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Editorial on the Research Topic

Dynamic Functional Connectivity in Neuropsychiatric Disorders: Methods and Applications

Resting-state functional magnetic resonance imaging (RS-fMRI), a non-invasive measurement of
spontaneous brain activity, has greatly broadened our understanding of neural substrate underlying
neuropsychiatric disorders over the last several decades. Since Biswal et al. discovered synchronized
brain activity in different brain areas even without any tasks or stimuli (Biswal, 2012), numerous
studies have investigated resting-state coupling (i.e., functional connectivity, FC) between different
brain areas in neuropsychiatric disorders (Guo et al., 2015; Zhu et al., 2018).

FC can be defined as a temporal correlation of blood-oxygen-level dependent (BOLD) signal
between spatially distributed brain regions (Biswal et al., 1997). Most previous RS-fMRI studies
assumed that FC was constant throughout the observation period of task-free experiments
(Hutchison et al., 2013). Recently, several studies have demonstrated the feasibility of dynamic
methods in characterization of functional brain changes, such as dynamic FC (dFC) investigated by
the sliding-window method, which provide novel insights into underlying neural activity (Chang
and Glover, 2010; Liu et al., 2017; Duan et al., 2019). However, window size, window stepsize, and
window type are open areas of research and important parameters to capture the resting-state
FC dynamics. Sliding-window and time-frequency analyses are the two frequently used dynamic
functional analyses (Hutchison et al., 2013). Apart from dFC, dynamic amplitude of low frequency
fluctuations (dALFF) and dynamic regional homogeneity (dReHo) are also widely used (Deng
et al., 2016; Fu et al., 2018). Both static and dynamic functional metrics provide great insight into
understanding functional deficits of neuropsychiatric disorders (Biswal, 2012; Hutchison et al.,
2013). Therefore, deep and detailed understanding of the method and application of dynamic
functional metrics in neuropsychiatric disorders is critical.

This special issue focuses on the recent developments in dynamic functional analyses and their
applications in neuropsychiatric disorders. A total of 7 articles were included in this Research Topic.

POSTTRAUMATIC STRESS DISORDER (PTSD)

Fu et al. applied dReHo and dFC to investigate both local and large-scale functional coupling in
patients with PTSD. Results indicated increased dReHo in the left precuneus in patients with PTSD.
Also, the left precuneus exhibited increased dFC with the left insula and decreased dFC with the
left inferior parietal lobe and right precuneus, suggesting that the left precuneus might be critical
for the pathophysiology of PTSD.
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GENERALIZED ANXIETY DISORDER (GAD)

Brain signal variability (BSV) is a method to measure the
temporal variability of standard variation of BOLD signal, which
reflects capacity of transition between brain states and processing
various external stimuli. Li L. et al. evaluated the changes of BSV
in patients with GAD and found that extensive brain regions
exhibited decreased BSV in patients with GAD compared to
healthy controls (HCs), suggesting that the brain of patients with
GAD may be in a less flexible state compared to HCs.

EARLY BLIND

Dynamic causal modeling (DCM) is an approach to measure
causal functional interactions among neuronal populations, i.e.,
effective connectivity. Li, Wang et al. used spectral DCM to
investigate whether early visual deprivation had an impact on
the dynamic causal interactions among regions within the default
mode network, salience network, and dorsal attention network
in patients with early blind. Abnormal patterns of effective
connectivity within all these three networks were found in
patients with early blind compared to HCs, which might imply
the effect of early sensory deprivation on brain plasticity.

PARKINSON’S DISEASE (PD)

Li, Xiong et al. recruited 62 participants with PD and
demonstrated that dynamic nodal efficiencymeasurement, which
was calculated from RS-fMRI brain network and sliding-window
analysis, could be used to predict the severity level of PD after
drug therapy. Hippocampus, post-central gyrus, cingulate gyrus,
and orbital gyrus were the contributed regions for the prediction.
This study offered an example of using RS-fMRI data to predict
the treatment effect in patients with PD.

Another study on PD by Zhang C. et al. used dALFF
to explore the feasibility of differentiating patients with PD
from HCs. Increased coefficient of variation in the left
precuneus was observed in patients with PD. Moreover,
coefficient of variation of dALFF in the left precuneus was
positively correlated with disease duration in the patients. These
findings were likely to provide a new direction for diagnosis
of PD.

SUBACUTE STROKE

Chen et al. explored abnormal dynamic characteristics in patients
with subacute stroke. Results of both dALFF and dReHo showed

significant intergroup differences of regional brain activity. Fugl-
Meyer assessment, an index for evaluating the degree of motor
deficit, exhibited a positive correlation with dALFF variability
in supplementary motor area (SMA) and a negative correlation
with dReHo variability in ipsilesional middle frontal gyrus
(MFG). The receiver operating characteristic analysis suggested
that dALFF in SMA and dReHo in ipsilesional MFG might be
potential markers to distinguish patients with subacute stroke

from HCs. Therefore, dALFF and dReHo have the potential for
evaluating the motor function in patients with subacute stroke.

SCHIZOPHRENIA

Zhang Y. et al. focused dReHo and dynamic fALFF to
investigate abnormal dynamic local functional activity in
schizophrenia. Results revealed deficits in the sensory and
perception functional networks and a positive relationship
between dReHo of the thalamus and the severity of
symptoms in the patients, which highlighted the importance
of the sensorimotor networks in the physiopathology
of schizophrenia.

Taken together, all studies in this special issue suggested
progress in the methodology and application of dynamic
functional properties in neuropsychiatric disorders. These
advances would promote better understanding in the temporal
evolution of brain functional activity and provide valuable
insight into the development of objective neuro-biomarker
of neuropsychiatric disorders. Clinicians will be benefit from
this topic in regard to theoretical, experimental and clinical
questions related to the nature and origins of dFC in
neuropsychiatric disorders.
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Objective: To examine whether subacute stroke patients would exhibit abnormal
dynamic characteristics of brain activity relative to healthy controls (HC) and to
investigate whether the altered dynamic regional indexes were associated with clinical
behavior in stroke patients.

Methods: The dynamic amplitude of low-frequency fluctuations (dALFF) and dynamic
regional homogeneity (dReHo) in 42 subacute stroke patients and 55 healthy controls
were compared. Correlation analyses between dALFF and dReHo in regions showing
significant intergroup differences and clinical scores (i.e., the National Institutes of Health
Stroke Scale, Fugl-Meyer assessment and lesion volume size) were conducted in stroke
patients. Receiver operating characteristic (ROC) curve analysis was used to determine
the potential value of altered dynamic regional indexes to identify stroke patients.

Results: Significantly dALFF in the bilateral cerebellum posterior lobe (CPL),
ipsilesional superior parietal lobe, ipsilesional inferior temporal gyrus (ITG), the midline
supplementary motor area (SMA), ipsilesional putamen and lentiform nucleus were
detected in stroke patients compared to HC. Relative to the HC group, the
stroke patients showed significant differences in dReHo in the contralesional rectal
gyrus, contralesional ITG, contralesional pons, ipsilesional middle frontal gyrus (MFG).
Significant correlations between dALFF variability in midline SMA and Fugl-Meyer
assessment (FMA) scores or between dReHo variability in the ipsilesional MFG and
FMA scores were detected in stroke patients. Furthermore, the ROC curve revealed
that dynamic ALFF at SMA and ReHo at ipsilesional MFG might have the potential to
distinguish stroke patients.

Conclusion: The pattern of intrinsic brain activity variability is altered in stroke patients
compared with HC, and dynamic ALFF/ReHo might be potential tools to assess stroke
patients’ motor function.

Keywords: stroke, dynamic intrinsic brain activity, resting-state fMRI, amplitude of low-frequency fluctuations,
regional homogeneity
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INTRODUCTION

Stroke is the most common cause leading to varying degrees of
neurological dysfunction with a very high likelihood of long-term
disability (Liu et al., 2011; Yang et al., 2013). Movement disorders
are the major common conditions of stroke-induced disability,
and motor functional recovery remains highly variable. Although
the exact mechanism of motor deficits and motor recovery are
still under investigation, recent advances in neuroimaging have
expanded our understanding. Resting-state functional magnetic
resonance imaging (fMRI), which is operationally defined as task-
independent spatiotemporal correlations within functionally
related regions of the brain (Biswal et al., 1995), has been
extensively used to delineate neural function abnormalities in
stroke patients.

Resting-state fMRI measures spontaneous brain activity in
low-frequency fluctuations which can be reflected by the
blood oxygen level dependent (BOLD) signal. An increasingly
large body of resting-state fMRI studies in stroke patients
has focused on the characteristics of within-region or inter-
region functional connectivity, such as connections within
motor networks or between motor networks and non-motor
networks (Wang et al., 2010; Grefkes and Fink, 2014; Wu
et al., 2015). However, few studies have examined regional brain
activities in patients with stroke. Neural regional properties are
crucial for a better understanding of the neurophysiological and
neuropathological conditions, such as regional abnormal energy
consumption suggesting excessive or decreased resting metabolic
rates (Raichle, 2006; Fox and Raichle, 2007). Currently, one of the
methods to measure regional properties of the BOLD signal is the
amplitude of low-frequency fluctuations (ALFF), which measures
the signal strength in low-frequency oscillations of spontaneous
neural activity (Zang et al., 2007). The ALFF is correlated with
field potential activity in local brain regions (Logothetis et al.,
2001), and the amplitude of oscillations can be applied as an
index to examine alterations in neural function (Mohamed
et al., 2004). Another approach is regional homogeneity (ReHo),
which reflects the statistical similarity of local neural activity
among spatially adjacent regions (Zang et al., 2004). These two
approaches have been widely adopted for evaluating local neural
function in neurologic disorders and neuropsychiatric diseases
(Qiu et al., 2011; Li et al., 2012; Liu et al., 2012, 2013).

It has been reported that ALFF or ReHo were altered under
resting conditions in stroke patients with movement disorders
(Skidmore et al., 2013; Tsai et al., 2014) and that the ALFF
value or ReHo value in certain brain regions were associated
with the severity of motor deficits (Liu et al., 2015; Zhu et al.,
2015). However, the aforementioned investigations of regional
brain activities assumed that the BOLD signal is stationary during
the entire fMRI scan, ignoring the characteristics of dynamic
changes of brain spontaneous activity over time. Indeed, evidence
has accumulated that brain responds to internal or external
stimuli by dynamic integration or adjustment over multiple
time scales (Abrams et al., 2013; Yin et al., 2013). Fortunately,
the dynamic nature of brain activity may be detected by task
manipulations using methods such as electroencephalography
and can also be informed by the lower temporal resolution of

resting-state fMRI (Calhoun et al., 2008). In recent years, sliding
window approaches to functional connectivity have effectively
examined abnormal brain function in stroke (Duncan and Small,
2017). Nevertheless, it is not enough to merely focus on time-
varying dynamic functional connectivity, since evidence from
neuroimaging techniques of high spatiotemporal resolution has
verified that local brain activity itself exists with substantial
fluctuations (Liao et al., 2015; Fu et al., 2017), and until now, no
study explored the dynamic characteristics of local brain activity
indexes in stroke patients. These dynamic local approaches are
expected to explore the variability of the oscillation amplitudes
and regional synchronization of spontaneous brain activity and
to advance our understanding of brain function by identifying
specific pathophysiological function signatures and our ability
to decipher the neural underpinnings of normal or abnormal
human behaviors.

Hence, the present study applied resting-state fMRI to
investigate whether subacute stroke patients would exhibit
abnormal dynamic characteristics of spontaneous brain activity
by calculating regional indexes, ALFF and ReHo, compared
with healthy controls (HC). Furthermore, another goal was to
explore whether the altered dynamic ALFF (dALFF) and dynamic
ReHo (dReHo) were correlated with the clinical behavior of
the stroke patients. In the current study, we included subacute
stroke patients for two reasons. First, the condition of stroke
patients at the subacute stage is relatively stable than acute
stroke patients, and the patients’ compliance is relatively high,
facilitating the smooth progress of the current study. Second, we
enrolled stroke patients within 1–3 weeks after symptom onset,
and this period is well within the recovery window. A period
of dramatic changes in functional and structural reorganization
may provide more information of spontaneous neural activity.
We hypothesized that variability of regional brain activity was
altered in patients with stroke-induced motor deficits compared
with HC and that dynamic regional indexes in certain regions
detected to be associated with the Fugl-Meyer assessment (FMA)
scores could provide more information for evaluating of motor
function in stroke patients.

MATERIALS AND METHODS

Subjects
This study was part of an integrated stroke and rehabilitation
project at Shanghai 5th People’s Hospital affiliated with Fudan
University and was approved by the local ethical committee of
Shanghai 5th People’s Hospital affiliated with Fudan University.
Written informed consent was obtained from all subjects before
participating according to the Declaration of Helsinki. A total
of 45 subacute stroke patients were recruited. Additionally,
55 HC, who were right-handed and matched for age, gender
and education, were recruited from the local communities. The
inclusion criteria for stroke patients were as follows: (1) they were
aged 40–80 years; (2) it was a first-onset stroke with a single lesion
in right-side subcortical regions as verified by diffusion-weighted
imaging (DWI); (3) they were examined within 1–3 weeks after
stroke symptom onset; (4) they were clinical evidence of a motor
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deficit based on neurological examination; and (5) they were
right-handed before the stroke. The exclusion criteria for both
stroke patients and HC were the presence of any of the following:
(1) other brain abnormalities, or clinically significant or unstable
medical diseases; (2) unconsciousness, cognitive impairment, or
cooperation difficulties; (3) patients with use of medications
that could affect motor examination, such as antipsychotics
and antiepileptics; (4) patients with cerebellar lesions; and (5)
contraindications for MRI scanning. For all stroke patients, the
right hemisphere corresponded to the ipsilesional hemisphere.
The National Institutes of Health Stroke Scale (NIHSS) and
Mini-Mental State Examination (MMSE) were used to evaluate
neurological function impairment and cognitive conditions.
FMA for upper and lower extremities was applied to evaluate
the degree of motor deficit. These clinical behavior scores were
collected on the same day as fMRI data acquisition.

Data Acquisition
All resting-state fMRI data were acquired using a Philips Achieva
3.0 T MR scanner (Philips Medical Systems, Best, Netherlands).
Tight but comfortable foam pads and earplugs were used to
reduce head motion and scanner noise. Resting-state fMRI was
collected using an echo-planar (EPI) sequence with the following
scan parameters: repetition time (TR) = 2000 ms; repetition
echo time (TE) = 30 ms; flip angle (FA) = 90◦; field of view
(FOV) = 220 mm× 220 mm; voxel size = 3 mm× 3 mm× 3 mm;
matrix = 64 × 64; slice thickness = 3 mm; gap = 1 mm;
interleaved transversal slices = 38; and number of volumes = 180.
High-resolution sagittal T1-weighted images were acquired
using a 3D magnetization prepared rapid gradient echo
(MPRAGE) sequence: TR = 8.0 ms; TE = 3.7 ms; FA = 12◦;
FOV = 256 mm× 256 mm; voxel size = 1 mm× 1 mm× 1 mm;
matrix = 256 × 256; slice thickness = 1 mm; and slices = 180.
During scanning, all participants were instructed to remain
awake, keep their eyes closed, and stay motionless without
thinking of anything in particular.

The lesion location of each patient was determined by an
experienced neuroradiologist on T1-weighted MRI images. We
manually outlined the lesion profiles on T1-weighted MRI images
slice by slice using the software MRIcron1 and generated a lesion
mask for each patient. After spatial normalization to Montreal
Neurological Institute (MNI) space, all the patients’ lesion masks

1http://www.mccauslandcenter.sc.edu/mricro/mricron/

overlapped. We then averaged the individual lesion masks and
overlaid them with a template to create the lesion overlap map
shown in Figure 1.

Preprocessing of Resting-State fMRI
Data
The preprocessing of resting-state fMRI data was performed
using the Data Processing Assistant for Resting-State fMRI
(DPARSF) version 4.02. The first 10 volumes of each participant
were deleted to allow the signal to reach equilibrium and
the subjects to adapt to the environment. The remaining 170
volumes were corrected for acquisition time delay between
slices. Realignment was conducted to correct head motion.
The participants with head motion of >2.0 mm in maximum
displacement or >2.0◦ rotation in angular motion were excluded
from the study. The mean framewise displacement (FD) was
computed by averaging the FD of each subject across the time
points, and no significant differences were found between stroke
patients and HC (p = 0.235). In addition, each subject’s mean
FD was included in all group-level analyses as a covariate to
further control the head move effect. Subsequently, the structural
image was coregistered to the mean functional image after the
motion correction, and the transformed structural image was
segmented into gray matter, white matter, and cerebrospinal
fluid. Then, the segmented images were normalized to MNI
space using Diffeomorphic Anatomical Registration Through
Exponentiated Lie algebra (DARTEL) algorithm (Ashburner,
2007). Next, the motion-corrected functional volumes were
normalized to the MNI space using the normalization parameters
for their respective structure images and resampled into a voxel
size of 3 mm × 3 mm × 3 mm. Nuisance covariates (24 head
motion parameters, cerebrospinal fluid signal, white matter signal
and linear trend) were regressed out. Given that it is still a
controversy of removing the global signal (Murphy et al., 2009);
we did not regress out the global signal. For the ReHo calculation,
an additional processing step was that the regressed functional
images were temporally bandpass filtered (0.01–0.08 Hz) to
reduce low frequency drift and high-frequency noise.

dALFF and dReHo Analysis
Dynamic regional metrics analysis was performed using
Temporal Dynamic Analysis (TDA) toolkits based on DPABI

2http://rfmri.org/DPARSF/

FIGURE 1 | Lesion overlap map across stroke patients with right-sided lesions (n = 42); Lesion maps were normalized to an MNI reference brain. The color bar
indicates the percentage of lesion overlap.

Frontiers in Neuroscience | www.frontiersin.org 3 January 2019 | Volume 12 | Article 9949

http://www.mccauslandcenter.sc.edu/mricro/mricron/
http://rfmri.org/DPARSF/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00994 December 28, 2018 Time: 16:45 # 4

Chen et al. Dynamic Brain Activity in Stroke

(Yan et al., 2017). Sliding window-based analysis, which is
sensitive in detecting time-dependent variations (Hindriks et al.,
2016; Liu F. et al., 2017; Yip et al., 2017), was applied to examine
the dALFF or dReHo variability over the whole brain. In the
sliding window analysis, a temporal window of certain size and
shape is chosen, and ALFF and ReHo within that window are
calculated. Ideally, the window size should be small enough
to detect potentially transient signals, and yet large enough to
analyze the lowest frequencies of interest in the signals (Sakoglu
et al., 2010). Previous work of sliding window connectivity have
applied a sliding window length of as small as 10 s (Thompson
et al., 2013) and as long 180 s (Gonzalez-Castillo et al., 2015). In
this work, a moderate-length sliding window of 32 TR (64 s) and
a shifting step size of one TR (2 s) were used to simultaneously
maximize statistical power within the window and also maximize
statistical power for cross-level analyses (Allen et al., 2014).
The remaining 170 time points after removing the first 10 time
points for each individual were segmented into 139 windows in
total. In each sliding window, ALFF and ReHo were calculated.
For ALFF, the time series was first converted to the frequency
domain using a fast Fourier transform, and then the ALFF value
of a given voxel was obtained by calculating and summing the
square root of the power spectrum between 0.01 and 0.08 Hz.
For ReHo, the Kendall’s coefficient of concordance (KCC) of
the time course of every 27 nearest neighboring voxels was
calculated (Zang et al., 2004). The standard deviation (SD) of
ALFF values and ReHo values at each voxel across 139 windows
was calculated to assess the variability of ALFF and ReHo. To
reduce the global effects of variability across subjects, the dALFF
and dReHo of each voxel were divided by the global mean dALFF
and dReHo values within a gray matter mask, respectively.
Finally, the mean normalized dALFF and dReHo maps were
spatially smoothed with an isotropic Gaussian kernel of 4 mm
full-width-at-half-maximum (FWHM).

Statistical Analysis
A general linear model (GLM) was used in a voxel-wise manner
to compare group differences between the stroke group and HC
group in dALFF and dReHo with age, gender, educational level,
MMSE and mean FD as covariates. Multiple comparisons were
corrected using a voxel-level familywise error rate (FWE) method
with corrected p < 0.05 (cluster size ≥50 voxels).

The Shapiro–Wilk statistic was first used to test for
normality, and then group comparisons of clinical measures
were performed using two-sample t-tests for continuous data
and Pearson’s chi-squared test for categorical data. Partial
correlation analyses were conducted in stroke patients between
the clinical measures (NIHSS scores, FMA scores and lesion
volume size) and the mean dALFF/dReHo value of each cluster
showing significant group differences between stroke group
and HC group. The age, gender, educational level, MMSE,
mean FD, illness duration and intravenous thrombolysis (IVT)
were also considered as covariates. As the correlation analyses
were exploratory in nature, the significance levels were set
at uncorrected p < 0.05. Furthermore, receiver operating
characteristic (ROC) curve analysis was performed to examine
the potential value of altered dynamic ALFF or ReHo values in

clusters showing significant correlations with clinical behaviors
in stroke patients. The optimal cut-off between sensitivity and
specificity was determined by maximizing the Youden’s index J
(J = sensitivity + specificity − 1). A two-tailed p-value of 0.05
was considered statistically significant for the analyses conducted
with SPSS version 19.0 statistical software (IBM Corporation,
Armonk, NY, United States).

RESULTS

Clinical Data
Data obtained from three stroke patients were excluded because
of excessive head motion during scanning. Demographic and
clinical characteristics of 42 patients with right hemisphere stroke
(21 men; mean age, 57.86 ± 11.17 years) and 55 HC (29 men;
mean age, 56.73± 10.21 years) are listed in Table 1. No significant
differences in were found (p > 0.05) in gender, age, education
level, high risk factors (hypertension, diabetes, hyperlipidemia
and atrial fibrillation) and MMSE scores between the stroke
group and HC group. The mean lesion volume of stroke patients
was 6.10 ± 8.55 cc3. Among them, four patients received IVT
therapy. Of the 42 patients, 15 had corona radiate lesions, 15 had
internal capsule lesions, 10 had basal ganglia lesions, and two had
thalamus lesions. The lesion overlaps of stroke patients are shown
in Figure 1.

TABLE 1 | Demographic and clinical data.

