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Increased DJ-1 and α-Synuclein in
Plasma Neural-Derived Exosomes as
Potential Markers for Parkinson’s
Disease
Zhen-Hua Zhao1†, Zhi-Ting Chen2†, Rui-Ling Zhou1, Xu Zhang1, Qin-Yong Ye2*† and
Yin-Zhou Wang1*†

1 Department of Neurology, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, China,
2 Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China

The diagnosis of PD might be in difficulty, especially in the early stages. Therefore, the
identification of novel biomarkers is imperative for the diagnosis and monitoring disease
progression in PD. DJ-1 and α-synuclein, are two proteins that are critically involved
in the pathogenesis of PD, and they have been examined as disease biomarkers in
studies. However, no study exists regarding DJ-1 in plasma neural-derived exosomes.
In the present study, the levels of DJ-1 and α-synuclein in plasma neural-derived
exosomes were studied together in order to investigate novel biomarkers for PD. DJ-
1 and α-synuclein in plasma and plasma neural-derived exosomes of the patients
with PD and controls were quantified by ELISAs. The data revealed that the levels
of DJ-1 and α-synuclein in plasma neural-derived exosomes and the ratio of plasma
neural-derived exosomal DJ-1 to total DJ-1 were significantly higher in patients with
PD, compared with controls, while levels of the two proteins in plasma exhibited no
difference between the patients with PD and controls. However, no relationship was
identified between biomarkers and disease progression. In addition, significant positive
correlations between DJ-1 and α-synuclein in plasma neural-derived exosomes were
found in the patients with PD and in healthy individuals. We hypothesize that DJ-1 in
plasma neural-derived exosomes may be used as a potential biomarker as α-synuclein
in PD and they might participate in the mechanism of PD together.

Keywords: α-synuclein, DJ-1, biomarker, plasma, exosome, Parkinson disease

INTRODUCTION

Parkinson’s disease (PD), characterized by a set of extrapyramidal motor features, is the second
most common neurodegenerative disease worldwide. The beginning of disease-specific pathology
occurs before the onset of classical clinical manifestations, and the symptoms of PD are not
apparent until almost 60% of the dopamine neurons have died (Berardelli et al., 2013). PD in the
early stages is prone to be misdiagnosed, due to a lack of suitable disease biomarkers and overt
clinical symptoms. Consequently, there is still a substantial misdiagnosis rate.

Gene mutations of α-synuclein culminate in familial PD and α-synuclein has a close
association with the pathogenic mechanism of heredofamilial and sporadic PD (Lucking and
Brice, 2000; Braak and Del Tredici, 2017). DJ-1 is another gene product that has previously been
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associated with both heredofamilial and sporadic PD, and appears
to be associated with oxidative stress, which is an acritical
process related to PD (Choi et al., 2006). Consequently, DJ-1 and
α-synuclein have been considered to be leading biomarkers for
PD (Hong et al., 2010). However, it is presently unknown whether
the combination of DJ-1 and α-synuclein will be a more suitable
combination for the diagnosis of PD.

Cerebrospinal fluid (CSF) has been reported to function as
an accurate and reliable source for biomarkers in PD (Farotti
et al., 2017). However, obtaining CSF is a cumbersome process
compared to blood sampling in a regular clinical setting. Blood is
an accessible source for application in a clinical setting (Mehta
and Adler, 2016). However, a principal disadvantage of blood
biomarkers is that they do not directly reflect the conditions
in the central nerve system and are more easily affected by the
peripheral environment.

Exosomes containing proteins and other constituents of their
cellular origin are a means of communication between cells.
Exosomes might be a pathway for neurons to divert proteins from
neurons into the CSF or into the peripheral blood via blood–
brain barrier. These materials associated with PD, including
α-synuclein, maybe excessive and/or in a toxic or insoluble
structure. To confirm this hypothesis, Shi and colleagues injected
mice intracerebroventricularly with 125I-labeled α-synuclein or
tau. And, they observed that 125I-labeled α-synuclein or tau
could be detected in neural-derived blood exosomes which
expressed the neuronal adhesion molecule L1CAM (Shi et al.,
2014, 2016). Exosomal α-synuclein in neural-derived blood
exosomes was increased in patients with PD (Shi et al., 2014).
However, to the best of our knowledge, there are no relevant
studies on exosomal DJ-1 in neural-derived blood exosomes.

In the present study, a combination of chemical and
immunochemical methods were used to harvest and enrich
neural-derived exosomes from small volumes of plasma in
quantities that was enough to detect the implicated proteins in the
pathogenic mechanism of PD. The levels of DJ-1 and α-synuclein
in plasma neural-derived exosomes were analyzed in order to
evaluate any potential associations with PD, and to assess their
suitability as biomarkers for the disease. In addition, the levels of
α-synuclein in plasma neural-derived exosomes were analyzed to
investigate any associations between DJ-1 and α-synuclein, and
the relationship between these proteins and the progression of
PD were further investigated.

MATERIALS AND METHODS

Participants
This study was performed in the Department of Neurology of
Fujian Provincial Hospital, Fuzhou, China, and was approved
by the Ethics Committees of Fujian Provincial Hospital.
Laboratorians and statistical analyst were blinded to any clinical
information and the grouping. All individuals provided written
informed consents.

From January 2016 to June 2017, a total of 39 PD patients
were recruited. All patients with PD were diagnosed according
to the United Kingdom Parkinson’s Disease Society Brain Bank

criteria (Hughes et al., 1992). The healthy controls were the
patients’ husbands or wifes, or healthy community volunteers.
The individuals in the control group did not exhibit any signs or
symptoms indicative of neurological disease. All individuals were
excluded on the following criteria: the presence of (1) tumors,
(2) essential tremors, secondary parkinsonism, or Parkinson-plus
syndrome, (3) severe craniocerebral trauma, (4) inflammatory,
infectious, or autoimmune diseases in the peripheral and central
systems, (5) severe systemic diseases, such as anemia, hepatosis,
heart failure, pulmonary disorders, and chronic renal failure, and
(6) other neurodegenerative diseases.

All patients with PD and control subjects received an
assessment which contained medical history, physical
and neurological examinations, laboratory tests, and
neuropsychological assessment. The laboratory evaluation
consisted of routine blood parameters, serum electrolytes, blood
urea nitrogen, creatinine, fasting blood glucose, vitamin B12 and
thyroid stimulating hormone. The above results for all study
participants were normal. All patients with PD were assessed
using Hoehn-Yahr (H-Y) and Unified Parkinson’s Disease Rating
Scale-III (UPDRS-III) scores. The duration of disease since the
time of initial diagnosis was available and used for subsequent
analysis. Blood samples were collected at fasting state in the
morning, after patients and controls were enrolled in the present
study, and all plasmas were stored at −80◦C.

Isolation of Plasma Neural-Derived
Exosomes
Exosomes were isolated according to the experimental protocol
described in a previous report (Goetzl et al., 2015). Briefly,
0.8 ml of plasma was incubated with 0.15 ml of thromboplastin-
D (Thermo Fisher Scientific, Inc., Waltham, MA, United States)
for 60 min. The plasma was then added to 0.35 ml of calcium-
and magnesium-free Dulbecco’s balanced salt solution (DBS-2)
with protease inhibitor cocktail (Roche Applied Science, Inc.,
Madison, WI, United States) and phosphatase inhibitor cocktail
(Thermo Scientific, Inc.). Following centrifugation at 1,500 × g
for 20 min, the supernatant was mixed with 252 µl of ExoQuick
exosome precipitation solution (EXOQ; System Biosciences, Inc.,
Palo Alto, CA, United States), and incubated for 1 h at 4◦C. The
resulting exosome suspensions were centrifuged at 1,500 × g for
30 min at 4◦C, and each precipitation was re-suspended in 150 µl
of DBS-2 with inhibitor cocktails and 100 µl of 3% bovine serum
albumin. The suspensions were subsequently incubated for 1 h
at 4◦C with 1 µg of mouse anti-human CD171 (L1CAM neural
adhesion protein) biotinylated antibody (clone 5G3, eBioscience;
Thermo Fisher Scientific, Inc.) and 25 µl of streptavidin-agarose
resin (Thermo Scientific, Inc.) with 50 µl of 3% BSA. Following
being centrifuged at 200 × g for 10 min at 4◦C and removal of
the supernatant, each precipitation was suspended in 50 µl of
0.05 M glycine-HCl (pH 3.0) by vortexing for 10 s. Subsequently,
0.45 ml of DBS-2 with 2 g/100 ml of BSA, 0.10% Tween 20
and the inhibitor cocktails, was added to each suspension. After
vortex-mixing, each suspension was incubated for 10 min at 37◦C
with. Samples were then stored at −80◦C prior to ELISAs. The
protein concentration of exosomes from the neural source was
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determined using the Bradford protein assay (Tiangen Biotech,
Co., Ltd., Beijing, China), with bovine serum albumin as a
standard.

Transmission Electron Microscopy
The exosomes were placed in a droplet of 2.5% glutaraldehyde in
PBS buffer at pH 7.2 and fixed for 2 h at 4◦C. The samples were
washed in 0.1 M PBS buffer and fixed in 1% osmium tetroxide
for 2 h at 4◦C. The samples were then dehydrated for 10 min
in increasing concentrations of alcohol (50, 70, 90, and 100%,
repeated three times), then infiltrated with alcohol/propylene
oxide (1:1) and propylene oxide for 10 min at room temperature,
respectively. The samples were embedded in Quetol-812 epoxy
resin and polymerized at 40◦C for 2 h, 60◦C for 4 h, and 80◦C
for 10 h. Ultrathin sections (100 nm) were cut using a Leica UC6
ultra-microtome, and then were stained with uranyl acetate for
15 min and with lead citrate for 10 min at room temperature.
The results were observed in a FEI TecnaiSPIRIT transmission
electron microscope (Camcor, Eugene, OR, United States),
operated at 120 kV.

ELISA Quantification of Exosome
Proteins and Plasma Protein
The proteins in plasma neural-derived exosomes were quantified
by ELISA kits for α-synuclein and human DJ-1 (R&D Systems,
Inc., Minneapolis, MN, United States), according to the
manufacturer’s protocol. Plasma α-synuclein and human DJ-1
were also quantified, and the test for biomarker was repeated 3
times.

Data Analyses
In the present study, SPSS Statistics 19.0 (IBM, Corp., Armonk,
NY, United States) was used for statistical analyses. p < 0.05
was accepted to be statistically significant in all cases. All
continuous variables, including age, UPDRS-III scores, duration
of disease, the levels of DJ-1 in exosomes, total DJ-1 in plasma,
α-synuclein in exosomes, total α-synuclein in plasma, and their
ratio are presented as the mean ± standard deviation (SD).
A χ2 test was used for comparing the differences between
sexes. In order to compare the differences between age and
biomarkers between the groups, a t-test was used to detect
statistically significant differences when the data were normally
distributed, and a Mann–Whitney U-test when the data were not
normally distributed. In order to evaluate correlations among
the biomarkers, Pearson’s correlation coefficients for DJ-1 and
α-synuclein of plasma were obtained. Spearman’s correlation
coefficients were also obtained to evaluate the correlations among
the biomarkers of which the data do not conform to the normal
distribution. Receiver operating characteristic (ROC) curves for
the biomarkers were generated to evaluate their sensitivities and
specificities in distinguishing PD from healthy controls. The
“optimum” cut-off value for a ROC curve was the point associated
with the maximal sum of sensitivity and specificity. ROC curves
for the combination of DJ-1 and α-synuclein were also calculated
using logistic regression analysis.

RESULTS

Evaluation of DJ-1 and/or α-Synuclein in
Plasma and Plasma Neural-Derived
Exosome as Biomarkers for PD
Plasma neural-derived exosomes were extracted and
corroborated by transmission electron microscopy (Figure 1A).
The concentrations of DJ-1 in the plasma neural-derived
exosomes and plasma were measured using ELISAs. There was
no significant difference in DJ-1 in the total plasma between
patients with PD and controls in the total plasma (2.26 ± 0.65
vs. 2.49 ± 0.60 ng/ml, p = 0.104). The concentrations of DJ-1
in the plasma neural-derived exosomes were significantly
higher in patients with PD compared with healthy controls
(2.94 ± 0.96 vs. 2.34 ± 0.86 ng/mg, p = 0.002). The ratio of
plasma neural-derived exosomal DJ-1 to total DJ-1 (exo/total)
was also significantly higher in patients with PD, compared with
the controls (1.39 ± 0.57 vs. 1.00 ± 0.50, p = 0.001) (Table 1).

The concentrations of α-synuclein in plasma neural-derived
exosome and in plasma were also measured using ELISAs.
Similar to the findings of a previous study (Shi et al.,
2014), there was no significant difference in the plasma
α-synuclein concentrations between patients with PD and
controls (3.01 ± 1.51 vs. 3.01 ± 1.17 ng/ml, p = 0.565). However,
the concentrations of α-synuclein in plasma neural-derived
exosomes were significantly higher in patients with PD compared
with healthy controls (7.75 ± 2.74 vs. 6.50 ± 1.17 ng/mg,
p = 0.018< 0.05) (Table 1).

To further evaluate the potential for DJ-1 and α-synuclein
in plasma neural-derived exosomes to aid in the diagnosis of
PD, ROC analysis was performed to characterize its sensitivity
and specificity. The AUC for α-synuclein was 0.654, when the
cut off value was 8.14 ng/mg, with a sensitivity of 48.7% and
specificity of 85.0% (Figure 1B). The ROC analysis performance
of DJ-1 in plasma neural-derived exosomes was identified to be
moderate (AUC = 0.703, sensitivity = 79.5%, specificity = 57.5%)
(Figure 1C), as the cut off values was 2.06 ng/mg. The exo/total
DJ-1 generated a similar AUC result (0.724) with a sensitivity
of 59.0% and a specificity of 82.5% at a cutoff value of 0.415
(Figure 1D). The AUC for the combination of DJ-1 and
α-synuclein was 0.714 (Figure 1E), with a sensitivity of 82.1% and
a specificity of 52.5% at a cutoff value of 0.35 on the predicted
risk algorithm. The combination of these two proteins did not
perform a significant discrimination.

Evaluating the Relationships Between
DJ-1 and α-Synuclein Levels of Plasma
and Plasma Neural-Derived Exosomes
To evaluate the relationships between DJ-1 and α-synuclein
levels of plasma and plasma neural-derived exosomes, the present
study conducted a correlation analysis. A significant positive
correlation was identified between DJ-1 and α-synuclein levels of
plasma neural-derived exosomes in patients with PD (Figure 2A)
and controls (Figure 2B). No correlation was found between
the plasma levels of DJ-1 and α-synuclein in patients with PD
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FIGURE 1 | Observation of plasma neural-derived exosomes and ROC analysis of biomarkers for PD diagnosis. Exosomes with lipid bilayer structure were observed
under the transmission electron microscope (black arrow). Scale bars: 100 nm (A). In the whole cohort, α-synuclein in plasma neural-derived exosomes provided an
AUC of 0.654 (sensitivity = 48.7%, specificity = 85.0%) for PD versus controls (B). DJ-1 in plasma neural-derived exosomes performed similarly (AUC = 0.703,
sensitivity = 79.5%, specificity = 57.5%) in the whole cohort (C). The AUC of the ratio of plasma neural-derived exosomal DJ-1 to total DJ-1 was 0.724 with a
sensitivity of 59.0% and a specificity of 82.5% (D). The AUC of α-synuclein +DJ-1 was 0.714 (E).

(Figure 2C), but a weak correlation was found in controls
(Figure 2D).

Correlation Between DJ-1 or α-Synuclein
and the Progression of PD
Patients with PD were classified into H-Y stages 1–5 (Hoehn
and Yahr, 1967), and were divided into two groups, early stage
PD (H-Y 1 to 2) which included 22 patients and advanced stage
PD (H-Y 3 to 5) which included 17 patients. Patients with PD
in the advanced stage had a longer disease duration and higher
UPDRS-III scores when compared with patients with PD in the
early stage. However, no significant differences were identified
in the neural-derived exosome and plasma levels of DJ-1 and
α-synuclein between patients with PD at the early stage and
advanced stages of disease (Table 1).

DISCUSSION

The development of effective biomarkers is an important and
urgent task for PD in the early stage. A reliable biomarker can
be conductive to identifying patients with PD in the early stage.

And, it can also be used for the development of new therapy to
treat the disease.

Plasma neural-derived exosomes may serve as a potentially
sources that accurately reflects the changes of the central nervous
system (CNS) (Shi et al., 2016). Exosomes from CNS which
contain jettisoned and potentially toxic forms of α-synuclein or
other disease-associated proteins that may be transported into
the systemic circulation system (Shi et al., 2014). In addition,
these exosomes may avoid the interferences from the blood
contamination, system inflammation, and potential tumor. The
study of Fiandaca et al. (2015) revealed that the exosomal
levels of P-S396-tau, P-T181-tau and Aβ1-42 were significantly
higher than in controls at one to 10 years prior to diagnosis
with Alzheimer’s disease. In a subsequent series of studies,
astrocyte-derived exosomes or neural-derived exosomes were
obtained from plasma by using the same method of polymer-
based precipitation and combination of biotinylated antibody
and streptavidin-agarose resin (Goetzl et al., 2015, 2016). In
the present study, neural-derived exosomes were obtained using
this method, and their origin was confirmed using transmission
electron microscopy, and similar results were obtained when
compared with a previous study (Shi et al., 2014). The principal
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TABLE 1 | Compare of demographics and biomarkers between control subjects and PD.

Parkinson’s disease stage

Control Early Advanced Total P1 P2

Number of cases 40 22 17 39

Sex (M/F) 17/23 15/7 8/9 23/16 0.143 0.184

Age (years)

Mean ± SD 66.6 ± 8.8 65.2 ± 11.2 67.5 ± 6.8 67.5 ± 6.9 0.820b 0.445b

Range 46–80 39–79 58–82 39–82 – –

Duration of disease (years)

Mean ± SD – 3.9 ± 2.5 6.4 ± 3.6 5.0 ± 3.2 – 0.016a∗

Range – 0.3–9 2–15 0.3–15 – –

UPDRS-III scores – 37.8 ± 15.2 62.6 ± 19.3 48.6 ± 21.0 – < 0.001b∗

Exosomes DJ-1 (ng/mg) 2.34 ± 0.86 2.97 ± 0.97 2.90 ± 0.97 2.94 ± 0.96 0.002a∗ 0.734a

Plasma DJ-1 (ng/ml) 2.49 ± 0.60 2.17 ± 0.51 2.39 ± 0.97 2.26 ± 0.65 0.104b 0.297b

Exo/total DJ-1 1.00 ± 0.50 1.44 ± 0.58 1.33 ± 0.58 1.39 ± 0.57 0.001a∗ 0.515a∗

Exosomes α-syn (ng/mg) 6.50 ± 1.17 7.97 ± 2.97 7.46 ± 2.46 7.75 ± 2.74 0.018a∗ 0.650a

Plasma α-syn (ng/ml) 3.01 ± 1.17 3.04 ± 1.59 2.98 ± 1.44 3.01 ± 1.51 0.565a 0.820a

Exo/total α-syn 2.51 ± 1.45 3.19 ± 1.94 3.00 ± 1.68 3.11 ± 1.81 0.141a 0.777a

exo, exosomes; α-syn, α-synuclein; aMann–Whitney U-test; bStudent’s t-test; P1, compare between control subjects and PD; P2, compare between early stage PD and
advanced stage PD. ∗p < 0.05.

FIGURE 2 | Correlation analysis between DJ-1 and α-synuclein of plasma and plasma neural-derived exosomes. A significant positive correlation between DJ-1 and
α-synuclein of plasma neural-derived exosomes was observed in patients with PD (rs = 0.902, p < 0.001) (A), as well as DJ-1 and α-synuclein of plasma
neural-derived exosomes in controls (rs = 0.739, p < 0.001) (B). No correlation between DJ-1 and α-synuclein of plasma was observed in patients with PD
(rs = 0.059, p = 0.722) (C). A weak correlation between DJ-1 and α-synuclein of plasma in controls (rs = 0.314, p = 0.048) (D).
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advantage of this method using polymer-based precipitation, and
combination of biotinylated antibody and streptavidin-agarose
resin is that it is simple and can be easily performed in a typical
laboratory without a Luminex workstation.

The α-synuclein in the CNS is associated with the progression
of PD, and has been hypothesized to be secreted in means of
exosomes (Marques and Outeiro, 2012; Gui et al., 2015). Previous
studies have reported that plasma α-synuclein was not a suitable
biomarker for PD (Lee et al., 2006; Li et al., 2007; Shi et al.,
2010), as any peripheral cells containing abundant α-synuclein
would affect the result (Barbour et al., 2008). In the present study,
plasma α-synuclein levels exhibited no significant differences
between patients with PD and controls. However, a higher level
of α-synuclein was detected in plasma neural-derived exosomes
in patients with PD by ELISA. These results were similar to those
obtained by a previous study, in which the levels were detected
by Luminex assays (Shi et al., 2014). As the results were free from
methodological interference, the present study confirmed that
α-synuclein in plasma neural-derived exosomes may function as
a reliable biomarker for PD. However, there were limitations to
the present study, namely that the sensitivity and specificity were
not high enough. Therefore, the sample size needs to be expanded
in future studies.

DJ-1 had previously been hypothesized to be associated with
the mechanism of PD (Bonifati et al., 2003). Consequently, DJ-
1 in biological fluids has garnered much interest as a promising
biomarker for PD; however, the inconsistent results obtained by
numerous studies regarding plasma DJ-1 suggest its unsuitability
to be a reliable biomarker for PD (Waragai et al., 2007; An et al.,
2018). Similar to α-synuclein, the plasmic level of DJ-1 is greatly
affected by contamination due to its remarkably high content in
erythrocytes (Shi et al., 2010). Therefore, researchers have focused
on alternative sources of DJ-1. For example, a previous study
reported that DJ-1 in saliva was increased in patients with PD
compared with controls (Devic et al., 2011), and may present
an association with disease progression (Kang et al., 2014). In a
Korean study, the levels of DJ-1 in urinary exosomes in males
were increased in patients with PD compared with controls and
were increased with age in PD (Ho et al., 2014). Other forms
of DJ-1, such as oxidized DJ-1 (Ogawa et al., 2014) and DJ-1
isoforms (Lin et al., 2012), have also been studied. To the best
of our knowledge, the present study is the first to report that DJ-
1 in plasma neural-derived exosomes was significantly increased
in patients with PD compared with healthy controls. However,
the combination of DJ-1 and α-synuclein in plasma neural-
derived exosomes did not significantly enhance the performance
of diagnosis.

In the present study, a significant positive correlation between
DJ-1 and α-synuclein of plasma neural-derived exosomes was
observed in patients with PD. The interaction of α-synuclein and
DJ-1 serves an important role in heredofamilial and sporadic
PD (Antipova and Bandopadhyay, 2017). A previous study
reported that DJ-1 could be observed on the rim of Lewy
bodies in patients with sporadic PD (Jin et al., 2005). The total
level of DJ-1 protein is significantly increased in the brains
of patients with PD compared with controls (Moore et al.,
2005; Choi et al., 2006). In addition, DJ-1 can modulate the

aggregation of α-synuclein and protect the neurons form cell
toxicity of α-synuclein by chaperone-like activity (Sun et al.,
2012) and physical interactions (Zondler et al., 2014). The knock-
down or knock-out of DJ-1 has been demonstrated to increase
α-synuclein toxicity, thus making neurons more vulnerable to the
dopaminergic selective neurotoxin 6-hydroxydopamine (Batelli
et al., 2015). The results of the present study further confirmed
there is a correlation between DJ-1 and α-synuclein. Although
the interactions between DJ-1 and α-synuclein have not been
completely elucidated, DJ-1 and α-synuclein may participate
together in the pathology of PD.

The mechanism for the increased α-synuclein and DJ-1 in
the exosome is presently unclear. It has been hypothesized
that α-synuclein may be secreted out of cell via exocytosis,
exosomes, or other extracellular vesicles (Faure et al., 2006). In
addition, there are several potential mechanisms for increasing
α-synuclein in the exosome. Increasing α-synuclein synthesis
may culminate in its increased secretion to the extracellular space
in previous in vitro studies providing evidence for this potential
mechanism. When neurons over-expressing α-synuclein would
actively secrete an increased amount of α-synuclein into the
extracellular space by the pathway of exosomes (Emmanouilidou
et al., 2010; Reyes et al., 2015), α-synuclein induced cell death
may be prevented by exosomal secretion. However, this self
protective mechanism would damage neighboring cells (Lee
et al., 2005). Another potential mechanism is the dysfunction
of the autophagy-lysosomal pathway or macroautophagy. An
example of this being ammonium chloride or bafilomycin A1,
which inhibits lysosomal function, which would then increase the
release of α-synuclein in exosomes (Alvarez-Erviti et al., 2011).
This effect may also be observed in α-synuclein over-expressing
SH-SY5Y cells treated with secretory carrier membrane protein
5, which is an autophagy inhibitor (Yang et al., 2017). If
macroautophagy function was inhibited by silencing the key
element autophagy related gene 5, the releasing of α-synuclein
from cells by the pathway of exosomes would be observed as
a kind of compensation (Fussi et al., 2018). The dysfunction of
the endocytic pathway may be another mechanism for increasing
α-synuclein secretion via the exosome. The glucocerebrosidase
gene is a pathogenic gene in hereditary PD, and its mutation
has been hypothesized to decrease glucocerebrosidase enzymatic
activity and attenuate endocytic function. The inhibition of this
enzymatic activity or expression of this mutant gene results in
release of α-synuclein and its oligomers (Papadopoulos et al.,
2018). Research regarding in exosomal DJ-1 is rare; however, we
hypothesize that increasing DJ-1 in pathogenicity of α-synuclein
maybe partially transferred with the exosome into extracellular
space.

CONCLUSION

α-Synuclein and DJ-1 in plasma neural-derived exosomes may
serve as potential biomarkers for PD. However, further studies
should be conducted with larger patient cohorts in order to
corroborate the significance of these findings and the relationship
of these biomarkers and disease progression.
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Background: Hyposmia is one of the most important clinical markers of Parkinson’s
disease (PD) with a prevalence ranging from 50 to 96% of PD patients. A significant
association was found between hyposmia and cognitive impairment of PD. However,
there were no reports of event-related potentials (ERP) performance in PD patients with
and without hyposmia for cognitive functions assessment.

Purpose: The aim of our study was to compare ERP performance and its association
with cognitive domains between PD with and without hyposmia.

Methods: Olfactory functions were assessed by Sniffin’ Sticks test-16 (SS-16). Twenty-
four subjects were included in PD with hyposmia group and nineteen were in PD without
hyposmia group. ERP measures were recorded during a delayed match to sample
(DMS) task with Chinese characters. The parameters of ERP components including
N1, N2, P1, P2, and P3 in retrieval epoch were compared between the two groups and
the correlation between ERP results and MOCA item score was also analyzed.

Results: No significant difference was found in ERP performance between PD with
and without hyposmia. Among all participants, N1 latency was significantly negatively
related to visuospatial-executive item score of Montreal Cognitive Assessment (MOCA)
(rs = −0.381, P = 0.012) and P1 amplitude was positively associated with language
item score of MOCA (rs = 0.302, P = 0.049). Within the normosmic group, a significant
association was found between N1 latency and visuospatial-executive item score
(rs = −0.619, P = 0.005) and there was also a correlation between language score and
P1 amplitude (rs = 0.537, P = 0.018). In the hyposmic group, only a significant correlation
was found between N1 latency and clock drawing test performance (rs = −0.413,
P = 0.045) rather than visuospatial-executive item score. Furthermore, SS-16 score was
not found to be significantly associated with either visuospatial-executive or language
item score of MOCA.
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Conclusion: No significant difference was found in ERP components between PD
with and without hyposmia. N1 latency and P1 amplitude were respectively associated
with visuospatial-executive and language functions in the normosmic group while in the
hyposmic group, only a significant correlation was found between N1 latency and clock
drawing test performance rather than visuospatial-executive item score in MOCA.

Keywords: hyposmia, Parkinson’s disease, event-related potentials, working memory, visuospatial function,
language

INTRODUCTION

Hyposmia is one of the most important non-motor symptoms
of Parkinson’s disease (PD) with a prevalence ranging from
50 to 96% of PD patients (Doty et al., 1988; Wenning et al.,
1995; Hawkes et al., 1997; Boesveldt et al., 2008; Duda, 2010).
It generally predates motor symptoms and the olfactory testing
is useful in differentiating PD from non-PD patients with a
sensitivity ranging from 79 to 100% and a specificity from 80 to
89% (Doty, 2012). Therefore, hyposmia is reported to be a critical
clinical marker of PD.

In recent years olfactory dysfunction is found to be associated
with other non-motor symptoms in PD patients such as chronic
constipation, clinical possible rapid eye movement behavior
disorder (RBD) (Chen et al., 2015) and psychotic symptoms
(Morley et al., 2011). Notably, increasing evidence suggests
that hyposmia is strongly associated with cognitive impairment
in PD patients and may be a risk factor for PD dementia
(Bohnen et al., 2010; Stephenson et al., 2010; Morley et al.,
2011; Parrao et al., 2012; Domellof et al., 2017). In fact, the
association between olfaction and cognition has been long
reported in mild cognitive impairment and Alzheimer’s disease
which was evidenced by prominent atrophy in the primary
olfactory cortex and hippocampus (Vasavada et al., 2015) as well
as a strong correlation between tau pathology in the olfactory
bulb and limbic systems (Attems et al., 2005). However, the
role of hyposmia in cognitive impairment in PD patients is not
clear.

Event-related potentials (ERP) have been widely used for
assessing cognitive functions and brain ability. ERP wave
latency and amplitude represent respectively the length of
time spent and the amount of neural resources participating
during information processing. There were increasing studies
of ERP in PD patients owning to its independence of motor
speed and disability. The abnormal P300 was reported to be
associated with cognitive impairment in PD (Katsarou et al.,
2004; Matsui et al., 2007) while other ERP measures were
barely studied in PD. It remained unclear whether the ERP
components were altered in PD with hyposmia, especially
the early ERP components reflecting visuospatial processing
which was one of the mostly impaired cognitive domains
in PD.

The delayed match to sample (DMS) task, one of the most
popular tasks during ERP records in PD patients (Seer et al.,
2016), was used in our study to test working memory which
related to several cognitive abilities including storage capacity,
retrieval strategies (Unsworth and Engle, 2007) and visuospatial

attention (Bleckley et al., 2003; Giuliano et al., 2014). And
Chinese characters applied in our DMS task were more acceptable
for Chinese participants and more dependable on visual working
memory (Opitz et al., 2014). What’s more, we focused on retrieval
epoch rather than encoding epoch in view of impaired retrieval
process and reserved encoding ability of memory deficit in PD
(Mahurin et al., 1993).

To our knowledge, there was no research focusing on cognitive
ERP measures in PD patients with hyposmia. The aim of this
study was to improve our understanding of the role of hyposmia
in cognitive impairment in PD using the ERP technique with
DMS task. Our study investigated difference in ERP components
and its association with cognitive domains between PD patients
with and without hyposmia.

MATERIALS AND METHODS

Subject
Idiopathic PD patients aging from 50 to 80 were recruited
from movement disorder clinic of the Department of
Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong
University School of Medicine from September 2016 to
October 2017. PD was diagnosed according to the clinical
Movement Disorder Society (MDS) diagnostic criteria
(Postuma et al., 2015) by senior Movement Disorder
Specialist. Exclusion criteria included history of head
injury, stroke, psychiatric disorder, poor vision, nasal and
paranasal disease or other factors affecting olfactory function.
Patients with less than 6 years of education or Mini-Mental
State Examination (MMSE) score less than 24 were also
excluded.

Finally 43 PD patients were enrolled in our study. Hyposmia
was defined with score of Sniffin’ Sticks test-16 (SS-16) (Burghart
Messtechnik, Wedel, Germany) less than 8.3 (Chen et al.,
2012) which was consistent with previous researches in our
department (Chen et al., 2015). There were 24 subjects in
PD with hyposmia group and 19 in PD without hyposmia
group. All participants were informed of the research protocol
and this study was carried out in accordance with the
recommendations of Ethical Review of Biomedical Research
Involving Human Subjects by China’s Ministry of Health with
written informed consent from all subjects. The protocol was
approved by Ethics Committee of Ruijin Hospital affiliated to
Shanghai Jiao Tong University School of Medicine, Shanghai,
China.
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Neuropsychological Assessment
Demographic characters including age, sex, education years
and disease duration were recorded (Table 1). The disease
progression was assessed by modified Hoehn and Yahr (H-Y)
scale (Hoehn and Yahr, 1967) and levodopa equivalent dose
(LED) which was calculated as reported (Tomlinson et al.,
2010). Motor subtypes were divided into tremor dominant
type and non-tremor dominant type. Montreal Cognitive
Assessment (MOCA) Beijing version was used to evaluate
cognitive performance (Yu et al., 2012). Night sleep quality
was assessed by Parkinson’s disease Sleep Scale (PDSS) (Wang
et al., 2008). Rapid Eye Movement Sleep Behavior Disorder
Questionnaire-Hong Kong (RBD-HK) (Shen et al., 2014) and
Epworth Sleepiness Scale (ESS) (Kumar et al., 2003) were used
to evaluate RBD and excessive daytime sleepiness (EDS). The
anxiety symptoms were evaluated by Hamilton Anxiety Rating

TABLE 1 | Demographics and clinical characteristics in PD with and without
hyposmia groups (mean ± standard deviation).

PD without hyposmia
(n = 19)

PD with hyposmia
(n = 24)

P

Age (years) 62.37 ± 6.19 64.71 ± 5.89 0.213

Sex (M/n) 8/19 11/24 0.807

Disease
duration (years)

5.31 ± 5.46 5.63 ± 4.29 0.835

LED (mg) 269.66 ± 260.57 280.65 ± 174.76 0.871

Education
(years)

12.05 ± 2.30 12.92 ± 2.50 0.250

H-Y stage 1.68 ± 0.71 1.75 ± 0.59 0.742

Motor subtype
(tremor type/n)

7/19 11/22 0.553

SS-16 10.58 ± 1.64 6.00 ± 2.02 0.000

PDSS 126.84 ± 20.61 117.75 ± 16.59 0.116

RBD-HK 14.84 ± 17.58 13.13 ± 14.00 0.723

ESS 5.95 ± 4.76 5.71 ± 4.84 0.872

HAMD-17 3.74 ± 3.96 3.83 ± 4.06 0.938

HAMA 5.16 ± 4.80 3.75 ± 3.18 0.255

MOCA 25.79 ± 1.93 26.79 ± 2.64 0.173

MMSE 28.68 ± 1.46 28.46 ± 2.06 0.688

Scale (HAMA) (Thompson, 2015) and 17-item Hamilton Rating
Scale for Depression (HAMD-17) (Hamilton, 1960) was used for
depression screening.

The Delayed Match to Sample Task
Each participant was required to participate in a practice block
before the test block during the DMS task (Figure 1). In each
trial, after a single of “+” in the screen of 500 ms, a set of six
visually similar and easily confused Chinese characters (sample
stimulus) presented for 2000 ms which should be remembered
by subjects. After a blank for 3000 ms, a character (probe
stimulus) demonstrated in the middle of the screen could either
be a member of the previous set of characters (answer “yes”)
or be another similar-looking one (answer “no”). The character
presented until a response before 2000 ms or until 2000 ms
without response. Subjects were asked to answer “yes” by pressing
the button of “1” or “no” by pressing the button of “2” on a
keyboard as soon as the response was ensured. The “yes” and
“no” answers were randomized and 50% of the correct answers
were “yes” and the rest was “no” in each block. The inter-trial
interval was 5000 ms. Patients were allowed to begin the test until
the accuracy of the practice block was higher than 50%. Each test
contained 100 trials. This DMS task was programmed by E-Prime
2.0 software (Psychology Software Tools, Inc., Pittsburgh, PA,
United States) in which reaction time and accuracy of each
subject were also recorded. The retrieval period of our study was
defined from 200 ms before probe stimulus onset to 1000 ms after.

EEG Recordings and Data Analysis
ERP was recorded from 32 Ag-AgCl electrodes (Fp1, Fp2, F3,
F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz, FCz,
Cz, Pz, FC1, FC2, CP1, CP2, FC5, FC6, CP5, CP6, FT9, FT10,
TP9, TP10) which were placed according to the international
10–20 system with a 32-channel amplifier (BrainAmp by Brain
Products, Munich, Germany).

All channels were digitized at 500 Hz with 200 ms-long
prestimulus baseline used for baseline correction. The filter band-
pass was 0.1–70 Hz. Electro-oculogram (EOG) was also recorded
to correct ocular artifacts. A semi-automatic check was used in
artifact rejection. Trials were rejected if EEG voltage step was

FIGURE 1 | Schematic representation of the visual DMS task used for ERP recordings. A set of six Chinese characters (sample stimulus) was displayed after a single
of “+” and was required to be remembered by participants. After a blank for 3000 ms, a character (probe stimulus) presented for 2000 ms and the answer of “yes” or
“no” was required to decide whether this character was a member of the set of characters or not. The inter-trial interval was 5000 ms. The retrieval period is from
200 ms before probe stimulus onset to 1000 ms after.
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higher than 50 µV/ms or if difference of values in intervals was
higher than 200 µV or lower than 0.5 µV. The mean rejection
rate for all participants was higher than 1%. ERPs were based on
correct trials and data not rejected for artifacts.

The five ERP components including N1, N2, P1, P2, and P300
were analyzed in reference of early studies, meanwhile, electrodes
with maximal amplitude were chosen, which was consistent with
the previous report of our center using the same paradigm
(Li et al., 2016). N1 amplitude was measured as the maximal
negative peak within the latency window of 150–210 ms on P7,
P8 electrodes. P1 amplitude was identified at the most positive
peak on O1, O2, P7 and P8 within 84–140 ms after the stimulus
onset. N2 amplitude was considered at the maximal negative peak
on F3, F4, C3, C4, CZ, FZ and FCz within the latency window of
230–300 ms. P2 amplitude was identified at the maximal positive
peak on FC1, FC2, CZ, FZ and FCz within the latency window
of 150–250 ms. The P300component amplitude was analyzed as
the maximal positive peak within 250–450 ms on O1, O2 and Pz
electrodes. The N1P2 amplitude was summed absolute amplitude
of the N1 and P2 peaks on P7, P8, FC1, FC2, CZ, FZ and FCz
electrodes. The N1P2 amplitude divided by average noise level
yielded the signal-to-noise (S/N) ratio.

Statistical Analysis
All statistical analysis was performed by SPSS 19.0 (IBM,
Armonk, NY). Demographic characteristics and clinical variables
were compared between the two groups using the independent
sample t-test or chi square analysis. The Spearman’s correlation
was analyzed between each ERP component parameter and
MOCA item score. The association between SS-16 and MOCA
item score was also analyzed by Spearman’s correlation. All ERP
components parameters were compared between the two groups
using independent Mann–Whitney U-test. All tests were 2-tailed
and P-values < 0.05 were considered statistically significant.

RESULTS

Demographics and Clinical
Characteristics
There was no significant group difference in demographic
characters including age, sex, and education degree. No
significant difference was revealed in disease duration, H-Y
stage, tremor subtype and LED between PD with and without
hyposmia. Questionnaire results of sleep disorder (PDSS, RBD-
HK and ESS) as well as anxiety (HAMA) and depression
(HAMD-17) were similar between the two groups. No significant
difference was found in total score of MMSE or MOCA (Table 1).

Task Performance and Brain Activity
There was no significant difference between PD patients with and
without hyposmia regarding number of valid trials, reaction time
and accuracy. No significant difference was found in parameters
of ERP components including N1, N2, P1, P2 and P300 between
the two groups (Table 2 and Figure 2). Notably, the N1P2
amplitude did not differ between the two groups. And the mean

TABLE 2 | Task performance and parameters of ERP components in PD with and
without hyposmia groups (mean ± standard deviation).

PD without hyposmia
(n = 19)

PD with hyposmia
(n = 24)

P

Number of valid
trials

1625 2048 0.954

Accuracy (%) 89.79 ± 8.38 88.21 ± 19.39 0.742

Reaction time
(s)

1590.49 ± 226.51 1549.82 ± 246.54 0.581

N1 latency (ms) 162.16 ± 12.05 158.54 ± 7.75 0.265

N1 amplitude
(µV)

−6.05 ± 3.30 −7.17 ± 3.92 0.391

N2 latency (ms) 261.98 ± 15.06 262.42 ± 21.12 0.940

N2amplitude
(µV)

−1.94 ± 3.29 −1.89 ± 2.88 0.964

P1 latency (ms) 98.58 ± 8.00 99.83 ± 9.30 0.643

P1 amplitude
(µV)

4.98 ± 3.31 4.77 ± 2.75 0.818

P2 latency (ms) 169.43 ± 20.04 173.35 ± 28.51 0.615

P2 amplitude
(µV)

5.39 ± 3.97 5.63 ± 2.63 0.807

P3 latency (ms) 372.25 ± 54.80 391.53 ± 46.93 0.221

P3 amplitude
(µV)

5.03 ± 2.96 6.40 ± 4.01 0.220

N1P2
amplitude (µV)

8.28 ± 4.83 8.23 ± 3.19 0.509

S/N 4.90 ± 2.32 5.17 ± 2.53 0.826

S/N ratio was 4.90 in the normosmic group and 5.17 in the
hyposmic group and no difference was found between the two
groups (Table 2).

