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Editorial on the Research Topic
Collaborative Research to Address Changes in the Climate, Hydrology and Cryosphere of High Mountain Asia

High Mountain Asia (HMA) holds large reservoirs of glaciers and snow that provide water to over a billion people in the region. Local resource managers rely on accurate assessments of present and projected runoff to inform decisions, but observations needed to build these assessments are sparse. In recent years, increasingly high resolution remote sensing observations and land surface models have provided new approaches for assessing HMA’s climate, hydrology and cryosphere. A central challenge of ongoing research is to develop innovative approaches to calibrate and validate remote sensing and model simulations.
Precipitation data are central to nearly every HMA hydrological assessment, but we lack information on the accuracy of existing products derived from models, satellites and ground stations. Christensen et al. use a Bayesian statistical model to quantify the shared spatial and temporal variability and uncertainty of these existing datasets, and they generate a combined product that assimilates the spatial and temporal structure of all models. Yoon et al. also intercompare existing precipitation products, showing that although they capture broad spatial patterns of precipitation, they exhibit large differences in their means and trends that need to be addressed in future reanalysis work.
Quantifying snow water equivalent (SWE) is necessary for irrigation and flood forecasting, and several papers explore ways to combine remote sensing data with snowpack simulation models. Margulis et al. present a new snow reanalysis approach that applies a scaling factor, derived from a model constrained by satellite-derived (from MODIS and Landsat) fractional snow covered area, to an existing snowfall product to estimate SWE. Using this approach, Liu and Margulis show that several existing snowfall datasets underestimate high elevation snowpacks, and they provide a roadmap for building a full HMA-wide snow reanalysis product. Remote sensing of microwave brightness temperatures provides another way to measure SWE. Rather than using a radiative transfer model to relate geophysical variables to brightness temperature measurements, Ahmad et al. use support vector machines to improve SWE estimates within an existing land surface model. Lund et al. explore the use of Synthetic Aperture Radar to measure HMA snow properties. The radar’s ability to see through clouds is well-suited for monsoon regions and enables observations of transient snow line altitudes that offer additional constraints on snow and glacier evolution models. One way to improve these remote sensing and model assimilation studies is to directly observe snow depth at high elevations. Kirkham et al. deploy a gamma ray sensor to measure SWE directly at nearly 5,000 m a.s.l., and Saloranta et al. show how these observations can be used to directly parameterize a regional snow model. Khan et al. directly measure high elevation snowpack chemistry in an effort to assess the impacts of biofuel burning and subsequent deposition of black carbon on snow surface albedo.
Until recently the contribution of HMA glaciers to the total water budget has been poorly constrained. A comparison of digital elevation models derived from stereo satellite imagery shows that HMA glaciers lost 19.0 ± 2.5 Gt yr−1 of mass between 2000–2018 (Shean et al.). Rounce et al. use these data to calibrate a glacier evolution model, providing projections of glacier mass change and runoff for four Representative Concentration Pathways (RCPs). They predict HMA glaciers will lose between 29 ± 12% (RCP 2.6) to 67 ± 10% (RCP 8.5) of their mass by 2,100, relative to 2015. Racoviteanu et al. assess HMA glacier health using semi-automatic methods to identify seasonal snow line altitudes on glaciers from optical satellite imagery. In addition to these regional assessments, several studies focus on a detailed analysis of specific glaciers to explore factors driving glacier changes. Wijngaard et al. model two HMA glaciers to show that glacier change during 1850–2016 was largely due to anthropogenic forcing, with greater impacts on the clean-ice glacier than the debris-covered glacier. Bonekamp et al. simulate glacier conditions in two contrasting catchments and find large regional mass balance variability that depends on complex variations in the surface energy balance. Calculating this energy budget for any given glacier depends strongly on the resolution of the digital elevation model (Olson et al.) and on accurate calculation of the surface albedo, especially for summer-accumulation type glaciers where the frequency of summer snowfall events can significantly alter the amount of shortwave radiation received at the surface (Johnson and Rupper). Many glaciers in HMA terminate in lakes that are now being monitored using uncrewed aerial vehicle surveys, providing data to quantify glacier calving losses into proglacial lakes and advance our understanding of the thermal and dynamic factors that control calving frequency (Watson et al.). These glacial lakes have varying reflectance spectra depending on factors such as lithic particles and phytoplankton, which Schiassi et al. forward model using remote sensing reflectance data, and inverse model using in situ observations.
Numerous manuscripts generate integrated assessments of the hydrology of the HMA region. Xue et al. assimilate snow cover and freeze/thaw remote sensing products into a hyper-resolution (1 km) land surface model. They find the assimilation improves model estimates relative to ground validation observations, but that more high elevation ground observations are needed to significantly improve the model. Yoon et al. explore uncertainties in a suite of land surface models and find that hydrological estimates are highly sensitive to the quality of the meteorological forcing data. Loomis et al. use output from one model analyzed by Yoon et al. and combine it with independent observations of glaciers (Shean et al.) and groundwater variability. They develop a novel regression approach that uses satellite gravimetry data to assess the degree of closure of the modeled and observed water budget. A key outcome from this set of studies is that improved understanding of subsurface conditions such as permafrost degradation and groundwater depletion due to irrigation will improve our ability to partition the complex array of hydrological signals in HMA.
Narrowing in on specific watersheds, Kayastha et al. combine satellite scatterometry data with a glacier mass balance model to simulate runoff from snow and ice and assess model performance relative to local streamflow observations. Mishra et al. use a coupled biophysical and economic valuation model to assess the impacts of climate change on two different HMA river basins, and conclude that economic impacts depend strongly on the partitioning of meltwater between sources of rain, snow and ice melt. Stream isotope and chemistry data provide direct methods for measuring this meltwater partitioning, which Hill et al. demonstrate for portions of the Brahmaputra River Basin.
HMA’s unique climatic, geomorphic and tectonic factors combine to create an interlinked array of potential hazards. Kirschbaum et al. provide a comprehensive survey of connections among hydrologic and geologic hazards in HMA, explain how they can be assessed using remote sensing data, and provide a roadmap of how to address current gaps in understanding. Future work calls for similar cross-disciplinary assessments that link together models and observations of HMA climate, hydrology and cryospheric processes to inform regional decision makers.
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Toward qualifying hydrologic changes in the High Mountain Asia (HMA) region, this study explores the use of a hyper-resolution (1 km) land data assimilation (DA) framework developed within the NASA Land Information System using the Noah Multi-parameterization Land Surface Model (Noah-MP) forced by the meteorological boundary conditions from Modern-Era Retrospective analysis for Research and Applications, Version 2 data. Two different sets of DA experiments are conducted: (1) the assimilation of a satellite-derived snow cover map (MOD10A1) and (2) the assimilation of the NASA MEaSUREs landscape freeze/thaw product from 2007 to 2008. The performance of the snow cover assimilation is evaluated via comparisons with available remote sensing-based snow water equivalent product and ground-based snow depth measurements. For example, in the comparison against ground-based snow depth measurements, the majority of the stations (13 of 14) show slightly improved goodness-of-fit statistics as a result of the snow DA, but only four are statistically significant. In addition, comparisons to the satellite-based land surface temperature products (MOD11A1 and MYD11A1) show that freeze/thaw DA yields improvements (at certain grid cells) of up to 0.58 K in the root-mean-square error (RMSE) and 0.77 K in the absolute bias (relative to model-only simulations). In the comparison against three ground-based soil temperature measurements along the Himalayas, the bias and the RMSE in the 0–10 cm soil temperature are reduced (on average) by 10 and 7%, respectively. The improvements in the top layer of soil estimates also propagate through the deeper soil layers, where the bias and the RMSE in the 10–40 cm soil temperature are reduced (on average) by 9 and 6%, respectively. However, no statistically significant skill differences are observed for the freeze/thaw DA system in the comparisons against ground-based surface temperature measurements at mid-to-low altitude. Therefore, the two proposed DA schemes show the potential of improving the predictability of snow mass, surface temperature, and soil temperature states across HMA, but more ground-based measurements are still required, especially at high-altitudes, in order to document a more statistically significant improvement as a result of the two DA schemes.

Keywords: snow mass, soil temperature, surface temperature, data assimilation, High Mountain Asia


1. INTRODUCTION

High Mountain Asia (HMA) is a landscape of tundra, enormous glaciers, and alpine lakes, in addition to being a storehouse of freshwater central to the well-being of more than one billion people across Asia (Immerzeel et al., 2010). Snow and glacier melt are important hydrologic processes in HMA (Immerzeel et al., 2009, 2010), and changes in surface temperature are expected to seriously affect the surface melt characteristics (Barnett et al., 2005; Immerzeel et al., 2010) as well as subsurface conditions, such as permafrost (Wu et al., 2013). Quantifying changes to this fragile environment is of utmost importance to protect, restore, and promote sustainable use of the HMA ecosystem, including—but not limited to—water resource management (Immerzeel and Bierkens, 2012) and agricultural activities (Immerzeel et al., 2010; Qiu, 2016). However, the process of developing a better understanding of the HMA ecosystem faces many challenges, especially in the context of climate change (Liu and Chen, 2000; Xu et al., 2008; Yang et al., 2014). For example, the availability of in-situ surface measurements for hydrologic, weather, and climate studies in this complex area is scarce, particularly at relatively high altitudes (see Figure 1A). In addition to the lack of dense and stable in-situ hydrometeorological measurement networks, high variability in regional weather conditions triggered by the complex topography further complicates the characterization of land processes in HMA (Salzmann et al., 2007). Therefore, a comprehensive knowledge of the regional spatiotemporal variability in the HMA environment might only be achieved by applying advanced modeling techniques, remote sensing products, and data assimilation (DA) methods at relatively high spatial and temporal resolutions.


[image: image]

FIGURE 1. (A) Reprocessed Shuttle Radar Topography Mission elevation map on the 0.01° model grid. Grid cells used during assimilation evaluations are marked in magenta. Again, GlobSnow is a product, rather than in-situ measurements, but we utilize GlobSnow product in a point-scale manner as discussed in section 4. (B) Reprocessed National Centers for Environmental Prediction modified International Geosphere-Biosphere Programme 20-category global vegetation class map, where “Decid.” represents “deciduous trees,” “Evergrn” represents “evergreen trees,” “bl” represents “broadleaf,” and “nl” represents “needleleaf”.



The Community Noah Land Surface Model with Multi-Parameterization Options (Noah-MP), has been developed and used to simulate land-atmosphere energy, water, and carbon exchanges, as well as key hydrologic states, such as surface runoff, soil moisture, snow depth, snow water equivalent (SWE), and terrestrial water storage at local or basin scales (mainly) over the Continental United States (Niu et al., 2011; Yang et al., 2011; Cai et al., 2014; Chen et al., 2014; Ma et al., 2017). However, few studies have been conducted to rigorously assess the Noah-MP model performance over HMA, particularly across the complex Tibetan Plateau terrain (Zhang et al., 2016), and the majority of these studies (e.g., Gao et al., 2015; Zheng et al., 2015; Zhang et al., 2016) only focus on assessing the effects of new representations of a specific physical process on the improvements of the model's performance at local scales (Ma et al., 2017). Therefore, it is necessary to evaluate key modeled states, such as snow depth, SWE, surface temperature, and soil temperature estimates in a more systematic manner across the entire HMA.

Land data assimilation systems (LDASs) can optimally merge information from satellite-derived observations and land surface models (usually uncoupled from an atmospheric model) at regional, continental, and global scales (Rodell et al., 2004). LDASs are intended to construct quality-controlled and spatially and temporally consistent land surface datasets from the best available observations and model outputs to support hydrological modeling activities (Mitchell et al., 2004). The ultimate goal of developing such an assimilation framework is to yield a merged state of estimate that is superior to either the observations or model alone (Reichle, 2008). Previous studies found that snow mass and soil moisture modeling performance can be improved through rule-based direct assimilation of (binary) remotely-sensed snow cover (Rodell and Houser, 2004; Zaitchik and Rodell, 2009; Arsenault et al., 2013), and landscape freeze/thaw observations (Farhadi et al., 2015), respectively. The land surface models used in the three aforementioned studies are the Mosaic (in Rodell and Houser, 2004) applied to Continental United States, the Community Land Model (version 2.0) (in Arsenault et al., 2013) applied to Washington and Colorado, United States, and the NASA Catchment Land Surface Model (in Farhadi et al., 2015) applied to North America between 45°N and 55°N and 90°E and 110°E. In the HMA region, few studies showed the potential of LDASs for improving surface soil moisture and skin temperature states by merging remotely sensed observations (e.g., passive microwave brightness temperature observations at relatively coarse spatial resolutions) into land surface models across the Tibetan Plateau (Rasmy et al., 2011; Lu et al., 2012). Based on the relatively encouraging performance of the LDASs investigated in previous studies, this study is intended to integrate the state-of-the-art, remotely sensed snow and freeze/thaw products at relatively fine spatial resolutions into the Noah-MP model to further improve snow- and temperature-related estimates across HMA.

Snow- and land surface-related estimates can be generated from a land surface model at a desired spatial scale. However, they are subject to errors arising from imperfect model parameterizations as well as errors in the boundary conditions used to drive the model. On the other hand, satellite-derived observations (retrievals) are also imperfect due to the instrumentation accuracy, sensor applicability, and retrieval algorithm development assumptions. For example, snow cover extent can be derived from optical (i.e., visible to near-infrared wavelength) satellite sensors at a relatively high spatial resolution [e.g., the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived snow cover extent at 500 m]. The accuracy of these snow cover products is often impacted by atmospheric conditions (e.g., cloud cover). In addition, satellite-based retrievals of snow mass at global scale are available from polar-orbiting platforms carrying microwave sensors, such as the Advanced Microwave Scanning Radiometer–Earth Observing System (AMSR-E)-based SWE product (Tedesco and Narvekar, 2010). This product is available at a spatial resolution of 25 km, but has been reported to yield a high degree of uncertainty over densely-vegetated areas and regions with relatively deep snowpack due to the sensor's saturation depth, snow grain size evolution, and/or inaccurate representation of snow density in the retrieval algorithm (Foster et al., 1997; Tedesco and Narvekar, 2010). Comparatively, snow cover observations are more preferable for use during assimilation than satellite-based SWE retrievals in this study because (1) satellite-based SWE retrievals are too coarse in spatial resolution, (2) SWE retrievals are prone to relatively large uncertainties, and (3) passive microwave sensors typically do not resolve snow conditions well in mountainous areas. The relatively poor predictability of the AMSR-E based SWE product is also partially demonstrated by Dai et al. (2012) as applied in Xinjiang, China. Without appropriate corrections in the bias of the satellite-based snow mass retrievals, very little improvements—or even degradations—are likely to occur during the assimilation phase according to previous studies (Andreadis and Lettenmaier, 2006; De Lannoy et al., 2012; Liu et al., 2013).

Similarly, the relatively long record of satellite-based retrievals of land surface conditions, such as land surface temperatures and freeze/thaw states, provides LDASs with a considerable number of possibilities to improve hydrological and biospheric processes in weather and climate models. Satellite-based land surface temperature retrievals can be obtained from a variety of polar-orbiting and geostationary platforms carrying infrared (e.g., Wan and Li, 1997; Jin, 2004) and microwave (e.g., Holmes et al., 2009) sensors. Infrared land surface temperature retrievals are largely impacted by weather conditions (i.e., cloud cover, water vapor amount, and aerosols), whereas the accuracy of microwave land surface temperature retrievals are often associated with surface type determination and surface emissivity estimates. On the other hand, satellite-based freeze/thaw states can be obtained from radiometer (e.g., Bateni et al., 2013) and scatterometer (e.g., Bartsch et al., 2007) measurements at various frequencies along the microwave spectrum. Previous studies showed that satellite-based retrievals of land surface temperatures typically exhibit different mean values and variabilities from model estimates (Jin, 2004; Reichle et al., 2010) and/or in-situ measurements (Jin et al., 1997) due to differences between satellite overpass times (along with look angles), model output times, and ground-based measurement times. Comparatively, satellite-based freeze/thaw state assimilation is more preferable than that of satellite-based surface temperature retrievals (e.g., from MODIS), partly because the microwave-based MEaSUREs freeze/thaw product is less affected by cloud contamination than the infrared-based MODIS surface temperature product. In addition, the assimilation of satellite-based surface temperature retrievals generally requires prior scaling and/or bias adjustment during the assimilation process (Reichle et al., 2010) because of different climatologies of model estimates and satellite-based retrievals (see Figure 6 for an example of Noah-MP estimates and MODIS surface temperature products). To avoid subjective assumptions of what climatology is more correct, we chose not to assimilate the MODIS surface temperature product.

In this paper, we systematically evaluate the ability of the baseline Noah-MP model along with two data assimilation schemes to simulate surface temperature, soil temperature, snow depth, and SWE states in HMA. Specifically, this work aims to (1) assess the performance of snow depth and SWE estimates simulated by Noah-MP (with and without snow assimilation) and (2) assess the performance of surface temperature and soil temperature profile estimates simulated by Noah-MP (with and without freeze/thaw states assimilation).



2. STUDY AREA, MODEL, AND DATASETS


2.1. Study Area and Noah-MP Land Surface Model

The study domain is the HMA region bounded between 20°N and 41°N and 66°E and 101°E (see Figure 1). The forward (prognostic) model used in this study is the Noah-MP (version 3.6; Niu et al., 2011; Yang et al., 2011) forced by meteorological fields from Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2; Gelaro et al., 2017). The Noah-MP model is integrated forward in time at a time step of 15 min from 1 September 2007 to 31 August 2008 on a regular 0.01° spatial grid using the NASA Land Information System (LIS) version 7.2 (Kumar et al., 2006). Noah-MP outputs are generated on a daily-averaged basis, which is consistent with the temporal resolution of the majority of the measurements or products used during the evaluation phase. The model is spun up, reaching quasi-equilibrium of both surface and subsurface temperature states, by looping eight times through the 1-year period from 1 January 2001 to 1 January 2002 (see section 5.1 for details) and then once through the 5.75-year period from 1 January 2002 to 31 August 2007.

Within LIS, the MERRA-2 forcing fields (i.e., air temperature, specific humidity, downward longwave flux, downward shortwave flux, zonal wind, meridional wind, surface pressure, total pressure, total precipitation, and convective precipitation), originally with an hourly temporal resolution and a 0.5° × 0.625° spatial resolution, are spatially interpolated using bilinear interpolation onto the 0.01° model grid and temporally interpolated using linear interpolation onto the same model time step. No additional physically-based downscaling procedure (e.g., temperature or humidity lapse rate corrections) is applied to the atmospheric forcing variables in this study. An advanced downscaling framework (https://eospso.gsfc.nasa.gov/sites/default/files/eo_pdfs/Mar_Apr_2018_color%20508_0.pdf) will be included in the future to evaluate the impact of high-resolution atmospheric forcings on hydrologic modeling. It is worth noting that the MERRA-2 product provides both uncorrected and corrected (i.e., gauge-corrected) precipitation fields. This study utilizes the uncorrected precipitation field from MERRA-2 because the corrected precipitation field may inherit a dry bias from the gauge measurements according to Ghatak et al. (2018) based on their findings in South Asia.

The static input data for Noah-MP are obtained from the National Center for Atmospheric Research/Research Application Laboratory website (https://ral.ucar.edu/solutions/products/noah-multiparameterization-land-surface-model-noah-mp-lsm), which are preprocessed (or re-gridded) onto the same 0.01° model grid using the NASA Land surface Data Toolkit (LDT) public release of version 7.2 (Arsenault et al., 2018). The soil texture types are aggregated from the 30-s, 16-category hybrid State Soil Geographic Database/Food and Agriculture Organization 0–30 cm top-soil texture. The vegetation (land-use) types are obtained from the 1 km, National Centers for Environmental Prediction modified International Geosphere-Biosphere Programme 20-category global vegetation class map (see Figure 1B). The bottom boundary layer conditions for Noah-MP soil models are obtained from the 1-degree annual 2-m air temperature, which are processed from the European Centre for Medium-Range Weather Forecasts model analysis. The monthly climatological green vegetation fraction, monthly climatological surface albedo, and maximum albedo over snow covered area are obtained from the National Centers for Environmental Prediction for the Americas/Global Energy and Water Cycle Experiment America Prediction Project.

The Noah-MP is developed based on the original Noah land surface model, with a number of enhancements including (1) the addition of improved physical processes [e.g., separation of the vegetation canopy from the ground surface (section 2.1.2), (2) the inclusion of a multi-layer snow model (section 2.1.1)] (Dickinson et al., 1998; Yang and Niu, 2003; Niu et al., 2007), and (3) the addition of multiparameterization options (Niu et al., 2011; Yang et al., 2011; Cai et al., 2016), which allow a user to configure the model with different options. Table 1 summarizes all Noah-MP options and parameters used in this study.



Table 1. Noah-MP model runtime options and parameters used in this study.
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2.1.1. Noah-MP Snow Physics

Similar to the legacy Noah model, the snow accumulation/ablation parameterizations of the Noah-MP model are based on mass and energy balance in the snowpack. The change in SWE is balanced by the input snowfall, and output snowmelt and snow sublimation (Wang et al., 2010). Snow compaction, melting, and freezing processes are all taken into account via physically-based snow processes (Niu et al., 2011).

Unlike the legacy Noah model, the snowpack can be divided by up to three layers depending on the snow depth in Noah-MP (Niu et al., 2011). When snow depth is < 0.025 m, no snow layer exists and the snowpack is combined with the soil layer. When snow depth is between 0.025 and 0.05 m, a single-layer snowpack is formed. When snow depth is in between 0.05 and 0.15 m, a two-layer snowpack is created. When snow depth is above 0.15 m, a three-layer snowpack is formed. In addition, the snow interception routine in the Noah-MP is employed to account for the loading and unloading of snowfall, melting of intercepted snow (e.g., by the vegetation canopy) and refreezing of the meltwater, frost (or sublimation), and dew (or evaporation). The Noah-MP derived snow cover fraction (on the ground) is parameterized as a function of the snow depth, ground roughness lengths, and snow density (Niu et al., 2007, 2011).

Based on the Noah-MP derived snow cover fraction and SWE on the ground, the model grid cells are categorized into three types: (1) snow-covered, (2) snow-free, and (3) undetermined. If the Noah-MP derived snow cover fraction is greater than or equal to 50% and the modeled SWE is greater than 1 mm, the model grid cell is considered as “snow-covered." On the other hand, if the model derived snow cover fraction is < 50% and the modeled SWE is less than or equal to 1 mm, the model grid cell is considered as “snow-free." All other cases are considered as undetermined model grid cells in terms of the binary snow cover output.

2.1.2. Noah-MP Temperature States

One of the augmentations of Noah-MP with respect to the legacy Noah model is the separation of vegetation canopy (from the ground surface) to account for vegetation effects on surface energy and water balances. Using a “semi-tile” subgrid scheme, the Noah-MP is able to represent land surface heterogeneity appropriately (Niu et al., 2011). The Noah-MP has the structure of a single-layer of canopy cover. The canopy temperature state and the bare ground temperature state are both solved iteratively via the evaluations of the surface energy balance of solar radiation, longwave radiation, sensible heat, latent heat, and ground heat flux (Niu et al., 2011; Ma et al., 2017). The surface temperature in Noah-MP is then diagnosed from the areal-weighted average of the canopy temperature and the bare ground temperature within a model grid cell. In other words, the canopy layer, the bare ground layer, and the diagnosed “combined surface layer” are all associated with zero heat capacities.

layer center (from the ground surface)A four-layer soil column configuration is used in the Noah-MP model (see Table 1). The thicknesses of each soil layer (from top to bottom) are 10, 30, 60, and 100 cm. Using the ground heat flux (at the surface) as the upper boundary, the soil temperatures of the four-layer soil column are solved together through a tri-diagonal matrix of the implicit time scheme with soil thermal diffusivity properties (Niu et al., 2011). Soil temperature values obtained from Noah-MP represent the temperatures at each soil layer center (from the ground surface) at 5, 25, 70, and 150 cm, respectively.

Based on the Noah-MP derived surface temperature, the model grid cells are categorized into three types: (1) frozen, (2) thawed, and (3) undetermined. If the Noah-MP derived surface temperature is greater than or equal to 274.15 K (+1 °C; Tub), the model grid cell is considered as “thawed.” On the other hand, if the model derived surface temperature is ≤ 272.15 K (–1 °C; Tlb), the model grid cell is considered as “frozen.” All other cases (i.e., between Tlb and Tub) are considered as undetermined model grid cells in terms of the binary freeze/thaw output. It is important to note that in most studies, 0 °C is considered as the temperature threshold between the frozen and thawed states (e.g., Colliander et al., 2012; Farhadi et al., 2015; see also section 2.2). The upper temperature boundary (+1 °C; also denotes as “Tub” in Equation 2) and the lower boundary (–1 °C; also denotes as “Tlb” in Equation 1) are used in a similar manner as Farhadi et al. (2015) for binary freeze/thaw categories, which is used to account for the threshold temperature uncertainty associated with the freeze-thaw transition due to landscape heterogeneity and water solute concentration.



2.2. Satellite-based Snow Cover and Freeze/Thaw Observations

The satellite-based snow cover observations are obtained from MODIS Snow Cover Daily L3 Global 500-m Grid (MOD10A1, version 6; Hall and Riggs, 2016). Snow cover in this data set consists of a single, best observation of the day for each grid cell selected from the MODIS/Terra Snow Cover 5-Min L2 Swath 500 m data set. Each observation represents the best sensor view of the surface in the grid cell based on solar elevation, distance from nadir, and grid cell coverage (Hall and Riggs, 2016). The daily, binary snow cover maps are then processed from the MOD10A1 product, with ones (i.e., representing snow-covered conditions) and zeros (i.e., representing snow-free conditions) for land pixels, and “no-value” flags for water bodies or indecisive grid cells (e.g., missing data). If the MOD10A1-derived product observes a Normalized Difference Snow Index snow cover percentage greater than 0 and less than or equal to 100, the land grid cell is treated as “snow-covered.” When the index of snow cover percentage = 0, the land pixel is treated as “snow-free.” For all other cases, the “no-value” flags are applied. These binary snow cover maps are subsequently re-gridded onto the 0.01° model grid using the nearest neighbor interpolation, for later use in the snow cover assimilation (SC DA) scheme. That is, the model and observational information are mapped 1:1 spatially where satellite-based observations are coincidental with model grid cells. It is important to note that the MODIS/Aqua Snow Cover product (MYD10A1, version 6; Hall and Riggs, 2016) is not used in this study because 75% (15 out of 20) of the detectors in the Aqua MODIS band 6 (1.628–1.652 mum) failed shortly after launch. The band 6 is important for the Normalized Difference Snow Index computation. Even though an additional quantitative image restoration technique had been developed to restore the missing band 6 signals used in the MYD10A1 production (Riggs et al., 2017), the MOD10A1 product without the extra image restoration process is deemed preferable in this context.

The satellite-based freeze/thaw observations are obtained from the Making Earth System Data Records for Use in Research Environments (MEaSUREs) Northern Hemisphere Polar Equal-Area Scalable Earth Grid 2.0 Daily 6 km Land Freeze/Thaw Status from the AMSR-E and the AMSR-2 (version 1; Kim et al., 2017, 2018). The MEaSUREs product is used here because (1) it is a publicly available product covering the entire HMA, (2) it has a relatively fine spatial resolution, and (3) it yields relatively high spatially-averaged agreement (greater than 80%) among other satellite-based freeze/thaw products when compared to the offline Noah-MP derived estimates (before assimilation; results not shown). The algorithm identifies surface freeze/thaw state changes based on the dynamic relationship between vertically-polarized brightness temperature observations at 36.5 GHz and changes in the aggregate landscape dielectric constant associated with transitions between predominantly frozen and non-frozen conditions with 0 °C being the temperature threshold (Kim et al., 2011).

Both morning (AM) and afternoon (PM) binary freeze/thaw states are employed in this study, with zeros representing the frozen landscape and ones representing the non-frozen (or thawed) landscape. For all other cases (e.g., water bodies or grid cells not significantly affected by cold season constraints), the “no-value” flags are applied. Similar to the reprocessing procedure of the binary snow cover observations, both AM and PM binary freeze/thaw maps are re-gridded onto the 0.01° model grids using the nearest neighbor interpolation for later use in the freeze/thaw assimilation (FT DA) scheme.




3. DATA ASSIMILATION METHOD AND EXPERIMENTAL DESIGN

There is a variety of assimilation techniques to choose from, ranging from the direct insertion (DI) method, Kalman filter (or with its variants, such as an ensemble Kalman filter or an extended Kalman filter), particle filter, Kalman smoother (or with its variants, such as an ensemble Kalman smoother), and variational methods (Walker et al., 2003) to different hybrid assimilation methods that combine two or more techniques together. More sophisticated DA methods (e.g., ensemble Kalman filter) might produce more optimal results than the DI method (Arsenault et al., 2013), partly because the latter treats observations being perfect without dynamically analyzing the relationship between model errors and observation errors, as an ensemble Kalman filter would do. However, sophisticated DA approaches, other than DI methods, generally rely on the existence of a continuous relationship between model states and observations (Walker et al., 2003). Both snow cover and freeze/thaw observation maps are binary, which relate in non-continuous, threshold fashion to model states, and therefore, rule-based (a.k.a. DI-based) updating schemes described below are employed for this study. It is important to note that satellite-based snow cover observations (i.e., MOD10A1 used in this study) can also be assimilated as snow cover fraction using an ensemble Kalman filter into the Noah-MP model, without being converted to binary snow cover maps as described in section 2.2. However, the relatively simple DI method (i.e., assimilation of binary snow cover maps) is used in this study because it is (1) not impacted by uncertainties associated with the estimation of SWE using the depletion curve as a function of fraction snow cover through an ensemble Kalman Filter (De Lannoy et al., 2012); (2) computationally efficient; and (3) more capable of removing modeled snowpack than adding snowpack (Rodell and Houser, 2004; Arsenault et al., 2013), especially considering that the uncorrected MERRA-2 precipitation used in this region is likely to be positively biased (Xie et al., 2017; Ghatak et al., 2018).

Proper characterization of errors in a DA system is also very important, in terms of both model and observation errors. In the DI-based DA systems presented in this study, the model errors are taken into consideration by applying more stringent thresholds to key state variables as outlined in section 2.1.2 for surface temperatures and in section 2.1.1 for snow-related states. The observation errors are implicitly included during the re-gridding (or re-projection) processes as outlined in section 2.2, and therefore, no additional observation errors are applied in both DA systems.


3.1. Snow Cover Assimilation (SC DA)

An accurate representation of the snow mass (e.g., snow depth and SWE) is important in this region because the meltwater generated from the snowpack accounts for the majority of the water budget, from ~50% in the Indus and Amu Darya basins to ~67% in the Syr Darya, Tarim, and Tibetan Plateau basins (Smith and Bookhagen, 2018). Following Rodell and Houser (2004) and Arsenault et al. (2013), the Noah-MP model assimilates satellite-derived binary snow cover observations. The updates take place daily at 00:00 (UTC). If the model derived and the corresponding MODIS derived snow cover observations agree with each other, or the observations are flagged as “no-value” (see section 2.2), or the model derived snow cover estimates are undetermined (see section 2.1.1), then no updates occur.

If the model indicates a snow-covered grid cell, but the observation indicates snow-free conditions, both SWE and snow depth states are reduced to zeros. If the model indicates a snow-free grid cell, but the observation indicates snow-covered conditions, the modeled SWE during the analysis update step is increased to 5 mm, the snow depth is increased to 0.02 m accordingly, and one layer of snowpack is created forcefully despite the single snow layer threshold of 0.025 m (of snow depth) as discussed in Section 2.1.1, which is then used to initiate snowpack growth as described in Rodell and Houser (2004). All other snow-related states, such as number of snow layers, snow depth distribution profile (as a function of the snow layers), snow temperature profile, snow liquid water content, and snow ice content, are also modified accordingly within the Noah-MP routines.



3.2. Freeze/Thaw Assimilation (FT DA)

Land surface temperature plays a key role in governing the surface energy balance. It dictates the longwave radiation emitted by the surface and serves as an “anchor” for the soil temperature profile (Crago and Qualls, 2014). It also serves as an important boundary condition, which influences the latent and sensible heat flux partitions to the atmosphere (Reichle et al., 2010). Furthermore, soil temperature plays a key role in the land surface processes by affecting a series of physical, chemical, and biological processes in the soil, such as water and heat flux (Meng et al., 2017). Following Reichle et al. (2010) and Farhadi et al. (2015), the Noah-MP assimilates the satellite-derived binary freeze/thaw observations on a daily basis. The updates take place twice a day at 01:30 (AM;UTC) and 13:30 (PM;UTC), which corresponds to the AM and PM freeze/thaw observations, respectively. If the model derived and the corresponding freeze/thaw observations agree with each other, or the observations are flagged as “no-value" (see section 2.2), or the model derived freeze/thaw conditions are undetermined (see section 2.1.2), then no updates occur. In addition, it is important to note that model grid cells covered with a significant amount of snowpack (i.e., greater than 50% of the snow cover fraction or greater than 5 cm of the snow depth as simulated by the Noah-MP model) are not being updated during the FT DA due to the limited penetration depth of the 36 GHz brightness temperature channel used in the MEaSUREs detection algorithm.

If the model indicates a frozen grid cell, but the observation indicates thawed condition, the increment (d) during the analysis (update) step is then computed as:
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where Tlb (= –1 °C or 272.15 K) is the lower boundary of the freeze/thaw state using the surface temperature (see section 2.1.2), and [image: image] is the modeled surface temperature before update. Similarly, if the model indicates a thawed grid cell, but the observation indicates frozen condition, the increment is then computed as:
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where Tub (= +1 °C or 274.15 K) is the upper boundary of the freeze/thaw state using the surface temperature (see section 2.1.2). Under both Equations (1, 2) circumstances, the updating scheme does not change the modeled freeze/thaw conditions dramatically before and after the analysis update in order to avoid completely reverting the modeled surface energy and water balance conditions. The increment is directly applied onto the top layer of soil temperature state, and therefore the top layer of soil temperature during the analysis step is computed as:
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where [image: image] is the top layer of soil temperature before update and the [image: image] is the top layer of soil temperature after update. We applied the increments directly, and completely (1:1) onto the top layer of soil temperature instead of modifying surface temperature directly. This is because the Noah-MP surface layer is associated with zero heat storage (see section 2.1.2), and applying the DA increments onto the modeled surface temperature state directly will have minimum effects on the model forecast. However, the relative error correlation between the “observed" surface temperature and the FT DA state variable of the top layer of soil temperature is somewhat difficult to characterize within the DI approach, let alone the phase shift between the diurnal cycle of the two aforementioned variables (Reichle et al., 2010). A series of error analyses is performed and it is found that, assuming all forcing errors arise from the air temperature only, the daily-averaged changes in the modeled surface temperature and the daily-averaged changes in the top layer of soil temperature are roughly proportional, which could be approximated with a ratio of 1:1 in terms of the daily-averaged changes. It is acknowledged that FT DA analysis updates are performed at two model time steps (i.e., morning and afternoon time) rather at the daily-averaged basis, so the relatively simple ratio applied here might not be accurate.




4. EVALUATION METHODOLOGY AND REFERENCE DATASET

With limited ground-based stations available over such complex terrain, it is well-acknowledged that HMA is a challenging place to conduct evaluations. In this study, the goodness-of-fit statistics of bias, root-mean-square error (RMSE), and correlation coefficient (R) are adopted for evaluating model derived, daily-averaged snow depth, SWE, surface temperature, and soil temperature estimates. Besides, the 95% confidence intervals are also computed for comparison against in-situ surface temperature measurements by assuming a student's t distribution for spatially-averaged statistics of bias, gamma distribution for RMSE, and an asymptotic normal distribution for R after a Fisher Z transformation, considering each grid cell as an independent data point.


4.1. Comparison Against in-situ Temperature and Snow Depth Measurements

The performances of both open-loop (OL; no assimilation) and DA estimates (both SC DA and FT DA) are evaluated via comparisons against in-situ measurements. Model derived estimates (at a spatial resolution of approximately 1 km) are evaluated against the closest colocated ground-based stations.

The in-situ, daily-averaged surface temperature measurements are obtained from the Chinese Meteorological Administration (CMA), namely the Dataset of Daily Climate Data From Chinese Surface Stations for Global Exchange (V3.0) (https://data.cma.cn/en/?r=data/detail&dataCode=SURF_CLI_CHN_MUL_DAY_CES_V3.0&keywords=daily). The daily-averaged surface temperature values provided in this dataset are computed by averaging the four measurements taken by platinum resistance thermometers at 02:00, 08:00, 14:00, and 20:00. One CMA station (not shown in Figure 1A) at (22.57°N, 99.94°E) within the HMA region is removed from the comparison because FT DA is identical to OL for this grid cell (i.e., no analysis updates are performed). Therefore, there are in total 23 CMA stations used for FT DA evaluation.

The in-situ soil temperature measurements are obtained from the Coordinated Enhanced Observing Period (CEOP) Asia Monsoon project at the Himalayas site (https://www.eol.ucar.edu/projects/ceop/dm/insitu/sites/ceop_ap/). A total of three CEOP stations are available for the FT DA evaluation. Soil temperatures are measured using DLA400 Lsi-Lastem sensors at a time step of an hour (or 20 min), and at depths of 5 and 20 cm (or 15 cm) from the ground surface (depends on the station). Measurements collected at the depth of 5 cm are used to evaluate the model derived estimates for the top layer of soil (0–10 cm). Measurements collected at the depth of 20 cm (or 15 cm) are used to evaluate the model derived estimates for the second layer of soil (10–40 cm). Since no measurements are available at the center of the second layer of soil (i.e., 25 cm), the Inverse Distance Weighting method is applied onto the model estimates to match with the measurement depths. Daily-averaged temperature values are then computed as the temporal mean of the temperatures collected during the 24-h period of the day as a function of the measured depth. In addition, CEOP also provides users with soil temperature measurement flags to help with data quality controls. Therefore, only soil temperature measurements with the “good" CEOP flags are retained and used in the daily-averaged temperature calculations.

The in-situ, daily-averaged snow depth measurements are obtained from (1) the Global Summary of the Day (GSOD; https://data.noaa.gov/dataset/dataset/global-surface-summary-of-the-day-gsod) and (2) the Contribution to High Asia Runoff from Ice and Snow (CHARIS) project (http://himatmap.apps.nsidc.org/hma_insitu.html). It is important to note that in-situ snow stations with records less than 20 days during the snow season (from December 2007 to March 2008) are not used in the analysis. Both CHARIS and GSOD provide their station elevation information along with the depth measurements. We use station-provided elevation information to compare against the model grid cell elevation obtained from the Shuttle Radar Topography Mission (see Figure 1A). If the absolute elevation difference between the model grid cell and the GSOD station is greater than 100 m, the station is removed from comparison. One GSOD station (not shown in Figure 1A) at (39.29°N, 71.87°E) within the HMA region is removed because the elevation difference is greater than 3,000 m. The pre-examination of the elevation difference is important because disparities in the horizontal support (i.e., in-situ station vs. 1 km model grid cell) will be exacerbated by the differences in vertical elevation, especially in such complex terrain for snow estimates. The implementation of the quality control process finally yields three CHARIS stations and 11 GSOD stations during SC DA evaluation.



4.2. Comparison Against Reference Satellite-Based SWE and Surface Temperature Products

The satellite-based snow product used during the evaluation process is the European Space Agency Global Snow Monitoring for Climate Research (GlobSnow) SWE (Pulliainen, 2006; Takala et al., 2011). GlobSnow SWE estimates are a Bayesian combination of a semi-empirical snow emission model (Pulliainen and Grandell, 1999), space-borne passive microwave observations, and ground-based snow depth measurements obtained from adjacent weather stations. GlobSnow SWE is provided daily at a 25 km horizontal resolution, limited between latitudes 35° and 85°N across non-mountainous regions. During the evaluation period, 138 days (out of 365 days) of estimates are missing. The majority of the missing days are in June, July, August, and September during the snow-off or very thin snow season.

The quality of the snow reanalysis product (e.g., GlobSnow SWE product used here) depends on the availability of ground-based snow stations used in the production phase, especially for the HMA region with a limited number of ground-based stations (e.g., Toure et al., 2016). Instead of comparing against the regional GlobSnow SWE estimates, the study only extracts qualified pixels with colocated GlobSnow-provided weather stations. It is important to note that only the station coordinates are provided by GlobSnow. No time series of the station measurements and no ancillary station related information (e.g., station elevation) are provided. There are in total nine qualified model grid cells with colocated GlobSnow weather stations. Due to the scarcity of ground-based measurements across HMA used in their product, only one weather station is available per one GlobSnow pixel.

Similar to the strategy adopted in section 4.1, we only compare the model derived estimates obtained from the single model grid cell with colocated GlobSnow weather station against the corresponding GlobSnow SWE estimates. If the model grid cell has an elevation greater than 3,000 m, the cell is removed from the comparison because GlobSnow SWE is not able to represent mountain snowpack conditions. Thus, two model grid cells (markers not shown in Figure 1A) are removed. In addition, four of the remaining seven qualified model grid cells (markers not shown in Figure 1A) are removed because SC DA is identical to OL (i.e., no SC DA updates are performed). Therefore, only three grid cells are used to compare against GlobSnow estimates. Additionally, it is important to note that the Canadian Meteorological Centre derived daily snow depth (or SWE), also a snow reanalysis product, is not used in the evaluation because this reanalysis product does not provide coordinates of the in-situ snow observations used within their production phase. The satellite-retrieved AMSR-E SWE product is not used in the evaluation because it has been reported to significantly underestimate SWE (see sections 1, 3.1 for discussions).

The satellite-based surface temperature products used during the evaluation process are the MODIS/Terra Land Surface Temperature Daily L3 Global 1-km Grid (MOD11A1, version 6; Wan et al., 2015a) and the MODIS/Aqua Land Surface Temperature Daily L3 Global 1-km Grid (MYD11A1, version 6; Wan et al., 2015b). The MODIS instruments on Terra and Aqua image the same area on Earth approximately 3 h apart. The MODIS instrument observes the instantaneous land surface temperature during the satellite overpass times using infrared bands. Cloud-contaminated observations are removed from both products during their production phases (Wan et al., 2015a,b). The median UTCs of satellite overpasses across the HMA area between 2007 and 2008 are approximately 05:49 (MOD11A1 daytime), 16:46 (MOD11A1 nighttime), 08:15 (MYD11A1 daytime), and 20:47 (MYD11A1 nighttime). Both daytime and nighttime land surface temperatures derived from MOD11A1 and MYD11A1 products are re-gridded onto the 0.01° model grid using the nearest neighbor interpolation. Given the availability of both nighttime and daytime land surface maps generated by MOD11A1 and MYD11A1—in total four measurements—several methods exist that can evaluate the model derived estimates. In this study, we use the simple arithmetic mean of all four measurements to approximate the daily-averaged values (see Equation 4) and then to compare with the model derived daily averages.
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where LSTm is the MODIS derived, daily-averaged land surface temperature. The subscript “moddy” denotes MOD11A1 daytime product, “modnt” denotes MOD11A1 night product, “myddy” denotes MYD11A1 daytime product, and “modnt” denotes MYD11A1 nighttime product. For a single grid cell, four measurements, including daytime MOD11A1, nighttime MOD11A1 as well as daytime MYD11A1, and nighttime MYD11A1 have to present simultaneously in order to calculate the daily-averaged surface temperature; otherwise, a “no-value" flag is applied.




5. RESULTS AND DISCUSSIONS


5.1. Model Spin-up

In order to allow the model states of interest with longer memories (e.g., deep-soil temperature) to reach quasi-equilibrium, the model must be properly initialized via spinning up. Using the initial conditions given in Table 2, the Noah-MP model is spun up by looping through several integrations with 2001 forcing data. The year of 2001 is used because it is neither too cold nor too warm, neither too dry nor too wet (Ren et al., 2017), which is relatively representative of the recent (e.g., 2000 and beyond) climate with minimized regional annual anomalies in the meteorological forcings (Rodell et al., 2005). The completion of the spin-up procedure is determined by looping through the model repeatedly until all model states of interest reach their equilibrium states. The equilibrium state is defined as all model grid cells in the study region having to meet the requirement set by Equation (5) across the majority (at least 90%) of the days within the year. That is, the relative difference in the model states between consecutive spin-up years cannot exceed 0.1% across 90% of the year. The 0.1% relative difference criteria is adopted based on the method outlined in Rodell et al. (2005) and Cai et al. (2016).

[image: image]

where n defines the n-th loop of the year used in the spin-up procedure and x represents the daily average, a single model grid cell based state variable output (i.e., surface temperature, or each layer of the soil temperature). The operator | · | denotes taking the absolute value of the state variable from the n-th loop as well as the absolute value of state variable difference obtained from the n+1 and n-th loop.



Table 2. Initial conditions of model prognostic variables used for Noah-MP model run.
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When the fourth layer of soil reaches its quasi-equilibrium, the three other soil layers (0–10, 10–40, 40–100 cm) also reach their own quasi-equilibrium states, which is expected. Noah-MP derived surface temperature generally requires 3–5 years for spin-up, and the fourth layer of soil temperature requires 3–8 years for spin-up (not shown). Longer spin-up periods are often witnessed in the Tibetan Plateau, where homogenized initial temperatures (288.0 K) of soil, vegetation, and ground (see Table 2) applied at the spin-up beginning in January significantly deviate from the comparatively cold climate (relative to the rest of HMA, such as Central India) across the Tibetan Plateau. This phenomenon is especially notable across the western extensions of the Himalayas, such as Karakoram, Pamir, and Hindu Kush mountain ranges, where extremely cold weather persists throughout the year.



5.2. Assessments of SC DA

Figure 2A shows an example time series of OL and SC DA derived SWE estimates when compared against GlobSnow estimates at a grid cell in an urban area in Xinjiang, China. OL generally underestimates SWE, while SC DA successfully adds some snow on 02 January 2008. Overall, the bias in the model derived SWE estimates is reduced by 35%, the RMSE is reduced by 10%, and the R is increased by 13% as a result of SC DA relative to OL (see Table 3). It is interesting to note that there is a dramatic decrease in the GlobSnow-derived SWE of more than 35 mm on 18 January 2008, when neither OL nor SC DA demonstrates similar behavior. The sharp drop in the SWE might be due to snow plowing activities by the local residents; however, under such circumstances, it is relatively difficult to explain the dramatic, and seemingly unrealistic, subsequent increase in SWE of 40 mm on 27 January 2008. Therefore, it is more likely that GlobSnow derived estimates are prone to higher uncertainty (relative to Noah-MP model estimates) between 18 January 2008 and 27 January 2008 for this grid cell. The erroneous estimates in GlobSnow might arise from the uncertainty in the passive microwave brightness temperature observations used in the algorithm development phase (see section 4.2). Such brightness temperature observation uncertainty might be attributable to urban construction and human activity disturbances in the area (Xiong et al., 2017).
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FIGURE 2. (A) Comparison of OL and SC DA derived SWE against GlobSnow SWE estimates at (39.48°N, 76.00°E) between 01 October 2007 and 01 July 2008 (with white gaps representing missing GlobSnow estimates). Time series between September and October, and between July and August are not shown in the Figure because no GlobSnow estimates are available. (B) Comparison of OL and SC DA derived snow depth against GSOD snow depth measurements at (38.55°N, 68.83°E) between 1 December 2007 and 1 April 2008 (with white gaps representing missing GSOD measurements). Time series between September and December, and between April and August are not shown in the Figure because no GSOD measurements are available.





Table 3. Statistics computed when comparing model derived, including both OL and SC DA derived, snow depth or SWE estimates against measurements obtained from GSOD, CHARIS, or GlobSnow.
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Figure 2B shows an example time series of OL and SC DA derived snow depth estimates in comparisons with GSOD measurements at a grid cell close to Dushanbe airport in Tajikistan. OL generally overestimates snow depth, while SC DA successfully removes some snow since 15 December 2007. Overall, the bias in the model derived snow depth estimates is reduced by 50%, the RMSE is reduced by 50%, and the R is improved from –0.05 to 0.16 as a result of the SC DA relative to OL (see Table 3). Even though SC DA demonstrates significant improvements in snow depth estimates relative to OL, the bias (or RMSE) in the SC DA derived snow depth of 30 cm is still too large. It is possible that the large bias in the model estimates is due to measurement errors in the in-situ GSOD dataset. That is, snow depth measurements collected in an open area (i.e., airport) are subject to wind-blown snow redistribution effects that might contain negative biases (Reichle et al., 2011). It is also possible that the large bias in the model estimates might be due to infrequent updates (i.e., removal of snow in this grid cell) in the SC DA along with the overestimation of the precipitation in MERRA-2 (Xie et al., 2017).

Table 3 summarizes the goodness-of-fit statistics, including bias, RMSE, and R, of both OL and SC DA experiments with respect to ground-based CHARIS snow depth measurements, ground-based GSOD snow depth measurements, and the reanalysis product based GlobSnow SWE estimates. Again, the three grid cells shown in Table 3 for GlobSnow SWE comparisons are the ones colocated with GlobSnow-provided weather stations (see section 4.2 for discussions). It is not too surprising to see that the majority of these publicly-available in-situ stations were installed at relatively low elevations because highest terrain is too steep, exposed, and/or inaccessible to maintain a snow measuring instrument (Lundquist et al., 2015). It is still encouraging to see that the majority of the in-situ stations (13 of 14) installed at relatively low-to-medium altitudes witness improved goodness-of-fit statistics in the snow depth estimates as a result of the SC DA relative to OL. However, only four of the 14 stations witness statistically significant improvements in the SC DA derived evaluation metrics. It is important to note that four ground-based stations, including two CHARIS stations and two GSOD, stations yield biases and/or RMSEs greater than 40 cm in both OL and SC DA experiments. The mean elevation of the four grid cells coinciding with these ground-based stations are approximately 2,500 m according to Figure 1A. Therefore, the large uncertainty in the model estimates might be attributed to the positive bias in the MERRA-2 forcing at relatively high altitudes. It might also be explained by the fact that a single ground-based station is not representative of the snow condition across a 1 by 1 km model grid, especially for the mountain snowpack where the snow is highly variable spatially. During the comparison against GlobSnow SWE estimates, all (three out of three) grid cells show improved (but not statistically significant improved) bias and RMSE in SC DA relative to OL, but only one of them shows slightly improved (but not statistically significant improved) R in SC DA. The exact reason for the degraded statistics in R at some grid cells is unclear since it is relatively difficult to discern the uncertainty of the model derived estimates from the GlobSnow product.

Figure 3 shows daily-averaged SWE estimates derived from OL and SC DA along with assimilated MODIS snow cover maps on 15 September 2007 and 3 February 2008, respectively. At the start of the snow accumulation season in September, slightly more snow is being added to OL model estimates (relative to being removed) as a result of the SC DA along the western extensions of the Himalayas as well as the Kunlun mountain range. It is therefore not surprising to find that compared with OL SWE estimates, the snow estimates pattern derived from SC DA agrees more closely with the MODIS snow cover map as shown in Figure 3C. As the winter season progresses into February, SC DA derived SWE estimates tend to remove more snow from OL especially across the Inner Tibetan Plateau. Similar findings can also be witnessed in Figure 4. The solid line is calculated by averaging all grid cells with lower SC DA derived SWE estimates (relative to OL) as a function of the time, for which the SWE amount difference between SC DA and OL can be used to represent the spatially-averaged amount of SWE being removed from OL due to SC DA. On the other hand, the dashed line is calculated by averaging all grid cells with higher SC DA derived SWE estimates (relative to OL) as a function of the time, for which the SWE amount difference between SC DA and OL can be used to represent the spatially-averaged amount of SWE being added onto OL due to SC DA. Overall SC DA tends to remove more snow from the baseline Noah-MP model, especially during the snow melt season after April, which might be due to (1) the correction of the positive bias in the MERRA-2 derived precipitation (Xie et al., 2017), and/or (2) the capability of DI to remove snow (see section 3). If the precipitation data had a negative bias, we would probably expect less updates during the snow melt period, but perhaps more updates in the peak periods. However, without adequate ground-based stations to evaluate against, it is still difficult to conclude whether SC DA performance is better than OL across the entire Tibetan Plateau.
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FIGURE 3. Daily-averaged SWE estimates on 15 September 2007 derived from (A) OL and (B) SC DA. Daily-averaged SWE estimates on 3 February 2008 derived from (D) OL, and (E) SC DA. Assimilated MODIS snow cover maps are shown in (C) for 15 September 2007 and (F) for 3 February 2008, respectively, where “NaN" is the no-value indicator as discussed in section 2.2.
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FIGURE 4. The spatially averaged amount of SWE being removed or added from OL due to SC DA from 2007 to 2008. Grid cells that never go through any SC DA updates are removed from the calculation.



Based on the evaluations against in-situ snow depth measurements and SWE products at point-scale and at relatively low-to-medium altitudes, it is therefore concluded here that SC DA generally performs better than OL in terms of both snow depth and SWE estimates, especially for bias and RMSE statistics. Besides the representativeness issue of the ground-based stations, there exist some limitations with the SC DA direct insertion technique. It is obvious that the improvement (or degradation) magnitudes arising from SC DA are strongly dependent on the number of analysis updates that occurred during the assessment period. Most of the updates take place during early and late snow seasons when observations and modeled estimates do not agree with each other more frequently relative to the other time of the snow season. In other words, the DI-based SC DA is unlikely to initiate a large update in the peak winter. In addition, the increments of SWE and snow depth as applied during the SC DA update phase are somewhat subjective (see section 3.1). For example, Figure 2A shows that an update (increase) of 5 mm of SC DA derived SWE on 02 January 2008 is inadequate to capture the SWE increase in the GlobSnow product. Furthermore, a successful implementation of SC DA is also closely related to an accurate representation of the forcing, especially for precipitation (including snowfall) used in the snow estimation.



5.3. Assessments of FT DA

Figure 5 shows the histograms of average bias, RMSE, and R computed by comparing OL and FT DA derived surface temperature estimates against 23 in-situ CMA stations. Both OL and FT DA derived estimates show relatively good agreement with the CMA surface temperature measurements in the average R statistics, where ROL = RFTDA ≈ 0.98, and the subscripts indicate estimates obtained from either OL or FT DA experiments. The good agreement in R between model and in-situ measurements demonstrate that the model is able to capture the day-to-day variability within the surface temperature time series. In addition, slight improvements are witnessed for FT DA where the average bias is reduced by 16% from –0.19 K (OL) to –0.16 K (FT DA), and the average RMSE is reduced by 2% from 3.04 K (OL) to 2.99 K (FT DA). The negative biases in the modeled surface temperature estimates might be explained by the negative biases in the MERRA-2 air temperatures, which had been reported by Xie et al. (2017). FT DA shows some improvements in bias and RMSE statistics relative to OL and also shows some tendency to correct the negative bias in the MERRA-2 air temperature. However, due to the relatively large variations of the computed statistics, no statistically significant skill differences (at a significance level of 5%) between OL and FT DA could be concluded here. There could exist several possibilities to explain the relatively insignificant improvement obtained from FT DA. First, the relatively insignificant improvements might be explained by the stations used during the evaluation since a single ground-based station is not able to represent the entire 1 by 1 km model grid cell. It might also be explained by the incorrect magnitudes of increments applied onto the FT DA state variable since we significantly simplify the error correlation between the surface temperature and the top-layer of soil temperature. Additional explanations might be the uncertainty in the assimilated freeze/thaw observations, which might arise from the simple interpolation strategy as discussed in section 2.2. Further, it is worthwhile pointing out that all CMA stations are installed in the eastern Tibetan Plateau and Taklamakan Desert, with relatively low elevations compared with the western Tibetan Plateau. Therefore, no solid conclusions could be made for FT DA performance in estimating surface temperatures at relatively high altitudes when compared against in-situ CMA measurements.


[image: image]

FIGURE 5. Histogram of the average (A) bias, (B) RMSE, and (C) R computed by comparing OL, and FT DA against CMA ground-based surface temperature measurements. All histograms are supplemented with 95% confidence intervals. It is important to note that (C) does not start with 0.



Figure 6 shows the spatial distributions of bias, RMSE, and R computed between daily-averaged OL, FT DA surface temperature estimates, and the MODIS derived surface temperature. Gray regions in Figure 6 indicate inadequate presence (i.e., <60 days) of MODIS derived daily-averaged surface temperature measurements computed using Equation (4), which are removed from all goodness-of-fit statistics computations. Noticeable positive biases in the surface temperature estimates are witnessed in Pakistan and Northern India along the Ganges and Indus rivers, covered with cropland (see Figure 1B). The area with the positive bias happens to be coincident with the “irrigated cropland" category as defined by the International Crops Research Institute for the Semi-Arid Tropics shown in http://geoagro.icarda.org/en/cms/metadata/index/762/SRT2-type%25252Bdrylands%25253A%25252Bland%25252Buse%25252Fland%25252Bcover. It is thus very likely that human-related irrigation activities introduce more evaporative cooling of the cropland, and the surface temperature drops accordingly. However, Noah-MP does not model irrigation-related activities, and therefore yields an overestimation of the surface temperature in this region. In addition, relatively high bias, high RMSE, and low R shown in Figure 6 are often found to be coincidental with glaciated area along the Pamir-Karakoram-Himalayas region shown in Olson and Rupper (2019), which are likely due to inaccurate model estimates since Noah-MP does not contain a glacier modeling routine. Future studies will be conducted to incorporate an advanced, hyper-resolution glacier model into the Noah-MP within LIS in order to better characterize model estimates along the glaciated region.
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FIGURE 6. Spatial distribution of bias, RMSE, and R computed between daily-averaged (A,D,G) OL surface temperature and MODIS derived surface temperature, and (B,E,H) FT DA surface temperature and MODIS derived surface temperature. Spatial distribution of the change in the absolute value of bias (Δ|bias|) between OL and FT DA is shown in (C). The |·| operator in the title denotes taking the absolute value of each corresponding bias. Spatial distributions of the change in the RMSE and in the R are shown in (F,I), respectively. The red colors in (C,F,I) indicate FT DA agrees better with MODIS derived measurements than OL. Conversely, blue colors indicate that OL agrees better with MODIS. The title also demonstrates the spatial mean, m, computed for each map. Gray regions indicate grid cells with inadequate presence (i.e., < 60 days) of MODIS derived daily-averaged measurements computed using Equation (4).



Figures 5, 6 also share some common findings. For example, both OL and FT DA yield negative, spatially-averaged bias in HMA possibly due to negative bias in the MERRA-2 air temperature. Relatively high, spatially-averaged correlation coefficients are shown for both OL and FT DA, where OL R ≈ DA R = 0.93. Slight improvements are witnessed for FT DA, where the average bias is reduced by 2% from –3.46 K (OL) to –3.40 K (FT DA) and the average RMSE is reduced by 1% from 5.31 K (OL) to 5.27 K (FT DA). Relatively large improvements obtained from FT DA relative to OL in terms of absolute bias and RMSE statistics are observed in the southern Tibetan Plateau, eastern Tibetan Plateau, and eastern Afghanistan compared with the rest of the region in HMA (see Figures 6C,F). However, due to the relatively large variations of the computed statistics, no statistically significant spatially-averaged skill differences (at a significance level of 5%) between OL and FT DA are observed. This might partly be attributed to the uncertainty in the MODIS/Terra and MODIS/Aqua surface temperature estimates (Zou et al., 2014) as well as the Equation (4) used to derive the daily-averaged surface temperature estimates. A more sophisticated semi-empirical model, different from the simple averaging method as applied in this study, for deriving daily-averaged surface temperatures based on MODIS/Terra and MODIS/Aqua is also provided by Zou et al. (2014). However, the method outlined in their study requires intensive measurements of the ground-based surface temperature to calibrate model-related coefficients (or parameters), which is not applicable in our study, and also out of the study scope.

Part of the reason for the statistically insignificant skill difference between OL and FT DA might also lie in the many zero-differences in bias and RMSE seen in Figure 6. For these zero-difference grid cells, seen across the majority of Pakistan, Southern India, and Western India, MEaSUREs observations and modeled freeze/thaw states always agree with each other, and hence no analysis updates take place. Therefore, the improvement (or degradation) magnitudes arising from FT DA are strongly dependent on the number of analysis updates that occurred during the assessment period. That is, Figure 7 further corroborates what is observed in Figures 6C,F. Figure 7A shows the box plots of change in the absolute value of bias (Δ|bias|) and Figure 7B shows the change in the RMSE (ΔRMSE) computed between OL and FT DA. The |·| operator denotes taking the absolute value of OL and FT DA bias. The change in the R (ΔR) does not show as box plots in Figure 7 because very little improvement (or degradation) is seen from Figure 6I. Figure 7 is binned as a function of the number of analysis updates per grid cell. The spatially-distributed number of updates per grid cell (N) throughout the assessment period are binned into six categories, including (1) 20 ≤ N ≤ 60, (2) 60 < N ≤ 100, (3) 100 < N ≤ 140, (4) 140 < N ≤ 180, (5) 180 < N ≤ 220, and (6) N > 220. The sample sizes (number of grid cells) for the six bins are 1112242, 1047492, 1135645, 765940, 125861, and 26369, respectively. As the number of analysis updates increases, there is generally a decreasing trend in the number of grid cells associated with each bin, especially when N > 140. This phenomenon is expected because of the relatively good agreement computed between satellite-based freeze/thaw observations and Noah-MP (model-only) simulated estimates (see Section 2.2). The positive ΔRMSE and positive Δ|bias| indicate skill improvements in the FT DA relative to OL. In general, the average skill improves with the number of analysis updates. It is encouraging to see that FT DA yields improvements of up to 0.58 K in RMSE and 0.77 K in the |bias| relative to OL during the comparison against MODIS-derived surface temperature estimates.
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FIGURE 7. Box plots of (A) Δ|bias| and (B) ΔRMSE computed between OL and FT DA during the comparison against MODIS derived surface temperature, which are binned as a function of the number of analysis updates per grid cell. The boxes show the median (marked as the black line in the box) along with the 25th and 75th percentiles while the whiskers show the 5 and 95th percentiles. The spatially-averaged skill metrics are marked as dots for each bin. The positive ΔRMSE and positive Δ|bias| indicate skill improvements in the FT DA relative to OL.



It is also important to analyze the effects of soil temperature estimates in response to the FT DA. Table 4 summarizes the goodness-of-fit statistics computed when comparing OL and FT DA derived soil temperature estimates against three in-situ CEOP stations along the Himalayas. Only the statistics for the top layer of soil (0–10 cm) and the second layer of soil (10–40 cm) are shown in Table 4 because no CEOP soil temperature measurements are available beyond 20 cm (see section 4.1). The total number of analysis updates for the colocated grid cells at Lukla station, Pyramid station, and Syangboche station are 172, 168, and 157, respectively. It is encouraging to see that the bias and the RMSE in the 0–10 cm soil temperature are reduced (on average) by 10 and 7%, respectively. The improvements in the top-layer of soil estimates also propagate through the deeper soil layers, where the bias and RMSE in the 10–40 cm soil temperature are reduced (on average) by 9 and 6%, respectively. However, slight degradations in R at both the top and second layers of soil are witnessed for FT DA relative to OL for the Syangboche station installed at (27.82°N, 86.72°E) covered with open shrub. Relatively poor R statistics are witnessed for FT DA or OL compared with the other two stations, especially for the second layer of soil. This is most likely due to the measurement gap (i.e., no measurements) seen between 4 November 2007 and 21 May 2008 in the CEOP Syangboche station (not shown). For example, the R computed between 1 September 2007 and 4 November 2007 comparing the CEOP top layer of soil and the CEOP second layer of soil temperature is 0.95, while the R computed between 22 May 2008 and 31 August 2008 is 0.40. Given the assumption that the measurement gap seen for Syangboche station arising from sensor failure, it is suspected that the soil temperature sensor had not been calibrated carefully after re-installation on 22 May 2008. However, no such information is documented by the website (or by the CEOP measurement flags), and therefore, all measurements remain as they are without implementing any additional quality control procedures other than the basic quality control activity mentioned in section 4.1.



Table 4. Statistics computed when comparing model derived, including both OL and FT DA derived, top-layer (0–10 cm) and second-layer (10–40 cm) of soil temperature estimates against measurements obtained from CEOP.
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Overall, model derived soil temperature estimates yield relatively large negative biases when compared against Lukla and Syangboche stations. The negative bias witnessed at Lukla station covered with open shrub is likely due to the negative bias of –5.03 K in the MERRA-2 air temperature, which is computed with respect to CEOP air temperature measurements. The negative bias observed at Syangboche station might be explained by (1) the sensor calibration issue discussed above, and/or (2) the positive bias of 0.37 kg/m2/h in the total precipitation. The overestimation of MERRA-2 total precipitation is mainly witnessed in June, July, August, and September when the air temperature is generally above freezing at Syangboche station. Rainfall infiltrates into the soil, and tends to cool the soil, which possibly leads to a negative bias in the model derived soil temperature profile. In addition, inaccurate model parameterization in the soil related properties, such as soil texture, soil layering, total soil depth, and soil organic carbon content might also negatively impact the model derived soil temperature estimates.

The goodness-of-fit statistics computed from the CEOP Pyramid station are generally better than the other two stations. Figure 8 shows several example time series of MERRA-2 precipitation, MERRA-2 air temperature, OL derived soil temperature estimates, and DA derived soil temperature estimates when compared against measurements collected by the CEOP Pyramid station installed at (27.96°N, 86.82°E) covered with sparse vegetation (i.e., barren land cover). The Pyramid station is shown here because (1) there is no measurement data gap within the assessment period, and (2) the vegetation effect is at its minimum compared with the other two stations. Due to the relatively high thermal inertia of the soil (especially for deep soil), the soil within the top 40 cm experiences more variability in the temperature estimates, but less so for deeper soil layers. The increase in the time lag of such fluctuations is also observed as the soil depth getting deeper, as shown in Figure 8. In general, the bias in the model derived top layer of soil temperature is reduced by 26%, and the RMSE is reduced by 16% as a result of FT DA relative to OL. The bias in the model derived second layer of soil temperature is reduced by 21% and the RMSE is reduced by 15% as a result of FT DA. Compared with CEOP measured total precipitation, MERRA-2 precipitation has a negative bias of –0.86 kg/m2/h. The most significant difference between model simulation and in-situ CEOP measurements occurs around mid-December. Besides the occasional underestimation of air temperature during this period, it is hypothesized that Noah-MP might underestimate snow on the ground. Since snow cover acts as an effective insulator to protect the ground surface and the underlying soil from heat loss when the air temperature is below freezing, Noah-MP with less snow cover might presumably underestimate soil temperature in such cases. Without further detailed ground-based snow information obtained from CEOP or from other colocated stations, it is rather difficult to discern exactly the origin of the error.
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FIGURE 8. Comparisons of daily-averaged (A) MERRA-2 total precipitation and CEOP Syangboche station measured precipitation, and (B) MERRA-2 air temperature and CEOP Syangboche station measured air temperature. Comparisons of the model simulated, including both OL and FT DA derived, daily-averaged soil temperature profiles against CEOP measurements, including (C) top-layer (0–10 cm), (D) second-layer (10–40 cm), (E) third-layer (40–100 cm), and (F) fourth layer (100–200 cm). No CEOP measurements are available at the third and fourth soil layers. The evaluation period is from 1 September 2007 to 31 August 2008.






6. CONCLUSIONS AND FUTURE DIRECTIONS

A hyper-resolution (1 km) land data assimilation configuration is developed within the NASA LIS using the Noah-MP forced by the MERRA-2. Two different sets of DA experiments are conducted from 2007 to 2008, including the SC DA and FT DA. Before conducting any assimilation experiments, the model spin-up analysis is first conducted in order to achieve a more stable initial condition of the model states. It is found that the Noah-MP derived surface temperature generally requires 3–5 years for spin-up, and the fourth layer of soil temperature requires 3–8 years for spin-up. Longer spin-up periods are often witnessed in the Tibetan Plateau due to the existence of temperature extremes.

The performance of the SC DA system is evaluated via comparisons with daily-averaged, qualified GlobSnow SWE estimates as well as available ground-based snow depth measurements. In the comparison against ground-based snow depth measurements, the majority of the stations (13 of 14) show slightly improved goodness-of-fit statistics as a result of the SC DA relative to OL. In the comparison against GlobSnow SWE estimates colocated with GlobSnow-provided weather stations, all (three out of three) of the grid cells demonstrate slightly improved bias and RMSE in SC DA relative to OL. It is important to note that only four of the 14 stations are statistically significant, due to the limited sample size and relatively high sample variance. The limited sample size is partly attributed to the limited ground-based stations available in the complex HMA region as well as the single-year evaluation period showed in this study.

The performance of the FT DA system is evaluated via comparisons with daily-averaged, MODIS derived surface temperature product. The average skill in FT DA improves with the number of analysis updates. FT DA yields improvements of up to 0.58 K in RMSE and 0.77 K in the absolute bias relative to OL. In addition, slight improvements in bias and RMSE are also observed in the FT DA derived 0–10 and 10 cm–40 cm soil temperature estimates when compared to ground-based CEOP stations. That is, in the comparison against three ground-based soil temperature measurements along the Himalayas, the bias and the RMSE in the 0–10 cm soil temperature are reduced (on average) by 10 and 7%, respectively. The improvements in the top-layer of soil estimates also propagate through the deeper soil layers, where the bias and RMSE in the 10–40 cm soil temperature are reduced (on average) by 9 and 6%, respectively. In addition, in the comparison against 23 in-situ CMA stations, slight (but not statistically significant) improvements in RMSE and bias are both achieved as a result of the FT DA relative to OL at regions with relatively low elevations.

Some limitations associated with the SC DA and FT DA systems along with their evaluation strategies are also discussed. For example, the station representativeness issue persists among all in-situ measurements. It is relatively difficult to justify that a single ground-based station can represent the condition of a relatively large model grid cell, especially in the context of the complex terrain across HMA. Similarly, satellite-based snow products and surface temperature products are also prone to uncertainties. It is relatively difficult to discern the model uncertainty from the uncertainty embedded in the reference products used during the evaluation procedure. In addition, the SWE and snow depth increments, either positive or negative, as applied during the SC DA is somewhat subjective. The error correlation analyzed between modeled surface temperature and the top layer of soil temperature during the FT DA update process is overly simplified. Therefore, the increment magnitudes applied in both SC DA and FT DA systems (with DI methods) might be used as first-order adjustments or updates. In order to apply more accurate increments in both systems during the analysis update procedure, more sophisticated DA techniques, such as an ensemble Kalman filter, should be employed along with advanced, satellite-based, continuous remote sensing products at relatively fine spatial resolution. Furthermore, the soil parameterization, such as the total soil depth of 2 m with four layers in the current Noah-MP configuration, might not be deep enough to simulate the near-surface soil conditions accurately, especially in the cold regions (Lawrence et al., 2008; Sapriza-Azuri et al., 2018).

Despite the limitations discussed above, the two proposed DA schemes did show some promise in improving the predictability of SWE, snow depth, surface temperature, and soil temperature states across HMA. Future studies will be conducted to develop a multi-variate DA framework by integrating both SC DA and FT DA systems together. In addition, an improved meteorological forcing input, a glacier model, and a river routing routine would be useful to be included in the Noah-MP model to evaluate runoff in the region. The methods to generate improved forcings include, but are not limited to, (1) an advanced forcing downscaling framework (https://eospso.gsfc.nasa.gov/sites/default/files/eo_pdfs/Mar_Apr_2018_color%20508_0.pdf), (2) a meteorological forcing scaling framework (e.g., Voegeli et al., 2016), or (3) an ensemble-based bias correction framework when intensive ground-based snow observations are made available (e.g., Winstral et al., 2019). The runoff evaluation analysis will be beneficial to show whether the slight improvements seen in snow mass as a result of the SC DA would translate into runoff. Furthermore, more soil profile configurations should be carefully analyzed to assess their impacts on the soil temperature and moisture estimates in HMA. A combination of various snow DA techniques (i.e., by combining the DI method outlined in this study with an ensemble Kalman filter outlined in Xue et al., 2018) will also be studied in the future to better characterize SWE and snow depth estimates in HMA. Therefore, the DI-based DA scheme presented in this study can be used as a benchmark for evaluating more advanced DA schemes.
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This study explores the uncertainties in terrestrial water budget estimation over High Mountain Asia (HMA) using a suite of uncoupled land surface model (LSM) simulations. The uncertainty in the water balance components of precipitation (P), evapotranspiration (ET), runoff (R), and terrestrial water storage (TWS) is significantly impacted by the uncertainty in the driving meteorology, with precipitation being the most important boundary condition. Ten gridded precipitation datasets along with a mix of model-, satellite-, and gauge-based products, are evaluated first to assess their suitability for LSM simulations over HMA. The datasets are evaluated by quantifying the systematic and random errors of these products as well as the temporal consistency of their trends. Though the broader spatial patterns of precipitation are generally well captured by the datasets, they differ significantly in their means and trends. In general, precipitation datasets that incorporate information from gauges are found to have higher accuracy with low Root Mean Square Errors and high correlation coefficient values. An ensemble of LSM simulations with selected subset of precipitation products is then used to produce the mean annual fluxes and their uncertainty over HMA in P, ET, and R to be 2.11 ± 0.45, 1.26 ± 0.11, and 0.85 ± 0.36 mm per day, respectively. The mean annual estimates of the surface mass (water) balance components from this model ensemble are comparable to global estimates from prior studies. However, the uncertainty/spread of P, ET, and R is significantly larger than the corresponding estimates from global studies. A comparison of ET, snow cover fraction, and changes in TWS estimates against remote sensing-based references confirms the significant role of the input meteorology in influencing the water budget characterization over HMA and points to the need for improving meteorological inputs.

Keywords: High Mountain Asia, precipitation, terrestrial water budget, uncertainty, land surface modeling, triple collocation


1. INTRODUCTION

The Himalayan mountain glaciers encompasses the largest reservoirs of freshwater on Earth outside of the polar regions. The melting of snow and glaciers in High Mountain Asia (HMA) contributes up to 70% of the annual water supply of over 1.4 billion people in the region (Xu et al., 2009; Immerzeel et al., 2010; Wester et al., 2019). Water resource management and water security applications in HMA, therefore, require accurate characterization of the changes in terrestrial snow and ice for making reliable policy decisions. The complex terrain and extreme climatic conditions over HMA, however, severely limit the availability of traditional ground-based meteorological observations for this purpose. Remote sensing measurements offer broader spatial coverage, but they also suffer from sensor limitations. For example, fractional snow cover, land surface (including snow and ice) temperature, and albedo measurements are available from optical and infrared sensors, but are limited in the presence of cloud cover (Hall et al., 1995). Alternatively, passive microwave sensors provide retrieval estimates of snow water equivalent, but are coarser in resolution and suffer from limitations such as signal saturation over deep snow (Dong et al., 2005; Foster et al., 2005). Measurements from gravity missions provide retrievals of mass variations on the Earth's surface, which are dominated by snow and ice changes and human management impacts such as groundwater abstraction and agricultural irrigation in regions such as HMA (Tapley et al., 2004b; Rodell et al., 2009). These gravitational measurements, however, are only available at coarse spatial and temporal scales. Land surface models (LSMs) provide an alternative to developing spatially- and temporally-continuous measurements of terrestrial water and energy budget estimates, though they are also limited by model structural errors and the quality of model parameters and meteorological boundary conditions. Due to all these factors, despite the critical need to accurately characterize the water storage changes over HMA, large uncertainties exist in the current understanding of the terrestrial water budget estimates (Müller et al., 2016). Among the surface meteorological data used to drive the LSMs, precipitation is the most important mass input (Guo et al., 2006). A quantitative evaluation of the precipitation data over HMA is particularly difficult due to the lack of reliable reference ground measurements. In addition, the sources and magnitudes of precipitation exhibit large variability across the HMA.

There have been numerous studies (Andermann et al., 2011; Palazzi et al., 2013; You et al., 2015; Song et al., 2016; Nguyen et al., 2018) that examine the quality and skill of the precipitation datasets from models and remote sensing over HMA. Many of these studies are over the Tibetan Plateau, where some ground observations of precipitation are available. For example, Ma et al. (2009) and You et al. (2015) present an evaluation of a number of atmospheric reanalysis products and quantified that there are large negative biases in these products. Similarly, Wang and Zeng (2012) evaluate a number of reanalysis products by comparing them to in-situ measurements over the Tibetan Plateau and report that the skill of these products is highly-dependent on the timescale of evaluation. Due to the large biases in the reanalysis datasets over the Tibetan Plateau, Tong et al. (2014) conclude that the reanalysis datasets are unreliable for hydrological studies. Though the gauge-based datasets had better skill, issues such as undercatch corrections significantly impact the precipitation trends and quality. Precipitation is strongly dependent on terrain, which has high variability across orographic fronts and lower variability in low-relief areas (Andermann et al., 2011; Song et al., 2016). Though direct comparisons to gauge data are useful for assessing the general quality of the data products, the representativeness of the sparse in-situ data is a serious limitation in these evaluations (Song et al., 2016). The uncertainties in the satellite-based (microwave- and infrared-based) precipitation retrievals also stem from photon scattering associated with terrestrial snow cover (You et al., 2015). Overall, these studies confirm the large biases and uncertainties in existing precipitation products, especially over the mountainous areas of HMA.

Though the majority of these studies are motivated by the need for reliable precipitation inputs for hydrological modeling, only a few have actually quantified the associated impacts on terrestrial water budget estimates. Immerzeel et al. (2009) reported reasonable skill in the simulation of streamflow in the upper Indus when driven with remote sensing based inputs of precipitation and snow cover. The contribution of precipitation and snowmelt to river discharge is shown to have large spatiotemporal variations (Bookhagen and Burbank, 2010). In addition to the precipitation uncertainty, factors such as glacier melt, large-scale groundwater abstraction, and reservoir management contribute significantly to the uncertainty in the water balance estimates (Immerzeel and Bierkens, 2012).

Regional climate and mesoscale model simulations have also been used to develop consistent estimates of precipitation and snow amounts. Using the Model Atmospheric Regional, Ménégoz et al. (2013) conducted regional-scale model runs and reported that despite the underestimation in the simulated precipitation, accurate estimates of modeled snow cover extent and snow water equivalent (SWE) were found. Similarly, the High Asia Reanalysis (HAR; Maussion et al., 2014), developed by the dynamical-downscaling of global analysis data using the Weather Research and Forecasting model has been shown to capture the spatial features of precipitation frequency and orography at fine-spatial scales. In a more recent study, Ghatak et al. (2018) examined the impact of precipitation uncertainty on modeled evapotranspiration and runoff over an Indian subcontinent domain. This study demonstrated the utility of hydrological modeling as a proxy for evaluating the accuracy of precipitation products.

Due to the critical importance of HMA as a source of current and future water availability, the climatic trends in water cycle variables have been a focus of several studies. In general, most studies agree that the temperature trends over HMA show warming patterns whereas long-term trends in precipitation are more mixed. For example, Liu and Chen (2000) and Shrestha et al. (1999) found warming temperature trends over the Tibetan Plateau and central Himalayas, respectively. No distinct trends in precipitation, however, are reported by Shrestha et al. (2000). Similarly, significant increasing trends are reported for surface air temperature in Ren et al. (2017), whereas the trends in precipitation changes are more variable. While the overall trend of precipitation had a slight decrease, more recent time periods (1961–2013) showed an increasing trend. The trends in precipitation intensity are also closely related to the terrain, with higher elevation areas showing more significant increasing trends. In a global analysis of precipitation trends from satellite observations, Nguyen et al. (2018) show increasing trends in precipitation over the western HMA, with decreasing trends in the central and eastern regions. The precipitation decrease, particularly in the central and eastern regions of HMA, is identified as the cause for the observed declining trends in remote sensing-based terrestrial water storage anomalies (Rodell et al., 2018). Further, Rodell et al. (2018) note that over the Tibetan Plateau, the increasing trend in TWS anomalies is due to the increasing trend in precipitation. Passive microwave-based SWE estimates from the Special Sensor Microwave Imager instrument are used by Smith and Bookhagen (2018) to examine the trends in SWE. Increasing trends in SWE, particularly during the winter time, are observed over the western HMA and declining trends in other regions. These studies also emphasize the significant spatial heterogeneity and uncertainty in the trend estimates due to the limitations of the data sources and limitations in the process understanding of the dominant climate systems.

In this article, we examine the errors and uncertainties in key terrestrial water budget variables of precipitation, evapotranspiration, runoff, terrestrial water storage, and snow cover over HMA using a suite of uncoupled LSM simulations forced with prescribed meteorology. A large suite of precipitation datasets is evaluated first to assess their utility to the LSM simulations. The systematic and random errors in these products, and consistency of their long-term trends, are used as measures of evaluation. An ensemble of LSM simulations is then generated to develop estimates of terrestrial water budgets and their corresponding uncertainties. Available reference measurements of water cycle components, from remote sensing and reanalysis efforts, are used to evaluate these water budget estimates.

The specific goals of the study include: (1) to develop simultaneous assessments of the uncertainty and accuracy of precipitation (modeling inputs) and terrestrial water budget components (modeling outputs) over HMA from remote sensing, model analysis, and merged products; (2) to quantify the spatial variability of the precipitation uncertainties and errors in these products; (3) to assess the long-term trends in the mean and extremes of these precipitation products; and (4) evaluate the uncertainty in the terrestrial water budget estimates and the consistency of the long-term trends relative to those in the input meteorology. The article is organized such that section 2 contains descriptions of data products and the model configurations. Section 3 presents the evaluation methods employed in the study. The description and analysis of the results are presented in section 4. A summary and major conclusions are described in section 5.



2. STUDY SETTINGS


2.1. Model Domain

The study area shown in Figure 1 includes the Tibetan Plateau and Himalayas with a geographical extent that ranges from 20.5°N to 41.0°N, and 66.5°E to 101.0°E. The climate in the eastern part of the Himalayas is characterized by the East-Asian and Indian monsoon systems, causing the bulk of precipitation to occur from June to September. Overall, the South Asian monsoon provides the main source of rain over HMA, contributing up to 80% of annual rainfall over central HMA and the Tibetan Plateau (Bookhagen and Burbank, 2010). Over the eastern and western HMA, however, the low pressure systems provide significant contributions to precipitation in addition to the monsoon (Ménégoz et al., 2013). The precipitation intensity exhibits a strong north-south gradient due to orographic effects (Galewsky, 2009). Precipitation patterns in the Pamir, Hindu Kush, and Karakoram ranges in the west are also characterized by westerly and southwesterly flows, causing the precipitation to be more evenly distributed over the year as compared to the eastern parts (Bookhagen and Burbank, 2010). In the Karakoram, up to two-thirds of the annual high-altitude precipitation occurs during the winter months (Winiger et al., 2005; Hewitt, 2011). About half of this winter precipitation is brought by western disturbances, with westerly-driven eastward propagating cyclones bringing sudden winter precipitation to the north-western parts of the Indian subcontinent (Barlow et al., 2005). The inter-annual variability in precipitation is higher for HMA than over the downstream parts of the river basins (Immerzeel et al., 2009). To examine the regional patterns, we define four sub-regions within this domain (Figure 1): West, Central, East and Tibetan Plateau regions.
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FIGURE 1. The High Mountain Asia (HMA) domain and the corresponding sub-regions with the terrain elevation as the background. Note that TP is the Tibetan Plateau.





2.2. Gridded Precipitation Datasets

Precipitation estimates from ten different products (i.e., APHRODITE, CHIRPS, IMD, CMORPH, TMPA, HAR, GDAS, ECMWF, ERA-Interim-Land, and MERRA2) are evaluated. Table 1 shows the general information of the datasets. APHRODITE (Asian Precipitation - Highly-Resolved Observational Data Integration Toward Evaluation) product is a daily gridded precipitation dataset for Asia that is generated from a dense network of daily rain-gauge data (Yasutomi et al., 2011; Yatagai et al., 2012). CHIRPS (Climate Hazards group Infrared Precipitation with Stations) dataset is a thermal infrared-based, quasi-global 0.05° precipitation (Funk et al., 2015). IMD (India Meteorological Department) precipitation data is a daily gridded rainfall product derived from a dense network of rain gage stations for the Indian mainland (Pai et al., 2014). In this study, 0.25° gridded rainfall dataset is used. CMORPH (CPC Morphing Technique) data is derived from several low orbit passive microwave observations (Joyce et al., 2004). TMPA (TRMM Multi-satellite Precipitation Analysis) is a merged multi-satellite precipitation product derived from the Tropical Rainfall Measuring Mission (TRMM) with a native spatial resolution of 0.25° (Huffman et al., 2007). In this study, we used the daily precipitation product called 3B42 (Version 7). As noted earlier, HAR is an atmospheric dataset generated primarily for the Tibetan Plateau using the Weather Research and Forecasting regional mesoscale model. The HAR precipitation estimates do not encompass any gauge-based precipitation measurements. GDAS (Global Data Assimilation System; Derber et al., 1991) is the global, operational atmospheric analysis system based on the operational Global Forecasting System developed at the Environmental Modeling Center of NOAA's National Centers for Environmental Prediction (NCEP). GDAS products were originally produced on a quadratic T170 gaussian grid (roughly 80 km) which subsequently have been upgraded to finer resolution data products over the years. The GDAS model grids have been upgraded to T254 (~60 km; since Oct 2002), T382 (~38 km; since Jun 2005), T574 (~27km; since Jul 2010) and T1534 (~13 km; since Jan 2015) for the years 2000–2015. The ECMWF data is obtained from the operational, global analysis products (Molteni et al., 1996) available on a TL511 triangular truncation, linear reduced gaussian grid (0.25°) for four synoptic hours: 00, 06, 12, and 18 UTC. ERA-Interim/Land is a global reanalysis and is produced using the HTESSEL land surface model (Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land) with ERA-Interim forcing (Balsamo et al., 2015). Finally, MERRA2 (Modern-Era Retrospective Analysis for Research and Applications, version 2) is the latest atmospheric reanalysis from NASA Global Modeling and Assimilation Office and is produced with the Goddard Earth Observing System model version 5 (GEOS-5) Data Assimilation System (Gelaro et al., 2017). Note that GDAS, ECMWF, HAR, and MERRA2 are reanalysis products and include estimates of all surface meteorology variables whereas the other products contain estimates of precipitation only.



Table 1. Details of the precipitation datasets evaluated in this study.

[image: image]






2.3. Water Budget and Snow Evaluation Datasets

As reliable, independent reference datasets are sparse in this region, a thorough evaluation of each of the water budget components is difficult. Available remote sensing-based datasets of evapotranspiration (ET) and changes in terrestrial water storage (ΔTWS) and snow cover fraction (SCF) are used to provide evaluations of the LSM estimates as well as to provide indirect assessments of the driving meteorology.

Atmospheric Land Exchange Inverse model (ALEXI; Anderson et al., 2007) and the Global Land Evaporation Amsterdam Model (GLEAM; Martens et al., 2017) datasets are used to evaluate the modeled ET estimates. ET estimates in ALEXI are computed from surface temperature data derived from geostationary satellites within a two-source energy balance model. The ALEXI ET datasets available from 2003 at a 5 km resolution are used in this study. The GLEAM estimates are produced using a Priestley-Taylor approach driven by passive microwave sensor data, which does not involve aerodynamic and canopy resistance formulations, whereas all three LSMs employ a Penman Monteith type of formulation to compute ET. The GLEAM datasets from 2000 available at 0.25° spatial resolution are used here.

The Moderate Resolution Imaging Spectroradiometer (MODIS) daily SCF product from the Terra instrument (MOD10A1 version 6; Hall and Riggs, 2016) generated using the Normalized Difference Snow Index and a series of screens designed to alleviate errors and flag uncertain snow cover detections is used in this study. MOD10A1 data is available at 500 m spatial resolution from February 2000 to the present.

Terrestrial Water Storage (TWS), the total amount of water and ice mass on or within the Earth, as glaciers, permafrost, snow, soil moisture, surface water and groundwater, represents an integrated measure of the terrestrial water budget. Anomalies of TWS from the Gravity Recovery and Climate Experiment (GRACE; Tapley et al., 2004a) satellite are estimated after removing the effects of atmospheric and oceanic circulations and glacial isostatic adjustment. In this study, we employ three different GRACE products available on a monthly basis on 1° horizontal resolution grids from the University of Texas Center for Space Research, Jet Propulsion Laboratory, and German Research Centre for Geosciences. These products are based on the version RL05 spherical harmonics fields (Landerer and Swenson, 2012).



2.4. Land Surface Models and Configuration

To study terrestrial water budget components and their uncertainties, an ensemble of land surface model runs was conducted using a suite of LSMs and forcing inputs. Specifically, 12 different model runs were conducted using three different LSMs and four different forcing datasets. The Noah (version 3.3; Wang et al., 2010; Wei et al., 2013), Catchment (CLSM version Fortuna 2.5; Ducharne et al., 2000; Koster et al., 2000), and NoahMP (version 3.6; Niu et al., 2011; Yang et al., 2011) LSMs are forced with MERRA2, GDAS, and ECMWF meteorological boundary conditions. Note that we chose this subset of products for forcing the LSM runs as datasets such as APHRODITE, ERA-Interim-Land, HAR, and IMD have limited spatial or temporal coverage. Among the precipitation-only products (CHIRPS, CMORPH, TMPA), we choose CHIRPS data (with other near surface meteorology from ECMWF), since CHIRPS is found to have relatively low errors, high correlations and better consistency of trends in the precipitation evaluations discussed below (section 4.1).

The three LSMs represent a mix of models with significant differences in parameterizations and model physics, as documented in Kumar et al. (2017). The community Noah LSM is the land model currently used by NCEP and the United States Department of Defense to support their operational land analyses. Noah simulates the surface energy and water balance, land surface skin temperature, snowpack, soil temperature and moisture (both liquid and frozen) in multiple soil layers. The version of Noah used in this study includes several improvements and fixes to the snow physics and warm season processes (Wang et al., 2010). The NoahMP LSM is developed from the Noah LSM and incorporates extensive upgrades including dynamic vegetation phenology, a carbon budget and carbon-based photosynthesis, an explicit vegetation canopy layer, a multilayer snowpack representation and the addition of a groundwater module. The CLSM model represents the land component of the NASA GEOS-5 system. The subsurface water storage in CLSM is simulated using three prognostic bulk moisture variables that represent the deviations from the equilibrium soil moisture profile (Ducharne et al., 2000; Koster et al., 2000). A three-layer snow model simulates the snowpack evolution. The vertical moisture profile includes an implicit groundwater table located at the depth of equilibrium saturation. Note that none of these models configurations includes the treatment of glaciers and human management impacts of groundwater abstraction and irrigation.

The LSM simulations are conducted with a 15-min timestep for a 15-year time period (2003–2017) at 0.25 spatial resolution to generate daily output of water balance components. The initial conditions for the runs are generated by looping the LSMs from 2003 to 2017 twice, and then reinitializing the model in 2003. The LSMs are driven with meteorological datasets (MERRA2, GDAS, ECMWF, and CHIRPS) as described in section 4.1. The high-resolution elevation data from Shuttle Radar Topography Mission (Rodriguez et al., 2005) is used to derive the topography dataset of elevation, slope, and aspect. All model integrations use the modified International Geosphere Biosphere Programme MODIS 20-category landuse data (Friedl et al., 2002) and the soils data from the International Soil Reference and Information Centre (Hengl et al., 2014). The meteorological inputs (i.e., air temperature, humidity, surface pressure, wind, downward shortwave, and longwave radiation) are adjusted for the elevation differences through lapse-rate and slope-aspect correction methods (Kumar et al., 2013).




3. METHODS

The meteorological inputs are evaluated through an intercomparison of the mean estimates and their seasonality. In addition, we employ indirect evaluation strategies such as the extended Triple Collocation (ETC; McColl et al., 2014) to assess the skill of the precipitation products. Note that the ETC does not require the availability of reference datasets. Thus, the ETC is effective to use for evaluation in this data poor region such as HMA, where reliable, spatially-representative reference measurements are not routinely available. We use the Mann-Kendall test (Mann, 1945; Kendall, 1975) to evaluate the statistical significance of the trends. To evaluate the uncertainties in the simulated water budget variables, reference measurements from remote sensing and reanalysis products are used. Here, commonly-used accuracy measures such as Root Mean Square Error (RMSE) and correlation coefficient (r) are utilized.


3.1. Extended Triple Collocation

Triple Collocation (TC; Stoffelen, 1998) is a method for the simultaneous estimation of the unknown error standard deviations (or RMSE) of three or more related datasets, without requiring knowledge of the "true" value. The method assumes a linear model (Equation 1) where the errors of the datasets being compared are orthogonal relative to the unknown truth and that the cross-error variance of the products are zero.

TC has been used in the evaluation of several earth system measurements such as soil moisture, ocean wind speed, leaf area index, and sea-ice thickness (Caires and Sterl, 2003; Fang et al., 2012; Roebeling et al., 2012; Zwieback et al., 2013; Gruber et al., 2016). The majority of the TC studies uses one dataset as a reference and applies rescaling procedures to ensure that the error orthogonality assumption is preserved and the system is solvable. Given three datasets (X1, X2, and X3), we here rescale the other two precipitation products (X2 and X3) based on X1 dataset, following Yilmaz and Crow (2014). Therefore, the RMSE estimated from TC can be assumed to be representative of the random error component of the total error.

McColl et al. (2014) introduced the ETC that can be used to estimate the RMSE and r between each of the triplets and the unknown truth. Note that ETC is mathematically equivalent to the original TC and provides an easier method for calculating the correlation coefficients. Alemohammad et al. (2015) introduced the multiplicative (logarithmic) error model to TC instead of the additive (linear) error model when applied to precipitation products across the United States. As the multiplicative error model is more appropriate for variables such as precipitation, this approach is used for evaluating the performance of precipitation products in section 4.1. Hence, a given precipitation estimate, Xi, can be written as:
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where Xi(i∈{1, 2, 3}) are collocated measurements that are linearly related to the (unknown) true value t, ϵi represents additive random errors, and αi and βi are offset and gain terms, respectively. Assuming that the errors are uncorrelated with each other (cov(ϵi, ϵj) = 0, i≠j) and with the (unknown) truth (cov(ϵi, t) = 0), the RMSE and r, can be estimated as:
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where Qij is the covariance of Xi and Xj. The signs, “+/-,” refer to positive linear correlation and negative correlation, respectively, but r will be practically expected to be positively corrected to the unobserved truth to avoid the sign ambiguity (McColl et al., 2014; Alemohammad et al., 2015).



3.2. Mann-Kendall Trend Test

The Mann-Kendall test is a non-parametric test for the monotonic trends of environmental data over time, such as climate data or hydrological data (Nguyen et al., 2018). The S statistics are calculated to determine increasing (or decreasing) pattern and their magnitude of the trend as follow:
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where x is the time series variable. The subscript j and k are the observation time. sign(xj − xk) is equal to +1, 0, or -1, which means increasing, no, and decreasing trends, respectively. The S values are normalized to [-1, 1] for a better explanation. The null hypothesis H0 assumes that there is no significant trend in the data at significant at a level of 5% (or 95% confidence level).




4. RESULTS AND DISCUSSION


4.1. Precipitation Analysis

In this section, an intercomparison of the precipitation products is presented, in order to evaluate their suitability for land surface and hydrological model simulations. Figure 2 shows a comparison of the multi-annual mean precipitation over HMA (computed based on the available time period of each dataset shown in Table 1). The significant uncertainty in the precipitation estimates is evident in Figure 2. Generally, all datasets capture the spatial pattern of increased rainfall over the central and eastern regions compared to the west and the relatively dry regions of the Tibetan Plateau. A notable exception to this spatial pattern is ERA-Interim-Land, which shows significantly drier precipitation amounts compared to the other datasets. Though not as low as that of ERA-Interim-Land, the mean precipitation from MERRA2 is also low, particularly over the central and eastern regions. Among these datasets, the mean precipitation from ECMWF is the greatest, particularly over the eastern HMA. The pattern of larger precipitation magnitudes in these datasets is also seen over the western HMA, over parts of the Hindu Kush, and the Pamir mountains. Among the satellite-data based products (CHIRPS, CMORPH, TMPA), the magnitude of precipitation from CMORPH is lower and comparable to those from MERRA2 whereas the TMPA and CHIRPS estimates are larger and more consistent with the station-data based estimates from IMD and APHRODITE. Note that CHIRPS also includes information from the World Meteorological Organization Global Telecommunication System gauges, which are blended with infrared global Cold Cloud Duration estimates. The IMD and HAR datasets are not available over the entire domain of interest. The patterns of precipitation magnitudes from HAR show reasonable consistency with the gauge-based products, particularly over the eastern HMA. The boxplot in Figure 2 indicates that the model products HAR and GDAS have the largest spatial variability, whereas the gauge-based products (excluding IMD), show a more narrow range.
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FIGURE 2. Spatial maps of multi-annual mean precipitation (mm) and their distribution from 10 precipitation datasets (Table 1). The box plot in the lower-right illustrates the median (red line), upper- and lower-quantiles (blue box) and the 25- and 75-th percentiles (black whiskers) of the multi-annual mean precipitation. Note that the IMD and HAR datasets are only available over part of the entire domain of interest.



To examine the differences among these datasets over the shallow and high terrain, a comparison of the domain-averaged mean precipitation stratified by elevation is shown in Figure 3. Similar to the patterns in Figure 2, ECMWF has higher mean precipitation than the other products at all elevations whereas ERA-Interim-Land, CMORPH, and MERRA2 are generally dry (Note that the spatial averages of IMD and HAR are influenced by their regional spatial coverage). Generally, there are larger differences in the precipitation estimates at lower elevations whereas the spread among the datasets reduces at higher elevation, likely due to the reduced influence of ground-based precipitation measurements. For example, precipitation magnitudes from APHRODITE at high elevations are low and comparable to that of MERRA2 and CMORPH. This pattern is consistent with the documented dry biases in APHRODITE over high terrain (Immerzeel et al., 2015). Similarly, the magnitude of precipitation from CHIRPS is larger than most products at low elevations. At higher elevations, however, the precipitation estimates from CHIRPS are lower than that of GDAS and ECMWF.


[image: image]

FIGURE 3. Comparison of the domain-averaged precipitation (P) stratified by elevation. Note that HAR and IMD datasets are limited in their spatial coverage.



The seasonal patterns of the spatial variability and magnitude of precipitation directly impact the snowpack evolution and melt processes. Since there are distinct precipitation regimes over HMA that influence the spatial patterns in winter and summer, the mean precipitation estimates stratified by the winter (December, January, February) and summer (June, July, August) time periods are shown in Figures 4, 5, respectively. The spatio-temporal patterns of the winter Westerlies are the primary determinant of snow evolution over these regions. Similar to Figure 2, the precipitation magnitudes are smallest in ERA-Interim-Land, followed by MERRA2 and CMORPH. The winter precipitation estimates are largest in the ECMWF, GDAS, and HAR products, whereas APHRODITE, CHIRPS, and IMD, which include information from gauges, span the intermediate range across these products. These patterns are repeated in the summer comparisons, where the precipitation regime shifts to the south and eastern regions (Figure 5). The magnitude of mean precipitation is lowest in ERA-Interim-Land and highest in ECMWF. The spatial pattern in MERRA2 over the eastern HMA during this time period is more consistent with APHRODITE, CHIRPS, and IMD, though the rainfall amounts are underestimated over the central HMA. These comparisons of mean precipitation are indicative of possible biases in these products. The seasonally stratified comparisons confirm that ECMWF and GDAS precipitation estimates are consistently high whereas MERRA2, ERA-Interim-Land, and the satellite-based products (TMPA and CMORPH) tend to be low. The gauge-informed products (particularly APHRODITE and CHIRPS) fall in the midrange in terms of the magnitude of precipitation in these comparisons.
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FIGURE 4. Same as Figure 2, but stratified for the peak winter months (December, January, February). The extreme data points/outliers are plotted individually using the “+” symbol.