Stroke patients Healthy control

(n = 42) (n = 55) t/χ2 p

Gender, male 21 (50.0) 29 (52.7) 0.071 0.790

Age, years 57.86 ± 11.17 56.73 ± 10.21 0.518 0.605

Educational level,
years

10.74 ± 3.39 11.00 ± 3.82 −0.351 0.727

High risk factor

Hypertension 25 (59.5) 29 (52.7) 0.446 0.504

Diabetes 11 (26.2) 12 (21.8) 0.252 0.616

Hyperlipidemia 12 (28.6) 16 (29.1) 0.003 0.955

Atrial fibrillation 2 (2.1) 1(1.8) 0.689 0.407

MMSE 28.07 ± 1.28 28.15 ± 1.27 −0.284 0.777

Illness duration, days 14.29 ± 2.14 −

Stroke type

Ischemia 40 (95.2) −

Hemorrhage 2 (4.8) −

Location of lesion

Coronal radiate 15 (35.7) −

Internal capsule 15 (35.7) −

Basel ganglia 10 (23.8) −

Thalamus 2 (4.8) −

Lesion volume, cc3 6.10 ± 8.55 −

NIHSS 5.86 ± 4.14 −

FMA-total 76.45 ± 14.12 −

IVT use 4 (9.5) −

Data represent n (%) or mean ± SD. MMSE, the Mini-Mental State Examination;
NIHSS, the National Institutes of Health Stroke Scale; FMA-total, Fugl-Meyer
assessment for upper and lower extremities; IVT, intravenous thrombolysis.
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Differences in Dynamic ALFF and
Dynamic ReHo
The significant differences in dALFF and dReHo between the
stroke group and HC group are shown in Figures 2A,B,
respectively. Compared with HC, significantly increased dALFF
variability in the contralesional cerebellum posterior lobe
(CPL), ipsilesional superior parietal lobe, ipsilesional inferior
temporal gyrus (ITG), ipsilesional CPL and cerebellum tonsil and
decreased dALFF variability in the midline supplementary motor
area (SMA), ipsilesional putamen and lentiform nucleus were
detected in stroke patients (Table 2 and Figures 2A,C). Relative
to the dReHo variability of subjects in the HC group, these stroke
patients showed a significant increase in contralesional rectal
gyrus, contralesional ITG, contralesional pons and a significant
decrease in ipsilesional middle frontal gyrus (MFG) (Table 3 and
Figures 2B,D).

Correlational Analysis
A significant positive correlation was detected between the
FMA scores and dALFF variability in the SMA (r = 0.347,
p = 0.035, uncorrected; Figure 3A), a significant negative

correlation between the FMA scores and dReHo variability
in the midline ipsilesional MFG was found in stroke patients
(r = −0.462, p = 0.004, uncorrected; Figure 3B). No other
significant correlations between NIHSS, size of lesion volume and
dynamic regional indexes were observed in the stroke group.

ROC Analysis
As shown above, significant correlations were detected between
the FMA scores and dynamic ALFF variability in SMA or
dynamic ReHo variability in ipsilesional MFG, which proposed
that the dynamic ALFF/ReHo in these regions might be
utilized to differentiate the stroke patients from healthy persons.
To verify this possibility, mean dALFF/dReHo values in the
SMA or ipsilesional MFG were extracted. Then, ROC analysis
was performed to investigate this possibility. The results
demonstrated that the area under the curves (AUC) of SMA and
ipsilesional MFG were 0.965 and 0.911, respectively (Figure 4),
which suggested that dynamic ALFF in SMA and ReHo values in
the ipsilesional MFG might have the potential to distinguish the
stroke patients from healthy subjects. Further diagnostic analysis
showed that the sensitivity and specificity were relatively high
(Table 4).

FIGURE 2 | (A) Brain regions with significant intergroup differences in dALFF between the stroke group and HC group. (B) Brain regions with significant intergroup
differences in dReHo between the stroke group and HC group. (C) The histogram indicates mean values and standard error of dALFF variability between the stroke
group and HC group. (D) The histogram indicates mean value and standard error of dReHo variability between the stroke group and HC group. Familywise error rate
corrected (p < 0.05, cluster size ≥ 50 voxels). The color bar indicates the T value. ∗p < 0.05. HC, healthy controls; dALFF, dynamic amplitude of low-frequency
fluctuation; dReHo, dynamical regional homogeneity; CPL, cerebellum posterior lobe; SPL, superior parietal lobe; ITG, inferior temporal gyrus; CT, cerebellum tonsil;
SMA, supplementary motor area; LN, lentiform nucleus; RG, rectal gyrus; MFG, middle frontal gyrus; IL, ipsilesional; CL, contralesional.
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TABLE 2 | Brain regions with significant differences in dynamic ALFF between groups.

Peak MNI coordinates

Group comparisons Brain regions/BA X Y Z Cluster size (voxels) Peak t values

Stroke patients > HC Cerebellum posterior lobe, CL −15 −69 −39 1175 9.73

Superior parietal lobe, IL/4 27 −57 60 179 9.32

Inferior temporal gyrus, IL/20 39 −57 −18 298 9.27

Cerebellum posterior lobe, IL 39 −87 −39 53 8.33

Cerebellum tonsil, IL 48 −63 −54 50 6.57

Stroke patients < HC Supplementary motor area, 6 12 −12 57 1670 13.6

Putamen, IL 24 0 0 814 12.18

Lentiform nucleus, CL −18 −6 18 298 11.01

ALFF, amplitude of low-frequency fluctuation; HC, healthy controls; BA, Brodmann’s area; MNI, Montreal Neurological Institute; IL, ipsilesional; CL, contralesional.

TABLE 3 | Brain regions with significant differences in dynamic ReHo between groups.

Peak MNI coordinates

Group comparisons Brain regions/BA X Y Z Cluster size (voxels) Peak t values

Stroke patients > HC Rectal gyrus, CL/11 −3 6 −30 105 13.16

Inferior temporal gyrus, CL/20 −42 −30 −30 58 8.85

Pons, CL −12 −21 −33 95 7.86

Stroke patients < HC Middle frontal gyrus, IL/9 45 54 18 52 7.32

ReHo, regional homogeneity; HC, healthy controls; BA, Brodmann’s area; MNI, Montreal Neurological Institute; IL, ipsilesional; CL, contralesional.

FIGURE 3 | (A) The dALFF variability in the SMA was positively correlated with the FMA scores of the stroke patients (r = 0.347, p = 0.035, uncorrected). (B) The
dReHo variability in the ipsilesional MFG was negatively correlated with the FMA scores of the stroke patients (r = –0.462, p = 0.004, uncorrected). dALFF, dynamic
amplitude of low-frequency fluctuation; dReHo, dynamic regional homogeneity; FMA-total, Fugl-Meyer assessment for upper and lower extremities; SMA,
supplementary motor area; MFG, middle frontal gyrus; IL, ipsilesional.

DISCUSSION

In the present study, dynamic regional brain activity between
stroke patients with motor deficits and healthy controls was
examined using resting-state fMRI. To the best of our knowledge,
there is no prior study using a TDA approach to detect stroke-
related brain activity changes in humans. Given that young
adult stroke could be different both in causes and in outcomes

(Edwards et al., 2018) and the role of educational level in recovery
should not be ignored (Hillis and Tippett, 2014). Therefore,
we used age and educational level as covariates in intergroup
difference analyses and correlation analyses. Moreover, patients
were enrolled in this current study within 1–3 weeks after stroke
symptom onset, during which period imaging data and behavior
performance were obtained. This period is well within the
recovery window for stroke (Venketasubramanian et al., 2017).
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FIGURE 4 | The diagnostic performance of altered dynamic ALFF in SMA and
dynamic ReHo in ipsilesional MFG in distinguishing stroke patients from
healthy subjects. ALFF, amplitude of low-frequency fluctuation; ReHo, regional
homogeneity; SMA, supplementary motor area; MFG, middle frontal gyrus; IL,
ipsilesional; AUC, area under curve.

Additionally, medication, especially IVT therapy, can largely
improve patients’ functional outcomes for hyperacute ischemic
stroke (Ferrigno et al., 2018). Hence, we also considered patients’
illness duration and IVT use status as covariates in correlation
analyses to reduce the confounding effects.

Differences in dALFF variability were observed between
the stroke group and HC group in the contralesional CPL,
ipsilesional superior parietal lobe, ipsilesional ITG, ipsilesional
CPL, cerebellum tonsil, the midline SMA, ipsilesional putamen
and lentiform nucleus, while differences of dReHo variability
in contralesional rectal gyrus, contralesional ITG, contralesional
pons and MFG distinguished stroke patients from HC. In
addition, relationships were observed between the FMA scores
and dynamic ALFF or ReHo variability in SMA or ipsilesional
MFG in stroke patients. Further ROC analyses suggested that
dynamic ALFF in SMA or ReHo in ipsilesional MFG had the
potential to distinguish the patients of subacute stroke from
healthy subjects.

Our findings were in line with previous studies that
investigated stroke patients with movement disorders by
functional connectivity, structural connectivity or regional

metrics, such as ALFF or ReHo (Skidmore et al., 2013; Tsai
et al., 2014; Zhu et al., 2015). The sensorimotor network (SMN),
which is critical for voluntary movement, connects primary
motor cortex function with SMA function (Damoiseaux et al.,
2006; Chang et al., 2013). The SMA is a part of the primate
cerebral cortex that contributes to the control of movement.
Neurons in the SMA project directly to the spinal cord and
may play a role in the direct control of movement (Nudo and
Masterton, 1990). It has been reported that SMA plays roles in
the postural stabilization of the body, the coordination of both
sides of the body such as during bimanual action, the control
of movements that are internally generated rather than triggered
by sensory events, and the control of sequences of movements
(Shima and Tanji, 1998; Cunnington et al., 2003; Zhang et al.,
2012). Stroke-induced disturbance of intrinsic neural activity,
which may be due to a complex cascade of events that are
associated with structural reorganization and axonal sprouting as
demonstrated by tract-tracing studies in animal models of stroke
(Carmichael et al., 2001; Dancause et al., 2005), impedes brain
network function of voluntary motion. Based on prior studies, we
speculate that altered dALFF and dReHo variability in the SMN
(e.g., in the superior parietal lobe and SMA) of stroke patients
with motor deficits might occur as a compensatory mechanism
and might be a significant factor in the reorganization and
integration of resting-state functional networks at the subacute
stage.

We observed decreased dReHo variability in the ipsilesional
MFG, which belongs to the default mode network (DMN). This
finding may indicate that stroke-related brain activity changes
not only occurred in motor-related areas but also in non-motor
regions. The DMN plays a pivotal role in “resting” brain activity,
which is involved in sustaining attention, self-consciousness and
exhibiting self-control (Andrews et al., 2011; Yuan et al., 2018).
In stroke patients, alterations in brain activity of the DMN may
be associated with advanced neural function of cognitive and
emotional control (Liu F. et al., 2017). Evidence has shown that
the DMN regulates consciousness, processes emotionally salient
stimuli, and coordinates the interactions of cognitive function
and emotional processing (Soddu et al., 2012; Zhang et al.,
2017). In the current study, we demonstrated that the stroke
group showed significantly decreased ReHo variability in the
ipsilesional MFG, indicating that the synchronous neural activity
was also disrupted in the ipsilesional MFG in stroke patients.

The increased regional brain activity in contralesional pons
and bilateral cerebellum CPL, ipsilesional cerebellum tonsil may

TABLE 4 | ROC analysis for differentiating stroke patients from healthy person.

MNI coordinates

Brain regions X Y Z AUC Maximal Youden’s index J Sensitivity Specificity

dALFF at SMA 12 −12 57 0.965 0.861∗ 95.2% (40/42) 90.9% (50/55)

dReHo at MFG.IL 45 54 18 0.911 0.832 92.9% (39/42) 90.3% (49/55)

∗By this optimal cut-off point, the dynamic ALFF value of SMA could correctly classify 40 of 42 patients and 50 of 55 healthy subjects, resulted in a sensitivity of 95.2%
and a specificity of 90.9.2%. The means of other optimal cut-off point was similar. MNI, Montreal Neurological Institute; AUC, areas under the curves; dALFF, dynamic
amplitude of low-frequency fluctuation; dReHo, dynamic regional homogeneity; SMA, supplementary motor area; MFG, middle frontal gyrus; IL, ipsilesional.

Frontiers in Neuroscience | www.frontiersin.org 7 January 2019 | Volume 12 | Article 99413

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00994 December 28, 2018 Time: 16:45 # 8

Chen et al. Dynamic Brain Activity in Stroke

result from the dysfunction of the cerebro-ponto-cerebellar
circuit and act as a compensatory response (Lu et al., 2011). The
excessive ReHo variability of the prefrontal cortex (the rectal
gyrus) may compensate for the deficits in motor function in
stroke patients. However, this concept needs to be confirmed.
Moreover, rectal gyrus is considered as a part of affective
network (AN). Study has reported that abnormal regional neural
activity was observed mainly in component of DMN, SMN,
cerebellar lobes (CPL) and AN in stroke patients with emotional
abnormality (Liu T. et al., 2017). Hence, we tend to speculate that
the dysfunction of the volitional system may lead to the disorder
of emotional system in stroke patients.

We also found decreased dALFF variability in the ipsilesional
putamen and contralesional lentiform nucleus in stroke patients.
Considered the entrance to the basal ganglia, the lentiform
nucleus receives the input from cerebral cortex, and there was
partial stroke lesion overlap observed in the present study
and shown in Figure 1. The primary roles of these regions
are to regulate movements at various stages, such as during
motor preparation and motor execution. Meanwhile, they play
important roles in motor learning, which can be considered
a sensory feedback of frontal mediated goal parameters and
posterior-mediated motor programs; there are anatomical links
that exist between these motor-execution and frontal-parietal
motor control systems (Ween, 2008). Previous human and non-
human studies of stroke models have shown that decreased
ALFF values were found in the core of stroke lesions (Liu
et al., 2007; Skidmore et al., 2013). The mechanism may
involve abrupt decreases of the blood flow resulting from
cytotoxic swelling, calcium overload and membrane ion pump
failure in core regions of stroke lesions (Badaut et al., 2011).
Based on the previous studies and this present study, we infer
that deceased or vanished oxygen consumption and intrinsic
brain activity may contribute to less variation and low ALFF
values.

In addition, we also detected excessive intrinsic brain activity
variability reflected both in dALFF in the ipsilesional ITG and
in dReHo in the contralesional ITG of the stroke patients.
The ITG belongs to the higher levels of the ventral stream of
visual processing and is related to the representation of complex
object features. A previous study found that the visual network
was activated in recovery from sensorimotor stroke, and limb
movement critically relies on visual guidance (Archer et al.,
2016). The mechanism underlying the abnormal brain activity of
contralesional ITG is presently poorly understood.

The current study has several limitations. First, although
we identified significant differences between the stroke patients
and the HCs, the sample size of 42 stroke patients analyzed
in the current study was somewhat lacking in statistical
power, and large sample size studies are needed for further
demonstration. Second, it was reported that corticospinal tract
lesion load was a significant predictor of motor deficit (Zhu
et al., 2010; Feng et al., 2015). However, in the current
study, we focused on investigating whether subcortical stroke
patients would exhibit abnormal dynamic characteristics of
brain activity relative to healthy controls and to investigate
whether the altered dynamic regional indexes were associated

with clinical behavior in stroke patients. Hence, here, we did
not give much thought to the characteristics of diffusion-tensor
imaging of the patients. Third, the correlation analyses cannot
pass the FDR or Bonferroni correction. Larger sample size
will be necessary to confirm the current results in the future
studies. Fourth, physiological noise of cardiac and respiratory
cycles was not monitored during the MRI scanning, which
may influence brain activity alterations. It is possible that
alterations in network dynamics may reflect changes in brain
state, since few constraints were imposed on a participant’s
cognitive processes during the scanning. Finally, although the
correlation analyses between dynamic regional indexes in regions
showing significant group differences and size of lesion volume
revealed no significant correlation, the heterogeneous clinical
characteristics, such as lesion location, stroke severity and
size of lesion volume, exhibited a relatively large variation
across subjects and should be taken into consideration when
interpreting the results.

CONCLUSION

The pattern of intrinsic brain activity variability in multiple
brain networks is altered in stroke patients with motor deficits
compared with healthy controls. The alterations of dynamic brain
activity in the SMN and DMN were correlated with the degree
of motor functional impairment. Resting-state fMRI dynamic
regional indexes might be potential tools to assess stroke patients’
motor function. Future studies will be needed to clarify the
underlying mechanisms of alterations in the dynamic regional
metrics after stroke.
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Generalized anxiety disorder (GAD) is characterized by a chronic, continuous symptom

of worry and exaggerated startle response. Although functional abnormality in GAD has

been widely studied using functional magnetic resonance imaging (fMRI), the dynamic

signatures of GAD are not fully understood. As a vital index of brain function, brain signal

variability (BSV) reflects the capacity of state transition of neural activities. In this study, we

recruited 47 patients with GAD and 38 healthy controls (HCs) to investigate whether or

not BSV is altered in patients with GAD by measuring the standard deviation of fMRI

signal of each voxel. We found that patients with GAD exhibited decreased BSV in

widespread regions including the visual network, sensorimotor network, frontoparietal

network, limbic system, and thalamus, indicating an inflexible brain state transfer pattern

in these systems. Furthermore, the correlation between BSV and trait anxiety score was

prone to be positive in patients with GAD but negative in HCs. The opposite relationships

between BSV and anxiety level in the two groups indicate that the brain with moderate

anxiety level may stay in the most stable rather than in the flexible state. As the first study

of BSV in GAD, we revealed extensively decreased BSV in patients with GAD similar to

that in other mental disorders but with a non-linear relationship between BSV and anxiety

level indicating a novel neurodynamic mechanism of the anxious brain.

Keywords: brain signal variability, fMRI, generalized anxiety disorder, neurodynamics, non-linear relationship

INTRODUCTION

Generalized anxiety disorder (GAD) is one of the most prevalent mental disorders characterized
by exaggerated startle response and chronic, pervasive, and intrusive worry (1, 2). Based on
static analysis methods, many functional magnetic resonance imaging (fMRI) studies have found
aberrant brain activation related to cognition and emotion functions in GAD (3, 4). Inefficient
intrinsic brain activity associated with integration of interoceptive and somesthetic functions has
also been found in anxiety disorders (5–7). These static analysis methods for brain activity or
activation have provided abundant evidence for us to understand the neural mechanism of GAD.
However, clinically effective biomarker is still lacking. Recently, a mass of studies have shown that
dynamic brain activity can provide novel information of neural characteristics for various neural
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disorders (8–10). Whether the dynamic brain activity analysis
can provide insightful information about the neural mechanism
of GAD, however, is unknown.

Human brain activity is naturally variable (11). In previous
years, fMRI research had regressed blood oxygen level-dependent
(BOLD) signal variance as measurement-related or other
confounds (12, 13). However, researchers found that the “noise”
variance in data is an important feature of brain function in
the recent 10 years (14, 15). In a neuroimaging time series,
BSV measures the magnitude of variability from moment to
moment (16). The forms of BSV include variance (17) and mean
square successive differences (18), especially standard deviation
(SD) (14, 15). As the next frontier in brain mapping, the brain
signal variability (BSV) reflects the capacity of state transition of
neural activities and dynamic range of brain functional systems
(16). BSV has been suggested to be an excellent proxy of the
characteristics of neural dynamics, cognitive performance, and
brain disorders (14, 19–21). Great BSV has been suggested to
be associated with increased ability to transfer between brain
states (22) and to process varying and unexpected external
stimuli (16, 23). Measured with the SD of brain signal, the
BSV is more powerful than mean brain signal in predicting
neural aging (14). Recently, the quadratic change in lifespan
BSV trajectory has been further uncovered (24). Furthermore,
a number of studies have demonstrated abnormal BSV in
schizophrenia, attention deficit hyperactivity disorder, autism,
and patients with disorders of consciousness, reflecting the
dynamical dysfunction of neural activities in mental disorders
(25, 26). Specifically, the non-linear dynamics of brain signal
over a range of temporal scales are mainly decreased compared
with those in healthy controls (HCs) (27). The hypothesis
of “unhealthy brain is less variable than healthy brain” has
been demonstrated in various clinical populations, such as
dementia, untreated patients with schizophrenia, autism, and
mesial temporal lobe epilepsy (16, 27, 28). In other words, many
findings support Pool’s opinion that “healthy brain is a chaotic
brain” (11).

The anxious brain was viewed as an inflexible system,
grounded in poor inhibition (29). In patients with GAD,
a reduced capacity to inhibit cognitive (worry), behavioral
(avoidance), and accompanying physiological manifestations
was associated with cognitive rigidity and inflexibility (30). By
using the mean-based methods, the core symptom, worry,
which predominantly reflected a stimulus-independent
mental processing also leads to the inflexible functional
brain configurations in the prefrontal cortex, cingulate gyrus,
and amygdala (31). However, the respective spatial patterns
profiled by the SD-based method (like BSV) and mean-based
method were highly different (14). To profile the flexibility
of brain, BSV is a brand new effective index. Therefore, we
hypothesized that patients with GAD may show decreased BSV
compared with HCs in more related core regions.

In this study, we investigated the altered BSV in patients
with GAD and healthy participants. To perform comprehensive
comparisons, the relationship between BSV and anxiety level was
also observed. Notably, this work is the first study of altered
BSV in patients with GAD. Therefore, the BSV may be able to

provide new insights into understanding the neural dynamics
of GAD.

METHODS AND MATERIALS

Participants
Forty-seven patients with GAD were recruited from the mental
health center of Chengdu, Sichuan, China. All patients were
determined by consensus of two experienced psychiatrists by
using the Structured Clinical Interview for DSM-IV (patient
edition) (32). Clinical states of the patients were evaluated using
the Hamilton anxiety scale (HAMA). Data from one patient
was deleted because the BSV is extremely lower than the others
(< mean-5 SD). The exclusion criteria included schizophrenia,
mental retardation, or personality disorder, history of loss
of consciousness, substance abuse, and serious medical or
neurological illness. The HC group was composed of 38 age-,
gender-, education-, mean frame-wise displacement (FD) (33)-
matched healthy participants. The Structured Clinical Interview
for DSM-IV non-patient version was employed to ensure the
absence of psychiatric illnesses in the HCs. The HCs did not
finish the HAMA scale test because the test was only obtained
in hospital by two well-trained psychiatrists. None of the HCs
had a history of serious medical or neuropsychiatric illness or a
family history of major psychiatric or neurological illness in their
first-degree relatives. All participants (including GADs and HCs)
finished the Chinese vision of Trait Anxiety Inventory (TAI)
questionnaire (34), which is often used in clinical application in
the diagnostic work-up of mental disorders and has good validity
and reliability (35, 36).

Ultimately, 47 patients with GAD and 38 HC were included
in the study (Table 1). Written informed consent, approved by
the research ethical committee of the School of Life Science and
Technology at University of Electronic Science and Technology
of China, was obtained from each participant.

Data Acquisition
MRI data were acquired using a 3.0T GE 750 scanner (General
Electric, Fairfield, Connecticut, USA) equipped with high-speed
gradients. An 8-channel prototype quadrature birdcage head coil
fitted with foam padding was applied to minimize the head
motion. Ear plugs were used to minimize the scanner noise.
Participants were instructed to simply rest with their eyes closed,
minds relaxed, awake, and motionless. Functional images were
acquired using a gradient-recalled echo-planar imaging (EPI)
sequence. The parameters were as follows: repetition time/echo
time= 2,000ms/30ms, 90◦ flip angle, bandwidth= 250Hz/pixel,
43 axial slices (3.2mm slice thickness without gap), 64 × 64
matrix, and 22 cm field of view. For each participant, 255 volumes
were obtained.