Correlation Between ERPs and Cognitive
Ability
Correlation was analyzed between ERP component parameter
and cognitive performance in all participants (Tables 3, 4).
N1 latency was significantly negatively related to visuospatial-
executive item score of MOCA (rs = −0.381, P = 0.012).
Among three visuospatial-executive tests, a significant negative
correlation between N1 latency and test score was found
in cube copy test (rs = −0.401, P = 0.008) and clock
drawing (rs = −0.451, P = 0.002) but not in trail making
test. What’s more, a significant positive correlation was found
between P1 amplitude and language item score of MOCA
(rs = 0.302, P = 0.049). There was no correlation between
MOCA total score and N1 or P1 parameters. Parameters of
other ERP components including N2, P2 and P300 were not
found significantly associated with MOCA score or MOCA
item score. Then the correlations between N1 latency and
P1 amplitude and visuospatial-executive and language item
score were also analyzed in separate groups (Table 5). There
was a significant negative correlation between N1 latency and
visuospatial-executive item score within the normosmic group
(rs = −0.619, P = 0.005) but not within the hyposmic group.
Among three visuospatial tests, a significant negative correlation
with N1 latency was found in both cube copy test (rs = −0.585,
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FIGURE 2 | Grand average ERP waveform in PD with hyposmia (black line) and PD without hyposmia (red line) during retrieval period in DMS task. Latency was
recorded in milliseconds with stimulus onset at 0. Amplitude was recorded in micro-voltage.

P = 0.008) and clock drawing test (rs =−0.523, P = 0.022)
within the normosmic group and only in clock drawing test
(rs = −0.413, P = 0.045) within the hyposmic group. In
addition, a significant correlation between P1 amplitude and
language item score was found within the normosmic group
(rs = 0.537, P = 0.018) but not within the hyposmic group.
Furthermore, SS-16 score was not found to be significantly
associated with visuospatial-executive or language item score of
MOCA (Table 6).

Correlation was also analyzed between parameters of N1
and P1 components and clinical characteristics in all subjects
(Table 7). N1 latency was found to be significantly negatively
related to education degree (rs = −0.326, P = 0.033). There was
a significant positive correlation between HAMA score and N1
amplitude (rs = 0.360, P = 0.018). No significant correlation
was found between other component parameters and clinical
characteristics.

DISCUSSION

To our knowledge, our study was the first to compare cognitive
ERP measures between PD patients with and without hyposmia.
No significant difference in ERP performance was found between
the two groups. Among all subjects, N1 latency was significantly
negatively related to visuospatial-executive function and there
was a significant positive correlation between P1 amplitude and

TABLE 3 | Correlation analysis between ERP latency and MOCA score in all
participants (correlation coefficient rs).

N1 N2 P1 P2 P3

Visuospatial-executive −0.381∗ 0.085 −0.068 −0.104 0.121

Visuospatial-executive
(trail making test)

−0.105 0.107 −0.067 0.103 0.079

Visuospatial-executive
(cube copy)

−0.401∗∗ 0.178 −0.009 0.000 0.094

Visuospatial-executive
(clock drawing)

−0.451∗∗ 0.021 −0.037 −0.207 0.069

Naming −0.044 0.084 −0.038 −0.191 0.164

Attention 0.092 −0.131 0.000 0.041 −0.023

Language 0.101 −0.027 0.036 0.020 0.237

Abstraction −0.232 −0.125 0.051 −0.088 0.193

Delayed Recall 0.034 0.199 −0.003 0.136 0.236

Orientation −0.206 0.080 −0.004 −0.067 −0.098

Total score −0.217 0.100 −0.024 −0.003 0.223

∗P < 0.05; ∗∗P < 0.01.

language ability. Within the normosmic group, N1 and P1 also
associated with visuospatial-executive and language functions
while a significant correlation was only found between N1 latency
and clock drawing test performance rather than visuospatial-
executive item score in the hyposmic group. What’s more, odor
identification ability was not found to be significantly related to
visuospatial-executive function or language ability.
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TABLE 4 | Correlation analysis between ERP amplitude and MOCA score in all
participants (correlation coefficient rs).

N1 N2 P1 P2 P3

Visuospatial-executive 0.010 −0.077 −0.185 −0.288 −0.147

Visuospatial-executive
(trail making test)

−0.100 −0.079 −0.234 −0.188 −0.205

Visuospatial-executive
(cube copy)

0.053 0.193 −0.094 −0.164 −0.228

Visuospatial-executive
(clock drawing)

0.035 −0.067 −0.018 −0.179 −0.016

Naming 0.059 −0.206 0.193 0.037 0.200

Attention 0.053 0.003 −0.161 −0.034 0.081

Language −0.195 −0.120 0.302∗ 0.231 0.075

Abstraction −0.140 −0.069 −0.033 −0.038 0.222

Delayed Recall 0.142 0.226 −0.114 0.088 0.040

Orientation −0.214 0.071 −0.089 0.169 −0.169

Total score 0.005 0.089 −0.053 0.020 0.002

∗P < 0.05.

TABLE 5 | Correlation analysis between parameters of ERP components (N1 and
P1) and MOCA item (visuospatial-executive and language items) score in PD with
and without hyposmia groups (correlation coefficient rs).

PD without hyposmia PD with hyposmia

N1 latency P1 amplitude N1 latency P1 amplitude

Visuospatial- executive −0.619∗∗ −0.182 −0.161 −0.121

Visuospatial- executive
(trail making test)

−0.303 −0.207 0.119 −0.153

Visuospatial- executive
(cube copy)

−0.585∗∗ −0.184 −0.153 0.044

Visuospatial- Executive
(clock drawing)

−0.523∗ 0.040 −0.413∗ −0.059

Language 0.104 0.537∗ 0.098 0.032

∗P < 0.05; ∗∗P < 0.01.

TABLE 6 | Correlation analysis between SS-16 score and MOCA item
(visuospatial-executive and language items) score in all participants (correlation
coefficient rs).

SS-16

Visuospatial-executive −0.088

Visuospatial-executive (trail making test) −0.034

Visuospatial-executive (cube copy) −0.118

Visuospatial-executive (clock drawing) −0.125

Language −0.201

Total score −0.099

Hyposmia is an important clinical biomarker of PD and
there are four subtypes of olfactory dysfunction reported
in PD including impairment of odor identification, odor
discrimination, odor threshold detection and odor recognition
memory (Mesholam et al., 1998; Haehner et al., 2009). Odor
identification deficit is the most prevalent form of hyposmia
and is tested mainly by University of Pennsylvania Smell
Identification Test (UPSIT) in PD patients (Doty et al.,

TABLE 7 | Correlation analysis between parameters of ERP components (N1 and
P1) and clinical characteristics in all participants (correlation coefficient rs).

N1 latency N1 amplitude P1 latency P1 amplitude

Age (years) −0.177 0.143 0.058 0.175

Disease duration
(years)

0.037 −0.105 0.203 0.076

Education degree
(years)

−0.326∗ −0.091 −0.232 −0.058

LED (mg) 0.086 0.028 0.162 0.134

ESS 0.089 0.041 0.287 0.086

PDSS 0.260 −0.128 −0.046 0.226

RBD-HK −0.047 0.163 0.003 0.191

H-Y stage 0.091 0.149 0.236 0.051

HAMA 0.127 0.360∗ 0.035 0.047

HAMD-17 −0.074 0.191 −0.045 −0.095

∗P < 0.05.

1988) and SS-16 (Haehner et al., 2009) which was used
in our study considering its advantage in cross-cultural
application.

Previous studies found a significant association between
hyposmia and cognitive impairment in PD patients. The
percentage of cognitive decline was significantly higher in PD
patients with hyposmia than those without (Bohnen et al.,
2010; Stephenson et al., 2010; Morley et al., 2011; Parrao et al.,
2012). And olfactory dysfunction significantly increased the risk
of dementia in PD patients regardless the cognitive functions
at baseline according to a 10-year follow up study (Domellof
et al., 2017). The underlying mechanism remained unclear. The
olfactory bulb was known to be one of the onset sites with
appearance of Lewy body pathology during PD progression in
Braak’s stage (Braak et al., 2003). And over expression of alpha-
synuclein in the olfactory bulb was reported to initiate hyposmia
and other prodromal symptoms of PD in rats (Niu et al., 2018).
A hypothesis was proposed that severe olfactory dysfunction
might be related to abundant cortical Lewy body deposition
(Morley et al., 2011) which was found to be associated with PD
dementia (Tsuboi et al., 2007). What’s more, the relation between
hyposmia and cognitive impairment could also be explained
by cholinergic denervation of the limbic archicortex (Bohnen
et al., 2010) and dopaminergic denervation of the hippocampus
(Bohnen et al., 2008). In our study, no significant difference
was found in MMSE or MOCA score between PD with and
without hyposmia, which may be associated with limits of our
sample size and sensitivities of MMSE and MOCA in cognitive
impairment of PD patients (Burdick et al., 2014; Wyman-Chick
et al., 2017). Interestingly, no significant difference was found
in parameters of ERP components including N1, N2, P1, P2
and P300 recorded during DMS tasks between these two groups.
Therefore, the association between cognitive domains and ERP
measures in PD with and without hyposmia was important to be
investigated.

N1 and P1 were found to respectively associate with
visuospatial-executive functions and language in our study
while no significant correlation was found between the other
components including P2, N2, and P300 and specific cognitive
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functions. N1 and P1 are the earliest components in ERP
representing visual sensory input. The generator of visual N1 is
probably located in lateral extrastriate cortex (Gomez Gonzalez
et al., 1994), dorsal occipito-parietal and ventral occipito-
temporal areas (Yamazaki et al., 2000) and the visual P1 may
be generated in fusiform gyrus (Heinze et al., 1994). N1 and P1
were reported to be associated with visual perceptual processing
(Vogel and Luck, 2000; Taylor, 2002) especially in visuospatial
attention according to previous reports (Naatanen and Picton,
1987; Luck et al., 1990). Luck et al. (1990) found that N1
was related to attention orienting to relevant stimulus and P1
possibly reflected a facilitation of early sensory processing with
attention already focused. On the other hand, several studies
demonstrated the role of N1 and P1 in language perception.
Selpien et al. (2015) found that N1 and P1 were significantly
related to language lateralization. In an auditory ERP study, the
association between P1 amplitude and attention was found in
linguistic probes stimulation but not in non-linguistic probes
(Giuliano et al., 2014).

Abnormal N1 and P1 components in PD patients were
observed in several studies. Wright et al. (1996) found attenuated
N1 amplitudes during Auditory Oddball Task in 17 PD patients.
However, enlarged N1 and P1 amplitudes as well as shortened
N1 latency in 34 PD patients were demonstrated in a visual
ERP study with oddball and S1–S2 tasks (Li et al., 2003). The
discrepancy may be explained by the differences of tasks used
in ERP, sample size and analytical approach of component
parameters. Unfortunately, the clinical significance of N1 and
P1 components in PD patients was investigated in very few
studies. Wang et al. (2001) reported the association between
N1 and cognitive visual processing in PD patients evidenced by
its correlation with the regional cerebral blood flow. Consistent
to previous studies, our study found a significant negative
correlation between N1 latency and visuospatial-executive
function in PD patients and P1 amplitude was significantly
positively related to language ability. Therefore N1 latency and
P1 amplitude during DMS task were possible to be used for
assessing visuospatial-executive functions and language abilities
in PD patients. Interestingly, the significant association between
these cognitive functions and N1 and P1 components were
also found in the normosmic group while in the hyposmic
group, there was only a significant correlation between N1
and clock drawing test score rather than visuospatial-executive
item score. To explain difference in clinical significance of N1
and P1 components between the two groups, one hypothesis
could be that there exists different cognitive processing between
these normosmic and hyposmic participants. Increasing evidence
shows that PD with and without hyposmia may be two subtypes
of PD patients. Lee et al. (2015) found that normosmic PD
represented a unique clinical phenotype with a more benign
with fewer motor deficits and higher dopamine transporter
activity. On the other hand, hyposmia in PD was reported to
be associated with tremor-dominant type (Iijima et al., 2011),
SNCA rs11931074 and specific non-motor symptoms such as
RBD and chronic constipation (Chen et al., 2015). From the
aspect of cognition, a good olfactory performance in PD was
found to compensate gray matter volume loss (Lee et al., 2014)

and there were cholinergic and dopaminergic denervations in
PD with hyposmia (Bohnen et al., 2008, 2010). Therefore, some
components underlying a cognitive process such as visuospatial-
executive and language functions could be different between PD
with and without hyposmia.

The impaired cognitive domains in PD with hyposmia were
under debate. Bohnen et al. (2010) found that UPSIT scores were
significantly related to episodic verbal learning in 58 PD patients
but not other cognitive performance including visuospatial
function, visual non-verbal memory, attention and executive
function. However, poorer memory and executive functions were
reported to be associated with worse olfactory identification in
other studies (Morley et al., 2011; Parrao et al., 2012). Our study
demonstrated no significant association between SS-16 score and
visuospatial-executive or language item score of MOCA in PD
patients. The discrepancy is possibly explained by difference
in sample size and neurocognitive test batteries which may be
avoided by using ERP measures.

There were several limitations of our study. A larger sample
size is expected in further studies to confirm our results.
In addition, only MOCA with relatively high reliability and
validation reported (Nie et al., 2012) was used for cognitive
assessment in our study as the psychometric properties of
neurocognitive test batteries were rarely studied in Chinese
PD patients. What’s more, only odor identification was tested
which was the mostly impaired olfactory function in PD (Doty
et al., 1988). However, in view of possibly different mechanisms
underlying four subtypes of hyposmia (Kareken et al., 2003;
Hedner et al., 2010), the association between cognitive domains
and the other three olfactory functions in PD warrants further
investigation.

In conclusion, our study compared ERP measures recorded
during DMS tasks at retrieval period and its association with
cognitive domains between PD patients with and without
hyposmia. No significant difference in ERP components was
found between the two groups in the present study. Among all
participants, N1 latency was significantly negatively related to
visuospatial-executive functions and there was also a significantly
positive correlation between P1 amplitude and language ability.
In PD without hyposmia, N1 latency and P1 amplitude were
respectively associated with visuospatial-executive and language
functions while in PD with hyposmia, only a significant
correlation was found between N1 latency and clock drawing
test performance rather than visuospatial-executive item score
in MOCA. What’s more, no significant association was found
between odor identification ability and visuospatial-executive or
language item score of MOCA.
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Background: Gait changes occur during all Parkinson’s disease (PD) stages and
wearable sensor-derived gait parameters may quantify PD progression. However, key
aspects that may qualify quantitative gait parameters as progression markers in PD
remain elusive.

Objectives: Longitudinal changes in gait parameters from a lower-back sensor under
convenient and challenging walking conditions in early- and mid-stage PD patients
(E-PD, M-PD) compared to controls were investigated.

Methods: Normal- and fast-pace parameters (step: number, time, velocity, variability)
were assessed every 6 months for up to 5 years in 22 E-PD (<4 years baseline disease
duration), 18 M-PD (>5 years) and 24 controls. Parameter trajectories and associations
with MDS-UPDRS-III were tested using generalized estimating equations.

Results: Normal-pace step number (annual change in E-PD: 2.1%, Time∗Group:
p = 0.001) and step time variability (8.5%, p < 0.05) longitudinally increased in
E-PD compared to controls (0.7%, −12%). For fast pace, no significant progression
differences between groups were observed. Longitudinal changes in M-PD did not differ
significantly from controls. MDS-UPDRS-III was largely associated with normal-pace
parameters in M-PD.

Conclusion: Wearables can quantify progressive gait deficits indicated by increasing
step number and step time variability in E-PD. In M-PD, and for fast-pace, gait
parameters possess limited potential as PD progression markers.

Keywords: Parkinson’s disease, progression marker, gait, wearable sensor, prospective study

INTRODUCTION

Progression markers in Parkinson’s disease (PD) are key to advances in PD prognosis and novel
treatment efficacy measures. Yet, objective, reliable and quantitative markers of progressive motor
deficits are still largely missing. Commonly, semiquantitative rating scales such as the MDS-UPDRS
(Goetz et al., 2007) are used to assess motor symptoms and effects of disease modifyers. However,
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such clinical ratings are to some extent subjective, substantially
placebo-responsive (Shin et al., 2016), partly rater-dependent
(Post et al., 2005) and therefore prone to bias. Previously,
stopwatch-based motor performance measures have been
suggested as progression markers, specifically “turning pegs”
and “inserting pegs” in functional dexterity/pegboard tests as
measures of upper extremity brady- and hypokinesia (Haaxma
et al., 2010). These timed measures have been shown to
worsen significantly in early-stage (E-PD) but not mid-stage
PD (M-PD) patients over 4 years compared to controls
(Heinzel et al., 2017). For timed axial measures, including gait
speed and timed-up-and-go-test, progression differences were
not significant. However, using wearable sensors (so-called
“wearables”) gait can be quantified more specifically and more
precisely suggesting promising potential of wearables-based
progression markers. Previously, quantitative gait parameters
have been prospectively assessed in de-novo PD patients (Galna
et al., 2015). While not compared to healthy controls (HC),
step length and swing time during convenient gait significantly
decreased in PD from baseline to month 18. A subsequent
36-month analysis also including HC showed significant group
differences between time points regarding step time, length and
width variability (Rochester et al., 2017). One other study with
unstandardized follow-up intervals compared gait parameters
with the change of the item “gait” of the MDS-UPDRS-III
and found an association between the worsening in the item
“gait” and a decrease of stride length (Schlachetzki et al., 2017).
However, key aspects that may qualify these quantitative gait
parameters as progression markers in PD remain elusive. In
particular, short interval progression characteristics over longer
periods, progression in M-PD, and unspecific longitudinal
changes in HC need further investigation. Moreover, whether the
assessment of gait under convenient or challenging conditions
best reveals progressive gait deficits in PD is still unknown.

The present prospective longitudinal study therefore
investigated normal- and fast-pace gait as assessed with
a lower-back wearable and a validated algorithm deriving
gait parameters in E-PD, M-PD, and HC. Assessments
were performed 6-monthly for up to 5 years. Differences in
longitudinal changes of gait parameters in the PD groups relative
to HC were analyzed.

MATERIALS AND METHODS

Prospective Study Design and
Participants
Prospective data of the MODEP study (MODeling
Epidemiological data to study Parkinson’s disease progression)
(Heinzel et al., 2016, 2017) with standardized biannual clinical
and gait assessments over up to 5 years (10 visits) were analyzed.
Forty patients with PD according United Kingdom Brain Bank
criteria (Hughes et al., 1993), and 24 age- and sex-matched
HC were included. Since symptom progression can depend
on PD duration (Haaxma et al., 2010), patients were recruited
as and a priori stratified into E-PD (<4 years baseline disease
duration, n = 22) and M-PD (>5 years, n = 18) as suggested

by neuropathological findings (Kordower et al., 2013). The
study was approved by the local ethical committee (University
of Tübingen; No 46/2010). All participants gave written
informed consent.

Clinical Assessment
Clinical assessments comprised current medication,
height, weight, clinical ratings of PD motor symptoms
(MDS-UPDRS-III) (Goetz et al., 2007), and Hoehn and
Yahr stage. For axial scores, MDS-UPDRS-III axial items
(3.9/3.10/3.12/3.13/3.14) were summed (Levy et al., 2000).
Levodopa equivalent daily dose [LEDD; mg/day] was calculated
(Tomlinson et al., 2010). Visits differed in ON/OFF medication
state (E-PD: 18%; M-PD: 25% of visits in ON state) which was
accounted for in statistical analyses. Moreover, the freezing of
gait (FOG) questionnaire (Giladi et al., 2009) and the Montreal
Cognitive Assessment (MoCA) (Nasreddine et al., 2005) were
assessed. For FOG a score of 3 or higher in item #3, and for mild
cognitive impairment a MoCA score of 22 or lower scores were
considered (Carson et al., 2018).

Gait Assessment
Participants were instructed to walk 20 m, first with normal
(convenient) pace and then with fast pace (individual maximum),
along a 2 m-wide straight corridor. Both conditions were
performed twice, and gait parameters were averaged for the two
trials. The wearable (Dynaport Hybrid, McRoberts B.V., The
Hague, Netherlands) was fixed with a belt to the participants’
lower back. The Dynaport Hybrid is an inertial measurement
unit containing a 3D-accelerometer and a 3D-gyroscope with
100 Hz sampling frequency. Reliability of the sensor system and
derived movement parameters has been shown previously using a
instrumented Timed Up and Go (TUG) tests (van Lummel et al.,
2016). After discarding acceleration and deceleration periods
of walks (first and last 15% of the data; about 3 m each)
(Lindemann et al., 2008), the company-provided validated gait
analysis algorithm (Zijlstra and Hof, 2003; Brandes et al., 2006;
Dijkstra et al., 2008; Houdijk et al., 2008; Hobert et al., 2017) was
applied to extract the following gait parameters: step number, step
time, step velocity, and measures of gait variability, i.e., step time
variability (calculated as coefficient of variation), gait asymmetry
(Yogev et al., 2007; Plotnik et al., 2009) and phase coordination
index (PCI) (Plotnik et al., 2007).

Statistical Approach
Longitudinal data of gait parameters were analyzed using
generalized estimating equations (GEE) with identity-link
functions with normal distributions and exchangeable working
correlation structure (Zeger et al., 1988; Hardin and Hilbe, 2003).
GEE models comprised the subject ID, the within-subject variable
Time (visit 1 to 10; centered), the factor Group (E-PD vs. HC;
M-PD vs. HC), the interaction term Time∗Group (i.e., group
difference in progression) and the covariates age (at baseline),
ON/OFF medication state, weight, height, body-mass-index
were considered. Parameters for normal- and fast-pace gait
were selected as dependent variables. Group effects are related
to the median of the observational period. The significance
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level was α = 5% (two-sided). Bonferroni-corrections for
multiple testing were applied considering two group comparisons
and two gait conditions (p < 0.0125, significance threshold;
0.0125 < p < 0.05, statistical trend). Moreover, gait parameters
were tested for associations with clinical PD parameters
(MDS-UPDRS-III total score, axial score, Hoehn and Yahr
stage, LEDD). Here, GEE models were calculated for the overall
PD sample, and separately for E-PD and M-PD, comprising
the respective clinical parameter and aforementioned covariates
(except Group). For these exploratory analyses no correction
for multiple testing was considered (p < 0.05). We used
IBM SPSS Statistics, V22.0 (Armonk, NY, IBM Corp.) for
statistical analyses.

RESULTS

E-PD and M-PD did not differ significantly in age and sex-ratio
compared to HC. M-PD differed significantly in disease duration,
but also in LEDD, MDS-UPDRS-III scores and Hoehn and Yahr
stage (Supplementary Table S1).

PD groups showed a significantly larger step number and
lower velocity compared to HC for normal-pace (E-PD: p = 0.001;
M-PD: p < 0.001) and for fast-pace gait (p < 0.001). For
GEE analyses, see Supplementary Tables S2, S3. Moreover,
normal-pace step time CoV was significantly higher in M-PD
compared to HC (p = 0.002). None of the other gait parameters
showed significant differences between the PD groups and HC
(p > 0.05), neither for normal- nor for fast-pace gait.

Longitudinal changes of the quantitative gait parameters are
shown in Figure 1. Significant differences in longitudinal changes
(p < 0.0125; Bonferroni-corrected) were only observed between
HC and E-PD, and only for normal pace. Specifically, the
progression in normal-pace step number differed significantly
between E-PD and HC (Time∗Group, p = 0.001), with a
significant increase over time only in E-PD (Time: p < 0.001),
but not HC (Time: p = 0.070). Moreover, E-PD and HC differed
regarding the longitudinal changes in normal-pace step time CoV
(Time∗Group, p = 0.002), gait asymmetry (p = 0.009), and for
trend, PCI (p = 0.028). However, while HC showed a decrease
over time in gait variability parameters (step time CoV, p< 0.001;
gait asymmetry, p = 0.003; PCI, p = 0.015), no significant change
over time was observed in E-PD (p> 0.05). For fast-pace, none of
the longitudinal changes of gait parameters differed significantly
between groups.

Excluding individuals who at least once fulfilled the criteria
for mild cognitive impairment (3 HC, 5 E-PD, 2 M-PD) or
entering MoCA scores as additional factor into GEE analyses
largely did not change the main results. Similarly, excluding
individuals who reported freezing of gait (2 E-PD, 4 M-PD)
or excluding visits in ON medication state resulted in the
main findings of progression group differences in normal-pace
step number and step time CoV, which remained significant
and showed similar effect sizes. To further test the reliability
of the results, we analyzed the performances in single gait
trials instead of the average of the two trials. For each of
the two single trials the interaction effect (Time∗Group) was

observed (p < 0.05) for normal-pace step number and step
time CoV in E-PD versus HC comparisons. Analyses of the
ratio of normal/fast-pace gait parameters showed the longitudinal
changes of ratio values to be less pronounced and with larger
variability between visits and individuals compared to normal-
pace parameters alone.

Associations between clinical parameters and wearables-based
gait parameters partly differed between gait conditions
(normal/fast-pace) and PD groups (Table 1). For normal
pace, gait variability in E-PD, and in M-PD additionally step
number and velocity showed significant associations with
clinical parameters. For fast pace, E-PD but not M-PD showed
associations of gait variability with clinical parameters. In M-PD,
axial scores showed larger associations with fast-pace compared
to normal-pace step number and velocity.

DISCUSSION

The present prospective observational study with 6-month
intervals over a period of up to 5 years investigated the
potential of quantitative gait parameters for the assessment of
changes in normal- and fast-pace gait, respectively, in early- and
mid-stage PD patients.

This study supports and extends previous findings suggesting
longitudinal changes of normal-pace step number as a
potential progression marker in E-PD (Galna et al., 2015;
Schlachetzki et al., 2017). Changes were significantly larger in
E-PD (2.1%/year) than in HC (0.7%/year), and, importantly,
showed linear progression over the 5-year observation period.
These findings remained robust when also accounting for
further potential confounders and when excluding individuals
with mild cognitive impairment and freezing of gait. This
makes step number during normal pace a very promising
and robust progression parameter for routine diagnostics
and clinical trials.

Gait variability parameters may also possess potential as a
progression marker in early phases of clinical PD. Significant
differences in longitudinal changes were observed between
E-PD and HC, however, this finding was not (only) due
to a (non-significant) increase in PD (8.5%/year) but partly
driven by HC decreasing in gait variability over time. Our
finding supports our clinical impression that variability of gait
shows relevant changes in short time periods in many PD
patients, and may be one of the best predictors of disease
milestones like falls (Hausdorff et al., 2003; Callisaya et al.,
2011; Henderson et al., 2016). Indeed, previous cross-sectional
analyses showed increased gait variability to be associated
with PD duration (Hausdorff et al., 2003). Thus, the potential
as PD progression marker should be further evaluated in
future studies.

M-PD did not show any significant gait changes compared
to HC during the relatively long observation period. With
increasing PD duration between-patient differences in PD
severity and phenotypes might become more apparent, thus
single PD progression markers might not be valid for all PD
patients (Fereshtehnejad et al., 2015). Overall, our results argue
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FIGURE 1 | Longitudinal progression of quantitative gait characteristics as indicated by step number (A) step time (B) velocity (C) and parameters of gait variability.
(D–F) Mean values per visit and 95% confidence intervals are shown for normal pace (black) and fast pace (gray) conditions for PD groups (early-stage and
mid-stage) and controls. Annual changes [%] of gait parameters are indicated. Asterisks denote significant (Time∗Group: p < 0.0125; Bonferroni-corrected)
differences in longitudinal changes compared to controls.
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TABLE 1 | Associations of wearables-based and clinical parameters of gait deficits.

Gait condition Clinical
parameter
(defined unit)

All PD patients Relative and
absolute change
per 1-unit change

of clinical
parameter

(mean ± S.E.)

E-PD Relative and
absolute change
per 1-unit change

of clinical
parameter

(mean ± S.E.)

M-PD Relative and
absolute change
per 1-unit change

of clinical
parameter

(mean ± S.E.)

Normal pace MDS-UPDRS-III Step number 3%, 0.67 ± 0.19 Step number 4%, 0.80 ± 0.24

(Unit: 10 scores of Velocity −3%, −0.04 ± 0.01 Velocity −3%, −0.04 ± 0.01

max. 120) Step time CoV 14%, 0.02 ± 0.01 Step time CoV 13%, 0.02 ± 0.01

Gait asym. 18%, 3.71 ± 1.36 Gait asym. 18%, 4.34 ± 1.95

PCI 17%, 3.38 ± 1.16 PCI 15%, 3.40 ± 1.19

AXIAL Step number 8%, 1.84 ± 0.43 Step time CoV 47%, 0.07 ± 0.03 Step number 10%, 2.21 ± 0.51

(Unit: 5 scores of Velocity −7%, −0.09 ± 0.02 PCI 53%, 9.19 ± 3.93 Velocity −8%, −0.11 ± 0.02

max. 20) Step time CoV 33%, 0.05 ± 0.01 Step time CoV 29%, 0.05 ± 0.01

Gait asym. 44%, 8.87 ± 2.27 Gait asym. 46%, 10.92 ± 4.18

PCI 36%, 7.14 ± 2.27 PCI 32%, 7.13 ± 2.63

H and Y Step time CoV 26%, 0.04 ± 0.01 Gait asym. 27%, 4.59 ± 1.93 Step time CoV 25%, 0.04 ± 0.01

(Unit: 1 stage of Gait asym. 34%, 6.91 ± 1.56 Gait asym. 34%, 8.06 ± 2.66

max. 5) PCI 29%, 5.79 ± 1.60 PCI 28%, 6.27 ± 1.27

LEDD Step time CoV 8%, 0.01 ± 0.00

(Unit: 100 mg/day) PCI 7%, 1.25 ± 0.60

Fast pace MDS-UPDRS-III Step number 3%, 0.66 ± 0.19 CoV −7%, −0.02 ± 0.01 Step number 5%, 1.04 ± 0.31

(Unit: 10 scores of Velocity −3%, −0.04 ± 0.01 Gait asym. -10%, Velocity −4%, −0.06 ± 0.02

max. 120) −3.05 ± 1.44

AXIAL Step number 14%, 2.89 ± 0.75 Step number 17%, 3.64 ± 0.95

(Unit: 5 score of
max. 20)

Velocity −9%, 0.16 ± 0.03 Velocity −13%, −0.20 ± 0.04

H and Y Step number 5%, 1.07 ± 0.33 Step number 8%, 1.74 ± 0.55

(Unit: 1 stage of
max. 5)

Velocity −6%, −0.10 ± 0.05

LEDD Step number 1%, 0.21 ± 0.10 Step time CoV 9%, 0.02 ± 0.01

(Unit: 100 mg/day) PCI 9%, 2.74 ± 1.04

Significant associations (p < 0.05) between clinical measures of Parkinson’s disease and wearables-based gait parameters are shown. Upper part: normal-pace
parameters; lower part: fast-pace parameters. The parameter name and the relative (in %) and the absolute change of the parameter that occurred with one unit
change of the respective clinical measure (shown on the left) are indicated. In columns, analysis results are shown for the entire PD group (left), and when only considering
E-PD or M-PD groups. H and Y, Hoehn and Yahr stage; CoV, coefficient of variance; E-PD, early-stage Parkinson’s disease; gait asym., gait asymmetry; LEDD, levodopa
equivalent daily dose; MDS-UPDRS-III, Movement Disorder Society sponsored Unified Parkinson’s Disease Rating Scale, part 3, motor examination; M-PD, mid-stage
Parkinson’s disease; PCI, phase coordination index; S.E., standard error.

against a relevant potential of quantitative gait analysis for the
evaluation of disease progression in mid-stage PD.

Interestingly, normal-pace walking was more sensitive to
gait-related changes than fast-pace walking. Compared to
normal-pace, fast-pace gait might be more challenging and
stressful, which may increase (behavioral) variability and
confounding with unspecific age-related factors. Therefore, we
recommend normal-pace walking to be included in, e.g., clinical
trials to assess PD progression, and to omit challenging walking
conditions and normal/fast-pace comparisons.

Established clinical PD parameters showed associations
with the quantitative wearables-based gait parameters thereby
supporting their value and clinical relevance. Associations were
largely observed in M-PD, and for normal-pace conditions.
Differences in associations might be due to lower variance of the
clinical data in E-PD than in M-PD. Moreover, MDS-UPDRS-III
total and axial sum scores may less specifically indicate motor

symptoms compared to quantitative gait parameters, and in
E-PD more specific quantification of motor symptoms may
be required. Fast-pace conditions might introduce unspecific
(error) variance into gait variability parameter data, thus
compared to normal-pace their associations with clinical
measures might be weaker.

These present results might also provide future clinical
and scientific perspectives. Parameters that allow to quantify
disease progression, such as kinetic gait parameters derived from
wearable devices, could serve as objective outcome markers
of pharmacological treatment and other interventions. In this
regard reliable quantitative markers of PD motor symptoms and
their progression are highly promising as (at least secondary)
outcomes in the clinical routine as well as in clinical intervention
trials (Moreau et al., 2018). These measures have the potential
of increasing sensitivity and objectivity while reducing costs
of these clinical trials (Merchant et al., 2018). Importantly,
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wearable-based motor measures possess a high relevance for
daily living and quality of life (Van Uem et al., 2016), and
studies based on such measures may therefore yield results that
benefit PD patients.

This study faces some limitations. First, the sample was
relatively small. However, the thorough and high-frequency
evaluation of participants may partially compensate for this
limitation, especially as parameters are needed that are robust
even in smaller samples. Second, PD is a heterogeneous disease
and further subgroups and non-motor symptoms potentially
influencing gait, e.g., depression, were not accounted for. Also,
multi-facetted interventions were not controlled for in this
observational study. Longitudinal differences in pharmacological
and non-pharmacological treatments and their efficacy over
time may additionally contribute to the heterogeneity in PD,
particularly in advanced PD. While accounting for ON/OFF
medication state in statistical analyses modeling of individual
treatments is complex. Thus, subtle gait changes and factors
contributing to progression differences between PD patients
might have remained undetected.

To conclude, number of steps and possibly also gait variability
measures as assessed during normal-pace walking with a
lower-back wearable are robust and promising progression
markers in the early phase of PD.
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Although the pathogenic mechanisms of Parkinson’s disease (PD) remain unclear,

ample empirical evidence suggests that oxidative stress is involved in the pathogenesis

of this disease. The nuclear factor E2-related factor 2 (Nrf2) is known to activate

several antioxidant response element (ARE)-driven antioxidative genes that prevents

oxidative stress in vitro and in vivo. Moreover, it was documented that hydralazine is

a potent Nrf2 activator. In this study, we tested whether hydralazine can attenuate

1-Methyl-4-phenylpyridinium (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

(MPTP)- induced neurotoxicity in vitro and in vivo by activating Nrf2 and its downstream

network of antioxidative genes. We found that treatment with hydralazine attenuated

MPP+ or H2O2-induced loss of cell viability in human neuroblastoma cell line (SH-SY5Y).

In addition, hydralazine significantly promoted the nuclear translocation of Nrf2, and

upregulated the expression of its downstream antioxidative genes. Further, knockout

of Nrf2 abolished the protection conferred by hydralazine on MPP+ -induced cell death.

Similar findings were observed in vivo. Before, during, and after MPTP 30 mg/kg (i.p.)

administration for 7 days, the mice were given hydralazine (Hyd) 51.7 mg/kg per day by

oral gavage for 3 weeks. Oral administration of hydralazine ameliorated oxidative stress,

MPTP-induced behavioral disorder, and loss of neurons of dopaminergic system in the

substantia nigra (SN) and striatum, all of which were attributed to its ability to activate

the Nrf2-ARE pathway. Hydralazine increased the migration of Nrf2 to the nucleus in

dopaminergic neurons, enhanced the expression of its downstream antioxidative genes.

Together, these datasets show that the Nrf2-ARE pathwaymediates the protective effects

of hydralazine on Parkinson’s disease.

Keywords: Parkinson’s disease, hydralazine, neuroprotection, Nrf2-ARE signaling pathway, MPTP, MPP+
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HIGHLIGHTS

- Hydralazine prevents the MPP+ and H2O2-induced cell death
in SH-SY5Y cells, and activates Nrf2-ARE signaling in both
treated and non-treated MPP + cells in vitro.

- Hydralazine activate Nrf2-ARE signaling and attenuate
MPP+-mediated cytotoxicity in an Nrf2-dependent pattern.

- Hydralazine confers protection in dopaminergic neurons in
the MPTP model of Parkinson’s disease.

- Hydralazine alleviate oxidative stress and activates Nrf2-
triggered gene expression in vivo.

INTRODUCTION

Currently, the pathogenesis of Parkinson’s disease (PD) is
elusive. It has been postulated that prolonged increased
in reactive oxygen species (ROS) plays important role in
modulating the occurrence of the disease (1, 2). This is because
ROS compromises the mechanisms that balances oxidant and
antioxidant systems (3). One of the mechanisms that prevent
cell damage caused by oxidative stress is the antioxidant defense
system. By increasing the level of antioxidant enzymes, phase
II detoxifying enzymes, quinone oxidoreductase 1 (NQO1),
NAD(P)H, heme oxygenase-1 (HMOX1), glutamate-cysteine
ligase subunits (GCLC and GCLM), the nuclear factor E2-
related factor 2 (Nrf2) modulates the pathophysiological and
physiological processes of various diseases (4). These enzymes
are involved in glutathione (GSH) synthesis and maintains the
form of GSH by suppressing its oxidized form GSSG (5, 6).
Several structural and molecular studies on Nrf2 revealed that
Nrf2 is expressed in the cytoplasm in physiological conditions
via a Kelch-like ECH-associated protein 1 (Keap1)-dependent
ubiquitination-proteasomal degradation, and this process is
enhanced by electrophiles and oxidants (7, 8). It was revealed that
the N terminal region and double glycine repeat domain (DGR)
of Keap1 contains the bric-a-brac, tramtrack, broad-complex
(BTB) domain, termed as Kelch repeats in the C terminal region.
Keap1 keeps the Nrf2 within the cytoplasm in normal cellular
conditions by binding to a scaffold protein of Nrf2 ubiquitin
ligase (E3), Cul3 through its BTB domain, and binding to
the substrate of Nrf2 through its DGR domain, which causes
Nrf2 degradation (9) and ubiquitination (10). When stimulated
by oxidants or electrophiles, Nrf2 undergoes modifications by
some mechanisms which compromise Keap1/Nrf2 interactions,
which leads to the dissociation of Nrf2 from Keap1 complex,
become stabilized, and then moves into the nucleus. This
is followed by binding to the antioxidant response elements
(AREs), a consensus gene sequence located in the promoter
region of several genes that encode antioxidant enzymes
(11). Several studies have provided evidence that Nrf2-ARE
signal transduction participates in PD (12, 13). Downregulation
of Nrf2 renders the dopaminergic neurons susceptible to
oxidative stress damage (14–16), while activation of Nrf2
confers neuroprotection (17–21). Based on this background,
the Nrf2-ARE interaction is thought to play important role in
neurodegenerative conditions including PD.

Administration of pharmacological antioxidants seem to
be the most direct approach to suppress oxidative damage.
However, clinical trials on antioxidants e.g., N-acetylcysteine,
vitamin E, glutathione, and vitamin C have revealed rather
disappointing results for PD (22–25). One possible reason is
that the efficacy of these antioxidants is largely based on their
ability to stoichiometrically scavenge for oxidants. An alternative
promising therapeutic strategy of restoring redox homeostasis
in PD by activating the transcription factor Nrf2 may have
significant advantages over conventional strategies. Hydralazine
(Hyd), an FDA approved treatment for hypertension, is a water-
soluble carbonyl-scavenger due to its nucleophilic hydrazine
group (26). Because of this, hydralazine has been found to be
a powerful antioxidant properties (27–29), Moreover, it was
reported that hydralazine could activate the Nrf2 signaling
pathway in vitro [human neuroblastoma cell line (SH-SY5Y)]
and in vivo (Caenorhabditis elegans) model system (30), and
possesses anti-aging properties (31). As mentioned above,
oxidative stress and the deregulation of Nrf2-ARE signaling
pathways are both involved in PD. Thus, we hypothesized
that hydralazine may provide strong neuroprotective effects in
Parkinson’s disease in both in vitro and in vivo settings. To test
this possibility, we investigated the mechanisms that orchestrate
the neuroprotective effects of hydralazine using an 1-Methyl-
4-phenylpyridinium (MPP+)-induced cytotoxicity model and
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced
mice model of PD. We found that hydralazine displayed
promising therapeutic efficacy toward PD by activating the Nrf2
signaling pathway.

EXPERIMENTAL PROCEDURES

Preparation of Human Neuroblastoma
SH-SY5Y Cells
SHSY5Y cells were obtained from ATCC (ATCCCRL-2266) and
grown inDMEM/F12medium (hyclone) supplemented with 10%
FBS (EVERY GREEN, Zhejiang Tianhang Biotechnology Co.,
Ltd, China), 100µg/mL streptomycin, and 100 U/ml penicillin
(Beijing solarbio science & technology co., Ltd) in high humidity
condition with 5% CO2 at 37◦C. After culturing the cells in
100mm dishes to reach a ∼70% confluence, they were subjected
to hydralazine, H2O2 orMPP+ treatment. The dose and duration
of application of hydralazine, H2O2 or MPP+ are provided in the
figures and text. SiRNA interference were performed by treating
the cells with Nrf2 SiRNA (sc-37030) or control SiRNA (sc-
37007) (Santa Cruz Biotechnology, Santa Cruz, CA) in 6-well
plates for 24 h using the Lipofectamine 3000 reagent (Thermo
Fisher Scientific Co., Carlsbad, CA, USA) as indicated in the
instructions provided by the manufacturer. After transfection for
approximately 24 h, SHSY5Y cells were exposed to hydralazine
with or without MPP+. After these treatments, cells were used
for biochemical analysis.