[image: image]

FIGURE 5. Same as Figure 2, but stratified for the summer months (June, July, August). The extreme data points/outliers are plotted individually using the “+” symbol.



Estimates of average RMSE and r2 generated by the ETC analysis are shown in Figures 6, 7, respectively. These maps are generated by averaging the RMSE and r2 values generated from each of the 120 possible triplets across the 10 precipitation products. As noted earlier, the RMSE estimates from ETC are representative of the random errors in these products. Figures 6, 7 indicate that MERRA2 products have the largest RMSEs and lowest r2 values across different products. Comparatively, the station data-based products (APHRODITE, CHIRPS, and IMD) have lower errors and increased correlations (NOTE: the average error for IMD in the histogram is high because it only encompasses the Indian subcontinent). Generally, larger RMSEs are observed over the eastern HMA, likely because the mean precipitation is higher over the eastern region due to the influence of the monsoon regime. Conversely, low RMSEs are observed over the Tibetan Plateau from most products, as precipitation magnitudes are typically small in that region. Among the model-based precipitation products, ECMWF performs well with low RMSE and high r2 values. It is also notable that in ECMWF, r2 estimates are consistently high across the entire domain and the spatial variability of r2 is generally low, particularly compared to the spatial patterns of r2 in other datasets. The satellite-based products (CMORPH and TMPA) have low correlations over the Tibetan Plateau and high elevation areas whereas the correlations are higher in the southern parts of the domain. Note that the products that include in-situ measurements (APHRODITE, CHIRPS, IMD) may share information from the same station locations. In such cases, the assumption of uncorrelated errors in the triplets may be violated. In the ETC evaluations shown in Figures 6, 7, however, the influence of correlated errors is ignored as the spatial density of the stations is small and time span of the individual station data products is different.
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FIGURE 6. RMSE of precipitation (mm) estimated using the ETC method. The value at each grid point represents the mean RMSE across 120 possible triplets among the 10 precipitation products. The error bars represent the mean standard deviation across the 120 triplets.
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FIGURE 7. Same as Figure 6, but for r2.



Figure 8 shows the domain-averaged mean annual precipitation from these datasets along with estimates of their temporal trends for the four sub-regions of HMA (Figure 1). Note that for some datasets (IMD and HAR), the spatial averages are influenced by their limited spatial coverage.
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FIGURE 8. Time series of domain-averaged mean annual precipitation (A), and estimates of the Mann Kendall S-statistic (B) for the entire HMA and four sub-regions (Figure 1). The statistically significant trends are shown with filled boxes.



CMORPH, GDAS, HAR, and MERRA2 show an increasing trend of precipitation over all of HMA, whereas the other datasets do not indicate a statistically significant increasing or decreasing trend. There are more significant trends in the regional evaluations. Over the western HMA, most products indicate an increasing precipitation trend, consistent with the findings of Nguyen et al. (2018). None of the products show a statistically significant decreasing trend in precipitation over the central and eastern regions as suggested in Nguyen et al. (2018) and Rodell et al. (2018). In fact, CMORPH, HAR, and MERRA2 show the opposite trend, indicating a statistically significant increasing trend in precipitation. Finally, over the Tibetan Plateau, most products except CMORPH, GDAS, and HAR indicate no significant trends in precipitation. Note that over the Tibetan Plateau, Rodell et al. (2018) found an increasing trend in precipitation whereas Nguyen et al. (2018) indicates that there is no statistically significant trend in precipitation. It should also be stressed that the time periods (i.e., 17-year analysis) used in our computations are generally short, due to the availability of datasets, and the choice of a common time period of evaluation. The shortness of the time period of evaluation is a likely contributing factor in the determination of these trends.

It should be emphasized that the sparse and uneven in-situ coverage in these precipitation products is a significant factor in the quality of these products, as documented in prior studies (Ghatak et al., 2018). Generally, it is acknowledged that precipitation is underestimated in these products, particularly over high elevations (Immerzeel et al., 2015). Most weather stations are located on the valley floors (at lower elevation) and not on mountain slopes, which means that statistically-averaged gauge data may not properly represent the heterogeneity of rainfall in complex terrain over these regions (Bharti and Singh, 2015; Song et al., 2016). The retrieval algorithms for satellite-based products can suffer from high frequency microwave scattering associated with persistent snow cover and falling snow in high mountainous regions, which contributes to the uncertainty in these products (Yong et al., 2015; Song et al., 2016). The accuracy and the trends in the modeled precipitation products are also influenced by the remote sensing inputs. For example, it is documented (Bosilovich et al., 2017) that the introduction of the Atmospheric Infrared Sounder radiances in 2002 leads to an increase in precipitation over the land areas and a decrease over the oceans. Bosilovich et al. (2017) also note that the introduction of data from new instruments is a significant factor in the changes of water cycle components in these reanalysis products.



4.2. Near Surface Air Temperature Analysis

An intercomparison of near surface air temperature (Tair) estimates from three model analysis products (ECMWF, GDAS, and MERRA2) is presented in this section. A time series of domain-averaged annual mean Tair estimates from 2000-onward is shown in Figure 9, which demonstrates the significant differences in the mean and the trends in these products. The MERRA2 estimates are generally warmer and devoid of any climatological trends, whereas both ECMWF and GDAS estimates show a statistically significant warming trend, with generally cooler Tair than that of MERRA2. When stratified regionally, GDAS shows a warming trend over all four regions, whereas ECMWF shows warming trends in the western and central regions only. MERRA2 does not have a statistically significant trend in the western and central regions, whereas it shows an increasing trend in Tair over the Tibetan Plateau and eastern regions. Previous studies using in-situ measurements and GCM outputs also find the climatological warming trends in the eastern (Ren et al., 2017), central (Shrestha et al., 1999), and the Tibetan Plateau (Immerzeel, 2008) regions.
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FIGURE 9. Time series of domain-averaged mean annual near surface air temperature (A), and estimates of the Mann Kendall S-statistic (B) for the entire HMA and four sub-regions (Figure 1). The statistically significant trends are shown with filled boxes.



The time series of annual mean Tair shown in Figure 9 indicates that MERRA2 is consistently warmer than GDAS and ECMWF. The examination of the mean seasonal cycle of Tair also confirms that the pattern of warmer Tair in MERRA2 is persistent throughout the season (not shown). In particular, over most of the eastern HMA, climatological mean Tair from MERRA2 is observed to be above freezing. GDAS estimates are comparable to MERRA2 during the summer time period and are coldest (among the three products) during the winter time periods. The evaluation of Tair presented in this section indicates that the lack of a warming trend, consistently warmer estimates and regional deficiencies in the seasonality of MERRA2 estimates poses significant challenges for realistic snow and hydrological model simulations.



4.3. Uncertainties in the Water Cycle Components

In this section, we examine the uncertainty in the terrestrial water balance estimates from the LSM ensemble. The terrestrial water budget is represented by Equation (4), representing the partitioning of total precipitation (P) into ET, runoff (R), and ΔTWS. Note that R is the gridded runoff (consisting of surface runoff and baseflow) estimated by the LSM and not the routed streamflow. The ΔTWS are contributed by the changes in soil moisture, snow ice mass, canopy water, surface water, and ground water storages.
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We first examine if the spread in P, ET, and R is driven by the differences in the LSM formulations or the driving meteorology. Figure 10 shows the distribution of mean annual averages of P, ET, and R, grouped by LSMs and the forcing datasets. Overall, it can be noted that there are smaller differences in the water budget terms across the LSMs when driven with a common forcing whereas larger differences in P, ET, and R are seen across the modeled estimates with different forcing datasets. This suggests that the uncertainty in the driving meteorology is the dominant factor in the terrestrial water budget estimates. Generally, the spread in the ET estimates (when grouped by the LSM or the forcing) is generally small compared to that seen with R. It can be noted that, when stratified by the forcing dataset, the range of ET and R estimates essentially mirrors that of the precipitation input. Indeed, similar to the precipitation inputs, the magnitude of ET and R is higher during the summer season over eastern HMA (not shown). During the melt season, due to the contribution of snow and ice melt to R, the spatial patterns of R shift from northwest to southeast. The high and low estimates of ET and R are obtained from LSM runs that employ ECMWF and MERRA2, respectively. These results further confirm the significant influence of precipitation in the LSM-based water budget estimates.
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FIGURE 10. Distribution of the mean annual averages of precipitation (P), evapotranspiration (ET) and total runoff (R), grouped by the LSMs (top panel) and forcing datasets (bottom panel). The units are mm.



Across the 12 member LSM ensemble used in this study, we estimate the mean annual fluxes and their uncertainty (expressed as one standard deviation) over HMA in P, ET, and R to be 2.11 ± 0.45, 1.26 ± 0.11, and 0.85 ± 0.36 mm per day, respectively. Similar estimates are seen in global water budget estimation studies. For example, using a large suite of modeled and remote sensing based products, Rodell et al. (2015) document that the annual mean fluxes and their uncertainty at the global scale to be 2.16 ± 0.12, 1.33 ± 0.13, and 0.92 ± 0.13 mm per day, for P, ET, and R, respectively. The estimates over Eurasia are similar, with annual mean fluxes of 1.99 ± 0.12, 1.15 ± 0.18, and 0.94 ± 0.12 mm per day in P, ET, and R, respectively.

The mean annual estimates from our model ensemble are comparable to these global/continental estimates, while the uncertainty estimates, particularly for P and R, are significantly higher than the corresponding global estimates, which is an additional confirmation of the challenges in the accurate characterization of these terrestrial fluxes over HMA. These uncertainties estimates are also quite close to those found by Munier and Aires (2018).

Figure 11 shows the distribution of the domain-averaged RMSE from each model run as well as maps of the ensemble mean RMSE across the 12 ensemble members. Though independent, ALEXI and GLEAM are also modeled products, with their own biases in the ET estimates, which are apparent in the comparisons shown in Figure 11. In the ALEXI comparisons, estimates from Noah33 and NoahMP forced with ECMWF produce the lowest RMSE, whereas NoahMP forced with ECMWF and CHIRPS produces the best agreement compared to GLEAM. The examination of the mean seasonal cycles of the model runs and these reference products indicates that the ET estimates from ALEXI are generally higher compared to the LSM ensemble. Note that similar findings about the possible positive biases in ALEXI are also described in Ghatak et al. (2018). That means a better match of a model run with ALEXI may be indicative of a high bias in the modeled estimates. GLEAM, on the other hand, shows better consistency with the model ensemble, though the ET magnitudes are lower in the late summer, fall, and winter months. In the GLEAM comparisons, runs forced with ECMWF and CHIRPS produce the best agreements in ET for each model. In the spatial comparisons, larger disagreements are seen over the western regions and parts of the eastern domain. The RMSE spatial patterns in the GLEAM comparison essentially mirror the summer precipitation means (Figure 5) with the disagreements more prominent over the eastern parts of the domain. Figure 11 also indicates that the disagreements between LSMs and ALEXI are more prominent over the lower Indus and lower Brahmaputra basins. These basins are known to have significant agricultural irrigation systems (http://pakirsa.gov.pk), the impacts of which are not captured in the LSM runs. It is possible that the large RMSE values over these areas are a result of the reference datasets capturing the impacts of such processes. ALEXI, in particular, has been demonstrated to represent the impacts of management related sources and sinks over the continental United States (Hain et al., 2015).
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FIGURE 11. Maps of ensemble mean RMSE (W/m2) of ET across the 12 ensemble members compared against ALEXI (A) and GLEAM (B), distribution of the domain-averaged RMSE from each of the 12 LSM runs (C) and the mean seasonal cycle of ET (D). The gray shading in (D) represents the spread in ET across the LSMs.



As reliable, multi-year ground observations of R are not easily available over this domain, an independent assessment of the quality of R estimates beyond the comparisons shown in Figure 10 is not conducted in this study. Instead, we focus on the assessment of the simulated TWS and snow conditions. Note that a direct evaluation of the snow mass is difficult due to the lack of reliable ground measurements with good spatial coverage. In addition, remote sensing retrievals of SWE and snow depth from passive microwave instruments retrievals are known to have large uncertainties in mountainous terrain such as HMA (Dong et al., 2005; Markus et al., 2006; Tedesco et al., 2010). Therefore, the evaluation of snow conditions is performed by comparing the simulated SCF estimates against the observations from the MODIS instrument, which provides an assessment of the snow covered extent, but not the snow mass.

Figure 12 shows a comparison of mean SCF from MOD10A1 and the modeled SCF averaged across the LSMs for each forcing data. The influence of the precipitation and temperature differences in the driving meteorology can be observed in these comparisons. The large magnitude of precipitation in the ECMWF and GDAS data leads to large snow evolution and broader spatial coverage of snow. This is evidenced in both the spatial maps and in the comparison of the mean SCF stratified by elevation. The snow coverage in the MERRA2 based runs, on the other hand, is generally low, possibly due to the underestimation of precipitation and warmer air temperature. The CHIRPS-based runs provide a better match with the MOD10A1 data, particularly over the western and central domains and over the mid-elevation ranges (~ 2,000–5,000 m). In the southeast part of the domain, the CHIRPS-based runs underestimate snow coverage, due to possible precipitation underestimation. The accuracy of simulating snow cover is evaluated using the probability of detection (POD) and false alarm ratio (FAR) compared to MOD10A1. Overall, the LSM ensemble has an average POD of 72% and FAR of 36%. Most prominent POD and FAR values are over the shallow snow covered areas over the Tibetan Plateau and eastern HMA. Despite these discrepancies over eastern HMA, the ECMWF + CHIRPS-based runs provide the best estimate of the snow coverage, with a domain average POD of 81% albeit with a slightly higher FAR of 51%.
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FIGURE 12. Comparison of mean SCF estimates (unitless) from MOD10A1 and the model runs. (A) Shows the spatial maps of mean SCF whereas (B) shows the domain-averaged SCF stratified by elevation. The modeled estimates are averaged across the three LSMs for each forcing data.



Figure 13 shows the time series of the spread of TWS anomalies from GRACE and the model runs during 2003–2018. Over the entire HMA, the model runs provide a reasonable match to GRACE, though the slight declining trend in TWS is not represented well in the model runs. Larger differences between the modeled estimates and GRACE are observed in the regional comparisons. As noted in Rodell et al. (2018), significant declining trends in GRACE are observed over the western and central regions. The negative trends in TWS anomalies are comparatively smaller over the eastern HMA. The model runs do not represent these temporal trends well, as none of the input precipitation forcing data used in the model ensemble (ECMWF, GDAS, MERRA2, and CHIRPS) has a statistically significant declining trend over this region. Since MERRA2 has an increasing trend in precipitation, the MERRA2 forced run shows an increasing trend in TWS. The domain-averaged anomaly RMSE and R of the LSM ensemble are 67 mm and 0.31, respectively. The dominant errors come from glacial areas and downstream basins of the western and central HMA. Overall, average anomaly RMSE and r of the ECMWF+CHIRPS runs are 59 mm and 0.36, respectively, providing the best match to the GRACE observations. Note that the TWS anomalies from the ECMWF+CHIRPS runs are also shown as a separate time series in Figure 13.
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FIGURE 13. The time series of the anomalies in TWS (mm) from GRACE and the model runs during 2003–2018. The red and cyan shadings represent the spread in TWS anomalies across the GRACE products and LSMs, respectively. The average TWS anomaly estimates from models driven by the ECMWF +CHIRPS forcing are shown in black.



Note that relating the surface mass changes to the GRACE signal can be hard in this region with tectonically active mountain ranges, substantial groundwater pumping for farm irrigation, and melting of snow and glaciers (Moiwo et al., 2011; Immerzeel and Bierkens, 2012). Rodell et al. (2018) identified groundwater depletion as the primary cause of the declining trends in TWS over the western HMA whereas water depletion and precipitation decline was the key reason for the decline in TWS over the central and eastern HMA. Studies such as Moiwo et al. (2011) and Yi and Sun (2014) also quantify that the influence of the mass changes from glacier melt is comparable to that from underground water depletion over HMA. As the LSM simulations used in this study exclude glaciers and do not include representations of human management such as groundwater abstractions, they can only be expected to simulate the impacts of natural variability in meteorology. The mismatches between the model estimates and GRACE TWS in Figure 13, therefore, can be used to find potential sources of TWS variability and limitations of precipitation inputs. For example, over the Tibetan Plateau, the model (particularly the ECMWF+CHIRPS based simulation) and GRACE estimates are comparable, indicative of the reasonable quality of the input meteorology. Comparatively, the larger mismatches over the West and Central regions can be attributed to the lack of handling of the glacier melt and groundwater abstraction impacts in the model.




5. SUMMARY AND CONCLUSIONS

Despite the importance of HMA as a critically important area of freshwater storage and water availability, significant uncertainty in the characterization of terrestrial water budget components exists due to the lack of reliable and spatially-distributed ground measurements as well as limitations in the modeling and remote sensing estimates. This study presents an evaluation of the key terrestrial water budget variables over HMA using available measurements and both direct and indirect evaluation methods. An ensemble of uncoupled land surface model simulations forced with prescribed meteorology is used to develop estimates of terrestrial water budget components.

As precipitation is one of the most important inputs for LSM simulations, an evaluation of the quality of a suite of 10 precipitation datasets is conducted first. The spatial patterns of precipitation seasonality, where the winter precipitation is dominated by the westerly and southwesterly flows with the summer precipitation influenced primarily by the South Asia monsoon, are captured reasonably well in these products. However, significant differences in the mean estimates are observed across these products. Within the suite of products being compared, the precipitation magnitudes from ERA-Interim-Land and MERRA2 are generally lower whereas that from GDAS and ECMWF are higher. The station data and remote sensing based products generally encapsulate an intermediate range of precipitation variability in the comparisons.

An indirect evaluation method called ETC that does not require the availability of a reference dataset is used to assess the RMSE and correlation of these precipitation data products. The ETC evaluation indicates poor performance of MERRA2 with large RMSE and low r2 values. The products such as APHRODITE, CHIRPS, and IMD that employ gauge information had stronger agreement across the ETC comparisons. Among the modeled estimates, the ECMWF dataset is found to have good skill with low RMSE and high correlations. Spatially, larger errors are observed over the eastern HMA, where the magnitude of the precipitation is higher than the western and central domains due to the influence of the South Asia monsoon. The examination of the temporal trends in the precipitation datasets also demonstrates significant differences across these products. CMORPH, GDAS, HAR, and MERRA2 show an increasing trend of precipitation over HMA, whereas the other datasets do not show a statistically significant increasing or decreasing trend. The increasing precipitation trends in these products, particularly over the central and eastern regions, are inconsistent with the reported declining trends in prior studies.

A comparison of the Tair from ECMWF, GDAS, and MERRA2 indicates that MERRA2 estimates are generally warmer. Consistent with the prior studies, ECMWF and GDAS Tair estimates indicate a warming trend whereas MERRA2 estimates do not show a significant warming or cooling trend. These inconsistencies (in precipitation and air temperature) have significant influence on the LSM simulations, particularly in the characterization of the magnitude of snowpack evolution over HMA.

Using a subset (ECMWF, GDAS, MERRA2, and CHIRPS) of the 10 precipitation products, 12 model runs are conducted using three different land surface models. This model ensemble is used to generate assessments of the uncertainty in the terrestrial water budget components. Comparison of the distribution of the mean annual averages of P, ET, and R stratified by the driving meteorology and LSMs indicates that the uncertainty in the driving meteorology is the dominant factor in the uncertainty in these estimates over HMA. Further, there is larger uncertainty in the R estimates compared to the spread in the ET estimates within the ensemble. The annual mean estimates of water budget partition from this model ensemble are found to be comparable to reported global/continental estimates in prior studies, whereas the uncertainty/spread of P, ET, and R is significantly larger than the corresponding estimates from global studies.

The modeled ET estimates are compared against the thermal infrared based ALEXI and passive microwave based GLEAM estimates. Generally, the biases in the input precipitation datasets (particularly over the summer months) are reflected in the quality of the ET estimates, with the model runs forced by ECMWF + CHIRPS producing the best match with the GLEAM estimates. The modeled SCF estimates are strongly influenced by the input precipitation and air temperature. The ECMWF and GDAS based runs produce large snow evolution whereas MERRA2 runs underestimate the magnitude and extent of snow. Overall, the ECMWF+CHIRPS based run provides the best match to the MOD10A1 estimates, particularly over the western and central HMA. Though the ECMWF+CHIRPS based runs underestimate the snow evolution in the northeastern parts of HMA, such disagreements are mostly limited to areas with shallow snow. When compared at the domain-wide scale, the simulated TWS anomalies show reasonable agreements with those from the GRACE mission. In regional comparions the model simulations fail to simulate the declining trends in TWS observed in GRACE. The lack of a statistically significant declining trend in precipitation is the cause of this deficiency in some parts of the domain (over the Central HMA). Over HMA, the GRACE signal also encompasses the impacts of groundwater pumping, tectonic activity, and glacier melt, which are not well represented in the LSM simulations. The discrepancies between GRACE and the LSM estimates (particularly over the Western and Central HMA) are likely due to these missing processes in the LSM simulations.

Overall, this study points to the significant need for improving the meteorological boundary conditions toward reducing the uncertainty in the terrestrial budget estimates. The results presented in this article demonstrate that some of the widely used global reanalysis products have significant uncertainties in their surface meteorological fields in such a mountainous region and these uncertainties are accompanied by a failure to capture trends and inter-annual variability relevant to water resource monitoring and projection applications. While direct measurements of variables such as precipitation are difficult over this complex terrain, the study demonstrates the utility of indirect evaluation methods for developing attributions of uncertainty. For example, the use of remotely sensed SCF measurements to assess precipitation products is particularly useful in mid-elevation zones where the biases in input precipitation are expected to lead to biases in simulated SCF. The challenge in evaluating remotely sensed ET products remains a critical gap, as there is significant uncertainty in the absolute values generated by products such as ALEXI and GLEAM. These products, however, are still useful for evaluating the spatial and temporal variability of the simulated ET products (Anderson et al., 2007; Martens et al., 2017). Similarly, the lack of reliable, spatially distributed measurements of SWE, particularly at higher elevations, is another critical terrestrial water budget observational gap. As evidenced in this study, despite its importance as a major water budget component, reliable measurements of R are lacking in this region due to the limitations of the stream gauge network and inadequate data sharing. Measurements from the upcoming Surface Water Ocean Topography (Biancamaria et al., 2016) mission are expected to help toward mitigating this observational gap. The current study provides a benchmark for evaluating further improvements in water budget estimation through the incorporation of such future measurements.
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Seasonal snow cover is an important source of melt water for irrigation and hydropower production in many regions of the world, but can also be a cause of disasters, such as avalanches and floods. In the remote Himalayan environment there is a great demand for up-to-date information on the snow conditions for the purposes of planned hydropower development and disaster risk reduction initiatives. We describe and evaluate a snow mapping setup for the remote Langtang Valley in the Nepal Himalayas, which can deliver data for snow and water availability mapping all year round. The setup utilizes (1) robust and almost maintenance-free in-situ instrumentation with satellite transmission, (2) a freely available numerical snow model, and (3) estimation of model key parameters from local meteorological and snow observations as well as from freely available climatological data. Novel features in the model include the estimation of melt parameters and solid precipitation from passive gamma-radiation based snow sensor data, as well as improved parameterization and estimation of melt water refreezing (36% of total melt) within, and sublimation/evaporation (57 mm yr−1) from the snow pack. Evaluation of the model results show a reasonable fit with snow cover data from satellite images. As many of the high-mountain regions in central and eastern Nepal show high correlation (>0.8) with the estimated snow line elevation in the Langtang catchment, the results may provide a first-order approximation of the snow conditions for these areas too.

Keywords: seasonal snow, modeling, Himalaya, snow water equivalent, hydropower


INTRODUCTION

Seasonal snow cover is an important source of melt water for irrigation and hydropower production in many regions of the world (Barnett et al., 2005; Viviroli et al., 2007; Callaghan et al., 2011). Among the population of the Himalayan region, there is generally a lack of grid-energy supply to households, while the hydropower potential of the region is very large and still mostly unexploited (Shrestha et al., 2015). In Nepal, for example, only 1–2% of the hydropower potential is used, and households are currently mostly meeting their energy needs with fuel wood (68%), followed by agricultural waste (15%), animal dung (8%), and imported fossil fuels (Alam et al., 2017). Moreover, for snow melt water provision for downstream communities, both the timing and volume of snowmelt are of critical importance (Smith et al., 2017). The snow cover and melt water can also be a cause of disasters, such as snow melt floods and avalanches. In April 2015, anomalously large snow amounts in combination with a major earthquake triggered numerous avalanches in the Nepal Himalayas, of which a massive one, with estimated volume of ~7 × 106 m3, hit the Langtang village causing more than 350 casualties among the local residents and tourists (Fujita et al., 2017).

Due to the importance of snow to society, many countries run an operational snow mapping service to provide updated information about snow conditions (Saloranta, 2016). The information derived from operational snow mapping is valuable for planning hydropower production and water resources management, for natural hazard forecasting (flood, avalanche), and for informing the public and tourists about trekking or skiing conditions in the mountains. In the Himalayas, such near real-time information about snow conditions is very limited at present, with efforts mostly focused on cloud-free satellite images showing the extent of the snow-covered area (SCA) (Immerzeel et al., 2009; Gurung et al., 2017; Huang et al., 2017). However, these satellite-based maps of SCA do not provide any direct information on snow depth and snow water equivalent (SWE), which is needed in hydropower applications and in flood or avalanche hazard forecasting. In light of the planned hydropower development initiatives (e.g., Alam et al., 2017) and of the recent snow-related disasters, there is a great demand for up-to-date information on the snow conditions in the remote Himalayan environments. Consequently, our main research question has been: how to enhance operational snow and water availability mapping in remote high-mountain areas, such as the Nepal Himalayas?

In this paper we describe and evaluate a snow mapping setup for remote high-mountain areas that could potentially be utilized by local hydropower companies, managerial authorities and trekking agencies. Our case study area for monitoring and modeling is the remote Langtang Valley in the Nepal Himalayas. In this region, seasonal snow cover is abundant above ~4,000 meters above sea level (m a.s.l.; Stigter et al., 2017). Routine snow monitoring by manual snow surveys is however demanding as the approach to the snow-covered areas is difficult and/or expensive, normally requiring several days trekking and acclimatization.

Generally, numerical snow models are the preferred tool to map snow conditions since the available in-situ observations of snow often do not adequately capture the high spatiotemporal variability of snow cover, especially in rugged mountain environments (e.g., Grünewald and Lehning, 2015). Previously, various hydrological and snow models have been applied in the Langtang catchment. For example, Braun et al. (1993) and Konz et al. (2007) applied hydrological rainfall-runoff models based on the HBV (Hydrologiska Byråns Vattenbalansavdelning) model framework to simulate water balance in the catchment. Pradhananga et al. (2014) simulated the present and future discharge of Langtang Khola, the main river in Langtang Valley, using a glacio-hydrological model which utilized the positive-degree day approach to calculate snow and glacier melt at different elevation zones. Immerzeel et al. (2012, 2013) applied a high-resolution combined cryospheric and hydrological model for the Langtang catchment, and more recently also the TOPKAPI-ETH model (Immerzeel et al., 2014) to demonstrate the impact of uncertain vertical air temperature and precipitation gradients on model results. The TOPKAPI-ETH model was also applied by Ragettli et al. (2015) to simulate glacio-hydrological processes in the upper portion of the Langtang catchment. Their simulations were run at an hourly resolution and although many of the parameters were estimated from relevant local in-situ data, 13 parameters were still to be estimated by calibration. Three of the four generally most sensitive parameters for runoff in Ragettli et al. (2015) were connected to snow melt processes. Moreover, Ragettli et al. (2015) ran 10 different model cases in order to represent uncertainties in estimating snow melt water refreezing efficiency and the horizontal precipitation gradients in Langtang Valley. Recently, Stigter et al. (2017) used a modified version of the seNorge snow model to estimate SWE and snowmelt runoff as well as their sensitivity to climate in the Langtang catchment. They calibrated key model parameters using the ensemble Kalman filter technique and automatic station observations of snow depth, in addition to satellite-derived data of snow cover extent. Their results highlighted the sensitivity of the simulations of snow depth and snow extent to precipitation and temperature lapse rate uncertainties, as well as to snow melt temperature thresholds. Their snow depth simulation results also suggested that a sub-daily timestep should be used to improve snow melt modeling.

Our study continues to explore and improve the mapping and simulation of the snow cover and snow melt rates in the Langtang catchment. The novel model features include: (i) estimation of snow melt rate parameters from dedicated snow observations using automatic SWE measurements (section Model Setup and Parameter Estimation), (ii) improved parameterization of melt water refreezing in the snowpack (section Model Description), (iii) inclusion of estimated sublimation/evaporation rates (section Model Setup and Parameter Estimation), (iv) estimation of more accurate snow precipitation rates for model forcing using a passive SWE sensor (Kirkham et al., submitted; section Liquid and Solid Precipitation), and (v) estimation of monthly precipitation distribution in Langtang Valley on the basis of open access global historic precipitation dataset (Beck et al., 2017a,b section Liquid and Solid Precipitation). The main focus in this paper is on seasonal snow but liquid precipitation estimates are also included. Moreover, in order to estimate how applicable the simulated estimates of snow conditions in the Langtang catchment are in comparison with the neighboring regions, we assess the spatial correlation of snow line elevation (SLE) in the part of Himalayas bordering to Nepal using SCA data derived from MODIS (Moderate Resolution Imaging and Spectroradiometer) satellite images in the period 2001–2017 (section MODIS Snow-Covered Area).

Our model application aims to become an operational tool in near real-time monitoring of snow conditions for hydropower and disaster risk reduction applications in remote mountainous regions and is therefore simplified in terms of the required model input data types and number of calibrated parameters. Previous model intercomparison studies (e.g., Etchevers et al., 2004; Essery et al., 2013; Skaugen et al., 2018) have indicated that there is no strong relation between model performance and model complexity. Moreover, we aim to create a robust, simplified and almost maintenance-free instrument setup that is capable of forcing our year-round snow mapping application. This monitoring and modeling setup could then be expanded out across remote Himalayan environments to provide near real-time monitoring of snow conditions in a region where reliable in-situ data and catchment-wide simulations are severely lacking (Rohrer et al., 2013).



MATERIALS AND METHODS


Snow and Meteorological Measurement Data

Four automatic solar- and wind-powered measurement stations were installed in the Langtang catchment on a mountain face at 4,200 (Lower), 4,304 (Middle), 4,888 (Upper), and 4,962 (Ganja La) m a.s.l. in September 2015 (Saloranta et al., 2016; Figure 1). The overall aspect of the mountain face is north, and the stations are located on flat sites, except the Upper station, which is located on steeper terrain. The Langtang catchment is situated ~60 km north of Kathmandu (Nepal) and was selected as a case study site due to its remoteness and Himalayan high-mountain environment, but also due to the region's hydropower potential and development plans (Alam et al., 2017). The majority of the precipitation in the Langtang catchment falls during the monsoon in June-September (Immerzeel et al., 2014), normally then as rain below ~5,000 m a.s.l. elevation.
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FIGURE 1. Study site location. (A) The location of Langtang Valley, Nepal. (B) Automatic weather station and time lapse camera location within the Langtang Valley catchment. Major glaciers and ice masses in Nepal are displayed (Bajracharya et al., 2014). The lower (C), middle (D), upper (E), and Ganja La (F) automatic weather stations in snow free conditions.



All four stations measure hourly air temperature (Ta) and humidity, ground temperature, snow depth, and have time-lapse cameras that take five images per day of the station surroundings. Liquid precipitation (rainfall) is recorded at three out of four stations. Moreover, the highest station (Ganja La), located on the south side of the Ganja-La pass (Figure 1), is also equipped with an extra precipitation gauge able to record solid precipitation (snowfall). In addition, SWE, air pressure, long- and short-wave radiation, as well as wind-speed and direction are recorded at the Ganja La station. Kirkham et al. (submitted) provide a detailed analysis and evaluation of the snow and solid precipitation related measurements from the Ganja La station. The sensors transmit their data in real-time via the Iridium satellite constellation. In addition to the four stations, a solar-powered high-resolution time-lapse camera was installed on the opposite side of the valley (Figure 1) in order to monitor the SCA and SLE on the mountain side where the four stations are located.

Since September 2015, hourly values of 41 different variables from the four stations have been transmitted in real-time, and the four stations have been operating 77–99% of the time. Despite some malfunction, always at least two of the four stations have been functioning well. The dataset obtained from September 2015 to June 2018 was processed further removing a few outliers, correcting snow depth for bare ground offset and aggregating the hourly values to 3 and 24-h means (sums for precipitation). An exception to the general hourly measurement rate is the SWE-sensor (Campbell Scientific CS725), which updates every 6 h its 24-h-averaged counts of gamma-radiation emitted from potassium isotopes (40K) naturally contained in the ground, attenuated by snow. Due to the 24-h averaging of gamma-ray counts, the sensor's response to rapid changes in SWE is somewhat slow and delayed. The parallel hourly precipitation and snow depth measurement and CS725 data analysis by Kirkham et al. (submitted) showed an average delay time of 18 h. The SWE data used in this study are corrected for this lag. The CS725 at the Ganja La station, located at almost 5,000 m a.s.l., provides unique and valuable data to estimate solid precipitation (Kirkham et al., submitted) as well as the snow melt water contribution to runoff QM and the net snow melt rates Mobs (section Station Data Analysis and Estimation of Model Parameters).

We define a snow-covered period (tSCP) for the Ganja La station as all the 3-h time steps from January 2017 to June 2018 (including the two major periods of seasonal snow cover) when the observed SWE is >15 mm and the observed surface albedo is >0.46. This definition is based on the time-lapse image analysis of the uniformity of snow cover at the Ganja La station by Kirkham et al. (submitted). In total, this definition provides 1,597 time steps with snow cover for our analysis, equivalent to 200 days. A verification check shows that 99% of the measured snow depth values in the tSCP are between 9 and 88 cm.



MODIS Snow-Covered Area

Satellite imagery provides a high-resolution and spatiotemporally well-covering source of snow information. This is an especially valuable snow data source in remote high-mountain regions, such as the Langtang catchment.

We use the MODIS 8-day maximum binary (snow/no snow) SCA product with 500 m spatial resolution (1) for evaluating the model performance and (2) for comparing the SLE statistics between the Langtang region and other regions in Nepal. The SCA products from Terra (MOD10A2) and Aqua (MYD10A2) satellites acquire data in the morning and afternoon, respectively, and utilize the Normalized Difference Snow Index (NDSI). This is the ratio of difference and addition between the reflectance in visible (band 4, 0.545–0.565 μm) and short-wave infrared (band 6, 1.628–1.652 μm) wavelengths (Hall et al., 1995). A pixel is classified as snow if the NDSI ≥0.4 and the reflectance in band 2 (0.841–0.976 μm) and band 4 exceed 10 and 11%, respectively. Stigter et al. (2017) obtained a 83.1% classification accuracy for MOD10A2 product based on a comparison with field observations in the Langtang catchment.

The available data were further enhanced by reducing the number of cloud-covered pixels using the combined Aqua and Terra SCA products, followed by temporal and spatial filtering (Gurung et al., 2011). The temporal filtering fills cloud-covered pixels by cloud-free values from the previous and next 8-day time steps. The spatial filtering fills cloud-covered pixels by the most popular cloud-free values inside a surrounding 7 × 7 pixel window. Despite filtering cloud-covered pixels, the enhanced MODIS snow product is still significantly influenced by misclassifications of cloud cover as snow, particularly during the monsoon season (section Spatiotemporal Variation of the SLE Derived from MODIS SCA-Images, Model Simulation Results). Therefore, the monsoon season SCA-images (June-September) are omitted in this study (except in Figure 4A).

As snow cover is often patchy, it can be difficult to derive a distinct snow line which separates snow-covered terrain from snow-free areas. In this study we define the snow line as the zone where SCA gets below 0.5 (i.e., 50%). The SLE is estimated using the enhanced 8-day maximum MODIS SCA product and USGS HydroSHEDS elevation data (https://hydrosheds.cr.usgs.gov) resampled to the spatial resolution of MODIS using the nearest neighbor method.

In order to evaluate the representativeness of the SLE in the Langtang catchment for other areas of Nepal, the country's Himalayan region is divided into 50 × 50 km rectangular boxes taking Langtang Valley as the reference box (centered at Kyangjing village). All the SCA values within a box are assigned their respective elevation bands with 200 m intervals and a mean SCA for each elevation band is calculated. Finally, the SLE is defined as the highest elevation where the mean SCA, interpolated between the elevation bands, drops below 0.5 when moving from higher to lower elevations. The same SLE calculation method is also applied to the simulated SCA results from the seNorge model.



The seNorge Snow Model
 
Model Description

The snow simulation model applied in this study is the single-layer seNorge snow model (Saloranta, 2012, 2016), which was originally developed for operational snow mapping in Norway (www.seNorge.no). The high-mountain version (v.2) of the model, described in Saloranta et al. (2016), is applied here and its meteorological input data requirements are Ta and precipitation. The model is coded in the “R” statistical software (www.r-project.org), and consists of two main sub-models, namely: (1) the SWE sub-model for snow pack water balance and (2) the snow compaction and density sub-model for converting SWE to snow depth. The extended degree-day method (Hock, 2003; Pellicciotti et al., 2005) is applied to calculate snow melt rates MeDD [mm h−1].
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where SWnet is the net shortwave radiation flux [W m−2], b0 [mm h−1°C−1] and c0 [mm h−1 (W m−2)−1] are empirical snow melt parameters, and TM is a melt onset threshold temperature parameter. The SWnet = (1–αs)·SWin, where the formulation by Allen et al. (2006) is used to estimate the incoming solar radiation SWin for inclined grid cells with defined slope and aspect, taking also into account the attenuation in the atmosphere as well as the diffuse solar radiation. The snow surface albedo αs is calculated as in Tarboton and Luce (1996), where αs is a function of the solar angle, snow age and snow surface temperature. The snow melt rate for a grid cell is also affected by the simulated SCA in the grid cell, where the subgrid snow distribution is modeled using a uniform probability distribution function and a spatial snow variability parameter fvar (Saloranta, 2016). Negative melt rates are set to zero.

Refreezing of meltwater within the snowpack can occur in the model when MeDD = 0 and Ta < 0°C. The model algorithm for refreezing of liquid water in the snow pack (Saloranta et al., 2016) is based on the “Stefan's law” model, originally developed for sea ice freezing (e.g., Leppäranta, 1993). In this approach, refreezing of liquid water is modeled in terms of a “refreezing front” which proceeds downwards from the top of the snow pack, effectively taking into account the fact that liquid water in the top layer refreezes much more easily than liquid water deeper in the snow pack, due to the thermal insulation effect of the snow. The temperature profile in the snow pack is assumed to be 0°C in wet snow below the refreezing front and linear above that, adjusting instantly to the changing snow surface temperature (approximated here by Ta). Whenever refreezing occurs, the increase in the depth of the refreezing front zrf [m] in the snow pack is formulated as:
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where κs is the thermal conductivity of snow [W m−1 K−1], L is the latent heat of fusion [J kg−1], ρlw is the partial density of the liquid water residing in the snow pack [kg m−3], Δt is the time step [s], and superscripts t and t–1 denote the current and previous time steps, respectively. The empirical parameterization for κs by Yen (1981) is applied, where κs = 2.22362·ρs1.885, and ρs is the snow density expressed in [kg L−1]. The zrf is set to zero whenever liquid water from snow melt or rain enters the snow pack.

In order to simulate the integral effects of gravitational snow transport due to avalanching activity in steep Himalayan terrain, the SnowSlide algorithm Bernhardt and Schulz (2010) is applied. This algorithm was also used by Ragettli et al. (2015) and Stigter et al. (2017) in their modeling studies of the Langtang catchment. The algorithm distributes snow between grid cells whenever the slope angle S > 25° and a maximum snow holding amount SWEmax [mm] is exceeded. An exponential relation between S and SWEmax is applied as proposed by Bernhardt and Schulz (2010), where SWEmax = SS1·exp(SS2·S) (section Model Setup and Parameter Estimation).

Sublimation/evaporation from the snow pack is not implicitly calculated in the seNorge model, as this would preferably require distributed fields of wind speed and relative humidity as input forcing (Stigter et al., 2018). However, sublimation/evaporation from snow cover was recently estimated to be exceptionally high (21% of the annual snowfall) on the Yala glacier at 5,350 m a.s.l. in the Langtang catchment (Stigter et al., 2018). Consequently, a loss term for SWE at each time step due to sublimation/evaporation is included in the model code, and predefined sublimation/evaporation rates are provided as input for the model (section Model Setup and Parameter Estimation).

Model Setup and Parameter Estimation

The seNorge model (v.2) accommodates either 24 or 3-h simulation time steps. Observations of Ta in the Langtang catchment (section Snow and Meteorological Measurement Data) reveal high diurnal variability, where on 44–57% of all days (depending on the station) the minimum and maximum Ta are below and above the freezing point (0°C), respectively. Similarly, on 23–33% of all days, while the mean daily Ta is below the freezing point, the maximum Ta is above it. Consequently, the higher 3-h temporal resolution is selected for our model application as a daily model forcing time step would not be able to capture the frequent diurnal melt-refreeze cycles in the snow pack, as also pointed out by Ragettli et al. (2015).

A latitude-longitude grid with 15 arc s resolution (~450 m) is defined for the current model application for the Langtang catchment. The grid cell elevations are based on the Shuttle Radar Topography Mission (SRTM) digital elevation model (https://www2.jpl.nasa.gov/srtm/). The snow model application is started at July 1, 2016 at the approximate seasonal snow minimum (Immerzeel et al., 2009) assuming initial conditions simulated in a model spin-up run from July 2016 to July 2017. As the simulation period is 2 years, no yearly reset or removal of old snow/firn from the seasonal snow pack store is applied.

The main model parameters are listed in Table 1. Some of the parameter values depend on whether the grid cell is below or above the treeline, which is in our application approximated by the 3,000 m a.s.l. elevation contour. The sensitivity analyses of previous model applications in the Langtang catchment (Immerzeel et al., 2014; Ragettli et al., 2015; Stigter et al., 2017) indicate that the generally most influential model key parameters for simulated streamflow volumes, runoff and SCA are the correction factors and vertical gradients of precipitation and Ta, the threshold temperature Tthr for separating liquid and solid precipitation, as well as parameters related to snow melt algorithm (TM, degree-day factor, fresh snow albedo). In our model application, many of these sensitive parameters, such as the vertical gradients of Ta, the threshold temperature Tthr, and the snow melt parameters TM, b0, and c0, are estimated on the basis of relevant in-situ meteorological and snow observations in Langtang Valley, as described below.



Table 1. The main seNorge snow model parameters with their default values.
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The parameter value of Tthr used in the seNorge model is validated by examining measured Ta during snowfall events at the Ganja La station. Snow events are identified and confirmed using time-lapse camera imagery as well as snow depth and precipitation weighting gauge data (Kirkham et al., submitted).

The sublimation/evaporation rates RSE [mm h−1] from the snow pack will likely have a significant spatial variability in the Langtang catchment due to variability in wind speed and humidity. Due to the lack of such information, we cannot resolve the spatial distribution of RSE in detail in our model application. In order to make a rough estimate of the influence of sublimation/evaporation at the catchment scale, we assume time-variable RSE, which is constant in space. We estimate RSE for the Ganja La station based on the bulk-aerodynamic method, as described in Stigter et al. (2018), and hourly in-situ meteorological data available at this site. We assume that the estimated time series of RSE for the Ganja La station apply for all snow-covered grid cells in the catchment. We apply the surface roughness length for momentum (0.013 m) estimated by Stigter et al. (2018) and truncate the surface temperature to values ≤ 0°C (i.e., implicating presence of snow cover) allowing year-round estimation of RSE at the Ganja La station.

A constant ρs of 0.270 kg L−1 is assumed in the refreezing algorithm (Equation 2), based on field observations of the density of the upper 20 cm portion of the snow pack at its seasonal peak by Kirkham et al. (submitted). The avalanching model parameters SS1 and SS2 (Table 2) are estimated on the basis of the graph in Bernhardt and Schulz (2010; their Figure 2B). The resulting SWEmax for different slope angles is shown in Supplementary Material (Figure S1) and compared to an alternative parameterization by Ragettli et al. (2015).



Table 2. Summary results for the main model run as well as for three alternative model runs, where no sublimation/evaporation is taken into account, and where in addition the SnowSlide avalanching routine was switched off, or where alternative SnowSlide parameter values (SS1, SS2) from Ragettli et al. (2015) were used.
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FIGURE 2. Model input forcing time series for the Lower station (4,200 m a.s.l.) from July 2016 to June 2018. (A) The daily and 3-hourly mean air temperature; (B) the daily mean temperature lapse rate, based on the air temperature difference between the Lower and Ganja La stations; (C) the daily precipitation data based on the Lower (tipping bucket, TB) and Ganja La (SWE-sensor, CS725) stations, respectively. The 4% of missing precipitation data (for which zero precipitation is assumed) is indicated by orange circles.



The snow model melt parameters TM, b0, and c0 are estimated from observation-based snow melt rates (Mobs) in the tSCP at the Ganja La station. A decrease in SWE registered by the CS725 implies that a corresponding amount of water in liquid or solid phase has left the snow pack either at the surface (i.e., evaporated/sublimated or blown away by wind) or through the bottom (i.e., runoff and percolation away from the monitored ground surface area). Thus, Mobs can be estimated from decreases in SWE recorded by the CS725, but this requires correction of the time-series for (1) sublimation/evaporation losses and (2) removal of episodes related to wind-blown snow. In addition, (3) refreezing of melt water in the snow pack must be compensated for when estimating Mobs as the “same” snow has then to be melted multiple times before the melt water finally can leave the snow pack. The additional effects of capillary melt water attachment to and release from the snow grains are not corrected for when estimating Mobs from the CS725 time series, as their net effect is assumed to be minor in a wet melting snow pack. An increase in SWE, normally registered by the CS725 due to snow accumulation (Kirkham et al., submitted), is assumed to imply no snow melting.

As the value-resolution of the CS725 is 1 mm and its time resolution is based on 24-h averages updated every 6 h, the CS725 time series cannot resolve the generally low sublimation rates (< 1 mm d−1) or the 3-h melt rates. Therefore, time series of accumulated Mobs are used in estimation of the model melt parameters, weighing equally the total melt amount and root-mean-squared-difference (RMSD) in the optimization function.

The sublimation time series (RSE) used in estimating Mobs from the CS725 time series at the Ganja La station are the same as applied in the model (see above). The estimation of the refreezing rates RRF [mm h−1] is challenging since no observed time-series of RRF are available from the Ganja La station, or from any other similar site to our knowledge. Field observations of the snow pack at the Ganja La station at the time of maximum SWE (30th of April 2018; Kirkham et al., submitted), however, revealed a basal ice layer making up 22% of the current SWE and suggesting a significant refreezing within the snow pack. We use here model-derived time series of RRF (section Model Description, Equation 2) from a grid point representative of the Ganja La station, showing that 34% of total snow melt is refrozen.

Wind erosion episodes, omitted when estimating Mobs at the Ganja La station, are assumed whenever the observed decrease of SWE is associated with 3-h-average of (hourly) maximum wind speed >8 m s−1 over an erodible snow surface. An erodible, not melt-affected snow surface is assumed whenever the accumulated sum of positive degree-days is < 5 degree-days after the last snow fall. The wind speed threshold is the same as applied by Luijting et al. (2018), based on the empirical study by Li and Pomeroy (1997). This filter omits 22 mm (5%) of the observed decreases in SWE as wind erosion episodes.

Since most of the key model parameters are either set at default values or estimated from relevant observations, the model application is not additionally calibrated in this study against any SCA or snow depth observations. Consequently, the model application has not been fine-tuned specifically to work for the Langtang catchment only.



Meteorological Data for Snow Model Forcing

The meteorological input forcing data required for the seNorge snow model application are Ta and precipitation at each of the 3,084 simulated model grid cells in the Langtang catchment in the period from July 2016 to June 2018. This forcing data is, as described below, based on measurements of Ta and precipitation at the lowest (Lower) and highest (Ganja La) stations with an elevation difference of 760 m.

Air Temperature

The 3-h mean Ta values from the Lower, or if missing, from the Ganja La station are used to construct model input time series (Figure 2). This time series has < 1% of missing values which are estimated by interpolation. The Ta values from these stations are extrapolated to all the model grid cells in the Langtang catchment by using the corresponding grid cell elevations and the measured daily mean vertical gradient of air temperature (i.e., temperature lapse rate; Figure 2) between the Lower and Ganja La stations.

Liquid and Solid Precipitation

The precipitation input forcing data for the snow model (Figure 2) is a combination of 3-h-sum precipitation data from (1) the tipping bucket precipitation gauge at the Lower station and (2) data from the CS725 at the Ganja La station, updated every 6 h (Kirkham et al., submitted). The tipping bucket can adequately measure liquid precipitation only, and therefore its values are only used in the model forcing when the positive degree-day sum has exceeded 10 degree-days since the last recorded negative daily mean Ta, assuming this to ensure a gauge free of any snow and ice. The increases registered by the CS725 are utilized to estimate the solid precipitation (Kirkham et al., submitted) and therefore its values are only used in model forcing when Ta ≤ 0°C.

The precipitation time series from the Lower station tipping bucket gauge are adjusted up by 20% based on a measured difference in accumulated monsoon precipitation between the parallel tipping bucket and weighing gauges mounted on same mast at the Ganja La station (17 and 25% more precipitation in the weighing gauge in monsoon of 2016 and 2017, respectively). As the diameters of the orifices of the two gauges are the same, this difference could be connected to a larger wetting and evaporation loss from the walls of the tipping bucket. Since no wind measurements are available at the Lower station, wind-induced gauge catch-correction, as done by Kirkham et al. (submitted) for the gauge at the Ganja La station, is not feasible here. Fortunately, the wind-induced undercatch for liquid precipitation is generally small as compared to that of solid precipitation (Wolff et al., 2015).

Since the CS725 represents a much larger measurement footprint area (>150 m2) compared to common precipitation gauges (< 0.05 m2) and registers the solid precipitation at the ground level, no precipitation catch-correction factor is required. Kirkham et al. (submitted) compared the accumulated solid precipitation from the CS725 and from a weighing precipitation gauge and concluded that the CS725 captures ~38% more precipitation than the weighting gauge on average, a difference that was largely attributed to wind induced undercatch of the weighting gauge.

The data from the tipping bucket and CS725 complement each other in the model forcing time series: if a precipitation measurement from the tipping bucket is not available, a value from the CS725 is then used. The 760 m elevation difference between the two stations means that the Lower station is normally several degrees warmer than the Ganja La station, which is favorable in reducing the missing value period when switching from the rain- to the snow-based precipitation measurements in the autumn, and vice versa in the spring (Figure 2). The 4% of missing values in the period July 2016 to June 2018 are set to zero (i.e., no precipitation assumed; Figure 2).

The time series of solid precipitation from the CS725 at Ganja La station is first extrapolated to the elevation of the Lower station (4,200 m a.s.l.) by applying the seasonal vertical precipitation gradients of 0.031–0.053% m−1 estimated by Immerzeel et al. (2014) for Langtang Valley. This unified precipitation time series estimated for the Lower station is then extrapolated to all the grid cells in the Langtang catchment by applying a monthly climatological spatial precipitation pattern based on the Multi-Source Weighted-Ensemble Precipitation (MSWEP; Beck et al., 2017a,b; http://www.gloh2o.org) global historic dataset (1979–2016). The MSWEP data is downscaled to the model grid resolution by applying the seasonally varying vertical precipitation gradients estimated by Immerzeel et al. (2014). Figure S2 shows examples of precipitation from MSWEP and the downscaled precipitation distribution patterns.




RESULTS


Station Data Analysis and Estimation of Model Parameters

The mean daily vertical temperature gradient from July 2016 to June 2018 estimated between the Lower and Ganja La stations is −0.0054°C m−1 and the 10 and 90% percentile values are −0.0071 and −0.0032°C m−1, respectively. These values agree well with the previous estimates for Langtang Valley by Immerzeel et al. (2014). Using the four season definitions in Immerzeel et al. (2014), the strongest vertical temperature gradients are in our data detected in pre-monsoon (−0.0065°C m−1) and monsoon (−0.0060°C m−1), while the post-monsoon and winter gradients are somewhat weaker, −0.0042 and −0.0048°C m−1, respectively (Figure 2). In the study by Immerzeel et al. (2014) the strongest gradients in Langtang Valley were recorded in winter and pre-monsoon (−0.0058 and −0.0064°C m−1, respectively).

Since the tipping buckets cannot properly register solid precipitation, no year-round time series of vertical precipitation gradients can be calculated from our station data. However, during the monsoon 2016 and 2017 the measured accumulated precipitation difference between the Lower and Upper stations correspond to vertical gradients of 0.041 and 0.029% m−1, respectively. These gradients agree roughly with the monsoon season vertical precipitation gradient of 0.040% m−1 estimated for Langtang Valley by Immerzeel et al. (2014).

The snowfall event analysis (Figure 3A), using 6-h data-averaging and based on both snow depth and SWE measurements, shows that 95% of the recorded snowfall events occur at Ta < 0.5°C. Accordingly, the Tthr is set to the default value of 0.5°C in the model application.
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FIGURE 3. (A) Frequency distribution of ambient air temperatures at which snowfall occurs at the Ganja La station. The percentage of snow events that occur below the 0.5°C model temperature threshold is stated for 1, 3, 6, 12, and 24-h time windows. (B) Observed SWE and its accumulated (negative values) decrease at the Ganja La station (black lines) as well as the estimated (Mobs; blue line) and simulated (MeDD; red line) accumulated snow melt during the snow-covered period in 2017–2018. The estimated accumulated sublimation/evaporation (orange line) and refreezing of melt water (purple line) are also shown. The gray dashed line denotes the lower limit of 15 mm SWE used in definition of the snow-covered period (tSCP).



The mean of estimated daily RSE at the Ganja La station in the tSCP is 0.36 mm d−1, while the 5 and 95% percentiles are −0.04 (deposition onto snow surface) and 1.1 mm d−1, respectively. Evaporation comprises 25% of the RSE. The whole time series of RSE for the model simulation period (3-h values) is shown in Figure S3.

The time series of CS725 shows that in 27% of the days in the tSCP, SWE decreases ≥3 mm d−1 are recorded. Of these events the median and 95% percentile decreases are 5 and 12 mm d−1, respectively, showing rather moderate daily decreases in SWE at the Ganja La station at an elevation around 5,000 m a.s.l. The total observed accumulated decrease of SWE in the tSCP at the Ganja La station is 403 mm. The total accumulated RSE in the same period is 70 mm, and the model-based estimate of refreezing indicates that ~34% of the total surface melt is refrozen within the snow pack at this site. Correcting the observed accumulated decrease of SWE for sublimation/evaporation (subtraction) and refreezing (addition) gives a net accumulated Mobs of 513 mm in the tSCP (Figure 3B). The estimated sublimation/evaporation is thus 17% of the observed accumulated decrease of SWE and 14% of the estimated Mobs at the Ganja La station.

The 5, 50, and 95% percentile values of the snow melt model forcing variables (3-h means; Equation 1) at the Ganja La station in the tSCP were −12.6, −4.8, +0.8°C for Ta, 0, 37, 244 Wm−2 for SWnet and 0.72, 0.78, 0.80 for αs. Moreover, the observed Ta and calculated SWin are correlated somewhat, the correlation coefficient being r = 0.17 in the whole measurement period and r = 0.41 in the tSCP (r = 0.45 if SWnet is used instead of SWin). The calculated SWin is strongly correlated with the observed SWin (r = 0.81 in the whole period and r = 0.89 in the tSCP), and even more with the observed incoming total radiation (short- and longwave radiation; r = 0.86 in the whole period and r = 0.92 in the tSCP), as the decrease in SWin due to clouds is partly compensated by increased atmospheric emissivity and thus increased incoming longwave radiation.

The 3-h values of the model melt parameters, optimized against the time series of accumulated Mobs (Figure 3B) are TM = −3°C, b0 = 0.33 mm (3 h)−1 °C−1 and c0 = 0.0086 mm (3 h)−1 (W m−2)−1. The time series of simulated accumulated MeDD matches well that of the observed Mobs (Figure 3B). The estimated b0 and c0 values for treeless terrain are assumed to apply also for the occasional snow cover in the lower-lying grid cells located below the treeline elevation of 3,000 m a.s.l.

When applying the optimized melt parameter values, the total amount of accumulated MeDD in the tSCP sums up to 514 mm (Figure 3B). If replacing the flat ground assumption at the Ganja La station by south and north facing slopes of 30° steepness, similar accumulated MeDD values would be 7% higher and 33% lower, respectively, exemplifying the varying MeDD along different terrain exposures to solar radiation in the Langtang catchment.



Spatiotemporal Variation of the SLE Derived From MODIS SCA-Images

The seasonal variation of the median SLE over the Langtang catchment (50 × 50 km box centered at Kyanjing village), as derived from MODIS 8-day maximum SCA-images, ranges from 3,075 to 5,341 m a.s.l., being lowest in February (Figure 4A) and rising gradually toward the monsoon season (July). A substantial variability of SLE occurs during the winter months (January to March). The low SLE outliers in Figure 4A in June-September are likely due to misclassification of clouds as snow (see e.g., Parajka and Blöschl, 2006).
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FIGURE 4. (A) Box-and-whiskers plot of the monthly distribution of observation-based SLE in 2001–2017 in a 50 × 50 km box over the Langtang catchment. The boxes and black line denote the 25 and 75% percentiles and the median, respectively. The whiskers denote the lowest and highest data point still within 1.5 times the interquartile range below and above the box. Data points outside the whiskers are denoted by circles. (B) Correlation and (C) bias of observation-based SLE time series between the 50 × 50 km box over the Langtang catchment (denoted by “L”) and 30 other similar rectangular boxes over the Nepal Himalayan region. Positive bias values mean a lower SLE than in the Langtang box. The letters indicate neighboring boxes toward the Tibetan Plateau (T), toward west (W1, W2) and toward east (E1, E2) of the Langtang box (L). All the SLE values are derived from MODIS satellite images (8-day maximum SCA).



Figures 4B,C show the spatial variability of correlation and bias for the observed SLE time series (monsoon season June-September excluded) between the Langtang box and other mountain areas of Nepal. No model results are thus used in this purely observation-based comparison. The correlation remains relatively high and bias low in many of the neighboring boxes to Langtang. For example, the neighboring boxes toward west and east (denoted by W1–W2, E1–E2 in Figures 4B,C) have correlation and bias values ranging from 0.80 to 0.92 and from −379 to +293 m, respectively, while the box just east of E1 toward the Tibetan Plateau (denoted by T in Figures 4B,C) has lower correlation and higher bias, 0.48 and −1,154 m, respectively. Regionally, the correlation gets weaker and the bias increases especially toward the central and far-western areas of Nepal. The most negative biases (higher SLE) are seen in the boxes located toward the drier Tibetan Plateau north of Nepal, while the most positive biases (lower SLE) are seen in the far western areas of Nepal (Figure 4C). The median of SLE correlation values for all boxes is 0.7 and the median bias close to zero, indicating that the Langtang box represents average SLE conditions in the Nepal Himalayas.



Model Simulation Results

The model results for snow depth, SLE and SCA in the simulation period July 2016–June 2018 are plotted together with observations in Figures 5, 6. An example illustrating a simulated SWE map for the Langtang catchment is shown in Figure 5A. The simulated snow depth at a grid cell between the Lower and Middle as well as between the Upper and Ganja La stations show generally a good match with the observed snow depth time series at these stations (Figure 5B). This figure also reveals some significant differences between the observed snow depths at the Upper and Ganja La stations, only 74 m apart in vertical and 2 km in horizontal distance, exemplifying the small-scale variability in point-based snow depth measurements (Lehning et al., 2008; Clark et al., 2011).
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FIGURE 5. (A) Example of a simulated SWE map (log10-transformed SWE-values) for the Langtang catchment in October 30, 2017. The observed snow depth from July 2016 to June 2018 (B) at the Upper and Ganja La stations and (C) at Lower and Middle stations. The simulated snow depth in a grid cell between the station-pairs is shown by black lines.
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FIGURE 6. Time series of observed and simulated (A) snow line elevation (SLE) and (B) fraction of snow-covered area (SCA) in the Langtang catchment. Observations are based on MODIS 8-day maximum values (light blue circles), and the omitted dubious monsoon data in June-September is indicated by gray circles. The locally observed SLE on the north mountain face seen by the time-lapse camera (CAM; Figure 1) is shown in (A) by pink circles and the detectable SLE value range 4,100–5,200 m a.s.l. by horizontal pink dashed lines. Both daily (at 06:00 am, purple line) and 8-day-max (black circles) values of the model-simulated SCA and SLE are shown.



While the comparison to the snow depth measurements at the four stations in Figure 5B gives a useful confirmation of the model performance at two individual sites close to the origin of the model forcing data, the comparison to the observed average SLE and SCA in the Langtang catchment derived from MODIS satellite images provides a more comprehensive and catchment-wide evaluation of the model performance, despite of the inherent uncertainties in the satellite-based SCA estimates too (mostly due to misclassification of clouds as snow). This comparison (Figure 6) shows a reasonable overall model fit with the observations (8-day-maximum SCA). The mean model bias (simulated minus observed) for SCA and SLE is −7 percentage points and 110 m, respectively. The RMSD variability measure for model performance is 16 percentage points for SCA and 670 m for SLE. The manually derived SLE from the ground-based time-lapse camera (subjective estimates; the detectable value range is 4,100–5,200 m a.s.l.), viewing the mountain face where the four stations are located (Figure 1; Movie S1), agrees generally well with the MODIS-based SLE time series outside the monsoon season (Figure 6). However, during the monsoon season, the time-lapse camera images indicate generally much higher SLE than the MODIS-based estimates, justifying the omission of the monsoon season MODIS images from our analysis (section MODIS Snow-Covered Area).

The most relevant model results for any hydropower or water availability application would likely be the model-simulated accumulated water sources and stores, averaged over the Langtang catchment area (Figure 7). The all-year water sources from liquid precipitation Pliq and from snow melt Qm are 1,046 and 426 mm yr−1, respectively. However, if only considering the drier 8-months long non-monsoon period (October-May), Qm becomes larger than Pliq (225 vs. 169 mm yr−1). Most of the snow melt water comes from rather recently settled snow, and only about 30% of the snow melt water originates from snow older than 30 days (Figure 7A). The fraction of refrozen snow melt water is 36 and 48% during the all-year and the drier non-monsoon periods, respectively. The estimated accumulated sublimation/evaporation from the snow cover is lower in the all-year than in the non-monsoon period (57 vs. 69 mm yr−1) due to deposition of water vapor onto snow cover during the humid monsoon.
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FIGURE 7. (A) Simulated accumulated snow-related water sources, stores and losses [mm, mean over the Langtang catchment] from July 2016 to June 2018. (B) The cumulative area-fraction vs. elevation distribution in the Langtang catchment. (C,D) As in (A) but now based on a “snapshot” of the accumulated values at the end of May 2018 and shown in units [mm yr−1] (catchment average) for each 500 m elevation band for the all-year (left) and drier non-monsoon periods (October-May; right panel; note the different scale on x-axis). SWE is the snow store, and Pliq and Qm the rainfall and snow melt water sources, respectively. Qm_10d and Qm_30d are the snow melt water sources derived from >10 and >30 days old snow, respectively. The thin lines (melt, refreeze, sublim./evap.) denote the surface snow melting, refreezing of liquid water within the snow pack, and sublimation/evaporation from the snow pack, respectively. The 4,200–4,962 m a.s.l. elevation interval monitored by the four stations is indicated by the two horizontal gray lines in (C,D).



Figure 7C shows the distribution of the accumulated water sources and stores at different elevation bands (500 m elevation intervals; see the cumulative area-fraction vs. elevation distribution in Figure 7B) at the end of the 2-year simulation period. When considering the all-year values, Pliq clearly dominates below ~5,000 m a.s.l. having the largest contribution from the 4,500–5,000 m a.s.l. elevation band. Above 5,000 m a.s.l. the storage of water in form of SWE increases and Qm is slightly larger than Pliq. Above 6,000 m a.s.l. the water sources and stores (averaged over the Langtang catchment) diminish rapidly due to the small areal contribution of these highest elevations to the total catchment area (Figure 7B). During the drier non-monsoon season, when Pliq is much reduced, Qm is larger than Pliq above 4,000 m a.s.l. having a maximum contribution from the 4,500–5,000 m a.s.l. elevation band. The refreeze to melt ratio generally increases with elevation, and above ~6,000 m a.s.l. all the snow melt water is eventually refrozen back to ice in the model simulations (Figure 7C). The sublimation/evaporation has a maximum contribution from the 5,000–6,000 m a.s.l. elevation band.

Due to uncertainties in estimating the spatial distribution of sublimation/evaporation and the gravitational snow transport (avalanching) parameterization in the model, three alternative model simulations were run: (1) without sublimation/evaporation; (2) without the SnowSlide avalanching routine activated; (3) with alternative SnowSlide parameter values (SS1, SS2) from Ragettli et al. (2015). The results (Table 2) show that in the drier non-monsoon season, the exclusion of sublimation/evaporation leads to only a slight 6% increase in catchment-averaged Qm. Moreover, while the SWE distribution with elevation is sensitive to the gravitational snow transport model, the magnitude of Qm, do not change significantly in these alternative runs either.




DISCUSSION

When searching for suitable models to be used in e.g., water management-related issues, there are many application-specific considerations to make (e.g., Saloranta et al., 2003). Basically, there is no standard universally “best” model, but whether a model is appropriate or not depends on the purpose it is used for. The setup for snow mapping application for remote high-mountain areas, described in this paper, features several elements which should promote and lower the threshold of model use in practical applications. These features include: near real-time data delivery, almost maintenance-free measurement station setup (minimum of two temperature sensors, tipping bucket and CS725), simplified modeling approach, precipitation distribution estimated from easily available climatology. Such “live” estimation of the seasonal snow cover, rainfall and snowmelt rates allows us to provide effectively up-to-date information for predicting hydropower production potential and possible flood risk, for identifying areas of avalanche risk and for forecasting seasonal meltwater supply patterns to people in high-mountain regions, where all of these things are generally poorly known.

The spatial SLE analysis using MODIS satellite images gives an indication of the large-scale validity and transferability of the SLE results obtained for Langtang catchment to other catchments in the region, from which no ground-based observations exist. The large scale east-west and north-south gradients in SLE in Figure 4 (lower SLE toward west, higher SLE toward north) correspond well to previously detected gradients of snow cover persistence, which can be associated with the large-scale winter precipitation gradients in the Himalayas (Immerzeel et al., 2009). As many of the high-mountain regions in central and eastern Nepal (east of ~83°E) show high correlation (>0.8) with the estimated SLE in the Langtang catchment, the results from Langtang may provide a reasonable rough approximation of the snow conditions for these areas too.

The specific limitations of a model depend, as pointed out above, on the purpose it is used for. However, one common limitation and need for future development in snow models is related to the uncertainty of input data. Reliable meteorological forcing data is a crucial but often undervalued element in hydrological modeling (e.g., Magnusson et al., 2015), and especially the uncertainties in estimation of precipitation directly affect the accuracy of the estimation of snow accumulation. The main uncertainty sources in estimating precipitation are often the measurement gauge undercatch issue and spatial variability. The passive gamma-radiation SWE-sensor (CS725) has been a central instrument in our monitoring setup, and has contributed to reducing the potentially substantial gauge undercatch uncertainties for solid precipitation, commonly encountered with traditional precipitation gauges for which additional in-situ wind measurements are required for proper catch correction (Mekonnen et al., 2015; Wolff et al., 2015) (Kirkham et al., submitted). The use of CS725 in combination with a tipping bucket precipitation gauge at lower elevation has provided us year-round time series of precipitation.

The spatial variability of precipitation is a difficult problem to address, especially in mountainous terrain as the few measurement stations will not be able to capture all the smaller scale variability in precipitation (Collier and Immerzeel, 2015). A combination of information from high-resolution numerical weather prediction models, observations (gauge undercatch-corrected by e.g., simulated wind data) and even precipitation-radar data would likely provide significantly improved precipitation fields for model input. However, such a data-assimilation system is not (yet) feasible in our case, as most of such near real-time data needed for this are lacking in the Himalayas.

Applying the spatial precipitation pattern in the Langtang catchment from the MSWEP climatology provides an easily available way to spatiotemporally extrapolate precipitation measurements from a station-site to the catchment, although its spatial resolution (10 × 11 km) cannot match e.g., the local high-resolution meteorological model (Collier and Immerzeel, 2015) applied in precipitation extrapolation by Stigter et al. (2017). The precipitation distribution patterns adequately represent the observed tendency of increased precipitation at the lower western parts of the Langtang catchment (Immerzeel et al., 2014; Collier and Immerzeel, 2015), which would not be captured at all by using vertical precipitation gradients alone (see Figure S2). It is worth noting that we did not apply any additional calibrated precipitation correction factors in the current study. Such factors are commonly applied in glacio-hydrological models to adjust the model input precipitation in order to achieve a better model fit with observations.

The small-scale variability in precipitation, not captured by the precipitation distribution patterns, is demonstrated for example by the differences recorded by the Upper and Ganja La stations, which are located approximately at the same elevation on either side of a mountain pass. Despite being only 2 km south of the Upper station, the Ganja La station measures 41 and 47% more accumulated liquid precipitation during the monsoon in 2016 and 2017, respectively. This local difference may be specific and associated to the southerly prevailing wind direction typical during the monsoon season (Kirkham et al., submitted). However, the Upper station is located on a slope downhill of a ridge, which is probably not an optimal location for representative precipitation observations.

At the hillslope scale (1–100 m) the snow is inhomogeneously distributed due to preferential deposition of precipitation and wind redistribution effects (Lehning et al., 2008; Clark et al., 2011). This smaller scale snow variability is taken into account by the subgrid (< 450 m) snow distribution model (section Model Description). On the catchment scale (100–10,000 m), the effects of wind redistribution and preferential deposition are commonly assumed to be less significant, and variability in snow distribution is now dictated more by the local weather conditions, i.e., by the variability in precipitation and its phase (liquid/solid) as well as in the available melt energy (Clark et al., 2011). The exact scale in the Langtang catchment, where the role of wind redistributing snow becomes insignificant is, however, difficult to measure and verify in practice.

Forcing the snow model with Ta and precipitation data from our two-station approach provided simulation results of snow depth, SLE and SCA which matched rather well with the satellite and ground-based snow observations. The main focus of this study has been seasonal snow cover. If full water balance calculations in the catchment would be required, obviously also water source from glacier melt and loss to evapotranspiration, as well as ground water dynamics should be simulated or estimated. Based on Figure 6B, the elevation of the Ganja La station at about 5,000 m a.s.l. seems to be representative of the simulated area-averaged peak contributions of snow melt and rain related water sources, as well as refreezing and sublimation in the catchment. The uncertainties connected to the unmeasured vertical precipitation gradient values at the highest elevation range above 5,000–6,000 m a.s.l. fortunately seem not to be very significant for the catchment-averaged water source estimates (Figure 6), as < 10% of the catchment area is above 6,000 m a.s.l. Above 6,000 m a.s.l. the snow is essentially permanent in high-mountain Asia (Hammond et al., 2018).

Significant uncertainties are related to the spatial distribution of the sublimation/evaporation rates and to the estimation of the avalanching parameters. However, the model experiment results in Table 2 fortunately show only a minor effect for the simulated snow melt water contribution from the Langtang catchment, when the avalanching and sublimation/evaporation models were omitted. While for the refreezing algorithm the only whole-domain assumption is a constant snow density, for the sublimation/evaporation rate a spatially constant (but time-variable) value is assumed in our model application. Sublimation/evaporation rates may be significantly elevated locally near ridges and in blowing snow (Stigter et al., 2018). However, we believe our estimation method provides roughly representative values to assess the catchment-averaged significance of sublimation/evaporation. Sublimation/evaporation is estimated to account for 17% of the detected decreases in SWE at the Ganja La station, which is comparable to the value of 21% of annual snowfall estimated for the Yala glacier on the northern ridge of Langtang Valley (Stigter et al., 2018). As pointed out above, the simulated catchment average sublimation/evaporation loss from the snow pack (69 mm yr−1) in the drier non-monsoon season has only a minor effect on the melt water runoff Qm (13 mm yr−1 reduction in Table 2). The reason for this is that the sublimation peak contribution is on a higher elevation range than the peak contribution of Qm (Figure 7C). In other words, sublimation/evaporation does not deplete the snow cover so much there where most of the melt occurs. As a majority of Qm originates from rather fresh, less than a month-old snow, sublimation/evaporation does not have that much time to “act” on the relatively ephemeral snow below ~5,000 m a.s.l. The role of sublimation can naturally be different in another catchment with significantly different climate. In such cases at least representative wind speed and humidity data would be required for estimation of sublimation rates in a new seNorge model application.

The SnowSlide avalanching model algorithm is much simplified, and in addition to the uncertain parameterization of SWEmax (Figure S1), many of the key processes affecting the triggering of avalanches, such as the past and present weather conditions, are not taken into account in the model. Better automatic detection of avalanche activity from radar satellites (Eckerstorfer et al., 2017) may in the future help to improve such avalanching models for hydrological purposes.

Many of the seNorge snow model key parameters, that would otherwise had to be estimated from literature or calibrated, were estimated from the monitoring data available at our stations. While Kirkham et al. (submitted) used SWE-increases from the CS725 to estimate solid precipitation and snow accumulation, the recorded SWE-decreases from the same instrument were in our study used to estimate snow melt and ablation rates. Estimation of the melt parameters (Eq. 1) locally from dedicated snow measurements should increase the performance of such simplified melt models, as indicated in the snow model intercomparison study by Skaugen et al. (2018). Our b0 and c0 values [converted to hourly values: b0 = 0.11 mm h−1 °C−1 and c0 = 0.0029 mm h−1 (Wm−2)−1] were only roughly half of the calibrated values in Ragettli et al. (2015). This discrepancy could be simply connected to differences in model formulation, such as the use of a different albedo scheme and a predefined, relatively high TM of +1°C applied by Ragettli et al. (2015). In our case the optimized values of b0 and c0 as well as the goodness-of-fit value were increasingly sensitive to TM when its value is set above −3°C (Figure S4). Thus, care should be taken to ensure a good coherence between the applied TM, b0, and c0 values in extended degree-day melt model applications.

Sublimation/evaporation and refreezing estimates are implicitly included in many sophisticated multi-layer land surface models, such as in the ISBA (Interaction Sol-Biosphère-Atmosphère) model study by Eeckman et al. (2017) in the eastern Nepal region. Our model study is, however, as far as we know, the first study in the Himalayan region to include a catchment-wide process-based parameterization of melt water refreezing in the snow pack and locally verified estimates (Stigter et al., 2018) of mass losses from snowpack to atmosphere by sublimation/evaporation in a simpler single-layer snow model. Refreezing seems to be especially significant in the Langtang catchment as 48% of the melt water is simulated to refreeze in the catchment in the drier non-monsoon period. Based on measurements and modeling on a Canadian temperate glacier with much higher snow accumulation (1,700 mm yr−1) and melt (3,000 mm yr−1) rates compared to the Ganja La station, Samimi and Marshall (2017) estimated that on the order of 10% of total melt water is “recycled” melting from refrozen melt water. They anticipated the importance of refreezing to be even much more significant in colder alpine environments. The revised refreezing algorithm (Equation 2) provided an improved parameterization to estimate refreezing in the snow pack, enabling us to omit the use of an uncertain degree-day parameter for refreezing, used previously e.g., by Konz et al. (2007), Saloranta et al. (2016) and Stigter et al. (2017). In fact, if values for this parameter would be estimated from the revised refreezing algorithm results for the Ganja La station (Equation 2; dividing simulated 3-h refreezing rate by the corresponding Ta), the 5 and 95% percentile range of the degree-day parameter for refreezing would span nearly over two orders of magnitude (0.003–0.159 mm °C−1 h−1), clearly demonstrating that this model parameter is rather ill-defined and that the thermal insulation effect of the snow should be taken into account when estimating the refreezing. A sub-daily model time step (3 h in our case) is essential to properly capture the diurnal melt-refreeze cycles.



CONCLUSIONS

We have described a setup for simplified operational monitoring and modeling of seasonal rainfall and snow distribution for remote high-mountain areas, which can deliver data for snow and water availability mapping all year round. The setup utilizes (1) robust and almost maintenance-free in-situ instrumentation with satellite transmission, (2) a freely available numerical snow model, and (3) estimation of model key parameters from local meteorological and snow observations as well as from freely available climatological data. These features should promote and lower the threshold of model use in practical applications.

The snow model, not specifically calibrated in our application, produces results which are in reasonable agreement with observed snow depth, SCA and SLE time-series in the Langtang catchment. The model results show slightly less snow than indicated by the satellite-based MODIS SCA-images (bias of −7 percentage points in SCA and 110 m in SLE). The RMSD variability measure between the simulated and observed (MODIS) snow cover is 16 percentage points for SCA and 670 m for SLE. As many of the high-mountain regions in central and eastern Nepal show high correlation (>0.8) with the estimated SLE in the Langtang catchment, the results may provide a first-order approximation of the snow conditions for these areas too.

The estimation of melt parameters and solid precipitation from passive gamma-radiation based SWE-sensor data, as well as the improved process-based parameterization and locally verified estimation of the significant processes of refreezing within, and sublimation/evaporation from the snow pack, are features which to our knowledge have not been previously applied in glacio-hydrological catchment models in the Himalayan region. The simulation results suggest that most of the snow melt water comes from rather recently settled snow, and only about 30% of the snow melt water originates from snow older than 30 days. The ratio of snow melt water refreezing to total snow melt is 36 and 48% during the all-year and the drier non-monsoon periods, respectively. A sub-daily model time step (3 h in our case) is essential to properly capture the diurnal melt-refreeze cycles. The estimated accumulated sublimation/evaporation loss from the snow cover is lower in the all-year than in the non-monsoon period (57 vs. 69 mm yr−1).

Our simplified snow mapping approach should be able to provide useful and up-to-date information on snow cover, snow depth and water equivalent, as well as on weather conditions fit for the purposes and needs of e.g., hydropower companies, local authorities and other practical applications in remote high-mountain areas.
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This study aims at developing and applying a spatially-distributed coupled glacier mass balance and ice-flow model to attribute the response of glaciers to natural and anthropogenic climate change. We focus on two glaciers with contrasting surface characteristics: a debris-covered glacier (Langtang Glacier in Nepal) and a clean-ice glacier (Hintereisferner in Austria). The model is applied from the end of the Little Ice Age (1850) to the present-day (2016) and is forced with four bias-corrected General Circulation Models (GCMs) from the historical experiment of the CMIP5 archive. The selected GCMs represent region-specific warm-dry, warm-wet, cold-dry, and cold-wet climate conditions. To isolate the effects of anthropogenic climate change on glacier mass balance and flow runs from these GCMs with and without further anthropogenic forcing after 1970 until 2016 are selected. The outcomes indicate that both glaciers experience the largest reduction in area and volume under warm climate conditions, whereas area and volume reductions are smaller under cold climate conditions. Simultaneously with changes in glacier area and volume, surface velocities generally decrease over time. Without further anthropogenic forcing the results reveal a 3% (9%) smaller decline in glacier area (volume) for the debris-covered glacier and a 18% (39%) smaller decline in glacier area (volume) for the clean-ice glacier. The difference in the magnitude between the two glaciers can mainly be attributed to differences in the response time of the glaciers, where the clean-ice glacier shows a much faster response to climate change. We conclude that the response of the two glaciers can mainly be attributed to anthropogenic climate change and that the impact is larger on the clean-ice glacier. The outcomes show that the model performs well under different climate conditions and that the developed approach can be used for regional-scale glacio-hydrological modeling.
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INTRODUCTION

Ongoing global warming has resulted in the retreat of glaciers over the last decades with important consequences for the society and the environment. Glacier mass loss has contributed to global sea-level rise (Radić and Hock, 2011; Gregory et al., 2013) and seasonal changes in river discharge (Kaser et al., 2010; Immerzeel et al., 2012; Lutz et al., 2014; Beniston et al., 2018; Hanzer et al., 2018; Huss and Hock, 2018). In addition, glacier retreat will most likely lead to natural hazards as a result of the destabilization of mountain slopes and hanging glaciers or the development of moraine-dammed lakes (Frey et al., 2010; Faillettaz et al., 2015; Haeberli et al., 2017).

Global glacier retreat started at the end of the Little Ice Age (LIA), which terminated globally around 1850 (Leclercq et al., 2011) and coincided with the Industrial Revolution that led to an increase in the emission of greenhouse gasses. Since the glacier area/length response to climate change has a lag of several decades (Johannesson et al., 1989; Adhikari et al., 2011; Banerjee and Shankar, 2013; Banerjee, 2017) it is difficult to unambiguously attribute glacier retreat to anthropogenic causes (Marzeion et al., 2014). In the nineteenth century, the anthropogenic influence on the climate system was limited, which therefore could not be the main cause of glacier mass losses (Myhre et al., 2013). Over the twentieth century, however, the anthropogenic influence increased rapidly as a result of the ongoing industrialization, in particular after the 1970s (Myhre et al., 2013). These increases have resulted in the anthropogenic climate signal becoming a prevailing explanation for the observed decrease in glacier mass since the 1980s (Marzeion et al., 2014; Hirabayashi et al., 2016).

Until now, the anthropogenic and natural influences on historical glacier changes have mainly been investigated in studies with a focus on changes in glacier mass balance (Marzeion et al., 2014; Hirabayashi et al., 2016). Several studies have, however, found a relation between glacier dynamics and thinning rates on glaciers (Huss et al., 2007; Berthier and Vincent, 2012; Banerjee, 2017; Dehecq et al., 2019). For example, Berthier and Vincent (2012) found that accelerated thinning rates during the last decades on the Mer de Glace Glacier, a partially debris-covered glacier in France, could partly be attributed to reduced ice fluxes. A more recently published study on glacier slowdown in High Mountain Asia (Dehecq et al., 2019) revealed that glaciers in most parts of the region show a sustained slowdown that is associated with ice thinning. Also, the authors found stable or increased ice flow in the regions around the Tibetan Plateau and the Tarim river basin where stable or positive mass balances are observed. Banerjee (2017) found that thinning rates on both debris-covered and clean-ice glaciers were dependent on the relation between mass balance changes and ice flux changes. Clean-ice glaciers show a different response to climate change than debris-covered glaciers because the supraglacial debris generally insulates the ice (Østrem, 1959; Nicholson and Benn, 2006; Reid and Brock, 2010; Jouvet et al., 2011; Rowan et al., 2015). On clean-ice glaciers, larger thinning rates are caused by a combination of reduced ice flow and a negative surface mass balance, which correspond to receding termini. On debris-covered glaciers, on the other hand, the negative mass balance is rather small due to insulation of the surface, which in combination with a reduced ice flow result in surface lowering, but without an considerable retreat of the glacier terminus (Naito et al., 2000; Hambrey et al., 2009; Banerjee and Shankar, 2013; Rowan et al., 2015; Banerjee, 2017). To understand the response of both types of glaciers to climate change, it is therefore necessary to make a proper coupling between mass balance models and ice flow models that have a sufficient representation of glacier dynamics (Huss et al., 2007; Adhikari and Marshall, 2013; Clarke et al., 2015; Shea et al., 2015).

Existing ice flow models vary between simple flowline models (Greuell, 1992; Van De Wal and Oerlemans, 1995; Span et al., 1997; Oerlemans et al., 1998; Huss et al., 2007; Adhikari and Huybrechts, 2009; Aðalgeirsdóttir et al., 2011; Banerjee and Shankar, 2013) and spatially-distributed three-dimensional higher-order or Stokes models (Leysinger Vieli and Gudmundsson, 2004; Jouvet et al., 2011; Seroussi et al., 2011; Adhikari and Marshall, 2012a, 2013; Jouvet and Funk, 2014; Zekollari et al., 2014). A simple description of glacial ice deformation is provided by the so-called Shallow Ice Approximation (SIA) of Stokes equations (Hutter, 1983), where ice flow can be obtained from a local gradient in glacier surface elevation and ice thickness (Egholm et al., 2011). This approach has the main advantage that the computational cost and data demand are low in comparison with the more complex higher-order or Stokes models, and is therefore useful in large-scale studies of glacier dynamics in data-scarce regions, such as High Mountain Asia. In addition, the approach enables the calibration and validation against observed surface velocities (e.g., those derived from satellite-based imagery) more readily. For large-scale applications, glacier flow is also represented using a simpler approach that assumes basal sliding, such as the one described by Weertman's sliding law (Weertman, 1957), to be the main driver of glacial movement. Many glaciers, however, are driven by a combination of internal deformation and basal sliding, which therefore hampers the calibration and validation of modeling approaches that solely rely on basal sliding laws (Nye, 1965; Cuffey and Paterson, 2010; Adhikari and Marshall, 2013). SIA models, by design, assume the dominance of vertical shear stress at the ice/bed interface and ignore higher-order stresses that describe lateral and longitudinal drags, which might limit its use on fast-flowing or steep/narrow valley glaciers (Le Meur et al., 2004; Adhikari and Marshall, 2013). To overcome this drawback, higher-order perturbative corrections to shallow ice models may be considered (Egholm et al., 2011; Rowan et al., 2015). However, the implementation of such corrections increases numerical complexity. Therefore, to account for the higher-order physics, correction factors are used that can sustain the simplicity of SIA models and yet obtain more realistic results at the same time (Nye, 1965; Adhikari and Marshall, 2011, 2012b).

Many models based on the SIA have been applied as flowline models (Adhikari and Huybrechts, 2009; Banerjee and Shankar, 2013). Although these types of models are easy to apply, they still require a priori knowledge of the number and orientation of flowlines on glaciers. This can be a disadvantage when applied over longer timescales (i.e., due to the varying orientation of flowlines over time) or at a larger spatial scale (i.e., when a larger number of flowlines is required to represent realistic dynamics of glaciers), which eventually reduces the compatibility of flowline models with gridded regional-scale hydrological models. In this context, spatially-distributed SIA models can be useful. As these models simulate the two-dimensional flow of ice, a priori information about flowline geometry is not required. These spatially-distributed SIA models are useful in simulating the evolution of the boundary and hypsometry of glaciers that naturally allows the feedbacks between glacier dynamics and mass balance forcing to be taken into account. Spatially-distributed SIA models should be invaluable for the accurate and efficient representation of glaciers in gridded regional-scale hydrological models (e.g., Immerzeel et al., 2012, 2013; Shea et al., 2015).

The main aim of this study is to develop and apply a spatially-distributed coupled glacier mass balance and dynamical ice-flow model toward understanding the response of glaciers to natural and anthropogenic climate change. We focus on two glaciers with contrasting surface characteristics: the Hintereisferner, which is a clean-ice glacier located in the European Alps, and the Langtang Glacier, which is a debris-covered glacier located in the Central Himalayas. We apply the model from the end of the LIA (1850) to the present-day (2016) and force the model with the outputs of four bias-corrected General Circulation Models (GCMs) that were pre-selected from the historical experiment of the Coupled Model Intercomparison Project Phase 5 (CMIP5). For the selected GCMs we selected runs with and without further anthropogenic forcing from 1971 onwards to separately assess the effects of anthropogenic climate change on glacier mass balance and flow. The novelty of this study in comparison with previous works in the two regions is its attribution of the response of two contrasting glaciers (i.e., in terms of surface characteristics) to natural and anthropogenic historical climate change using a coupled glacier mass balance and dynamical ice-flow model.



STUDY AREA

We focus on two glaciers: the Langtang Glacier (Central Himalayas, Nepal), and the Hintereisferner (Central Eastern Alps, Austria) (Figure 1).
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FIGURE 1. The Langtang Glacier (left) and Hintereisferner (right) with the glacier outlines of 1850 (turquoise), the current glacier outlines (red), and the current debris extents (black stripes; Langtang Glacier). The other glaciers (light blue) and the locations of the primary and secondary meteorological stations (green and yellow dots, respectively) in the region are also shown. The numbers 1, 2, and 3 denote the locations of the Hintereisferner, Hochjochferner, and Kesselwandferner, respectively. The numbers I–VIII denote the locations of the Yala base camp (I), Hochjochhospiz (II), Latschbloder (III), Bella Vista (IV), Hintereis (V), Rofenberg (VI), Proviantdepot (VII), and Vernagtbrücke (VIII) stations. Source of the glacier outlines are the Randolph Glacier Inventory v6 (Pfeffer et al., 2014) and the Austrian glacier inventories (Abermann et al., 2009; Fischer et al., 2015). The debris extents are obtained from Kraaijenbrink et al. (2017).



Langtang Glacier (28.296972 °N 85.709775°E) is a debris-covered valley glacier, which is located ~70 km north of Kathmandu. The glacier has a length of ~18 km and covers an area of 46.5 km2 (2006; Ragettli et al., 2016). The elevation ranges from 4370 m a.s.l. at the terminus to 7119 m a.s.l. in the northernmost part of the catchment. The glacier surface slope varies from 4 to 88% with a mean of 32%. About 35% of Langtang Glacier is covered with debris, where most of the debris can be found in the ablation areas below 5200 m. a.s.l. The transition from debris-covered to clean-ice surfaces is very short and the heterogeneous surface of the Langtang Glacier is characterized by scattered ice cliffs and supraglacial ponds throughout all seasons (Ragettli et al., 2016; Steiner et al., in review). The climate in the Langtang Valley is dominated by the Indian monsoon with predominant easterly winds during the monsoon period and westerly winds from October to May (Immerzeel et al., 2012). During the monsoon period, more than 70% of the annual precipitation falls, whereas winters are relatively dry (Immerzeel et al., 2012; Collier and Immerzeel, 2015). In general, precipitation decreases with altitude during the monsoon season, whereas during the winter season precipitation increases with altitude (Collier and Immerzeel, 2015). The mean daily temperature at Kyangjin meteorological station (3930 m a.s.l.; located ~12 km from Langtang Glacier) is 4.0°C, and the mean annual precipitation sum 665 mm (over 1988–2016).

Hintereisferner (46.798814°N 10.770068°E) is a clean-ice valley glacier located in the upper part of the Rofental, Ötztal Alps, Austria. The glacier has a long record of investigations with the first measurements dating from 1894 and is classified as a “reference glacier” by the World Glacier Monitoring Service. This means that glacier changes are mainly driven by climate inputs and are not subject to other major influences, such as heavy debris cover, avalanching, surging, ice calving, or artificial snow (WGMS, 2018). The glacier has a length of approximately 7 km and an area of 7.4 km2 (2006; Charalampidis et al., 2018). The total area of glaciers (including the adjacent Kesselwandferner and Hochjochferner) amounts to 19.5 km2. During the LIA, the length of the Hintereisferner reached up to about 10 km. Further, the Kesselwandferner used to be linked with the Hintereisferner, but has been detached since the 1920s (Kuhn et al., 1985). The elevation ranges from 2238 m a.s.l. at the LIA terminus of the Hintereisferner to 3661 m a.s.l. The glacier surface slope varies from <1 to 78% with a mean of 25%. The climate in the Rofental can be characterized as a dry inner alpine climate with the lowest precipitation sums during winter (~125 mm) and the highest precipitation sums during summer (~265 mm) at the meteorological station in Vent (1,900 m a.s.l.; located ~10 km from the Hintereisferner) (over 1987–2016). The mean annual precipitation sum amounts to 750 mm and the higher annual precipitation sums (>1,500 mm) are mainly measured at the higher altitudes around 3000 m a.s.l. (Strasser et al., 2018). The annual average temperature at the meteorological station in Vent is 3°C (over 1988–2016).



DATA AND METHODS


Historical and Reference Daily Climate Forcing

The glacier mass balance and ice-flow model is forced with climate data for the period 1851–2016. The forcing consists of two datasets: observed climate data derived from local meteorological stations and modeled climate data derived from GCM outputs.

The observed climate data consists of daily precipitation and mean air temperature data extracted from the Vent and Kyangjin stations for a 30-year period (1987–2016) and a 29-year period (1988–2016), respectively. The meteorological data of Vent station were complete, whereas the data of Kyangjin station required some gap filling. About 13% of the data is missing and gaps mainly occur randomly with the majority of the missing values occurring in the periods 1989–1994 and 2012–2016. These gaps were filled with bias-corrected ERA-Interim data (Dee et al., 2011). The temperature data are spatially interpolated by lapsing temperature from the station elevation to the grid cell elevation, using a 30 m DEM and vertical monthly temperature lapse rates. We use the SRTM DEM (Farr et al., 2007) and the EU-DEM (EEA, 2017) for the Langtang Glacier and Hintereisferner, respectively. The monthly temperature lapse rates for the Langtang Glacier are derived from daily mean air temperature data for the period 2013–2014, which are measured at Kyangjin station and Yala base camp station (28.23252°N 85.61208°E; 5090 m a.s.l.). For the Hintereisferner, the monthly temperature lapse rates are derived from daily mean air temperature records for the period 2013–2016, which are measured at the Vent, Latschbloder (46.80118°N 10.80561°E; 2910 m a.s.l.), and Bella Vista (46.78284°N 10.79138°E; 2805 m a.s.l.) stations (Strasser et al., 2018). The derived temperature lapse rates are subsequently corrected by correction factors to account for the long-term uncertainty in the derived lapse rates. To this end, the mean elevation of the 0°C isotherm derived by Heynen et al. (2016) and the long-term mean elevation of the 0°C isotherm (3220 m a.s.l.) derived by Fischer (2010) are used as reference for Langtang Glacier and Hintereisferner, respectively. The corrected averaged annual temperature lapse rates are 0.0064°C m−1 and 0.0073°C m−1 at Langtang Glacier and Hintereisferner, respectively. The corrected lapse rates are 0.001°C m−1 and 0.0015°C m−1 higher than the original rates derived from the meteorological stations. On monthly basis the corrected maximum (minimum) lapse rates are 0.0076 (0.0052)°C m−1 in March-April (July) at Langtang Glacier and 0.0086 (0.0049)°C m−1 in March (December) at Hintereisferner. The monthly lapse rates are subsequently used to distribute the daily mean air temperature data from the Kyangjin and Vent stations over the Langtang Glacier and Hintereisferner areas, respectively.

The precipitation data are spatially distributed using a 30 m DEM, vertical monthly precipitation lapse rates for the Hintereisferner, and normalized monsoon and winter precipitation fields for Langtang Glacier. The monthly precipitation lapse rates are derived from monthly precipitation sums measured at the Vent, Latschbloder, Hochjochhospiz (46.82310°N 10.82616°E; 2360 m a.s.l.), Vernagtbrücke (46.85461°N 10.82979°E; 2600 m a.s.l.), Proviantdepot (46.82951°N 10.82407°E; 2737 m a.s.l.), Rofenberg (46.80847°N 10.79344°E; 2827 m a.s.l.), and Hintereis (46.79727°N 10.76096°E; 2964 m a.s.l.) stations (over the period 1987–2016) (Strasser et al., 2018). The precipitation lapse rates vary between 1.3 and 4.7% km−1, with the highest and lowest lapse rates in the summer and winter seasons, respectively. The monthly precipitation lapse rates are subsequently used to distribute the daily precipitation data from Vent station over the Hintereisferner area. For Langtang Glacier, tabulated gradients of accumulated precipitation reported by Collier and Immerzeel (2015) for the monsoon and winter seasons are used in combination with a 30 m DEM to derive spatial precipitation distributions for Langtang Valley. The monsoon gradients are in general negative above 3000 m a.s.l., whereas during the winter season the situation is reversed, with in general positive gradients (Collier and Immerzeel, 2015). The spatial distributions are normalized and used to distribute precipitation from Kyangjin station over upper Langtang Valley. Normalized winter distributions are used for the winter, pre-monsoon, and post-monsoon seasons, and normalized monsoon distributions are used for the monsoon season.

For the representation of historical climate change, we force the glacier mass balance and flow model with an ensemble of downscaled general circulation models (GCMs) that are realizations from the historical experiment (1851–2005), i.e., forced with combined anthropogenic and natural forcings (e.g., solar and volcanic). For each region of interest, four GCM runs are selected from the CMIP5 multi-model ensemble (Taylor et al., 2012) for the historical experiment. The GCMs runs are selected by using an advanced envelop-based approach (Lutz et al., 2016b), and are selected to represent the full CMIP5 ensemble in terms of simulated ranges in the means of historical air temperature and precipitation, and have sufficient skill in the simulation of the present-day climate over our region of interest. The selected GCM runs and their simulated changes in air temperature and precipitation are listed in Table 1.



Table 1. Selected ensemble of historical GCM runs for the Hintereisferner and Langtang glaciers with simulated basin-averaged changes in mean temperature and precipitation in 1861–1890 relative to 1971–2000.
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The selected models are statistically downscaled using the meteorological data of the Kyangjin and Vent stations by applying a Quantile Mapping methodology that performs well for mountainous terrains (Themeßl et al., 2011). This method is applied by constructing monthly empirical cumulative distribution functions that are calculated for the meteorological data and the historical GCM runs. This encompasses the period 1988–2005 for the Kyangjin station and 1987–2005 for the Vent station. The empirical cumulative distribution functions of the meteorological data and the historical GCM runs are used to calculate correction factors that are subsequently used to bias-correct the historical GCM runs spanning 1851–2005 at a daily time step. The bias-corrected GCM runs are subsequently spatially distributed by using the same temperature and precipitation lapse rates and normalized precipitation fields that are used for the spatial distribution of the meteorological data.

To separately assess the effects of anthropogenic climate change on glacier mass balance and dynamics, we follow two different scenarios: FULL (i.e., combined anthropogenic and natural climate change) and NATURAL (i.e., natural climate change only). The FULL scenario follows climate change simulations according to the outputs of the selected GCMs. To follow the NATURAL scenario, an approach is used that deviates from the CMIP5 approach, which uses climate models that are realizations of the historicalNat experiment, i.e., forced with natural climate forcings only. A different approach is used due to uncertainties that might be introduced by the downscaling of climate change simulations of the historicalNat experiment and by the inconsistencies in the simulated temperature trends that may rise between climate models from the historical experiment and historicalNat experiment. In this study, the NATURAL scenario follows climate change simulations that consist of two parts. The first covers the period 1851–1980 and is identical to the historical GCM runs. The second covers the period 1971–2016 and repeats the historical GCM runs that span the period 1925–1970. By means of this approach we remove the trend in historical climate change simulations after 1970. There is evidence that the anthropogenic climate signal has become a prevailing explanation for the observed decrease in glacier mass since the 1980s (Marzeion et al., 2014; Hirabayashi et al., 2016). Furthermore, the temperature shows stronger increases since the late 1970s and early 1980s (Hartmann et al., 2013; Figure 3). For this reason, we choose to remove the trend in historical climate change simulations after 1970 and to retain the statistics of 1925–1970 in order to cover the second part of the climate change simulations that represent the NATURAL scenario.



Glacier Mass Balance and Ice-Flow Model

We use a spatially-distributed coupled glacier mass balance and ice-flow model to simulate the glacier response under historical climate change. The mass balance model is based on a glacier model developed by Immerzeel et al. (2012) and further refined by Immerzeel et al. (2013) and Shea et al. (2015). The model is set up at a spatial resolution of ~30 × 30 m and runs on a daily time step.

