), 1995–2003. Available online at: http://proceedings.mlr.

press/v48/wangf16.pdf

Winters, J. M. (1990). “Hill-based muscle models: a systems engineering

perspective,” in Multiple Muscle Systems Biomech. & Movem.organiz,

eds J. M. Winters and S. LY. Woo (New York, NY: Springer),

69–93.

Winters, J. M. (1995). An improved muscle-reflex actuator for use in

large-scale neuromusculoskeletal models. Ann. Biomed. Eng. 23, 359–374.

doi: 10.1007/BF02584437

Winters, J. M., and Stark, L. (1987). Muscle models: what is gained and

what is lost by varying model complexity. Biol. Cybern. 55, 403–420.

doi: 10.1007/BF00318375

Zahalak, G. I., andMa, S.-P. (1990).Muscle activation and contraction: constitutive

relations based directly on cross-bridge kinetics. J. Biomech. Eng. 112, 52–62.

doi: 10.1115/1.2891126

Zajac, F. E. (1989). Muscle and tendon: properties, models, scaling, and application

to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17, 359–411.

Zixing, C. (2000). Robotics. Beijing: Tsinghua University Press.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Zhou, Chen, Deng and Qiao. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 14 July 2019 | Volume 13 | Article 6199

https://doi.org/10.1115/1.2788865
https://doi.org/10.1145/203330.203343
https://doi.org/10.1115/1.1531112
https://doi.org/10.1016/S0021-9290(02)00432-3
http://proceedings.mlr.press/v48/wangf16.pdf
http://proceedings.mlr.press/v48/wangf16.pdf
https://doi.org/10.1007/BF02584437
https://doi.org/10.1007/BF00318375
https://doi.org/10.1115/1.2891126
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

ORIGINAL RESEARCH
published: 10 October 2019

doi: 10.3389/fnbot.2019.00082

Frontiers in Neurorobotics | www.frontiersin.org 1 October 2019 | Volume 13 | Article 82

Edited by:

Guang Chen,

Tongji University, China

Reviewed by:

Liu Xiang Yong,

Tongji University, China

Rui Yan,

Sichuan University, China

*Correspondence:

Hongmin Li

lihongmin0110@gmail.com

Luping Shi

lpshi@mail.tsinghua.edu.cn

Received: 25 March 2019

Accepted: 20 September 2019

Published: 10 October 2019

Citation:

Li H and Shi L (2019) Robust

Event-Based Object Tracking

Combining Correlation Filter and CNN

Representation.

Front. Neurorobot. 13:82.

doi: 10.3389/fnbot.2019.00082

Robust Event-Based Object Tracking
Combining Correlation Filter and
CNN Representation
Hongmin Li* and Luping Shi*

Department of Precision Instrument, Center for Brain-Inspired Computing Research, Tsinghua University, Beijing, China

Object tracking based on the event-based camera or dynamic vision sensor (DVS)

remains a challenging task due to the noise events, rapid change of event-stream shape,

chaos of complex background textures, and occlusion. To address the challenges, this

paper presents a robust event-stream object tracking method based on correlation filter

mechanism and convolutional neural network (CNN) representation. In the proposed

method, rate coding is used to encode the event-stream object. Feature representations

from hierarchical convolutional layers of a pre-trained CNN are used to represent the

appearance of the rate encoded event-stream object. Results prove that the proposed

method not only achieves good tracking performance in many complicated scenes with

noise events, complex background textures, occlusion, and intersected trajectories, but

also is robust to variable scale, variable pose, and non-rigid deformations. In addition,

the correlation filter-based method has the advantage of high speed. The proposed

approach will promote the potential applications of these event-based vision sensors

in autonomous driving, robots and many other high-speed scenes.

Keywords: event-based vision, object tracking, dynamic vision sensor, convolutional neural network,

correlation filter

INTRODUCTION

Different from the traditional frame-based imager, event-based camera, or dynamic vision sensor
(DVS) converts the temporal contrast of the light intensity into spatiotemporal, sparse event
streams (Lichtsteiner et al., 2008; Serrano-Gotarredona and Linares-Barranco, 2013; Brandli et al.,
2014). DVS has the advantages of low information redundancy, high dynamic range, and high speed
in visual sensing, and has the potential applications in the high-speed scenes. Recently, DVS has
been used for estimating the high-speed optical flow and intensity field (Kim et al., 2008; Bardow
et al., 2016). A visual processing system based on event camera demands low energy consumption.
The outputted events are represented in the form of Address-Event Representation (AER) (Boahen,
2000). AER is often utilized to model the signal of neural systems, like the retina using discrete time
events to convey information, and other spike coded neural systems in living organisms.

Visual tracking has a wide range of applications in the fields of autonomous driving, robot
vision, trajectory analysis and so on. When an object is detected at a certain moment, it is often
useful to track that object in subsequent recordings. Many works of object tracking based on
the retina-inspired DVS sensors have been reported (Litzenberger et al., 2006; Conradt et al.,
2009; Schraml and Belbachir, 2010; Drazen et al., 2011; Ni et al., 2012, 2015; Piatkowska et al.,
2012; Zhenjiang et al., 2012; Saner et al., 2014; Zhu et al., 2017). However, event-based object
tracking is challenging due to the significant appearance variations caused by the noise events,

100

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2019.00082
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2019.00082&domain=pdf&date_stamp=2019-10-10
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:lihongmin0110@gmail.com
mailto:lpshi@mail.tsinghua.edu.cn
https://doi.org/10.3389/fnbot.2019.00082
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00082/full
http://loop.frontiersin.org/people/442169/overview
http://loop.frontiersin.org/people/365765/overview

Li and Shi Event-Based Object Tracking

complex background textures, occlusion and randomness of
event generating in each pixel circuit. Firstly, events stimulated
by the contour and textures of the object are easy to be
confused by events from the background objects. If the target
event-stream object has a similar spatiotemporal shape with
that of a background object, a tracker based on simple feature
representation would be easily confused. Besides, the event-
stream shape of the non-rigid object changes and deforms
all the time, which demands a more discriminative feature
representation. Figure 1 shows some successive reconstructed
frames from several event-stream recordings. The ground-truth
position of the target object is shown with a bounding box in each
segment. From the pictures, we can see that the appearance of the
target event-stream object changes obviously even between two
adjoining segments, which demands a robust tracker for tracking
the rapid changed appearance.

This paper presents a robust event-stream pattern tracking
method based on correlation filter (CF) mechanism. Hierarchical
convolutional layers of a convolutional neural network (CNN)
are used to extract the feature representation from rate coding
frame of event streams. The performance of the proposedmethod

FIGURE 1 | Some example reconstructed frames from several event-stream recordings (From top to bottom are the “Horse toy” from DVS128 sensor, “Vid_B_cup,”

“Vid_J_person_floor,” and “Vid_E_person_part_occluded” from DAVIS sensor). The appearance of the target object (in bounding box with green line) changes

obviously for the noise events, background texture, and randomness in event-generating of the pixels.

is evaluated on the DVS recordings of several complicated visual
scenes. Among the recordings, three are captured by a DVS128
sensor (Lichtsteiner et al., 2008) by ourselves and the rest are
from an event-stream tracking dataset (Hu et al., 2016) captured
by a DAVIS sensor (Brandli et al., 2014). The results prove
that the proposed method can successfully track the objects in
some visual scenes with noise events, complicated background
textures, occlusion, and intersected trajectories. This is because
we use features from multiple CNN layers to represent the
appearance of the target object which combines semantics that
are robust to significant appearance variations and spatial details
that are effective for precise localization.

Related Works
Object tracking methods based on event cameras can be
classified into two categories. The first category is the event-
driven mechanism in which each incoming event is processed
and determined whether it belongs to the target object. In
Litzenberger et al. (2006) implemented a continuous clustering
of AER events and tracking of clusters. Each new event was
assigned to a cluster based on a distance criterion and then the

Frontiers in Neurorobotics | www.frontiersin.org 2 October 2019 | Volume 13 | Article 82101

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Li and Shi Event-Based Object Tracking

clusters weight and center position was updated. In addition,
point cloud method is also introduced to model the event-stream
object. In Ni et al. (2015) proposed an iterative closest point
based tracking method by providing a continuous and iterative
estimation of the geometric transformation between the model
and the events of the tracked object. In Ni et al. (2012), the
authors applied the iterative closest point tracking algorithm to
track a microgripper position in an event-based microrobotic
system. One disadvantage of these kinds of methods is that noise
events occur will cause the tracker to make a wrong inference.
Adding noise event filtering modules to the tracking system will
unavoidably filter many informative events while increase the
computational complexity of the system. In addition, although
these event-based sensors are based on the event-driven nature,
it is still a difficult task to recognize an object from each single
event. The second category is based on feature representation
of the target object. In Zhu et al. (2017), the authors proposed
a soft data association modeled with probabilities relying on
grouping events into a model and computing optical flow after
assigning events to the model. In Lagorce et al. (2014), proposed
an event-based multi-kernel algorithm, and various kernels, such
as Gaussian, Gabor, and arbitrary user-defined kernels were used
to handle the variations in position, scale and orientation. In Li
et al. (2015), the authors prosed a compressive sensing based
method for the robust tracking based on the event camera.
The representation or appearance model of event-stream object
is based on features extracted from the multi-scale space with
a data-independent basis and employs non-adaptive random
projections that preserve the structure of the feature space
of objects.

The core of most modern trackers is a discriminative classifier
to distinguish the target from the surrounding environment. In
computer vision, CF based methods has enjoyed great popularity
due to the high computational efficiency with the use of fast
Fourier transforms. In Bolme et al. (2010) learned a correlation
filter over luminance channel the first time for real-time visual
tracking, named MOSSE tracker. In Henriques et al. (2012,
2015), a kernelized correlation filter (KCF) is introduced to allow
non-linear classification boundaries. Nowadays, features from
convolutional neural network (CNN) are used to encode the
object appearance and achieved good performance (Danelljan
et al., 2015; Ma et al., 2015). In Danelljan et al. (2015), the
authors proposed a method combining activations from the
convolutional layer of a CNN in discriminative correlation filter
based tracking frameworks, achieving a superior performance
by using convolutional features compared to standard hand-
crafted feature representations. They also show that activations
from the first layer provides superior tracking performance
compared to the deeper layers of the network. In Ma et al. (2015),
they exploit the hierarchies of convolutional layers as a non-
linear counterpart of an image pyramid representation and these
multiple levels of abstraction to improve tracking accuracy and
robustness. They demonstrate that representation by multiple
layers of CNN is of great importance as semantics are robust to
significant appearance variations and spatial details are effective
for precise localization. Although feature-based methods show
robustness and real-time capability, themost serious defect is that

such algorithms should accumulate the events in a time window
and then perform feature extraction. Then the length of the time
window may be different under different scenes.

METHODOLOGY

Temporal Contrast Pixel
The pixel of the DVS sensor is a type of temporal contrast
pixel which only responds to the temporal contrast of the light
intensity in the scene and generates a temporal event whenever
the brightness change exceeds a pre-defined threshold. Each
event is a quadruple (x, y, t, p), where (x, y) denotes the positions
of the pixel, t denotes the time when the event is generated, the
polarity p = 1 denotes the increasing brightness and p = −1
denotes the decreasing brightness. This temporal contrast pixel
has the advantage of high dynamic range because it needs not
to respond to the absolute light intensity. The time stamp of
each event has the temporal resolution of microsecond. Then
the DVS sensor is suitable to capture the dynamic scenes with
high-speed changes.

In this work, we use event-stream recordings from both
DVS128 and DAVIS sensors to evaluate the performance of the
proposed method. Both sensors are based on the same event-
generatingmechanism. As the name of the sensor shows, DVS128
has the spatial resolution of 128 × 128. DAVIS is a new retina-
inspired, event-based vision sensor with the spatial resolution of
240× 180.

Although these kinds of sensors are based on an event-driven
nature, it remains a difficult task to recognize an object from a
single event. Many works have accumulated the event stream into
multiple segments on which to extract feature for information
processing, such as the event-stream object display in jAER open-
source tool. There exist two accumulating methods, i.e., hard
events segmentation (HES) and soft events segmentation (SES).
HES divides the event flow into segments using fixed time slices
or fixed number of events. Different from HES, SES adaptively
obtains the segments according to the statistical characteristics
of the events based on an event responding neuron, such as the
leaky-integration-firing neuron.

For comparison, we segment the event streams into the same
number of segments with the items of the groundtruth. Rate
coding is utilized to encode the visual information of the event-
stream object. Intuitively, each pixel value is represented as the
number of events generated by this pixel within the segment.
Event rate of the temporal contrast pixel can be represented
as follows,

Rate(t) ≈
TCON(t)

θ
=

1

θ

d ln(I)

dt
(1)

where TCON represents the temporal contrast, and I(t) is the
photocurrent. Within a time window, the physical meaning of
the number of events of a pixel represents the frequency of
which the temporal intensity change exceeds the threshold. In
rate coding, the serious temporal noise of the events is suppressed
by integrating the events of each pixel in the segment.

Frontiers in Neurorobotics | www.frontiersin.org 3 October 2019 | Volume 13 | Article 82102

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Li and Shi Event-Based Object Tracking

Correlation Filter Framework
Generally, a CF tracker learns a discriminative classifier and
finds the maximum value of the correlation response map as
the estimation of the position of the target object. The resulting
classifier is a 2-dimensional correlation filter which is applied
to the feature representation. Circular correlation is utilized in
CF framework for efficiently train. Multi-channel feature maps
from multiple layers of a deep CNN are used as representation of
rate-coding event-stream object. Feature maps of the l-th layer is
denoted as xl with the size of H × W × C, where H, W and C
denote the width, height, and channel number, respectively. The
correlation filter ft has the same size with the feature maps in the
current event frame t. In CF framework, the correlation filter is
trained by solving a linear least-squares problem as follows,

w = argmin
ft

∑

h,w

∥

∥

∥
ft · x

l
h,w − yh,w

∥

∥

∥

2
+ λ

∥

∥ft
∥

∥

2

2
(2)

where xl
h,w

demotes the shifted sample. hε{0,1,2,. . . ,H-1}, wε{0,
1, 2, . . . , W-1}. yh,w is the Gaussian function label, and
where λ is a regularization parameter (λ > 0). yh,w =

exp

(

−
(h−H/2)

2
+(w−W/2)2

2σ 2

)

, where σ is the kernel width.