Cell Viability Evaluation by CCK-8 Assay
The cell counting kit-8 solution (CCK-8) assay was performed
to determine the cell viability. Briefly, after seeding the SH-SY5Y
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cells in 96-well plates at a density of 1 × 104 cells/well, they were
treated with reagents. This was followed by incubating with 10µl
CCK-8 buffer for 1 h at 37C following the instructions provided
by the kit company. A microplate reader (BioTek, Winooski, VT,
USA) was used to measure the absorbance at 450 nm. All samples
were assessed in triplicate.

Quantitative Real-Time PCR
Total RNA was isolated from SHY-SY5 cells using RNAiso Plus
(TaKaRa, Japan). Total RNA (2 µg) was reverse transcribed to
cDNA using the PrimeScriptTM II 1st Strand cDNA Synthesis Kit
(TaKaRa, Japan) to determine the mRNA expressions of Nrf2
by qRT-PCR using SYBR Green reagent (TaKaRa, Japan). The
PCR condition was as follows: 95◦C for 5min, 60◦C for 20 s,
40 amplification cycles. Housekeeping gene β-actin served as an
internal control. Data analysis is based on the 11Ct method
with normalization of raw data to β-actin. Each reaction was run
in triplicate. Nrf2 primer: forward, 5′-CAGTCAGCGACGGAA
AGAGT-3′; reverse, 5′-ACGTAGCCGAAGAAACCTCA-3′; β-
actin primer: forward, 5′- AGCCATGTA CGTAGCCATCC−3′;
reverse, 5′- CTCTCAGCTGTGGTGGTGAA -3′.

Animals and Treatment
The mice used in this study were kept and handled according
to the guidelines of the NIH Guide regarding the Use and Care
of Laboratory Animals. All animals were given free water and
food ad libitum, and the housing conditions were regulated to
a 12 h dark-light cycle and temperature of (22 ± 2◦C). This
study conformed to the guidelines of the Animal Care and Use
Committees of Maximum efforts of Huazhong University of
Science and Technology (HUST). Care was taken to use few
animals and reduce discomfort. Male C57/BL6 mice, 8 weeks old,
were used all of which were obtained from Beijing Vital River
Laboratory Animal Technology Co., Ltd. There are four groups
(n= 8 or 9 for per group) in this experiment. The first groupmice
(MPTP group) only received injections of MPTP-HCl (30 mg/kg,
i.p., Sigma) in saline for consecutive 7 days, an MPTP model of
PDwas generated as previously described (32). The second group
mice (Hyd+MPTP group) were administered hydralazine (51.7
mg/kg per day in saline, Sigma) (33) by oral gavage for 3 weeks
before, during, and after MPTP administration. The third group
mice (Hyd group) were administered hydralazine (51.7 mg/kg
per day in saline, Sigma) (33) by oral gavage for 3 weeks, and the
fourth group (Control group) received vehicle only. Behavioral
test of the animals were performed after the last oral gavage, after
behavior test, mice were killed (Figure 3A).

Rotarod Testing
The general motor deficits were evaluated using the rotarod test.
Mice were put in a rod which was 7 cm in diameter, and then
tested at a constant speed of 30 rpm. In each test, the mouse
was subjected to the rod for 1min prior to the test. Each animal
was put on the roller for 5min, and then the latency to fall off
the rolling rod was calculated. Prior to assessing the behavior of
the animals, they were given pre-trials for habituation to the test
system for 4 days. An average of five trials were performed for
each mouse.

Pole Testing
Each mouse was placed on the top of a vertical pole (50 cm
long and 1 cm in diameter) wrapped with gauze to avoid slip
and fall. After pre-trials for habituation to the test system for 4
days, time of the mouse head orient downward (named as Turn)
and total time climbing down the pole as an indication of the
locomotion activity (TLA) were recorded. Each mouse received
five successive trials for average.

Tissue Preparation
One day after the behavior test, animals were killed by
decapitation under anesthesia. Afterwards, brains were removed
immediately was fixed in 4% buffered paraformaldehyde and
embedded in paraffin for the next immunofluorescent staining.
The ventral midbrain containing the substantia nigra and
striatum of the other mice were dissected and frozen immediately
in liquid nitrogen and stored at−80◦C for protein extraction.

Immunofluorescent Staining
After isolation, the substantia nigra and striatum tissues
were embedded in paraffin and sectioned to 5µm thickness.
The sections were deparaffinized with xylene, followed by
dehydration using ethanol. Finally, EDTA (PH 9.0) antigen
retrieval buffer was used for antigen retrieval. These section
were put on slices followed by treatment with 3% BSA at room
temperature for 30min, before they were incubated with the
following primary antibodies at 4◦C overnight, mouse polyclonal
anti-TH (1:200, Proteintech, China), rabbit polyclonal anti-Nrf2
(1:200, Genetex), rabbit monoclonal anti-IBA1(1:200, Abcam),
rabbit monoclonal anti-GFAP (1:200, Abcam). Subsequently,
secondary antibodies, Alexa Fluor 488-conjugated (1:500, Life
Technologies) and/or Alexa Fluor 647-conjugated (1:500, Life
Technologies) were added and incubated for 1 h at room
temperature. SH-SY5Y cell were fixed with 4% paraformaldehyde
for 30min, washed in PBS, and permeabilized with 0.3% Triton
X-100 in PBS for 10min at room temperature. The cells
were treated with rabbit polyclonal anti-Nrf2 (1:200, Genetex)
antibody overnight at 4◦C after blocking with 10% normal
goat serum for 1 h, and then incubated with Alexa Fluor 488-
conjugated (1:500, Life Technologies) secondary antibody for 1 h
at room temperature. Images from the sections were examined on
an OLYMPUS IX71 fluorescent microscope. Then quantitative
analysis of the optical density and of number positive neurons
was performed using Image pro plus.

Determination of Protein Expression
Nuclear and cytosolic fractions were extracted from the
substantia nigra, striatum specimen and human neuroblastoma
SH-SY5Y cells using cytoplasmic and nuclear protein extraction
kit (Beyotime, Beijing, China) following the instructions given
by the manufacturer. Briefly, cells were subjected to various
treatments and then suspended in PBS. The next step involved
the addition of the cytoplasmic protein isolation reagents A
and B. The cytosolic fraction was obtained by centrifugation.
The nuclei pellets were suspended in the isolation reagent for
nuclear protein. Similarly, the nuclear fraction was obtained by
centrifugation. All the isolated proteins from mouse striatum,
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ventral, and SH-SY5Y cells were treated on ice with RIPA lysis
buffer comprising of phosphatase inhibitor A and B, protease
inhibitor PMSF (PMSF:RIPA = 1:99), cocktail (Servicebio,
Wuhan, China), followed by centrifugation at 12,000 g, for
15min at 4◦C, to obtain the supernatants. BCA Protein Assay
Kit was applied to measure the protein concentration. This
was followed by denaturation of the protein specimen using
the sodium dodecyl sulfate solution together with boiling for
5min at 98◦C. About 30 µg sample was loaded onto SDS-
PAGE after which electrophoresis was performed to transfer the
proteins to a PVDF membrane. Thereafter, 5% milk was using
to block the membranes at room temperature for 1 h before
primary antibodies, rabbit monoclonal anti-β-actin (1:3000,
Antgene, China), rabbit polyclonal anti-Histone H3 (1:1000,
Servicebio, China), mouse monoclonal anti-GCLC (1:500, Santa
Cruz), rabbit polyclonal anti-Nrf2 (1:1000, Genetex), rabbit
monoclonal anti-NQO1 (1:10000, Abcam), rabbit monoclonal
anti-HMOX1 (1:2000, Abcam), rabbit monoclonal anti-GCLM
(1:5000, Abcam), and rabbit polyclonal tyrosine hydroxylase
antibody (1:1000, Proteintech, China) were added and incubated
overnight at 4◦C. Finally, HRP-conjugated secondary anti-
mouse antibody (1:5000, Antgene, China) or HRP-conjugated
secondary anti-rabbit (1:5000, Antgene, China) was added to the
membranes after washing with TBST thrice (5 min/each time)
for 1 h at room temperature. After washing, ECL was loaded
onto the membrane to detect the immunoreaction using the Bio-
Rad imaging system. The branes were analyzed with Imagine J
software. Relative band intensities were measured with β-actin or
Histone H3 serving as internal control.

Determination of the Oxidative Activity by
Lipid Peroxidation Assay
The generation of malondialdehyde (MDA) was measured
using the lipid peroxidation commercial assay kit following
the instructions provided by the manufacturer. Briefly, and
tissue were homogenized, sonicated, and centrifuged. The MDA
concentration on in the supernatants was measured as well
as the protein concentration. The protein concentration was
determined using the assay kit (Bio-Rad Laboratories, Hercules,
USA). This was followed by performance of the MDA assay
following the instructions provided with the Lipid Peroxidation
MDA assay kit (Beyotime). The multimode microplate reader
was used to quantify the MDA levels in the samples at 532 nm.

Determination of Cellular Levels of GSSG
and GSH Using HPLC
Substantia nigra samples were homogenized, sonicated and
centrifuged. In brief, 30 µl supernatant was isocratically eluted
through a 4.6 × 150mm C18 column (ESA, Inc.) with a mobile
phase containing 50mM LiH2PO4, 1.0mM 1-octanesulfonic
acid, and 1.5% (v/v) methanol, and then detected by a 2-channel
Coulochem III electrochemical detector (ESA, Inc), set with
a guard cell potential 950mV, Channel 1 potential for GSH
detection and Channel 2 potential 880mV for GSSG detection
(34). The quantities of GSSG and GSH were presented as nmol
per mg protein.

Data Analysis
All data are expressed as mean ± SEM and were performed
using the SPSS20 software. Between-group comparisons were
conducted by Student’s t-test, while the one-way ANOVAs was
used to compare three or more groups followed by Tukey’s
multiple comparison test. A P-value of < 0.05 was considered to
be statistically significant.

RESULTS

Hydralazine Prevents the MPP+ and
H2O2-Induced Cell Death in SH-SY5Y Cells,
and Activates Nrf2-ARE Signaling in Both
Treated and Non-treated MPP + Cells
in vitro
Analysis of the influence of MPP+ on SH-SY5Y viability revealed
that the cell viability decreased to about 50% or below based
on CCK-8 assays when exposed to 1000 µM (1mM) MPP+

for 24 or 36 h (Figure 1A). Therefore, we treated SH-SY5Y
cells with MPP+1mM for 24 h to establish a model of MPP+-
induced cytotoxicity. Next, the effects of hydralazine on the
survival of cells following exposure to MPP+ were tested.
Four doses of hydralazine (2.5, 5, 10, or 20µM) were tested
against MPP+. Hydralazine alone at the micromolar range (2.5–
20µM) had no overt effects on these cells. But, hydralazine
(10 and 20µM) conferred significant protection against MPP+

according to the CCK-8 assays (Figure 1B). Moreover, we
chose H2O2 (100µM) as another control of toxicity (30).
Similarly, hydralazine protected the cells from H2O2-induced
cytotoxicity (Figure 1C).Moreover, we observed that hydralazine
(10 and 20µM) alone increased the viability of SH-SY5Y in
the absence of MPP+ and H2O2 (Figures 1B,C). It is well-
known that during cellular metabolism, spontaneous oxidative
damage to unsaturated lipids generates many electrophilic
carbonyl compounds which are potential threats to cell survival.
Since hydralazine is a well-known carbonyl scavenger (35), we
speculated that it can improve SH-SY5Y viability by scavenging
Carbonyl moieties.

Thereafter, we tested the ability of hydralazine to induce
nuclear translocation of Nrf2. SH-SY5Y cells were treated with
10µM hydralazine with or without MPP+, but the control
groups were treated with saline following Nrf2 partition
quantification and subcellular fractionation. Hydralazine
treatment increased the nuclear translocation of Nrf2, which
was accompanied by a corresponding decreased in the cytosolic
fraction relative to the nuclear Nrf2 fraction (Figures 1D–F).
The same phenomenon of nuclear translocation was observed
based on immunofluorescence (Figure 1G). As showed in
Figures 1D–G, treatment with hydralazine alone triggered
a remarkable increase in the nuclear translocation of Nrf2,
but the reasons for this effect remain unclear. It is likely that
Nrf2 was modified by hydralazine in a way that disrupted
the Nrf2:Keap1 interaction, and then, translocated to the
nucleus. Further studies are required to answer this question.
Next, we determined whether hydralazine (10µM) would
increase the downstream protein of the Nrf2-ARE pathway,
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FIGURE 1 | Hydralazine prevents the MPP+ and H2O2-induced cell death in SH-SY5Y cells, and activates Nrf2-ARE signaling in both treated and non-treated

MPP + cells in vitro. SH-SY5Y cells were incubated with various concentrations of MPP+ for 24, 36 h (A). Cell viability was determined by CCK-8 assay. *p < 0.05,

**p < 0.01, n = 6, compared with the two indicated groups. SH-SY5Y cells were incubated with or without hydralazine (2.5, 5, 10, 20µM) in the absence or presence

of 1mM MPP+ for 24 h (B). The viability of cells under MPP+-mediated cytotoxicity was significantly improved with hydralazine (10 and 20µM) treatment. *p < 0.05,

**p < 0.01, ***p < 0.001, n = 6, significant difference between the two indicated groups. SH-SY5Y cells were incubated with or without hydralazine (2.5, 5, 10,

20µM) in the absence or presence of H2O2 (100µM) for 24 h (C). The viability of cells under H2O2 -induced cytotoxicity was significantly improved with hydralazine

(10 and 20µM) treatment. *p < 0.05, **p < 0.01, ***p < 0.001 n = 6, significant difference between the two indicated groups. The results of immunofluorescence and

western blot analysis indicated Nrf2 translocated to the nucleus with hydralazine treatment when exposured to MPP+ or not in SH-SY5Y (D–G). Scale bar =500µm.

Treated cells were subjected to cell fractionation and western blot analysis. β-actin or Histonen H3 served as a loading control. *p < 0.05, **p < 0.01, ***p < 0.001, n

= 6, significant difference between the two indicated groups. Hydralazine induces expression of Nrf2-dependent antioxidant enzymes measured by western blot

analysis (H,I). *p < 0.05, **p < 0.01, ***p < 0.001, n = 6, significant difference between the two indicated groups. Data were presented as mean ± SEM.
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GCLC, GCLM, HMOX1, and NQO1 by western blot analysis.
All four protein levels of target genes were significantly
increased (Figures 1H,I). Collectively, the in vitro findings
indicate that hydralazine induce nuclear translocation of Nrf2
which activates the ARE genes, thereby conferring protection
against MPP+.

Hydralazine Activate Nrf2-ARE Signaling
and Attenuate MPP+-Mediated
Cytotoxicity in an Nrf2-Dependent Pattern
To confirm whether the Nrf2-dependent pathway mediated the
neuroprotective effects of hydralazine, the inhibitory effect of
hydralazine on MPP+ neurotoxicity was assessed in SH-SY5Y
cells after transfection with either control SiRNA or Nrf2 SiRNA.
Results from western blotting and real-time PCR indicated that
Nrf2 was successfully knocked-down in SH-SY5Y cells by Nrf2
SiRNA compared to control SiRNA (Figures 2A–C). Treatment
with hydralazine alone triggered a remarkable increase in the
nuclear translocation of Nrf2 (Figures 2D–F). However, Nrf2
interference abolished the increase in nuclear Nrf2 caused by
hydralazine in SH-SY5Y cells. On the other hand, cytosolic Nrf2
displayed a corresponding decrease relative to the control group
transfected with control SiRNA. Furthermore, the hydralazine-
induced increase in expression of Nrf2-mediated ARE genes,
such as GCLC, GCLM, HMOX1, and NQO1 were inhibited
following Nrf2 SiRNA in SH-SY5Y cells based on western
blot analysis (Figures 2G,H). According to these results, we
speculate hydralazine activate Nrf2-ARE signaling in an Nrf2-
dependent manner.

Meanwhile, our results indicated that hydralazine treatment
increased cell viability, which is opposite to the CCK8 assay
results recorded in MPP+ exposure alone group in SH-
SY5Y cells transfected with control SiRNA (Figure 2I, p <

0.01). However, hydralazine failed to increase cell viability
following Nrf2 knockdown and MPP+ exposure (Figure 2I).
Nrf2 SiRNA transfection in SH-SY5Y cells increased their
vulnerability to MPP+ neurotoxicity as compared to the control
SiRNA transfection group (Figure 2I, p < 0.05). These data
reveal that the protective effect of hydralazine on SH-SY5Y
cells exposed to MPP+ neurotoxicity is dependent on the
Nrf2 pathway.

Hydralazine Confers Protection in
Dopaminergic Neurons in the MPTP Model
of Parkinson’s Disease
To explore the therapeutic effect of hydralazine in PD, the MPTP
mice model was used. Mice were divided into four groups (n= 9
for per group) for this experiment. The first group mice (MPTP
group) only received injections of MPTP-HCl (30 mg/kg, i.p.,
Sigma) in saline for consecutive 7 days, an MPTP model of PD
was generated as previously described (32). The second group of
mice (Hyd+MPTP group) were administered with hydralazine
(51.7 mg/kg per day in saline, Sigma) (33) by oral gavage for 3
weeks before, during, and after MPTP administration. The third
group mice (Hyd group) were administered with hydralazine
(51.7 mg/kg per day in saline, Sigma) (33) by oral gavage for

3 weeks, and the fourth group mice (Control group) received
vehicle only. The pretreatment paradigm in the MPTP-induced
PDModel was utilized (Figure 3A). We observed that the weight
of MPTP-treated mice was much lower compared to normal
group due to the neurotoxicity of MPTP. But administration of
hydralazine alleviated the loss of weight (Figure 3B). Behavior
testing of the animals was performed after the last oral gavage
(Figure 3A). The rotarod test was applied to evaluate motor
and coordination abilities. In this test, the decrease in latent
time on the rod in the MPTP mice compared to the vehicle
treated control mice (p < 0.001) was reversed by hydralazine
treatment (p < 0.01) (Figure 3C). Similar results were obtained
in Pole test. The time to orient downward (Turn) and to
descend (TLA) was increase in the MPTP mice compared to
the control mice (p < 0.05), indicating a motor deficit, and
this effect was reversed by hydralazine (p < 0.05) (Figure 3D).
These results suggested that hydralazine conferred protection in
locomotion function.

After the behavioral tests, we tested whether in vivo
hydralazine can maintain the integrity of dopaminergic
neurons in the SNpc and their terminal fibers in striatum.
Thus, we performed immunofluorescence staining using
dopaminergic neuronal specific marker, anti-TH antibody.
MPTP administration caused remarkable loss of dopaminergic
neurons in the SNpc (Figures 3E,F) and striatal DA terminal
fibers (Figures 3I,J) when compared to control. Meanwhile,
we found that reduction of TH-positive neurons was abolished
in the similar anatomic level sections of SN in the MPTP
mice treated with hydralazine than MPTP alone (Figure 3E).
Quantification analysis using the cell counting kit in a double
blind way indicated a statistically significant preservation of TH
positive dopaminergic SN neurons in the MPTP-treated mice
with hydralazine groups compared with MPTP mice (Figure 3F,
p < 0.01). This observation was further confirmed by western
blotting assay on SN lysates (Figure 3G). The ratio of TH/β-
action in the MPTP group was significantly lower than in control
group (p < 0.001) and MPTP mice with hydralazine groups
(Figure 3H, p < 0.05). Hydralazine-treated mice in the presence
of MPTP showed significant reductions in the loss of the TH
positive DA terminals in the striatal region when compared
to MPTP alone mice (Figures 3I,J, p < 0.01). Consistent with
TH-immunofluorescent in the striatal region, western blotting of
the striatum lysates rescued the loss of TH positive DA terminals
in the hydralazine-treated mice with MPTP compared to MPTP
alone mice (Figures 3K,L, p < 0.001), Taken together, these
findings provide evidence that hydralazine confers protection
on nigrostriatal dopaminergic neurons in the subacute model of
MPTP neurotoxicity.

Hydralazine Alleviate Oxidative Stress and
Activates Nrf2-Triggered Gene Expression
in vivo
Subsequently, we investigated whether hydralazine activates
Nrf2-ARE pathway in vivo using mice. Mice were treated
as described above to assess the level of MDA, a key
product produced from membrane lipid oxidation. Mice treated
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FIGURE 2 | Hydralazine activate Nrf2-ARE signaling and attenuate MPP+-mediated cytotoxicity in an Nrf2-dependent pattern. SH-SY5Y cells were treated with either

an Nrf2 SiRNA or a control SiRNA. The protein and mRNA levels of Nrf2 were measured by western blotting and real-time PCR (A–C). *p < 0.05, **p < 0.01, n = 6,

significant difference between the two indicated groups. Hydralazine treatment alone induced a remarkable increase in the nuclear translocation of Nrf2, however, Nrf2

interference abolished the increase in nuclear Nrf2 induced by hydralazine in SH-SY5Y (D,E), in the meantime, cytosolic Nrf2 had corresponding decrease in contrast

(Continued)
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FIGURE 2 | with control group transfected with control SiRNA (D,F) by western blot analysis. *p < 0.05, **p < 0.01, n=6, significant difference between the two

indicated groups. Selective activation of Nrf2 mediated gene transcription by hydralazine in SH-SY5Y cells transfected by control SiRNA, but not in SH-SY5Y cells

transfected by Nrf2 SiRNA measured by western blotting (G,H). *p < 0.05, n = 6, significant difference between the two indicated groups. Hydralazine significantly

protected SH-SY5Y cells from MPP+ induced death in an Nrf2-dependent manner measured by CCK-8 assay (I). *p < 0.05, **p < 0.01, n = 6, significant difference

between the two indicated groups. Data were presented as mean ± SEM.

with MPTP displayed a remarkably increase in MDA levels
which were suppressed by hydralazine treatment in the SNpc
(Figure 4A) and in striatum (Figure 4B). Glutathione (GSH) is
an antioxidant which has the capacity to prevent damage to
important cellular components. Glutathione disulfide (GSSG)
is its oxidized form and the ratio of oxidized glutathione to
reduced glutathione is frequently used to evaluate oxidative
stress. MPTP decreased GSH levels and increased GSSH levels
and these effects were reversed by hydralazine in the SNpc, as
supported by the increased ratio of GSH/GSSG (Figures 4C,D).
It can be inferred that Nrf2-ARE signaling suppressed cellular
oxidative stress caused by several factors. These experimental
results demonstrate that hydralazine suppresses oxidative stress
triggered by MPTP.

We further explored whether this effect was due to regulation
of the Nrf2-ARE signaling pathway. Figures 4E–G, shows
that hydralazine induced a dramatic increase in the nuclear
translocation of Nrf2 in the SNpc of hydralazine-treated mice
with MPTP, compared with the MPTP mice (p < 0.001),
corresponding decrease in cytosolic Nrf2 fraction (p < 0.01).
Moreover, hydralazine treatment alone enhanced the nuclear
Nrf2 levels when compared to control (Figures 4E,F, p < 0.01).
The cytosolic Nrf2 fraction decreased slightly compared to
nuclear Nrf2 fraction (Figures 4E,G). This observation was
further confirmed by double immunofluorescence (Figure 4H)
in the SNpc. Consistent with SNpc, western blotting assay on
the striatum lysates showed a statistically significant increase in
the Nrf2 nuclear translocation, and a corresponding decrease
in cytosolic Nrf2 fraction, in both hydralazine-treated mice
with MPTP and hydralazine alone mice when compared to
control (Figures 4I,J). Based on these results, it was observed
that hydralazine activated Nrf2-ARE signaling. Moreover,
we observed that Nrf2 colocalized with TH (dopaminergic
neuron marker) in the SNpc, but not with ionized calcium
binding adapter molecule 1 (IBA1, microglial cell marker)
or glial fibrillary acidic protein (GFAP, astrocyte marker)
as revealed by double immunofluorescence in the SNpc of
hydralazine-treated mice with MPTP. Hydralazine increased
the nuclear translocation of Nrf2 in the dopaminergic neuron
(Figure 4L), which explained why hydralazine protected
dopaminergic neurons from MPTP induced neurotoxicity to a
certain extent.

In the hydralazine treatment group, western blot assay
revealed that Nrf2-ARE targeted genes, NQO1, HMOX1,
GCLM, and GCLC, were significantly increased in the SNpc
(Figures 4M,N) and in striatum (Figures 4O,P) after compare
with MPTP alone. Additionally, treatment with hydralazine
alone increased the expression of above ARE genes compared
to control group in both SNpc (Figures 4M,N) and striatum
(Figures 4O,P). Based on the above discussion, the mechanism

by which hydralazine activated Nrf2-ARE signaling even in the
absence of toxicant was not clear. This should be explored
in further studies. In conclusion, these data provide in vivo
evidence that hydralazine can activate the Nrf2-mediated ARE
gene transcription which provides antioxidant effects in vivo.

DISCUSSION

Current treatment for PD are primarily designed relief
some of the clinical symptoms which hardly translated to
improved quality of life in most patients. In addition, there
is no known therapy that prevents the pathogenesis and
progress of neurodegeneration. Although several studies have
been performed to assess the etiology of PD, the associated
mechanisms are still not fully understood. Mounting evidence
suggests that oxidative stress appears to be involved in the
pathogenesis of PD (36). Consequently, we have reasons to
believe that increasing the capacity of dopaminergic neurons to
confront oxidants could serve as an important strategy to prevent
the onset and/or to delay the progression of PD. However, the
prevailing knowledge from clinical trials on antioxidants such
as ubiquinone, glutathione, N-acetylcysteine, vitamin C, and
vitamin E reveals there are conflicting outcomes on their efficacy
(22–25). It is likely that oxidants may exert influence by activating
death-related pathways rather than directly killing dopaminergic
neurons (37), relying only on stoichiometric scavenging of
oxidants has proved to be ineffective. The Nrf2 signaling
cascade modulates transcriptional expression of oxidative stress
to restore redox homeostasis and is a versatile pathway for
neurotherapeutics. Several genetic studies have demonstrated
that a functional haplotype in the Nrf2 gene promoter, which
conferred high transcriptional activity had a protective effect
(38), and the deficiency of Nrf2 increased hypersensitivity of
the dopaminergic neurons to neurotoxicity caused by MPTP
(14, 39, 40) and 6-OHDA (15) in animal models. Moreover, in
vitro Nrf2 activation also provides neuroprotective effect against
the neurotoxins paraquat (41), 6-OHDA (42, 43), and MPP+

(44). These datasets imply that the Nrf2 pathway may provide
neuroprotection which can be exploited to develop drugs that
treat PD.

Hydralazine, which was developed by Swiss researchers in the
early 1950s (45), was approved drug by FDA for antihypertensive
treatment. In this study, we demonstrate that hydralazine
displays remarkable neuroprotective effects in a model of PD in
vivo and in vitro. Oral administration of hydralazine decreased
MDA levels, increased the ratio of GSH/GSSG, alleviated weight
loss and the associated motor deficits, attenuated dopaminergic
neurons loss and activated Nrf2 signaling pathways, all of which
exerted profound neuroprotective activities in MPTP model of
PD (Figure 3), and these effects were further confirmed in human
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FIGURE 3 | Hydralazine confers protection in dopaminergic neurons in the MPTP model of Parkinson’s disease. Schematic representation of the MPTP model

experimental design (A). Hydralazine alleviated MPTP-induced weight loss (B). *p < 0.05, significant difference between the two indicated groups (n = 8). Hydralazine

ameliorated MPTP-induced behavior disorder (C,D). Performance on the rotarod and pole test was impaired in MPTP-treated group. However, impairment was

ameliorated in MPTP model treated with hydralazine. *p < 0.05, **p < 0.01, ***p < 0.001, significant difference between the two indicated groups (n = 8). Tyrosine

hydroxylase immunofluorescence of substantia nigra pars compacta (SNpc). Scale bar = 250µm. We found that there were fewer TH positive neurons in the similar

anatomic level sections of SN in the MPTP mice than hydralazine- treated mice, MPTP mice with hydralazine and control mice, compared to the MPTP mice group,

MPTP mice with hydralazine group significantly attenuated the loss of dopaminergic neurons in SNpc (E,F). *p < 0.05, **p < 0.01, ***p < 0.001, n = 6, very

significant difference between the two indicated groups. The western blotting of TH in SN further reconfirmed the findings (G and H). *p < 0.05, ***p < 0.001 n = 6,

significant difference between the two indicated groups. The MPTP neurotoxicity also resulted the decrease of the TH positive DA terminals in the striatal region of the

MPTP mice group compared with MPTP mice with hydralazine group. (I,J). Scale bar = 500µm. **p < 0.01, ***p < 0.001, n = 6, very significant difference between

the two indicated groups. Immunoblotting also validated this observation (K,L). **p < 0.01, ***p < 0.001, n = 6, compared with the two indicated groups. Data were

presented as mean ± SEM.
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FIGURE 4 | Hydralazine alleviate oxidative stress and activates Nrf2-triggered gene expression in vivo. Hydralazine significantly decreased MDA in the substantia nigra

(A) and striatum(B) of MPTP mice treated with hydralazine compared with MPTP mice. *p < 0.05, n = 5, significant difference between the two indicated groups.

MPTP administration showed a remarkable decrease in GSH levels and increase in GSSH that was inhibited by hydralazine in the SNpc, corresponding increase in the

ratio of GSH/GSSG (C,D). *p < 0.05, **p < 0.01, n = 5, significant difference between the two indicated groups. Hydralazine treatment leads to a shift in Nrf2

migration and increases nuclear Nrf2 Protein levels, in the meantime, cytosolic Nrf2 had corresponding decrease in the substantia nigra (E–H) and striatum (I–K) of

(Continued)
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FIGURE 4 | MPTP-treated mice. **p < 0.01, ***p < 0.001. n = 6, significant difference between the two indicated groups. Nrf2 colocalized with TH in the SNpc, not

with IBA1, GFAP by double immunofluorescence (L) in the SNpc of hydralazine-treated mice with MPTP, hydralazine can increase nuclear translocation of Nrf2 in the

dopaminergic neuron (L). Protein levels of Nrf2 were analyzed by Western blot. β-actin and Histonen H3 are used as markers for cytosolic and nuclear fractions,

respectively. Hydralazine treatment increased the expression of Nrf2 downstream target in the substantia nigra (M,N) and striatum (O,P) of MPTP-treated mice.

*p < 0.05, **p < 0.01, ***p < 0.001, n = 6, significant difference between the two indicated groups. Data were presented as mean ± SEM.

neuroblastoma SH-SY5Y cells (Figure 1). The cell viability was
increased following hydralazine treatment when exposed to
MPP+ or H2O2. Among the key Nrf2-regulated genes stimulated
by hydralazine were NQO1, HMOX1, GCLM, GCLC. It was
reported NQO1 ameliorated the baleful effects of DA quinines,
and had various antioxidant properties (46, 47). HMOX1 has
been implicated in the metabolism of the pro-oxidant heme to
form the antioxidant pigment biliverdin which confers resistance
to chronic oxidative stress and apoptosis in dopaminergic
neurons (48, 49). GCLC and GCLM regulates the production
of cellular antioxidant glutathione (50). These proteins are
involved in oxidative stress and redox homeostasis. Nrf2 SiRNA
transfection was performed to explore the function of Nrf2 in
the protective effect of hydralazine against neurotoxicity MPP+

induced in SHSY5Y cells. Nrf2 SiRNA2 transfection treatment
abolished the hydralazine-induced ARE genes expression and
increased the vulnerability to MPP+ neurotoxicity (Figure 2).
However, we lacked Nrf2 knockout mice and Nrf2 knockin
mutant mice to perform more confirmatory experiments.

A noteworthy phenomenon is that hydralazine treatment
alone increased nuclear translocation of Nrf2 and elevated
the Nrf2-mediated ARE gene transcription in vitro and in
vivo (Figures 1, 2, 4). But the mechanism for this effect
remains elusive. It is possible that Nrf2 was modified by
hydralazine in a way that disrupted the Nrf2:Keap1 interaction,
which then allowed it to translocate to the nucleus where it
binds the antioxidant response elements (AREs), a consensus
gene sequence present in the promoter region of a large
number of genes encoding antioxidant enzymes (11). In the
future, we will further explore this concept. In addition, we
found that hydralazine increased the migration of Nrf2 to the
nucleus in dopaminergic neurons, induced the expression of its
downstream antioxidative genes, although we did not observe
this phenomenon in microglial cells and astrocytes. Collectively,
our experimental results demonstrate the ability of hydralazine to
modulate key antioxidant genes which are crucial to the survival
of SH-SY5Y cells and dopaminergic neurons in PD model.

Hydralazine has been known to act as an antioxidant which
eliminates acrolein, an agent that transduces oxidative stress
signals (51, 52) and a potent Nrf2 activator (30). Here, we
demonstrate that Nrf2 activation is a novel mechanism by
which hydralazine exerts protection in PD. However, additional
investigations are required to explain how this nucleophilic
drug activates the Nrf2 pathway. One possibility is that
hydralazine directly disrupts the interaction between Keap-
1 and Nrf2 (53). It is also likely that hydralazine activates
Nrf2 pathway through other pathways e.g., Notch or AMP
kinase pathways, nuclear factor-kappa B (NF-κB), synoviolin,

the GSK-3-β-TrCP, and PI3K/Akt pathway (54), which are
reported to interact with Nrf2 elements. Another possibility
is that the “adduct-trapping” properties of hydralazine which
involves the classic electrophile-mediated pathway to increase
the degradation of Keap1, thus accelerate Nrf2 liberation (55).
Certainly, there is little evidence that hydrazaline crosses the
Blood-Brain Barrier, However, this drug has been studied in
the Alzheimer’s disease mouse model (33). Together with the
findings obtained in this study, we speculate that hydrazaline has
some degree of permeability through the Blood-Brain Barrier.
To improve its clinical application, its oral bioavailability, in
vivo pharmacokinetic profiles, permeability through Blood-Brain
Barrier and the potential side effects need to be explored.

CONCLUSION

This study shows that hydralazine as a potent Nrf2 activator,
increases the expression of Nrf2 downstream ARE target genes
and confers strong neuroprotection in model of PD both in
vitro and vivo in a Nrf2 -independent manner. These datasets
provide novel insights that have high therapeutic value for
Parkinson’s disease.

ETHICS STATEMENT

All animal procedures were in strict accordance with the National
Institutes of Health’s Guidelines for Care and were approved by
the Animal Care and Use Committees of Huazhong University of
Science and Technology (HUST).

AUTHOR CONTRIBUTIONS

XG participated in all aspects of the experimental design,
implementation, analysis, and writing including obtaining,
analyzing, and interpreting data and making significant
contributions to the writing of the manuscript. CH contributed
to the experimental design. KM, YX, FW, SY, LK, YS, JW, and
JuH contributed to the experimental implementation. JiH and
NX contributed to data analysis. The whole experiment was
completed under the guidance of TW.

ACKNOWLEDGMENTS

This work was supported by grants 81471305 and 81671260 from
the National Natural Science Foundation of China (to TW),
and grants 2016YFC1306000 and 2017YFC1310200 from the
National Key Plan for Scientific Research and Development of
China (to TW).

Frontiers in Neurology | www.frontiersin.org 11 March 2019 | Volume 10 | Article 27138

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Guo et al. Hydralazine Protects Parkinson’s Disease Models

REFERENCES

1. Bokov A, Chaudhuri A, Richardson A. The role of oxidative damage and stress
in aging.Mech Ageing Dev. (2004) 125:811–26. doi: 10.1016/j.mad.2004.07.009

2. Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson’s
disease. J Parkinsons Dis. (2013) 3:461–91. doi: 10.3233/JPD-130230

3. Goswami SK, Maulik N, Das DK. Ischemia-reperfusion and cardioprotection:
a delicate balance between reactive oxygen species generation and redox
homeostasis. Ann Med. (2007) 39:275–89. doi: 10.1080/07853890701374677

4. Kaspar JW, Niture SK, Jaiswal AK. Nrf2:INrf2 (Keap1) signaling
in oxidative stress. Free Radic Biol Med. (2009) 47:1304–9.
doi: 10.1016/j.freeradbiomed.2009.07.035

5. Lu SC. Regulation of glutathione synthesis.Mol Aspects Med. (2009) 30:42–59.
doi: 10.1016/j.mam.2008.05.005

6. Sheehan D, Meade G, Foley VM, Dowd CA. Structure, function and evolution
of glutathione transferases: implications for classification of non-mammalian
members of an ancient enzyme superfamily. Biochem J. (2001) 360:1–16.
doi: 10.1042/bj3600001

7. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, et al. Keap1
represses nuclear activation of antioxidant responsive elements by Nrf2
through binding to the amino-terminal Neh2 domain. Genes Dev. (1999)
13:76–86. doi: 10.1101/gad.13.1.76

8. Taguchi K, Motohashi H, YamamotoM.Molecular mechanisms of the Keap1-
Nrf2 pathway in stress response and cancer evolution. Genes Cells. (2011)
16:123–40. doi: 10.1111/j.1365-2443.2010.01473.x

9. Kensler TW, Wakabayashi N, Biswal S. Cell survival
responses to environmental stresses via the Keap1-Nrf2-ARE
pathway. Annu Rev Pharmacol Toxicol. (2007) 47:89–116.
doi: 10.1146/annurev.pharmtox.46.120604.141046

10. Kumar H, Kim IS, More SV, Kim BW, Choi DK. Natural product-derived
pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat
Prod Rep. (2013) 31:109–39. doi: 10.1039/C3NP70065H

11. Sykiotis GP, Bohmann D. Stress-activated cap’n’collar transcription
factors in aging and human disease. Sci Signal. (2011) 3:re3.
doi: 10.1126/scisignal.3112re3

12. Cuadrado A, Morenomurciano P, Pedrazachaverri J. The transcription factor
Nrf2 as a new therapeutic target in Parkinson’s disease, Expert Opinion on
Therapeutic Targets, Informa Healthcare. Expert Opin Ther Targets. (2009)
13:319–29. doi: 10.1517/13543780802716501

13. Williamson TP, JohnsonDA, Johnson JA. Activation of theNrf2-ARE pathway
by siRNA knockdown of Keap1 reduces oxidative stress and provides partial
protection from MPTP-mediated neurotoxicity. Neurotoxicology. (2012)
33:272–9. doi: 10.1016/j.neuro.2012.01.015

14. Burton N, Kensler TR. In vivo modulation of the Parkinsonian phenotype by
Nrf2. Neurotoxicology. (2006) 27:1094–100. doi: 10.1016/j.neuro.2006.07.019

15. Jakel RJ, Townsend JA, Kraft AD, Johnson JA. Nrf2-mediated
protection against 6-hydroxydopamine. Brain Res. (2007) 1144:192–201.
doi: 10.1016/j.brainres.2007.01.131

16. Rojo AI, Innamorato NG, Martín-Moreno AM, De Ceballos ML,
Yamamoto M, Cuadrado A. Nrf2 regulates microglial dynamics and
neuroinflammation in experimental Parkinson’s disease. Glia. (2010)
58:588–98. doi: 10.1002/glia.20947

17. Lee JA, Son HJ, Kim JH, Park KD, Shin N, Kim HR, et al. A novel
synthetic isothiocyanate ITC-57 displays antioxidant, anti-inflammatory, and
neuroprotective properties in a mouse Parkinson’s disease model. Free Radic
Res. (2016) 50:1188–99. doi: 10.1080/10715762.2016.1223293

18. Lee JA, Kim JH, Woo SY, Son HJ, Han SH, Jang BK, et al. A novel compound
VSC2 has anti-inflammatory and antioxidant properties in microglia and
in Parkinson’s disease animal model. Br J Pharmacol. (2015) 172:1087–100.
doi: 10.1111/bph.12973

19. Lee JA, Son HJ, Park KD, Han SH, Shin N, Kim JH, et al. A
novel compound ITC-3 activates the Nrf2 signaling and provides
neuroprotection in Parkinson’s disease models. Neurotox Res. (2015)
28:1–14. doi: 10.1007/s12640-015-9550-z

20. Skibinski G, Hwang V, Ando DM, Daub A, Lee AK, Ravisankar A,
et al. From the cover: Nrf2 mitigates LRRK2- and Î±-synucleinâ“induced
neurodegeneration by modulating proteostasis. Proc Natl Acad Sci USA.