Data Preprocessing
Functional images were preprocessed using the Data Processing
Assistant for resting-state fMRI (DPARSF 2.2, http://www.
restfmri.net/forum/DPARSF). The first five volumes were
discarded to ensure signal equilibrium and for the participants
to familiarize themselves with the scanning environment. The
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TABLE 1 | Demographic information and characteristics of patients with GAD

and HCs.

Variables (Mean ± SD) GAD HC P-value

Gender (Male/Female) 47 (17/30) 38 (19/19) 0.200a

Age (years) 38.38 ± 9.08 35.24 ± 10.34 0.139b

Education (years) 11.30 ± 3.64 12.37 ± 3.89 0.195b

mean FD (mm) 0.0923 ± 0.0470 0.1049 ± 0.0555 0.261b

Course of illness (months) 61.96 ± 73.98 - -

HAMA score 24.28 ± 6.583 - -

TAI 55.04 ± 8.698 41.28 ± 5.43 <0.0001 b

Medication load index 1.40 ± 0.85 - -

ANTIANXIETY MEDICATIONS, NO. OF PATIENTS

Fluoxetine 1 - -

Sertraline 5 - -

Paroxetine 13 - -

Citalopram 1 - -

Escitalopram 9 - -

Fluvoxamine 1 - -

Venlafaxine 5 - -

Duloxetine 1 - -

Mirtazapine 8 - -

SD, standard deviation; GAD, generalized anxiety disorder; HCs, healthy controls; HAMA,

Hamilton Anxiety Rating Scale; TAI, Spielberger Trait Anxiety Inventory. a Chi-square test;

b Independent-sample t-test.

remaining 250 images were slice-time corrected, spatially aligned,
and spatially normalized to the Montreal Neurological Institute
(MNI) EPI template and resampled to 3 × 3 × 3 mm3 voxels.
After signal detrending, the images were spatially smoothed
(8mm full width at half maximum Gaussian kernel). Afterwards,
Friston 24 head motion parameters, white matter signal, and
cerebrospinal fluid signal were further regressed out. Finally,
signal was filtered at 0.04–0.07Hz because of the less noise
contamination within this frequency range (37). The frame-wise
displacement (FD) was used to represent instantaneous head
motion. The mean FD of each participant was <0.5 mm.

Brain Signal Variability
Firstly, before calculating the BSV, we performed the temporal
normalization for each voxel during the entire time of 500 s. The
purpose of this step is to eliminate the contamination of the
mean signal (14). Secondly, the SD which is simply the square
root transformation of variance, was calculated in each voxel
cross time series by using a custom-built function in MATLAB
(The MathWorks, Inc.). According to Garrett’s study, the SD
of BOLD signal is temporal variability called BSV (14). The
Anatomical Automatic Labeling 90 template was transformed to
a binary mask and used to constrain the calculation in the gray
matter (21).

Statistical Analysis
Two-sample t-test was used to assess the difference of BSV
between the GAD and HC groups. Multiple-comparison
correction was performed on the contrast brain map via the

false discovery rate approach (p < 0.05). Pearson correlations
were calculated between the BSV and TAI score in the two
groups, correspondingly, with age, sex, education, and mean
FD as control variables. The correlation analysis was performed
under the regions with significantly different BSVs between the
two groups. We adopted the cross-voxel correlation (21, 38) to
evaluate the spatial correlation between the correlation maps of
the GAD and HC groups. As suggested by Liang et al., the two
3D maps of correlation coefficient were first transformed into
columns and then transformed into z-score by minus mean then
divided by SD. Pearson correlation was finally computed between
these two columns of data. Then, we built a linear mixed-effects
model with State-Trait Anxiety Inventory (STAI) score as a factor
to show the differences in these correlations between BSV and
STAI score in the two groups.

RESULTS

Decreased BSV in Patients With GAD
Compared with the HC group, patients with GAD show
decreased BSV across the widespread brain regions (Figure 1A).
Significantly low BSV is primarily located in the visual network,
sensorimotor network, frontoparietal network, limbic system,
and thalamus (Figure 1B and Table 2).

Correlations Between BSV and Anxiety
Severity in GAD and HC
As shown in Figure 2A, the correlation between BSV and TAI
score in the HC group is mainly negative, whereas that in
the GAD group is mainly positive. Figures 2B,C show the
correlation map for the HC and GAD groups, respectively. The
correlation coefficients in the HC group and GAD group are
negatively related to each other (r = −0.285, p = 4.12e−274).
In other words, if the correlation between BSV and TAI score
in the HC group is negative in one voxel, that correlation in
the GAD group is positive in that voxel. The differences of
correlations between BSV and STAI score in the two groups are
also mainly located in the visual network, sensorimotor network,
and frontoparietal network (Figure 3).

DISCUSSION

To the best of our knowledge, this work is the first study on the
abnormal BSV in patients with GAD. In accordance with other
studies in mental disorders, we observed widely decreased BSV
in patients with GAD compared with HCs, suggesting multiple
deficits in neural systems of GAD. Interestingly, we observed
opposite distributions of linear relationship between TAI score
and BSV in the GAD and HC groups, indicating a non-linear
relationship between anxiety level and BSV. In other words, the
chaotic brain might be not always the healthy one.

Decreased Temporal Variability in Patients
With GAD
In line with reduced BSV in other mental disorders, the current
study revealed widely decreased BSV in patients with GAD,
arguing that reduced BSV is a general characteristic of mental
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FIGURE 1 | Decreased BSV in widespread brain regions of GAD patients. (A) Decreased BSV across the brain in GAD; (B) Significantly decreased BSV in patients with

GAD is primarily located in the visual network, sensorimotor network, frontoparietal network, limbic system and thalamus (FDR correction, p < 0.05). L: left; R: right.

TABLE 2 | Decreased BSV in patients with GAD compared with HC group.

Brain regions BA Cluster size T value MNI coordinates

X Y Z

Cluster 1 Right superior frontal gyrus 5\6\17\18\32 13576 −5.4 21 0 57

Bilateral postcentral gyrus

Bilateral supplementary motor area

Bilateral precentral gyrus

Bilateral occipital cortex

Dorsal anterior cingulate cortex

Cluster 2 Right medial frontal gyrus 10 57 −4.10 9 66 27

Cluster 3 Left thalamus 194 −3.65 −3 −9 9

Right caudate

Cluster 4 Right inferior temporal gyrus 20\21 83 −3.61 60 −6 21

Right middle temporal gyrus

Cluster 5 Medial frontal gyrus 24 251 −3.45 6 39 −18

Bilateral anterior cingulate

Cluster 6 Left middle frontal gyrus 46 144 −3.42 −33 39 15

BA, Brodmann’s area; MNI, Montreal Neurological Institute; X, Y, Z, coordinates of primary peak locations in the MNI space; T statistical value of peak voxel showing BSV decreased.

All the clusters survived p < 0.05, FDR corrected, and a minimum cluster size of 50 voxels. Degree of freedom= 78.

disorders. Recent studies have shown that low amplitude of
low-frequency fluctuation (ALFF) in the left supplementary
motor area, right middle occipital gyrus, cerebellum, prefrontal-
limbic system, and thalamus is associated with high-trait anxiety
(32, 39, 40). Because ALFF is the square root of power
(41) and power is equivalent to BSV (21). The BSV may
reflect similar neural mechanisms to ALFF but in a non-
linear way (21). Specifically, decreased BSV is associated with
small potential kinetic energy to handle external environmental
demands (16, 22) and low ability to transfer between different
brain states (i.e., rest state and task state) (42). In patients
with anxiety disorder, the functional deficit of environmental
detection and the inflexible functional brain configurations has
been found (31, 43). Therefore, the widely decreased BSV in
patients with GAD may be associated with limited ability to
adapt different external conditions and inflexible pattern of
information transfer.

Low BSV in GAD is mainly located in the visual cortex,
somatosensory cortex, anterior cingulate cortex (ACC),
and thalamus. Multiple studies have documented deficits
in the visual cortex in different anxiety disorders (44–46).
Visual cortex plays a core role in the social brain network
during visual and emotion processing (47). Visual cortex is
also involved in the processing of fear generalization (48),
which may greatly contribute to the GAD psychopathology
(49, 50). The postcentral gyrus, as a critical substrate of
interoceptive processing (51), is responsible for receiving,
integrating, and interpreting most of the sensory information
transmitted by the thalamus (52, 53). As shown by many
studies, the thalamus is also strongly involved in interoceptive
awareness (54–57). Abnormal connectivity between the
postcentral gyrus and thalamus has been found in panic
disorder, which may be associated with the typical symptoms
(e.g., the extreme feeling of heartbeat) of panic disorder
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FIGURE 2 | Pearson correlation between BSV and TAI score in two groups. (A) Histogram illustrates voxel-wise correlations for GAD (green) and HC (blue) groups,

respectively; (B) The r map of HC group; (C) The r map of GAD group. L: left; R: right.

FIGURE 3 | The different relationship with STAI in GADs and in HCs. (FDR

correction, p < 0.05). L: left; R: right.

(6). In general, as a hub of the interoceptive network, the
ACC participates in mediating visceromotor activity and has
projections into motor systems (56). Decreased functional

connections between the ACC and thalamus was negatively
correlated with HAMA in GAD, which may cause some
somatic disturbed symptoms, such as rapid heart rate, low
skin conductance, and difficulty breathing (58). Above all,
the reduction of variability in these brain areas may be
related to biased perception in processing exogenous and
endogenous information (6, 59), which is implicated in the GAD
pathological mechanism.

Reduced BSV in patients with GAD is also found in
the dorsolateral prefrontal cortex and inferior parietal lobe,
which are the key brain regions of the frontoparietal network

(FPN). The deficiencies in FPN have been found in individuals
with high-trait anxiety who have poor cognitive control and
are easily distracted by emotional distractors from external
environment (60, 61). Individuals with high anxiety generally
require additional attentional control even in the absence
of threat-related stimuli (62). The FPN is also a flexible
hub during brain state transition (63). Low variability in
the FPN may be associated with low ability to transfer
between different brain states (42). Therefore, low BSV
in the FPN may be associated with inflexible information
to transform patterns facing the external world in patients
with GAD.
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Opposite Relationships Between BSV and
Anxiety in the GAD and HC Groups
The opposite correlations between the BSV and TAI score
in the HC group and in the GAD group has been found
in the present study, indicating that the moderate anxious
brain has small BSV. Moderate anxiety is associated with the
best performance (64–66), and BSV has been demonstrated
to be closely related to behavior performance (19, 24). In
certain brain regions, maintaining great signal stability is also
a critical marker of good task performance (22). In other
words, the direction of correlation between BSV and behavioral
performance depends on both cognition and brain region (21,
24, 67). Therefore, the opposite relationships between BSV and
anxiety level may indicate that (1) moderate anxiety is associated
with the most stable brain state and the best performance, and
(2) increased BSV in subjects with high anxiety and low anxiety
may be related to distinctive brain states, leading to different
performances. Considering that (1) the dopaminergic system
is closely associated with both anxiety and BSV (68, 69), (2)
the non-linear relationship between dopaminergic system and
behavioral performance (70), and (3) the quadratic relationship
between anxiety and behavioral performance (66), the opposite
BSV-anxiety relationship may reflect different neural dynamical
configurations mediated by the dopaminergic system in patients
with GAD and healthy people. Furthermore, the negative
correlation between the HC group and GAD group suggests that
the neuropsychological association in HC and patients with GAD
may be driven by the same mechanism rather than independent
from each other. This hypothesis deserves further investigations.

Although increased anxious levels in GADs showed increased
BSV which indicated the great capacity of detection, the
mechanism of this seemingly increasing ability can be totally
different from healthy participants. In patients with GAD, the
excessive activation is an apparent clinical symptom (1, 2), which
might be associated with the high detection. In addition, this
conclusion still needs further research. Meanwhile, the great
BSV in some regions can be a compensation mechanism of an
inefficient brain (14).

Overall, the opposite correlations between the BSV and
TAI score in two groups indicate close relationships among
dopaminergic system, behavioral performance, anxiety level,
and BSV. These relationships can be described by the U law.
Therefore, BSV is not always linearly related to brain health (24).
These results provide valuable insights into understanding the
relationship between BSV and health.

LIMITATIONS

Some limitations remain in this study. First, the sample
is relatively small (n=85), impeding the uncovering of a
strong correlation between BSV and anxiety level. Second,
the HAMA score is lacking in the HC group because these
participants were tested at the university rather than at the
hospital, hindering the full investigation of clinical relevance
of BSV. Third, some undiagnosed comorbid psychological

disorders may exist in this sample, which may mix the true
relationship between BSV and anxiety. A large sample with
accurate diagnosis and complete scale collection is needed in
future studies.

CONCLUSION

In summary, the decreased BSV in patients with GAD
and different neuropsychological relationships in patients
with GAD and HCs may reveal a novel neurodynamic
mechanism, suggesting that the chaotic brain is not always the
healthy one.
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Neuroimaging studies in early blind (EB) patients have shown altered connections or
brain networks. However, it remains unclear how the causal relationships are disrupted
within intrinsic brain networks. In our study, we used spectral dynamic causal modeling
(DCM) to estimate the causal interactions using resting-state data in a group of 20 EB
patients and 20 healthy controls (HC). Coupling parameters in specific regions were
estimated, including the medial prefrontal cortex (mPFC), posterior cingulate cortex
(PCC), and inferior parietal lobule (IPC) in the default mode network (DMN); dorsal
anterior cingulate cortex (dACC) and bilateral anterior insulae (AI) in the salience network
(SN), and bilateral frontal eye fields (FEF) and superior parietal lobes (SPL) within
the dorsal attention network (DAN). Statistical analyses found that all endogenous
connections and the connections from the mPFC to bilateral IPCs in EB patients were
significantly reduced within the DMN, and the effective connectivity from the PCC and
lIPC to the mPFC, and from the mPFC to the PCC were enhanced. For the SN, all
significant connections in EB patients were significantly decreased, except the intrinsic
right AI connections. Within the DAN, more significant effective connections were
observed to be reduced between the EB and HC groups, while only the connections
from the right SPL to the left SPL and the intrinsic connection in the left SPL were
significantly enhanced. Furthermore, discovery of more decreased effective connections
in the EB subjects suggested that the disrupted causal interactions between specific
regions are responsive to the compensatory brain plasticity in early deprivation.

Keywords: early blindness, effective connectivity, spectral dynamic causal modeling, intrinsic brain networks,
brain plasticity

INTRODUCTION

The recognition of objects could be manipulated through the coordinated cross-modal interactions
of different modalities, such as vision, touch and audition (Amedi et al., 2005; Dormal et al., 2018).
Deprivation of one sensory modality could give us a chance to explore the plasticity changes
of the cognitive functions (Jiang et al., 2015). Two hypotheses have been raised to explain the
plasticity in early blindness. The first hypothesis indicated a kind of maladjustment caused by the
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early blindness. When the sensory information is manipulated,
there is a decrease in processing capacities by the early visual
deprivation (Jiang et al., 2015). The other hypothesis is based
on the compensatory explanation, in which the blind patients
exhibit a superior ability in retained sensory modalities (Pascual-
Leone et al., 2005). The early visual deprivation has been
demonstrated to cause the structural and functional remodeling
or reorganization in both intact and deprived sensory cortices
(Bauer et al., 2017, 2018; Hou et al., 2017). Furthermore,
impaired cognitive performances have been discovery in specific
brain regions or networks (Dormal et al., 2018; Manescu
et al., 2018; Vercillo et al., 2018). The baseline metabolism
and blood flow in specific cortices have been suggested to
show a significant increase in early blind (EB) patients (Viski
et al., 2016). Functional correlations were observed between
the subregions of the visual cortex in the retinotopic pattern
in EB subjects at rest (Bock et al., 2015). Furthermore, EB
patients also exhibit disrupted functional connections and
stronger parietal and auditory networks compared with sighted
subjects (Boldt et al., 2014; Hou et al., 2017; Abboud and
Cohen, 2019). Therefore, EB patients showed a compensatory
pattern in the primary sensory networks, while the other brain
networks related to cognition might be disrupted due to the
early deprivation.

The resting-state technique on functional magnetic resonance
imaging (fMRI) has been proved to be powerful in revealing
the abnormalities of intrinsic functional connections. The
default mode network (DMN) is the most prominent system
in the resting state (Mccormick and Telzer, 2018; Prestel
et al., 2018), which consists of the medial prefrontal cortex
(mPFC), posterior cingulate cortex (PCC), and bilateral inferior
parietal lobule (IPL), and some brain areas in the temporal
lobe (Sharaev et al., 2016). By applying advanced brain
network analyses to the resting-state data, abnormalities of the
functional integration in EB patients have been examined in
many studies, reflecting the statistical dependencies between
distant brain regions (Heine et al., 2015; Sabbah et al.,
2016). However, correlation parameters can only calculate the
statistical dependency between two regions, while the causal
interactions cannot be estimated. Moreover, DMN regions have
been observed to be hyperactivated in many cognitive tasks,
like autobiographical information retrieval, mind-wandering,
emotional processing, and spontaneous cognition (Turkheimer
et al., 2015; Hu et al., 2017).

In addition to the DMN, two other distinct brain networks
(ventral and dorsal) play a vital role in EB subjects in the
allocation of attention (Jimenez et al., 2016). The ventral network
consists of the temporoparietal junction, anterior cingulate cortex
(ACC), and anterior insulae (AI), which has been suggested
to be responsible for stimulus-driven attention (Jimenez et al.,
2016; Liu et al., 2017; Wang et al., 2018). The other dorsal
network, constituted of the lateral frontal eye field (FEF) as
well as the bilateral superior parietal lobes (SPL), is correlated
with the voluntary, sustained orienting of attention (Corbetta
and Shulman, 2011; Tsvetanov et al., 2016). Recent studies have
highlighted the dysfunction in the ventral network in subjects
with disorders, but not in the dorsal network (White et al., 2013;

Wynn et al., 2015). The ventral attention network can also be
called the “salience network” (SN). Pathophysiological studies
have demonstrated that EB subjects with dysfunctions could
result in the incorrect assigning of salience (Palaniyappan and
Liddle, 2012). Therefore, the application of the resting-state
fMRI approach can be potentially powerful in the assessment of
attentional deficits in EB patients when we intend to examine the
relative contributions of these two networks.

Dynamic causal modeling (DCM) is an appropriate approach
to examine the causal influence, which is designed to calculate the
effective connectivity changes underlying human responses based
on Bayesian analysis. When one specific model is constructed
(including specific brain regions, directed connections, and
modulations), the parameters are estimated based on the
observed data and model structures. Dynamic causal modeling
is model-based, and shows great advantages compared to the
functional connectivity or data-driven effective connectivity like
the Granger causality, as DCM allows different hypotheses to
be tested, which could capture the functional brain architectures
corresponding to a specific hypothesis (Friston et al., 2017). Many
studies have been reported by applying DCM to fMRI data and
Magnetoencephalography/electroencephalography (MEG/EEG)
(Chahine et al., 2017; Yang et al., 2017; He and Johnson, 2018;
Van De Steen et al., 2019). Recently, a new version of DCM-
spectral DCM was developed to estimate the intrinsic effective
connections from resting-state data using the cross spectra of
the signals through a deterministic model (Friston et al., 2014).
The cross-spectra can be considered as a more complete measure
of functional connections (Park et al., 2018). Spectral DCM
renders the model essentially in a deterministic way to get rid
of the heavy load in estimating the random fluctuations in
neural states. Therefore, spectral DCM makes DCM in resting-
state fMRI slightly simpler and does not require a bilinear
term accounting for condition-specific effects (Razi et al., 2015).
Furthermore, spectral DCM is intended to simply compare the
endogenous coupling between different groups (healthy controls
vs. patients), so it only estimates the time-invariant parameters of
the cross spectra. As the frequency domain is used in estimating
the effective connectivity, the high computational efficiency and
stable estimation make spectral DCM significantly powerful to
compare the couplings and directionality in the intrinsic brain
networks between groups of subjects, like patients and healthy
cohorts (Li et al., 2017). Therefore, this is the reason for choosing
the spectral DCM approach in this study.

Previous studies have suggested that the EB subjects showed
a disruption of functional connectivity both in the visual cortex
and other brain regions located in other cognitive brain networks
(Liu et al., 2017; Dormal et al., 2018; Abboud and Cohen, 2019).
Early deprivation could trigger the functional preference for the
selective auditory recruitment in the cognitive brain networks
(Dormal et al., 2018) and a reduction of the interhemispheric
functional connectivity in the cognitive regions (Hou et al., 2017).
Although the disruption of the functional interactions among the
regions from the visual cortex and the cognitive brain networks,
like the DMN and SN, it remains unclear how the directed
interactions between these regions changed in the EB subjects.
The purpose of our study is to examine the changes in the
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effective connectivity within three high-order cognitive networks
between EB patients and healthy controls (HC) by estimating
the corresponding parameters with a newly developed spectral
DCM. In this study, we had one hypothesis: early deprivation
could affect the dynamic interactions between regions within
three brain networks. Furthermore, the strength of the effective
connectivity between regions in all three networks might be
decreased due to the early deprivation. The spectral DCM was
used to explore the causal neuronal influences within the intrinsic
functional networks (DMN, SN and DAN) in a sample of
20 EB patients and 20 matched HC. Firstly, an independent
component analysis was made to the resting-state functional
images to generate the DMN, SN and DAN components. Then,
the spectral DCM was employed to compute the effective
connectivity within DMN, SN, and DAN of EB patients and HC.
A Bayesian model selection procedure was adopted to determine
the optimal DCM model at the group level. Statistical analyses
were further conducted to compare the differences in the effective
connectivity parameters within DMN, SN, and DAN between EB
and HC subjects.

MATERIALS AND METHODS

Participants
Twenty EB subjects and 20 sighted subjects participated in
this study. The mean age was 22.3 ± 1.4 years for the blind
group, and 20.7 ± 1.2 years for the sighted group; there was
no significant difference between both groups. The blindness of
these subjects was evaluated and diagnosed by two professional
ophthalmologists from Yantai Affiliated Hospital of Binzhou
Medical University based on the retinal pathology. All the EB
subjects had the same categories of blindness, mainly caused
by cataracts and retinal pigment degeneration (Cataract: 8;
Retinal pigment degeneration: 12). Table 1 shows the detailed
information for all EB subjects. All subjects were right-handed,
and no subject had neurological problems except for the visual
deprivation. After hearing a detailed explanation on the study, all
subjects gave written informed consent. This study was carried
out in accordance with the recommendations of Institutional
Review Board of Binzhou Medical University. The protocol
was approved by the Institutional Review Board of Binzhou
Medical University. All subjects gave written informed consent in
accordance with the Declaration of Helsinki after hearing detailed
explanation about the study.

TABLE 1 | Demographic information for the early blind (EB) groups.

Onset of visual Number of Education

deprivation subjects Age (Year) level (Year)

At birth 15 22.14 ± 1.43 13.27 ± 1.16

4 years old 1 24.3 11

5 years old 3 22.27 ± 0.83 13.67 ± 0.58

6 years old 1 22.9 12

Onset of visual deprivation means the age of the EB subject sight loss.