The minimization problem in (2) can be solved in each
individual feature channel using fast Fourier transformation
(FFT). We use the capital letters as the corresponding Fourier
transform of the signal. The learned correlation filter in frequency
domain on the c-th, cε{1, 2, . . . , C} channel is as follows,

Fc =
Y ⊙ X

c

∑C
i=1 X

i ⊙ X
i
+ λ

(3)

where the operation ⊙ denotes the element-wise product, Y is
the Fourier transformation form of y={yh,w | hε{0, 1, 2, . . . ,H-1},
wε{0, 1, 2, . . . ,W-1}}, and the bar means complex conjugation. zl

with size of H × W × C represents the feature maps of the l-th
layer of the neural network. The l-th correlation response map of
size H×W can be calculated as follows,

rl = ξ−1(

C
∑

c=1

Fc ⊙ Z
c
) (4)

where the operation ξ −1 denotes the inverse FFT transform.
The position of maximum value of the correlation response map
rl is used as the estimation of the target location on the l-th
convolutional layer.

Representation Based on Convolutional
Neural Network
In this paper, hierarchical convolutional feature representation
is used for encoding the appearance of the event-stream object.
An imagenet-pretrained 16-layer classification network (VGG-
Net-16)1 implemented based on the MatConvNet library is

1The model can be download from: https://pan.baidu.com/s/

1QWl6zw4DpMSCDg2X-Mb7mAA

used in our method for feature extraction. Figure 2 shows the
network architecture of the VGG-Net-16. Hierarchical feature
representation are obtained with the CNN forward propagation.
Event streams in a short duration are integrated into a rate
coding map which is taken an the input of CNN. As the input
of the original VGGNet are three-channel, we set each channel
of the input layer equal to the rate coding map. As the pooling
operation would reduce the spatial resolution with increasing
depth of convolutional layers, we first remove the layers higher
than the conv3_3 layer and the output of conv1_1, conv2_2, and
conv3_3 are taken as the feature. Multiple convolutional layers
are combined to encode the changed appearance of the event-
stream object. Table 2 shows the spatial size and channels of the
feature maps of the input layer, and three different convolutional
layers. Instead of resizing the size of the input rate coding maps
to equal the size of the input layer of CNN (i.e., 224 × 224)
in Ma et al. (2015), we use the resulted model parameters of
each layer to perform convolutional operation on the original
input. In this work, we test some hierarchical composition of
different convolutional layers for feature representation and
found that the representation of combination of multiple layers
of conv1_1, conv2_2, and conv3_3 could achieved a satisfactory
tracking performance.

EXPERIMENTAL RESULTS AND
DISCUSSION

In this section, a series of experiments on several event-stream
recordings are presented. The metric used in this paper is the
center location error. We labeled the ground-truth position
of tracked object manually. Section 4.1 introduces the event-
stream tracking dataset on which we perform the tracking
experiments. In section 4.2, we evaluate the influence of two
hyper-parameters. Section 4.3 presents the tracking speed over
different convolutional layers of CNN. In section 4.4, we compare
the performance of the proposed method with some other event-
stream tracking methods.

FIGURE 2 | Network architecture of the VGG-Net-16.

Frontiers in Neurorobotics | www.frontiersin.org 4 October 2019 | Volume 13 | Article 82103

https://pan.baidu.com/s/1QWl6zw4DpMSCDg2X-Mb7mAA
https://pan.baidu.com/s/1QWl6zw4DpMSCDg2X-Mb7mAA
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Li and Shi Event-Based Object Tracking

TABLE 1 | Challenges of each recording.

Challenge Noise event Complicated background Occlusion Intersected trajectories Deformation Scale variation Pose variation

Digit3 1 0 0 0 0 1 0

Horse toy 1 0 0 0 1 1 1

Human face 1 0 0 0 1 1 1

Sylvestr 1 0 0 0 1 1 1

Vid_B_cup 1 1 0 0 0 0 1

Vid_C_juice 1 1 0 1 0 1 0

Vid_person_part_occluded 1 1 1 0 0 0 0

Vid_J_person_floor 1 1 1 1 1 1 1

If the recording (in the row) has this challenge (in the column), then the corresponding value is set to 1, otherwise 0.

Event-Stream Recordings
Eight event-stream recordings with labeled ground truth data
are used to evaluate the proposed method. Among them, three
recordings were captured by a DVS128 sensor by ourselves, and
the rest are from an event-stream tracking dataset captured by a
DAVIS sensor.

A. Three DVS128 recordings2 Three event-stream recordings
of three different scenes were captured with a DVS128 device.
These recordings have the same spatial resolution of 128 ×

128. We divided each recording into multiple segments and in
each segment, we label the position and the size of the target
object with bounding boxes. The first recording (“Digit3”) is a
scene containing several digits. The task is to track the digit3
in the event streams. This recording has a time range of about
38.8 s which is divided into 767 segments. The second recording
(“Horse toy”) is a moving human with a horse toy in his hand.
The task is to track the horse in the event streams. This recording
has a time duration of about 17.3 s and is divided into 347
segments. The appearance of the toy changed quickly with much
rotation and deformation in the recording. The third recording
(“Human face”) has a duration of about 17.1 s and is divided in
343 segments. This task is to track the face of a human. The
human face moved quickly with rotation and deformation and
the appearance of the event stream changed all the time, which
make the task difficult.

B. DAVIS recordings3 Yuhuang Hu et al. (2016) proposed an
event-stream tracking dataset with a DAViS240C camera which
has a spatial resolution of 240× 180. In some tracking sequences
of this tracking dataset, the target objects are still, or cannot be
distinguished from the background. We chose five recordings
from this dataset and re-labeled the bounding boxes of the target
objects because the provided bounding boxes in the dataset
seem to have a little shift compared to the accurate positions of
the target objects. These chosen five recordings are “Sylvestr,”
“Vid_B_cup,” “Vid_C_juice,” “Vid_E_person_part_occluded,”

2The DVS128 recordings and the groundtruth, named “DVS recordings

and groundtruth.zip” can be download from: https://figshare.com/s/

70565903453eef7c3965
3The DAVIS recordings and the groundtruth, named “DAVIS recordings

and groundtruth.zip” can be download from: https://figshare.com/s/

70565903453eef7c3965

and “Vid_J_person_floor,” and are divided into 1344, 629, 404,
305, and 388 segments, respectively.

C. Challenges in each recording. We list the challenges in each
recording as show in Table 1. Seven challenges are taken into
consider, including the noise events, complicated background,
occlusion, intersected trajectories, deformation, scale variation
and pose variation. One or several challenges are contained in
each recording.

Robustness to Hyperparameters
The proposed event-stream pattern tracking method requires the
specification of two hyparameters, i.e., the event number in each
segment and the convolutional layers for feature representation.
To investigate the influence of these two hyperparameters,
we performed a series of experiments on several event-
stream recordings.

A. Event number in each segment. We investigate the influence
of the number of events in each segment on several recordings,
including the “Horse toy” fromDVS128 sensor and the “Sylvestr,”
“Vid_J_person_floor” from DAVIS sensor. Figure 3 shows the
tracking trajectory of the proposed tracker under different event
number in each segment. The change of the x position and y
position of the center of the tracker along time are shown. As
the number of segments would be different from that of the
groundtruth with a different event number in each segment, it
would be impossible to compare the location of the trackers
when both have different number of segments. Then we use the
index of the events to represent the time coordinate. We plot
the curve of the x position and y position of the tracker over
the index of events. Results show that the proposed method is
robust to the number of events in each segment by comparing
the degree of proximity of the trajectory of the tracker and the
groundtruth. The effectiveness of the proposed method is owing
to the discriminative feature representation transferred from the
multiple layers of a pre-trained CNNon the computer vision task.
The proposed method has many potential applications in many
the high-speed scenes with less events in each time window.

B. Feature map from different layers in the CNN. We
investigate the influence of different convolutional layers of
VGG-Net-16 model on the tracking performance. Feature
representations with four kinds of combination of convolutional
layers, i.e., the Conv1_1 convolutional layer, the Conv2_2

Frontiers in Neurorobotics | www.frontiersin.org 5 October 2019 | Volume 13 | Article 82104

https://figshare.com/s/70565903453eef7c3965
https://figshare.com/s/70565903453eef7c3965
https://figshare.com/s/70565903453eef7c3965
https://figshare.com/s/70565903453eef7c3965
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Li and Shi Event-Based Object Tracking

FIGURE 3 | Tracking performance under different event number per time bin on three event-stream recordings (from top to bottom are “Horse toy,” “Sylvestr,” and

“Vid_J_person_floor” scenes, respectively). The x (left) and y (right) positions of the center of the tracker over the time are displayed. We use the index of event to

represent the time coordinate, and the * mean multiplication.

layer, the Conv3_3 layer, and the composition of the three
convolutional layers were evaluated. Table 2 shows the
spatial size and dimensionality of the feature maps of the
input layer, and three different convolutional layers. All the
DAVIS recordings (“Sylvestr,” “Vid_B_cup,” “Vid_C_juice,”
“Vid_E_person_part_occluded,” and “Vid_J_person_floor”)
are used in this test. For the “Vid_B_cup” scene, the
tracking would fail when a single convolutional layer or a
composition of two layers (Conv1_1 or Conv2_2 or Conv3_3)
is used. In “Vid_B_cup,” the target cup is moved over a
complicated background, then the events from the target

object are very easy to be mixed up with the events from
background. Figure 4 shows the metric results on the rest
four event-stream recordings with different convolutional
layers. Feature representation from the higher convolutional
layers results in better tracking performance. For the more
complicated scenes with complex background, such as the
“Vid_B_cup,” combination of hierarchical feature representation
from multiple convolutional layers is required for effective
object tracking. This is because the feature representation
from multiple convolutional layers combines the low-level
texture features and high-level semantic features and can

Frontiers in Neurorobotics | www.frontiersin.org 6 October 2019 | Volume 13 | Article 82105

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Li and Shi Event-Based Object Tracking

handle the rapid change of the appearance of the target
object. While for the relatively simple scenes with less
noise events and simple background textures, less and
lower convolutional layers result in effective tracking with
a higher speed.

Tracking Speed Under Different Layers
In this section, we investigate the tracking speed of the
proposed method on several recordings. The speed is measured
over different convolutional layers of the employed CNN.
Table 3 shows the results of tracking speed on five DAVIS
recordings. We measure the tracking speed using the unit of
segments per second which is similar to the frame per second
in the computer vision tracking. In the experiments, a PC
machine with Intel(R) Core(TM)i5-7300HQ CPU @ 2.5 GHz
is used. We did not present the measurement result on
some convolutional layers in some event-stream recordings

TABLE 2 | Spatial size and channels of the feature maps from three different

convolutional layers of the employed network.

Input Conv1_1 Conv2_2 Conv3_3

Spatial size M × N M × N M/2 × N/2 M/4 × N/4

Channels 3 64 128 256

Input layer denotes the input rate coding map, after the necessary preprocessing steps.

(such as the Conv1_1, and Conv2_2 in the “Vid_C_ juice”
scene) which have failed in the tracking of the corresponding
target object.

Intuitively, high-level representation requires more
computational operations, which leads to the decrease of
the tracking speed. In the proposed method, the precision and
the speed are a tradeoff. In the simple scenes, such as monitoring
an object with a fixed sensor, low-level convolutional layers
are enough for effectively tracking with high speed. In other
complicated scenes such as complicated background textures
or moving DVS sensor, high-level convolutional layers are
demanded for accurate tracking, which limits the tracking speed.
In fact, due to the high computational efficiency in the frequency

TABLE 3 | Tracking speed under different convolutional layers of the employed

network.

Event recordings Conv1_1 Conv2_2 Conv3_3 All

Sylvestr 114.1 68.8 38.2 30.1

Vid_C_juice – – 37.8 29.8

Vid_E_person_part_occluded – 68.5 37.9 29.2

Vid_J_person_floor – 68.3 38.1 29.0

Vid_B_cup – – – 29.3

The tracking speed is measured by the segments per second. We measure the tracking

speed on the DAVIS recordings.

FIGURE 4 | Tracking performance with different feature representation from different convolutional layers of the employed CNN.

Frontiers in Neurorobotics | www.frontiersin.org 7 October 2019 | Volume 13 | Article 82106

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Li and Shi Event-Based Object Tracking

domain of the CF mechanism, the proposed method achieved
relatively high tracking speed even using high-level feature map.

Comparison With Other Methods
In this section, we compare the performance of the proposed
method to several other event-stream pattern tracking methods.
We perform the experiments on all the eight event-stream
recordings. In the first place, we introduced the four other
tracking methods as follows:

A. Three Tracking Methods in jAER Software
These three methods are based on the three event filters in
jAER source available within the jAER sourceforge repository,
including “Rectangular Cluster Tracker,” “Einstein Tracker,” and
“Median Tracker,” respectively. Since the three methods have
failed in the more complicated scenes, we only provide the
tracking results of the three methods on the three simple scenes
captured by DVS128 sensor.

B. Compressive Tracking-Based Rate Coding Feature
This is a feature-based event-stream tracking method
based on compressive sensing and has achieved good
performance on some simple scenes captured by DVS128.
The compressive tracking learns a classifier on the compressive
coding of multi-scale haar-like feature extracted on the
rate coding map. We provide the results of this method
on all the event-stream recordings for comparison with the
proposed method.

Figure 5 shows the comparison results of the proposed
method with all the four methods on the DVS128 recordings.
Center location error is used to measure the tracking
performance. Results show that the proposed tracking method
achieves the best performance. Three tracking methods in
jAER software show poor tracking performance. The event-
driven jAER methods often failed to assign each event to the
accurate position or cluster of the target object. Compared
to the compressive tracking method, the proposed method
achieved better performance owning to the more discriminative
CNN feature presentation than the haar-like feature in the
compressive tracking.