(2017) 114:1165. doi: 10.1073/pnas.1522872114

21. Son HJ, Choi JH, Lee JA, Kim DJ, Shin KJ, Hwang O. Induction of NQO1
and neuroprotection by a novel compound KMS04014 in Parkinson’s disease
models. J Mol Neurosci. (2015) 56:263–72. doi: 10.1007/s12031-015-0516-7

22. Kamat CD, Gadal S, Mhatre M, Williamson KS, Pye QN, Hensley K.
Antioxidants in central nervous system diseases: preclinical promise
and translational challenges. J Alzheimers Dis. (2008) 15:473–93.
doi: 10.3233/JAD-2008-15314

23. Shen L, Ji HF. Insights into the disappointing clinical trials of antioxidants
in neurodegenerative diseases. J Alzheimers Dis. (2010) 19:1141–2.
doi: 10.3233/JAD-2010-1307

24. Shults CW, Haas R. Clinical trials of coenzyme Q10 in neurological disorders.
Biofactors. (2010) 25:117–26. doi: 10.1002/biof.5520250113

25. Storch A, Jost WH, Vieregge P, Spiegel J, Greulich W, Durner J, et al.
Randomized, double-blind, placebo-controlled trial on symptomatic effects
of coenzyme Q in Parkinson disease. Arch Neurol. (2007) 64:938–44.
doi: 10.1001/archneur.64.7.nct60005

26. Burcham PC. Potentialities and pitfalls accompanying chemico-
pharmacological strategies against endogenous electrophiles and carbonyl
stress. Chem Res Toxicol. (2008) 21:779–86. doi: 10.1021/tx700399q

27. Hamann K, Nehrt G, Ouyang H, Duerstock B, Shi R. Hydralazine inhibits
compression and acrolein-mediated injuries in ex vivo spinal cord. J

Neurochem. (2010) 104:708–18. doi: 10.1111/j.1471-4159.2007.05002.x
28. Hamann K, Durkes A, Ouyang H, Pond A, Shi R. Critical role of acrolein in

secondary injury following ex vivo spinal cord trauma. J Neurochem. (2010)
107:712–21. doi: 10.1111/j.1471-4159.2008.05622.x

29. Liusnyder P, Borgens RB, Shi R. Hydralazine rescues PC12 cells from acrolein-
mediated death. J Neurosci. Res. (2010) 84:219–27. doi: 10.1002/jnr.20862

30. Dehghan E, Zhang Y, Saremi B, Yadavali S, Hakimi A, Dehghani M, et al.
Hydralazine induces stress resistance and extends C. elegans lifespan by
activating the NRF2/SKN-1 signalling pathway. Nat Commun. (2017) 8:2223.
doi: 10.1038/s41467-017-02394-3

31. Maheshwari M, Roberts JK, Desutter B, Duong K, Tingling J, Fawver JN, et al.
Hydralazine modifies Aβ fibril formation and prevents modification by lipids
in vitro. Biochemistry. (2010) 49:10371. doi: 10.1021/bi101249p

32. Jacksonlewis V, Przedborski S. Protocol for the MPTP mouse model of
Parkinson’s disease. Nat Protoc. (2007) 2:141–51. doi: 10.1038/nprot.2006.342

33. Wang J, Zhao Z, Lin E, Zhao W, Qian X, Freire D, et al. Unintended effects of
cardiovascular drugs on the pathogenesis of Alzheimer’s disease. PLoS ONE.

(2013) 8:e65232. doi: 10.1371/journal.pone.0065232
34. Yang L, Calingasan NY, Thomas B, Chaturvedi RK, Kiaei M, Wille EJ,

et al. Neuroprotective effects of the triterpenoid, CDDO methyl amide, a
potent inducer of Nrf2-mediated transcription. PLoS ONE. (2009) 4:e5757.
doi: 10.1371/journal.pone.0005757

35. Burcham PC. Carbonyl scavengers as pharmacotherapies in degenerative
disease: hydralazine repurposing and challenges in clinical translation.
Biochem Pharmacol. (2018) 154:397–406. doi: 10.1016/j.bcp.2018.06.006

36. Jenner P. Oxidative stress in Parkinson’s disease. Ann Neurol. (2003) 53
(Suppl. 3):S26. doi: 10.1002/ana.10483

37. Zhou C, Huang Y, Przedborski S. Oxidative stress in Parkinson’s Disease: a
mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci.

(2008) 1147:93–104. doi: 10.1196/annals.1427.023
38. OtterMV, Landgren S, Nilsson S, Celojevic D, BergströmP,HåkanssonA, et al.

Association of Nrf2-encoding NFE2L2 haplotypes with Parkinson’s disease.
BMCMed Genet. (2010) 11:36. doi: 10.1186/1471-2350-11-36

39. Chen PC, Vargas MR, Pani AK, Smeyne RJ, Johnson DA, Kan YW, et al. Nrf2-
mediated neuroprotection in the MPTP mouse model of Parkinson’s disease:
Critical role for the astrocyte. Proc Natl Acad Sci USA. (2009) 106:2933–8.
doi: 10.1073/pnas.0813361106

40. Kaidery NA, Banerjee R, Yang L, Smirnova NA, Hushpulian DM, Liby
KT, et al. Targeting Nrf2-Mediated gene transcription by extremely potent
synthetic triterpenoids attenuate dopaminergic neurotoxicity in the MPTP
mouse model of Parkinson’s disease. Antioxid Redox Signal. (2013) 18:139–57.
doi: 10.1089/ars.2011.4491

41. Nisosantano M, Gonzálezpolo RA, BravoSan Pedro JM, Gómezsánchez
R, Lastresbecker I, Ortizortiz MA, et al. Activation of apoptosis signal-
regulating kinase 1 is a key factor in paraquat-induced cell death:
modulation by the Nrf2/Trx axis. Free Radic Biol Med. (2010) 48:1370–81.
doi: 10.1016/j.freeradbiomed.2010.02.024

Frontiers in Neurology | www.frontiersin.org 12 March 2019 | Volume 10 | Article 27139

https://doi.org/10.1016/j.mad.2004.07.009
https://doi.org/10.3233/JPD-130230
https://doi.org/10.1080/07853890701374677
https://doi.org/10.1016/j.freeradbiomed.2009.07.035
https://doi.org/10.1016/j.mam.2008.05.005
https://doi.org/10.1042/bj3600001
https://doi.org/10.1101/gad.13.1.76
https://doi.org/10.1111/j.1365-2443.2010.01473.x
https://doi.org/10.1146/annurev.pharmtox.46.120604.141046
https://doi.org/10.1039/C3NP70065H
https://doi.org/10.1126/scisignal.3112re3
https://doi.org/10.1517/13543780802716501
https://doi.org/10.1016/j.neuro.2012.01.015
https://doi.org/10.1016/j.neuro.2006.07.019
https://doi.org/10.1016/j.brainres.2007.01.131
https://doi.org/10.1002/glia.20947
https://doi.org/10.1080/10715762.2016.1223293
https://doi.org/10.1111/bph.12973
https://doi.org/10.1007/s12640-015-9550-z
https://doi.org/10.1073/pnas.1522872114
https://doi.org/10.1007/s12031-015-0516-7
https://doi.org/10.3233/JAD-2008-15314
https://doi.org/10.3233/JAD-2010-1307
https://doi.org/10.1002/biof.5520250113
https://doi.org/10.1001/archneur.64.7.nct60005
https://doi.org/10.1021/tx700399q
https://doi.org/10.1111/j.1471-4159.2007.05002.x
https://doi.org/10.1111/j.1471-4159.2008.05622.x
https://doi.org/10.1002/jnr.20862
https://doi.org/10.1038/s41467-017-02394-3
https://doi.org/10.1021/bi101249p
https://doi.org/10.1038/nprot.2006.342
https://doi.org/10.1371/journal.pone.0065232
https://doi.org/10.1371/journal.pone.0005757
https://doi.org/10.1016/j.bcp.2018.06.006
https://doi.org/10.1002/ana.10483
https://doi.org/10.1196/annals.1427.023
https://doi.org/10.1186/1471-2350-11-36
https://doi.org/10.1073/pnas.0813361106
https://doi.org/10.1089/ars.2011.4491
https://doi.org/10.1016/j.freeradbiomed.2010.02.024
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Guo et al. Hydralazine Protects Parkinson’s Disease Models

42. Hara H, Ohta M, Adachi T. Apomorphine protects against 6-
hydroxydopamine-induced neuronal cell death through activation of the
Nrf2-ARE pathway. J Neurosci Res. (2010) 84:860–6. doi: 10.1002/jnr.20974

43. Hwang YP, Jeong HG. The coffee diterpene kahweol induces heme oxygenase-
1 via the PI3K and p38/Nrf2 pathway to protect human dopaminergic
neurons from 6-hydroxydopamine-derived oxidative stress. Febs Lett. (2008)
582:2655–62. doi: 10.1016/j.febslet.2008.06.045

44. Wruck CJ, Claussen M, Fuhrmann G, Römer L, Schulz A, Pufe T, et al.
Luteolin protects rat PC 12 and C6 cells against MPP+ induced toxicity via
an ERK dependent Keapl-Nrf2-ARE pathway. J Neural Transm Suppl. (2007)
72:57–67. doi: 10.1007/978-3-211-73574-9_9

45. Sneader W. Drug Discovery: A History. Chichester: John Wiley & Sons Ltd.
(2005). doi: 10.1002/0470015535

46. Kapinya KJ, Harms U, Harms C, Blei K, Katchanov J, Dirnagl U, et al. Role
of NAD(P)H:quinone oxidoreductase in the progression of neuronal cell
death in vitro and following cerebral ischaemia in vivo. J Neurochem. (2010)
84:1028–39. doi: 10.1046/j.1471-4159.2003.01601.x

47. Van FM, Kuiperij HB. The Nrf2-ARE Signalling pathway: promising drug
target to combat oxidative stress in neurodegenerative disorders. Curr Drug
Targets CNS Neurol Disord. (2005) 4:267–81. doi: 10.2174/1568007054038238

48. Ferris CD, Jaffrey SR, Sawa A, Takahashi M, Brady SD, Barrow RK, et al.
Haem oxygenase-1 prevents cell death by regulating cellular iron. Nat Cell
Biol. (1999) 1:152–7. doi: 10.1038/11072

49. Otterbein LE, Soares MP, Yamashita K, Bach FH. Heme oxygenase-1:
unleashing the protective properties of heme. Trends Immunol. (2003)
24:449–55. doi: 10.1016/S1471-4906(03)00181-9

50. Franklin CC, Backos DS, Mohar I, White CC, Forman HJ, Kavanagh TJ.
Structure, function, and post-translational regulation of the catalytic and

modifier subunits of glutamate cysteine ligase. Mol Aspects Med. (2009)
30:86–98. doi: 10.1016/j.mam.2008.08.009

51. Hamann K, Shi R. Acrolein scavenging: a potential novel mechanism of
attenuating oxidative stress following spinal cord injury. J Neurochem. (2010)
111:1348–56. doi: 10.1111/j.1471-4159.2009.06395.x

52. Luo J, Shi R. Acrolein induces oxidative stress in brain mitochondria.
Neurochem Int. (2005) 46:243–52. doi: 10.1016/j.neuint.2004.09.001

53. Marcotte D, Zeng W, Hus JC, Mckenzie A, Hession C, Jin P, et al. Small
molecules inhibit the interaction of Nrf2 and the Keap1 Kelch domain
through a non-covalent mechanism. Bioorg Med Chem. (2013) 21:4011–9.
doi: 10.1016/j.bmc.2013.04.019

54. O’Connell MA, Hayes JD. The Keap1/Nrf2 pathway in health and disease:
from the bench to the clinic. Biochem Soc Trans. (2015) 43:687–9.
doi: 10.1042/BST20150069

55. Ma Q. Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol

Toxicol. (2013) 53:401–26. doi: 10.1146/annurev-pharmtox-011112-140320

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Guo, Han, Ma, Xia, Wan, Yin, Kou, Sun, Wu, Hu, Huang, Xiong

and Wang. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neurology | www.frontiersin.org 13 March 2019 | Volume 10 | Article 27140

https://doi.org/10.1002/jnr.20974
https://doi.org/10.1016/j.febslet.2008.06.045
https://doi.org/10.1007/978-3-211-73574-9_9
https://doi.org/10.1002/0470015535
https://doi.org/10.1046/j.1471-4159.2003.01601.x
https://doi.org/10.2174/1568007054038238
https://doi.org/10.1038/11072
https://doi.org/10.1016/S1471-4906(03)00181-9
https://doi.org/10.1016/j.mam.2008.08.009
https://doi.org/10.1111/j.1471-4159.2009.06395.x
https://doi.org/10.1016/j.neuint.2004.09.001
https://doi.org/10.1016/j.bmc.2013.04.019
https://doi.org/10.1042/BST20150069
https://doi.org/10.1146/annurev-pharmtox-011112-140320
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


fnagi-11-00077 April 3, 2019 Time: 17:4 # 1

CLINICAL STUDY PROTOCOL
published: 05 April 2019

doi: 10.3389/fnagi.2019.00077

Edited by:
Daniel Ortuño-Sahagún,

Universidad de Guadalajara, Mexico

Reviewed by:
Yasuo Terao,

Kyorin University, Japan
José M. Delgado-García,

Universidad Pablo de Olavide, Spain

*Correspondence:
Citlali López-Ortiz

lopezort@illinois.edu

Received: 05 December 2018
Accepted: 19 March 2019

Published: 05 April 2019

Citation:
Camacho PB, Carbonari R,

Shen S, Zadikoff C, Kramer AF and
López-Ortiz C (2019) Voluntary

Saccade Training Protocol in Persons
With Parkinson’s Disease and Healthy
Adults. Front. Aging Neurosci. 11:77.

doi: 10.3389/fnagi.2019.00077

Voluntary Saccade Training Protocol
in Persons With Parkinson’s Disease
and Healthy Adults
Paul B. Camacho1, Ronald Carbonari2, Sa Shen3, Cindy Zadikoff4, Arthur F. Kramer2,5

and Citlali López-Ortiz1,2,3,6*

1 Department of Kinesiology and Community Health, University of Illinois at Urbana–Champaign, Urbana, IL, United States,
2 Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Champaign, IL,
United States, 3 Center on Health, Aging and Disability, University of Illinois at Urbana–Champaign, Champaign, IL,
United States, 4 Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States,
5 Center for Cognitive and Brain Health, Department of Psychology, Northeastern University, Boston, MA, United States,
6 Joffrey Ballet Academy, The Official School of the Joffrey Ballet, Chicago, IL, United States

Background: Voluntary saccade function gradually decreases during both the
progression of Parkinson’s disease (PD) and neurologically healthy adult aging. Voluntary
saccades display decreased length and increased saccade latency, duration, and the
number of compensatory saccades in aging and PD. Saccades serve as the key eye
movement for maintaining salient features of the visual environment on the high visual
acuity fovea of the retina. Abnormal saccade behavior has been associated with freezing
of gait in PD. We have not identified any studies that have investigated improvement in
voluntary saccade function using voluntary saccade training.

Objective: We report an experimental protocol that tests a training paradigm following
the principle of specificity to improve voluntary saccade velocity and amplitude, while
decreasing latency and the number of compensatory saccades.

Methods: Persons with PD (n = 22) and persons with no known neurological disorders
(n = 22) between the ages of 40 and 65 years will be recruited. In a randomized-
block study design, all participants will perform voluntary saccades to targets in eight
cardinal and intercardinal directions. In each of the eight sessions during the four-
week intervention period, participants will train at three target amplitudes. Participants
will perform 40 trials for each amplitude block, consisting of five randomly presented
repetitions for each direction. Voluntary and reflexive saccades will be recorded pre- and
post-intervention, along with clinical mobility assessment using the Movement Disorder
Society Unified Parkinson’s Disease Rating Scale. Mobility scores, the amplitude,
latency, and duration of the first saccade, and the number of saccades to reach the
fixation target will be analyzed using an ANOVA of mixed effects.

Discussion: This protocol holds promise as a potential method to improve voluntary
saccade function in persons with PD. Should persons with PD not improve on any
outcome following the intervention, this lack of response may support the use of
saccade assessment as a response biomarker for the diagnosis of PD.
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Trial Registration: This protocol was retrospectively registered at ISRCTN
(ISRCTN.com) since July 25, 2018. The first participant was recruited March 12, 2016.
The protocol identifier is 17784042.

Descriptive Title: A two-arm, pre/post-protocol to compare the effects of a four-week
voluntary saccade training intervention in persons with Parkinson’s disease and healthy
adults aged forty years or older.

Keywords: eye movements, saccades, Parkinson’s disease, training, voluntary saccades, healthy adults, saccade
latency, saccade amplitude

INTRODUCTION

Voluntary Saccade Function Impairment
in Parkinson’s and Healthy Aging Adults
Visual function is a major area of decline in Parkinson’s disease
(PD) progression and healthy aging adults (Terao et al., 2011;
Dowiasch et al., 2015). One element of visual function that has
been correlated with PD progression and neurologically healthy
aging by a number of studies is saccade behavior (Terao et al.,
2011; Dowiasch et al., 2015; Seferlis et al., 2015; Noiret et al.,
2017). Saccades are the ballistic eye movements that allow the
high acuity fovea of the retina to quickly orient toward salient
elements of the visual environment. Persons with PD exhibit
lower saccade amplitude, higher saccadic latencies, and longer
durations to achieve targets (Mosimann et al., 2005; Terao
et al., 2011). Deficits in voluntary saccade control contribute
to mobility impairments related to turning during navigation
(Ambati et al., 2016; Nemanich and Earhart, 2016). It has
been noted that turning during navigation in persons with PD
increases instability and risk of falling (Stack and Ashburn, 1999).
Voluntary saccade function deficits are also present to a lesser
extent in neurologically healthy aging adults (Chen and Machado,
2016; Fernandez-Ruiz et al., 2017).

Existing Treatments
Various treatments, including electrical brain stimulation, have
been suggested for improving voluntary saccade function in PD
(Chen and Machado, 2016). An eye-movement training protocol
consisting of horizontal saccades to increasingly distant points
and cognitively more challenging targets, such as letters and
words, was shown to increase reading speed in older adults
with age-related macular degeneration (Seiple et al., 2005). Other
treatments include the anti-saccade paradigm, which requires the
suppression of a saccade to a stimulus and voluntary saccade to a
location of equal eccentricity in the opposite direction (Jamadar
et al., 2015). However, such studies focus on accuracy and error
rate and do not address hypometria as is needed for navigation
(Jamadar et al., 2015; Ambati et al., 2016).

Need for a Trial
Recent work has investigated the difference between smooth-
pursuit performance in persons with PD and persons with
no known neurological disorders (Ito et al., 2013; Fukushima
et al., 2015). However, the current literature does not include
voluntary saccade practice as a method of comparing potential

improvements in voluntary saccade function for persons with
PD and healthy aging adults. While we cannot predict if there
will be immediate short- or long-term benefits to the participants
in the study, exercising eye movements can potentially benefit
eye movement control. As with any other movement training,
exercise increases circulation to the muscles and improves
their physiological function. Physical mobility is of the utmost
importance for the quality of life in the general population.
Furthermore, recent PD literature indicates that abnormal
saccade behavior is associated with the freezing of gait and
difficulty in navigation (Lohnes and Earhart, 2011; Ambati et al.,
2016; Nemanich and Earhart, 2016; Stuart et al., 2017). Improving
abnormal saccade behavior may affect freezing of gait and other
motor-related PD symptoms. Improving these outcomes for
persons with PD has the potential to improve the same daily
activities as those in healthy aging persons, as well as increasing
walking ability (Lohnes and Earhart, 2011; Stuart et al., 2017).
Further, saccade function has been demonstrated as a key factor
in the slowing of reading, decrease in driving abilities, and
eye-hand coordination in several studies (Schmitt et al., 2015;
Coats et al., 2016).

Saccade Biomarker Potential
Identifying non-invasive biomarkers of PD onset is imperative
for disease treatment. Saccadic abnormalities have been suggested
as a diagnostic tool for PD, including early stage progression
marking and differential diagnosis from other tremor disorders
such as essential tremor (Yerram et al., 2013). Saccade
abnormalities may also be useful as markers for frontal cortex
and basal ganglia malfunction and degeneration in PD, as well
as changes in the cerebellum (Terao et al., 2013). van Stockum
et al. (2012) later suggested that due to the differences in reports
of saccadic latency deficiencies and facilitation, the hypometria
seen across different saccadic paradigms may be a better measure
for the effect of PD on saccades. Control of voluntary saccades
has also been highlighted as a promising area of motor control
in general (Baird-Gunning and Lueck, 2018). Diagnosis in the
early stages will benefit individuals with PD, enabling prompt
disease treatment and management to slow disease progression.
In addition to the person diagnosed with PD, this also benefits
their immediate family and support network.

One criticism against saccade measurements as a diagnostic
tool for PD is that the abnormalities seen in saccadic movements
tend to differ based on the experimental context (MacAskill
and Anderson, 2016). Abnormalities in saccade latency and
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amplitude are known to occur in multiple neurodegenerative
disorders, which could lessen biomarker specificity (MacAskill
and Anderson, 2016). However, recent reviews outlined
differential characteristics of saccadic performance in PD and
several other neurodegenerative diseases (Termsarasab et al.,
2015; MacAskill and Anderson, 2016). Additionally, research
into the characteristic relationship between saccade duration,
peak velocity, and amplitude has not been extensively undertaken
in PD. This “main sequence” is believed to characteristically
optimize the costs of speed and saccadic accuracy at a given
amplitude (Bahill et al., 1975; Harris and Wolpert, 2006).
If the main sequence relationship is affected by training
differences in persons with PD compared to neurologically
healthy persons, the biomarker potential for voluntary saccade
training response would be further supported. One benefit of
saccadic measurements as a PD biomarker is that assessments
of eye tracking systems are non-invasive, unlike biochemical
markers, which require blood or CSF extraction. Additionally,
saccade testing could occur in a clinical setting without the
need for physician supervision and biochemical testing facilities,
with the most common side effect being possible fatigue
from eye movement.

Risks/Benefits Comparison
Risks associated with eye training include the possibility of
eye strain and orbital myositis, which is a rare autoimmune
disorder that may result from inflammation due to vigorous
exercise. These risks are minimal and reduced by the progressive
periodization of amplitudes in the training regimen. The
potential benefits of improved eye coordination, range of motion,
and responsivity to visual stimuli outweigh the minimal risk for
eye strain/injury. The greatest amount of risk in the study is
associated with performing OFF-state assessments in participants
with PD. The OFF-state occurs when the motor effects of
levodopa and other dopaminergic medications are not present
due to delayed intake of these medications. During the OFF-
state, intensified motor symptoms that may be uncomfortable –
such as dyskinesia, rigidity, spasticity, bradykinesia, dystonia, and
freezing – may be present. However, discomfort and possible
risk of falls are mitigated by limiting the inclusion criteria
to only include individuals in the early stage of the disease
(H&Y score 1–2; see Table 1 for criteria) where these symptoms
are not severe in general or in the OFF-state. Neurologist
clearance – as well as facilitation of dialogue between participant
and neurologist, participant and researchers, and researchers
and neurologists – will provide an informed environment for

TABLE 1 | Criteria for Hoehn & Yahr stages one and two.

H&Y: Stage One H&Y: Stage Two

1. Signs and symptoms on one side only 1. Symptoms are bilateral

2. Symptoms are mild 2. Minimal disability

3. Symptoms are inconvenient but not disabling 3. Posture and gait affected

4. Usually presents with tremor of one limb

5. Friends have noticed changes in posture,
locomotion, and facial expression

how to manage the two-hour disruption in medication. Further,
risks of discomfort and falling will be minimized through the
use of wheel chairs, gait belts, and secure seating during the
eye-tracking assessment.

It is common practice to perform assessments in the OFF-
state in the field of PD clinical research because the methodology
provides a controlled environment for assessing the disease
without the influence of movement-modifying medications that
mask the disease condition. This is especially important in
biomarker research of PD patients. Assessment in the OFF-state
condition increases relevance and generalizability of the study
evidence to populations with undiagnosed and untreated PD.
Generalizability of results may lead to greater instances of early
detection and allow for informed diagnoses of individuals not
yet receiving movement-modifying medications. The increased
applicability of data collected in OFF-state assessments far
outweighs the risks.

Saccade Training Time Selection
Due to the current lack of literature studying voluntary saccade
training through practice, the training dose of 30 min, twice
per week, for four weeks was chosen based on training doses
seen in other eye training protocols (Fischer and Hartnegg,
2000; Bibi and Edelman, 2009; Jamadar et al., 2015; Knox and
Wolohan, 2015; Kleiser et al., 2017; Johannesson et al., 2018).
The limit of 30 min of practice per day was chosen to reduce the
likelihood of eye strain.

Explanation for Choice of Comparators
There will be no comparator intervention used in this study.
The effects of the voluntary saccade training intervention in
persons with PD will be compared to those in persons with no
known neurological disorders so that we can determine whether
the group with PD is more responsive to the intervention.
A greater response in the participants with PD would indicate
a significant improvement in saccade performance. A lack of
response to the intervention would indicate a resistance to
improvement in saccade performance that may be characteristic
of persons with PD.

Objectives
Research Hypothesis
We hypothesize that before and after comparisons of voluntary
and reflexive saccade performance will show a greater decrease in
latency and the number of saccades needed to reach the target,
along with a greater increase in saccade amplitude and velocity in
Parkinson’s disease participants as compared to participants with
no known neurological disorders.

Study Objectives
Primary objective
To determine whether voluntary saccade training decreases
voluntary latency, reflexive latency, and number of saccades
needed to reach a target amplitude and increases saccade
amplitude in persons with PD compared to persons with no
known neurological disorders.
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Secondary objectives
To determine whether training voluntary saccades affects
motor disability in persons with PD. We will also investigate
whether training voluntary saccades affects the relationship
of the main sequence. Should statistical analysis reveal that
these improvements are absent in participants with PD,
we propose that saccade performance would be a potential
early PD biomarker.

Trial Design
This trial is designed as a two-arm, pre-post, single center
pilot trial with an equal number of participants with PD and
participants with no known neurological disorders (control),
which will be analyzed using an analysis of variance (ANOVA)
with mixed effects.

METHODS: PARTICIPANTS,
INTERVENTIONS, AND OUTCOMES

Study Setting
All data collection and participant training will be conducted in
the Neuroscience of Dance in Health and Disability (NDHD)
Laboratory at the University of Illinois at Urbana–Champaign.
Access to the laboratory space is limited to the research team
and participants, with a partitioned area for saccade training and
eye tracking data collection. This protocol has been approved
by the local IRB and all NDHD laboratory staff have completed
the ethics and best practices training required by the local IRB
and the University of Illinois. Due to the small size of this study,
Champaign County, Illinois will be sufficient for the recruitment
of both study groups. The adult population of Champaign
County is approximately 170000 persons and is largely rural.
We will attempt to representatively recruit participants according
to the ethnicity data provided by the US Census Bureau: 72.4%
White, 13.4% Black or African American, 0.4% Native American,
10.9% Asian, 0.1% Native Hawaiian and other Pacific Islander,
2.8% two or more races, and 6.0% Hispanic or Latino1.

Eligibility Criteria
A final decision on inclusion will be made in consultation
with the principal investigator once all screening materials are
complete (see Figure 2 for a full timeline). During the initial
contact interview, the research assistants will read a script
describing the study and assessment procedures; if interested,
they will be provided via email with the physician release
form to be completed by the participant and physician along
with the consent form for the participant’s review. Once all
questions from the participant regarding the study procedures
have been answered by the research team, the consent form is
completed, and the physician release form is received via U.S.
mail, email, or by hand and reviewed by the principal investigator,
a determination will be made whether to proceed with screening
using the MoCA and Modified Hoehn & Yahr levels. Only if

1https://www.census.gov/quickfacts/fact/table/champaigncountyillinois,US/
PST120217

TABLE 2 | Eligibility criteria for protocol.

Inclusion Criteria

1. To be medically stable with diagnosis of PD by meeting the United Kingdom PD
Society Brain Bank Criteria OR- no known neuromuscular disorders for the for
the control group.

2. To have a Modified Hoehn & Yahr stage 1–2 (with unilateral involvement only,
unilateral and axial involvement, and bilateral involvement without impairment of
balance) in the conventionally defined OFF medication state.

3. To have medical clearance form from their physician for participation in the study.

4. To be in a stable regimen of PD medication 30 days prior to the initiation of the
study and until the completion of the study.

5. To be willing and able to provide informed consent.

6. To be of age 40 and up.

7. Must have a caregiver/family member present for OFF-state assessment
sessions.

Exclusion Criteria

1. Presence of dementia based on The Montreal Cognitive Assessment (MOCA) –
score of less than 25.

2. Diagnosis of comorbid neurological disorder such as epilepsy.

3. History of neurological injury such as stroke.

4. History of brain surgery such as deep brain stimulation.

5. Concurrent severe medical illness which in the opinion of the research team will
preclude participation in the study (such illnesses may include but not limited to
severe or uncontrolled cardiovascular disease, hypertension, pulmonary
disease, or diabetes).

6. Inability to attend and participate in at least seven of the training sessions.

7. Uncorrected vision, history of retinal disease (e.g., macular degeneration),
presence of optic neuropathy due to glaucoma or ischemic optic neuropathy,
pseudoexfoliation syndrome, ocular surgery, ocular trauma, visually significant
cataract, orbital myositis, blindness or refractive errors outside –5 to +3 D.

8. Indication by the participant s neurologist in the medical release form that testing
the participant in the OFF-medication state would put PD participants at
significant risk for medical complications.

all inclusion criteria are met, the participant will continue with
the study (see Table 2 for eligibility criteria). Research shows
that the prevalence of PD in men is 1.5 times greater than
in women. Therefore, we expect that ratio will be reflected in
our recruitment.

Voluntary Saccade Training Intervention
Equipment
Training and testing will be performed using the SR EyeLink
II eye tracking system (SR Research). The EyeLink II system
for assessments and training has two cameras on a head mount
located directly below eye level. The pupil is tracked by a device
that captures infrared light reflected off the lens and cornea of
the eyes. The lens, cornea, and other parts of the eye absorb a
small amount of energy from infrared light, but the energy is less
than 18% of the Maximum Permissible Exposure level as certified
by the American Standards Institute (ANSI Z 136.1-1973). The
EyeLink II system will be mounted to the participant’s head
using the adjustable straps, such that the head camera bar will be
parallel to the display screen, on which four infrared emitters will
be placed in a rectangle. The participant will be then positioned,
using a chin rest support, so that the participant’s resting focus
point will be at the center fixation target display on the screen
in the middle of the rectangle of emitters. The experimenter
will position the eye tracker on the participant’s head so that
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the participant can see targets displayed at the amplitude of
interest. The chin rest also serves to isolate eye-movements from
head movements during eye tracking and maintain a set distance
from the display screen. A Sharp Aquos 178.5 cm by 100 cm
television will be used as the display for the participant (Sharp
Corporation, Sakai-ku, Sakai, Japan). This screen mirrors the
computer display visible to the experimenter during training and
testing sessions. A second host computer runs the SR Research
data capture and processing during sessions. The host computer
also displays pupil position and the view of the left and right eye
cameras in real time. After adjusting the eye cameras and pupil
threshold to track the pupils moving in the eight cardinal and
intercardinal directions, the cameras will be then calibrated using
the SR Research program. The experimenter will then perform a
validation of the camera calibration prior to beginning a training
or testing block.

Training
Over the course of the four-week intervention period,
participants will undergo eight training sessions of 30 min
each. During each training session, three target amplitudes will
be trained on the six target amplitudes: 10◦, 20◦, 30◦, 40◦, 45◦,
and 50◦. Each amplitude will be trained in two different training
sessions over the course of the intervention period. This follows
an intercalated training schedule of progressive and regressing
load design (see Table 3). For each amplitude, the participants
perform saccades to each of the eight cardinal and intercardinal
directions. Each direction will be indicated five times for a total
of 40 trials per amplitude per session. Participants will place
their head on a chin rest 40 cm away from the screen in order to
isolate the movement of the eyes. Training will involve a visual
display designed to initiate only voluntary saccades. Training
will begin with a warm-up for the eyes in order to reduce the
possibility of injury. Participants will foveate on a central fixation
starting point and wait for an instructional arrow that points to
one of eight visual targets arranged in eight cardinal points in the
perimeter of a circle.

Every trial consists of a fixation period, target circle
presentation period, direction indication period, and resetting
period (see Figure 1). During the fixation period the participant
is instructed to focus on the center of a circular fixation bulls-
eye target. Next, in the target circle presentation period, a circle
of targets in each of the eight directions is presented around
the central fixation target. The central fixation target is then
replaced by an arrow indicating which direction to look in and
fixate on the target there located. After the fixation is recorded
at the indicated target, the resetting period follows with the

TABLE 3 | Training schedule of amplitudes. On both sessions of each week, the
same three amplitudes will be trained.

Week Amplitudes Trained

1 10◦, 20◦, 30◦

2 10◦, 20◦, 40◦

3 20◦, 30◦, 45◦

4 20◦, 40◦, 50◦

FIGURE 1 | Example training/testing trial display sequence. (A) Central fixation
target, (B) 20◦ target circle, (C) northern direction indication arrow, and (D)
blank reset screen. All images presented in 800 × 600 resolution on screen.
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FIGURE 2 | Participant flow timeline.

presentation of the sole central fixation target. Due to the nature
of mass-practice of eye movements, there is an inherent risk of
eye fatigue or strain in participants. However, participants in this
study will be instructed to rest at the first sign of any eye pain or
fatigue, to minimize the risk and influence of strain or fatigue on
the outcomes of the experiment.

Participants who are unable to complete seven of the eight
training sessions due to fatigue or other events related to the
intervention will be omitted from the study and receive prorated
compensation. The intervention is designed to minimize fatigue
by providing rest breaks regularly and as the participant indicates
a need for rest. During both the training and testing sessions,

eye tracking data will be collected by the SR Eyelink II system
and stored. While only testing session data will be analyzed to
determine the effects of the intervention, training session data
can be used to check that training sessions will be completed per
the protocol instructions. This check data includes the number
of trials per direction per amplitude, amplitudes trained, and
collection dates for each session.

Modifications
In the unlikely case of an unexpected event, the research
team, in consultation with the participant’s physician, will make
the decision to modify or terminate the trial. As this is a
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pilot trial, there will be no adjustment to sample size in the
course of the study.

Concomitant Care
(1) Involvement in other interventional studies will not be

permitted for participants in either group.
(2) Participants will continue their physician prescribed

treatment during their participation.

Outcomes
Primary Outcome Measures
The primary outcomes of this study are four measures of
voluntary and reflexive saccade performance: (1) the normalized
amplitude calculated as the amplitude of the saccade divided by
the target eccentricity, (2) the mean normalized saccadic velocity
calculated as the mean normalized amplitude divided by saccade
duration, (3) saccadic latency calculated as the time from the
presentation of the directional cue to the saccade onset. The
saccade onset is calculated as the time between the presentation
of the directional arrow and the first eye movement crossing
the velocity threshold of 30◦/s and the acceleration threshold of
8000◦/s2 specified by the EyeLink

R©

II User Manual (Jainta et al.,
2011). The fourth outcome is the number of saccades needed to
reach the target. The first three outcomes are only calculated on
the first saccade toward the target.

Secondary Outcome Measures
One secondary outcome for this study is Movement Disorder
Society-sponsored new version of the Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS). The MDS-UPDRS assesses motor
examination and complications, motor aspects of daily living,
and non-motor aspects of daily living using a combination of
questionnaire and task performance assessment (Goetz et al.,
2008; Martinez-Martin et al., 2013). The MDS-UPDRS will
only be assessed in participants with PD, as participants with
no known neurological disorders should not present disability
measurable with these instruments. Additionally, the peak

TABLE 4 | Timeline of participant involvement.

Study Period

Enrolment Allocation Post-allocation

Timepoint Week –1 Week 0 Week 1 Week 2 Week 3 Week 4

Enrolment:

Eligibility screen X

Informed consent X

Medical release X

Allocation X

Intervention:

Parkinson’s group X X X X

Healthy group X X X X

Assessments:

Clinical Screening X

Saccades X X

Clinical X X

saccadic velocity, duration, and amplitude will be analyzed as a
measure of changes to the main sequence (Bahill et al., 1975).

Primary outcomes will be assessed by a member of the NDHD
laboratory staff blinded to secondary outcome assessment, which
will be performed on a separate day (see Table 5 for investigator
team timeline). Secondary outcome assessors will be blinded to
primary outcomes and will not be involved in training sessions.
Changes after the four-week intervention from the initial value of
each primary and secondary outcome measure will be analyzed
using an ANOVA of mixed effects.

Participant Timeline
Table 4 contains a full timeline of participant involvement.

Sample Size
There will be two groups with the same treatment: (1) a control
group of participants with no known neurological disorders
and (2) a test group comprised of participants with PD that
have H&Y levels 1–2. In the absence of existing data in the
literature to estimate the required same sample size for a protocol
of this nature, the estimation is based on the number of eyes
tested and trained in other eye movement studies and a 10%
attrition rate seen in other studies performed by the authors
(Hall et al., 2010; Knox and Wolohan, 2015; Ivanov et al., 2016;
Heath et al., 2017).

Recruitment
Persons with PD (n = 22) and neurologically healthy persons
(n = 22), between the ages of 40 and 65 years will be recruited.
Participants will be recruited from the local community through
posted flyers, advertisements in UIUC s newsletter E-WEEK, and
support groups (in a 60-mile radius around the UIUC campus).

METHODS: DATA COLLECTION,
MANAGEMENT, AND ANALYSIS

Saccade Function Testing
During the week prior to and the week following the intervention
period, participants will be tested for both voluntary and reflexive
saccade performance (see Table 6 for summary of saccade
testing). Voluntary saccade testing will involve the same task as
the training sessions, in the 10◦, 20◦, and 30◦ amplitudes only. In
the reflexive saccade testing session, the same amplitudes will be
tested following the reflexive testing protocol. As in the voluntary
saccade testing, each amplitude will be tested for the eight
cardinal and intercardinal directions. Five trials will be performed
per direction, resulting in 40 trials per amplitude in a testing
session. The structure of each trial consisted of the initial fixation
period, followed by the simultaneous disappearance of the central
fixation target and appearance of the reflexive target, and finally
the resetting period. Unlike in the voluntary saccade trials, there
is no presentation of the circle of targets prior to the appearance
of the reflexive target and no arrow to indicate the direction of
movement to be performed (see Figure 3). Assessments will begin
with a warm-up for the eyes in order to minimize the risk of
injury. Participants with no known neurological disorders (see
Supplementary Material Data Sheet 2 sample physician release
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TABLE 5 | Investigator team activity timeline.

Approximate Prestudy Basline/ Intervention

PD Only time to screening/ Intervention Intervention Intervention week 4/

Activity/assessment (Yes/ No) Staff member complete (min) consent week 1 week 2 week 3 conclusion

Prescreening consent Study coordinator 5 X

Screening checklist Study coordinator 10 X

Consent form Study coordinator 45 X

Medical release and
relevant medical history

Yes Potential participant’s
neurologist

30 X

Hoehn and Yahr scale Yes Clinical assessors 30 X

Montreal Cognitive
Assessment

Yes Clinical assessors 30 X

Unified Parkinson’s Disease
Rating Scale

Yes Clinical assessors 30 X

Voluntary saccade
assessment

Staff member 45 X

Reflexive saccade
assessment

Staff member 45 X

Voluntary saccade training
intervention

Staff member 45 X X X X X X X X

Termination form Study coordinator N/A X

Serious adverse event form Study coordinator N/A As needed throughout protocol

Progress note All team members N/A X X X X X

Communication log All team members N/A Every phone or in-person contact outside of regular study visits

form) will complete only the eye-tracking related assessments.
There will be one pre-training assessment and one post-training
assessment, totaling two assessment periods for the control group
protocol. Each assessment period should last no longer than 1.5 h
including rest periods.

Participants will perform eye-tracking related assessments
in ON and OFF motor-related medication states in order to
completely characterize the effects of eye-movement training
in PD (see Table 7 for OFF-state timeline). Participants will
continue regular intake of any medications that are unrelated to
motor symptoms in PD.

Clinical Mobility Testing for Participants
With Parkinson’s
Following completion of eye-tracking related assessments, the
participant’s motor function will be assessed using the Movement

TABLE 6 | Saccade testing summary table.

VOLUNTARY REFLEXIVE

Amplitudes: 10◦, 20◦, and 30◦ Amplitudes: 10◦, 20◦, and 30◦

Directions (Cardinal): North,
Northwest, West,

Directions (Cardinal): North,
Northwest, West,

Southwest, South, Southeast, East,
Northeast [8 total]

Southwest, South, Southeast, East,
Northeast [8 total]

Repetitions PER Direction: 5× Repetitions PER Direction: 5×

Total Trials: 120 Total Trials: 120

Task: Voluntary Saccade Task: Reflexive Saccade

Combination of voluntary and reflexive eye-tracking related assessments will last
approximately 1.5 h including rest time.

Disorder Society-United Parkinson’s Disease Rating Scale (MDS-
UPDRS) in the OFF-state for an accurate description of PD
stage. To achieve the OFF-state, participants will be instructed
to take their last dose of medication approximately 8 h before
their scheduled morning assessment. This approach will time the
initiation of the OFF-state with the beginning of data collection.
Immediately following the OFF-state eye-tracking assessment,
the MDS-UPDRS will be administered to participants in the
NDHD Laboratory which is equipped with ballet barres for
support. Immediately after the MDS-UPDRS administration,
participants will be instructed to take their medication and take a
60 min long break while they return to their normal ON-state.
This protocol will mitigate the time spent in the OFF-state to
approximately 2 h. Sixty-minutes after the intake of medication,
participants will complete a final eye-tracking assessment in the
ON-state. In total, pre/post-assessments will last at most 4 and
a half hours, including the 60 min break and assessment beaks.
A summary of an example Parkinson’s pre-training and post-
training assessment timeline follows: If the participant takes
medications in a schedule other than every 8 h, the participant
will time the start of the experiment with their regular time of
medication intake and withhold from taking their regular dosage
for the first 2 h of the experiment. After those 2 h, the participant
will resume regular medication intake.