Data Acquisition
The functional images were scanned using a 3.0 T Siemens Skyra
scanner with a 32-channel head coil at Yantai Affiliated Hospital
of Binzhou Medical University. Participants were instructed
to relax and keep their eyes closed without thinking about
anything in particular. A high-resolution structural image was
collected using a T1 weighted 3D MPRAGE sequence (repetition
time (TR) = 1900 ms, echo time (TE) = 2.52 ms, inversion
time (TI) = 1100 ms, voxel size = 1 × 1 × 1 mm3, matrix
size = 256 × 256, flip angle (FA) = 90◦). A gradient-echo planar
imaging (EPI) sequence (TR = 2000 ms, TE = 30 ms, voxel
size = 3.1 × 3.1 × 4.0 mm3, matrix size = 64 × 64, slices = 33,
slices thickness = 4 mm, slices gap = 0.6 mm, FA = 9◦) was used
for functional data collection. Earplugs and foam pads were used
to reduce the scanner noise and head motion.

Data Preprocessing
SPM12 was used for the data preprocessing1. For each participant,
the first 10 functional images were first removed to allow for
participants’ adaptation to the environment and equilibration
effects. The remaining data were processed by a slice timing
correction and head motion correction by a realign analysis. No
participant was excluded, as all participants’ head movements
were not larger than 1.5 mm and 1 degree. The high-resolution
structural image was coregistered with the functional images
and subsequently segmented into the gray matter, white matter
and cerebrospinal fluid (CSF). The generated spatial parameters
from the segmentation procedure were then applied to spatially
normalize the realigned images to 3 × 3 × 3 mm3 in
the Montreal Neurological Institute (MNI) space. Finally, the
functional images were smoothed with a full-width at half-
maximum Gaussian filter (FWHM = 4 mm) to attenuate spatial
noise. Several variances were regressed out with the temporal
derivatives with the linear regression, including six head motion
parameters and averaged signals from the CSF and white matter.
Specifically, the global signal regression was not performed in this
study, as global signals are thought to be irrelevant to non-neural
noise and should not be regressed out (Chen et al., 2012).

Group Independent Component
Analysis (Group ICA)
To extract the regions for the subsequent DCM analysis, the
DMN, SN, and DAN components were first identified for each
subject. Group ICA was performed to decompose the resting
state functional images into spatially independent components
(ICs) using the GIFT software2 after data preprocessing. First,
the number of the optimal components were estimated using the
minimum description length criteria (MDL) (Li et al., 2007). The
number of components in our experiment were 41. Therefore
41 independent spatial components were produced using the
infomax algorithm. For each participant, the corresponding
spatial maps were generated through a back-reconstruction step.

The DMN, SN, and DAN templates were generated by the
WFU PickAtlas Tool 3.0 to identify the DMN, SN, and DAN

1http://www.fil.ion.ucl.ac.uk/spm/
2http://icatb.sourceforge.net/
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components (Calhoun et al., 2008). In our study, we generated
the DMN template by including the posterior cingulate cortex,
bilateral precuneus, superior medial frontal cortex, and inferior
parietal lobe. A multiple spatial regression analysis between
the template and ICs was then conducted to sort all the
spatial components. By comparing the regression coefficients,
the component that fit best with the template with the greatest
one was identified as the DMN component. The one-sample
t-test was used to generate a group-mean pattern (p < 0.001,
uncorrected, cluster size = 10 voxels). For the SN and DAN
components, the same procedure was performed by creating the
SN and DAN templates. To keep the consistency of the locations
of each ROI between two groups, the Euclidean distance was also
calculated between the individual ROI and group-mean ROI.

Definition of Region of Interest (ROI)
For each subject, all the specific ROIs were selected based on the
spatial map of the individual component representing three brain
networks. Based on the regions identified above, four ROIs were
defined for DMN: the mPFC, PCC, and bilateral parietal cortex
(lIPC and rIPC). We defined three regions: dorsal cingulate
cortex (dACC), left anterior (lAI), and right anterior insulae
(rAI) for the salience network. Additionally, the DAN included
the bilateral frontal eye fields (lFEF, rFEF) and bilateral superior
parietal lobes (lSPL, rSPL). The detailed information of ROIs is
shown in Table 2.

All the subject-specific ROIs were defined as spheres with a
radius of 8 mm centered at the local maximum from the identified
DMN, DAN, and SN components for each subject. We also
included a white matter mask to remove the influence of the
white matter. This procedure would ensure the further DCM
analysis was conducted on the consistent regions identified as one
functionally connected network for each subject. Finally, time
series were extracted from all ROIs as the residuals of the general

TABLE 2 | Coordinates of the regions of interest used in spectral dynamic causal
modeling (DCM) analysis.

Region Brain network MNI coordinates

x y z

mPFC DMN 3 54 −2

lIPC DMN −49 −62 32

rIPC DMN 47 −68 35

PCC DMN 0 −52 26

dACC SN 0 −10 40

lAI SN −43 −11 −1

rAI SN 43 −11 −1

lFEF DAN −24 −15 66

rFEF DAN 28 −10 58

lSPL DAN −24 −55 72

rSPL DAN 24 −55 72

mPFC, medial prefrontal cortex; IPC, inferior parietal lobule; PCC, posterior
cingulate cortex; dACC, dorsal cingulate cortex; AI, anterior insulae; FEF, frontal
eye field; SPL, superior parietal lobe; DMN, default mode network; SN, salience
network; DAN, dorsal attention network; l, left; r, right.

linear model, which was constructed by the following regressors:
the head motion parameters, cosine basis functions to model the
aliased respiratory and cardiac signals, one constant regressor to
model the baseline and a high-pass filter of 1/128 Hz to regress
the ultraslow fluctuations.

Spectral Dynamic Causal Modeling
To estimate the effective connectivity parameters in specific
regions, the spectral DCM analysis was conducted for the defined
nodes of all three networks using DCM12 in SPM12. The
spectral DCM is designed to estimate the intrinsic effective
connectivity from resting state fMRI images with the cross-
spectra of the signals. The cross spectral in the frequency
domain could be considered as a more complete measure of
functional connectivity (Park et al., 2018). In theory, the spectral
DCM is distinct from stochastic DCM, which can estimate the
coupling parameters among coupled populations of neurons in
the frequency domain. It calculates the spectral measure by
using a neuronally plausible power-law model among measured
responses, and the time-invariant parameters. It models the
observed functional connectivity between nodes with their
second-order statistics instead of the neural signals under a
deterministic assumption. In other words, spectral DCM could
estimate the covariance of the random fluctuations from previous
experiences to create the complex cross spectra among measured
responses (Razi et al., 2015).

The expected cross spectra can be generated by the
following model:

gy(ω, θ) = |K(ω)|2 gv(ω, θ)+ ge(ω, θ)

Here, gy(ω, θ) represents the predicted cross spectra that can
be estimated. K(ω) is a function of the effective connection,
which is the Fourier transform of the system’s Volterra kernel.

For each participant, a fully connected model was constructed
with reciprocal connectivity between any pair of all ROIs by
a Bayesian network discovery analysis (Friston et al., 2011).
For resting-state fMRI data, no exogenous input was added to
the model construction, then we made a parameter estimation
for all models. Unlike the stochastic DCM, the convolution
kernel representation in the spectral DCM was transformed to
a spectral representation in the frequency domain. An estimation
procedure was applied to characterize the spectral densities over
frequencies for all estimated parameters within the DMN, SN,
and DAN. Bayesian model selection (BMS) was finally performed
with a post hoc optimization method to estimate the optimal
model with the best balance between complexity and accuracy.
The BMS was conducted on both groups separately, as we
assumed both groups did not share the same model structure. The
corresponding parameters for the best model were also estimated.

Statistical Analysis
After the parameter estimation was completed for the optimal
model, one-sample t-tests were conducted to examine whether
the effective connectivity between regions was significant for
both EB and HC groups. Multiple comparison corrections were
made on the results of one-sample t-tests at p < 0.05 by
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applying the false discovery rate (FDR) procedure. To examine
the abnormalities of the effective connectivity within all three
networks between EB and HC cohorts, the coupling parameters
from both groups were tested using the two-sample t-tests.
A correction for FDR was used to determine the results of
two-sample t-test at p < 0.05.

RESULTS

Independent Component Analysis
We first decomposed the separated spatial patterns by conducting
the group ICA on the resting-state functional images. Forty-
one independent components were generated according to the
MDL criterion, and the generated components were sorted by
their correlations with the DMN, SN, and DAN templates.
The independent components that showed a best fit with all
three templates were identified as the DMN, SN, and DAN

components. Subject-specific nodes were defined as 8-mm
spheres centered at the peak values of all ROIs for each
subject. Figure 1 shows the profiles of the DMN, SN, and DAN
components. Based on the group ICA analysis, four ROIs were
defined for DMN, including the mPFC, PCC, bilateral IPC;
three ROIs for SN: dACC, lAI, and rAI, and four bilateral ROIs
for DAN: lEFF, rFEF, lSPL, and rSPL. The coordinates of all
selected ROIs are shown in Table 2. The statistical analysis on the
Euclidean distance suggested there was no significant difference
in the Euclidean distance between two groups, indicating the
consistency of the locations of the subject-specific ROI.

DCM Analysis and Effective Connectivity
of DMN, SN, and DAN
The time series of all ROIs were first extracted for each subject.
For illustration, we extracted the principal eigenvariates from
the corresponding time series of the selected regions within the
DMN, as shown in Figure 2. The generalized fitting procedure

FIGURE 1 | Functional brain networks chosen from the independent component analysis. (A) represents the default mode network (DMN); (B) represents the
salience network; (C) represents the dorsal attention network. The red color regions correspond to the threshold z-value.
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FIGURE 2 | Locations of the representative regions within the DMN. The DMN regions are identified from the independent component analysis. The principal
eigenvariates are extracted from the corresponding time series of regions.

suggested that the observed spontaneous fMRI signals can
be modeled by the conditional expectations in the neuronal
activations. For each participant, a Bayesian model reduction
procedure was used to search for the optimal model from the
model space. The detailed results of the estimation are shown in
Figure 3. Finally, 6536 models were constructed with all possible
combinations using four ROIs. The log-evidence of all models
for DMN is shown in Figure 3A, suggesting a model with more
connections shared larger evidence. In this study, we found that
the fully connected model was optimal with the most significant
efficiency. The meant that our resting-state fMRI data could be
stimulated by the fully connected model. There was a deduction
of the log-evidence when any connection was removed.

The same DCM analyses were conducted for SN and DAN.
As expected for DMN, the best models were the fully connected
models for SN and DAN. In the EB and HC groups, the
coupling parameters of the optimal model for each network were
calculated by the Bayes model average analysis. Figures 3B–D
shows the estimated fixed effects and the posterior probabilities
for DMN, SN, and DAN in one typical subject. The Bayes
model average parameters were then estimated for all subjects,
as shown in Figure 4. Most of the coupling parameters within
the DMN for EB and HC groups were observed to be significant
(p < 0.05, df = 19), except the connections from PCC and
mPFC to the right IPC and from bilateral IPC to PCC in the
HC group; the connection from the left IPC to the other three
regions and from the mPFC to the left IPC in the EB subjects,
as shown in Table 3. All the effective connections within the
SN were found to be significant in both the EB and NC groups

(p < 0.05, df = 19). For the DAN, no significance was found
except in one effective connection (left SPL→ left FEF) in the
HC group, and in two connections (left SPL→ left FEF and left
FEF→ right FEF). Tables 4, 5 showed the details of the average
parameters of SN and DAN.

Alteration of the Effective Connectivity
Within DMN, SN, and DAN
After the parameters within the DMN, SN, and DAN were
estimated, the two-sample t-tests analysis between the EB and HC
groups showed that EB subjects showed significantly enhanced
effective connectivity from PCC and lIPC to mPFC, and from
mPFC to PCC (p < 0.05, df = 18). Besides all endogenous
connections, the effective connectivity from the mPFC to bilateral
IPC were significantly decreased (Figure 5A). For the SN, almost
all the significant effective connections between the EB and NC
groups were reduced, except the intrinsic connection in the right
AI including the connections from the dACC to bilateral AI,
right AI to dACC, and effective connections from the left AI to
right AI (p < 0.05, df = 18; Figure 5B). As shown in Figure 5C,
more significant effective connections were found to be reduced
within the DAN between EB and HC groups, which included
the connections from the left FEF to right FEF, and left SPL, the
connections from the right FEF to all the other three nodes, and
the intrinsic connections in the rSPL (p < 0.05, df = 18) Only
the connections from the right SPL and itself to the left SPL
were observed to be enhanced. Figure 5 shows the significantly
enhanced and reduced effective connections within the DMN,
SN, and DAN between EB and HC subjects.
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FIGURE 3 | Results of Bayesian Model Selection analysis and estimations of the fixed effects. For DMN, the fully connected model showed the highest evidence (A),
which suggests that the full model was the best explanation for our data. (B–D) showed the estimated fixed effects and posterior probabilities of these effective
connectivity parameters for DMN, SN, and DAN. The red dashed line depicted the 95% threshold. mPFC, medial prefrontal cortex; IPC, inferior parietal lobule; PCC,
posterior cingulate cortex; dACC, dorsal cingulate cortex; AI, anterior insulae; FEF, frontal eye field; SPL, superior parietal lobe; l, left; r, right.

DISCUSSION

In this study, the spectral DCM was used to compute the
effective connections within the DMN, SN and DAN with
resting-state fMRI data. The intrinsic brain networks were
identified using the group ICA, and several nodes were defined
for further DCM analyses. The fully connected model was
found to be the optimal explanation for all three networks for
our functional data. The one-sample t-test analysis suggested
that most effective connections within all three networks were
significant in both the EB and HC groups. Two-sample t-test
analyses found that reduced coupling parameters of the effective
connectivity for each network were observed by comparing the
EB patients to the HC subjects, suggesting that there was a
disruption of the effective integration within the resting-state
brain networks in EB subjects.

Effective Connectivity Analysis Within DMN
Increasing attention has been paid to the functional interactions
within the DMN in normal and disordered people (Fang
et al., 2016; Van Den Heuvel and Thomason, 2016;

Khalili-Mahani et al., 2017). Directed functional interactions
within the DMN regions have been explored using a series of
approaches, such as the partial coherence analysis (Silfverhuth
et al., 2011), Granger causality analysis (GCA) (Zhou et al.,
2011) and Bayesian networks (Wu et al., 2011). One latest study
found a reduction of interhemispheric functional connectivity
in early blindness using the resting-state fMRI (Hou et al.,
2017), suggesting the disruption of the functional connections
by early deprivation. However, the DCM method was distinct
from the above approaches in theory, because the DCM was
model-based by constructing a hemodynamic model to estimate
the hidden neuronal states (Li et al., 2012). In our study, the
model evidence suggests that the optimal models for all three
networks were the whole-connected model. For the EB subjects,
there were bidirectional connections between the bilateral IPC
and PCC, mPFC and left IPC, as well as the mPFC and right IPC,
which was consistent with previous causal studies on the effective
connectivity within the DMN (Zhou et al., 2011; Xu et al., 2017).
We also discovered directed connections between the PCC and
mPFC, which are both functionally and anatomically connected,
and play a crucial role in the DMN.
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FIGURE 4 | Bayes model average parameters of intrinsic brain networks (A, default mode network; B, salience network; and C, dorsal attention network) for early
blinds and healthy controls (HCs). The number behind the colored lines represents the parameters of the effective connectivity between ROIs. mPFC, medial
prefrontal cortex; IPC, inferior parietal lobule; PCC, posterior cingulate cortex; dACC, dorsal cingulate cortex; AI, anterior insulae; FEF, frontal eye field; SPL, superior
parietal lobe; l, left; r, right. Double arrow means reciprocal connections.

Inconsistent findings on the coupling between regions within
the DMN have been reported in many studies. Using the
stochastic DCM, our recent study found an influence from the
PCC on the mPFC (Xu et al., 2017). Some other studies using
GCA showed an mPFC to PCC effective connection. Inconsistent
with our findings, bilateral IPC were observed to be capable of
modulating mPFC and PCC (Di and Biswal, 2014). Furthermore,
reciprocal connections between bilateral IPC were observed in
the present study, as suggested in another fMRI study (Li et al.,

TABLE 3 | Bayes model average parameters of the DMN for healthy
controls (HCs) and EBs.

Groups From PCC From mPFC From rIPC From lIPC

HCs To PCC −1.03∗∗ −1.03∗∗ −0.0085 −0.0074

To mPFC 0.031∗ 0.031∗ −0.034∗ −0.10∗∗

To rIPC −0.0059 −0.0059 −0.58∗∗ −0.040∗

To lIPC −0.095∗ 0.15∗∗ 0.12∗ −0.60∗∗

EBs To PCC −1.22∗∗ −0.061∗ 0.031∗ 0.013

To mPFC 0.17∗∗ −0.56∗∗ 0.10∗ 0.0064

To rIPC 0.11∗ −0.22∗∗ −1.24∗∗ 0.00078

To lIPC −0.046∗ −0.011 0.16∗∗ −0.92∗∗

The averaged parameters represented the effective connectivity between regions
within the DMN. The positive value between from node A to node B showed
a positive modulation, suggesting that node A caused an increase in the rate
of change of node B’s signal and vice versa. mPFC, medial prefrontal cortex;
IPC, inferior parietal lobule; PCC, posterior cingulate cortex; DMN, default mode
network; l, left; r, right. ∗means p < 0.05; ∗∗means p < 0.001.

2012). In our study, bilateral IPC showed a slight functional
asymmetry and exerted causal influences on the PCC and mPFC,
but not vice versa. Therefore we can assume that bilateral IPCs
possess a modulating or driving role, as confirmed by a previous
study (Di and Biswal, 2014). However, some inconsistent results
were reported. Using GCA, the directed connection from the left
IPC to mPFC was observed for EB subjects, whereas there were
symmetrical connections from the bilateral IPC to PCC, as well
as the connectivity from the mPFC to bilateral IPCs (Jiao et al.,
2011). This discrepancy may be caused by the smaller sample

TABLE 4 | Bayes model average of the salience network for HCs and EBs.

Groups From dACC From lAI From rAI

HCs To dACC −0.20∗∗ 0.13∗∗ 0.24∗∗

To lAI −0.13∗∗ −1.41∗∗ −0.054∗

To rAI −0.30∗∗ 0.04∗ −1.15∗∗

EBs To dACC −0.79∗∗ 0.065∗ −0.052∗

To lAI −0.31∗∗ −1.61∗∗ 0.062∗

To rAI −0.70∗∗ −0.15∗∗ −0.72∗∗

The averaged parameters represented the effective connectivity between regions
within the salience network. The positive value between from node A to node B
showed a positive modulation, suggesting that node A caused an increase in the
rate of change of node B’s signal and vice versa. dACC, dorsal cingulate cortex;
AI, anterior insulae; SN, salience network; l, left; r, right. ∗means p < 0.05; ∗∗means
p < 0.001.
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TABLE 5 | Bayes model average parameters of the dorsal attention network
for HCs and EBs.

Groups From lFEF From rFEF From lSPL From rSPL

HCs To lFEF −0.62∗∗ 0.44∗∗ −0.019 −0.19∗∗

To rFEF 0.21∗∗ −0.11∗ 0.075∗ −0.038∗

To lSPL 0.14∗∗ 0.41∗∗ −0.87∗∗ −0.18∗∗

To rSPL 0.43∗∗ 0.43∗∗ −0.049∗ −0.80∗∗

EBs To lFEF −1.02∗∗ −0.031∗ 0.012 −0.16∗∗

To rFEF 0.012 −0.43∗∗ 0.037∗ 0.034∗

To lSPL −0.10∗ −0.0062 −0.30∗∗ 0.27∗∗

To rSPL 0.31∗∗ 0.13∗∗ −0.11∗ −0.98∗∗

The averaged parameters represented the effective connectivity between regions
within the dorsal attention network. The positive value between from node A to
node B showed a positive modulation, suggesting that node A caused an increase
in the rate of change of node B’s signal and vice versa. FEF, frontal eye field;
SPL, superior parietal lobe; DAN, dorsal attention network; l, left; r, right. ∗means
p < 0.05; ∗∗means p < 0.001.

sizes in previous studies, which lead to several connections not
being significant.

In addition, the approach of the spectral DCM in this
study is crucial, as it can elucidate the neuronal connectivity
abnormalities underlying the functional correlations of fMRI
signals and provide more insight into the organization of
the functional networks (Birnbaum and Weinberger, 2013).
Our DCM analysis suggested that the mPFC appeared to
be a zonal area, as there were separate efferent and afferent
connections between the mPFC and other regions, which was
of particular interest given its role in personal evaluation, choice
behavior and reality monitoring (Rushworth et al., 2004; Metzak
et al., 2015). The function of the mPFC has been proposed
to manipulate the correlations between learning associations
between different actions, context and adaptive responses
(Euston et al., 2012). Moreover, one functional connectivity study
has further demonstrated that signals in the mPFC may be
responsible for the signal integration between mPFC and other
brain regions, such as the posterior superior temporal cortex
and AI (Hare et al., 2010). Using a multimodal MR-imaging
technique, decreased functional connectivity were observed

between the parietal and frontal areas (Bauer et al., 2017), while
this reduced effective connectivity were also discovered in the
DMN in the EB subjects.

Effective Connectivity Analysis Within
Other Functional Brain Networks
The left AI has played a critical role not only in the semantic
and language network (Binder and Desai, 2011), but has also
been considered as a “supramodal convergence zone” (Binder
et al., 2009; Binder and Desai, 2011), which is involved in the
association network and information integration from several
sensory modalities. Decreased effective connection between right
AI and other regions were observed in our study, as shown in
Figure 5. The right AI has been confirmed to be a functional
hub in coordinating brain networks to produce adaptive behavior,
especially the modulation in the DMN and DAN (Wang
et al., 2018), as suggested in our study. A weakened functional
connection in the early deprivation subject was discovered
between the subregions of AI (Nomi et al., 2016; Liu et al.,
2017), as the reduced connection from left AI to right AI in
our study. Abnormalities within the IPL have been associated
with working memory dysfunction as well as impairments in
cognitive insight and reality perception (Guo et al., 2014; Lee
et al., 2015; Chahine et al., 2017). A recent research based on
connectivity-based parcellation of the left inferior parietal lobule
suggested that this region was functionally connected to areas
more strongly involved in the higher level of social cognitive and
language processes, as opposed to more rostro-ventral areas of the
IPL that appeared to be associated with the lower functionality
level (Bzdok et al., 2016). Our findings suggest that the specific
abnormalities of the AI and general alterations within the IPL
may be mediated by inhibitory interactions from other regions
of the left dorsal attention network. A recent study in EB subjects
also suggested that early visual deprivation can selectively reshape
the functional architecture of the salience network (Liu et al.,
2017). Our study found that most of the effective connections
were decreased in the EB subjects, suggesting a corresponding
reorganization of the human brain due to the early deprivation.