On the five DAVIS recordings, we only compared the tracking
performance of the proposed method with the compressive
tracking method because the three tracking methods in jAER
software fail to track the target object in the more complicated
scenes. Figure 6 shows the tracking location precision of the two
methods. The proposed method achieved better performance on
the five DAVIS recordings. Especially in the “Vid_B_cup” scene
where many objects in the background have the same shape with
the target object “cup,” the proposed tracker can track the target
object correctly. Simple hand-crafted feature representation
cannot handle many complicated scenes with noise events,
complicated background textures, rapid changed appearance,
and occlusion. By combining the low-level texture features and
high-level semantic features, the feature representation from
multiple convolutional layers can handle the complicated scenes
very well. Results demonstrate that the proposed method is

FIGURE 5 | Tracking results on three event-stream recordings captured by DVA128 sensor (from left to right are Digit3, Horse toy, and Human face, respectively).

Comparison were done with four other tracking methods.

Frontiers in Neurorobotics | www.frontiersin.org 8 October 2019 | Volume 13 | Article 82107

Li and Shi Event-Based Object Tracking

FIGURE 6 | Tracking results on five event-stream recordings captured by DAVIS sensor, compared with the compressive sensing-based tracking methods.

robust to many challenging visual scenes with better tracking
performance than other methods.

Figure 7 shows some tracking examples by integrating the
events into reconstructed frames. In the tracking process, we
did not change the scale of the tracker. The proposed tracker
tracked the target object with high location precision while the
compressive sensing-based tracker drifts very easily. Even with
complicated background and occlusion, our tracker achieved
very high tracking precision.

CONCLUSION

In this work, we proposed a robust event-stream object
tracking method based on the CF tracking mechanism. Our
method overcomes some challenges in the event-stream tracking,
such as the noise events, chaos of the complex background
texture, occlusion, and randomness of event generating in
the pixel circuit. Rate coding is used to encode the visual

information of the target event-stream object. Correlation
response map is computed on the feature representation
from the hierarchical convolutional layers of a pre-trained
deep CNN.

The proposed method shows good performance in many

complicated visual scenes. Compared with other feature-based

methods, our method is more robust in many visual scenes
with noise and complicated background textures. Compared
with other event-driven method, the proposed method has
real-time advantage on event streams with large number of
events. To utilize each single event for tracking and updating the
appearance of the target object without segment reconstruction
is a more interesting and challenging task which has lied in
the heart of current event-based vision research and will be
explored in the future. In event-driven tracking tasks, how
to suppress the noise events is an import step for correct
tracking as the noise events will lead the tracker to make
wrong estimation.

Frontiers in Neurorobotics | www.frontiersin.org 9 October 2019 | Volume 13 | Article 82108

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Li and Shi Event-Based Object Tracking

FIGURE 7 | Comparison of the proposed tracking method with the compressive sensing based method on example segments from the five DAVIS recordings. From

top to bottom are the “Sylvestr,” “Vid_B_cup,” “Vid_C_juice,” “Vid_E_person_part_occluded,” and “Vid_J_person_floor,” respectively. The bounding boxes with green,

red, and blue color represent the groundtruth, our proposed tracker and the compressive sensing based tracker, respectively.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this
study. This data can be found here: https://figshare.
com/s/70565903453eef7c3965; https://figshare.com/s/
70565903453eef7c3965.

AUTHOR CONTRIBUTIONS

HL proposes the algorithm and design the experiment setup.
Besides, data analysis and classification metric are also done by

HL. LS supports the research of the neuromorphic vision and
contributes the principle of event-based object tracking.

FUNDING

The work was partially supported by the Project of NSFC (No.
61327902), Beijing program on study of functional chip and
related core technologies of ten million class of brain inspired
computing system (Z151100000915071), and Study of Brain-
Inspired Computing System of Tsinghua University program
(20141080934, 20151080467).

Frontiers in Neurorobotics | www.frontiersin.org 10 October 2019 | Volume 13 | Article 82109

https://figshare.com/s/70565903453eef7c3965
https://figshare.com/s/70565903453eef7c3965
https://figshare.com/s/70565903453eef7c3965
https://figshare.com/s/70565903453eef7c3965
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Li and Shi Event-Based Object Tracking

REFERENCES

Bardow, P., Davison, A. J., and Leutenegger, S. (2016). “Simultaneous optical

flow and intensity estimation from an event camera,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (Las Vegas, NV),

884–892. doi: 10.1109/CVPR.2016.102

Boahen, K. A. (2000). Point-to-point connectivity between neuromorphic chips

using address events. IEEE Trans. Circ. Syst. II Anal. Digit. Signal Process. 47,

416–434. doi: 10.1109/82.842110

Bolme, D. S. Ross Beverid, J., Drap, B. A., and Lui, Y. M (2010). “Visual object

tracking using adaptive correlation filters,” in IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) (San Francisco, CA).

Brandli, C., Berner, R., Yang, M., Liu, S. C., and Delbruck, T. (2014). A 240× 180

130 dB 3 µs latency global shutter spatiotemporal vision sensor. IEEE J. Solid

State Circ. 49, 2333–2341. doi: 10.1109/JSSC.2014.2342715

Conradt, J., Cook, M., Berner, R., Lichtsteiner, P., Douglas, R. J., and Delbruck, T.

(2009). “A pencil balancing robot using a pair of AER dynamic vision sensors,”

in 22nd IEEE International Symposium on Circuits and Systems (Taipei).

doi: 10.1109/ISCAS.2009.5117867

Danelljan, M., Häger, G., Shahbaz Khan, F., and Felsberg, M. (2015).

“Convolutional features for correlation filter based visual tracking,” in

IEEE International Conference on Computer Vision Workshops (Santiago).

doi: 10.1109/ICCVW.2015.84

Drazen, D., Patrick, L., Philipp, H., Tobias, D., and Atle, J. (2011). Toward real-

time particle tracking using an event-based dynamic vision sensor. Exp. Fluids

51, 1465–1469. doi: 10.1007/s00348-011-1207-y

Henriques, J. F., Caseiro, R., Martins, P., and Batista, J. (2015). High-speed tracking

with kernelized correlation filters. IEEE Trans. Pattern Analy. Mach. Intell. 37,

583–596. doi: 10.1109/TPAMI.2014.2345390

Henriques, J. F., Caseiro, R., Martins, R., and Batista, B. (2012). “Exploiting

the circulant structure of tracking-by-detection with kernels,” in

European Conference on Computer Vision (Berlin, Heidelberg).

doi: 10.1007/978-3-642-33765-9_50

Hu, Y., Liu, H., Pfeiffer, M., and Delbruck, T. (2016). DVS benchmark datasets

for object tracking, action recognition, and object recognition. Front. Neurosci.

10:405. doi: 10.3389/fnins.2016.00405

Kim, H., Handa, A., Benosman, R., Ieng, S. H., and Davison, S. H. (2008).

Simultaneous mosaicing and tracking with an event camera. J. Solid State Circ.

43, 566–576. doi: 10.5244/C.28.26

Lagorce, X., Meyer, C., Ieng, S. H., Filliat, D., and Benosman, R. (2014).

Asynchronous event-based multikernel algorithm for high-speed visual

features tracking. IEEE Trans. Neural Netw. Learn. Syst. 26, 1710–1720.

doi: 10.1109/TNNLS.2014.2352401

Li, H., Jing, P., and Li, G. (2015). “Real-time tracking based on neuromrophic

vision. in Non-Volatile Memory Technology Symposium (NVMTS),” in

2015 15th Non-Volatile Memory Technology Symposium (NVMTS) (Beijing).

doi: 10.1109/NVMTS.2015.7457498

Lichtsteiner, P., Posch, C., and Posch, C. (2008). A 128 128 120 dB 15us latency

asynchronous temporal contrast vision sensor. IEEE J. Solid State Circ. 43,

566–576. doi: 10.1109/JSSC.2007.914337

Litzenberger, M., Posch, C., Bauer, D., Belbachir, A. N., Schon, P., Kohn,

B., et al. (2006). “Embedded vision system for real-time object tracking

using an asynchronous transient vision sensor,” in Digital Signal Processing

Workshop, 12th-Signal Processing Education Workshop, 4th (Teton National

Park, WY:IEEE), 173–178. doi: 10.1109/DSPWS.2006.265448

Ma, C., Huang, J. B., Yang, X., and Yang, M. H. (2015). “Hierarchical convolutional

features for visual tracking,” in IEEE International Conference on Computer

Vision (Santiago). doi: 10.1109/ICCV.2015.352

Ni, Z., Ieng, S. H., Posch, C., Régnier, S., and Benosman, R. (2015). Visual tracking

using neuromorphic asynchronous event-based cameras. Neural Comput. 27,

925–953. doi: 10.1162/NECO_a_00720

Ni, Z., Pacoret, C., Benosman, R., Ieng, S., and Régnier, S. (2012). Asynchronous

event-based high speed vision for microparticle tracking. J. Microscopy 245,

236–244. doi: 10.1111/j.1365-2818.2011.03565.x

Piatkowska, E., Nabil Belbachir, A., Schraml, S., and Gelautz, M. (2012).

“Spatiotemporal multiple persons tracking using dynamic vision

sensor,” in 2012 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition Workshops (Providence, RI), 35–40.

doi: 10.1109/CVPRW.2012.6238892

Saner, D., Wang, O., Heinzle, S., Pritch, Y., Smolic, A., Sorkine-Hornung, A., et al.

(2014). “High-speed object tracking using an asynchronous temporal contrast

sensor,” in 19th International Workshop on Vision, Modeling and Visualization

(Darmstadt), 87–94. doi: 10.2312/vmv.20141280

Schraml, S., and Belbachir, A. N. (2010). “Dynamic stereo vision system for

real-time tracking,” in IEEE International Symposium on Circuits and Systems

(ISCAS) (Paris). doi: 10.1109/ISCAS.2010.5537289

Serrano-Gotarredona, T., and Linares-Barranco, B. (2013). A 128x128

1.5% contrast sensitivity 0.9% FPN 3µs Latency4mWAsynchronous

frame-free dynamic vision sensor using transimpedance preamplifier.

IEEE J. Solid State Circ. 48, 827–838. doi: 10.1109/JSSC.2012.

2230553

Zhenjiang, N., Bolopion, A., Agnus, J., Benosman, R., and Regnier, S.

(2012). Asynchronsou event-based visual shape tracking for stable

haptic feedback in microrobotics. IEEE Trans. Robot. 28, 1081–1089.

doi: 10.1109/TRO.2012.2198930

Zhu, A. Z., Atanasov, N., and Daniilidis, K. (2017). “Event-based feature

tracking with probabilistic data association,” in 2017 IEEE International

Conference on Robotics and Automation (ICRA) (Singapore: IEEE), 4465–4470.

doi: 10.1109/ICRA.2017.7989517

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Li and Shi. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 11 October 2019 | Volume 13 | Article 82110

https://doi.org/10.1109/CVPR.2016.102
https://doi.org/10.1109/82.842110
https://doi.org/10.1109/JSSC.2014.2342715
https://doi.org/10.1109/ISCAS.2009.5117867
https://doi.org/10.1109/ICCVW.2015.84
https://doi.org/10.1007/s00348-011-1207-y
https://doi.org/10.1109/TPAMI.2014.2345390
https://doi.org/10.1007/978-3-642-33765-9_50
https://doi.org/10.3389/fnins.2016.00405
https://doi.org/10.5244/C.28.26
https://doi.org/10.1109/TNNLS.2014.2352401
https://doi.org/10.1109/NVMTS.2015.7457498
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1109/DSPWS.2006.265448
https://doi.org/10.1109/ICCV.2015.352
https://doi.org/10.1162/NECO_a_00720
https://doi.org/10.1111/j.1365-2818.2011.03565.x
https://doi.org/10.1109/CVPRW.2012.6238892
https://doi.org/10.2312/vmv.20141280
https://doi.org/10.1109/ISCAS.2010.5537289
https://doi.org/10.1109/JSSC.2012.2230553
https://doi.org/10.1109/TRO.2012.2198930
https://doi.org/10.1109/ICRA.2017.7989517
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

ORIGINAL RESEARCH
published: 16 October 2019

doi: 10.3389/fnbot.2019.00084

Frontiers in Neurorobotics | www.frontiersin.org 1 October 2019 | Volume 13 | Article 84

Edited by:

Pascual Campoy,

Polytechnic University of

Madrid, Spain

Reviewed by:

Subramanian Ramamoorthy,

University of Edinburgh,

United Kingdom

Michael Beyeler,

University of Washington,

United States

*Correspondence:

Florian Mirus

florian.mirus@bmwgroup.com

Received: 15 January 2019

Accepted: 26 September 2019

Published: 16 October 2019

Citation:

Mirus F, Blouw P, Stewart TC and

Conradt J (2019) An Investigation of

Vehicle Behavior Prediction Using a

Vector Power Representation to

Encode Spatial Positions of Multiple

Objects and Neural Networks.

Front. Neurorobot. 13:84.

doi: 10.3389/fnbot.2019.00084

An Investigation of Vehicle Behavior
Prediction Using a Vector Power
Representation to Encode Spatial
Positions of Multiple Objects and
Neural Networks
Florian Mirus 1,2*, Peter Blouw 3, Terrence C. Stewart 3 and Jörg Conradt 4

1 BMW Group, Research, New Technologies, Garching, Germany, 2Department of Electrical and Computer Engineering,

Technical University of Munich, Munich, Germany, 3 Applied Brain Research Inc., Waterloo, ON, Canada, 4Department of

Computational Science and Technology, KTH Royal Institute of Technology, Stockholm, Sweden

Predicting future behavior and positions of other traffic participants from observations

is a key problem that needs to be solved by human drivers and automated vehicles

alike to safely navigate their environment and to reach their desired goal. In this paper,

we expand on previous work on an automotive environment model based on vector

symbolic architectures (VSAs). We investigate a vector-representation to encapsulate

spatial information of multiple objects based on a convolutive power encoding. Assuming

that future positions of vehicles are influenced not only by their own past positions

and dynamics (e.g., velocity and acceleration) but also by the behavior of the other

traffic participants in the vehicle’s surroundings, our motivation is 3-fold: we hypothesize

that our structured vector-representation will be able to capture these relations and

mutual influence between multiple traffic participants. Furthermore, the dimension of

the encoding vectors remains fixed while being independent of the number of other

vehicles encoded in addition to the target vehicle. Finally, a VSA-based encoding allows

us to combine symbol-like processing with the advantages of neural network learning.