Daily accumulation is assumed to be equal to the total precipitation when the daily air temperature is below a critical threshold temperature. Daily melt (ablation) is simulated by a degree-day approach that distinguishes the effects of aspect and occurs when the daily air temperature is above a critical threshold temperature (Konz and Seibert, 2010; Immerzeel et al., 2012):
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where M (mm d−1) is the amount of melt, T (°C) is the daily air temperature, Tc (°C) is the critical threshold temperature, and DDFM is the modified degree-day factor. The modified degree-day factor is calculated as (Immerzeel et al., 2012):
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where DDF is the degree-day factor (mm°C−1 d−1) and Rexp is a factor that quantifies the aspect (θ) dependence of the degree-day factor. For debris-covered glaciers, an elevation-dependent melt factor, Rdebris, is applied to account for the effect of the debris thickness on melt rates, where the magnitude of melt rates generally decreases with increasing debris thickness. The debris melt factors are derived for 50 m elevation bands by using a relative relation between the mean debris thickness in each elevation band and ablation rates (Østrem, 1959). The debris thickness is estimated by an exponential relation between debris thickness and surface temperature, using surface temperature grids that are derived from the TIR band 10 of the Landsat 8 composite and are corrected for emissivity using the ASTER global emissivity product (Kraaijenbrink et al., 2017). It is assumed that the debris thickness and debris melt factors remain constant over time. The effects of supraglacial ponds and ice-cliffs on melt rates are not considered explicitly.

In addition to precipitation, avalanches also contribute significantly to glacier accumulation in steep mountain terrain (Scherler et al., 2011; Ragettli et al., 2015; Shea et al., 2015; Laha et al., 2017). To simulate avalanching, the gravitational snow transport module SnowSlide (Bernhardt and Schulz, 2010) is used, which assumes snow to be transported downslope when a maximum snow-holding depth and a threshold slope of 25° are exceeded (Bernhardt and Schulz, 2010). The maximum snow-holding depth is deep for flat areas, decreases exponentially with increasing slope angle, and is calculated by an exponential regression function (Bernhardt and Schulz, 2010; Ragettli et al., 2015; Stigter et al., 2017):

[image: image]

where SWEmax (m w.e.) is the maximum snow water equivalent, SS1 (m) and SS2 (-) are calibrated empirical coefficients, and S (°) is the slope angle. We assume that avalanching does not occur on pixels classified as glaciers. Hence, on slopes steeper than the threshold slope for avalanching (i.e., 25°), all snow water equivalent values of more than 0.5 m are identified as glaciers and the avalanching of this material is disabled.

In the original model of Immerzeel et al. (2012) glacier movement is simulated by Weertman's sliding law. This approach assumes that glaciers flow as ice slides over the bedrock. Although this simplistic approach may be reasonable to represent glacier flow in a regional-scale gridded hydrological model, it certainly does not capture the essence of glacier flow: a combination of basal sliding and internal deformation (Cuffey and Paterson, 2010). Here, we model glacier flow based on SIA in which the ice surface velocity is governed by the local ice thickness and surface slopes. Unlike existing flow-line models (Huss et al., 2007; Adhikari and Huybrechts, 2009; Banerjee and Shankar, 2013), we allow ice to flow on a regular gridded mesh in its preferred direction. This requires us to define the depth-averaged velocity in x and y direction independently as follows (Le Meur et al., 2004):
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Note that [image: image] assumes that viscosity is isotropic. In the above equation, ux (s) and uy (s) (m d−1) are horizontal depth-averaged velocity components in two dimensions as a function of the surface elevation s (m) , A (Pa−3 s−1) is the temperature-dependent Glen's flow-law rate constant (Glen, 1955), n = 3 is Glen's flow-law exponent, ρ (kg m−3) is the ice density (916.7 kg m−3), g (m s−2) is the gravitational acceleration, and h (m) is the ice thickness. Equation 4 has been modified by the implementation of a correction factor C. This correction factor modifies the gravitational driving stress by accounting for higher-order physics that are not captured in the SIA model, such as resistances to ice flow due to longitudinal and lateral stress gradients, and basal sliding (Nye, 1965; Farinotti et al., 2009; Adhikari and Marshall, 2011, 2012b). The gravitational driving stress τz in two horizontal dimensions is described by Le Meur et al. (2004):
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where z (m) represents the depth of a glacier. By modifying the gravitational driving stress with the correction factor C the equation becomes:
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According to Le Meur et al. (2004) equation 5 is eventually used to derive an equation that describes the change in velocity over depth z:
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Implementing the correction factor C it results in:
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Eventually the integration of equation 8 from z = B (bedrock elevation) to z = s (surface elevation) leads to the formulation of equation 4, where h = s–B.

Mass conservation is ensured by a mass transport equation that relates ice thickness changes to the horizontal flux divergence and changes in the net surface mass balance (e.g., Oerlemans et al., 1998; Adhikari and Huybrechts, 2009; Cuffey and Paterson, 2010):
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where M is the net surface mass balance (m w.e.) and (qx, qy) = (ux(s)h, uy(s)h) are the horizontal ice fluxes (m2 d−1). Equation 4 and 9 are implemented for each grid cell in the model by means of a (centered) finite difference scheme. The finite difference scheme is applied on a regular gridded mesh with a horizontal grid spacing of ~30 m. Furthermore, a forward explicit time stepping scheme with a daily step is used, which is found to be stable.



Model Initialization

To initialize the model, the ice thickness for the Hintereisferner and Langtang Glacier in 1850 is reconstructed.

Hintereisferner

The initial ice thickness for the Hintereisferner is reconstructed using glacier outlines obtained from the Austrian glacier inventories of 1850 and 2006 (Abermann et al., 2009; Fischer et al., 2015), recent (EU-DEM) and reconstructed (1850) DEMs of the glacier surface, and observed ice thickness profiles over the period 1855–2006 that are extracted from Schlosser (1997) and Kuhn (2008). The reconstruction of the initial ice thickness consists of four steps. First, the ice thickness of 2006 and the bed elevation is estimated by the GlabTop2 approach (Frey et al., 2014) using the 2006 outline and the recent surface DEM. Second, average mass balance changes between 1850 and 2006 are derived from the observed ice thickness profiles for 100 m elevation zones. Combined with the recent surface DEM and the 1850 outline, the average mass balance changes are used to derive a first temporary ice thickness map. Third, a surface DEM for 1850 is constructed by inverse distanced weighted interpolation of the 1850 outline elevation. The 1850 surface DEM and the bed elevations are used to derive a second temporary ice thickness map. The final 1850 ice thickness map is the maximum thickness of both temporary maps.

Langtang Glacier

For the Langtang Glacier, observations of ice thickness profiles are not available. For this reason, a different approach is followed to reconstruct the initial ice thickness for 1850. The initial ice thickness is reconstructed by using recent glacier outlines obtained from the Randolph Glacier Inventory (RGI) v6 (Pfeffer et al., 2014), reconstructed glacier outlines (1850), and recent (SRTM) and reconstructed (1850) DEMs of the glacier surface. The reconstruction of the initial ice thickness consists of four steps as well. First, the present ice thickness and bed elevation are estimated by the GlabTop2 approach (Frey et al., 2014) using recent glacier outlines and a recent surface DEM. Second, a first temporary ice thickness map is derived by using the GlabTop2 approach (Frey et al., 2014) in combination with glacier outlines and a surface DEM for 1850. The glacier outlines for 1850 are reconstructed based on the LIA moraines that are derived from Landsat 8 imagery (Roy et al., 2014). Subsequently, the 1850 surface DEM is constructed by inverse distance weighted interpolation of the 1850 lateral moraine elevation. Finally, the 1850 surface DEM and the bed elevations are used to calculate a second temporary ice thickness map. The final 1850 ice thickness map is the maximum thickness of both temporary maps. Due to the lack of knowledge of the 1850 debris extent on Langtang Glacier, we assumed the initial debris extent to be similar to the present-day debris extent (Kraaijenbrink et al., 2017), but extended it laterally (and longitudinal at the terminus) to cover the larger footprint of the glacier in 1850.



Model Calibration and Validation

We use the Parameter ESTimation (PEST) algorithm (Doherty, 2018) to calibrate the model. The model is calibrated in a three-step approach. First, we run the model manually from 1851 to 2005 for each GCM that follows the FULL scenario by applying several iterations. The simulated ice thickness and glacier extents at the end of each run are compared to the current glacier extents and ice thickness, i.e., the outlines and ice thickness of the RGI and 2006 for the Langtang Glacier and Hintereisferner, respectively. The model results from the single GCM runs that, eventually, correspond best to the current outlines and ice thickness are used as initialization for the model calibration runs. These are the cold-wet (Langtang Glacier) and cold-dry (Hintereisferner) GCM-glacier model combinations. Secondly, the model is calibrated on zonal-averaged observed glacier surface velocities and mean glacier surface elevation changes that are estimated over 50-m elevation zones (see below for details). The model is run from 2006 to 2016 and seven parameters are calibrated that influence glacier dynamics and mass balance: the degree day factors for clean-ice (DDFC) and snow (DDFS), the critical threshold temperature (Tc), the Glen's flow rate factor (A), the correction factor that accounts for resistances to ice flow due to lateral and longitudinal stress gradients, and basal sliding (C), and the empirical coefficients SS1 and SS2. The model is calibrated on the main trunks of Langtang Glacier and Hintereisferner. Finally, several model parameters (see Table 2) and debris melt factors (i.e., Rdebris) are manually optimized to improve the long-term model performance. The manual optimization is necessary since the PEST algorithm is not able to optimize the debris melt factors and some of the model parameters (Table 2). To evaluate the model performance, the coefficient of determination (R2) and correlation (R) are used as main efficiency criteria, where the coefficients represent the overall standardized performance of the model in simulating both surface velocities and elevation changes. Additionally, the performance is evaluated on the simulation of surface velocities and elevation changes separately by using the Mean Absolute Error (MAE) as criterium.



Table 2. Calibrated model parameters, their calibration ranges, and their calibrated values.
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The zonal-averaged observed glacier velocities are calculated using COSI-Corr (Co-registration of Optically Sensed Images and Correlation) (Leprince et al., 2007). For Hintereisferner, we derived velocities over the period 2016–2018 using PLANET VNIR bands with an initial window of 128 × 128 pixels (px), a final window of 8 × 8 px, and a step size of 4 px. For Langtang Glacier, velocities are derived over the period 2010–2012, using ASTER VNIR band 2 with an initial window of 64 × 64 px, a final window of 16 × 16 px, and a step size of 4 px. The calculated glacier velocities are subsequently averaged over 50 m elevation zones, which are then used for the calibration of glacier surface velocities. The calibration on zonal-averaged glacier surface elevation changes on Langtang Glacier (over 2006–2014) and Hintereisferner (over 2006–2011) is conducted by using mean annual surface elevation change grids of Langtang Glacier and Hintereisferner that are calculated by means of DEM differencing. We refer to Ragettli et al. (2016) and Klug et al. (2018) for more detailed descriptions on the DEM differencing and the calculation of mean surface elevation changes on Langtang Glacier and Hintereisferner, respectively. The mean surface elevation changes are subsequently averaged over 50 m elevation zones, which are then used for model calibration.

The best performing parameter sets are used to run the model from 1851 till 2016 by using the modeled (1851–2005) and observed (2006–2016) climate data, and to validate the calibrated model on glacier area changes and ice thickness. To reveal the anthropogenic influence on the response of glaciers the model results for the FULL and NATURAL scenarios are compared with each other. The comparison is done for the period 1971–2016 and is conducted by using the outcomes of GCM-glacier model combinations that generate outcomes in close agreement with the observed changes in the glacier mass balance and flow.



Sensitivity Analysis

To gain an improved insight on the sensitivity of surface velocities and elevation changes to model parameter changes, a local One-At-A-Time (OAT) sensitivity analysis (Pianosi et al., 2016) is performed using the SENSAN sensitivity analyser of the PEST algorithm (Doherty, 2018). The analysis is done by varying values of calibration parameters (DDFC, DDFS, Tc, A, C, SS1, and SS2) independently within ranges that are listed in Table 2 but does not account for parameter interactions. To conduct the analysis, surface velocities and elevation changes are averaged over the calibration period (2006–2016) and the main trunks of Langtang Glacier and Hintereisferner. The sensitivity of these variables are measured by the average linear sensitivity index (ALS) of Nearing et al. (1989):
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where y2 and y1 represent the output values (y) obtained for the maximum (x2) and minimum (x1) of the input parameter ranges (x) (Table 2). x and y represent the means of the parameter values (x1 and x2) and respective output values (y1 and y2).




RESULTS


Model Calibration and Validation

The best performing parameter sets that result from the calibration approach are listed in Table 2. The parameters associated with melt and accumulation (DDFC, DDFS, and Tc) agree well with those observed/modeled in other studies (Hock, 2003; Konz and Seibert, 2010; Lambrecht et al., 2011; Immerzeel et al., 2013). However, the calibrated degree-day factor for snow at the Hintereisferner (i.e., 9 mm°C−1 d−1) is higher than the snow degree-day factors observed/modeled in most studies (i.e., 3–6 mm°C −1 d−1) (Braithwaite and Zhang, 2000; Singh et al., 2000; Hock, 2003). A potential explanation is the absence of sublimation in the model that can amount to 150 mm yr−1 at Hintereisferner (Kaser, 1983). This might cause mass balance changes to be corrected by a higher snow degree-day factor. The Glen's flow rate constant (A) calibrated for Langtang Glacier is in range of values typical for temperate glaciers (Cuffey and Paterson, 2010). Also, the correction factor (C) of 0.8 falls within the expected range [i.e., 0.45–0.85, based on the study of Farinotti et al. (2009)]. The same applies for the C factor of 0.65 calibrated for Hintereisferner. However, the calibrated Glen's flow rate constant for the Hintereisferner is high and falls outside the expected range. There are several factors that may contribute to the high Glen's flow rate constant as it is affected by factors that are related to the ice rheology of the glacier, such as temperature, density, and water content (Cuffey and Paterson, 2010), and vary widely in space and time. The parameters associated with snow avalanching (SS1 and SS2) in the Langtang area are adopted from former studies conducted in the region (Ragettli et al., 2015). The parameters for the Hintereisferner are difficult to compare since no studies have been conducted before in the region using the SnowSlide algorithm. However, the parameters are similar with those in the study of Shea et al. (2015). The debris melt factors are lowest at the lower reaches of the Langtang Glacier due to the presence of thick debris, and highest in the central and upper reaches of the debris-covered part of Langtang Glacier. The high debris melt factors can most likely be explained by thinner debris layers, which cause a smaller reduction of melt rates, and the higher number of supraglacial ponds and ice cliffs in the central domain of the glacier that locally enhance melt (Ragettli et al., 2016; Steiner et al., in press). An alternative explanation for the high debris melt factors are reduced emergence velocities, which also have been found to contribute to increased thinning on debris-covered glaciers (Brun et al., 2018).

Figure 2 shows the simulated and observed surface velocities and elevation changes for Langtang Glacier and Hintereisferner. The best overall model performance is achieved for Hintereisferner (R2 = 0.87; Table 2). The mean (minimum/maximum) elevation change is −1.53 (−6.36/+3.73) m w.e. a−1, which is larger than the mean (minimum/maximum) observed elevation change of −1.32 (−6.50/+1.87) m w.e. a−1 (Table 3). The differences between simulated and observed elevation changes can most likely be attributed to local avalanches; at the western margin of the main trunk the maximum and mean simulated positive elevation changes are higher than the observed elevation changes. The largest differences can be found between the observed and simulated velocities with a zonal MAE of 6.5 m a−1 (Table 2), where the mean (minimum/maximum) simulated velocity is 6 (0/26) m a−1 and the mean (minimum/maximum) observed velocity is 12 (0/27) m a−1. The large differences can mainly be explained by the presence of large distortions in the upper part of the glacier that are found in the satellite-derived velocities and reduces the reliability of the observed values. Nevertheless, the modeled velocities are comparable with observed velocities at stone line 6 (i.e., at this location ice flow velocities are measured in situ by using the annual motion of stones placed on the ice surface as a proxy) (Figure 2, Span et al., 1997). The model simulates velocities of 3.2 m a−1 in 2016, which is close to the observed velocities of about 4 m a−1 (Stocker-Waldhuber et al., 2019). The maximum ice thickness of 215 m simulated at the end of 2006 is comparable with the ice thickness estimated with GlabTop2 (220 m). Furthermore, the model can simulate glacier area changes that are in reasonable agreement with the observed ones. The model simulates a glacier area reduction of about 0.5 km2 over the period 2006–2011, whereas the observations indicate a reduction of about 0.6 km2 (Charalampidis et al., 2018; Klug et al., 2018).



Table 3. Simulated and observed mean surface velocities and elevation changes per glacier tongue.
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FIGURE 2. Observed (OBS) and simulated (SIM) mean surface elevation change (A,B,E,F) and velocities (C,D,G,H) for the Langtang (A–D) and Hintereisferner (E–H) glaciers. Line 6 indicates the location of stone line 6 (Span et al., 1997). Source of the observed mean surface elevation change grids are Ragettli et al. (2016) for the Langtang Glacier and Klug et al. (2018) for the Hintereisferner.



The overall fit between the observations and calibrated outcomes (R2 = 0.81) is satisfactory for Langtang Glacier as well. The mean (minimum/maximum) elevation change is −0.48 (−2.74/+6.64) m a−1, which is lower than the mean (minimum/maximum) observed elevation change of −0.67 (−7.49/+7.38) m a−1. The largest elevation changes are simulated in the central reaches of the main trunk (4800–5100 m a.s.l.). The high elevation changes can primarily be explained by the higher debris melt factors in this part of the glacier that are due to the presence of melt-enhancing ice cliffs and supraglacial ponds. The model is, however, not able to represent the spatial distribution of ice cliffs and supraglacial ponds sufficiently, which can explain the underestimation of the modeled mean elevation change. The simulated positive elevation changes are largest at the glacier head, i.e., in the accumulation zone, and along the margins of the tongue. The positive elevation changes along the margins can mainly be attributed to avalanching, which is especially large at the eastern side of the main trunk due to the steep side walls generating more avalanches. The observed and modeled velocities are comparable with each other with mean (minimum/maximum) values of 7 (0/82) m a−1 and 6 (0/64) m a−1, respectively. The maximum ice thickness of about 280 m simulated at the end of 2001 (i.e., year of RGI glacier outline) is comparable with the ice thickness estimated with GlabTop2 (290 m), where the maximum ice thickness is simulated in the upper reaches of the main trunk. Further, the modeled glacier area changes between 2006 and 2015 are with 0.55 km2 in reasonable agreement with the observed glacier area decline of 0.45 km2 (Ragettli et al., 2016).



Model Sensitivity

Table 4 lists the sensitivity of surface velocities and elevation changes to model parameter changes. The modeled velocities are most sensitive to changes in the correction factor C followed by Glen's flow rate constant A. Modeled elevation changes are most sensitive to changes in DDFC, where Langtang Glacier tends to be less sensitive to changes in DDFC than the Hintereisferner. The lower sensitivity can most likely be explained by the presence of a thick debris layer at Langtang Glacier that reduces ice melt. Further, modeled velocities and elevation changes are more sensitive for changes in the snow avalanching parameters SS1 and SS2 than on the Hintereisferner. The higher sensitivity can most likely be explained by the larger contributions of snow avalanching to accumulation at Langtang Glacier.



Table 4. Model parameters and parameter ranges used for the sensitivity analysis.
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Past Climate Forcing

Since the end of the LIA, both precipitation and temperature have changed in magnitude and distribution. Figure 3 shows the 10-years moving average of daily air temperature and precipitation at the Kyangjin and Vent stations for the FULL and NATURAL scenarios over the past 166 years, i.e., 1851–2016. The precipitation has decreased by 5% (range: −7 to −1%) for FULL and 2% (−3 to −1%) for NATURAL between 1861–1890 and 1981–2010 at Vent station. At Kyangjin station the decreases are a bit larger with relative changes of 6 and 5% for FULL and NATURAL (−18 to +3% for FULL and −11 to +3% for NATURAL), respectively. At the same station the temperature has increased with 0.8°C (range: −0.1 to +1.3°C) for FULL and 0.3°C (−0.3 to +0.6°C) for NATURAL between 1861–1890 and 1981–2010. At Vent station the temperature has increased with 0.6°C (−0.1 to +1.3°C) for FULL and 0.2°C for NATURAL (−0.1 to +0.7°C). The NATURAL scenario shows a decline in temperature after 2000 at the Kyangjin and Vent stations, which is equivalent to the decline in temperature that is simulated by the climate models between the mid 1950s and 1970. This equivalence can be explained by the preservation of the statistics for the period 1925–1970 after 1970. The spread in model hindcasts for precipitation is highly variable in time at both stations, whereas the model spread for temperature shows a clear diverging pattern with the largest spread at the end of the LIA and the smallest at present. For the NATURAL scenario, the model spread after 1970 is equal to the model spread prior to 1970, since the statistics for the period 1925–1970 have been retained.
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FIGURE 3. 10-yrs moving averages of simulated precipitation (A,B) and temperature (C,D) changes for the period 1971–2016 for FULL (red) and NATURAL (blue). The moving averages are given for the Vent (A,C) and Kyangjin (B,D) stations. The colored bands denote the range of the simulations.





Glacier Evolution and Dynamics

Figure 4 shows the change in the glacier areas, volumes, and specific mass balance of the Langtang Glacier and Hintereisferner between 1850 and 2016 for the different climate models. At Langtang Glacier, the largest area and volume reductions are simulated under warm climate conditions with an area (volume) reduction from about 60 km2 (5.5 km3) in 1850 to about 39 km2 (2.0 km3) in 2016. For cold climate conditions the model shows a smaller decline in area (volume) from 60 km2 (5.5 km3) to about 50 km2 (3 km3). Under both cold/dry and cold/wet climate conditions the modeled extent is in close agreement with the observed extent in 1974 (53.5 km2; Pellicciotti et al., 2015). The modeled extent under cold/dry conditions is in closest agreement with the observed extent in 2006 (46.5 km2; Ragettli et al., 2016) compared to the modeled extents under other climate conditions. Under cold climate conditions, the model following a wet climate scenario shows a slightly smaller loss in ice mass than the model following a dry climate scenario, which is explained by the differences in precipitation since both models simulate the same temperature trends (Table 1). With a cumulative mass loss of about 40 m w.e. since the end of the LIA, the models following cold climate scenarios show a smaller mass loss than those following warm climate scenarios, which simulate a mass loss up to about 70 m w.e.
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FIGURE 4. Modeled changes in glacier area (A,B), volume (C,D), and specific mass balance (E,F) of the Langtang Glacier (A,C,E) and Hintereisferner (B,D,F) for four different historical climate change simulations (CW: cold and wet; CD: cold and dry; WW: warm and wet; WD: warm and dry). The black points denote the observed glacier extents at Langtang Glacier (1974, 2016; Pellicciotti et al., 2015; Ragettli et al., 2016) and Hintereisferner (1969, 1997, 2006; Abermann et al., 2009; Patzelt, 2013; Charalampidis et al., 2018).



At Hintereisferner, the largest area (volume) reductions are simulated under warm and cold/wet climate conditions with a decline in area/volume from 14 km2 (1.5 km3) up to about 5 km2 (0.15 km3), and are accompanied by cumulative mass losses up to about 135 m w.e. Under cold/dry climate conditions, area (volume) reductions are smaller with a decline in area/volume up to about 8 km2 (0.4 km3) and a cumulative mass loss up to about 90 m w.e. Under these conditions, extents are simulated that are in closest agreement with the observed extents in 1969 (9.5 km2), 1997 (8.5 km2), and 2006 (7.4 km2) (Abermann et al., 2009; Patzelt, 2013; Charalampidis et al., 2018). All model simulations on the extents show strong inter-annual variability. Since the model reports the ice thickness used for the estimation of extents at the end of the year (i.e., during the winter season), the temporal peaks might be explained by extensive snowfall. This would subsequently cause the threshold value used for the identification of glaciers (0.5 m w.e.) to be exceeded, which explains the short temporal increases in extent. The cumulative mass balance shows a period of reduced mass loss or even a slight mass gain between the 1960s and 1990s, which is commonly known as a period with close-to-balanced climate conditions in the European Alps (Huss, 2012).

Along with changes in the glacier area and volume, surface velocities also change over time. Figure 5 shows transient time series of surface velocity for three different transects along the glaciers. In general, velocity decreases over time at most transects, especially at the main trunks. In the uppermost reaches of Langtang Glacier, velocities are relatively constant after 1875. In the central and lower reaches of the glacier, velocities increase during the late Nineteenth and early Twentieth century, which can most likely be explained by a redistribution of ice mass from the side branches into the main trunk itself. The simulated velocities under cold/wet and warm/dry conditions are with a velocity of about 10 m a−1 in closest agreement with the observed satellite-derived velocities (10 m a−1 for 2010–2012) in the upper domain of the glacier. In central and lower reaches, the simulations deviate from the observations, which can most likely be explained by higher ablation rates that result from neglecting varying surface conditions by the model, e.g., no temporal variation of debris thickness and supraglacial features. Models forced with cold climate models simulate velocities that are in a closer agreement with the observed velocities than the models forced with warmer climate models. In the uppermost reaches of the Hintereisferner, velocities are also relatively constant with exception of the period between the 1960s and 1990s where the velocity time series show a slight increase under warm and cold/wet climate conditions. The slight increases can most likely be explained by the positive mass balance during this period. In the central and lower reaches of the glacier, most simulations show the velocity to become zero due the disappearing glacier in these domains. In the central reaches, the model forced by cold/dry climate change simulations simulates velocities that are comparable with the observed velocities at stone line 6 (Span et al., 1997; Stocker-Waldhuber et al., 2019). The model is however not able to simulate the higher velocities in the 1940s, 1970s, and 1980s, which can most likely be explained by neglecting changing surface or englacial conditions.
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FIGURE 5. Modeled changes in surface velocity at three different transects along the Langtang Glacier (A,C,E) and Hintereisferner (B,D,F) for four different historical climate change simulations (CW: cold and wet; CD: cold and dry; WW: warm and wet; WD: warm and dry). The locations of the three transects are given in Figure 6. The black points denote the observed velocities at Langtang Glacier (2011) and Hintereisferner (1940, 1950, 1960, 1970, 1980, 1990, 2000; Stocker-Waldhuber et al., 2019).



Figure 6 shows the simulated spatial ice thickness and surface velocity fields for 1850, 1860 (i.e., only for surface velocity) and 2016 under cold/dry and cold/wet conditions, which are selected as conditions that are in closest agreement with the observed changes at Hintereisferner and Langtang Glacier, respectively. At Langtang Glacier the model shows a very limited decrease in length up to about 50 m between 1850 and 2016 (Figure 7), which can mainly be explained by the strong reduction of melt rates due to the presence of thick debris at the lower reaches of the glacier. The limited decrease in length is accompanied by a thinning of the glacier from about 200–300 m (maximum: 355 m) to 100–150 m (maximum: 273 m) under current conditions. An average thinning rate (over 1850–2016) of −0.32 m a−1 and −0.27 m a−1 is estimated for the debris-covered tongue of the glacier and the entire glacier, respectively. These changes are accompanied by decreases in the velocities from up to about 275 m a−1 to 66 m a−1 in the higher parts of the glacier and from about 10–15 m a−1 to about 1–2 m a−1 at the terminus of the glacier. The very low velocities at the terminus of the glacier are typical for the debris-covered Langtang Glacier. Due to enhanced melt in the central reaches of the main trunks (which can be attributed to supraglacial features or reduced emergence velocities) the thinning rate increases, which eventually result in a shallower slope and a stagnation of the terminus. Similar observations have been made in other studies at the Langtang Glacier, and at other debris-covered glaciers in the Central Himalayas as well (Ragettli et al., 2016; Brun et al., 2018; Steiner et al., in press).
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FIGURE 6. Ice thickness and surface velocity fields of Langtang Glacier (A–D) and Hintereisferner (E–H), showing modeled ice thickness/velocity in 1850/1860 (A,C,E,G) and 2016 (B,D,F,H) for cold/wet (Langtang Glacier) and cold/dry climate conditions (Hintereisferner). The numbers denote the locations of the transects at 2 (2) km, 6 (9) km, and 10 (17) km of the glacier head of Hintereisferner (Langtang Glacier). These transects are used for the modeled velocities given in Figures 5, 8.
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FIGURE 7. The modeled glacier extents and ice thickness fields of Langtang Glacier (Left) and Hintereisferner (Right) in 1850, 1900, 1950, and 2000 for cold/wet (Langtang Glacier) and cold/dry climate conditions (Hintereisferner).



The Hintereisferner shows a different trend with a significant decrease in length and reduction of ice thickness. The model simulates a decrease in length of about 3 km, which is close to the observed changes in glacier length (e.g., Leclercq and Oerlemans, 2012), and a reduction in ice thickness from about 340 m to about 180 m. Thereby, an average thinning rate (over 1850–2016) of −0.47 m a−1 is estimated for the main trunk of the glacier. Initially the Kesselwandferner and Hintereisferner (Figure 1) were attached to each other, whereas the Hochjochferner was detached. However, the distance between the terminal point of the Hochjochferner and the tongue of the Hintereisferner was with only 50–100 m very short (Blümcke and Hess, 1895). Under cold/dry conditions the model simulates an advance of the Hintereisferner and Hochjochferner in the late Nineteenth and early Twentieth century, which eventually results in a re-connection of the two glaciers (Figure 7). The modeled connection lasts till the 1940s followed by the detachment of the Hintereisferner and Kesselwandferner in the 1980s, which is about six decades later than the observed detachment (Kuhn et al., 1985). This modeled re-connection between the Hochjochferner and Hintereisferner has however never been observed, which can most likely be explained by biases between the climate inputs and the observed climate change, or the limitation of the ice-flow model to simulate changes in the flow characteristics of the glacier. The changes in ice thickness are accompanied by a decline in surface velocities from about 310 m a−1 to about 25 m a−1 at the Hintereisferner. Initially, the highest velocities are simulated at the Hintereisferner. Under current conditions, the model simulates the highest velocities of about 77 m a−1 at the terminus of the Kesselwandferner, which can mainly be attributed to the relatively steep slope (40–45°).



Anthropogenic vs. Natural Influences

Figure 8 shows the changes in glacier area, volume and cumulative mass balance for Langtang Glacier and Hintereisferner under the FULL and NATURAL scenarios between 1971 and 2016. The differences in outcomes between the FULL and NATURAL scenarios are less pronounced for Langtang Glacier. Here, the changes remain negative also under a colder scenario (NATURAL), although the changes are smaller. Only in the late 1980s and early 2010s the glacier mass balance is close to equilibrium. The relative difference in area, volume, and cumulative mass balance between the FULL and NATURAL scenarios is 3, 9, and 40%, respectively, in 2016. At Hintereisferner, glacier area, volume and mass balance decrease initially and are almost balanced after 2000. In 1989, 2005, and 2013, the extent of Hintereisferner shows short temporal increases, which can mainly be explained by extensive snowfall that causes the snow-ice threshold to be exceeded. This phenomenon can also be observed in Figure 4. The relative difference in area, volume, and cumulative mass balance is more pronounced at Hintereisferner with relative differences of 18, 39, and 64%, respectively.
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FIGURE 8. Modeled changes in glacier area (A,B), volume (C,D), and specific mass balance (E,F) of the Langtang Glacier (A,C,E) and Hintereisferner (B,D,F) for the cold/wet (Langtang Glacier) and cold/dry (Hintereisferner) FULL (solid) and NATURAL scenarios (dashed).



The differences in response between Langtang Glacier and Hintereisferner under the FULL and NATURAL scenarios can mainly be explained by differences in the response time. First, the response time of Langtang Glacier is significantly longer than the response time of Hintereisferner. Based on the method of Johannesson et al. (1989), which calculates the response time at the glacier terminus by a ratio between the ice thickness and the mass balance rate, a response time of about 300 years is estimated for Langtang Glacier, whereas Hintereisferner has an estimated response time of about 20 years. These estimates are an indicator for the time a glacier requires to respond to climatic changes. The estimated response times are in the range of those that are found for other debris-covered and clean-ice glaciers (e.g., Shea et al., 2015). The longer response time at Langtang Glacier can most likely be explained by the debris cover that results in a relatively stable terminus position. For this reason, the differences in area, volume, and mass balance are less pronounced between the FULL and NATURAL scenarios. Contrastingly, for Hintereisferner, the differences are pronounced.

The changes in glacier area, volume, and mass balance eventually also influence glacier dynamics. Figure 9 shows the surface velocity time series for two transects in the upper and central reaches of Langtang Glacier and Hintereisferner that are simulated for the FULL and NATURAL scenarios. In the upper reaches of Langtang Glacier, the velocity generally decreases between the late 1980s and late 2000s, and increases during the 1970s, early 1980s, early 1990s, and early 2010s. The increases are most likely due to higher accumulation in the upper reaches of the glacier during these periods. Similar changes are simulated in the upper reaches of Hintereisferner after 1990. In the central reaches, velocity initially decreases, followed by velocities that do not change significantly or show a slight increase. These changes can most likely be explained by higher accumulations compared to the FULL scenario or close to equilibrium conditions that implies the ice thickness does not change and subsequently the velocity does not change either. The velocity changes for Langtang Glacier are smaller than the velocity changes at Hintereisferner. These differences can mainly be explained by the shorter response times at Hintereisferner. The shorter response time causes the glacier to react faster to climatic changes and thinning rates to be higher under a FULL scenario. At Hintereisferner a thinning rate of −0.59 m a−1 is estimated (over 1971–2016) for a FULL scenario relative to an estimated thinning rate of −0.16 m a−1 for a NATURAL scenario, whereas at the debris-covered tongue of Langtang Glacier thinning rates of −0.56 m a−1 and −0.43 m a−1 are estimated for the FULL and NATURAL scenarios, respectively. The higher thinning rates at Hintereisferner lead subsequently to a larger decline in velocity and thus explain the larger changes in velocity. The changing surface velocities and associated changes in thinning rates found at Hintereisferner and Langtang Glacier are in agreement with the recently observed link between glacier flow and thinning rates in High Mountain Asia (Dehecq et al., 2019).
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FIGURE 9. Modeled changes in surface velocity at two different transects along Langtang Glacier (A,C) and Hintereisferner (B,D) for the cold/wet (Langtang Glacier) and cold/dry (Hintereisferner) FULL (solid) and NATURAL scenarios (dashed). The locations of the two transects are given in Figure 6.



The less negative or even close to equilibrium glacier mass balance at Langtang Glacier and Hintereisferner eventually result in larger ice thickness at the end of a model run. Figure 10 shows the ice thickness and velocity fields at the end of a FULL-run and a NATURAL-run. At Langtang Glacier the difference between the maximum ice thickness of 283 m for NATURAL and 273 m for FULL is small. The higher ice thickness leads subsequently to higher flow velocities up to about 87 m a−1. At Hintereisferner the differences in outcomes between the FULL and NATURAL scenarios are larger. Instead of a maximum ice thickness of about 180 m, ice thickness up to about 230 m is simulated for NATURAL. The associated velocities are higher with rates up to about 156 m a−1 at the terminus of the Kesselwandferner. There, the high velocities can mainly be attributed to the relatively steep slope in combination with a larger ice thickness than simulated for the FULL scenario. It can therefore be concluded that human-induced climate change has a significant impact on the mass balance and dynamics of glaciers. The magnitude of impact depends on the response time of the glacier, where a debris-covered glacier such as the Langtang Glacier shows a longer response time than a clean-ice glacier such as the Hintereisferner. It is therefore likely that that human-induced climate change has a larger impact on clean-ice glaciers than on debris-covered glaciers.
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FIGURE 10. Ice thickness and surface velocity fields of the Langtang Glacier (A–D) and Hintereisferner (E–H), showing modeled ice thickness/velocity in 2016 for the cold/wet (Langtang Glacier) and cold/dry (Hintereisferner) FULL (A,C,E,G) and NATURAL scenarios (B,D,F,H).






DISCUSSION


Uncertainties and Limitations

The outcomes of the glacier mass balance and ice-flow model are subject to several uncertainties and limitations that can be subdivided into three main groups: climate change simulations, the parameterization and representation of physical processes in the model, and the calibration procedure.

To assess the response of glaciers to historical climate change, an ensemble of four distributed and bias-corrected GCMs were used that cover a wide range of possible climate conditions. These models have been selected by means of an advanced envelope-based selection approach based on changes in climatic means and their skill in simulating the local climate. The outputs of the selected climate models are bias-corrected on meteorological data of the Kyangjin and Vent stations and are subsequently spatially distributed by using local monthly temperature lapse rates, normalized seasonal precipitation fields and high-resolution digital elevation models. The lapse rates are assumed to be constant in space and from year-to-year, whereas lapse rates are variable in space and time (Kirchner et al., 2013; Immerzeel et al., 2014; Heynen et al., 2016; Steiner and Pellicciotti, 2016). The lack of interannual and spatial variability might eventually introduce uncertainties in the climate fields, which propagates into the model results. The lack of spatiotemporal variability in lapse rates also introduce long-term uncertainties, especially since glaciers are sensitive to temperature changes that emerge from small changes in temperature lapse rates. Therefore, a correction of lapse rates might be needed to improve the long-term performance of the model. In our study temperature lapse rate corrections resulted in steeper lapse rates with monthly maximum (minimum) lapse rates that amount to 0.0076 (0.0052)°C m−1 in March-April (July) at Langtang Glacier and 0.0086 (0.0049)°C m−1 in March (December) at Hintereisferner. Thereby, the corrected lapse rates at Langtang Glacier fall in range with the lapse rates observed by Heynen et al. (2016). The corrected lapse rates at Hintereisferner are relatively steep compared to lapse rates that are mostly found in the European Alps (Rolland, 2003), but are still comparable with lapse rates found in other parts of the European Alps (Nigrelli et al., 2018). In addition, the limited data availability at higher altitudes hampers the validation of climate fields, especially in areas with difficult accessibility, such as upper Langtang Valley. Techniques, such as dynamical downscaling using high-resolution weather models, might contribute to an improvement of the accuracy and quality of climate fields in the complex mountainous environments of the upper Langtang and Rofental valleys (Bonekamp et al., 2018).

To separately assess the effects of human-induced climate change on the glacier response we followed two scenarios: FULL and NATURAL. The FULL scenario followed climate change simulations according to GCM outputs that follow the historical experiment of the CMIP5 archive, whereas the NATURAL scenario followed climate change simulations that are identical to the FULL scenario (until 1970) and retained the statistics of the climate change simulations prior to 1970 (i.e., 1925–1970). A limitation of retaining the statistics is that temperature trends such as the temperature decline simulated at the Kyangjin and Vent stations between the mid 1950s and 1970 are repeated after 1970, which subsequently introduces uncertainties in the model outcomes. An alternative approach would be to follow climate change simulations of the historicalNat experiment (i.e., GCM experiment forced with natural forcings only). However, the limitation of this approach is that simulations of the historicalNat experiment are difficult to bias-correct which might introduce additional uncertainties. Additionally, the selection approach we followed would allow us to select the same ensemble models and members as the historical experiment. This might have a limitation since the forcing of a historicalNat experiment is different, which in combination with a different parameterization might lead to a trend opposite of what is expected under natural climate conditions, i.e., increasing temperatures relative to a historical experiment instead of constant or decreasing temperatures. Since our aim was to attribute the response of glaciers to anthropogenic and natural climate change, we chose to remove the trend in historical climate change simulations after 1970, which are clearly anthropogenic due to the strong observed human-induced increases in temperature, and to repeat the historical GCM runs spanning the period 1925–1970.

The glacier mass balance and dynamics were simulated by using a coupled glacier mass balance and ice-flow model that is based on a gridded formulation of the shallow ice approximation. One limitation is that sublimation processes are not included in the model, which is a considerable loss term in high mountain environments. For instance, at Hintereisferner sublimation losses of about 150 mm yr−1 have been reported by Kaser (1983). In the Langtang Valley, sublimation losses can amount up to 21% of the total snowfall, and can even be higher at wind-exposed locations (Stigter et al., 2018). The model might correct for these mass losses by adapting degree-day factors to increase the amount of loss by melt, which subsequently might result in overestimation of the calibrated glacier and snow degree-day factors. Another scenario is that snow storage and cover is overestimated, particularly at the high ridges that are prone to wind-blown transport of snow. To account for sublimation techniques are required that do not have a high data demand, but still can give reasonable sublimation estimates. Another limitation might be the use of a simple degree-day approach for the simulation of ice and snowmelt. Gabbi et al. (2014) found in a model comparison study that parameters of a simplified degree-day approaches are not robust in time and require recalibration for different climate conditions. The authors found that models including a separate term for shortwave radiation are able to produce robust simulations of ice and snowmelt. Therefore, these types of models can be seen as a suitable alternative to simplified degree-day approaches. Similar findings were also found by Litt et al. (2019) who tested the performance of (enhanced) temperature-index approaches in the Central Himalayas. The authors found however that these approaches can be underperforming where sublimation or other wind-driven processes contribute to ablation, such as in the accumulation zones. To improve the performance of the simplified degree-day approach applied in this study we distinguish the effect of aspect and include an elevation-dependent melt factor that accounts for the effect of debris thickness on melt rates.

A limitation that also might affect the model outcomes is the way how avalanching is simulated in the model. To simulate avalanching the gravitational snow transport module SnowSlide (Bernhardt and Schulz, 2010) is used. The drawback of this approach is that the module is solely restricted in use to snow avalanching, which disables the possibility to apply the algorithm for pixels that are classified as glacier. This means that on slopes steeper than the threshold slope (i.e., 25°) the avalanching of this material needs to be disabled, achieved in this study by assuming a threshold value that identifies a pixel as a glacier when the snow water equivalent is higher than 0.5 m. Although the model is able to simulate avalanches sufficiently at Langtang Glacier (i.e., especially at the eastern margins with steep side walls; Figure 2), the threshold value might also introduce uncertainties. For instance, the strong interannual variability in glacier area at Hintereisferner can mainly be attributed to the used threshold value. It is, however, difficult to validate the threshold value and the contribution of avalanching to the mass balance of the glaciers due to a lack of reliable snowfall observations. Further improvements in the simulation of avalanching might be achieved by the combination of the SnowSlide module with existing modeling tools, such as the mass-conserving algorithm of Gruber (2007). This algorithm is an extension of flow-routing and terrain parameterization techniques and has the advantage that it can simulate the gravitational transport of other types of movements, such as ice avalanches or debris flows, as well. Further, the algorithm can easily be integrated in glacier mass balance and ice-flow models similar to the one presented here.

Flow velocities are largely dependent on ice rheology and dynamics as well as ice thickness and surface slope. Large unknowns, or processes not considered in the model, likely introduced uncertainties. Large unknowns are for instance the ice thickness changes since the end of the LIA, especially at Langtang Glacier where observations are lacking. Processes that have not been considered in the model are, for instance, the role of crevassing. Crevasses can play a crucial role in the mass balance and dynamics of glaciers by locally enhancing ablation and ice flow velocities (Colgan et al., 2016).

Another limitation is the assumed stationarity of model parameters in the model, which is also recognized as a major limitation in other type of models, such as hydrological models (e.g., Merz et al., 2011; Westra et al., 2014; Wijngaard et al., 2018). For instance, the spatial distribution of supraglacial debris, ponds and cliffs are highly variable over time. The spatio-temporal variability influences melt factors that in the model are assumed to be constant over time, which eventually might result in a local over- or underestimation of melt and subsequently also in an over- or underestimation of flow velocities. In addition, the debris and supraglacial characteristics of Langtang Glacier at the end of the LIA are a large unknown. Another example is the spatio-temporal variability in ice parameters, such as ice density or ice temperature, which influences ice viscosity and subsequently ice dynamics (e.g., Zhang et al., 2013). Since ice flow parameters, such as ice density, the temperature-dependent flow rate parameter A, and the correction factor C are assumed to be stationary, uncertainties might be introduced in the simulated flow velocities. For instance, the assumed stationarity of the correction factor C might be an explanation for the underestimated flow velocities at Hintereisferner during the 1940s, 1970s, and 1980s. To improve the representation of feedbacks between ice temperature and flow velocities, combined modeling approaches including models that simulate the thermodynamical behavior of a glacier would be a future improvement. To improve the spatio-temporal variability of supraglacial debris and thus the amount of melt on the glacier, coupled mass balance and ice-flow models need to be combined with modeling approaches that can simulate the spatio-temporal evolution of supraglacial debris (Naito et al., 2000; Jouvet et al., 2011; Rowan et al., 2015).

The coupled glacier mass balance and ice-flow model is calibrated on observed mean surface elevation changes and surface velocities that are both derived from spaceborne imagery. This can be major advantage in remote areas where mass balance or surface velocity data are limited or not available at all. The limitation, however, is that the use of satellite images is restricted in use to several conditions, such as the absence of clouds and snow. When satellite images are available, the images might be prone to noise or distortions, which, in turn, hampers calibration of the model. Further, uncertainties might have been introduced through the calibration approach. The model parameters have been calibrated using an automatic optimization algorithm followed by a manual optimization. No distinctions have been made in the performance of the model in simulating separate components of the high-mountain cryosphere, such as snow cover. Because of that equifinality problems might have been introduced that affect the amount of melt simulated by the model. To minimize equifinality problems in the future, systematic approaches (Pellicciotti et al., 2012; Lutz et al., 2016a; Wijngaard et al., 2017) are recommended that can calibrate the model in multiple consecutive steps by using the combination of snow cover, mass balance, and surface velocity data.



Shallow Ice Approximation

To assess the response of glaciers under changing climate conditions we apply a coupled glacier mass balance and ice-flow model that is based on a spatially-distributed formulation of the SIA. The main advantage of this approach is that the model does not require a priori information on the flowline geometry, but also has other advantages which are mainly related to the low computational expense and complexity. There is a concern that the SIA becomes deficient for fast-flowing glaciers and steep/narrow glacier since the approach does not account for higher-order physics, such as longitudinal and lateral stress gradients (Le Meur et al., 2004; Adhikari and Marshall, 2013). According to Le Meur et al. (2004) the slope is the most important criterion for the applicability of the SIA, where SIA models can still be considered as acceptable for bedrock slopes smaller than 20%. The mean (minimum/maximum) bedrock slope of Langtang Glacier and Hintereisferner are 44 (0/93%) and 44 (0/81%), respectively, which means from this point of view the SIA approach would be deficient. However, Le Meur et al. (2004) did not include correction factors that account for higher-order physics, which are normally neglected by the SIA approach. Also, the authors did not calibrate the Glen's flow rate constant. In our model correction factors that account for longitudinal and lateral stress gradients are included (Nye, 1965; Adhikari and Marshall, 2011, 2012b). Furthermore, Glen's flow rate constant is calibrated on observed surface velocities. This combination results in valid outcomes, which shows that the SIA approach is even reliably on steeper slopes. For example, at the Kesselwandferner velocities up to 77 m a−1 are simulated where the bedrock slope is ~44%. Although these velocities do not agree with the present-day observed velocities of ~20 m a−1 (i.e., ablation stakes L8, L9, and L10) due to an overestimation of ice thickness, velocities with the same order of magnitude (80–90 m a−1) have been observed in the 1970s/1980s (Stocker-Waldhuber et al., 2019). It illustrates the ability of the model to simulate realistic velocities at steeper slopes. Additionally, the use of correction factors in combination with the SIA approach sustains the simplicity of ice flow models, which makes it suitable for potential application in catchment- or regional scale (cryospheric-)hydrological models.




CONCLUSIONS AND OUTLOOK

The aim of this study is to develop and apply a spatially distributed coupled glacier mass balance and ice-flow model to attribute the response of two glaciers to anthropogenic and natural climate change. We focus on two glaciers with contrasting surface characteristics: the debris-covered Langtang Glacier in the Central Himalayas, and the clean-ice Hintereisferner in the European Alps. We apply the model from the end of the Little Ice Age (1850) to the present-day (2016) by forcing the model with bias-corrected and distributed GCM runs that represent a wide range of region-specific possible climate conditions. The model outputs are used to analyse the evolution and dynamics of the two glaciers, and subsequently to reveal the anthropogenic influence by comparing outputs of two scenarios: one scenario considering the human-induced rapid increases in temperature after 1970 and one scenario that retains the climate conditions prior to 1970.

The results indicate that the coupled glacier mass balance and ice-flow model, based on a gridded formulation of the shallow ice approximation, performs reasonably well for both clean-ice and debris-covered glaciers.

Both glaciers experience the largest area and volume reductions under warm climate conditions, whereas for cold climate conditions the model show a smaller reduction. In addition, the cold model (i.e., cold/dry for Hintereisferner and cold/wet for Langtang) simulates changes that are close to the observed trends. These models simulate area (volume) reductions of 16 (42%) for the Langtang Glacier and of 40 (75%) for the Hintereisferner between 1850 and 2016. Simultaneously with changes in the extents and volumes, surface velocities generally decrease over time from up to 275 to 66 m a−1 at Langtang Glacier and from up to 310 to 25 m a−1 at Hintereisferner. The simulated changes over time are smaller in magnitude for the Langtang Glacier, which can mainly be attributed to the debris cover that insulates the surface and thus reduces the amount of melt. Additionally, the debris cover maintains the position of the terminus. Instead the glacier thins, which eventually result in a shallower profile and a stagnation of velocities at the terminus of the glacier. At Hintereisferner melt rates are higher and the glacier retreats with about 3 km over length under cold/dry climate conditions.

Simulations show that anthropogenic climate change has been accompanied with a rapid increase in temperature after 1970. This has resulted in a larger decline in area/volume compared to a scenario where the anthropogenic influence is less significant (i.e., NATURAL scenario). At Langtang Glacier, the changes in area, volume, and ice thickness remain negative for the NATURAL scenario. Only in the late 1980s and early 2010s the glacier mass balance is close to equilibrium. The relative area, volume and cumulative mass balance difference between a cold/wet FULL and NATURAL scenario at the end of 1971–2016 is 3, 9, and 40%, respectively. At Hintereisferner the glacier area, volume, and ice thickness decrease initially followed by an almost balanced state after 2000. Here, the relative area, volume and cumulative mass balance difference between a cold/dry FULL and NATURAL scenario at the end of 1971–2016 is 18, 39, and 64%, respectively. The decline in area, volume, and ice thickness are accompanied by changing surface velocities that generally increase or do not change significantly. The difference in the response of glaciers between a FULL and a NATURAL scenario is larger for the Hintereisferner mainly due to shorter response times. The shorter response times cause the glacier to react faster to climatic changes and thinning rates to be larger. The larger thinning rates do subsequently lead to a larger decline in area, volume, cumulative balance, and velocity. The simulated velocity changes and associated changes in thinning rates are in agreement with the recently observed link between glacier flow and thinning rates in High Mountain Asia. For a debris-covered glacier the differences are less pronounced due to a longer response time, which can mainly be attributed to the debris cover that insulates the glacier surface and reduces melt.

The outcomes of this study show that the gridded formulation of the shallow ice approximation performs well and is a suitable alternative for higher order or Stokes approaches, especially while modeling a large-scale ensemble of glaciers. Although improvements are needed in future research, the combination of satellite-based imagery and the use of the gridded formulation of the shallow ice approximation should be explored toward investigating the dynamical response of glaciers and its implications for hydrology at a regional scale.
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There is strong variation in glacier mass balances in High Mountain Asia. Particularly interesting is the fact that glaciers are in equilibrium or even gaining mass in the Karakoram and Kunlun Shan ranges, which is in sharp contrast with the negative mass balances in the rest of High Mountain Asia. To understand this difference, an in-depth understanding of the meteorological drivers of the glacier mass balance is required. In this study, two catchments in contrasting climatic regions, one in the central Himalaya (Langtang) and one in the Karakoram (Shimshal), are modeled at 1 km grid spacing with the numerical atmospheric model WRF for the period of 2011–2013. Our results show that the accumulation and melt dynamics of both regions differ due to contrasting meteorological conditions. In Shimshal, 92% of the annual precipitation falls in the form of snow, in contrast with 42% in Langtang. In addition, 80% of the total snow falls above an altitude of 5000 m a.s.l, compared with 35% in Langtang. Another prominent contrast is that most of the annual snowfall falls between December and May (71%), compared with 52% in Langtang. The melt regimes are also different, with 41% less energy available for melt in Shimshal. The melt in the Karakoram is controlled by net shortwave radiation (r = 0.79 ± 0.01) through the relatively low glacier albedo in summer, while net longwave radiation (clouds) dominates the energy balance in the Langtang region (r = 0.76 ± 0.02). High amounts of snowfall and low melt rates result in a simulated positive glacier surface mass balance in Shimshal (+0.31 ± 0.06 m w.e. year−1) for the study period, while little snowfall, and high melt rates lead to a negative mass balance in Langtang (−0.40 ± 0.09 m w.e. year−1). The melt in Shimshal is highly variable between years, and is especially sensitive to summer snow events that reset the surface albedo. We conclude that understanding glacier mass balance anomalies requires quantification and insight into subtle shifts in the energy balance and accumulation regimes at high altitude and that the sensitivity of glaciers to climate change is regionally variable.
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INTRODUCTION

Generally, glaciers are retreating due to global warming, yet glaciers in the Karakoram–Kunlun Shan region remain stable or have even gained mass. This irregularity is often called the Karakoram anomaly and was first noticed by Hewitt (2005) before being confirmed by subsequent geodetic studies. Glacier behavior in the Karakoram is highly heterogeneous, both spatially and temporally, and its drivers are not yet fully understood (Bolch et al., 2012; Gardelle et al., 2012; Jacob et al., 2012; Kääb et al., 2015; Brun et al., 2017).

Several explanations have been proposed for this anomaly. Firstly, the westerly winds, which act as a moisture source in winter, could have strengthened and lowered in altitude, and leading to increased winter precipitation (Archer and Caldeira, 2008). Secondly, a decrease in summer temperatures in the Karakoram has been proposed to contribute to more (solid) precipitation and clouds and therefore less glacier melt (Fowler and Archer, 2005; Forsythe et al., 2017). Thirdly, de Kok et al. (2018) showed that large-scale irrigation in the surrounding areas affect the hydrological cycle and leads to more snow in the Karakoram and Kunlun Shan mountains.

The climate in High Mountain Asia is highly variable: it ranges from monsoon-dominated in the central Himalaya to being dominated by westerly disturbances in the Karakoram and western Himalaya (Bookhagen and Burbank, 2010). Monsoon precipitation generally falls every day in the summer months, while westerlies provide event-based precipitation during the winter months (Bookhagen and Burbank, 2010).

The region is highly inhomogeneous, with complex topography and meteo-climatic regimes that current gridded observational data sets are too coarse to resolve (Andermann et al., 2011; Palazzi et al., 2013; Immerzeel et al., 2015). Observations of precipitation and temperature are scarce at high elevations in High Mountain Asia, leading to a bias in gridded observational datasets (Immerzeel et al., 2015). In order to overcome spatial and temporal gaps, high-resolution modeling is useful and can provide key inputs for glacio-hydrological studies (Immerzeel et al., 2015).

The surface mass balance (SMB) of a glacier is largely driven by accumulated snow and melt. Understanding the mass balance therefore requires insight into the distribution and seasonality of snowfall and into the variability in the components of the surface energy balance (SEB). Here, we investigate the contrasts in the seasonal and altitudinal distribution of the SEB and snow accumulation between the central Himalaya and the Karakoram region that underlie this glaciological anomaly. We model two contrasting catchments with the weather research and forecasting (WRF) model and use nested domains from 25 to 5 to 1 km to obtain a high-resolution data set of the Shimshal (Karakoram) and Langtang (central Himalaya) catchments for 3 years (2011–2013). We analyze systematic differences between years, seasons, and altitude. We show detailed differences in seasonality of precipitation and identify primary drivers of glacier melt by examining different components of the energy balance. Using this information we reveal the differences in glacier sensitivity, which offers important clues for understanding potential drivers of the Karakoram anomaly.



MATERIALS AND METHODS

Study Area

To represent the two different climates in High Mountain Asia, two contrasting catchments are chosen: the Shimshal valley (Karakoram) and Langtang valley (central-Himalaya).

Shimshal is an east-west positioned, 60 km long, V-shaped valley in Pakistan (∼2900 km2) and ranges in altitude from 2500 to 8000 m a.s.l with a steep relief (Figure 1). The yearly averaged snowline is located between 4800 and 5300 m a.s.l (Iturrizaga, 1997). The catchment is 32.5% glacierized and 20.7% of the glacier surfaces are debris-covered, with a mean glacier size of 11.1 km2. Important glaciers are the Lupghar (13 km long), Momhil (35 km), Malangutti (23 km) and Yazghil (31 km) glaciers and the Khurdopin glacier (47 km), which blends with the Yushkin-Gardan and Virjerab glacier (40 km) (RGI Consortium, 2017). The Karakoram precipitation regime is dominated by westerlies and most of the precipitation falls during winter as snow. The glaciers predominantly accumulate mass during winter and ablation occurs during summer (Hewitt, 2005; Bookhagen and Burbank, 2010).


[image: image]

FIGURE 1. The outer domain (D1, 25 km, middle panel), with its nests. Left panel shows the 1 km domain of Shimshal catchment (D3), and right panel 1 km domain of Langtang catchment (D5). The catchment outlines are indicated by black contours and glacier outlines of GLDAS dataset (Rodell et al., 2004) by blue contours.



The second catchment is the Langtang valley (∼600 km2), located in the central Himalaya, 70 km north of Kathmandu (Nepal) and ranges in altitude from 1406 to 7180 m a.s.l. This valley is U-shaped upstream, while V-shaped downstream. Twenty-four percent of the catchment is glacierized and the average glacier size is 2 km2 (Collier and Immerzeel, 2015). Glacier tongues are generally debris-covered (32 km2). Most precipitation (>70%) falls during the monsoon period and glaciers have simultaneous accumulation and ablation during this period (Immerzeel et al., 2014).

Model

We used the advanced research WRF model version 3.8.1 (Skamarock et al., 2008) to simulate the period from January 2011 till January 2014, excluding 1 month of spin up (December 2010). In total we simulate 3 years, to get insight into inter-annual variability. This period is chosen such that no El Niño events are included in the simulation, as they are associated with positive precipitation and temperature anomalies (Syed et al., 2006). The outer domain is showed in Figure 1 and has two nests for each catchment, with resolutions of 5 and 1 km, respectively. All domains have 50 terrain-following vertical levels, stretching from the surface to 50 hPa, with ∼11 levels in the lowest km above the surface. The outer domain is forced with 6-hourly ERA-Interim data (0.75° × 0.75°, Dee et al., 2011), and grid analysis nudging is applied to the horizontal wind, water vapor mixing ratio, and potential temperature fields in the highest 15 vertical levels. Since we are running a 3-year simulation, grid analysis nudging is employed to constrain large-scale circulation (Bowden et al., 2013). We used the same nudging coefficients as Collier and Immerzeel (2015), since that improved the simulated monsoon precipitation for a similar domain as tested in previous work (Collier and Immerzeel, 2015). The model configuration and parameterizations are similar to the ones described in Bonekamp et al., (2018) and are shown in Table 1.

TABLE 1. Overview WRF configuration.
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The default land cover map in WRF is not representative for the region and underestimates both the glacier and forest area (Bonekamp et al., 2018). As the correct representation of land-use is very important for the SEB and thus the valley climate, the land cover dataset is updated using the climate change initiative dataset (CCI; Defourny et al., 2017) of the European Space Agency (ESA), which has a spatial resolution of 300 m.

We initialized the soil moisture, soil temperatures and skin temperatures with the GLDAS (global land data assimilation system) dataset (0.25° × 0.25°; Rodell et al., 2004) as the ERA-Interim initial conditions are unrealistic, in particular the snow depths. The snow height is limited by the amount of snow water equivalent available at each grid point in the GLDAS dataset. The topography is smoothed in D3 only, at a total of eight grid points to reduce numerical instability. The affected grid points are located outside of the studied catchments. WRF simulations are compared to observations for the Langtang catchment in Bonekamp et al. (2018), however, not explicitly for the Shimshal catchment, since those measurements are very limited and the quality is low.

The simulation was performed on the Cartesius cluster of the SURFsara Supercomputing Center1 on 192 processors and took approximately 55 days to complete.

Glacier Mass Balance

The SMB of a glacier is the sum of all processes adding mass (accumulation) and removing (ablation) mass from the glacier surface over a 1-year period. In our approach, we approximate the glacier mass balance by the difference between snowfall and melt (including refreezing). Melt and refreezing are computed at hourly intervals from the residual in the SEB for all glacier cells, which are designated as clean ice, using the terms calculated by the Noah-MP land surface model (Niu et al., 2011):
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Incoming shortwave (SWin) and longwave radiation (LWin), outgoing longwave radiation (LWout), as well as the sensible (SHF), latent (LHF) and ground heat fluxes (GHF), are direct WRF output. The reflected shortwave radiation (SWref) is calculated using the simulated surface albedo. Fluxes directed away from the surface are defined as negative. The GHF is driven by the temperature gradient between the surface and the upper soil layer, the upper layer thickness and the thermal conductivity (Niu et al., 2011). If the surface temperature exceeds the melting point, the surface temperature is reset to 273.15 K and the excess energy is used to melt snow or glacier ice. In Noah-MP, the snow layer can consist of three layers and a glacier is treated as frozen soil with appropriate values for albedo, surface roughness, and heat conductivity. In the snowpack and glacier, processes such as refreezing, retention and percolation of melt water and densification are modeled (Niu et al., 2011). This method allows us to investigate the contribution of individual energy balance components to the residual flux. The Pearson correlation coefficients are calculated with 5-day averaged data and the interannual variability is calculated as the standard deviation of each variable.

Our approach involves one-way and offline mass balance modeling (Eq. 1), however, we do implicitly include the feedbacks between the glacier surface and the atmosphere, since those processes are treated by Noah-MP. Since the ground flux accounts for temperature change in the snowpack/ground, there is no need to take the cold content of the snow pack into account for the amount of potential melt in the offline calculations. We assume melt (refreeze) occurs if the residual energy is positive (negative). A snow layer can hold 5% of its volume of water (Pu et al., 2007). We assume that enough liquid water is available in the snow pack or glacier for all negative residual energy to produce a mass gain through refreezing.



RESULTS

Precipitation, Temperature, and Wind

The climates of the central Himalaya and the Karakoram differ considerably. A major contrast between the regions is the precipitation regime: Langtang has a clear monsoon climate, with the highest precipitation amounts during the summer months and a rather dry winter (Figure 2A). Rain dominates the precipitation budget (58%) and falls throughout the year. In January, February, and March a few winter events occur, and precipitation events are more intense than during monsoon. Shimshal, on the other hand, is snow-dominated (92% of the annual precipitation), with most precipitation during the winter months. During the summer months, the monsoon penetrates only episodically into the Karakoram region and provides some rainfall (see section “Origin of Precipitation Events”). This implies that the summers in Shimshal are relatively dry with limited snow accumulation. Seventy-one percent of the snowfall in Shimshal occurs between December and May, compared to fifty-two percent in Langtang. The glaciers in the central Himalaya are therefore simultaneously accumulating and ablating, while glaciers in the Karakoram are gaining mass in winter and melt during summer. Precipitation is variable between years, with potentially large implications for the glacier mass balance (see section “Glacier Surface Mass Balance”).
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FIGURE 2. (A) Monthly accumulated catchment-precipitation, with the number of wet days (P > 0.5 mm/day) for 2011–2013 (one bar per year). (B) Five-day catchment average temperature for the Shimshal (black) and Langtang (blue) catchment. (C) as (B) but for the 10-m wind speed. The shading indicates the minimum and maximum value of the individual year.



Shimshal is generally colder than Langtang, with average yearly temperatures of −8.8 and −4.0°C, respectively, and has slightly higher wind speeds on average (4.8 m/s compared to 4.1 m/s in Langtang). Clear similarities in the annual cycle is visible in the two catchments, with the highest temperatures and lowest wind speeds during the summer months (Figures 2B,C).

The precipitation varies with altitude, season, and region. In Figure 3, the seasonal precipitation distribution with altitude is shown for the Shimshal and Langtang catchments. In Langtang, the total annual precipitation is 43% less between 6 and 8 km a.s.l elevation compared to the 2–4 km a.s.l range. The monsoon rain dominates the annual signal, and rain between 2 and 4 km a.s.l altitude is five times higher than between 6 and 8 km a.s.l. Snow between 2 and 4 km a.s.l altitude is 17 times less than between 6 and 8 km a.s.l. The snowfall above 5000 m a.s.l is rather constant with altitude throughout the year. The precipitation peak occurs at the entrance of the Langtang catchment, where the topography blocks the large-scale monsoon winds (Collier and Immerzeel, 2015).
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FIGURE 3. Three-year seasonal average of precipitation (A), rain (B), and snow (C) by 200-m elevation bin. Each bin represents an average of all catchment cells in that altitude range. JFM is the period January, February, March, AMJ is the period April, May, June, JAS is the period July, August, September, and OND is the period October, November, December. The red dotted lines indicate the number of grid cells in each bin for the two catchments (A).



In Shimshal an increase of total precipitation with altitude is observed. The total precipitation is 6 times larger, and snow even 13 times larger, between 6 and 8 km a.s.l than between 2 and 4 km a.s.l. Rain decreases with altitude, as in Langtang, and is 40% lower between 6 and 8 km a.s.l than between 2 and 4 km a.s.l. In Shimshal, 80% of the total snow falls above an altitude of 5000 m a.s.l, while this is only 35% in Langtang.

In summary, in Shimshal, snow dominates the precipitation budget, and the total annual signal shows a positive gradient with altitude, while in Langtang the budget is rain-dominated and the precipitation signal is negative with altitude, consistent with monsoon precipitation peaking at lower altitude than westerly driven precipitation (Immerzeel et al., 2014; Collier and Immerzeel, 2015). Whether the dominant type of precipitation is snow or rain, caused by different circulation systems, is therefore associated with the reverse precipitation gradient with altitude found in Collier and Immerzeel (2015). These results agree with (Hewitt, 2005), who found a fivefold to tenfold increase in precipitation the Karakoram between 2500 and 4800 m a.s.l. Winiger et al. (2005) estimated that snowfall above 4000 m a.s.l ranges from 1000 mm to more than 3000 mm, and that above 5000 m a.s.l altitude, >90% of the precipitation is snowfall, while at lower altitudes >90% of the total precipitation is rain.

Origin of Precipitation Events

The origin of precipitation events is an important unknown in the Karakoram, as both westerlies and monsoon winds influence this region. In this research we propose a simple method to classify the origin of precipitation events in the Karakoram. It would be interesting to combine WRF with a moisture tracking model to fully understand the precipitation sources during the monsoon in the Karakoram (Tuinenburg et al., 2012; de Kok et al., 2018). However, this goes beyond the scope of the present study.

During the winter months (January–March), moisture is transported from west to east, with highest precipitation intensities in the west (Figure 4). Two precipitation bands are clearly visible, which follow the topography clearly. In those months, snow is the dominant precipitation type.
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FIGURE 4. Three-year-averaged seasonal total precipitation (upper panels) and solid precipitation (lower panels) for a subset of the 25-km resolution domain. Black contours indicate country outlines and the red markers the Shimshal (left) and Langtang (right) catchment.



During the summer months (July–September), the monsoon influence is increasing with longitude and it also has a strong south-north decreasing gradient (Figure 4). During those months, snow falls predominantly at high altitudes (>5000 m a.s.l; see Figure 3). In general, moisture is transported from lower to higher latitudes by monsoon winds and provides almost daily precipitation in the central Himalaya.

To investigate the influence and occurrence of the Indian summer monsoon precipitation events in the Karakoram region, the precipitation events with the associated moisture flux and moisture flux direction during the summer period for three different areas are plotted in Figure 5. The precipitation events in box 1, representing the Shimshal catchment, are categorized by the moisture flux direction in box 2, south of Shimshal (75E; 31N). Box 2 is chosen due to its location at the foot of the Himalaya, where winds are generally flowing parallel to the topography and giving a clear separation between monsoon winds (between 40° and 170°) and westerly winds (larger than 170° and smaller than 40°). Box 3 is chosen due to its location in the Karakoram that acts as a funnel for westerly winds.
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FIGURE 5. Panels (A–C) show for three different boxes for the months June–October 2012 the daily averaged vertically integrated moisture flux (black), daily averaged moisture flux direction (gray), and daily sum of precipitation (bars). Box 1 (A) represents an average around the Shimshal catchment (75.3E; 36.5N), box 2 (B) is positioned in a monsoon source area (75E; 31N), and box 3 (C) in a westerly source area (73E; 38N). In panel (D) the topography and the position and extent of the boxes is shown. The source of the precipitation events in box 1 are categorized and a green color indicates the precipitation event is monsoon-driven, while a blue color westerly driven. In panel (E) the daily averaged vertically integrated moisture flux (arrows) and daily averaged accumulated precipitation (blue) for a monsoon categorized event (August 04, 2012) for the area same as in (D). Panel (F) is similar to panel (E), but for a westerly categorized event during the monsoon (July 15, 2012). The arrows in (A) indicate the timing of the events used in (E,F).



During the monsoon, the dominant moisture flux direction during a precipitation event is southwest in Karakoram, while the origin of precipitation differs. In other words, it is possible that the direction of the moisture flux as a result of the interaction with the topography during a precipitation event in monsoon is southwest, but that it has a westerly source. The moisture flux direction in the Shimshal catchment (Figure 5A) does not give information directly about the origin of the precipitation events due to the complex topography that creates regional meteo-climatic regimes. The three different boxes are used to track the large scale forcing and therefore origin of the precipitation events. A precipitation event in Shimshal (box 1, Figure 5A) is classified as monsoon event if the integrated moisture flux in box 2 is between 40° and 170°, and classified as westerly event if the moisture flux direction is smaller than 40° or larger than 170° (Figures 5A,B). Based on this characterization, the monsoon period in the Shimshal catchment starts in July and ends halfway September and agrees well with other studies (Lau and Yang, 1997). In the 3-year simulation, on average 22 days with precipitation above 0.5 mm/day occurred between June 1 and August 31. Two third of these events are classified as direct monsoon incursions, an example of which is shown in Figure 5E, and one third from other origins.

Precipitation and moisture fluxes clearly follow the topography. During the winter the westerly disturbances split due to the Hindu-Kush and Pamir mountain ranges, and during summer months the monsoon penetrates deepest in the Karakoram where the topography is lowest. However, this categorization based on the moisture direction in one specific box is rather simple and depends on our selected range of moisture flux direction. Although it works well and provides a clear indication of the large-scale origin of precipitation in the Karakoram, some specific circulation patterns may be missed. An example is shown in Figure 5F, where a monsoon event is wrongly categorized as westerly event and gives noise in the signal.

Glacier Energy Balance

There are clear differences in the simulated surface energy dynamics between the two catchments. The relative contribution of the different terms in the SEB of a glacier controls how sensitive a glacier is to changes in climate, such as increasing temperatures and changing cloud coverage. In Figure 6 the individual energy balance components, as well the residual flux of all glacier grid cells in the Shimshal and Langtang catchments are shown. In Figure 7 the average contribution of each of the individual energy balance components to the residual flux for the months May–September are given to indicate the main drivers of the melt signal.


[image: image]

FIGURE 6. The surface energy balance (SEB) components, 5-day averaged, 3-years average for the glacierized cells in Shimshal (black) and Langtang (blue). The shading indicates the lowest and maximum value of the individual year. SWin (A) and LWin (C) are the short and longwave incoming radiation components, SWref (B) and LWout (D) the shortwave reflected and longwave outgoing radiation components, and SWnet (E) and LWnet (F) the net radiation components. SHF (G), LHF (H), and GHF (I) are the sensible, latent, and ground heat flux, respectively. The albedo is plotted in panel (B) (thin lines). The residual term (RES, Panel J) is calculated as SWnet + LWnet + SHF + LHF + GHF.
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FIGURE 7. The average residual flux (RES), shortwave net (SWnet), longwave net radiation (LWnet), latent heat flux (LHF), sensible heat flux (SHF), and ground heat flux (GHF) for all glacierized cells in Langtang (blue) and Shimshal (gray) for the three melt seasons (May–September).



The net shortwave radiation provides the largest energy input at the surface (Figures 6, 7) and, due to a lower and more variable surface albedo, its variations correlate (Pearson correlation) most strongly with those of melt in Shimshal (r = 0.79 ± 0.01). Conversely, the net longwave radiation dominates the melt signal in the Langtang (r = 0.76 ± 0.02), due to greater cloud cover and higher atmospheric humidity during the monsoon. The net longwave radiation itself is negative, but variations in this flux have the strongest influence on the residual flux in Langtang. The absolute values of the sensible, latent and GHF are low compared to the shortwave and longwave radiation components (Figure 6). However, the latent heat flux could also be an important contributor to the regional differences in the residual flux and thus glacier melt, as it shows the opposite temporal pattern in the two regions (Figure 6H). During the melt season, the LHF is almost zero in Langtang (r = −0.83) due to high relative humidity, while in Shimshal this flux is larger and negative (r = 0.43) due to relatively dry conditions during summer, and indicating that significant amounts of energy are extracted from the surface by sublimation and evaporation. Previous estimates have shown that snow sublimation in Langtang could account for 21% of the loss of the total snowfall (Stigter et al., 2018). For the Karakoram, however, no studies have been done to quantify the effects of sublimation. Understanding regional and seasonal differences in the LHF could therefore be important to understand the glacier mass balance anomaly in detail.

The variation in the residual flux is more pronounced at Shimshal, mainly due to variability in the surface albedo, which is infrequently increased by a small number of snow events during the melt season. The surface albedo influences the shortwave reflected radiation and is mainly influenced by the age of the snow pack on the glacier. In Langtang, however, snow events happen on a daily basis at high altitude, resulting in a consistently higher surface albedo (Figure 6B). The surface albedo resets to the albedo of fresh snow in the Noah-MP land surface model (0.84) when fresh snow covers the old layer by a depth of at least 10 mm. Due to the land surface model treatment of glacier surfaces as being permanently snow covered, glacier surface albedo ranges between 0.6 and 0.84 for both catchments throughout the year (Figure 6B). The importance of the albedo effect is expressed in the fact that the shortwave incoming radiation is much higher in Shimshal during summer, while the reflected shortwave radiation of Shimshal and Langtang is comparable. The summer months in Langtang are generally cloudy with large variability in shortwave incoming and therefore net radiation as a result.

Clouds influence the SEB mainly by emitting longwave radiation (thin high clouds warm the surface) and blocking the incoming shortwave radiation (low thick clouds cool the surface) (Twomey, 1991). However, since clouds in a cold climate are colder and less optically thick, the warming effect of high-level clouds is small in cold regions. In Langtang, low- and high-level clouds are present during the monsoon and lead to a decrease in incoming shortwave radiation and an increase in incoming longwave radiation (see Figures 6, 8). In Shimshal, low-level clouds occur during the winter months and decrease the shortwave incoming radiation. Therefore, clouds impact the energy balance components and represent an important driver for the differences in the glacier energy balance between Shimshal and Langtang.
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FIGURE 8. Fraction of glacierized cells which are covered by high- (>6 km a.s.l) middle- (2–6 km a.s.l) and low (<2 km a.s.l) clouds (upper panel). The lower panel indicates the standard deviation of the average values. Altitudes are indicated as altitude above the surface. Three-years averaged for Langtang (blue) and Shimshal (black).



The residual flux at sub-daily time steps provides information about the melt and refreezing cycle of glacier cells in the two different regions. The differences in timing of the melt peaks are caused by the latitudinal differences of the two catchments. In the yearly averaged diurnal cycle of the residual flux, Langang has a higher residual-energy peak than Shimshal (Figure 9). In Langtang and Shimshal, average melt fluxes of 17.7 and 11.3 Wm−2, respectively, are observed. Our calculations assumed that the negative residual flux is used for refreezing of melt water and liquid precipitation. Based on this assumption, the amount of refreezing on a yearly basis could amount to 60 and 52% of the total melt in Langtang and Shimshal, respectively. Calculations with station data in the Langtang catchment show refreezing in a snowpack can be up to 43% of the total snow melt (Stigter, 2019 personal communication). However, those calculations neglect rain as liquid water input and assume refreezing is water-limited, since the snow pack is shallow and can hold maximum of 10% of its mass as liquid water. Therefore, the amount of refreezing calculated in this paper is likely overestimated, which is discussed in more detail in Section “WRF Caveats.”
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FIGURE 9. Diurnal cycle of the residual flux for Shimshal (black) and Langtang (blue). The shading indicates the interannual variability.



Glacier Surface Mass Balance

In Figure 10, the SMB, snow melt and snow accumulation are shown for all glacier cells in the inner domains for each year separately.
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FIGURE 10. Box plots of the effect of the melt and snow accumulation on the glacier surface mass balance, and the annual mass balance for each simulated year shown for Shimshal (gray) and Langtang (blue). The 3-yearly mean and standard deviation is shown above the boxplots for each category and catchment.



The melt is lower in the Shimshal catchment, but more variable (σ = 0.13 m w.e. year−1) than in Langtang (σ = 0.07 m w.e. year−1). This variability originates from the shortwave variation in particular (cf. section “Glacier Energy Balance”). However, another important driver for the difference in mass balance between the catchments is the amount of snowfall, which leads to a positive mass balance in Shimshal (1.26 m w.e. year−1 snowfall). In Langtang the snow amount (0.93 m w.e. year−1) does not compensate for melt (−1.31 m w.e. year−1) and the mass balance is negative for the majority (63%) of the glacier cells. The variability in snow accumulation is much higher in Shimshal than in Langtang, likely due to the erratic nature of snow storms produced by westerly disturbances in Shimshal, while snowfall at high-altitude in Langtang is more constantly driven by monsoon precipitation. This result suggests that the variability in the mass balance in Langtang is mainly controlled by spatially variable melt, rather than snow fall.

In Figure 11, the average SMB per altitude bin is shown. The different sign in the mass balances of Langtang (−0.40 m w.e. year−1) and Shimshal (0.31 m w.e. year−1) shows the vertical glacier mass balance profile is different in the central Himalaya and the Karakoram region. The residual energy at lower altitudes shows a strong interannual variability in Shimshal, which indicates that the melt on the glacier tongues varies strongly. However, the number of glacier cells is low (<5) at low elevations (<4400 m a.s.l) and could explain the sensitive signal as well.
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FIGURE 11. Normalized mass balance (black line) with altitude for Shimshal (A) and Langtang (B). Snow (light gray) and melt caused by residual energy (dark gray). Each bin represents an average of that altitude range. The red dashed line indicates the amount of cells. Error bars indicate the variability between simulated years. Numbers indicate the average snow (snow), residual energy flux (pot melt), and total mass balance (net) over 2011–2013.



In the Langtang catchment, glaciers are relatively small and located in a small altitude range (5200–7000 m a.s.l). 17.9% of the catchment is a clean-ice glacier and 59% [accumulation area ratio (AAR) is 0.41] of the glacier points is located below the equilibrium line altitude (5900 m a.s.l), indicating relatively high melt rates. The Shimshal catchment is glacierized by clean-ice glaciers over 37.4% of its area, contains larger glaciers, and has a large accumulation (>5500 m a.s.l) and ablation zone (<5500 m a.s.l). Shimshal contains big glaciers, which originate at higher altitude, and accumulation is possible due to large amounts of snow and low melt rates. The AAR is 0.61, which leads to a positive mass balance when all glacier cells are averaged.



DISCUSSION

Model Performance

The simulated mass balance for years 2011–2013 in Langtang of −0.40 ± 0.09 m w.e year−1 is in agreement with previously reported values. Baral et al. (2014) estimated the mass balance of Yala glacier in the Langtang catchment (November 10, 2011 to November 03, 2012) to be −0.89 m w.e. year−1. Pellicciotti et al. (2015) estimated the average mass balance of four glaciers in the Langtang catchment (with only non-debris parts of the glacier taken into account) at −0.32 ± 0.18 m w.e. year−1 between the years 1974–1999. Ragettli et al. (2016) found a similar number for debris-free glaciers −0.38 ± 0.17 m w.e. year−1, which is an ensemble mean between the years 2006 and 2015.

For the Karakoram region, previous studies report both positive and negative mass balances (a selection is provided in Table 2). Our calculated mass balance for Shimshal is comparatively high (+0.31 ± 0.06 m w.e. year−1). Previous studies have found stable and positive mass balances in the central and northeastern part of the Karakoram and negative mass balances in the west (Groos et al., 2017). However, they have also reported high-spatial variability, indicating that regional averages could give a distorted view.

TABLE 2. Overview of selected mass balance studies in the Karakoram.
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Examining individual glaciers, for example, the Yazghil glacier gained ±5 m, Malungutti 5–10 m and Khurdopin 15–20 m in thickness between the years 1997 and 2001 (Hewitt, 2005). These observations suggest accumulation rates of more than 1 m w.e. year−1 may be reasonable for this region. However, we note that due to the cold bias in WRF for High Mountain Asia (Bonekamp et al., 2018), the estimation of snowfall could be overestimated.

In our study WRF appears to reproduce regional differences in glacier mass balance compared to previous studies. Critical is the high spatial resolution as shown in Collier and Immerzeel (2015), Groos et al. (2017), and Bonekamp et al. (2018). The spatial resolution of the model is also important to explicitly resolve local conditions at the glaciers, especially outside the Karakoram region, where relatively small glaciers are present. However, results in this paper exclude the smallest glaciers, due to the grid spacing of 1 km. In general catchments and glaciers are larger in the Karakoram than in central Himalaya, and we note that the differing catchment sizes of Shimshal and Langtang may impact the altitudinal gradients presented. Nonetheless, our results are consistent with previous studies that investigate the Karakoram anomaly and show the importance of winter snow accumulation (Archer and Caldeira, 2008), lower summer temperatures and more (solid) summer precipitation (Fowler and Archer, 2005), and less net radiation (de Kok et al., 2018) that favor the Karakoram anomaly. Unfortunately, our study does not provide data with which any of these hypotheses could be tested due to the time frame.

A limitation of our work is that we only take clean ice glaciers into account and therefore the melt could be overestimated assuming the debris has a net insulating effect. However, the role of this insulation in debris-covered glaciers is still unclear, since the two types of glaciers seem to experience very similar melting rates (Pellicciotti et al., 2015; Brun et al., 2018). Currently, there are two hypotheses that try to explain the relatively high melting rates in debris-covered glaciers: the first is that high-melt rates at ice cliffs compensate for the low-melt rates averaged over the debris covered tongues (Pellicciotti et al., 2015). The second hypothesis is that debris-covered glacier tongues have a lower emergence velocity than clean-ice glacier tongues, whereby the similar thinning rates between the two types of glaciers are observed, while melt rates are lower at debris-covered glaciers (Anderson and Anderson, 2016).

WRF Caveats

A major mass input of glaciers is caused by snow-avalanching, especially in the Karakoram region (Hewitt, 1993). Although avalanching is not incorporated in WRF, we still see a positive mass balance in this region, and we conclude glaciers behave differently, even without the avalanching effect. Avalanching would also redistribute snow to lower altitudes, and could bias the simulated glacier mass balance from WRF to high altitudes. To make a better glacier mass balance estimation, glacier accumulation area outlines should be included to estimate the snow accumulation available from avalanching.

Snow drift and wind-blown redistribution of snow are also a major contributor to the glacier mass balance (Dadic et al., 2010), and are not taken into account in WRF. Similarly, WRF does not include glacier flow, but since glacier extents are not likely to change significantly within a 3-year period, we do not expect large uncertainties, as we consider all glacier cells in the domain.

There are also uncertainties in the treatment of glacier surfaces in the Noah-MP land-surface model. The main issue is the imposition of a minimum snow depth on glaciers often leads to an overestimate of albedo during the ablation season, which impacts local meteorological conditions on the glaciers (e.g., Collier et al., 2013). The treatment of glaciers as fully saturated and fully frozen soil surfaces in the Noah family of land-surface models is a simplification but has been found to produce reasonable simulations of glacier surface energy and mass fluxes (Mölg and Kaser, 2011).

In our approach, we also assume an unlimited amount of water is available for (re)freezing of water, while in reality the refreezing process will be water-limited, especially during dry and cold periods, when there is no melt, and no precipitation. In WRF, a cold bias is common at high altitudes (e.g., Bonekamp et al., 2018) and will likely influence the amount of snowfall and of melt of glacier surfaces and snow. Both issues likely bias the mass balance positively. The total simulation period of 3 years also gives a limited view of the interannual variability and averages presented, since those 3 years do not represent a climatological period. Furthermore the study period is too short to assess climatic trends that might have caused Karakoram anomaly, and/or glacier mass loss in Nepal.

Several studies have validated the performance of WRF for the Langtang region (e.g., Collier and Immerzeel, 2015; Bonekamp et al., 2018), however, direct observations of high-altitude precipitation are sparse and satellite derived products are of insufficient resolution and quality to capture spatial variation and the magnitude of mountain precipitation (Immerzeel et al., 2015). It is therefore difficult to draw quantifiable conclusions about potential biases at high altitude.

Climate Sensitivity

The annual average temperature in Shimshal is low and the catchment is therefore likely more sensitive to future precipitation rather than temperature shifts. However, with increasing air temperatures, the air can hold more moisture and therefore potentially more precipitation can occur, which favor a positive mass balance (Kapnick et al., 2014). Furthermore, our results show that the longwave radiation is the dominant driver of the variations in the melt signal in Langtang. Hence, besides a decrease in mass balance due to a rise of the equilibrium line altitude, glaciers in Langtang will likely show an enhanced sensitivity to temperature due to the increase in incoming longwave radiation.

Currently, snow events are only sporadic during the melt season in Shimshal (Mayer et al., 2014), leading to lower surface albedo and more energy available for melt compared with Langtang. However, these summer snow events also input mass, reduce the amount of sunshine hours, and increase the albedo (Hewitt, 2005; de Kok et al., 2018). This implies that a change in the number of summer snow events in Shimshal could influence the melt through several processes, with an increase supporting positive mass balance conditions. In contrast, slight changes in summer precipitation amounts affect the melt only marginally in Langtang, since the frequent summer snowfall already results in a high albedo. Hence, the sensitivity of the glacier melt to summer precipitation is higher in Shimshal than in Langtang.

Eventually, changes in large-scale forcing, such as westerly winds, will explain the glacier response only partly, since different glaciers will respond differently to identical changes in external conditions. We have shown that the glacier response is very different in Shimshal and Langtang, owing to a very different distribution of the energy balance. The climate system is complex and each component in it will adapt, aiming for a new equilibrium.



CONCLUSION

Understanding regional differences of meteorological variables at the catchment scale is key to understand the heterogeneous behavior of glaciers in High Mountain Asia. In this study, we modeled at 25, 5 and 1-km grid spacing two catchments in contrasting climate regions: the central Himalaya and the Karakoram. We show at high-resolution that climate and glacier behavior is spatially highly variable between the Karakoram and the central Himalaya, and that the accumulation and melt dynamics of both regions are different as a result of contrasting meteorological conditions. The interpretation of their impact on the glacier energy and mass fluxes and the elucidation of differences between catchments is novel. To our knowledge, this is the first multi-year simulation at 1-km resolution for regional comparison of catchments in High Mountain Asia and gives a unique data set to investigate catchment-scale atmospheric processes.

Glacier melt is highly variable between years in the Karakoram and its variability is primarily driven by the net shortwave radiation (r = 0.79 ± 0.01), with only limited cloud cover during the melt season. The surface albedo variability drives melt variation, and is strongly influenced by summer snow events in the Karakoram region. The number of snow events during the melt season is more important than the total amount of snow to increase the albedo and thus reduces energy available for melt. This indicates that if the frequency of summer precipitation events will increase in the Karakoram in future due to, for example, a stronger summer Indian monsoon, this will favor the mass balance of Karakoram glaciers. In Shimshal, the latent heat flux also plays an important role in extracting energy from the surface during the comparatively dry conditions during summer. Conversely, in the central Himalaya, variability in glacier melt is driven primarily by net longwave radiation (r = 0.76 ± 0.02), as both high- and low-level clouds dominate the weather during the melt season. This indicates that glaciers in the central Himalaya have an additional sensitivity to air temperature, since the melt signal is dominated by the net longwave radiation (specific humidity and clouds).

In the Karakoram, there is an additional sensitivity to summer precipitation by means of the albedo increase and summer cloudiness. The precipitation sensitivity differs between the Karakoram and the central Himalaya, due to the different precipitation gradients and dominant precipitation type. Although the precipitation sensitivity of glaciers is usually less than the temperature sensitivity (Anderson and MacKintosh, 2012), this might not be the case for Karakoram and summer precipitation.

To understand glacier response to atmospheric conditions a detailed insight into the accumulation and ablation regimes is required and is for the first time done in this study for two contrasting sites in HMA. We show glaciers behave differently in central Himalaya and the Karakoram region, and that the glacier mass balance is sensitive to both the residual flux of the energy balance and snowfall. Annually, 1.26 ± 0.12 m w.e. snowfall in Shimshal occurs compared with 0.91 ± 0.15 m w.e. in Langtang. The residual energy available for melt is lower in Shimshal (−0.95 ± 0.13 m w.e. year−1) compared with Langtang (−1.31 ± 0.07 m w.e. year−1), resulting in positive and negative simulated SMB in Shimshal (+0.31 ± 0.06 m w.e. year−1), and in Langtang (−0.40 ± 0.09 m w.e. year−1), respectively.

Our research implies that the sensitivity of glaciers to climate change is regionally driven and future work could map regions of sensitivity to different components of the energy balance and meteorological forcing fields. This will give a more detailed insight into glacier behavior under climate change, as not all glaciers behave similarly, to rising temperatures. Understanding glacier mass balance anomalies requires quantification and insight in subtle shifts in the energy balance and accumulation regimes at high altitude.
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Seasonal snow is an important component of the Himalayan hydrological system, but a lack of observations at high altitude hampers understanding and forecasting of water availability in this region. Here, we use a passive gamma ray sensor that measures snow water equivalent (SWE) and complementary meteorological instruments installed at 4962 m a.s.l. in the Nepal Himalayas to quantify the evolution of SWE and snow depth over a 2-year period. We assess the accuracy, spatial representativeness and the applicability of the SWE and snow depth measurements using time-lapse camera imagery and field observations. The instrument setup performs well for snowpacks >50 mm SWE, but caution must be applied when interpreting measurements from discontinuous, patchy snow cover or those that contain lenses of refrozen meltwater. Over their typical ∼6-month lifetime, snowpacks in this setting can attain up to 200 mm SWE, of which 10–15% consists of mixed precipitation and rain-on-snow events. Precipitation gauges significantly underrepresent the solid fraction of precipitation received at this elevation by almost 40% compared to the gamma ray sensor. The application of sub-daily time-lapse camera imagery can help to correctly interpret and increase the reliability and representativeness of snowfall measurements. Our monitoring approach provides high quality, continuous, near-real time information that is essential to develop snow models in this data scarce region. We recommend that a similar instrument setup be extended into remote Himalayan environments to facilitate widespread snowpack monitoring and further our understanding of the high-altitude water cycle.
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INTRODUCTION

High Mountain Asia’s cryosphere delivers water resources to over one billion people (Barnett et al., 2005; Bookhagen and Burbank, 2010; Immerzeel et al., 2010; Bolch et al., 2012; Gardner et al., 2013; Smith T. et al., 2017). In many Himalayan river catchments, the contribution of seasonal snowmelt to mean annual runoff equals or exceeds that of glacial melt (Prasch et al., 2013; Rohrer et al., 2013; Lutz et al., 2014). Many communities, particularly those at high elevations, are dependent on seasonal snowmelt for water, hydropower generation and irrigation (Smith T. et al., 2017), whilst changes in snow conditions and extent have major ramifications for ecosystem function, avalanche threat, and climate feedbacks such as land surface albedo (Lehning et al., 1999; Sturm et al., 2010; Rohrer et al., 2013). With ongoing climate change predicted to affect the high-altitude Himalayan cryosphere (e.g., Singh and Kumar, 1997; Singh and Bengtsson, 2005; Stewart, 2009; Kraaijenbrink et al., 2017; Smith and Bookhagen, 2018), it is critical that seasonal Himalayan snowpacks are comprehensively monitored to facilitate the development of hydrological models that can be used to forecast water availability in this region (López-Moreno et al., 2013; Sexstone and Fassnacht, 2014; Saloranta et al., 2019).

The quantity of water contained within a snowpack, termed snow water equivalent (SWE), is one of the most important variables to consider when examining seasonal runoff production (Jonas et al., 2009). SWE is difficult to accurately measure and model over broad spatial areas, and large discrepancies exist between estimates derived from different measurement techniques such as reanalysis products, precipitation gauges, and satellite observations (Takala et al., 2011; Ménégoz et al., 2013). The application of Regional Circulation Models has shown potential to resolve issues associated with coarser spatial resolution Global Circulation Models in Himalayan regions (Polanski et al., 2010; Sabin et al., 2013); however, these simulations still have large biases when compared with observations due to difficulties in correctly partitioning solid and liquid phases of precipitation (Ménégoz et al., 2013). Many of the issues associated with SWE measurement and modeling are a result of the scarcity of reliable solid precipitation observations at high altitude with which to calibrate and develop SWE products (Ma et al., 2009; Ménégoz et al., 2013; Rohrer et al., 2013).

Obtaining accurate in situ SWE observations is a difficult and time-consuming process (Sturm et al., 2010). Automated methods of SWE measurement can increase the ease with which seasonal SWE patterns can be monitored and, unlike manual sampling techniques, do not invasively disturb a snowpack’s internal structure (Kinar and Pomeroy, 2015). Many automatic ground-based methods of measuring SWE exist, including weighing techniques (e.g., Serreze et al., 1999; Johnson et al., 2015), radiation-based methods (e.g., Kodama et al., 1979; Choquette et al., 2008; Martin et al., 2008; Rasmussen et al., 2012), technologies that measure the reflectance of acoustic impulses (Kinar and Pomeroy, 2007) and methods that utilize the Global Navigation Satellite System (Henkel et al., 2018; Appel et al., 2019). However, there is no ideal method of automatically measuring SWE (Egli et al., 2009), and installation and maintenance of gauging stations at elevations where the majority of Himalayan snow cover resides and melts (4000–5000 m a.s.l.) (Immerzeel et al., 2009; Tiwari et al., 2016; Gurung et al., 2017) is logistically difficult, expensive, and often dangerous in poor weather conditions. Even where present, many of the meteorological stations in the Himalayas have large data gaps (e.g., Shea et al., 2015), and rain gauges are generally not adapted to measure solid precipitation, resulting in large instrumental uncertainties which negatively impact efforts to calibrate SWE products over larger spatial scales (Lang and Barros, 2004; Ma et al., 2009; Ménégoz et al., 2013).

SWE can be estimated over greater spatial scales from airborne and satellite-based passive microwave sensors (e.g., Carroll et al., 1999; Smith and Bookhagen, 2018). These, along with other remote sensing methods, may provide useful information for downstream hydrological applications (Immerzeel et al., 2009; Bookhagen and Burbank, 2010). However, estimation of SWE from remote sensing data is associated with large uncertainties due to the topographic heterogeneity of mountainous terrain, which may result in lower than true mean SWE values (Takala et al., 2011; Tiwari et al., 2016). Furthermore, the applicability of these techniques to Himalayan settings is limited due to the substantial influence of melting and wetting in these snowpacks – both of which increase the uncertainty of microwave-based methods of SWE retrieval (Dong et al., 2005; Smith and Bookhagen, 2016). The spatial resolution of many remote sensing SWE products is also coarse when compared to the typical size of most Himalayan catchments (Stigter et al., 2017). Consequently, remotely sensed estimates of solid precipitation in the Himalayas differ widely from one product to another (Palazzi et al., 2013), and there is currently very little reliable information about changing patterns of Himalayan SWE (Lutz et al., 2015).

An alternative method of monitoring the water stored in seasonal snow is to calculate SWE as the product of snowpack depth and bulk density. The average (bulk) density of a snowpack depends on the initial density and compaction history of each constituent snow layer (Sturm et al., 2010; Schleef et al., 2014). Snowpack bulk density is influenced by many meteorological drivers and processes, including the air temperature and humidity at the time of snow crystal formation, the wind speed during fresh snow deposition, and the metamorphism, melting, refreezing and windblown packing of snow once settled (Hedstrom and Pomeroy, 1998; Meløysund et al., 2007; Bormann et al., 2013; Essery et al., 2013). As many of these drivers can vary over relatively short (sub-daily to hourly) timescales, snowpack density can exhibit substantial spatial and temporal variation, and continuous high-resolution observations of snowpack processes are necessary to understand seasonal snowpack densification (Jepsen et al., 2012; Sexstone and Fassnacht, 2014).

Many physically- and empirically-based models exist to predict snowpack properties (e.g., Brun et al., 1989, 1992; Carroll et al., 1999; Meløysund et al., 2007; Best et al., 2011; Saloranta, 2012; Essery et al., 2013; McCreight and Small, 2014). However, the physical mechanics underpinning these models are based on research conducted in high- to mid-latitude locations such as the large northern hemisphere snowfields of North America and Europe (e.g., Sturm and Holmgren, 1998; Judson and Doesken, 2000; Meløysund et al., 2007; Sturm et al., 2010; Zhong et al., 2014). Continuous observations of snow properties in high-altitude, low-latitude environments such as the Himalayas are almost non-existent and, consequently, calibrating the current generation of snow models to run in Himalayan settings is challenging.

The development, calibration, and improvement of more sophisticated SWE products in High Mountain Asia calls for a greater number of accurate, high-altitude, precipitation observations with rigorously constrained uncertainties. In this study, we present an automatic monitoring system installed at nearly 5000 m a.s.l. in the Nepal Himalayas that is capable of providing high-resolution snowpack observations in near-real time. We assess the suitability of the monitoring system to provide reliable estimates of SWE, snow depth, and solid precipitation that could be used to calibrate and develop SWE and snow models in this data-scarce region. We make recommendations about how this setup could be extended into similarly remote environments to attain greater understanding of the high-altitude Himalayan water cycle in the future.



DATA AND METHODS

Instrument Setup

The Automatic Weather Station

An automatic weather station was installed on the southern side of the Ganja La Pass (4962 m a.s.l.), near the boundary of the Langtang Valley catchment in the Nepal Himalayas (Figure 1). The automatic weather station was installed as part of the “Snow accumulation and melt processes in a Himalayan catchment” (SnowAMP) project described in Saloranta et al. (2016). The automatic weather station consists of sensors measuring SWE, snow depth, precipitation, ambient air temperature, surface temperature, relative humidity, average and maximum hourly wind speed, wind direction, barometric pressure, and the incoming and outgoing components of shortwave and longwave solar radiation (Table 1). The sensors are installed on a 5-m high lightweight (10 kg) aluminum mast mounted on a boulder and secured with guy wires (Figure 1c). Two precipitation gauges are installed at a distance of ∼3 m from the main instrument mast (Figure 1d). A Uovision UV565 time-lapse camera installed on the weather station captures images of the surrounding site six times per day.
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FIGURE 1. Study site and instruments. (a) Location of the Langtang catchment, adjacent to the study site, Nepal. (b) The automatic weather station is located on the southern side of the Ganja La Pass at 4962 m.a.s.l. Major glaciers and ice masses in Nepal are displayed (Bajracharya et al., 2014). (c) The automatic weather station and (d) the Total Precipitation Gauge at the Ganja La Pass in May 2017.



TABLE 1. Variables measured by the automatic weather station instruments.

[image: image]

The automatic weather station transmits its data in real time using the Iridium satellite network using the Short Burst Data transmission protocol. Data is sent hourly to the SutronWIN acquisition and presentation service,1 and is immediately accessible. A complete data series for all instruments is available between May 2016 and June 2018, except the precipitation weighing gauge which was dysfunctional from August 2016 to September 2016 and from August 2017 to January 2018. These periods of dysfunction were due to the gauge overflowing with water. The gauge was emptied in October 2016, but severe weather conditions prevented the automatic weather station from being accessed in October 2017. After December 2017, however, the water evaporated from the instrument and measurements could be recorded again. We exclude periods of gauge overflow from our analysis.

