About this Research Topic
One critical barrier to the development of robots with intrinsic compliance is the necessity for greater design inspiration and integration from bionic viewpoints. For instance, the design of compliant actuators to mimic the real muscle function is difficult because of the complex muscle structure and biomechanical properties. Besides, the control of robots with intrinsic compliance is still challenging due to the complexity and modelling difficulty of compliant components. For instance, the physical coupling between stiffness and position mechanisms in VSAs makes the control design complicated. How to control robots with intrinsic compliance in a more efficient way using bioinspired techniques in model learning, policy learning, and disturbance estimation, is an exciting topic.
This Research Topic welcomes all contributions related to bioinspired design and control approaches for robots with intrinsic compliance. More specifically, we aim to introduce the recent progress of the design of compliant or soft robots inspired by biomechanical advancements and to address the challenges in developing bioinspired control strategies for compliant or soft robots in various applications, while proposing new ideas and directions for future development. All types of articles are welcome among those permitted in the Frontiers in Neurorobotics platform.
Keywords: Series elastic actuator, variable stiffness actuator, soft robot design and control, robot adaptive and learning control, bioinspired robot control
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.