In this work, we use our vector representation as input for a long short-term memory

(LSTM) network for sequence to sequence prediction of vehicle positions. In an extensive

evaluation, we compare this approach to other LSTM-based benchmark systems using

alternative data encoding schemes, simple feed-forward neural networks as well as a

simple linear prediction model for reference. We analyze advantages and drawbacks

of the presented methods and identify specific driving situations where our approach

performs best. We use characteristics specifying such situations as a foundation for

an online-learning mixture-of-experts prototype, which chooses at run time between

several available predictors depending on the current driving situation to achieve the

best possible forecast.

Keywords: vehicle prediction, long short-termmemories, artificial neural networks, vector symbolic architectures,

online learning, spiking neural networks

111

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2019.00084
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2019.00084&domain=pdf&date_stamp=2019-10-16
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:florian.mirus@bmwgroup.com
https://doi.org/10.3389/fnbot.2019.00084
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00084/full
http://loop.frontiersin.org/people/641661/overview
http://loop.frontiersin.org/people/760584/overview
http://loop.frontiersin.org/people/183507/overview

Mirus et al. Vehicle Prediction With Vector-Powers

1. INTRODUCTION

The race to autonomous driving is currently one of the main
forces for pushing research forward in the automotive domain.
With highly automated vehicle prototypes gradually making their
way to our public roads and fully-automated driving on the
horizon, it seems to be a matter of time until we see robot taxis
or cars navigating us through urban traffic or heavy stop-and-go
on highways. One major reason for this development in recent
years is the rapid progress of artificial intelligence (AI), especially
the success of deep learning, which has shown remarkable results
in tasks essential for automated driving like object detection,
classification (Ciresan et al., 2012) and control (Bojarski et al.,
2016).

Predicting future behavior and positions of other traffic
participants from observations is essential for collision avoidance
and thus safe motion planning, and needs to be solved by
human drivers and automated vehicles alike to reach their desired
goal. However, future positions of vehicles not only depend on
each vehicle’s own past positions and dynamics like velocity
and acceleration, but also on the behavior of the other traffic
participants in the vehicle’s surroundings. Motion prediction
for intelligent vehicles in general has seen extensive research
in recent years (Polychronopoulos et al., 2007; Lawitzky et al.,
2013; Lefèvre et al., 2014; Schmüdderich et al., 2015) as it is a
cornerstone for collision-free automated driving. Lefèvre et al.
(2014) classify such prediction approaches into three categories,
namely physics-based, maneuver-based, and interaction-aware,
depending on their level of abstraction. Physics-based and
maneuver-based motion models consider the law of physics
and the intended driving maneuver, respectively as the only
influencing factors for future vehicle motion and ignore inter-
dependencies between the motion of different vehicles. There
exist a growing number of different interaction-aware approaches
to account for those dependencies andmutual influences between
traffic participants or, more generally, agents in the scene.
Probabilistic models like costmaps (Bahram et al., 2016) account
for physical constraints on the movements of the other vehicles.
Classification approaches categorize and represent scenes in a
hierarchy (Bonnin et al., 2012) based on the most generic ones
to predict behavior for a variety of different situations.

Data-driven approaches to behavior prediction mainly rely on

long short-term memory (LSTM) neural network architectures
(Hochreiter and Schmidhuber, 1997), which have proven to

be a powerful tool for sequential data analysis. Alahi et al.
(2016) model interactions in the learning network architecture
by introducing so-called social-pooling layers to connect several
LSTM each predicting the distribution of the trajectory position
of one agent at a time. Deo and Trivedi (2018a) adapted
the combination of LSTM networks for encoding vehicle
trajectories and (convolutional) social-pooling layers to account
for interactions to vehicle prediction in highway situations.
Altche and de La Fortelle (2017) use a LSTM network as
well, but they account for interaction by including distances
between the target vehicle and other agents directly in the
training data rather than adapting the network architecture.
A similar approach is proposed by Deo and Trivedi (2018b),

but they combine LSTM networks with an additional maneuver
classification network to predict future vehicle motion. One issue
in data-driven approaches to behavior prediction accounting for
relations between agents is that the number of other vehicles
is variable. If information about vehicles other than the target
are encapsulated in the input of the neural network, typically a
specific number of other vehicles of interest are manually chosen
a priori to avoid this issue (Altche and de La Fortelle, 2017; Deo
and Trivedi, 2018b). If the information about other vehicles is
encapsulated in the network architecture, it might be necessary
to train several networks depending on the situation at hand.

In this paper, we expand our previous work (Mirus et al.,
2018) on an automotive environment model based on VSAs
(Gayler, 2003). In contrast to the representation shown in Mirus
et al. (2018), this paper introduces a more sophisticated way of
encapsulating spatial information of multiple objects in semantic
vectors of fixed length. Therefore, we employ generalized
exponentiation of high-dimensional vectors, referred to as the
convolutive power, based on the VSA’s binding operation,
which in our case is circular convolution. We hypothesize that
structured vector representations will be able to capture relations
and mutual influence between traffic participants. For instance,
in a situation as shown in Figures 1A–C, the behavior of the
target vehicle, as depicted by a solid blue and dotted orange
line for past and future positions, respectively, is influenced
by the surrounding vehicles, as illustrated by solid and dotted
gray lines for past and future positions, respectively. The target
vehicle is approached from behind by a faster vehicle causing
it to eventually change its lane to the right, which, for now, is
still occupied by the ego-vehicle and another vehicle. All of these
external influences have an impact on the target vehicle’s motion
(and vice versa). As we aim for a model-free data representation,
we avoid introducing any physical constraints or restrictions
regarding our data-representation or the predicting models.

In this work, we consider our main contributions to be the
following: we present a representation of spatial information for
multiple objects in semantic vectors of fixed length using the
convolutive power.We use this representation as input for simple
feed-forward neural networks and more sophisticated LSTM-
based models and compare them against each other and a linear
predictor as the simplest baseline. We conduct a thorough and
detailed analysis for all of these models and show that by using
our vector representation with a simple network architecture
we can achieve results comparable to more complex models.
This is particularly interesting for mobile applications, such as
automated driving: combining our vector representation, which
allows to encode spatial positions of several objects as well
as efficient implementation in spiking neural networks (SNNs)
(Eliasmith, 2013), with a simple feed-forward SNN would allow
future deployment on dedicated, energy-efficient neuromorphic
hardware. In case the performance of the simpler feed-forward
networks is close enough to the more sophisticated ones, the
possibility of efficient deployment could be an advantage over
LSTMnetworks, which are by design harder to apply to dedicated
computing hardware (Chang and Culurciello, 2017). Finally,
we present a prototype of a mixture-of-experts online learning
system, that chooses at run-time between several models, which

Frontiers in Neurorobotics | www.frontiersin.org 2 October 2019 | Volume 13 | Article 84112

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

FIGURE 1 | Data visualization of one driving situation example from the On-board data set D1 (A–C) and one example from the NGSIM data set D2 (D–F). The dots

indicate the position of the vehicles and color-code the vehicle type (red = motorcycle, green = car, blue = truck, black = ego-vehicle), blue and orange lines show past

and future motion of the target vehicle whereas gray lines depict the other vehicles’ motion.

have been pre-trained offline, to achieve the best possible forecast.
We show, that this online learning approach is able to improve its
performance compared to the individual prediction models.

2. MATERIALS AND METHODS

2.1. Vector Symbolic Architectures
The term vector symbolic architectures (VSAs)—first coined by
Gayler (2003)—refers to a family of approaches for cognitive
modeling making use of distributed representations. The basic
idea behind all of those approaches is to represent structure
(e.g., cognitive concepts, symbols, or language) in a high-
dimensional vector space by mapping each entity to be
represented to a (possibly random) vector. One strength of VSAs
is that they offer the possibility to manipulate their entities
through algebraic operations, typically one addition-like and
multiplication-like operation each. Vectors, which represent basic
concepts not intended to be further decomposable and thus are
not constructed from other vectors using the VSA’s algebraic
operations, are called atomic vectors.

2.1.1. Prerequisites
In this paper, we adopt the semantic pointer architecture
(SPA) (Eliasmith, 2013), a variant of holographic reduced
representations (HRRs) originally introduced by Plate (1994),
to encode automotive scenes in high-dimensional vectors (note:

the source-code for all models presented in this paper can
be found at https://github.com/fmirus/spatrajectoryprediction).
Thus, atomic vectors are picked from the real-valued unit sphere
and the dot product serves as a measure of similarity. We
call two vectors similar, if their dot-product is higher than a
certain similarity threshold. The distribution of the dot-product
of two randomly chosen unit vectors has a mean of 0 and a
standard deviation of 1√

D
(Widdows and Cohen, 2014). Thus, the

similarity threshold is typically chosen as c√
D
for some constant

c, which is a similarity value that we would expect from two
randomly chosen vectors and only depends on the dimension
D of the vector space. Furthermore, the algebraic operations are
component-wise vector addition ⊕ and circular convolution ⊛,
which is defined as

z = v⊛ w with zj : =

D−1
∑

k=0

vkw(j−k) mod D (1)

for any two D-dimensional vectors v,w. One important property
of this operation is the fact (Bracewell, 2000, Chapter 6), that
circular convolution can efficiently be computed using the
discrete Fourier transform:

v⊛ w = IDFT
(

DFT(v)⊙ DFT(w)
)

, (2)

Frontiers in Neurorobotics | www.frontiersin.org 3 October 2019 | Volume 13 | Article 84113

https://github.com/fmirus/spa_trajectory_prediction
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

where ⊙ denotes element-wise multiplication, DFT and IDFT
denote the discrete Fourier transform and inverse discrete
Fourier transform, respectively. The neutral element regarding
circular convolution is 111 = (1, 0, · · · , 0). Furthermore, for any
vector v, the vector v̄ = (v0, vD−1, . . . , v1) is a pseudo-inverse
element with respect to circular convolution, meaning that the
vector derived from convolving them is similar to the neural
element, i.e., v ⊛ v̄ ≈ 1. Although we can also find an exact
inverse element v−1 for most vectors with v⊛ v−1 = 1, it is often
more useful to work with pseudo-inverses instead of exact inverse
elements, as they can become unstable in certain situations.
However, we call the special class of vectors for which the pseudo-
and exact inverse element coincide unitary vectors, i.e., v−1 = v̄.

Using Equation (2), we define the convolutive power of a vector
v by an exponent p ∈ R as

vp : = ℜ
(

IDFT
((

DFT0 (v)p
)

, . . . ,
(

DFTD−1 (v)p
)))

, (3)

whereℜ denotes the real part of a complex number and DFTi (v)

denotes the ith component of the vector DFT (v). Denoting the
set of unitary vectors by U, we state three essential properties

• All elements of U have unit length, i.e., we have ‖u‖ = 1 for
any vector u ∈ U.

• U is closed under convolutive exponentiation, i.e., up ∈ U for
any u ∈ U and p ∈ R.

• Convolution with unitary vectors preserves the norm, i.e.,
‖v‖ = ‖v⊛ u‖ for any v and any unitary vector u ∈ U.

2.1.2. Convolutive-Power Representation
In this paper, we adopt and improve the vector representation
for automotive scenes introduced in earlier work (Mirus et al.,
2018). Here, we introduce the convolutive vector-power shown
in Equation (3) for encoding spatial positions of multiple vehicles
and focus on investigating its expressive power. To create a
vocabulary V of atomic vectors, we assign a random real-valued
vector from the unit sphere to each category of dynamic objects
(e.g., car, motorcycle, truck) as well as random unitary vectors X
and Y to encode spatial positions. We use unitary vectors for X
and Y as they have unit length and are closed under convolutive
exponentiation. Therefore, by encoding spatial positions with
powers of unitary vectors, we avoid exploding lengths of
our final scene vectors, which would lead to additional noise
and unwanted behavior when using them as input for neural
networks. Furthermore, we use additional random ID-vectors
TARGET and EGO representing the target object to be predicted
and, if applicable, the ego-vehicle, respectively.

Given a situation as shown in Figure 1A with a sequence
of prior positions (xt , yt) for the target vehicle at time step
t ∈ {t0, . . . , tN} and equivalent sequences (xobj,t , yobj,t) for other
traffic participants, we encapsulate this positional information in
a scene vector

St = TARGET⊛ TYPEtarget ⊛ Xxt ⊛ Yyt

︸ ︷︷ ︸

target-vehicle

⊕
∑

obj

TYPEobj ⊛ Xxobj,t ⊛ Yyobj,t

︸ ︷︷ ︸

other objects

(4)

for each time step t. This yields a sequence of semantic scene
vectors St for t ∈ {t0, . . . , tN} encoding the past spatial
development of objects in the current driving situation. Figure 2
depicts the aforementioned scene vector representation: the left
plots show similarities (depicted as heat map) between the vector
St encoding the scene from Figure 1A and the vectors vi =

TARGET ⊛ TYPEtarget ⊛ Xx̄i ⊛ Yȳi for a sequence of discrete
position samples x̄i, ȳi. Similarly, the right plots show similarities
between St and CAR ⊛ Xx̄i ⊛ Yȳi visualizing all other objects
in the scene of type car. We observe clear peaks (bright yellow
areas) of higher similarities at the true positions of the encoded
objects depending on their type (e.g., car or truck) or if the object
is the target object of interest. Hence, we can encode spatial
information of several different objects in a sequence of semantic
vectors and reliably decode it back out. This allows us to encode
automotive scenes with varying number of dynamic objects in a
vector representation of fixed dimensionality.