Snow Depth Measurement

Snow depth is measured with an SR50AT that uses the return speed of an ultrasonic pulse to determine the distance to the surface of the snowpack. The instrument has a typical accuracy of ±0.01 m. The measurement is adjusted for the varying speed of sound in different air temperatures using an internal temperature sensor with an accuracy of less than ±0.75°C (Campbell, 2016). Quality values output by the sensor were used to remove erroneous readings, and time-lapse camera images were used to filter out “false” snow events produced by the noise of the sensor.

To assess the optimal smoothing interval to remove noise from the snow depth sensor in locations where time-lapse camera imagery is not available, we performed sensitivity analysis that quantifies the effect of time series smoothing on snow event detection. To achieve this, we first removed any snow depths associated with a poor data quality value, before applying a shape-preserving piecewise cubic Hermite spline to interpolate missing data gaps within the raw snow depth timeseries. This interpolation method fills in data gaps without modifying the amplitude or shape of the timeseries. We then produced multiple smoothed snow depth timeseries using moving average filters of between 2 and 12 h. Increases in snow depth, greater than the 0.01 m h-1 accuracy of the SR50AT, which occur during the intervals confirmed by the time-lapse images are classified as “true” snow events. Conversely, increases in snow depth greater than 0.01 m h-1 that are not verified by the time-lapse camera images are assumed to be “false” snow events produced by the noise of the sensor. This method permits the effect of smoothing on snow event detection to be determined.

Snow Water Equivalent Measurement

The automatic weather station is equipped with a Campbell Scientific CS725 sensor which calculates SWE by passively measuring the attenuation of gamma rays emitted from naturally occurring isotopes of Potassium (40K) and Thallium (208Tl) present in the substrate beneath the sensor (Campbell, 2015; Stranden et al., 2015). The site’s 40K and 208Tl radiation levels were measured in September 2015 and were found to be well suited for making SWE measurements. Both isotopes provide near-identical estimates of SWE (Figure 2) except for the largest SWE values [>160 mm water equivalent (w.e.)] where 40K yields higher values. The isotope associated with the higher count is generally the most reliable (Smith C.D. et al., 2017) and, consequently, this study focuses on 40K. The CS725 calculates SWE by integrating gamma-ray emissions over a 24-h period before outputting an estimate of snowpack SWE at a 6-h time resolution. The instrument can measure the SWE of snowpacks up to ∼600 mm w.e. and has a measurement accuracy of ±15 mm from 0 to 300 mm w.e. and ±15% from 300 to 600 mm w.e. (Campbell, 2015).
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FIGURE 2. Time delay and isotope comparison for the CS725. (a) Example of the time delay between SWE measurements and snow depth measurements between January 2017 and July 2017. (b) SWE measurements derived from Potassium (40K) versus Thallium (208Tl) isotopes measured by the CS725. (c) Cross correlation plot between snow depth and SWE demonstrating that SWE most frequently lags behind snow depth by 18 h.



The CS725 has an effective field of view of ∼120°, allowing it to monitor the SWE of a ∼150 m2 area of snow surrounding the automatic weather station when mounted 4 m above the ground. The SWE measurement is most heavily weighted toward the snow directly beneath the sensor as gamma photon intensity is attenuated by greater travel distance through the snowpack with increasing radial distance from the automatic weather station. As the topography surrounding the sensor is relatively uniform, the instrument was installed without a collimator which reduces the surface area from which the gamma rays are sourced. Consequently, approximately 44% of incoming radiation counts are sourced from outside the sensor’s effective field of view, increasing the surface area of snow over which SWE values are derived (Campbell, 2015). Experiments in other similarly uniform and unforested sites suggest that the absence of a collimator should result in no significant difference in the measured SWE value compared to an instrument installed with a collimator in this setting (Wright, 2011).

Snowpack Density Data

On the 30th April, 2018, twelve snow pits were dug in a radial pattern around the automatic weather station, covering an area of ∼200 m2. The snow pits were arranged to systematically cover approximately the same area measured by the footprint of the CS725. All pits reached the base of the ∼0.4 m thick snowpack. A snow corer was used to measure the bulk density of the upper (0–0.2 m deep) and lower (0.2–0.4 m deep) portions of the snowpack by weighing a known volume of snow to within ±0.01 kg. The depth of the snowpack and the thickness of a basal ice layer present beneath the snowpack were measured to within ±0.005 m. The field measurements provide a snapshot of the spatial distribution of snowpack SWE, depth, bulk density, and basal ice thickness within the area measured by the weather station instruments.

Comparing CS725 SWE and Snow Depth Measurements

The suitability of the automatic weather station setup to remotely monitor Himalayan snowpack dynamics is assessed in terms of its temporal accuracy and its spatial representativeness. First, we assess the ability of the CS725 to provide timely estimates of changing snowpack SWE. Due to the 24-h moving average window employed by the CS725, it is possible that the changes in SWE detected by the sensor are delayed relative to the actual timing of fresh snow events. We use cross-correlation analysis to examine the presence of any lead or lag in the SWE estimates compared to changes in the depth of the snowpack. Secondly, we compare SWE and snow depth measurements to the spatial distribution of these variables measured in the field. Thirdly, to quantify spatial sensitivity of the sensors to changing snowpack thickness, we use time-lapse imagery to classify snow cover as either uniform or discontinuous and compare these classes to the changing SWE and snow depth values measured by the automatic weather station. Snow cover is defined as uniform when no gaps are present in the snow layer, and discontinuous when snow cover is present but patchy, with some bare ground visible. Finally, we combine the measured snowpack SWE with snow depth estimates to calculate snowpack bulk density and compare this with the snow pit measurements.

Calculation of SWE From Solid Precipitation Measurements

To examine whether precipitation gauges, which are more extensively deployed in the Himalayas than dedicated SWE sensors (Andermann et al., 2011), could be reliably used to monitor the SWE of incoming snowfall events, we compare between the CS725 and the Sutron Total Precipitation Gauge installed on the automatic weather station. The Total Precipitation Gauge is an unheated weighing bucket gauge designed to measure both solid and liquid precipitation. The gauge accumulates and weighs precipitation in a large bucket which is then differenced to derive the quantity of hourly precipitation. The instrument requires regular maintenance to empty the gauge and avoid the risk of overflowing, otherwise no additional measurements can be recorded. The precipitation gauge has a 200 mm diameter funneled orifice which is designed to prevent blockages and evaporation (Sutron, 2015). Antifreeze is added to the bucket to prevent the instrument from filling with low-density snow and to avoid damage to the bucket in sub-zero temperatures. The precipitation gauge is not windshielded.

Precipitation gauge SWE values are calculated by summing hourly precipitation within a 6-h interval in order to permit comparison to the CS725. We calculate and compare the cumulative SWE of incoming precipitation measured by each instrument for periods when a substantial snowpack (>15 mm w.e. and persisting for more than one month) was present. SWE increases recorded by the CS725 as a result of windblown snow redistribution are removed by ignoring any 6-h period of SWE without any observed precipitation in the precipitation gauge. We examine the correspondence between the CS725 and the snow depth sensor by comparing the total cumulative SWE measured by the CS725 to periods when the CS725 measurements increase simultaneously with snow depth.

There is no conclusive way to determine the phase of precipitation collected by the Total Precipitation Gauge, or the contribution to snowpack SWE made by each phase of precipitation. We therefore investigate four methods of identifying and accounting for precipitation phase using the Total Precipitation Gauge. First, we assume that solid precipitation falls when air temperatures are below –2°C, a widely employed ambient air temperature threshold for snow (e.g., Ye et al., 2004; Kochendorfer et al., 2017). We compare this to precipitation which coincides with an increase in snow depth. Third, we calculate the sum of precipitation assuming a linear transition between snowfall and rainfall that occurs between air temperatures of –2 and 2°C (e.g., Pipes and Quick, 1977; Harder and Pomeroy, 2013). Finally, we calculate the sum of any precipitation that occurs when snow cover is present in the time-lapse imagery.

Undercatch Correction of Solid Precipitation

Attempts to obtain accurate measurements with precipitation gauges are obstructed by the deflection of falling hydrometeors away from the inlet of the gauge, resulting in underestimation of the measured quantity of precipitation compared to its true value (Sevruk et al., 1991; Rasmussen et al., 2012). This precipitation “undercatch” is considered to be the most significant systematic error associated with gauge-based measurements of precipitation (Mekonnen et al., 2015). The magnitude of precipitation undercatch is dependent on the wind speed, the presence or absence of dedicated windshields, precipitation gauge design, and the size, phase and velocity of the falling hydrometeors (Sieck et al., 2007; Wolff et al., 2013; Colli et al., 2015). Measurement losses due to precipitation undercatch can amount up to 10% for rainfall and can exceed 50% for falling snow (Ye et al., 2004;Wolff et al., 2015).

The purpose of this study is not to conduct a carefully controlled undercatch quantification test (e.g., MacDonald and Pomeroy, 2007; Wolff et al., 2015) which would be needed to derive a site-specific undercatch correction function for the precipitation measurements. Instead, we estimate the undercatch of the precipitation gauge by comparing the accumulated precipitation to the cumulative SWE observed by the CS725. The percentage of precipitation measured by the Total Precipitation Gauge compared to the CS725 is termed “catch efficiency.” We compare our catch efficiency results to the theoretical catch efficiency ratio calculated from Kochendorfer et al. (2017), derived from the results of the World Meteorological Organization Solid Precipitation Intercomparison Experiment (WMO-SPICE). This correction function was chosen since it is currently the most comprehensive evaluation of precipitation undercatch due to being calculated from a large precipitation dataset gathered from multiple climatic regions including lowland and mountainous areas of Europe and North America. The correction function also incorporates both wind and air temperature parameters, and was derived using precipitation gauges similar to the Total Precipitation Gauge deployed at the Ganja La Pass as a reference, among others. The function calculates the catch efficiency ratio, CE, of the precipitation gauge using wind speed, Uh (m s-1), average air temperature, Tair (°C), and three empirically derived constants (a, b, and c), which vary according to the presence or absence of a windshield (see Kochendorfer et al., 2017):
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Average and maximum wind speeds were downscaled from the height of the anemometer to the lower height of the precipitation gauge orifice using a logarithmic wind profile that assumes neutral atmospheric stability (Yang et al., 1998), accounting for relative changes in instrument height due to changing snow depth.



RESULTS

Seasonal Meteorology and Snow Water Equivalent Patterns

Two years of hourly meteorological data from the Ganja La automatic weather station, recorded and transmitted in near-real time, are displayed in Figure 3. For comparison, Supplementary Figure 1 displays the daily values of the same data. Ganja La is characterized by cyclic, seasonally varying patterns of precipitation, relative humidity, wind speed, wind direction, surface temperature, and air temperature. The annual sum of precipitation exceeds 2000 mm, the majority of which falls during the monsoon season between July and October. Both air temperature and humidity exhibit cyclic seasonal variation, progressing from colder, but highly variable (–20 to ∼5°C), air temperatures in the winter (January–March), pre- (March–July) and post-monsoon (October–January) periods to warmer (≥5°C), less variable, air temperatures during the monsoon. Similarly, relative humidity progresses steadily from ∼5 to >50% in the winter months to ∼90–100% during the monsoon season, including highly variable relative humidities between 10 and 90% in the pre- and post-monsoon seasons. Surface temperatures exhibit large diurnal fluctuations of up to 30°C day-1 when the surface is not snow covered. Presence of snow cover is associated with reduced diurnal surface temperature variation, with temperatures typically between -5 and 0°C. Strong diurnal variations in incoming and outgoing shortwave and longwave radiation are also present. Net shortwave and longwave radiation fluxes are relatively consistent during the monsoon season. Measured shortwave and longwave radiation fluxes increase and decrease, respectively, once a snowpack forms in the post-monsoon season. The prevailing wind speed and direction is seasonally variable with gentle (<2 m s-1) southerly winds dominating during the monsoon season. Winds become stronger (>3 m s-1) and switch to a northerly prevailing direction prior to and following the monsoon season.
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FIGURE 3. Hourly meteorological data measured by the automatic weather station between May 2016 and June 2018. (a) Precipitation from the Total Precipitation Gauge, (b) air temperature, (c) surface temperature, (d) relative humidity, (e) wind speed and direction, (f) barometric pressure, (g) net shortwave radiation and (h) net longwave radiation.



Three snowpacks with a SWE exceeding 15 mm w.e. and persisting for longer than one month were present between May 2016 and June 2018. Cross correlation analysis demonstrates that the response of the CS725 to rapid changes in SWE generally lags behind instruments that provide immediate “snapshot” responses to changes in the snowpack, such as the SR50AT snow depth sensor (Figure 2c). The range of most common lags for the SWE measurement is between 15 and 23 h for both 40K and 208Tl, and the mean time lag for the entire SWE timeseries is 18 h. An 18-h time lag is therefore used to correct the observed SWE timeseries.

The seasonal evolution of SWE for the three snowpacks present between May 2016 and June 2018 is displayed in Figure 4a. The 6-hourly sum and phase of the precipitation recorded in the Total Precipitation Gauge is also displayed, split into solid, liquid, and mixed precipitation phases using ambient air temperature thresholds of < -2°C for snow, >2°C for rain and -2 to 2°C for mixed precipitation. Although the majority of the precipitation that falls at the beginning of the accumulation period (September–February) is snow, a snowpack often does not persist until the advent of more frequent precipitation events from March through to May. Once established, snowpacks at Ganja La contain up to 200 mm w.e. Single, sustained snowfall events contribute to large proportions of the total SWE, in some instances increasing snowpack SWE by 100–150 mm w.e. over the course of several days (e.g., March 2017 in Figure 4). Established snowpacks have a longevity of 5–6 months before SWE fully disappears. The phase of incoming precipitation becomes increasingly mixed during the last 2 months of the snowpack’s lifespan.
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FIGURE 4. Cumulative SWE patterns for the CS725 and the Total Precipitation Gauge when substantial snow cover is present. (a) SWE measured by the CS725 and measured precipitation, split into solid, mixed and liquid phases using temperature thresholds. The three periods studied in panel (b) are highlighted in red dashed boxes. (b) Cumulative precipitation sums for the CS725 and the raw and undercatch corrected Total Precipitation Gauge using snow cover, air temperature, snow depth and a linear phase transition to determine when solid precipitation falls.



To assess the prevalence of snow redistribution by wind, we examine the number of SWE and snow depth increases that do not coincide with a corresponding precipitation measurement in the precipitation gauge. Approximately 19% of the CS725 increases in SWE and 9% of the increases in snow depth were not associated with a precipitation gauge measurement, possibly resulting from windblown snow redistribution. Using outgoing longwave radiation to calculate the snow surface temperature, assuming a snow emissivity of ∼0.98 (Hori et al., 2006), and measured changes in snow depth and SWE, we assess the lowering and loss of SWE from the snowpack in relation to snow surface temperature. This analysis reveals that, prior to April, the majority of surface lowering occurs when snow surface temperatures are below 0°C. Of this sub-zero lowering, 80% coincides with a loss of SWE from the snowpack. After April, the majority of surface lowering is associated with above-zero surface temperatures; although a diurnal cycle is present where the snowpack surface often continues to lower in the presence of sub-zero temperatures at night. When snow surface temperatures exceed 0°C, 84% of surface lowering is associated with a loss of SWE, with the remaining 16% possibly being related to snow redistribution, compaction, or refreezing within the snowpack within the footprint of the CS725.

During periods when snow height fluctuations occur in the absence of a change in SWE, mean wind speeds are typically low, ranging between 0.5 and 4 m s-1, although maximum wind speeds of up to 12 m s-1 were achieved during the hour of measurement. Evidence of wind scouring of the snowpack is also present in the time-lapse imagery for these periods. No significant difference is present between the wind speeds experienced during periods where snow depths fluctuate without a change in SWE, compared to periods when snow depth fluctuations are associated with a change in SWE.

Comparison Between Methods of Measuring Solid Precipitation

The cumulative SWE measured by the CS725 and the Total Precipitation Gauge for the three substantial snowpacks present between May 2016 and June 2018 is displayed in Figure 4b. The CS725 generally reports a higher cumulative SWE than the precipitation gauge, especially when the latter is not corrected for undercatch. Increases in SWE that were recorded by the CS725 but not the precipitation gauge caused the total cumulative SWE measured by the CS725 to differ from its raw value by between 4 mm and 20 mm by the end of the three periods.

When uncorrected for undercatch, the Total Precipitation Gauge captures 62% of the solid precipitation measured by the CS725 on average. In most cases, the precipitation gauge measures more similar quantities of solid precipitation to the CS725 when wind speeds are lower (<2.5 m s-1), air temperatures are higher (>-10°C) and snowfall is more intense. The observed catch efficiency of the Total Precipitation Gauge (compared to the CS725) is lower than that derived from the results of WMO-SPICE (Eq. 1), which calculates that the instrument should capture between 70 and 93% of incoming solid precipitation (95% confidence interval), with a mean catch efficiency of 81% (Figure 4b). These relatively high predicted catch efficiencies result from low downscaled mean hourly wind speeds, which typically do not exceed 2 m s-1 during snowfall events.

The catch efficiency performance of the Total Precipitation Gauge decreases substantially during an exceptionally large snow event that occurred between the 8th and 12th of March 2017 in which the SWE measured by the CS725 increased by 168 mm in 104 h. During this time period, the Total Precipitation Gauge measures only one third of the SWE gain quantified by the CS725. A theoretical catch efficiency of ∼75% is calculated for this time period, implying that an additional factor, such as the blockage of the precipitation gauge orifice by intense snowfall, resulted in this discrepancy and the poor performance of the instrument during this snowfall event.

When corrected for undercatch using Eq. 1, the Total Precipitation Gauge produces a better agreement with the CS725 (Figure 4b), although cumulative SWE is slightly overpredicted in comparison to the CS725 on average. The exception to this bias is in 2017 where the large March snowfall event falsely skews the accumulated precipitation toward the SWE measured by the CS725. The sum of precipitation measured by the undercatch-corrected Total Precipitation Gauge that fell when snow cover was present in the time-lapse images, compared to the sum that fell when air temperatures were below –2°C provides a maximum estimate for the contribution of mixed and rain-on-snow events to snowpack SWE. The majority of the precipitation that contributed to snowpack SWE occurred when air temperatures were below –2°C, with mixed precipitation and rain-on-snow events combined contributing 55 and 32 mm w.e. to the total snowpack SWE in 2017 and 2018, respectively. This equates to approximately 10–15% of the accumulated snowpack SWE. In this location, mixed precipitation and rain-on-snow events do not contribute SWE to the snowpack until late April/early May, when the average air temperature at the station shifts from -6.6°C ± 3.8°C to -1.8°C ± 2.7°C. Using increases in snow depth to determine when SWE was contributed to the snowpack results in the poorest comparison to the CS725, excluding approximately a quarter (118–145 mm w.e.) of the total SWE measured by the CS725. This pattern likely reflects a combination of snow depth increases that occur below the 0.01 m accuracy threshold of the SR50AT and the occurrence of mixed and rain-on-snow precipitation events. The use of a linear phase transition for precipitation results in excellent agreement with the CS725, reproducing the accumulated precipitation to within ∼6 mm of the CS725 in 2017 and 2018.

Representativeness of Automatic Weather Station Measurements

Uniformity of Snow Cover

The temporal variation in snow cover uniformity, assessed using time-lapse camera images of the area surrounding the automatic weather station, is displayed in Figure 5. Snowpacks are typically uniform during the accumulation period regardless of the snow depth (Figures 5a,b). Uniform snow cover is associated with an albedo between 0.46 and 0.84 (mean = 0.65), whilst the albedo of discontinuous snow cover ranges between 0.10 and 0.60, with a mean of 0.30 (95% confidence interval) (Supplementary Figure 2). Figures 5c,d display histograms of the SWE and snow depth values measured when discontinuous snow cover is present. The majority of discontinuous snow cover periods are associated with SWE values that are less than the 15 mm w.e. accuracy of the CS725; however, in some instances, SWE values of up to 50 mm are measured before the snowpack becomes uniform. Snow depths of less than 0.10 m tend to be associated with patchy snow cover, although depths of up to 0.18 m are infrequently recorded during periods in which snow cover is not uniform.
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FIGURE 5. Temporal variation in SWE and snow cover continuity. (a,b) Snow cover classes for SWE and snow depth. Periods where a uniform snowpack is present are highlighted in purple and times when a discontinuous snowpack is present are shown in pink. Instrument uncertainties are displayed as a shaded gray band. Boxplots display the variation in snow pit SWE and depth measured on the 30th April, 2018. (c,d) The magnitude and proportion of SWE values and snow depths that occur while there is discontinuous snow cover. (e,f) Examples of uniform (e) and discontinuous (f) snow cover from time-lapse imagery close to the automatic weather station.



The number of “true” and “false” snowfall events detected by the SR50AT for different smoothing window lengths is shown in Figure 6. The raw data series detects 377 periods in which snow depth increases above the instrument’s 0.01 m h-1 accuracy threshold. Comparison with the time-lapse images reveals that only 58% of these detected increases in snow depth are real, meaning that 157 periods of instrument noise would be misclassified as snowfall if the raw data was used without a filter. Smoothing the snow depth timeseries using even a 2-h moving average filter dramatically reduces the number of “false” events that are classified as snow to only 6% of the total. Increasing the smoothing window length to 7 h removes all false events completely; however, this comes at the cost of a loss of ∼75% of the true events detected in the raw dataset. Window lengths greater than 7 h result in almost no further differences in the number of real events detected. The 2-h filter retains 79% of the “true” events detected in the raw dataset. Based on these results, it is preferable to use a 2-h smoothing filter to retain the maximum number of “true” snow events, and validate these results with the 7-h smoothed timeseries to ensure that any artifacts produced by the remaining 6% of events which relate to instrument noise do not influence the analysis.
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FIGURE 6. The effect of moving average smoothing interval on the number of true and false snow events detected by the snow depth sensor, verified by time-lapse camera images.



Comparison to Snow Pits

Figure 7 compares measured bulk density, measured snow depth and calculated SWE from the twelve snow pits on the 30th April, 2018, to the values derived from the automatic weather station instruments. The effective footprint of the SR50AT is 1.4 m2, whilst the CS725 has an effective footprint of ∼150 m2 (Figure 7a). Figure 7b displays the location and calculated SWE of the twelve snow pits dug around the automatic weather station. SWE values across the surface where no measurements were taken are estimated by linearly interpolating between the snow pit measurements. Calculated SWE values exhibit considerable spatial variation within the ∼200 m2 area covered by the snow pits, ranging between 122 mm and 196 mm w.e., with a mean of 156 mm w.e., resulting in a coefficient of variation of 13%. The interpolated average SWE value within the 1.4 m2 SR50AT footprint (146 mm w.e.) is representative of the value measured by the CS725 at this time (140 ± 15 mm w.e.) (Figure 7c).
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FIGURE 7. Comparison between snow pit SWE, bulk density and snow depth values and those derived from the CS725 and the snow depth sensor. (a) The automatic weather station displaying the effective footprints of the CS725 and the SR50AT snow depth sensor. (b) Spatial distribution of SWE derived from snow pit density and snow depth measurements around the automatic weather station (AWS). (c) SWE, bulk density and snow depth derived from the CS725 and the SR50AT. (d–f) Snowpack bulk density for: (d) the entire snowpack, (e) 0–0.2 m deep, (f) 0.2–0.4 m deep, (g) snow depth, (h) basal ice thickness, and (i) Spatial weighting of the CS725 SWE measurements.



Figures 7d–f present the bulk density of the whole snowpack (including basal ice), the upper 0–0.2 m section and the lower 0.2–0.4 m section of the snowpack, respectively, measured in the snow pits. The average bulk density of the entire snowpack is 364 ± 32 kg m-3 (±1 σ) and has a coefficient of variation of less than 9%. The average density of the upper 0–0.2 m portion of the snowpack is 270 ± 18 kg m-3 whist the lower 0.2–0.4 m section is approximately 1.3 times denser at 348 ± 69 kg m-3. The bulk density of the snowpack calculated from the automatic weather station measurements (by taking the quotient of SWE and snow depth) was 340 kg m-3 at the time when the snow pit measurements were made.

With the exception of one snow pit, the depth of the snowpack is relatively uniform, ranging between 0.40 and 0.50 m, with a mean value of 0.43 m and a coefficient of variation of 6%. The snow pits are 0.03 m deeper than the value measured by the SR50AT on average. Figure 7h displays the thickness of the basal ice layer situated between the base of the snowpack and the underlying substrate. The ice layer thickness is spatially variable, is not present in all snow pits and is up to 0.11 m thick. When averaged over the ∼150 m2 CS725 footprint, the basal ice is ∼0.03 m thick. Assuming an ice density of 910 kg m-3, this refrozen water corresponds to ∼30 mm of SWE, equivalent to ∼22% of the value measured by the CS725 for the overlapping 6-h time period. The presence of the thicker ice layers strongly influences the bulk density measurements which, when ice is present, are 30–46 kg m-3 greater than the average snowpack bulk density.



DISCUSSION

Instrument Performance and Errors

The differences between the radiation-based and weighing-based methods of measuring SWE (Figure 4b) demonstrates some of the challenges and variability associated with obtaining reliable in situ measurements of solid precipitation in high-altitude environments (Sieck et al., 2007). In its raw form, the Total Precipitation Gauge captures 62% of the solid precipitation measured by the CS725 on average. For years in which a substantial snowpack was established, the Total Precipitation Gauge tends to record more similar quantities of precipitation to the CS725 when air temperatures are warmer and wind speeds are lower. Warmer air temperatures are commonly associated with higher fresh snow densities that are less easily disrupted by winds which, when combined with lower wind speeds, will increase the catch efficiency of precipitation gauges (Hedstrom and Pomeroy, 1998; Meløysund et al., 2007; Kochendorfer et al., 2017). The tendency for the Total Precipitation Gauge to overflow without regular maintenance at the end of the monsoon season resulted in the loss of useful data in the last three months of 2017.

The CS725 captures more solid precipitation than the uncorrected Total Precipitation Gauge, implying either that undercatch results in a reduction in the precipitation entering this instrument, or that the CS725 overestimates the SWE of the snowpack. Precipitation gauge undercatch can exceed 50% for snowfall when gauges are not windshielded (Sevruk et al., 1991; Ye et al., 2004; Rasmussen et al., 2012; Mekonnen et al., 2015; Wolff et al., 2015), and we estimate that between 19 and 46% of incoming solid precipitation is not recorded in the Total Precipitation Gauge on average (Kochendorfer et al., 2017). This difference agrees well with the 38% discrepancy present between the Total Precipitation Gauge and the CS725. However, the CS725 has previously been found to overestimate SWE by between 18 and 35% in boreal climates in Finland, Switzerland, and Canada (Choquette et al., 2008; Smith C.D. et al., 2017). This error has been attributed to the infiltration and retention of snowmelt into soils prior to freeze up which alters the soil moisture content compared to the reference conditions that the CS725 is calibrated for. Water stored in the soil will continue to attenuate gamma radiation, resulting in a false overestimation of SWE (Gray et al., 2001; Smith C.D. et al., 2017).

In this particular region, however, we suggest that the monsoon-dominated climate may minimize the prevalence of this issue. The automatic weather station’s surface temperature sensor demonstrates that unfrozen soil conditions begin around June in the presence of snow-free conditions and continue until the establishment of a snowpack in November to December (Figure 3c). The precipitation regime of this region is monsoon dominated (Immerzeel et al., 2009, 2014), with ∼80% of the total annual precipitation recorded at Ganja La falling onto unfrozen ground during the summer monsoon. Assuming a temperature threshold of 2°C (Ye et al., 2004; Kochendorfer et al., 2017), liquid precipitation is observed to fall up until the advent of frozen ground conditions, shortly after which a snowpack typically forms. The short transition between the last of the liquid precipitation events and the onset of substrate freezing implies that any soil beneath the CS725 will be at or near to saturation when the ground freezes. As monsoon precipitation occurs consistently from year to year, the ground moisture content when new snowpacks form is likely to be similar to when the CS725 was first calibrated. Thus, the sensor may not be as prone to overestimation as previously recorded in other climatic settings. This conclusion is supported by our snow pit SWE estimates which, at an average of 156 mm w.e., are comparable with or even slightly higher, than the 140 ± 15 mm w.e. measured by the CS725, 2.5 years after the instrument was first calibrated. Accordingly, we suggest that the 38% precipitation discrepancy between the uncorrected Total Precipitation Gauge data and the CS725 is likely related to precipitation undercatch rather than an overestimation of SWE by the CS725.

The Ganja La automatic weather station is situated in the 4000–5000 m a.s.l. elevation band that is highly important for water storage and meltwater generation in this high mountain region (Immerzeel et al., 2009; Tiwari et al., 2016; Gurung et al., 2017). At this location, very little (10–15%) of the annual SWE falls as mixed precipitation or rain-on-snow events, emphasizing the importance of the need to obtain reliable estimates of solid precipitation in Himalayan environments. Despite its failure to successfully replicate the snowfall that occurred in March 2017, the undercatch-corrected Total Precipitation Gauge timeseries generally corresponds closely to that of the CS725, especially during periods when no exceptionally large snowfall events occurred (Figure 4). This result demonstrates that the undercatch correction function derived from Kochendorfer et al. (2017), despite having a tendency toward slightly overpredicting the quantity of SWE, generally performs well in this high-altitude environment and could potentially be used to correct similar precipitation gauges deployed in other Himalayan regions.

Approximately 20% of the snow depth changes measured by the SR50AT are not associated with a change in SWE and likely reflect a combination of snow redistribution by wind within the footprint of the CS725, internal refreezing of meltwater, and surface compaction. The fact that wind-related processes appear to play an important role in even the relatively sheltered Ganja La site where windspeeds are generally low (Figure 3e), highlights the value of having a SWE sensor with a large footprint as this removes the issue of undercatch altogether and avoids many of the spatial variability issues that are associated with point measurements of SWE (Osterhuber et al., 1998; Wright, 2013; Kinar and Pomeroy, 2015; Smith C.D. et al., 2017). Large proportions of surface lowering occur in sub-zero temperatures, particularly in the winter and early pre-monsoon seasons when relative humidities are low and wind speeds are comparatively high. These periods of SWE loss and surface lowering likely correspond to wind scouring of surface snow and the loss of SWE directly to the atmosphere through sublimation. Low atmospheric pressures, high wind speeds, dry air, and low surface vapor pressures make sublimation an important process at high-altitude locations (Strasser et al., 2008; Wagnon et al., 2013). Relatively high average sublimation rates of 1.0 mm w.e. per day, or 21% of annual snowfall, have been reported for the nearby Yala Glacier in the Langtang Catchment (Stigter et al., 2018) and Saloranta et al. (2019) report that sublimation accounts for 17% of all SWE losses at Ganja La. The importance of sublimation as a process in high-altitude environments demonstrates the value of applying a dedicated SWE sensor, along with complementary meteorological instruments, that can distinguish SWE losses from redistribution within the footprint of the sensor and quantify the loss of SWE under different meteorological conditions.

Due to the sensor’s 24-h integration of gamma radiation, the larger monitoring area of the CS725 comes at the cost of the loss of near-instantaneous monitoring capacity. Measurements from the CS725 must also be carefully interpreted due to its averaging of spatially heterogeneous SWE, which is influenced by the location of refrozen meltwater (Figure 7). Furthermore, the uniformity of the snowpack must be considered when interpreting results derived from this method as patchy snow cover can contain up to 50 mm SWE without being a substantial and uniform snowpack (Figure 5). The sensor will generally underestimate SWE during non-uniform snow cover conditions as gamma photon intensity decreases exponentially with greater snowpack water content. This issue can be exemplified using an extreme scenario where an area consists of 50% bare ground (0 mm w.e.) and 50% thick snow cover (600 mm w.e.). In this situation, although gamma radiation from the snow-covered portion of ground would be almost completely absorbed, the average intensity of gamma radiation reported by the instrument will be equal to half of the radiation emitted from the completely snow-free influence area. Simplified, this equates to approximately 50 mm of SWE, whereas the actual average SWE of the area would be 300 mm. Thus, radiation-based methods of SWE measurement will always have a bias toward the lower SWE sub-regions of the measured area during non-uniform snow cover conditions, although for the maximum SWE values observed here under patchy snow cover (50 mm), this effect would only amount to a ∼4 mm underestimation of SWE.

The bulk density calculated using the automatic weather station data exhibits excellent agreement with the range of densities measured in the snow pits on the 30th April, 2018 (Figure 7c). Although the snow pits represent only one point in time and are invariably not without error due to the difficulty of taking manual snow cores containing ice layers at high altitude in sub-zero temperatures (Smith C.D. et al., 2017), the pits capture a valuable snapshot of the spatial variability of SWE, snow depth and bulk density in this location. Calculating snowpack bulk density from continuous automatic weather station observations of SWE and snow depth comes with the caveat that this measure is only reliable when the footprints of the SR50AT and the CS725 are representative of the average values of the whole snowpack. As demonstrated by the time-lapse images and the low coefficients of variation associated with our snow pit SWE and depth measurements (13 and 6%, respectively), snow cover tends to be uniform during periods of snowpack accumulation (Figure 5), suggesting little snow depth variability within the CS725 footprint. Accordingly, when snow cover is uniform, the quotient of the CS725 and the SR50AT can be used to estimate snowpack bulk density. However, this method will be less accurate for periods of discontinuous snow cover when the snowpack is ablating.

Recommendations for Remote, High-Altitude Snowpack Monitoring

In this section, we use our assessment of instrument performance to postulate about the optimal setup for an automatic weather station that could be installed in a remote, high-altitude location and left without the need for maintenance for several years. Such a setup could provide input to achieve near-real time hydrological forecasting in a region where seasonal snow resources are important for millions of people.

The transmission of data using the Iridium satellite constellation is a robust and convenient method for achieving near-real time monitoring of snow conditions in high mountain environments. Variables measured and transmitted using this technique can be used to force near-real time simulations of the timing and magnitude of snowmelt into the catchment hydrological system and forecast avalanche risk (Saloranta et al., 2019). In order for these efforts to be worthwhile in the long term, the setup should require minimal maintenance whilst providing representative estimates of their measured variables of interest.

Reliable estimates of precipitation are some of the most important measurements to collect when attempting to monitor seasonal water resources (Jonas et al., 2009; Rohrer et al., 2013). Precipitation gauges are more extensively deployed in the Himalayas than dedicated SWE sensors (Andermann et al., 2011). Although it is preferable to install a windshield on these instruments to reduce the magnitude of precipitation undercatch, our results demonstrate that, under most conditions, unshielded precipitation weighing gauges can be corrected for undercatch using simple wind speed and temperature inputs to within 20% of an independent SWE sensor. The accuracy of undercatch-corrected precipitation gauges can be improved by using these instruments in combination with time-lapse camera images to verify snow events, or by applying linear precipitation phase transitions to the data collected (Figure 4b; Harder and Pomeroy, 2013). However, the possibility of precipitation gauge blockage under exceptional snow conditions remains a serious issue when attempting to accurately monitor the total quantity of precipitation stored as seasonal snow. This issue is very difficult to detect without reference to an independent SWE sensor or a camera pointed at the precipitation gauge. Taking the event which occurred between the 8th and 12th of March 2017 as an example, the loss of over two thirds of this SWE due to instrument blockage would seriously affect understanding of avalanche risk or the quantity of snowpack water storage predicted by a snow model and consequently alter the strategic efforts to mitigate the risk of these hazards.

This study has shown through the comparison of two SWE sensors that when corrected for undercatch, weighing gauge systems such as the Total Precipitation Gauge provide a relatively accurate method of measuring solid precipitation in Himalayan environments. However, the need to manually empty this type of gauge remains problematic in remote locations that cannot be accessed recurrently. Although self-emptying versions of gauges similar to the Total Precipitation Gauge are available, antifreeze is still required to be prevent damage to the instrument which requires a field team to visit the site regularly. Similar issues exist for snow pillows or weighing scales, as the former requires large quantities of antifreeze and the latter requires the transportation of heavy material to the study site, which is impractical in rugged high-altitude mountain terrain. Furthermore, snow pillows and weighing scales are prone to snow bridging produced by the refreezing of hard snow crusts that partially support the weight of the snowpack (Engeset et al., 2000; Smith C.D. et al., 2017) and, in the case of snow pillows, must be corrected for measurement errors produced by the differential compression of the instrument (Johnson, 2004; Johnson and Marks, 2004).

Although typically several times more expensive than weighing gauge systems, radiation-based methods of SWE monitoring such as the CS725 are comparatively well suited for remote high-altitude environments as they are portable, provide consistent measurement performance regardless of snow type, snowpack structure, or properties, are not affected by snow bridging, precipitation undercatch or adverse weather conditions, and their passive measurements do not disturb the internal structure of the snowpack (Osterhuber et al., 1998; Wright, 2013; Campbell, 2015; Stranden et al., 2015). Furthermore, this type of instrument is not affected by extremely cold temperatures, requires no antifreeze, and can typically be left in the field for 7 years without maintenance (Wright, 2013; Stranden et al., 2015). Radiation-based methods of SWE measurement also continue to measure the water content of the snowpack regardless of the phase that the water is stored in, reducing the scope to misinterpret the melting and refreezing of water within the snowpack as snowmelt and runoff.

The CS725 is capable of monitoring snowpacks up to approximately 600 mm w.e. Above this threshold, gamma radiation is attenuated to below the detection threshold of the instrument, although in general greater snow depths are beneficial as the radioactivity signal to noise ratio decreases as snow depth increases, yielding more accurate measurements (Kinar and Pomeroy, 2015). The applicability of radiation-based methods of SWE measurement may therefore be restricted in some locations by the need for installation sites to have a minimum background level of naturally occurring radioactive isotopes present in the substrate or in areas where particularly large snowpacks are present (Campbell, 2015; Stranden et al., 2015). Average winter SWE values are generally below 140 mm w.e. in High Mountain Asia, although higher snowpack SWE can exist in some high-elevation areas (Ménégoz et al., 2013; Tiwari et al., 2015, 2016; Smith and Bookhagen, 2018). The majority of snow cover in the Langtang catchment is less than 600 mm w.e. (Stigter et al., 2017; Saloranta et al., 2019). Locations where SWE exceeds 600 mm w.e. generally occur below very steep slopes in avalanche-prone terrain where the installation and long-term sustainability of a SWE sensor would be difficult to achieve. Thus, in most instances, the upper limit of SWE detection should not be a significant problem when siting the instrument in high mountain environments. The delayed integration of the CS725 may be problematic for uses that require instantaneous knowledge of SWE; however, with the exception of extreme snowfall events, using the SWE value of the previous day is likely to be sufficient for most monitoring purposes.

A snow depth sensor such as the SR50AT may be combined with a SWE sensor to provide calculated estimates of changing snowpack bulk density dynamics with which to develop and test numerical snow models in this region. However, the small footprint of the snow depth sensor may result in measurements being unrepresentative over larger areas due to the spatial heterogeneity commonly associated with snow depth (López-Moreno et al., 2013; Grünewald and Lehning, 2015). Additionally, the accuracy of the SR50AT can also be affected by a skewed sensor orientation, poor sound reflectance from extremely low-density snow, and rough or uneven surfaces (Campbell, 2016). This study has demonstrated that the installation of a time-lapse camera provides valuable imagery with which to cross-check the validity of snowfall events, optimizing the spatial resolution and continuity of snow depth and SWE measurements made remotely in the field. Unfortunately, this imagery is currently unable to be transmitted in near real-time. Cameras that transmit photos through a cellular network are becoming increasingly available on the market, but these would need to be adapted for the lack of phone signal in high-altitude Himalayan environments.

Overall, the large footprint, low maintenance setup and reliable performance of radiation-based measurements of SWE make this type of instrument suitable for monitoring remote high-altitude snow cover. SWE measurement accuracy and reliability can be improved by correcting instruments for time lag and wind-related issues using sensors that provide instantaneous measurements of snow depth and precipitation, or by validating SWE measurements in context using time-lapse camera imagery. Previous research has demonstrated that this region is characterized by significant and seasonally varying gradients of precipitation and temperature which need to be considered when attempting to spatially distribute automatic weather station measurements over a larger spatial scale (Immerzeel et al., 2014). If several stations, similar to the automatic weather station presented here, were installed along an elevational transect, precipitation and temperature gradients could be estimated in near real-time across a catchment, permitting snow properties to be modeled and estimated at the catchment scale or beyond (Saloranta et al., 2019). When combined with a reliable satellite-based transmission service, this instrument setup is capable of delivering valuable near real-time information about seasonal water resources stored as snow in high-altitude locations.



CONCLUSION

In this study we have presented a unique meteorological dataset comprising 2 years of continuous SWE, snow depth, precipitation, air temperature, relative humidity, surface temperature, wind speed, wind direction, barometric pressure, and shortwave and longwave solar radiation data from a high-altitude weather station at 4962 m a.s.l. in the Nepal Himalayas. The automatic weather station measurements are transmitted hourly via the Iridium satellite constellation, and are immediately available. We have assessed the accuracy and spatial representativeness of SWE and snow depth measurements using snow pits and time-lapse camera imagery. Our results show that although measurement errors become greater when snow cover thins, the automatic weather station measurements are spatially and temporally representative and are capable of providing valuable insights into the timing and processes governing the high altitude water cycle. The automatic monitoring system is capable of providing continuous SWE, snow depth, and snowpack bulk density measurements that could be used to develop and calibrate density and SWE models in this poorly documented region.

Wind scouring and redistribution of snow produces prominent measurement artifacts even in sheltered locations and care must be taken when interpreting precipitation measurements with narrow footprints and orifices. The application of sub-daily time-lapse camera imagery can help to correctly interpret and increase the reliability and representativeness of snow surface measurements. Over 85% of incoming SWE at the elevation of the automatic weather station fell as solid precipitation, emphasizing the importance of obtaining reliable estimates of snowfall in Himalayan environments. Comparison between an independent SWE sensor and a precipitation gauge has shown that precipitation gauges significantly underrepresent the magnitude of solid precipitation received in high elevation regions by almost 40%; however, this bias can largely be corrected using simple wind speed and temperature inputs.

Widespread deployment of similarly robust, relatively maintenance free snow measurement stations that transmit data remotely using satellite connection across other Himalayan regions would permit widespread near-real time monitoring of seasonal Himalayan snowpacks. This monitoring setup may then permit snow condition assessment, hydrological forecasting, and evaluation of avalanche threats to be made at a temporal resolution that is currently unavailable in this region of the world.



AUTHOR CONTRIBUTIONS

JK, IK, ML, and TS designed the study with inputs from ES and WI. JK conducted the analysis together with IK, ML, and TS, and wrote the initial version of the manuscript. KnM designed the measurement station setup. AT, KnM, KjM, and ML participated in initial automatic weather station installation in Langtang in 2015. All authors participated in fieldwork to collect the data, and setup and maintain the automatic weather station between 2015 and 2018, and contributed to data interpretation and writing of the final version of the manuscript.



FUNDING

This work was supported by the International Centre for Integrated Mountain Development’s Cryosphere Initiative funded by Norway, and by core funds contributed by the Governments of Afghanistan, Australia, Austria, Bangladesh, Bhutan, China, India, Myanmar, Nepal, Norway, Pakistan, Sweden, and Switzerland. Research was also financially supported by the European Research Council under the European Union’s Horizon 2020 Research and Innovation Program (Grant Agreement No. 676819) and the Netherlands Organization for Scientific Research (NWO) under the Innovational Research Incentives Scheme VIDI (Grant Agreement No. 016.181.308).



ACKNOWLEDGMENTS

The automatic weather station was established in October 2015 as part of the Snow accumulation and melt processes in a Himalayan catchment project developed by the International Centre for Integrated Mountain Development, the Norwegian Water Resources and Energy Directorate, and the Department of Hydrology and Meteorology Nepal. The views and interpretations in this publication are those of the authors and they are not necessarily attributable to their organizations. We would like to thank all who supported us during fieldwork or provided the equipment that was required. We thank the Kathmandu University and the Department of National Parks and Wildlife Conservation for facilitation of our research permits. We also thank Anna Sinisalo and Graham Sexstone for their helpful thoughts and suggestions during manuscript preparation, and two reviewers for their comments and ideas that helped to improve the manuscript.



SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/feart.2019.00177/full#supplementary-material

The raw meteorological data used in this study is available in Supplementary Data Sheets 1, 2.



FOOTNOTES

1 http://sutronwin.com/



REFERENCES

Andermann, C., Bonnet, S., and Gloaguen, R. (2011). Evaluation of precipitation data sets along the Himalayan front. Geochem. Geophys. Geosyst. 12:Q07023. doi: 10.1029/2011GC003513

Appel, F., Koch, F., Rösel, A., Klug, P., Henkel, P., Lamm, M., et al. (2019). Advances in snow hydrology using a combined approach of GNSS in situ stations, hydrological modelling and earth observation—a case study in Canada. Geosciences 9:44. doi: 10.3390/geosciences9010044

Bajracharya, S. R., Maharjan, S. B., Shrestha, F., Bajracharya, O. R., and Baidya, S. (2014). Glacier Status in Nepal and Decadal Change from 1980 to 2010 Based on Landsat Data. Kathmandu: International Centre for Integrated Mountain Development (ICIMOD).

Barnett, T. P., Adam, J. C., and Lettenmaier, D. P. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303. doi: 10.1038/nature04141

Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., et al. (2011). The Joint UK Land Environment Simulator (JULES), model description. Part 1: energy and water fluxes. Geosci. Model Dev. 4, 677–699. doi: 10.5194/gmd-4-677-2011

Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., et al. (2012). The state and fate of Himalayan glaciers. Science 336, 310–314. doi: 10.1126/science.1215828

Bookhagen, B., and Burbank, D. W. (2010). Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. Earth Surf. 115:F03019. doi: 10.1029/2009JF001426

Bormann, K. J., Westra, S., Evans, J. P., and McCabe, M. F. (2013). Spatial and temporal variability in seasonal snow density. J. Hydrol. 484, 63–73. doi: 10.1016/j.jhydrol.2013.01.032

Brun, E., David, P., Sudul, M., and Brunot, G. (1992). A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting. J. Glaciol. 38, 13–22. doi: 10.3189/S0022143000009552

Brun, E., Martin, E, Simon, V., Gendre, C., and Coleou, C. (1989). An energy and mass model of snow cover suitable for operational avalanche forecasting. J. Glaciol. 35, 333–342. doi: 10.3189/S0022143000009254

Campbell (2015). CS725 Snow Water Equivalent Sensor Instruction Manual. Edmonton, AB: Campbell Scientific Corp.

Campbell (2016). SR50AT-316SS-SR50ATH Sensor Instruction Manual. Edmonton, AB: Campbell Scientific Corp.

Carroll, S. S., Carroll, T. R., and Poston, R. W. (1999). Spatial modeling and prediction of snow-water equivalent using ground-based, airborne, and satellite snow data. J. Geophys. Res. Atmos. 104, 19623–19629. doi: 10.1029/1999JD900093

Choquette, Y., Lavigne, P., Nadeau, M., Ducharme, P., Martin, J. P., Houdayer, A., et al. (2008). “GMON, a new sensor for snow water equivalent via gamma monitoring,” in Proceedings Whistler 2008 International Snow Science Workshop, Whistler, BC.

Colli, M., Rasmussen, R., Thériault, J. M., Lanza, L. G., Baker, C. B., and Kochendorfer, J. (2015). An improved trajectory model to evaluate the collection performance of snow gauges. J. Appl. Meteorol. Climatol. 54, 1826–1836. doi: 10.1175/JAMC-D-15-0035.1

Dong, J., Walker, J. P., and Houser, P. R. (2005). Factors affecting remotely sensed snow water equivalent uncertainty. Remote Sens. Environ. 97, 68–82. doi: 10.1016/j.rse.2005.04.010

Egli, L., Jonas, T., and Meister, R. (2009). Comparison of different automatic methods for estimating snow water equivalent. Cold Regions Sci. Technol. 57, 107–115. doi: 10.1016/j.coldregions.2009.02.008

Engeset, R., Sorteberg, H., and Udnaes, H. (2000). “Snow pillows: Use and verification,” in Proceedings of the Fourth International Conference on Snow Engineering, Snow Engineering: Recent Advances and Developments, Trondheim.

Essery, R., Morin, S., Lejeune, Y., and Ménard, C. B. (2013). A comparison of 1701 snow models using observations from an alpine site. Adv. Water Res. 55, 131–148. doi: 10.1016/j.advwatres.2012.07.013

Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr, J., et al. (2013). A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340, 852–857. doi: 10.1126/science.1234532

Gray, D. M., Toth, B., Zhao, L., Pomeroy, J. W., and Granger, R. J. (2001). Estimating areal snowmelt infiltration into frozen soils. Hydrol. Process. 15, 3095–3111. doi: 10.1002/hyp.320

Grünewald, T., and Lehning, M. (2015). Are flat-field snow depth measurements representative? A comparison of selected index sites with areal snow depth measurements at the small catchment scale. Hydrol. Process. 29, 1717–1728. doi: 10.1002/hyp.10295

Gurung, D. R., Maharjan, S. B., Shrestha, A. B., Shrestha, M. S., Bajracharya, S. R., and Murthy, M. S. R. (2017). Climate and topographic controls on snow cover dynamics in the Hindu Kush Himalaya. Int. J. Climatol. 37, 3873–3882. doi: 10.1002/joc.4961

Harder, P., and Pomeroy, J. (2013). Estimating precipitation phase using a psychrometric energy balance method. Hydrol. Process. 27, 1901–1914. doi: 10.1002/hyp.9799

Hedstrom, N. R., and Pomeroy, J. W. (1998). Measurements and modelling of snow interception in the boreal forest. Hydrol. Process. 12, 1611–1625. doi: 10.1002/(sici)1099-1085(199808/09)12:10/11<1611::aid-hyp684>3.0.co;2-4

Henkel, P., Koch, F., Appel, F., Bach, H., Prasch, M., Schmid, L., et al. (2018). Snow water equivalent of dry snow derived from GNSS carrier phases. IEEE Trans. Geosci. Remote Sens. 56, 3561–3572. doi: 10.1109/TGRS.2018.2802494

Hori, M., Aoki, T., Tanikawa, T., Motoyoshi, H., Hachikubo, A., Sugiura, K., et al. (2006). In-situ measured spectral directional emissivity of snow and ice in the 8-14 m atmospheric window. Remote Sens. Environ. 100, 486–502. doi: 10.1016/j.rse.2005.11.001

Immerzeel, W. W., Droogers, P., De Jong, S. M., and Bierkens, M. F. P. (2009). Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sens. Environ. 113, 40–49. doi: 10.1016/j.rse.2008.08.010

Immerzeel, W. W., Petersen, L., Ragettli, S., and Pellicciotti, F. (2014). The importance of observed gradients of air temperature and precipitation for modeling runoff from a glacierized watershed in the Nepalese Himalayas. Water Res. Res. 50, 2212–2226. doi: 10.1002/2013WR014506

Immerzeel, W. W., Van Beek, L. P. H., and Bierkens, M. F. P. (2010). Climate change will affect the Asian water towers. Science 328, 1382–1385. doi: 10.1126/science.1183188

Jepsen, S. M., Molotch, N. P., Williams, M. W., Rittger, K. E., and Sickman, J. O. (2012). Interannual variability of snowmelt in the Sierra Nevada and Rocky Mountains, United States: examples from two alpine watersheds. Water Res. Res. 48:W02529. doi: 10.1029/2011WR011006

Johnson, J. B. (2004). A theory of pressure sensor performance in snow. Hydrol. Process. 18, 53–64. doi: 10.1002/hyp.1310

Johnson, J. B., Gelvin, A. B., Duvoy, P., Schaefer, G. L., Poole, G., and Horton, G. D. (2015). Performance characteristics of a new electronic snow water equivalent sensor in different climates. Hydrol. Process. 29, 1418–1433. doi: 10.1002/hyp.10211

Johnson, J. B., and Marks, D. (2004). The detection and correction of snow water equivalent pressure sensor errors. Hydrol. Process. 18, 3513–3525. doi: 10.1002/hyp.5795

Jonas, T., Marty, C., and Magnusson, J. (2009). Estimating the snow water equivalent from snow depth measurements in the Swiss Alps. J. Hydrol. 378, 161–167. doi: 10.1016/j.jhydrol.2009.09.021

Judson, A., and Doesken, N. (2000). Density of freshly fallen snow in the central Rocky Mountains. Bull. Am. Meteorol. Soc. 81, 1577–1587. doi: 10.1175/1520-0477(2000)081<1577:doffsi>2.3.co;2

Kinar, N. J., and Pomeroy, J. W. (2007). Determining snow water equivalent by acoustic sounding. Hydrol. Process. Int. J. 21, 2623–2640. doi: 10.1002/hyp.6793

Kinar, N. J., and Pomeroy, J. W. (2015). Measurement of the physical properties of the snowpack. Rev. Geophys. 53, 481–544. doi: 10.1002/2015RG000481

Kochendorfer, J., Nitu, R., Wolff, M., Mekis, E., Rasmussen, R., Baker, B., et al. (2017). Analysis of single-Alter-shielded and unshielded measurements of mixed and solid precipitation from WMO-SPICE. Hydrol. Earth Syst. Sci. 21, 3525–3542. doi: 10.5194/hess-21-3525-2017

Kodama, M., Nakai, K., Kawasaki, S., and Wada, M. (1979). An application of cosmic-ray neutron measurements to the determination of the snow-water equivalent. J. Hydrol. 41, 85–92. doi: 10.1016/0022-1694(79)90107-0

Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F., and Immerzeel, W. W. (2017). Impact of a 1.5°C global temperature rise on Asia’s glaciers. Nature 549, 257–260. doi: 10.1038/nature23878

Lang, T., and Barros, A. P. (2004). Winter Storms in the central Himalayas. J. Meteorol. Soc. Japan 82, 829–844. doi: 10.2151/jmsj.2004.829

Lehning, M., Bartelt, P., Brown, B., Russi, T., Stöckli, U., and Zimmerli, M. (1999). SNOWPACK model calculations for avalanche warning based upon a new network of weather and snow stations. Cold Regions Sci. Technol. 30, 145–157. doi: 10.1016/s0165-232x(99)00022-1

López-Moreno, J. I., Fassnacht, S. R., Heath, J. T., Musselman, K. N., Revuelto, J., Latron, J., et al. (2013). Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent. Adv Water Res. 55, 40–52. doi: 10.1016/j.advwatres.2012.08.010

Lutz, A. F., Immerzeel, W. W., Litt, M., Bajracharya, S., and Shrestha, A. B. (2015). Comprehensive Review of Climate Change and the Impacts on Cryosphere, Hydrological Regimes and Glacier Lakes. Available at: http://lib.icimod.org/record/32006 (accessed December 2015).

Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., and Bierkens, M. F. P. (2014). Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Change 4, 587–592. doi: 10.1038/nclimate2237

Ma, L., Zhang, T., Frauenfeld, O. W., Ye, B., Yang, D., and Qin, D. (2009). Evaluation of precipitation from the ERA-40, NCEP-1, and NCEP-2 reanalyses and CMAP-1, CMAP-2, and GPCP-2 with ground-based measurements in China. J. Geophys. Res. 114:D09105. doi: 10.1029/2008JD011178

MacDonald, J., and Pomeroy, J. W. (2007). “Gauge undercatch of two common snowfall gauges in a prairie environment,” in Proceedings of the 64th Eastern Snow Conference, St. John’s, NL.

Martin, J. P., Houdayer, A., Lebel, C., Choquette, Y., Lavigne, P., and Ducharme, P. (2008). “An unattended gamma monitor for the determination of snow water equivalent (SWE) using the natural ground gamma radiation,” in Proceedings of the Nuclear Science Symposium Conference Record, 2008. NSS’08. IEEE, (Piscataway, NJ: IEEE), 983–988.

McCreight, J. L., and Small, E. E. (2014). Modeling bulk density and snow water equivalent using daily snow depth observations. Cryosphere 8, 521–536. doi: 10.5194/tc-8-521-2014

Mekonnen, G. B., Matula, S., Doležal, F., and Fišák, J. (2015). Adjustment to rainfall measurement undercatch with a tipping-bucket rain gauge using ground-level manual gauges. Meteorol. Atmos. Phys. 127, 241–256. doi: 10.1007/s00703-014-0355-z

Meløysund, V., Leira, B., Høiseth, K. V., and Lisø, K. R. (2007). Predicting snow density using meteorological data. Meteorol. Appl. 14, 413–423. doi: 10.1002/met.40

Ménégoz, M., Gallée, H., and Jacobi, H. W. (2013). Precipitation and snow cover in the Himalaya: from reanalysis to regional climate simulations. Hydrol. Earth Syst. Sci. 17, 3921–3936. doi: 10.5194/hess-17-3921-2013

Osterhuber, R., Gehrke, F., and Condreva, K. (1998). “Snowpack snow water equivalent measurement using the attenuation of cosmic gamma radiation,” in Proceedings Western Snow Conference, Snowbird.

Palazzi, E., Von Hardenberg, J., and Provenzale, A., (2013). Precipitation in the Hindu-Kush Karakoram Himalaya: observations and future scenarios. J. Geophys. Res. Atmos. 118, 85–100. doi: 10.1029/2012JD018697

Pipes, A., and Quick, M. (1977). UBC Watershed Model Users Guide. Vancouver: Department of Civil Engineering, University of British Columbia.

Polanski, S., Rinke, A., and Dethloff, K. (2010). Validation of the HIRHAM-simulated Indian summer monsoon circulation. Adv. Meteorol. 2010:415632. doi: 10.1155/2010/415632

Prasch, M., Mauser, W., and Weber, M. (2013). Quantifying present and future glacier melt-water contribution to runoff in a central Himalayan river basin. Cryosphere 7, 889–904. doi: 10.5194/tc-7-889-2013

Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt, S., Fischer, A. P., et al. (2012). How well are we measuring snow: the NOAA/FAA/NCAR winter precipitation test bed. Bull. Am. Meteorol. Soc. 93, 811–829. doi: 10.1175/BAMS-D-11-00052.1

Rohrer, M., Salzmann, N., Stoffel, M., and Kulkarni, A. V. (2013). Missing (in-situ) snow cover data hampers climate change and runoff studies in the Greater Himalayas. Sci. Total Environ. 468, S60–S70. doi: 10.1016/j.scitotenv.2013.09.056

Sabin, T. P., Raghavan, K., Ghattas, J., Denvil, S., Dufresne, J.-L., Hourdin, F., et al. (2013). High resolution simulation of the South Asian monsoon using a variable resolution global climate model. Clim. Dyn. 41, 173–194. doi: 10.1007/s00382-012-1658-8

Saloranta, T., Litt, M., and Melvold, K. (2016). Measuring and Modelling Snow Cover and Melt in a Himalayan Catchment: Instrumentation and model code setup in the Langtang catchment, Nepal. Lessons learned from the SnowAMP Project, nve Working Paper 2016/10. Kathmandu: International Centre for Integrated Mountain Development.

Saloranta, T., Thapa, A., Kirkham, J. D., Koch, I., Stigter, E. E., Melvold, K., et al. (2019). A model setup for mapping snow conditions in High-Mountain Himalaya. Front. Earth Sci. 7:129. doi: 10.3389/feart.2019.00129

Saloranta, T. M. (2012). Simulating snow maps for Norway: description and statistical evaluation of the seNorge snow model. Cryosphere 6, 1323–1337. doi: 10.5194/tc-6-1323-2012

Schleef, S., Löwe, H., and Schneebeli, M. (2014). Influence of stress, temperature and crystal morphology on isothermal densification and specific surface area decrease of new snow. Cryosphere 8, 1825–1838. doi: 10.5194/tc-8-1825-2014

Serreze, M. C., Clark, M. P., Armstrong, R. L., McGinnis, D. A., and Pulwarty, R. S. (1999). Characteristics of the western United States snowpack from snowpack telemetry (SNOTEL) data. Water Res. Res. 35, 2145–2160. doi: 10.1029/1999WR900090

Sevruk, B., Hertig, J. A., and Spiess, R. (1991). The effect of a precipitation gauge orifice rim on the wind field deformation as investigated in a wind tunnel. Atmos. Environ. Part A Gen. Top. 25, 1173–1179. doi: 10.1016/0960-1686(91)90228-Y

Sexstone, G. A., and Fassnacht, S. R. (2014). What drives basin scale spatial variability of snowpack properties in northern Colorado? Cryosphere 8, 329–344. doi: 10.5194/tc-8-329-2014

Shea, J. M., Wagnon, P., Immerzeel, W. W., Biron, R., Brun, F., and Pellicciotti, F. (2015). A comparative high-altitude meteorological analysis from three catchments in the Nepalese Himalaya. Int. J. Water Resour. Dev. 31, 174–200. doi: 10.1080/07900627.2015.1020417

Sieck, L. C., Burges, S. J., and Steiner, M. (2007). Challenges in obtaining reliable measurements of point rainfall. Water Resour. Res. 43:W01420. doi: 10.1029/2005WR004519

Singh, P., and Bengtsson, L. (2005). Impact of warmer climate on melt and evaporation for the rainfed, snowfed and glacierfed basins in the Himalayan region. J. Hydrol. 300, 140–154. doi: 10.1016/j.jhydrol.2004.06.005

Singh, P., and Kumar, N. (1997). Impact assessment of climate change on the hydrological response of a snow and glacier melt runoff dominated Himalayan river. J. Hydrol. 193, 316–350. doi: 10.1016/S0022-1694(96)03142-3

Smith, T., and Bookhagen, B. (2016). Assessing uncertainty and sensor biases in passive microwave data across High Mountain Asia. Remote Sens. Environ. 181, 174–185. doi: 10.1016/j.rse.2016.03.037

Smith, T., and Bookhagen, B. (2018). Changes in seasonal snow water equivalent distribution in High Mountain Asia (1987 to 2009). Sci. Adv. 4:e1701550. doi: 10.1126/sciadv.1701550

Smith, T., Bookhagen, B., and Rheinwalt, A. (2017). Spatiotemporal patterns of High Mountain Asia’s snowmelt season identified with an automated snowmelt detection algorithm, 1987–2016. Cryosphere 11, 2329–2343. doi: 10.5194/tc-11-2329-2017

Smith, C. D., Kontu, A., Laffin, R., and Pomeroy, J. W. (2017). An assessment of two automated snow water equivalent instruments during the WMO solid precipitation intercomparison experiment. Cryosphere 11, 101–116. doi: 10.5194/tc-11-101-2017

Stewart, I. T. (2009). Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol. Process. 23, 78–94. doi: 10.1002/hyp.7128

Stigter, E. E., Litt, M., Steiner, J. F., Bonekamp, P. N. J., Shea, J. M., Bierkens, M. F. P., et al. (2018). The importance of snow sublimation on a Himalayan Glacier. Front. Earth Sci. 6:108. doi: 10.3389/feart.2018.00108

Stigter, E. E., Wanders, N., Saloranta, T. M., Shea, J. M., Bierkens, M. F., and Immerzeel, W. W. (2017). Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment. Cryosphere 11, 1647–1664. doi: 10.5194/tc-11-1647-2017

Stranden, H. B., Ree, B. L., and Møen, K. M. (2015). Recommendations for Automatic Measurements of Snow Water Equivalent in NVE. Majorstua: Norges vassdrags- og energidirektorat.

Strasser, U., Bernhardt, M., Weber, M., Liston, G. E., and Mauser, W. (2008). Is sublimation important for alpine water balance? Cryosphere 2, 53–66. doi: 10.5194/tc-2-53-2008

Sturm, M., and Holmgren, J. (1998). Differences in compaction behavior of three climate classes of snow. Ann. Glaciol. 26, 125–130. doi: 10.1017/S0260305500014683

Sturm, M., Taras, B., Liston, G. E., Derksen, C., Jonas, T., and Lea, J. (2010). Estimating snow water equivalent using snow depth data and climate classes. J. Hydrometeorol. 11, 1380–1394. doi: 10.1175/2010JHM1202.1

Sutron (2015). Total Precip Gauge (TPG), TPG-0001-1, TPG-0003-1 Operations & Maintenance Manual. Available at: http://www.sutron.com/product/total-precipitation-gauge-tpg/ (accessed March 2011).

Takala, M., Luojus, K., Pulliainen, J., Derksen, C., Lemmetyinen, J., Karna, J. P., et al. (2011). Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and groundbased measurements. Remote Sens. Environ. 115, 3517–3529. doi: 10.1016/j.rse.2011.08.014

Tiwari, S., Kar, S. C., and Bhatla, R. (2015). Snowfall and snowmelt variability over Himalayan region in inter-annual timescale. Aquat. Preced. 4, 942–949. doi: 10.1016/j.aqpro.2015.02.118

Tiwari, S., Kar, S. C., and Bhatla, R. (2016). Examination of snowmelt over Western Himalayas using remote sensing data. Theor. Appl. Climatol. 125, 227–239. doi: 10.1007/s00704-015-1506-y

Wagnon, P., Vincent, C., Arnaud, Y., Berthier, E., Vuillermoz, E., Gruber, S., et al. (2013). Seasonal and annual mass balances of Mera and Pokalde glaciers (Nepal Himalaya) since 2007. Cryosphere 7, 1769–1786. doi: 10.5194/tc-7-1769-2013

Wolff, M., Isaksen, K., Brækkan, R., Alfnes, E., Petersen-Øverleir, A., and Ruud, E. (2013). Measurements of wind-induced loss of solid precipitation: description of a Norwegian field study. Hydrol. Res. 44, 35–43. doi: 10.2166/nh.2012.166

Wolff, M. A., Isaksen, K., Petersen-Øverleir, A., Ødemark, K., Reitan, T., and Brækkan, R. (2015). Derivation of a new continuous adjustment function for correcting wind-induced loss of solid precipitation: results of a Norwegian field study. Hydrol. Earth Syst. Sci. 19, 951–967. doi: 10.5194/hess-19-951-2015

Wright, M. (2011). Performance Analysis of CS725 Snow Water Equivalent Sensor. Edmonton, AB: Campbell Scientific Corp.

Wright, M. (2013). CS725 Frozen Potential: The Ability to Predict Snow Water Equivalent is Essential. Edmonton, AB: Campbell Scientific Corp.

Yang, D., Goodison, B. E., Metcalfe, J. R., Golubev, V. S., Bates, R., Pangburn, T., et al. (1998). Accuracy of NWS 8” standard nonrecording precipitation gauge: results and application of WMO Intercomparison. J. Atmos. Ocean. Technol. 15, 54–68. doi: 10.1175/1520-0426(1998)015<0054:aonsnp>2.0.co;2

Ye, B., Yang, D., Ding, Y., Han, T., and Koike, T. (2004). A bias-corrected precipitation climatology for China. J. Hydrometeorol. 5, 1147–1160. doi: 10.1175/JHM-366.1

Zhong, X., Zhang, T., and Wang, K. (2014). Snow density climatology across the former USSR. Cryosphere 8, 785–799. doi: 10.5194/tc-8-785-2014

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Kirkham, Koch, Saloranta, Litt, Stigter, Møen, Thapa, Melvold and Immerzeel. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.












	
	ORIGINAL RESEARCH
published: 14 August 2019
doi: 10.3389/feart.2019.00210






[image: image2]

Bayesian Multi-Scale Spatio-Temporal Modeling of Precipitation in the Indus Watershed


Michael F. Christensen1*, Matthew J. Heaton1, Summer Rupper2, C. Shane Reese1 and William F. Christensen1


1Department of Statistics, Brigham Young University, Provo, UT, United States

2Department of Geography, University of Utah, Salt Lake City, UT, United States

Edited by:
Tomas Halenka, Charles University, Czechia

Reviewed by:
Nathaniel K. Newlands, Agriculture and Agri-Food Canada (AAFC), Canada
 Xander Wang, University of Prince Edward Island, Canada

* Correspondence: Michael F. Christensen, mfchristensen93@gmail.com

Specialty section: This article was submitted to Interdisciplinary Climate Studies, a section of the journal Frontiers in Earth Science

Received: 30 April 2019
 Accepted: 31 July 2019
 Published: 14 August 2019

Citation: Christensen MF, Heaton MJ, Rupper S, Reese CS and Christensen WF (2019) Bayesian Multi-Scale Spatio-Temporal Modeling of Precipitation in the Indus Watershed. Front. Earth Sci. 7:210. doi: 10.3389/feart.2019.00210



The Indus watershed is a highly populated region that contains parts of India, Pakistan, China, and Afghanistan. Changes in precipitation patterns and rates of glacial melt have significantly impacted the region in recent years, and climate change is projected to result in further serious human and environmental consequences. To understand the climate dynamics of the Indus watershed and surrounding regions, reanalysis and satellite data from products such as APHRODITE-2, TRMM, ERA5, and MERRA-2 are often used, yet these products are not always in agreement regarding critical variables such as precipitation. Here we objectively evaluate the level of agreement between precipitation from these four products. Because these data are on different spatial scales, we propose a low-rank spatio-temporal dynamic linear model for precipitation that integrates information from each of the above climate products. Specifically, we model each data source as the combination of a modified shared process, a discrepancy process, and Gaussian noise. We define the shared process at a high spatial resolution that can be upscaled according to the resolution of the observed data. Our proposed model's shared process provides a cohesive picture of monthly precipitation in the Indus watershed from 2000 to 2009, while the product-specific discrepancies provide insight into how and where the products differ from one another.

Keywords: spatio-temporal correlation, dynamic linear model (DLM), High Mountain Asia (HMA), change of support problem, data assimilation, climate model, climate change


1. INTRODUCTION

The Indus Watershed is a region that is particularly susceptible to the consequences of a changing climate (e.g., Immerzeel et al., 2010; Khattak et al., 2011; Lutz et al., 2014; Bolch et al., 2017). With approximately 300 million people living within the basin, and complex geopolitical issues related to water resources and agricultural development (e.g., Lutz et al., 2016; Scott et al., 2019), a scientifically grounded understanding of past, present, and future patterns in climate for the region will be critical for policy makers to be able to make sound decisions regarding the region.

One of the variables fundamental to many of the most pressing scientific questions for the climate of the Indus Watershed is precipitation. Due to the complexity of the physical processes governing precipitation, it is also a fairly difficult variable to effectively measure and model accurately in remote parts of the world, and especially in complex terrain (e.g., IPCC, 2013; Ralph et al., 2013; Immerzeel et al., 2015; Dahri et al., 2016). Reanalysis products use a combination of modeling and observations in order to leverage the strengths of both. Reanalysis products assimilate observations of variables (such as precipitation, temperature, wind, etc.) into complex physical or statistical models which can produce estimates for dozens of important variables at high resolutions in both space and time (Bengtsson et al., 2004). Due to the complexity of these models and the differences in the amount and type of source data, climate reanalyses are frequently not in total agreement, and these differences become even more pronounced for complex variables such as precipitation. This is particularly true in the Upper Indus Watershed, where complex topography and minimal observational data presents unique challenges in quantifying precipitation (Palazzi et al., 2013; Maussion et al., 2014). To ameliorate some of these difficulties, ensemble approaches are frequently used, which combine output from several climate models, or variations of a single model, such that a wider range of projections can be analyzed (e.g., Murphy et al., 2007; Neeley et al., 2014; Wang et al., 2014).

Taking some inspiration from these climate ensemble approaches this study used a spatio-temporal Bayesian statistical model that provides a novel approach to understanding and analyzing the differences and commonalities between four commonly used precipitation products in the Indus watershed region via the modeling of discrepancies and their associated uncertainty. Precipitation output from these same four products was also assimilated into a new monthly-resolved product for precipitation for the years 2000–2009 which can be used in future analyses. We realize this shared product at a 0.25 × 0.25° spatial resolution, while realizing each data source's discrepancy process at its native spatial resolution. The temporal domain for this model of the decade spanning 2000–2009 was chosen to provide us with a reasonable number of years with which to compare currently available products and test the viability of the method presented in this paper. A monthly temporal resolution was selected in order to capture precipitation climatology and seasonality for comparison to climate models. However, the methods presented in this paper could be reasonably applied to any spatial and temporal domain and resolution provided sufficient computing resources and appropriate input data.

It is also important to note that the research presented in this paper focuses on a statistical model that combines existing precipitation data into a new product that represents statistical consensus among input data (along with the identification of discrepancies) rather than a new climate model that incorporates the physics and dynamics of climate systems into its output. While an understanding of such physical processes is critical to the study of climate, this paper is focused instead on statistically analyzing the output of models and data products that were built with consideration of those processes in mind.

In section 2 of this paper we introduce the data products used in our analysis and discuss some of their important features. We introduce and specify our statistical model in section 3. Model results are included in section 4, and further discussion of those results is contained in section 5. We conclude our paper in section 6 with noteworthy observations from our analysis and suggestions for how our work might be used in the future.



2. DATA

We selected four datasets for this analysis: the Asian Precipitation—Highly-Resolved Observational Data Integration Toward Evaluation of Extreme Events (APHRODITE-2) product (Yatagai et al., 2012), the Tropical Rainfall Measuring Mission (TRMM) satellite product (Goddard Earth Sciences Data Information Services Center, 2016), the most recent ECMWF reanalysis product (ERA5) (Copernicus Climate Change Service (C3S), 2017), and the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) product (Global Modeling and Assimilation Office (GMAO), 2015). These datasets span the range of dominantly observationally-based to dominantly physical-model-based, but with all including some amount of modeling and observational data. Basic summaries of these products can be found in Table 1.



Table 1. Summary of data products used in this analysis.

[image: image]




The APHRODITE-2 precipitation product uses daily rain gauge readings across Asia and statistically interpolates between them to produce spatially gridded precipitation estimates. TRMM is NASA's precipitation product produced via combining precipitation estimates from multiple satellites as well as some limited precipitation gauge data. Thus TRMM is dominantely based on remote observations, while Aphrodite is solely based on in-situ observations. ERA5 is ECMWF's most recent reanalysis product. ECMWF uses the IFS numerical forecast model and data assimilation system to produce gridded climate data, including precipitation. The input data was largely derived from satellite-based observations, but also includes some in situ measurements from radiosondes, ocean buoys, and land stations. MERRA-2 is NASA's reanalysis product. It is similar to ERA5 in that it is based on a numerical weather forecast model that assimilates data. However, it uses a different model (GEOS), assimilation system, and input data. For input data, NASA uses satellite-based observations. The version of MERRA-2 we are using has had its precipitation estimates corrected using ground observations.


2.1. Exploratory Data Analysis

Each of these precipitation products has idiosyncrasies in their estimates of precipitation that are derivatives of how they were constructed. However, each is based on observations and/or physical properties, and therefore represents a “plausible” representation of the system, albeit with varying degrees of uncertainty. While one cannot know what the “truth” is regarding precipitation for the Indus watershed by analyzing these four data products, we assess how they compare to one another: where they seem to be in greatest agreement, and where their estimates diverge more sharply from one another. Below is a summary assessment of average precipitation for the region bounded by 63.5-84 E and 27-40 N as estimated by each product.

As can be seen in Figure 1, ERA-5 consistently estimates greater amounts of precipitation than the other products, while MERRA-2 appears to have a dry tendency, meaning that it estimates smaller amounts of precipitation relative to consensus.


[image: image]

FIGURE 1. Average monthly anomaly (deviation from mean of all products) in precipitation (in mm) for Indus Watershed region for APHRODITE-2, ERA5, MERRA-2, and TRMM. Month 1 corresponds to January 2000.



While less dramatic, there are slight differences in the general trend in precipitation among these products. TRMM and ERA5 seem to have downward trends in precipitation relative to the group average, while MERRA-2 and APHRODITE-2 seem to be increasing in precipitation over time relative to the mean.

All of the above is illustrative of the fact that there are noteworthy differences between the data products commonly used to assess precipitation statistics and dynamics, and used as input to hydrological and glaciological models. These differences could have the potential to significantly impact climate assessments, uncertainty quantification, and cultural impact statements, and thus it is important to seriously consider the anomalies and noteworthy features of a model-derived data set prior to its further use.

In order to facilitate this, we provide a statistically sound, model based framework with which to model the discrepancies between these data products while taking into account the spatial and temporal dependence intrinsic to this type of data. Simultaneously, we provide a new data product that can act as a “consensus product,” probabilistically borrowing strength and spatial structure from each of APHRODITE-2, ERA5, MERRA-2, and TRMM.



2.2. Areal Data and the Change of Support Problem

As an additional note, there are two aspects of the data we considered prior to modeling: namely, that we were working with areal data, and that the data products we used have differing spatial support.

The output of the four products for precipitation (APHRODITE-2, TRMM, ERA5, and MERRA-2) is areal data. Areal data, unlike point data, are indexed for an entire spatial region, rather than at a specific observation point. Areal data are common in realms such as public health and government, where data might be recorded at a city, county, or state level (Waller and Gotway, 2004; Schabenberger and Gotway, 2005). While one can calculate the distance between two locations which are indexed by latitude and longitude for example, it is a more complicated question to characterize the distance between two adjacent counties, especially if those counties are irregularly shaped. This is important given that spatial correlation is generally modeled as a function of distance between locations (Cressie, 1993; Schabenberger and Gotway, 2005).

While each value of an estimated variable in a gridded climate product is indexed with specific latitude and longitude coordinates, the value is actually given for the entire rectangular region (rectangular with respect to the coordinate grid and ignoring the Earth's sphericity) centered about the provided coordinates. The region's geographical size is determined by the product's resolution. This means that each areal observation within the MERRA-2 product, which has a resolution of 0.5 × 0.625, covers a geographical region that is 5 times the size of the regions modeled by the other three products used in this analysis, which have 0.25 × 0.25° resolutions.

The second aspect of this data we considered in our model is that each product is realized on a different grid of locations and at varying resolution. This leads us to what is sometimes referred to as the “change of support problem” (Waller and Gotway, 2004). We wish to use all four climate products jointly in order to make inferences at a scale and collection of areal regions that are not shared by all products. There are different potential solutions to this problem, but our approach was to model the process of interest (in this case the shared precipitation process) at a highly-resolved scale and then aggregate it according to the native resolution of each data product.




3. A JOINT MODEL FOR PRECIPITATION DATA PRODUCTS


3.1. Model Specification

Let [image: image] represent the observed precipitation associated with data product j on areal unit [image: image] and month [image: image] where i = 1, …, nj and j ∈ {APHRODITE-2, ERA5, MERRA-2, TRMM}. For each data product, [image: image] for much of the spatio-temporal domain. Hence, here we take [image: image] where [image: image] is a latent variable corresponding to the observed precipitation if [image: image] and [image: image] for [image: image] which we will impute from the data (see section 3.2 for details).

To induce a model for [image: image], we define a model for [image: image]

[image: image]

where [image: image] is a P = 2 vector of covariates (here, an intercept and elevation), [image: image],…,[image: image] is a shared spatio-temporal precipitation surface on areal units [image: image] with nZ corresponding to the number of spatial areal units associated with the shared process, [image: image] is a spatial mapping from the latent precipitation surface Zt to the spatial scale of data product j (more details below), [image: image] is a discrepancy surface capturing the difference between data product j and the shared precipitation surface for all t, and [image: image] and [image: image] corresponds to spatially and temporally unstructured normally distributed noise.

As mentioned in the introduction and inherent in the notation above, each spatial data product is defined on different set of areal units at varying spatial resolutions. To realign the grid associated with the shared precipitation process to the native resolution of the jth data product, we define [image: image] where

[image: image]

such that [image: image] represents the percent overlap between areal unit [image: image] and [image: image] for i = 1, …, nZ and k = 1, …, nj. We note that the operator [image: image] refers to the 2-dimensional area of [image: image]. For simplicity's sake, we ignore the earth's sphericity when calculating area and assume an orthogonal spatial grid, an assumption that we believe is reasonable at the latitudes for which this model is being used. Therefore, [image: image] such that if [image: image] then [image: image] is completely contained within [image: image], if [image: image] then [image: image] is partially contained within [image: image] and if [image: image] then [image: image] does not overlap with [image: image].

In this application we have nZ = 4,346, resulting in approximately 521,000 correlated values of the shared surface [image: image] and over 1.6 million unknown and correlated discrepancy parameters [image: image]. Much of the statistical literature for modeling such spatio-temporal data relies upon the use of Gaussian processes due to their high level of flexibility and the availability of a wide variety of covariance structures, to the point of near-ubiquity within the field (e.g., Matheron, 1963; Journel and Huijbregts, 1978; Cressie, 1993; Stein, 1999; Cornford et al., 2005; Banerjee et al., 2008). However, Gaussian process models frequently become computationally prohibitive for large data sets due to the necessity of performing large matrix inversions (the computational burden of fitting these models scales by a factor of n3, while the memory burden scales by n2 making it impractical for data sets of size N > 5,000 on most machines). Hence, a primary challenge associated with this research is developing a computationally tractable way of fitting model (1).

While there are various computationally tractable methods to model spatial data through the approximation of a Gaussian process model (e.g., Higdon, 2002; Datta et al., 2016; Heaton et al., 2018), we opted to use the low-rank representation proposed by Hughes and Haran (2013), due to the property that it is specifically designed for use with areal data (i.e., data observed on a lattice). Specifically, let A = {aij} be an n × n adjacency matrix where aij = 1 if areal units i and j share a border. Further, define X as a n × P matrix of observed covariates from Equation (1). Hughes and Haran show that the eigenvectors associated with positive eigenvalues of the Moran operator P⊥AP⊥ correspond to positive spatial dependence where [image: image] is the projection onto the orthogonal complement of X (Hughes and Haran, 2013). As such, we define M as the n × K matrix of eigenvectors of P⊥AP⊥ associated with positive eigenvalues such that M corresponds to basis functions capturing positive spatial correlation.

In this analysis, we chose to use a number of eigenvectors that accounts for at least 60% of the structural variability in P⊥AP⊥, which is calculated by cummulatively summing the non-negative eigenvalues of the Moran operator and identifying a cutoff. This results in using K = 685 eigenvectors for the shared surface, APHRODITE-2, and TRMM (which are realized on the same set of spatial locations), 663 for ERA5, and 188 for MERRA-2. Note that our choice of 60 percent as a threshold for determining the number of eigenvectors to be used as basis functions refers exclusively to the percent variability within the Moran operator being accounted for, and does not imply that only 60% of the spatial structure of the precipitation process in the region is being captured. The threshold used in this analysis exceeds the threshold of approximately 25% suggested by Hughes and Haran as being sufficient for most analyses, ensuring that both small- and large-scale spatial trends are being accounted for in our model (Hughes and Haran, 2013). To illustrate this approach for the Indus watershed, Figure 2 contains plots of several of these eigenvectors (basis functions), each of which captures different frequencies of the spatial harmonic structure. Some of these basis functions represent larger scale trends within our spatial domain, while others capture finer details. Each function is multiplied by a random variable, and when summed together forms a surface that serves as a spatial random effect in our model, thereby capturing correlation between proximate locations in our domain.

Using the above basis function expansion, we set Zt = MZθ, δjt = Xjηjt + Mjψjt such that

[image: image]

where Xj is the design matrix for the jth data product, βt is the shared effect of the covariates on precipitation, Hj is the nj × nZ realignment matrix (see above), MZ is the Moran eigenvector basis with associated coefficients θt for the shared precipitation surface Zt defined on areal units [image: image], ηjt represents the discrepancy between the effect of the covariates (Xjt) on data product j and the shared effect βt, and Mj is the Moran eigenvector basis on areal units [image: image] with associated coefficients ψjt correspond to spatially structured discrepancy between data product j and the shared surface. A more intuitive construction of the model can be seen by defining [image: image] and [image: image] rendering Equation (3) to be equivalently written as

[image: image]

such that (4) shows that the spatial precipitation can be similarly viewed as a fixed effect, a basis function expansion of a spatial random effect and uncorrelated white noise.

To this point, we have considered only the spatial and not the temporal dimension of building a model for precipitation over time. In regards to temporal correlation, we employ a spatial dynamic linear model (DLM) (Petris et al., 2009) for the latent shared precipitation surface such that

[image: image]

with [image: image] and [image: image]. (We initialized timestate t = 0 using data from December 1999). In this way, we capture month-to-month correlation among the shared precipitation surface while maintaining sufficient flexibility to capture the variability seen in the data. The parameters [image: image] and [image: image] evolve in time and capture in part the extent of the temporal correlation between months. We also note that when we refer to our statistical model as being “dynamic”, it is in reference to our use of a statistical DLM, rather than implying that we have incorporated information from the field of climate dynamics directly into our model.

Notably, we chose to implement the DLM structure only for the shared process. Thus, we do not explicitly enforce temporal dependence in the discrepancy surfaces. However, because the discrepancy processes define deviations from the shared process, the two processes are correlated in the posterior dictated by the amount of temporal smoothness present in the data. Further, in initial stages of this research, we opted for a DLM in the discrepancies as well but found that such a model appeared to be computationally intractable. After assuming temporal independence in the discrepancy surfaces, the model showed considerably improved identifiability and posterior mixing, solidifying our choice to implement a DLM exclusively in the shared process.

Equations (3) and (5) provide a model that allowed us to estimate a spatially and temporally correlated shared precipitation process as well as spatially and temporally correlated estimates for product-specific discrepancy processes resolved monthly and at the native resolution of each product. More concretely, XZβt + MZθt (where XZ is the design matrix of the shared product), corresponds to the shared precipitation process at time t, while Xjηjt + Mjψjt corresponds to the discrepancy process of data product j at time t. The random variables governing the shared process, βt and θt are identified using each of our data products, while the discrepancy parameters, ηjt and ψjt, are unique to each product and conditionally independent of each other [image: image] and [image: image] for j ≠ j′. Our temporal domain and resolution for these products is monthly for the years 2000–2009 and we assume [image: image] represent a 0.25 × 0.25 latitude longitude grid.



3.2. Bayesian Estimation and Model Fitting

In order to estimate all model parameters, we choose to implement Bayesian model fitting via Markov chain Monte Carlo, a class of algorithm with considerable literature regarding its theory and implementation (e.g., Casella and George, 1992; Gamerman and Lopes, 2006). In light of the abundance of data at our disposal, we opted to use largely uninformative priors such that our data can be the primary source for our posterior distributions, providing us with arguably more objective results. Specifically, the prior distributions we used are

[image: image]

[image: image] refers to an inverse-gamma distribution with shape = 2 and rate = 1. This is a diffuse prior that provides minimal outside information regarding our model's variance terms. Additionally, the zero mean in the prior distributions of our other model parameters provides little prior information, allowing the data to be the primary influence on our posterior distributions. The independence assumption for ψjt departs from that recommended by Hughes and Haran. However, given that the basis functions in M are eigenvectors which, by construction, are independent, the independence assumption is justified.

One fact about using Moran bases to capture spatial variability is that each column of M sums to zero (see Figure 2) such that the total volume of precipitation must be accounted for elsewhere. To ensure identifiability, we fix ηTRMM = 0 which anchors the total volume of precipitation in our shared process to the TRMM data product, while still allowing each of the surfaces in our model to have a unique spatial structure. We chose TRMM to anchor our model because it is observation-based with dense spatial and temporal coverage. In addition, TRMM tends to track most closely with the mean of the four products in terms of total precipitation (see Figure 1). Although APHRODITE-2 is another primarily observation-based product, the observations are limited to unequally-distributed point sources (Yatagai et al., 2012).


[image: image]

FIGURE 2. Spatial eigenvectors from decomposed Moran operator.



The combination of normally distributed model parameters with inverse-gamma distributed variances means that—given L—all model parameters have closed form full conditional distributions and thus can be sampled from directly using a Gibbs sampler, a consideration that further informed our choice of model likelihood and priors. Further, as part of this sampler, notice that the latent variable [image: image] when [image: image]. However, the complete conditional distribution for [image: image] given [image: image] and all other model parameters are [image: image] where [image: image] is the Gaussian distribution with mean m and variance v truncated to (−∞, 0).

In the interest of brevity and focus, we omit the detailed notation for our full conditional distributions here, but the computational implementation of the Gibbs sampler for our admittedly complex Bayesian linear model is fairly standard within the Bayesian modeling literature (see for example Gelman et al., 2013). Within our Gibbs sampler, we alternate between sampling from the shared process, which incorporates information from all four data sources, and the four discrepancy processes, each of which is conditionally independent of one another. In terms of computation, due to the independence assumption across data products, the data product specific parameters ηjt and ψjt can be updated in parallel from their complete conditional distribution to improve computational efficiency.

Due to the fact that our model is in effect identifying 600 unique but interconnected surfaces (one shared surface and four discrepancies for each of 120 time states), fitting this model is computationally expensive, although the computational burden is relatively modest in comparison to the computing-intensive climate models used to produce the data utilized in this analysis. We fit this model using the software R on a Dell PowerEdge R740 server with 2 x Intel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz and 128GB of RAM. With the previously specified number of spatial eigenvectors used per surface, it required approximately 17 days to obtain 55,000 posterior draws, which were thinned by a factor of 50 due to memory limitations. In spite of high autocorrelation due to the close relationship between the shared surface and the discrepancies, our model parameters appear to have successfully converged based on an analysis of their trace plots and other commonly applied Bayesian convergence heuristics.




4. RESULTS

In this section, we look at several figures containing data and model output. The majority of these figures will be for the month of August 2000, which is chosen to be illustrative of the results for a single month. For Figures 3–6 we have equivalent plots for all 120 months from January 2000 to December 2009.


[image: image]

FIGURE 3. The precipitation products for August 2000 (in mm).
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FIGURE 4. Shared precipitation surface (in mm) for August 2000 on left. Corresponding uncertainty surface on right. Uncertainty characterized using posterior mean standard deviation (in mm).
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FIGURE 5. Discrepancy surfaces for August 2000 (in mm). Red regions indicate areas where the product modeled higher precipitation than shared surface, while blue regions indicate lower precipitation relative to shared surface.
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FIGURE 6. Uncertainty associated with noiseless data approximation for August 2000 (in mm).



Figure 3 contains plots of the data used to inform the model for the month of August 2000. Note that while each product depicts high precipitation along the southern ridge of the Tibetan Plateau, each product has different precipitation patterns both in terms of magnitude and in how precipitation is spatially distributed throughout the region.

Figure 4 contains a plot of the shared product as modeled using the August 2000 data from Figure 3, which was obtained by calculating the mean of the posterior distribution of max(0, XZβt + MZθt). Also shown in Figure 4 is a plot of the uncertainty surface associated with the shared product, as obtained by taking its posterior standard deviation. It is important to note however, that the uncertainty depicted in Figure 4 is only one of several uncertainty components in our model (additional uncertainty components are depicted in Figure 6). Recall Equation (1) where we model our data as the combination of a shared process, a discrepancy process, and Gaussian noise. Each of those three elements has an associated uncertainty, but due to the manner in which they are interconnected, it is difficult to simply and accurately characterize the uncertainty associated with the shared process without taking into account the uncertainty associated the discrepancies as well. Due to the discrepancies being realized at the native resolutions of the original data products, unlike the shared product, it is additionally challenging to synthesize the uncertainty present in each data product with a single plot. Also of note, because the Bayesian approach utilized here provides us with full posterior distributions, there are any number of ways uncertainty could be represented, including standard deviation (used here), variance, or more potentially rich but intensive statistics such as quantiles.

When we examine the uncertainty shown in Figure 4, we note a greater degree of uniformity across the spatial domain of our model than one might otherwise expect. This is potentially a byproduct of the uniformity of our gridded data and our modeling decision to use a rank-reducing Gaussian process approximation and stationary nugget term in order to improve computational burden, at the cost of some specificity in the estimation of uncertainty. We also note some minor striping in the uncertainty plot, which is a byproduct of the harmonic spatial eigenvectors used in our Gaussian process approximation. However, the uncertainty associated with the shared process as presently estimated is still valuable in terms of understanding the basic magnitude of uncertainty present, especially when evaluated in conjunction with the other uncertainty components in our model.

Figure 5 contains the four discrepancies for the APHRODITE-2, ERA5, MERRA-2, and TRMM products for August 2000. These discrepancy plots provide us insight into how these products differed from one another for this month. As can be seen from the MERRA-2 discrepancy in Figure 5, there is a band of low precipitation (blue) which runs through Nepal and into India. Thus, MERRA-2 had notably lower precipitation in that region relative to the other products in that month. Likewise, from Figure 5 one can discern that ERA5 is unique in the amount of precipitation it has across the Tibetan Plateau (at roughly 34° latitude, 82° longitude), a region for which the other three products have discrepancies close to or slightly below 0. TRMM also has somewhat higher precipitation estimates in the southeast corner of the region relative to the shared process.

An advantage of the Bayesian modeling approach is the flexibility and ease of quantifying uncertainty for different elements of our model. Figure 6 depicts the uncertainty associated with the positively-censored summation of our shared and discrepancy processes, which could be thought of as a noiseless approximation of our data. Similarly to our observations regarding the uncertainty plot in Figure 4, we note that the harmonic patterns observable in these plots are a byproduct of our method for Gaussian process approximation which manifests itself in the uncertainties to a greater extent than in the estimates of the mean.

As previously mentioned, we have similar plots to those shown in Figures 4–6 of the shared surface, discrepancies, and associated uncertainties for all 120 months from January 2000 to December 2009. While it is valuable to examine differences between products for individual months, we are also interested in evaluating the longer-term seasonal discrepancies between products. Figure 7 contains the 10-year averaged shared product for both winter months (December, January, and February) and summer months (June, July, and August). It can be used to gain a sense of the relative magnitude of the seasonal discrepancies, which are contained in Figure 8 (winter) and Figure 9 (summer). We analyze winter and summer given that there are distinct meteorological phenomena governing precipitation during these time periods, namely westerly disturbances during winter months and Indian monsoons during the summer (e.g., Shi, 2002).


[image: image]

FIGURE 7. Ten-year averaged shared product (in mm) for winter months (December/January/February) on left. Ten-year averaged shared product (in mm) for summer months (June/July/August) on right. Note that the two plots contained in this figure use different scales.
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FIGURE 8. Averaged discrepancies (in mm) for the months of December, January, and February across 10 years.
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FIGURE 9. Averaged discrepancies (in mm) for the months of June, July, and August across 10 years.



In discussing our model's output and the underlying data products, we wish to highlight that any discussion of product “wet,” or “dry tendency” refers to departures from the consensus of data products as characterized by the model's shared product. Such a descriptor does not represent an objective measure of model output as compared to observed data. Thus, any conclusions drawn regarding a product's relative tendency in this paper should not be taken to mean that a product is necessarily inaccurate in its estimate of precipitation; rather, that it differs from the consensus of the products analyzed here.

In Figure 8, we find that one of the more notable winter trends in the discrepancies is a negative, or dry tendency in MERRA-2 along the high precipitation region running through northern India and into Tajikistan. Likewise, ERA5 overestimates precipitation in those same regions with an additional wet tendency in Afghanistan and the Hindu Kush.

Figure 9, depicting the summer discrepancies, shows a striking wet tendency in ERA5 across the Tibetan Plateau, indicating that there is consistently different behavior within that product across a fairly large region. Additionally, we see that MERRA-2 underestimates precipitation in Nepal during monsoon season, and to a lesser extent in Pakistan as well. We also note that TRMM has a positive discrepancy in the southeast corner of the region and a negative discrepancy in the northwest. Lastly, one can observe from the APHRODITE-2 discrepancy that the product appears to be estimating precipitation at slightly higher elevations relative to the shared product, as evidenced by the blue regions in Nepal and northern India, with red regions directly to their north.

In analyzing our model discrepancies, we also assessed the correlation between the magnitude of the discrepancies and elevation. Unsurprisingly, we found a small positive correlation between elevation and absolute discrepancy (r < 0.1), which we would anticipate given the increased volatility of the precipitation process at high elevation.

The comparisons made in the previous paragraphs are illustrative of the types of observations and conclusions made possible via our modeled shared product and discrepancies. Any number of questions related to the trends and differences found in these products over this time period could be explored and answered—including uncertainty quantification—using the output of our model. Additionally, the framework presented in this article can be extended of this model to different time periods or the integration of additional data sets.



5. DISCUSSION

The shared product introduced in this article captures spatial and temporal structure from each of the four data products due to the manner in which each source of data is incorporated into the overall model, making it a valuable reference point by which to judge the similarities and dissimilarities of the products used to inform it. Because of the incorporation of spatial and temporal dependencies within our model, along with the natural approach to assessing posterior uncertainty that the Bayesian methodological framework supplies, we are provided with model output that is considerably more nuanced and inferentially rich than a weighted average or simple mean at all locations. Based on our analysis of the discrepancies, our model shows a general dry tendency in MERRA-2 relative to the shared product, a finding which coincides with trends identified in the exploratory data analysis of section 2 and was illustrated in Figure 1. The discrepancies suggest that MERRA-2 tends to have consistently lower precipitation estimates than the other products in high precipitation regions during both winter and summer. Additionally, we find that ERA5 has consistently higher estimates of precipitation in high precipitation regions, and that there is an additional summer wet tendency due to an overestimation of precipitation (relative to the other products) across the Tibetan Plateau during monsoon season, a region that the other three products typically characterize with fairly minimal amounts of precipitation. As far as we are aware, these observations regarding the relative dry and wet tendencies of MERRA-2 and ERA5, respectively, are novel findings. TRMM and APHRODITE-2 also display some idiosyncrasies that were touched upon in the discussion of Figures 8, 9, but we find the discrepancies for these products to be less differentiated on average. In our discussion of Figure 1, we observed that TRMM and APHRODITE-2 tended to have an average anomaly closer to zero, and after completing our analysis, we found that they also track more closely with the shared product, both in terms of volume and distribution of precipitation. While these product-specific findings were obtained solely through the use of our statistical model, additional follow-up analysis could be performed that is oriented toward the physical and numerical facets of the climate reanalyses that produced the data used in our model. Such an analysis would provide insight into the reasons behind the individual products' tendencies and idiosyncrasies.

An additional observation we make about our model, and the shared surface in particular, is that it is a fairly smooth process relative to the data used to inform it. This spatial smoothness is to be expected to an extent, given that each of the four products has unique local behavior that we would not expect to appear with the same magnitude in the shared process. However, we are also conscious of the manner in which low-rank Gaussian process approximations (such as the approach of Hughes and Haran used here) are often criticized for over-smoothing data (Datta et al., 2016). In analyzing our model's output, it is possible that some of the local spatial structure present in the data is being pushed into the measurement error term, and that as part of this smoothing, some of the regions with high precipitation are seeing mass “pushed” into lower precipitation regions of our spatial domain.

This may raise questions about the overall utility of our shared product for use in other analyses. We are of the opinion that this product is most useful for synoptic scale studies of precipitation variability and trends. For models that require precipitation data on a local and highly refined scale, it is likely that the product produced in our analysis will not be suitable due to its smoothness. Instead, one of the existing precipitation products should be chosen with consideration for its idiosyncrasies as discussed in this article.

In spite of our approach's potential disadvantages as discussed above, a valuable element of the shared product is that it provides an intuitive comparison point for our modeled discrepancies. Due to the shared product's central behavior among the products used in our analysis, comparison between products and basic interpretation of discrepancies is made simpler. The uncertainties we estimate as part of this model also provide us with a valuable way to discern if observed differences between products (particularly within their discrepancies) are statistically meaningful.

The methods used here can easily facilitate the incorporation of additional data sources. At the beginning of section 3 of this paper we specify that j ∈ {APHRODITE-2, ERA5, MERRA-2, TRMM}. However, our method could be applied to any collection of data sources on any collection of spatial domains. One would merely need to fit Equation (3) for each j using the same sampling scheme applied in this paper. It is also worth noting that our methods—here applied to precipitation in the Indus watershed in order to address our motivating research questions—would be equally valid when applied to any spatial region and most spatially dependant variables. Additionally, the methods presented in this paper could be straightforwardly extended into an analysis of multivariate climate products (e.g., precipitation and temperature) through the application of a multivariate linear model (Genton and Kleiber, 2015).