There are several limitations to our study. First, our analysis
does not allow us to conclusively determine the functional

FIGURE 5 | Significant effective connections within the default mode network (A), salience network (B), and dorsal attention network (C) between the early blind
(EB) and healthy control (HC) subjects. The yellow line indicates the coupling parameter of the effective connectivity is enhanced by comparing the EB group to the
HC group, while the blue line indicates reduced strength. The arrow represents the direction of the effective connectivity. mPFC, medial prefrontal cortex; IPC, inferior
parietal lobule; PCC, posterior cingulate cortex; dACC, dorsal cingulate cortex; AI, anterior insulae; FEF, frontal eye field; SPL, superior parietal lobe; l, left; r, right.
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significance of these correlations. This study displayed low
average positive symptomatology which possibly precluded us
from finding additional correlations and, more importantly, our
resting-state experiments were not accompanied by the working
memory, executive functioning or language-related behavioral
paradigms, so that we could obtain more functionally specific
correlations. Second, the sample size of both the EB patients
and normal control groups was relatively small and moderate.
More qualified subjects should be recruited in future studies to
increase the reliability of our observations and the effect of the
causal interactions in the DMN, SN, and DAN. This study showed
preliminary findings and further studies are needed to retest our
discoveries in other blind cohorts. Finally, we did not examine the
changes of the effective connectivity within all the brain networks,
especially the primary sensory networks like the visual network.
The purpose of this study is to see if there were disruptions
in the high-order cognitive networks that are associated with
the cognitive behaviors in the EB subjects. And the Group ICA
could not separate the visual cortex into small parcellations. In
future studies, we could examine the dynamic changes of EB
subjects using other techniques that could parcellate the visual
cortex. In this study, we tested the hypothesis that there was a
disruption of the effective connectivity in the cognitive networks.
The cognitive networks may functionally connected as a whole,
thus the future direction will focus on the causal interactions
between the cognitive networks besides the directed connections
between regions.

CONCLUSION

In this study, fully connected models were identified to be the
optimal model for the effective connections within the intrinsic

functional brain networks in EB subjects. Statistical analyses
suggested significant differences in the effective connectivity
within the DMN, SN, and DAN between EB and HC groups.
More reduced effective connections within three networks by
comparing the EB to HC groups indicated that the interactions
within the high-order brain networks got greatly suppressed due
to the early deprivation. Our analysis additionally revealed the
neural connective abnormalities that may underlie alterations of
the intrinsic brain network in EB subjects.
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Posttraumatic stress disorder (PTSD) is a psychiatric condition that can emerge after 
exposure to an exceedingly traumatic event. Previous neuroimaging studies have indicated 
that PTSD is characterized by aberrant resting-state functional connectivity (FC). However, 
few existing studies on PTSD have examined dynamic changes in resting-state FC related 
to network formation, interaction, and dissolution over time. In this study, we compared 
the dynamic resting-state local and large-scale FC between PTSD patients (n = 22) and 
healthy controls (HC; n = 22; conducted as standard deviation in resting-state local and 
large-scale FC over a series of sliding windows). Local dynamic FC was examined by 
calculating the dynamic regional homogeneity (dReHo), and large-scale dynamic FC 
(dFC) was investigated between regions with significant dReHo group differences. For the 
PTSD patients, we also investigated the relationship between symptom severity and dFC/
dReHo. Our results showed that PTSD patients were characterized by I) increased dynamic 
(more variable) dReHo in left precuneus (PCu); II) increased dynamic (more variable) dFC 
between the left PCu and left insula; and III) decreased dFC between left PCu and left 
inferior parietal lobe (IPL), and decreased dFC between left PCu and right PCu. However, 
there is no significant correlation between the clinical indicators and dReHo/dFC after the 
family-wise-error (FWE) correction. These findings provided the initial evidence that PTSD is 
characterized by aberrant patterns of fluctuating communication within brain system such 
as the default mode network (DMN) and among different brain systems such as the salience 
network and the DMN.

Keywords: posttraumatic stress disorder, resting-state functional magnetic resonance imaging, dynamic 
functional connectivity, regional homogeneity, default mode network

INTRODUCTION

Posttraumatic stress disorder (PTSD) is a psychiatric condition that can emerge after exposure 
to an exceedingly traumatic event (1). In the general population, PTSD occurs most commonly 
after traffic accidents and affects 10%–32% of those involved within 12 months after the event 
(2). Symptoms of PTSD include intrusive memories, hypervigilance, insomnia, and emotional 
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numbing (3). Previous studies have indicated that PTSD patients 
exhibited abnormal interactions among the brain systems (4, 5). 
For example, Zhang et al. found that the dorsolateral prefrontal 
cortex showed increased resting-state functional connectivity 
(FC) with the visual cortex, suggesting that the disrupted frontal-
occipital system may be associated with the dysfunction of visual 
information processing (5). One of robustly identifiable networks 
is the default mode network (DMN) (6), which is involved in 
processing self-relevant stimuli (7, 8). The dysfunction of the 
DMN in PTSD patients may indicate impaired self-generated 
thoughts and autobiographical memory during rest (9).

One effective approach for exploring brain communication 
is through the analysis of resting-state fMRI studies (10). Recent 
resting-state studies in both animals and humans have revealed 
the dynamic nature of the spatiotemporal organization of 
blood oxygen level-dependent (BOLD) signals (11–13). Due to 
unconstrained mental activity, the resting state even shows more 
dynamic features than in task-stimuli studies (14). A recent study 
of dynamic FC network indicated that the static FC represented 
average connectivity across different dynamic states during 
the whole scanning period; it may not be sensitive enough to 
detect the alteration of neurofluctuations (15). In order to 
investigate the dynamic features of inter-regional BOLD signal 
fluctuations over temporal scales, the sliding window analysis 
of dynamic FC (dFC) was developed. This approach measured 
the variety correlations among discrete (large-scale) brain 
regions (16) using a short, sliding temporal window. Kaiser 
et al. found that the resting-state dFC revealed the interactions 
among networks or subnetworks over time (17). Early studies 
suggested that the dFC can be associated with the changes in 
arousal (18) and vigilance (19) since hypervigilance and hyper-
arousal are two typical symptoms of PTSD. We proposed to 
use dFC to investigate the characteristic features of PTSD in 
the resting state. Moreover, since changes in brain network 
topology are associated with those in local brain activity (20), it 
was reasonable for us to measure both the large-scale and local 
dynamic FC in our study.

Regional homogeneity (ReHo) is one of the commonly 
used algorithms in measuring local FC (21–23). ReHo is a 
reliable measurement technique and robust against noise in 
the fast imaging sequence data (24). A prior animal study has 
suggested an association between ReHo variability and different 
states of neural activity (25). A recent study of dReHo using 
the sliding-window approach also indicated that brain regions 
with high dReHo fluctuation tended to be functional hubs in 
brain systems (26). A resting-state study has shown that the 
gene variants affected dReHo in attention-deficit/hyperactivity 
disorder (27). These findings introduced the clinical potential of 
dReHo analysis.

The investigation of dFC and dReHo in the resting state 
may provide new insight into the aberrant brain connectivity 
in PTSD. Previous studies investigating major depression 
(28), schizophrenia (29, 30), and bipolar disorder (31) showed 
abnormal dFC and dReHo under the resting state of these 
patients, and all of these psychiatry researches found aberrant 
dFC or aberrant dynamic local activities in the DMN. A possible 
explanation for these abnormalities is the dynamic nature of 

the DMN, which exhibits dynamic interactions with a number 
of other brain systems in the resting state (32). Kaiser et al. (17) 
indicated that the investigation of altered dynamic activity 
in areas of the DMN may be important in understanding the 
pathophysiology of psychiatric disorders.

Although there are few studies available that have focused 
on the dynamic brain activity in PTSD, prior static studies 
have suggested that the symptoms of PTSD are associated 
with the DMN. Mounting evidence has indicated that PTSD 
is associated with aberrant DMN connectivity (33–35). A 
static FC (sFC) study suggested that the aberrant activities in 
the DMN can be a predictor of the symptom severity of PTSD 
(8). A previous study also approved that the static fMRI data 
can be used to discriminate the PTSD from HC by using the 
multilevel parametric classification approach (36). A recent 
study compared the accuracy of sFC to the accuracy of dFC 
in classifying PTSD patients and HC (37). The results showed 
that the peak classification accuracy of dFC reached 94.2%, 
while the peak classification accuracy of sFC was 86.7%; this 
research indicated that the temporal dFC is a better predictor 
than sFC of the diagnostic features of PTSD. Additionally, this 
study indicated that, in comparison with the HC, the PTSD 
patients were characterized by decreased temporal variability of 
brain connectivity. Preti et al. also indicated that PTSD patients 
often stay trapped in one state and exhibited a decreased dFC in 
comparison with HC subjects (38). All of these studies indicated 
that the aberrant connectivity variability of brain networks is 
vital in the investigation of the neurophysiological mechanism 
of PTSD.

In order to explore the characteristic resting-state temporal 
variability of PTSD, we decided to measure both large-scale and 
local dynamic FC. Based on previous findings, we hypothesized 
that PTSD patients would exhibit altered dReHo in regions 
within the DMN. We also expected regions with dReHo 
alterations to show aberrant dFC and the connectivity measures 
to be associated with subjects’ symptomatology.

METHOD

Subjects
Permission to undertake this study was granted by the ethics 
committee of Guangdong Second Provincial General Hospital. In  
January and February 2017, we recruited 30 trauma-exposed 
subjects from a serious highway traffic accident in Guangdong 
province. Prior to the examination, none of the patients had 
undergone any psychotherapy. The inclusion criteria for the PTSD 
patients were as follows: I) age >18 years; II) right-hand dominance; 
III) no preexisting psychiatric disorders or physical conditions as 
determined by a structural clinical interview using the Diagnostic 
and Statistical Manual of Mental Disorders, 4th edition (DSM-IV); 
IV) no psychiatric medications or substance abuse; V) no MR 
imaging contraindications; VI) no head trauma or neurologic 
disorders; VII) fulfills the criteria of DSM-IV and has a Clinical-
Administered PTSD Scale (CAPS) score >40; and VIII) not 
pregnant or nursing. After considering the strict requirements, 
eight subjects were excluded, five of them for failing to obtain the 
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CAPS score >40. Twenty-two demographically matched healthy 
controls (HCs) were recruited for this study. The inclusion 
criteria for HCs were as follows: I) age >18 years; II) right-hand 
dominance; III) no preexisting psychiatric disorders or physical 
conditions as determined by a structural clinical interview using 
the DSM-IV; IV) no psychiatric medications or substance abuse; 
V) no MR imaging contraindications; and VI) not pregnant or 
nursing. Each participant provided written informed consent, 
which was obtained prior to the MRI scanning.

Assessment of Mental Status
PTSD diagnosis was determined following the DSM-IV 
diagnostic criteria. Before undergoing resting-state MRI, all 
PTSD patients were screened with CAPS (39) in order to estimate 
the intensity and frequency of the symptoms. In addition, 
emotion assessments were conducted of all participants, 
including the Self-rating Anxiety Scale (SAS) (40) and the Self-
rating Depression (SDS) (41), in order to evaluate the emotional 
status. A further Structured Clinical Interview for DSM-IV was 
also performed to evaluate psychiatric disorder comorbidities.

Magnetic Resonance Imaging 
Data Acquisition
Each of the participants underwent a resting-state MRI in a 3.0-T 
MR imager (Ingenia; Philips, Best, The Netherlands) equipped 
with a 32-channel head coil at the Department of Medical 
Imaging in Guangdong Second Provincial General Hospital. A 
diagnostic T1-weighted image and a T2 fluid attenuated inversion 
recovery (T2-FLAIR) image were taken to exclude participants 
with brain lesions. The resting-state fMRI data were acquired 
using gradient echo-planar imaging (EPI) with the following 
parameters: repetition time (TR)/echo time (TE) = 2,000 ms/30 ms; 
matrix = 64 × 64; field-of-view = 230 mm × 230 mm; flip 
angle = 90; slice thickness = 3.6 mm, 0.6-mm gap; interleaved 
scanning; 38 transverse slices covering the whole brain at all 240 
volumes were acquired for each participant within 480 s; each 
volume was aligned along the anterior–posterior commissure. 
Each participant was instructed to lie still and to avoid falling 
asleep or thinking of anything in particular during MR scanning.

Resting-State Functional Magnetic 
Resonance Imaging Data Preprocess
Standard preprocessing of the functional images was performed 
with the DPARSF 4.3 Advanced Edition (http://rfmri.org/
DPARSF) and the SPM12 package (www.fil.ion.ucl.ac.uk/spm) 
based on MATLAB (Mathworks, Inc., Natick, MA, USA). The first 
10 volumes of each dataset were discarded for signal equilibration. 
The remaining data were performed using slice timing correction 
and realignment and co-registered with the anatomical scan. The 
co-registered T1-weighted images were segmented into gray matter, 
white matter, and cerebrospinal fluid. And then the functional 
images were normalized into the Montreal Neurological Institute 
(MNI) space with a voxel size of 3 × 3 × 3 mm3. The head movement 
parameters were obtained from the realignment steps in the 
DPARSF. We took the mean FD Jenkinson (42) as the head motion 

reference standard. We eliminated the subjects with motion (mean 
FD Jenkinson) greater than 2 × standard deviation (SD) above the 
group mean motion as recommended in a previous study (43). 
No subject was eliminated in this step. There was no significant 
difference in head motion between the PTSD patients and the 
HC (see Table 1). Linear detrending processing was conducted to 
remove the linear signal drift. Individual-level regression analysis 
was conducted to minimize the influence of head motion (Friston 
24 model), white matter signal noise, and cerebrospinal fluid signal 
noise. A temporal band-pass filter (0.0167–0.10 Hz) was applied to 
the data to remove the physical noise and any frequencies for which 
the period was shorter than that of a single sliding window (44). 
We performed spatial smoothing with a 6-mm full-width at half-
maximum (FWHM) kernel before performing the dReHo group 
analysis. As for the dFC, we performed the spatial smoothing with 
a 6-mm FWHM kernel before the linear detrending and nuisance 
signals regression, and band-pass filtering. Considering the size of 
FWHM Gaussian kernel might affect the results of dReHo/dFC 
analysis (45, 46), we used 4- and 8-mm FWHM Gaussian kernel 
to test the consistency of our results (45, 46) (see Supplementary 
Figures 1 and 2).

Computation of dReHo and dFC
ReHo calculation: The ReHo algorithm measures voxel-wise 
short-distance FC with Kendall’s coefficient of concordance (23) 
using the following formula:
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where W is the Kendall’s coefficient of concordance among the 
given voxels, N denotes the length of the time series, K = 27 
is the size of the voxel cluster containing 3 × 3 × 3 adjacent 
voxels, Ri denotes the summation of the rankings of the BOLD 
signal amplitude of all K voxels at the ith time point, and R is 
the mean of Ri.

To compute the dReHo for these data, the time course was 
segmented into 60-s Hamming windows (30 dynamics). By 
sliding the onset of each window by 2 dynamics (4 s), for a 
total of 101 overlapping windows in the first level analysis, the 
dReHo was estimated by using the calculated SD of the ReHo 

TABLE 1 | Demographic and clinical data.

Characteristic PTSD (n = 22) HC (n = 22) t value P value

Age (years) 37.36 ± 8.95 40.32 ± 10.34 −1.014 0.317
Gender (M/F) 8/14 8/14
Head motion 0.169 ± 0.443 0.159 ± 0.441 0.073 0.942
Education (years) 11.82 ± 3.22 10.45 ± 4.25 1.200 0.237
CAPS 51.45 ± 6.93
SAS 36.09 ± 8.11 38.18 ± 6.02 −0.971 0.337
SDS 38.05 ± 9.49 39.09 ± 8.08 −0.393 0.696

Demographic data are presented as mean ± SD. PTSD, posttraumatic stress 
disorder; HC, healthy control; CAPS, Clinical-Administrated PTSD Scale; SAS, Self-
rating Anxiety Scale; SDS, Self-rating Depression Scale. The P-value was obtained 
by the two-sample t test.
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through the windows at each voxel, yielding a set of ReHo 
maps for each participant.

Two-sample t-test with head motion parameters (mean FD 
Jenkinson values), age, and sex as covariates was performed to test 
the difference in dReHo maps between the PTSD patients and HC 
at each voxel. Multiple comparisons correction was performed with 
Gaussian random field (GRF) theory at the cluster level (minimum 
z > 3.54; cluster significance: p < 0.05, two-tailed GRF corrected).

To determine whether the dReHo metrics were associated 
with clinical indicators, we performed general linear models with 
the clinical indicators (CAPS, SAS, SDS) and mean dReHo values 
from clusters with significant group differences as independent 
variables, and head motion parameters, age, and sex as covariates. 
The correlation analysis was accomplished with the SPSS software 
with a significance threshold of p < 0.05 (uncorrected).

Voxel-wise seed-based FC analyses were performed using the 
DPARSF 4.3. We employed the aberrant dReHo region, which 
we calculated above, as a seed region. Then we used the sliding-
window approach as we have used in the dReHo calculation; 
the time course was segmented into 60-s Hamming windows by 
sliding the onset of each window by 2 dynamics, for a total of 
101 overlapping windows in the first level analysis. Within each 
sliding window, the whole brain FC maps for the seed region 
were computed as the Fisher z transformed Pearson correlation 
coefficient between the averaged time course of all voxels in the 
seed and the time course of all other voxels in the whole brain, 
yielding a set of sliding window zFC maps for each participant. 
The dFC was estimated by calculating the standard deviation in 
zFC values through windows at each voxel.

Two-sample t-test with head motion parameters (mean FD 
Jenkinson values), age, and sex as covariates was performed to 
investigate the difference of dFC values between the PTSD group 
and the HC group at each voxel. Multiple comparisons were 
performed with GRF correction at the cluster level (minimum 
z > 3.29; cluster significance: p < 0.05, two-tailed GRF corrected).

To explore the relationship between dFC metrics and clinical 
indicators, we performed general linear models with the clinical 

indicators and mean dFC values from clusters with significant 
group differences as independent variables, and head motion 
parameters, age, and sex as covariates. The correlation analysis 
was accomplished with SPSS software with significance threshold 
of p < 0.05 (uncorrected).

RESULTS

The demographic and clinical data are summarized in Table 1. 
Inconsistent with our prediction, compared with the HC, the 
PTSD patients exhibited an increased dReHo (more variability) 
in the left posterior cingulate cortex (PCC)/precuneus (PCu) 
(Figure 1). We also found a decreased dFC (less variability) 
between the left and right PCu, and the left inferior parietal lobe 
(IPL)/angular gyrus (AG), but increased dFC between the PCC 
and the left insula (Table 2 and Figure 2).

Next, we conducted analyses to test the association between 
the clinical indicators (CAPS, SAS, SDS) of PTSD and dReHo 
within the PTSD group. There is no significant correlation 
between the clinical indicators and dReHo/dFC after FWE 
correction (see Supplementary Figure 4).

DISCUSSION

In this study, by using resting-state dReHo analysis, we 
determined the local aberrant variability in the left PCu. The PCu 
is a key hub in the DMN of human brain (47). Aberrant resting-
state temporal dynamic brain activities were found in the dReHo 
and large-scale dFC of specific brain regions, which were mainly 
located in the posterior DMN (pDMN) and the primary region 
of the salience network (SN). These observations provide new 
insights into the aberrant brain activities in PTSD.

This study revealed a significantly increased dReHo (more 
variability) in left PCu, suggesting that the neurofluctuation of 
the left PCu is unstable in the PTSD patients in the resting state. 
The PCu is a key hub of the pDMN (47–49) and is considered to 

FIGURE 1 | Group differences of dReHo variability were revealed by two-sample t-test. The PTSD group shows increased (warm color) dReHo variability in the 
left PCu (cluster size: 104; AAL: Precuneus_L; Brodmann area 7; MNI coordinates: X: −12 Y: −48 Z: 60; peak t-value = 5.1868) relative to the HC. The Gaussian 
random theory was used for cluster-level multiple comparison correction (minimum z > 3.54; cluster significance p < 0.05, GRF corrected). dReHo, dynamic regional 
homogeneity; PTSD, posttraumatic stress disorder; AAL, anatomical automatic labeling; PCu, precuneus; MNI, Montreal Neurological Institute.
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be involved in self-referential processing (7) and autobiographic 
memory (50). In the resting state, the DMN exhibits dynamic 
interaction with a number of brain systems, such as the frontal–
parietal control network and the dorsal attention network (32). 
Although we found an aberrant local connectivity variety in 
the PCu, the evidence of aberrant DMN connectivity in PTSD 
patients is not entirely persuasive. In order to explore the 
dynamic interactions among the DMN and other brain networks, 
we employed the left PCu as the seed region and carried out the 
dFC of the whole brain.

Several studies have identified aberrant activities in the DMN 
of PTSD patients (6, 34, 35). In the present study, using seed-
based dFC, we identified lower-variability regions located in the 
right PCu and the left IPL. These results suggest that compared 
with the normal controls, the PTSD group exhibits decreased 
dFC (less variability) within the pDMN. We suspected that 
this restrained neurofluctuation within the pDMN represents 
decreased regulation of the self-referential processing. Previous 
studies using the independent component analysis identified 
the aberrant pDMN in PTSD patients (4, 51). Furthermore, 

TABLE 2 | Comparison of dFC between PTSD and HC.

Brain region Cluster size MNI coordinates AAL Brodmann’s area Peak 
t value

X Y Z

R PCu 44 3 −48 45 Precuneus_R 7 −4.0992
L IPL 62 −38 −78 42 Parietal_Inf_L 19 −4.1411
L Insula 33 −36 −12 21 Insula_L 13 4.6200

L, left; R, right; MNI, Montreal Neurological Institute; dFC, dynamic functional connectivity; AAL, anatomical automatic labeling; PCu, precuneus; IPL, inferior parietal lobe.

FIGURE 2 | Inter-regional dFC differences with regions showing significant dReHo differences between groups. The PTSD group shows increased dFC variability 
in left insula, but decreased dFC variability in right PCu and left IPL relative to the HC. Gaussian random theory was used for cluster-level multiple comparison 
correction (minimum z > 3.29; cluster significance p < 0.05, GRF corrected). dFC, dynamic functional connectivity; dReHo, dynamic regional homogeneity; PTSD, 
posttraumatic stress disorder; PCu, precuneus; IPL, inferior parietal lobe.
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Zhang et al. found a decreased intranetwork connectivity within 
the pDMN by measuring resting-state sFC. These researches 
suggested that the decreased FC in pDMN was associated 
with the dysfunction of evaluation of the self-related events in 
PTSD. The interaction between DMN and the executive control 
systems, which includes dorsal lateral middle frontal cortex and 
the IPL (52), is essential in regulating the self-generated thought 
(32). In the present study, a deceased dFC was found between the 
left PCu and the left IPL. Therefore, we inferred that the deceased 
dFC suggested a discrete FC state between the DMN and the 
executive control system, which may induce the dysregulation 
of self-referential processing. Previous studies indicated that 
the IPL is engaged in mediating visuospatial processing (53), 
which is critical when dealing with life-threatening events (54). 
Additionally, previous study indicated that the IPL is a vulnerable 
brain region to the neurotoxic effects of stress (55). Therefore, we 
suspected that the aberrant dFC between the PCu and the IPL 
might be a potential biomarker of PTSD.