2.2. Models
2.2.1. LSTM Networks
In this work, we use a long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997) network-architecture for
the prediction of vehicle positions. Our network consists of
one LSTM encoder and decoder cell for sequence to sequence
prediction, which means that the input and the final result of our
model is sequential data. The encoder LSTM takes positional data
for 20 past, equidistant time frames as input. That is, the input
data is a sequence of 20 items of either positions of the target
vehicle or a sequence of high-dimensional vectors encoding
this positional data (see sections 1, 2.3.4 for further details).
Thus, the resulting embedding vector encodes the history of
the input data over those 20 time frames. This embedding
vector is concatenated with additional auxiliary information
to aid the model when predicting the future trajectory of the
target vehicle. This auxiliary data is information, that is available
to the system when the prediction is to happen, i.e., sensory
data available at prediction time or future data about the ego-
vehicle, such as its own planned trajectory (see section 3.1.1 for
further details on this auxiliary data). Finally, the embedding
vector is used as input for the decoder LSTM to predict future
vehicle positions. The output of each model is a sequence of 20
positions of the target vehicle predicted over a certain temporal
horizon into the future. We use the same network architecture
for all encoding schemes of the input data and for both data
sets. However, the dimensionality of the input varies over the
different encoding schemes while the auxiliary information used
to enrich the embedding vector is different depending on the
data set (since only one data set is recorded from a driving
ego-vehicle). We describe these implementation choices in more
detail in section 3.1.1. Figure 3 visualizes the architecture of
our LSTM models indicating modules that change when varying
the encoding scheme by a dashed red border whereas parts
that change with the data set are highlighted through a dashed
blue border.

2.2.2. NEF Networks
As an alternative to the LSTM-models, we also considered a
much simpler single-hidden-layer network defined using the

Frontiers in Neurorobotics | www.frontiersin.org 4 October 2019 | Volume 13 | Article 84114

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

FIGURE 2 | Visualization of the convolutive vector-power representation of one particular driving situation over time at selected time-steps as a heat map of similarity

values for 512-dimensional vectors. The red circles indicate the measured position of the target vehicle.

neural engineering framework (NEF) (Eliasmith and Anderson,
2003). While this is usually used for constructing large-scale
biologically realistic neuron models (Eliasmith et al., 2012),
the NEF software toolkit Nengo (Bekolay et al., 2014) also
allows for traditional feed-forward artificial neural networks
using either spiking or non-spiking neurons. Spiking neurons
are of considerable interest for vehicle prediction algorithms
due to the potential for reduced power consumption when
run on hardware that is optimized for spiking neurons (i.e.,
neuromorphic hardware).

For these NEF networks, we use a single hidden layer
containing N neurons, with randomly generated (and
fixed) input weights, and use least-squares optimization
to compute the output weights. That is, given the hidden
layer spiking activity ai for the ith neuron (i.e., a sequence
of spikes)

ai
(

x(t)
)

=

mi
∑

j=1

h(t) ∗ δ(t − tj) =

mi
∑

j=1

h(t − tj), (5)

where δ denotes the delta function, h(t) is the post-synaptic
current produced by a single spike and tj are the mi spike times
of the ith neuron, we compute the network output y with output
weights di as

y(t) =

N
∑

i=1

ai
(

x(t)
)

di. (6)

If we have a desired y(t) for every given input to the network,
then we can provide that input, measure the resulting hidden
layer activity for each input, and then find the optimal di
values to make the network output match the desired output.
This is a much faster alternative to using gradient descent

rules (such as backpropagation). In particular, we find the di
that minimize

E =

∫

(

y(t)−

N
∑

i=1

ai
(

x(t)
)

di

)2

dx(t). (7)

As with any traditional network, we can have any number
of input, output, and hidden neurons, all following this
same process. The goal here is to provide a simple baseline
for comparison to the LSTM networks, to see what (if
any) performance gain is produced by the more complex
network approach.

2.2.3. Mixture-of-Experts Online Learning
Given that we have multiple models pi for i = 1, . . . ,M for
predicting vehicle positions, we also define mixture-of-experts
models. These are models where the output is a weighted sum
of the outputs from other models

vmix,t =
∑

p

Wp,tvp,t , (8)

where Wp,t is the weight and vp,t is the output value of the
prediction model p for prediction time t. If each model produces
a prediction of the x and y positions at N different time steps into
the future and we haveMmodels, w will be anM×N× 2 tensor.
In other words, the particular weighting of models for predicting
0.5 s into the future may be very different from the weighting
when predicting 5.0 s into the future.

The simplest way to generate these weights is to use standard
delta-rule learning

1Wp,t = κvp,t (vobserved,t − vmix,t)
︸ ︷︷ ︸

=ǫt

= κvp,tǫt . (9)

Frontiers in Neurorobotics | www.frontiersin.org 5 October 2019 | Volume 13 | Article 84115

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

FIGURE 3 | Visualization of our LSTM-based learning architecture. Modules that change with varying encoding scheme of the input data are highlighted through

dashed red borders whereas parts that change when varying the data set are highlighted through dashed blue borders.

FIGURE 4 | Visualization of the network architecture of the context-sensitive mixture-of-experts online learning system. Yellow boxes indicate the individual

components of the model, while the solid red line depicts the connection to decode out the weightsWp,t for the individual expert predictors from the neural population

encoding the context c as indicated by the green circles in the context component. The dotted green arrow indicates that the error signal is used to update the

weights of this connection using delta-rule learning.

where κ is a learning rate and ǫt = vobserved,t−vmix,t is the current
prediction error, that is, the error between the mixture model’s
output vmix,t and the target vehicle’s actual position vobserved,t . For
this paper, we initialize the weightsWp,t to be 1/M (i.e., an equal
weighting across allM models).

The above model attempts to find the best weighting of the
offline models based only on the prediction error. However,
it is also possible to learn a weighting that is based on the
current context. That is, instead of learning W, we can learn
the function fW(c) = W, where c is some currently available
sensor information.

Since neural networks are good function approximators, we
implement this context-sensitive mixture-of-experts model as
a single-hidden-layer artificial neural network (ANN) whose
inputs are c and whose outputs are W. As with the context-
free mixture-of-experts model, we initialize the output to
always produce 1/M, and then train the network based on the
prediction error.

Importantly, this context-sensitive mixture-of-experts model
is meant to be trained online. That is, we do not pre-train it on
a large corpus of data and then fix the final weights. Instead,

we run the neural network training while the system is running,
just like the context-free version. Indeed, the context-free version
is equivalent to the context-sensitive model if the context is
kept constant.

While any neural network learning algorithm could be used
here, for simplicity we use delta rule again, and note that the
delta rule is the first step of the classic backpropagation neural
network learning algorithm. In other words, we only adjust the
weights between the hidden layer and the output layer, and leave
the other set of weights at their initial randomly generated values.
This greatly reduces the computation cost of performing the
online learning.

Figure 4 shows a schematic visualization of the mixture-of-
expert model’s architecture. Yellow boxes indicate the individual
components of the model, while the solid red line depicts the
connection to decode out the weights Wp,t for the individual
expert predictors from the neural population encoding the
context c as indicated by the green circles in the context
component. Finally, the dotted green arrow indicates that the
error signal is used to update the weights of this connection using
delta-rule learning.

Frontiers in Neurorobotics | www.frontiersin.org 6 October 2019 | Volume 13 | Article 84116

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

2.3. Data and Pre-processing
In this work, we use two different data sets for training and
evaluation of our system, which we describe in more detail in
the subsequent sections. We refer to those data sets as On-
board or D1 (see section 2.3.1), which is our main data set, and
NGSIM or D2 (see section 2.3.2), which is a publicly available
data set used for reference and comparability. In this section,
we describe both data sets regarding available features, available
sources of information as well as their key differences and the
preprocessing procedure.

2.3.1. On-Board-Sensors Data Set
This is our main data set used in this work. It contains real-
world data gathered using the (ego-) vehicle’s on-board sensors
during test drives mainly on highways in southern Germany. The
data contains object-lists with a variety of features obtained from
different sensor sources. Apart from features about motion and
behavior of the dynamic objects in the scene like position, velocity
and acceleration, which are estimated from light detection and
ranging (LIDAR) sensors, there is also visual information like
object type probabilities or lane information, which is acquired
from additional camera sensors. More detailed information on
the test vehicle’s sensor setup can be found in Aeberhard et al.
(2015). The fused information about objects is available at a
frequency of roughly 5Hz. Themain feature of this data set is that
all information about other vehicles, such as position or velocity
are measured with respect to the ego-vehicle and its coordinate
system. The On-board data set contains 3,891 vehicles, which
yield a total length of roughly 28.3 h when adding up the time
each individual vehicle is visible.

2.3.2. NGSIM US-101 Data Set
The next generation simulation (NGSIM) US-101 data set
(Colyar and Halkias, 2017) is a publicly available data set
recorded on a segment of ∼640m length with 6 lanes on the
US-101 freeway in Los Angeles, California. Although the data
set was originally intended for driver behavior and traffic flow
models (He, 2017), it has also been used to train trajectory
predictions models (Altche and de La Fortelle, 2017; Deo and
Trivedi, 2018b). The data set was recorded using cameras
observing freeway traffic from rooftops with trajectory-data
being extracted later from the obtained video footage. It holds
a total of 45min of driving data split into three 15min segments
of mild, moderate and congesting traffic conditions. Apart from
positional information in lateral and longitudinal direction (in
a global and local coordinate system), additional features like
instantaneous velocity, acceleration, vehicle size as well as the
current lane are available for each vehicle. The trajectory data is
sampled with a frequency of 10Hz. The main difference to the
On-board data set is the fact, that the NGSIM data set is recorded
with an external stationary camera instead of on-board sensors
of a driving vehicle. Thus, there is no ego-vehicle present in the
data and all information are available in absolute coordinates
instead of being measured relative to one particular ego-vehicle.
The NGSIM data set contains 5,930 vehicles and therefore a total
time of roughly 91.3 h when adding up the time each individual
vehicle is visible.

2.3.3. Pre-processing
In this section, we describe the preprocessing steps performed a
priori to prepare the information from our two data sets as neural
network input. Although we aim to keep these preprocessing
steps as consistent as possible across the data sets, there are
some mild differences, which we will also point out. We aim to
predict future positions of dynamic objects 5 s into the future
based on their positions 5 s prior to their current location.
As the two data sets are sampled at different frequencies, we
interpolate the available data over 20 equidistant steps to achieve
intervals of 0.25 s to improve consistency and comparability.
Furthermore, we translate the current position of the target
vehicle (the vehicle to be predicted) into the origin, i.e., position

(0, 0) (see Figure 1), to prevent our models from treating similar
trajectories differently due to positional variations. Finally, to
improve suitability of the data as input for neural networks, we
divide all x-positions by a factor of 10 such that x-/y-values are
scaled to a similar order of magnitude. Thus, one data sample
consists of a sequence of length 20 of positional information over
the past 5 s, which is used as input for our models with different
encoding, and a sequence of 20 positions 5 s into the future used
as labels or ground truth for the models to be trained with. For
the NGSIM data set D2, we use only every 10th data point, to
avoid the creation of too many overlapping, and therefore too
similar, data samples. Furthermore, we converted all values to the
metric system and swapped the dimensions of the positions in
D2 such that for both data sets x- and y-direction correspond
to longitudinal and lateral positions, respectively. For training
and evaluating our models, we split both data sets into training
Ti ⊂ Di and validation data Vi ⊂ Di containing 90% and 10% of
the objects, respectively to avoid testing our models on vehicles
they have been trained with.

2.3.4. Encoding Schemes
We use different encoding schemes of the positional input data
in this work. The main encoding scheme is the convolutive
vector-power representation as depicted in section 2.1.2. To
avoid accumulation of noise while focusing on the vehicles most
relevant for prediction, we only use objects closer than 40m to
the target vehicle in the On-board data set. For the NGSIM data
set D2, we additionally include only objects on the same lane as
the target vehicle and on adjacent lanes. Thereby, we aim for
consistency across both data sets and we keep the input data as
comparable as possible to what a driving vehicle could be able to
detect using its on-board sensors.

For the On-board data set D1, we use two different variants of
this representation, which differ in that the ego-vehicle’s position
is used or excluded in the other objects part of Equation (4),
yielding two sequences (S

ego
t)

tN
t0

and (St)
tN
t0
. We used Nengo’s SPA

package for implementation and therefore refer to these encoding
two schemes (St)

tN
t0

and (S
ego
t)

tN
t0

as “SPA-power” and “SPA-
power-with-ego,” respectively. As the NGSIM data set D2 does
not contain an ego-vehicle, we only investigate the “SPA-power”
encoding scheme there.

For a simple reference vector-representation, we add the
positional vectors X and Y scaled with the target vehicle’s prior
positions (xt , yt) at each time step t, yielding the sequence S̃t =

Frontiers in Neurorobotics | www.frontiersin.org 7 October 2019 | Volume 13 | Article 84117

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

xt · X + yt · Y. Finally, we also use plain numerical position
values pt = (xt , yt) as input data. Note, that only the SPA-power
representation variants (St)

tN
t0

and (S
ego
t)

tN
t0

contain positional
information about vehicles other than the target.

3. EXPERIMENTS AND RESULTS

In this section, we describe the training process and parameters
of all our models and give a detailed analysis and evaluation
of the results achieved. The LSTM models are implemented in
Tensorflow (Abadi et al., 2016) whereas the NEF models and
the mixture-of-experts online learning model are implemented
using the Nengo software suite (Bekolay et al., 2014). We use
the root-mean-square error (RMSE) as our main metric for
evaluation purposes. In contrast to earlier work, we inspect the
RMSE for lateral and longitudinal directions separately to give
more detailed insights into the models’ behavior. Calculating the
RMSE of the Euclidean distance would absorb the influence of
the lateral RMSE since it is an order of magnitude smaller than
the longitudinal RMSE, while we consider both directions to
be at least equally important. The lateral RMSE is even more
informative regarding the models’ performance on, for instance,
lane change maneuvers. Note however, that this means that the y-
axes in Figures 5, 6, 8–11 show a different order of magnitude for
lateral (RMSE X) and longitudinal (RMSE Y) direction. Finally,
we investigate where the models shows their best performance
looking for correlations between prediction accuracy and specific
driving situations.