Processing
Eye tracking data for both the left and right eyes is first converted
to ASCII files, which will be then converted into two types
of ASCII files: gaze data, which consisted of pupil position
relative to the room, and head referenced (href ) data, which
consists of pupil position relative to the head. In order to
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FIGURE 3 | Example reflexive testing trial display sequence. (A) Central
fixation target, (B) 20◦ northeast target, and (C) blank reset screen. All images
presented in 800 × 600 resolution on screen.

minimize false positive detection of saccades caused by head
movement, the href data is then used for further processing.
This data is then processed in MATLAB (MathWorks, Inc.,
Natick, MA, United States) using a program developed by Ronald
Carbonari. This program converts eye tracking data from pixel
measurements of movement distances to radial distance based on

TABLE 7 | OFF-state testing timeline for participants.

Night Before 7:00 AM 8:30 AM 9:00 AM 10:00 AM

Take last dose
of medication at
11 PM (taken 8 h
before morning
assessment)

Eye-Tracking
Assessment
(OFF-state)

MDS-UPDRS
Assessment

RETURN TO
MEDICATION
(60-min break)

Eye-Tracking
Assessment
(ON-state)

TABLE 8 | IRB protocol revision chronology.

Original Submission July 2, 2015

Approval date January 15, 2016

Amendment 01 February 16, 2016 Update of research team list.

Amendment 02 October 3, 2016 Change in research location
to Freer Hall room 250.

Amendment 03 July 31, 2017 Addition of testing in the
off-medication state for
participants with PD.

Amendment 04 April 9, 2018 Update of research team list.

Amendment 05 July 19, 2018 Medical release form specific
to healthy controls added.

the fixed distance of the participant from the experiment display.
The program also uses median pupil position during fixation to
find the center of the visual focus for each trial to calculate real
saccade distances, removing the assumption that the center of
the visual fixation target is the center of actual fixation. Blinks
and their subsequent movements will be detected and removed
using a data-driven blink finder in the MATLAB program.
Saccade latency is calculated as the time between presentation
of the directional arrow and the first eye movement crossing
the velocity threshold of 30◦/s and the acceleration threshold of
8000◦/s2, as specified by the EyeLink

R©

II User Manual (Jainta
et al., 2011). The program then removed faulty fixations and
appended the start of each saccade to occur 1.6 ms after the
end of the previous fixation. This auto-cleaned data will be then
stored and plotted, allowing the data to be visualized for each trial
and cleaned on a per trial basis using an additional section of
the MATLAB script edited by the user. This script allows users
to, on either eye, delete trials missing excessive position data
or delete false saccades not detected by the automated cleaning
process. Additionally, users could shift the start and/or end of
a fixation to match visually determined correct times based on
the plot of radial position versus time. Saccades are automatically
shifted along with the endpoints for adjusted fixations. The user
can also move individual saccades and insert fixation-saccade
pairs to match visually determined significant pupil movements.
Only the first three saccades in each trial will be analyzed since
this was a sufficient number of saccades to reach the target in
preliminary tests.

Data Management
All participants will be assigned a code for de-identification
for all data collected. The participant code will be stored in a
locked cabinet and destroyed when the study procedures are
completed. Data analyses will be conducted on the coded non-
identifiable data. All data will be kept in a locked file cabinet or
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TABLE 9 | Trial registration data.

Primary registry and trial identifying number: 17784042

Date of registration in primary registry: July 25, 2018

Secondary identifying numbers: N/A

Source(s) of monetary or material support: Unfunded

Primary sponsor: University of Illinois at Urbana–Champaign

Secondary sponsor(s): None

Contact for public queries: CLO, Ph.D., MA lopezort@illinois.edu

Contact for scientific queries: CLO, Ph.D., MA University of Illinois at
Urbana–Champaign

Public title: Voluntary saccade training in persons with Parkinson’s disease and
healthy adults

Scientific title: Voluntary saccade training in persons with Parkinson’s disease and
healthy adults – two-arm, pre/post-trial

Countries of recruitment: United States of America

Health condition(s) or problem(s) studied: Parkinson’s disease, voluntary
saccades, reflexive saccades

Intervention: Voluntary saccade training

Key inclusion and exclusion criteria: Ages eligible for study: ≥40 years; Sexes
eligible for study: both; Accepts healthy volunteers: yes

Inclusion criteria: For participants with PD: (1) medically stable with diagnosis of
PD by meeting the United Kingdom PD Society Brain Bank Criteria, (2) to have a
Modified Hoehn & Yahr stage 1–2 (with unilateral involvement only, unilateral and
axial involvement, and bilateral involvement without impairment of balance) in the
conventionally defined OFF medication state, (3) to have medical clearance form
from their physician for participation in the study, (4) to be in a stable regimen of
PD medication 30 days prior to the initiation of the study and until the completion
of the study, (5) to be willing and able to provide informed consent, (6) to be of
age 40 and up, and (7) must have a caregiver/family member present for
OFF-state assessment sessions.

For neurologically healthy participants: (1) no known neuromuscular disorders,
(2) to have medical clearance form from their physician for participation in the
study, (3) to be willing and able to provide informed consent, and 4) to be of age
40 and up.

Exclusion criteria: (1) presence of dementia based on The Montreal Cognitive
Assessment (MOCA) –score of less than 25, (2) diagnosis of comorbid
neurological disorder such as epilepsy, (3) history of neurological injury such as
stroke, (4) history of brain surgery such as deep brain stimulation, (5) concurrent
severe medical illness which in the opinion of the research team will preclude
participation in the study (such illnesses may include but not limited to severe or
uncontrolled cardiovascular disease, hypertension, pulmonary disease, or
diabetes), (6) inability to attend and participate in at least seven of the training
sessions, (7) uncorrected vision, history of retinal disease (e.g., macular
degeneration), presence of optic neuropathy due to glaucoma or ischemic optic
neuropathy, pseudoexfoliation syndrome, ocular surgery, ocular trauma, visually
significant cataract, orbital myositis, blindness or refractive errors outside –5 to
+3 D, (8) indication by the participant’s neurologist in the medical release form
that testing the participant in the OFF-medication state would put PD participants
at significant risk for medical complications.

Study type: Interventional

Allocation: no randomization; Intervention model: two-arm pre-post; Masking:
non-masked

Primary purpose: eye movement training

Study Phase: Phase 0

Date of first enrolment: March 12, 2016

Target sample size: 44

Recruitment status: Recruiting

Primary outcome(s): For both voluntary and reflexive saccades: number of
saccades needed to reach target amplitude, for first saccade: latency, normalized
mean velocity, normalized amplitude

Key secondary outcomes: Unified Parkinson’s Disease Rating Scale

in encrypted, password protected research computers. We will
retain all screening data for those who qualify and volunteer and
destroy the screening data for those who are excluded or do not
choose to participate in the study. The informed consent, medical
clearance, and verification of PD diagnosis will be stored together
in a locked cabinet.

Statistical Methods
After data cleaning is completed using the automatic and user-
guided portions of the MATLAB program, the cleaned data for
all trials, which contains pupil position data for both eyes, will
undergo statistical analysis. Using SAS, an ANOVA with mixed
effects will be performed using the finalized data concerning four
variables of interest for both voluntary and reflexive saccades:
(1) normalized mean velocity, (2) normalized angular distance,
(3) latency for the first saccade in a trial, and (4) saccade count
to target (SAS Institute Inc., Cary, NC, United States). For
participants with PD, the UPDRS scores before and after the
intervention will be included with the eight saccade variables in
the ANOVA with mixed effects to determine if any significant
clinical mobility improvements occur. In secondary analyses,
saccade-related measurements will be compared between the
voluntary and reflexive saccades and by target amplitude. In the
case of non-normality, non-parametric statistical methods will be
used. Saccade data that are not viable for statistical analysis due to
problems in recording eye movements, such as blinks obscuring
saccades and loss of fovea tracking during a saccade initiation or
endpoint, will not be included in the statistical analyses. Main
sequence analysis will be included as a secondary form of analysis.
Due to the comparatively weaker relationship seen between peak
velocity and amplitude in the range that will be recorded, analysis
of the relationship between mean velocity and amplitude and the
relationship between duration and amplitude will be included
(Bahill et al., 1975).

METHODS: MONITORING

Data Monitoring
Due to the low risk of this protocol, no data monitoring
committee is required.

Should the intervention cause orbital myositis or other
physical injuries in any of the participants, the research team,
in consultation with the patient’s physician, will make the final
decision to terminate the trial.

Harms
Data collected with the eye tracker during assessments in the
study will not give an immediate indication about participant
risk. However, participant comfort and concern for their own
health will be continuously monitored verbally by research
personnel throughout the assessment. If the participant expresses
concern all research procedures will stop and research personnel
will call 911 with the participant’s consent. In case of such
an adverse event the IRB will be immediately notified. The
participants are required to have a caregiver/family member
present during OFF-assessments. There will be an area on
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the physician clearance form (Supplementary Material Data
Sheet 3 sample physician release form for PD) for instructions
to minimize risk during the OFF-state as well as a schedule
for the administration of medications before and after the OFF
period. The medical waiver will include an additional area for any
special instructions to research assistants as necessary. Patients
that could be at significant risk for medical complications by
withdrawing from medications will be excluded from the study.

Auditing
The trial will be audited by compliance entities associated with
the University of Illinois at Urbana–Champaign system.

DISCUSSION

Improvement in voluntary saccade function may occur due to
changes at multiple levels of the saccade. Saccade improvements
may occur due to increased eye muscle strength as well as
better nervous system planning and control of saccades. Three
sets of extraocular muscles are involved in performing saccades
depending on their component composition (Sparks, 2002).
The medial and lateral rectus muscles generate horizontal
saccade movements (Sparks, 2002). The superior and inferior
rectus muscles function with the superior and oblique muscle
pairs for production of vertical saccade components (Sparks,
2002). Production of oblique saccades requires all three pairs
of muscles to coordinate together (Sparks, 2002). Functional
improvement of these muscles may impact the ability to perform
movements of different horizontal and/or vertical components
depending on which muscles are affected. At the nervous system
level, communication between areas involved in the generation
of saccades may increase to produce better coordination
between the horizontal and vertical saccade systems. Control
over peak saccadic velocity may also change as the training
task aims to facilitate larger voluntary saccadic amplitudes,
potentially inducing a change to the main sequence that has
been seen previously in voluntary control of reflexive saccades
(Muhammed et al., 2018).

The superior colliculus (SC) has been identified as a key area
for target and timing selection for saccades in primates (Port and
Wurtz, 2009). Neurons in the SC are thought to form a map of
saccades by direction and amplitude, requiring the activity of a
group of SC neurons to form a saccade of the correct amplitude
and direction (Sparks, 2002). SC neurons receive cortical and
subcortical input and communicate output to the midbrain and
pontine areas, as well as all premotor areas associated with
control of eye and head movements (Sparks, 2002). The cortical
frontal eye fields – while not necessary for saccade initiation –
contribute to saccade control, through activity mediated by the
SC (Sparks, 2002). The cerebellum plays a key role by creating the
error signal for saccades, which contributes to saccade accuracy,
speed, and lack of variability (Robinson and Fuchs, 2001). This
signal is also generated by different areas of the cerebellum
depending on whether the saccade has a horizontal or vertical
direction (Robinson and Fuchs, 2001). The posterior vermis
and caudal fastigial nucleus generate horizontal saccade signals,

while vertical saccade information is handled by the interpositus
nucleus (Robinson and Fuchs, 2001). Through these signals, the
cerebellum adds correction information to saccade commands
prior to initiation of movement to achieve accurate saccades of
the necessary speed (Robinson and Fuchs, 2001).

A lack of response to voluntary saccade training in the
primary or secondary outcome measures would support the use
of this protocol for testing saccades as part of a biomarker
assessment for early detection and diagnosis of PD. An added
dimension of biomarker potential may come from a differential
response of the main sequence to the training between the
two groups as measured by changes in characteristic peak
velocity for given saccadic amplitudes. This would create a more
robust saccade-based biomarker by adding a treatment-response
dimension to the characterization suggested as a diagnostic tool
by previous studies (Terao et al., 2013; Yerram et al., 2013;
Termsarasab et al., 2015).

CONCLUSION

This intervention holds significant promise as a low-cost, low
resource-demand tool to improve motor functions of the eyes
in persons with PD and adults with no known neurological
disorders as well as mobility outcomes associated with eye
function in persons with PD. Should persons with PD not
show improvements on any metric following the intervention,
a lack of response to voluntary saccade training may support
saccade assessment as a biomarker for early detection and
diagnosis of PD.

ETHICS AND DISSEMINATION

Research Ethics Approval
All methods have been approved by the local IRB committee (see
Table 8 for a full IRB revision history as of the publication of
this article). All subjects will provide written informed consent
(see Supplemental Materials Data Sheet 1 sample informed
consent for informed consent form) in accordance with the
Declaration of Helsinki. This protocol has been designed in
accordance with SPIRIT guidelines for clinical trial protocols
(see Table 9 for a summary of SPIRIT-required trial registration
information).

Protocol Version
IRB# 16033
Issue date: July 19th, 2018
Protocol amendment number: 06
Authors: Paul B. Camacho (PBC), Ronald Carbonari (RC),
Sa Shen (SS), Cindy Zadikoff (CZ), Arthur F. Kramer (AK), Citlali
López-Ortiz (CLO)

Protocol Amendments
Important protocol modifications will be approved by the local
IRB and communicated to co-investigators, trial participants,
trial registries, the clinical trial publishing journal.
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Consent or Assent
The written informed consent will be completed by the
participant before enrolling in the study and undertaking baseline
data collection. The participants will have the opportunity to read
the informed consent and ask any questions about the procedures
to the PI before participation in the study. We will provide
the participant with a copy of the signed informed consent
document. We will give a period of at least 24 h for review of
the consent form. This will assure that the participant has had
ample time in reviewing and understanding the consent form
prior to signing. The PI will be available to answer any questions
regarding the consent form.

Confidentiality
All biographical and medical information about potential
participants will be stored in paper form in a locked cabinet.
We will retain all screening data for those who qualify and
volunteer. We will destroy the screening data for those who
are excluded or do not choose to participate in the study. All
participants will be assigned a random identification number
for all data collection. The participant identification code
will be stored in paper form and destroyed when the study
procedures are completed. Clinical measures taken to as part
of the recruitment process and study will be deidentified,
using assigned participant numbers, and completed in paper
form. Raw eye tracking data will be collected and stored by
participant number on a computer, which will have no internet
connection. Access to the NDHD laboratory is restricted to
trained staff and, during training or testing, the participants
and their caregivers. At no point will anyone who is not a
member of the NDHD staff have access to any collected data.
Data analyses will be conducted on the coded non-identifiable
data. The data will be kept for 5 years after publication,
as required by the American Psychological Association. Only
deidentified data will be released after the trial as part
of peer-reviewed scientific journal articles and storage in a
data repository.

Access to Data
The final trial de-identified dataset will be available to members
of the NDHD laboratory staff and stored in an online data
repository. To minimize bias, investigators performing data
processing of eye tracking data will not have access to
clinical measure outcomes or identifying information until the
end of the study. Similarly, clinical assessors will not have
access to eye tracking data or other information that could
bias assessment.

Ancillary and Post-trial Care
Study participants will continue with regular, prescribed medical
care throughout the experiment. In the event of physical injury,
their physician will be contacted.

Dissemination Policy
The proposed forms of dissemination are presentations at
scientific conferences and publications in scientific journals.

Only deidentified data will be released after the trial as part
of peer-reviewed scientific journal articles and storage in a
data repository. To be eligible for authorship, all potential
authors must meaningfully contribute to and approve the final
manuscript. All authors are expected to contribute to the shaping
of the protocol and performance of some aspect of the study. The
full protocol and statistical code will be accessible via an online
data repository, along with the participant-level dataset for the
purposes of study reproducibility.

SPONSOR CONTACT INFORMATION

Trial Sponsor: University of Illinois at Urbana–Champaign
Sponsor’s Reference: N/A
Contact name: Dr. Citlali López-Ortiz
Address: 221 Freer Hall 906 S Goodwin Ave. Urbana, IL 61801
Telephone: (217) 300-1022
Email: lopezort@illinois.edu

Sponsor Responsibilities
The sponsor will have no direct role in study design, data
collection, management, analysis, interpretation of data, writing
of the report, or decision to submit the report for publication.
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As a medical imaging technology which can show the metabolism of the brain,

18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) is of great value for

the diagnosis of Parkinson’s Disease (PD). With the development of pattern recognition

technology, analysis of brain images using deep learning are becoming more and more

popular. However, existing computer-aided-diagnosis technologies often over fit and

have poor generalizability. Therefore, we aimed to improve a framework based on

Group Lasso Sparse Deep Belief Network (GLS-DBN) for discriminating PD and normal

control (NC) subjects based on FDG-PET imaging. In this study, 225 NC and 125 PD

cohorts from Huashan and Wuxi 904 hospitals were selected. They were divided into

the training & validation dataset and 2 test datasets. First, in the training & validation set,

subjects were randomly partitioned 80:20, with multiple training iterations for the deep

learning model. Next, Locally Linear Embedding was used as a dimension reduction

algorithm. Then, GLS-DBN was used for feature learning and classification. Different

sparse DBN models were used to compare datasets to evaluate the effectiveness of our

framework. Accuracy, sensitivity, and specificity were examined to validate the results.

Output variables of the network were also correlated with longitudinal changes of rating

scales about movement disorders (UPDRS, H&Y). As a result, accuracy of prediction

(90% in Test 1, 86% in Test 2) for classification of PD and NC patients outperformed

conventional approaches. Output scores of the network were strongly correlated with

UPDRS and H&Y (R = 0.705, p < 0.001; R = 0.697, p < 0.001 in Test 1; R = 0.592,

p = 0.0018, R = 0.528, p = 0.0067 in Test 2). These results show the GLS-DBN is

feasible method for early diagnosis of PD.

Keywords: Parkinson’s disease, Deep Belief Network, overlapping group LASSO, sparse representation, deep

learning, early diagnose
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INTRODUCTION

Parkinson’s disease (PD) is a long-term degenerative disease of
the central nervous system which effects 2–3% of the world’s
population over 65 years old, and its incidence is increasing in
recent years(Postuma and Berg, 2017). Accurate early diagnosis
of PD is crucial for treatment and prognosis.

Imaging disease-specific patterns of regional glucose
metabolism with 18F-fluorodeoxyglucose (FDG)-positron
emission tomography (PET) allows for accurate diagnosis of
PD, this has been increasingly acknowledged in recent years
(Eckert et al., 2005; Dabrowska et al., 2015; Meyer et al., 2017;
Politis et al., 2017). Some studies (Juh et al., 2004; Brajkovic
et al., 2017) used voxel-based statistical analyses or network
analysis in comparison to normal control (NC). For example,
Juh et al. used statistical parametric mapping to determine
useful metabolic patterns in diagnosing PD (Juh et al., 2004).
Brajkovic et al. combined visual assessment of individual scans
with statistical parametric mapping (Brajkovic et al., 2017).
These researches showed that compared with NC, glucose
metabolism of PD patients in sensorimotor cortex, lateral frontal
and parietooccipital areas was decreased (Meles et al., 2017),
which is of great value for the early diagnose of PD.

Currently, with the development of artificial intelligence
and data-driven analysis, various computer-aided-diagnosis
systems based on machine learning or deep learning(Chandra
and Sharma, 2016; Chen et al., 2017) methods have been
developed to identify brain disease related alterations in
neuroimaging datasets. For instance, some studies (Tang et al.,
2010; Garraux et al., 2013; Tripathi et al., 2015) classify
PD patients based on automated statistical analysis. Garraux
et al. applied logistic regression based on the expression of
metabolic covariance patterns. Tripathi et al. used a relevance
vector machine in combination with bootstrap resampling for
multiclass classification. Also, in Matthews’s research (Matthews
et al., 2018), two machine learning approaches (Canonical
Variates Analysis and Scaled Subprofile Model) were used to
represent the difference in motor symptoms between NC and PD
patients. Methods using deep learning have also been explored
to extract latent features from PET images. For example, Liu
et al. extracted potential features from 83 regions of interest
in magnetic resonance imaging and PET scans and trained a
multilayer neural network of multiple auto-encoders to combine
multimodal features for classification (Siqi et al., 2015). Suk et al.
presented that a stacked auto-encoder can be used to learn the
underlying non-linear complicated patterns in low-level features,
for example, the relationship between features (Suk et al., 2015).
Also, in Brosch et al.’s study, in order to find the modes of
variation between disease parameters and demography, they
proposed a low-dimensional manifold of brain volumes based
DBN model (Brosch et al., 2014).

While previous studies have claimed that existing machine
learning and deep learning methods achieved an acceptable
classification accuracy to discriminate PD and normal controls
(NC), these methods are still hampered by over-fitting and poor
generalizability, due to few labeled samples in neuroimaging
datasets. To solve above problems, scholars have used deep

learning models with multi-parameters, e.g., deep belief network
(DBN), to avoid models’ poor generalizability from traditional
machine learning methods (Yoshida and Miyato, 2017; Xu et al.,
2018). In addition, they have also proposed to add regular
terms to the objective function, which could optimize the loss
function, reduce the complexity of deep learning models, and
prevent models’ over-fitting (Mei et al., 2015). For these reasons,
considering the feature distribution of PET images, in this
paper, based on DBN, we add the Group Lasso Sparse (GLS)
model as a regular term to the objective function to prevent
the model over-fitting, and at the same time, to learn the
multi-level imaging features such as texture or edge information
for classifying PD vs. NC. To evaluate the effectiveness of
our method, we also compared our model with other deep
learning models.

GROUP LASSO SPARSE DEEP BELIEF
NETWORK (GLS-DBN) ALGORITHM

In this paper, we propose an improved DBN method, Group
Lasso Sparse Deep Belief Network (GLS-DBN), for feature
learning and classification of PET images. As a deep architecture,
DBN is suitable to deliver non-linear and complicated machine
learning information (Liu et al., 2011; Rui and Yang, 2017; Zheng
and Lu, 2017; Prasetio et al., 2018). Sparsity has become a key
ingredient for improving DBN because compared with non-
sparse representations, sparse representations are more efficient
from the point of view of information theory, which allow the
change of the effective number of bits per example in a fixed-
size representation (Ranzato et al., 2007; Luo et al., 2010; Halkias
et al., 2013). Sparsity is generally introduced into DBN by adding
a sparse penalty to the objective function and considering it
as a convex optimization problem. For example, based on the
DBNs of Hinton et al. (2006), Lee et al. proposed a sparse DBN
which faithfully simulating some properties of visual region V2
(Lee et al., 2007). Ji et al. proposed a sparse-response DBN
based on rate distortion theory, in which the distortion function
was based on Kullback-Leibler divergence between equilibrium
distribution in DBN model and data distribution, then a small
code rate was realized by adding sparse response regularization
(Ji et al., 2014). Xu et al. examined the problem of invariance
existing in sparse regular term and proposed an improved sparse
DBN (Xu et al., 2018). This model uses Laplace distribution
to induce the sparse state of hidden layer nodes, and uses
location parameters in the distribution to control the intensity
of sparsity. In addition to these, Keyvanrad et al added normal
regularization term in DBN which make the whole model has
different response according to difference between hidden units’
activation and fixed value (Keyvanrad and Homayounpour,
2017). Compared with base DBNmodel (without sparse penalty),
all of these models achieved better performance in natural image
recognition, but it is unknown whether these methods can
be applied to PET images. Therefore, to evaluate PET image
patterns, we combined traditional DBN with the overlapping
group lasso model and propose a novel sparse DBN model(Rao
et al., 2015; Jian et al., 2017; Liu et al., 2017; Yuan et al., 2018),
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GLS-DBN, adding a sparse penalty to learn useful low-level
feature representations.

GLS-DBN is based on GLS Restricted Boltzmann Machine
(GLS-RBM). As an improved Restricted Boltzmann Machine
(RBM) (Fischer and Igel, 2012), GLS-RBM combines the
overlapping group lasso model with the pre-training of
traditional RBM, grouping its hidden units according to the same
overlap ration of each group. Through this, GLS-RBM connects
similar features between groups. When a large number of similar
features exist discretely in multiple groups, multiple groups
are activated simultaneously, effectively solving the problem of
over fitting in the traditional learning model and improving the
recognition rate of the model.

We implement the GLS-RBM model by adding a sparse
penalty to the objective function. In this paper, we also use the
Cauchy distribution to replace the traditional L1 normal form
between groups in the overlapping groups Lasso model, making
the entire model sparser at the group level (Lü et al., 2016).
For sample collection:

{

v1, v2 . . . vm
}

, the optimization model of
unsupervised pre-training of GLS-RBM is:

F = Funsup + τFsprase (1)

Fsprase = λFLasso + ϕFCachy (2)

Where Funsup is the likelihood function of the RBM. The new
objective function of the optimization GLS-RBM model after
adding a sparse penalty is:

minimize{wij ,bi ,cj}F = −
1

m

∑m

l=1
log
∑

h

P
(

v(l), h(l)
)

+ τ

∑m

l=1
Fsprase (3)

For a GLS-RBMmodel, all hidden units
{

h1, h2 . . . hn
}

are evenly
distributed to I overlapping groups. Each group has the same
number of nodes, and there is overlap between each group.
The degree of overlapping is determined by α (between-group
and group). Figure 1 shows a simple GLS-RBM model based
overlapping group lasso.

The Fsprase in the whole layer becomes:

Fsprase = λFLasso + ϕFCachy

= λ

I
∑

i=1

√

√

√

√

∑

n∈Groupi

p
(

hn = 1 | v
)2

+ ϕ

n
∑

j=1

L
(

γ ,µ, pj
)

(4)

L
(

γ ,µ, p
)

=
1

π

γ

(x− µ)
2
+ γ 2

=
1

πγ

1
[

1+
(

pj−µ

γ

)2
] (5)

Where p is the probability distribution of the hidden unit, γ is
the scale parameter, which controls the degree of sparsity, and µ

is the location parameter.
The Gradient descent algorithm is used to iteratively solve

and update parameters of the function. We use the objective
function with penalty to update the weight w, and the hidden
layer bias b. The visible layer bias is obtained according to the

original objective function. The gradient of the objective function
is solved as follows:

∂F

∂Wij
=

∂

∂Wij

(

1

m

m
∑

l=1

ln
(

P
(

v(l)
))

+
∂Fsprase

∂Wij

)

(6)

∂F

∂bj
=

∂

∂bj

(

1

m

m
∑

l=1

ln
(

P
(

v(l)
))

+
∂Fsprase
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The second item with sparse penalty is expanded as follows:
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In whole GLS-DBN, multiple basic GLS-RBMs can be stacked
upon each other to form a deep hierarchy. The output of
each GLS-RBM serves as the input of the next basic GLS-
RBM at successive levels. In the last layer of GLS-DBN, a back
propagation (BP) network is set, receiving the output feature
vector of GLS-RBM as learned features, and adopting a gradient
descent algorithm to fine-tune the weight of the whole network,
thereby coordinating and optimizing the parameters of the whole
DBN. The feature vector mapping of GLS-DBN is optimized and
the size of the input space is simplified.

MATERIALS AND METHODS

Materials
Two different cohorts of PD and NC subjects was included
in this study. The first cohort came from Huashan Hospital,
Fudan University, Shanghai, China. Subjects were recruited from
Chinese populations and totaled 300 participants: 200 NC and
100 PD patients. Before the study, follow-up data for at least
1 year from all participants was collected. Then clinicians who
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FIGURE 1 | A simple RBM model based overlapping Group Lasso model. All visible units are evenly divided into three groups, and overlapping rate is 0.2.

were unaware of the imaging results were followed up to further
confirm the clinical diagnosis. Healthy controls in this study
were accepted by senior movement disorders expert neurological
examination, to rule out a history of psychiatric or neurologic
disorders. All participants had no drug use or exposed to
antipsychotic drugs.

The subjects in the Huashan cohort were randomly divided
into training & validation and test (Test 1) datasets. The Test 1
dataset consisted of 50 subjects, including 25 PD patients and 25
NC subjects. Due to the variability of sampling when grouping
data sets, the random cross validation method is used in the
training & validation dataset, which included 75 PD patients
and 175 NC subjects randomly partitioned into deep learning
model training (80%) and validation (20%), with 50 iterations.
The purpose of multiple cross-validation was to find the optimal
parameter combination. Finally, the Test 1 dataset was used to
verify the performance of the trained model.

The second cohort was from 904 Hospital in Wuxi, China,
and included 25 NC and 25 PD patients, enrolled between 2011
and 2015. Also, before the study, necessary screening and clinical
examinations from the two senior investigators of movement
disorders were used to select eligible subjects. All subjects in the
Wuxi cohort were used as a test dataset (Test 2) to verify the
reliability and robustness of the deep learning model.

The demographic information and clinical data of two
cohorts are shown in Table 1. The clinical characteristics (HY,
UPDRS) were not significantly different among Training &
Validation dataset and test datasets (Test 1 and Test 2) for PD
or NC (P > 0.05). The study was ethically approved by the
Institutional Review Boards at North Shore University Hospital
and Huashan Hospital. The study was conducted in accordance
with the Code of Ethics of the World Medical Association
(Declaration of Helsinki) and the standards set by the local
Institutional Review board and funding agencies. After a detailed
explanation of the scanning procedure, each subject received
written consent from each institution. During or after data
collection, authors can access information that could identify
all participants.

PET Imaging Acquisition
All participants were asked to fast before imaging. And the
whole experiment was carried out in a dimly-lit room. The
equipment used in this study was Siemens Biograph 64 PET/
computed tomography (CT; Siemens, Germany). After 45min
of intravenous injection of 185 MBq of FDG, the scans were
performed for about 10min. Hanning filter is used for image
reconstruction and then projection, with an axial and transaxial
cut-off frequency of 0.5.

PET Pre-processing
The pre-processing of original PET data was completed by SPM5
software (Wellcome Department of Imaging Neuroscience,
Institute of Neurology, London, UK). And the software platform
is implemented in Matlab7.4.0 (Mathworks Inc., Sherborn,
MA). First, through linear and non-linear transformations,
PET scans from all samples were spatially normalized into
Montreal Neurological Institute brain space. Then, a Gaussian
filter of 10mm FWHM was used for smooth images over three-
dimension space. After that, an automated anatomic labeling
template was used to remove unrelated regions in PET images.
Due to individual variation in FDG uptake, finally, each PET
image was normalized to the range of 0 to 1 through following
formula, where v is the voxel value of the image:

vnormalization =
v− vmin

vmax − vmin
(12)

Data Dimension Reduction
Locally linear embedding (LLE) (Roweis and Saul, 2000;
Xin et al., 2005) was used to reduce the dimensionality
of pre-processed PET data in all subjects, including the
Huashan and Wuxi cohorts. Since high-dimensional features are
often associated with many redundant and hidden important
relationships, we need a more concise PET data representation.
LLE is a typical manifold learning algorithm that has been used
to reduce the dimensionality of medical images (Liu et al., 2013).
LLE solves globally non-linear problems using locally linear
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TABLE 1 | Demographic and clinical information of Huashan hospital control and Wuxi 904 hospital cohort.

Cohort N Gender(M/F) Age(years) H&Y UPDRS

Huashan Hospital Cohort Training & Validation dataset NC 175 98/77 49.5 (29) N/A N/A

PD 75 51/24 56.5 (14.5) 2 (1) 20 (19.05)

P-Value – 0.9217a 0.593b – –

Test dataset (Test 1) NC 25 10/15 50 (22.5) N/A N/A

PD 25 14/11 55 (16) 2.5 (1.5) 25 (19.5)

P-Value – 0.4218a 0.258b – –

Wuxi 904 Hospital Cohort Test dataset (Test 2) NC 25 12/13 59 (9) N/A N/A

PD 25 19/6 65 (11.5) 2.5 (1.5) 28 (18.5)

P-Value – 0.1884a 0.771b – –

Age and clinical ratings are given as. Median (Interquartile range). H & Y, Hoehn and Yahr scale; UPDRS, Unified Parkinson’s Disease Rating Scale; Pa, The chi-square test; Pb, The

two-sample t-test.

fitting, which means a sample x1 can be represented linearly by
several samples from its k neighborhoods:

x1 = w12x2+ w13x3 + . . . + w1kxk (13)

Through LLE, we projected x1, x2, x3 . . . xk onto a lower
dimensional space x1

′, x2
′, x3

′ . . . xk
′ keeping the same

linear relationship:

x1
′
≈ w12x2

′
+ w13x3

′
+ . . . + w1kxk

′ (14)

For high-dimensional data, LLE can maintain the local linear
characteristics of the sample in the case of dimensionality
reduction and map it to a low-dimensional global coordinate
system, establishing a bridge between the high-dimensional data
space and the low-dimensional latent space. In this paper, we use
LLE to get a laconic representation of PET data. An automated
method was used to optimize the LLE parameters number of
neighbors, K, and corresponding dimensionality, D (Kayo, 2006).

GLS-DBN for Feature Learning and
Classification
Based on the proposed GLS-RBM model, we used three GLS-
RBM stacks to form a sparse GLS-DBN network for feature
relearning and classification of PD and NC samples. The input
of the GLS-DBN model is the low-dimensional feature learned
from original PET data using the LLE algorithm, and the output
is the prediction result.

Figure 2 shows the structure of our GLS-DBN for PD
classification. We used a greedy layer-wise algorithm for pre-
training of the GLS-DBN. First, the weights (W1) were optimized
to represent the distribution of the input data. Then the weights
were frozen, the first level output was generated after input data
through them. This output was used to train the next GLS-
RBM, with training performed in the same way. Finally, on the
top of the GLS-DBN, a SoftMax layer was added, all the layers
performed supervised fine-tuning as one deep neural network.

In the training progress, all the training steps shared the same
BP approach. The training set was randomly divided into several
mini-batches or subsets, and the cost function was minimized
using mini-batch gradient descent. At every iteration, only one

mini-batch was used for minimization. After all the samples were
used once for training, the training set was divided again so that
batches in each echo had different samples. The initial learning
rate was set to 0.0001.

The training progress of the model was carried out on
the training & validation dataset from the Huashan cohort.
Parameters were optimized through the mean accuracy of the
validation dataset. Finally, the two test datasets (Test 1 and Test
2) were used to verify the performance of the trained model.

Correlation Analyses
Before passing through the last layer of GLS-DBN, SoftMax
function, the values of the two nodes indicate scores for PD and
NC, respectively (Choi and Jin, 2018). The quantitative value of
the PD node was defined as RiskScore, a score that indicates
the proximity of PET data to PD or NC. In addition, RiskScore
was correlated with Hoehn and Yahr scale (H&Y) and Unified
Parkinson’s Disease Rating Scale (UPDRS), in which Pearson
correlation was used.

Experimental Comparison
To verify the reliability of our algorithm, we compared it
to traditional DBN and improved sparse DBN networks. The
sparse representation capability in various improved models
was examined, including Lee’s model, based on a quadratic
regularization term (Lee et al., 2007), Ji’s model, based on rate
distortion theory (Ji et al., 2014), Keyvanrad’s model, based on
normal distribution (Keyvanrad and Homayounpour, 2017), and
Xu’s model (Xu et al., 2018), based on Laplace distribution. In
addition, we compared our model with traditional DBN (without
sparse penalty), Cauchy distribution, and group lasso distribution
to examine the effectiveness of overlapping group lasso model.
All of these methods are based on different regularization
term definitions.

In all experiments, the DBN-based algorithm used the same
structure, namely the same layers and the same hidden units.
Weights and biases were initialized to uniformly distributed
random numbers.

We used the sparsity measurement method proposed by
Hoyer to accurately calculate the sparsity of the feature
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FIGURE 2 | Structure of GLS-DBN for PD classification.

representation learned by the model (Hoyer, 2004). The sparsity
measurement method is as follows:

sparseness (x) =

√
n−

(
∑n

i=1 |xi|
)

/

√

∑n
i=1 x

2
i

√
n− 1

(15)

Where x is the input data, n is the dimension of input data, and
the value range of sparsity is [0,1]. The closer to 1, the sparser
x is. The sparsity of activation probability of hidden units in
batch data was calculated first, and then the average sparsity of
activation probability of all data hidden units was calculated.

Sensitivity, specificity and accuracy of the test datasets (Test 1
and Test 2) were used as indicators to measure the performance
of the model. In order to further evaluate the performance of
the proposed method, we used receiver operating characteristic
(ROC) graph to visualize the result of contrast experiments. The
area under the curve (AUC) of the ROC was also computed to
quantitatively evaluate the classification performance.

In addition, to verify the robust of our proposed method,
we conducted a second experiment analysis and reassigned the
distribution of the training & validation set and test dataset
according to the H&Y. Appendix A shows the demographic and
clinical information on the second experiment analysis. Similar
to the first experiment analysis, we repeated above steps to
calculate sensitivity, specificity, accuracy and AUC of the training
& validation and test datasets (Test 1 and Test 2).

RESULTS

Determination of Parameters
Following an automated method (Kayo, 2006), the number of
dimensions and nearest neighbors in LLE were set to 350 and 10.

To determine the optimal structure and parameters of
the GLS-DBN model, including the scale parameter, location
parameter, overlapping rate, and the number of hidden units,
the greedy search algorithm was used in the whole training
progress until the average accuracy of the validation dataset
was optimized. These were chosen as the initial parameters for
fine-tuning of the GLS-DBN.

Finally, hyper-parameters were set: number of hidden units,
scale parameter, location parameter, and overlapping rate were
set to 500, 1, 0.025, and 0.2. The maximum number of
iterations of GLS-RBM and BP network were 50 and 300. Using

features from LLE and GLS-DBN as classifiers, the classification
experiment achieved 94% accuracy distinguishing PD and NC in
the validation dataset.

Classification Results
Two different batches of data from the Huashan and Wuxi
cohorts were used to validate the model’s performance. Figure 3
and Table 2 show the final classification performance on the
validation dataset, Test dataset 1, and Test dataset 2 under
hyper-parameters in two experiments. Using features from LLE
and GLS-DBN as classifiers, in Experiment 1, the classification
experiment distinguishing PD and NC achieved 90.0% accuracy,
96% sensitivity, 84% specificity, and AUC of 0.9120 in Test
dataset 1 and 86% accuracy, 92% sensitivity, 80% specificity,
and AUC of 0.8992 in Test dataset 2; while in Experiment 2,
the classification experiment distinguishing PD and NC achieved
88.0% accuracy, 92% sensitivity, 84% specificity, and AUC of
0.9320 in Test dataset 1 and 84% accuracy, 88% sensitivity, 80%
specificity, and AUC of 0.8947 in Test dataset 2. As a result, we
observed that the effect of different data distribution was slight
for the classification. It means that our proposed model may have
good robustness for other datasets.

Experimental Comparison
To verify the recognition ability of the algorithm, the
classification accuracies of different models were compared.
The results are shown in Figures 4, 5 and Table 3.

As shown inTable 3, Figures 4, 5, GLS-DBN achieved the best
accuracy on the training and test datasets when using the same
network structure. GLS-DBN resulted in improved performance
when compared to the traditional DBN classifier. Although
the best sensitivities in the test dataset were seen in DBN
models based on quadratic regularization and rate distortion,
the specificities of these models were quite low (0.56 and 0.50)
indicating that the rate of missed diagnosis is low but the rate
of misdiagnosis is high. Improved DBNmodel-based group lasso
achieved the best sensitivity, but the specificity was relatively low.
These results indicate that our model has the ability to balance
specificity and sensitivity when the best accuracy is reached. The
accuracy in the Test 2 dataset was not significantly lower than the
accuracy in the Test 1 dataset, demonstrating the generalizability
of our model. Our model also achieved the best AUC in the Test
2 dataset and close to the optimal result in the Test 1 dataset.
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FIGURE 3 | ROC curves on Validation dataset, Test dataset 1 and Test dataset 2.

TABLE 2 | Classification performance on Validation and Test datasets.

Accuracy Sensitivity Specificity AUC

Experiment 1 Validation dataset 0.924 0.973 0.80 0.9325

Test dataset 1 0.90 0.96 0.84 0.9120

Test dataset 2 0.86 0.92 0.80 0.8992

Experiment 2 Validation dataset 0.9380 0.9642 0.834 0.9634

Test dataset 1 0.88 0.92 0.84 0.9320

Test dataset 2 0.84 0.88 0.80 0.8947

In a comprehensive sense, compared with other sparse DBN
models based on different sparse penalties, our model optimizes
the prediction of PD diagnosis.

Correlation Analyses
RiskScore calculated from the GLS-DBN model was significantly
correlated with clinical scale value in the Test dataset, shown in
Figure 6. RiskScore was significantly positively correlated with
UPDRS (r =0 .705, P < 0.0001), and HY (r = 0.697, p < 0.0001)
in Test 1, UPDRS (r = 0.592, P = 0.0018), and HY (r = 0.528,
p= 0.0067) in Test 2.

These results show that RiskScore could be used as a
quantitative biomarker for early diagnosis of Parkinson’s disease.

DISCUSSION

In this paper, we used an improved sparse DBN named
GLS-DBN for the diagnosis of PD. Compared with other
sparse DBN models based on different sparse penalties, our
model showed better performance in classification of PD
and NC, demonstrating that GLS-DBN can be used for
effectively learning superior feature representation from small
neuroimaging data. Results from other datasets also proved the
preferable generalizability of GLS-DBN.