In the present study, the left insula was the only region in the 
brain that exhibited significant positive dynamic correlation with 
the left PCu in the PTSD group. The insula is a key hub in the 
SN and is thought to be involved in the detection of personally 
salient internal and external stimuli that guide behaviors in order 
to maintain equilibrium (56). In addition, the insula is thought 
to be involved in mediation of the “switching” between activation 
of the DMN and the central executive network (CEN) to direct 
appropriate behavioral responses to the salience stimuli (57). 
Therefore, we suspected that the positive dynamic correlation 
between the left PCu and left insula might suggest an excessive 
interaction between the SN and the DMN. Previous studies using 
the graph theory approach identified dysregulation in three 
intrinsic brain networks (1, 58). Lei et al. found a disequilibrium 
among the CEN, DMN, and SN and suggested that the SN was 
crucial to the PTSD symptoms (58). Previous resting-state sFC 
study also revealed an increased correlation between the DMN 
seed region [PCC and ventromedial prefrontal cortex (vmPFC)] 
and SN (insula and precentral sulcus) (59). They found a 
positive correlation between the PTSD symptom severity and 
the vmPFC-precentral sulcus FC values. Our results provided 
an additional piece of evidence that, compared with the HC, the 
PTSD patients exhibited more variable connectivity between the 
DMN and the SN.

There are some limitations in the present study that should 
be highlighted. Firstly, little information is available on the 
meaning of the resting-state dFC in neurocognitive functioning. 
For example, it remains unknown whether the abnormal 
dynamic activities in the resting state are intrinsic properties or 

are affected by the present-moment cognitive activities (17, 60). 
As the number of resting-state dFC studies grows, we may gain 
a better understanding of these properties and their relation 
to the psychopathology. Secondly, since the dFC based on the 
sliding-window approach is composed of a few time points, the 
dynamic analysis is particularly sensitive to the physiological 
noise (61). Although, we did not denoised the physiological 
noise individually, we denoised the physiological noise in the 
preprocessing steps and group-level test and we also chose a 
relatively large window size in order to diminish the adverse 
effects of physiological noise. Thirdly, we only examined 
significant differences in regions exhibiting abnormal dynamic 
activity to focusing on the dynamic pattern related to PTSD; 
further exploration of static results is needed in our future 
works. Fourthly, the correlation results did not survive the FWE 
correction, so further exploration of the abnormal dynamic 
patterns and CAPS subscales is needed in our future large sample 
research to evaluate the relations between the dynamic patterns 
and specific clinical symptoms severity, such as intrusive memory 
and flash back.

In conclusion, this resting-state dFC (combine the dReHo 
and dFC) study provided evidence that the PTSD patients 
exhibited aberrant dReHo and dFC in comparison with the HC. 
Decreased variability within the DMN may suggest dysfunction 
of self-referential processing in PTSD patients, while increased 
variability between the insula and PCu may suggest dysregulation 
between the DMN and the SN.
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Parkinson’s disease (PD) is a multi-systemic disease in the brain arising from the

dysfunction of several neural networks. The diagnosis and treatment of PD have gained

more attention for clinical researchers. While there have been many fMRI studies

about functional topological changes of PD patients, whether the dynamic changes of

functional connectivity can predict the drug therapy effect is still unclear. The primary

objective of this study was to assess whether large-scale functional efficiency changes

of topological network are detectable in PD patients, and to explore whether the severity

level (UPDRS-III) after drug treatment can be predicted by the pre-treatment resting-state

fMRI (rs-fMRI). Here, we recruited 62 Parkinson’s disease patients and calculated the

dynamic nodal efficiency networks based on rs-fMRI. With connectome-based predictive

models using the least absolute shrinkage and selection operator, we demonstrated that

the dynamic nodal efficiency properties predict drug therapy effect well. The contributed

regions for the prediction include hippocampus, post-central gyrus, cingulate gyrus,

and orbital gyrus. Specifically, the connections between hippocampus and cingulate

gyrus, hippocampus and insular gyrus, insular gyrus, and orbital gyrus are positively

related to the recovery (post-therapy severity level) after drug therapy. The analysis of

these connection features may provide important information for clinical treatment of

PD patients.

Keywords: fMRI, dynamic nodal efficiency, Parkinson’s disease, drug treatment, prediction of post-therapy

severity level

INTRODUCTION

Parkinson’s disease (PD) is one of the most common neurodegenerative disorders. It is clinically
characterized by some specific motor symptoms, including rigidity, slowness of movement, tremor
at rest, bradykinesia, and postural instability and some other non-motor symptoms such as
cognitive deficits, impaired olfaction, emotional problems (1, 2). PD can be considered as a
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multi-systemic disease in the brain arising from dysfunction
in several neural networks (3–5). The motor and cognitive
impairments in PD have been related to abnormal functional
connectivity and disrupted network integration in the
brain (6–8).

Several graph theoretic studies revealed an abnormal
topological organization of functional brain networks in PD
patients. Specifically, Skidmore et al. combined fMRI and
graph analysis to find a smaller global efficiency of brain
networks in advanced PD patients (9). Wei et al. found that
PD had significantly decreased efficiency in the cortico-basal
ganglia motor pathway (10). In addition, Dubbelink et al. using
magnetoencephalography and graph theory, reported that
impaired local network efficiency and network decentralization
are very early features of PD that continue to progress over time,
along with reductions in global efficiency (6). In summary, the
graph theory provides a powerful and general framework to
characterize brain connectivity at global and local levels, and
offers a collection of metrics that can quantify the segregation
and integration of information within functional networks
among the brain regions. However, most of the previous
studies did not consider the important dynamic properties of
FC over time, such as the dynamic nodal efficiency; instead,
FC was usually assumed to be constant during the rs-fMRI
experiment (8).

The graph theory-based approach applied to dynamic
FC show that the variability in brain network may also
provide important information on the underlying nature of
neurodegeneration. In a study by Yu et.al., the reduced variability
of local and global network efficiency was detected in a patient
with schizophrenia (11). In a more recent PD study, dynamic
topological properties of brain networks can characterize the
underlying nature of Parkinson’s disease and correlate with
clinical features (8).

The dynamic property of fMRI can enrich the graph theory.
We wonder if the dynamic nodal efficiency (dnE) can be used
to predict the recovery effect after drug therapy (i.e., post-
therapy severity level) of PD patients. If possible, it may provide
useful guidance information for drug therapy. Connectome-
based predictive modeling is a recently developed data-driven
method for identifying the relationship between functional
brain connectivity and the behavioral and cognitive variables of
interest, and then predicting the behavior of patients (12–14).
The predictive modeling procedure has been applied to analyze
connectivity, such as attention control and temperament trait
(14, 15). Its core idea is the cooperative analysis of the
relationship between behavior and FC, finally finding the strong
functional networks that are correlated to the behavior with
statistical significance. It provides an effective way to explore the
correlation between altered topological properties and clinical
indexes of interest.

In the present study, we used rs-fMRI and sliding-window
analysis to build the individual dnE network by computing
each nodal efficiency of each sliding-window and predicted
the post-therapy severity level of PD patients. The global
efficiency is chosen to calculate the dnE, since it may reveal
more PD properties than local efficiency, as indicated by

TABLE 1 | Participant demographic and clinical characteristics.

Mean(±SD)

Age (years) 58.5(±10.1)

Disease duration (years) 10.4(±4.4)

MoCA 21.6(±5.5)

Depression score (BDI-II) 8.5(±10.0)

Levodopa equivalent daily dose (mg) 720.4(±295.7)

Hoehn and Yahr stage 3.7(±0.6)

Frame-wise displacement (mm) 0.33±(0.20)

Medication-off UPDRS-III 44.1(±12.0)

Medication-on UPDRS-III 22.2(±11.8)

Values are given as mean and SD. MoCA, Montreal Cognitive Assessment; BDI-II, Beck

Depression Inventory-II; UPDRS-III, Unified Parkinson Disease Rating Scale III.

Kim et al. whose study showed a significant difference in global
efficiency between PD and the healthy control, but not in
local efficiency (8). Specifically, we proposed a rigorous cross-
validated prediction framework incorporating feature selection
and regression techniques, to predict the drug therapy effect
of levodopa (the most commonly used drug in PD treatment),
which is evaluated by Unified Parkinson Disease Rating Scale
III (UPDRS-III) (16) scores, using the rs-fMRI data from
62 PD patients. We aim to investigate the possibility of
predicting individual after-therapy UPDRS-III scores using
whole-brain dnE network. The post-therapy UPDRS-III scores
for certain patients was estimated, and the potentially important
connections that contribute to the recovery degree were predicted
by the rs-fMRI data.

MATERIALS AND METHODS

Subjects
Sixty-two subjects (mean age, 58.5 ± 10.1 years; 31 females
and 31 male patients) were recruited from Tsinghua University
Yuquan Hospital, Beijing, China. Patients were told to stop
taking drugs 12 h before the rs-fMRI scan (before therapy).
Patients diagnosed with PD based on the UK Brain Bank criteria
(17) were enrolled. Exclusion criteria includes a history of
psychiatric or neurological disease other than PD, other major
medical diseases, head injury, alcohol/drug dependency/abuse
(8). Disease severity of each patient was evaluated by the UPDRS-
III (16) scores given by an experienced specialist after taking
levodopa, including themedication-on andmedication-off states.
These PD patients took different doses of levodopa, according
to a widely used guidance (18) for each patient. None of
them have taken other medicines. Details of the demographic
information can be found in Table 1. All participants signed
the informed consent form before the experiment. This research
was approved by the Ethics Committee of Tsinghua University
Yuquan Hospital.

MR IMAGE ACQUISITION

All data were collected on a 3T Philips Achieva MRI
scanner (Philips Healthcare, Best, The Netherlands) with a
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32-channel head coil. Head motion was controlled by fixing
the head during scanning. Resting-state blood-oxygenation-level
dependent (BOLD) signals were collected with following imaging
parameters: 35 axial slices; repetition time (TR)= 2,000ms; echo
time (TE)= 30ms; flip angle (FA)=90◦; slice thickness=4.0mm;
slice gap =0.8mm; acquisition matrix = 64 × 64; field of view
= 224 × 224 mm2. All the PD patients have only experienced
one rs-fMRI scan, which was carried out before taking levodopa.
During the scan, the participants were instructed to keep their
eyes closed, relax their minds, and remain as motionless as
possible but not to fall asleep. The rs-fMRI scan with 240 dynamic
scans lasted for 8min. High-resolution T1-weighted structural
images in coronal view were acquired with slice thickness
of 1mm without slice gap. Other sequence parameters were:
TR/TE = 7.64/3.73ms, FOV = 256 × 256 mm2 (acquisition
matrix= 256× 256× 160).

Data Processing and Network Analysis
The pre-processing of rs-fMRI data was conducted using the
SPM12 (http://www.fil.ion.ucl.ac.uk/spm) and GRETNA (19)
software. The first four scans were discarded to allow for
magnetization equilibration. Four subjects with the mean frame-
wise displacement value exceeding the maximum displacement
of 1mm were excluded from either the above demographic
information or subsequent data analysis. Data were realigned
to the first volume to correct for head movement. A 0.01–
0.10Hz band-pass was used to reduce the effects of low
frequency drift and high-frequency physiological noises. The
nuisance signal regression (24-parameter head motion profiles,
global signal, CSF signal, and WM signal) was performed.
Data were spatially smoothed with a 4mm full-width at half-
maximum Gaussian kernel. In order to perform group analysis,
the first scan of fMRI time series was co-registered to the
same participant’s T1-weighted images. The transformed T1
structural images were normalized to the Montreal Neurological
Institute (MNI) template space, using the voxel size of
3× 3× 3 mm3.

The flowchart of the subsequent data processing is shown
in Figure 1. The GRETNA software was used to construct the
whole-brain networks for each sliding-window (19). The human
Brainnetome Atlas (http://atlas.brainnetome.org/) was applied
to obtain 246 brain regions (i.e., nodes, with 123 in each
hemisphere), including 210 cortical and 36 subcortical regions
(20). The sliding-window approach was used to explore the time-
varying changes of FC. The window was slided by 2 s along the
240 dyanmic scans (480 s). We chose the window size of 50
time points for the trade-off between the accuracy of capturing
state transitions accurately and the number of overall state
transitions (21), resulting in 191 consecutive windows across
the entire scan. For each sliding window for a participant, the
nodal efficiency was computed, resulting in a 191 nodal efficiency
curve. For each patient, the dnE matrix (246 × 246) were
calculated by computing the inter-node pearson correlation of
the 191-time-point dynamic efficiency curve. The value of each
element in the dynamic nodeal efficiency matrix ranges between
−1 and 1.

Prediction Model
The least absolute shrinkage and selection operator (LASSO)
method (14) was performed to select the features and build
the model.

The least absolute shrinkage and selection operator (LASSO)
is a regression analysis method that performs both variable
selection and regularization in order to enhance the prediction
accuracy and interpretability of the statistical model it produces.
The object function is as below:

min
β

∥

∥y− xβ
∥

∥

2

2
+

1

2
λ ‖β‖1

where x denotes the dnEmatrix and y donates the actual UPDRS-
III scores. The objective of the whole regression process is to
solve thematrix β byminimizing the loss function. This L1-norm
regularization typically sets most coefficients to zero and retains
one random feature among the correlated ones, the selection
of parameter λ is a trade-off between the prediction error and
L1-norm regularization we used λ = 0.08 in this study.

The prediction model was chosen to depict the correlation
between the connectome-based feature and the UPDRS-III score.
Considering the size of the dataset, it is not convincing if we
only use part of the training-validate-test dataset. Therefore,
the Leave-One-Out-Cross-Validation (LOOCV) was used to
maximize the loss function (22, 23). In LOOCV, N-1 (N is
number of subjects, N = 62) samples were used as training data
and the remaining samples were used as validation data. The
left subjects were used as the input to the training model which
was derived with inner training data, generating the estimated
UPDRS-III scores. This loop was repeated N times to test all
subjects. Each time, the predicted UPDRS-III scores for the left-
one-out subjects, the identified FCs, and their corresponding
weights in the training model were obtained. By pulling all
testing subjects across N loops together, we obtained the
prediction results for all subjects. Thus, there were N regression
models of the same type with the same parameters for learning
and predicting different data. The prediction performance was
assessed by the Pearson correlation (with Bonferroni correction)
between the model predicted UPDRS-III scores and the actual
scores. Permutation test (1,000 times) was carried out to access
the significance (24). Mean Absolute Error (MAE) were used to
measure the magnitude of the error between the predicted and
the actual UPDRS-III scores.

FEATURE IDENTIFICATION

Since we applied a cross-validation strategy to estimate
the UPDRS-III scores, in each iteration, slightly different
connections were selected. The relative weights for all selected
connections were determined by averaging the regression weights
of all loops. For better interpretation and visualization (14, 15),
we grouped the 246 FC nodes into 24 relatively large brain
regions defined by the Brainnetome atlas (20), and estimated the
inter-region contributing power by averaging the weights of all
FCs connecting between two specific macroscale regions.
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FIGURE 1 | The prediction and validation flowchart incorporating feature selection and regression analysis. (A) shows the detailed steps of the data preprocessing

including parcellation, efficiency network computing, feature selection, regression model, and the final feature verification. (B) is the related information from the image

preprocessing to feature identified.

RESULTS

Clinical Data
Firstly, we compared the UPDRS-III scores before and
after levodopa therapy (“medication-off” and “medication-on,”
respectively). The paired t-test shows significant difference (p <

0.0001) of the UPDRS-III scores between medication-off (44.1
± 12.0) and -on (22.2 ± 11.8), which demonstrates the efficacy
of levodopa.

Feature Selection for Medication-off and

Medication-on
The mean contributing weights of whole-brain dnE network are
shown in Figure 2. For the medication-off status, MedioVentral
Occipital Cortex (MVOcC), are the important regions. For
the medication-on status, the important regions are frontal
regions including the Inferior Frontal Gyrus (IFG), Middle
Frontal Gyrus (MFG), Superior Frontal Gyrus (SFG) and Orbital
Gyrus (OrG).

Prediction Performance
The dnE network based prediction models achieved significant
correlation between the predicted and the true UPDRS-III scores
of either medication-off or -on for the 62 PD patients (Figure 3).
Specifically, Pearson correlation of r = 0.54 (p = 4.56 × 10−6,
MAE = 9.49) and r = 0.65 (p = 8.06× 10−9, MAE = 7.52) were
obtained for medication-off and –on, respectively. All the results
passed Bonferroni corrections for the multiple comparisons. The
p-value of the permutation test is 0.004 and 0.001 for medication-
off and –on, respectively.

Connections Identified
The relative weights of dnE network connecting between
each pair of the 24 anatomically defined macro-scale areas
are displayed in Figure 4. The identified features in the dnE
network of either medication-off or -on include the negative
connections (blue) and positive connections (red). The width of
the inter-node lines represents the strength of the connections.
For the negative connections, stronger connectivity reflects
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FIGURE 2 | Mean weights distribution of whole-brain dnE network for each of the two states including medication-off and medication-on. The mean contributing

weights of whole-brain dnE network connections for medication-off and medication-on were calculated by computing the correlation between connections of each

macro-scale with the traits of UPDRS-III. Blue represents negative correlation and red represents positive correlation. As shown in the matrix plot, the 246 FC nodes

are grouped into 24 macro-scale brain regions that are anatomically defined by the Brainnetome atlas. For the matrix plots, rows and columns represent predefined

macro-scale regions in the Brainnetome Atlas, and a bigger circle represents a higher predictive weight. Names of 24 macroscale regions were colored according to

their lobe locations. dnE, dynamic nodal efficiency.

lower disease severity thus better recovery after drug therapy.
The positive connection case reflects the contrary. Specifically,
for medication-off, dnE network connections show more

contributing power betweenMiddle Temporal Gyrus (MTG) and
STG, Postcentral Gyrus (PoG) and Superior Parietal Lobule (25).
The stronger the connections, the better the recovery of PD.
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FIGURE 3 | Scatter plot of the predicted four states of the UPDRS-III scores with respect to their true values based on the prediction framework using whole-brain

dnE network. With the connectome-based prediction framework, Pearson’s correlation of r = 0.54 (p = 4.56 × 10−6) and r = 0.65 (p = 8.06 × 10−9) were achieved

for medication-off and medication-on, respectively, in the nested cross-validation using whole-brain dynamic nodal efficiency network. The abbreviations of the brain

areas are from the Brainnetome atlas (http://atlas.brainnetome.org/) (20).

There is a negative correlation between the strength of some
connections and the UPDRS-III scores, such as the connections
between Precuneus (Pcun) and Orbital Gyrus (OrG), Inferior
Parietal Lobule (IPL), and lateral Occipital Cortex (LOcC), IPL,
and Fusiform Gyrus (FuG). The stronger the connections, the
worse the recovery of PD.

For medication-on, in terms of the feature analysis of
predicting recovery effect after the drug therapy, the contributing
power is mainly concentrated on hippocampus (Hipp), PoG,
Pcun, Cingulate Gyrus (CG), Insular Gyrus (INS), and OrG.
Particularly, the features of the connections between Hipp and
CG, INS, Pcun, OrG, respectively, have much influence on the
recovery after therapy. The stronger the connections, the better
the recovery. For other regions, such as MFG and MTG, the
stronger the connection between MFG and Inferior Temporal
Gyrus (ITG) or the connection betweenMTG and SPL, the worse
the recovery of PD. The prediction efficacy of each region is
shown in Figure 4C. The results are from the regression model
and are normalized to the range of 0 to 1.

DISCUSSION

Through analyzing the efficiency of correlation networks using
rs-fMRI, the present study investigated the important features
of connections that are correlated to the post-therapy disease
severity (UPDRS-III scores) after taking levodopa in the 62 PD
patients. Studying the effect of drug therapy is an important
topic in PD research. Finding what influences the effect of
drug therapy is of great significance. This work predicted the
correlation between the dnE network and the actual effect of drug
therapy by training a regression model. The major findings of
the present study are as follows: (1) The connection efficiency
of networks based on rs-fMRI can effectively depict the severity
of PD (UPDRS-III scores), and further predict the recovery
effect after drug therapy. (2) The Hipp region is an important
area that indicates drug therapy effect in the dnE network. (3)
Increased cortical functional connectivity from ITG and MTG
has a negative effect on the recovery. As such, these findings

provide new evidence that the rs-fMRI network connectivity
strengthening or weakening within key functional networks in
dnE network plays an important pathophysiological role in the
recovery of PD patients.

The FC analysis of the brain network has revealed that the
brain is organized according to a highly efficient small-world
topology, combining a high level of segregation (local efficiency)
with a high level of global integration (global efficiency) (26).
Most of the previous studies did not consider the important
dynamic properties of FC, as functional connectivity was
assumed to be constant during rs-fMRI scanning. However,
dynamic FC may yield novel insights into brain function and
dysfunction (8). The sliding window approach is commonly
used for examining dynamics in resting-state FC, resulting in
quantification of the time-varying behavior of a chosen metric.
In this study, we selected the nodal global efficiency (i.e., nodal
efficiency) as the metric, then obtained the time-varying behavior
of each nodal global efficiency. Global efficiency is a network
attribute that quantifies how easily information can be exchanged
over the network. It provides information on the communication
efficiency of a network as a whole, with higher values indicating
more efficient information transmission through the whole brain.
We further calculated the inter-node correlation of the dnE, to
further reveal the synchronization of the dynamic property of FC
between two regions.

The prediction model analyses demonstrated that some
specific subnetworks with decreased connectivity are correlated
with the recovery effect after drug therapy. The regions mainly
include parietal lobe, insular lobe, limbic lobe, and Hipp.
The connections between these regions are directly positively
correlated to the recovery after drug therapy: the stronger the
connections, the better the recovery (lower UPDRS-III scores).
Nonetheless, there are several key pathways in the SPL, ITG,
MFG, MTG showed negative influence on the recovery of PD.

Previous studies showed that the decreased functional
connectivity of the temporal cortex is related to the disease
progression of PD (27, 28). We drew the similar conclusion
here, especially for the connection between MTG and STG.
In addition, we found that a distributed set of regions in the

Frontiers in Neurology | www.frontiersin.org 6 July 2019 | Volume 10 | Article 66850

http://atlas.brainnetome.org/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Li et al. Predicting the Post-therapy Severity Level of PD

FIGURE 4 | Continued
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FIGURE 4 | The identified features in the dnE network between medication-off (A) and medication-on (B), respectively, including the negative connections (NC)

represented by blue and the positive connections (PC) represented by red, respectively. The width of the inter-node lines represents the strength of connections. For

the negative connections, stronger connectivity reflects smaller disease severity and better recovery after drug therapy. The positive connection case is on the

contrary. The prediction efficacy of each node for medication-on is shown in (C). The results are from the regression model and are normalized to the range of 0 to 1.