Table 1 summarizes the models evaluated in this section.
The models LSTM SPA 1–3 as well as LSTM numerical employ
the same network architecture as described in section 2.2.1
with sequential information as input data (using the different
encoding schemes presented in section 2.3.4) and are analyzed
in section 3.2.1. The models NEF SPA 1 and 2 employ the
simpler, single-layer, feed-forward architecture as described
in section 2.2.2 with a vector obtained as partial sum of
vectors from the whole sequence used as input for the LSTM
models (see section 3.1.2 for further details). Finally, mix
online denotes the mixture-of-experts online learning model as
described in section 2.2.3 using the predictions from some of
the aforementioned offline models as input (see section 3.1.3 for
further details). The models will be denoted in figure legends by
their short name given in Table 1.

In section 2.3.4, we have described the different encoding
schemes we will use to evaluate our models. We mentioned
that the models employing the convolutive power to encode the
input data are (i.e., LSTM SPA 1, 3 and NEF SPA 1 and 2) are
the only ones having access to information about objects other
than the target vehicle. Although these model therefore have
access to more data than the other reference models, such as
LSTM numerical, we are interested in evaluating the benefits
of encoding the interconnections between vehicles implicitly in
the input data using our semantic vector encoding instead of
introducing a more complex network architecture. Therefore, we
focus on the same network architecture for all encoding schemes
in this paper and leave a comparison with more sophisticated

network architectures, for instance, ones combining LSTM with
social pooling layers as in Deo and Trivedi (2018a) or Alahi et al.
(2016) for future work.

3.1. Model Training
3.1.1. LSTM Networks
We trained several instantiations of our LSTM-network
architecture as described in section 2.2.1 on the On-board data
set D1 in advance to find an optimal set of parameters. We varied
the number of layers, the number of hidden dimensions and the
number of epochs for the models to be trained. We found, that
increasing the number of layers does not improve the models’
performance on the validation data, even when training longer
using more epochs. On the contrary, models with more layers
needed more training time to achieve a performance on the
validation data comparable to the networks with less layers.
Thus, a LSTM model with one encoder and decoder cell each is
not only the simplest network architecture but also the best in
terms of accuracy as well as time needed for training.

For this architecture, we found that the network performs
best with 150 dimensions in the encoder and decoder cell each.
Furthermore, we employed early stopping, that is, we trained our
models for 10 epochs as we found that the models’ performance
stagnate on both, training and validation data sets, when training
for up until a total 20 epochs. Figure 5 visualizes this result by
showing the development of the RMSE of the LSTM SPA 1model
during the training process for the training set T1 (Figures 5A,C)
and validation setV1 (Figures 5B,D) of theOn-board data setD1.
On the y-axis of each sub-figure, we have the RMSE while the x-
axis from left to right depicts the result after each epoch during
the training process. Each colored line illustrates the RMSE of the
model for one particular prediction time step while all points with
the same value on the x-axis depict the model’s performance after
the respective epoch during the training process.

Using the aforementioned network architecture and
hyperparameter set, we train one model instantiation for
each encoding scheme mentioned in section 2.3.4, whereas
only the input dimensionality of the encoder cell changes when
varying the representation of the input data. Importantly, we
focus on positional information as the only input for our LSTM
models in this work for reasons of consistency to make all models
as comparable as possible. Hence, we neglect for example the
history of the target (or ego-) vehicle’s velocity or acceleration
as input here. Between the two data sets, the only difference
between models is the auxiliary data, that is used as additional
input to the LSTM decoder cell at each time step. For both data
sets, we use the instantaneous velocity of the target vehicle to
aid the model predicting the future trajectory at every time step.
As there is no ego-vehicle present, we use no further auxiliary
data for the NGSIM data set D2. For the On-board data set D1,
we use the ego-vehicle’s predicted acceleration and the estimated
curvature of the ego-vehicle’s current lane. Although this is future
information, we argue that it is solely about the ego-vehicle,
which we expect to be available at the time the prediction is to
happen. We assume, that an automated vehicle, in order to safely
navigate, will have an estimation of the future lane curvature as
well as the acceleration values of its own planned trajectory.

Frontiers in Neurorobotics | www.frontiersin.org 8 October 2019 | Volume 13 | Article 84118

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

TABLE 1 | Summary of the evaluated models regarding architecture, input data, encoding, and training.

Short name Input Position encoding Network

architecture

Training Number of

units/Neurons

Data set

Linear Current position and velocity – Linear regression – – Both

LSTM numerical Sequence of positions – LSTM with one

encoder/decoder

cell each

Offline,

backpropagation

150 units

per cell

Both

LSTM SPA 1 Semantic vector sequence Convolutive power LSTM with one

encoder/decoder

cell each

Offline,

backpropagation

150 units

per cell

Both

LSTM SPA 2 Semantic vector sequence Scalar multiplication LSTM with one

encoder/decoder

cell each

Offline,

backpropagation

150 units

per cell

Both

LSTM SPA 3 Semantic vector sequence Convolutive power incl.

ego-vehicle

LSTM with one

encoder/decoder

cell each

Offline,

backpropagation

150 units

per cell

On-board

NEF numerical Sequence of positions – NEF single-layer Offline,

least-squares

3,000

neurons

Both

NEF SPA 1 Semantic vector sum Convolutive power incl.

ego-vehicle

NEF single-layer Offline,

least-squares

3,000

neurons

On-board

NEF SPA 2 Semantic vector sum Convolutive power NEF single-layer Offline,

least-squares

3,000

neurons

NGSIM

Mix online Predictions offline models – NEF single-layer Online, delta-rule 3,000

neurons

Both

3.1.2. NEF Networks
For our NEF networks, the main parameters influencing the
models’ performance are the number of neurons in the learning
population (i.e., the hidden layer in terms of traditional neural
networks), and the neuron model. For simplicity, we use Nengo’s
rate-variant of the leaky-integrate-and-fire (LIF) neuron model.
From the NEF-theory (Eliasmith and Anderson, 2003) we know
that increasing the number of neurons in a population yields
a more accurate representation of the data encoded in the
population’s activity. Thus, we expect more accurate predictions
when increasing the number of neurons. In our experiments, we
found that a number of 3,000 spiking neurons is sufficient and
further increasing the number of neurons does not improve the
model’s prediction accuracy. The neural weights are calculated
using Nengo’s default least-squares-optimization method with
the exception, that we calculate the weights over smaller subsets
of the input data for computational reasons.

We train two different variants of our simpler NEF-models
using numerical input (NEF SPA numerical) as well as the SPA-
power-with-ego (NEF SPA 1) and SPA-power encoding (NEF
SPA 2) for the On-board and the NGSIM data set, respectively.
Here, we adapt the input data such that for the model NEF
numerical, we use the vector (xt0 , . . . , xtN , yt0 , . . . , ytN , v) as input
with v denoting the instantaneous velocity of the target vehicle.
For the NEF SPA 1 and 2 models, instead of flattening the whole
sequence of vectors into a giant single vector, we created a single
semantic vector by summing the first, middle, and last element of
the original vector sequences

Ŝ = St0 ⊕ StN/2
⊕ StN = (ŝ0, . . . , ŝD−1). (10)

We only sum up these vectors instead of the whole sequence
(St)

tN
t0

to avoid the accumulation of noise in the vector
representation. Note that thereby the NEF model using the SPA-
power representation does not use the full trajectory history but
only selected time steps, namely those visualized in Figure 2.
To make these simpler models as comparable as possible to the
LSTM models in terms of information available to the network,
we add the instantaneously velocity v of the target vehicle as an
additional element to the input, which yields (ŝ0, . . . , ŝD−1, v) as
input of our model, since there is no intermediate embedding
vector here where it could be included.

3.1.3. Mixture-of-Experts Online Learning
There are two different possible variants to our mixture-of-
experts online learning model. One issue of such a learning
system is that the actual position information of the target vehicle
vobserved,t and thus the error ǫt in Equation (9) is not available
at the time the model makes its predictions, since it is future
data. In this paper, we show a first prototype that, for simplicity,
ignores this delay issue and assumes that position information of
the target vehicle vobserved,t actually is available at prediction time.
In the future, we aim to investigate an online learning system
that updates its weights Wp,t once the error signal ǫt gradually
becomes available. However, the architecture of the model itself
remains the same. The only difference to the prototype shown
here is the time when Equation (9) is applied to update the neural
weights. For the context-sensitive mixture-of-experts model, we
use information about the current driving situation as identified
in section 3.2.1 and Figure 7 as context c for the learning system.

Frontiers in Neurorobotics | www.frontiersin.org 9 October 2019 | Volume 13 | Article 84119

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

FIGURE 5 | Development of the RMSE at every prediction time step during the training process of the LSTM model using the SPA-power-with-ego vector

representation (LSTM SPA 3) after each epoch on the training (A,C) and validation part (B,D) of the On-board data set. Each colored line illustrates the RMSE of the

model for one particular prediction time step while all points with the same value on the x-axis depict the model’s performance after the respective epoch during the

training process. One observes comparable trends on both training and validation set and that the RMSE stagnates after 10 epochs.

For the NGSIM data set, we use the distance between the target-
vehicle and the closest other vehicle as well as the number of
surrounding relevant vehicles as context information. Relevant
means that those vehicles that are included in the SPA-power
representation are counted (see section 2.3.4). For the On-board
data set, the distance between the target and the ego-vehicle is
additionally included in the context.

In this work, we employ the pre-trained LSTM models using
numerical inputs (i.e., LSTM numerical), the best-performing
SPA-power encoding scheme for each data set (i.e., LSTM SPA
3 for the On-board data set and LSTM SPA 1 for the NGSIM
data set), and a simple linear prediction as input experts for
our online learning prototype. For training the model, we
simulate online deployment by presenting the offline models’
predictions on the validation subsets to the system. Thereby, the
individual experts perform their prediction on previously unseen
data samples. We conduct individual simulation runs for both
data sets.

3.2. Evaluation
In this section, we evaluate the performance of our models and
conduct a thorough analysis of the results achieved. For all

evaluations in this section, we refer to the longitudinal and lateral
direction as x- and y-direction, respectively.

3.2.1. LSTM Models
Figure 6 visualizes the RMSE of all LSTM-based models on the
validation-set V1 ⊂ D1 of the On-board data set using 512-
dimensional vectors. Figures 6A,C show the performance on
the complete validation-set in x- and y-direction, respectively,
whereas Figures 6B,D depict only situations with at least 3 other
vehicles present, the distance between the target and the ego-
vehicle being lower than 20m and the distance between the
target and the closest other vehicle being <10m, again for x-
and y-direction, respectively. We observe that all approaches
yield comparable results with notable differences in certain
situations. Although the SPA-power encoding schemes (LSTM
SPA 1 and 3) tend to perform worst in x-direction, we observe
that they perform better in y-direction in crowded situations with
closely driving vehicles with LSTM SPA 3 ranking best along
LSTM numerical.

To further investigate this result, we evaluated certain metrics,
chosen to characterize crowded and potentially dangerous
situations, for items in the validation set, where the LSTM

Frontiers in Neurorobotics | www.frontiersin.org 10 October 2019 | Volume 13 | Article 84120

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

FIGURE 6 | Visualization of the RMSE of all LSTM models on the complete On-board validation set V1 ⊂ D1 in x- (A) and y-direction (C) and on a subset of situations

with at least 3 other vehicles present and distance between the target and ego vehicle lower than 20m and between target and closest other vehicle lower than 10m,

again in x- (B) and y-direction (D).

SPA 3 model outperforms all other approaches with respect to
the RMSE in y-direction (see Figure 7). We observe that the
number of samples, where the distance between the target and
the ego vehicle and/or the closest other object being small is
significantly higher when the LSTM SPA 3 model outperforms
all other approaches. For samples where the LSTM SPA 3
model performs best, the number of samples with a distance
<20m between the target- and ego-vehicle is 50.5% higher
compared to samples where any of the other models performs
best. For distances <20m between the target vehicle and the
closest other vehicle, the number of samples is still 11.4%
higher when the LSTM SPA 3 model performs best. Finally, the
number of situations with at least 3 other vehicles present is
also 7.8% higher compared to samples where any other model
performs best. Thus, we consider these characteristics suitable
candidates to serve as context variables on which our online-
learning mixture-of-experts system could base its weighting
decision on. However, we aim to investigate more sophisticated
options, such as clustering methods in future work to uncover

other, potentially moremeaningful features compared to the ones
shown in this paper, distinguishing between situations where
LSTM SPA 3 performs best compared to another model showing
the best performance.

Figure 8 visualizes the RMSE of all LSTM-based models on
the validation-set V2 ⊂ D2 of the NGSIM data set for 512-
dimensional vectors (Figures 8A,C) and for 1,024-dimensional
vectors (Figures 8B,D). We observe, that all LSTM models
achieve a very similar performance (almost identical in y-
direction) with LSTM SPA 1 achieving the best performance
in x-direction being on par with the numerical encoding
for 512-dimensional vectors. For 1,024-dimensional vectors,
LSTM SPA 1 even slightly outperforms all other approaches in
x-direction, whereas we do not observe significant improvements
in y-direction.

3.2.2. NEF Networks
Figure 9 visualizes the RMSE of our NEF-network models on
both data sets. The NEF-network using the SPA-power encoding

Frontiers in Neurorobotics | www.frontiersin.org 11 October 2019 | Volume 13 | Article 84121

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

FIGURE 7 | Metric evaluation specifying situations where the LSTM SPA 3 model outperforms all other approaches regarding the RMSE in y-direction on the

On-board data set D1. In the upper row (A–C), blue bars illustrate samples where LSTM SPA 3 performs better than all other models while the orange bars depict

samples where any other model performs best. Panel (A) illustrates the distance between the target vehicle and the closest other vehicle, (B) illustrates the distance

between the target and the ego-vehicle and (C) shows the number of vehicles other than the target. The lower row (D–F) illustrates the difference between the blue

and orange bars in the corresponding upper panel.

schemes processes 512-dimensional for the On-board (NEF SPA
1) and 1,024-dimensional vectors for the NGSIM data set (NEF
SPA 2). For reference, we included the performance of the most
relevant LSTM models, namely LSTM SPA 1 and 3 for the
NGSIM and On-board data set, respectively as well as LSTM
numerical, in Figure 9 as well. We observe that, despite a simpler
network architecture and learning algorithm, the NEF-networks
achieve a performance comparable to the more sophisticated
LSTMmodels on both data sets. For theNGSIM data set, the NEF
SPA 1 model performs on par with its LSTM model counterpart
LSTM SPA 3. In this case, the NEF-model is not only simpler,
but also has access to less information as its input data is a sum
of a subset of the input sequence used for the corresponding
LSTM-model.