In addition, we compared the results of other similar studies
to our results. Due to differences in datasets, number of samples,

FIGURE 4 | ROC curves on Test dataset 1 in different models.

and methods of feature selection and reduction, while the
accuracy was not the best, our proposed method still exceeded
most relevant studies. Further, the sensitivity of our result was
significantly higher than those automated classifications (96 vs.
86.67%, 96 vs. 84.4%) (Fung and Stoeckel, 2007; Rana et al.,
2015). And the accuracy is closer to those methods based on
voxel statistical analyses (90 vs. 90.9%, 90 vs. 86.5%) (Eckert
et al., 2005). Our results also show a better specificity compared
with automated classifications. Our automated method based
deep learning performs better than traditional CADmethods and
approaches results with manual diagnosis.

In terms of feature extraction and dimension reduction, the
research of Rana et al. considered five brain areas, while the
features used in our experiment were chosen from the whole
brain (Rana et al., 2015). For high-dimensional PET data, LLE has

Frontiers in Neuroscience | www.frontiersin.org 7 April 2019 | Volume 13 | Article 39661

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Shen et al. Use GLS-DBN to Discriminate PD

FIGURE 5 | ROC curves on Test dataset 2 in different models.

learned the potential non-linear expression in PET image data
and embedded the features after dimensionality reduction into
linear coordinates, which can map the PET data of PD and NC
to different feature spaces, that is, subjects with different clinical
manifestations have different distribution of brain features
(Roweis and Saul, 2000). So, LLE reduces the recognition error
caused by redundant information and significantly improves the
feature difference between PD and NC samples, which is crucial
for later feature learning and classification.

In terms of feature learning, almost all studies using
pattern recognition in PD diagnosis use features directly for
classification, without the progress of feature relearning. In this
study, the GLS-DBN model based on a deep learning algorithm
can re-encode features before classification, which improves
accuracy. The experimental results also show that GLS-DBN can
learn more appropriate features in PET data compared with
the traditional RBM and DBN algorithms. One possible reason
is that sparse coding learns helpful low-dimensional feature
representations from unlabeled data. By constraining the hidden
layer, GLS-RBM can obtain a simpler andmore structured weight
pattern, thus avoiding the redundant and sequential-value code
that RBM may produce that RBM may produce. Figure 7 shows
the activation probability of hidden units caused by an input data,
in other words, the representation of this input data obtained by
traditional RBM and GLS-RBM. As we can see from Figure 7, the
activation probability of RBM approaching is much lower than
that of GLS-RBM, while the activation probability of the hidden
units in sparse-RBM is very close to 0, which means DBN-based
sparse penalty can learn a sparser representation of input data.
Table 4 shows the results of sparseness in different improved
DBN models. Although Lee’s model and Ji’s model achieved the
best sparseness (0.8594, 0.8239), classification performance in
Table 3 showed high sensitivity (0.925, 0.9750 in Test 1, 0.9630,
0.96 in Test 2) but low specificity (0.70, 0.56 in Test 1, 0.50, 0.45 in
Test 2). Compared with other sparse models, our model achieved

TABLE 3 | Classification performance on test datasets in different sparse models.

Model Dataset Accuracy Sensitivity Specificity AUC

Base DBN model Validation 0.7596 0.7845 0.6843 0.7769

Test 1 0.66 0.72 0.60 0.7568

Test 2 0.68 0.68 0.68 0.7408

Lee’s model Validation 0.9245 0.9353 0.8247 0.9275

Test 1 0.88 0.925 0.70 0.91

Test 2 0.84 0.9630 0.56 0.8726

Moham’s model Validation 0.7968 0.7164 0.6852 0.8087

Test 1 0.70 0.72 0.68 0.7744

Test 2 0.72 0.72 0.72 0.7904

Ji’s model Validation 0.8727 0.8867 0.7589 0.8977

Test 1 0.86 0.9750 0.500 0.9125

Test 2 0.84 0.96 0.45 0.8726

Xu’s model Validation 0.8443 0.8847 0.7964 0.8876

Test 1 0.74 0.72 0.76 0.8096

Test 2 0.80 0.80 0.80 0.8752

Cauchy model Validation 0.8034 0.8181 0.7443 0.8232

Test 1 0.72 0.72 0.72 0.7824

Test 2 0.76 0.72 0.80 0.8016

Group Lasso model Validation 0.898 0.9341 0.7877 0.9012

Test 1 0.80 0.72 0.88 0.8320

Test 2 0.78 0.72 0.84 0.8160

Our model Validation 0.935 0.925 0.85 0.9487

Test 1 0.90 0.96 0.84 0.9120

Test 2 0.86 0.92 0.80 0.8992

The bold values represents means the highest value of accuracy, sensitivity, specificity

and AUC on test dataset 1 and test dataset 2 in different models.

the highest sparseness (0.8011 vs. 0.6619, 0.7145, 0.7473, 0.7963,
0.7852) and also the best classification performance. The results
in Table 4 show that the sparsest DBN model does not represent
the most suitable model for learning useful low-level feature
representation of PET image patterns. Combining the results
of Table 3, through the adjustment of parameters, the GLS-
DBN base overlapping group lasso model can achieve optimal
sparseness, and balance specificity and sensitivity while ensuring
the accuracy of the model.

PD reflects in a small part of the brain pathology, causing
differences in only part of the brain compared to healthy people.
When using LLE dimensionality reduction for 3D PET images,
there may be a group relationship between features; moreover,
it is possible that there is overlap of features between groups.
The overlapping group lasso model takes this relationship into
account, and using a sparse penalty term effectively suppresses
expression of some redundant features. This increases the feature
difference between PD and NC samples, achieving improved
classification. The results of Test 1 from theHuashan cohort show
the excellent performance of our model. The results of Test 2
from the Wuxi cohort show the reliability of the model, and also
its generalizability to other datasets.

Considering the clinical effectiveness of the results, including
HY and UPDRS, this paper analyzed the correlation between
RiskScore and the clinical scale, shown in Figure 6. RiskScore
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FIGURE 6 | Correlation between output of the network and clinical scale value.The last layer provides an output score for NC or PD converter, defined as RiskScore.

FIGURE 7 | Activation probability of hidden units obtained by RBM (left) and GLS-RBM (right).

calculated from the GLS-DBNmodel was significantly correlated
with clinical scale value (0.705, 0.697, p < 0.001; 0.592, 0.528, p
< 0.01) in the Test dataset, indicating that the features learned by
GLS-DBN correlate with clinical information. To better describe
the discriminability of the results, we conducted a statistical

analysis of the risk values, and the distribution of RiskScore in
PD and NC are shown in Figures 8, 9. RiskScore of PD was
significantly higher than that of NC (0.31± 0.23 and 0.73± 0.14,
p < 0.01 in Test 1, 0.26 ± 0.22 and 0.72 ± 0.17, p < 0.01 in Test
2). These results indicate that this method can effectively classify
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TABLE 4 | Average sparseness of different models.

Model Base DBN model Lee’s model Ji’s model Xu’s model Cauchy model Keyvanrad’s model Group Lasso model Our model

Sparseness 0.6619 0.8594 0.8239 0.7145 0.7473 0.7963 0.7852 0.8011

FIGURE 8 | RiskScore of PD and NC.

FIGURE 9 | RiskScore of PD and NC in test dataset 1 and in test dataset 2.

PD and NC, and that RiskScore can be used as a quantitative
biomarker for early diagnosis of PD.

LIMITATIONS

Despite the impressive performance of the proposed method,
the method also has some limitations and disadvantages. First,
trial and error was used to determine the learning rate, and
the parameter values in the network structure were optimized
through a large number of experiments, causing a relatively
large time complexity of the algorithm. Proper selection of
parameters merits further studies; we propose using optimization
algorithms such as a grid search algorithm to search for the

optimal parameter combination as a next step. Second, while our
work has a large number of subjects compared with several recent
studies, it’s still not enough to generalize our experimental results.
Further, our work focuses on PET features only. Multimodal
data, such as MRI and diffusion tensor imaging features, can be
used for feature confusion and classification. Third, our classifier
is a BP network, and other classifiers such as extreme learning
machine and support vector machine can be combined with
DBN. Combining other classifiers with DBN would allow the
last layer before BP to be features learned from the DBN model
and as an input for traditional classifiers, possibly improving
classification results. Finally, as our study is based on PD and
NC samples, it would be meaningful and of vital importance
to further grade of different forms of Parkinson’s disease or
distinguish idiopathic Parkinson’s disease from other forms of
degenerative Parkinson’s disease.

CONCLUSION

In this paper, we introduced a sparse feature learning framework
in PD early diagnosis. GLS-DBN model accurately classifies
patients into diagnostic groups with limited image processing
and provides a quantitative biomarker which can predict early
Parkinson’s disease. Longitudinal changes of rating scales about
movement disorders (UPSRS and H&Y), was significantly
correlated with the output value of prediction model. In the
future, our approach may be used in independent cohorts, and as
an accurate biomarker, it could identify appropriate prodromal
patients who might benefit from early intervention.
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Background: Iron is important in the pathophysiology of Parkinson’s disease (PD)
specifically related to degeneration of the substantia nigra (SN). Magnetic resonance
imaging (MRI) can be used to measure brain iron in the entire structure but this approach
is insensitive to regional changes in iron content.

Objective: The goal of this work was to use quantitative susceptibility mapping (QSM)
and R2∗ to quantify both global and regional brain iron in PD patients and healthy
controls (HC) to ascertain if regional changes correlate with clinical conditions and can
be used to discriminate patients from controls.

Methods: Susceptibility and R2∗ maps of 25 PD and 24 HC subjects were
reconstructed from data collected on a 3T GE scanner. For the susceptibility maps,
three-dimensional regions-of-interest (ROIs) were traced on eight deep gray matter
(DGM) structures and an age-based threshold was applied to define regions of high
iron content. The same multi-slice ROIs were duplicated on the R2∗ maps as well.
Mean susceptibility values of both global and regional high iron (RII) content along with
global R2∗ values were measured and compared not only between the two cohorts,
but also to susceptibility and R2∗ baselines as a function of age. Finally, clinical features
were compared for those PD patients lying above and below the upper 95% regional
susceptibility-age prediction intervals.

Results: The SN was the only structure showing significantly higher susceptibility in PD
patients compared to controls globally (p < 0.01) and regionally (p < 0.001). The R2∗

values were also higher only in the SN of PD patients compared to the healthy cohort
(p < 0.05). Furthermore, those patients with abnormal susceptibility values lying above
the upper 95% prediction intervals had significantly higher united Parkinson’s diagnostic
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rating scores. R2∗ values had larger errors and showed larger dispersion as a function
of age than QSM data for global analysis while the dispersion was significantly less for
QSM using the RII iron content.

Conclusion: Abnormal iron deposition in the SN, especially in RII areas, could serve as
a biomarker to distinguish PD patients from HC and to assess disease severity.

Keywords: brain, iron, magnetic resonance imaging, Parkinson’s disease, substantia nigra, deep gray matter,
quantitative susceptibility mapping, relaxometry

INTRODUCTION

Parkinson’s disease (PD) is believed to be the second most
common neurodegenerative disease in developed countries
(Shulman and De Jager, 2009). Research has shown that the
substantia nigra (SN) is one of the most important structures
playing a vital role in the pathophysiology of PD patients
(Ghassaban et al., 2018). Neuronal loss and lack of dopamine
content in this midbrain nucleus generally lead to movement
disorders in these patients (Wang et al., 2016; Martin-Bastida
et al., 2017). The loss of neuromelanin in particular has been
thought to lead to an increase in iron content in the SN which
has been implicated in a number of PD studies (Castellanos
et al., 2015; Huddleston et al., 2017; Langley et al., 2017). In fact,
the SN seems to be the only reliable brain structure through
which a meaningful relationship with neuronal loss has been
found (Ghassaban et al., 2018). Since the onset of PD is generally
late and brain iron levels tend to increase as a function of
age in deep gray matter (DGM) structures even under normal
conditions, (Hallgren and Sourander, 1958; Li et al., 2014; Liu
et al., 2016) it is important to account for these age-dependent
changes (Acosta-Cabronero et al., 2017).

A number of magnetic resonance imaging (MRI) techniques
can be used to quantify iron content in the human body.
Conventionally, R2 and R2∗ relaxation rate mapping along
with phase information have been utilized to measure iron
deposition in different regions of the human body in vivo
(Ghassaban et al., 2018). However, one of the most popular
approaches today is the use of quantitative susceptibility mapping
(QSM); a post-processing technique that generates susceptibility
maps using phase information and, unlike other conventional
quantification techniques, is independent of imaging parameters
such as geometry, echo time, spatial resolution, field strength,
and signal-to-noise ratio (SNR) (Haacke et al., 2015). QSM also
appears to have the greatest reliability and robustness compared
to other MR-based in vivo methods (Haacke et al., 2015; Du
et al., 2016; Langkammer et al., 2016). Specifically, in terms of
consistency, QSM has been shown to have high repeatability and
less variability compared to R2∗ (Feng et al., 2018).

Liu et al. (2016) investigated a cohort of 174 healthy adults
using QSM with the purpose of assessing the effects of normal
aging on the iron levels in seven DGM structures. In addition
to their evaluation of mean susceptibility from the entire 3D
region covered by each nucleus as a function of age (also
known as the global analysis) in the basal ganglia and midbrain,
they introduced a new age- and structure-dependent high

iron susceptibility-age baseline (also known as the regional
analysis). The regional analysis appeared to be more robust
and sensitive to age-related changes compared to the global
analysis (Liu et al., 2016). Furthermore, by applying the same
methodology, Ghassaban et al. (2018) established the global
and regional susceptibility-age baselines for the dentate nucleus
using 81 healthy adults. Therefore, we hypothesized that this
regional analysis may also be more sensitive to changes in iron
for PD patients.

In this study, using QSM and R2∗ techniques, we compare
the iron content in the DGM structures between a cohort of
PD patients and a group of healthy controls (HC). Additionally,
using QSM maps we investigate the iron deposition rates of
PD patients compared to the corresponding global and regional
normal baselines established by Liu et al. (2016) and Ghassaban
et al. (2018) Similarly, R2∗ maps are used to compare global
measurements to those of the healthy population established by
Li et al. (2014). Also, susceptibility measurements in terms of
increased iron deposition are compared to the clinical status
of PD patients. Finally, the QSM data are compared directly
to the R2∗ across the different DGM nuclei using the HC
data. This study could potentially pave the way for developing
future iron-based diagnostic studies and better understanding
the etiology of PD.

MATERIALS AND METHODS

Data Collection
This study was approved by the local ethics committee at
Ruijin Hospital and all subjects signed consent forms. A total
of 49 subjects were evaluated: 25 PD patients (61.8 ± 6.4 years
old) and 24 HC subjects (63.4 ± 8.0 years old). All of the
PD patients were recruited from local movement disorder
clinics. The inclusion criteria were: (1) a diagnosis of idiopathic
PD, (2) Mini-Mental State Exam (MMSE) score equal to or
more than 24, and (3) Hoehn and Yahr (H&Y) scale of one
through three as patients with higher scores had more severe
symptoms and would have trouble staying still in the magnet
for the duration of the scans. The exclusion criteria were:
(1) symptoms of secondary or atypical parkinsonism, or (2) a
history of cerebrovascular disease, seizures, brain surgery, brain
tumor, moderate-to-severe head trauma, or hydrocephalus, or
(3) treatment with antipsychotic drugs or with any other drug
possibly affecting clinical evaluation. Data were collected using a
16 echo, gradient echo imaging sequence on a 3T GE Signa HDxt
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from an eight-channel receive-only head coil with the following
imaging parameters: TE1 = 2.69 ms with 1TE = 2.87 ms,
TR = 59.3 ms, pixel bandwidth = 488 Hz/pixel, flip angle = 12◦,
slice thickness = 1 mm, matrix size = 256 × 256, and an in-plane
resolution of 0.86 × 0.86 mm2.

Data Processing
QSM Processing
The susceptibility maps were created using the first eight echoes
and were reconstructed for each echo individually using SMART
v2.0 (MRI Institute for Biomedical Research, Bingham Farms,
MI, United States) followed by a weighted average of the resultant
QSM images based on their SNRs. Only 8 echoes were used
because of severe frontal signal loss at echo times longer than
roughly 20 ms. The reconstruction steps included the brain
extraction tool (BET) to segment only the brain tissue using
the fourth echo magnitude data,(Smith, 2002) quality guided 3D
phase unwrapping algorithm (3DSRNCP) for phase unwrapping,
(Abdul-Rahman et al., 2007) sophisticated harmonic artifact
reduction for phase data (SHARP) for background field removal
with a threshold of 0.05 and a deconvolution kernel of 6,
(Schweser et al., 2011) and a truncated k-space division (TKD)
approach (threshold = 0.1) referred to as susceptibility weighted

imaging and mapping (SWIM) for inverse filtering (Haacke et al.,
2010). The DGM nuclei included in this study were: the head
of the caudate nucleus (CN), putamen (PUT), globus pallidus
(GP), thalamus (THA), pulvinar thalamus (PT), red nucleus
(RN), SN, and dentate nucleus (DN). Multi-slice 3D regions-of-
interest (ROI) representing these structures were manually traced
on QSM slices using SPIN (Signal Processing in NMR, SpinTech,
Inc., Bingham Farms, MI, United States) by the first author
(KG) with more than 5 years of relevant experience. Original
magnitude and phase images were used as references to ensure
accurate boundary drawings. An illustration of the 3D ROIs is
given in Figure 1. Mean susceptibility values from the entire
structures of both cohorts were then extracted and plotted as
a function of age, also known as the global analysis. Similar to
Liu et al.’s (2016) work, age-dependent susceptibility values were
chosen as thresholds from the upper 95% prediction intervals
based on their global analysis of 174 controls from which regional
high iron (RII) content voxels were then estimated for a given
structure at a given age for all the nuclei except the DN. For
the DN, a similar process was performed on the global analysis
established by Ghassaban et al.’s (2018) study from 81 healthy
adults. Similarly, mean susceptibilities of the RII regions were
calculated and plotted as a function of age, also known as the
regional analysis. The global and regional analyses of both PD

FIGURE 1 | 3D regions of interest (ROIs) traced on susceptibility maps of a 65-year-old male. Structures include the head of caudate nucleus (CN), globus pallidus
(GP), putamen (PUT), thalamus (THA), pulvinar thalamus (PT), red nucleus (RN), substantia nigra (SN), and dentate nucleus (DN). The numbers in the lower left corner
represent the slice numbers from 132 slices collected in this example.
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and HC cohorts were then superimposed on the corresponding
plots introduced by Liu et al. (2016) and Ghassaban et al. (2018).
Additionally, the average values were compared for both global
and RII susceptibilities between the PD and HC cohorts in both
hemispheres and in all DGM nuclei.

R2∗ Processing
The R2∗ maps were also reconstructed using the first eight
echoes through a pixel-by-pixel fit to an exponential curve. The
exact same 3D ROIs traced on the QSM maps were also used

on R2∗ maps. Similar to QSM data analysis, mean R2∗ values
were extracted from each structure and plotted as a function of
age (i.e., global analysis). These values were then superimposed
and visually compared to the corresponding R2∗-age baselines
established by Li et al. (2014) for six DGM structures including
the CN, GP, PUT, RN, SN, and DN. For each structure the fitted
exponential regression equation and 95% confidence intervals
provided by Li et al. (2014) were used to predict the mean R2∗

values as a function of age for the normal population. Moreover,
similar to the analysis done in QSM processing, R2∗ values of

FIGURE 2 | Right hemisphere global analyses of HC and PD cohorts superimposed on the susceptibility-age baselines for different deep gray matter (DGM)
structures published by Ghassaban et al. (2018) for the dentate nucleus and Liu et al. (2016) for the other six nuclei. CN, caudate nucleus; GP, globus pallidus; PUT,
putamen; THA, thalamus; PT, pulvinar thalamus; RN, red nucleus; DN, dentate nucleus. Hollow circles, normal baselines; solid circles, HC data from this study;
triangles, PD data from this study; solid lines, linear regression models associated with the normal population; dashed lines, 95% prediction intervals associated with
the normal population.
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FIGURE 3 | Right hemisphere regional high iron (RII) analyses of HC and PD cohorts superimposed on the susceptibility-age baselines for different DGM structures
published by Ghassaban et al. (2018) for the dentate nucleus and Liu et al. (2016) for the other six nuclei. CN, caudate nucleus; GP, globus pallidus; PUT, putamen;
THA, thalamus; PT, pulvinar thalamus; RN, red nucleus; DN, dentate nucleus. Hollow circles, normal baselines; solid circles, HC data from this study; triangles, PD
data from this study; solid lines, linear regression models associated with the normal population; dashed lines, 95% prediction intervals associated with the
normal population.

both PD and HC cohorts were compared to each other in both
hemispheres for all DGM structures.

Correlation Between Susceptibility and R2∗

With both the QSM and R2∗ data available and in order to
assess the relationship between these two parameters in the DGM
structures, a linear regression model was fitted to the mean R2∗

as a function of mean susceptibility in all the nuclei. To avoid
any sources of bias, only the healthy cohort was included for this
correlation, the results of which were compared to those of Li
et al.’s (2014) study.

Statistical Analysis
All statistical analyses were carried out using Microsoft Excel
2013 (Microsoft Corporation, Redmond, WA, United States)
with a two-tailed significance level of 0.05. Two-sample t-test
analyses were performed to compare the average global (for
QSM and R2∗) and regional (for QSM only) values of PD and
HC cohorts in both hemispheres. Furthermore, paired sample
t-tests were performed to compare susceptibility and R2∗ values
between the left and right hemisphere of each DGM structure.

Additionally, a comparison between the mean susceptibility
values of the SN and clinical status of the PD patients
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FIGURE 4 | Substantia nigra global (entire structure) and regional (RII high iron) analyses of HC and PD cohorts superimposed on the susceptibility-age baselines
published by Liu et al. (2016). Hollow circles, normal baselines; solid circles, HC data from this study; triangles, PD data from this study; solid lines, linear regression
models associated with the normal population; dashed lines, 95% prediction intervals associated with the normal population.

TABLE 1 | Two-sample t-test statistics comparing susceptibility means (ppb) of the global and regional analyses between the two cohorts in both hemispheres.

Global analysis RII analysis

Hemisphere Right Left P-value Right Left P-value

CN HC 54.6 ± 6.6 52.4 ± 7.6 0.27 99.1 ± 5.6 97.3 ± 6.1 0.32

PD 59.3 ± 6.7 54.7 ± 6.9 0.16 102.0 ± 7.8 97.7 ± 8.6 0.03

P-value 0.35 0.67 NA 0.56 0.95 NA

GP HC 133.1 ± 10.1 127.8 ± 7.8 0.15 231.8 ± 5.2 231.1 ± 6.9 0.82

PD 133.7 ± 10.0 127.6 ± 9.9 0.11 232.3 ± 7.2 231.6 ± 7.9 0.86

P-value 0.94 0.97 NA 0.92 0.92 NA

PUT HC 68.7 ± 6.4 72.8 ± 7.0 0.25 150.5 ± 4.3 144.9 ± 5.0 0.08

PD 75.8 ± 6.6 73.6 ± 7.8 0.32 145.1 ± 4.8 142.1 ± 6.1 0.12

P-value 0.15 0.87 NA 0.19 0.10 NA

THA HC 2.3 ± 2.8 2.8 ± 2.9 0.71 30.2 ± 3.2 36.5 ± 3.0 <0.001

PD 3.1 ± 3.7 2.2 ± 3.7 0.59 33.3 ± 4.8 36.8 ± 3.8 <0.001

P-value 0.24 0.66 NA 0.30 0.88 NA

PT HC 45.3 ± 7.0 45.6 ± 6.9 0.90 83.3 ± 3.7 85.4 ± 2.8 0.10

PD 51.8 ± 8.8 47.7 ± 7.2 0.12 87.5 ± 5.5 86.4 ± 4.7 0.45

P-value 0.27 0.68 NA 0.22 0.74 NA

RN HC 108.1 ± 13.0 102.9 ± 12.9 0.31 173.2 ± 5.4 177.5 ± 6.1 0.03

PD 112.8 ± 13.1 112.2 ± 13.8 0.85 175.8 ± 6.8 179.3 ± 6.8 0.01

P-value 0.61 0.36 NA 0.55 0.69 NA

SN HC 115.4 ± 11.6 127.5 ± 10.8 0.04 200.1 ± 6.1 210.3 ± 5.7 <0.001

PD 139.8 ± 10.4 147.5 ± 10.5 0.01 220.7 ± 5.6 234.7 ± 5.9 <0.01

P-value < 0.01 < 0.01 NA < 0.001 < 0.001 NA

DN HC 93.1 ± 9.7 95.3 ± 11.0 0.41 147.6 ± 5.4 155.9 ± 6.2 <0.001

PD 99.4 ± 10.2 102.1 ± 10.8 0.41 153.7 ± 7.2 159.1 ± 7.4 <0.01

P-value 0.38 0.39 NA 0.20 0.52 NA

Numbers are reported in Mean ± 95% confidence intervals. CN, caudate nucleus; GP, globus pallidus; PUT, putamen; THA, thalamus; PT, pulvinar thalamus; RN, red
nucleus; SN, substantia nigra; DN, dentate nucleus. P-values in bold show significant differences between the means.
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was performed. The parameters to which SN global and
regional susceptibility values were compared included the unified
Parkinson’s disease rating scale part III (UPDRS-III) and H&Y
scores as well as the disease duration.

Finally, the same clinical status parameters along with
patients’ ages were used to compare a sub-group of PD
patients with abnormal RII susceptibility values [i.e., higher
than the corresponding upper 95% prediction interval from the
susceptibility-age baseline (Liu et al., 2016)] to another sub-
group whose RII susceptibilities fall within the normal ranges
of the baseline.

RESULTS

Figures 2, 3 show the QSM global and regional analyses for
the right hemisphere of both groups, respectively, superimposed
on the corresponding previously established normal populations.
These susceptibility-age baselines were published by Ghassaban
et al. (2018) (for the DN only) and Liu et al. (2016) (for the rest
of the DGM structures). The SN is the only structure showing
elevated susceptibility values in both global and regional analyses
(see Figure 4).

The results of the two-sample and paired-sample t-tests
comparing the susceptibility means of HC and PD cohorts within
and between the two hemispheres of different DGM structures
are summarized in Table 1. Only the SN showed significantly

higher susceptibility values in PD patients when compared with
the HC cohort, with the regional analysis (PD: 221 ± 14 ppb, HC:
200 ± 15 ppb, p < 0.001 for the right and PD: 235 ± 15 ppb,
HC: 210 ± 15 ppb, p < 0.001 for the left hemisphere) revealing
more prominent differences compared to those of the global
analysis (PD: 140 ± 26 ppb, HC: 115 ± 29 ppb, p < 0.01 for
the right and PD: 147 ± 27 ppb, HC: 127 ± 27 ppb, p < 0.01
for the left hemisphere). The SN was also the only structure
showing significant differences between the two hemispheres in
both cohorts using both global and regional analyses. On the
other hand, in addition to the SN, significant differences were
seen between the hemispheres in both PD and HC groups in the
THA, RN, and DN only using the regional analysis. Among all
affected nuclei, the left hemisphere showed significantly higher
susceptibility values.

The relationship between mean global and regional
susceptibility changes in the SN of PD patients and clinical status
parameters (i.e., disease duration, H&Y and UPDRS-III scores)
resulted in no significant correlations (all p-values > 0.05).
However, as shown in Table 2, dividing the PD cohort in
two sub-groups with normal and abnormal RII susceptibility
values showed that there were significantly higher UPDRS-III
scores in patients with elevated RII iron content (p < 0.05 in
both hemispheres).

The global measurements of R2∗ values superimposed
on the corresponding age-dependent baselines published by
Li et al. (2014) resulted in no abnormal values with most of the

TABLE 2 | Comparison of clinical status between two sub-groups of the PD cohort with normal and abnormal RII iron content in the SN.

Hemisphere Right Left

Abnormal Normal Abnormal Normal

Group iron (N = 10) iron (N = 14) p-value iron (N = 10) iron (N = 14) P-value

Age (years) 62.5 ± 8.6 64.9 ± 7.8 0.51 63.9 ± 5.6 63.1 ± 9.7 0.80

Disease duration (years) 4.7 ± 2.8 3.8 ± 3.3 0.49 5.1 ± 3.4 3.4 ± 2.9 0.29

UPDRS-III 30.4 ± 14.3 17.8 ± 9.6 0.03 28.6 ± 12.9 16.6 ± 9.7 0.03

H&Y 1.8 ± 0.6 1.4 ± 0.5 0.17 2.0 ± 0.75 1.5 ± 0.55 0.10

Normal and abnormal sub-groups are separated based on RII susceptibility values lower and higher than the baseline upper 95% prediction intervals, respectively. P-values
in bold show significant differences between the means.

FIGURE 5 | Global analysis of the R2∗ measurements in the SN of PD patients and healthy adults superimposed on the corresponding R2∗-age exponential fits
provided by Li et al. (2014). Although most of the subjects fall within the 95% confidence intervals, the PD patients showed higher R2∗ values compared to those of
the HC. Solid circles, HC data from this study; triangles, PD data from this study; solid lines, exponential regression models from the normal population (Li et al.,
2014); dashed lines, 95% confidence intervals associated with the fitted curves.
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FIGURE 6 | Mean R2∗ as a function of mean QSM in deep gray matter nuclei
of the HC group fitted by a linear regression model. The data points are the
average means between the two hemispheres. Based on the estimated mean
values, the labels show the approximate locations around which each
structure falls. The regression parameters are shown on the plot. CN, caudate
nucleus; GP, globus pallidus; PUT, putamen; THA, thalamus; PT, pulvinar
thalamus; RN, red nucleus; DN, dentate nucleus. Solid circles, HC data from
this study; solid line, linear regression fit.

means falling within the 95% confidence intervals. The only
exception was the SN of the PD patients with R2∗ values slightly
skewed upward but still most subjects were below the upper
95% confidence interval, as shown in Figure 5. Also, the two-
sample t-tests between PD and HC cohorts revealed significant
differences in the SN in both hemispheres (PD: 42 ± 4 s−1, HC:
39 ± 4 s−1, p = 0.01 for the right and PD: 43 ± 4 s−1, HC:
39 ± 4 s−1, p = 0.01 for the left hemisphere). The paired sample
t-tests showed no significant differences between the hemispheres
for any of the structures in either cohort.

Figure 6 shows the linear regression model fitted to the R2∗

values as a function of the corresponding QSM values for the
HC group plotted for all the nuclei included in this study. The
Pearson correlation coefficient (PCC) value of 0.87 is indicative of
a strong linear relationship between these two parameters. Also,
the linear slope of 0.123 s−1/ppb is very close to the slope of
0.126 s−1/ppb reported by Li et al. (2014).

DISCUSSION AND CONCLUSION

To date, there is no clear answer to the contributing factors in
the pathogenesis of PD (Langkammer et al., 2016; Pietracupa
et al., 2017). It is generally believed that the loss of neuromelanin
content may initiate the process of increasing non-heme iron
deposits in the midbrain which then leads to different forms
of parkinsonism (Castellanos et al., 2015; Huddleston et al.,
2017; Langley et al., 2017). On the other hand, there is also the
hypothesis arguing that the depigmentation of the nigrosome-
1 content in the posterolateral part of the SN might lead to the
subsequent increase in iron deposition in this midbrain structure
(Schwarz et al., 2018).

In this work, we have shown that there is an increase in
iron in the SN over and above the normal increase due to
age in PD patients. Although the average susceptibility value
of the SN is seen to increase in the PD cohort, especially in

the thresholded regions characterized by high iron content, we
also note that there may, in fact, be two populations of PD
patients, those that do not change iron content and those that
do. For the abnormally high iron content group, there was a
significantly higher UPDRS-III than the group showing normal
iron content. Nevertheless, to draw a stronger conclusion will
require investigating a considerably larger sample size.

The global and regional analyses in the SN of PD patients
has previously been evaluated in Ghassaban et al. (2018)
and Sethi et al. (2018) in which similar QSM reconstruction
techniques were adopted using different scanners and field
strengths. The regional analysis being more sensitive to local
high iron content changes seen in the SN in this study is in
accordance with their findings. This validates the consistency
and reliability of using gradient echo imaging and the use of the
threshold-based QSM reconstruction for data from different MR
manufacturers’ systems.

The comparison between the two hemispheres revealed
significantly higher iron deposition in the left hemispheres of
both PD and HC cohorts in the THA, RN, SN, and DN in
the regional (RII) analysis and only in the SN for the global
analysis. However, the largest effects in terms of absolute shifts
in susceptibility were seen in the SN where the differences
were on the order of 20 ppb compared to all other cases
where the differences are on the order of less than 8 ppb.
This is consistent with Liu et al.’s (2016) study where they
showed that, except in the SN, small but significant differences
between the hemispheres of all DGM structures would vanish
if other sources of error (in their case excluding one slice
from the top and/or bottom of the structures or changing the
definition of RII from upper 95 to 99% prediction interval of
the global analysis) were taken into account when measuring
the susceptibility values. However, simulation results for the
SN show that QSM has a systematic error of roughly 12 ppb
in the SN due to streaking artifacts generated by the QSM
reconstruction (Haacke et al., 2015). Additionally, low spatial
frequency undulations seen in QSM techniques could also lead
to asymmetry in the brain (Haacke et al., 2015). Therefore, by
taking into consideration all these sources of systematic error,
the asymmetries seen in the SN may disappear as well. Another
QSM study in which lateral asymmetry was found in the SN
of PD patients was done by Azuma et al. (2016) where the
mean susceptibility was seen to be significantly higher in the
more affected hemisphere compared to that of the less affected
hemisphere although they had much larger errors compared to
our data due in part to the distribution of iron and the small
sample size. They also do not account for the other sources
of systematic error mentioned above which may again remove
any remaining small differences between left and right values
of iron in the SN.

Evaluating R2∗ maps led to two major findings: first, in
accordance with the literature, iron content characterized by R2∗

values was seen to be higher in the SN of PD patients compared
to the healthy group. Second, even though these differences
were statistically significant, considerably lower p-values from
QSM results (both between the two groups and between the
hemispheres within each group) showed higher sensitivity and
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reliability of susceptibility-based techniques to pick up more
subtle changes in brain iron. Additionally, the error analysis
from both of these iron quantification techniques reveals that the
variability of measurements associated with QSM is considerably
less compared to that of R2∗ (Feng et al., 2018), especially
in the high iron content (RII) region. Despite the fact that
R2∗ correlates well with QSM measures of iron content, R2∗

measurements (especially from a limited number of echo times)
is more prone to noise. One major advantage of QSM is that
it is in theory independent of echo time, but the SNR of the
R2∗ maps depends critically on the echo time (Haacke et al.,
2015). Practically an echo time of roughly 20 ms is enough to
give excellent susceptibility maps and in this case with 8 echoes
excellent measurements of the DGM is possible.

Another key finding in this work that validates previous
results is the tightness (higher r2-values) of the iron growth
with age in the different DGM structures in the regional iron
content measures. The fact that regional changes are much tighter
than global changes opens the door to a better separation of
patient types, specifically in terms of separating high iron content
patients from normal iron content patients. Averaging over all
patients, especially in the global analysis, will reduce the shift
in the mean iron content and may be the reason that some of
the previous studies failed to show increased iron content in
the SN (Yan et al., 2018). RII iron content may provide a new
means to evaluate the role of regional changes in iron deposition.
For example, it is believed that the loss of neuromelanin in the
nigrosome-1 territory of the SN pars compacta leaves behind MR-
visible iron (Zecca et al., 2004). Localizing where this high iron
content occurs anatomically may help to answer this question.

Further, in this work, the ability to separate the high and
normal RII iron content patients using QSM data led to the
finding that there are in fact group differences in UPDRS-III
scores. Similarly, by using R2∗, Pesch et al. (2019) found a
correlation between iron content and UPDRS-III scores in the
SN of 35 PD patients. However, their R2∗ measurements were
not corrected for age. Since R2∗ has been seen to increase as a
function of normal aging, (Li et al., 2014) it is imperative to take
this factor into account in iron quantification studies.

There are a number of limitations to this study. First, the
number of samples is small and a much larger population should
be studied to best demonstrate the presence of two groups of
PD patients. Second, no clinical phenotypes were taken into
consideration while analyzing imaging data. Third, ROI tracings
were done manually which might have induced some unwanted
errors when demarcating different DGM nuclei especially around
the edges of the structures; this source of error, however, gets
substantially reduced when thresholded low susceptibility values
are excluded in the regional analysis. Nonetheless, the undesired

errors associated with manual ROI tracing in the global analysis
could be effectively minimized by using atlas-based automated
DGM segmentation techniques (Li et al., 2019). Finally, the
fairly low in-plane resolution used in the GRE sequence made
it difficult to evaluate the sub-structures, especially the SN pars
compacta whose abnormally high iron deposition is believed to
be correlated with neuromelanin degeneration in the midbrain
(Castellanos et al., 2015; Huddleston et al., 2017; Langley et al.,
2017). Higher spatial resolution is recommended in future studies
for this purpose.

In conclusion, the increase in iron in the SN in some PD
patients is higher than the normal range in HC as found
in both regional and global analyses. Using RII content may
provide a means to separate two populations of PD patients;
one with and one without iron increases in the SN. Separating
the PD population into two groups may prove useful in
understanding the etiology of the disease as well as monitoring
the disease progression.
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Background: Abnormalities of cognitive and movement functions are widely reported
in Parkinson’s disease (PD). The mechanisms therein are complicated and assumed
to a coordination of various brain regions. This study explored the alterations of global
synchronizations of brain activities and investigated the neural correlations of cognitive
and movement function in PD patients.

Methods: Thirty-five age-matched patients with PD and 35 normal controls (NC) were
enrolled in resting-state functional magnetic resonance imaging (rs-fMRI) scanning.
Degree centrality (DC) was calculated to measure the global synchronizations of brain
activity for two groups. Neural correlations between DC and cognitive function Frontal
Assessment Battery (FAB), as well as movement function Unified Parkinson’s Disease
Rating Scale (UPDRS-III), were examined across the whole brain within Anatomical
Automatic Labeling (AAL) templates.

Results: In the PD group, increased DC was observed in left fusiform gyrus extending to
inferior temporal gyrus, left middle temporal gyrus (MTG) and angular gyrus, while it was
decreased in right inferior opercular-frontal gyrus extending to superior temporal gyrus
(STG). The DC in a significant region of the fusiform gyrus was positively correlated with
UPDRS-III scores in PD (r = 0.41, p = 0.0145). Higher FAB scores were shown in NC
than PD (p < 0.0001). Correlative analysis of PD between DC and FAB showed negative
results (p < 0.05) in frontal cortex, whereas positive in insula and cerebellum. As for the
correlations between DC and UPDRS-III, negative correlation (p < 0.05) was observed
in bilateral inferior parietal lobule (IPL) and right cerebellum, whereas positive correlation
(p < 0.05) in bilateral hippocampus and para-hippocampus gyrus (p < 0.01).

Conclusion: The altered global synchronizations revealed altered cognitive and
movement functions in PD. The findings suggested that the global functional connectivity
in fusiform gyrus, cerebellum and hippocampus gyrus are critical regions in the
identification of cognitive and movement functions in PD. This study provides new
insights on the interactions among global coordination of brain activity, cognitive and
movement functions in PD.

Keywords: resting-state fMRI, global synchronizations, Parkinson’s disease, cognitive function,
movement function
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INTRODUCTION

As one of the most common neurodegenerative diseases,
people diagnosed with Parkinson’s disease (PD) are widely
reported with abnormalities consisting of motor and non-motor
symptoms (Chaudhuri et al., 2006; Bunzeck et al., 2013; Villarreal
et al., 2018). PD is known as a kind of movement disorder,
including general motor symptoms and specificmotor symptoms
(Fox et al., 2018). However, non-movement aspects such as
impairment of cognitive and executive functions have also gained
great attention and have been the topic of a great number of
researches on PD (Kudlicka et al., 2011; Litvan et al., 2011;
Dirnberger and Jahanshahi, 2013; Delgado-Alvarado et al., 2016).
Various methods are performed to explore the biomarkers for
the diagnosis and progression monitoring of PD, including
metabolomics profiling of blood (Bogdanov et al., 2008),
cerebrospinal fluid (Hong et al., 2010), cognitive impairment
(Svenningsson et al., 2012) and neuroimaging (Reijnders et al.,
2010; Tessitore et al., 2016; Li et al., 2018).

Structural and functional changes in patients with PD are
observed in many neuroimaging studies (Borroni et al., 2015;
Wang et al., 2016; Prell, 2018). Structural changes are reported
in various brain regions such as corpus callosum, hippocampus,
basal ganglia, temporal cortex and frontal cortex by voxel-
based morphometry (VBM) analysis (Camicioli et al., 2003;
Summerfield et al., 2005; Wiltshire et al., 2010; Tessitore et al.,
2016; Lee et al., 2018; Prell, 2018). In recent years, resting-state
functional magnetic resonance imaging (rs-fMRI) has become a
prevalent method to explore the alterations of spontaneous brain
activities (Fox and Raichle, 2007; Van Eimeren et al., 2009) in
patients with PD. For the functional neuroimaging aspect, the
blood oxygen level dependent (BOLD) signal is widely employed
to explore the differences of spontaneous brain activity between
healthy people and PD patients (Göttlich et al., 2013; Pan et al.,
2017a; Wang et al., 2018). Functional neuroimaging studies of
PD are mainly focused on the spontaneous brain activity of
amplitude of low frequency oscillations (Kwak et al., 2012; Hou
et al., 2014; Pan et al., 2017b), regional synchronization (Wu
et al., 2009; Li et al., 2016; Pan et al., 2017a) and functional
connectivity (de Schipper et al., 2018; Wang et al., 2018).