As shown in the circle plots, the 246 FC nodes (inner circle) are grouped into 24 macro-scale brain regions (outer brain representations) that are anatomically defined

by the Brainnetome atlas. Specifically, nodes incorporated in each of 24 macro-scale brain areas are plotted with different colors, which delineate their corresponding

anatomy locations in the outer brain representations.

frontal lobe, temporal lobe, occipital lobe, and parietal lobe
showed decreased inter-node correlation of dnE in these patients.
The decreased correlation is related to the high post-therapy
UPDRS-III scores of PD patients. It reveals that these regions
are also related to the disease progression of PD. Among these
important connections exist, such as the connection between
the paracentral cortex and OrG. Some other studies have also
reported that connections among these regions is related to
cognitive decline (29).

This study shows that the Hipp region, which was previously
reported to influence dementia (30), is also an important area to
indicate drug therapy effect. Previous study also shows that there
is a high correlation between PD and dementia, i.e., PD with
dementia (31). This study reveals that individualized recovery
effect after drug therapy can be influenced by the functional
connections between Hipp and other areas, on which enough
attention should be paid before therapy.

The selected features (Figure 2) are not necessarily useful for
the following prediction. For example, the frontal area appears
to be important in the feature selection, but the Hipp area is
the dominant feature for prediction. Therefore, how to improve
feature selection needs to be further studied. Reducing feature
dimension while maintaining all of the connection information
might need to be carefully considered.

There are several limitations of this study. First, the number
of subjects was relatively small to draw firm conclusions. Second,
the dynamic property of FC we investigated in this study is only
the commonly used global efficiency. It should be noted that
choosing the global efficiency does not mean less importance
of other network properties. Other dynamic properties, such
as local efficiency, may provide additional information and are
worthwhile to be further investigated in future studies. Third, the
long-term follow-up study should be carried out in the future to
follow the outcome of patients.

CONCLUSION

In this study we studied a sample of 62 PD patients and calculated
the dnE based on rs-fMRI. With connectome-based predictive

models using LASSO, we demonstrated that the dnE properties
can successfully predict the post-therapy severity level of PD
patients after taking levodopa. The contributed regions for the
prediction include hippocampus, post-central gyrus, cingulate
gyrus, and orbital gyrus. Specifically, the connections between
hippocampus and cingulate gyrus, hippocampus and insular
gyrus, insular gyrus and orbital gyrus are positively related to the
recovery after drug therapy. The analysis of these connectivity
features can provide guidance information for clinical therapy in
PD patients.
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Schizophrenic subject is thought as a self-disorder patient related with abnormal brain 
functional network. It has been hypothesized that self-disorder is associated with the 
deficient functional integration of multisensory body signals in schizophrenic subjects. To 
further verify this assumption, 53 chronic schizophrenic subjects and 67 healthy subjects 
were included in this study and underwent resting-state functional magnetic resonance 
imaging. The data-driven methods, whole-brain temporal variability of fractional amplitude 
of low-frequency fluctuations and regional homogeneity (ReHo), were used to investigate 
dynamic local functional connectivity and dynamic local functional activity changes in 
schizophrenic subjects. Patients with schizophrenia exhibited increased temporal variability 
ReHo and fractional amplitude of low-frequency fluctuations across time windows within 
sensory and perception network (such as occipital gyrus, precentral and postcentral 
gyri, superior temporal gyrus, and thalamus). Critically, the increased dynamic ReHo 
of thalamus is significantly correlated with positive and total symptom of schizophrenic 
subjects. Our findings revealed that deficit in sensory and perception functional networks 
might contribute to neural physiopathology of self-disorder in schizophrenic subjects.

Keywords: schizophrenia, functional connectivity, temporal variability, self-disorder, sensory and perceptual 
network

INTRODUCTION

About 1% of the whole adult population suffer from schizophrenia, which is one of the costliest 
mental disorders. Schizophrenic subject is typically considered as a self-disorder (1). Self-disorder 
could be associated with several positive symptoms. The major point of schizophrenic subjects’ 
positive symptom is unable to efficiently distinguish self and others. This symptom would lead to 
a worse deficit that the schizophrenic patients could not confirm their actions and thoughts are 
related to external information or stimulation. Importantly, in schizophrenia, the symptoms related 
to self-disorder have been considered a crucial factor to identify whether the psychiatric patient is 
schizophrenic or not (2).

There are many neuroimaging studies that have been employed in investigating the neuropathological 
mechanism of schizophrenia (3–5). Although many functional connectivity studies of schizophrenia 
focused on the abnormal long-range functional connectivity among spatially distributed brain regions 
(6, 7), few studies paid attention on local functional information of blood oxygen level dependence and 
functional interaction between spatially adjacent regions (8, 9). Thus, to quantify local or short-range 
functional connectivity in human brain, several measures were commonly employed in neuroimaging 
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studies, including regional homogeneity (ReHo) (10), local power 
of blood oxygen level dependence [low-frequency fluctuations 
(fALFF)] (11), and functional connectivity strength (12) derived 
from resting-state functional magnetic resonance imaging (fMRI). 
Several studies have reported that there are significant relationships 
between static ReHo/fALFF and several factors, such as age, 
gender, and intelligence in healthy subjects (13, 14). These findings 
have revealed that the static local neural activity and short-range 
functional connectivity have been linked with the physiological 
and psychological factors in human brain.

In schizophrenia, multi-site resting-state fMRI study has shown 
that schizophrenic subjects exhibited decreased static fALFF in 
cuneus, middle temporal gyrus, and posterior cingulate cortex 
compared with healthy subjects (15). Guo et al. has also found 
that the schizophrenic patients showed both decreased static 
fALFF in the posterior cingulate cortex and decreased gray matter 
volume in medial prefrontal cortex, indicating that the changes of 
brain function and anatomy within default model network might 
contribute separately to the pathophysiology of schizophrenia 
(16). Besides, recent studies have indicated that schizophrenic 
patients have shown reduced static functional connectivity density 
in primary sensory network of schizophrenia and decreased static 
ReHo in visual and sensorimotor networks compared with healthy 
controls (17). Furthermore, the symptomatology (e.g., auditory 
hallucinations) in schizophrenia has been proved to be related 
to abnormal multisensory static functional connectivity (18). In 
conclusion, the deficit static functional connectivity of sensory and 
perceptual systems may potentially contribute to physiopathology 
of schizophrenia. While these studies have implicitly revealed that 
functional connectivity is a stable characteristic across the entire 
resting scan period, recent studies have indicated that functional 
connectivity is not stationary and changes over time (19, 20).

Assessing brain dynamic functional connectivity from 
resting-state fMRI has advanced our knowledge of the brain 
(21). Specifically, a recent neuroimaging study has stated that 
functional connectivity variability seems to be a reliable feature, 
partly dependent on functional relationships among distributed 
brain regions (22). Dynamic functional connectivity analysis 
could provide a novel method to sensitively capture the abnormal 
functional connectivity related with psychiatric disorders (23–
26). The results of dynamic functional connectivity analyses also 
revealed transient states of dysconnectivity in schizophrenia (27, 
28), which support and expand current knowledge regarding 
dysconnectivity in schizophrenia. Moreover, a recent study 
demonstrated that the feature of dynamic functional connectivity 
significantly outperforms the static connectivity in classification 
analysis (29). These findings reveal that static functional analysis 
may obscure important dynamic features of network behavior.

During recent years, few studies have focused on altered local 
temporal variability of functional activity or short-range functional 
connectivity in schizophrenia, which could reveal information that 
is not from static functional connectivity (30). Thus, we sought to 
determine whether altered temporal variability of regional neural 
activity was associated with symptom of schizophrenia in this study. 
The dynamic neural activity analysis used in this study includes 
dynamic ReHo and fALFF, which allow us to identify voxel-level 
dynamic functional alterations in schizophrenia compared with 

healthy subjects. On the basis of previous results about abnormal 
static functional connectivity in primary motor and perception 
networks, we hypothesize that abnormal dynamic neural activity 
in schizophrenia would locate in primary perceptual systems, such 
as primary sensory-motor cortex and related visual and thalamus 
regions. In addition, schizophrenic subjects are expected to show 
significant association between altered variability of these network 
and symptom of schizophrenic subjects.

MATERIALS AND METHODS

Subjects Selection and Schizophrenic 
Patients’ Clinical Symptoms
Fifty-three chronic schizophrenic subjects and 67 healthy controls 
are included in this study. Related resting-state fMRI data are 
collected from the Center for Biomedical Research Excellence. 
The patients with schizophrenia are diagnosed according to 
Diagnostic and Statistical Manual of Mental Disorders, 4th 
Edition, diagnostic. The psychiatric symptom severity is measured 
using positive and negative syndrome scale (PANSS) assessment. 
Healthy subjects are also recruited, those who do not have 
schizophrenia and not exhibiting Axis I symptoms. These research 
procedures were in accordance with institutional review boards 
of the USA. Written informed consent was obtained from each 
subject before the study. Details of demographic characteristics of 
both groups are shown in Table 1.

Data Acquisition and Image Preprocessing
Functional imaging scan was performed on a 3T MRI scanner 
(Siemens Trio). Resting-state functional image are collected with 
single-shot full k-space echo-planar imaging (EPI) (repetition 
time = 2,000 ms, echo time = 29 ms, number of slices = 32, slice 
thickness = 3 mm, matrix size: 64 × 64, flip angle = 7°, field of 
view = 256 × 256 mm2). Subjects underwent 6-min scan. A total 
of 180 volumes of EPI images were obtained.

The preprocessing steps of functional image were performed 
using commonly processing steps [Data Processing and Analysis 

TABLE 1 | Dataset (The Center for Biomedical Research Excellence, chronic).

 Patients with 
Schizophrenia

Healthy 
controls

p

Sample size 53 67 –
Gender (Male/Female) 42/11 46/21 0.192a

Age (years) 36.75 ± 13.67 34.82 ± 11.28 0.398b 
Education level (years) 13.20 ± 1.82 14.02 ± 1.86 0.024b

Handedness (both/right/left) 1/42/10 1/65/1 0.004a

FD 0.15 ± 0.07 0.14 ± 0.08 0.433b

Disease duration (years) 14.94 ± 4.60 – –
PANSS-positive score 14.94 ± 4.61 – –
PANSS-negative score 14.43 ± 5.26 – –
PANSS-global score 30.07 ± 8.28 – –

Indicated values are shown as mean ± standard deviation. PANSS, positive and 
negative symptom scale; FD, Framewise displacement.
aIndicates the p values from the comparison analysis (Chi-square test).
bIndicates the p values from the comparison analysis (two-sample t-test).
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of Brain Imaging (DPABI) (31), http://rfmri.org/dpabi] and 
briefly described here. First, temporal and spatial corrections 
were performed, including slice time and head motion correction, 
furthermore normalized (voxel size: 3 mm) into EPI template. Any 
subjects who had a maximum translation in any of the cardinal 
directions larger than 3 mm or a maximum rotation larger than 3° 
were excluded from subsequence analysis. Moreover, framewise 
displacement (FD) was evaluated in two groups as suggested by 
Power et al. (32). Second, detrending analysis was performed on 
the normalized data to minimize the effect of linear trend. Third, 
several nuisance signals were regressed out from functional image 
through linear regression analysis. The nuisance signals include 
six motion parameters and their first temporal derivative, white 
matter and cerebrospinal fluid signals. In this study, the global 
signal was not removed from the functional image (33, 34).

Temporal Variability Analysis
Two widely used approaches, including ReHo and fALFF, were 
used to measure voxel-level functional maps (35). We calculated 
dynamic ReHo and fALFF through sliding window analysis 
(Figure 1A). Based on the “rule of thumb,” which is 1/fmin of 
data should be equal or less than the length of window (36), 

the whole-run time series of each voxel was segmented into 50 
TR windows and sliding the onset of these windows by one TR. 
Then, within each window, we calculated ReHo and fALFF at 
each voxel in whole-brain mask.

In the ReHo analysis, the frequency band passing (0.01–0.08 
Hz) was done on fMRI data. Then, Kendall’s W value was calculated 
for each voxel, between the time series of the target voxels and the 
series of their nearest voxels (26 voxels) in the whole-brain mask 
(10). In the fALFF analysis, fALFF is defined as the percentage of 
the power within the low-frequency range (0.01–0.08 Hz) in total 
power of whole frequency range (0–0.25 Hz) (11).

Across n window, we calculated the coefficient of variation 
(CV) maps of ReHo and fALFF for each subject. We define the 
CV of a voxel k as:

 
CV

x x n

xk

t mean
t

n

mean
=

−( )
=∑ 2

1
/

 

where xt is ReHo or fALFF score of voxel k over time window 
t, t = 1,2,…,n; xmean is mean score of xt across time window t. 
Finally, individual voxel-wise ReHo and fALFF CV maps were 

FIGURE 1 | Illustration of analysis steps and temporal variability of dynamic fALFF and ReHo pattern. (A) The preprocessed full-length blood oxygen level-
dependent fMRI maps were segmented into several sliding windows (50 TR). Within each window, the fALFF and ReHo were computed for each voxel. The sliding 
window was systematically shifted by one TR, and the corresponding fALFF and ReHo were computed. Then, the temporal variability of the dynamic fALFF and 
ReHo were defined as the CV maps across the sliding windows. The pattern of temporal variability of the fALFF (B) and ReHo (C) of the schizophrenic subjects/
healthy controls were shown.
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standardized by dividing the whole-brain mean values and, 
furthermore, spatially smoothed (6-mm full width at half 
maximum of the Gaussian kernel). Then, two-sample t-tests were 
performed for ReHo and fALFF CV maps, respectively (DPABI, 
http://rfmri.org/dpabi), between schizophrenic and healthy 
subjects with age, gender, education level, handedness, and FD as 
covariates, with a statistical significance level corrected by false 
discovery rate (p < 0.05).

Correlations With Pathological Factors
We assessed the association between the score of clinical score and 
significant changes of temporal variability in regional functional 
measurements in patients with schizophrenia. We extract the 
mean CV score from the peak voxel and its nearest voxels (26 
voxels) for each significant cluster. Then, the partial correlation 
analysis was performed between ReHo and fALFF CV scores 
and patients’ PANSS scores with age, gender, education level, 
handedness, medication dosage, and FD as covariates (p < 0.05).

Validation Analysis
Recent fMRI study has indicated that sliding window-based 
dynamic functional connectivity could be largely explained by 
head motion (37). Patient is chronic schizophrenic subjects in 
this study. The antipsychotic treatment might have an effect on 
dynamic local neural activity of schizophrenic subjects. Thus, 
we preformed the validation analysis to investigate the influence 
of these factors on dynamic temporal variability of regional 
functional measurements in schizophrenic subjects.

First, spike-regression-based scrubbing was performed to 
take into account transient head motion (38, 39). We defined the 
“bad points” with high FD (above 0.5 mm) and their adjacent 
time points (1 back and 2 forward) for each subject. These “bad 
points” were modeled as separate regressor in the nuisance 
regression models in the preprocessing analysis. Then, for new 
preprocessed fMRI data, we reevaluated the temporal variability 
of ReHo and fALFF through sliding window analysis. Two-
sample t-tests were also performed between two groups with 
age, gender, education level, handedness, and FD as covariates. 
Second, to take account of antipsychotic treatment, we calculated 
the relationship between altered temporal variability of fALFF/
ReHo and medication dosage in schizophrenia group by using 
correlation analysis (p < 0.05).

RESULTS

Temporal Variability of fALFF/ReHo 
Between Schizophrenic and Healthy 
Groups
Temporal variability of dynamic fALFF and ReHo were shown 
at each voxel for each subject (Figures 1B, C) with the BrainNet 
viewer (http://www.nitrc.org/projects/bnv/) (40). The variability 
of these dynamic local neural activity displayed a nonuniform 
spatial distribution across the brain. The lowest variability was 
located in the limbic system. The largest variability was mainly 
located in the heteromodal association region, including the 

temporal–parietal junction, prefrontal and posteromedial cortex. 
The primary sensory and visual cortices showed a moderate level 
of variability. Furthermore, using two-sample t test, schizophrenic 
subjects showed increased temporal variability in both dynamic 
fALFF and ReHo compared with healthy controls (Table 2, 
Figure 2) with the DPABI viewer (41). Within temporal variability 
of fALFF, increased dynamic fALFF were observed in thalamus, 
super temporal gyrus, precentral/postcentral gyrus, and lingual 
gyrus in schizophrenic subjects. Similar increased dynamic ReHo 
were also being found in patients with schizophrenia, including 
super temporal gyrus, thalamus, postcentral gyrus, middle 
cingulum cortex, and cuneus. Furthermore, these findings were 
observed by using spike-regression-based scrubbing procedure 
(SFigure 1).

Correlations With Pathological Factors
We observed positive correlation between PANSS scores and the 
increased temporal variability of ReHo in schizophrenic subjects: 
PANSS-positive score and thalamus within basal ganglia 
network (BGN) (r = 0.317, p = 0.021, Figure 3A) and PANSS-
total score and thalamus within BGN (r = 0.369, p = 0.006, 
Figure 3B). The relationship was observed between PANSS-total 
score and thalamus within BGN by using spike-regression-based 
scrubbing procedure (SFigure 2). Moreover, no other significant 
correlations were found between the altered temporal variability 
of fALFF/ReHo and medication dosage in schizophrenia group.

DISCUSSION

This study has presented some new insights in alterations of 
dynamic temporal variability of ReHo and fALFF in schizophrenia 
through sliding window analysis. Consistent with our hypothesis, 
increased dynamic temporal variability of ReHo and fALFF were 
observed in sensory and perceptual networks in schizophrenic 
subjects. Critically, the psychiatric symptom analysis has 
indicated that increased temporal variability of ReHo showed 
significantly positive relationship with the positive symptoms 
of schizophrenic subjects. These findings provide evidence that 
there is deficient temporal variability of local neural activity in 
low-level perceptual processing in schizophrenic subjects.

While these are well known about the abnormal higher-order 
brain function in schizophrenia, such as memory and cognitive 
(42, 43), neuroimaging studies have also documented some 
basic sensory processing deficits in schizophrenic subjects. The 
perceptual deficits have been increasingly observed in the sensory 
networks, including primary motor and visual regions (44, 45). 
A recent study has also revealed that schizophrenic subjects has 
shown increased resting-state functional connectivity variability 
in sensory and perceptual networks (46). Most of these locations 
were in line with the meta-analysis’ results of schizophrenia (47). 
Increased variability of local neural activity of sensorimotor regions 
might reflect the deficits in the integration of multisensory stimuli 
in schizophrenia (48). Moreover, enhanced dynamic local neural 
activity might indicate that the abnormal bottom–up processing 
is associated with the pathological mechanism of schizophrenia 
(46). In this study, we observed increased temporal variability of 
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ReHo and fALFF in sensory and perceptual system across time 
windows in schizophrenic subjects. These increased local temporal 
variabilities might provide some new evidences to support 
deficient dynamic neural activity in primary sensorimotor, as well 
as the abnormal dynamic bottom–up processing in schizophrenia.

Furthermore, schizophrenic patients could be commonly 
considered as a self-disorder with abnormal functional network 
(49). Recent studies have revealed that the processing and 
integration of multisensory bodily signals underlay a coherent 
self-experience in healthy controls (50, 51). In the “rubber-hand 
illusion” experiment, Botvinick and Cohen pointed out that the 
subjects would have true self-experience when they saw the 
fake hand was stroked, synchronous individual’s unseen hand 
(50). Disturbances in self-experiences were also reported by 
Ehrsson; they found that visual perception was not match with 
proprioceptive information (51). These studies have provided 
the evidence that the sense of self-experiences depend on 
multisensory information that arose from the body, such as 
proprioceptive, spatial, and temporal sensorimotor signals. 
In schizophrenia, the deficits of visual and motor networks 
appear to be related to self-disorder (46, 52, 53). Besides, the 
neurobiological model of self-disorder has also indicated that 
deficient sense of self in schizophrenia is largely related to the 
abnormal multisensory signals integration from body and 
external stimuli (54, 55). Thalamus is a very crucial key role in 
gating and in integrating multisensory and cognitive information 

in human brain. Thus, previous studies have indicated that the 
altered static function of the thalamus is an important feature 
related to the schizophrenic subjects’ self-disorder symptom 
(56, 57). In this study, we found increased temporal variability 
of ReHo and fALFF in primary visual and somatosensory area 
in schizophrenic patients. These increased dynamic neural 
activity across time may be related to the high interaction within 
regional sensorimotor functional network in schizophrenia. 
Increased temporal variability of thalamus was also observed 
in schizophrenic subjects, which may suggest that abnormal 
dynamic functional integration across time in schizophrenia 
exists between multisensory regions and higher order cognitive 
functional system. A significant relationship was observed 
between increased dynamic ReHo of thalamus and PANSS-
positive score. These findings indicated that schizophrenic 
subjects have altered dynamic local functional connectivity and 
local dynamic neural activity in thalamus regions. Moreover, 
increased local dynamic functional connectivity of the thalamus 
maybe related with a positive symptom of schizophrenic subjects. 
Therefore, the abnormal dynamic local neural activity within the 
visual, sensorimotor, and thalamus areas might provide more 
evidence about abnormal self-processing in schizophrenia.

While our results provide a new insight of dynamic 
functional activity for understanding the self-disorder in 
schizophrenia, several main methodological points of this 
study should be further addressed. First, dynamic temporal 

TABLE 2 | Significant increased dynamic fALFF and ReHo in schizophrenic subjects.

Regions MNI coordinates Peak t-score Cluster voxels

x y z

Dynamic fALFF 
Left postcentral gyrus −57 −12 21 5.992 763
Left precentral gyrus
Left superior temporal gyrus
Right postcentral gyrus 48 −21 60 5.097 452
Right precentral gyrus
Left postcentral gyrus −18 −42 75 5.844 228
Left precuneus
Left superior parietal gyrus 
Right lingual gyrus 9 −81 −9 3.921 60
Left Thalamus −9 −12 0 3.970 33
Dynamic ReHo
Left postcentral gyrus −30 −39 66 5.549 1,363
Left superior parietal gyrus
Right cuneus
Left cuneus
Left precentral gyrus
Left superior temporal gyrus
Left temporal gyrus
Right postcentral gyrus 39 −30 48 6.401 1,326
Right precentral gyrus
Right superior temporal gyrus
Right rolandic operculum
Right insula
Right heschl gyrus
Left Middle temporal gyrus
 Middle cingulum cortex −6 0 42 4.727 121
Supplementary motor area
Left thalamus −6 −12 6 4.899 108
Right thalamus
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variability of ReHo and fALFF were calculated through sliding 
window correlation analysis. The size of window length is one 
parameter that does not have formal consensus, although we 
selected it based on the frequency of preprocessed data. Second, 
the patient we chose is chronic schizophrenic subjects. The 
antipsychotic treatment might have an effect on dynamic local 

neural activity of patients. We should validate our findings in 
the first-episode schizophrenic subjects in further study. Third, 
self-experience assessment is not included in the current study. 
We should measure it and investigate the relationship between 
self-experience score and static/dynamic local neural activity in 
schizophrenic subjects.