6. CONCLUSIONS

Given the challenges related to modeling and measuring precipitation in the Indus watershed it is difficult to know the “truth” about precipitation in the region. Thus, when some products are referred to as “over-” or “under-estimating” precipitation, this is meant relative to the consensus of the products used in this analysis. It is entirely plausible that a product which appears to be an outlier when estimating precipitation for a particular region is in fact the most accurate of them all, a possibility which should not be discounted.

That said, in our analysis we found that MERRA-2 tended to have a dry tendency, while ERA5 tended to have a wet tendency. These tendencies are present in both winter and summer and are most notable in the regions with high precipitation. A notable idiosyncrasy of ERA5 was its consistent propensity to overestimate precipitation across the Tibetan plateau during Monsoon season.

Our analysis also produced a shared product for precipitation that assimilated spatial and temporal structure from APHRODITE-2, TRMM, ERA5, and MERRA-2. This product will be available for download and usage at NSIDC, along with all discrepancy surfaces and uncertainty estimates discussed in this article. Given the product's relative smoothness, it will likely be most useful for larger-scale studies of precipitation variability and trends. This product is also valuable as a reference point for understanding the discrepancies in our model.

The methodology presented in this article can be extended to incorporate additional data sets, and should scale reasonably well for other spatio-temporal resolutions and domains. While precipitation was the focus of our analysis, a similar model could be applied to other climate variables such as temperature.

Our model provides a cohesive statistical framework for understanding the shared structure of spatially and temporally varying data products, while simultaneously providing us with discrepancy surfaces and uncertainty estimates that allow us to understand how those products differ from one another and the consensus.
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Snow is an important component of the terrestrial freshwater budget in high mountain Asia (HMA) and contributes to the runoff in Himalayan rivers through snowmelt. Despite the importance of snow in HMA, considerable spatiotemporal uncertainty exists across the different estimates of snow water equivalent for this region. In order to better estimate snow water equivalent, radiative transfer models are often used in conjunction with microwave brightness temperature measurements. In this study, the efficacy of support vector machines (SVMs), a machine learning technique, to predict passive microwave brightness temperature spectral difference (ΔTb) as a function of geophysical variables (snow water equivalent, snow depth, snow temperature, and snow density) is explored through a sensitivity analysis. The use of machine learning (as opposed to radiative transfer models) is a relatively new and novel approach for improving snow water equivalent estimates. The Noah-MP land surface model within the NASA Land Information System framework is used to simulate the hydrologic cycle over HMA and model geophysical variables that are then used for SVM training. The SVMs serve as a nonlinear map between the geophysical space (modeled in Noah-MP) and the observation space (ΔTb as measured by the radiometer). Advanced Microwave Scanning Radiometer-Earth Observing System measured passive microwave brightness temperatures over snow-covered locations in the HMA region are used as training data during the SVM training phase. Sensitivity of well-trained SVMs to each Noah-MP modeled state variable is assessed by computing normalized sensitivity coefficients. Sensitivity analysis results generally conform with the known first-order physics. Input states that increase volume scattering of microwave radiation, such as snow density and snow water equivalent, exhibit a plurality of positive normalized sensitivity coefficients. In general, snow temperature was the most sensitive input to the SVM predictions. The sensitivity of each state is location and time dependent. The signs of normalized sensitivity coefficients that indicate physical irrationality are ascribed to significant cross-correlation between Noah-MP simulated states and decreased SVM prediction capability at specific locations due to insufficient training data. SVM prediction pitfalls do exist that serve to highlight the limitations of this particular machine learning algorithm.
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1. INTRODUCTION AND BACKGROUND

Snow is a critical component of the hydrologic cycle within the Earth's system (Sturm et al., 2017). Despite its importance in global life sustenance (Barnett et al., 2005; Lau et al., 2010), considerable uncertainty still exists regarding the total amount of snow and its spatial and temporal variability. Various studies have attempted to address this issue on regional scales (Anderton et al., 2003; Machguth et al., 2006; Grünewald et al., 2010), yet the uncertainty in the spatial and temporal variability of snow persists on continental and global scales, particularly in complex terrain. This is mainly due to the unavailability of continuous, ground-based hydrometeorological observations. Remote sensing of snow can help bridge the information gap.

Depending on the snow property or attribute being studied, remote sensing of snow has exploited various wavelengths of the electromagnetic spectrum. Moderate Resolution Imaging Spectroradiometer (MODIS) collects data within the infrared and visible bands and has been used to derive snow cover extent products (Hall et al., 2002; Painter et al., 2009). In addition to the pixel-based approach of Painter et al. (2009) and Sirguey et al. (2009) produced subpixel seasonal snow cover maps of the Southern Alps of New Zealand using MODIS data via correction of atmospheric and topographic effects. The sub-pixel approaches provide increased information regarding the spatial variability of snow, however, they require accurate ancillary data and a robust algorithm for fine resolution to inhibit addition of uncertainty to the snow estimates at such a fine spatial scale. NASA's Airborne Snow Observatory studies snow depth using an imaging spectrometer and a scanning LIDAR (Painter et al., 2016). Passive microwave (PMW) remote sensing of snow mass utilizes the wavelength dependency of brightness temperature in the microwave spectrum. Snow water equivalent (equivalent mass of snow if converted to liquid water) estimation algorithms utilize the preferential scattering of microwave radiation by the snow pack at a higher frequency (18.7 or 36.5 GHz) compared to a lower frequency (10.7 or 18.7 GHz) (Chang et al., 1982; Che et al., 2008). Foster et al. (2005) and Kelly (2009) utilized brightness temperature spectral difference (i.e., difference between brightness temperature measured at two different wavelengths) to retrieve information regarding the amount of snow water equivalent (SWE) present in the snowpack.

Conversely, PMW brightness temperature can be estimated as a function of snow and land surface properties. Theoretical models such as the Dense Media Radiative Transfer theory model (Tsang et al., 2000) and Strong Fluctuation theory model (Stogryn, 1986) as well as semi-empirical models that integrate theoretical principles with measurement data such as the Helsinki University of Technology (HUT) snow emission model (Pulliainen et al., 1999) or the Microwave Emission Model of Layered Snowpacks (MEMLS) (Wiesmann and Mätzler, 1999) apply this inversion to predict brightness temperature from snow characteristics (e.g., SWE, snow depth, and snow grain size). Recent work by Forman et al. (2014) and Forman and Reichle (2015) explored machine learning applications for brightness temperature prediction. PMW brightness temperatures (Tb) were estimated at multiple frequencies and polarizations using two different machine learning techniques—Artificial Neural Networks (ANN) and Support Vector Machines (SVM). These machine learning algorithms map the geophysical states (also called geophysical variables) into the brightness temperature spectral difference space.

Machine learning techniques, though effective, are not based on physical processes, rather they employ statistical learning theory principles to achieve an optimum solution. Xue and Forman (2015) explored ANN- and SVM-based Tb predictions in North America. As relevant studies suggest (Chang et al., 1982, 1987; Foster et al., 1984), SWE is related to Tb spectral difference. In this study, we analyze the relative influence of various geophysical parameters, including SWE, in predicting brightness temperature spectral difference using well-trained support vector machines. This study aids in determining whether the brightness temperature spectral difference (ΔTb) predictions obtained using machine learning adhere to the fundamental laws of physics and also assess whether SVMs are able to adequately represent the nonlinear relationship between the specified snow properties (predictors) and ΔTb.



2. STUDY DOMAIN

In this study, we focused on the high mountain Asia (HMA) region (Figure 1). Known as the Third pole, it has the highest concentration of snow and glaciers outside the polar region (ICIMOD, 2001). It spans over parts of eight countries—Tajikistan, Afghanistan, Pakistan, India, China, Nepal, Bhutan, and Bangladesh and five major river basins—Amu Darya, Syr Darya, Indus, Ganges, and Brahmaputra. The population residing in the corresponding river basins depends significantly on the runoff generated (Xu et al., 2009; Wester et al., 2018) which in turn is affected by the snow and ice melting patterns.
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FIGURE 1. Map of high mountain Asia (HMA) study domain. Elevation obtained from SRTM30 data (Table 1). The light blue area represents the Indian Ocean. The major river basin boundaries are outlined by the colors shown in the legend. High elevation areas receive significant snowfall during the winter season. Purple star shows the test location site discussed in section 5.2. The red and blue crosses mark the snow-on-land and snow-on-ice test sites, respectively discussed in section 5.3.



The snowmelt from the mountainous regions in HMA affects the runoff in each of these rivers to varying degrees (Immerzeel et al., 2010; Lutz et al., 2014). A recent study by Armstrong et al. (2018) showed that for elevations above 2,000 m the total runoff in Indus, Brahmaputra, Amu Darya, and Syr Darya is more dependent on snow and ice melt (approximately 65%) as compared to seasonal precipitation especially during the summer months, while the total runoff in Ganges is more influenced by the monsoonal precipitation as compared to snow and ice melt (43%). The western part of HMA has an arid climate and the seasonal snow and glacier ice melt serve as drought buffers during the summer months (Hagg and Mayer, 2016). The climate is increasingly humid and more significantly influenced by the seasonal monsoonal precipitation as one moves toward the eastern regions of HMA (Thayyen and Gergan, 2010).



3. SUPPORT VECTOR MACHINE FRAMEWORK

Machine learning is a technique in which systems acquire the ability to learn automatically without being explicitly programmed. Systems are programmed to optimize a performance criterion using test data (Alpaydin, 2014). Supervised learning is a form of machine learning with prevalent usage in remote sensing. It consists of the attainment of a generalization ability with a focused target, i.e., the algorithm is trained to estimate an appropriate answer (or response variable) for unlearned questions (Sugiyama, 2015) based on example training data. The training data input and target are specified by the user. The machine learning technique utilized in this study is support vector machine (SVM) regression.

SVM is a supervised learning algorithm and has been successfully applied in various hydrological and Earth Science applications. Asefa et al. (2006) used SVM regression for stream flow prediction in North America (Sevier River Basin) while Anandhi et al. (2008) performed precipitation downscaling for a river basin in India using an SVM-based approach. Pradhan (2013) compared the predictive ability of various machine learning techniques (decision trees, SVM, and neuro-fuzzy models) in mapping landslide susceptibility. Forman and Reichle (2015) and Xiao et al. (2018) have predicted ΔTb and snow depth, respectively, using SVM regression. Of all the various studies that have utilized SVMs, none have focused on the analysis of the physical rationality of trained SVMs, i.e., analyzing whether the SVM predictions are in conformance with first-order physics or not.

SVM regression is based on Vapnik-Chervonenkis theory (Vapnik and Chervonenkis, 1974; Vapnik, 1982, 1995). The SVM learning problem is based on the assumption that there is some unknown and non-linear dependency between an input vector xi and scaler output yi (Kulkarni and Harman, 2011). The dependency information source is the training data set {(x1, y1), (x2, y2), (x3, y3), …., (xl, yl)} ⊂ X × ℝ, where X denotes the input pattern space and ℝ specifies the (target) real number space to which yi belongs while l is equal to the number of training data pairs (Vapnik and Chervonenkis, 1974). Using this training data set, the relationship between the input vector and the target scalar is estimated. Further detail regarding SVM regression is provided in the Appendix.

The SVM framework is divided into training and prediction sub-phases. In the training phase, support vector machines are trained using known inputs and known target data. In the latter prediction phase, the trained SVMs are employed for prediction purposes using input data not included during training. Further detail regarding both sub-phases is provided in sections 3.1 and 3.2.


3.1. Support Vector Machine Training Setup

SVM training consists of selecting support vectors from the training data set and assigning corresponding weights to the respective support vectors in order to predict a known target given known input (Smola and Schölkopf, 2004). Detailed description of SVM theory is provided in the Appendix. SVM training in this study followed the general methodology described in Forman and Reichle (2015), although this study used a different land surface model applied to a different part of the globe. In this study, SVM training data consisted of land surface model estimates of snow (SWE, snow liquid water content, snow density, and snow temperature; Table 2) used as input and satellite-based PMW brightness temperature (i.e., spectral difference) observations as training targets.

3.1.1. Noah-MP Land Surface Model (SVM Training Input Data)

Noah-Multiparameterization (version 3.6) (Ek et al., 2003; Niu et al., 2011; Yang et al., 2011) was run within NASA's Land Information System (LIS). LIS is a software framework that assimilates satellite and ground-based observational data with advanced land surface models and computing tools to estimate land surface states and fluxes (Kumar et al., 2006). LIS manages the computational challenges that are introduced by the large-scale and fine-resolution of model outputs through scalable, high-performance computing (Peters-Lidard et al., 2007). Noah-MP simulated geophysical variables serve as the training input data for SVM training, and later as the prediction input using the trained SVMs.

Table 1 synthesizes the Noah-MP scheme options selected for this study. Boundary conditions for Noah-MP were obtained from the Modern-Era Retrospective analysis for Research and Applications–Version 2 (MERRA-2) meteorological forcings (Gelaro et al., 2017). The Land Data Toolkit (LDT) (Arsenault et al., 2018) was utilized for data preparation for input into LIS. SRTM30 version 2.0 (Farr et al., 2007) was up-scaled to 0.25° grid size from 30 m as an arithmetic average using the LDT to provide topography data for Noah-MP. Initial conditions were adjusted using a spin-up time of 22 years starting in January 1980 and ending in September 2002. The 9-year study period extended from September 2002 to September 2011. The simulation run did not include glacier physics due to the lack of a glacier model within the LIS (version 7.2) framework.



Table 1. Selection of physical parameterizations in LIS for use with Noah-MP.
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Four Noah-MP modeled geophysical variables were used for SVM training and prediction (Table 2; Figure 2). Selection criteria for the geophysical variables to be used as SVM input included their first-order physical effect on brightness temperature. Selected Noah-MP geophysical variables were then rescaled (via simple unit conversion) to comparable dynamic ranges such that the SVM can “learn” from each signal during training. Table 2 presents the unit conversion factors for each geophysical variable. This step was performed to remove any undue influence of the order of magnitude of any individual state based solely on the selection of units. For example, a SWE signal with units of meters could be less heavily weighted during training than the same signal with units of centimeters even though the physical amount of SWE is identical. The selection of units, in turn, has influence on the final selection of support vectors and assignment of weights that result from the training procedure, which necessitates some form of data preprocessing (data conditioning) prior to the training phase. Here we use a simple unit conversion to linearly rescale the input states into a more consistent space for use during training.



Table 2. List of Noah-MP simulated geophysical variables used as input for SVM training and prediction with corresponding units and conversion factors.
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FIGURE 2. Schematic of the SVM prediction framework (see Table 3 for details about ΔTb).



Interactive Multisensor Snow and Ice Mapping System (IMS) snow cover data (NIC, 2008) was used for quality control purposes. Only those Noah-MP simulation data points were included in the training data when the presence of snow was corroborated by the IMS snow cover product. Also, a lower limit of 1cm was fixed for SWE and all simulation instances of SWE less than the threshold value were excluded from the training data.

3.1.2. AMSR-E Brightness Temperature (SVM Training Target Data)

SVM training targets consisted of spectral differences computed from PMW brightness temperatures (Figure 2) collected by the Advanced Microwave Scanning Radiometer for Earth Observing Systems (AMSR-E). AMSR-E is a 12-channel, six-frequency, passive-microwave radiometer. Only the 10.7, 18.7, and 36.5 GHz frequency channels were used here due to their relevance and applicability to snow remote sensing (Chang et al., 1982; Kelly, 2009). Table 3 lists the spectral differences utilized in this analysis. Noah-MP modeled states were generated on a 0.25 × 0.25° equidistant cylindrical grid. To maintain spatial consistency between Noah-MP output and AMSR-E observations, the enhanced resolution AMSR-E brightness temperature measurements (Long and Brodzik, 2016) were upscaled to the 0.25 × 0.25° equidistant cylindrical grid using an arithmetic average.



Table 3. List of brightness temperature (Tb) spectral difference training targets used during SVM training.
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3.1.3. Parameter Selection for Fortnightly SVMs

The LIBSVM library (Chang and Lin, 2011) provided by National Taiwan University was used in the implementation of the SVM algorithm. SVM implementation using LIBSVM requires three parameters to be set manually: (1) C, (2) ε, and (3) γ (further detail regarding each of the parameters is provided in the Appendix). C is defined in this study as the range of the training targets (yi). This selection is based on the methods of Mattera and Haykin (1999) where C = max{y} – min{y}. Selection of ε and γ was done using a two phase cross-validation method (Forman and Reichle, 2015). This involved formation of two subsets, [image: image] and [image: image], from the total nine-year training data. Subset-[image: image] data was used to train a test SVM. The subset-[image: image] data trained SVM was then used to predict the subset-[image: image] data and the corresponding mean squared error (MSE) was computed (Equation 6). This process was repeated across a range of ε and γ values. The same procedure was then employed for subset-[image: image] and mean squared error values (for various combinations of ε and γ) were calculated by predicting subset-[image: image] using the subset-[image: image] trained SVM. All of the MSE values were compared and the corresponding ε and γ pair that yielded the lowest absolute mean squared error was selected for use during the final phase of SVM training.

The final phase of training used the selected optimal parameter values of ε and γ from the first phase and then training was completed using the entire 9-year AMSR-E observational set. A separate and independent SVM was generated at each grid cell for each fortnight (14-day duration) in the study period. The SVM training data set for a given fortnight also included data from 2-weeks before and 2-weeks after the fortnight of interest. Thus, each SVM training data consisted of a 6-week period (selected from eight of the total 9 years of available data). The 2-week overlap at the beginning and ending of each fortnightly SVM was intended to better maintain continuity between temporally consecutive SVMs. To minimize the effects of wet snow, only observations gathered during the nighttime AMSR-E overpass were used during training. While training for a certain fortnight, f, in a certain year, Yf, the AMSR-E data from all the years except year Yf was used for training. Thus, each fortnight was trained using the relevant 6-week data from the remaining 8 years. AMSR-E observations that were excluded from training were later used for validation purposes.



3.2. SVM ΔTb Prediction

SVM input consisted of four geophysical Noah-MP states whereas the output consisted of six independent brightness temperature spectral differences and polarization combinations (Figure 2). SVM output validation was accomplished using the Yf year fortnightly data that was omitted during training for each trained SVM such that split sampling validation techniques were utilized. Figure 3 presents the time-averaged bias and RMSE (formulae in Appendix) for two different vertically-polarized spectral differences (subplots Figures 3A,B show results for ΔTb10.7–36.5V whereas Figures 3C,D show results for ΔTb18.7–36.5V) predicted by the SVMs with respect to the AMSR-E observations not used during training. SVM prediction accuracy varies considerably across the study area. Positive as well as negative bias values are apparent in Figures 3A,C. However, most of the bias values for both spectral differences lie within the –0.5 and 0.5 K range. Both spectral differences have relatively small, domain-averaged bias magnitudes. This relative unbiased-ness is a result of the statistical principles on which the SVM algorithm is based. The RMSE magnitude varies spatially with most of the values being <10 K. The domain-averaged RMSE for ΔTb10.7–36.5V is greater than ΔTb18.7–36.5V. In general, a larger RMSE is observed in areas that are collocated with glaciers. One explanation behind this is the absence of a glacier module in the Noah-MP (version 3.6)/LIS (version 7.2) framework and hence, the SVM-based predictions lack explicit glacier-related information. Similar results were observed for the remaining spectral differences as well (results not included). Coarse resolution of the ΔTb coupled with mountainous topography introduces complexity (primarily originating from sub-pixel variability) that is sometimes not fully accounted by the SVM prediction framework, and hence, poor accuracy can ensue.
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FIGURE 3. Average bias and RMSE for SVM-based ΔTb predictions vs. AMSR-E observations (2002–2011) across snow-covered areas in HMA. Black lines represent country demarcations while the white regions represent areas with limited (or no) snow coverage during the study period.



In general, SVM predictions were able to capture the seasonal variability of ΔTb. Figure 4 displays the seasonal variability (for the 2004–2005 snow season) in AMSR-E observed ΔTb vs. SVM-based predictions of ΔTb for five major river basins in HMA. All the boxplots were generated using those pixels only that had Noah-MP predicted SWE >1 cm. Figure 4 shows that the trained SVMs are able to simulate the seasonal change in the median values of ΔTb for all of the basins except the Ganges river basin. There are, however, considerable differences in the inter-quartile ranges for particular months within each basin. The highest difference is seen in the Ganges river basin, which could be due to the presence of vegetation and other brightness temperature influencing features that are not explicitly accounted for by the four Noah-MP states used as input for trained SVMs, leading to decreased SVM prediction accuracy.
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FIGURE 4. Seasonal variability in (Left) observed AMSR-E ΔTb and (Right) SVM-predicted ΔTb for the five major river basins in HMA. Only the 2004–2005 snow season is presented here for visual clarity. Box plots for each month include ΔTb values from locations with a simulated SWE>1 cm for all the pixels within the basin boundary. The blue box represents the inter-quartile range (IQR), the red line is the median, and the whiskers encompass 25% percentile − 1.5*IQR and 75% percentile + 1.5*IQR, respectively.






4. NORMALIZED SENSITIVITY COEFFICIENT (NSC)

A sensitivity analysis was performed to examine the change in model output relative to a change in each predictor input (McCuen, 2016). For this specific study, normalized sensitivity coefficients (NSC), presented in Equation 1, were computed to assess the sensitivity of a well-trained SVM to each Noah-MP modeled state variable used as input for SVM prediction (Figure 2). The NSC can be approximated as (Willis and Yeh, 1987):
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where i = parameter index, j = output metric index, [image: image] = perturbed metric value, [image: image] = initial metric values, Pi = initial state value, and ΔPi = amount of parameter perturbation. It is assumed that the model output changes linearly over a small perturbation. NSC magnitude reflects the importance of the perturbed parameter while the sign indicates the direction of the relationship between the input state and the predicted output.

Each geophysical variable was perturbed one-at-a-time while maintaining the original, nominal value of all the other predictor states. The observed change in output relative to the induced perturbation is a measure of the effect a change in that input state will have on the SVM predicted output. This method assumes independence between the individual states since only one input state is perturbed at a time while the other states remain constant. However, the sensitivity coefficient calculated is often affected by values of all the states and not just the one that is perturbed. The calculated NSC value is assumed to represent the effect of the perturbed state only on SVM output while the other states remain unaffected by that perturbation. In reality, this assumption is only valid for states that are uncorrelated and mutually independent.

The amount of parameter perturbation, ΔPi, was selected manually through a studied process. The perturbation size needs to be large enough to detect a change in the output, yet small enough that the model behavior remains linear. A range of perturbation percentages was tested and the corresponding relative change was analyzed. Figure 5 displays the variability in relative change in ΔTb18.7–36.5V with respect to perturbations in SWE. Relative change vs. amount of perturbation plots for all the other states were also generated (results not shown). After studying a range of locations and days, a perturbation value of ±2.5% (i.e., total perturbation of 5% about the nominal value) was selected. That is, a positive and a negative (equal magnitude) perturbation was applied and a centered difference was calculated about the nominal value. This was done as a secondary check to remove the influence of model output behaving non-linearly within the perturbation limits for any day or location.
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FIGURE 5. Variability in relative change in SVM-based ΔTb18.7–36.5V predictions when modeled SWE (via Noah-MP) is perturbed at a point location in HMA (36.1250°N, 74.1250°E) on 03 Jan 2004.





5. SENSITIVITY ANALYSIS RESULTS

The relative sensitivity of SVM-predicted brightness temperature spectral difference (ΔTb) to the Noah-MP modeled input states was studied spatially as well as temporally using normalized sensitivity coefficients. A synthesis of the analyses carried out follows.


5.1. Spatial Variability of NSCs

The annual precipitation cycle is divided into snow accumulation and snow ablation periods for analysis. The snow accumulation period generally corresponds to dry snow conditions whereas the snow ablation period, in general, represents a relatively wet snowpack. This division is based on the fact that dry vs. wet snow interacts differently with the microwave radiation emitted by the surface below the snowpack (Chang et al., 1982). The climatology of the Western HMA region places the main snow accumulation period within the months of December, January, and February whereas for Central and Eastern HMA snow accumulation and ablation events can occur simultaneously throughout the year (Ageta and Higuchi, 1984; Ménégoz et al., 2013). Various studies have attempted to locate the melt onset and end date in HMA (Panday et al., 2011; Smith et al., 2017; Xiong et al., 2017). Although these studies differ regarding the exact dates, they tend to agree on the general spatiotemporal patterns of snowmelt in HMA. Snow ablation generally begins in April in the Western and Central HMA, while it can start earlier in the Eastern HMA region. For consistency, we select the months of December, January, and February to represent the snow accumulation period and April, May, and June to specify the ablation period over the whole HMA region. Snow accumulation and ablation periods were restricted to the three most important months to lessen excessive temporal averaging of the NSCs.

NSCs were calculated only for “snow-covered” areas, i.e., at points in time and space where SWE was greater than 1 cm. The NSC maps in Figures 6, 7 represent the relationship between each Noah-MP input state and the SVM-predicted ΔTb18.7–36.5V for snow-covered areas in HMA during the snow accumulation and ablation periods, respectively. In Figure 6, the map of snow density NSCs averaged over the snow accumulation period shows that the majority of the pixels have a positive NSC sign. This is physically rational because for a denser snow pack in idealized conditions, microwave volume scattering at higher frequency (i.e., 36.5 GHz) will increase, which will result in an increased spectral difference magnitude. Higher sensitivity to snow density is observed in the Western and Central HMA region as compared to Eastern HMA. For snow temperature, the NSCs are predominantly negative values. NSC magnitudes for snow temperature are relatively higher in the upper Tibetan plateau, indicating the relatively higher sensitivity of SVM ΔTb to snow temperature at this location. The Amu darya basin and the upper Indus basin exhibit relatively greater SWE sensitivity. In an idealized scenario, SWE is expected to have positive NSCs considering its influence on ΔTb, but the presence of positive as well as negative NSCs is apparent during both snow periods. These NSC signs originate, in part, due to poor SVM predictive accuracy at these locations as well as due to cross-correlated Noah-MP inputs. Detailed discussion regarding these reasons is included in section 6.
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FIGURE 6. Maps of NSCs from SVM-based predictions of ΔTb18.7–36.5 V averaged over the snow accumulation months (Dec, Jan, Feb) from 2002 to 2011 for snow-covered areas in HMA. (A) Snow density [kg/m3], (B) snow temp. (top layer) [K], (C) snow water equivalent [m], and (D) snow liq. water content [mm].
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FIGURE 7. Maps of NSCs from SVM-based predictions of ΔTb18.7–36.5 V averaged over the snow ablation months (Apr, May, Jun) from 2002 to 2011 for snow-covered areas in HMA. (A) Snow density [kg/m3], (B) snow temp. (top layer) [K], (C) snow water equivalent [m], and (D) snow liq. water content [mm].



Relative to the snow ablation period (Figure 7), there is a general increase in NSC magnitudes apparent during the snow accumulation period (Figure 6) as the amount of snow mass and snow extent increases. In terms of SVM-prediction, this can be interpreted as the influence of an increased number of training data points since training is done using snow-covered pixels only.

Comparing NSC results for horizontally- vs. vertically-polarized brightness temperature spectral differences, it was observed that both polarizations yield similar results. A slight increase in NSC magnitudes was seen for the vertically-polarized spectral differences as compared to the horizontally-polarized spectral differences. This could be explained by the fact that vertically-polarized microwave radiation is relatively less affected by surface ice crusts or internal ice layers present within the snow pack relative to horizontally-polarized microwave radiation (Foster et al., 2011). Considering the lack of model physics related to internal ice layers or surface ice crusts in the snow model routines within Noah-MP (version 3.6), it is expected that the SVM framework will render better results for vertically-polarized brightness temperature spectral difference. Spatial variability in NSCs observed for each geophysical variable for other spectral differences mentioned in Figure 2 (results not shown) presented quite similar sensitivity magnitudes and signs. Location specific features (e.g., glaciers) affected the various polarization and spectral difference combinations in a similar manner.

5.1.1. Influence of Model Boundary Conditions

Noah-MP boundary conditions were characterized in this analysis by MERRA-2 (Gelaro et al., 2017). Influence of the boundary conditions on geophysical variables' simulation varies from model to model. In cases where the model simulation is highly sensitive to the boundary conditions used, it is expected that the errors or uncertainties in the boundary conditions will be propagated to the model simulation results. Hence, in order to explore the influence of MERRA2 boundary conditions on the sensitivity results, an alternative set of meteorological forcing fields was used to run the Noah-MP land surface model.

The alternative boundary condition product used was an amalgamation of precipitation data taken from the Climate Hazards Group InfraRed Precipitation with Station data-version 2 (CHIRPS-2; Funk et al. 2015) and all other forcings acquired from the European Centre for Medium-Range Weather Forecasts (ECMWF; Molteni et al. 1996). The selection of this particular combination data-set is based on the comparative analysis of boundary conditions used for Noah-MP carried out by Yoon et al. (2019). NSCs for each geophysical variable (in space and time) were calculated and compared with the corresponding MERRA-2 results. Figure 8 presents the spatial variability in NSCs for ΔTb18.7–36.5V averaged over the snow accumulation period. Comparing Figures 6, 8, it can be observed that the corresponding NSCs for each state display similarity in NSC signs but vary in NSC magnitude. SVM ΔTb prediction is more sensitive to MERRA-2 forced Noah-MP output (higher NSC magnitudes) as compared to ECMWF+CHIRPS-2 forced Noah-MP output. It can, thus, be concluded that the sensitivity magnitude is indeed affected by the Noah-MP model boundary conditions used, however, the NSC signs are similar for both forcings.


[image: image]

FIGURE 8. Same as Figure 7 except using ECMWF+CHIRPS-2 as the precipitation boundary conditions to Noah-MP. White regions represent the areas that were either not snow-covered or where snow coverage in time was insufficient for SVM training. (A) Snow density [kg/m3], (B) snow temp. (top layer) [K], (C) snow water equivalent [m], and (D) snow liq. water content [mm].





5.2. Relative Importance of Noah-MP Input States for SVM Prediction

Spatial analysis of NSCs highlighted the location specificity of SVM predictive capabilities. A representative test location within the study domain (Figure 1 shows location of test site—37.8750°N, 75.3750°E) was selected based on the SVM input state sensitivity, the prediction accuracy (ΔTb18.7–36.5V mean bias= 0.024 K and ΔTb18.7–36.5V mean RMSE = 3.142 K), and the absence of sub-pixel glacier ice [sub-pixel glacierized area fraction obtained from the Global Land Ice Measurements from Space (GLIMS) database; Kargel et al. 2014]. The NSC of each state at the test location was plotted (Figure 9) to gain further insight into the relative importance of individual states. Figure 8 represents location specific results averaged over 3 months. However, it must be considered that different pixels can have different state responses on different days.
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FIGURE 9. Relative importance of geophysical variables (via Noah-MP) for SVM-based predictions of ΔTb18.7–36.5 averaged over the (A) snow accumulation (dry) period [Dec, Jan, Feb] and (B) snow ablation (wet) period [Apr, May, Jun] at a point location in HMA (37.8750°N, 75.3750°E).



For the snow accumulation period (Figure 9A), SLWC shows zero sensitivity, which could be explained by the general absence of SLWC during the (winter) snow accumulation months when the snow is relatively dry. Snow temperature of the top layer of the snow pack exhibits the highest general sensitivity during both snow periods (Figures 9A,B). Sensitivity of SVM-derived ΔTb to SWE is, in general, relatively low compared to other tested Noah-MP states for all spectral differences (results not shown) during both snow periods. Snow density has a positive sign for the vertically-polarized ΔTb and a negative NSC sign for the horizontally-polarized ΔTb during the snow accumulation period (Figure 9A). In an idealized scenario, snow density is expected to be positively related to ΔTb. Considering that this test location was selected due to its low RMSE, the irrational snow density NSC sign for horizontally-polarized ΔTb seems counter-intuitive. This could possibly represent a case of correctly predicting ΔTb, but for wrong (physically irrational) reason. The term “irrational” is used to reflect a statistical quantity that differs from the basic physical principles. Irrational and physically inaccurate NSCs refers to NSC signs that defy the first-order relationship between ΔTb and each of the input predictors. Figure 9B displays the same NSC signs for both spectral differences during the snow ablation period. The NSC signs seem to be representing the physically-rational first-order relation between ΔTb and the individual states. The horizontally-polarized spectral difference shows higher NSC magnitudes. However, it seems both polarizations are representing a case of achieving the right answer for the right reason.



5.3. Conformance Between SVM-Based Predictions and First-Order Physics

Even though the SVM regression for ΔTb estimation has been shown to capture the first-order physical response here and elsewhere (Forman and Reichle, 2015; Xue and Forman, 2015), a trained SVM is based on statistical learning theory principles and is by nature a statistical model rather than a physics-based model. If the training data (both input and target data) provided is erroneous or insufficient, the SVM has a tendency to behave similar to a curve fitting function. In such as case, the prediction accuracy would be high despite inconsistency with first-order physics. This phenomenon is described through two test locations (Figure 1 shows location of test sites) representing snow-on-land (36.1250°N, 69.6250°E—Figure 10A) vs. snow-on-ice, i.e., a glaciated pixel (38.8750°N, 72.3750°E—Figure 10B). The GLIMS dataset (Kargel et al., 2014) provided glacier outlines which were used to develop a binary glacier mask. The glacier mask was then upscaled to the 0.25 × 0.25° grid scale and the sub-pixel glacier percentage was calculated based on the original GLIMS data.
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FIGURE 10. Timeseries of SVM-based predictions of ΔTb18.7–36.5 V along with AMSR-E ΔTb18.7–36.5 V observations for (A) snow-on-land at a location with no glacier-covered areas and (B) location with significant sub-pixel glacierized areas. Sub-pixel glacier percentage is calculated from the GLIMS dataset (Kargel et al., 2014). The encircled portion in (A) highlights the significant noise in the AMSR-E observations during the ablation period.



Figure 10 highlights the difference between obtaining the right answer for the right reason vs. the right answer for the wrong reason. Figure 10A displays an increase in SVM predicted ΔTb with respect to a corresponding increase in Noah-MP simulated SWE for a location without any glacial coverage. Thus, Figure 10A represents the electromagnetic response of snow-on-land. In contrast, Figure 10B shows good SVM ΔTb prediction ability at a location with significant glacierized area coverage, but without the benefit of modeled glacier states because Noah-MP (version 3.6) does not include glacier physics. Instead, the same terrestrial snow states (albeit at a different location) that were used to predict ΔTb in Figure 10A for snow-on-land are used to predict ΔTb for snow-on-ice even though the corresponding electromagnetic response is different (Ulaby et al., 2014). Not accounting for all the relevant physical processes can introduce structural error in the trained SVMs. The irrational negative NSC signs for SWE observed in Figures 6, 7 often result from cases like these. This is a useful reminder that statistical methods can give the correct answer but not always for the proper reason.

AMSR-E ΔTb observations also contain signal noise and measurement errors. The encircled portion of the timeseries in Figure 10A highlights the discrepancies that arise when the SVMs are trained using noisy data (AMSR-E observations). Unexplained noise in the training data can also give rise to an under-determined system, and hence, poor SVM prediction ensues.




6. DISCUSSION

Figure 3 presented the goodness-of-fit statistics of SVM for the whole study area. There are similar patterns visible in all four maps. Poor prediction accuracy is apparent in Afghanistan (32°N to 35°N, 67°E to 70°E). One primary reason for the comparatively large errors is the lack of SVM training data in this region. Noah-MP geophysical states data for snow-covered areas and time periods only was used during training. Since the total number of snow days in this region is much less (Bair et al., 2018) as compared to the other parts of HMA, SVM training is not adequate, and thus poor accuracy ensues. SVM predictions were able to capture the seasonality of the AMSR-E observed ΔTb in the major HMA river basins, except for the Ganges river basin (Figure 4).

Most of the normalized sensitivity coefficients in Figures 6, 7 showed conformity with first-order physics, however irrational and physically inaccurate NSC signs were also observed for some instances. Poor predictive capability highlighted by high RMSE in certain locations (Figure 3) is one reason for the existence of irrational NSC signs. Low prediction accuracy indicates the absence of accountability of contributions made by some pertinent physical states, which can, in turn, fill the gaps rendered by unexplained variability in the SVM model formulation.

In this study, only four geophysical variables were utilized in an attempt to account for all the relevant physical processes that affect PMW brightness temperature over snow-covered land. Thus, it is already acknowledged that these four states cannot account for all the factors that influence the spectral difference measurements observed by AMSR-E. The unexplained variability will, in part, affect the accuracy of the spectral difference predictions rendered using the trained SVMs. One solution is to increase the number of geophysical variables used in SVM training. It is known that increasing the number of relevant states used for prediction will decrease the RMSE, however, it will also decrease the model output sensitivity to snow mass (Xue and Forman, 2017), which is the variable of interest in the assimilation scheme designed to improve water cycle modeling in mountainous terrain.

Another factor that affects the sensitivity of each state is the inter-correlation between the Noah-MP input states. When a single state is perturbed, e.g., snow density, SWE is expected to undergo some change as well (assuming that the snow depth remains the same) since SWE is equal to the product of snow density and snow depth. During individual state perturbation, we ignore this physical connection. By not taking into account the cross-correlation between the geophysical variables, the accuracy of the NSCs is compromised. An example of the extent of cross-correlation is presented by the cross-correlation matrix of all Noah-MP input states in Table 4. High cross-correlation is witnessed between SWE and snow density. During the snow accumulation period, in the absence of snow-melt, as the snow pack increases in depth, the snow density increases via compaction, and hence, the positive correlation.



Table 4. Cross-correlation matrix between Noah-MP simulated states for year 2004.
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Further, the SVM model formulation is highly influenced by the training data that is used as input or target data during the SVM training phase. Errors in Noah-MP simulated states (due to model structure error, parameter error, or boundary condition error) can reduce the effectiveness of SVM training. Also, the presence of observation error (noise) and sub-pixel variability (e.g., sub-pixel lakes or glaciers) in ΔTb satellite observations can translate into poor SVM prediction that can result in irrational sensitivity coefficients.



7. CONCLUSION

The aim of this study was to analyze the conformance to first-order physics of a passive microwave (PMW) brightness temperature spectral difference (ΔTb) machine learning prediction mechanism for snow-covered land in the HMA region. A sensitivity analysis was utilized to investigate support vector machine (SVM) predictions of PMW ΔTb as a function of Noah-MP modeled geophysical variables. AMSR-E spectral difference measurements over snow-covered areas in HMA were used for training the SVMs. Normalized sensitivity coefficients were calculated to analyze the relative influence of each state on SVM ΔTb prediction.

Sensitivity analysis results generally conform with the known first-order physics. Most of the NSC signs seem physically rational, although location specific discrepancies do exist. Higher NSC magnitudes were observed during the snow accumulation period, likely due to an increase in the training data (i.e., number of snow-covered pixels). During both snow periods (i.e., accumulation and ablation) for spectral difference, ΔTb18.7–36.5, the modeled snow temperature generally demonstrates the highest sensitivity. SWE has relatively low NSC magnitudes during both snow seasons and for all the spectral differences tested. However, SWE sensitivity varies spatially and temporally. Recent studies have utilized SVM as an observation operator within data assimilation frameworks (Forman and Xue, 2017; Xue and Forman, 2017; Xue et al., 2018). If such a methodology is performed over HMA, then it is expected that the utilization of SVM within a data assimilation framework would benefit those areas the most that have high sensitivity to SWE or high sensitivity to other geophysical variables that have high cross-correlation with SWE (such as snow depth and snow liquid water content). From Figures 6, 7, it is observed that the Western and parts of Central HMA region has relatively higher sensitivity to SWE, therefore it is expected that SWE estimation would be most improved by ΔTb assimilation in the corresponding Western and parts of Central HMA region.

The sensitivity results suggest that the NSC value obtained for each Noah-MP input state is influenced by a number of concurrent and interacting physical processes, cross-correlation between the input states, and the effect of location specific features such as glaciers. These issues highlight the fact that if a SVM is trained on physically irrational or inconsistent input and target data the predictions obtained will also be physically irrational and erroneous. This is one of the major pitfalls of machine learning. It is, therefore, imperative to analyze the quality and accuracy of the training data before SVM model formulation.
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Advancements in remote sensing, along with greater access to high spatial and temporal resolution imagery, have improved our ability to model glacier surface energy and mass balance in remote regions of complex terrain, such as High-mountain Asia (HMA). In general, net shortwave (SW) radiation accounts for the majority of energy available on a glacier surface during the summer months, suggesting that SW modeling errors can critically impact surface energy balance estimates. In this study, we model the clear-sky SW irradiance for a group of glaciers in the Everest region of HMA using a high-resolution (8-m) digital elevation model (DEM) composite derived from commercial stereo satellite imagery. We then systematically downsample this DEM and considered the effect on incoming SW irradiance, with a sensitivity analysis for standard terrain attributes. The slope and aspect (combined) and topographic shading have the greatest impact on daily SW irradiance and also introduce a larger SW bias when DEM resolution is downsampled. Our results show that modeled incident SW is overestimated as resolution becomes coarser. For 10 selected glaciers in the Everest region, decreasing spatial resolution from 8 to 30 m results in a range of average daily biases between +20 and +60 Wm–2 (or ∼7 to 20%) at some high and low elevations, and an average bias of more than +100 Wm–2 (∼33%) as resolution is coarsened to 500 m. In order to determine the bearing these results have on surface melt, we explore the diurnal variability of this bias. Additionally, we compare our results with modeled incident SW using several global DEM products (ASTER, SRTM, and ALOS) to evaluate error introduced by lower resolution. Models using the 30-m products show an overall average daily SW bias of +24 Wm–2 (or ∼8%) across elevation with some elevations showing a bias up to +60 Wm–2 (∼20%) on multiple glaciers. Taken together, our results demonstrate the value of high-resolution data to correct biases in modeled SW radiation and constrain uncertainties for glacier energy balance modeling in regions of complex terrain.
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INTRODUCTION

More than 1.4 billion people in Asia rely on freshwater that originates from remote High-mountain Asia (HMA) glaciers (Immerzeel et al., 2010). Often located in complex terrain, the ability to access and obtain in situ data in these landscapes can be difficult, if not impossible. As such, in situ data is sparse throughout the region. To address this problem, many studies rely on a combination of remote sensing and numerical modeling to determine the current state and future trends of HMA glaciers (Shea et al., 2015; Brun et al., 2017; Kraaijenbrink et al., 2017; Huss and Hock, 2018). Surface energy balance models provide a physically based approach to modeling glacier mass balance in HMA, and are a particularly important tool for assessing the causes of recent glacier change and projecting future glacier change (Kayastha et al., 1999; Azam et al., 2014; Litt et al., 2019).

Solar radiation, or shortwave (SW) radiation is a critical component of the surface energy balance (Cuffey and Paterson, 2010). SW radiation influences key energy balance terms and controls the overall variability in melt energy (Sicart et al., 2008). During (and prior to) the ablation season, when surface albedo is low, SW radiation is the dominant energy flux contributing to glacier melt (Arnold et al., 2006; Azam et al., 2014). However, incorporating terrain is essential in order to accurately model SW radiation — and surface energy balance — in remote alpine regions, where variable surface morphology and steep surrounding topography has the potential to drastically alter the SW component of the energy budget (Williams et al., 1972; Dozier, 1980; Duguay, 1993). The intensity of SW radiation at the ground surface is modified by terrain attributes such as slope, aspect, shading, elevation, and the portion of sky obstructed by surrounding terrain. Incorporating these attributes into solar radiation models improves accuracy of surface energy balance (Williams et al., 1972; Munro and Young, 1982; Kang et al., 2002). Although many surface energy balance models utilize meteorological station point data, energy fluxes must be distributed across the surface of a glacier in order to accurately quantify surface energy and mass balance. In many remote regions, where meteorological station data are not available, such as much of High Mountain Asia, energy fluxes are often derived from coarse resolution reanalysis products or climate models, and similarly must be distributed across the surface of a glacier. Solar radiation models incorporating terrain attributes provide the means by which to more accurately distribute solar radiation from either point source observations or coarse gridded climate products.

Terrain attributes are derived from digital elevation models (DEMs), and depend on the accuracy and spatial resolution of the DEM. Although high-resolution DEMs exist, coverage is limited, and many products are proprietary. Consequently, most glacier energy balance models have relied on coarse DEM resolution for surface topography, which can bias energy balance model results. For example, Olson and Rupper (2019) found that modeled direct solar radiation was increasingly overestimated when using a range of DEM resolutions from 30 to 1000 m, with the largest differences in direct shortwave radiation occurring when spatial resolution was coarsened from 30 to 60 and 90 m. Similarly, Hopkinson et al. (2010) found that continually decreasing DEM spatial resolution resulted in an increasing overestimation of modeled melt for a Canadian glacier. Although previous work shows terrain, and resolution of terrain, impacts results, this impact is likely not evenly distributed throughout the day. If the impact of terrain is most significant in the early mornings or late evenings, the influence on melt is likely minimal. High-temporal resolution modeling is required to capture the timing of terrain impact on SW and its potential importance in modeling glacier mass balance. While it may not be currently feasible to run a fully distributed energy balance model at high spatial and temporal resolution, using higher resolution to improve estimates or quantify uncertainty of net SW radiation across the surface of a glacier could improve modeled energy balance calculations, particularly during the ablation season.

While previous studies imply the importance of DEM spatial resolution on modeled surface energy balance and melt, they are often limited to expensive airborne imagery over few glaciers or utilize DEM resolutions of 30 m or lower. Additionally, results from these previous studies suggest the influence of topography on glacier surface energy balance will be amplified in regions of complex terrain, such as HMA, requiring higher resolution DEMs to adequately model SW radiation at glacier surfaces. The recent availability of sub-meter commercial stereo satellite image archives for scientific research and automated, open-source photogrammetry software (e.g., Shean et al., 2016; Noh and Howat, 2017) has led to a strong increase of publicly available high-resolution DEM products (e.g., Howat et al., 2007). As part of the NASA HiMAT project, Shean (2017) generated regional high-resolution (8-m) composite DEM products for HMA. This new product provides the opportunity to objectively evaluate the importance of terrain attributes and DEM resolution on remote glaciers in complex terrain, such as HMA.

In this study, we model the incident clear-sky SW radiation, including direct, diffuse, and reflected irradiance, on 10 glaciers of varying aspect and morphology in the Everest region (Figure 1). We evaluate the importance of each terrain attribute in modifying incident SW radiation for different times of the year on all 10 glaciers. Leveraging the new 8-m HiMAT DEM, we model SW radiation at a higher spatial resolution than was previously possible in this region. Furthermore, we assess the sensitivity of these results to different DEM spatial resolutions, and assess how these results vary throughout the day. The Everest region was selected because of the complex topography, presence of large glaciers with variable morphology, dense coverage of the 8-m HiMAT DEM, and large body of existing work on glaciers in the region. Thus the Everest region is a natural laboratory for assessing the importance of DEM resolution and terrain attributes on modeling SW radiation in HMA.
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FIGURE 1. Map of the Everest region in High-mountain Asia showing the 10 glaciers used in this study (light blue). The dark blue outlines indicate two selected glaciers, the East Rongbuk (ERG — RGI60-15.10055) and Lumsamba (LG — RGI60-15.03474), which we highlight throughout the paper. Glacier outlines from the Randolph Glacier Inventory v6.0 (RGI Consortium, 2017), basemap from Esri (2009).





BACKGROUND

Incident SW radiation can be divided into three components: direct beam irradiance (Ib), scattered diffuse irradiance (Id), and reflected irradiance (Ir) (Eq. 1) (Hock and Holmgren, 2005; Arnold et al., 2006).

[image: image]

Figure 2 illustrates how these different irradiance components in Eq. (1) interact with the ground surface for an area of complex terrain.
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FIGURE 2. Schematic showing how the three components of incident shortwave radiation — direct (Ib), diffuse (Id), and reflected (Ir) irradiance — are altered by terrain. Topography alters shortwave radiation at the surface through the slope and aspect (generally combined), topographic shading, a decrease in the amount of diffuse sky radiation, and an increase in terrain-reflected radiation.



Topography can either enhance or reduce solar radiation arriving at the surface of a glacier based on different terrain attributes; the slope and aspect, topographic shading, and the portion of sky visible at a given point known as the sky-view factor. Slope and aspect alter the direct beam irradiance by changing the solar zenith angle relative to a flat plane (e.g., in the northern hemisphere, a low-angle, south-facing slope will receive more solar radiation, whereas a north-facing slope will receive less solar radiation throughout the day compared to a flat plane). The impact of slope and aspect on incident SW radiation is usually evaluated in combination with each other. Therefore, hereafter, we refer to this terrain attribute as slope/aspect. Topographic shading is a terrain attribute that refers to a decrease in direct beam irradiance either due to self-shading of a specific location, or from shadows cast by surrounding terrain. Topographic shading is mostly relevant in the morning and evening but can significantly alter daily irradiance on the surface of some glaciers (Arnold et al., 2006; Olson and Rupper, 2019). The sky-view factor is a terrain attribute that impacts both the amount of diffuse and reflected irradiances arriving at the surface. Because the sky-view factor inversely affects these two components of incident SW radiation, we keep their impact separate and refer to the terrain attributes related to the sky-view factor as diffuse sky and terrain-reflected. Diffuse irradiance is a complex function of multiple scattering and atmospheric composition; however, the sky-view factor decreases the amount of irradiance arriving at the surface due to the presence of surrounding terrain. Terrain-reflected irradiance is also a complicated term, as it consists of both direct and diffuse irradiance reflected from all surrounding visible terrain (Dozier, 1980; Duguay, 1993). Terrain-reflected irradiance only exists in the presence of surrounding topography, thus it is also considered a terrain attribute related to the sky-view factor.

Olson and Rupper (2019) found that the impact of slope/aspect and topographic shading on modeled clear-sky direct solar radiation is greatest in glacier valleys with an overall north or south valley aspect. Importantly, the majority of glaciers in HMA (40%) have a north or northeast valley aspect (Bajracharya and Shrestha, 2011). Olson and Rupper (2019) showed that these terrain attributes can reduce the average direct solar radiation during the summer melt season by upward of 80 Wm–2 relative to a flat, featureless plane. While these results illustrate the importance of these terrain attributes, the study only focused on direct beam irradiance and used a 30-m DEM to incorporate these terrain attributes in the solar radiation model. We build on this prior work by utilizing higher resolution DEMs and multiple DEM platforms, and by including diffuse and reflected irradiance in our model of incident SW radiation.



DATA AND METHODS

In this study, we run a clear-sky SW radiation model at a 15 min time-step, using the new 8-m HiMAT DEM on the spring equinox (March 21) and on the summer/winter solstices (June 21/December 21). The equinox roughly represents the average annual impact of topography on incident clear-sky SW for a glacier, while the two solstices represent the extreme ends of topography’s influence for a glacier of specific morphology and latitude. We derive a change in irradiance, relative to a flat surface, due to each terrain attribute –slope/aspect, topographic shading, diffuse sky, terrain-reflected – for the East Rongbuk Glacier (RGI60 15.10055) and Lumsamba Glacier (RGI60 15.03474) on these three distinct days of the year. We highlight the results from these two glaciers to facilitate detailed discussion (Figure 2). We then assess the SW bias associated with downsampling the 8-m HiMAT DEM to lower spatial resolutions for all 10 glaciers in the Everest region, focusing on March 21. We also compare the sensitivity of terrain attributes at different spatial resolutions for the East Rongbuk Glacier and Lumsamba Glacier in order to determine which attributes have the largest contribution to the total bias in SW radiation. Although we show results for all 10 glaciers of varying aspect, we highlight results from the East Rongbuk Glacier and Lumsamba Glacier as they are north- and south-facing (respectively) and represent two distinct examples of how incident SW can be notably altered by local topography for glaciers in HMA. Finally, we compare the difference between modeling incident SW radiation with the 8-m HiMAT DEM to using other common 30-m DEM products.


Modeling Components of Incident SW Radiation

Direct beam irradiance (Ib) is typically the largest energy contribution to incident SW radiation, particularly under a clear-sky scenario. Fortunately, Ib is also the most straightforward component of SW radiation to model as it relies on solar geometry, day of the year, and atmospheric transmission. We use a broadband transfer equation to calculate direct irradiance through the atmosphere (Bird and Hulstrom, 1981; Mächler, 1983):
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where I0 is extraterrestrial irradiance, incorporating both the solar constant and sun-earth distance, and C is a coefficient (0.9751). τR,τO,τG,τW, and τA represent the amount of transmittance through the atmosphere at a given moment due to Rayleigh scattering, ozone, mixed gases, atmospheric water vapor, and aerosols, respectively. The model used in this study is parameterized based on a local clear-sky scenario and uses a ground visibility estimate to calculate aerosol attenuation (Mächler, 1983). We follow methods from Corripio (2003) and Iqbal (1983) to calculate solar geometries, incidence angles, and topographic shading, which are further outlined in the following section.

Although modeling direct irradiance is generally simple, incorporating atmospheric scattering requires multiple model parameterizations and assumptions. Diffuse irradiance (Id) is a complex function of multiple scattering and reflections based on atmospheric properties. In a clear-sky scenario the contribution from diffuse irradiance is generally small; however, its contribution can have a significant impact on daily incident SW irradiance, particularly when direct irradiance is intercepted by surrounding terrain. Bird and Hulstrom (1981) and Mächler (1983) describe methods for calculating atmospheric scattering in detail. Corripio (2014) has adapted these methods into an open-source library in R to compute solar radiation in complex terrain. We utilize the R insol library to compute both the direct and diffuse components of incident solar radiation.

Reflected irradiance (Ir) can contribute 17% of daily total SW radiation (Dozier, 1980). Ir relies on the amount of direct beam and diffuse sky irradiance reflected from all visible surrounding terrain. Rather than attempting to accurately determine the albedo and scattering direction of radiation from all nearby terrain, solar radiation models often use a single value to represent the albedo of surrounding terrain and multiply the sky-view factor by the amount of direct and diffuse irradiance arriving on a flat plane (Eq. 3). Despite some oversimplifications in these methods, they have proven to be useful in modeling incident SW in complex terrain (Hock and Holmgren, 2005; Arnold et al., 2006).



Modeling Terrain Attributes

We model the daily mean change in irradiance due to each of the four different terrain attributes. To accomplish this, we build on Eq. (1) by incorporating terrain attributes into our model:
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where S is topographic shading, θ is the incidence angle, Vf is a sky-view factor that indicates the portion of visible sky at a given location, at is the albedo of the surrounding terrain, and S0 is the shortwave radiation incident on a flat plane for an entire basin. Topographic shading is calculated with a modified ray-tracing algorithm that uses the solar position at 15 min intervals to determine if a DEM grid cell is blocked by surrounding cells (S = 0), or is unobstructed (S = 1), at a certain zenith and azimuth angle (Corripio, 2003). The incident angle modifies the solar zenith angle for a surface with a specific slope and aspect. The incident angle is calculated as:

[image: image]

where Z is the solar zenith angle, Sslope is slope, ϕ is azimuth, and E is exposure (i.e., the aspect with respect to a south-facing direction) (Iqbal, 1983). The incidence angle incorporates the impact associated with both the slope and aspect at the surface of a glacier at any moment during the day. The sky-view factor is calculated by determining the portion of visible sky in a 360° hemisphere at each point over a glacier surface (Dozier and Frew, 1990). An albedo of 0.45 is used to represent the reflectivity of surrounding terrain (Gratton et al., 1994).

In this study, we build on the methods of Olson and Rupper (2019) to model the change in irradiance due to each terrain attribute. The change in irradiance due to slope/aspect compares the difference between modeled incident SW radiation using the incidence angle and a model assuming a flat plane. The change in irradiance due to topographic shading is determined by the difference between a model that incorporates both cast shadows and self-shading and one that only utilizes slope and aspect at the surface to incorporate terrain effects. Changes in irradiance related to both diffuse sky and terrain-reflected irradiances are determined by the difference between a model that incorporates the sky-view factor and one that assumes the sky-view factor is equal to 1. Additionally, we model the combined effect of all terrain attributes on daily incident SW radiation. The change in irradiance for the combined effect is determined by the difference between a model incorporating all terrain attributes and a model calculating incident SW radiation on a flat plane. The modeled daily mean change in irradiance across glacier elevation is fit with a cubic smoothing spline. This allows us to compare terrain attributes to one another, and observe the variability across low (ablation zone) and high (accumulation zone) elevations.



DEM Downscaling and Comparison

Quantifying the impact of terrain attributes on modeled SW radiation relies on the accuracy and resolution of the DEM used. The 8-m HiMAT DEM was generated by adapting the open-source NASA Ames Stereo Pipeline and orthoimages from DigitalGlobe WorldView-1, WorldView-2, WorldView-3 and GeoEye-1 stereo imagery over HMA (Shean, 2017). Blended mosaics are produced from optical images obtained between 2008 and 2017, with the majority of coverage from 2013 to 2016. Approximately 5700 DEMs were generated for glacierized portions of HMA, and a tiled composite of DEM products are posted at 8-m. Shean et al. (2016) provide detailed information of the DEM processing pipeline and validate the accuracy of DEMs in the polar regions, while Shean (2017) includes a description of processing and error sources for the 8-m HiMAT DEM.

To test the effects of different DEM resolutions, we downsample the 8-m HiMAT DEM to resolutions commonly used by the modeling community – 30, 90, 250, and 500 m. To avoid aliasing, we use a low-pass Gaussian filter with a 5 × 5 pixel kernel, followed by bilinear interpolation of the filtered DEM. We calculate the incident SW (Combined effect) bias at each downsampled DEM resolution, relative to the 8-m HIMAT DEM, for 10 glaciers in the Everest region. We also compare the inter-glacier variability in SW bias for the downsampled 30- and 90-m resolutions. Finally, we calculate the SW bias for each of the four terrain attributes to determine which terrain attributes contribute most to the SW bias.

Currently, several publicly available 30-m resolution DEM products are available with global or near-global coverage. These include products from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the Shuttle Radar Topography Mission (SRTM), and more recently the Advanced Land Observing Satellite (ALOS). Glacier modeling studies often use one of these three DEMs (Lee et al., 2012; Chen et al., 2013; Huintjes et al., 2015; Han et al., 2016). We evaluate bias introduced by using these lower-resolution products to simulate terrain in our topographic SW radiation model. In addition to determining the modeled SW bias from Combined terrain attributes, we compare these DEMs to the downsampled 30-m HiMAT DEM to further test the utility of the 8-m HiMAT DEM.




RESULTS

The sensitivity of daily incident SW radiation to terrain attributes varies significantly, both in magnitude and sign, between the equinox and solstices. However, the combined influence of terrain leads to a decrease in incident SW radiation when averaged annually for glaciers in the Everest region. Coarser DEM resolution causes an overestimation in incident SW radiation, and a similar daily SW bias is observed when using common 30-m resolution DEM products. Each of these findings is presented in detail below.


Spatial and Temporal Variability in Modeled Incident SW

Figure 3 shows the daily averaged change in irradiance along elevation due to each terrain attribute and the combined effect for East Rongbuk Glacier and Lumsamba Glacier. During March, which represents the average annual impact of terrain on incident SW radiation, the East Rongbuk Glacier has a significant decrease in irradiance from combined terrain attributes, largely due to its north-facing orientation (Figure 3A). Meanwhile, the different terrain attributes offset the change in SW radiation across the south-facing Lumsamba Glacier (Figure 3B), primarily driven by the opposing influences of slope/aspect and topographic shading. With higher solar zenith angles in June, the change in irradiance due to slope/aspect and topographic shading for these relatively low latitude glaciers (∼26° N) decreases for the East Rongbuk Glacier and increases for the Lumsamba Glacier (Figure 3D). The largest contrast in the combined change in irradiance for these two glaciers is during the winter months (December). During this time of the year, low solar zenith angles cast shadows over the north-facing East Rongbuk Glacier for a significant part of the day, causing a large decrease in SW radiation (Figure 3E). The lowest values (around −400 Wm–2) represent a nearly 100% decrease in irradiance at highest elevations due to the combined impact of terrain attributes during this time of year. Alternatively, the slope/aspect greatly increases irradiance on the south-facing Lumsamba Glacier during the winter solstice (Figure 3F). These results show that the impact of terrain on SW radiation is distinct during different times of the year and varies between glaciers. Much of the difference between glaciers is driven by their overall aspect.
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FIGURE 3. Daily mean change in irradiance vs. elevation due to different terrain attributes (and their combined effect) for East Rongbuk Glacier (left panels) and Lumsamba Glacier (right panels). The model is run on the spring equinox—March 21 (A,B), summer solstice—June 21 (C,D), and winter solstice—December 21 (E,F).



More generally, terrain attributes have a greater impact on SW radiation at mid- to upper-elevations on both East Rongbuk Glacier and Lumsamba Glacier; however, changes in irradiance at lower elevations are also significant. slope/aspect and topographic shading are the most variable and influential terrain attributes affecting daily SW radiation throughout the year. By comparison, the influence of diffuse-sky and terrain-reflected irradiance is similar for both glaciers and varies much less in comparison to the other terrain attributes, and from season to season. Though seasonal variations are significant, the average annual change in irradiance due to combined terrain attributes is negative for both glaciers.



SW Bias Due to DEM Resolution

While terrain attributes can significantly change irradiance values on the surface of a glacier throughout the year, these attributes are dependent on DEM resolution (Figure 4). As the HiMAT DEM resolution is progressively coarsened from 8 m to 30, 90, 250, and 500 m, topographic variability and detail decreases, which decreases the magnitude and variability in terrain features. As a result, all 10 glaciers in the Everest region exhibit an increasingly positive bias (or anomaly) in SW radiation as the 8-m HiMAT DEM resolution is downsampled. All biases are calculated as the difference in modeled incident SW for the downsampled DEM relative to the 8-m HiMAT DEM. The details of this positive bias can be seen in Figure 4A, which shows the SW anomaly averaged across all 10 glaciers for each resolution on the spring equinox. The largest bias appears to be at higher relative elevations and becomes greater as the DEM is downsampled to the coarsest resolutions.
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FIGURE 4. Shortwave anomalies (due to the combined effect of terrain attributes) averaged across all 10 glaciers in the region as resolution is coarsened to 30-, 90-, 250-, and 500-m resolutions (A). Panels (B,C) show the SW anomaly values at 30- and 90-m resolutions (respectively) for each glacier in the Everest region. Note that the SW anomalies vary drastically from glacier to glacier. The change in irradiance from terrain attributes accounts for variability in irradiance across elevation, thus we show absolute anomalies (left y-axis) in conjunction with percent changes (right y-axis) relative to the mean irradiance over the glaciers.



Figures 4B,C show the SW bias for each glacier as resolution is coarsened to 30 and 90 m, and illustrate the substantial inter-glacier variability in the SW bias for these resolutions. Overall, downsampling DEM resolution from 8 to 30 m results in average daily positive biases that range between 20 and 60 Wm–2 (or ∼7 to 20%) at certain elevations (Figure 4B). At 90 m (Figure 4C), we see an even greater increase in the SW bias for all glaciers as compared to 30 m; however, higher elevations and certain glaciers are more impacted as the DEM is downsampled to these progressively lower spatial resolutions. At 500-m resolution (not shown here), many of the 10 glaciers have a combined bias of more than +100 Wm–2 (∼33%) at multiple elevations, with some glaciers having an average SW bias upward of +250 Wm–2 (∼83%). While the bias tends to be overwhelmingly positive as DEM resolution is coarsened, upper elevations on some glaciers do show a negative SW bias.

In order to determine which terrain attributes are the largest contributors to the overall combined SW bias, we compare the modeled SW bias for each terrain attribute, and at all downsampled DEM resolutions. Figure 5 shows the SW anomalies, relative to the 8-m DEM, for each terrain attribute for East Rongbuk Glacier and Lumsamba Glacier during the spring equinox (March 21). Anomalies for the East Rongbuk Glacier (Figure 5a) show that slope/aspect contributes a positive SW bias at low elevations and a negative bias at high elevations as terrain is progressively smoothed. Topographic shading has the largest influence on the SW bias as DEM resolution degrades. The diffuse sky and terrain-reflected biases have contrasting effects, and contribute much less to SW biases. Specifically for the combined effects, as spatial resolution decreases from 8 to 30 m, the average daily SW bias for East Rongbuk Glacier is upward of +50 Wm–2 (∼17%) at certain elevations. Further lowering the resolution to 500 m results in a bias upward of +85 Wm–2 (∼28%).
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FIGURE 5. Shortwave anomaly for 30-, 90-, 250-, and 500-m resolutions, relative to the 8-m HIMAT DEM, for the East Rongbuk Glacier (a, top panels) and the Lumsamba Glacier (b, middle panels) on March 21. The contribution of each terrain attribute to the modeled SW bias is shown at each downsampled DEM resolution, along with the combined bias from all terrain attributes. Overall, incident SW radiation is overestimated when resolution is coarsened. For both glaciers, the combined bias is most impacted by changes in modeled topographic shading and slope/aspect, while the change from diffuse sky and terrain-reflected are smaller in magnitude and vary less at different spatial resolutions. This holds true for all 10 glaciers in this study. Panel (c) shows the combined change in irradiance due to all terrain attributes on this day at each downsampled resolution for East Rongbuk Glacier. The SW anomaly is the difference between the change in irradiance determined at each coarse DEM resolution relative to the change in irradiance calculated with the 8-m HIMAT DEM.



The results for Lumsamba Glacier (Figure 5b) provide an interesting comparison to East Rongbuk Glacier. SW anomalies across varying DEM resolutions for Lumsamba Glacier (Figure 5b) show similar patterns to East Rongbuk Glacier; however, the overall bias is larger for the Lumsamba Glacier due in part to a more positive SW bias from the slope/aspect across all elevations and an increased influence from topographic shading at certain elevations. It should also be noted that the terrain-reflected bias is more negative for this south-facing glacier because it has more visible surrounding terrain (i.e., smaller view factor). Similar to East Rongbuk Glacier, the combined daily shortwave bias is ∼15–30% when the DEM resolution is downsampled from 30- to 500-m resolution.

Figure 5c shows the spatial variability in the combined change in irradiance due to all terrain attributes for East Rongbuk Glacier at each of the downsampled resolutions. The results further illustrate that incident SW is overestimated, but spatially variable, as resolution is downsampled.



Diurnal Differences in SW Irradiance

The above results highlight the impact of terrain on daily averaged clear-sky SW irradiance, and illustrate how modeled SW irradiance is overestimated at coarser DEM resolutions. However, the magnitude of change on modeled SW, due to both terrain and DEM resolution, varies considerably throughout the day. Thus, depending on the time of day, changes in energy at the surface of a glacier may affect melt, refreezing, or merely alter the temperature at the surface (i.e., the cold content). While changes in modeled SW during the morning/evening may alter the timing and magnitude of melt later in the day, accurately capturing changes in incident SW during mid-day are more crucial for estimating energy balance and total surface melt. Here we assess how terrain and DEM resolution alter the diurnal cycle in incident SW irradiance.

Figure 6a shows the change in incident clear-sky SW irradiance due to slope/aspect across elevation and at each 15 min time-step on March 21, 2019 for East Rongbuk Glacier. Figure 6b shows the SW bias introduced from the slope/aspect when modeling SW irradiance at 30-m resolution, as opposed to 8-m resolution. Figure 6c shows the SW bias when modeling at 90-m resolution. Incident SW on this north-facing glacier is enhanced in the morning/evening and reduced during mid-day along most elevations (Figure 6a). However, as DEM resolution is coarsened (Figures 6b,c), there is a decrease in SW during the morning/evening and an increase during mid-day as the terrain is smoothed at lower elevations. At upper elevations the bias is greater and more variable, though generally shows an overall negative bias, which can be seen in the daily averaged values (Figure 5a). The large increase in SW at high elevations during the morning (Figure 6a) is due to an east-facing upper bowl of the glacier. The additional panel rows on Figure 6 show the same results but for the change in SW due to topographic shading and due to combined terrain attributes, followed by the SW anomaly at 30 and 90 m for each. We focus on the two largest terrain attributes, slope/aspect and topographic shading, as they largely control the overall combined change in irradiance. Although topographic shading has the greatest impact during mid-morning, it influences most glacier elevations throughout the day. Similarly, the bias at 30 and 90 m shows an overestimation of incident SW throughout the day along most elevations. The combined results show an overall estimation of SW irradiance throughout the day as resolution is coarsened. While topography has a variable effect throughout the day and along elevation, the greatest positive SW bias generally occurs during warmer hours of the day when modeling SW irradiance at coarser resolution. Similar to the results for daily-average SW, the role of terrain and DEM resolution varies between glaciers and differing times of the year. However, these results illustrate that terrain attributes and DEM resolution can impact modeled SW irradiance during the peak energy flux of the day, and therefore can introduce bias in modeled melt.
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FIGURE 6. Change in incident SW irradiance due to slope/aspect (a) for East Rongbuk Glacier (calculated with the 8-m HiMAT DEM). Sunrise (Sunset) occurs at 6:06 am (8:09 pm) local time on March 21, 2019 at this glacier. The y-axis shows the time stamp at 15 min intervals, starting at sunrise and ending at sunset. The anomaly (or bias) introduced by the change in slope/aspect when modeling SW irradiance at 30-m DEM resolution, as opposed to 8-m resolution (b), and the bias added to slope/aspect from modeling at 90-m resolution (c). The subsequent panel rows show the same change in irradiance and SW biases for topographic shading (d–f) and combined terrain attributes (g–i). Values are aggregated into 50-m elevation bins and color scale changes in increments of ± 15 Wm–2.





SW Bias Due to DEM Platform

With the availability of many 30-m DEMs for remote regions of complex terrain, such as HMA, we also evaluate the SW bias (anomaly) associated when modeling SW radiation using different DEM products. Figure 7 compares the combined SW bias of four different 30-m resolution DEMs, relative to the 8-m HiMAT DEM. For convenience and consistency, we show the results for East Rongbuk Glacier and Lumsamba Glacier. SW bias values for East Rongbuk Glacier (Figure 7A) show a mostly consistent positive bias for most 30-m DEMs. SW biases from the SRTM and ALOS DEMs show very similar values, while the biases from the ASTER GDEM differ drastically at some elevations. The bias from the downsampled 30-m HiMAT DEM is most similar to SRTM and ALOS values, though smaller in magnitude on average.


[image: image]

FIGURE 7. Modeled shortwave bias, relative to the 8-m HiMAT DEM, for each 30-m DEM product (i.e., ASTER GDEM, SRTM, ALOS, and coarsened 30-m HiMAT DEM) on the East Rongbuk Glacier (A) and the Lumsamba Glacier (B) on March 21. An average daily overestimation of ∼50–60 W m– 2 (∼20%) of incident SW radiation is common across many elevations when resolution is coarsened to 30-m, with some glaciers exhibiting average biases upward of 90 W m– 2 (∼30%). Although the SW bias is mostly similar between DEM products, bias values from ASTER can vary drastically at some glacier elevations (A), however, ASTER is often more consistent across all 10 glaciers, similar to B.



The SW bias values of the different DEM products for Lumsamba Glacier show greater consistency and an overall positive SW bias (Figure 7B). Again, bias values from SRTM and ALOS are most similar, with ASTER having more variation. When comparing values for all 10 glaciers (not shown here), ASTER has more overall variation in SW bias as compared with SRTM and ALOS, but rarely shows significant deviations from these other products. Additionally, the fact that the 30-m downsampled HiMAT DEM compares reasonably well to other 30-m DEMs suggests that our downsampling methods are likely reasonable. Overall, modeling at a 30-m spatial resolution can introduce a bias upward of +60 Wm–2 (∼20%) over the course of a single day at some glacier elevations, and this result is generally true for all DEM products tested here.




DISCUSSION

The results of this study strongly indicate that modeling the variability of incident SW radiation in complex terrain requires high spatial resolution in order to resolve the influence of terrain attributes throughout the day. However, the overall importance of terrain and the accuracy of modeling terrain interactions with incident SW radiation will also depend on other variables not directly addressed in this study, such as: local topographic and meteorological conditions (esp. cloudiness conditions), assumptions/parameterizations in the SW model, and on the accuracy of the DEMs.

As sun angles vary throughout the day at a given location, the influence of specific terrain attributes changes in magnitude and sometimes sign. Slope/aspect and topographic shading are the most variable and impactful terrain attributes that modify daily SW radiation on glaciers in HMA (Figure 3). These two terrain attributes vary drastically based on their relationship with solar angles throughout the day, seasonally, and between glacier valleys. While incorporating slope/aspect into SW radiation models is fairly simple, correctly incorporating the effect of shadows cast from surrounding topography requires additional complexity; consequently, many energy balance models incorrectly incorporate shading or do not include it at all (Olson and Rupper, 2019). By comparison, diffuse sky irradiance is more temporally consistent than slope/aspect or topographic shading, as this terrain attribute mostly relies on static sky-view factors across the glacier surface. Terrain-reflected irradiances also depend on temporally static sky-view factors. However, the magnitude of terrain-reflected irradiance is dependent on the albedo of the surrounding terrain and other model simplifications, which can vary more significantly over space and time. Our assumption of a constant albedo of 0.45 is a significant oversimplification in the model. While this represents a reasonable value for the albedo of glacier ice (Gratton et al., 1994), it certainly underestimates the albedo of surrounding terrain in some locations and overestimates in others. However, using an albedo of 0.30 and 0.60 only modifies the daily mean change in terrain-reflected irradiance by ±3.3% with a standard deviation of 1.4%. Thus the chosen albedo value is unlikely to significantly impact the key result, that terrain-reflected irradiances generally have a significantly smaller impact on clear sky SW irradiance as compared to slope/aspect and topographic shading.

While topography has a large effect on incident SW radiation, the magnitude of this effect is dependent on the variability in atmospheric conditions (which is not captured in this study). The results in this study are based on a clear-sky solar radiation model; however, incident SW is also impacted by atmospheric properties and cloud cover, both of which can significantly diminish the impact of terrain on SW radiation. For example, cloudy conditions cause a lower intensity of direct beam irradiance to be obstructed by surrounding terrain, lessening the importance of topographic shading on a glacier’s surface. Despite some model simplifications and assumptions, the big picture results are likely robust. Specifically, terrain tends to reduce daily SW radiation at a glacier surface; therefore, excluding terrain attributes will lead to an overestimation in modeled energy and melt at the glacier surface. Additionally, this study has application for fields beyond the glacier community, as solar radiation is also an essential variable in snow, ecosystem, and forestry modeling (Comola et al., 2015; Baba et al., 2019; Wu et al., 2019).

An overestimation of incident SW can also result from modeling with coarser DEM resolutions, and this overestimation can occur throughout the day. Coarsening DEM resolution, on average, gives rise to a progressively larger positive bias in incident SW (Figure 4A). However, a significant portion of error is introduced on many glaciers even when downsampling from 8 to 30 or 90 m (Figures 4B,C). For example, the combined SW bias at 30 m is quite large for some glaciers, suggesting that even a decrease in accuracy of ∼22 m can seriously bias modeling results. These SW biases are present at both lower and upper elevations, and vary between glacier basins. Overestimating SW radiation at lower elevations, where temperatures are higher and melt is more likely to occur, can significantly change surface energy balance modeling results and lead to overestimating melt at the glacier surface. When modeling with very coarse DEM resolutions (250 or 500 m), changes in incident SW radiation due to terrain attributes are inadequately represented and can introduce significant errors in SW radiation, and these errors propagate into the modeled glacier mass balance and melt. The modeled SW bias due to decreasing DEM resolution is primarily due to changes in modeled slope/aspect and topographic shading, once again highlighting the importance of these terrain attributes for surface energy balance modeling. Additionally, we see that there is a modeled bias in incident SW throughout the warmer hours of the day (Figure 6) as DEM resolution is coarsened, illustrating the importance of resolution for modeling melt.

When comparing the accuracy of modeled SW radiation between DEM products, we see a mostly consistent positive SW bias for all products relative to the higher resolution DEM. The bias from the ASTER GDEM shows the most variation for some glacier elevations, particularly at lower elevations, but is overall similar to other products. Nascetti et al., 2017 found that the accuracy of the SRTM DEM is generally more accurate over flat terrain, whereas the accuracy of the ASTER DEM performed better at steeper slope angles, which could explain the variability we see on East Rongbuk Glacier. However, for all 10 glaciers we generally see a consistent SW bias between all DEM products, suggesting a similar accuracy in modeled SW for most glaciers in this region. Importantly, the modeled SW bias from the downsampled 30-m HiMAT DEM is consistent, though smaller in magnitude, with other DEM products (Figure 7). These consistencies validate our downsampling analysis, and the lower magnitude of SW bias in the 30-m HiMAT DEM is likely due to it being directly downsampled from the 8-m product. In general, these results show that modeled SW radiation will depend primarily on DEM resolution, and secondarily on the DEM product. However, modeled SW radiation will also be impacted by the accuracy of the DEMs, which is not directly evaluated in this study.



CONCLUSION

In this study, we model direct, diffuse, and reflected SW irradiance on 10 glaciers in the Everest region of HMA. We compare the relative importance of slope and aspect, shading by topography, and the sky-view factor on the incident SW radiation, and assess the sensitivity of these results to DEM resolution and platform. Overall, slope/aspect and topographic shading have the greatest impact on daily incident SW, while the sky-view factor (due to both diffuse sky and terrain-reflected irradiances) contributes significantly less. The degree to which these terrain attributes alter the modeled SW irradiances also depends on the DEM resolution used. Modeling SW at 30-m spatial resolution, as compared to the new 8-m HiMAT DEM, can introduce a positive SW bias between 20 and 60 Wm–2 (∼7–20%) along some glacier elevations, which increases to upward of 100 Wm–2 (∼33%) as resolution coarsens to 500 m. This bias is primarily driven by the error in estimating topographic shading and slope/aspect at lower DEM resolutions, and less by changes in the sky-view factor. For all glaciers in this study, we demonstrate a systematic overestimation in daily modeled SW radiation with decreasing DEM spatial resolution. Additionally, we see that common 30-m DEM products can introduce a significant bias in incident SW (+60 to + 90 Wm–2 or ∼20 to 30%) at certain elevations compared to the 8-m HiMAT DEM. These results can be utilized as a bias correction for modeled incident SW in the region, or used to better constrain uncertainty in model results. We also see that the positive bias introduced when modeling incident SW at lower DEM resolutions occurs throughout the warmer hours of the day, which would lead to a higher bias in modeled melt. In summary, correctly modeling the impact of terrain and utilizing high spatial resolution, such as the 8-m HiMAT DEM, are essential to accurately quantifying incident SW energy and melt on glaciers in complex terrain.
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Cascading hazard processes refer to a primary trigger such as heavy rainfall, seismic activity, or snow melt, followed by a chain or web of consequences that can cause subsequent hazards influenced by a complex array of preconditions and vulnerabilities. These interact in multiple ways and can have tremendous impacts on populations proximate to or downstream of these initial triggers. High Mountain Asia (HMA) is extremely vulnerable to cascading hazard processes given the tectonic, geomorphologic, and climatic setting of the region, particularly as it relates to glacial lakes. Given the limitations of in situ surveys in steep and often inaccessible terrain, remote sensing data are a valuable resource for better understanding and quantifying these processes. The present work provides a survey of cascading hazard processes impacting HMA and how these can be characterized using remote sensing sources. We discuss how remote sensing products can be used to address these process chains, citing several examples of cascading hazard scenarios across HMA. This work also provides a perspective on the current gaps and challenges, community needs, and view forward toward improved characterization of evolving hazards and risk across HMA.

Keywords: cascading hazards, High Mountain Asia, remote sensing, glacial lake outburst floods, landslides, risk assessment


INTRODUCTION

Natural hazard-induced disasters exploit the vulnerabilities in society created by political, historical, and cultural processes (Kelman, 2019). Disasters are sometimes considered as a single process or one homogeneous event. Therefore, much scientific emphasis has been placed on understanding the individual hazards, triggers or preconditions that may result in a single outcome, such as a snow avalanche killing mountaineers, or an earthquake shaking down houses. However, these disasters are frequently non-linear hazard process cascades. The ensemble of preconditioning factors, triggering, and process cascades can entail greater human, infrastructure, or ecosystem exposure and higher risks than when singular isolated processes are considered. The latter point was emphasized by Gill and Malamud (2016), who considered accurate risk assessment to be dependent on consideration of multi-hazards and process cascades. Lacking such consideration, disaster impacts can exceed the expectations of hazard mappers and disaster response planners. We use the definitions of hazard, exposure, vulnerability and risk from Schneiderbauer and Ehrlich (2004) and the U.N. Framework for Disaster Risk Reduction (UNISDR, 2015) where: hazard refers to a physical event or phenomenon that can be “single, sequential or combined in their origin and effects”; exposure is the population, infrastructure or other assets within the geographic region affected by the hazard; and vulnerability is the characteristics of an organization (person, group) to “cope with, resist and recover from the impact of a natural or manmade disaster.” Risk is then defined as Hazard ∗ Exposure ∗ Vulnerability.

A cascading process can be defined as sequences of events (not necessarily sequential) governed by cause and effect relationships. The importance and relevance of cascading process chains in the context of natural and man-made hazards has been defined and examined in several ways. Kappes et al. (2012) summarize the approaches to multi-hazards within the context of risk assessment, emphasizing the challenges and importance of considering amplified risk stemming from cascading processes. Gill and Malamud (2016) emphasize the differences between multi-layer single-hazard approaches and multi-hazard approaches, suggesting that “ignoring interactions between important environmental and anthropogenic processes could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk.” Recently a view and methodology has emerged of more complex weblike systems of natural process causes and effects and impacts on humans, infrastructure, and ecosystems. Pescaroli and Alexander (2016) contest the simplified “toppling dominoes” perspective of cause-effect. They argue that cascades happen non-linearly and include many amplifying and subsidiary events, where the compounding effects of natural hazard processes can be phenomenologically distinct from the cause, and the impacts also can be diverse and far ranging. In this sense, what is commonly termed a process chain is often more of a process web. The key is that one process cascades into one or more other processes, some of which are hazards in their own right and can create multiple disasters within a disaster.

Many recent disasters have contributed to scientific and public understanding of multi-process linkages. For example, the 2011 M9.0 Tohoku earthquake and tsunami propagated and compounded the disaster at the Fukushima Daiichi nuclear reactors, causing broad economic impacts that included hundreds of billions of USD in direct losses and billions (USD) more in losses in supply chain disruptions and continuing agricultural losses (Lekkas et al., 2011; Kazama and Noda, 2012; IAEA, 2015). Complex process cause-and-effect webs are documented within mountain areas, such as the Attabad landslide and damming of the Hunza River in northern Pakistan (Kargel et al., 2010). The dammed lake grew over 5 months and caused deep, cascading social and economic impacts of almost $4 billion USD (Cook and Butz, 2016). This was largely due to a 90% severance of overland trade between China and Pakistan until restoration of the Karakoram Highway 5 years later (Haider, 2012). The disaster also had political (Sökefeld, 2012) and geopolitical (Haider, 2012; Butz and Cook, 2015) impacts on a strategic border.

The potential for such immense losses make it incumbent on the scientific community, policy makers, and those developing Decision Support Systems (DSS) to consider and evaluate physical cascading process chains and webs to better integrate physical models with economic and social models of cascading impacts. A common feature of the examples from Japan and Pakistan is that the process sequences can have compounding interactions that quickly multiply in space and time, resulting in substantial risks to society, infrastructure, and the environment (Cardona et al., 2012). One challenge in characterizing these complex interactions and connecting the processes to community vulnerability and risk is limitations in data availability, particularly in remote regions.

Satellite-based remote sensing offers a valuable and rapidly developing set of tools that can improve hazard detection and mitigation and disaster warning, response, and recovery. This paper highlights the utility of remote sensing data for studies of cascading hazard processes that are observable or informed from the vantage point of space. We present case studies from the HMA region to illustrate how remote sensing data is used to monitor and model elements of these cascading process chains and provide context for future opportunities. We build on previous works (e.g., Kääb et al., 2005) to summarize and reflect on the vast increase in data from new remote sensing missions and the development of platforms that enable rapid analysis to support hazard assessment and disaster response. While much of the current research is focused on understanding specific processes, we show how the processes can connect and outline opportunities and challenges in characterizing the full continuum from hazard to risk in a dynamic and coupled way to support risk-mitigation and disaster response efforts. The ultimate goal of this work is to provide an accessible and applicable reference of remote sensing capabilities that is of relevance to both scientists and in-country decision makers. It is also intended to provide insight into how remote sensing information can help governments advance the Sendai Framework Priorities of understanding disaster risk, strengthening disaster risk governance, and enhancing disaster preparedness (UNISDR, 2015).



BACKGROUND


Thematic Scope

From a disaster management perspective, hazard assessments that are stove-piped to consider the impacts of a singular hazard can offer some tractable ways to map hazards but tend to miss the broader assessment, such as economic and social disruptions. Even in many “multi-hazard assessments” a set of individually-derived hazard zones are overlain spatially, without considering how each may interact. Moving from understanding the hazard to an accurate characterization of the risk requires quantification of the end-to-end connections, interdependencies, and consequences resulting from a chain of cascading events. This study focuses more on how remote sensing products can inform elements within the chain and provides examples of how the connections between processes can be characterized. This work also provides observations on the existing limitations and gaps in taking a systems approach to incorporate multiple conditioning, triggering, and cascading elements to better represent disaster risk and societal impacts in support of risk reduction strategies. We do not consider in detail the specific impacts of disasters on people and infrastructure; however, those human impacts also commonly occur in cascading chains and webs that are complexly linked to the physical process chains and webs.



Geographic Scope

Our HMA study region extends from the Hindu Kush Mountains in Pakistan and Afghanistan to the eastern Himalaya covering India and Bhutan, and north to Tien Shan, which is also known as the extended Hindu Kush-Himalaya (Bolch et al., 2019) (Figure 1). The region is seismically active, with the Indian Plate subducting beneath the Eurasian Plate, resulting in catastrophic earthquakes such as the April 2015 Gorkha Mw 7.8 event. In the southeast, the climate is defined by heavy rainfall during the summer monsoon, while the western region receives significant rain and snow from winter westerlies. HMA has the largest concentration of glaciers outside of the poles and Alaska and serves as a freshwater reservoir for over a billion people (Immerzeel et al., 2010; Quincey et al., 2018). Global Land Ice Measurements from Space (GLIMS) and the Randolph Glacier Inventory (RGI) v6.0 have identified 95,536 glaciers across HMA (Zhao et al., 2014). As of 2010, these glaciers were accompanied by 7,368 glacial lakes covering an area of 779 km2 (Wang et al., 2013; Zhang et al., 2015). Rapid glacial melting along with other Earth surface processes pose significant downstream hazards such as glacier outburst floods and landslides, which can have major societal impacts. This is particularly important in HMA, since a global study found that Nepal and Bhutan have the greatest socioeconomic consequences from glacier outburst floods (Carrivick and Tweed, 2016). Some common hazards and cascading processes within HMA are outlined in Figure 2.
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FIGURE 1. Extent of the HMA Study area (Bolch et al., 2019). The location of case studies from Section “Case Studies of Cascading Hazards Over HMA” are highlighted in the black triangles.
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FIGURE 2. Conceptual diagram highlighting cascading hazard process. (A) Illustrates an outburst flood triggered at proglacial lakes, which can be further exacerbated by additional elements such as landslides, avalanches and rockfalls and avalanches triggered by precipitation or seismic activity. (B) Shows a supra- or englacial-flood event emanating from debris-covered glaciers. (C) Illustrates how a landslide triggered by seismic activity or precipitation can dam a river and cause upstream lake expansion. (D) Shows how a landslide-dammed river could fail catastrophically, causing downstream propagation of flood waters and debris that could cause potential societal impacts to populations and infrastructure.





Remote Sensing Data for Hazards Research and Disaster Response

A dearth of ground data has hampered the timely study of individual hazards and disasters, and limits the collective and systematic regional assessment of hazard processes. This remains a challenge, especially in countries where hydrological, geological, and other needed data are not acquired or classified (GAPHAZ, 2017). Remote sensing allows the development of tools for classifying, routine monitoring and modeling of cascading hazard processes. Spatio-temporal data resolution has been a major limitation in the application of remote sensing to high mountain hazards (Kääb et al., 2015). However, a revolution in mountain hazards assessment has been made possible in recent years by several new developments in Earth remote sensing: global coverage by many civil satellites at high spatial resolution (a few meters down to a few decimeters), reduced repeat times, improved spectral resolution, expanded data availability and lowered cost (much of the data being free), and vastly improved computing capability and resources (e.g., cloud computing, Google Earth Engine) that allow analysis of regional and global datasets as never before. These developments have been key in overcoming issues of widespread cloudiness, providing high temporal and spatial resolution of long continuing process cascades and their conditioning and impacts, processing of thousands of images by scientists around the world, and enabling more relevant applications that are more responsive to DSS and public awareness of events – often in near real-time. Free data access has expanded and enhanced the research community to include scientists who could not otherwise participate in hazards and disaster research, and has enabled global studies.

There are a variety of platforms (public and commercial), observational strategies, and models based on remote sensing data that are valuable for improving our understanding of how to relate elements within the cascading hazard chain (Table 1). A more in-depth description and link to all sources referenced within this article are provided in Supplementary Table S1. Publicly-available moderate resolution optical observations from Landsat, ASTER and Sentinel-2 are valuable for mapping and monitoring changes in glacial lakes, areas of landslide-dammed lakes, or large landslides. Commercial imagery from companies such as DigitalGlobe and Planet, among others, offer submeter to meter-scale imagery and on-demand tasking for mapping these features and collecting data during event response. These images are also being used to generate time series of high-resolution (2–8 m) Digital Elevation Models (DEMs) that can be used to quantify elevation and volume change of landforms and glaciers. Composite mosaics of these high-resolution DEMs are also fundamental for modeling landslides or outburst flood runouts and producing accurate landslide inventories. Active sensors, such as Synthetic Aperture Radar (SAR) from platforms like Sentinel-1 and commercial SAR data from COSMO-SkyMed and TerraSAR-X can highlight surface deformation from earthquakes, hillslope movement for large, slow moving landslides, and has been used to characterize freeze/thaw processes and glacier volumes within the HMA region. Satellite rainfall products such as the Global Precipitation Measurement (GPM) mission can provide near real-time rainfall estimates at 0.1-degree coverage every 30 min. In addition to the remote sensing platforms, models such as Land Data Assimilation Systems (LDAS) and Global Climate Models (GCM) like the GFDL Forecast-oriented Low Ocean Resolution (FLOR) model assimilate remote sensing and in situ observations to provide estimates of water supply, glacier modeling, and forecasted hydrologic states across HMA that are valuable for understanding the preconditioning, initiation and future outlook of cascading hazard processes within this region.

TABLE 1. Description of relevant processes and elements involved in cascading hazards.
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REMOTE SENSING OF CASCADING HAZARD PROCESSES

This section provides a survey of many of the remote sensing data sources and methodologies relevant to the hazard processes outlined in Figure 2. The goal here is to highlight the ways in which the cascading hazard elements can be uniquely observed, then Section “Case Studies of Cascading Hazards Over HMA” will cite examples across HMA that show how these processes can connect. Section “Synthesis of Gaps, View Forward and Discussion” highlights opportunities and limitations for monitoring and modeling these cascading processes in the future.


Preconditioning

Preconditioning involves changes to the land surface that increase the probability of having a triggering event and ensuing hazard process chain or web. Conditioning processes include: (1) freeze-thaw, which can cause frost shattering of bedrock (Dredge, 1992) and generation of talus, or weakening or creep of unconsolidated sediment (Daanen et al., 2012; Zhou et al., 2018); (2) sustained rainfall or snowmelt, which can destabilize soils (Cui et al., 2019); (3) chemical weathering, which can weaken bedrock and generate talus (Avtar et al., 2011); (4) thinning of glaciers and debuttressing (removal of the physical support) of moraines or weakened bedrock or tributary glaciers (Kääb et al., 2006); (5) thawing of permafrost or ice-cored moraines; (6) gully erosion by surface streams or subsurface piping, which can undermine glaciers, debris, or bedrock; (7) prior earthquakes or joint fracturing of bedrock (Pour and Hashim, 2017); (8) deforestation and other vegetation changes (Pathak, 2016; Hashim et al., 2017); (9) construction (Pathak, 2016); and commonly a combination, e.g., bedrock weathering, deforestation, land use conversion and construction, and sustained precipitation (Cui et al., 2019), or bedrock fracturing, vegetation change, and sustained precipitation (Pour and Hashim, 2017). Commonly, minor landsliding itself can destabilize slopes and condition them for larger subsequent failures triggered by earthquakes or rainfall (Pathak, 2016).

The first six categories listed above are related to climate or extreme weather directly or by exposure of bedrock by retreat/thinning of glaciers. Thawing of permafrost can take ice-cemented and mechanically strong bedrock or debris to a state of unconsolidation, thus creating a potential for new groundwater drainage routes, surface erosion, slope creep (gelifluction or solifluction) or other dynamics that locally did not previously occur (Gruber and Haeberli, 2007; Stoffel and Huggel, 2012; Haeberli et al., 2017). Conditioning processes related to anthropogenic activities including deforestation, road and building construction, and mining can also have a significant impact on destabilizing slopes and causing landslides and other erosion processes.

Each listed process may either generate weakened or unconsolidated debris, weaken the support of the already weak rock or ice masses, or re-route water flow. Penetration of rainwater beneath hanging glaciers may decrease basal shear stress on steeply sloping beds, leading to serac falls (toppling blocks of ice). Road building and deforestation for agriculture or urban expansion commonly contribute to hillslope destabilization (Petley et al., 2007; Cui et al., 2018). Preconditioning may happen hours to decades before a trigger initiates a landslide or flood.

Preconditioning may result in new hazard processes arising where previously they were rare. The formation and growth of new glacial lakes similarly introduces new hazard processes. The thawing of permafrost and transition of “polar” or cold-based glaciers (completely frozen) to polythermal, and polythermal to temperate glaciers (temperatures at or above the melting point at the bed) is a logical consequence of increased warming in HMA (Miles K. E. et al., 2018) and may contribute to a new propensity for glacier surges or ice avalanches— some of immense scales (Kääb et al., 2018).



Earthquakes

The Himalaya plate boundary is characterized by episodic large earthquakes followed by periods of strain accumulation (Khattri, 1987; Bilham, 2019). Mapping and defining how quickly strain is accumulating across the plate boundary zone is critical to improving seismic hazard assessment and, together with other types of geomorphic mapping, will improve characterization of active fault structures (Elliott et al., 2016). The availability of satellite-based geodetic measurements has increased significantly over the last 20 years, enabling more routine observations of active tectonic processes. However, a challenge with robustly characterizing earthquake hazard is the short length of time for which good observations exist relative to the often long repeat times for large earthquakes. Modeling the spatiotemporal distribution of deformation around individual fault zones or across plate boundaries can be used to assess earthquake cycles; however, this is predicated on sufficient in situ or remote sensing observations to validate these estimates (e.g., Dal Zilio et al., 2019).

Synthetic Aperture Radar (SAR) provides a powerful capability to assess coseismic activity and surface displacements with centimeter to millimeter precision over large areas. Interferometric SAR (InSAR) is designed to measure phase changes between images along the satellite’s line-of-sight (LOS) and can identify surface displacement using publicly-available satellites such as Sentinel-1 and commercial platforms (e.g., ERS-1/2 SAR, ENVISAT ASAR, ALOS PALSAR, TerraSAR-X, RADARSAT-2, COSMO-SkyMed, see Supplementary Table S1 for more details). The timescales at which these platforms are relevant for characterizing displacement vary based on their orbit, frequencies and revisit time but research is focusing on how these types of measurements can be used to inform crustal deformation. Global Navigation Satellite System (GNSS) data provides high accuracy and temporal resolution surface displacement information vital for providing a comprehensive view of the rupture zone. The Gravity Recovery and Climate Experiment (GRACE) has been used to understand temporal variation in gravity due to great earthquakes such the 2011 Tohoku-Oki earthquake (Han et al., 2011, 2014). These observations are coupled with in situ networks of geodetic observations (e.g., UNAVCO) to improve rapid characterization of earthquake hazards (e.g., Crowell et al., 2012; Melgar et al., 2012). In addition to existing capabilities, new opportunities are on the horizon to advance earthquake hazard assessment through the synthesis of multiple satellite and in situ measurement constellations, enabling rapid characterization and dissemination of earthquake information.



Extreme Precipitation

Extreme precipitation events across HMA frequently occur during the summer monsoon season in Nepal, northern India and eastern Pakistan and during the winter westerlies within the Karakoram region to the west. There are few consistent and publicly available in situ estimates of precipitation across this region so satellite products can provide insight into the extreme precipitation patterns (storm intensity, duration, and accumulation) that may impact cascading hazards, such as landslides, glacier outburst floods, and flooding. NASA satellite products such as the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) (Huffman et al., 2010) and the Integrated Multi-satellitE Retrievals for GPM (IMERG; Huffman et al., 2018) provide spatiotemporal coverage over the region at 0.25 degree, 3-hourly and 0.1 degree 30-min resolution, respectively with approximately 4 h latency. Other satellite products such as Climate Hazards group Infrared Precipitation with Stations (CHIRPS; Funk et al., 2015) provides 0.05 degree products with a 2 day to 3 weeks latency. While these gridded products are of high value for continuity and coverage, one challenge with satellite derived estimates is the strong orographic controls that modulate precipitation over HMA’s complex topography. The local variability in precipitation, particularly related to orographic enhancement, can lead to errors in characterizing extreme rainfall within the transition zone from the Indian to Tibetan plateau (e.g., Barros et al., 2004; Anders et al., 2006; Andermann et al., 2011). Recent work has focused on downscaling the satellite estimates by leveraging other observations of topography and temperature to better characterize the constraints on extreme precipitation (e.g., Mei et al., 2018); however, the availability of in situ gauge data to validate these estimates remains a pressing need within this region for improving satellite precipitation retrievals over this area.



Landslides


Landslide Mapping

Landslides are pervasive events in mountainous environments, causing billions of dollars in damages to infrastructure and thousands of deaths annually (Kirschbaum et al., 2015; Froude and Petley, 2018). Remote sensing of landslides with optical imagery can be categorized into two groups: pixel based and object-oriented analysis (OOA). With the availability of high resolution satellite imagery, traditional pixel-based methods that use the spectral characteristics of single pixels and ignore spatial information have become inadequate for characterizing geomorphic process such as landslides (Dou et al., 2015). In OOA, pixels are transformed into objects based on spectral homogeneity using image segmentation (Blaschke et al., 2004). Spectral, textural, contextual, morphological and topographical characteristics of the objects are used for landslide detection (Sun et al., 2017). Comparative studies between the two methods highlight superior performance of OOA compared to pixel-based methods (Moosavi et al., 2014; Keyport et al., 2018). SAR sensors have the advantage that they can “see” the land surface during all weather conditions, which is particularly valuable when trying to observe landslide changes during the monsoon season. InSAR techniques have been used to study slow moving landslides (<1–2 cm/year) (Liu et al., 2013; Tofani et al., 2014; Ambrosi et al., 2018). Time series observation techniques also known as Multi-Temporal InSAR (MT-InSAR) have been developed (Ferretti et al., 2001, 2011; Berardino et al., 2002; Hooper et al., 2004; Hooper, 2008) to mitigate unwanted phase contributions by several different sources such as electronic properties of the ground, atmospheric delay, inaccurate orbit, and combined noises (Colesanti and Wasowski, 2006). In case of rapid movement, the interferometric phase can be affected by high phase gradients between neighboring pixels, leading to difficulties in calculating precise displacements, or severe coherence loss (decorrelation) when surface movement exceeds the detectable displacement (Casu et al., 2011; Raspini et al., 2015). For such cases, pixel offset tracking can be used as an alternative method to infer two dimensional displacements using SAR amplitude (Manconi et al., 2014; Bhattacharya et al., 2015; Sun and Muller, 2016; Madson et al., 2019).