The neuroimaging findings of PD are various and
inconsistent. In the current stage, it is still unclear which
structural or functional neuroimaging marker is reliable or
convincing for understanding the pathological physiology of
PD. While these findings suggest that the pathophysiological
mechanisms in PD is complicated and assumed to a coordination
of various brain regions. Degree centrality (DC), a voxel-wise
measurement, is applied to evaluate the strengths of functional
connectivity across the whole brain (Buckner et al., 2009).
DC is a reliable rs-fMRI indicator (Zuo et al., 2013) and
suggested to represent the global synchronizations or global
functional connectivity density (Tomasi and Volkow, 2012).
Using the DC method, alterations are found in brain regions
associated with cognition and motor, with these regions being
depressed in PD sufferers (Wang et al., 2018). Higher degrees
are observed in the precuneus in PD patients with cognitive
impairments than patients without cognitive impairment

(Nagano-Saito et al., 2019). In the current study, we applied DC
to investigate the differences of global synchronizations of brain
activity between PD and normal controls (NC). Furthermore,
the neural correlations between global synchronizations and
cognitive function as well as movement function were explored
in PD group across the whole brain.

MATERIALS AND METHODS

Participants
In this study, 35 NC and 35 patients diagnosed with PD were
included in the investigation. Subjects of NC were included
who had no history of neurological disease, no symptom of
PD and no disorder of cognitive function and movement
function. Diagnosis of PD was according to the clinical criteria
of Movement Disorder Society (MDS; Postuma et al., 2015).
PD patients included: those aged over 30 years old, no less
than 1 year of disease duration, had received a stable dose of
levodopa medication treatment for at least 30 days, without
cardiovascular disease and respiratory disease, nor with a history
of surgical operations or embedded with a pacemaker in the
body. PD patients with severe symptoms of dementia, anxiety
and depression were excluded. All of the PD patients were in
a medication-on state during experimental data collection and
no drug-naïve patient was included in this study. Both NC and
PD subjects were recruited by Guangzhou First People’s Hospital
from May 2017 to September 2018. This study was approved
by the Institutional Review Board (IRB) of Guangzhou First
People’s Hospital. Informedwritten consents were obtained from
all subjects.

Clinical Assessments
Clinical assessments, including motor and non-motor
symptoms, were measured across all subjects with PD. Hoehn
& Yahr (H&Y) scale (Hoehn and Yahr, 1998) was collected
from subjects of PD group to evaluate the severity of PD
symptoms, with classifications of stages 1–5, with a higher
H&Y stage indicating an advanced state of PD. Additionally,
cognitive function and motor function were also measured.
For both NC and PD, cognitive-related measurement was
identified by the Frontal Assessment Battery (FAB) containing
six sub-items that are associated with the frontal cortex (Dubois
et al., 2000). Movement-related assessment was evaluated from
PD (medication-on) by the motor part (Part three) of Unified
Parkinson’s Disease Rating Scale (UPDRS-III), which was
developed by the MDS (Goetz et al., 2008). Higher UPDRS-III
scores indicated decreased movement ability.

Data Acquisition
Two groups of subjects (35 NC and 35 PD) participated in the
MRI scanning by 3.0T SIEMENS MRI machine system. All of
the subjects were required to lie quietly and stayed awake with
eye closed during the whole process of scanning. All of the
PD patients were in medication-on state when the fMRI was
performed. Functional images and structural images of the brain
were obtained. The resting-state functional images were obtained
with the following parameters: repetition time (TR) of 2,000 ms,
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echo time (TE) of 21 ms, slice thickness of 4 mm, acquisition
matrix of 64 × 64; flip angle (FA) of 78◦ and pixel spacing of
3.5 mm × 3.5 mm. Structural T1-weighted images were scanned
with parameters: 1,900/2.22 ms TR/TE, acquisition matrix of
256 × 215, 9◦ FA, pixel spacing of 0.488 × 0.488 and 1 mm
slice thickness.

Data Preprocessing
Data preprocessing was implemented on MATLAB platform
based on toolkit package of DPABI (Yan et al., 2016)
and Statistical Parametric Mapping (SPM121). Preprocessing
procedures included: removal of the first 10 of 220 time
points; slice timing adjustment (33 slices); realign; segmentation
using new segment (Ashburner and Friston, 2005) and
Diffeomorphic Anatomical Registration through Exponentiated
Lie Algebra (DARTEL; Ashburner, 2007); regression of nuisance
covariates including whilematter, cerebrospinal fluid and Friston
24 parameters of head motions (Friston et al., 1996; Satterthwaite
et al., 2013; Yan et al., 2013); spatial normalization with
resampling of 3 mm × 3 mm × 3 mm to Montreal Neurological
Institute (MNI) space by DARTEL (Ashburner, 2007); temporal
filtering with low frequency band pass of 0.01–0.1 Hz and
linear detrend removal. Subjects with maximal translations
exceeded 2.5 mm or rotations over 2.5◦ were excluded from
analysis. According to this exclusion criteria, no subjects were
excluded. Additionally, the mean framewise displacement (FD)
Jenkinson (Jenkinson et al., 2002) was calculated, representing
the head motions of every subject. No significant difference of
FD Jenkinson between two groups was observed by two-sample
t-test (p = 0.1294).

Global Signal Synchronization—Degree
Centrality
DC is a voxel-wise measurement calculating the functional
connectivity density between a voxel with the other voxels
within the mask (Buckner et al., 2009). Pearson correlation is
employed to evaluate the connectivity strength of all pairs of
voxels. DC is conventionally calculated as weighted-sum DC or
binarized-sumDC. The weighted-sumDC is defined as summing
up the correlation coefficients that reach a given threshold,
whereas the binarized-sum DC is defined as summing up the
number of correlation coefficient that reaches a given threshold.
Therefore, DC is also named global functional connectivity
density, long range functional connectivity and global signal
synchronization (Tomasi and Volkow, 2012). In this study, based
on the preprocessed functional image, binarized-sum DC was
calculated and the threshold was set at 0.3. For standardization,
the DC maps of all subjects were transformed into Z-maps by
subtracting the global mean value and then divided by standard
deviation. After standardization transformation, the Z-maps
were then smoothed with 4 mm of full width at half maximum
(FWHM). The smoothed Z-maps were applied to the subsequent
statistical analysis and correlative analysis.

1http://www.fil.ion.ucl.ac.uk/spm/

Statistical and Correlative Analysis
To explore global signal synchronization differences between NC
and PD, a two-sample t-test was performed on DC maps of two
groups, with age, sex, education time and mean FD Jenkinson
as covariates within the mask of gray matter. The resultant
statistical T-map was corrected with multiple comparisons of
Gaussian Random Field (GRF) within gray matter mask, with
voxel p < 0.005 and cluster p < 0.05, two-tailed test (T > 2.91,
cluster size > 1,350 mm3).

The brain regions showing significant group differences
were extracted as regions of interest (ROIs) to explore the
neural correlates between global signal synchronization
(DC) and cognitive function (FAB) as well as movement
function (UPDRS-III). DC signals were extracted from ROIs
by averaging the signals of all voxels within ROI. Pearson
correlation (statistical significance level p < 0.05) was applied to
calculate the correlations between DC and cognitive/movement
function. Moreover, the correlation analysis was also analyzed
across the whole brain, within Automated Anatomical
Labeling (AAL) template, which contains 116 brain regions,
including 90 cerebrum regions and 26 cerebellum regions
(Tzourio-Mazoyer et al., 2002).

RESULTS

Demographic Characteristics and Clinical
Assessments
Statistical results of demographic characteristics and clinical
measurements were summarized in Table 1. No group difference
(p > 0.05) was observed on age or mean FD Jenkinson.
Significant group differences were demonstrated in FAB scores
(p < 0.0001) and education time (p = 0.0277). NC were shown
to have higher FAB scores and longer education time than PD
(Table 1). It should be noted that the FAB scores were obtained

TABLE 1 | Demographic characteristics and clinical assessments.

NC (n = 35) PD (n = 35) Statistical
p-value

Age (years) 60 ± 6 63 ± 12 0.0989
Sex (female/male) 24/11 18/17 NA
Education time 11.08 ± 2.84 9.43 ± 3.31 0.0277
(years)
Hand dominance 0/35 2/33 NA
(left/right)
Disease duration NA 4.19 ± 3.97 NA
(years)
H&Y scores NA 2.44 ± 0.72 NA
UPDRS-III scores NA 31.93 ± 14.56 NA
(medication-on)
FAB scores 17.17 ± 1.34 15.16 ± 2.44 (n = 31) <0.0001
Levodopa equivalent NA 431.95 ± 383.33 NA
daily dose (mg)
Mean FD (mm) 0.088 ± 0.064 0.069 ± 0.031 0.1284

NC, normal controls; PD, Parkinson’s disease; FD, framewise displacement of Jenkinson;
H&Y, Hoehn & Yahr; UPDRS-III, Unified Parkinson’s Disease Rating Scale (part
three); FAB, Frontal assessment battery; NA, not applicable. Data was noted as
average ± standard deviation. Statistical p-value was obtained by two-sample t-test with
significance level of p < 0.05.
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FIGURE 1 | Between-group degree centrality (DC) differences. (A) T-maps of DC differences between normal controls (NC) and patients with Parkinson’s disease
(PD). Multiple comparison corrections were implemented by Gaussian Random Field (GRF) with voxel p < 0.005 and cluster p < 0.05 within gray matter mask
(T > 2.91, cluster size > 1,350 mm3). The color bar indicated the statistical t-value. Warm/Cool overlays indicated increased/decreased DC in PD. L/R = left/right
hemisphere. (B) Positive correlation between DC and motor part of Unified Parkinson’s Disease Rating Scale (UPDRS-III) in left fusiform gyrus.

from 31 out of 35 PD patients because four PD patients refused
to do the FAB assessment.

Differences of Global Synchronizations
DC differences between NC and PD were implemented by
two-sample t-test. The significant brain regions were showed
in Table 2, Figure 1A. The survival voxels of brain regions
were identified based on CUI Xu’s XjView2. For the PD group,
increased DC was observed in left fusiform gyrus extending
to inferior temporal gurus (ITG), left middle temporal gyrus
(MTG) and angular gyrus, whereas it was decreased in right
interior opercular-frontal gyrus (IFGoper) extending to superior
temporal gyrus (STG).

2http://www.alivelearn.net/xjview/

Correlative Analysis
The brain regions showing significant DC differences (Table 2)
between NC and PD were extracted as ROIs. The correlative
analysis between DC and cognitive/movement functions was
performed within these brain regions. Positive correlation was
observed between DC and UPDRS-III in left fusiform gyrus
(r = 0.41, p = 0.0145; Figure 1B), while no correlation (p > 0.05)
was observed between DC and FAB scores. Additionally, the
neural correlations of cognitive function (FAB) and movement
function (UPDRS-III) were examined across the whole brain
within AAL templates. The significant results were demonstrated
in Figures 2–4.

Among the correlative analysis between DC and FAB scores
in PD, negative correlations were observed in bilateral superior
frontal gyrus (SFG; Figures 2B,C) and right medial SFG
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TABLE 2 | Brain regions showing significant degree centrality (DC) differences between normal controls (NC) and patients with Parkinson’s disease (PD).

Side Brain regions Brodmann area Cluster size (mm3) Peak MNI coordinates (x y z) Peak t-value

Left Fusiform gyrus/Inferior temporal gyrus 20 1,890 −42 −15 −39 4.85
Left Middle temporal gyrus/Angular gyrus 39 2,754 −60 −63 18 4.73
Right Inferior opercular-frontal gyrus/Superior temporal gyrus 44/48 1,620 57 15 12 −4.59

MNI, Montreal Neurological Institute. Positive/Negative statistical t-value indicated increased/decreased DC in PD.

FIGURE 2 | Significant correlations between cognitive function and the global signal synchronizations within the whole brain [Automated Anatomical Labeling (AAL)
templates] in patients with PD. (A) The Frontal Assessment Battery (FAB) scores of NC and PD. Significant correlations between FAB and DC in bilateral superior
frontal gyrus (SFG; B,C), right medial-SFG (D), bilateral insula (E,F), bilateral cerebellum-curs1 (G,H) and right cerebellum-6 (I). Significance notations: ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.005. The dots and lines were demonstrated in red/blue color for positive/negative correlations.

(Figure 2D). The results were shown to be positive in bilateral
insula (Figures 2E,F), bilateral cerebellum-crus1 (Figures 2G,H)
and right cerebellum-6 (Figure 2I). The results were insignificant
(p > 0.05) in NC within these regions. Conversely, significant
negative results (p < 0.05) were observed in the bilateral
hippocampus in NC, while the results were unobvious (p > 0.05)
in PD (Figure 3).

Significant correlative analysis between DC and movement
function (UPDRS-III) of PD within AAL templates are
demonstrated in Figure 4. Negative correlations were observed

in bilateral inferior parietal lobule (IPL; Figures 4A,D), right
AG (Figure 4G), and right cerebellum-6 (Figure 4H). DC
were positively correlated with UPDRS-III in the bilateral
hippocampus (Figures 4B,E) and para-hippocampus gyrus
(Figures 4C,F).

DISCUSSION

In this study, the indicator of DC was adopted to compare the
difference of global signal synchronizations of spontaneous brain
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FIGURE 3 | Correlative analysis between cognitive function and the global signal synchronizations in bilateral hippocampus in both NC and patients with PD.
Significance notations: ∗p < 0.05, ∗∗∗p < 0.005, n.s = no significance. The dots and lines were demonstrated in blue/green color for negative/no correlations.

activity between PD and NC. In addition, the neural correlations
between global synchronizations and cognitive/movement
functions were explored across the whole brain within AAL
templates. Significant results were observed in both analysis of
group DC differences and neural correlations.

More Sticky to Default Mode State in
Parkinson’s Disease
Significant DC differences between PD and DC were observed
in left fusiform gyrus extending to ITG, left MTG/angular
gyrus and right IFGoper/STG (Table 2, Figure 1A). Posterior
MTG and angular gyrus, together with medial prefrontal cortex
(MPFC) and precuneus/posterior cingulate cortex (PCu/PCC),
are identified as critical brain regions that constitute default
mode network (DMN; Raichle et al., 2001; Laird et al.,
2009). Brain activities in DMN are task-negative, which
means deactivations during task-related state and activations
in resting state (Raichle et al., 2001). DMN is also thought
to be associated with self-referential processing (de Groot
et al., 2000; Gusnard and Raichle, 2001). In our results,
increased DC was demonstrated in left MTG and angular gyrus
compared to in the NC group in a resting state. Dysfunctional
DMN was also reported in other neuropsychiatric disorders

like schizophrenia (Calhoun et al., 2008) and Alzheimer’s
disease (Lustig et al., 2003). Additionally, less deactivations of
DMN in PD were also observed in executive tasks than
those in NC (Van Eimeren et al., 2009). DC evaluates
global synchronizations and global functional connectivity
density, therefore, higher DC activities indicate higher binding
between inter-regions collaboration. Therefore, higher global
synchronizations of DMN in PD may result in decreased
ability to be self-referential, more likely to remain the
default mode state and less control of interactions between
brain regions.

Cognitive impairment is commonly present in PD patients.
A VBM study on PD reports gray matter atrophy in left fusiform
gyrus, and the fusiform atrophy is associated with poor memory
(Camicioli et al., 2009). Fusiform gyrus is famous for its face area
and face perception (Kanwisher et al., 1997; George et al., 1999).
PD patients have an impairment in recognizing facial expression
and visuospatial dysfunctions (Levin et al., 1991; Sprengelmeyer
et al., 2003). In our results, increased DC was also observed in left
fusiform gyrus and the DC in the fusiform is positively correlated
with movement function for PD patients (Figure 1, Table 2).
Consistent with previous study, increased activity is shown in the
fusiform gyrus in response to the paradigm of facial perception
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FIGURE 4 | Significant correlations between movement measurements and the global signal synchronizations within the whole brain (AAL templates) in patients
with PD. Correlations between Part three of UPDRS-III and DC in bilateral inferior parietal lobule (IPL; A,D), right angular gyrus (G), right cerebellum-6 (H), bilateral
hippocampus (B,E) and bilateral para-hippocampus gyrus (C,F). The dots and lines were demonstrated in red/blue color for positive/negative correlations.

(Cardoso et al., 2010). Visuospatial dysfunctions have an impact
on the movement of PD especially those with freezing gait.
The correlation between DC in fusiform gyrus and movement
function may be explained by impaired vision in balance (Day
and Guerraz, 2007).

Neural Correlations of Cognitive and
Movement Function in Parkinson’s Disease
Patients with PD are not only reported with abnormalities of
motor symptoms but also with decreased cognitive function
(Dubois and Pillon, 1996; Kehagia et al., 2010). As expected,
the FAB scores of PD were significantly lower than NC
(p < 0.0001; Figure 2A), suggesting decreased frontal-related
of cognitive function in PD. The correlative analysis between
global synchronizations and cognitive function scores across
the whole brain showed significant correlations in frontal
cortex, insula and cerebellum in PD patients (Figure 2),
while there was no significant result in NC. The DC of
PD was negatively correlated with FAB scores in bilateral
SFG and medial SFG, and positively correlated with bilateral
insula and cerebellum. The frontal cortex is always associated
with cognitive and executive functions (Miller and Cohen,
2001). Cortical thickness changes and gray matter volume

reductions were reported in frontal cortex of PD (Pan et al.,
2012; Tessitore et al., 2016). Therefore, negative correlations
between DC and FAB scores reveal altered frontal-cognitive
function in PD.

Contrary to frontal cortex, the correlations between DC and
FAB scores were positive in the insula (Figure 2). Though
the insula is a well-known brain region that is associated with
self-representation (Burgmer et al., 2013) and awareness (Craig,
2009), it is also suggested to be related to non-motor symptoms of
PD (Christopher et al., 2014a). In addition, patients with PDwere
observed with reduced gray matter volume in insula (Pan et al.,
2012) and decreased DC in bilateral insula in medication-off
state (Zhong et al., 2018). Insular dysfunction is also related
to PD with cognitive impairment (Christopher et al., 2014b).
These findings suggest higher DC in insula of PD suggests higher
cognitive function.

Positive correlations between DC and FAB scores were
also shown in the cerebellum (Figure 2). However, negative
correlations were observed between DC and movement function
(UPDRS-III) in PD (Figure 4). Cerebellum is both associated
with sensorimotor processing (Baumann et al., 2015; Kansal
et al., 2017) and cognitive/emotional processing (Schmahmann,
2010; Adamaszek et al., 2017). Decreased DC in cerebellum-6
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was also observed in PD (Wang et al., 2018). Positive results
in neural correlations of cognitive function and negative neural
correlations of movement function were found in the cerebellum,
suggesting that the cerebellum plays both cognitive and motor
function roles in the pathology of PD.

The hippocampus is well known for its role in memory
(Squire, 1992). Interestingly, negative correlations were observed
between DC and FAB scores in the hippocampus of NC, while
no correlation was observed (p > 0.05) in PD (Figure 3).
Moreover, positive correlations were shown between DC and
movement function (UPDRS-III) in the hippocampus/para-
hippocampus in PD (Figure 4). These findings seem to suggest
that the global synchronizations in the hippocampus reveal both
cognitive and movement functions of PD. Hippocampus atrophy
is found in PD patients with depressive symptoms, cognitive
impairment and dementia (van Mierlo et al., 2015; Delgado-
Alvarado et al., 2016). A longitudinal study on PD patients
suggests that the hippocampus is related to the progression
of cognitive impairment and dementia (Kandiah et al., 2014).
Decoupled correlation between hippocampal DC and FAB scores
of PD (Figure 3) may imply cognitive decline in PD. The findings
of PD studies in reference to hippocampus/para-hippocampus
are extensively focused on non-motor symptoms, mostly on
depression, cognitive decline and memory impairment, and
are rarely related to motor symptoms or movement function.
The hippocampus is involved in motor tasks and perturbed
movements (Devan et al., 2015; Kerr et al., 2017) which
are not general movements. No direct evidence supports
the influence of hippocampus on motor effect in PD. Our
finding of increased hippocampal signal synchronization comes
with increased motor performance in PD (Figure 4) suggests
that the hippocampus has an important role in the motor
symptoms of PD.

In our results, negative correlations between DC and
movement function (UPDRS-III) were observed in bilateral
IPL (Figure 4). Altered brain activities of parietal lobe are
widely reported in PD studies. Decreased inter-hemispheric
functional connectivity in IPL was demonstrated in PD and
negative neural correlation was observed in interaction with
motor scores (Li et al., 2018). Meta-analysis also suggests that
IPL is a robust brain region that showed significant differences
in regional synchronizations between PD and NC (Pan et al.,
2017a). Therefore, IPLmay be a critical brain region in the motor
symptom of PD.

The findings of this study suggest the global synchronizations
of the fusiform, hippocampus and cerebellum-6 are critical brain

regions for both cognitive function and movement function of
PD. However, the exact pathology remains unclear and needs
further studies on it.

CONCLUSION

Alterations of global synchronization in the left fusiform gyrus
and right opercular-frontal cortex reveal altered cognitive and
movement functions in PD. The findings of neural correlations
suggest that the global functional connectivity in fusiform gyrus,
cerebellum and hippocampus are critical in the identification of
cognitive and movement functions in PD. This study provides
new insights on the interaction among global coordination of
brain activity, cognitive function and movement function in PD.
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Objective: The purposes of this study are to investigate the regional homogeneity
(ReHo) of spontaneous brain activities in Parkinson’s disease (PD) patients with freeze
of gait (FOG) and to investigate the neural correlation of movement function through
resting-state functional magnetic resonance imaging (RS-fMRI).

Methods: A total of 35 normal controls (NC), 33 PD patients with FOG (FOG+), and
35 PD patients without FOG (FOG−) were enrolled. ReHo was applied to evaluate
the regional synchronization of spontaneous brain activities. Analysis of covariance
(ANCOVA) was performed on ReHo maps of the three groups, followed by post hoc
two-sample t-tests between every two groups. Moreover, the ReHo signals of FOG+
and FOG− were extracted across the whole brain and correlated with movement scores
(FOGQ, FOG questionnaire; GFQ, gait and falls questionnaire).

Results: Significant ReHo differences were observed in the left cerebrum. Compared
to NC subjects, the ReHo of PD subjects was increased in the left angular gyrus (AG)
and decreased in the left rolandic operculum/postcentral gyrus (Rol/PostC), left inferior
opercular-frontal cortex, left middle occipital gyrus, and supramarginal gyrus (SMG).
Compared to that of FOG−, the ReHo of FOG+ was increased in the left caudate and
decreased in the left Rol/PostC. Within the significant regions, the ReHo of FOG+ was
negatively correlated with FOGQ in the left SMG/PostC (r = −0.39, p < 0.05). Negative
correlations were also observed between ReHo and GFQ/FOGQ (r = −0.36/−0.38,
p < 0.05) in the left superior temporal gyrus (STG) of the whole brain analysis based
on AAL templates.

Conclusion: The ReHo analysis suggested that the regional signal synchronization
of brain activities in FOG+ subjects was most active in the left caudate and most
hypoactive in the left Rol/PostC. It also indicated that ReHo in the left caudate and
left Rol/PostC was critical for discriminating the three groups. The correlation between

Frontiers in Aging Neuroscience | www.frontiersin.org 1 October 2019 | Volume 11 | Article 27687

https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2019.00276
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnagi.2019.00276
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2019.00276&domain=pdf&date_stamp=2019-10-15
https://www.frontiersin.org/articles/10.3389/fnagi.2019.00276/full
http://loop.frontiersin.org/people/620954/overview
http://loop.frontiersin.org/people/628759/overview
http://loop.frontiersin.org/people/747349/overview
http://loop.frontiersin.org/people/366134/overview
http://loop.frontiersin.org/people/628668/overview
http://loop.frontiersin.org/people/388758/overview
http://loop.frontiersin.org/people/580183/overview
http://loop.frontiersin.org/people/747201/overview
http://loop.frontiersin.org/people/685259/overview
https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-11-00276 October 11, 2019 Time: 16:13 # 2

Liu et al. Alterations of Regional Homogeneity in PD With FOG

ReHo and movement scores (GFQ/FOGQ) in the STG has the potential to differentiate
FOG+ from FOG−. This study provided new insight into the understanding of PD with
and without FOG.

Keywords: resting-state fMRI, Parkinson’s disease, freezing of gait, regional homogeneity, movement function

INTRODUCTION

Parkinson’s disease (PD) is a kind of neurodegenerative disease
characterized by motor deficits (Villarreal et al., 2018). Freezing of
gait (FOG) is a disabling symptom characterized by brief episodes
of an inability to take a step or taking extremely short steps that
typically occurs on initiating gait or on turning while walking
(Nutt et al., 2011). Although FOG is more commonly observed
in PD patients with advanced disease stages and old age, it may
also occur in the early stage of idiopathic PD. Nearly 50% of PD
patients suffer from FOG (Macht et al., 2007). Though FOG is
transient and lasts for only a few seconds, it greatly impacts the
quality of life of affected patients.

In the most recent decade, an increasing number
of neuroimaging studies have focused on exploring the
pathophysiology of PD patients with FOG by using different
imaging modalities (Bartels and Leenders, 2008; Fasano et al.,
2015) such as positron emission tomography (PET) (Park et al.,
2009; Bohnen et al., 2014), functional near-infrared spectroscopy
(fNIRS) (Maidan et al., 2015), diffusion tensor imaging (DTI)
(Schweder et al., 2010; Herman et al., 2013), and functional
magnetic resonance imaging (fMRI) (Tessitore et al., 2012b;
Wang et al., 2016; Li et al., 2018). FOG in PD patients is suggested
to be associated with abnormalities in motor, executive, cognitive,
and affective functions (Amboni et al., 2008; Shine et al., 2013b).
It has been synthesized that freezing occurs through a neural
pathway in which the transient increase in inhibitory basal
ganglia output leads to hypoactivity within the gait-coordinated
brainstem, which may be caused by dopaminergic depletion in
the striatum and hyperactivity in the subthalamic nucleus (Lewis
and Shine, 2016). However, the pathophysiological mechanisms
of FOG are not yet fully understood.

Resting-state fMRI (RS-fMRI) reflects alterations in
spontaneous brain activities by measuring blood-oxygen-
level-dependent (BOLD) signals (Fox and Raichle, 2007), and
regional homogeneity (ReHo) evaluates signal synchronization
by calculating the concordance of temporal change in BOLD
signals within local brain regions (Zang et al., 2004). ReHo has
been used to evaluate the differences between PD patients and
normal controls (NC) (Li et al., 2016; Pan et al., 2017), and
significant differences have been observed in the motor- and
executive-related brain regions of PD patients, including the
prefrontal cortex (Choe et al., 2013; Borroni et al., 2015), inferior
parietal lobule (Wu et al., 2009), basal ganglia (Wang et al.,
2018), precentral gyrus (Li et al., 2016; Wang et al., 2016), and
cerebellum (Jiang et al., 2016). PD patients with gait disturbance
are observed to have impaired coordination of movement and
locomotion (Plotnik et al., 2008; Peterson et al., 2012). Therefore,
it is hypothesized that PD with FOG (FOG+) may exhibit altered
local signal synchronizations of neural activities in comparison

to PD without FOG (FOG−) and NC. In this study, ReHo
was employed to investigate the regional synchronizations of
spontaneous brain activities in FOG+. Moreover, due to the
altered movement performance in PD, the neural correlations
of movement function in clinical assessment were also explored
within the whole brain for both FOG+ and FOG−.

MATERIALS AND METHODS

Subjects and Clinical Assessments
In this study, 37 NC and 72 subjects with a diagnosis of PD
were investigated. The NC were healthy subjects with no history
of neurological disease, no symptoms of PD, and no disorder
of cognitive function. PD patients were diagnosed according
to the clinical criteria of the Movement Disorder Society
(Postuma et al., 2015). The exclusion criteria for PD patients:
severe comorbidity disease (cardiovascular disease, respiratory
disease, and malignant tumor, etc.), a history of surgical
operations (thalamotomy and posteroventral pallidotomy, deep
brain stimulation (DBS), and organ transplantation, etc.), or a
pacemaker/metal implanted in their body, which is forbidden
in MRI scanning. Among the 72 PD patients, 35 patients were
included as FOG+ according to two criteria: (1) rating scores >0
for the third item in the freezing of gait questionnaire (FOGQ),
which was described by Giladi et al. (2000) as “Do you feel
that your feet get glued to the floor while walking, making a
turn or when trying to initiate walking (freezing)?”; (2) based
on the former criteria, OFF-FOG patients whose symptoms of
FOG were improved after drug therapy were included. The
other 37 patients were grouped as PD without freezing of gait
(FOG−). In addition, FOGQ was employed to evaluate the
severity of FOG performance (Giladi et al., 2000). Other clinical
assessments were also made across all subjects with PD. Ratings
on the Hoehn and Yahr system (H&Y) (Hoehn and Yahr, 1998)
were collected to evaluate the severity of PD symptoms. The
gait and falls questionnaire (GFQ) was applied to evaluate the
gait and falls risk (Giladi et al., 2000). The motor part of the
Unified Parkinson’s Disease Rating Scale (UPDRS-III) was also
applied. For the motor assessments of PD patients, both FOGQ
and GFQ assessments were made for the most severe OFF
medication state based on their experience over the last week,
and the UPDRS-III rating was assessed for the ON medication
state. Non-motor symptoms of cognitive function were evaluated
by montreal cognitive assessment (MOCA) (Nasreddine et al.,
2005) and mini-mental state examination (MMSE) (Folstein
et al., 1975). The levodopa equivalent daily dose (LEDD) of
all of the PD patients was also collected. All subjects were
recruited by the Guangzhou First People’s Hospital from May
2017 to September 2018.

Frontiers in Aging Neuroscience | www.frontiersin.org 2 October 2019 | Volume 11 | Article 27688

https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-11-00276 October 11, 2019 Time: 16:13 # 3

Liu et al. Alterations of Regional Homogeneity in PD With FOG

Data Acquisition
All subjects (37 NC, 37 FOG−, and 35 FOG+) were enrolled
in 3.0T SIEMENS MRI scanning and were required to lie
quietly in the scanner, staying awake with eyes closed. All of
the PD patients were in the ON medication state when the
MRI scanning was performed. Both functional and structural
MRI images were obtained. The RS-fMRI was obtained by
echo-planar imaging (EPI) with the following parameters:
repetition time (TR) = 2000 ms; echo time (TE) = 21 ms; slice
thickness/gap = 4 mm/0.6 mm; acquisition matrix = 64 × 64;
flip angle = 78◦; in-plane resolution = 3.5 mm × 3.5 mm;
FOV = 224 × 224 mm2. Sagittal T1-weighted
images were obtained with the following parameters:
TR/TE = 1900 ms/2.22 ms; acquisition matrix = 256 × 215;
flip angle = 9◦; in-plane resolution = 0.488 mm × 0.488 mm;
slice thickness/gap = 1 mm/0.5 mm.

Data Preprocessing
The functional images were preprocessed using the toolkits
of DPABI (Yan et al., 2016), the RS-fMRI Data Analysis
Toolkit (REST)1, and Statistical Parametric Mapping (SPM12)2,
implemented on a MATLAB platform. Data preprocessing
included removal of the first 10 of the 220 time points in
case of unstable signal quality, slice-timing adjustment (33
slices), head-motion correction, segmentation using a new
segment (Ashburner and Friston, 2005) and diffeomorphic
anatomical registration through Exponentiated Lie Algebra
(DARTEL) (Ashburner, 2007), regression of nuisance
covariates (including white matter, cerebrospinal fluid, and
Friston’s 24 parameters of head motion) (Friston et al.,
1996; Satterthwaite et al., 2013; Yan et al., 2013), spatial

1http://www.restfmri.net/forum/REST
2http://www.fil.ion.ucl.ac.uk/spm/

normalization to Montreal Neurological Institute (MNI)
space by resampling to 3mm × 3mm × 3mm by DARTEL
(Ashburner, 2007), a temporal filter with a bandpass of 0.01–
0.1 Hz, and removal of linear detrending. Six parameters
of head motion (three directions each of rotation and
translation) were recorded during the scanning. Subjects
with maximal translations exceeding 2.5 mm or rotations
over 2.5 degrees were excluded. According to this exclusion
criterion, a total of six subjects were excluded from three
groups, leaving 35/35/33 subjects for NC/FOG−/FOG+,
respectively. Additionally, the mean frame-wise displacement
(FD) (Jenkinson et al., 2002) was calculated, which represents
the head motion. The mean FD was added as a covariate in the
statistical analysis.

Regional Homogeneity
ReHo evaluates local signal synchronizations by assessing
the similarity between the time series of a chosen voxel
and those of its neighboring voxels, and Kendall’s coefficient
concordance (KCC) is applied to ReHo calculation between a
voxel and its 26 neighboring voxels (Zang et al., 2004). KCC-
ReHo is a value between 0 and 1. Higher values indicate
better local synchronization. Voxel-wise ReHo maps were
calculated, and the ReHo maps were then spatially smoothed
with a full width at half maximum (FWHM) of 4 mm.
Additionally, Z-transformation was applied to the ReHo maps
for standardization by subtracting the global mean value and
then dividing by the global standard deviation. The standardized
ReHo Z-maps were applied to the subsequent statistical and
correlative analysis.

Statistical and Correlative Analysis
Analysis of covariance (ANCOVA) was applied to explore
the ReHo differences among NC, FOG−, and FOG+, with

TABLE 1 | Demographic characteristics and clinical assessments.

NC (n = 35) FOG− (n = 35) FOG+ (n = 33) Statistical p

Age (years) 59.57 ± 5.94 62.60 ± 10.22 68.91 ± 8.17 0.0001a#1

(range) (47∼81) (35∼82) (54∼85)

Sex (female/male) 24/11 16/19 12/21 0.0232b

Education length (years) 11.08 ± 2.84 9.73 ± 3.21 10.64 ± 3.93 0.2416a

Disease duration (years) NA 3.30 ± 3.04 5.81 ± 3.88 0.0077c

H&Y scores NA 2.03 ± 0.52 2.70 ± 0.74 0.000c

GFQ (OFF medication) NA 3.03 ± 2.57 17.41 ± 12.43(n = 32) <0.0001c

FOGQ (OFF medication) NA 1.29 ± 1.32(n = 34) 10.55 ± 6.41(n = 31) <0.0001c

UPDRS-III (ON medication) NA 27.48 ± 13.36 31.80 ± 18.35 0.2830c

MMSE 27.88 ± 2.10 26.09 ± 3.95 25.39 ± 4.24 0.0153a∗#

MOCA 25.80 ± 3.13 22.82 ± 5.08 22.29 ± 4.90 0.0034a∗#

LEDD NA 319 ± 131 591 ± 387 0.0004c

Mean FD (mm) 0.088 ± 0.064 0.076 ± 0.015 0.097 ± 0.069 0.2096a

NC, normal controls; FOG+/FOG−, Parkinson’s disease with/without freezing of gait; H&Y, Hoehn and Yahr; FOGQ, freezing of gait questionnaire; GFQ, gait and
falls questionnaire; UPDRS-III, Unified Parkinson’s Disease Rating Scale (part three); MMSE, mini-mental state examination; MOCA, montreal cognitive assessment;
LEDD, levodopa equivalent daily dose; FD, framewise displacement; NA, not applicable. Data are given as mean ± standard deviation. aStatistical p-value by one-
way ANOVA test. bStatistical p-value by chi-square test. cStatistical p-value by two-sample t-test. ∗Significant group differences between NC and FOG− indicated by
post hoc comparisons. #Significant group differences between NC and FOG+ indicated by post hoc comparisons. 1Significant group differences between FOG− and
FOG+ indicated by post hoc comparisons. Statistical significance level p < 0.05 for all tests.
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FIGURE 1 | ACONVA analysis of regional homogeneity (ReHo) among NC, FOG–, and FOG+ within gray matter. The F-map was corrected by GRF with voxel
p < 0.05 and cluster p < 0.05 (F > 3.83, cluster size >6750 mm3) within a gray matter mask. L/R, left/right hemisphere; NC, normal controls; FOG+/FOG–,
Parkinson’s disease with/without freezing of gait.

age, sex, and mean FD Jenkinson as covariates. The resultant
F-map was corrected by multiple comparisons of the Gaussian
Random Field (GRF) with voxel p < 0.05 and cluster
p < 0.05 within a gray matter mask, two-tailed (F > 3.83
and cluster size >6750 mm3). The surviving voxels were
then extracted as a mask in the post hoc analysis of ReHo
differences between every two groups by two-sample t-test
with the covariates of age, sex, and mean FD. For the
ReHo differences between FOG+ and FOG−, the clinical
assessments that demonstrated significant group difference
were also controlled as covariates. The resultant T-maps were
further corrected by GRF with voxel p < 0.001 and cluster
p < 0.05, which is beneficial for avoiding false positives
(Woo et al., 2014).

In addition to the whole-brain gray matter, ReHo differences
were also investigated within certain brain regions that have
frequently been reported in previous motor- and gait-related
PD studies, including the basal ganglia (caudate, putamen,
and pallidum), sensorimotor cortices, cerebellum, hippocampus,
para-hippocampus, and fusiform gyrus (Camicioli et al., 2003;
Herman et al., 2014; Pan et al., 2017; Wang et al., 2018;
Li et al., 2019). These brain regions were, respectively,
extracted from the Automated Anatomical Labeling (AAL)
template, which contains 116 brain regions, including 90
cerebrum regions and 26 cerebellum regions (Tzourio-Mazoyer
et al., 2002). The corresponding AAL atlas regions were: the
bilateral precentral gyrus (PreC, AAL-1,2), postcentral gyrus
(PostC, AAL-57,58), supplementary motor area (SMA, AAL-
19,20), cerebellum (AAL-91 to 116), caudate (AAL-71,72),
putamen (AAL-73,74), pallidum (AAL-75,76), hippocampus

(AAL-37,38), para-hippocampus (AAL-39,40), and fusiform
gyrus (AAL-55,56). Both ANCOVA and post hoc analysis were
performed within these regions, respectively, with covariates
as in the analysis within whole-brain gray matter. Both
ANCOVA and post hoc two-sample t-test were corrected
by GRF with voxel p < 0.05 and cluster p < 0.05,
two-tailed.

Brain regions showing significant differences were
extracted as regions of interest (ROIs) for exploring the
correlative relationship between signal synchronization
and movement function (FOGQ, GFQ). The ReHo value
was extracted from ROIs by averaging the values of all
voxels within ROI. The Pearson correlation coefficient
(statistical significance level p < 0.05) was used to quantify
the correlation between ReHo and FOGQ/GFQ. Moreover,
correlations were also analyzed within AAL templates
to examine the neural interactions between regional
signal synchronization and movement function across
the whole brain.

RESULTS

Demographic Characteristics and
Clinical Assessments
After exclusion of subjects with excessive head motion, 35
NC, 35 FOG−, and 33 FOG+ remained. There was no
significant difference in head motion (mean FD) among
the three groups (p = 0.2096). Table 1 summarizes the
demographic characteristics and clinical assessments of the
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FIGURE 2 | Post hoc analysis of ReHo differences among NC, FOG–, and FOG+. (A) ReHo differences between FOG+ and NC. (B) ReHo differences between FOG–
and NC. (C) ReHo differences between FOG+ and FOG– (voxel p < 0.05, uncorrected). T-maps (A,B) were corrected by GRF with voxel p < 0.001 and cluster
p < 0.05 (T > 3.45, cluster size >135 mm3) within the mask of significant brain regions identified by ANCOVA. ReHo signals were extracted from the left MTG/AG
(D–F) and left Rol/PostC (G–I), which were identified by post hoc analysis. L/R, left/right hemisphere; NC, normal controls; FOG+/FOG–, Parkinson’s disease
with/without freezing of gait; MTG, middle temporal gyrus; AG, angular gyrus; Rol, rolandic operculum; PostC, postcentral gyrus; ∗∗p < 0.005; ∗∗∗p < 0.0005.

subjects. A significant difference in age was observed among
the three groups (p = 0.0001). Specifically, FOG+ showed
higher ages than FOG− and NC, while no age difference
was found between FOG− and NC (p > 0.05). Compared
to FOG−, FOG+ had experienced longer disease durations
and had higher severity of PD symptoms (H&Y scores) and
higher ratings for GFQ and FOGQ. However, FOG+ and
FOG− demonstrated no significant differences (p > 0.05) on
UPDRS-III, MMSE, and MOCA. Note that some PD subjects
refused to answer the GFQ and FOGQ and thereby, 35/32 GFQ
results remained for FOG−/FOG+ and 34/31 FOGQ results for
FOG−/FOG+, respectively.

Group Differences of Regional
Homogeneity
The ACONVA analysis demonstrated significant ReHo
differences among NC, FOG−, and FOG+. The identification

of significant brain regions was based on XjView3. It was
observed that all significant regions were located in the left
cerebrum, including the sensorimotor area of PostC and
rolandic operculum (Rol), the posterior middle temporal
gyrus (MTG), the parietal gyrus with the angular gyrus (AG)
and supramarginal gyrus (SMG), the middle occipital gyrus
(MOG), and the opercular part of the inferior frontal gyrus
(IFGoper) (Figure 1). Within these significant regions, post hoc
analysis of two-sample t-test was performed between every two
groups, corrected by GRF with voxel p < 0.001 and cluster
p < 0.05, two-tailed (T > 3.45, cluster size >135 mm3).
The T-map between FOG+ and FOG− was thresholded
with an uncorrected p < 0.05 (Figure 2C), which failed
to survive under GRF correction. The results of between-
group ReHo differences are shown in Table 2 and Figure 2.