3.2.3. Mixture-of-Experts Online Learning
Figure 10 shows the RMSE on selected slices of the validation-
sets achieved by our context-sensitive mixture-of-experts online
learning prototype, which assumes the error signal is available
at the time the prediction needs to happen in comparison to
the offline models. The four left plots (Figures 10A,B,E,F) show
two data slices of the validation set D1 of the On-board data set:
Figures 10A,E show the RMSE at the start of training process
while Figures 10B,F show the RMSE performance on the first

70 vehicles. Similarly, the four right plots (Figures 10C,D,G,H)
show two data slices of the validation set D2 of the NGSIM
data set: Figures 10C,G show the RMSE at the start of the
training process while Figures 10D,H show the RMSE on the
first 92 vehicles. From Figures 10A,E,C,G we observe, that
the model needs some time for adapting its weights yielding
a RMSE performance worse than the individual experts for
both data sets. However, the model’s performance improves
quickly and clearly outperforms all individual experts in x-
direction while achieving RMSEs as low as the best individual
experts in y-direction after a comparably low number of
vehicles presented to the system. Figures 10B,F illustrate this
result for the On-board data set, while Figures 10D,H show
comparable results achieved by themixture model on theNGSIM
data set.

To get a better idea of how our model weights the individual
predictors, we inspect one example driving situation. Figure 11
visualizes the performance of our mixture-of-experts online
learning prototype on one particular example of the On-
board data set. We use a situation not directly after the start
of the training process, i.e., the mixture model was already
exposed to some vehicles and thus was able to consolidate its
weights. Figures 11A–C show the driving situation with the
vehicles’ true trajectories as well as the trajectory predictions

Frontiers in Neurorobotics | www.frontiersin.org 12 October 2019 | Volume 13 | Article 84122

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

FIGURE 8 | Visualization of the RMSE of all LSTM models on the NGSIM validation set V2 ⊂ D2 using vectors of dimension 512 for the LSTM SPA 1 and 2 models in

x- (A) and y-direction (C) and using vectors of dimension 1,024 for the LSTM SPA 1 and 2 models in x- (B) and y-direction (D).

given by the offline models and the mixture-of-experts online
learning prototype. Figures 11D,E show the absolute error of
all approaches while Figures 11F,G visualize, how the model
weights the individual experts for every prediction time step
in this particular driving situation. We observe that the overall
trend of our model shows in this example as well. The mixture-
of-experts prototype achieves significant improvements in the
x-direction while achieving RMSEs comparably low as the best
individual expert in y-direction (Figures 11D,E). Furthermore,
Figures 11F,G show that the model weights the expert predictors
independently at individual time steps and hence is able to
pick the best possible predictor at each time step. However, we
also observe, that the error of the mixture-of-experts model in
the y-direction is higher than the best individual predictor and
that the weighting, especially for later prediction steps, could
be improved.

4. DISCUSSION

For both data sets used in this paper, we observe that already the
simple linear prediction models achieve solid accuracy, especially
in longitudinal direction. This makes sense as both data sets
almost exclusively contain highway driving situations, which in

turn consist mainly of straight driving and rather rare lane-
change maneuvers. For straight driving, linear prediction based
on a constant velocity assumption is already a solid prediction
approach, especially if all dynamic information (position, velocity
etc.) are given relative to an already moving ego-vehicle like with
the On-board data set D1. Table 2 summarizes the composition
of both data sets.

For the On-board data set, in 86.1% of all data samples the
target vehicle does not perform a lane, i.e., only 13.8% of all data
samples contain a lane change performed by the target vehicle.
We further distinguish between lane changes performed during
the trajectory history, i.e., the past 5 s before the current time step
(labeled as past in Table 2) and lane changes that are performed
in the future, i.e., the future 5 s from the current time step (labeled
as future in Table 2). For the NGSIM, the percentage of samples
without a target vehicle lane change is 95.1% while only 4.9% of
the samples contain a lane change performed by the target vehicle
at all. The amount of samples containing a future lane change
performed by the target vehicle is only 2.6% of all samples in the
NGSIM data set.

For the offline models, simple feed-forward NEF models and
more sophisticated LSTM models alike, we observe that most
improvements over the linear model are achieved in y-direction.
That makes sense as linear prediction is unable to account for

Frontiers in Neurorobotics | www.frontiersin.org 13 October 2019 | Volume 13 | Article 84123

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

FIGURE 9 | Visualization of the RMSE in x- (A,B) and y-direction (C,D) of the NEF SPA 1 model on the On-board validation set V1 ⊂ D1 using 512-dimensional

vectors for the SPA-power vectors (A,C) and the NEF SPA 2 model on the NGSIM data set D2 using 1,024-dimensional vectors for the SPA-power vectors (B,D).

FIGURE 10 | Visualization of the RMSE of the context-sensitive mixture-of-experts online learning system on selected data-slices from the validation sets. The upper

row shows the RMSE in x-direction (A–D), while the lower row shows the RMSE in y-direction (E–H). Panels (A,E) show the RMSE on the On-board data set at the

start of training process while (B,F) show the RMSE performance on the first 70 vehicles. Similarly, panel (C,G) show the RMSE on the NGSIM data set at the start of

the training process while (D,H) show the RMSE on the first 92 vehicles.

lane-changes or driving curves, which are mainly characterized
by non-linear changes in lateral direction. We found that the
LSTM models based on our SPA-power representation (LSTM

SPA 1 and 3) achieve promising results on both data sets.
However, for the On-board data set, this encoding scheme
achieves its best result in crowded and potentially dangerous

Frontiers in Neurorobotics | www.frontiersin.org 14 October 2019 | Volume 13 | Article 84124

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

FIGURE 11 | Visualization of the context-sensitive mixture-of-experts online learning system on one particular driving situation from the On-board data set. Panels

(A–C) depict the driving situation with the vehicles’ true trajectories as well as the trajectory predictions given by the offline models and the mixture-of-experts online

learning prototype. Panels (D,E) show the absolute error of all prediction models on that data-sample. Panels (F,G) visualize, how the mixture model weights the

individual experts for every prediction time step in this particular driving situation.

TABLE 2 | Composition of both data sets regarding straight driving and samples containing a lane change performed by the target vehicle.

Data set Straight driving Total target vehicle lane changes Past target vehicle lane changes Future target vehicle lane changes

On-board 86.1% 13.9% 7% 8.2%

NGSIM 95.1% 4.9% 2.7% 2.6%

driving situations, without clearly outperforming the other
approaches on the whole data set (see section 3.2.1 and Figure 6).
Given these finding, we investigated situations, where the LSTM
SPA 3 model does outperform all other approaches in y-direction

and thereby came up with metrics characterizing such crowded
situations (see Figure 7). This result did not hold that clearly on
theNGSIM data setD2, since the LSTMmodels achieve an almost
identical performance in y-direction on this data set.

Frontiers in Neurorobotics | www.frontiersin.org 15 October 2019 | Volume 13 | Article 84125

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

Nevertheless, we used the identified characteristics as context
information for our first prototype of a mixture-of-experts
online learning system based on simple delta-rule learning. For
simplicity, the prototypical model shown here ignores the fact
that measurements of the actual trajectory and thus the error
signal for the learning system is future data, i.e., only available
with a timing delay, and applies Equation (8) instantaneously.
We tested and evaluated this prototype on both data sets
achieving comparable results. We found that already shortly
after initialization, the online learning system is able to adapt
its weights to significantly improve its performance over the
individual expert systems. Interestingly, the mixture-of-experts
model achieves the most improvements over the individual
experts in the x-direction although the characteristics used
as context were derived from analyzing the LSTM models’
performance in the y-direction. We assume that this is due
to the fact, that the individual LSTM experts already show a
closer-to-optimal performance in the y-direction with less room
for improvements. Furthermore, the sample situation shown in
Figure 11 exemplifies another potential problem of the current
model in the y-direction: with a distance of 12.8m between the
target and the closest other vehicle, a distance of 55.8m between
the target and the ego-vehicle and only one other vehicle present,
this is not a typical situation for the LSTM SPA 3 model to
perform best in the y-direction (cf. Figure 7) and thus this expert
might not be weighted strongly enough by the model. However,
these effects demand for further and more detailed investigation.

Another interesting result of our experiments is the fact, that
the simple, feed-forward NEF networks show results comparable
to the more sophisticated LSTM models. For those simple
models, the SPA-power representation (NEF SPA 1 and 2) shows
promising results comparable to theNEF numerical model on the
On-board data set and clearly outperforming it on the NGSIM
data set (Figure 9). Although the NEF models do not clearly
outperform the LSTM models (which would be surprising),
it is quite remarkable that they achieve results comparable
to the more sophisticated models with a simpler network
architecture, training procedure and, partly, less information.
These results make those simple models using our proposed
vector-representation as well as a numerical encoding scheme
(possibly in combination with an online learning system like the
one proposed in this paper) potential candidates to be deployed
on dedicated neuromorphic hardware in mobile applications, as
they can be efficiently implemented in a spiking neuron substrate.
This could be an interesting, power-efficient approach in future
automated vehicles.

4.1. Conclusion
In this paper, we showed a novel approach to encapsulate
spatial information of multiple objects in a sequence of semantic
pointers of fixed vector length. We used a LSTM sequence
to sequence model as well as a simple feed-forward spiking
neural network to predict future vehicle positions from this
representation. For each of those models, we implemented
at least one reference model using other encoding schemes
to compare their performance to. Furthermore, we compared
all our models to a simple linear prediction based on a

constant velocity assumption. We evaluated our models on
two different data sets, one recorded with on-board sensors
from a driving vehicle and one publicly available trajectory
data set recorded with an external camera observing a highway
segment and conducted a thorough analysis. Finally, we used
our pre-trained LSTM networks as basis for a mixture-of-experts
online learning prototype and compared its performance to the
individual expert systems. We consider our main contributions
the proposed representation of spatial information for multiple
objects in semantic vectors of fixed length using the convolutive
power, the rigorous and detailed analysis of several simple
and more advanced models, and the prototype of our online
learning system.

4.2. Future Work
Although the results presented in this paper show promise, there
are several directions for future work. Regarding our LSTM
models, we aim to investigate if increasing the vector dimension
further leads to improved model performance on the On-board
data set, as the results on the NGSIM suggest that there is
potential for improvements (see Figures 8A,B). Furthermore,
our preliminary hyperparameter experiments suggest, that there
is potential for improvements by incorporating the history
of the target and/or ego-vehicle’s velocity and/or acceleration.
Therefore, we could investigate possibilities of how to encode
such information in a semantic vector substrate. Another
interesting option for the offline models is to investigate if a
reduced, more balanced data set could improve the models
accuracy or at least speed up the training process. As mentioned
in section 4 and Table 2, both data sets are slightly unbalanced as
they are dominated by straight driving, which is most common
in highway situations. One possibility could be to use the current
data sets and focus the training procedure on “interesting scenes,”
i.e., situations where for example a lane change is happening by
for instance looking for data samples with significant differences
in the lateral positions. Another option is to improve our
current models to predict a probability distribution of the future
positions instead of point predictions of raw position values to
take uncertainties into account. Finally, we could also compare
our current models to other state-of-the-art models, which
combine LSTM and social pooling layers, which we did not
include in the work at hand.

Regarding our mixture-of-experts online learning prototype,
we have shown a simplified version ignoring the fact that
the error signal is future data and thus can not be used
instantaneously, but rather becomes gradually available over
time. Although the network architecture and learning approach
would remain unchanged, the timing when the weights’ update
happens needs to be implemented and investigated if and
how this affects the models performance. However, the results
achieved in this paper serve as an upper bound for the
performance to be expected from models that have to deal with
delayed error signals, that is, that the target vehicle’s true motion
is future data and thus not available at prediction time, The
issue of delayed error signals was mentioned but, for simplicity,
not addressed in this work. However, assuming that a model
overpredicting the near future most likely will also overpredict

Frontiers in Neurorobotics | www.frontiersin.org 16 October 2019 | Volume 13 | Article 84126

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Mirus et al. Vehicle Prediction With Vector-Powers

for later time steps, we could also experiment withmodel variants
that update the weights for later prediction steps based on
the error signal for earlier prediction steps before the error
signal actually becomes available. Another direction could be to
investigate if and how different context information affect the
model’s performance.

Since advanced driver assistance systems and, more
generally, automated driving are mobile applications with
tight energy restrictions, we finally aim to investigate if
and how our current implementation could be deployed on
dedicated, energy-efficient neuromorphic hardware for mobile,
in-vehicle applications.

AUTHOR CONTRIBUTIONS

FM has designed and implemented all the model variants

in Tensorflow and Nengo, designed and performed the

experiments, pre-processed data, evaluated results, and wrote

the manuscript. PB has designed the numerical LSTM models
in Tensorflow and assisted in data pre-processing, experiments
and evaluation, and revised the manuscript. TS has designed the
models in Nengo, assisted in data pre-processing, experiments
and evaluation, and contributed in writing the manuscript.
JC coordinated and supervised the research work, and revised
the manuscript.

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016).

“TensorFlow: a system for large-scale machine learning,” in Proceedings of the

12th USENIX Conference on Operating Systems Design and Implementation,

OSDI’16 (Berkeley, CA: USENIX Association), 265–283.

Aeberhard, M., Rauch, S., Bahram, M., Tanzmeister, G., Thomas, J., Pilat,

Y., et al. (2015). Experience, results and lessons learned from automated

driving on Germany’s highways. IEEE Intell. Transport. Syst. Mag. 7, 42–57.

doi: 10.1109/MITS.2014.2360306

Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., and Savarese, S.