Landslides can also be mapped by the backscattered energy difference using SAR imagery before and after a landslide (Yamada et al., 2013; Konishi and Suga, 2018) or with polarimetry-based approaches (Rodriguez et al., 2002; Czuchlewski et al., 2003; Shimada et al., 2014; Shibayama et al., 2015; Plank et al., 2016). Several polarimetric decomposition methods have been developed for classifying land cover based on scattering mechanisms (Cloude and Pottier, 1996, 1997; Freeman and Durden, 1998). The launch of SAR sensors with frequent revisit times such as TerraSAR-X, COSMO-SkyMed, and Sentinel-1 significantly improve our ability to study landslides using SAR. However, in mountainous environments such as HMA, geometric distortions such as foreshortening, shadow, and layover can be a severe limitation (Sun et al., 2016), making landslide detection and monitoring difficult.

Digital Elevation Models generated from sources such as aerial photographs (Casson et al., 2003; van Westen and Lulie Getahun, 2003), high-resolution stereo imagery (Martha et al., 2010; Lacroix, 2016; Nagai et al., 2017) and drone surveys (Watson et al., 2019) have been successfully used for landslide mapping and monitoring. Use of DEMs also enable additional parameters to be calculated, such as depth and volume, which is advantageous for all phases of landslide hazard assessment (Tsutsui et al., 2007).



Landslide and Avalanche Runout Analysis

Landslides and avalanches in high mountain regions may run into glacial lakes or rivers, triggering secondary and tertiary hazards such as outburst floods, the creation of landslide-dammed lakes, or direct inundation of populated areas. Remote sensing-derived landslide inventories help build an understanding of volume-runout relationships and are reviewed and demonstrated in Iverson et al. (1998), Metternicht et al. (2005), Noetzli et al. (2006), Griswold and Iverson (2008), and Rounce et al. (2017a).

Both empirical and numerical approaches are used to simulate landslide runout (McDougall, 2017). Salzmann et al. (2004) integrated optical remote sensing with GIS-based analysis of a DEM to assess ice avalanche hazard potential. Noetzli et al. (2006) also modeled rock-ice avalanches with a DEM. Iverson et al. (1998) and Griswold and Iverson (2008) used volume-runout relationships disaggregated by landslide type (i.e., rockfalls, shallow debris flows, and volcanic lahars) to develop the empirical LaharZ model. These approaches do not resolve many small-scale physical processes nor do they allow for bifurcations, but they are readily scalable. Prior knowledge of the general environment helps bound simulated limits of potential runout. For instance, rock-ice avalanche runout length has been found to increase roughly 25% in glacial environments, compared to non-glacial environments (Evans and Clague, 1994; Deline, 2001).

Recently, numerical modeling approaches such as r.avaflow (Mergili et al., 2017) resolve finer scale physical process chains involved in slope failure and deposition. DEM characteristics are very influential in runout simulations. In general, elevation data with high surface roughness – whether introduced by noise or true roughness in very high resolution data – results in an underestimation of runout lengths, likely due to simulated momentum losses. McDougall (2017) therefore treat surface roughness as a parameter in their DAN-W and DAN3D models. Coarser DEMs generally result in shorter and wider runout simulations when compared to observations (e.g., Muñoz-Salinas et al., 2009; Anderson et al., 2016). Relative vertical accuracy of DEMs mostly comes into play when delineating the distal extent, even more so in flatter areas (Iverson et al., 1998). In highly dynamic, glacial environments, reference DEMs quickly become outdated for runout modeling applications. ASTER-derived DEMs have been used to capture crude changes in topography left by deposits, given they are large enough (e.g., larger than 20–30 m, Huggel et al., 2007). High resolution DEMs generated from commercial stereo pairs (e.g., Shean et al., 2016; Shean, 2017) addresses this challenge, and time series of DEMs allow for volumetric analysis of debris flow runout (van Westen and Lulie Getahun, 2003). Recently, D-Claw has coupled landslide and tsunami models in Alaska (George et al., 2017), which could soon be applied to HMA with necessary inputs and parameters. To address the uncertainty in runout modeling estimates, it is often standard to consider a range of runout volumes and other sensitivity analyses. These ranges of deposition hazard zones assist decision makers and scientists in considering areas more likely to be affected by landslides under a range of scenarios.




Glacial Lakes


Glacial Lake Mapping

As glaciers melt and retreat, they become prone to develop supra- and proglacial lakes, which can become glacier outburst flood hazards (Benn et al., 2012). In HMA, both the number of glacial lakes and their area have been rapidly increasing in recent decades (Gardelle et al., 2011; Nie et al., 2017). The mapping of these lakes is typically done using optical or SAR satellite imagery.

Optical imagery typically uses the normalized difference water index (NDWI), which relies on the contrast between reflectance in green or blue bands and absorption in the near-infrared bands to map surface water (McFeeters, 1996). Corona, Hexagon, and Landsat optical satellite imagery enabled mapping of select glacial lakes since the early 1960s (e.g., Watanabe et al., 2009), although it was not until the 1990s that Landsat, and now Sentinel, provided the temporal and spatial coverage to enable regional mapping (e.g., Gardelle et al., 2011). Repeat mapping of these glacial lakes also aids in the detection of glacier outburst floods on the regional level (Veh et al., 2019). Given the plethora of imagery being generated, new innovative methods such as algorithms using Google Earth Engine (e.g., Kraaijenbrink et al., 2017) are being developed to automatically analyze these large datasets. For more detailed studies, higher resolution (0.3–3 m) satellite imagery with improved temporal resolution (e.g., PlanetScope, WorldView) enable near real-time monitoring of the filling and potentially catastrophic drainage of supraglacial (e.g., Miles E. S. et al., 2018), moraine-dammed (e.g., Byers et al., 2018), ice-dammed (e.g., Steiner et al., 2018), and landslide-dammed lakes (e.g., Kargel et al., 2016). Additionally, SAR images, which rely on the backscattering intensity to delineate glacial lakes (e.g., Strozzi et al., 2012), provide reliable, repeat images of glacial lakes that are unobstructed by clouds. However, these images are often manually delineated to avoid errors associated with surface waves and saturated sediments (e.g., Strozzi et al., 2012; Round et al., 2017), so they are often only used over limited spatial extents.



Surface Velocity and Surging Glaciers

Studies have measured surface gradients and velocities to better understand the development of glacial lakes and the link between lake expansion and glacier mass loss (e.g., Quincey et al., 2007; King et al., 2018). Major advances in feature tracking have enabled surface velocities to be estimated for all glaciers in HMA using optical imagery (Dehecq et al., 2019). New products such as the Global Land Ice Velocity Extraction from Landsat 8 (GoLIVE) provide velocity estimates for any Landsat 8 image pair. High-resolution optical imagery with short revisit times such as PlanetScope (e.g., Steiner et al., 2018) or reliable SAR images (e.g., Round et al., 2017) are also enabling detailed investigation of seasonal surface velocities.

Surface velocities can be used to identify surging glaciers, which are common in the Karakoram (Hewitt, 2007). A glacier surge refers to the sudden movement of ice over a relatively short period of time, causing notable mass redistribution and potentially rapid glacier advance (Richardson and Reynolds, 2000). In the Karakoram, it is unclear whether surges are controlled by warming thermal conditions or changes in the hydrologic conditions (Quincey et al., 2015). Nonetheless, surging glaciers are important to monitor as they may damage property or infrastructure, and/or may block a valley and cause an ice-dammed lake that is a potential outburst flood hazard (Hewitt and Liu, 2010).



Glacier Outburst Floods

Glacier outburst floods refer to the sudden discharge of water from a glacier (Carrivick and Tweed, 2013), which can have runout distances of tens to hundreds of kilometers (Gunn, 1930; Hewitt, 1982; Vuichard and Zimmermann, 1987; Richardson and Reynolds, 2000; Reynolds, 2014; Gurung et al., 2017) and cause extensive geomorphic and socioeconomic damages. The flood water may be stored in a proglacial lake [often referred to as a glacial lake outburst flood (GLOF), e.g., Vuichard and Zimmermann, 1987], within the glaciers’ subsurface (e.g., Rounce et al., 2017a), or behind an ice dam (e.g., Round et al., 2017).

The triggering mechanism that initiates these floods is typically a dynamic event (e.g., an avalanche entering the lake, extreme precipitation) or the destabilization of the damming material (e.g., increase in hydrostatic pressure, piping). In HMA, the main triggering mechanism for proglacial lakes is a mass movement (avalanche or rockfall) entering the glacial lake, which causes a displacement wave that can destabilize the terminal moraine and cause a flood (Richardson and Reynolds, 2000; Falátková, 2016). For the other types of outburst floods, the triggering mechanism is typically caused by the destabilization of the damming material, which may be linked to the ice dam thawing, hydrostatic pressure exceeding the strength of the dam, or hydrostatic pressure enabling the impounded water to find more efficient drainage pathways. Given the unpredictable nature of glacier outburst floods, remote sensing has primarily been used to analyze floods following the events (e.g., Rounce et al., 2017a; Byers et al., 2018) or to conduct a first-pass hazard assessment for proglacial lakes (e.g., Worni et al., 2014; Rounce et al., 2017b). The latter typically utilize optical imagery and DEMs to identify potentially dangerous glacial lakes that require further investigation, which may include fieldwork and detailed flood modeling with a high-resolution DEM (e.g., Lala et al., 2018).




Downstream Movement and Impacts


Downstream Movement

Outburst floods mobilize large boulders that armor the channel bed (Cook et al., 2018), leading to bank erosion, landslides, and channel damming (Kattelmann, 2003). Large volumes of sediment and woody debris are often mobilized and redeposited in response to variations in channel morphology and stream power (Costa and Schuster, 1988; Watanabe and Rothacher, 1996; Clague and Evans, 2000; Cenderelli and Wohl, 2003), which leave distinctive marks on the landscape. Remote sensing data, primarily optical imagery and DEMs, are used to quantify the extent and magnitude of downstream impacts. Change detection techniques applied to optical imagery (e.g., PlanetScope) and band ratios, such as the normalized difference vegetation index (NDVI) and NDWI, can reveal areas of bank erosion and river channel migration, respectively (Miles E. S. et al., 2018). However, river channels are likely to be poorly resolved in topographically confined reaches. Very high resolution satellite imagery (e.g., WorldView) in some cases allows discrimination of flow paths, river channel damming, and secondary hazards, and is often made available for disaster response (Kargel et al., 2016; Rounce et al., 2017a). Alternatively, SAR can penetrate cloud cover, but exhibit data voids from layover and shadow effects in steep topography (Robson et al., 2015). Satellites such as Sentinel-1A and 1B have a 12-day revisit cycle and provide 6-day frequency when imagery from both satellites are used.

DEMs are fundamental inputs when modeling downstream flood propagation, either in first-pass GIS-based assessments (e.g., Huggel et al., 2004; Mergili and Schneider, 2011; Watson et al., 2015; Rounce et al., 2017b) or in physically-based hydrodynamic models (e.g., Westoby et al., 2014a, 2015; Worni et al., 2014; Lala et al., 2018). Spatial and temporal resolution is a limitation in the HMA region where only 30 m resolution global products are widely available, such as the Shuttle Radar Topography Mission (SRTM) or ALOS World 3D (AW3D30) DEMs. These global products are less suited to the application of higher-order (e.g., 2D and 3D) hydrodynamic models that can account for sediment entrainment and deposition (Westoby et al., 2014a, b), and rapidly varying topography that constricts flow to produce hydraulic ponding and attenuation of peak discharge (Clague and Evans, 2000; Carrivick, 2006; Carrivick et al., 2013). The production of the HMA DEM products (Shean, 2017) and access to high-resolution stereo imagery for DEM generation (e.g., Kougkoulos et al., 2018; Miles E. S. et al., 2018), presents new opportunities for retrospective or predictive modeling of high-magnitude flows (e.g., Watson et al., 2019), and to conduct analyses relevant to disaster response timescales such as modeling landslide-dammed lake formation. DEM generation with high temporal and spatial resolution could one day be achieved using satellite constellations with daily revisit capabilities and favorable stereo geometry. DEMs can also be used to quantify topographic change associated with the cascading hazard floods through multi-temporal differencing. Consideration of multiple data sources and assessment methods (Table 1) is essential to produce analyses relevant at disaster response timescales, but also for subsequent analyses aimed at an improved process-based understanding of the event.



Human Impacts: Impacts on Populations and Infrastructure

The risks of physical hazards to populations and infrastructure can also be cascading, referred to here as cascading socioeconomic impacts. In addition to a glacier outburst flood or landslide directly causing fatalities and/or damage to roads, bridges or buildings, shocks from these hazards can trigger breakdowns in supply chains. A flooded field can cause direct losses to farmers, while a blocked road can result in substantial economic losses for farmers unable to get their goods to market, thereby impacting supplies in nearby towns. Floods can also instigate water quality issues, such as contamination, which may result in health impacts to populations affected by the disaster. Social issues related to disasters including gender-based violence, mental health issues, unemployment, alcoholism and loss of educational facilities have also been documented (e.g., Tierney, 2006; World Bank, 2011; Deloitte Access Economics, 2016). Broader or more diffuse but potentially serious cascading socioeconomic impacts may also occur. For instance, an event that destroys a hydroelectric project or school or prevents employees from reaching their work site may propagate through the economy over time by limiting the supply of electrical energy or skilled workers. The resilience of populations to respond and reduce risk to disasters is highly linked to societal income, educational attainment, and the strength of financial sectors across local to regional governments (Toya and Skidmore, 2007).

Many mountain valleys, especially in HMA, are dotted with villages, hydropower plants, and other infrastructure, which are often connected by winding and precariously positioned transportation networks. Where settlements are in the path of any hazard in the cascading process, the results can be catastrophic. However, not all people in a flood route, for example, are equally at risk (Carey, 2005).

Allen et al. (2016a) used Census India data to quantify social vulnerability to GLOFs in Himachal Pradesh. They find that certain districts have relatively low risk due to low levels of social vulnerability, even though potentially threatening glacial lakes are located upstream. Their remote sensing and GIS modeling analysis forecasted dramatically increased GLOF hazard across most districts in the coming decades, which will likely alter community risk. In the Karakoram, Hewitt and Liu (2010) describe hundreds of villages, as well as highways, bridges, and tourist facilities at risk from GLOFs. They report 1.8 million people, 38 million hectares of irrigated land, and six hydroelectric plants as being at risk, most of which are in China’s Tarim Basin, downstream of the glaciated Yarkand River valley in the Karakoram (Hewitt, 2014).

Remote sensing data can play a pivotal role in rapidly assessing the impacts following an event or series of cascading processes, providing insight into vulnerabilities prior to the triggering event and tracking recovery. Following the 2015 Gorkha Earthquake in Nepal, data from the Visible Infrared Imaging Radiometer Suite (VIIRS) “Day-Night Band” sensor aboard the NASA/NOAA Suomi National Polar-Orbiting Partnership satellite, was able to identify the reduced light emissions in the affected area based on pre- and post-event imagery (Schultz and Molthan, 2015). This product has also been used during other disasters to monitor power outages and recovery, such as following Hurricanes Maria and Sandy (Cole et al., 2017; Wang et al., 2018). SAR data can also provide rapid information on estimated building damage to response communities following major events (e.g., Yun et al., 2015; Karimzadeh et al., 2017; Sharma et al., 2017). The same types of optical data relevant to landslide mapping are also valuable for inundation mapping following flooding events (e.g., Uddin and Shrestha, 2011), assessment of agricultural impacts (e.g., Sivakumar, 2005), and socioeconomic impact assessments looking at building and road damages. Harnessing the power of remote sensing data can provide a physical baseline to identify the vulnerability of critical economic and demographic sectors, which may then be used along with regional economic information to establish strategies and policies for adaptation investments to promote economic growth while increasing resilience (Hill et al., 2012).





CASE STUDIES OF CASCADING HAZARDS OVER HMA

To provide context for how remote sensing data may inform the interactions between elements in the cascading hazard chains or webs, we provide six case studies across HMA that represent a range of conditions under which cascading hazard processes have occurred. Here we explore the observational or monitoring strategies before or after these events, the data relevant to address the cascading hazard elements, and opportunities for improved integration of modeling and observational data for characterizing potential future hazards.


Gorkha Earthquake

On April 25, 2015, Nepal was rocked by a M7.8 earthquake, followed by five aftershocks >M6.0 in the following 6 weeks, including a M7.3 event. Together, these events killed >9,000 people, and triggered thousands of landslides (e.g., Kargel et al., 2016; Zekkos et al., 2017; Roback et al., 2018). While tens of thousands of landslides were triggered coseismically, many others occurred in the weeks following the main quake. In the steep Himalayan topography where most of the mapped landslides occurred, some traversed the valley and blocked rivers, causing temporary lakes to form (Figure 3). These lakes constituted significant secondary (to the landslides) or tertiary (to the earthquake) hazards, since a burst of their dams could cause flooding weeks or months after the earthquake while valley inhabitants were working to recover from the earthquake itself.
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FIGURE 3. (a) Location of a landslide-dammed lake upstream of Lower Pisang village from a 11 May 2015 RapidEye composite of bands NIR, red, and blue (Planet Team, 2018). (b) Shows a point cloud of the Marsyangdi River (April 2018) from Watson et al. (2019), derived from UAV imagery processed following a structure from motion with multi-view stereo workflow. (c) Shows the landslide dammed lake that formed following the Gorkha earthquake and was monitored by Kargel et al. (2016).



Remote sensing data played a key role in responding to, and understanding the hazards posed by these landslides (e.g., Lacroix, 2016). For example, Kargel et al. (2016) overlaid landslide distributions (mapped from optical imagery) on a map of surface deformation from a JAXA ALOS-2 interferogram to better understand the relationships between mass movement occurrence and ground motion. They also described how an international group of volunteers analyzed imagery in near real-time to identify potential risks. One site in particular, on the upper Marsyangdi River, illustrated the role remote sensing served in this disaster. At least 20 landslides occurred in the relatively low-gradient alluvial sediments in the valley bottom (as opposed to the ridgetop failures that characterized most of the mass movements), more than half of which occurred in the days to weeks following the main earthquake. The chronology of their failures was only determined due to the frequency with which high-resolution satellite imagery (primarily by DigitalGlobe) were acquired. The largest landslide, about 2 km upstream of the village of Lower Pisang, dammed the Marsyangdi River, impounding a lake 2.5 × 104 m2 in area (Figure 3). Unfortunately, the monsoon prevented further useful acquisitions of optical data to continue monitoring the site; however, the lake later drained naturally and did not cause downstream flooding.



Jure Landslide

On August 2, 2014, a huge landslide occurred in Jure village of Sindupalchowk district, Nepal after 2 days of torrential rainfall (van der Geest and Schindler, 2016). The mass movement resulted in 156 deaths and destroyed a 1 km section of the Arniko highway. The landslide also dammed the Sun Koshi river, forming a 3 km long lake that inundated many houses, farms and infrastructure upstream (IFRC, 2014) (Figure 4). Ultimately, the Nepalese Army reduced the lake volume by blasting off part of the landslide blockade to facilitate water release (Acharya et al., 2016).
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FIGURE 4. Earthquake triggered landslide deformation measured from COSMO-SkyMed SAR imagery for the period between May 5–29, 2015. Background is a true color RapidEye image from October 11, 2014 (Planet Team, 2018). SAR Imagery is provided by the Italian Space Agency via the CEOS Working Group on Disasters Landslide Pilot.



Khanal and Gurung (2014) mapped the landslide, dam, and lake using a post-event IRS-P6 LISS-IV Mx image of August 5, 2014. The landslide had a maximum width of 0.81 km at the bottom, total length of 1.26 km, and area of 0.71 km2. Roy et al. (2014) analyzed high-resolution images from WorldView (2.4 m) from 2001 to 2014, which clearly indicated the slope section on which the landslide occurred was unstable, since multiple smaller landslides were apparent prior to the larger failure.

The Jure landslide site was reactivated following the 2015 Gorkha earthquake. As part of this study, five COSMO-SkyMed X-band SAR images collected after the earthquake between May 5–29, 2015 were used to measure the earthquake triggered deformation applying the InSAR technique. On the outcrop of the Jure landslide scarp, surface deformation of about 0.3 m in line-of-sight (LOS) direction, was measured by stacking three post-seismic InSAR pairs using small baseline subset (SBAS) analysis (Berardino et al., 2002). As shown in Figure 4, most scarps with very steep slopes were masked out in the analysis due to their low interferometric coherence. From these observations, we confirm that deformation rates are reduced from the head scarp to the main body, and also that deformation at the toe of the landslide is not significant. This result demonstrates how InSAR measurement can be used to identify slow-moving landslide processes prior to the main failure, especially using X-band SAR images.



Kyagar and Khurdopin Glaciers, Karakoram: Ice-Dammed GLOFs

In the last two centuries, Kyagar Glacier has caused more than 30 GLOFs due to its surging behavior (Hewitt and Liu, 2010; Yin et al., 2018). In response to these frequent GLOFs, an early warning system was installed between 2011 and 2013 based on remote sensing and terrestrial observation stations that monitor glacier surges, development of an ice-dammed lake, and downstream water levels (Haemmig et al., 2014). Two of its recent GLOFs in 2015 and 2016 were assessed using high-resolution DEMs along with optical and SAR imagery to understand Kyagar’s surge cycle and its role in the GLOFs (Round et al., 2017). They used Landsat, Sentinel-1, TanDEM-X and TerraSAR-X to estimate 80 glacier surface velocity fields, which were able to capture both the interannual and seasonal surge cycle. These images were also used to monitor changes in the extent of the ice-dammed lake, which showed repeated filling and drainage. The lake’s volume was estimated to be >70 million m3 based on the lake extent and a high-resolution DEM, which is much smaller than the flood volumes from previous years (Qinghua, 1991).

A similar study on Khurdopin Glacier used a high-resolution DEM with optical imagery from Planet and Landsat, which provided enough clear-sky images to monitor the speed-up of the glacier and the subsequent growth and drainage of an ice-dammed glacial lake (Steiner et al., 2018) (Figure 5). Khurdopin Glacier also has a long history of GLOFs, which led local villages to develop an early warning system that uses bonfires at night or gunfire during the day to alert subsequent posts down valley of the flood (Iturrizaga, 2005). Given the frequent and repetitive nature of these events in the Karakoram, recent advances in remote sensing provide opportunities to improve existing early warning systems and could enable monitoring at the regional level. The examples of Kyagar and Khurdopin Glaciers highlight the importance of routine production and release of high-resolution DEMs (e.g., Shean, 2017), and the need to further develop automated methods for integrating optical and SAR imagery to provide improved spatial and temporal coverage over targeted areas.
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FIGURE 5. Elevation change on the Khurdopin Glacier during the build-up (2015–2016) and surge phase (2017) from Steiner et al. (2018). Background is a Sentinel-2 composite of bands NIR, red, blue (20 September 2017).





Changri Shar and Lhotse Glacier Outburst Floods

Meltwater storage on debris-covered glaciers varies seasonally and inter-annually. Some ponds coalesce and persist, whereas others drain seasonally upon interception with englacial conduits (Benn et al., 2012; Miles et al., 2017; Watson et al., 2017). Inhibited meltwater drainage leads to supra- and en-glacial water accumulation, and an increased likelihood of sporadic drainage. Three high magnitude drainage events were reported in the Everest region of Nepal in 2015–2017, one from a supraglacial lake that formed over 4 months in 2017 on Changri Shar Glacier (Miles E. S. et al., 2018), and two from supra- and en-glacial water stored on Lhotse Glacier in 2015 and 2016 (Rounce et al., 2017b) (Figure 6). Both events had minor socioeconomic impacts relating to bridge and trail destruction.
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FIGURE 6. Location of debris-covered glacier outburst flood events 2015–2017 in the Everest region of Nepal. Background is a RapidEye composite of bands NIR, red, blue (13 November 2017) (Planet Team, 2018).



Optical satellite imagery was essential to reconstruct the events. The lake evolution on Changri Shar Glacier was observed using 25 PlanetScope satellite images from March to October 2017. Detailed spatiotemporal lake observations would not have been possible using Landsat or Sentinel-2 due to cloud cover and longer revisit times (Miles E. S. et al., 2018). Surface and englacial flow paths were interpreted with the aid of DEM differencing using Pléiades imagery, which revealed surface elevation changes associated with the flood, including englacial conduit collapse, channel incision, and landslide initiation (Figure 6). A pre-event Pléiades DEM was also used to estimate the volumetric growth of the lake by filling the surface depressions. Bank erosion and channel migration associated with the downstream movement of the flood was quantified using multi-temporal NDVI and NDWIs, and revealed changes up to 11 km downstream before the narrow river channel topography precluded further observations.

Optical satellite imagery was also critical in the reconstruction of the Lhotse Glacier outburst floods. WorldView-1, 2 and GeoEye-1 were used to assess the draining and filling of supraglacial ponds before and after the 2015 and 2016 outburst floods. These high-resolution images enabled the water stored in supraglacial ponds to be estimated, which ultimately revealed that most of the water was sourced in the glacier’s subsurface.

Both studies reveal the rapid accumulation and drainage of water is likely to be prevalent across debris-covered glaciers, but observations have previously been limited or unreported. Trends of increased supraglacial water storage and a predicted increase in GLOF events with climatic warming, perhaps with an associated time lag (Harrison et al., 2018), will make monitoring these ephemeral lakes and larger proglacial lakes more important. The formation of the Changri Shar Lake was reported on social media several days prior to the drainage event, highlighting that monitoring methodologies developed using remote sensing data could be used to issue information relating to hazards and potential cascading interactions. In the case of the Lhotse outbursts, which involved englacial water storage, such observations are more difficult, although changes in supraglacial water storage likely reflect the accumulation of water stored englacially as well.



Langmale GLOF

On April 20, 2017, a massive rockfall from Saldim Peak (6388 m) entered Langmale glacial lake, which generated a displacement wave that breached its moraine dam (Byers et al., 2018). The resulting flood carved new canyons, scoured Barun River’s floodplain, and deposited copious volumes of sediment in the village of Yangle Kharka about 6.5 km downstream (Figure 7). The floodwaters were temporarily dammed immediately above the village of Barun Bazaar at the confluence of the Barun and Arun Rivers. The impounded lake was 2–3 km long and 500 m wide. This displaced 10 families and threatened to impact 80 others (Shakya and Sabha, 2017). Fortunately, the lake drained naturally within 24 h of its formation.
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FIGURE 7. Location of the Langmale outburst flood. Background is a Sentinel-2 image composite of bands NIR, red, blue (19 November 2017).



On the day of the flood, several villagers in upper Langmale valley reported hearing a large avalanche, but nobody witnessed the mass wasting due to thick fog (Byers et al., 2018). These observations were supported by a fresh scar on Saldim Peak and newly deposited debris on the Langmale Glacier, which was apparent in optical imagery. The poor weather also hampered efforts by the Nepalese Army to visit the upper Barun valley to determine the source of the flood. Reconstruction of the event was based on eyewitness accounts, field surveying, helicopter overflights, remote sensing, and detailed modeling of the GLOF process chain. Specifically, WorldView-2 and PlanetScope imagery showed the catastrophic drainage of the lake, and a numerical GLOF model with a high-resolution DEM was used to reconstruct the entire GLOF process chain (Byers et al., 2018).

The GLOF from Langmale glacial lake showed that the rockwalls surrounding these glacial lakes are unstable, and even an outburst flood from a relatively small glacial lake can have significant downstream impacts. In the Makalu-Barun Valley, this event raised concern amongst the local communities about a potential GLOF from the much larger Lower Barun glacial lake (Haritashya et al., 2018), which has an area of ∼1.8 km2 compared to the pre-flood area of Langmale Lake (0.083 km2). A first-pass, remote sensing hazard and risk assessment classified Lower Barun glacial lake as high risk due to its large size, ice-cored moraine, potential for an avalanche, rockfall and/or upstream GLOF to enter the lake, and potential for severe downstream impacts (Rounce et al., 2017a). Given the high risk, more detailed modeling of potential GLOF process chains is needed and these results should be disseminated to the local community members.



Kedarnath Flood and Debris Flow

From June 15 to 17, 2013, an unprecedented hydrometeorological event occurred, which filled Chorabari Lake and induced a snow avalanche and debris slide that triggered an outburst flood from the lake (Das et al., 2015; Allen et al., 2016b; Bhambri et al., 2016). The outburst flood paired with the extreme rainfall caused severe flooding that devastated the downstream region, which included multiple mass wasting events along the Mandakini and Saraswati rivers and associated tributaries (Figure 8). Farther downstream, several other landslides blocked the river at various points, forming temporary lakes that subsequently outburst and caused a massive flood and debris flow (Sati and Gahalaut, 2013; Ziegler et al., 2014). The Kedarnath disaster killed more than 6,000 people and also affected 30 hydropower plants (Allen et al., 2016b), causing a total economic loss >$3.8 billion (World Bank, 2014). It also damaged countless roads and bridges, which stranded 100,000 individuals who were taking part in an annual Hindu pilgrimage to Kedarnath Temple.
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FIGURE 8. Aerial view of Kedarnath town with (a) pre and (b) post-event RapidEye imagery from November 1, 2012 and November 13, 2013 (Planet Team, 2018). (c) Shows provides a broader view of the source areas, location of the Chorabari Lake, and direction of flooding associated with the Kedarnath debris flow (right).



A high altitude meteorological station at the base camp of Chorabari Glacier recorded 325 mm of rainfall in 24 h (Bhambri et al., 2016), while a downstream location observed as much as 680 mm in 2 days (Rautela, 2018). According to the Indian Meteorological Department and Geological Survey of India, this rain was ∼375% more than the daily mean during the monsoon period (Dube et al., 2014). While Chorabari Lake is not connected to the glacier and not always brimful, its lack of outlet and the surrounding topography cause it to be uncharacteristically predisposed to infilling during an extreme snowmelt or rain event (Allen et al., 2016b). An analysis of Corona and Cartosat-1 satellite images paired with the SRTM DEM suggested that the high-intensity rainfall that occurred in the valley filled the lake with an estimated maximum volume of 0.43 m3 × 106 before its breach (Das et al., 2015).

Reconstruction of the hydrometeorology conditions prior to the event using climate data from automatic weather stations, TRMM precipitation, and MODIS snow cover data, revealed the Kedarnath disaster was exacerbated by previous monsoon-driven precipitation, especially heavy rainfall on June 10 and 11 and summer snowmelt from the end of May that led to slope saturation (Durga Rao et al., 2014; Allen et al., 2016b). Bhambri et al. (2016) used a combination of multispectral satellite data including Resourcesat Linear Imaging Self-Scanning sensor (LISS) IV images, panchromatic Cartosat-2 (1 m), and WorldView-2 (2 m), to identify 137 flash flood-induced debris flow events. They also observed a ∼500% increase in flood-affected area by the Mandakini River along with a change in the course of the Mandakini and Saraswati rivers. Martha et al. (2015) used Resourcesat-2 LISS-IV, GeoEye-1, and Cartosat-2a to map 3,472 new and 1,401 reactivated landslides due to this event.




SYNTHESIS OF GAPS, VIEW FORWARD AND DISCUSSION

The case studies highlighted in Section “Case Studies of Cascading Hazards Over HMA” provide insight into how satellite remote sensing data can be used to investigate the complexities of cascading effects in HMA. These case studies also demonstrate the need for better integrated methods for monitoring and predicting cascading hazard process chains and webs to determine at risk populations and infrastructure and to build resilience for current and future hazards. This section offers a perspective on future opportunities to address gaps and challenges in our current capabilities to more systematically understand cascading hazards and risks over HMA.


Challenges and Gaps

The case studies from Section “Case Studies of Cascading Hazards Over HMA” show that remote sensing is a valuable resource for monitoring and modeling cascading hazards; however, with the exception of sites that are prone to repeat events (e.g., GLOFs from Kyagar and Khurdophin Glacier surges), most studies in HMA are still performed retroactively. These case studies showcase the tremendous opportunities that exist in both present-day and future missions that may be used to limit the risks associated with these cascading hazards. At present, some of the major limitations result from the complex terrain in HMA that cause issues for the generation of DEMs in steep topography or geometric distortions in SAR data, and from the difficulty of obtaining optical or stereo imagery during the monsoon. Furthermore, while the individual elements associated with these cascading hazards are well known (e.g., extreme rainfall, landslides, outburst floods), we still have relatively few observations that can be used to develop our understanding and improve our ability to model these cascading hazards. As a result, the state of science in effectively characterizing or modeling the linkages between cascading hazard elements remains limited within this region and should be an area of concentrated research going forward.

Given that DEMs are fundamental for our ability to observe and model these cascading hazards, the recent advances in generating multi-temporal high-resolution DEMs (see Opportunities: Missions, Modeling, Technologies) provides unique opportunities to advance our understanding of specific elements of the triggering mechanisms. For example, few observations exist of landslide and avalanche volumes and runout lengths in HMA, which is a critical input for any GLOF assessment. New and planned missions that will produce additional ground control points (e.g., ICESat-2) provide opportunities to minimize the errors/uncertainty associated with steep topography and thereby more accurately quantify the volume change in steep topography.

Additionally, given the reactionary nature of most existing studies, efforts should be made in HMA to continue to collect baseline data that is essential for effective hazard assessments, modeling, and relief efforts. For example, high-resolution optical imagery and the VIIRS “Day-Night Band” sensor provide unique opportunities to characterize land, buildings, and transportation networks that could supplement OpenStreetMap and other existing datasets. While the improved spatiotemporal resolution of commercial optical imagery (e.g., Planet and DigitalGlobe) is starting to provide fairly regular images of HMA, even during the monsoon season, monitoring efforts should seek to integrate SAR data that can provide earth observations through cloud cover. The integration of these various datasets, the new observations that may help constrain models of individual elements of the cascading hazards, and improved modeling of the various cascading hazard branches will greatly advance our ability to monitor these hazards and assist risk-mitigation efforts.



Open Data

The availability and openness of satellite data have improved in recent years but still remains both the most fundamental gap and largest opportunity to advance our understanding of cascading hazard and risk processes. Table 1 highlights some of the existing Earth Observation data products and tools that may be valuable to address elements within different cascading hazard settings. Supplementary Table S1 provides an expanded list of remote sensing assets.

Open science is also critical to advancing our understanding of cascading hazards over this region. Inventories of previous events, such as landslides or glacial lakes, are key for calibrating and validating hazard assessment models. One tremendous set of event-based catalogs over HMA are landslide inventories mapped following the 2015 Nepal Earthquakes. Many of these are publicly available, including Kargel et al. (2016) (4,312 landslides), Williams et al. (2018) (5,578 landslides), Martha et al. (2017) (15,551 landslides), Roback et al. (2018) (24,915 landslides), and Tiwari et al. (2017) (14,670 landslides). Other basin-specific inventories are freely accessible over the transboundary Koshi basin (5,653 landslides) (Zhang et al., 2016). There are also global landslide inventories with reasonable coverage over HMA such as NASA’s Global Landslide Catalog, which has been used to identify spatiotemporal trends in landslide patterns (Kirschbaum et al., 2015). Regional and global landslide maps (Kirschbaum, 2015; Stanley and Kirschbaum, 2017) can also provide context for the distribution of this particular hazard over HMA. The GLIMS Glacier Database1, and glacial lake databases (e.g., Rounce et al., 2017a) also provide open access data points to construct hazard maps and ultimately link elements together for better identification of potential cascading hazard areas.

In addition to having historical inventories for calibration and validation of hazards models, remote sensing data and model products, including socioeconomic data, are openly available through NASA’s Distributed Active Archive Centers (DAACs) and other open data efforts such as OpenStreetMap®. However, the availability of ground-based physical data on hydrology and geology of HMA lags satellite data availability and is another need within this region. Through NASA’s High Mountain Asia Program, teams of scientists are contributing to a Glacial Melt Toolbox (GMELT) that includes in situ, remotely sensed, and modeled products that are geared toward improving understanding of regional changes to water resources, and induced impacts through the analysis of HMA’s glaciers, lakes, snow, permafrost, precipitation, and land surface2.



Opportunities: Missions, Modeling, Technologies

New remote sensing products, models, and technologies either in operation or on the horizon are contributing to an advanced, systems-focused understanding of cascading hazard processes. New NASA and ESA missions highlight improved capabilities for characterizing the atmosphere, surface and subsurface in support of disaster response, monitoring, and recovery (see Supplementary Material Section 1 and Supplementary Table S1). Additionally, there are many publicly available platforms that provide open data and visualization capabilities to support disaster response. These include, but are not limited to the Hazard Data Distribution System (HDDS), NASA Disaster Portal, Sentinel-Asia Disaster Management Support System, the European Commission Copernicus Emergency Management Service (Copernicus EMS), the Sentinel-Hub Playground and EO browser, and ESA’s geohazards exploitation platform (GEP). More information on these capabilities are outlined in the Supplementary Material Section 2.

Technologies leveraging a combination of sensors from daily optical imagery (Planet, Sentinel-2) and SAR (Sentinel-1) are being developed to monitor lake expansion, with the goal of transitioning from retrospective analysis to near real-time monitoring. Through open source platforms such as Google Earth Engine or using open source algorithms that can be implemented in the cloud, many of these monitoring technologies may provide a feasible path toward more routine monitoring of cascading hazard elements, a key component of providing rapid response and improved planning for future hazard and risk. Continuous monitoring platforms are also being developed to automate ground deformation workflows on regional (e.g., Raspini et al., 2018) or global scales (e.g., González et al., 2016). The COMET-LiCS platform3 automates the processing of Sentinel-1 data to generate interferograms, coherence maps, and ground displacement data for active tectonic regions globally.

Improved long-term, high-resolution DEM datasets from past, present, and future satellite missions will enable regional quantitative analysis of cascading hazards. Continued tasking of existing submeter satellite imagery constellations (e.g., DigitalGlobe WorldView/GeoEye, AIRBUS/CNES Pléiades) have the potential to offer sub-weekly monitoring of priority sites (e.g., proglacial lakes, landslide-prone corridors) and fill critical gaps in existing regional coverage, providing a continuous DEM basemap with timestamps for future change detection studies. Integrating additional commercial submeter constellations (e.g., Planet SkySat-C satellites with 0.9 m ground sample distance stereo imagery, Earth-i satellites) will further improve regional coverage and response capabilities. Ongoing processing of freely available ASTER imagery will continue the existing 2000-2019 DEM record that can be used for decadal-scale analyses of glacier mass balance. Other high-resolution swath-mapping missions (e.g., Cartosat-2, off-nadir campaigns with Planet Dove constellation) can provide repeat, regional DEM coverage, with slightly lower resolution and accuracy.

Perhaps one of the most exciting opportunities in the coming years will involve mass production and release of orthoimagery and stereo DEMs derived from the declassified Corona, Gambit, and Hexagon missions of the 1960s–1980s (Maurer and Rupper, 2015), which offer extensive coverage over Asia. Recent efforts focused on production workflows for Hexagon Mapping Camera imagery with ∼5–10 m GSD (Maurer and Rupper, 2015; Dehecq et al., 2019; Maurer et al., 2019), providing lower-resolution DEMs with regional coverage, but often containing data gaps over snow or exposed ice, which in some cases can be resolved in higher resolution (<5 m) Corona imagery.

With improved scanning capabilities and modern, automated, open-source photogrammetry tools such as the Ames Stereo Pipeline (Beyer et al., 2018), MicMac (Rupnik et al., 2017), SETSM (Noh et al., 2015) in high-performance computing environments, large archives of high-resolution DEMs can also be generated from these image sources. When combined with data from modern sensors, these historical archives potentially provide a near ∼60-year high-resolution DEM time series from the early 1960s to present. Stereo pairs from commercial imagery such as from DigitalGlobe have been used to create DEMs over HMA with unprecedented accuracy and resolution (Shean et al., 2016). These multi-temporal DEMs have been used to estimate ice flow and changes on glaciers in HMA (Kutuzov et al., 2018; Shean et al., 2018) as well as landslide distributions (Watson et al., 2019). The interferometric SAR constellation TanDEM-X/TerraSAR-X also provides a global, high-resolution DEM at 12 m posting, with unprecedented accuracy, though at present this product is only publically available at a resolution of 90 m4.

In addition to satellite data that will be provided through new and upcoming satellite missions, there are a suite of modeling and data assimilation systems that may help to better characterize the cascading hazard process chains. LDAS modeling platforms, such as the Land Information System (LIS), and GCMs can provide important hydrologic and atmospheric inputs for characterizing the triggering factors that may exacerbate or modulate elements in the cascading hazard chain. GMELT provides many of these modeling outputs and forecasted products to help quantify potential changes over HMA on scales that could inform hazard processes, such as how glacier changes may influence glacial lake distributions, areas, and potential glacial outburst floods or how changes in permafrost may affect landslide distributions. Other efforts such as flood routing models can provide a framework for exploring the connectivity among elements in the cascading hazard chains and webs such as the behavior for how a GLOF may impact downstream populations (Westoby et al., 2015; Schwanghart et al., 2016; Rounce et al., 2017a).



Risk Assessment and Future Change

Inherent to addressing societal impacts and risk from cascading hazards is to better quantify the assets and socioeconomic indicators that make populations at risk. There are many globally-available datasets that can inform exposed elements, including population (GPW v4; Table 1), roads and buildings (OpenStreetMap; Table 1), and other transportation corridors (national-level data). While valuable for quantifying exposure, to ultimately get to risk calculations, loss and damage or vulnerability relationships need to be established (Huggel et al., 2018). Modeling frameworks such as RiskScape5 have successfully been implemented to estimate the impact of natural hazards in New Zealand (RiskScape, 2019; King and Bell, 2006). Such open source frameworks could provide future opportunities to derive cost, impact, and risk estimates for cascading hazards within HMA; however, they are still largely limited by a dearth of vulnerability data (including socioeconomic and financial information) that is needed to accurately parameterize loss and damage curves to derive risk.

National and regional heterogeneity in hazard assessment techniques is inevitable due to differences in Data Availability, technological capabilities, and management authorities, which translate hazard assessments into a risk management strategy. International guiding documents such as the Global Assessment Report (GAR15) put out by the United Nations Office for Disaster Risk Reduction (UNISDR, 2015) is the fourth in the series prepared by the UNISDR based on the recommendations and agreements of the 168 member states participating in the Hyogo Framework for Action. The 2015 GAR’s theme is Making Development Sustainable: The Future of Disaster Risk Management and provides context and guidance on the multi-faceted umbrella of disaster risk management in both current and future environments. The UNISDR is also preparing the Global Risk Assessment Framework (GRAF; UNISDR, 2019), which seeks to improve understanding and management of current and future risks by providing actionable tools, data, and examples at different spatiotemporal scales to decision makers. At a regional level, technical guidance documents from scientific working groups such as Glacier and Permafrost Hazards in Mountains (GAPHAZ) provide guidelines and standards for hazard assessments that collate the current state of knowledge, modeling tools, and remote sensing data (GAPHAZ, 2017). Multi-temporal standardized valuations for the same geographic areas are essential to monitor and mitigate against the changing hazard environment.

In addition to quantifying the risk, understanding how hazard and risk may change over time due to climate change is critical. Climate change, including shifts in precipitation and the ability of surface water to reach the bed of glaciers, is thought to have already resulted in dramatically changing behavior in some regions (e.g., Gilbert et al., 2018). Climate change may herald new glacier dynamical behaviors in permafrost regions of HMA and worldwide, including sudden or gradual shifts in the locations of hazard dynamics such as GLOFs (e.g., Allen et al., 2016a). Data from GCMs offer a window into future behavior of HMA as the climate warms, including decreasing glacial volume (Brun et al., 2017; Farinotti et al., 2019), glacier stagnation (Dehecq et al., 2019), role of black carbon in glacial melting (Kopacz et al., 2011; Warren, 2013), and improved conditions for glacial lake development (Quincey et al., 2007; Linsbauer et al., 2016). However, more work needs to be done to improve the resolution of climate models in order to better resolve precipitation extremes, preconditioning factors and other meteorological forcing data that will have a direct impact on the changing nature of cascading hazard processes in the future. New data on precipitation extremes over HMA is available within the GMELT toolbox, including satellite precipitation metrics and GCM projections of precipitation (NSIDC, 2019). Further research is also needed to quantify how climate change may exacerbate or alter elements and connections within cascading hazards chains over HMA. In addition to improving our understanding of these impacts, it is vital to also work with national and local governments and local communities to communicate the science being developed (e.g., Frey et al., 2018). Improved knowledge of these processes will support creation of actionable DSSs and development plans that ultimately will help to build resilience of cascading hazard impacts at the local level.




CONCLUSION

This work provides a survey of how remote sensing data may inform characterization, mapping, and modeling efforts for cascading hazard processes, chains, and webs across HMA. At present, the cascading process chain is broken down into specific elements in order to highlight opportunities and challenges in our ability to observe and model each element using remote sensing. As these fields advance and more observations become available to constrain models, research on connecting these individual elements as interconnected systems will become more feasible. Through illustrating how cascading hazard elements can be evaluated individually as well as in a sequence through example case studies, this work highlights the opportunities for using remote sensing data and derived products to inform hazard evolution within this region under changing climatic and socioeconomic conditions. Given the availability of new and open data sources, model products and technologies as well as team efforts to compile databases such as GMELT, there are a wealth of opportunities on the horizon for more systematic considerations of cascading hazard processes and their impacts. These data and tools can also enable the community to move from retrospective analysis to near real-time routine monitoring and forecasting. We emphasize here the potential for using remote sensing data and modeled products to consider cascading hazards as an integrated system. However, along with the availability and development of new data products for this region, it is vital to advance the processing systems that are best suited to handle these large volumes of data, including cloud computing and open source platforms. We encourage future studies to consider the propagation of triggers all the way through to societal impacts so that this information may be both scientifically accurate as well as societally relevant and provide actionable information to increase societal resilience to these hazards.
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The separation of fresh snow, exposed glacier ice and debris covered ice on glacier surfaces is needed for hydrologic applications and for understanding the response of glaciers to climate variability. The end-of-season snowline altitude (SLA) is an indicator of the equilibrium line altitude (ELA) of a glacier and is often used to infer the mass balance of a glacier. Regional snowline estimates are generally missing from glacier inventories for remote, high-altitude glacierized areas such as High Mountain Asia. In this study, we present an automated, decision-based image classification algorithm implemented in Python to separate snow, ice and debris surfaces on glaciers and to extract glacier snowlines at monthly and annual time steps and regional scales. The method was applied in the Hunza basin in the Karakoram and the Trishuli basin in eastern Himalaya. We automatically partitioned the various types of surfaces on glaciers at each time step using image band ratios combined with topographic criteria based on two versions of the Shuttle Radar Topography Mission elevation dataset. SLAs were extracted on a pixel-by-pixel basis using a “buffer” method adapted for each elevation dataset. Over the period studied (2000–2016), end-of-the-ablation season annual ELAs fluctuated from 4,917 to 5,336 m a.s.l. for the Hunza, with a 16-year average of 5,177 ± 108 m a.s.l., and 5,395–5,565 m a.s.l. for the Trishuli, with an average of 5,444 ± 63 m a.s.l. Snowlines were sensitive to the manual corrections of the partition, the topographic slope, the elevation dataset and the band ratio thresholds particularly during the spring and winter months, and were not sensitive to the size of the buffer used to extract the snowlines. With further refinement and calibration with field measurements, this method can be easily applied to higher resolution Sentinel-2 data (5 days temporal resolution) as well as daily PlanetScope to derive sub-monthly snowlines.

Keywords: snowlines, remote sensing, classification, Karakoram, Himalaya


INTRODUCTION

Identifying various surfaces on glaciers (fresh snow, clean glacier ice, and supra-glacial debris cover) and extracting glacier snowlines are needed for glacier mass balance calibration and validation, as demonstrated in a growing body of literature (Rabatel et al., 2005, 2008, 2017; Gardelle et al., 2013; Huss et al., 2013; Kienholz et al., 2017; Barandun et al., 2018). Snowline altitudes (SLAs), when measured at the end of the melt season, represent the equilibrium line altitude (ELA) of a glacier (Meier, 1962), which is an indicator of seasonal/annual glacier mass balance and its response to climatic variability (Paterson, 1994). ELA is the altitude at which annual glacier mass balance is zero, and is inferred from direct mass balance measurements using the traditional “glaciologic method” with stakes and pits (Meier and Post, 1962). However, in remote areas of High Mountain Asia (HMA), access to glaciers, especially to their accumulation areas, is limited by rugged terrain and difficult logistics. Such measurements are sparse in global glacier databases such as the Randolph Glacier Inventory (RGI) (Pfeffer et al., 2014) or the Global Land Ice Monitoring from Space (GLIMS) database (Raup et al., 2007). In HMA, only a handful of glaciers have been surveyed systematically for mass balance (Bolch et al., 2012; Azam et al., 2018). Field-based ELAs for HMA are reported in Wagnon et al. (2007, 2013) for Chhota Shigri and Mera/Pokalde glaciers in the Khumbu region and Acharya and Kayastha (2019) for Yala glacier in Trishuli basin in Nepal. However, long-term records are limited. The relationship between ELA and the end-of-summer SLA can be applied to infer annual mass balance from remotely sensed snowlines in such areas with limited field-based measurements as well as for missing years (Rabatel et al., 2012). However, the SLA/ELA relationship is not straightforward, as it is complicated by the presence of patches of firn (old snow) and superimposed ice in the accumulation area of glaciers due to melting of snow and refreezing of water (Paterson, 1994). Superimposed ice causes the ELA to be situated below the end-of-season SLA (Llibutry, 1998), though this may not always be the case (Wu et al., 2014). Conversely, late in the ablation season, under climate warming conditions, the snowline may retreat beyond the firnline, but optical satellite imagery in this case detects the firnline rather than the snowline.

Separating snow and ice surfaces also allows inferring the accumulation-area-ratio (AAR) of a glacier, defined as the ratio of the accumulation area to the entire area of the glacier (Meier, 1962). AAR fluctuations at the end of a hydrological year are an indicator of glacier mass balance at local or regional scales (Dyurgerov et al., 2009). ELA/AAR have been used to estimate glacier mass balances at regional scales using remote sensing methods (Kulkarni, 1992; Dyurgerov, 1996; Rabatel et al., 2008). The “AAR/ELA method” developed by Kulkarni (1992) for the Western Himalaya allows inferring glacier mass balance at regional scales from satellite imagery (Kulkarni et al., 2004). A “template” method based on the relationship between AAR and glacier mass balance was developed by Dyurgerov (1996), and Khalsa et al. (2004). However, the wide application of these methods in HMA is limited by lack of field-based SLA/ELA measurements needed to develop the AAR-mass balance relationship.

In lack of any field-based measurements, ELA can be inferred using indirect methods such as Toe-to-Headwall Altitude Ratios, the Area-Altitude-Ratio, the Area Altitude Balance Ratio and the Area Altitude Balance Index methods and Median Elevation. These methods were reviewed in detail in other studies (Kaser and Osmaston, 2002; Benn et al., 2005; Osmaston, 2005); here we only highlight a few of these. For example, the Toe-to-headwall Altitude Ratio method was used to reconstruct ELAs since the Little Ice Age in the Nepalese Himalaya (Kayastha and Harrison, 2008). The median elevation approach is fast, and only requires glacier outlines and a digital elevation model (DEM). Braithwaite and Raper (2009) used this method to estimate ELAs using glacier inventory data from the 21st century and considered the uncertainties to be acceptable (±82 m) (Braithwaite and Raper, 2009). However, they point out that ELAs are underestimated when glaciers are in a state of negative mass balance. King et al. (2017) also used the median elevation method for glacier mass balance in central Himalaya in the last decade and likewise pointed out potential underestimates due to negative mass balance of glaciers in this area (Bolch et al., 2012; Brun et al., 2017). The topographic map-based method estimates ELAs from the inflections of contours on topographic maps (Leonard and Fountain, 2017). Zhao et al. (2016) found a good correlation between ELAs derived using this method and median glacier elevations for Chinese glaciers (R2 = 0.92). Pellicciotti et al. (2015) assumed an AAR of 0.66 for the Langtang region in Central Himalaya to infer regional ELAs for their melt model. However, this is problematic for debris covered glaciers where AAR values are lower (0.2–0.4) (Kulkarni, 1992). Modeling approaches rely on empirical curves based on temperature and precipitation gradients to estimate modern-day steady-state ELA values (ELA0), as described in Ohmura and Boettcher (2018). Using a similar method, for HMA, Fujita and Nuimura (2011) estimated the “ideal” ELAs for present glaciers based on an energy balance model with downscaled climate variables, validated with several field-based ELAs. All these methods each have advantages and disadvantages, and choosing one or the other may depend on the data available as well as the scale of analysis. Median elevation might be an appropriate proxy for ELA for global applications or when past reconstructions are desired; however, at smaller scales, remote sensing methods might be more accurate. Topographic maps in HMA are not readily available or are outdated, so the topographic method should be used with a DEM. The wide application of empirical methods is hampered by limited climate data at regional or local scales in HMA.

Satellite imagery provides opportunities to improve regional ELA estimates using high temporal and spatial resolution data, provided that systematic approaches are developed. While snow and ice boundaries are well visible on satellite imagery acquired with good contrast or appropriate instrument gains to minimize pixel saturation, distinguishing between snow, firn and ice on the glacier surface is challenging using conventional methods. Huss and Hock (2015) parameterized their melt model by prescribing “firn” above the median glacier elevation easily available in RGI datasets and “bare ice” below it. Thakur et al. (2017) used SAR imagery to separate glacier facies for a small sub-basin in the North West Himalayas, but the large scale application of this method might be limited by the availability of the SAR data and the extensive data processing. Kienholz et al. (2017) defined the limit between ice/firn and snow in Alaska on the basis of Landsat false color composites and a DEM and manually extracted multi-temporal SLAs. Huss et al. (2013) and Barandun et al. (2018) extracted SLAs based on ground photographs and a DEM using an innovative method, but this was only applied to a few glaciers. Zhang and Kang (2017) tracked the evolution of snowlines over two decades in the Pamir using Landsat, but no detail is given on the process used for the actual extraction of the SLAs. Guo et al. (2014) extracted SLAs as a single value per year for the Western Himalaya using surface albedo calculated from atmospherically and topographically corrected images overlaid on topographic map for each year studied. In the French Alps and the Andes, SLA/ELA was extracted mainly by manual digitization on aerial photographs or color composites of satellite images (Rabatel et al., 2005, 2008, 2012, 2017). While field-based validation showed good agreement with manually derived remote-sensing ELAs in these studies, manual digitization is time-consuming, and is not applicable over large areas. Klein and Isacks (1999) used spectral unmixing of satellite images to separate the ablation and accumulation areas of glaciers and to extract ELAs on two tropical glaciers and found this to be superior to band ratio techniques.

Despite recent advances in partitioning snow and ice and estimating SLA/ELA, existing optical remote sensing methods are hampered by deep shadows on the glacier accumulation area due to steep topography, icefalls and crevasses. Moreover, the precise date of end-of-ablation season is difficult to define, especially in monsoon-dominated catchments of the eastern Himalaya where snow accumulation and ablation occur concomitantly (Ageta and Higuchi, 1984; Thayyen and Gergan, 2010). SLA extraction methods are not standardized, and guidelines and recommendations such as those established for glacier mapping within the GLIMS project (Racoviteanu et al., 2009) are missing.

In this study, we present an automated method using Landsat imagery to separate various surfaces: exposed glacier ice, snow on ice, snow on land and/or on debris, debris covered ice from “other” (bare, non-glacier/non-snow terrain) and to extract SLAs/ELAs at monthly and annual time scales in two glacierized areas of HMA – the Karakoram and eastern Himalaya. Here we are not distinguishing snow from firn, but rather we consider firn to be included in the snow on ice class. This study was developed to parameterize a temperature index melt model within the framework of the Contribution to High Mountain Asia Runoff from Ice and Snow collaborative project (CHARIS1) (Armstrong et al., 2019). Here we describe the methodology used in the cited study to partition the surface types. The two-step decision-based procedure was implemented in Python, allowing loop-processing series of satellite images and extracting the SLA automatically at each time step. We constructed monthly SLA time series in the Hunza (2013) and Trishuli (2016) subset areas, and estimated ELAs from 2000 to 2016. We automated part of the post-classification correction of problematic areas, and assessed the impact of these corrections on SLA estimates, as an effort toward standardizing snowline mapping procedures using remote sensing and applying them at regional scales in HMA and beyond.



MATERIALS AND METHODS


Study Area

This study focuses on two climatically distinct regions of HMA: a subset of the Upper Indus basin in the Karakoram (Hunza sub-basin, 4,861 km2 and mean elevation 4,863 m a.s.l.) and a subset of the Trishuli basin in the eastern Himalaya (6,086 km2, mean elevation 4,699 m a.s.l.) (Figure 1A). For simplicity, in the paper we refer to these study areas as the “Hunza” and “Trishuli,” and subsets of the two regions. The first study area (“Hunza”) is part of the Northern Areas of Pakistan centered on Shimshal Valley, and includes the fast moving surging glacier Khurdopin. The growing terminus lake of Kurdopin glacier poses concerns for hazards and Hispar glacier, which has been undergoing active surges since 2013 (Rashid et al., 2018) (Figure 1B). Climatically, the region is mostly arid, and is primarily influenced by mid-westerly winds originating from the Mediterranean and Caspian Sea regions (Bookhagen and Burbank, 2010). This area receives maximum precipitation as snow in the winter and spring (Fowler and Archer, 2006). Glaciers in the Karakoram are considered of “winter-accumulation-type” (Benn and Owen, 1998; Thayyen and Gergan, 2010) and have been mostly stable or growing, a condition known as the “Karakoram anomaly” (Hewitt, 2005; Minora et al., 2016), most recently attributed to anomalous summer cooling (Forsythe et al., 2017). Field-based glacier ELAs are almost non-existent in this rugged area. Remote sensing regional ELA estimates are sparse and variable, ranging from 4,845 m a.s.l. (Scherler et al., 2011) to 4,300–5,500 m a.s.l. based on Landsat imagery (Khan et al., 2015). Estimates vary considerably from one watershed to another due to a strong east-west gradient in precipitation patterns (Mukhopadhyay and Khan, 2016).
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FIGURE 1. Study area with the two subset regions investigated: (A) location map showing High Mountain Asia and the two subset areas, with the glacier outlines (in blue) from the Randolph Glacier Inventory (Pfeffer et al., 2014) and background shaded from Natural Earth; (B) part of the Hunza basin (Shimshal Valley) in Western Himalaya, Northern Pakistan; and (C) part of the Trishuli basin in Central Himalaya, Nepal. Snowlines are well visible on (B) and (C) Landsat 8 true color composites (bands 4, 3, and 2) acquired late in the year (November and December), respectively.



The second study area is part of the Narayani basin the Central-Eastern Himalaya of Nepal (Figure 1C). Climatically, this region is influenced by the south-west Asian summer monsoon circulation system (Yanai et al., 1992; Benn and Owen, 1998). Moist air masses from the Bay of Bengal interact with the topography of the Himalaya and Tibetan Plateau (HTP), causing maximum precipitation on the southern slopes of the Himalaya during the summer months (June–September) (Shrestha, 2000; Bookhagen and Burbank, 2006). Glaciers in this monsoon-influenced part of the Himalaya are of “summer-accumulation” type (Ageta and Higuchi, 1984; Thayyen and Gergan, 2010). The headwaters of glaciers in the Trishuli basin originate from China; our study area spans both the southern and the northern slopes of the Himalaya (Figure 1C). ELA measurements are scarce in this area as well, and most estimates come from indirect methods (Kayastha and Harrison, 2008) or modeling approaches (Acharya and Kayastha, 2019).



Data Sources

The main satellite data sources for this study are from the Landsat 7 Enhanced Thematic Mapper (ETM +) and the Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS), obtained from the USGS. These two sensors have been acquiring imagery in the visible, near infrared, short wave infrared and thermal bands of the electromagnetic spectrum since 1999 and 2013, respectively [see USGS (2016) for more details]. Monthly Landsat OLI scenes from 2013 (for Hunza) and 2016 (for Trishuli) were used to determine seasonal SLAs fluctuations and to estimate the approximate date of end-of-ablation season in each region (Table 1). The years were selected based on maximum number of cloud-free images with good contrast over snow and ice in each area. The year 2013 had snowy and cloudy conditions in the Trishuli, making it hard to obtain suitable images, so we could not use the same year as for the Hunza for the seasonal analysis. Annual Landsat ETM+ scenes (2000–2012) and OLI (2013 and 2016) were used to map ELAs and to assess ELA fluctuations over the 16-year record. These scenes were selected using a 4-month window in each area (August–October for the Hunza and September–December for the Trishuli) based on the seasonal SLAs and on previous literature (Thayyen and Gergan, 2010). We used digital numbers (DNs) rather than atmospheric reflectance since the latter was not available at the onset of our study.

TABLE 1. Landsat 7 ETM+ and Landsat 8 OLI remote sensing data used in this study, with the optimized thresholds applied to band ratios and topographic criteria to partition the snow, ice, and debris surfaces. DN ranges represent the (minimum and maximum) values used to map ice and debris cover. Thresholds were used for: A: annual analysis (2000–2016) and B: seasonal analysis (2013 for the Hunza and 2016 for the Trishuli).
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To extract SLAs, we used elevations from the Shuttle Radar Topography Mission (SRTM), which acquired near-global data in February 2000. We used two SRTM versions: (a) the hydrologically sound, void-filled SRTM DEM from the Consultative Group for International Agriculture Research Consortium for Spatial Information (CGIAR-CSI version 4.1) at 3-arc seconds (∼90 m); this dataset was released in 2008 (Jarvis et al., 2008), with void-filling procedures described in Reuter et al. (2007) and (b) the NASA SRTM Version 3.0 (SRTMGL1), at 1-arc second (∼30 m); this was released in 2015 and was void-filled using elevation data mostly from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model 2 (GDEM2) (NASA-JPL, 2013). The SRTM global DEM targeted a vertical accuracy of ±16 m (Rabus et al., 2003) but in rugged terrain, accuracy can be considerably lower (Berthier et al., 2006; Fujita et al., 2008). In a recent study, Mukul et al. (2017) evaluated the 90 and 30 m versions of the SRTM DEMs and reported an uncertainty (as vertical root mean square error, RMSEz) of 47.2 and 23.5 m, respectively, based on ground control points in the Himalaya. Bias correction improved the accuracy of both of these DEMs in the cited study. In our study, we accounted for DEM errors in our SLA/ELAs on the basis of the uncertainties reported by Mukul et al. (2017).



Surface Partitioning: Clean Glacier Ice, Snow on Ice, Snow on Land, and Debris Cover

The various snow-ice-debris surfaces were separated using a multi-criteria method implemented in Python as a series of conditional statements, based on band ratios and topographic criteria. Thresholds for various band ratios, elevation, slope, and temperature criteria were selected based on visual inspection of Landsat color composites, previous literature and a priori knowledge. Thresholds for the monthly series were adjusted since they varied seasonally; thresholds for the annual time series were standardized for all images. The criteria used, along with their thresholds, are reported in Table 1; an overview of the surface partition process is presented in Figure 2. The output of surface partition algorithm was a four-class raster when no seasonal snow was present (Figures 2A,B) or a five-class raster for the months when seasonal snow was present.
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FIGURE 2. Surface partition workflow using Landsat bands and a DEM, and its outputs: (A) band ratios for separating exposed glacier ice, snow on ice and debris covered ice from bare land; and (B) band ratios for delineating clouds, shadows, vegetation, and water bodies.



In a preliminary step, we used single band ratios to mask areas under shadow, clouds, and surface water, which pose challenges for the semi-automated band ratio methods (Racoviteanu et al., 2009). Deep shadows are common in mountainous areas on steep slopes especially in the winter due to the low sun angles in the morning around the time of acquisition of the Landsat scenes (∼05:36 GMT or ∼10:36 local time for this particular area). Shadows appear darker than other surfaces in the near-infrared, so we used this wavelength to map shadows from steep terrain, including cast shadow from clouds, which are also an issue (Racoviteanu and Williams, 2012). We applied a threshold to band 5 (ETM+) or band 6 (OLI), which we checked and adjusted for each month in the time series to obtain shadow “masks.” Tests for the cloud mapping techniques based on the FMask algorithm (Zhu et al., 2015; Zhu and Helmer, 2018) failed to distinguish between snow and clouds in this area. Therefore, in this study, clouds were mapped using a single band threshold. At near infrared (ETM+ band 5: 1.55–1.75 μm) and shortwave infrared wavelengths (OLI band 6: 1.57–1.65 μm), snow and ice surfaces are dark and clouds are bright, making these two types of surfaces distinguishable. We carefully adjusted the DN thresholds to avoid misclassifying illuminated bare terrain as clouds (Table 1), even though we consider that this would have little/no effect on our surface classifications. Shadow and cloud raster masks were assigned “NoData” values in the final maps (Figure 2B). Vegetated areas were mapped using the Normalized Difference Vegetation Index (NDVI), defined here as the difference between visible and near infrared bands, i.e.,
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The NDVI algorithm results in a raster with values from −1 to 1. This was used to map both the vegetation areas (negative values) and water bodies (positive values) (Table 1), which were excluded from the potential debris cover map and assigned to the “bare land” class. Mapping the water bodies (lakes and rivers) was only introduced in the Trishuli subset as an improvement of the method, though this did not affect the surface partition on glaciers.

Glacierized areas (clean glacier ice and snow) were mapped using the standard semi-automated “band ratio” technique, which is robust and easy to apply over large areas, and widely used by the glaciological community (Racoviteanu et al., 2009; Bolch et al., 2010; Paul et al., 2013). This technique takes advantage of the spectral difference between snow and ice surfaces and other types of terrain in the visible and near-infrared parts of the electromagnetic spectrum. We calculated the ratio of DNs using two bands ([image: image] for ETM+ and [image: image] for OLI) and thresholded the resulting raster to obtain a binary map (1 = “snow/ice,” 0 = “other”) (Figure 2A). The segmentation of band ratio images using raw DNs has been found to be superior over band ratios using atmospherically corrected images when cast shadow was present (Paul et al., 2002). We used a band ratio threshold of 1.5 for all our images (Table 1). We tested various thresholds from the literature (1.2–2) on the basis of false Landsat color composites (ETM+ bands 5, 4, 3 and OLI bands 6, 5, and 3) and we conducted a sensitivity analysis to these thresholds (section “Sensitivity Analysis”). The lower threshold of 1.5 compared to the ones used for glacier mapping (Andreassen et al., 2008; Racoviteanu et al., 2015) allowed mapping the full extent of snow and ice for each time step. The minimum snow and ice area for any given year (2013 for Hunza, 2016 for Trishuli) was considered to represent the glacier surface for that year and was used as a “glacier mask” for the subsequent steps described below.

Snow on ice in the accumulation area of glaciers was separated from exposed glacier ice in the ablation area by thresholding the near-infrared band (ETM+ band 4 at 0.77–0.90 μm and OLI band 5 at 0.851–0.879 μm), along with an elevation and a slope criteria (Figure 2A). At these wavelengths, ice and snow have different brightness temperatures, making them distinguishable from each other. Due to differences in illumination conditions, the thresholds varied depending on each image. To pick a threshold, for OLI band 5, for example we defined regions of interest (ROI) on exposed glacier ice surfaces and extracted summary statistics from OLI band 5 over 1 year. On the basis of mean statistics, we tested various thresholds to compute an “optimized” ratio for each month, which was adjusted for each time step based on visual inspection (Table 1). The sensitivity of the resulting SLAs to these thresholds will be discussed later (section “Sensitivity Analysis”). We concurrently applied a slope criterion (ice <40°) and an elevation criterion (ice >2,800 m a.s.l. for the Hunza and ice >4,200 m a.s.l. for the Trishuli) to further constrain the clean ice class, i.e., to exclude steep slopes (rock) and lower elevations (illuminated moraines and bright surface water) from the snow/ice class. The slope thresholds are consistent with previous studies in the Hunza (Hewitt, 2011; Khan et al., 2015), where slopes >35° represent internal rocks in the accumulation area of glaciers. Based on visual interpretation, here we chose a maximum value of 40° to constrain the ice class. The outcomes of this step were clean ice and snow on ice classes.

Debris covered ice was mapped by thresholding the band ratio (ETM+ 4/5, OLI 5/6), a slope derived from the DEM, a thermal band (ETM+ band 6, OLI band 11) and an elevation layer. Each threshold was adjusted for each image on the basis of the visual interpretation of color composites; these are reported in Table 1. The thresholds for slope and thermal band were based on previous research (Racoviteanu and Williams, 2012). Minimum and maximum values of thermal bands were adjusted based on visual interpretation; these are generally lower in the fall or winter months, when debris covered ice surfaces are cooler due to less solar heating and lower temperatures, but they vary due to different illumination conditions. Only the exposed (snow-free) part of the debris covered ice was mapped in this step.

Snow on land was estimated for each image using the minimum snow and ice area, i.e., the “glacier mask” described in this section. For any given time step, when the extent of snow and ice was larger than the initial glacier mask area, the additional pixels were classified as seasonal snow and output as snow on land. For the purposes of parameterizing the melt model used in Armstrong et al. (2019), any snow present on the surface of debris covered tongues was also mapped and referred to as snow or land. We performed post-classification corrections to adjust misclassified areas, which included: (a) some glacier edges misclassified as snow as a result of the mixed spectra from glacier ice and rock; (b) shadows in the accumulation areas of glaciers which have a similar spectral signature to ice and were misclassified as exposed glacier ice; and (c) bare illuminated terrain misclassified as debris covered ice. Manual corrections were applied only to the subset study areas for purposes of conducting a sensitivity analysis to manual corrections.

Misclassified areas from (a) and (c) were adjusted manually, with only minimal processing of debris cover, which was not the focus here. Shadows misclassified as ice (b) were corrected automatically by creating a negative buffer (−2,000 m) inside the full glacier ice and snow mask, i.e., “shrinking” the mask. The false snowlines located within the shrunken mask were “erased” automatically with an overlay vector operation for all dates, thus reducing the time needed for manual edits. We refer to the resulting versions over subset areas as “corrected” and the raw, full extent versions as “uncorrected.”



Automated Snowline Extraction: The “Buffer” Method

Snowlines were extracted in an automated way using a buffer applied to the snow and ice areas obtained from the surface partition at each time step (Figures 3A–H). Buffers have been used to extract snowline elevations in the Central Himalaya (Garg et al., 2017) or to estimate uncertainties in mapped glacier area in the Cascades (Granshaw and Fountain, 2017). While Garg et al. (2017) extracted snowlines only over the centerline of glaciers, here we estimated snowlines over the full extent of glaciers. Furthermore, while Garg et al. (2017) fixed the buffer size to 30 m around manually delineated snow areas, in this study we adapted the buffer size to the two DEMs tested (50-m buffer size for the 90-m CGIAR, and a 15-m buffer for the 30 m SRTMGL1). We performed a sensitivity analysis to the DEM and the buffer size used (section “Sensitivity Analysis”). For each time step, we intersected snow buffers to obtain a snowline interval, and then extracted elevations on a pixel-by-pixel basis from the DEM to obtain snowline elevations (Figure 3). Pixel-by-pixel SLA values are sensitive to outliers, so we estimated regional SLAs as the median elevation within the buffer interval over the full or subset image. Using the median rather than the mean accounts for non-normally distributed data in some of the months. The maximum SLA in a given year was considered the ELA for that year (Figure 3). SLAs were output automatically in tables, along with the ID of the scene and the parameters used for each run.
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FIGURE 3. Intermediate products from the buffer method used in extracting the snowlines from Landsat images. Here we show an example from the Hunza: (A) false color composite (bands 6, 5, 4); (B) band 5; (C) separating ice and snow from debris covered ice; (D) separating snow on ice, clean ice, debris cover, and bare land; (E) extracting clean ice vs. snow on ice; (F) converting raster to ice and snow polygons, buffering the polygons and intersecting the polygons; (G) extracting the buffer polygon; and (H) extracting the elevation of pixels inside the buffer.





Uncertainty Estimates

Snow and ice mapping derived from remote sensing are subject to uncertainties issued from image classification techniques, mixed pixels and internal rocks, as discussed in previous studies (Racoviteanu et al., 2009; Paul et al., 2013). In this study, we used a standardized band ratio method to distinguish snow and ice from surrounding terrain, with carefully chosen thresholds. On the basis of previous studies (Paul et al., 2013), the accuracy of the glacier outlines derived from remote sensing using the automated technique is estimated as ± 1 pixel size (30 m). Multiple digitizing experiments have also found the accuracy of the automated glacier outlines to be within the variability of those obtained by manual digitization (Paul et al., 2013). Since here we only mapped the entire ice masses, and intersected them to get snowlines, we are not reporting the glacier outline accuracy directly, but we rather focus on the snowline accuracy.

Sources of uncertainty in the SLA estimates come from: (1) the accuracy of the DEM used for the surface partition (90 m CGIAR and 30 m SRTMGL1); (2) the size of the buffer used to extract the snowlines; (3) uncertainty in snow and ice area estimates; and (4) overall uncertainties in the automated method used to partition the surfaces. These were defined and estimated as follows:

• εdem is the vertical error of the SRTM DEM (RMSEz), defined as 47.2 m for the 90 m CGIAR DEM and ± 23.5 m for the 30 m SRTMGL1 DEM based on Mukul et al. (2017).

• εbuffer represents the buffer size used for the snowline extraction, defined as ±15 m for the 30 m SRTMGL1 and ±50 m for CGIAR (see section “Automated Snowline Extraction: The ‘Buffer’ Method”).

• εoutlines is considered to be 1/2 of the pixel size of the Landsat satellite imagery used, i.e., ±15 m. We consider this error to be embedded in the buffer size of ±15 and ±50 m.

• εedit is related to uncertainties in the algorithm itself, which varies with each image and is related to the choice of band ratios thresholds and elevation criteria chosen for each time step. We quantified this error as the difference in SLAs resulting from the uncorrected (raw) and corrected (manually edited) versions of the surface partition for each time step (see section “Surface Partitioning: Clean Glacier Ice, Snow on Ice, Snow on Land and Debris Cover”).

Assuming that the individual sources of error are uncorrelated, we estimated SLA accuracy as root mean square error (RMSEz) for the uncorrected and corrected versions. For the snowlines issued from the uncorrected versions (full and subset extents), the total error (εuncorr) is:

[image: image]

For the snowlines issued from manually corrected surface partitions, the total error (εcorr) is:
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Snowline Validation

We validated the snowlines in one of our study areas (Trishuli), where PlanetScope high-resolution imagery was available for the same date as the Landsat OLI scene (October 25, 2016) (Planet_Team, 2017). There were no Planet scenes available for the Hunza area, so we could not perform a similar validation there. The PlanetScope sensor acquires data at visible to near-infrared wavelengths (four bands), with a swath width of 24.6 × 16.4 km and 3 m ground resolution. PlanetScope provides image stripes of orthorectified, Top of Atmosphere radiance (at sensor), as analysis-ready data. Image stripes were combined in a single mosaic and bands 4, 3, and 2 were used to create false color composites. We manually digitized a total of 32 visible snowlines as vectors on the PlanetScope image using these color composites for individual glaciers from RGI. We rasterized the lines and extracted elevations along each digitized line based on the SRTMGL1 DEM (30 m), and averaged these to obtain PlanetScope SLAs for each glacier. Given the DEM cell size, a 15 m buffer is automatically embedded in the calculation of PlanetScope SLAs. We compared the OLI-based SLAs with those derived from PlanetScope using parametric statistical tests and basic statistics.




RESULTS


Monthly Surface Partition: Hunza (2013) and Trishuli (2016)

Here we present the monthly fluctuations of the various surfaces for Hunza (May–December 2013) (Figure 4) and Trishuli (June–December 2016) (Figure 5). The areas of “NoData” represent shadows and clouds; while most images are cloud-free over glaciers, deep shadows get progressively larger in the winter (November through December) in both areas due to low sun angles and the effect of rugged terrain. Clouds are more prevalent in the Trishuli, especially during the months of October to December. In Table 2 and Figure 6 we present summaries of total area for surfaces on the glacier and off-glacier in the subset areas (Hunza and Trishuli). In both areas, as snow decreases, exposed glacier ice increases. For example, for the Hunza subset in 2013, the exposed glacier ice increased from a minimum of 4.5% of the glacierized area on May 18 to a maximum of 24.1% of the glacierized area on October 9, and then decreased again to 6.2% in November after snowfall (Table 2). These seasonal fluctuation patterns are visible in Figure 4, which shows glacier ice progressively being exposed as the season progresses until October 9, and then snow on land increasing to a maximum on November 26. The same patterns are visible in the Trishuli (Figure 5). In the winter months, almost no exposed glacier ice is visible over the entire extent (Figures 4, 5). In the Trishuli, the exposed glacier ice increased from a minimum of 4.7% of the glacierized area on June 3 to a maximum of 26.8% on December 12, 2016, which was the maximum for this particular year (Table 2 and Figure 6). Minimum exposed glacier ice occurred roughly around the same time of the year (May–June) for both areas, but the maximum occurred later in the season in the Trishuli (December 2016) compared to the Hunza (October 2013) for the years studied (Table 2). In the Trishuli, the total glacierized area exhibited an apparent decline by about 200 km2 in exposed glacier ice from spring to winter in 2013; however, this was due to a large number of NoData values due to clouds or shadows obscuring the glacier surface during winter season in this area, and was not a “true” glacier ice loss.
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FIGURE 4. Time series of the monthly partition of the snow, ice and debris surfaces for the full extent of the Hunza (May–October 2013) using raw, uncorrected outputs based on the 90 m CGIAR. Seasonal snow on land increases toward December when there is almost no exposed glacier ice visible. Some topographic shadows in the accumulation areas are mis-classified as glacier ice, needing manual correction.
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FIGURE 5. Time series of the monthly partition of the snow, ice and debris surfaces for the subset extent of the Trishuli where glaciers are located (June–December 2016). The water bodies are shown in dark blue for reference but are not discussed in the text.



TABLE 2. Monthly surface partition for the Hunza and Langtang subset areas for 2013 and 2016, respectively, after the manual corrections. NoData refers to areas under clouds or shadow. The NGL class includes water bodies (Trishuli only). The areas occupied by non-glacierized (bare) terrain are reported for reference, but are not discussed here.
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FIGURE 6. Summarized areas for each month for snow on ice, exposed glacier ice, debris covered ice snow on land, and NoData: (A) Hunza and (B) Trishuli.



Snow on ice in the Hunza decreased from a maximum of 87.7% of the glacierized area on May 18 to a minimum of 63.0% of the glacier area on October 9, when maximum glacier ice was exposed and then increased again to 87.4% on November 26 (Table 2). In the Trishuli, snow on ice decreased from 81.9% of the glacierized area on June 3 to 55.9% on December 12 (Table 2 and Figure 6) and then increased slightly to 57.6%. The debris covered ice area showed little variability, since debris cover is not expected to change significantly throughout the year (Table 2). Debris covered surfaces were being progressively exposed as snow at the debris surface melted (Figure 6). Since the snow on land class includes snow on debris as well, the debris covered ice area fluctuation was not a true surface area change. In the Hunza, the debris covered ice area ranged from a minimum of 7.8% of the study area in the spring, when part of the debris covered glacier tongues were covered by snow, to a maximum of 12.9% on October 9 after all snow had melted. Similarly, for the Trishuli, debris cover extent ranged from a minimum of 13.4% on June 3 to a maximum of 17.3% on December 12 (Table 2).

Outside the glacierized area, snow on land fluctuated from 27.7% of the total subset area in the Hunza on May 18 to a minimum of 0.0% on October 9 in the Hunza and from 7.3% of the total subset area in Trishuli in June to 0.01% on November 26 and December 12. Snow outside glaciers diminished as the melt season progressed, as expected (Table 2 and Figure 6).



Monthly Snowline Fluctuation in the Hunza (2013) and Trishuli (2016)

In the subset area of Hunza (Shimshal valley), the automated surface partition with manual corrections yielded the lowest SLA of 4,727 ± 69 m a.s.l. on May 18 and the highest SLA of 5,171 ± 69 m a.s.l. on October 9 (Table 3 and Figure 7A). After this date, SLA decreased in late fall/winter, which is consistent with the increase in seasonal snow in November and December (Table 2). The date of highest SLA in the Hunza coincides with the maximum exposed glacier ice on October 9, and therefore we consider this date to be the end of the ablation season in 2013 in this area. This is in general agreement with Minora et al. (2016), who used the Julian day 273 or nearby date as an indicator of the end-of-the-summer SLA in their remote sensing study of glaciers from 2001 to 2011 in the Central Karakoram in northern Pakistan. By contrast, a previous study (Khan et al., 2015) had used July—August as the window of time to estimate maximum SLA for the Hunza, which is earlier than our findings.

TABLE 3. Snowline altitudes for the Hunza and Trishuli subset extents obtained from the “uncorrected” and “corrected” versions of the partitioning, using the SRTMGL1 (30 m) and a 15-m buffer. Here, we refer to SLAs as median of all pixels classified as SLA for the subset and full extent of Landsat. Respective error estimates E uncorr and Ecorr represent RMSEz (see section Uncertainty estimates). Manual corrections of the surface partitioning had the biggest impact on the resulting SLAs for the spring and late fall months, particularly in the Hunza study area where the errors were the largest.
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FIGURE 7. Monthly SLAs before and after the manual corrections applied to the surface partition in the subset extents for: (A) Hunza and (B) Trishuli.



For the Trishuli, manual corrections of the surface partition yielded the lowest SLA of 5,261 ± 27 m a.s.l. on June 3, and the highest SLAs of 5,495 ± 27 m a.s.l. on December 12, and 5,499 ± 27 m a.s.l. on December 28 (Table 3 and Figure 7B). Since on the December 28 image we detected some seasonal snow (0.8%) (Table 2 and Figure 6), we consider December 12 to be the end of the ablation season for 2016.

The month marking the end of the ablation season was different in the two regions. In the Hunza, the highest SLA in 2013 occurred in October, versus in December in Trishuli in 2016. We cannot elaborate on the potential causes but we speculate that this later-than-usual highest SLA in the Trishuli could be linked with increased summer air temperature trends as noted in the Nepal Himalaya (Fujita and Nuimura, 2011), and potentially drier conditions in 2016. The temporal frequency of images from Landsat does not allow us to determine the precise day of the highest SLA, only the month.



Annual ELAs in the Hunza and Trishuli (2000–2016)

Annual ELAs extracted from images from the end-of-ablation season date established above (October-November) (Figure 8) show little variability from year to year from 2000 to 2016 in both areas (on average within ± 100 roughly with a few exceptions), indicating somewhat stable glacier conditions. In the Hunza, annual ELAs ranged from 5,142 ± 100 m a.s.l. in 2009 to 5,228 ± 97 m a.s.l. in 2013, with an average of 5,176 ± 100 m a.s.l. over the entire period (2000–2016). This is in general agreement with other ELA estimates in the Karakoram for the same time period, for example Minora et al. (2016), who reported an average ELA of ∼ 5,200 to 5,300 m a.s.l. for the 2001–2010 period in Central Karakoram based on Landsat images; they assumed Julian day 273 or nearest date as the reference for the end of summer. Since they reported the ELA as a single elevation over the entire period, we cannot compare our results with theirs at annual time steps. Our ELA estimates are lower than those of Kääb et al. (2012) (ELA: 5,540 m a.s.l.) for the Karakoram region based on Landsat scenes.
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FIGURE 8. Annual ELAs in the Hunza and Trishuli from 2000 to 2016, based on surface partition using the SRTMGL1 DEM (30 m) with a 15 m buffer. ELAs are expressed as the maximum snowline altitude (SLA) of each year. Error intervals are shown as ±1/2 of the RMSEz of total uncertainties (see section “Uncertainty Estimates”).



In the Trishuli, annual ELAs varied from a minimum of 5,395 ± 48 m a.s.l. in 2000 to a maximum of 5,567 ± 48 m a.s.l. in 2016, with an average of 5,444 ± 48 m a.s.l. over the entire period (2000–2016). This is in close agreement with regional ELAs of ∼5,400 m a.s.l. used in recent hydrologic studies in the same area (Ragettli et al., 2015). In a previous study, we estimated mean ELA values of 5,468 m a.s.l. in 2003 based on manual digitization on ASTER imagery (Racoviteanu et al., 2013). In the present study, we obtained an ELA of 5,432 m a.s.l. for the same year (2003), in close agreement with the previous value. Regional ELAs estimated in the current study for 2011 and 2012 (5,424 and 5,467 m a.s.l.) are also in agreement with ELA values reported in Acharya and Kayastha (2019) for the Yala glacier (5,441 and 5,412 m a.s.l., respectively). The higher annual ELAs in 2015 and 2016 in the Trishuli (ELA: 5,567 and 5,495 m a.s.l., respectively) (Figure 8) are in agreement with Acharya and Kayastha (2019) (ELA: 5,451 m.a.s.l.; ELA: 5,555 m.a.s.l), explained by more negative summer mass balance conditions in the cited study. A careful assessment of the 2015 ELA showed no bias or significant errors, so we speculate that the higher ELAs in 2015 and 2016 may be linked with local climatic conditions. Huss and Hock (2015) used a single ELA value of 5,215 m a.s.l. for southwest Asia for their model and projected a rise in the regionally average glacier ELAs by 100 to 500 m from 2010 to 2100. Due to the time scale of our analysis (2000–2016) and the lack of a clear temporal upward trend in ELA, we cannot make any statements with regards to the suggested trends in the cited study. On the contrary, for the Hunza, our results imply relatively stable conditions, in agreement with cooling trends in summer temperature noted in the last decade (Forsythe et al., 2017).



Comparison With SLAs From High Resolution Imagery

In the Trishuli, the comparison between semi-automated (Landsat 8 OLI) vs. manual (PlanetScope) SLAs (Figure 9) yielded an average difference of 41 m, with a standard deviation of 64 m and a RMSEz of 137 m. SLA values obtained from Landsat and Planet had equal variances based on an F-test at 95% confidence interval. The mean SLA values from PlanetScope (5,301 m a.s.l.) vs. Landsat OLI (5,258 m a.s.l.) were not statistically different based on the t-test for two sample assuming equal variances. On a glacier-by-glacier basis, differences in Planet vs. Landsat SLAs ranged from −53 m (overestimated) to +240 m (under-estimated). In general, the semi-automated algorithm using Landsat 8 OLI underestimated most SLAs compared to PlanetScope, but results show good agreement (R2 = 0.95) (Figure 9). The underestimation in OLI SLAs is due to the presence of brighter pixels or old snow in the lower ablation area of glaciers. Due to the similarly spectral signal of these ice pixels to snow, the algorithm detects an ice-snow boundary and classifies these pixels as part of the snowlines. Since these patches are situated at lower altitudes, these misclassified pixels introduce negative biases in the SLA estimates, and they need to be filtered out manually.
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FIGURE 9. Comparison between semi-automated Landsat OLI SLA with manually derived PlanetScope SLAs in the Trishuli for the October 25, 2016 image.






DISCUSSION


Spatial Patterns in SLA/ELA and Possible Links With Climate

Spatial patterns in SLAs for the month of October in the Hunza (2013) and in the Trishuli (2016) show a variability in SLA for both areas (Figure 10). In the Hunza (Figure 10A), SLAs decrease by 0.5 m vertical per 1 km eastward and increase by 8 m vertical per 1 km northward. The gradient is oriented slightly in the southeast – northwest direction (176.4°), with lower SLA values in the southeast and higher in the northwest. Our results agree with Mukhopadhyay and Khan (2016), who pointed out a strong east-west gradient in precipitation patterns in this area, causing ELA to vary across the Karakoram from about 4,840 to 6,200 m a.s.l. In the Trishuli subset area (Figure 10B), SLAs increase by 11 m vertical per 1 km eastward and 13 m vertical per 1 km change northward, and the trend is northeast (49.6°). SLA values in the Trishuli exhibit a larger spatial gradient in SLA than in the Hunza, as they increase toward the drier Tibetan Plateau, on the northeast side of our study region. In the Trishuli, SLA values ranged from 4,414 m a.s.l. on the south side of the divide to a maximum of 6,581 m a.s.l. the north side of the divide (Tibetan Plateau), with an average of 5,425 m a.s.l. This is in agreement with our estimates of mean ELA values of 5,468 m a.s.l. in this area from the previous study based on manual digitization on ASTER imagery (Racoviteanu et al., 2013), as well as other studies mentioned previously (Benn and Owen, 2005; Kayastha and Harrison, 2008; Ragettli et al., 2015). The high SLA values of up to 6,581 m a.s.l. in the northern part of the Trishuli area may be due to the drier climate compared to the southern slopes, caused by a decrease in moisture content in the northeast from orographic forcing of monsoon air masses over the Himalaya. The strong gradients in SLA values towards the northeast (Tibetan Plateau) indicate that SLA values calculated over the entire Landsat extent may not be representative of the entire region in this area. To test this, we calculated SLAs separately on the northern slopes of the Himalaya (Tibetan Plateau) and southern slopes (Trishuli basin) of the subset area. Using only the SLA pixels on the southern slopes, we obtained an average SLA of 5,222 m a.s.l., which is about 4% lower than the overall estimates over the entire scene including the Tibetan Plateau (5,425 m a.s.l). On the northern side of the divide, more glacier ice is exposed in late season than on the southern side. The larger expanse of exposed glacier ice on the northern slope, and the higher SLAs appear to bias the regional trends when analyzing the entire Landsat scene in this area. When SLA values are calculated using an entire scene which spans distinct climatic regions, regional SLA values are overestimated by ∼200 m, so a basin-by-basin approach would be more appropriate. This observation has important implications for regional ELA estimates intended for mass balance applications, as glacier trends, including ELA trends, do not often follow hydrologic boundaries.
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FIGURE 10. Spatial patterns in snowline altitudes during the month of October represented with a blue (lower SLAs) to red (higher SLAs): (A) Hunza Shimshal valley and (B) Langtang valley in the Trishuli. Each dot represents median elevations of snowlines extracted from the SRTM DEM. Also shown are glacier areas from the Randolph Glacier Inventory (RGI v.6) for reference.





Sensitivity Analysis

While band ratio thresholds are fairly consistent throughout glacierized regions worldwide (e.g., Paul and Andreassen, 2009; Racoviteanu et al., 2009), it is generally advisable that the thresholds be checked in each region. We found that the SLAs were not very sensitive to the threshold used for band ratios to distinguish snow and ice from surrounding terrain. When using thresholds 1.2 and 2, the differences in resulting SLAs ranged from −73 to +26 m, on average −0.2 to −0.04% compared to SLA using the chosen threshold (1.5) (Table 4).

TABLE 4. Sensitivity of derived snowline altitudes to key parameters used for surface partitioning for the full extent of the Landsat OLI/TIRS imagery using the Hunza monthly series (2013) as test site. No manual corrections were applied for the sensitivity analysis. The “optimized” thresholds used for the final version of the SLAs reported here are based on the sensitivity analysis and adjustments based on visual interpretation. The SLA values resulting from each parameter are reported in m a.s.l.
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With respect to OLI band 5 used to distinguish snow from ice on the glacier surface, we tested two thresholds based on statistics extracted from the ROIs: mean + 1 SD and mean + 3 SD (Figure 11). Since the ROIs digitized on glacier tongues and used to extract band ratio statistic were chosen lower in the (darker) ablation areas of glaciers, we estimated that the adequate DN threshold would be above the mean. The sensitivity analysis for Band 5 (Table 4) showed that the SLAs were fairly sensitive to the choice of threshold, with SLA differences ranging from −244 m (underestimate) to +411 m (overestimated). Band 5 DN values calculated over the ice ROIs show seasonal variability (Figure 11). We found that the optimized DN chosen corresponds closely to mean + 1 SD in the spring and late fall months, and to the mean + 2 SD during the summer season (June to October). The average SLA differences were 1–3% lower than those obtained using the optimized threshold. SLA differences were larger in the spring (May) and late fall (November), when snow covered more of the glacier tongues where ROIs were chosen.
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FIGURE 11. Sensitivity of the calculated SLAs to the choice of DN threshold for Band 5 for the Hunza subset data, based on mean statistics from 20 regions of interest (ROIs) digitized in the ablation area of several glaciers. The DN threshold corresponds to mean + 1 SD for the May–June and December, when the tongues may be covered with snow (brighter), and to mean + 2 SD during July–November when more glacier ice is exposed (darker). The black line shows the “optimized” DN, which was chosen based on the ROI statistics and visual checking using color composites.



Season snowline altitude estimates were sensitive to the topographic slope threshold during the months of May and November (Table 4). For these months, SLA differences ranged from −271 to +214 m, however these were still within our SLA uncertainty estimates for those months (Table 3). During the months at the end of ablation season (October and November), SLA differences ranged from −26 to +63 m. Overall, SLA differences due to the various slope thresholds only amount to −1 to 2% compared to those obtained using the optimized value.

To quantify the sensitivity of the snowlines to the DEM used for the surface partition step (90 m CGIAR vs. 30 m SRTMGL1), we compared SLAs obtained from the uncorrected partitioning for the full extent of the Landsat imagery in the Hunza based on the two DEMs, using the same buffer size (50 m). In this area, the uncorrected SLAs over the full extent of the Landsat scene using the 90 m CGIAR ranged from 5,239 ± 575 m a.s.l. (May) to 5,245 ± 86 m a.s.l (October). Using the 30 m SRTM DEM, resulting SLAs ranged from 4,990 ± 575 m a.s.l. (May) to 5,189 ± 106 m a.s.l. for (October) (Table 4). SLAs obtained using the CGIAR were lower than the values obtained using the SRTMGL1. The differences (CGIAR–SRTMGL1) decreased from the spring and early summer months (May and June) (167 m on average) to the fall months (October–November) (35 m on average) (Table 4). This difference, calculated as percentage of the CGIAR-based SLA, amounts to a maximum of 4.8% in the spring months and a minimum of 0.6% in October. The two sets of SLA estimates were statistically different based on two sample t-tests at 95% confidence interval (p < 0.05), suggesting that the choice of the DEM significantly impacts the snowline estimates. Regardless of the DEM, we consider the SLA results from the spring months to be less reliable due to poorer image quality, more clouds and more snow. When different DEMs were used only in the last step of the analysis (i.e., extracting elevations along the SLAs) from the same version for partition, differences in resulting SLAs were negligible (∼2 m on average). The size of the buffer (50 m vs. 15 m) used to extract the snowlines after surface partition had little impact on the resulting SLAs based on sensitivity tests for the Hunza full extent (Table 4). Differences in SLA calculated using the 50 and 15 m buffers, respectively, ranged from −1 m in October 9 to 10 m on November 26, with an average of +5 m, or +0.1% difference between the two versions (Table 4). We conclude that SLAs are not sensitive to the size of the buffer used to extract the snowlines.

To quantify the impact of manual corrections on the SLAs, we compared the SLA resulting from the uncorrected and corrected surface partition in the Hunza and Trishuli. In the Hunza subset area, SLAs from “uncorrected” surface partition ranged from 5,301 ± 578 m a.s.l. in May 18 to 5,261 ± 254 m a.s.l. on November 26, with a month-to-month variability. After manual corrections, SLAs in the subset area ranged from 4,727 m a.s.l. ± 69 (May) to 5,171 ± 69 m a.s.l. (October), with the biggest difference in the spring month (574 m, or 11%) (Table 3). SLAs resulting from the “corrected” surface partitions were generally lower than the “uncorrected” version (a mean difference of ∼208 m or about 4% of the uncorrected version). The difference in SLA values from uncorrected vs. corrected partition was generally smaller in the summer and fall months (July to October) due to better image quality and less seasonal snow (Figure 7A). For these months, the average difference in median SLAs between these two versions was on average 68 m, about 75% less than the average difference in the spring and winter months (291 m). In the Trishuli subset area, SLAs from “uncorrected” partition in the Trishuli subset ranged from 5,324 ± 27 m a.s.l. in June to a maximum of 5,534 ± 48 m a.s.l. in December (Table 3). After corrections, SLAs in the subset Trishuli ranged from 5,261 m a.s.l. in June to 5,495 m a.s.l. in December, with the biggest difference between the uncorrected and the corrected version in the summer month (June) (63 m difference, or 1.2%). After the corrections, similarly to the Hunza, SLAs in Trishuli were on average lower than before the corrections (a mean difference of 39 m, or 0.7% compared to the uncorrected values) (Figure 7B). Most likely, the lower SLAs after corrections are due to removal of shadows in accumulation area, initially misclassified as ice. To assess the effectiveness of the manual corrections, we used a paired t-test on the pre-corrected and post-corrected versions. The test indicated that SLAs computed after the manual corrections were statistically different than those issued from the uncorrected version at 95% confidence interval (p < 0.05) in both areas, implying that the corrections significantly changed the mean values. Similarly to the Hunza, in the Trishuli subset area, after manual corrections of the surface partition, SLA values were statistically different than the ones obtained from the uncorrected partition (Table 3), based on two-sample t-test at 95% confidence interval, p < 0.05.



Continuity From Landsat 7 ETM+ to Landsat 8 OLI and Impact on Estimated ELA

The temporal trends of ELA may be subject to uncertainties associated with the Landsat sensors used: ETM+ (2000–2012) and OLI (2013–2016), and with respect to the transition from ETM+ to OLI in 2013. In this study, we used Landsat L1T products (pre-collection) and L1TP T1 (collection 1), which are registered, radiometrically calibrated and orthorectified using ground control points GCPs and a DEM (USGS, 2015). These products have stated 50 m global geolocation accuracy, but the actual accuracy was found to be better than the projected. The alignment of the scenes with respect to one another was assessed visually, and further co-registration was not considered necessary. A source of error in the Landsat 7 ETM+ is that scenes acquired after 2003 had the scan line corrector (SLC) turned off due to failure and have data gaps, visible as “stripes” on the images. These were more pronounced toward the edges of the images in our study area, and they were treated as “NoData” in our study. The gaps in the data decrease the total sample size for Landsat 7, when present. The Landsat 8 data used after 2013 has several advantages with respect to ETM+, notably narrower spectral bands, improved calibration and signal-to-noise ratio (SNR), better geometry and 12-bit radiometric resolution compared to 8-bit for Landsat ETM+ (Irons et al., 2012). Landsat OLI data are not saturated, while Landsat ETM+ has pixels that are saturated in bands 1, 2, or 3 (the visible bands), which may appear darker than they really are. In addition, the USGS uses cubic-convolution resampling to smooth the data, not nearest neighbor resampling. As a result, saturated pixels can be mixed with nearby un-saturated ones in this resampling, making it difficult to identify and exclude those from our analysis. Overall, we consider the results from OLI to be more reliable based on these characteristics, with an accuracy of 50 m based on comparison with PlanetScope (section “Uncertainty Estimates”). As no clear ETM+ vs. OLI trend was detected, we did not attempt any inter-calibration, but future studies might consider this issue.



Limitations and Further Work

Delineating the snow/firn-ice boundary using remote sensing in mountainous terrain using optical remote sensing is challenging due to shadows, since snow in shadow appears spectrally similar to clean ice or dirty ice in the ablation area of glaciers. Limitations of the current study include:

• Our method does not allow making the distinction between snowline and firnline, but we acknowledge that under warming conditions, the snowline may retreat beyond the firnline. Applying this method on daily high-resolution imagery may facilitate this distinction.

• Distinguishing snow on land from snow on ice remains a challenge, since snow has the same spectral signature on and off the glacier; here we relied on a glacier mask at each step.

• Band ratio algorithms, while fairly robust, are prone to misclassification errors over frozen lakes and deep/cast shadows over snow and ice (Racoviteanu et al., 2009). Using topographically corrected surface reflectance to reduce variability in illumination instead of top of atmosphere data might mitigate post-classification correction efforts.