FIGURE 2 | Group difference of temporal variability of the dynamic fALFF and ReHo. Temporal variability of the dynamic fALFF and ReHo between schizophrenic 
and healthy subjects were identified using two-sample t tests. The significance level was set PFDR < 0.05. (A) The increased dynamic fALFF in schizophrenic subjects 
were compared with those of healthy controls. (B) The enhanced dynamic ReHo in patients with schizophrenia.

FIGURE 3 | The relationship between altered temporal variability of dynamic ReHo and PANSS scores. (A) The positive association is observed between increased 
CV score of thalamus region and PANSS-positive score in schizophrenic subjects. (B) The PANSS-total score was also positively related with CV score of thalamus 
region in patients. 
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CONCLUSION

In conclusion, this study has combined resting-state fMRI and 
dynamic functional analysis. Our findings have revealed an 
increased temporal variability of ReHo and fALFF in primary 
visual and sensorimotor networks, as well as in the thalamus in 
schizophrenia patients. It has been showed that the increased 
dynamic neural activity of the thalamus was significantly related 
with a positive symptom of schizophrenic subjects. Thus, our 
findings might have potential interpretation for the neural 
physiopathology of self-disorder in schizophrenia.
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Objective: To investigate the dynamic amplitude of low-frequency fluctuations (dALFFs)

in patients with Parkinson’s disease (PD) and healthy controls (HCs) and further explore

whether dALFF can be used to test the feasibility of differentiating PD from HCs.

Methods: Twenty-eight patients with PD and 28 demographically matched HCs

underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans and

neuropsychological tests. A dynamic method was used to calculate the dALFFs

of rs-fMRI data obtained from all subjects. The dALFF alterations were compared

between the PD and HC groups, and the correlations between dALFF variability and

disease duration/neuropsychological tests were further calculated. Then, the statistical

differences in dALFF between both groups were selected as classification features to help

distinguish patients with PD from HCs through a linear support vector machine (SVM)

classifier. The classifier performance was assessed using a permutation test (repeated

5,000 times).

Results: Significantly increased dALFF was detected in the left precuneus in patients

with PD compared to HCs, and dALFF variability in this region was positively

correlated with disease duration. Our results show that 80.36% (p < 0.001) subjects

were correctly classified based on the SVM classifier by using the leave-one-out

cross-validation method.

Conclusion: Patients with PD exhibited abnormal dynamic brain activity in the left

precuneus, and the dALFF variability could distinguish PD from HCs with high accuracy.

Our results showed novel insights into the pathophysiological mechanisms of PD.

Keywords: Parkinson’s disease, resting-state fMRI, dynamic brain activity, amplitude of low-frequency

fluctuations, support vector machine

INTRODUCTION

Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by progressive
impairment of motor function and widespread non-motor symptoms, which affects patients’
quality of life and is, hence, a significant social burden (1–3). At present, the pathophysiological
mechanism of PD is not fully understood, and it is still a neuroimaging challenge to form a
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definitive diagnosis at the early stage of the disease (1). Magnetic
resonance imaging (MRI) has made great contributions in the
clinical evaluation of PD (4, 5). Conventional MRI has been
used to exclude secondary parkinsonism caused by neoplasms,
vascular parkinsonism, and multiple sclerosis among others. The
common imaging features of primary PD include iron deposition
and substantia nigra atrophy (6, 7). However, several new reports
have revealed that the cerebral region is widely involved in
patients with PD. Therefore, it is important to explore novel
imaging features that could help effectively identify PD.

In recent years, advanced neuroimaging techniques have
allowed us to noninvasively explore the nature of the human
brain in an efficient manner (8–10). Resting-state functional
MRI (rs-fMRI) is an established tool to investigate the intrinsic
neuronal activity of the human brain bymeasuring the amplitude
of spontaneous low-frequency fluctuations (ALFFs) of blood-
oxygen-level dependent (BOLD) signals (11–13). ALFF has been
widely used to investigate regional brain activity in neurological
diseases. Abnormal ALFFs in PD have been detected in extensive
brain regions and act as an important characteristic related
to subtypes of motor symptom or comorbidities (14). When
compared with healthy controls (HCs), patients with tremor-
dominant PD exhibited increased ALFF in the right cerebellar
posterior lobe, while those with PD with postural instability/gait
difficulty exhibited decreased ALFF in the bilateral putamen and
cerebellar posterior lobe (15). PD patients with depression had
significantly lower ALFF in the prefrontal cortex and anterior
cingulated cortex than PD patients without depression (16).
PD patients with apathy showed lower ALFF in the left orbital
middle frontal gyrus and bilateral superior frontal gyrus (17)
than PD patients without apathy. Further, PD patients with visual
hallucinations showed lower ALFF in both lingual gyrii/cunei
and greater ALFF in the temporo-parietal regions, medial
temporal gyrus, and cerebellum than those with non-visual
hallucinations and HCs (18). By measuring the local spontaneous
brain activities, these studies provided satisfactory evidence
that widespread cerebral regions were involved in PD, which
greatly contributed to the understanding the neurobiological
foundations of such disorders. However, the results of these
studies were limited in that their focus on abnormal brain
activities in PD with different motor/non-motor symptoms
was based solely on group-level analysis; thus far, to our
best knowledge, no study has used these abnormal features to
distinguish PD with specific symptoms at an individual level.

Previous studies on aberrant static ALFF in PD are
inconsistent as they report both lower and higher local brain
activity in various cerebral areas. However, a static state analysis
of ALFF ignores the dynamic characteristics of brain activity
during the whole scanning period. Evidences from rs-fMRI that
employ a sliding window approach have effectively detected
dynamic functional connectivity features with higher sensitivity
than the static state method (12, 19, 20). Recent studies reported
that dynamic rs-fMRI analysis strategy not only made good
contributions to human-brain exploration but also played an
important role in studying the pathogenesis of schizophrenia
(21–23). Nevertheless, few reports have focused on time-varying
local spontaneous neuronal activity in PD, as ALFF itself

exists with substantial fluctuations either (24, 25). Furthermore,
support vector machine (SVM) is one of the most widely
used supervised machine-learning approaches that can enable
individual-level classification and prediction with high accuracy
(26, 27). Uddin et al. (28) applied SVM to distinguish patients
with autism from normal individuals with a classifier accuracy of
over 80%. Accordingly, SVM has been proposed as an effective
tool for diagnostic application in the clinic.

To date, no studies have evaluated the combined effects of
dynamic ALFF and supervised machine-learning approaches
on PD. Based on previous findings that a static ALFF has
greater heterogeneity in PD and the proven property of
dynamic methods, we hypothesized that dynamic intrinsic local
spontaneous neuronal activity will show greater variability in
subjects with PD than HCs, and that it may be another powerful
index of rs-fMRI in exploring the underlying mechanisms of
PD. We aimed to identify the cerebral regions that displayed
abnormal dynamic local neuronal activity based on the voxel
level of the whole brain. Furthermore, we applied SVM to
observe whether the aberrant dALFF could be used as a feature
to distinguish PD from HCs. This study may improve our
understanding of the potential pathophysiological mechanism of
PD. Moreover, we hope that this research can contribute to the
clinical diagnosis of PD at an individual level.

MATERIALS AND METHODS

Subjects
This study was carried out in accordance with the tenets of the
Helsinki Declaration and approved by the local ethics committee
of Xuzhou Affiliated Hospital, Xuzhou Medical University.
Written informed consent was obtained from all subjects before
participation in the study.

The project used a convenience sample of 31 hospitalized
patients with PD who met the UK Bank diagnostic criteria
for PD (29). All patients underwent neuropsychological tests
such as the Mini Mental Status Examination (MMSE) and the
Montreal Cognitive Assessment (MoCA) and motor impairment
evaluation including the Unified Parkinson’s Disease Rating
Scale (UPDRS) and the Hoehn and Yahr (H-Y) stage when
patients were off medication. The included patients had no
history of mental illness or other neurological diseases. The
exclusion criteria of the participants were MRI-confirmed brain
abnormalities such as trauma, stroke, tumor, and infection and
contraindications to MRI such as claustrophobia and implanted
metal devices. In addition, the subjects with a history of drug
and/or alcohol abuse and syncope were also excluded. All patients
underwent routine treatment, and none of them received any
other relevant interventions. Thirty-two age- and sex-matched
healthy volunteers were included as HCs. Three patients and four
HCs were excluded because of head motion artifacts. Finally,
28 patients with PD (15 male and 13 female, 59.17 ± 9.72
years old) and 28 HCs (14 male and 14 female, 58.18 ± 6.46
years old) were included for analysis. There were no significant
intergroup differences with respect to age and sex (Table 1). All
patients underwent functional MRI scanning when they were
off medication; all the HCs also underwent the same protocol
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TABLE 1 | Demographics and clinical data.

Variable PD (N = 28) HCs (N = 28) P

Sex (M/F) 15/13 14/14 0.789#

Age (years) 59.17 ± 9.72 58.18 ± 6.46 0.794*

Duration of PD (years) 8.46 ± 2.92 N/A N/A

UPDRS-III 29.1 ± 8.70 N/A N/A

H-Y 2.02 ± 0.71 N/A N/A

MoCA 24.39 ± 2.52 25.86 ± 1.73 0.015*

MMSE 27.64 ± 1.25 27.71 ± 1.24 0.831*

CV values 0.18 ± 0.04 0.13 ± 0.12 <0.001*

PD, Parkinson’s disease; HCs, healthy controls; M, male; F, female; UPDRS-III, unified

Parkinson’s disease rating scale; H-Y, Hoehn and Yahr disability scale; MoCA, Montreal

Cognitive Assessment; MMSE, Mini-Mental Status Examination.

Data are presented as the range and mean ± SD.
#The p-value was obtained using a chi-square test.

*The p-value was obtained by a general linear mode analysis.

for MRI scanning and neuropsychological tests. All subjects
were right-handed.

MRI Data Acquisition
All participants were scanned in a 3.0 Tesla MRI scanner (GE
Medical Systems, Signa HD, Waukesha, WI) with an eight-
channel head coil. During the scan, comfortable foam pads
were used to stabilize the head of each subject to minimize
head motion, and all subjects wore earplugs to reduce the noise
from the MRI machine. Then, an echo-planar imaging sequence
was employed to acquire resting BOLD images. The parameters
of the protocol are as follows: time of repetition, 2,000ms;
time of echo, 30ms; field of view, 220mm × 220mm; slice
thickness, 3mm; slice gap, 1mm; voxel size, 3.4mm × 3.4mm
× 4.0mm; number of slices, 36; flip angle, 90◦; and total volume
of each subject, 185.

Preprocessing of rs-fMRI Data
The rs-fMRI data preprocessing were carried out using data
Processing and Analysis for (Resting-State) Brain Imaging
(DPABI) (http://www.rfmri.org/dpabi) (30). The first 10 time
points of each subject were excluded to stabilize the status and
allow participants to adapt to the scanning condition. Slice timing
was carried out on the remaining 175 volumes to correct time
differences. Realignment was performed to correct head motion
by using a Friston-24 model for individual-level correction,
and any subject with a head maximum displacement >2mm,
maximum rotation >2.0◦, or mean framewise displacement
(FD) >0.3 was excluded. In our study, mean FD was set as
a covariate for further group-level statistics to minimize the
potential influences of headmotion. Several covariates such as the
Friston 24 head-motion parameters, cerebrospinal fluid signal,
and white matter signal were regressed. Then, the processed
volumes were normalized to the standard Montreal Neurological
Institute (MNI) echo planar imaging (EPI) template with a voxel
size of 3mm × 3mm × 3mm. Finally, functional volumes
were smoothed with 6-mm full width at half maximum. We
did not carry out global signal regression of our data given that

there is still some controversy regarding removal of the global
signal (31–33).

Dynamic ALFF Analysis
The analysis of dynamic amplitude of low-frequency fluctuations
(dALFF) was carried out using Temporal Dynamic Analysis
(TDA) toolkits based on DPABI (34). Before dALFF calculation,
functional volumes were bandpass filtered (0.01–0.08Hz) to
minimize the influences of low-frequency drifts and fluctuations
of the signal. The sliding window is an important parameter to
capture dynamic spontaneous neural activities, and the proper
window length is critical for dynamic analysis. Too small a
window length may not allow robust estimation of dynamic
changes, and too long a window length may not be able to detect
dynamic activity. Previous studies provided the range of the
appropriate window length as 10–75 TR, step= 1 TR) (12, 35). To
maximize the statistical power, a moderate sliding window length
of 50 TR (step = 1 TR) was selected. The post-processed 175
volumes of each subject were segmented into 126 windows in all.
The ALFF was calculated in each sliding window. The standard
deviation (SD) of ALFF values of each voxel across 126 windows
was further calculated to assess the variability of ALFF. We also
calculated the static ALFF containing the whole sliding window.

Statistical Analysis
Two-sample t-test was used to observe intergroup differences
in age and MoCA/MMSE scores. Sex-based group difference
was evaluated using the chi-square test. A general linear mode
(GLM) with age, sex, and mean FD as covariates was used to
compare the difference of dALFF/ALFF between the PD and
HC groups. Multiple comparisons were corrected using Gaussian
Random-Field (GRF) method (voxel level, p < 0.001; cluster
level, p < 0.05).

Partial correlation analysis was calculated between dALFF
variability and disease duration/MoCA/MMSE/UPDRS/H-Y
with age and sex as covariates (p < 0.05). All statistical analyses
were performed using SPSS version 16 (SPSS Inc., Chicago,
IL, USA).

Support Vector Machine Analysis
The intergroup dALFF difference was used as the classification
feature in this study. We then trained the SVMs by providing
labeled observations, for which the classification results were
known. To overcome the limitations of our samples, the leave-
one-out cross-validation (LOOCV) method was applied to
estimate the generalization ability of our classifier. To verify the
ability of the validation strategy, we also made a classification
comparison by introducing 10-fold cross-validations. Then, the
total accuracy, sensitivity, and specificity were obtained to assess
classifier performance.

A permutation test was used to evaluate the statistical
significance of this classification accuracy (36). The permutation
test was repeated 5,000 times, and during each time, the classifier
randomly reallocated labels of PD andHC to the training subjects
and repeated the entire classification process. The p-value was
obtained after the total permutation was accomplished.
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RESULTS

Demographics and Clinical Data
The details of age, sex, and MoCA/MMSE scores are listed in
Table 1. The results showed no significant difference in age (p =
0.652), sex (p = 0.789), and MMSE (p = 0.831) between the PD
and HC groups. However, the MoCA score of the PD group was
significantly lower than that of the HCs (p < 0.05).

Differences in ALFF/Dynamic ALFF and

Correlational Analysis
The intergroup differences in dALFF are shown in
Figure 1 and Tables 1, 2. Compared with HCs, significantly
increased coefficient of variation (CV) of dALFF was
noted in the left precuneus of PD patients (p < 0.001). In
addition, we found that the CV of dALFF was positively
correlated with disease duration (p < 0.001, r = 0.800)
(Figure 1), and no significant correlation was found between
dALFF variability and MoCA/MMSE/UPDRS/H-Y scores
(Supplementary Material). There were no significant intergroup
differences in ALFF.

Classification Results
Classification results are shown in Figure 2. The accuracy of
linear SVM classifier using LOOCV achieved an accuracy of
80.36%, sensitivity of 85.71%, and specificity of 75% (p < 0.001,

non-parametric permutation approach). The receiver operating
characteristic (ROC) curve of the classifier was 0.82. A 10-fold
validation was also employed in our study to verify the reliability
of the classification method, which generated a classifier accuracy
of 71.43%.

DISCUSSION

Upon literature review, we observed that only few studies
employed a TDA method to explore the neural-activity
characteristics of PD. The present study showed the following
findings: (1) the dALFF of patients with PD compared to HCs
was notably different in the left precuneus; (2) a significant
correlation between CV of dALFF in the left precuneus and
the course of the disease was found in PD; (3) dALFF in the
left precuneus showed high accuracy in distinguishing between
patients with PD and HCs.

Prior studies have noted the importance of cerebral static
local neural activities in PD (4, 14, 15). To our best knowledge,
dynamic changes in spontaneous neural activity has been very

TABLE 2 | dALFF alterations between PD groups and HCs.

Region Cluster size (voxel) MNI (x,y,z) t-value

Left Precuneus 94 (−12, −42, 60) 4.34

FIGURE 1 | Increased CV of dALFF in the left precuneus displayed in coronal (A), sagittal (B), transverse (C), and three-dimensional view (D). Box plots with Whiskers

(min–max) show the CV values in the left precuneus of the two groups (E), and scatterplots show the relationship between the CV in the precuneus of the PD group

and the disease duration (F). CV, coefficient of variation; dALFF, dynamic spontaneous low-frequency fluctuation.
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FIGURE 2 | Classification accuracy of altered dynamic ALFF in the left precuneus obtained by the leave-one-out (red line) and nested 10-fold (blue line) cross

validation methods in PD groups, respectively.

poorly researched. The rs-fMRI analysis was based on the
hypothesis that brain activity was in a stationary state during
the entire scanning period; thus, the dynamic characteristics
could not be identified. Dynamic algorithm was proven to
represent the time-dependent characteristics of brain activity
under the given scanning period. A recent study captured
abnormal dALFF/ Regional Homogeneity (ReHo) in stroke
patients by using TDA and compared it with HCs; they further
found that variability in brain activity could be used to evaluate
patients’ motor function (24). Liu et al. (12) found abnormal
functional network connection (FNC) through dynamic instead
of static state. Dynamic FNC was significantly correlated with
the frequency of epileptic seizures and the course of the disease.
Furthermore, dynamic FNC could distinguish patients with
idiopathic generalized epilepsy with generalized tonic–clonic
seizures from controls with an accuracy of 77.91% through linear
SVM classifier (p < 0.001). Dynamic algorithm showed the
capability to characterize neural activity of the human brain by
identifying specific function signatures.

Our dynamic algorithm showed that the dALFF in the
left precuneus in PD was notably different than HCs. The

result was partially consistent with previous reports that the
left precuneus was a key cerebral region in patients with PD.
Precuneus, which mainly constitutes the medial and posterior
part of the parietal lobe, contributes to motor and cognitive
tasks, and has been reported as displaying the highest resting
metabolic rate among all cerebral regions (37). Interestingly, the
precuneus consumed 35% more glucose than other brain regions
in the resting brain (38). Perfusion single photon-emission
computed tomography (SPECT) and [18F]fluorodeoxyglucose
positron emission tomography ([18F]FDG-PET) proved that the
precuneus was the most remarkable area of hypometabolism
in the posterior cortical region (39). Another [18F]FDG-PET-
based study on PD found that the metabolic capability of
the left precuneus decreased with disease progression (40).
Similarly, a more recent research using the arterial spin labeling
(ASL) technique showed that cerebral blood flow (CBF) in
the left precuneus significantly reduced in the PD group
when compared with HCs (41). These functional imaging
studies supported the view that the left precuneus might be
more prone to attack in neuropsychiatric disorders. Additional
rs-fMRI studies showed that the left precuneus was closely
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associated with motor and non-motor symptoms in PD. Hu
et al. (42) found that increased local brain activity in the
left precuneus was related to the Hamilton Depression Rating
Scale score, by using static brain activity analysis. Thibes
et al. (43) used a brain connection algorithm and showed
that the left precuneus was a critical node connecting with
specific cerebral regions in PD. In addition, morphological
changes of the left precuneus were also found in PD with
cognitive impairment and isolated apathy through voxel-
based morphometry (44, 45). Therefore, the left precuneus
is undoubtedly an important and vulnerable structure in
patients with PD.

In our study, the higher variability of dynamic local brain
activity level in the left precuneus was positively correlated
with the course of PD. This meant that the degree of variation
was significantly increased with an extended disease course,
which reflected the increased or decreased brain activity at
different sliding windows during the whole scanning period.
These findings revealed a localized brain function impairment
over time in PD. However, the abnormal dALFF did not correlate
with UPDRS/H-Y scores in the present findings, likely because
the heterogeneous motor symptoms in PD were associated with
integration of multiple cerebral region function, rather than
being determined by a single brain region impairment (46,
47). Unlike previous reports, the present study did not find
significant intergroup differences with respect to ALFF, either
because the sample size in our study was relatively small or
because the result was not powerful enough to pass the multiple
comparison correction of the present statistical methods. In fact,
the dynamic features were concealed under the static analysis
that represented a measure of the average amplitude of local
activity across different scanning time points within the whole
scan (12). Thus, static rs-fMRImay not be as sensitive as dynamic
analysis to detect neural-activity changes. Our study indicated
that dynamic analysis could completely unearth information of
brain activity. In addition, the present result suggested that the
left precuneus was an important structure involved in PD, and
higher dALFF in this region was a promising imaging marker
reflecting the disease duration. Besides, our findings did not show
a correlation between dALFF and MoCA/MMSE tests. This may
be because the MoCA andMMSE scales were mainly appropriate
for cognitive screening, and our study lacked detailed assessment
of cognitive performance compared to previous studies (48).

The imaging diagnosis of PD remains a challenge even
now, as a confirmed diagnosis in most patients is still made
depending on the clinical symptoms (49). An assessment of
the iron content and volume of substantia nigra may be useful
indicators to identify PD and evaluate the disease progression
(6, 7). However, this approach has not been widely applied
in the clinical management of patients with PD. Previous
reports demonstrated that SVM was a powerful tool utilizing
imaging features to distinguish PD patients from HCs. In our
study, we tested the inter-group difference of dALFF in the
left precuneus as a classification feature to discriminate PD
from HCs through a linear SVM classifier. The accuracy of
this classification was 80.36% when an LOOCV method was
employed (non-parametric permutation correction, p < 0.001).
Further, to compare the performance of SVM using LOOCV, a

nested 10-fold cross-validation method was used to assess the
classifier’s performance; the accuracy was 71.43%. These findings
showed that SVM could achieve better classification capability
with LOOCV, and the results also provided evidence that patients
with PD could be distinguished from HCs at the individual level
when using dALFF variation in the left precuneus. These results
support the hypothesis that the dALFF could identify individual
PD patients.

Our study has some limitations. First, all patients were
on medication. Although patients underwent fMRI scanning
while they were off medication, the effects of the long-term
treatment could not be completely ruled out. Second, the
classification power based on the 28 PD patients was still not
strong enough, and we just used SVM in the same sample
to testify the classification accuracy. Third, the patients did
not undergo comprehensive cognitive scales testing, which
could have prevented a more accurate detection of cognitive
performance. Future research should include a larger sample size
and another independent test sample should be recruited for
testifying classification accuracy.

CONCLUSION

To our best knowledge, this is the first study to attempt to
investigate the dynamic spontaneous neural activities in patients
with PD. Our results provided evidence that dynamic analysis
was more sensitive to detect alteration of brain activity than a
static method. In addition, the CV of dALFF was found to be
correlated with the course of the disease, which may ultimately
contribute to identifying PD at the individual level. Thus,
our results provide novel insights on the pathophysiological
mechanisms of PD.
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