(2016). “Social LSTM: human trajectory prediction in crowded spaces,” in 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Las

Vegas, NV), 961–971.

Altche, F., and de La Fortelle, A. (2017). “An LSTM network for highway

trajectory prediction,” in 2017 IEEE 20th International Conference on Intelligent

Transportation Systems (ITSC) (Yokohama: IEEE), 353–359.

Bahram, M., Hubmann, C., Lawitzky, A., Aeberhard, M., and Wollherr, D.

(2016). A combined model- and learning-based framework for interaction-

aware maneuver prediction. IEEE Trans. Intell. Transport. Syst. 17, 1538–1550.

doi: 10.1109/TITS.2015.2506642

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C., Rasmussen,

D., et al. (2014). Nengo: a Python tool for building large-scale functional brain

models. Front. Neuroinform. 7:48. doi: 10.3389/fninf.2013.00048

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P.,

et al. (2016). End to end learning for self-driving cars. arXiv [Preprint]

arXiv:1604.07316.

Bonnin, S., Kummert, F., and Schmüdderich, J. (2012). “A generic concept of

a system for predicting driving behaviors,” in 2012 15th International IEEE

Conference on Intelligent Transportation Systems (Anchorage, AK), 1803–1808.

Bracewell, R. (2000). The Fourier Transform and Its Applications. Electrical

Engineering Series. Tokyo: McGraw Hill.

Chang, A. X. M., and Culurciello, E. (2017). “Hardware accelerators for recurrent

neural networks on FPGA,” in 2017 IEEE International Symposium on Circuits

and Systems (ISCAS) (Baltimore, MD), 1–4.

Ciresan, D. C., Meier, U., Masci, J., and Schmidhuber, J. (2012). Multi-column

deep neural network for traffic sign classification. Neural Netw. 32, 333–338.

doi: 10.1016/j.neunet.2012.02.023

Colyar, J., and Halkias, J. (2017). US Highway 101 Dataset. Available online at:

https://www.fhwa.dot.gov/publications/research/operations/07030/index.cfm

Deo, N., and Trivedi, M. M. (2018a). Convolutional social pooling for vehicle

trajectory prediction. arXiv [Preprint] arXiv:1805.06771.

Deo, N., and Trivedi, M. M. (2018b). “Multi-modal trajectory prediction of

surrounding vehicles with maneuver based LSTMS,” in 2018 IEEE Intelligent

Vehicles Symposium (IV) (Changshu: IEEE), 1179–1184.

Eliasmith, C. (2013). How to Build a Brain: A Neural Architecture for Biological

Cognition. New York, NY: Oxford University Press.

Eliasmith, C., and Anderson, C. H. (2003). Neural Engineering : Computation,

Representation, and Dynamics in Neurobiological Systems. Computational

Neuroscience. Cambridge, MA: MIT Press.

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., et al.

(2012). A large-scale model of the functioning brain. Science 338, 1202–1205.

doi: 10.1126/science.1225266

Gayler, R. W. (2003). “Vector symbolic architectures answer Jackendoff’s

challenges for cognitive neuroscience,” in Proceedings of the ICCS/ASCS

International Conference on Cognitive Science (Sydney, NSW), 13–17 July 2003,

133–138.

He, Z. (2017). Research Based on High-Fidelity NGSIM Vehicle Trajectory Datasets:

A Review. Technical Report. Beijing: Beijing University of Technology.

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural

Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Lawitzky, A., Althoff, D., Passenberg, C. F., Tanzmeister, G., Wollherr, D., and

Buss, M. (2013). “Interactive scene prediction for automotive applications,” in

2013 IEEE Intelligent Vehicles Symposium (IV) (Gold Coast, QLD), 1028–1033.

doi: 10.1109/IVS.2013.6629601

Lefèvre, S., Vasquez, D., and Laugier, C. (2014). A survey on motion

prediction and risk assessment for intelligent vehicles. ROBOMECH J. 1:1.

doi: 10.1186/s40648-014-0001-z

Mirus, F., Stewart, T. C., and Conradt, J. (2018). “Towards cognitive automotive

environment modelling: reasoning based on vector representations,” in 26th

European Symposium on Artificial Neural Networks, ESANN 2018 (Bruges),

55–60.

Plate, T. (1994). Distributed representations and nested compositional structure

(PhD thesis). University of Toronto, Toronto, ON, Canada.

Polychronopoulos, A., Tsogas, M., Amditis, A., and Andreone, L. (2007).

Sensor fusion for predicting vehicles’ path for collision avoidance systems.

IEEE Trans. Intell. Transport. Syst. 8, 549–562. doi: 10.1109/TITS.2007.

903439

Schmüdderich, J., Rebhan, S., Weisswange, T., Kleinehagenbrock, M., Kastner, R.,

Nishigaki, M., et al. (2015). “A novel approach to driver behavior prediction

using scene context and physical evidence for intelligent adaptive cruise control

(I-ACC),” in Future Active Safety Technology Towards Zero Traffic Accidents

(FAST-Zero) (Gothenburg: FISITA).

Widdows, D., and Cohen, T. (2014). Reasoning with vectors: a continuous model

for fast robust inference. Logic J. IGPL 23, 141–173. doi: 10.1093/jigpal/jzu028

Conflict of Interest: FM was employed by BMW AG. PB and TS were employed

by Applied Brain Research Inc.

The remaining author declares that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2019 Mirus, Blouw, Stewart and Conradt. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 17 October 2019 | Volume 13 | Article 84127

https://doi.org/10.1109/MITS.2014.2360306
https://doi.org/10.1109/TITS.2015.2506642
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.1016/j.neunet.2012.02.023
https://www.fhwa.dot.gov/publications/research/operations/07030/index.cfm
https://doi.org/10.1126/science.1225266
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/IVS.2013.6629601
https://doi.org/10.1186/s40648-014-0001-z
https://doi.org/10.1109/TITS.2007.903439
https://doi.org/10.1093/jigpal/jzu028
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Advantages
of publishing
in Frontiers

OPEN ACCESS

Articles are free to read
for greatest visibility

and readership

EXTENSIVE PROMOTION

Marketing
and promotion

of impactful research

DIGITAL PUBLISHING

Articles designed
for optimal readership

across devices

LOOP RESEARCH NETWORK

Our network
increases your

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34
1005 Lausanne | Switzerland

Visit us: www.frontiersin.org
Contact us: info@frontiersin.org | +41 21 510 17 00

FAST PUBLICATION

Around 90 days
from submission

to decision

90

IMPACT METRICS

Advanced article metrics
track visibility across

digital media

FOLLOW US

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers
acknowledged by name

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,
and constructive

peer-review

REPRODUCIBILITY OF
RESEARCH

Support open data
and methods to enhance
research reproducibility

http://www.frontiersin.org/
mailto:info@frontiersin.org

	Cover
	Frontiers eBook Copyright Statement
	New Advances at the Intersection of Brain-Inspired Learning and Deep Learning in Autonomous Vehicles and Robotics
	Table of Contents
	Robust Learning Control for Shipborne Manipulator With Fuzzy Neural Network
	1. Introduction
	2. Dynamic Model
	2.1. Cylinder Dynamic Equation
	2.2. Cylinder Flow Equation
	2.3. Valve Flow Equation

	3. PD+FNN Control Strategy
	3.1. Overview of Control Strategy
	3.2. Fuzzy Neural Network Construction
	3.3. Triangular Fuzzy MFs
	3.4. Sliding Mode Control Theory-Based Training Approach

	4. Simulation and Results Analysis
	4.1. Simulation Parameter
	4.2. Simulation Results

	5. Experimental Verification
	5.1. Introduction of Experimental Equipment
	5.2. Analysis of Step Signal Response
	5.3. Experimental Strategy and Data Analysis

	6. Conclusion
	Data Availability
	Author Contributions
	References

	Mobile Robot Path Planning Based on Ant Colony Algorithm With A Heuristic Method
	Introduction
	Materials And Methods
	Environment Model
	Ant Colony Algorithm
	Heuristic Strategy With Direction Information
	Coverage and Updating Strategy

	Improved Ant Colony Algorithm
	Heuristic Information Based on A Algorithm
	Solve the Deadlock Problem
	Max–Min Ant System

	Aco Procedure

	Results
	Comparative Analysis of Path Planning Algorithms
	The Retraction Mechanism Results Analysis

	Discussion
	Author Contributions
	Funding
	Acknowledgments
	References

	Neural Network Based Uncertainty Prediction for Autonomous Vehicle Application
	1. Introduction
	2. Problem Definition
	2.1. Motivation
	2.2. Problem Statement
	2.3. Data-Driven Modeling
	2.4. Design for Surrogate Model Development

	3. Training Data Generation And Analysis
	3.1. Training Data Generation
	3.2. Training Data Analysis
	3.3. Inputs vs. Output Correlation
	3.4. Delayed Signals Correlation

	4. Training Sets Candidates
	4.1. Training Sets
	4.2. Training Candidates

	5. NN Design And Training
	5.1. Error Measurements
	5.2. Training Algorithms
	5.3. Training Results: Input Signals Selection
	5.4. Delay Effect on the Training Results
	5.5. Hidden Layer Optimal Size

	6. Test Results
	6.1. Set Candidate 9
	6.2. Set Candidate 11

	7. Conclusions
	Author Contributions
	Acknowledgments
	References

	SVM-Based Classification of sEMG Signals for Upper-Limb Self-Rehabilitation Training
	Introduction
	Methods
	Data Collection
	Data Processing
	Preprocessing
	Signal Segmentation
	Feature Extraction and Classification
	Support Vector Machine

	Upper-Limb Rehabilitation Robot Platform
	Robot System
	Control Scheme Based on the SVM Classification of sEMG Signals
	Experiment and Results

	Conclusions
	Ethics Statement
	Author Contributions
	Funding
	References

	Toward a Brain-Inspired System: Deep Recurrent Reinforcement Learning for a Simulated Self-Driving Agent
	1. Introduction
	2. Methodology
	2.1. Deep Q-Learning
	2.2. Recurrent Reinforcement Learning
	2.3. Network Architecture
	2.4. Implementation Details
	2.4.1. Action Space
	2.4.2. Reward
	2.4.3. Prioritized Replay
	2.4.4. Hyperparameters
	2.4.5. Other Details

	3. Experiments
	3.1. Experimental Environment
	3.2. Rewards Analysis
	3.3. CNN Visualization
	3.4. Result and Discussion

	4. Conclusion
	Data Availability
	Author Contributions
	Funding
	References

	Deep Recurrent Neural Networks Based Obstacle Avoidance Control for Redundant Manipulators
	1. Introduction
	2. Problem Formulation
	2.1. Basic Description
	2.2. Reformulation of Inequality in Speed Level
	2.3. QP Type Problem Description

	3. Deep RNN Based Solver Design
	3.1. Deep RNN Design
	3.2. Stability Analysis

	4. Numerical Results
	4.1. Simulation Setup
	4.2. Single Obstacle Avoidance
	4.3. Discussion on Class-K Functions
	4.4. Multiple Obstacles Avoidance
	4.5. Enveloping Shape Obstacles
	4.6. Dynamic Obstacles
	4.7. Obstacle Performance on 7-DOF Manipulator in 3-Dimensional Space
	4.8. Comparisons

	5. Conclusions
	Data Availability
	Author Contributions
	Funding
	Acknowledgments
	References

	A Novel Model for Arbitration Between Planning and Habitual Control Systems
	1. Introduction
	2. Theoretical Premises
	3. APAC for Target Reaching
	3.1. Habit Learning Control System
	3.2. Internal Models for Planning
	3.3. Arbitration Between Habitual and Planning Controllers
	3.4. Experimental Conditions and Environment

	4. Results
	5. Conclusion
	Data Availability
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	From Rough to Precise: Human-Inspired Phased Target Learning Framework for Redundant Musculoskeletal Systems
	1. Introduction
	2. Musculotendon Model and Musculoskeletal Arm Model
	2.1. Musculotendon Model
	2.2. Musculoskeletal Arm Model
	2.3. Musculotendon Model Into Arm Model

	3. Human-Inspired Phased Target Learning Framework
	3.1. Phased Target Learning
	3.1.1. Simplified Target Setup
	3.1.2. Performance Evaluation Function
	3.1.3. Learning by Gradient Descent

	3.2. Noise in Nervous System
	3.2.1. Noise at Sensor Level
	3.2.2. Noise at Execution Level

	4. Simulation Experiments
	4.1. Experimental Setup
	4.2. Results and Analysis

	5. Conclusions
	Data Availability
	Author Contributions
	Funding
	References

	Robust Event-Based Object Tracking Combining Correlation Filter and CNN Representation
	Introduction
	Related Works

	Methodology
	Temporal Contrast Pixel
	Correlation Filter Framework
	Representation Based on Convolutional Neural Network

	Experimental Results and Discussion
	Event-Stream Recordings
	Robustness to Hyperparameters
	Tracking Speed Under Different Layers
	Comparison With Other Methods
	A. Three Tracking Methods in jAER Software
	B. Compressive Tracking-Based Rate Coding Feature

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	An Investigation of Vehicle Behavior Prediction Using a Vector Power Representation to Encode Spatial Positions of Multiple Objects and Neural Networks
	1. Introduction
	2. Materials and Methods
	2.1. Vector Symbolic Architectures
	2.1.1. Prerequisites
	2.1.2. Convolutive-Power Representation

	2.2. Models
	2.2.1. LSTM Networks
	2.2.2. NEF Networks
	2.2.3. Mixture-of-Experts Online Learning

	2.3. Data and Pre-processing
	2.3.1. On-Board-Sensors Data Set
	2.3.2. NGSIM US-101 Data Set
	2.3.3. Pre-processing
	2.3.4. Encoding Schemes

	3. Experiments and Results
	3.1. Model Training
	3.1.1. LSTM Networks
	3.1.2. NEF Networks
	3.1.3. Mixture-of-Experts Online Learning

	3.2. Evaluation
	3.2.1. LSTM Models
	3.2.2. NEF Networks
	3.2.3. Mixture-of-Experts Online Learning

	4. Discussion
	4.1. Conclusion
	4.2. Future Work

	Author Contributions
	References

	Back Cover