• Some snowlines are obscured by shadow and they often do not appear as continuous lines, which may slightly bias our regional estimates especially in areas which span different climatic areas.

• The thresholds used for surface partition rely on a-priory knowledge to some extent. Using a single threshold is challenging in rough terrain due to differences in topographic illumination or image saturation as well as climatic differences across regions. However, in this study, we used a consistent threshold across all images as much as possible.

• Further steps to improve the efficacy of our algorithm include more sophisticated cloud mapping techniques and automated shadow detection using sub-pixel methods (Sirguey et al., 2009).

• Post-classification manual corrections of the surface partition were most needed for spring and winter image(s), with minimal corrections and greater accuracy for images acquired later in the season, which were more contrasted and generally cloud-free. We developed tools to automate the post-classification corrections in areas of shadow over snow in the accumulation areas to reduce the time needed for manual edits.

• SLA/ELA estimates are limited to monthly temporal resolutions due to the revisit time of the Landsat imagery (16 days), but the method can be easily applied to Sentinel-2 data (5 days). With further testing and refinement and perhaps calibration with field measurements of SLA/ELA, this method can be modified for daily satellite data such as PlanetScope to derive sub-monthly SLAs.




CONCLUSION

Manual digitization of snow and ice on glaciers and subsequent extraction of SLAs is generally a time-consuming process and is difficult to apply over large areas, especially when time series of the snowlines are needed. Here we developed an automated method to separate snow-ice-debris surfaces in two areas of the Himalayas at multi-temporal scales based on Landsat ETM+ and OLI band ratios and topographic criteria. We extracted snowline elevations pixel-by-pixel and estimated ELAs in two areas of HMA: Hunza and Trishuli at monthly time scales (2013 and 2016, respectively) and annual time scales (2000–2016). SLA estimates were significantly sensitive to the manual corrections applied to the snow and ice partition results, and fairly sensitive to the topographic slope, the DEM and the band ratio thresholds, particularly during the spring and winter months due to more snow. Snowlines were less sensitive to the size of the buffer used to extract the snowlines.

Using this method, we obtained a maximum SLA (∼ELA) of 5,171 ± 27 m a.s.l. in October of 2013 for the Hunza and 5,495 ± 27 m a.s.l. for the month of December of 2016 for the Trishuli., after manual corrections. Over the period studied (2000–2016), end-of-the-ablation season annual ELAs fluctuated from 4,917 to 5,336 m a.s.l. for the Hunza, with a 16-year average of 5,177 ± 108 m a.s.l., and 5,395 to 5,565 m a.s.l. for the Trishuli, with an average of 5,444 ± 63 m a.s.l. SLA trends obtained over a smaller subset of the Landsat scenes were representative of the full extent of the image, with an average difference of 100 m. We consider that regional SLA/ELA values obtained using this method are adequate for regional applications such as melt models, when image quality, time of the year, uncertainties due to the DEM used, and band ratio thresholds are considered and assessed. Caution is needed when extracting a “regional” annual ELA value when an image spans various climatic regions, as SLAs may be biased. The time series of snow, ice and debris in two regions provides a valuable training dataset, which may be used in future work to classify images using more sophisticated algorithms such as machine learning classifiers, such as random forests.
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Changes in terrestrial water storage (TWS) in High Mountain Asia (HMA) could have major societal impacts, as the region's large reservoirs of glaciers, snow, and groundwater provide a freshwater source to more than one billion people. We seek to quantify and close the budget of secular changes in TWS over the span of the GRACE satellite mission (2003–2016). To assess the TWS trend budget we consider a new high-resolution mass trend product determined directly from GRACE L1B data, glacier mass balance derived from Digital Elevation Models (DEMs), groundwater variability determined from confined and unconfined well observations, and terrestrial water budget estimates from a suite of land surface model simulations with the NASA Land Information System (LIS). This effort is successful at closing the aggregated TWS trend budget over the entire HMA region, the glaciated portion of HMA, and the Indus and Ganges basins, where the full-region trends are primarily due to the glacier mass balance and groundwater signals. Additionally, we investigate the closure of TWS trends at individual 1-arc-degree mascons (area ≈12,000 km2); a significant improvement in spatial resolution over previous analyses of GRACE-derived trends. This mascon-level analysis reveals locations where the TWS trends are well-explained by the independent datasets, as well as regions where they are not; identifying specific geographic areas where additional data and model improvements are needed. The accurate characterization of total TWS trends and its components presented here is critical to understanding the complex dynamics of the region, and is a necessary step toward projecting future water mass changes in HMA.

Keywords: terrestrial water storage, High Mountain Asia, GRACE mascons, glacier mass balance, groundwater, land information system


1. INTRODUCTION

Secular changes in High Mountain Asia (HMA) terrestrial water storage (TWS) can modify global mean sea level (Reager et al., 2016) and affect the availability of freshwater for the more than one billion people living in the region (Wester et al., 2018; Pritchard, 2019), motivating the accurate determination of TWS trends and the partitioning of individual components. The hydrology of the HMA region is complex due to the multiple cryospheric sources of runoff (snow, glacier and permafrost melting), the influence of complex topography and monsoon dynamics on precipitation distribution, and rapidly shifting patterns in irrigation practices. Existing models show high variability in runoff composition for each of the major HMA river basins and provide estimates of future trends in runoff in a changing climate (Lutz et al., 2014; Armstrong et al., 2019); however, there are few independent observations available to calibrate and validate these simulations.

The launch of the Gravity Recovery and Climate Experiment (GRACE) in March 2002 revolutionized the ability to monitor TWS on a global scale to a spatial resolution of 300–500 km (Gaussian smoothing half-radius) (Wahr et al., 1998; Tapley et al., 2004; Luthcke et al., 2013). While GRACE is extremely valuable for its unique ability to recover the full TWS signal, its standard monthly products are somewhat limited in their application due to relatively low spatial resolution as compared to other remote sensing measurements, in situ observations, and model outputs. A number of previous studies have applied the monthly GRACE data products for determining TWS changes in HMA at large basin scales (length ≥500 km; area ≥250,000 km2), with some comparisons made to individual TWS components (Matsuo and Heki, 2010; Moiwo et al., 2011; Jacob et al., 2012; Rodell et al., 2018; Scanlon et al., 2018). Studies that attempt to disaggregate GRACE TWS into individual components take two approaches: they either isolate the residual of interest by using independent data and models to represent the remaining water budget components or assimilate GRACE into land surface models (Frappart and Ramillien, 2018). The first method propagates error from the independent data or models into the residual of interest. The second method can inaccurately distribute mass change within the model if the model is missing components that are included in the GRACE signal. While the assimilation approach has successfully reduced groundwater uncertainties in certain areas, it performs less well in regions dominated by human dynamics that are not captured in the model (Frappart and Ramillien, 2018). Scanlon et al. (2018) recently demonstrated that land surface models are not able to match decadal trends in TWS as seen by GRACE in large global river basins, indicating a clear need to identify the source of discrepancies from the models to improve projections of future water storage change. To date, no HMA study we are aware of has demonstrated the successful closure of the individual TWS trend components with the GRACE-derived total, or attempted to extract sub-basin scale (<300 km) mass trends with GRACE.

In this work we examine the TWS trend budget in an attempt to close the budget for the full HMA region, the glaciated sub-region, the Indus, Ganges, and Brahmaputra basins (Figure 1), and at sub-basin spatial scales within HMA that correspond to the NASA Goddard Space Flight Center (GSFC) 1-arc-degree GRACE mascons (length ≈110 km; area ≈12,000 km2) (Loomis et al., 2019). We present several important advancements toward understanding secular changes in HMA TWS with a new GRACE mascon product, in situ data, and innovative methods applied in the recovery of individual TWS components derived from independent studies. We present the results of a new GSFC global mascon product that directly estimates regression model parameters from the GRACE Level 1B measurements (referred to hereafter as “L1B regression mascons”) from which a trend (i.e., regression slope) may be inferred. These GRACE-only trend estimates approach a spatial resolution of ~110 km and achieve significant improvements in the magnitude of the recovered signal as compared to trends determined from the monthly GRACE products. This new product also includes a rigorous assessment of the uncertainties, which accounts for the solution bias that results from the regularized estimation of the mascon parameters. This new L1B regression product facilitates a comparative analysis between GRACE-derived TWS and other HMA models and data sets at a higher spatial resolution than was previously possible.
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FIGURE 1. (A) The High Mountain Asia region, including glacier extent from Pfeffer et al. (2014) (blue) and the major basins in the region (red): 1-Indus, 2-Ganges, and 3-Brahmaputra. (B) Zoom-in of the HMA region showing the data distribution of the Land Information System (shaded gray), groundwater measurements (green X's), and geodetic glacier mass balance observations (blue boxes). The visible cells correspond to the HMA subset of the global 1-arc-degree NASA GSFC mascon product.



In an effort to partition the GRACE-derived HMA TWS trends into their major components, we consider the following data sets: (1) new geodetic glacier mass balance estimates from ~36,000 Digital Elevation Models (DEMs) (Shean et al., in review); (2) groundwater storage changes inferred from well measurements separated into confined and unconfined systems; and (3) model outputs of eight different Land Information System (LIS; Kumar et al., 2006) runs that employed two different Land Surface Models (LSMs) using four different sets of meteorological boundary conditions (Kumar et al., 2012; Yoon et al., 2019). The geographic distribution of these different data products is shown in Figure 1B. With a rigorous characterization of the GRACE mascon uncertainties that accounts for both noise and bias, we are able to identify basins and individual mascons where closure is, and is not, achieved. When budget closure is achieved we assume we have successfully identified the primary driver(s) of the TWS trends, while lack of closure highlights the geographic locations in HMA where additional data or future model development is needed.



2. DATA AND METHODS


2.1. GRACE
 
2.1.1. Monthly Mascons

The standard Level 2 time-variable gravity product provided by the GRACE project is a series of unregularized spherical harmonic coefficients estimated at monthly time steps (Wahr et al., 1998). Due to larger noise at the higher spherical harmonic degrees (smaller spatial scales), it is necessary to apply post-process filtering to retrieve geophysically meaningful global maps or regional time series of mass change (Wahr et al., 1998; Wouters et al., 2014). Many different filters and methods have been developed over the course of the mission, where the selected approach can significantly impact the results. For example, Jacob et al. (2012) determined a HMA glacier trend of −4 ± 20 Gt yr−1 while Matsuo and Heki (2010) reported −47 ± 12 Gt yr−1 over approximately the same time period using the same Level 2 product but different post-processing techniques. More recently, regularized global mass concentration solutions (mascons) have emerged as a preferred time-variable gravity product for many researchers, with different monthly products provided by NASA GSFC (Luthcke et al., 2013; Loomis et al., 2019), the Jet Propulsion Laboratory (JPL) (Watkins et al., 2015), and the University of Texas Center for Space Research (CSR) (Save et al., 2016). Regularized mascon estimation is a more optimal approach for improving the solution signal-to-noise ratio because the time-variable gravity parameters are directly estimated from the Level 1B data while fully accounting for the noise and signal covariance matrices (Sabaka et al., 2010) thereby eliminating the need for post-processing. Another advantage of the mascon approach is the ability to introduce constraint regions that significantly mitigate signal leakage across constraint boundaries (e.g., land and ocean), effectively increasing the spatial resolution at these boundaries. It is important to note, however, that the fundamental resolution of the mascon solutions (300–500 km) is the same as the spherical harmonics within a constraint region (Luthcke et al., 2013). In the analysis of basin-scale TWS trends we present results for the GSFC, JPL, and CSR monthly mascon products along with their model fit uncertainties, which do not account for signal leakage. We note that all GRACE results presented in this work have had the ICE-6G_D glacial isostatic adjustment (GIA) model removed (Peltier et al., 2018).

2.1.2. L1B Regression Mascons

A fundamental challenge of working with GRACE data and its application to understanding TWS variability is the limited spatial resolution of the GRACE data products. The spatial resolution of the GRACE products is determined by a complex combination of factors including the accuracy of the inter-satellite instrument, the spatiotemporal sampling of the ground tracks, and errors in the atmospheric and ocean dealiasing models applied in the processing in an effort to remove those high-frequency signals from the monthly gravity solutions. Throughout the duration of the GRACE mission, various static (mean) spherical harmonic gravity fields have been estimated to much higher spatial resolution than is possible for the time-variable monthly fields. A fundamental trade-off exists between the spatial and temporal resolution of GRACE-derived gravity estimates, where increased spatial resolution is achieved with the accumulation of multiple years of data (Pail et al., 2010), and sub-monthly solutions have lower spatial resolution than the monthly products (Croteau, 2019).

Several of these static gravity fields determined from GRACE, such as the GOCO and EIGEN spherical harmonic models (Pail et al., 2010; Rudenko et al., 2014), co-estimate time-variable components such as a trend and annual signal along with the mean component. These “static” spherical harmonic gravity products recover the time-variable model components to a higher spatial resolution than is possible with a single month of data. Recognizing the benefit of regularized mascon estimation, NASA GSFC has recently expanded this same concept by estimating a regression model for each of its 41,168 1-arc-degree mascons using more than 13 years of GRACE data (January 2003–July 2016). The product that is discussed in this work co-estimates a bias, trend, and annual signal for a total of four parameters for each mascon. Additional model parameters can be estimated if desired and the relevant term for this work is the recovered trend. Figure 2 clearly demonstrates the improved spatial resolution and signal recovery for the regression product as compared to estimating the trend from the series of monthly estimates. This new, regularized L1B regression mascon product has improved signal recovery as compared to the multi-year spherical harmonic estimates, and presents an opportunity to study GRACE-derived TWS trends to a much higher spatial resolution than was previously possible, allowing for a more direct comparison with model output and in situ observations.
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FIGURE 2. GRACE mass trends in terms of centimeter water equivalent per year (cm w.e. yr−1), as determined from (A) the GSFC monthly mascon solution, and (B) the GSFC L1B regression solution. Trends are computed for January 2003–July 2016.



To understand the improvement of the L1B regression mascon products over the time series derived from explicit GSFC monthly mascon solutions, consider the adjustment to the mascons for the jth month, [image: image], which are assumed to be static within the month, such that

[image: image]

where Aj is the design matrix that relates the L1B inter-satellite observations to the mascons, Wj is the inverse of the data noise covariance, Pj is the inverse of the signal noise covariance, and dj is the vector of inter-satellite residuals. This expression is commonly referred to as Tikhonov regularization (Tikhonov, 1963). Note that in Equation (1) we have assumed an a priori mascon state of zero. In the explicit method, the time series of the kth mascon assembled from the j = 1, …, Nt, estimates, [image: image], where Nt is the number of months for which estimates are available, is fit with Nf temporal basis functions whose multipliers, [image: image], are estimated as

[image: image]

where, in the case of basis functions such as bias, trend, and an annual sinusoid, Nf = 4 and the elements of [image: image] are given by

[image: image]

with tj rendered in units of years. If we collect the Ns = 41,168 bias, trend, cosine, and sine multipliers into the vectors, [image: image], [image: image], [image: image], and [image: image], respectively, then a simultaneous inversion for all multipliers in the explicit method may be expressed as

[image: image]

where [image: image], [image: image], [image: image] is an identity matrix, and “⊗" is the Kronecker product, whose operation on two arbitrary matrices [image: image] and [image: image] produces a matrix [image: image] such that

[image: image]

In summary, the explicit monthly method first solves for [image: image] from dj in Equation (1) for j = 1, …, Nt and then solves for [image: image] from the [image: image] via Equation 2.

By contrast, the L1B regression mascon products, [image: image], are solved for directly from the dj for j = 1, …, Nt, in a manner similar to

[image: image]

where A, W, and P are block-diagonal matrices whose jth blocks are given by Aj, Wj, and Pj, respectively, and [image: image]. However, in the actual L1B regression case, the term (FT⊗I)P(F⊗I) is treated as a diagonal matrix corresponding to a signal covariance that is encoded only as auto-covariant terms in the temporal multipliers with no cross-covariance. Aside from this technicality, it should be clear that Equations (1) and (4) are nested inside Equation (6). In fact, if the formal error-covariances, [image: image], of each estimate [image: image] from Equation (1) were incorporated into the estimate [image: image] in Equation (4), then the explicit method would be equivalent to the L1B regression method. However, this is precisely why the L1B regression is superior to the explicit method since it does not ignore the error-covariances on the [image: image]. The explicit method has traded the self-consistent propagation of error in the L1B estimate for the convenience of estimating [image: image] via simple, independent estimates of each [image: image] in Equation (2). It turns out that while the explicit method provides an unbiased estimate of [image: image] in the ideal case [i.e., assuming [image: image] is unbiased, which (Loomis et al., 2019) shows is not the case], it does not provide a minimum-variance solution in contrast to the L1B regression method. Given that nature provides only a single sample of the data, it is far superior to draw [image: image] from a distribution more narrowly centered on the true value of [image: image] that is provided by the L1B regression method then from a broader distribution provided by the explicit method. In practice, the enhanced spatial resolution of the L1B regression solution is due to the reduced strength of the regularization applied in Equation (6) than is required for estimating [image: image] in Equation (1).

2.1.3. Confidence Intervals

The rigorous characterization of uncertainties is critical for the proper interpretation of GRACE TWS estimates. Loomis et al. (2019) demonstrate the importance of properly accounting for the bias (or leakage) of regularized solutions, and provide detailed procedures for building the total GRACE monthly mascon error budget. To frame the issue we begin with the expression that defines the regularized linear least-squares mascon estimate by rewriting Equation (6) as
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where
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The construction of Q is the key design parameter for regularized mascon estimation, and any non-zero Q almost certainly introduces a bias in the solution. As previously noted in Hoerl and Kennard (1970) and Kusche and Springer (2017), the solution bias, b, is defined by the expected value of the difference between the estimated state, [image: image], and the unknown true state, x:

[image: image]

where R is termed the model resolution operator and is defined as:

[image: image]

Note that the unregularized solution results from setting Q to zero, in which case R becomes the identity matrix and the bias is zero (this case produces an unusable solution due to its unmitigated noise). The implication of Equation (10) is that a rigorous assessment of the mascon uncertainties must account for the solution bias.

As the true mascon state, x, is unknown, some assumptions must be made in order to compute the solution bias described by Equation (10). Following the procedure in Kusche and Springer (2017); Loomis et al. (2019) substitute [image: image] for x in Equation (10) to define the bias. Alternatively, if one begins with the assumption that some independent data set (or combination of data sets) represents the true signal, the independent data defines x and a value for the bias can be computed. In the absence of noise errors, the estimated mascon state resulting from Equation (7) is exactly equal to the resolution operator multiplied by the unknown true state: [image: image] (Menke, 2015; Loomis et al., 2019). Considering this expression and the assumption that the independent data set, xmodel, is the truth (i.e., xmodel = x), then Rxmodel is contained within [[image: image], [image: image]], where zσ defines the half-width of the confidence interval (for normally distributed errors, σ is the noise standard deviation and z = 2 for ~95% confidence). This is the common form of confidence intervals, which are typically reported as [image: image]. A direct comparison between xmodel and [image: image] neglects the bias/leakage that is quantified by applying R. This concept is similar to the common method of applying the same smoothing or post-processing to both xmodel and [image: image] to facilitate comparative analyses, which is a reasonable approach when [image: image] is defined by unregularized spherical harmonics (though the post-processed spherical harmonics have the shortcomings discussed in section 2.1.1).

If we want to form the comparison in terms of the independent data set instead of the GRACE solution, then xmodel is contained by the confidence interval [[image: image], [image: image]] if it is the true signal. The hypothesis xmodel = x can be tested for individual mascons or for any combination of mascons that define a basin or region. If xmodel is contained by the interval then the hypothesis is not disproved and the independent data set is considered to be in agreement with GRACE. Conversely, disproving the hypothesis is an effective method for identifying specific mascons and basins where additional data and/or model improvements are needed to close the TWS trend budget. When reporting our GRACE-derived regional trends we report the first type of confidence interval, [image: image], as this follows common practice and the bias/leakage errors are relatively small for the L1B regression product at regional scales. When testing the hypothesis xmodel = x for individual mascons, we consider the 99% confidence interval [[image: image], [image: image]], and note that this interval is not guaranteed to contain [image: image]. We test the hypothesis xmodel = x for the glacier mass balance and groundwater data sets only, due to their relatively good agreement with the GRACE trends over their respective regions. The noise uncertainties for the high-resolution trends are determined by examining the statistics of the ocean mascons, which are expected to be close to zero, meaning that their spread should approximate the solution noise (similar statistics are observed in the Sahara desert, which is also expected to have near-zero trends). We note that in Loomis et al. (2019) all equations are developed for monthly mascon estimation, while for this work we have extracted the trend-only portion of R, which our analysis shows is largely independent of the bias and annual components.

Lastly, we note that the applied GIA model and geocenter corrections are also non-negligible sources of error for regional GRACE mass trend estimates. These errors are insignificant at the mascon level, with maximum magnitudes of ~0.1 cm yr−1. To account for these errors the total regional uncertainties reported in Table 1 and Figure 5B are computed as the root-sum-square (RSS) of the 2σ noise, the GIA model error, and the geocenter correction error. We define the GIA error as the difference between the Geruo et al. (2013) and ICE-6G_D (Peltier et al., 2018) models, and the geocenter error as the difference between Swenson et al. (2008) and Sun et al. (2016).



Table 1. GRACE regional mass trends and uncertainties (Gt yr−1) for different mascon solutions over the span January 2003–July 2016, along with the applied GIA correction for each region.
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2.2. Glacier Mass Balance

Glaciers cover approximately 98,000 km2 of the HMA region, and their mass is constantly changing in response to accumulation (primarily snowfall), and ablation (primarily surface melt). For this study, we use new 2000–2018 geodetic glacier mass balance observations derived from DEM time series for all 95,536 glaciers in HMA (Shean et al., in review). The NASA Ames Stereo Pipeline (Shean et al., 2016) was used to process archives of 15 m ASTER stereo imagery and sub-meter DigitalGlobe WorldView-1/2/3, and GeoEye-1 imagery. The observed elevation trend for each glacier was converted to volume change using Randolph Glacier Inventory (RGI) polygons (Consortium, 2017), and mass change for the 2000–2018 period was estimated using standard density values (Huss, 2013). The water equivalent sum of glacier mass balances was calculated for each mascon, enabling direct comparison with mass trends observed by GRACE. The geometric centroid of each glacier polygon was used to assign each glacier to a specific mascon. Noting that the mass balance signal is expected to be larger in mascons with more glaciated area, we report regional trends for both the full glaciated region shown in Figure 1B, and for the subset of mascons with ≥100 km2 of glacier area.



2.3. Groundwater

2.3.1. Groundwater Level Time Series and Aquifer Properties

Historical depth-to-water (DTW) measurements between 2003 and 2016 have been collated from 9,976 dug wells (unconfined aquifer) and 3,673 tube wells (confined aquifer) from the India Water Resources Information System (NWIC, 2018) and through personal communications with Dr. Tess Russo at Intellectual Ventures and Dr. Naveed Iqbal at Pakistan Council for Research on Water Resources. The distribution of dug wells is widespread across northern India but limited in Pakistan covering only parts of the Punjab Province. The tube well data are available only in India and are geographically restricted to locations with a confined aquifer system. The available data covers the majority of the domain where large and complex aquifers are present (Richts et al., 2011). The vertical datum for the DTW measurements is defined relative to the local land surface elevation. The raw DTW data are pre-processed to remove any negative values, incorrect geographic coordinates, and anomalous DTW values likely resulting from typographical errors.

Storage coefficients are necessary to convert from groundwater level anomalies to groundwater storage anomalies. These coefficients include specific yield for unconfined aquifers and the product of specific storage and aquifer thickness for confined aquifers. Specific yield values are parameterized using percentages of sand, silt and clay (Hengl et al., 2014) that are classified into soil texture class boundaries (Soil Survey Division Staff, 1993) and then assigned specific yield ranges by texture class (Johnson, 1967). Since storage coefficients for confined aquifers storage are rarely available in this region, we use typical values published in the literature from other regions (Domenico and Schwartz, 1997). We also use an upper limit for the storage coefficient in the confined areas equal to the specific yield, i.e., in the event the water levels fall below the top of the confined aquifer, which can occur due to overpumping. We compared trends in the total groundwater storage anomaly with trends in GRACE TWS, both at regional and individual mascon scales, to determine the combination that provides the best agreement under the assumption that the GRACE trend is predominantly driven by groundwater in this region (discussed further in section 3.3). The anomalies for the unconfined and confined portions are combined for calculating the total groundwater storage anomaly across the study domain.

2.3.2. Gridded Groundwater Level Anomalies

Monthly groundwater level anomalies (GWLA) were calculated at each well by removing the study period (2003–2016) mean DTW from observed values such that positive anomalies indicate a rise in water level and vice-versa. GWLA for months with no measurements are calculated using linear interpolation between successive times not more than four months apart. These point GWLA calculations were used to estimate gridded groundwater level anomalies (gridded-GWLA) using the kriging interpolation scheme at 0.25° spatial resolution. The gridded-GWLA for unconfined aquifers is estimated using GWLA calculated from individual dug wells, and gridded-GWLA for confined aquifers is estimated using GWLA calculated from individual tube wells. These gridded-GWLA values are multiplied by the appropriate aquifer storage coefficients to obtain monthly gridded groundwater storage anomalies (gridded-GWSA).



2.4. Land Surface Model Outputs From NASA LIS

NASA LIS is a land surface modeling and data assimilation environment that facilitates the use of ensemble land surface modeling with multiple LSMs, meteorological boundary conditions, land surface parameters, and data assimilation options. In order to study terrestrial water budget estimates and their uncertainties, an ensemble of land surface model runs was conducted using a combination of two different LSMs and three different sets of meteorological boundary conditions. The Catchment Land Surface Model (CLSM) version Fortuna 2.5 (Ducharne et al., 2000; Koster et al., 2000) and Noah-MP LSM version 3.6 (Niu et al., 2011; Yang et al., 2011) are forced with meteorological boundary conditions derived from MERRA-2, GDAS, and ECMWF. Note that we chose this subset of boundary conditions as they meet the spatial and temporal coverage needs for this comparison. In addition, we use the CHIRPS2 precipitation product (in conjunction with near surface meteorology derived from ECMWF) because CHIRPS2 is found to have relatively low errors, high correlations, and better consistency of trends in the precipitation evaluations presented in Yoon et al. (2019). The evaluation of the terrestrial water budget from this suite of model runs was found to provide comparable estimates to those reported in global studies such as Rodell et al. (2015).

Even though the LSMs used in this study lack glacier physics (i.e., mass balance) and only account for shallow groundwater, the output from these LSMs is valuable as it serves to fill in the process gaps (in space and time) that is not captured in the observational record. When the LSMs are convolved with the glacier and groundwater estimates derived from stereo imagery and well measurements, respectively, a more cohesive view of terrestrial water storage across HMA is achieved that could not be made using any one of the data products on its own. Furthermore, GRACE-derived TWS retrievals provide an independent evaluation of the integrated stereo imagery (glaciers), well measurement (deep groundwater), and LSM (soil moisture, snow, surface runoff, shallow groundwater) estimates such that an assessment of HMA water balance closure, or lack thereof, may be made.




3. RESULTS AND DISCUSSION


3.1. GRACE Total Water Storage

GRACE-derived regional mass trends for HMA and the regions defined in Figure 1B are reported in Table 1. Excellent agreement is achieved between the independent GRACE solutions for the full HMA region, which is defined as the combined set of mascons with either glacier mass balance, groundwater, or LIS data. The spread in the GRACE solutions is greater for the smaller regions within HMA, especially those that have significant trends near the regional boundaries. The GSFC L1B regression solution reports notably larger mass losses for the glaciated region and the Brahmaputra basin. These differences can be attributed to the significant reduction in signal leakage achieved by the L1B regression product due to its improved spatial resolution, which is made evident by comparing Figures 2A,B. We specifically highlight the enhanced signal recovery of the mass losses in the Tien Shan mountains (43°N, 86°E), the eastern Himalayas (30°N, 95°E), and northwestern India (28°N, 76°E). The largest trend magnitude within HMA is for the identified mascon in northwestern India, which is −11.7 cm w.e. yr−1 for the L1B regression solution and only −4.1 cm w.e. yr−1 for the monthly mascons.

Our preferred GRACE L1B regression solution reports a mass trend of −37.8 ± 10.4 Gt yr−1 for the full HMA region, where the glaciated region accounts for −23.6 ± 5.5 Gt yr−1. As mentioned above, a fairly large spread of GRACE-derived HMA glacier mass trends exists between published results, with previous studies reporting values of −47 ± 12 Gt yr−1 (Matsuo and Heki, 2010), −4 ± 20 Gt yr−1 (Jacob et al., 2012), −19 ± 20 Gt yr−1 (Gardner et al., 2013), and −17.7 ± 11.3 (Wouters et al., 2019). These previous efforts sought to isolate the glacial mass change by removing both the GIA and non-glacial hydrologic components of the trend, while our reported value of −23.6 ± 5.5 Gt yr−1 has only removed GIA. The suite of LIS outputs described in section 2.4 yield an average mass trend of −3.1 Gt yr−1 for the subset of LIS/glaciated mascons, and we note that our LIS region encompasses most but not all of the glaciated region. If we remove this mean hydrologic trend from our preferred GRACE estimate, the glacier mass loss becomes −20.5 Gt yr−1, which agrees with the more recent assessments of Gardner et al. (2013) and Wouters et al. (2019). We note that both of these previous studies apply a complex set of post-processing procedures to the Level 2 GRACE data sets in an effort to mitigate signal leakage, while our preferred trend solution has been directly estimated from the Level 1B measurements resulting in the improved signal recovery shown in Figure 2.

Below we discuss TWS mass trends in the context of our effort to close the budget between the GRACE-derived values and the independent glacier mass balance, groundwater, and LIS data sets at both regional and mascon spatial scales. The mascon-level comparisons apply our novel approach to build rigorous confidence intervals by employing the resolution operator in the computation of the solution bias as detailed in section 2.1.3. While previous studies implicitly close the water budget by using a residual to isolate water budget components or fully assimilating GRACE into land surface models, we demonstrate where further work is needed to close the budget by leveraging the availability of independent glacier mass balance and groundwater data.



3.2. Glacier Mass Balance

The total mass balance of HMA glaciers during 2000–2018 derived from geodetic observations is −19.0 ± 2.3 Gt yr−1 (Shean et al., in review), which agrees well with the −16.3 ± 3.5 Gt yr−1 estimate by Brun et al. (2017) during 2000–2016. The 2003–2016 GRACE GSFC L1B regression estimate (after removing GIA only) is −23.6 ± 5.5 Gt yr−1 The successful closure between the new geodetic and GRACE mass trends over the glaciated region demonstrates that the GRACE-observed mass trends are largely dominated by glacier mass balance. If we limit the considered region to mascons with at least 100 km2 of glacier area the agreement further improves, with a geodetic glacier mass balance estimate of −18.0 Gt yr−1 and GRACE estimate of −15.9 ± 3.6 Gt yr−1. We also note that the agreement between the geodetic and GRACE values is vastly improved for the L1B regression estimate as compared to the monthly mascon products.

Following Section 2.1.3, we assess mass budget closure in the glaciated region between the geodetic mass balances and GRACE for individual mascons by accounting for the solution bias/leakage via the resolution operator. Over the full glaciated HMA region, we find that the glacier mass balances in 72% of individual mascons lie within the 99% GRACE-derived confidence intervals, while the sign of the mass balance agrees with the confidence intervals for 96% of mascons (Figure 3). The greatest disagreements between GRACE and glacier mass balance trend exist over the eastern Himalaya (24–30°N, 92–100°E) and the Pamir and Tien Shan mountains (40–44°N, 80–88°E). These regions generally correspond with areas of reduced density of DEMs available for the elevation change analysis, and hence tended to have larger uncertainties. We also observe some disagreement between GRACE and geodetic mass balances over the inner Tibetan Plateau (30–36°N, 80–92°E), with GRACE showing some areas of mass gain not apparent in the glacier datasets. Satellite altimetry and lake area data suggest lakes on the Tibetan Plateau have been increasing in volume during 1990–2015 (Treichler et al., 2018). These lake changes may account for some of the observed mass increase not attributed to our glacier observations, however most of the lake volume increase is associated with a step-like increase in precipitation in 2000 that pre-dates the GRACE observation period.
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FIGURE 3. Comparison between mass trends for (A) geodetic glacier mass balance for 2000–2018 and (B) GRACE L1B regression mascons for January 2003–July 2016. The open circles in (A) indicate where the sign of the glacier mass balance trend agrees with the 99% confidence interval and the closed circles indicate where the glacier mass balance trend estimates are within the 99% confidence interval.



Our analysis supports the use of GRACE data to independently assess the long-term mass trends of glaciers in the HMA region. While our findings suggest that glacier processes dominate the long-term water budget for regions where glaciers are located, they do not necessarily support the use of standard monthly GRACE solutions to represent year-to-year or seasonal glacier mass balances. This is because leakage and attenuation of signal have a much larger impact on monthly GRACE solutions than our approach to directly estimate mass trends from the L1B data, which is designed to maximize spatial resolution over the full GRACE record. In addition, fully accounting for sub-annual glacier mass balance requires additional corrections for, among other factors, seasonal accumulation and ablation of snow on non-glacier land surfaces.



3.3. Groundwater

The regional GRACE trend is partially explained by the trend in groundwater in the study domain across northern India, where in situ water levels are available, as shown in Figure 4. Considering the set of mascons where groundwater data is available (Figure 1B), the GRACE trend is −23.2 ± 4.3 Gt yr−1. The total groundwater trend is 1.35 Gt yr−1 (2 Gt yr−1 for unconfined, −0.64 Gt yr−1 for confined) when it is assumed the confined areas are acting as fully confined layers, and becomes −13.6 Gt yr−1 (2 Gt yr−1 for unconfined, −15.6 Gt yr−1 for confined) when it is assumed that the confined water levels are behaving in an unconfined manner. The latter situation results in a trend that is similar to other studies in the region that use wells from the same database as ours and only apply specific yield to all study wells (MacDonald et al., 2016; Mukherjee et al., 2018), and we believe this is a reasonable approach because the seasonality of the water levels in both the confined and unconfined aquifers are very similar suggesting a connection along with the possibility that dropping water levels over time below top of the confined aquifer could result in unconfining conditions. This approach is further supported by the closer match to the GRACE trend, along with previous literature explaining the trend is due to groundwater declines. We report gridded-GWSA trends of +2.0 Gt yr−1 for the unconfined and −0.64 Gt yr−1 to −15.6 Gt yr−1 for the confined layers, depending on the storage coefficient used. MacDonald et al. (2016) found a stable or increasing trend in 70% of the Indo-Gangetic Basin. Their study corroborates our findings between both the GRACE trend and the in situ groundwater trend of increases in water storage along the Indus River and across the northern boundary of our groundwater domain, as well as declining trends in northwestern India. Significant groundwater depletion has been well documented in northwestern India, including in the states of Rajasthan, Haryana, and Punjab (Rodell et al., 2009; Tiwari et al., 2009), and this region is known for extensively irrigated agriculture (Zaveri et al., 2016).
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FIGURE 4. Comparison between mass trends for (A) groundwater data and (B) GRACE L1B regression mascons. The open circles in (A) indicate where the sign of the groundwater trend agrees with the 99% confidence interval and the closed circles indicate where the groundwater trend estimate is within the 99% confidence interval. Trends are computed for January 2003–July 2016.



Figure 4 shows that the trend sign agrees in almost every mascon in northwestern India, however the magnitude of the trend is generally smaller for the groundwater observations than for GRACE. The LIS outputs in this region (Figure 5), which is not glaciated, varies in both sign and magnitude. The majority of pumping in this domain is from confined layers (Panda and Wahr, 2016), however approximately two-thirds of the wells used in this study within the confined area (based on maps from Kumar et al., 2012) are unconfined. Therefore, part of the discrepancy between the GRACE trend and the observed groundwater trend in this region could potentially be due to an under-representation of confined wells. The majority of GRACE studies that attribute the high water loss rates to deep groundwater use TWS model output to isolate the groundwater residual, though the models neglect anthropogenic impacts such as irrigation and diversions through canals. It is possible that some of the discrepancy is also driven by changes in other components of the water budget that are not robustly represented in the models, especially those impacted by human dynamics. The results in the southwestern and central portions of the groundwater domain show an increasing trend from both the groundwater levels and GRACE. It has previously been shown that the region with the highest increasing trend over the state of Gujarat has increasing water levels due to policy changes that decreased groundwater pumping (Bhanja et al., 2017). An increasing trend in precipitation in the central region subsequently increases recharge into the unconfined system, causing the positive trend (Rodell et al., 2018). This study demonstrates that further work is needed to close the water budget in this domain and that the total groundwater trends in the region are largely driven by the confined aquifers, indicating that the anthropogenic influence of groundwater pumping is a key driver of TWS change across this region.

The utility of groundwater levels to validate GRACE-derived groundwater estimates is challenged by the need for groundwater storage coefficients to convert from water levels to storage changes, which tend to be sparse if available at all. Previous studies have used GRACE to constrain model parameters related to soils and groundwater (Lo et al., 2010; Sun et al., 2012), however, they emphasize unconfined parameters. Here, we use prior knowledge from the literature, and the demonstration of the relatively small influence of the LIS TWS components over most of the region, to assume that the GRACE trend is largely driven by deep groundwater storage changes. This assumption allows us to tune the storage coefficient used to convert water levels to storage anomalies. The results are promising given our analysis which shows that the majority of the regional GRACE trend is accounted for by the groundwater estimates over the relevant region. Further work, however, is needed to continue to refine the groundwater parameters given that only 44% of the mascons agree to within the 99% confidence interval. This indicates that either the storage coefficients are not yet representative of true values at the mascon scale and/or that the declining trend from groundwater is being partially offset by an increasing trend in a different water storage component that is integrated into the GRACE trend.


[image: image]

FIGURE 5. (A) Trend maps for the eight different LIS outputs. (B) Summary of regional trend values for LIS outputs and GRACE with the glacier mass balance and groundwater signals removed (see Figure 1B for region definitions). Trends are computed for 2004–2016 to match the available LIS data. The CLSM/Noah-MP uncertainties represent 2σ noise, the “Average of CLSM/Noah-MP” errors are twice the standard deviation of the eight CLSM/Noah-MP values, and the uncertainties for “GRACE - glacier MB - GW” include the 2σ GRACE noise, GIA model error, and geocenter correction error.





3.4. Terrestrial Water Storage via Land Surface Models

Figure 5A presents the trend maps of each combination of LSM and meteorological boundary condition tested within LIS, while Figure 5B compares the various regional LIS trends and their average value to those obtained by removing the glacier mass balance and groundwater from the GRACE L1B regression trend estimates (referred to hereafter as “GRACE-corrected”). Clearly the spatial structure of the LIS output is highly dependent on the selected meteorological forcing. When considering the average of the LIS results at regional scales and solution uncertainties, trend budget closure is achieved for the glaciated region, the Indus and Ganges basins, and the full LIS simulation region (following the region definitions in Figure 1B). The LIS simulations, regardless of the LSM or meteorological boundary conditions used, suggest a small gain within the Ganges basin (average value of 1.8 ± 3.1 Gt yr−1), while the GRACE-corrected value reports a small mass loss (−2.3 ± 3.3 Gt yr−1), though agreement is achieved when accounting for uncertainties. In the Indus, we observe a larger spread in the LIS results, but report excellent agreement between their average value (2.4 ± 5.2 Gt yr−1) and the GRACE-corrected trend estimate (1.9 ± 3.2 Gt yr−1). Comparing over the full LIS simulation domain, the GRACE-corrected trend (+2.6 ± 10.3 Gt yr−1) is encapsulated by the spread of both the LSMs, where Noah-MP trends range from −4 to +24 Gt yr−1, CLSM yields trends of −5 to +10 Gt yr−1, and the mean of all LIS outputs is +4.3 ± 18.4 Gt yr−1.

Budget closure is not achieved for the Brahmaptra basin, for which the GRACE-corrected value is strongly negative (−9.1 ± 2.5 Gt yr−1), whereas the LIS trends range from weakly negative to weakly positive depending on which precipitation product is applied at the boundary conditions, and have an average value near zero (0.7 ± 5.7 Gt yr−1). A likely reason for this behavior is the larger inconsistencies in the precipitation trends over the eastern parts of HMA. For the Brahmaputra the application of ECMWF- or CHIRPS-based precipitation yields a relatively small, negative trend in TWS while GDAS and MERRA-2 precipitation products yield a small, positive trend. As detailed in Yoon et al. (2019), the trend of increasing precipitation in datasets such as GDAS and MERRA-2 is inconsistent with the reported declining trends in precipitation over this area. Other possible reasons for the lack of budget closure here include model structure errors within the LSMs used in this study or the limitations in the regional trends estimated with sparse groundwater observations and the lack of groundwater data in the portion of the Brahmaputra that is outside of India.

Overall, the reported regional GRACE-only trends in Table 1 and the GRACE-corrected trends in Figure 5 reveal that the trends derived from a LSM are insufficient to explain those observed by GRACE. The LSM-based estimates used here primarily reflect the influence of precipitation as a first-order control on the conservation of mass balance at the land surface. The LSMs used in this study have a limited representation of shallow (i.e., unconfined) groundwater dynamics while completely lacking confined groundwater dynamics and the glacier physics needed to compute glacier mass balance. In addition, they do not incorporate the impacts of human management such as agricultural irrigation, groundwater abstraction, and canal diversions. On the other hand, implicit in the GRACE-derived estimates are the changes in the stores of freshwater, including confined groundwater, unconfined groundwater, surface water impoundments, soil moisture, snow, and glacier ice. Therefore, the analysis presented here clearly indicates that the differences between GRACE-derived TWS trends and TWS derived from a land surface model in HMA are more generally related to glaciers and/or confined groundwater.

The observed differences between the LSMs can be attributed to model structural differences. For example, CLSM represents subsurface storage changes from which unconfined groundwater changes can be inferred, and Noah-MP has an explicit unconfined groundwater layer, while neither model represents confined groundwater. The impact of these differences is highlighted in northwestern India in Figure 5A for the ECMWF/CHIRPS2 output for each model. The larger positive anomaly in Noah-MP could be explained by the availability of additional storage as unconfined groundwater to hold precipitation, whereas the subsurface component in CLSM is more tightly connected to the surface layer and has a decreased ability to retain moisture in the subsurface. Previous studies in this domain have compared GRACE-derived groundwater trends to in situ observations, finding good agreement in seasonality, but not always a high correlation between trends such as in the Ganges Basin within India (Bhanja et al., 2016). Mukherjee et al. (2018) attribute recent drying trends in the Ganges river to groundwater depletion that is causing a reduction in baseflow. Groundwater abstractions can also lead to an increase in recharge across the Indo-Gangetic Basin (MacDonald et al., 2016), which, when combined with decreases in baseflow, minimize storage loss from the aquifers and instead cause declines in surface water supplies. These human-driven groundwater-surface water interactions are not represented in the LSMs and could explain some of the disagreement between the LSMs and the expected output.




4. CONCLUSIONS

We have presented HMA regional mass trends for January 2003–July 2016 as computed from four different GRACE mascon products. The GSFC, JPL, and CSR monthly solution trends range from −34.1 to −36.3 Gt yr−1, while the new high-resolution GSFC L1B regression trend product reports a trend of −37.8 ± 10.4 Gt yr−1. The good agreement between the GRACE mascon products is an important achievement considering the large discrepancy between previously-published GRACE HMA trends (e.g., Matsuo and Heki, 2010; Jacob et al., 2012), and the significant differences in processing and regularization strategies employed for the four different products. We attribute this improved agreement to the quality of the mascon solutions and the extension of the GRACE data time series, and the larger mass losses of the L1B regression are explained by its improved spatial resolution and the corresponding reduction in signal leakage. The L1B regression mascon HMA mass trend is equivalent to a +0.10 ± 0.02 mm yr−1 contribution to global sea level rise, assuming that all HMA mass losses have entered the ocean.

The total mass trends for the geodetic glacier mass balance and groundwater observations are −19.0 Gt yr−1 and −13.6 Gt yr−1 over their respective sub-regions within HMA. Summing these values results in a combined mass trend of −32.6 Gt yr−1, matching our preferred GSFC L1B regression mascon value of −37.8 ± 10.4 Gt yr−1 for all HMA within uncertainties. Removing the glacier mass balance and groundwater components from the GRACE trends identifies the combinations of LSM and meteorological boundary conditions that best close the TWS trend budget over the HMA LIS region, and the Indus and Ganges basins, while reporting lack of closure in the Brahmaputra for all combinations. In Figures 3, 4 we have applied a rigorous uncertainty analysis that employs the resolution operator to quantify solution bias in order to determine where TWS trend budget closure has and has not been achieved for each individual ~110 km mascon, identifying geographic regions where additional data and/or model improvements are needed. Investigating the TWS trend budget at these scales is made possible by the new GSFC L1B regression mascon product, which contains higher spatial resolution information than the monthly mascons and improves the signal recovery as compared to previous multi-year spherical harmonic trend estimates.

We have clearly established the significant impact of confined groundwater changes on the HMA TWS trend. Consistent with previous studies, we find that the trend in unconfined groundwater alone is positive (+2.0 Gt yr−1) and well outside the uncertainty range of the GRACE trend, but when combined with the confined trend results in a trend of −13.6 Gt yr−1. Though agreement with GRACE in this region is not achieved, it is clear that the confined groundwater is a significant contributor to the GRACE-derived trend in HMA. The method used herein to constrain aquifer storage parameters is promising based on the overall regional match between the GRACE L1B regression trend and groundwater across the region. However, further work is required to refine the storage parameters to improve the match at the mascon scale. The lack of agreement between the GRACE and LSM trends in HMA can be largely explained by the missing glacier mass balance and confined groundwater representation in the LSMs, where the groundwater component is lacking both the dynamics and anthropogenic impacts such as pumping. Future work to improve the performance of LSMs in HMA should include the assimilation of the available unconfined groundwater changes, groundwater and surface water abstractions, and an explicit representation of unconfined (CLSM) and confined (CLSM and Noah-MP) groundwater dynamics. Such an effort should significantly improve the LSM agreement with the GRACE-observed TWS trends in HMA.
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The monthly GRACE mascon products analyzed in this study are available at http://neptune.gsfc.nasa.gov/grace (GSFC), https://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/ (JPL), and http://www2.csr.utexas.edu/grace/RL05_mascons.html (CSR). The Randolph Glacier Inventory (RGI) polygons are available at http://www.glims.org/RGI/randolph60.html. The groundwater levels collected from India - Water Resource Information System (WRIS) platform is available at http://indiawris.gov.in/wris/. Information on the NASA Land Information System is available at https://lis.gsfc.nasa.gov. The new GRACE L1B regression mascons will be made available in the near future, and requests for this product can be sent to bryant.d.loomis@nasa.gov.
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A new open–source software tool, called GLAM BioLith–RT (Glacier Lakes Assisted Melting Biological Lithological Radiative Transfer), has been developed for modeling of Radiative Transfer (RT) in water bodies containing suspended lithic particles, phytoplankton, dissolved salts, and colored dissolved organic matter. Although our objective is an application to glacial lakes of High Mountain Asia, the model has potential application for the study of seawater, organic-rich lakes, rivers, etc. The tool is built on a solid foundation of an existing published open-source code called WASI, which has been reviewed and augmented with new capabilities, notably the addition of a suspended lithic particle grain size parameterization. GLAM BioLith-RT operates in both a forward modeling and inverse modeling mode. The forward mode is specifically designed to compute the reflectance spectra of glacier lakes from inherent optical water properties. Conversely, in the inverse mode, measured spectral reflectance is employed with other inputs to derive best fitting water component properties (e.g., suspended particles concentration). The inverse modeling includes Bayesian inversion of the output which is a significant advance over the existing software. We have tested the code for sensitivity to noise, and uncertainties in input parameters. The model succeeds in nearly reproducing the hyperspectral reflectance of some glacial lakes in Nepal as observed by the EO-1 Hyperion hyperspectral imager. The inverse modeling approach, when supported up by validated forward modeling, offers a means for remote sensing characterization of suspended sediment load in glacial lakes and rivers and hence, use of suspended sediment as a proxy for glacial activity; and many other potential applications in other thematic areas.

Keywords: remote sensing, Bayesian inversion, glacial lakes, hyperspectral/multispectral reflectance, suspended sediment, Inverse mode problem, forward mode, radiative transfer


1. INTRODUCTION

Satellite multispectral imaging offers much-used capabilities for efficient mapping of lakes and rivers (Chikita et al., 1999; Wessels et al., 2002; Giardino et al., 2010; Watson et al., 2017). Less developed are approaches to the characterization of lakes and rivers for their water quality and other properties by multispectral and hyperspectral imaging (Wessels et al., 2002; Ritchie and Everitt, 2003; Dornhofer and Oppelt, 2016). Relevant to the application motivating this work, we observe that glacial lakes have wide-ranging visible colors in the visible (Figure 1) and differing Near Infrared (VNIR) and Short-wave Infrared (SWIR) reflectances (Giardino et al., 2010). These “colors” are caused by suspended sediment. Clearly, there is quantifiable information about the suspended sediment contained in lakes (any lakes, not just glacial) in the multispectral and hyperspectral VNIR and SWIR reflectance spectrum (Giardino et al., 2010). From a first principle standpoint, the observable (measured) photon flux collected by space-based remote platforms hit the detector after a long journey that includes interaction with both water bodies in glacier lakes and atmosphere and undergo a variety of physical processes including scattering and absorption with the participation medium. Thus, there is a physical link between the observed photon flux (radiance) and the optical properties of the components comprising the makeup of glacier lakes. The latter can be accounted by adequately describing the absorption coefficient, backscattering coefficient, beam attenuation coefficient, and single backscattering albedo which are Inherent Optical Properties (IOP) of a water body. Conversely, remote sensing reflectance (Rrs) is among the Apparent Optical Properties (AOPs) of a water system (what a satellite sensor observes). The water physical components such as phytoplankton, detritus, colored dissolved organic matter, dissolved salts, and inorganic particles influence the IOPs. The IOPs along with the incoming light geometric distribution and the atmospheric conditions affect the AOPs. The physical link between water components concentrations, IOPs, incoming light geometric distribution, atmospheric conditions, and AOPs are usually described by the Radiative Transfer (RT) equation which accounts for the balance of photons (scattered, absorbed) to model and compute the spectral reflectance collected by the remote sensor [e.g., Bio-Lithological Optical/Radiative Transfer (RT) models (Giardino et al., 2012)].


[image: Figure 1]
FIGURE 1. Low altitude oblique air–photo of Everest–area lakes and our regions of interest, ROI 1 (Imja Lake) and ROI 2 (Amphulapcha Lake). These lakes contain, respectively, large amounts of coarse silt and smaller amounts of fine silt, resulting in pronounced color differences. Both lakes are optically thick, except very near their shores.


In this paper, we developed and tested, on synthetic and real data, a new open-source software tool named GLAM BioLith-RT that can be used for remote sensing reflectance simulation (forward modeling) and water components concentration retrieval (inverse modeling) in surface water of a lake, river, or sea. The software tool development is intended to allow both forward and inverse modeling of the radiative transfer influences, hence reflected spectrum, of water containing suspended lithic and phytoplankton particles, dissolved organic matter, and dissolved salts. GLAM BioLith-RT is built on Bio-Lithological Optical/RT Semi-Analytical models that are analytical parameterization of the commercial software Hydrolight (Lee et al., 1998, 1999; Albert and Mobley, 2003; Gege, 2015). The software is optimized for use with hyperspectral reflectance data, such as derivable from EOS-1 Hyperion imagery. It works in the following way:

• Forward modeling. Simulation of the spectral remote sensing reflectance given the input: model parameters and the control variable (wavelength in the visible range). This calculates the color that an eye would see, or the spectrum of a lake as a satellite might see, based on measured or arbitrary lake water and suspended sediment properties.

• Inverse modeling. Water component concentrations retrieval via optimization techniques given simulated and observed remote sensing reflectance. This modeling approach starts with what a satellite might see and determines something about the lake sediment properties (concentration, grain size, etc.).

Figure 2 shows the flowchart of the approach used in the software.


[image: Figure 2]
FIGURE 2. Flowchart of the approach used in the software.


Recently, a few open–source software programs have been developed for remote sensing reflectance simulation and water physical components abundance retrieval. The two primary examples of such software that have been reported in the literature are (1) Bio-Optical Model-Based tool for Estimating water quality and bottom properties from Remote sensing images (BOMBER, Giardino et al., 2012) and (2) Water Color Simulator WASI (Gege, 2015) which have been validated and employed for the characterization of Lake Trasimeno (Italy) and Lake Constance (Austria, Germany, and Switzerland). These are two very different lakes. Lake Constance is a deep glacial meltwater fed lake having fine-grained suspended lithic rock “flour” as well as phytoplankton. Lake Trasimeno is a shallow endorheic lake with a muddy bottom and abundant coarse-grained suspended silt, phytoplankton, and dissolved organic matter. These lakes provided the authors of WASI and BOMBER with a wide range of lake water properties. Our applications are for glacial rock-flour-dominated lakes, but GLAM BioLith RT can be used for marine waters or almost any type of inland water (Ludovisi and Gaino, 2010; Marchegiano et al., 2019).

The existing software use standard constrained optimization techniques for the particle concentrations retrieval. These standard optimization techniques attempt to solve an inverse retrieval problem using a deterministic approach where a set of parameters that minimizes the square difference between modeled and observed reflectance is found. However, inverse problems are known to be ill-posed in the sense of Jacques Hardamand (Kimes et al., 2000) and thus it becomes very hard to quantify the uncertainty in the retrieved quantities mainly due to the noise in the observed data and the uncertainty in the untuned input parameter real values. GLAM BioLith–RT overcomes the issue using more recently developed Bayesian inversion techniques. In the Bayesian inversion framework, the estimated parameters are assumed to be random variables. Hence the output of the inverse modeling will be the probability distribution for each of those quantities. With this approach, the degree of uncertainty of the water component concentrations actual values is included in their probability distributions (Schiassi et al., 2016). Importantly, GLAM BioLith-RT code is developed and deployed in a modular source format. Thus, the user has access and can modify all the scripts and the functions provided according to his/her tasks (where GLAM BioLith-RT can accomplish those). Moreover, new modules and functions can be added according to the user's needs.

The paper is organized as follows. In section 2, the biological lithological and radiative transfer models used for the forward modeling are presented, along with the methodology used for the inverse modeling. Examples of Rrs simulations and particle concentrations retrieval, with syntethic and real data, are shown in section 3. In Appendix B, GLAM BioLith-RT's main features are presented, for the convenience of the user.



2. GLAM BIOLITH–RT: THEORETICAL FOUNDATION AND MODELING APPROACH


2.1. Forward Modeling

For both case–1 (open sea and oceans) and case–2 water (coastal zones, lakes, estuaries, etc.) GLAM BioLith-RT performs remote sensing reflectance simulations given the water component concentrations, the wavelength, the geometry of the light field, and the atmospheric conditions. The BioLith-RT model used in GLAM BioLith-RT is based mainly on the models presented in Gege (2014, 2015) and Albert and Mobley (2003). As shown in the flowchart, the BioLith model computes the IOPs, given the water component concentrations and the wavelength. The RT model uses the computed IOPs, the given geometry of the light field, and the given weather conditions to simulate the spectral remote sensing reflectance.


2.1.1. BioLith Model

The biological lithological model for the IOPs computation is based on the models presented in Gege (2015) and Albert and Mobley (2003). Those models are validated using mainly in–situ measurements from Lake Constance (Gege, 2015) and Lake Trasimeno (Giardino et al., 2015). Thus, this model is expected to work with high accuracy for these kind of lakes. The user has to be careful when using the same biological lithological model for different kind of lakes as it can lead to less accurate results if the lake biological–mineralogical compositions are significantly different from Lake Constance and Lake Trasimeno type lakes.

In this model, three types of water components are considered: phytoplankton ph, Color Dissolved Organic Matter CDOM, and Suspended Particle Matter SPM 1. At this stage, since we are dealing with case–2 water types, according to Gege (2015) and Albert and Mobley (2003) we are neglecting the presence of phytoplankton among the SPM. Therefore, SPM is made only by lithic particles. The IOPs calculated with the BioLith model are: absorption coefficient, backscattering coefficient, beam attenuation coefficient (sum of the previous two), and single backscattering albedo (ratio of backscattering over beam attenuation).


2.1.1.1. Absorption coefficient

The total absorption coefficient is the sum of the water absorption coefficient and the absorption coefficients of the components listed above. That is:

[image: image]

The pure water absorption coefficient is the water absorption coefficient at a reference temperature of T0 = 293.15 K [imported from database available with the software, which is combined from different sources (Gege, 2015)].

The phytoplankton absorption coefficient is modeled as the sum of chlorophyll-a and phaeophytin-a:

[image: image]

where [image: image], with Cph is the phytoplankton concentration in mgm−3.

The CDOM absorption coefficient is modeled as Babin et al. (2003):

[image: image]

where aCDOM(λ0) is the CDOM absorption coefficient at λ0 = 440 nm, linked to the CDOM concentration, and [image: image] is the specific absorption coefficient normalized to 1:

[image: image]

The SPM absorption coefficient is modeled as Babin et al. (2003):

[image: image]

where aX(λ0) is the SPM absorption coefficient at λ0 = 440 nm, linked to the SPM concentration, and [image: image] is the specific absorption coefficient normalized to 1:

[image: image]
 

2.1.1.2. Backscattering coefficient

According to Gege (2015), in the BioLith model used in our software only SPM and the water contribute to the backscattering. That is:

[image: image]

The pure water backscattering coefficient is modeled as in Gege (2015) following the empirical relation of Morel (1974):

[image: image]

where b1 = 0.00111 m−1 for fresh water (case-2 water) or b1 = 0.00114 m−1 for water with 3.5−3.8 % salinity (case-1 water), and λ1 = 500 nm (Gege, 2015).

The SPM backscattering coefficient is modeled as follows:

[image: image]

where CX in gm−3 is the SPM concentration and [image: image] is the specific backscattering coefficient which is considered wavelength independent, in the visible range, for many type of waters (Albert and Mobley, 2003). Often, this parameter is not a constant, but it is function of both the grain size and the single back scattering albedo ωb,X. In WASI, [image: image] m2kg−1, which corresponds to spherical perfect scattering particles with grain size of r = 33.57 × 10−6 m, as we back-calculate next. As first approximation for the back-calculation, we consider the lithic particles as perfectly reflecting spherical scatterers. If there was one particle of mass 1 kg, its volume would be [image: image] m3, considering a density of 2600 kg m−3. Thus, 1 kg particle's radius is [image: image] m. The subtended area for that single 1 kg particle (the area that a beam of photons would intersect) is then equal to πR2 = 0.0064 m2. However, the 1 kg of particles giving that backscatter coefficient value is disseminated in many small particles having a larger total surface area than the one just calculated. The ratio area over the volume of a sphere is proportional to [image: image]. For perfectly scattering particles giving the above-stated backscatter coefficient, the total area of grains giving WASI's specific backscattering coefficient 0.0086 m2g−1 is 8.6 m2. That is, the summed areas of the subtended circles of the relevant small grain diameter divided by the circular cross-sectional area of the single 1 kg grain is then [image: image]. Hence, it follows that the small particles have a radius of factor 1,343.75 smaller than the single 1 kg particle, namely [image: image] m = 33.57μm, which is the back calculated grain size that gives the WASI's value of the specific backscattering coefficient. This is the size of very fine sand. This calculation is for perfect scatterers. If we drop the perfect scatterers assumption, the particles will have a single backscattering albedos ωb,X lower than 1 (ωb,X = 1 for perfect scatterers). Thus, the total area of particles must be increased and the particle radius decreased by a factor [image: image]. From this it follows that the backscatter coefficient is a function of both the grain size (radius) and the single backscattering albedo (which is wavelength dependent). That is:

[image: image]

where r is the SPM grain size.




2.1.2. Radiative Transfer (RT) Model

As mentioned above, the RT model used to compute the spectral remote sensing reflectance Rrs(λ) is an analytical parametrization of the commercial software Hydrolight, based mainly on Gege (2015), Lee et al. (1998), Lee et al. (1999), and Albert and Mobley (2003). Rrs(λ) is defined as the ratio of the upwelling radiance to the downwelling irradiance (the former is the radiation field directed in the upward hemisphere and the latter is directed in the downward hemisphere). This subsection describes how Rrs(λ) is computed in GLAM BioLith-RT. As Rrs(λ) is calculated as in Gege (2015) and Albert and Mobley (2003), for the sake of clarity the same notation used in Gege (2015) and Albert and Mobley (2003) will be adopted here. Gege (2015) and Albert and Mobley (2003) compute Rrs(λ) taking in consideration the radiative influence of the water column and the air above the water surface. Below the water surface (water column contribution), the remote sensing reflectance is computed both for deep water and shallow water (in the former the bottom contribution to the remote sensing reflectance is trivial). The user can select whether to use case–1 or case–2 water, and deep or shallow water.

For case–2 deep water the remote sensing reflectance below the surface is modeled as follows:

[image: image]

The factor Q measures the light field anisotropy into the water. Q is wavelength dependent, but as no convenient parameterization is known it is considered constant. In Gege (2015), Q = 5 steradians (sr) by default, and so it is here. The irradiance reflectance R(λ) is computed by using the following parameterization:

[image: image]

where the factor f considers the dependency of R(λ) on the light field properties. As previously mentioned ωb is the single backscattering albedo and is defined as the ratio of the backscattering coefficient to the beam attenuation coefficient:

[image: image]

An alternative form to Equation (11), which is used in WASI and in our software, is given by:

[image: image]

The factor frs(λ) sr−1 is modeled as follows:

[image: image]

where [image: image] is the solar zenith angle viewed within the water after refraction and [image: image] is the viewing angle viewed within the water after refraction (both in radians). Notice that:

[image: image]

For case-1 deep water, the remote sensing reflectance is modeled as in 14, where frs(λ) = 0.095 sr−1 (Albert and Mobley, 2003).

The remote sensing reflectance below the surface for shallow water is modeled as follows:

[image: image]

On the right-hand side, we sum the remote sensing reflectance of a water slab with thickness zB and the remote sensing reflectance of the lakes's bottom seen at the lake surface within the water column. All the terms in Equation (17) are the same as in WASI (Gege, 2015), and for the convenience of the reader they are described and computed in details in the Appendix.




2.2. Inverse Modeling: Parameters Retrieval Methodology

By default, the decision variables for the inverse modeling are the water component concentrations Cph, CCDOM, and CX. All the other parameters described in the previous sections are considered fixed and will not be fit in the optimization problem. The inversion of the model can be done with standard constrained optimization, Bayesian inversion, or a combination of the two.


2.2.1. Bayesian Inversion vs. Standard Constrained Optimization

In our software, the inverse modeling is a typical example of inverse problem to parameters' estimation, where the goal is to characterize a physical system, water systems in our specific case. As stated in Kolehmainen (2013), inverse problems to parameters' retrieval are in general ill-posed for two main reasons; (1) the problem is non-unique as most of the times we deal with more unknowns than data/measurements, and (2) the stability of the solution, to modeling errors and noise in the data, is not guaranteed. Inverse problems are usually solved via standard constrained optimization, which uses a deterministic approach to solve the problem. That is, standard optimization techniques consider the adjustable values to be deterministic. This causes the inverse problems' outputs to be fixed quantities. However, these quantities are affected by uncertainties that need to be computed. Unfortunate, uncertainty estimations (usually done via regularization techniques, e.g., Tikhonov regularization) are not trivial to perform; and they can lead to poor results, especially when the problem is ill-posed, which is the case for most of the inverse problems of interest. Moreover, inverse problems when they are nonlinear or non-convex, or both, have more local minimum solutions. Therefore more than one acceptable solutions can be found, and it becomes challenging to select the best one via the classical optimization framework (Aster et al., 2013). In the Bayesian framework, the parameters to retrieve are considered themselves as random variables. Thus, the solution of the Bayesian inversion is the probability distribution of each one of those quantities. This distribution is the combination of the prior distribution for the model parameters with the collected data. The main advantage of using the Bayesian framework to solving inverse problems is that, as the outputs are probability distributions, we automatically get more information about the parameters we want to estimate. That is, at last our goal is to retrieve a specific value for the quantity we want to estimate; and this value can be, for instance, the mean of the posterior distribution (which will be the same value that we would get via solving the problem via regularized least square method, when the posterior is normal). However, as we deal with probability distributions, along with the mean, we will have the estimate of the variance which is a valuable piece of extra information to evaluate our trust in the retrieved estimations (Theodoridis, 2015). Moreover, as stated in Schiassi et al. (2016) and Kolehmainen (2013), another advantage of the Bayesian approach is that ill-posedness are removed by using prior information about the solutions. Since all variables are considered random, the randomness reflects the uncertainty about their true values; and the degree of uncertainty is intrinsically coded in the probability distribution of these variables.



2.2.2. Standard Constrained Optimization

In the classical constrained optimization the water characterization is done by solving the following optimization problem:

• Data: remote sensing reflectance measured by satellite at different wavelengths [image: image], where the index i = 1, …, N refers to the wavelengths, and all the parameters that will not be tuned and hence are fixed.

• Decision Variables: water component concentrations Cj, where the index j refers to the jth water component

• Objective Function: [image: image]

• Constrains:

- Rrs,i = BioLith_RT(λi|Fixed2, C), i = 1, …, N. Where Rrs,i is the remote sensing reflectance simulated by our software at different wavelengths

- C = [Cph, CCDOM, CX] ≥ 0

• Optimization Problem: The overall optimization problem is defined as a non-linear quadratic minimization problem, i.e.:

[image: image]



2.2.3. Bayesian Inversion

As previously stated, with the classical constrained optimization framework, the parameters we seek to retrieve are considered as deterministic quantities. By explicitly adding random noise to the model we can estimate the uncertainty about their true values. But this strategy is not trivial and can lead to the introduction of strong model assumptions and model bias, especially when the problems are ill-posed. In the Bayesian approach, the parameters to estimate are considered themselves as random variables. The solution of a Bayesian optimization is the probability density distribution of each parameter to fit. According to Kolehmainen (2013) the degree of uncertainty is embedded in these densities and the random nature of these variables reflects the uncertainty on their true values. This distribution is called posterior and is the combination of the prior distribution, for the quantities to estimate, with the observed data via the Bayes' rule (Rogers and Girolami, 2003; Schiassi et al., 2016):

[image: image]

where, in accordance with the notations in Schiassi et al. (2016), m are the observed data, x are the parameters to retrieve, Γ(m|x) is the likelihood function (i.e., the probability distribution for the observed data given the parameters to retrieve), πpr(x) is the prior distribution for the parameters to fit, and π(m) is the marginal likelihood (normalization constant). The posterior distribution is then used to compute expectation in the form:

[image: image]

In the cases of interest quantities such as 19 are impossible to evaluate analytically. Thus either approximation or sampling techniques must be used. Especially when n is large the sampling techniques are the best choice as they allow to sample directly from the true posterior. To sample directly from the posterior Markov Chain Monte Carlo (MCMC) methods are used. There are many algorithms to perform MCMC sampling. The most common one is the Metropolis-Hastings (MH). Haario et al. (2006) presents other widely used algorithms such as the Adaptive Metropolis-Hastings (AM), Delayed rejection (DR), or their combination called DRAM, which will be used for our parameters retrieval.

In our software, by default, we consider uninformative priors, i.e., πpr(Cj) = N(0, ∞) for each j, and the following likelihood:

[image: image]

where [image: image] are random variables defined as follows:

[image: image]

Assuming that εi are i.i.d. ~ N(0, σ2), it follows that:

[image: image]

with C = [Cph, CCDOM, CX] ≥ 0



2.2.4. Combination of Classical and Bayesian Inversion

The combination of classical and Bayesian frameworks in solving inverse problems works in two the sequential steps, (1) classical constrained optimization is performed to compute the water component concentration values to be used as a first guess for the MCMC sampling process, and (2) Bayesian inversion as described above. The motivation in combining the two frameworks is to speed up the convergence of the Bayesian inversion. When the problem is heavily ill-posed, or we do not have prior knowledge so that we have to use uninformative priors, the convergence of the Bayesian inversion can be slower if we poorly chose the first guess to initiate the MCMC sampling.





3. RESULTS AND DISCUSSIONS

In this section, results from both forward modeling mode and inverse modeling mode are presented and discussed. All the inputs and outputs are listed in details in the Appendix B.For the forward modeling mode the following examples are considered, (1) water with different CDOM concentrations, (2) water with different SPM concentrations and fixed grain size, (3) water with different SPM grain size, and fixed concentration, and (4) a model with parameters selected to match Hyperion hyperspectral data for two glacier lakes in Nepal. In the examples 2 and 3, SPM is idealized as pefect scatterers.For inverse modeling mode the following examples are showed, (1) concentrations retrieval using synthetic remote sensing reflectance data (for sensitivity analysis) for lakes containing both organic components (phytoplankton and CDOM) and minerals (SPM), and (2) concentrations retrieval using Hyperion hyperspectral data for Imja lake (Nepal).


3.1. Forward Modeling Mode: Simulations

For the first three sets of simulations the following fixed parameters are considered: case–2 water, view and sun zenith angle 0 and 40 degrees respectively, shallow water, 4 m bottom depth, only sediment in the bottom composition, Angstrom exponent= 1.317, atmospheric pressure= 1013.25 mbar, relative humidity=0.60, scale height for ozone= 0.300 cm, scale height of the precipitable water in the atmosphere= 2.500 cm. For the last simulation, we consider: case–2 water, view and sun zenith angle 0.98 and 51.2 degrees respectively (angles with which the image was taken), deep water, Angstrom exponent= 1.317, atmospheric pressure= 1013.25 mbar, relative humidity=0.60, scale height for ozone= 0.300 cm, scale height of the precipitable water in the atmosphere= 2.500 cm.


3.1.1. CDOM Concentration Variation

For this example, the water system is assumed to be made of fresh water and CDOM, i.e., Cph = CSPM = 0. Figure 3 shows Rrs(λ) for the four different scenarios reported in Table 1.


[image: Figure 3]
FIGURE 3. Spectral remote sensing reflectance vs. wavelengths and CDOM concentration.



Table 1. Simulated scenarios for CDOM concentration variation.

[image: Table 1]

Figure 3 shows, as expected, that via increasing the CDOM concentration the peak of the spectrum shifts toward higher wavelengths and the water becomes darker, as CDOM is an absorber. The inflection points are discrete absorptions due to the water component.



3.1.2. SPM Concentration Variation, Fixed Grain Size

For this example, the water system is assumed to be made of fresh water and SPM with fixed grain size, i.e., Cph = CCDOM = 0. Figure 5 show Rrs(λ) for their four different scenarios reported in Table 2.


Table 2. Simulated scenarios for SPM concentration variation, fixed grain size.

[image: Table 2]

Figure 4, as expected, shows that via increasing the SPM concentration, with fixed SPM grain size, the water becomes brighter, since for this example the variable amount of SPM is approximated as idealized perfect scatterers. The inflection points are discrete absorptions due to the water component.


[image: Figure 4]
FIGURE 4. Spectral remote sensing reflectance vs. wavelengths and SPM concentration, fixed grain size.



[image: Figure 5]
FIGURE 5. Spectral remote sensing reflectance vs. wavelengths and SPM grain size, fixed concentration.




3.1.3. SPM Grain Size Variation, Fixed Concentration

For this example, the water system is assumed to be made of fresh water and SPM with different grain size and fixed concentration, i.e., Cph = CCDOM = 0. Figure 6 shows Rrs(λ) for the four different scenarios reported in Table 3.


[image: Figure 6]
FIGURE 6. Hyperion reflectances vs. GLAM BioLith–RT simulated reflectances: Imja–ROI 1 (top–left), Amphulapcha–ROI 2 (top–right), Hyperion RGB image (bottom).



Table 3. Simulated scenarios for SPM grain size variation, fixed concentration.

[image: Table 3]

Figure 5 shows, as expected, that via decreasing the SPM grain size, with fixed SPM concentration, the peak shifts toward shorter wavelengths and the water becomes brighter, since for this example the constant amount of SPM is approximated as idealized perfect scatterers. The inflection points are discrete absorptions due to the water component.



3.1.4. GLAMBioLith RT Applicability to Glacial Lake Hyperspectral Data

We have exercised GLAMBioLith RT to match a set of hyperspectral observations covering the two main glacial lakes shown in Figure 1, Imja Lake (the big rectangular gray-brown lake) and Amphulapcha Lake (the small, round, blue lake). These lakes receive suspended sediment of almost the same lithologies derived from glacial erosion of leucogranite and black gneiss–the dominant minerals being quartz, feldspar, and muscovite. However, Imja Lake is far more active in terms of meltwater and debris–laden iceberg input and contains abundant medium and coarse–grained silt. Amphulapcha Lake is not in direct contact with a glacier, is less active, and the coarse sediment has a chance to settle, leaving a suspended sediment load of fine silt. The result is a water of strikingly different coloration, as also seen in the Hyperion spectra (Figure 7). For the simulations shown in Figure 7, we have taken the Hyperion image metadata for observing and illumination geometries and the atmospheric conditions relevant for this area. As for the water components concentrations and the grain size we used the values reported in Table 4. For both the lakes, the values of CX is set equal to the values measured by Giardino et al. (2010). SPM grain size and CDOM concentration were manually adjusted until a good fit was reached with the spectra of the two lakes. The residuals are in the order of 10−4 for Imja and 10−2 for Amphulapcha. This suggests, as previously mentioned, that the BioLith model is accurate for Imja type lakes, but can be improved for Amphulapcha lakes.


[image: Figure 7]
FIGURE 7. Results for example 1: sampled concentrations, where in the x–axis the number of MCMC samples are reported (top–left), posterior distributions (top–right), and real remote sensing reflectance vs. simulated ones (bottom).



Table 4. Concentrations and grain size used to match Hyperion reflectances.

[image: Table 4]




3.2. Inverse Modeling Mode
 
3.2.1. Lakes Containing Both Organic Components and Minerals

The following examples show the sensitivity of the retrieved concentrations with respect to different choices of the fixed parameters. It is showed that when the value of any fixed parameter differs from the real one, the accuracy in the fit parameters decreases, as expected. We produced synthetic data to use as observed remote sensing reflectance to perform the inverse modeling (RrsObsSyn1.txt) To produce the synthetic data we used the fixed parameters values used for the forward modeling mode examples, changing only the sun zenith inclination (set equal to 35 degrees here), the water components concentrations, and the grain size reported in Table 5.


Table 5. Concentrations and grain size used to RrsObsSyn1.txt synthetic data generation.

[image: Table 5]

To retrieve the water components concentrations we combined classical and Bayesian approaches in the following fashion: with the constrained optimization we computed the fit quantity to use as the first guess for the MCMC sampling in the Bayesian inversion. Uninformative prior distributions are considered and 4, 000 samples are drawn with the MCMC sampling process.

In all the examples we considered pure water, i.e., Cph = CCDOM = CSPM = 0, as the first estimate for the water system composition and the following fixed parameter values:

• Example 1: same as the synthetic data

• Example 2: same as the synthetic data but changing the sun inclination to 40 degrees, the bottom composition to sand only, and the bottom depth to 16 m.

Mean and standard deviation, and the relative percent mean errors of sampled posteriors for example, 1 are reported in Table 6.


Table 6. MCMC outputs for example 1.

[image: Table 6]

Mean and standard deviation, and the relative percent mean errors of sampled posteriors, for example 2 are reported in Table 7.


Table 7. MCMC outputs for example 2.

[image: Table 7]

The relative percent mean error for the ith component is computed as follows:

[image: image]

where the estimated value is the mean of the posterior distribution.

Figures 7, 8 show that the MCMC sampling converges in all the scenarios considered. Moreover, the results show that, as expected, the relative errors and the uncertainties in the retrieved quantities increases as the errors in selecting the fixed parameters values increase. That is, the higher the knowledge we have about the water system to characterize the higher will be the accuracy in the retrieved quantities. In the remote sensing reflectance plot, the blue line (Rrs guess) is the simulated remote sensing reflectance using the guessed parameters, the purple line (Rrs synthetic) is the synthetic remote sensing reflectance, the red line (Rrs fit C) is the simulated remote sensing reflectance using the parameters retrieved via standard constrained optimization, and the yellow line (Rrs fit B) is the simulated remote sensing reflectance using the mean values of the parameter probability distributions retrieved via Bayesian inversion. The red and the yellow lines overlap as the constrained optimization outputs are almost the same as the means of the Bayesian inversion outputs. That is, for this case the posterior distributions are Gaussian (Figures 7, 8), and thus, as previously mentioned, the means are the same as the outputs of the classical constrained optimization.


[image: Figure 8]
FIGURE 8. Results for example 2: sampled concentrations, where in the x–axis the number of MCMC samples are reported (top–left), posterior distributions (top–right), and real remote sensing reflectance vs. simulated ones (bottom).




3.2.2. Inverse Modeling on Hyperspectral Data for Imja Lake

The previous examples have proved the reliability of our software in solving inverse problems for water components concentrations retrieval from satellite data, where we created synthetic satellite data to test our tool. In particular the sensitivity of GLAM Biolith RT to noise and uncertainty in the data has been tested. In this example, we test the software in retrieving concentrations and SPM grain size using hyperspectral remote sensing reflectance from a particular spot (red dot in Figure 6) of Imja lake. Again, for the retrieval we combined standard and Bayesian approaches to solve the inverse problem. CDOM and SPM concentration along with the SPM grain size are the tuned parameters. We assumed no presence of phytoplankton, hence Cph is set equal to zero and it is a fixed parameter. The other fixed parameters are the same used in the last example for the forward modeling, where we reproduced the Hyperion reflectances.From Figure 9 can be seen that MCMC sampling converges. Mean, and standard deviation of the sampled posterior distributions are reported in Table 8. Our results are in accordance with Giardino et al. (2010), that collected a set of in–situ measurements on several lakes of the Himalayas, finding that for gray lakes both CDOM and SPM contribute to the photons absorption. Moreover, in the same area of Imja lake, Giardino et. al. measured SPM concentration around 50 gm−3 (Giardino et al., 2010) which is in accordance with the posterior distribution that we retrieved with our tool.In this case, the convergence of the Bayesian inversion is slower then the previous examples (10, 000 iterations vs. 4, 000), as it can be seen in the top–left plot of Figure 9. This is due to the fact the values used as initial guess to start the MCMC sampling were far from the measured ones. The initial guess was computed with the classical constrained optimization, giving the following values: CCDOM = 1.407 mgm−3, CX = 10.538 gm−3, r = 0.631μm. This example shows that the standard optimization, due to the ill-posedness of the problem, failed in the retrieval. However, the Bayesian inversion managed in reaching the convergence toward the values close to the measured ones.


[image: Figure 9]
FIGURE 9. Results for Imja Lake: sampled concentrations, where in the x–axis the number of MCMC samples are reported (top–left), posterior distributions (top–right), and real remote sensing reflectance vs. simulated ones (bottom).



Table 8. MCMC outputs for Imja Lake.

[image: Table 8]





4. CONCLUSIONS AND OUTLOOKS

The primary goal of this paper is to present GLAM BioLith-RT, a new open–source software tool for modeling RT in water bodies. The software has been developed primarily for educational and research uses, and what it does is the following:

• Remote sensing reflectance simulation via the Bio-Optical-RT models presented in Gege (2015) and Albert and Mobley (2003) (forward modeling)

• Water component concentrations retrieval via constrained optimization framework, Bayesian inversion framework, and combination of the two (inverse modeling)

As previously stated, the Bayesian inversion framework is an advancement over the existing software programs as it automatically includes the uncertainty in the fit parameters, and removes the ill-posedness by using prior information about the solutions.

In this paper along with presenting the main features of our software, we proved its reliability both in the forward and inverse modeling modes. In particular we showed its sensitivity to the noise and uncertainty in the data in retrieving the water components concentrations. Moreover we tested it, both in forward and inverse mode, with hyperspectral data for two Himalayas lakes; finding our results in accordance with the in–situ measurements collected by Giardino et al. (2010).

Our next task is to adapt and validate GLAM BioLith-RT to the characterization of glacial and non-glacial lake waters in Nepal and the United States for which we will use detailed lab measurements of the suspended sediment load's composition, grain size, and concentration, and have knowledge of the water body's bathymetry, bottom sediment lithology, colored dissolved organic material concentration, and plankton abundance. We also look forward to applying the inverse mode to the study of lakes in High Mountain Asia. To achieve this goal the BioLith model should be modified and adapted to the composition of glacier lake of interest, based on in–situ measurements and lab analysis. Among our intended next advances, besides rigorous validation, is the incorporation of a more detailed model for the lithogical components' absorption, and to investigate the extension of the software in wavelength through the NIR and possibly parts of the SWIR range.
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A new snow reanalysis method is presented that is designed to jointly assimilate Landsat- and MODIS-derived (MODSCAG) fractional snow covered area (fSCA) to characterize seasonal snow in remote regions like High Mountain Asia (HMA) where in situ data is severely lacking. The method leverages existing readily available global datasets for forcing a snow model and uses the fSCA retrievals along with the ensemble prior model estimates to derive posterior estimates using a Bayesian framework. The method addresses MODIS viewing-geometry effects on the fSCA retrievals by accounting for viewing angle dependent measurement errors and using a CDF-matching technique to improve the joint fSCA measurement consistency before assimilation. The method was verified through comparison with the Airborne Snow Observatory (ASO) snow water equivalent (SWE) estimates over the Tuolumne River watershed in California. The posterior SWE estimates were shown to be much more consistent with the independent ASO estimates across the three WYs examined. Tests over Tuolumne showed that in cases where sufficient Landsat observations are available (i.e., with multiple sensors and in areas of overlapping Landsat tiles), assimilation of only Landsat data may be optimal, which is attributable primarily to the higher spatial resolution of the raw Landsat data, but that in cases with fewer Landsat measurements (i.e., with single Landsat tiles and/or significant reduction due to clouds), the additional screened and CDF-matched MODIS-based measurements can have a positive (albeit marginal) impact. Illustrative results are presented for nine HMA test tiles to illustrate how the method can provide posterior estimates of the space-time climatology of SWE storage in areas where in situ data does not generally exist. Ongoing work is being conducted to use the method outlined herein to generate an HMA-wide reanalysis dataset that will provide an opportunity for a more thorough characterization of HMA seasonal snow storage and dynamics over the joint Landsat-MODIS era. The method is generalizable to any midlatitude montane region where seasonal snow is important.

Keywords: snow cover, snow water equivalent, remote sensing, data assimilation, High-Mountain Asia


INTRODUCTION

Midlatitude montane seasonal snowpacks are a vital part of the global water and energy budget and the resulting snowmelt-driven runoff provides fresh water to a significant fraction of the global population (Barnett et al., 2005; Mankin et al., 2015). However, the lack of in situ data networks in key mountain ranges, i.e., in the Western U.S. where sampling is perhaps densest but still unrepresentative of all elevation ranges (Serreze et al., 1999) to High-Mountain Asia (HMA) where it is essentially non-existent (Rohrer et al., 2013), makes answering basic science questions about the spatio-temporal distribution of snow water mass and how it is changing difficult (Dozier et al., 2016). This necessarily requires that estimates of snow distribution rely on remote sensing data and/or models (i.e., global or regional climate models or offline land surface snow and hydrology models).

While monitoring of snow covered area (SCA) has been measured from space over much of the modern remote sensing era, estimating snow water equivalent (SWE) with spaceborne observations remains elusive (Lettenmaier et al., 2015). This is in part because there is currently no dedicated research or operational satellite specifically designed for retrieving SWE. Large-scale SWE retrieval algorithms have primarily been developed based on active (Ulaby and Stiles, 1980; Tsang et al., 2007) and passive (Chang et al., 1987; Kwon et al., 2017) microwave sensors. However, accurate and generally applicable SWE retrieval algorithms based on these measurements are complicated by many factors including (Li et al., 2017): coarse-scale measurements (in the case of passive microwave sensors) that do not capture sub-grid variations, decreasing sensitivity with respect to deep SWE, and a lack of sensitivity altogether to SWE in forest-covered or wet snow conditions. All of these factors lead to significant retrieval errors, especially in mountainous terrain (Tedesco et al., 2010; Frei et al., 2012).

Physically based modeling in mountain regions has its own set of difficulties with respect to SWE estimation. In the case of coupled land-atmosphere models, significant progress has been made in estimating SWE using regional climate models (e.g., Wrzesien et al., 2018 and references therein), however, snowfall precipitation in complex terrain is highly sensitive to the parameterizations that are used (e.g., Rhoades et al., 2018), which can lead to significant biases in SWE and its distribution. Coarse-gridded general circulation models often significantly smooth topography, requiring the need for downscaling procedures to resolve snow processes (e.g., Pierce et al., 2014). In the case of offline land surface snow modeling, which can be applied at high-enough resolution to resolve topography, biases in precipitation from in situ or other meteorological datasets (Adam and Lettenmaier, 2003) can lead to first-order errors in snow accumulation, while uncertainties in other meteorological fields (e.g., air temperature, radiation), combined with the complexity of the terrain, can lead to significant snowmelt errors (Baldo and Margulis, 2017).

One approach to address these issues is to use ensemble-based data assimilation (DA) methods for SWE estimation. DA methods are attractive because they can naturally incorporate remote sensing observations in ways that take advantage of their spatially distributed nature, while accounting for measurement errors and filling gaps in between measurements that leverage physically based model information. Examples of remote sensing-based DA approaches to snow estimation generally include those that incorporate passive microwave-based data (e.g., Durand and Margulis, 2007; Durand et al., 2009; De Lannoy et al., 2010; Li et al., 2017) and those that use visible/near-infrared based SCA data (e.g., Andreadis and Lettenmaier, 2006; Clark et al., 2006; Su et al., 2008; Arsenault et al., 2013; Girotto et al., 2014a, b; Margulis et al., 2015, 2016a) or combinations thereof (e.g., De Lannoy et al., 2012; Liu et al., 2013; Kumar et al., 2015a). From this body of work, several overarching conclusions have emerged: (1) Methods that rely solely on passive microwave-based data tend to suffer from biases in the retrieved SWE that is assimilated and/or cannot provide SWE at the scales of variation desired due to the coarse-scale of the measurements; (2) Filtering (sequential) methods that assimilate SCA show limited improvement over model-based estimates as they are reliant on the instantaneous SCA-SWE relationship, which is generally weak. Recent applications that assimilate fractional SCA (fSCA), but using a retrospective “smoother” framework (e.g., Girotto et al., 2014a; Margulis et al., 2016a; Cortes and Margulis, 2017) have been shown to perform well by instead leveraging the fact that SWE and the set of SCA data over the course of the melt season have a much higher correlation. In essence, these methods constrain the SWE estimates such that they match the depletion record in the fSCA time series.

In this methodological paper we generalize a previous fSCA DA approach for global-scale applications over midlatitude mountain regions. In particular we are motivated to build a framework capable of deriving snow reanalysis estimates over domains like HMA where in situ meteorological and snow data is extremely limited, thereby limiting knowledge of seasonal snow processes. As such we focus on developing a method that jointly uses Landsat- and MODIS-derived fSCA in an effort to maximize the number of cloud-free images and allow for deriving snow estimates at relatively high resolution (∼500 m). The method is further developed to account for MODIS viewing-angle impacts on fSCA estimates – a factor that is often neglected.



STUDY SITES

The primary objective of the method presented herein is to provide snow estimates in remote midlatitude montane areas where in situ information is generally limited to non-existent (e.g., HMA). The new method is applied at a site in the Sierra Nevada range of California, where a unique Lidar-derived dataset is used for verification, and is then applied over select sub-domains across HMA to illustrate the technique over domains without verification data. The HMA sample results are the first step in the development of a large-scale HMA reanalysis that is the subject of ongoing work.


Tuolumne Watershed in Sierra Nevada (CA, United States)

The Tuolumne River watershed (Figure 1A) drains ∼1100 km2 from the western slopes of the Sierra Nevada in California (central coordinates: 38°N, 119.5°W). The basin is a high-elevation, snow-dominated basin with complex terrain and an elevation range between ∼1600 m to above 3500 m and provides water supply for downstream use from snowmelt-driven runoff. The terrain has aspect values mostly distributed between directions facing NW and SE. Forest cover exists at lower elevations (mostly below ∼2700 m) with fractional forest coverage ranging up to 50%. The climatology of Tuolumne is characterized by a strong seasonal precipitation pattern, with the majority of precipitation falling in the winter (December–March) as a result of frontal and atmospheric river systems that tend to result in ∼11 storms per winter season (on average), often with a few storms contributing to the bulk of the snowpack (Huning and Margulis, 2017). The choice of Tuolumne is made primarily because of the existence of the Airborne Snow Observatory (ASO) data [see Section Verification Data: Airborne Snow Observatory (ASO) Data], which provides a unique set of spatially distributed SWE estimates for evaluation of the method.
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FIGURE 1. Site maps showing the DEMs (elevations in meters) for (A) the verification site in Tuolumne River watershed in California and (B) the sample tiles across High-Mountain Asia (HMA). The Tuolumne watershed boundary is shown with the black line in panel (A) along with four sample locations used to illustrate verification in Figure 7. Sample tiles over HMA are outlined in red with the color insets showing the respective DEMs in more detail. Inset DEMs do not use the same colorbar range across all tiles, but instead a localized range for each tile to emphasize the spatial patterns that are seen in subsequent figures. The tiles examined are labeled with their lower left corner and consist of: (34°N, 66°E), (4°N, 77°E), (34°N, 75°E), (38°N, 70°E), (29°N, 82°E), (36°N, 85°E), (27°N, 90°E), (29°N, 97°E), (38°N, 98°E).




Test Sub-Domains in High Mountain Asia

After verifying the method over Tuolumne we provide some sample results from sub-domains in HMA. A set of nine 1° × 1° tiles are examined in Liu and Margulis (unpublished) to derive a MERRA-2 precipitation uncertainty parameterization for use in generating the forthcoming HMA snow reanalysis dataset. For consistency, we use the same tiles (Figure 1B) herein for illustration of the type of data that will ultimately be generated for the whole HMA domain. The tiles (labeled with their lower left corner) were chosen to sample a range of climatological and physiographic variability across HMA. Four tiles are located in the western part of the domain covering portions of the Hindu Kush, Tien Shan, Pamir, and Karakorum ranges, three tiles are located in the southern part of the domain covering portions of the Himalaya and Hengduan ranges, and the remaining two tiles cover the north central and eastern parts of the domain covering portions of the Kunlun and Qilian ranges. More details on the physiographic and climatological characteristics of the tiles are given in Liu and Margulis (unpublished).



METHODS AND DATA


Bayesian Snow Reanalysis Framework

The method developed and demonstrated herein builds on our previous work (Margulis et al., 2015, 2016a) using a Bayesian snow reanalysis (data assimilation) framework. The “reanalysis” term is used to convey a framework that aims to provide physically based space-time continuous estimates of snow states and fluxes using a snow model that is constrained by remotely sensed snow measurements (in this case fSCA). The methodology is first presented generally, with the specific datasets used as inputs and constraints described in more detail in subsequent sections. The methods and framework are designed with the overarching goal of being globally applicable in any relevant mountainous region.

The specific method presented in this paper is the Particle Batch Smoother (PBS; Margulis et al., 2015). A “smoother” identifies the fact that the fSCA data is assimilated in a single batch (i.e., all images at once) over the full water year (WY) rather than sequentially, as done in a filtering scheme. The primary reason for this choice is that fSCA has limited instantaneous information on SWE, but the depletion (i.e., time series) of fSCA over the melt season, combined with information on energy fluxes that drive snowmelt (via the snow model) is strongly correlated with the evolving SWE time series. Hence it is the batch smoother approach that is primarily responsible for transforming fSCA information into SWE. Such approaches cannot be applied in real-time, but rather provide retrospective estimates once the remotely sensed fSCA time series is available. This is not necessarily a drawback when the goal is to develop historical datasets for improving insight into space-time dynamics of snow processes. The modular framework consists of two main components, highlighted as red and blue boxes in the schematic shown in Figure 2. The first component (red boxes) involves a spatially distributed ensemble-based land surface model-snow depletion curve (LSM-SDC) that is applied to generate so-called prior estimates of snow states and fluxes at each grid cell. The LSM-SDC used herein is the same setup in our previous work with the SSiB-SAST LSM (Sun and Xue, 2001; Xue et al., 2003) coupled to the Liston (2004) SDC, but other models could be used within the framework. The LSM serves to take model inputs (i.e., meteorological time series and static model parameters) and transform them to grid-averaged snow accumulation and surface energy balance fluxes that drive snowmelt. The SDC assumes a lognormal sub-grid distribution for SWE and evolves the grid-averaged SWE and fSCA based on the snow accumulation, melt, and the sub-grid SWE coefficient of variation parameter (β).
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FIGURE 2. Schematic representation of the Bayesian snow reanalysis framework that consists of an ensemble-based prior modeling system (red boxes) and a posterior update component for assimilating remotely sensed fractional snow covered area (SCA) data from Landsat and MODIS (blue boxes).


Uncertainties in model inputs are a key driver of uncertainty in snow states/fluxes in mountainous environments. The input uncertainties are postulated and explicitly propagated through the modeling framework using an ensemble (Monte-Carlo) approach. Precipitation, which is typically the most important control on SWE accumulation and most uncertain input variable in mountain environments, is treated as follows:
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where the j subscript represent the ensemble realization and t represents time respectively, while the ‘−’ superscript represents that this is a prior (a Bayesian a priori) estimate (i.e., not conditioned on independent observations). The variable Pnom is the nominal precipitation input that is being used, and is typically a gridded product (e.g., MERRA-2 as described below) on a grid (xnom) that is considerably coarser than the model grid (xr). The random variable b is often prescribed as a lognormally distributed multiplicative factor that is used to allow for the first-order uncertainty in the nominal precipitation. The a priori distributional parameters (e.g., mean and coefficient of variation) of b are typically specified based on postulated uncertainty or via derivation by comparison with in situ data. Liu and Margulis (unpublished) provide an example of how these parameters can be derived for areas like HMA where such in situ data does not exist (using the reanalysis framework described herein). The formulation in Equation (1) implies a precipitation downscaling (and bias-correction) scheme. What is unique about this approach is that the spatial patterns in the downscaling parameter b are not specified a priori, but instead are derived from the reanalysis framework through the conditioning on fSCA data. Hence the method not only derives reanalysis estimates for snow states, but for the key input variable (snowfall). Other (non-precipitation) meteorological forcings (i.e., air temperature, radiation, humidity, surface pressure) are downscaled to the modeling resolution using commonly applied topographic downscaling parameterizations, where uncertainty is also added based on postulated or derived distributional parameters (Girotto et al., 2014a). Zonal and meridional components of wind speed are downscaled following the approach of Liston and Elder (2006). Uncertainty is also included in the sub-grid CV parameter (β) and in the snow albedo module (through a scaling parameter CVIS), both of which are discussed in more detail in Girotto et al. (2014a).

The ensemble LSM-SDC provides an N-replicate estimate of snow states and fluxes at each grid cell and time step, where it is assumed that each prior realization is given the same weight ([image: image]). To condition the estimate on the independent fSCA measurements (Figure 2, blue boxes), a measurement model must be employed that maps the model states to the measurement space. For the purposes of the measurement operator, the LSM-SDC is used to generate estimates of SWE and fSCA for the forest-covered and bare fractions of each pixel. As done in our previous work (Girotto et al., 2014a; Margulis et al., 2016a), rather than apply a forest correction to the measurements, we instead apply the assumption that snow under the forest canopy is not visible to the sensor and that only snow in the bare areas are. Moreover we acknowledge the fact that in complex terrain, even in unforested areas, there are often portions of the measurement pixel that are covered by steep rock outcrops that will rarely be covered by snow. To account for both factors, the measurement model used to make predictions of the measured fSCA at a measurement time is of the form:
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where [image: image] is the fSCA over the bare (non-forested) fraction of the grid cell (i.e., visible to the sensor), and fforest and frock are respectively the specified grid-cell forest fraction and persistent exposed rock fraction. The latter two parameters are assumed static and are estimated as described below in Section “Data.” The measured fSCA [fSCAmeas; see Sections “Landsat-Based fSCA Data,” “MODIS-Based fSCA (MODSCAG) Data,” and “MODSCAG Screening, CDF-Matching to Landsat Data, and fSCA Measurement Errors] and a Bayesian update are used to generate posterior (a posteriori) estimates of SWE and other state/flux variables by updating the individual realization weights using (Margulis et al., 2015):
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where the ‘+’ superscript denotes that this is a posterior estimate, pV[] is the specified (multivariate Gaussian) probability density function (PDF) for the fSCA measurement error vector V [typically assumed as zero-mean with specified error covariance CV; see Sections “Landsat-Based fSCA Data,” “MODIS-Based fSCA (MODSCAG) Data,” and “MODSCAG Screening, CDF-Matching to Landsat Data, and fSCA Measurement Errors] and c0 is a normalization constant used to ensure a valid posterior PDF. It should be noted that in Equation (3), which is applied pixel-wise, the difference between measured and predicted fSCA is a vector of dimension (Nm×1), where Nm is the total number of available fSCA measurements (both Landsat and MODSCAG) over the WY. The error covariance matrix at the pixel is of dimension (Nm×Nm), and is diagonal based on the assumptions that Landsat and MODSCAG measurement errors are uncorrelated with each other:
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where [image: image] and [image: image] are respectively the individual Landsat and MODSCAG error covariance matrices, which are described in more detail below.

The posterior weights provide a low-dimensional discrete estimate of the posterior PDF, which can be used to compute posterior ensemble statistics (i.e., mean, median, standard deviation, inter-quartile range, etc.) of SWE or other snow states/fluxes. In addition to snow states/fluxes the posterior weights provide a mechanism to generate posterior estimates of the precipitation multiplication factors [[image: image]] and thereby allow for improvements in precipitation (snowfall) characterization (and its nominal bias; i.e., Liu and Margulis, unpublished).



Data


Landsat-Based fSCA Data

Landsat data needed for fSCA retrieval is available at a resolution of 30 m since 1985 based on acquisitions from the Landsat 5 Thematic Mapper (TM; 1985-2011), Landsat 7 Enhanced Thematic Mapper (ETM+; 1999-present) and Landsat 8 Operational Land Imager (OLI; 2013-present) sensors. It should be noted that gaps in the Landsat-era record exist in some regions of the globe during some years (Kovalskyy and Roy, 2013; Wulder et al., 2016). Landsat data is available from the USGS repository1. Landsat images with a cloud cover fraction greater than 40% are discarded and otherwise the internal cloud mask is used to identify individual cloudy pixels within the image. The nominal repeat frequency of images from a single sensor, based on the orbital characteristics and near-nadir viewing geometry of the Landsat platform, is once every 16 days, which results in a maximum of ∼23 images per WY per sensor. Cloudy images reduce this number, while years with multiple sensors (i.e., 1999–2011 and 2013-present) can increase the amount of useful data. Our previous work has generally shown this number of images to be sufficient to accurately estimate SWE, however to increase the number of images, thereby increasing the generality and accuracy of the method in varying climate regimes, we extend the method to include MODIS-based images as described below.