3http://www.alivelearn.net/xjview/
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TABLE 2 | Brain regions showing significant regional homogeneity (ReHo) differences among NC, FOG−, and FOG+ within gray matter.

Brain regions BA Cluster size (mm3) Peak MNI coordinates (x y z) Peak T-value

FOG+ vs. NC (Positive/Negative T-value indicates increased/decreased ReHo in FOG+)

L-AG 39 567 –54 –69 39 4.32

L-MTG 39 378 –60 –66 21 4.13

L-Rol/PostC 48/22 1269 –60 –3 9 –4.92

L-IFGoper 48 189 –45 6 12 –4.01

L-MOG 19 243 –30 –63 27 –4.14

L-SMG/PostC 48 270 –57 –30 27 –4.15

FOG− vs. NC (Positive/Negative T-value indicates increased/decreased ReHo in FOG−)

L-AG/MTG 39 2268 –60 –66 24 4.83

L-IFGoper 48 297 –48 9 6 –4.71

L-PostC/Rol 43 486 –63 0 18 –4.04

L-MOG 19 162 –27 –63 27 –4.45

L-PostC/SMG 48 270 –45 –21 27 –4.16

FOG+ vs. FOG− (Positive/Negative T-value indicates increased/decreased ReHo in FOG+)

L-MTG/AG 39 405 –54 –66 24 2.70

L-PostC 48 216 –57 0 15 –2.62

L-Rol 48 243 –63 0 3 –2.38

NC, normal controls; FOG+/FOG−, Parkinson’s disease with/without freezing of gait; L, left hemisphere; BA, Brodmann area; MNI, montreal neurological institute; AG,
angular gyrus; MTG/MOG, middle temporal/occipital gyrus; Rol, rolandic operculum; PostC, postcentral gyrus; IFGoper, opercular part of the inferior frontal gyrus; SMG,
supramarginal gyrus. T-value was the statistical t by post hoc analysis of two-sample t-test.

TABLE 3 | Brain regions showing significant ReHo differences among NC, FOG−, and FOG+ within the bilateral caudate.

Groups Multiple comparison correction Cluster size (mm3) Peak MNI coordinates (x y z) Peak statistical value

NC, FOG−, FOG+ GRF p < 0.05 1566 –15 0 24 F = 15.00

FOG+ vs. NC GRF p < 0.05 1458 –15 0 24 T = 5.16

FOG− vs. NC Uncorrected p < 0.05 351 –15 21 9 T = 3.44

FOG+ vs. FOG− GRF p < 0.05 918 –18 0 24 T = 4.03

NC, normal controls; FOG+/FOG−, Parkinson’s disease with/without freezing of gait; MNI, montreal neurological institute; GRF, gaussian random field. The F-value
indicates the statistical value among the three groups according to ANCOVA. The T-value indicates the statistical value of the between-group differences according to
post hoc two-sample t-test.

Both FOG+ and FOG− showed higher ReHo than the NC
in the left AG, and lower ReHo in the left IFGoper, left
MOG, left Rol/PostC, and left SMG/PostC (Table 2 and
Figures 2A,B). Moreover, FOG+ achieved higher ReHo
than the FOG− in the left MTG and left AG (Table 2 and
Figure 2A) and lower ReHo than the FOG− in the left Rol/PostC
(Table 2 and Figure 2C).

Furthermore, ReHo differences were also examined in the
bilateral PreC, PostC, SMA, cerebellum, caudate, putamen,
pallidum, hippocampus, para-hippocampus, and fusiform gyrus,
respectively. However, significant results were only observed in
the caudate (Table 3 and Figure 3). The F-map acquired by
ANCOVA among the three groups was corrected by GRF with
voxel p < 0.05 and cluster p < 0.05 (threshold of F > 3.84
and cluster size >1566 mm3) (Figure 3B). ReHo differences
were demonstrated between the three groups in the left caudate
(Figures 3B,C). Post hoc two-sample t-testing on the pair groups
were performed within the significant left caudate, and the
resultant T-maps were corrected by GRF with voxel p < 0.05
and cluster p < 0.05 (threshold of T > 2.00 and cluster size
>486 mm3). FOG+ was observed to have higher ReHo than
FOG− (Figures 3F,I) and NC (Figures 3D,G) in the left caudate.

While no cluster survived the GRF correction for the T-map
between FOG− and NC, thresholding with an uncorrected voxel
p < 0.05 and cluster size of 351 mm3 demonstrated higher ReHo
in the left caudate in FOG− than in NC (Figures 3E,H).

Correlative Analysis
The correlative analysis between local signal synchronization
(ReHo) and movement function (GFQ/FOGQ) was performed
within significant brain regions identified by post hoc two-sample
t-tests. Among the regions, significant results were observed
in the left SMG/PostC (Figure 4A), which was visualized
by BrainNet Viewer (Xia et al., 2013). The ReHo values of
FOG+ and FOG− were significantly lower than those of NC
(p < 0.0001), while no difference was found between those of
FOG+ and FOG− (p = 0.2408) (Figure 4B). The ReHo of FOG+
was negatively correlated with FOGQ in the left SMG/PostC
(r =−0.39, p< 0.05) (Figure 4D), while no significant correlation
was found between the ReHo of FOG− and FOGQ (Figure 4C).
In addition, neither the ReHo of FOG+ nor the ReHo of FOG−
was correlated with GFQ.

As well as from the ROIs identified by the post hoc analysis
(Tables 2, 3), ReHo signals were also extracted from AAL
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FIGURE 3 | Regional homogeneity differences among NC, FOG–, and FOG+ within the bilateral caudate. (A) Bilateral caudate. (B) F-map of ANCOVA analysis of the
three groups, corrected by GRF with voxel p < 0.05, threshold of F > 3.84 and cluster size >1566 mm3. (C) FOG+ subjects showed higher ReHo within the left
caudate than did FOG– and NC. Post hoc two-sample t-tests on FOG+ and NC (D,G), FOG– and NC (E,H), and FOG+ and FOG– (F,I). The T-map in (E) was with a
threshold of an uncorrected voxel p < 0.05, (D,F) were corrected by GRF with voxel p < 0.05, threshold of T > 2.00 and cluster size >486 mm3. L/R, eft/right
hemisphere; NC, normal controls; FOG+/FOG–, Parkinson’s disease with/without freezing of gait.

templates and correlated with GFQ and FOGQ, respectively.
Significant results were observed in the left superior temporal
gyrus (STG, AAL-81), left orbital part of the medial prefrontal
cortex (MPFCorb, AAL-25), left gyrus rectus (AAL-27), right
inferior temporal gyrus (ITG, AAL-90), and left cerebellum
anterior lobe (CAL, AAL-97) (Figure 5). The ReHo values
of FOG+ in the left STG were observed to have negative
correlations (p < 0.05) with GFQ (r = −0.36) and FOGQ
(r =−0.38) (Figure 5A). The ReHo values of FOG−, meanwhile,
were observed to have negative correlations with GFQ/FOGQ
in the left MPFCorb (Figure 5B), left gyrus rectus (Figure 5C),
and right ITG (Figure 5D) and to be positively correlated with

GFQ/FOGQ in the left CAL (Figure 5E). Though significant
correlations were observed in the above five brain regions, the
ReHo signals extracted from the five sub-templates showed no
significant difference (p > 0.05) between FOG− and FOG+
according to two-sample t-test (Figure 5).

DISCUSSION

In this study, we assessed ReHo to explore differences in
local synchronization among NC, FOG+, and FOG− subjects,
and significant results were observed in the left cerebrum. In
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FIGURE 4 | Correlation between ReHo and movement function in the left supramarginal gyrus/postcentral gyrus (SMG/PostC). (A) Visualization of left SMG/PostC.
(B) ReHo of left SMG/PostC. ∗∗∗p < 0.0001 between FOG+/FOG– and NC, p = 0.2408 between FOG+ and FOG–. (C) Correlation between ReHo of FOG– and
movement function. (D) Correlation between ReHo of FOG+ and movement function.

comparison to NC, FOG+, and FOG− showed increased ReHo
in the left AG but decreased ReHo in the left IFGoper, left
Rol/PostC, left MOG, and left SMG (Table 2 and Figures 2A,B).
Compared to FOG−, the ReHo in FOG+ was decreased in the
left Rol/PostC (Figure 2C) and increased in the left caudate
(Figure 3). Neural correlation analysis showed that the ReHo
of FOG+ was negatively correlated with FOGQ (r = −0.39) in
the left SMG/PostC (Figure 4) and negatively correlated with
GFQ/FOGQ (r =−0.36/−0.38) in the STG (Figure 5A).

Previous studies have reported structural changes in FOG+
vs. FOG−, with gray matter volume reductions in the posterior
cingulate cortex/precuneus (PCC/PCu) (Tessitore et al., 2012a),
left IFG (Pan et al., 2012), inferior parietal lobule (IPL) (Kostić
et al., 2012), and AG (Herman et al., 2014). The PCC/PCu,
medial prefrontal cortex (MPFC), AG, and posterior MTG are
major parts of the default mode network (DMN), where brain
activities are active in the resting state but passive in the task-
induced state (Raichle et al., 2001). Gray-matter atrophy of the

DMN in FOG+ probably leads to dysfunctional brain activities
in the resting state. Meta-analysis of the ReHo of PD has been
reported to give consistent results in the DMN and motor
networks, with increased ReHo in the bilateral IPL, bilateral
MPFC, and left cerebellum and decreased ReHo in the right
putamen and right PreC (Pan et al., 2017; Wang et al., 2018). Our
findings are consistent with the results showing increased ReHo
in the DMN, observing increased ReHo in the left MTG/AG
(Figures 2A,B,D,E). However, no gait-specificity of ReHo in
the DMN was found in PD patients. Under a threshold of
an uncorrected voxel p < 0.05, FOG+ were observed to have
increased ReHo in the left MTG/AG (Figure 2C), while no
difference was found between FOG+ and FOG− when the
averaged ReHo was extracted from these regions (Figure 2F).
A previous study on FOG+ also reported decreased ReHo in the
frontal cortex and motor area (Zhou et al., 2018), which suggests
that FOG+ subjects have decreased cognitive function and motor
function. Our findings also demonstrated decreased ReHo in the
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FIGURE 5 | Correlative analysis between ReHo and movement function within automated anatomical labeling (AAL) templates. Significant correlation was found in
the (A) left superior temporal gyrus, (B) left orbital part of the medial prefrontal cortex, (C) left gyrus rectus, (D) right inferior temporal gyrus, and (E) left cerebellum
anterior lobe. FOGQ, freezing of gait questionnaire; GFQ, gait and falls questionnaire. Statistical significance notation: ∗p < 0.05, ∗∗∗p < 0.005.

IFG and MOG. A resting-state study with connectivity analysis
of FOG+ observed decreased connectivity in the frontal and
occipital lobes, which correspond to the executive and visual
networks (Tessitore et al., 2012b). These findings suggest the
disruption of executive and visual functions in FOG+.

One of the most critical findings of this study is that for ReHo
in the left Rol/PostC, FOG+ <FOG− <NC, which suggests
that this region is most hypoactive in FOG+ (Figures 2G–
I). However, when using a threshold of an uncorrected voxel
p < 0.05 when comparing the ReHo of FOG+ and FOG−,
significant difference (p < 0.005) was observed in the left
Rol/PostC by extracting the averaged ReHo from the surviving
voxels (Figure 2I). This suggests that ReHo values in the
left Rol/PostC, the sensorimotor areas, are critical features for
discriminating the three groups. One interesting finding comes
from the fact that all of the significant ROIs among FOG+,
FOG−, and NC were located in the left hemisphere of the
cerebrum (Figures 1, 2 and Table 2). An fMRI study of emotional
picture stimuli reported activations of left-brain activities in
response to positive pictures and hence suggested that the left
hemisphere of the brain is associated with positive emotions

(Canli et al., 1998). Altered ReHo in the left hemisphere may
reveal decreased positive emotion in FOG+. Previous studies
also demonstrate that emotional state affects the motor control
of gait (Naugle et al., 2011). Depression and anxiety are also
the major emotional symptoms in PD, which exacerbate poor
motor performance (Macht et al., 2005; Avanzino et al., 2018).
Therefore, cognitive behavioral therapy is recommended for the
treatment of patients with FOG (Berardelli et al., 2015).

The basal ganglia, sensorimotor area, cerebellum,
hippocampus, parahippocampus, and fusiform gyrus are critical
regions involved in the pathophysiology of PD. ReHo differences
were also examined within these brain regions. However,
significant results were only observed in the left caudate: FOG+
>FOG− >NC (Table 3 and Figure 3). Gray matter atrophy
in the left caudate (Jia et al., 2019) and consistently decreased
ReHo in the putamen (Pan et al., 2017; Wang et al., 2018) have
been observed in PD patients. In our results, meanwhile, PD
showed increased ReHo in the left caudate, with FOG+ being
the most active. Decreased ReHo may indicate functional deficits
caused by diseases, while increased ReHo may be related to
a compensatory mechanism for maintaining normal function
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(Pan et al., 2017). It is suggested that FOG in PD is associated
with functional decoupling between the cognitive control
network and the basal ganglia (Shine et al., 2013a). Increased
ReHo in the left caudate may reflect a compensation of the
cognitive control function in PD patients.

Within the significant brain regions, the ReHo of FOG+
was negatively correlated (r = −0.39) with FOGQ in the left
SMG/PostC (Figure 4). Negative correlation was also observed
between ReHo and GFQ/FOGQ (r = −0.36/−0.38) in the STG
based on the whole-brain analysis (Figure 5A). A DBS study on
the effect of sub-thalamic nucleus stimulation in PD reported a
positive correlation between motor scores and metabolic activity
in parietal-temporal sensory-related brain areas (Chul et al.,
2007). Activation of brain activity was found in the temporal
lobe during a memory paradigm fMRI study after rehabilitation
(Díez-Cirarda et al., 2017). These findings indicate that brain
activities in the motor area and temporal lobe are associated with
an improvement in motor performance.

There are two limitations to this study. The demographic
characteristics of age and sex are not properly matched among
FOG+, FOG−, and NC. The age of FOG+ is significantly higher
than that of FOG− and NC. PD patients with advanced age
and a higher stage of disease progression are more likely to
experience FOG (Zhang et al., 2016). In this study, age and sex
were included as covariates in the statistical analysis to regress out
the unmatched confounds. The second limitation comes from the
insufficient sample size. In our future work, more subjects will be
enrolled for a better understanding of the neuroimaging features
of PD patients with freezing of gait.

CONCLUSION

ReHo was used to explore the regional signal synchronization
of brain activities in PD patients. The results suggest that the
brain activities of PD patients with FOG were the most active in
the left caudate and the most hypoactive in the left Rol/PostC.
The correlation analysis between ReHo and movement scores
(GFQ/FOGQ) in the left STG provides the potential to stratify PD
patients with and without FOG. This study provides new insight
for understanding PD patients.
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Background: Classic motion abnormalities in Parkinson’s disease (PD), such as tremor,

bradykinesia, or rigidity, are well-covered by standard clinical assessments such as

the Unified Parkinson’s Disease Rating Scale (UPDRS). However, PD includes motor

abnormalities beyond the symptoms and signs as measured by UPDRS, such as the

lack of anticipatory adjustments or compromised movement smoothness, which are

difficult to assess clinically. Moreover, PD may entail motor abnormalities not yet known.

All these abnormalities are quantifiable via motion capture and may serve as biomarkers

to diagnose and monitor PD.

Objective: In this pilot study, we attempted to identify motion features revealing

maximum contrast between healthy subjects and PD patients with deep brain stimulation

(DBS) of the nucleus subthalamicus (STN) switched off and on as the first step to develop

biomarkers for detecting and monitoring PD patients’ motor symptoms.

Methods: We performed 3D gait analysis in 7 out of 26 PD patients with DBS switched

off and on, and in 25 healthy control subjects. We computed feature values for each

stride, related to 22 body segments, four time derivatives, left–right mean vs. difference,

and mean vs. variance across stride time. We then ranked the feature values according

to their distinguishing power between PD patients and healthy subjects.

Results: The foot and lower leg segments proved better in classifying motor

anomalies than any other segment. Higher degrees of time derivatives were superior

to lower degrees (jerk > acceleration > velocity > displacement). The averaged

movements across left and right demonstrated greater distinguishing power than

left–right asymmetries. The variability of motion was superior to motion’s absolute values.
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Conclusions: This small pilot study identified the variability of a smoothness measure,

i.e., jerk of the foot, as the optimal signal to separate healthy subjects’ from PD patients’

gait. This biomarker is invisible to clinicians’ naked eye and is therefore not included

in current motor assessments such as the UPDRS. We therefore recommend that

more extensive investigations be conducted to identify the most powerful biomarkers to

characterize motor abnormalities in PD. Future studies may challenge the composition

of traditional assessments such as the UPDRS.

Keywords: Parkinson’s disease, machine learning, motion, algorithm, accelerometry

INTRODUCTION

Technology-based assessments of Parkinson’s disease (PD)
symptoms can provide valid and accurate parameters of the
disease’s clinically relevant features (Maetzler et al., 2016).
Moreover, they may deliver an additional benefit by detecting,
quantifying, and ranking signs and symptoms that have not been
considered, or of which we have been unaware before. Motion
capture techniques as a typical example for technology-based
assessments have already been tested in PD (e.g., Lorincz and
Welsh, 2005). One reason for PD being a pioneering disease
for motion capture is that PD presents rather clear-cut, familiar
motor deficits (Braak et al., 1996; Fahn, 2003; Bloem et al.,
2004; Vaugoyeau and Azulay, 2010). They include the classical
symptoms such as bradykinesia, rigidity and tremor, freezing,
and falling (Bloem et al., 2004; Lewis and Barker, 2009). In
addition, PD patients have difficulty in initiating movements and
maintaining fluid sequential or repetitive movements. All these
motor abnormalities converge to abnormal movement patterns,
e.g., during gait. Specifically, PD patients’ gait abnormalities
consist of decreased gait velocity with shuffling, dragging steps,
short step lengths, forward-stooped posture, decreased arm
swing, and a wide step variability (Hausdorff et al., 1998; Dietz
et al., 2001; Gutnik et al., 2005). Motor deficits usually appear
one-sided and remain dominant on one side throughout disease
progression (Lewek et al., 2010; Roggendorf et al., 2012; Boonstra
et al., 2014, 2016; Plate et al., 2015).

Motion capture techniques were applied in the past to
reproduce clinical findings by using either single sensors
(accelerometers, inertial sensors, or gyroscopes), e.g., placed
on the lower back (Hubble et al., 2015; Bernad-Elazari et al.,
2016) or multiple sensors like the Xsens MVN suit used in the
present study.

Despite the abundance of available motion data in PD
patients, motion capture techniques have not been regularly used
in hospitals thus far. One reason for this may be the “big data”
problem. Motion data from the Xsens MVN suit used here
delivers data on 22 segments, in 6 dimensions (3 rotations, 3
translations), with a frame rate of 120Hz, so 5min recording time
leads to about 5 million data points. To characterize PD patients’
motor abnormalities meaningfully, the amount of data must be
considerably reduced, e.g., via feature extraction (Hester et al.,
2006; Patel et al., 2009).

Resulting motion features may include parameters such as
mean displacements, velocities, and accelerations, or smoothness,

represented by jerk (third time derivative of displacement).
There is already evidence that jerk is abnormal in PD (Teulings
et al., 1997; Hogan and Sternad, 2009). Other methods of
data reduction by feature extraction involve signal processing
methods, e.g., wavelet analysis (Joshi et al., 2017), stochastic
models, like the Hidden Markov Model (Joshi et al., 2017), or
machine-learning algorithms (Wouda et al., 2016), i.e., using
Random Forests (Wahid et al., 2015; Kuhner et al., 2016, 2017).

Simple machine-learning algorithms like Random Forests
may be able to deliver a classification strategy and successfully
separate healthy subjects from patients. However, the process by
which machine-learning algorithms favor certain features over
others is not necessarily instructive. For example, features not
applied for a given classification task may either correlate very
closely with features already in use (and that were therefore
disregarded) or, on the contrary, on features that do not facilitate
the classification task at all. As a consequence, machine-learning
algorithms are usually unsuitable to advance the understanding
of a certain abnormality.

When experimenting with machine-learning algorithms for
feature extraction in PD subjects (Kuhner et al., 2016, 2017),
we came up with a very simple question that machine-learning
classification methods alone cannot answer, namely, which
signals or features best describe the difference between healthy
subjects on the one hand and PD patients on the other hand.

For this study, we collected gait data of patients with deep
brain stimulation (DBS) electrodes in place, switched on or off.
For the sake of simplicity, we report here the maximum contrast
between healthy subjects, and PD patients with DBS switched
on or off. We attempted to optimize a computational model
based on a minimally reduced number of ideally one optimal
body segment, one single optimal time derivative (displacement,
velocity, acceleration, or jerk), and one optimal signal entity
(single channels vs. left–right difference) as either absolute
values or their variability. In addition, we used AdaBoost to
determine the most valuable feature combination to characterize
PD patients’ state.

MATERIALS AND METHODS

Subjects
This study involved 26 PD patients and 25 healthy control
subjects. PD patients stayed in the Department of Neurology and
Neurophysiology of the University Hospital Freiburg for their
first post-implantation parameter setting of DBS. Among the
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recorded 26 patients, 7 patients [3 female, 4 male; mean age 58±
14.5 years (± SD), age range 40–74 years] with rather long disease
duration (see Table 1) were able to complete the 10m walk test
with DBS both in the ON and OFF condition. The remaining 19
patients could not walk 10m in the OFF condition due to severe
postural instability and gait disturbance, and were thus excluded
from data analysis.

Mean Unified Parkinson’s Disease Rating Scale (UPDRS) in
the DBS OFF condition was 44 [±11.7 (±SD)], and in the
ON condition, 24 [±6.5 (±SD)]. Disease duration ranged from
8 to 14 years [mean 10.5 years ± 1.9 (±SD), Table 1]. The
PD patients were measured twice (in the DBS ON and OFF
condition) in order to balance on and off DBS conditions.
Healthy control subjects [13 female, 12 male; mean age 52 ±

6.8 years (±SD), age range 37–63 years] were recruited from
relatives and department staff. All patients and subjects gave their
written informed consent in accordance with the Declaration
of Helsinki. The study protocol was approved by the Ethics
Committee of the University of Freiburg. All the included data
were anonymized.

Experimental Setup
The Xsens MVN suit is a human motion capture system
(see Figure 1) consisting of 17 MEMS (microelectro-mechanical
systems) which merge the signals of 3D inertial measurement
units (IMUs), i.e., linear accelerometers, 3D magnetometers, and
3D rate gyroscopes. Each MEMS was attached to a specific
body region, i.e., the head, upper or lower arms, spine or upper
or lower legs, etc. The sensors were positioned next to bigger
joints (e.g., knee, wrist, shoulder). Data were sampled at 120Hz
and sent to two wireless receivers. Both receivers delivered the
data to a portable computer. Custom-made software employed
the data from the sensor trajectories to extrapolate segment
size, segment movements, and orientations, as well as joint
positions. That data were then used to reconstruct 3D segmental
movements and joint angles. Furthermore, the program provided
velocity and acceleration for each segment/joint, as well as
the orientation. Figure 1 shows a subject’s reconstructed avatar
as a visualization of the segment and joint positions at
a given moment.

Data Analysis
For data analysis, we applied the absolute values of position,
velocity, acceleration, and jerk vectors of segments and joints.
The reconstructed skeleton (see right panel in Figure 1) consisted
of 22 segments, including 3D positions and orientations in space,
which were represented in quaternions. The data sets covering
gait were split into individual steps and strides (j ∈ S). We
first identified the exact moment when the swinging leg passes
the standing leg. Starting from that point in time, we went both
forwards and backwards in time until we identified the moments
where the foot segment’s absolute velocity dropped below 5% of
its maximum velocity, which then identified the start and end
of a given step. Each stride served as an individual data set for
further processing.

Data Preprocessing

We denoted with p
(t)
i the position of segment i at time step t. A

Gaussian filter with several time dependent positions was used to
filter sensor-related noise to compute a smoothed position trace

p(t)
i

=

(
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) , where the index i denotes

the segment ID. In the next step, we transformed position traces

into the local frame of the hip, namely p̂(t)i = p(t)
i
−p(t)

0
, where p(t)

0
is the smoothed position of the hip frame. This transformation
allowed us to evaluate data such as the arm swing in relation
to the lower trunk to guarantee independence from the main
movement direction.

Features
The 22 segments consisted of 6 midline segments (trunk) and
8 segments with left and right specificity in each case, e.g.,
left and right hand, thus 16 segments with left and right
specificity in total. We can reformulate the segment positions as
{

p̂
(t)
1 , . . . , p̂(t)6 , p̂(t)7,l , p̂

(t)
7,r , . . . , p̂

(t)
14,l, p̂

(t)
14,r

}

.

The first group of features includes the means between the left
and right side of the segments with left and right specificity, i.e.,

f
(t)
i,m =

1

2
·

(

p̂
(t)
i,l + p̂

(t)
i,r

)

for i ∈ {7, . . . , 14 } .

TABLE 1 | Summary of clinical data: Parkinson’s disease (PD) patients are shown with type [one patient tremor dominant (TD), six patients akinetic-rigid with dominant

postural instability and gait disturbance over tremor (PIGD)], age, disease duration, Unified Parkinson’s Disease Rating Scale (UPDRS), with modified subscore III when

nucleus subthalamicus (STN) simulation was switched on and off, levodopa equivalent daily dosage (LEDD), most affected side, and of freezing of gait (FOG).

Patient PD type Age (years) Disease dur. (years) UPDRS deep brain stimulation (DBS) On UPDRS DBS Off LEDD Affected side FOG

P002 TD 74 9 15 20 300 Left –

P013 PIGD 69 8 29 38 400 Left –

P017 PIGD 74 12 22 43 320 Right +

P018 PIGD 49 9 32 51 250 Left +

P020 PIGD 57 14 15 47 200 Right and left –

P021 PIGD 40 10 16 61 350 Right +

P022 PIGD 43 10 28 45 450 Right –

Mean 58 10,5 24 44 324

SD 14.5 2.0 6.5 12 79
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FIGURE 1 | Experimental setup. (A) Subject wearing the Xsens sensor suit, consisting of 17 MEMS (microelectro-mechanical systems) which merge the signals of 3D

inertial measurement units (IMUs), i.e., linear accelerometers, 3D magnetometers, and 3D rate gyroscopes. Data were sampled at 120Hz and used to reconstruct 3D

segmental movements and joint angles. (B) Reconstructed avatar of the subject as a visualization of the segment and joint positions at a given moment.

The second group of features covers the left/right differences, i.e.,

f
(t)
i,d =

(

p̂
(t)
i,l − p̂

(t)
i,r

)

for i ∈ {7, . . . , 14} . Using the second feature,

we evaluated differences between the more and less affected side.
Furthermore, we computed the first and second moment

of each feature for each body segment i over the whole
trajectory, yielding each feature’s mean and variance. The mean
is computed by

µi =
1
T ·

∑T
t = 1 d

(t)
i for i ∈ {1, . . . , 22} and the variance with

σ
2
i =

1
T−1 ·

∑T
t = 1

(

µi − d
(t)
i

)2
for i ∈ {1, . . . , 22} where d is

either p, fi or fm.
Thus, the total number of features is the product of the

absolute mean and variance (2) of a single stride, times
body segments (22), times displacement and three orders of
time derivative of displacement (4), times left–right mean and

left–right difference (2) of 8 out of 22 segments, resulting in
264 features. One subject’s data set consisted of values for all
264 features for each stride. Since we evaluated about 30 strides
for each subject, the total amount of data points of one subject
amounted to a value of about 30× 264= 7,920.

Weak Classifiers
A weak classifier (CW) relates to a separating algorithm which
splits a certain feature of the data into two categories with an
accuracy of at least 50% (e.g., a specific segment’s slow vs. fast
velocity). Parameters {−1, 1} are chosen as class labels. Weak
classifiers were used to detect a specific threshold that delivered
the best separation results between PD patients and healthy
control subjects. We calculated the highest classification rate
by uniting data sets of healthy subjects and PD patients into
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one, sorting the elements according to the value of the current
separating algorithm, and taking the value ε as a threshold
between two elements in the set. The final weak classifier is
calculated byWCi (x) = 1 if x < εi and WCi (x) = −1 ifx ≥ εi.

The classifiers’ performance was quantified by a leave-one-
subject-out cross-validation, i.e., one subject was removed from
the data set, and the residual data set was used to predict
the missing data sample. This procedure was repeated for
each subject.

Meta-Classifier AdaBoost
We used AdaBoost to evaluate which types of feature
combinations ameliorated the classification results as compared
to single features. AdaBoost works as a meta-classifier and
combines multiple classifiers, i.e., features plus respective
thresholds, into one, by weighting the output of this set of weak
classifiers. In this case, the meta-classifier represents an optimal
mix of features for maximum differences between PD patients
and healthy subjects. If the result is smaller than zero, the data set
belongs to the first group (here, PD patients); otherwise it belongs
to the second group (healthy subjects). In principle, AdaBoost
repeats the following two steps: First, the algorithm identifies
a classifier Cm which contributes the most information to the
current weighted sum of chosen weak classifiers

C(m−1) =
∑m−1

k= 1 αkCk, i.e., Cm = argmin
c∈CW

∑

c(xi) 6= yi
ω

(m)

i

where ω
(1)
i : = 1,ω(m)

i : = e−yi·C
(m−1)

(xi) form > 1.
Then, the sum runs over the total training set. Thereby,
{

(xi, yi)
}N

i=1 denotes the set of training data points xi and the
corresponding labels yi. The concept of this algorithm is to add
the classifier which maximizes information acquisition. In this
way, the algorithm categorizes the wrongly classified elements of
C(m−1) correctly. The second step of the AdaBoost involved the
computation of a weight for the selected classifier. Let ξ

(m) =
∑N

i = 1 ω
(m)
i be the total error. Note that the optimal weight αm

for the classifier Cm is given by

αm =
1
2 · log

(

1−ǫm
ǫm

)

with ǫm =

∑

Cm(xi)6=yi
ω

(m)

i

ξ (m) . The resulting

function to classify a sample x is: C(m)(x) =
∑m

k= 1 αk · Ck (x ) .
The algorithm chooses the most accurate weak classifier as first
classifier. Each succeeding classifier is not necessarily a classifier
with high accuracy, but it does add the highest amount of
information to the existing (chosen) set. As a result, a set of weak
classifiers represents one of the best combinations for separating
the data.

Our classifier accuracy values were statistically analyzed
using the JMP R© statistic program by SAS Institute Inc., Cary,
NC, USA. We tested normal distribution and homogeneity of
variances with the Kolmogorov–Smirnov test and parametric
methods for further analyses. Due to the expected dependency
between the outcome measures within motor behavior, statistical
significance was tested by an analysis of variance (ANOVA). The
within-subjects factors were: (i) absolute values vs. variance of
absolute values, (ii) displacement vs. velocity vs. acceleration vs.
jerk-related measures, (iii) mean absolute values vs. left–right
difference, and (iv) segments (e.g., head, neck, shoulder). The

level of statistical significance was set at p = 0.05. Differences
between groups were tested using Tukey’s post-hoc test, if
multiple comparisons were considered.

RESULTS

Overall, our study yielded a total of four different time
derivatives: displacement, velocity, acceleration, and jerk
(Figure 2). Hereby, displacement relied on the position vectors
between the hip and the analyzed segment. Velocity, acceleration
and jerk were the first, second, and third derivation of that
position. Figure 2A depicts the accuracy, which we defined as
the percentage of correctly classified subjects as PD patients:
Here, nearly all features [except for the displacement of the
midline segments (trunk) and the mean between left and right
limbs] attained accuracy rates between 80 and 90%.

Figure 2B displays the results of the variance of features.
Again, features of the midline segments and the mean between
more and less affected limb performed across all time derivatives
equally with accuracy rates of 80% to 90%.

Systematic Evaluation of Feature
Characteristics
We applied accuracy values to determine the effects of different
degrees of freedom in our feature matrix, i.e.,:

• Absolute values vs. variance of absolute values (Figure 3A)
• Displacement vs. velocity vs. acceleration vs. jerk-related

measures (Figure 3B)
• Mean absolute values vs. left–right difference (Figure 3C)
• Segments (e.g., head, neck, shoulder, Figure 3D).

We found that variance of a certain feature determined
significantly higher accuracy values than the raw feature
(F = 26, p < 0.0001, Figure 3A). Jerk measures displayed
significantly higher accuracy values than acceleration, velocity,
and displacement-related measures (F = 32, p < 0.0001,
Figure 3B). Post-hoc tests showed that displacement-related
measures reveal significantly less accuracy than all other time
derivatives (p < 0.0001 between displacement, and all other time
derivatives). The limbs’ mean values demonstrated significantly
higher accuracy values than the differences between themore and
less affected limb (F = 210, p < 0.0001, Figure 3C). Finally, the
accuracy of segments varied: lower leg, foot, and toe measures
revealed the greatest accuracy, followed by trunk measures (L5,
L3, T12, T8); the upper arm, shoulders, head, hand, and forearm
were lowest (F = 2.3, p = 0.01, Figure 3D). Post-hoc tests
revealed that both the foot and lower leg showed significantly
higher accuracies than the forearm (p = 0.043 and p = 0.045,
respectively). All other pairwise comparisons between segments
did not reach a significance level below p = 0.05. These findings
were in line with the overall highest accuracy value (variance of
jerk of the mean of the left and right foot).

Meta-Classifier AdaBoost
When evaluating the performance of combinations of classifiers
using AdaBoost, we observed the following rules: The feet yielded
the highest accuracy by applying a combination of variance of
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FIGURE 2 | Accuracy. (A) Accuracy achieved to distinguish between Parkinson’s disease (PD) patients and healthy control subjects. Accuracy for trunk segments (left

section), limb segments (central section), and limb segment asymmetries (right section) using mean displacement (dotted line), velocity (dashed line), acceleration

(dashed and dotted line), and jerk (solid line). (B) Accuracy values based on variance measures. This figure is based on variance measures instead of mean values for

displacement (dotted line), velocity (dashed line), acceleration (dashed and dotted line), and jerk (solid line).

jerk, variance of acceleration, and mean of velocity. Concerning
the left–right difference, the combination of variance of jerk
and the mean of displacement displayed the highest accuracy.

The segment with the overall highest accuracy was the lower
leg using the combination of variance of acceleration, jerk, and
mean of velocity. Of the head and trunk segments, the head
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FIGURE 3 | Accuracy analyses. Accuracy as a function of absolute values vs. variance of absolute values (A), displacement vs. velocity vs. acceleration vs.

jerk-related measures (B), mean absolute values vs. left–right difference (C), and segments (D).

FIGURE 4 | Accuracy achieved using AdaBoost, based on combinations of multiple weak classifiers to create a stronger classification hypothesis. Weak classifiers

are displacement, velocity, acceleration, and jerk mean, and variance features.

yielded the highest accuracy rate based on the combination of
variance and mean of acceleration and displacement. Overall, the
head and trunk segments’ best feature combination was mean of
displacement, variance of jerk, and acceleration. As an example
of feature combinations, Figure 4 illustrates the combined
AdaBoost accuracy rates separated by segments. Note that due
to the cross-validation procedure, the overall performance of
AdaBoost is lower than the best feature of each segment.

DISCUSSION

Gait deficits are one of the major problems that determine PD
patients’ quality of life. PD patients report them as the most
debilitating disease features (Horak et al., 2005). While gait
disturbances occur in all PD subtypes, they are the leading
symptom in the postural instability and gait disturbance type
of PD, PIGD. The patient group studied here mainly presented
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akinetic types of the disease. In this paper, we analyzed gait
because it involves movements of all body segments. Other
motion tasks, e.g., getting up from a chair or doing accuracy
tasks with the hand, require specific instructions. In addition,
they represent a minor portion of overall motion deficits and
vary widely.

The aim of this pilot study was to compare features from
sensor suit data (segments, time derivatives, variance, left–right
difference) that enable optimal discrimination between the gait
patterns of advanced-stage PD patients with DBS electrodes in
the nucleus subthalamicus (STN) switched on or off, and healthy
subjects. Other approaches to classify PD patients’ gait employed
data from considerably different sources for different purposes.
While Khorasani and Daliri (2014) and Joshi et al. (2017)
analyzed data of force-sensitive insoles provided by Hausdorff
et al. (1998), Wahid et al. (2015) used whole body gait data
and force platform outcomes to optimize classification results.
Here, we report the maximum contrast between healthy subjects
and PD patients with DBS switched on or off. In theory, one
could calculate the contrast between many different subgroups
of this cohort. For example, another potential question is which
parameter best separates PD patients with DBS switched off from
those with DBS switched on. Such a contrast would provide
information on the treatment effect of DBS which might deliver
another favorable signal. Here, we focused on the aforementioned
contrast for simplicity’s sake.

In our approach, we calculated weak classifiers for each feature
separately in order to compare the quality of different features.
In the next step, we systematically analyzed the accuracy of
those classifiers to correctly distinguish PD patients from healthy
subjects. In general, we identified an obvious grade of classifier
accuracies: (i) variance was superior to absolute values of body
motion, (ii) jerk (third time derivative of displacement) was
superior to acceleration, velocity, and displacement, (iii) average
motion across left and right was superior to the differences,
i.e., asymmetries between left and right markers, and (iv) feet
and lower leg segments were superior to trunk, head, and hand
movements. These principles were in line with the overall highest
accuracy value (variance of jerk of the mean of the left and
right foot).

In addition, we evaluated the accuracy outcomes from
AdaBoost and the respective sets of weak classifiers to extract
the combination of features displaying maximum discriminative
power. The main purpose of this approach was to potentially
enhance the quality of discrimination by combining different
features across different segments.

Meta-classifiers like AdaBoost deliver a set of classifiers
that optimally separate the group of PD patients from
healthy subjects. We found that a combination of two to
three features is optimal. In most cases, the combination
consisted of a feature related to absolute values with a low
order of time derivative, like displacement or velocity, and
a variance-related feature of a high order of time derivative
like acceleration or jerk. This proved to be true for the trunk
and limb, as well as for the asymmetry features. Out of
all head and trunk segments, the head delivered the highest
accuracy rates.

In a previous study, we showed that machine-learning
approaches significantly correlate with known clinical measures
such as the UPDRS (Kuhner et al., 2017).

Our selection of a small set of features instead of using the
entire body data set is specifically interesting since a full sensor
suit is obtrusive for everyday use. On the other hand, very few
sensors (e.g., at the belt, or as a collar, at the wrist, near the trunk)
to monitor motion patterns in PD patients (Horak et al., 2005)
and other diseases (Bonora et al., 2015) might neglect important
information of certain motor tasks, particularly considering the
growth in wearable technology in conjunction with modern
smartphones. Our findings may facilitate the development of
motion capture systems based on commercial-grade wearable
sensors and “smartphone apps” to observe motor features in
PD patients. In addition, data reduction is often done locally,
which means next to the sensor (IMU), before the information is
transferred to a collecting unit and further processed, due to the
usually limited rate of data transfer. Such data reduction means
the signals of interest must be pre-selected. We aimed here to
make recommendations as to where best to place sensors and
which type of signals should ideally be processed so as to exploit
the available motion data to the maximum.

Limitations
In this study, PD patients were suffering from advanced-stage
PD and were undergoing recent DBS of the STN. Most study
participants were not able to walk 10m in the OFF condition
independently, which greatly reduced our sample size and
potentially biased our data. This severely affected group was
chosen to analyze the strongest expressions of pathological
features. Early-stage PD gait deficits, PD patients without DBS,
and the variability of the defined features during medication
were not the focus of the present study. Additional investigations
should explore whether our study’s optimal-parameter findings
also apply to less severely affected PD patients and other
treatment conditions.

CONCLUSIONS

Our approach proposes a specific marker position (foot, lower
leg) and certain data processing algorithms (variance of jerk) to
optimally characterize PD patients’ motion abnormalities during
walking. Using AdaBoost, we identified sets of classifiers that
optimally separate PD from healthy subjects. For walking, a
useful combination of classifiers may refer to the head and a
foot segment. Moreover, this combination should include an
absolute value derived from a low order of time derivative and
a variance-related feature from a high order of time derivative.

In the future, we aim to evaluate the differential effect of
treatment (e.g., STNDBS) in order to characterize the optimal set
of features for monitoring intervention effects, before we extend
this approach to different motion patterns, e.g., standing up from
a chair, turning around, and interacting with the surroundings.
In future studies, our results may help to develop a low-threshold
and objective analysis tool for diagnosing and monitoring motor
abnormalities in PD. Given our latest findings, a simplified and
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small sensor attachable to the shoe may suffice to analyze PD
gait abnormalities.

More generally, this small pilot study ranked motion features
according to their distinguishing power and identified the
variability of a smoothness measure i.e., jerk of the foot as the
most favorable signal from which to separate healthy subjects’
from PD patients’ gait. This biomarker is imperceptible to
clinicians’ naked eye and, therefore, is not incorporated in
current motor assessments such as the UPDRS. Consequently,
we believe that more extensive investigations are warranted to
identify the most powerful biomarkers for characterizing motor
abnormalities in PD. Future studies may ultimately challenge
how traditional assessments such as the UPDRS are composed.
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