Images of fSCA are derived from the multi-band Landsat data using a spectral end-member unmixing approach described in Cortes et al. (2014). The 30 m fSCA data is then aggregated to the desired reanalysis model resolution. Previous regional applications have used 90 m (Margulis et al., 2016a), 180 m (Cortes and Margulis, 2017) and a multi-resolution approach (Baldo and Margulis, 2018). For the ultimate application to the large-scale HMA domain, and to make the Landsat fSCA of consistent scale with the MODIS-based fSCA, we herein used an aggregated resolution of ∼480 m (16 arcsecond grid). This choice for resolution is made primarily for computational reasons over large domains like HMA. A sample image of the derived Landsat fSCA over a Sierra Nevada tile covering Tuolumne is shown in Figure 3A.
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FIGURE 3. (A) An example of a Landsat fSCA map for a tile covering the Tuolumne River watershed examined herein. (B) Map of forest cover over the tile including three sample points (red triangles) used for illustration in Figure 6. (C) Coincident (within 1 day of Landsat image) MODSCAG fSCA maps at (C) low viewing angle and (D) high viewing angle, illustrating the differences (errors) caused by viewing geometry effects. Specifically, the effect of “pixel elongation” described in the text is apparent in (D). Gray areas in fSCA maps represent non-retrievals.




MODIS-Based fSCA (MODSCAG) Data

The MODIS-based fSCA estimates used herein, were extracted from the MODSCAG product (Painter et al., 2009; using v005 MODIS reflectances)2. These estimates were derived from the MODIS sensor (Terra satellite) that are available since 2000 and are distributed on the MODIS sinusoidal tile grid (SIN). The MODSCAG fSCA is also derived from a spectral end-member unmixing approach and is therefore consistent with the Landsat-based fSCA from a retrieval algorithm perspective. We interpolated the MODSCAG products from their nominal resolution of ∼463 m to a regular 16 arcsecond (∼480 m) grid to match the reanalysis and (aggregated) Landsat fSCA resolution. Raw MODSCAG images are screened for clouds using the internal MODIS cloud mask. However, the cloud detection algorithm is generally thought to be less discriminating than the Landsat cloud mask algorithm and hence, based on manual testing, we discard any images with a diagnosed cloud cover greater than 10% to avoid using cloudy pixels that are misclassified as snow.

A key difference between MODIS and Landsat data is that MODIS revisit frequency for a given location is daily. However, the tradeoff for this daily sampling is that unlike Landsat, which is near-nadir looking, MODIS is a scanning sensor such that the daily measurements can have significant off-nadir viewing angles (up to ∼65°) at the outer edge of the swath. A schematic of the implications of the viewing geometry is shown in Figure 4. As the viewing angle increases, the sampled footprint of each pixel elongates, most notably in the scanning (i.e., cross-track) direction. Dozier et al. (2008) provide expressions for along-track and cross-track sampling pixel dimensions as a function of viewing geometry. At the outer edges of the swath, the sampled footprint can become as large 2.5 km in the cross-track direction (Dozier et al., 2008), making it about five times as large as the nominal pixel footprint. Despite this much larger sampled footprint, the reflectance data is regridded and stored on the nominal footprint grid (i.e., at ∼463 m). The implications of this are important, but seldom accounted for in analysis or usage of retrieved MODIS-based fSCA. For example, in the case of forest-covered surfaces in flat terrain (Figure 4A), the general impact is that more of the snow is obscured at larger viewing angles. This can artificially reduce the fSCA from an image at high viewing zenith angle relative to one at low viewing zenith angle. Since the reanalysis framework diagnoses SWE changes from fSCA changes, assimilating such images could lead to erroneous estimates of snow states, where viewing angle variations are (erroneously) ascribed to snow dynamics. Additionally, in the case of complex terrain (Figure 4B), the elongation of sampled footprints can be exacerbated and are not systematic. The larger sampled footprints will sample more of the surrounding terrain, which could have varying levels of snow cover, rock or vegetation making the retrieved fSCA potentially non-representative of the pixel being modeled. To further illustrate this, a sample set of MODSCAG images, within 1 day of the previously discussed Landsat image is shown in Figure 3 and demonstrates how changes in viewing geometry greatly impact the retrieved fSCA. In particular, within 1 day, the viewing angle goes from ∼ 9° to over 60°. The “pixel elongation” in the latter case is evident, while the case closer to nadir compares more favorably to the Landsat image.
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FIGURE 4. Schematic illustrating the time-varying viewing geometry effects of MODIS on fractional snow covered area (fSCA) retrieval: (A) illustrative impacts of forest cover on sampled footprint at two viewing angles (low zenith angle on left and high zenith angle on right). The blue lines represent a MODIS grid point center (vertical tick) and nominal resolution (horizontal line; ∼463 m), at which the retrieval is provided. The actual sampled footprint is represented by the white rectangle that is filled with white and green representing snow and forest respectively that is actually seen by the sensor within its sampled footprint. In the case shown on the right, for the same snow on the ground, the MODIS sampled footprint will see more forest and therefore less snow. (B) Illustrative impacts of topography and rock outcrops (shown in gray). The actual sampled footprint is represented by the white rectangle that is filled with white and brown (representing snow and rock respectively) within the footprint. The “stretching” of the sampled footprint in the scanning direction will distort the retrieved fSCA that is mapped into the nominal footprint due simply to the viewing angle. In contrast, the Landsat viewing angle does not change.


In the context of DA, the errors caused by viewing geometry should be reflected in the measurement error covariance structure such that more accurate/representative fSCA measurements are trusted more and less accurate/representative measurements are trusted less. Specifically, as the viewing zenith angle approaches zero the measurement error covariance should approach that of the Landsat fSCA, while at higher viewing angles the measurement error covariance should grow. For this relationship, we borrow from the developments of Dozier et al. (2008). In their work, a function based on viewing geometry was used as a weighting function (W) in a least-squares term used to fit splines to the raw MODSCAG data, i.e.:
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where p is the linear pixel dimension at nadir (463 m), θ is the sensor viewing angle, and p‖ and p⊥ are the along-track and cross-track pixel dimensions at a non-nadir scan angles (see Dozier et al., 2008 for detailed expressions of these quantities). In weighted least-squares estimation, with assumed Gaussian measurement errors (consistent with the assumptions herein), the weighting function is theoretically proportional to the inverse of the measurement error covariance. Hence we use this theoretical grounding in combination with the above weighting function to specify how measurement error covariance varies with sensor viewing zenith angle:
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where the numerator represents the specified error covariance at nadir (i.e., θ = 0). Based on the formulation in Equation (6), the MODSCAG measurement error covariance values at viewing zenith angles of ∼10°, 20°, and 35°, would be increased by a factor of ∼1.05 ∼ 1.25, and ∼2 respectively. Therefore, from the perspective of the DA framework, off-nadir measurements would be treated as less accurate than nadir measurements, and therefore trusted to a lesser degree (as desired).



MODSCAG Screening, CDF-Matching to Landsat Data, and fSCA Measurement Errors

As illustrated in Figure 3, even at near-nadir viewing angles, there are same-day differences between Landsat- and MODSCAG-retrieved fSCA. While the differences could result from a variety of potential factors (sensor differences, retrieval algorithm differences, and errors associated with the interpolation of the raw MODSCAG data to the modeling resolution) a key factor is likely the differences in scale between the raw reflectances (i.e., 30 m vs. 463 m) used to construct fSCA and the varying viewing angle sampling resolution of MODIS discussed above. The differences in sampling resolution are evident as higher-resolution features are seen in the Landsat image even though the Landsat and MODSCAG fields are both displayed at a resolution of 480 m. As discussed above, the differences become larger as the viewing zenith angle increases (Figure 3D). These systematic differences yield conflicting information in some images that needs to be addressed within the DA framework. We propose to do this in two ways: (1) MODSCAG data are screened to only assimilate those that are below a certain viewing angle threshold (i.e., those with lowest measurement errors) and (2) a CDF-matching algorithm is used to put the screened MODSCAG data on the same footing as the Landsat data. Such CDF-matching approaches are commonly used in DA frameworks where data from multiple sensors are being used (e.g., Reichle and Koster, 2004; Reichle et al., 2007; Liu et al., 2011; Kumar et al., 2015b).

The screening of MODSCAG data is designed to provide additional high-quality information (i.e., at relatively low viewing zenith angles) to supplement cloud-free Landsat data, while excluding those measurements that are most likely to be erroneous (i.e., at higher viewing angles). The viewing angle screening threshold should be treated as a user-specified adjustable parameter depending on the application and domain. We performed sensitivity tests with different screening thresholds and ultimately settled on using viewing angles (θ) less than 20° herein to screen MODSCAG data. As described in more detail below (see Section Spatially-Distributed Estimates Over Tuolumne and the Impact of Using Joint Landsat-MODSCAG Measurements4.1.2), incorporating more MODSCAG observations at higher viewing angles can have negative impacts over using Landsat and high-quality MODSCAG observations. To provide context, Figure 5 illustrates the number of cloud-free Landsat observations (including both Landsat 7 and 8) and MODSCAG observations (for θ < 20°) available over both the Tuolumne and HMA domains in WY 2016. Note that the Landsat measurement pattern is heterogeneous and includes areas where Landsat tiles overlap and areas covered by single tiles (Figure 5, top row). In the tile overlap areas, which happens to include much of the Tuolumne watershed, the number of cloud-free measurements are on the order of 60/year, while in the areas of single tile coverage are on the order of 30/year, with the exception of the southeastern portion of the HMA domain, where monsoon-driven clouds tend to reduce the number of available Landsat images. When MODSCAG images are screened by viewing angle, there is a similar pattern of high density measurements in the near-nadir MODIS overpass track locations and lower density in between tracks (Figure 5, middle row). When the Landsat and screened MODSCAG data are combined, the number of assimilated measurements are at least 40/year over both domains (Figure 5, bottom row). The tradeoffs between Landsat-only vs. incorporating additional MODSCAG observations are discussed below.
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FIGURE 5. (Top row) Number of available cloud-free Landsat measurements over Tuolumne (left) and HMA (right) domains for WY 2016. (Middle row) Number of available cloud-free MODSCAG measurements (screened for viewing zenith angles θ < 20°) over Tuolumne (left) and HMA (right) domains for WY 2016. (Bottom row) Total number of available cloud-free Landsat and screened MODSCAG measurements over Tuolumne (left) and HMA (right) domains for WY 2016.


After screening, the CDF-matching algorithm used herein is applied as follows: Over the shared observation period of 2000–2017, all Landsat and screened MODSCAG images within 2 days of each other are collected. Each set of data (including only snow-covered cases) is used to create a pixel-specific empirical CDF for both Landsat and MODSCAG fSCA. The raw CDFs are discretized and saved at specified percentiles between 0 and 1. The two discretized CDFs (i.e., FMODSCAG(fSCA) and FLandsat(fSCA)) are then used to map the raw (screened) MODSCAG data to the equivalent Landsat basis using CDF-matching, i.e.:
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where [image: image] is the transformed (CDF-matched) MODSCAG measurement. Because the empirical CDFs are discretized, linear interpolation is used in the mapping shown in Equation (7).

An example of the CDF-matching procedure is shown in Figure 6. The derived CDFs (where the MODSCAG CDFs are generated using only screened measurements) for three pixels are shown (middle column), where the three are chosen to be illustrative of three different forest-cover cases (see Figure 3B): (1) a pixel that is essentially unforested (fforest = 1%) and in a clearing, (2) a pixel that is moderately forested (fforest = 46%), but surrounded by less forest cover, (3) a pixel that is nearly unforested (fforest = 4%), but surrounded by high forest cover fraction pixels. For the first pixel, where there is minimal forest at the pixel and over its surroundings, the two CDFs are very similar such that the CDF-matching generates only limited changes to the raw (screened) MODSCAG data. In the second case the CDF-matching leads to a reduction in the raw MODSCAG fSCA. This is likely because MODIS samples neighboring less-forested pixels introducing a positive bias relative to the Landsat fSCA. Finally, in the last case, the CDFs are significantly different where the CDF-matching leads to a significant increase in the raw MODSCAG fSCA. This can be explained by the pixel being surrounded by more highly forested pixels that reduce the fSCA when sampled off-nadir by MODIS. It should be noted that the arguments regarding forest cover are only one factor and that the reality is more complicated due to the complex terrain that will also lead to heterogeneity in the underlying true fSCA field that gets sampled differently by MODIS and Landsat. When applied pixel-wise to the full image the result is a transformed MODSCAG image that is more consistent with the Landsat image (Figure 6). For the three example pixels the time series of fSCA is also shown. By design the fSCA time series using the Landsat and transformed (screened) MODSCAG are more consistent with each other and amenable to simultaneous assimilation using the snow reanalysis approach. Together, the Landsat and CDF-matched (screened) MODSCAG data make up the vector fSCAmeas that appears in Equation (3).
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FIGURE 6. (First column) Sample (WY 2016) images of fSCA estimates from Landsat (top), raw MODSCAG (middle) and CDF-matched MODSCAG. (Second column) Empirical CDFs for: Landsat (blue) and screened (i.e., with viewing zenith angles θ < 20°) MODSCAG (orange) for the three locations illustrated by red triangles in the first column. (Third column) Sample time series for WY 2016 for the three locations showing the: Landsat (blue), raw MODSCAG [black (θ < 20°)/gray (θ > 20°) triangles], and CDF-matched MODSCAG corresponding to screened measurements (orange circles). The open circles (i.e., Landsat and screened/CDF-matched MODSCAG) are those measurements that are assimilated in the snow reanalysis method.


Finally, the measurement error covariance for both Landsat and MODSCAG must be specified [Equations (4) and (6)] for use in the reanalysis framework. Based on our previous work (Cortes et al., 2014) the standard deviation of Landsat fSCA error at ∼100 m resolution was found to be ∼15%. Therefore the error is expected to range between 3 to 15% when Landsat fSCA is aggregated to ∼480 m as done herein, depending on the independence of sub-grid errors. Based on analysis over Tuolumne it was found that the Landsat fSCA error standard deviation at ∼480 m was ∼10%. This value is used to populate the diagonal of [image: image], where for simplicity it is assumed that errors between different image acquisitions are uncorrelated (zero-valued off-diagonal terms). The MODSCAG nadir error covariance in Equation (6) was estimated based on the Landsat measurement error discussed above and the disagreement between CDF-matched MODSCAG data and Landsat data. Specifically, assuming the Landsat and MODSCAG errors are independent, it can be shown that the sum of Landsat and MODSCAG measurement error variances are equal to the mean squared difference between Landsat and CDF-matched MODSCAG fSCA estimates. Based on this analysis over Tuolumne, it was found that the CDF-matched MODSCAG error covariance at near-nadir is ∼15%, which is used populate the diagonal of [image: image] using the near-nadir value and Equation (6) based on viewing geometry of individual acquisitions.



Model Input Data


MERRA2 meteorological inputs

The LSM-SDC model requires hourly meteorological inputs. In our previous work over the Sierra Nevada we used the NLDAS-2 dataset (Cosgrove et al., 2003; Xia et al., 2012) which is available at 0.125° × 0.125° over CONUS. To extend the methods for global applicability and usage over the full remote sensing record we chose to use the MERRA-2 dataset (Gelaro et al., 2017). MERRA-2 is available globally from 1980-present at a horizontal resolution of 0.5° × 0.625° and is itself a large-scale reanalysis, which benefits from a significant amount of atmospheric DA including atmospheric motion vectors, surface winds, temperature and ozone profiles, and microwave and infrared sounding radiances. For the purposes of this work we specifically used the hourly 2D surface fields (Global Modeling and Assimilation Office [GMAO], 2015a, b, c) that provide reference-level precipitation (“PRECTOT”), incoming solar radiation (“SWDGN”), air temperature (“T2M”), specific humidity (“QV2M”), surface pressure (“PS”), and wind speed (“U10M” and “V10M”). For the purposes of forcing the LSM-SDC at each pixel, the non-precipitation MERRA-2 data are downscaled as described above in Section “Bayesian Snow Reanalysis Framework,” while the precipitation is perturbed as shown in Equation (1).



Ancillary inputs and parameter uncertainty

The remaining ancillary inputs needed for the modeling and assimilation framework were drawn from globally available datasets or based on previous work. Topographic data was taken from the 30 m (1 arcsecond) resolution Shuttle Radar Topography Mission (SRTM) DEM (Farr et al., 2007). Any gaps in SRTM coverage were filled by the Advanced Spaceborne Thermal Emission and Reflection (ASTER) DEM (NASA, 2001). The DEM was used to determine secondary variables used by the forcing downscaling scheme or LSM-SDC (e.g., slope, aspect, sky-view factor). Forest fraction (fforest), which is used in the measurement model Equation (2), was taken from the Landsat continuous vegetation field dataset (Sexton et al., 2013). Landcover maps were specified based on the 1 km Advanced Very High Resolution Radiometer (AVHRR) global land cover classification database (Hansen et al., 2000). The glacier mask was extracted from the GLIMS glacier dataset (GLIMS and NSIDC, 2018). For the purposes of the reanalysis, all open water surfaces and glacierized areas are masked out from the reanalysis domain to focus on seasonal snow over land. A final ancillary input that is used in the measurement model Equation (2) is the fraction of perennially exposed rock (frock) that does not typically get snow covered. While no standard dataset is available for estimating this parameter, we use the combined information in the fforest estimates and historical Landsat fSCA data to estimate it. In particular, based on manual testing, we assume that the 95th percentile of Landsat fSCA (over the period 2000–2017) for each pixel (which is derived as part of the CDF-matching algorithm described above) is representative of the maximum observed fSCA [fSCAmax(x)]. Using a higher percentile was found to allow for the possibility of including misidentified clouds as snow to contaminate the estimate. Based on this estimate of fSCAmax, any difference between that value and 100% is assumed to be the result of obscuring forest cover and exposed rock (where grass, shrubs or other low-lying vegetation will typically be buried by snow at some point during the joint Landsat-MODIS-era used to construct the CDFs). Hence the estimate of perennially exposed rock fraction is given by:

[image: image]

Testing indicated that the method is not very sensitive to specification of frock, however it is introduced to maintain consistency between the predictions and measurements of fSCA in the measurement model.

Based on the underlying DEM and Landsat fSCA dataset, the reanalysis could be run at spatial resolutions as high as 30 m. However, for simplicity in assimilating both Landsat and MODSCAG data and for computational savings in applying the method over large domains (e.g., HMA) all ancillary data were resampled to a baseline model resolution of ∼480 m (16 arcsecond) defined by aggregating the underlying DEM. Future work will aim to apply the multi-resolution approach of Baldo and Margulis (2017, 2018) to the joint assimilation of Landsat and MODSCAG.

The final set of input parameters needed for application of the method are the specified PDFs and uncertainty parameters that control the random variables used in the reanalysis framework. The set of random variables are the same as in previous work (Margulis et al., 2016a), namely those controlling the precipitation, air temperature, dewpoint temperature, and incoming shortwave radiation meteorological forcings, the subgrid coefficient of variation parameter (β) in the SDC model, and the snow albedo scaling parameter (CVIS). The uncertainty model distributions and relevant parameters are shown in Table 1.


TABLE 1. Parameters used in the specification of prior uncertainty in key snow model inputs.
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Verification Data: Airborne Snow Observatory (ASO) Data

The ASO dataset3 (Painter et al., 2016), which provides multi-temporal Lidar-derived snow depth images and SWE estimates (using model-based and/or in situ snow density) over Tuolumne, was used to verify the method. The 50 m ASO product was re-gridded to the reanalysis modeling resolution of ∼480 m for comparison. We used data from WYs 2015, 2016, and 2017, which span a historically dry, a relatively normal, and a historically wet year respectively. The number and dates of ASO images from these 3 years are shown in Table 2.


TABLE 2. Airborne Snow Observatory (ASO) acquisition dates over Tuolumne River watershed and their corresponding day of water year (DOWY) values.

[image: Table 2]


RESULTS AND DISCUSSION


Verification Using ASO Data Over Tuolumne River Watershed


Illustrative Results at the Grid Cell

The snow reanalysis method was evaluated using ASO data over Tuolumne for WYs 2015 (dry), 2016 (near-average), and 2017 (wet). Figure 7 is used to illustrate how the method works at the grid cell level using four sample locations at high-elevation in the Tuolumne watershed (Figure 1A). The basic procedure is as described above: (i) the forward model generates an ensemble prior estimate (of equally likely replicates) for fSCA and SWE over the full WY (shown in red), (ii) the PBS update equation generates posterior weights reflecting how well individual replicates fit the Landsat and MODSCAG fSCA measurements (open circles and squares respectively), (iii) the posterior weights are used to generate a posterior ensemble estimate for fSCA and SWE (shown in blue). The posterior SWE estimates are then compared to the independent ASO SWE estimates (open triangles).
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FIGURE 7. (A) Prior (red) and posterior (blue) predicted fSCA and grid-averaged SWE for each WY corresponding to location #1 shown in Figure 1. The ensemble estimates are represented by the: median (solid line) and inter-quartile range (shaded region). Assimilated fSCA measurements are shown as open circles (Landsat) and CDF-matched MODSCAG (open squares). The fSCA measurements shown in gray are those that do not contribute to the update (since the prior ensemble spread is zero). The independent ASO SWE estimates are shown as open triangles. Panels (B–D) are the same but for location #2 to #4 shown in Figure 1 respectively.


Figure 7A illustrates this for location #1 in the northwest of Tuolumne for WYs 2015-2017. The prior ensemble median SWE for each of the 3 years at this location peaks at ∼0.3, 0.75, and 1.75 m respectively with a large uncertainty bound (representing the inter-quartile range) around the median. The uncertainty bounds are the result of the input uncertainties (i.e., related to snowfall, other meteorological inputs, snow albedo, and sub-grid coefficient of variation parameter) that are propagated through the forward model. The SDC in the model is used to represent the evolution of predicted fSCA as seen by the satellite (fSCApred), which is typically highly variable early in the water year, saturates at fSCAmax (after enough snow has accumulated) and then shows depletion during the spring/summer months. The timing and rate of depletion is a function of the underlying SWE and melt rates during ablation. Any discrepancies between the predicted and observed fSCA are then used to generate the posterior weights used to derive the posterior SWE estimates. In all three WYs at location #1, the prior ensemble median for fSCA is lower (i.e., earlier depletion) than the observations. This causes those ensemble members with higher values of fSCA to be weighed more heavily, resulting in the posterior fSCA distribution, which, by construct, fits the observed fSCA better than the prior. The same update is applied to the SWE ensemble, resulting in an increase in the posterior ensemble median SWE (and a reduction in posterior uncertainty). The resulting posterior ensemble median SWE peaks at ∼0.6, 1.25, and 2.75 m respectively across the three WYs, where the increased SWE is implicitly more consistent with the fSCA depletion time series. The ASO SWE estimates are shown in comparison to the prior and posterior SWE in each WY. For this particular location, the posterior estimates of SWE are in better agreement with the ASO estimates than the prior estimates are.

Figures 7B–D illustrates the same results for the other three sample locations (Figure 1). The overarching results are qualitatively the same as for location #1 with some variations. Generally speaking, the prior estimates of fSCA underestimate the observed values, which lead to an increase in the posterior SWE estimates relative to the prior. One exception to this is location #3 (Figure 7C) in WY 2015, where the prior fSCA predictions are relatively consistent with the fSCA measurements such that the prior and posterior ensemble median SWE are similar (with a reduced uncertainty in the posterior). WY 2015 was unusual in that it was a historically dry snow year (Margulis et al., 2016b) and therefore led to early melt-out followed by intermittent snowfall and melt events later in the year, compared to the more typical single melt out seen in WYs 2016 and 2017 (seen across all four locations). Hence the fSCA depletion-SWE relationship is much noisier in WY 2015. For location #3 in WY 2015, the prior and posterior show lower SWE than the ASO estimates. At that same location in other years, the posterior estimates of SWE are in much better agreement with ASO SWE. Another case that is worth pointing out is location #2 (Figure 7B) in WY 2016. While the posterior fSCA distribution is in reasonable agreement with the measurements (by construct), and there is a large increase in the posterior SWE estimates relative to the prior, the posterior peak SWE estimates are less than those estimated by ASO. To the extent that the ASO SWE estimates are closest to the true SWE values, the fact that the posterior peak SWE underestimates SWE, while matching the observed fSCA depletion time series, indicates potential errors in the modeled melt fluxes. Such errors are most likely attributable to the coarse (MERRA-2) meteorological inputs that are downscaled and used in the model.

Another point to make, that is illustrated in Figure 7, has to do with the fSCA observations that contribute to the posterior update. While all fSCA measurements shown are used in the Bayesian update Equation (3), not all will contribute meaningful information with respect to the posterior. In particular, in cases where the prior ensemble spread in predicted fSCA is negligible, which typically happens either when all replicates saturate at fSCAmax in the mid- to late-accumulation season or converge to zero after ablation, there will be no differential penalty (with respect to those measurements) for one ensemble member over another since all will have exactly the same discrepancy with measurements (likelihood) at those times. This is illustrated in Figure 7, where those measurements that contribute meaningful information are shown in black, while those without meaningful contribution are shown in gray. The “non-informative” measurements primarily occur during mid- to late-accumulation season, when fSCA-SWE information is expected to be lowest, which is implicitly being confirmed via the fact that that ensemble spread in predicted measurements is negligible. During the accumulation season, fSCA retrievals tend to be noisier due to lower solar zenith angles, increased terrain shading, potential for cloud vs. snow misclassification, and other factors. The seemingly large differences during that period are attributed to these factors. To the extent that some of those measurements may be measuring real snow dynamics, this would indicate weakness in the SDC model which is invariably a simplification of sub-grid snow cover dynamics that is arguably best suited for capturing the main ablation season depletion. The end result is that high information content measurements during the ablation season are those that primarily contribute to the update. Pixels that are less seasonal (more intermittent fSCA) are more likely to have less information in the fSCA time series that can be used to update the prior.



Spatially Distributed Estimates Over Tuolumne and the Impact of Using Joint Landsat-MODSCAG Measurements

The prior and posterior estimates were compared to the spatial estimates from ASO to more fully characterize the performance of the method. Figure 8 illustrates the spatial SWE fields for the ASO estimate closest to April 1st in each WY compared to the prior and posterior ensemble median fields and the difference fields relative to ASO estimates on those days. WY 2015 was a historically dry year so that SWE was relatively low on DOWY 185 (generally less than 0.5 m and limited primarily to the highest elevations of the Tuolumne watershed). The ASO SWE field is well correlated with the posterior with a spatial pattern correlation of ∼0.84 compared to ∼0.55 with the prior. The posterior shows a small mean difference (MD; less than 1 cm) with a root-mean-squared difference (RMSD) of ∼ 5 cm, while the prior has a MD and RMSD of ∼−5 cm and ∼9 cm, respectively. In WYs 2016 and 2017 most of the watershed was covered by snow near April 1st (DOWYs 184 and 183 respectively) with SWE values in some locations exceeding 1.2 and 2.5 m respectively. In both years the posterior had a much larger pattern correlation (0.81 and 0.86 respectively) with ASO than does the prior (0.59 and 0.55 respectively). The mean differences are largest in WY 2016 where the posterior has an MD of ∼−12 cm compared to the prior MD of ∼−23 cm. The prior shows large negative differences at high elevations and positive differences at low elevations. The posterior reduces these differences, but still exhibits negative differences at high elevations. We hypothesize that this is due to errors in the downscaled MERRA-2 forcing inputs. Sensitivity tests (not shown) found that when using the higher-resolution NLDAS-2 forcing in this year, the differences were smaller. This highlights that, where available, higher resolution forcing inputs may provide benefit due to the need for less downscaling (although tests in WYs 2015 and 2017 showed similar performance when using NLDAS-2 and MERRA-2 forcing). In WY 2017 the low- vs. high-elevation contrast in prior SWE differences was amplified compared to WY 2016. So while the prior MD was relatively low (∼−6 cm), this was primarily due to the large positive and negative errors canceling out rather than an indicator of a good estimate. This is confirmed by the large prior RMSD (∼63 cm). The posterior reduced the prior errors with a MD of ∼ 2 cm and RMSD of 39 cm.
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FIGURE 8. Comparison of reanalysis results to ASO SWE estimates nearest April 1st in each verification year (WYs 2015–2017). For each WY, the ASO SWE estimates are shown in the left panel followed by the (ensemble median) prior and posterior SWE estimates. Difference fields are shown below the prior and posterior estimates to illustrate the differences relative to ASO SWE. The spatial correlation (R), mean difference (MD) and root-mean-squared difference (RMSD) relative to ASO SWE estimates are shown in the prior and posterior difference panels.


Beyond the SWE fields near April 1st, a similar comparison was performed for all of the ASO flight days shown in Table 2. For each day, the prior and posterior spatial correlation, MD and RMSD are shown side-by-side in Figure 9. For the spatial correlation (top row), the posterior uniformly outperforms the prior. The posterior mean (range) in correlation for each WY is 0.80 (0.65–0.87), 0.79 (0.69–0.84), and 0.82 (0.71–0.87). In contrast the prior mean (range) in correlation for each WY is 0.55 (0.50–0.61), 0.59 (0.55–0.64), and 0.51 (0.28–0.62). On average, the posterior correlation coefficient values are 45% higher than the prior values. In terms of MD, the posterior performs best in WYs 2015 and 2017 where the magnitude of MD values are generally less than 5 cm in 2015 and less than 10 cm in 2017. The largest posterior MD values are in WY 2016, where negative MD values of 10–20 cm are seen in the late accumulation season. With respect to RMSD, the posterior estimates are generally comparable to or considerably better than the prior across all three WYs. The posterior mean (range) in RMSD for each WY is ∼7 cm (4–11 cm), ∼15 cm (4–28 cm), and ∼37 cm (26–43 cm). The prior mean (range) in RMSD for each WY is ∼ 10 cm (4–13 cm), ∼22 cm (5–40 cm), and ∼ 54 cm (32–67 cm). On average, the posterior RMSD values are 29% lower than the prior values.
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FIGURE 9. Comparison of ASO SWE estimates to the prior and posterior SWE estimates for each WY (organized in columns) as characterized by the spatial pattern correlation (top row), the mean difference (middle row), and root-mean-squared difference (bottom row). Result for the prior and posterior are shown in red and blue respectively.


To justify the MODSCAG screening method (θ < 20°) used in the results presented above and below, a sensitivity analysis was done for several different assimilation cases over the Tuolumne watershed (Table 3). Specifically, we tested cases with Landsat-only, MODSCAG-only, joint Landsat-MODSCAG and additional cases where the Landsat data was subsampled. The latter cases were examined because Tuolumne happens to be in an area where Landsat tiles overlap, such that it is not representative of the more general (single tile) case. For this reason and to mimic locations with more cloudy conditions, the subsampled Landsat cases used every third Landsat measurement (i.e., so that pixels have ∼20 measurements/year). All assimilation cases outperform the prior across all WYs, indicating the benefit of the additional information contained in the fSCA measurements. The Landsat-only case with all measurements generally performs the best. In particular the spatial correlation for the full Landsat-only case is highest across all WYs, which is attributed to the higher spatial resolution of the raw Landsat data which better resolves spatial snow patterns (Figure 3) compared to MODSCAG. Of the assimilation cases, the (screened) MODSCAG-only case performs the worst, while the joint full Landsat + MODSCAG case results fall between the two end-members. The performance of the Landsat-only case is attributed in part to the fact that Tuolumne happens to benefit from being where Landsat tiles overlap and therefore has a significant number (∼60/year) in a given WY. This is confirmed for the subsampled Landsat-only case, where most error metrics show degradation of performance relative to the full Landsat-only case. Aside from the spatial correlation coefficient, the joint subsampled Landsat + MODSCAG case performs comparably (and in some metrics, i.e., MD and RMSD in WYs 2015 and 2016, outperforms) the subsampled Landsat-only case. We interpret this to reflect the fact that in the general case with single Landsat tile coverage and the potential reduction of measurement number due to clouds, there is some benefit to using screened (and CDF-matched) MODSCAG data. Moreover, the degradation when adding the screened MODSCAG data to even the full Landsat-only case is relatively small. So including MODSCAG data provides added benefit in regions that may be subject to limited Landsat data and provides relatively limited degradation where Landsat data is plentiful. Hence all other results presented herein are for the joint Landsat + MODSCAG case with a screening threshold parameter of θ < 20°.


TABLE 3. Analysis of SWE error metrics (Correlation coefficient: R, Mean Difference: MD, Root Mean Squared Difference: RMSD) for Tuolumne River watershed relative to ASO SWE for ASO measurement DOWY nearest April 1st (see Table 2) for the prior model case and different fSCA assimilation cases.

[image: Table 3]In summary, the comparison of reanalysis results to independent spatially distributed estimates from ASO provides confidence that the method is able to produce reasonable posterior estimates. All of the inputs used in these results are available globally and thus allow the method to be applied in remote areas where such verification data does not exist.



Sample Results Over HMA Tiles

The primary motivation of the development of the method is to make it applicable to the HMA domain where information on spatially distributed seasonal SWE is extremely limited. Ongoing work is being performed to develop an HMA snow reanalysis dataset for the whole domain shown in Figure 1B, but here we provide some illustrative results for the 9 test tiles examined in Liu and Margulis (unpublished). That work focused on the use of the reanalysis method for deriving estimates of MERRA-2 precipitation uncertainty. Herein we highlight posterior SWE estimates derived for the 9 test tiles, with a focus on the climatological characteristics of peak SWE over WYs 2000-2017. A more thorough and quantitative analysis of domain-wide SWE and its space-time variability will be forthcoming when the HMA snow reanalysis is completed.


Maps of Posterior Peak SWE Climatology in HMA Test Tiles

The reanalysis method provides daily SWE estimates at each pixel over the 18-year application period (WYs 2000–2017). From this we can derive the peak SWE maps for each WY. To first illustrate this for a single tile, the annual map of pixel-wise peak SWE for tile (38°N, 70°E) is shown in Figure 10 (for reference its DEM is shown in Figure 1). The maps are designed to show the seasonal snowpack, i.e., pre-identified glaciers and water bodies are masked out (gray pixels). Some seasonal snow pixels may carry-over snow from 1 year to the next (typically in wet years) and some pixels that are not identified by the glacier mask may in fact be glaciers. To attempt to focus on the climatology of pixels that represent seasonal snow, those pixels with a minimum to maximum SWE ratio (where non-zero represents carry-over SWE) greater than 1% in more than 14 out of the 18 WYs are also masked out. This is an arbitrary threshold, but one designed to allow for the fact that some seasonal snow pixels may have carry-over SWE in many years, but should not in every year if they are indeed seasonal. The combined mask tends to be at the highest elevations (Figure 10). Also note that the pixel-wise peak SWE represents the peak at each grid cell across the WY and is therefore not tied to a particular day, but instead represents the amount of total maximum seasonal snowpack storage across the tile. The individual WY maps show some consistent patterns as well as inter-annual variability in peak SWE (Figure 10). For this particular tile, the maximum SWE is generally on the fringes of glacier pixels, with lower values in the valley regions. In terms of inter-annual variability, WYs 2016, 2004, and 2010 represented the minimum, median, and maximum tile-averaged annual peak SWE years.
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FIGURE 10. Maps of annual (WYs 2000–2017) pixel-wise peak SWE (in meters) for tile (38°N, 75°E). The gray pixels represent those masked out as pre-identified glaciers, likely glaciers (i.e., pixels with persistent carry-over SWE in more than 14 out of 18 years), or open water bodies. For reference, the DEM of this tile is shown in Figure 1.


The annual maps for each test tile were compiled into a single climatology map as shown in Figure 11. The maps capture the large-scale variations across the HMA domain as sampled by the tiles, with the largest SWE values generally occurring in the tiles (34°N, 75°E) and (38°N, 70°E), intermediate SWE values in tiles (41°N, 77°E), (34°N, 66°E), (29°N, 82°E), (27°N, 90°E), and (29°N, 97°E) and the lowest values occurring in tiles (36°N, 85°E) and (38°N, 98°E). The largest glacierized areas (i.e., with diagnosed persistent carry-over snow) occur in (41°N, 77°E), (34°N, 75°E), (29°N, 82°E), (27°N, 90°E), and (29°N, 97°E). In each tile there is significant spatial variability with the largest values generally occurring, as expected, in the high-elevation regions (see Figure 1 for tile DEMs). Beyond the broad correlation with elevation, peak SWE patterns also show more localized spatial patterns likely indicative of orographic and other effects. One such example is in tile (34°N, 66°E), which largely experiences winter westerlies driving snowfall, and shows what appears to be a strong orographic/rain-shadow in the northeastern portion of the tile where a valley exists to the northeast of a high mountain range. The windward side of the mountain range is where some of the largest peak SWE values are seen, with much lower values on the leeward side and in the leeward valley.
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FIGURE 11. Maps of climatological (i.e., averaged over WYs 2000–2017) pixel-wise peak SWE (in meters) for the set of HMA test tiles. The gray pixels represent those masked out as pre-identified glaciers, likely glaciers (i.e., pixels with persistent carry-over SWE in more than 14 out of 18 years), or open water bodies. For reference, the tile DEMs are shown in Figure 1. The upper value used in the colorbars represent the 95th percentile of values in each map and not the maximum values.




Elevational Distribution of Posterior Peak SWE Climatology in HMA Test Tiles

The climatological maps can be used to aggregate SWE and illustrate how it varies with elevation across each tile. The SWE distribution is shown in Figure 12 in terms of both the average depth (SWE in meters) and integrated volume (SWE in km3) in each elevation band. Both are complementary in that the former illustrates how physical processes (e.g., orographic precipitation and snowfall vs. rainfall occurrence) may drive variations in SWE depth accumulation, while the latter merges that information with the hypsometry (i.e., area-elevation relationship) for each tile to get SWE volume storage. The SWE depth (Figure 12A) generally shows a strong gradient with respect to elevation. Tiles (27°N, 90°E) and (29°N, 97°E) show essentially no SWE at the lowest elevations, while the others have non-negligible SWE across the full range of elevations in the tiles. Tiles (34°N, 66°E), (41°N, 77°E) and (38°N, 98°E) show a relatively linear SWE lapse rate across the tile elevation range, while the other tiles show a non-linear relationship with an increasing lapse rate with elevation. The largest SWE depth values occur in the upper elevation bins in (27°N, 90°E) with over 1.5 m and (38°N, 70°E) with ∼1 m. Generally speaking, the relative tile area will decrease with increasing elevation, which is reflected in the SWE volume distribution (Figure 12B), where the peak volumes are generally stored at intermediate elevations. For reference, the cumulative fractional volume distribution and the median elevation within each tile are shown. Tiles (34°N, 66°E), (36°N, 85°E) exhibit distributions where the SWE volume storage is split approximately equally above and below the median tile elevation. Otherwise most of the tiles, including (34°N, 75°E), (41°N, 77°E), (29°N, 82°E), (29°N, 97°E), and (38°N, 98°E) have more than 50% of the SWE stored below the median elevation, while tiles (38°N, 70°E) and (27°N, 90°E) have more than 50% of the SWE stored above the median elevation. Tile (27°N, 90°E) stands out with ∼75% of its SWE volume stored above the median elevation.
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FIGURE 12. SWE distribution as a function of elevation for HMA test tiles expressed as: (A) bin-averaged SWE depth (in meters) and (B) bin-averaged SWE volume (in km3). For the SWE volume distributions, the cumulative distribution function (solid black line) showing the cumulative fraction of stored volume (right axis) and location of the median elevation (dark gray dashed line) is also shown.




Seasonal Cycle of Posterior SWE in HMA Test Tiles

To illustrate the seasonal nature of SWE storage we show the climatological seasonal cycle in tile-integrated SWE in each test tile along with the individual annual realizations over the 18 WYs examined (Figure 13). This is done by tile-averaging SWE for each day of the WY (to get annual time series) and then averaging across WYs to get the climatology. The seasonal cycle highlights some of the variations in snow drivers across the nine tiles. Of the tiles examined, the most canonical winter accumulation/spring melt examples are those in the western portion of the domain, i.e., (41°N, 77°E), (38°N, 70°E), (34°N, 75°E), and (34°N, 66°E), where there is a clear unimodal seasonal signature driven by precipitation in the winter and melt in the spring. Tiles (34°N, 75°E) and (38°N, 70°E) show the largest seasonal storage, with an average peak (interannual range) of ∼3.25 km3 (1.5–4.75 km3) and ∼3.25 km3 (1.75–5 km3), respectively, peaking around DOWY 175–200 (late-March to mid-April). Tiles (34°N, 66°E) and (38°N, 70°E) exhibit negligible carry-over seasonal SWE from 1 year to the next, while (41°N, 77°E) and (34°N, 75°E) have carry-over in some years. The remaining tiles (when moving east), show a much more mixed seasonal behavior with monsoonal influence evident in the SWE annual cycle. For example, most of these tiles have precipitation in the spring/summer season (i.e., after DOWY 200) extending into the fall (i.e., before DOWY 50) with very limited precipitation in between. This results in a seasonal shift where SWE can carry-over from one WY to the next and/or have multiple local maxima throughout the year. Tiles (27°N, 90°E), (29°N, 97°E), and (38°N, 98°E) appears to be the most monsoon-driven, with either peak SWE occurring later in the WY and/or common carry-over from spring to fall as a result, in part, of non-winter snowfall. The reduced ratio of winter to non-winter precipitation explains why SWE is limited to the highest elevations in these tiles (as shown in Figure 12), where air temperatures are cold enough in summer to allow for snow accumulation. The other tiles generally show a mix of winter/summer precipitation. Tile (38°N, 98°E) show two peaks, one driven by early fall precipitation (i.e., before DOWY 50) and a larger peak around DOWY 220.
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FIGURE 13. Tile-averaged seasonal cycle in SWE volume (km3) for HMA test tiles. The 18-year climatology is shown with the thick blue line. Individual years are shown with thin gray lines for reference.




SUMMARY AND CONCLUSION

The snow reanalysis framework presented herein is designed to provide a methodology for estimating seasonal snow storage and its dynamics in global midlatitude mountain regimes where in situ observations are severely lacking. The method leverages existing readily available global datasets for forcing a snow model and Landsat- and MODIS-derived (MODSCAG) fSCA retrievals to update the prior model estimates in order to derive posterior estimates using a Bayesian framework. The DA framework not only jointly uses Landsat and MODSCAG fSCA data, but accounts for MODIS viewing -geometry effects on the fSCA retrievals through: (i) accounting for expected variations in measurement error covariance and (ii) a screening and CDF-matching technique that leverages the high-resolution (near-nadir) sampling of Landsat to transform the MODIS measurements to a consistent basis before assimilation. The method was verified through comparison with the Airborne Snow Observatory (ASO) SWE estimates over the Tuolumne River watershed in California. The posterior SWE estimates were shown to be much more consistent with the independent ASO estimates across the three WYs examined. Tests over Tuolumne showed that, where a large number of Landsat measurements exist (i.e., in areas of overlapping Landsat tiles and multiple sensors), the Landsat-only case performance is best, attributable primarily to the higher spatial resolution of the raw Landsat data, but that with fewer Landsat measurements (i.e., in areas with only single Landsat tile coverage or significant cloud cover), the additional MODIS-based measurements can have a positive impact. Illustrative results were presented for nine HMA test tiles to illustrate how the method can provide posterior estimates of the space-time climatology in SWE storage in areas where in situ data does not generally exist. Ongoing work is being conducted to use the method outlined herein to generate an HMA-wide reanalysis dataset that will provide an opportunity for a more thorough characterization of seasonal snow storage and dynamics over the joint Landsat-MODIS era as well as putting it in the context of other studies that have characterized seasonal snow in HMA. Additional future avenues of research could include a detailed exploration of different forcing datasets (i.e., MERRA-2, ERA5, GLDAS, etc.) and their implications, and the usage or addition of other fSCA products (i.e., from VIIRS) using the framework developed herein.
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A Bayesian approach to estimate bias and uncertainty in snowfall precipitation from MERRA-2 and other precipitation products was applied over High Mountain Asia (HMA), using a newly developed snow reanalysis method. Starting from an “uninformed” prior probability distribution, a posterior scaling factor applied to MERRA-2 snowfall was derived by constraining model-based estimates of seasonal snow accumulation and ablation over the water year (WY) with fractional snow covered area (fSCA) measurements derived from Landsat and MODIS (MODSCAG). Several sub-domains (nine representative 1° by 1° tiles) across HMA were examined over the period WYs 2001–2015 and compiled into an uncertainty parameterization where a lognormal distribution was fitted to the empirical posterior distribution with a mean of 1.54 (median of 1.19) and coefficient of variation (CV) of 0.83, indicating that MERRA-2 underestimates snowfall on average by ∼54% with sizeable uncertainty. For reference, the uncertainties in snowfall precipitation from the ERA5 and APHRODITE-2 precipitation products were also evaluated, and these products were found to underestimate snowfall, on average by a factor around 1.78 and 3.34 (with median scaling factors of 1.42 and 2.51), respectively. The results indicate that snowfall precipitation at high-elevations dominated by snowfall is underestimated in most existing products, especially in the gauge-based APHRODITE-2 product, where the biases were also found to exhibit geographical variations with the largest underestimation in monsoon-influenced high-elevation tiles. The derived MERRA-2 uncertainty model is being used to develop a full domain-wide HMA snow reanalysis, which will shed further light onto the space-time variations in snowfall biases in these products.
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INTRODUCTION

Accurate snowfall information is vital for hydrological modeling in snow-dominated regions, as it directly affects the estimation of snow water equivalent (SWE), and also influences streamflow prediction fed by snowmelt. This is especially important in High Mountain Asia (HMA), where a significant amount of precipitation falls as snow, resulting in large contributions of snowmelt to streamflow in many of its river basins (Bookhagen and Burbank, 2010).

Snowfall is highly uncertain in HMA due to the large spatial variability in precipitation, limited ground observations, and uncertainty in satellite measured precipitation (Andermann et al., 2011; Bolch et al., 2012; Palazzi et al., 2013; Maussion et al., 2014). Meteorological stations are sparsely located in this region, generally located at lower elevations, and therefore data from these stations can lack representativeness of precipitation at unmonitored locations, most notably higher elevations (Winiger et al., 2005; Palazzi et al., 2013). Satellite observations such as TRMM (Tropical Rainfall Measuring Mission; Huffman et al., 2007) can provide spatially continuous precipitation estimates, but have been found to be uncertain and potentially biased in the HMA region (Anders et al., 2006; Bookhagen and Burbank, 2006; Andermann et al., 2011; Hussain et al., 2017; Khan and Koch, 2018; Khan et al., 2018). In addition, both remote sensing and in situ data sources generally perform worse at characterizing snowfall compared to rainfall, often with significant underestimates of snowfall rates, because their instruments are mainly designed to measure liquid rainfall rather than snow or ice (Anders et al., 2006; Viste and Sorteberg, 2015).

Precipitation can also be obtained from gridded datasets over the HMA region, including those derived from atmospheric reanalysis such as MERRA-2 (Modern-Era Retrospective analysis for Research and Applications, version 2; Gelaro et al., 2017), and those that leverage interpolated rain-gauge data such as APHRODITE (Asian Precipitation Highly Resolved Observational Data Integration Toward Evaluation; Yatagai et al., 2012). Due to their coarse resolution, these gridded datasets often do not fully capture orographic precipitation in complex terrain (Palazzi et al., 2013) and those reliant on interpolated gauge data will suffer from the same representativeness issues at high elevations. Previous studies have investigated the uncertainty and bias in precipitation datasets, where significant variability among precipitation products was found over the Hindu-Kush Karakoram Himalayas region, in both total precipitation (Andermann et al., 2011; Palazzi et al., 2013) and snowfall estimates (Viste and Sorteberg, 2015).

Recent studies, using a variety of methods, suggest that most gridded precipitation datasets underestimate high-altitude precipitation in HMA. Tahir et al. (2011) found total annual precipitation estimates in APHRODITE to be lower than precipitation observed in high-altitude stations in the Hunza River Basin over the Karakoram range. Immerzeel et al. (2015) showed, by inversely inferring precipitation from glacier mass balance, that high-elevation precipitation in the upper Indus basin is underestimated in APHRODITE, ERA-Interim, and TRMM, where ERA-Interim is a global atmospheric reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF; Dee et al., 2011). Similarly, through evaluating runoff from glacio-hydrological modeling against observations, Wortmann et al. (2018) showed APHRODITE underestimates precipitation by a factor of 1.5–4.4 in Tarim headwater catchments. The information gleaned from these previous studies generally provides bulk bias estimates through inferring precipitation from spatially integrated variables like streamflow or glacier mass balance. Moreover, most of the studies to date have focused on the upper Indus basin or other small-scale catchments and on total precipitation, but provide less information over the broad HMA domain, and have not quantified the biases in snowfall.

In this work, we used a Bayesian approach to estimate biases and uncertainties in MERRA-2 snowfall precipitation using a newly developed snow reanalysis method (Margulis et al., 2019) that can indirectly infer precipitation estimates, by constraining prior model estimates with remotely sensed fSCA images over the HMA region. The specific motivation for this study is to generate reasonable uncertainty estimates for snowfall precipitation in order to apply the same Bayesian approach over the full HMA domain as part of the NASA HMA project. However, the goal of providing an accurate accounting of precipitation uncertainty is relevant to any hydrologic modeling study in the region and therefore should be of interest beyond generating a new snow reanalysis dataset. Herein we aim to primarily characterize the uncertainty in MERRA-2 snowfall precipitation at several sub-domains within HMA. Based on that characterization and inter-comparison with other products (e.g., APHRODITE-2 and ERA5) we address the following questions: Is MERRA-2 snowfall biased over HMA and how can its bias and uncertainty be parameterized? Is snowfall biased in other gridded precipitation products and to what extent? How do the snowfall biases vary spatially for these products and what is the spatial-temporal distribution of snowfall?



METHOD AND DATASET


Test Tiles and Years

The goal of this research is to characterize the uncertainty (including bias) in snowfall precipitation over HMA, which is critical for snow modeling in this region. We selected 9 representative tiles (1° longitude by 1° latitude) in our study domain to perform the analysis (Figure 1). These 9 test tiles were chosen to sample across variations in physiography and climate in the HMA region in order to assess the snowfall bias in different regimes. Four tiles are located in the western part of the domain, three tiles are located in southern part of the domain, and two tiles are located in the central/northeastern part of the domain (Figure 1). The expectation is that the precipitation regime of the first four tiles are dominated by winter westerlies, the southern three are influenced heavily by the Indian summer monsoon, and the remaining two are relatively dry locations forced by a mix of these and other synoptic drivers. Most of the selected tiles have a mean elevation above 3000 m, with limited glacier and forest cover (Table 1). The test years were chosen as water years (WYs) 2001 to 2015, where both Landsat and MODIS observations are used in the reanalysis method described below. The WY spans October 1st through September 30th of the following year, where the WY label corresponds to the calendar year in which the WY ends.
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FIGURE 1. Elevation map of the HMA domain (middle) with locations of test tiles marked with red boxes. Major watersheds are delineated and labeled on the map, using the watershed boundaries from HydroSHEDS (Lehner et al., 2006). Corresponding to each test tile, the left panel shows the monthly climatology of precipitation (gray bars), snowfall (blue bars) and air temperature (red line), diagnosed by MERRA-2 data; the right panel shows the climatological mean fractional snow covered area (fSCA) map.



TABLE 1. Glaciation, climatological, and physiographic characteristics for the 9 test tiles.
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Deriving the Bias and Uncertainty in MERRA-2 Snowfall Precipitation

In this paper, we used the ensemble-based snow reanalysis method (Margulis et al., 2019) as a tool for estimating unknown precipitation biases and general uncertainty. The method is designed to acknowledge the typically large prior uncertainty in precipitation in high mountain regions and use a data assimilation approach to derive a posterior estimate that is constrained by the remotely sensed fSCA depletion time series. Specifically, a scaling factor b for precipitation is employed for representing the prior uncertainty associated with the nominal precipitation estimate and its downscaling:
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where j is the replicate (individual realization) index and N is the total number of replicates in the ensemble. Pj(xr,t) is the snow reanalysis precipitation in replicate j at snow reanalysis pixel and time t. In this application, the model resolution (xr) is ∼480 m (16 arcseconds). Pnom(xnom,t) is the nominal precipitation input from any precipitation data (e.g., MERRA-2 used in this study) at the nominal precipitation pixel xnom and time t. bj,nom(xr) is the scaling factor in replicate j at snow reanalysis pixel xr, with respect to the nominal precipitation input Pnom. Typically, a specific distribution for b has been used in previous snow reanalysis applications (e.g., Durand et al., 2008; Girotto et al., 2014a, b; Margulis et al., 2015, 2016; Cortés et al., 2016; Cortés and Margulis, 2017) with variations across different domains and/or with different precipitation products. For example, in the Sierra Nevada range in California (United States), b was postulated as lognormally distributed with a mean of 2.25 and CV of 0.25 when applied with NLDAS-2 (Xia et al., 2012) precipitation (Margulis et al., 2015, 2016). While in the Andes range in Central Chile, b was postulated as lognormally distributed with a mean of 1.75 and CV of 0.95 when used with MERRA (Rienecker et al., 2011) precipitation (Cortés et al., 2016; Cortés and Margulis, 2017). The b distributional parameters can be derived from in situ observation data (where available), and provide a mechanism for performing precipitation downscaling, first-order bias correction and prior uncertainty perturbation, where the snow reanalysis framework provides posterior estimates for these parameters through conditioning (a Bayesian update) on fSCA measurements.

In data scarce domains like HMA, there may be insufficient data to even postulate a prior uncertainty model for precipitation. Hence, in contrast to previous applications, herein we take the approach that we know almost nothing about the prior uncertainty in MERRA-2 precipitation (and how it should be downscaled) beyond a range of values seen in the literature. In this “uninformed” approach, the prior b distribution is specified as uniformly distributed (i.e., with equal probability) between 0.1 and 5 to reflect the wide range of biases seen in the literature as well as the potential for sub-grid heterogeneity in precipitation. Using such a distribution allows for the prior ensemble to reflect both under- and overestimation by the nominal precipitation dataset (i.e., MERRA-2), where those realizations that are most consistent with independent (fSCA) data will be determined by the Bayesian update. We used 50 replicates for the ensemble size in this study, which was deemed sufficient based on preliminary sensitivity tests.

Characterization of the uncertainty in snowfall precipitation from MERRA-2 (including bias) is derived via the reanalysis step in the particle batch smoother (PBS) approach (Margulis et al., 2019), which is achieved through the conditioning of the prior ensemble of b on independent fSCA observations to derive a posterior distribution. A schematic illustration of the method used for updating the b distribution at a particular modeling pixel in a particular WY is presented in Figure 2, which is elaborated on below.
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FIGURE 2. Flow chart highlighting how the reanalysis framework method is used to estimate uncertainty in snowfall precipitation at a particular modeling pixel in a particular water year (WY), with red indicating prior, and blue indicating posterior. In the time series plots, the shaded area shows the ensemble spread (inter-quartile range) and the solid line shows the ensemble median. Satellite retrieved fSCA from Landsat and MODSCAG are displayed in the posterior fSCA plot, and serve as the constraint that is used to infer snowfall precipitation.


In the PBS approach, all replicates in the ensemble are initialized with equal prior weights, where the weights are interpreted as the discrete probability for b and other variables in the corresponding replicate:
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where [image: image] is the prior scaling factor with respect to Pnom and [image: image] is the prior weight in replicate j at snow reanalysis pixel xr. In this application a uniform distribution (between 0.1 and 5) is used to draw random prior samples of [image: image] (Figure 2). The uncertainty in b is propagated to prior predictions of fSCA ([image: image]) via the ensemble LSM-SDC modeling framework (Margulis et al., 2019). Modeling variables are updated through conditioning on the collection of satellite observed fSCA over the WY (fSCAmeas):
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where [image: image] is the posterior scaling factor with respect to Pnom and [image: image] is the posterior weight in replicate j at snow reanalysis pixel xr, andpv is the likelihood function of measurement error (with specified covariance CV), and c0 is a normalization constant through which the posterior weights sum up to one (Margulis et al., 2019).

Through conditioning on fSCA observations using the PBS approach, the modeling results are preserved in each replicate, but their corresponding weights are changed. Replicates with modeled fSCA closer to observations are assigned higher weights, and vice versa. The distribution of modeled variables (e.g., SWE, fSCA, etc.) and the b distribution at each pixel are therefore implicitly updated, due to the update in their posterior weights (Figure 2). It should be noted that, while the b scaling factor is applied to the total precipitation, since its posterior distribution is based on fSCA depletion, we would expect the posterior estimates should be most valid in snow-dominated pixels, i.e., where a sufficient fraction of annual precipitation falls as snow such that there is a clear seasonal snowpack with fSCA depletion that can be captured by the Landsat and MODSCAG measurements. It is also possible that in some instances the b scaling factor is correcting for the fact that some storms through the year were misclassified as rain or snow based on the air temperature. This would be expected to occur in transition zones where air temperature is near-freezing during snowfall events.

In order to better interpret the posterior b distribution in terms of its probability rather than its posterior weights, we used a sequential importance resampling (SIR) algorithm (Zhou et al., 2006) to resample the b values, where we obtained a set of b values with the same posterior distribution but with equal weights. At each pixel, N samples (where N is the total number of replicates) are randomly drawn from the discrete (posterior) b distribution through a Monte-Carlo method, with the posterior weight [image: image] interpreted as the discrete probability to obtain the corresponding [image: image]. This generates a new sample set [image: image] (where the superscript R indicates “resampled”) at each pixel with N samples, and assign equal weights [image: image] to each sample. This intermediate step is done for convenience in order to merge individual pixel distributions together to derive the distribution across the tile(s) as described below.

We grouped the resampled scaling factor ensemble [image: image] from all N samples and from all the pixels within each (1° by 1°) test tile into an ensemble to assess its tile-specific distribution, and also merged the [image: image] samples from all the test tiles into a larger ensemble [image: image]to assess its “global” distribution over the HMA region, with respect to the nominal precipitation Pnom. Furthermore, both [image: image] and [image: image] are fitted with a lognormal probability function so as to parameterize the distributions. It should be noted that MERRA-2 is used as the nominal precipitation herein, such that the reanalysis application yields bnom = bMERRA2.

When merging the [image: image] from different pixels into a large sample such as [image: image] and [image: image], careful screening is performed so as to exclude the non-updated pixels from contaminating the distribution. Three types of pixels are excluded from the large sample, namely pixels with water bodies, pixels that are non-snowy at low elevations, and pixels with glaciers or persistent snow at high elevations. The water bodies are identified from the land cover types, and the non-snowy pixels are identified when there is insignificant change in the posterior weights from the prior. The glaciers or persistent snow pixels are identified when there is significant carry-over-snow that do not fully melt out in the melting season. Specifically, if, for a given pixel and year, the minimum SWE exceeds 1% of the maximum SWE, that pixel is considered to have significant carry-over-snow in that year, and that pixel-year is excluded in the large sample. It should be acknowledged that we found the posterior b distribution to be somewhat sensitive to the screening, especially for the carry-over-snow pixels at the high elevations (i.e., glacier pixels), hence the screening is meant to conservatively focus on seasonal snow pixels for the posterior b estimation.



Other Gridded Precipitation Datasets

To put the characterized MERRA-2 uncertainty results in larger context, we chose to also investigate the implicit uncertainty in two other gridded precipitation products, namely ERA5 (the fifth generation of ECMWF reanalysis product) and APHRODITE-2 (Asian Precipitation Highly Resolved Observational Data Integration Toward Evaluation; Yatagai et al., 2012).

ERA5 is the latest reanalysis dataset produced by ECMWF, which provides global estimates of atmosphere, land and ocean variables. The dataset is currently available from 1979 to present at an hourly step, gridded to a spatial resolution of 0.25°. We used its hourly total precipitation from Copernicus Climate Change Service (2017)1 to obtain surface precipitation estimates. APHRODITE-2 is produced by the Research Institute for Humanity and Nature (RIHN) and the Meteorological Research Institute of Japan Metrological Agency (MRI/JMA) and provides daily precipitation estimates regionally over Asia based on a dense gauge network, gridded to spatial resolutions of 0.25° and 0.5°. We used the latest version APHRO_MA V1801_R1 Monsoon Asia Area Daily precipitation2, which covers the period from 1998 to 2015.

Similar to MERRA-2, ERA5 is a reanalysis product that assimilates both ground and satellite observations, while APHRODITE-2 is a station-based product that derives its estimate by interpolating precipitation gauges. These datasets are recently released, but their previous versions (e.g., ERA-Interim and APHRODITE) have been commonly used in studies over HMA, and many studies have assessed their performance of precipitation estimates in this region (e.g., Palazzi et al., 2013; Immerzeel et al., 2015; Song et al., 2016; Hussain et al., 2017). Therefore, they are representative of an additional reanalysis product and gauge-based product, respectively.

We used 0.25° gridded resolution for ERA5 and 0.5° for APHRODITE-2, so as to best approximate the MERRA-2 resolution. The period chosen for analysis was WYs 2001–2015, which was the shared common period across all three precipitation products and MODIS snow products. The annual precipitation climatology maps (over WYs 2001–2015) are shown in Figure 3. While some of the large scale precipitation features are similar, it is evident there are, in some cases, large differences between products.
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FIGURE 3. Annual total precipitation (in mm) climatology (WYs 2001-2015) for raw ERA5, raw APHRODITE-2, and raw MERRA-2 over the HMA region.




Deriving the Bias and Uncertainty in Snowfall Precipitation From Other Products

The primary goal of this paper is the derivation of bias and uncertainty estimates for the MERRA-2 product, which is accomplished by performing the snow reanalysis using the methodology described above. For context, bias and uncertainty estimates for the other gridded products were obtained by comparing them to the reanalysis estimates, i.e., whereby the posterior reanalysis estimates derived from MERRA-2 provide the reference. Specifically, note that the scaling factor bnom that is derived for each WY using the nominal MERRA-2 precipitation inputs (i.e., bMERRA2), can be thought of as follows by rearranging Eq. (1):
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where [image: image] represents the cumulative annual snow reanalysis precipitation for replicate j and [image: image] represents the cumulative annual MERRA-2 precipitation. Since the scaling factor [image: image] is conditioned on fSCA observations, and therefore primarily provides information on snowfall precipitation (SP), it is essentially the ratio between cumulative annual snowfall precipitation from the snow reanalysis [image: image] for replicate j and that from MERRA2 [image: image].

Using the same notion we can derive scaling parameters for the other products, i.e:

[image: image]

[image: image]

To avoid large scaling factors due to very small cumulative snowfall values in the denominator of Eqs. (5) and (6), any cases with less than 5 cm of cumulative annual snowfall were excluded from the analysis. Given the derived scaling factors for each product at the pixel scale, they were then aggregated to tile-based and global distributions in the same manner as described above for comparison with MERRA-2 and the snow reanalysis.

In addition to precipitation itself, snowfall is dependent on air temperature. In the HMA snow reanalysis with MERRA-2 as the nominal forcing input, air temperature uncertainty is characterized with a normal distribution of N(−0.9°C, 1.2°C) based on the comparison to in situ observations (Margulis et al., 2019). This means that the raw MERRA-2 air temperature was found to be 0.9°C higher than in situ on average, and this warm bias is corrected before performing the snow reanalysis. Similar bias-correction should also be performed in the ERA5 and APHRODITE-2 air temperature before computing snowfall, so as to eliminate the effect of air temperature biases in the scaling factors. For consistency, we choose to commonly apply the snow reanalysis air temperature over all three products to obtain their snowfall estimates, which is essentially derived from the bias-corrected MERRA-2 air temperature. A threshold of 2°C daily mean air temperature is applied to classify snowfall vs. rain over the daily precipitation, where daily precipitation is still obtained from their original product. The obtained snowfall in ERA5 and APHRODITE-2 is further used in Eqs. (5) and (6) to derive the snowfall bias estimates.

It should be noted that snowfall biases in ERA5 and APHRODITE-2 are obtained herein by comparing to snowfall estimates from the snow reanalysis (i.e., “bias-corrected” MERRA-2 data). This necessarily ties the baseline most closely to MERRA-2 rather than the other products, although the posterior corrects the raw MERRA-2 to values that are most consistent with the independent fSCA observations. This choice was made primarily because (1) the focus of this paper is on deriving an uncertainty parameterization for MERRA-2 and (2) due to the higher computational expense of running the reanalysis with each precipitation product. We leave a more thorough multi-product reanalysis for future work, and herein use the methods described above to provide a first-order comparison of the MERRA-2 biases relative to those from ERA5 and APHRODITE-2. Potential additional uncertainties introduced using our simplified comparison method come primarily from the diagnosis of MERRA-2 snowfall (i.e., using the 2°C air temperature threshold) at the hourly time step, while for ERA5 and APHRODITE-2 we diagnose snowfall using the same threshold but at the daily time scale.



RESULTS AND DISCUSSION

The snow reanalysis framework provides posterior pixel-wise estimates of the scaling factor bMERRA2 and the resulting seasonal precipitation time series. In the sections below, for each of the test tiles we present the resulting spatial distributions of climatological posterior precipitation and MERRA-2 tile-specific distributions for the scaling factor [image: image], and the distribution across all of the tiles examined herein as [image: image]. We then compare the derived snowfall uncertainty relative to the other precipitation products examined and compare how the posterior snowfall distribution varies with time and elevation in comparison to MERRA-2 and the other products.


Snowfall Biases and Uncertainties in MERRA-2

The climatology (i.e., average over WYs 2001–2015) maps of the interpolated MERRA-2 precipitation, the downscaled MERRA-2 snowfall, the posterior snowfall from the snow reanalysis (hereafter referred to as “snow reanalysis snowfall”) and the posterior b from the snow reanalysis at each of the test tiles are shown in Figure 4 (along with the respective elevation maps for reference). The snow reanalysis derived maps (posterior snowfall and posterior b) represent the climatology of the ensemble median fields. It should be noted that the conditioning of posterior b is most effective in seasonally snow-covered regions, so non-snowy or glacierized regions are masked out in Figure 4 and all results that follow. In terms of the spatial distribution, the MERRA-2 precipitation is bilinearly interpolated to the model grid (this is what the prior model uses as nominal input), but still retains the characteristics of the raw fields, and shows a smooth (coarse) representation of the precipitation field within a given 1 degree tile. The same smoothness is propagated to the downscaled MERRA-2 snowfall, which shows a mixed pattern of precipitation gradients and terrain variation, where the latter is due to the dependence on air temperature (which is downscaled to the model resolution). In contrast, the snow reanalysis effectively downscales the coarse-scale MERRA-2 by leveraging information in the set of higher-resolution (∼480 m) fSCA images over each WY and in other model-based fields (i.e., terrain). For example, the 34°N 66°E tile in the Hindu Kush (Figure 4, third row) is characterized by a general elevation gradient from southwest to northeast, with the highest mountains in the northeast and lower lying valleys elsewhere. Due to its coarse resolution in the raw MERRA-2 fields, the spatial pattern of the interpolated MERRA-2 precipitation is nearly uniform in this tile (∼500 mm/year) and clearly does not reflect the expected heterogeneity for such complex terrain. The downscaled MERRA-2 snowfall also has a smooth field (where the heteroegeneity is introduced through air temperature dependence on elevation), with snowfall ranging between 200 and 500 mm in this tile. The snow reanalysis snowfall is significantly more heterogeneous, without preserving the continuous and smooth features from precipitation or elevation as in the downscaled MERRA-2 data. It also exhibits high snowfall estimates at high elevations in the mountains and low snowfall in the valleys, but with more dramatic gradients across elevation. The snow reanalysis snowfall is greatly enhanced in the highest elevation mountain chain on its windward side, where the orographic precipitation would be expected, and it is greatly reduced in the northeastern most valley on its leeward side, where a rain shadow would be expected. Similar heterogeneity in the snow reanalysis snowfall is seen across the other test tiles (Figure 4, fourth column), which are attributed to the heterogeneity in the fSCA data and the effects of topography on snowfall. Beyond the heterogeneity (downscaling), the snow reanalysis snowfall also contains bias correction, where most tiles (fourth column) show tile-average differences with the MERRA-2 data (third column).
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FIGURE 4. DEM (first column), climatology (WY 2001-2015) for the: interpolated MERRA-2 precipitation (second column), downscaled MERRA-2 snowfall (third column), posterior snow reanalysis snowfall (ensemble median) (fourth column), and posterior snow reanalysis b (ensemble median) (fifth column) in each of the test tiles. Tile labels in blue and orange text represent their locations in the western domain or central-eastern domain, respectively.


The spatial distribution of snow reanalysis snowfall (Figure 4, column 4) is a function of the spatial patterns in the posterior b maps (Figure 4, column 5), i.e., Eq (1), which are conditioned on fSCA data. The posterior b estimates are expected to be most robust in regions where there is a strong seasonal cycle in snow accumulation and ablation that is captured by the fSCA data. It shows complex patterns that reflect the combined effect of two possible corrections to the coarse scale MERRA-2 data: (i) downscaling of MERRA-2 data that is accurate in a tile-averaged sense but does not reflect the high-resolution patterns due to orography and other factors and (ii) bias-correction of large-scale errors in MERRA-2 data. For example, in tile 38°N 70°E, the posterior b (ensemble median) is generally between 1.0 and 2.0, indicating that the MERRA-2 snowfall is underestimated, and the snow reanalysis performs a bias-correction that effectively increases snowfall in this tile. However, the posterior b is also lower (and below 1.0) in certain pixels corresponding to the valleys in this tile, indicative of snowfall being overestimated in the downscaled MERRA-2 at those locations. Similar patterns are observed in other tiles, where the ensemble median of the posterior b is generally found to be between 1.0 and 2.0, but also exhibits values below 1.0 mostly in the valleys. Furthermore, the posterior median b is also found to be above 2.0 at a few locations in these tiles, and is most apparent in tiles 27°N 90°E, 36°N 85°E, and 38°N 98°E. We hypothesize that the higher posterior b observed in 36°N 85°E (over the southern side mountains) is primarily due to capturing orographically enhanced precipitation, while that observed in tile 27°N 90°E (at the foot of the mountain on the southern side) is primarily due to the misclassification of snow as rain. For tile 38°N 98°E where the posterior b is found highest in the valleys, we hypothesize that it is primarily due to the non-effective updates in the intermittent snow. This tile is characterized by more intermittent snow that in some cases lasts only for several days at a time, where the accumulation or ablation of snow is more difficult to capture in the fSCA measurement time series. As discussed earlier, the update in posterior b is most effective for seasonal snow pixels, which feature a distinct snow accumulation and ablation cycle that is reflected in fSCA observations.

To provide a bulk assessment of the uncertainties, the posterior b distribution climatology across each tile ([image: image]) is shown in Figure 5 (blue bars). Note for reference that the prior distribution was uniform (dashed line) across the range so that the posterior distribution reflects the update in knowledge based on the assimilated fSCA measurements. The common feature seen in the empirical [image: image] distributions is that they all are skewed to the right, and most tiles are distinctly unimodal. To parameterize the empirical distributions, we chose to use a lognormal distribution. The lognormal distribution is commonly used in the literature to characterize the uncertainty distribution in precipitation, because it ensures non-negative precipitation, and the logarithm is suitable to characterize the extremely high precipitation amounts occurring at a low frequency. The fitted lognormal functions (using maximum likelihood estimation) are shown in Figure 5 (red curves), which match the empirical distributions well in most of the tiles (with the exception of 38°N 98°E) For example, in tile 38°N 70°E, the posterior [image: image] is highly right skewed with a mean of ∼1.3 with most samples falling within a range of 0 to 2.5. In terms of the reanalysis procedure, this is indicative that replicates with values above 2.5 essentially have zero posterior weight and those near the mode have higher weights than the equal weights implicit in the prior uniform distribution. The other tiles in the western part of the domain (41°N 77°E, 34°N 66°E, 34°N 75°E), those in the south and east (29°N 82°E, 27°N 90°E, 29°N 97°E), and one in the northern Tibetan Plateau (36°N 85°E) similarly show unimodal skewed distributions with mean values ranging from 1.0 to 1.9 and CVs ranging from 0.5 to 1.2. The tile in the northeastern Tibetan Plateau (38°N 98°E, Figure 1) is an exception in that, while right skewed, the peak is not as distinctive and has much heavier tails on the right. As a result, it has a higher mean value of ∼2.5. From the empirical distribution it is clear that many of the higher prior values remain in the posterior distribution with non-negligible weights, where we hypothesize that the posterior b update may not be as effective in this tile due to intermittent snow, so that the [image: image] distribution still retains some of the features of the prior uniform distribution.
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FIGURE 5. Distribution of [image: image] obtained from the snow reanalysis. The blue bars represent the empirical (posterior) distribution, the solid line is the fitted lognormal distribution, and the dashed line shows the prior uniform distribution for reference. The fitted lognormal parameters are displayed in each panel. Tile labels in blue and orange text represent their locations in the western domain or central-eastern domain, respectively.


For the purposes of applying the snow reanalysis (or for other modeling applications) over the full HMA domain, it is useful to derive a single “global” distribution for b that could serve as a prior estimate of uncertainty in MERRA-2 precipitation (snowfall). The global distribution of MERRA-2, i.e., [image: image], is presented in Figure 6 (left). It is the composite of the tile-specific distributions and therefore is also highly right skewed with a single mode around 1, with most of the values between 0.1 and 3. We again fit a lognormal function to the empirical global distribution, where it fits reasonably well but with a slightly higher and narrower peak than the empirical distribution (mostly due to the one tile described above). The lognormal distribution exhibits a mean value of 1.54 (median value of 1.19) and CV of 0.83 for the [image: image] distribution. This implies that, on average, the magnitude of raw MERRA-2 snowfall is 54% too low compared to the snowfall diagnosed from the snow reanalysis over the HMA region. Moreover, the CV implies that there is significant uncertainty that should be considered when using MERRA-2 data for snow modeling in HMA. In other words, using MERRA-2 deterministically in snow modeling over HMA is likely to underestimate the snowfall distribution in terms of both the mean and its uncertainty. This global distribution is currently being used as the prior uncertainty model for precipitation inputs in applying the snow reanalysis over the full HMA domain shown in Figure 1. The posterior estimates from that application will ultimately yield additional insight into the snowfall distribution over HMA that could be used to derive a more robust estimate of snowfall uncertainty and how it depends on physiographic, climatological, or other factors.
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FIGURE 6. Derived distributions of the global precipitation scaling factor for ([image: image], left), ERA5 ([image: image], middle), and APHRODITE-2 ([image: image], right). The blue bars represent the empirical (posterior) distribution, the solid line is the fitted lognormal distribution, and the dashed line shows the prior uniform distribution for reference. The fitted lognormal parameters are displayed in each panel [note the Bayesian reanalysis approach is used to directly derive the scaling factors for MERRA-2 precipitation, while those for ERA5, and APHRODITE-2 are derived through comparing to posterior snow reanalysis results using Eqs. (5) and (6)].




Snowfall Biases and Uncertainties in Other Gridded Precipitation Products

The posterior snowfall biases and uncertainties provide a mechanism (i.e., reference baseline) to also provide a first-order characterization of uncertainty in other gridded precipitation products (ERA5 and APHRODITE-2) using Eqs. (5) and (6). For clarity it should be noted that posterior b values represent a bias-correction relative to the nominal product such that b values larger than 1.0 represent a negative bias (underestimate) by the product and vice versa. The equivalent global uncertainty (i.e., resampled across all nine tiles) in snowfall precipitation in the other gridded products is shown in Figure 6 (middle and right). Based on the fitted lognormal distributions, we found that ERA5 has a comparable mean value of ∼1.78 (median of 1.42), while APHRODITE-2 has a much higher mean value of ∼3.34 (median of 2.51). This indicates that ERA5 is ∼80% too low compared to the snowfall from the snow reanalysis, while APHRODITE-2 underestimates snowfall precipitation by more than a factor of 3. The CV values across all three products are comparable (∼0.74–0.87), but the higher mean values in APHRODITE-2 imply a larger range of uncertainty. The large mean value for APHRODITE-2 is influenced in part by geographic differences across the domain. In particular, in the tiles east of 82°E (i.e., those most influenced by the Indian monsoon), the biases are generally above 4. Previous studies have pointed out that MERRA-2 snowfall is much greater than CRU TS (Climatic Research Unit Time series; Harris et al., 2014), TRMM and APHRODITE snowfall in the HMA region (Viste and Sorteberg, 2015), which is therefore consistent with larger underestimates in APHRODITE-2 compared to MERRA-2. The underestimation of snowfall in the gauge-based APHRODITE-2 product, may be caused by not only the interpolation of gauges at lower elevations, but also the undercatch of snow and ice by traditional instruments in those gauges (Palazzi et al., 2013; Viste and Sorteberg, 2015). It should be noted that the analysis herein, by construct focuses on snowfall (not rainfall) by selecting high-elevation/snow-covered pixels, so that biases in APHRODITE-2 precipitation in lower elevation/rain-dominated (i.e., monsoon influenced) regions might be substantially lower.

The geographic variation in the (tile-specific) biases across products is illustrated in Figure 7, where the biases are generally greater than 1 across all tiles in all datasets. It is apparent that the implied snowfall bias corrections in all datasets are smallest (less than ∼2) in the three western tiles (38°N 70°E, 34°N 66°E, 34°N 75°E) and the southwestern tile (29°N 82°E) of the domain. The snowfall biases in all datasets are relatively larger (greater than ∼2) in the northwestern tile (41°N 77°E) and the northeastern tile (38°N 98°E). For the remaining three tiles in the southern (27°N 90°E, 29°N 97°E) and central-northern (36°N 85°E) part of the domain, it is only APHRODITE-2 that show significantly large biases greater than 3. In contrast, the snowfall biases in MERRA-2 and ERA5 are relatively small (less than 2) in these tiles and are comparable to the other tiles. For the one tile (38°N 98°E) with more intermittent snow, where we hypothesize this leads to less robust posterior estimates, the biases are generally largest across products as shown in Figure 7. Whether these high biases are meaningful still needs further investigation. However, larger bias correction factors in areas like these tiles, where snowfall is very low, may not be as impactful as in other areas where snowfall is large.
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FIGURE 7. Geographic distribution of the snowfall bias correction (mean of [image: image]) at each tile location across all precipitation datasets, including ERA5 ([image: image], green), APHRODITE-2 ([image: image], black), and MERRA-2 ([image: image], red). The size of the circle is proportional to the value of the bias correction in each dataset, where a larger circle means greater bias (snowfall is more heavily underestimated in that dataset) and vice versa.


In summary, when compared to the posterior snow reanalysis, the MERRA-2 is less biased than the other products in most tiles (7 out of 9 tiles) followed by ERA5 (2 out of 9 tiles) (Figure 7). In contrast, APHRODITE-2 shows the highest bias in all of the tiles, which is consistent with the global distributions shown in Figure 6. The magnitudes of snowfall biases in all three products are more consistent in the western part of the domain, but less consistent in the central and eastern part of the domain. The most obvious differences are seen in the central part of the domain (36°N 85°E, 27°N 90°E), where the snowfall biases from MERRA-2 and ERA5 are comparable and lower, while the snowfall biases from APHRODITE-2 are higher.



Annual Snowfall Time Series Among Different Products

The posterior snowfall in the snow reanalysis was compared to the other precipitation products over the period of WYs 2001–2015 at each test tile (Figure 8). We found that the overall snowfall magnitude in the downscaled MERRA-2 is lower than that in snow reanalysis estimates at most tiles. Taking the tile 34°N 66°E as an example, the snow reanalysis (blue line) snowfall is generally between 300 and 600 mm, while the MERRA-2 snowfall (red line) is between 200 and 500 mm, and around 100 mm lower than the snow reanalysis. Similar patterns between MERRA-2 and the snow reanalysis snowfall can be observed in the other tiles, where MERRA-2 is generally lower than reanalysis snowfall in overall magnitude, which is consistent with the tile-specific and global distributions discussed above. The differences in snowfall between MERRA-2 and snow reanalysis is smallest in the two southern tiles (29°N 82°E, 27°N 90°E), where MERRA-2 shows a comparable magnitude of snowfall relative to the snow reanalysis. The largest differences are observed in the northeastern tile (38°N 98°E), where snowfall in MERRA-2 is around 200 mm smaller than that in snow reanalysis. Since we hypothesize the posterior estimates are less robust in this 38°N 98°E tile with more intermittent snow, the posterior snowfall from snow reanalysis may be less reliable in this tile, explaining the large discrepancy between snow reanalysis and MERRA-2 in this tile.
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FIGURE 8. Tile-averaged annual total snowfall time series from downscaled ERA5, downscaled APHRODITE-2, and downscaled MERRA-2 vs. the snow reanalysis (ensemble median and interquartile range). Tile labels in blue and orange text represent their locations in the western domain or central-eastern domain, respectively.


Snowfall time series estimates from other gridded products (ERA5 and APHRODITE-2) are also generally lower than the snow reanalysis. The magnitude of snowfall in ERA5 is comparable and slightly lower than MERRA-2, while that in APHRODITE-2 is significantly lower than all the products, which is consistent with the snowfall biases discussed above (Figure 6). ERA5 snowfall is lower than both MERRA-2 and snow reanalysis in the western tiles, while in the central-eastern domain it is sometimes comparable to MERRA-2 but lower than snow reanalysis (36°N 85°E and 38°N 98°E), or comparable to the snow reanalysis (27°N 90°E) and higher than MERRA-2. APHRODITE-2 shows the minimum snowfall across all products, and the differences between APHRODITE-2 and other products are most apparent in the two southern tiles (27°N 90°E, 29°N 97°E) and one central-northern tile (36°N 85°E), which is also consistent with the tile specific snowfall biases shown in Figure 7. Our results suggest that snowfall at these high-altitude tiles is generally underestimated in the gauge-based products over HMA, which is consistent with Immerzeel et al. (2015) and Wortmann et al. (2018), where high-altitude precipitation was found to be underestimated in many existing products. Since the gauge-based products derive their estimates primarily by interpolating rain-gauges located at lower elevations, it is possible that those gauges undercatch precipitation and do not capture orographic effects, which consequently underestimates snowfall.

The ensemble uncertainty in snowfall estimated from the snow reanalysis varies across the tiles (Figure 8). In general, the ensemble spread is relatively low in the western tiles, corresponding to the lower CV values in the [image: image] (∼0.4–0.8 in Figure 5), and relatively high in the central and eastern tiles, corresponding to the higher CV values in the [image: image] (∼0.9–1.2 in Figure 5). As discussed earlier, the conditioning of the posterior b is most effective for seasonal snow. The western tiles are dominated by westerlies, and therefore receive most snowfall in winter when precipitation occurs; while the central-eastern tiles are more affected by monsoons, and receive less snowfall in winter but more in spring or summer (Figure 1). As a result, there is a strong seasonal cycle in the fSCA observations over the western tiles, resulting in better conditioning of the posterior b and lower uncertainties in snowfall. In the central-eastern tiles, the fSCA observations are less seasonal, resulting in less effective conditioning of the posterior b and higher uncertainties in snowfall.

In terms of the temporal correlations, snowfall in the gridded precipitation products are almost all positively correlated with snowfall from the snow reanalysis (Table 2). One exception is the correlation between APHRODITE-2 and the snow reanalysis, where a negative correlation coefficient of −0.13 exist in tile (34°N 75°E). Looking at individual tiles, the highest correlation coefficient averaged across all products is 0.76 for tile 34°N 66°E. The lowest average correlation coefficient is 0.31 for tile 34°N 75°E, mainly due to the negative coefficient from APHRODITE-2. On average, the correlation coefficient with the snow reanalysis annual time series is highest for ERA5 (0.63), followed by MERRA-2 (0.57), and APHRODITE-2 (0.42). These averaged coefficient values, indicate that snowfall variability from the reanalysis is not fully explained by snowfall from the input products. This is not surprising, and not necessarily a drawback, because the reanalysis snowfall is conditioned on independent fSCA observations; therefore its variations should reflect the temporal variation in fSCA, which are more directly connected to snow dynamics than any of the precipitation products.


TABLE 2. Correlation coefficient of annual total snowfall between the snow reanalysis snowfall (ensemble median) and snowfall from other precipitation products (ERA5, APHRODITE-2, and MERRA-2).
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Snowfall Distribution With Elevation

Finally, we investigated the snowfall distribution with elevation in each tile. All the coarse gridded precipitation products (MERRA-2, ERA5, and APHRODITE-2) were bilinearly interpolated to the reanalysis model grid, and downscaled with the reanalysis-derived air temperature to obtain snowfall estimates in each elevation bin (Figure 9). The solid lines represent the snowfall distribution from the downscaled MERRA-2 (red) and snow reanalysis (ensemble median, blue), respectively, and the two dashed lines represent the snowfall distribution from the downscaled ERA5 (green), and APHRODITE-2 (black). It should be acknowledged that none of the coarse products are expected to accurately resolve elevational snowfall distributions (beyond large-scale precipitation variations resolved by the coarse grids); the comparison herein is mainly to identify differences in localized elevational snowfall gradients within a tile.
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FIGURE 9. Elevational distribution of annual total snowfall climatology (WY 2001–2015) from downscaled ERA5, downscaled APHRODITE-2, and downscaled MERRA-2 vs. the snow reanalysis (ensemble median). Tile labels in blue and orange text represent their locations in the western domain or central-eastern domain, respectively.


As expected, the snowfall exhibits positive elevational gradients across all products, where the gradient is highest for the snow reanalysis compared to other products (Figure 9). Taking tile 41°N 77°E as an example, snowfall from the snow reanalysis is 0 mm at the lowest elevations, but rapidly increased to around 1300 mm at the highest elevations (5000 m). For the other products in the same tile, while starting from 0 mm at the lowest elevations, snowfall at the highest elevations only ends up around 500 mm for MERRA-2, 400 mm for ERA5 and 250 mm for APHRODITE-2. The most notable differences in snowfall is observed in the elevation range between 4000 and 5000 m, where the magnitude of snowfall is comparable at 4000 m, but almost 2∼3 times higher in the snow reanalysis than other products at 5000 m. A similar feature is observed in other tiles, where the snow reanalysis shows the largest amount of snowfall in most elevation bins, followed by MERRA-2, ERA5, and APHRODITE-2. The magnitude of snowfall across all products are comparable at low-mid elevations, but diverge at high elevations, with a mild slope observed in MERRA-2, ERA5, and APHRODITE-2, with a steeper slope observed in the snow reanalysis. Exceptions are two southern tiles (27°N 90°E, 29°N 97°E) that snowfall estimates are consistent among snow reanalysis, MERRA-2 and ERA5 across all elevation bins, and a steep slope is also observed in the latter two products at the highest elevation ranges. This indicates the potential of bias-correction in snowfall from the snow reanalysis especially at high elevations, where fSCA information exist, but precipitation gauges do not.

Fitted with a linear regression (Table 3), the gradient of snowfall against elevation is highest in the snow reanalysis (451 mm/km), followed by MERRA-2 (252 mm/km), ERA5 (174 mm/km), and APHRODITE-2 (91 mm/km) on average. Overall, the snowfall gradients are highest (>300 mm/km) in one western tile (38°N 70°E), two southern tiles (29°N 82°E, 27°N 90°E), and one north-eastern tile (38°N 98°E). Specifically, the two southern tiles are strongly affected by the Indian monsoon thereby receiving significant amounts of precipitation in the summer. The phase of summer precipitation is therefore more sensitive to elevation, as lower elevations receive more rainfall and higher elevations receive more snowfall. In the other tiles that are affected by winter westerlies, the phase of winter precipitation may not be as dependent on elevation because of colder winter temperatures. In addition, the magnitude of precipitation brought by the Indian monsoon is much greater than the westerlies (Figure 3). Therefore, the southern tiles may still receive significant amounts of snowfall even in summer at the very high elevations, which accounts for the large snowfall gradients in these tiles.


TABLE 3. Snowfall gradients with elevation (mm/km) from the snow reanalysis (ensemble median) and other precipitation products (ERA5, APHRODITE-2, and MERRA-2) fitted with a linear regression.
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CONCLUSION

Using an “uninformed” prior estimate in a Bayesian snow reanalysis method, we parameterized the snowfall biases and uncertainties in MERRA-2 precipitation over the HMA region. The method was applied over 9 test tiles and spanned the WYs 2001–2015. The posterior scaling factor associated with using MERRA-2 as the nominal precipitation input ([image: image]) is effectively updated (from the prior uniform distribution) in most tiles featuring seasonal snow, which yields unimodal skewed uncertainty distributions that when fitted using lognormal distributions, exhibited tile-specific mean values ranging from 1.0 to 1.9 and tile-specific CV values ranging from 0.5 to 1.2. One tile in the northeastern Tibetan Plateau is an exception with mean values around 2.5, which is likely indicative of a less robust parameterization due to the fact that intermittent snow plays a more significant role in that tile. By merging the results across tiles, we were able to quantify a global uncertainty model in snowfall using a lognormal distribution with a mean of 1.54 (median of 1.19) and a CV of 0.83. The parameterized distribution indicates that MERRA-2 underestimates snowfall precipitation by ∼54% on average (when compared to the posterior reanalysis estimates) with significant uncertainty.

Estimates of the biases and uncertainty in snowfall from other gridded products (ERA5 and APHRODITE-2) were also derived in this study. Compared to the reanalysis snowfall, we found ERA5 and APHRODITE-2 generally, on average, underestimate snowfall by a factor of ∼1.78 (with a median scaling factor of 1.42) and ∼3.34 (with a median scaling factor of 2.51), respectively, over the HMA domain. The snowfall biases in MERRA-2 and ERA5 have similar magnitudes (where ERA5 is slightly larger), while that in APHRODITE-2 are much larger than the other two products, especially in the monsoon-influenced tiles. The biases in all datasets are generally lower in the western tiles compared to those in the central and eastern part of the domain.

In addition to the biases and uncertainties in b, we also examined the spatial-temporal distribution of snowfall in the snow reanalysis and other products used in this study. Significant heterogeneity is observed in the snow reanalysis snowfall compared to the downscaled MERRA-2, showing the snow reanalysis effectively downscales the coarse MERRA-2 by leveraging information in the higher-resolution fSCA data observed in each WY and in other model-based fields (i.e., terrain). In terms of annual snowfall time series, snowfall from the snow reanalysis is generally greater than that from MERRA-2, where ERA5 shows similar magnitudes as MERRA-2 and APHRODITE-2 significantly smaller than other products. The temporal correlation of snowfall between snow reanalysis and other products are mostly positive, and the averaged correlation coefficient across all tiles are between 0.42 and 0.63 for these products. The fact that the correlation is not higher is likely indicative of the impact of other factors (i.e., fSCA measurements) in the temporal variations in the posterior reanalysis estimates. Based on examination of the elevational distribution of snowfall, we found the snowfall gradients largest in the snow reanalysis followed by MERRA-2, ERA5, and APHRODITE-2.

Overall, this study shows the potential for using satellite snow observations as a constraint on models to infer biases and uncertainties in snowfall precipitation in remote regions and complex terrain where in situ stations are very scarce. The results indicate that snowfall precipitation is underestimated in most precipitation products, and the biases are higher in the gauge-based precipitation product. One limitation in this study is that the method relies on the seasonal cycle of snow accumulation and ablation captured by fSCA observations to condition snowfall. Therefore, it is expected that the Bayesian update will be more effective in snow-dominated regions that feature a clear seasonal signal, but less effective in regions with intermittent snow. The approach is best suited to estimating high elevation precipitation where snowfall dominates, but likely not very informative of low elevation precipitation where rainfall dominates. In this sense, this effort is complementary to gauge-based estimates, which are expected to perform best in lower elevations where the gauges reside, but may have difficulty extrapolating precipitation information to higher elevations. Results from this work are being used in the development of a snow reanalysis dataset over the full HMA domain. That effort should lead to a more complete picture of snowfall biases and space-time variations across the domain and could be used to further inter-compare products more broadly. Additionally, while this work focused on using MERRA-2 as the baseline input to the snow reanalysis scheme, future work could examine the usage of ERA5 and/or products in combination to more thoroughly represent the uncertainty in precipitation in such domains.
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The formation and expansion of Himalayan glacial lakes has implications for glacier dynamics, mass balance and glacial lake outburst floods (GLOFs). Subaerial and subaqueous calving is an important component of glacier mass loss but they have been difficult to track due to spatiotemporal resolution limitations in remote sensing data and few field observations. In this study, we used near-daily 3 m resolution PlanetScope imagery in conjunction with an uncrewed aerial vehicle (UAV) survey to quantify calving events and derive an empirical area–volume relationship to estimate calved glacier volume from planimetric iceberg areas. A calving event at Thulagi Glacier in 2017 was observed by satellite from before and during the event to nearly complete melting of the icebergs, and was observed in situ midway through the melting period, thus giving insights into the melting processes. In situ measurements of Thulagi Lake’s surface and water column indicate that daytime sunlight absorption heats mainly just the top metre of water, but this heat is efficiently mixed downwards through the top tens of metres due to forced convection by wind-blown icebergs; this heat then is retained by the lake and is available to melt the icebergs. Using satellite data, we assess seasonal glacier velocities, lake thermal regime and glacier surface elevation change for Thulagi, Lower Barun and Lhotse Shar glaciers and their associated lakes. The data reveal widely varying trends, likely signifying divergent future evolution. Glacier velocities derived from 1960/70s declassified Corona satellite imagery revealed evidence of glacier deceleration for Thulagi and Lhotse Shar glaciers, but acceleration at Lower Barun Glacier following lake development. We used published modelled ice thickness data to show that upon reaching their maximum extents, Imja, Lower Barun and Thulagi lakes will contain, respectively, about 90 × 106, 62 × 106 and 5 × 106 m3 of additional water compared to their 2018 volumes. Understanding lake–glacier interactions is essential to predict future glacier mass loss, lake formation and associated hazards.

Keywords: glacial lake, calving, lake temperature, icebergs, NDWI, Corona, structure from motion, glacier velocity


INTRODUCTION

Many ice-contact proglacial and supraglacial lakes are expanding across the central and eastern Himalaya in response to prevailing negative glacier mass balance conditions (Bolch et al., 2012; Brun et al., 2017a; Nie et al., 2017; Song et al., 2017). Proglacial lakes can form when supraglacial ponds begin to coalesce on low-gradient debris-covered glacier termini (Reynolds, 2000; Quincey et al., 2007; Benn et al., 2012). An enlarged supraglacial lake can initiate rapid calving retreat at ice cliffs (Sakai et al., 2009), expand across the width of the glacier and melt through to the glacier bed. This process can isolate the debris-covered glacier terminus, which typically remains as a stagnant (non-flowing) ice-cored moraine dam. The ice-cored moraine normally melts slowly due to the insulating debris cover (Pickard, 1983; Richardson and Reynolds, 2000b). Calving retreat of the active glacier on the up-valley side of the lake then may lead to lake expansion, until the valley floor intersects the lake level (Chinn et al., 2014), at which time the glacier physically detaches from the lake (Warren, 1991; Kirkbride, 1993; Sakai et al., 2009; Somos-Valenzuela et al., 2014; Haritashya et al., 2018). An ice-cored moraine of such a lake can erode thermally, thereby lowering and shrinking the lake. While the ice-cored moraine dam is in substantial direct contact with the lake, the system is metastable and some can be so unstable that a glacial lake outburst flood (GLOF) may occur due to dam breakup or overtopping and rapid erosional incision (Richardson and Reynolds, 2000a; ICIMOD, 2011; Rounce et al., 2017). GLOFs have large socioeconomic impacts in many regions of the world, including the Himalaya (Carrivick and Tweed, 2016), and are expected to increase in frequency in coming decades (Harrison et al., 2018), although GLOF reporting bias complicates historical trend analysis (Veh et al., 2019). Nonetheless, the physics and consequence of glacier-lake thermal and physical interactions are important to document and understand.

The glacial lake calving regime responds to lakebed topography at the calving front; water temperature, depth, their seasonal fluctuations and circulation patterns; air temperature, solar insolation, glacier debris cover and melting and glacier velocity and ice thickness at the calving front (Kirkbride and Warren, 1997; Rohl, 2006; Benn et al., 2007; Sakai et al., 2009). Calving can become an important component of mass loss for glaciers terminating into proglacial lakes (Sakai et al., 2009; Carrivick and Tweed, 2013; Maurer et al., 2016) and can decouple glacier mass loss from climate forcing due to heat absorption by the lake (Bolch et al., 2012). Glaciers typically exhibit high rates of mass loss close to the glacier terminus due to direct melting and thinning at the lower elevations, but for non-calving debris-covered glaciers the maximum ablation rates are commonly shifted up-glacier due to the influence of the thickest insulating debris near the terminus (Reznichenko et al., 2010; Benn et al., 2012). When calving into a proglacial lake is involved, mass loss is shifted dramatically to the calving front (Bolch et al., 2011; Thakuri et al., 2016; King et al., 2018). However, rates of mass loss are spatially variable on both calving and non-calving glaciers due to variable debris thickness and the distribution of supraglacial ponds and ice cliffs (Nicholson and Benn, 2013; Immerzeel et al., 2014; Buri et al., 2016; Miles et al., 2017; Watson et al., 2017b), and variations in microclimate parameters, such as due to radiative and climatic orography (Heynen et al., 2016). Recently, it was shown that Himalayan glaciers connecting with larger proglacial lakes are shrinking more rapidly than glaciers lacking them (Maurer et al., 2019). That finding is consistent with limnological control of glacier dynamics adding to or sometimes exceeding climatic control (Haritashya et al., 2018), as first conceived for Tasman Glacier and its lake (Kirkbride and Warren, 1997), which evolved much as predicted by Kirkbride and Warren (Chinn et al., 2014).

Observations of calving and the presence of icebergs in Himalayan glacial lakes have received little attention due to infrequent satellite observations capable of resolving the icebergs and difficult field access. However, icebergs and ice rafted debris hinder glacial lake classification when misclassified as glacier or land (Strozzi et al., 2012). Deriving the volume of floating ice could be used to infer subaerial or subaqueous calved volume, the latter of which cannot be discerned by differencing digital elevation models (DEMs). Multitemporal DEMs were used to derive iceberg volume change and an empirical relationship between iceberg area and volume for Greenland icebergs, allowing volume to be estimated using only a satellite-derived iceberg area (Enderlin and Hamilton, 2014; Sulak et al., 2017). A similar approach could be valuable for assessing calving events at Himalayan glacial lakes. Additionally, satellite-derived water temperatures were used to discriminate the hydrological connectivity of Himalayan supraglacial lakes and the available energy to melt additional glacier ice during lake expansion or drainage (Wessels et al., 2002). However, the time series of satellite-derived thermal data from the ASTER and Landsat programmes has not yet been exploited to explore water temperatures and seasonal variation affecting the lake–glacier interface.

In this study, we used optical and thermal satellite data and field surveys to quantify calving, thermal regime and calving events at the proglacial Thulagi Lake in Nepal. We then compare Thulagi to two rapidly expanding proglacial lakes at higher altitude (Imja and Lower Barun) (Figure 1). Our objectives are to: (1) quantify the areal evolution of icebergs at Thulagi Lake following multiple calving events in 2017; (2) assess the utility of deriving area-volume relationships for icebergs using DEMs of their above-surface topography and (3) investigate the role of calving and lake thermal regimes on glacier dynamics and future lake expansion.
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FIGURE 1. Location of the study glaciers and lakes in Nepal. (A–C) Elevations and hillshades are from the AW3D30 DEM. Debris-covered extents are shown from Kraaijenbrink et al. (2017). The inset has a Natural Earth shaded relief background.




STUDY SITES AND METHODS


Study Sites

Thulagi, Lower Barun and Imja glacial lakes are located at altitudes of ∼4045, 4538 and 5005 m a.s.l., with maximum observed depths of 76 m (October 2017), 205 m (October 2015) and 150 m (October 2014), respectively (Table 1) (Haritashya et al., 2018). ICIMOD (2011) classified all three lakes as Category 1 high priority lakes for extensive field investigation and mapping due to their high potential GLOF hazard. Rounce et al. (2017) classified Thulagi and Imja lakes as moderate hazards due to the lack of avalanche trajectories that could enter the lakes, whereas Lower Barun was classified as a high hazard. Along the glacier centreline, Thulagi Lake expanded by 203 m (2008–2018) compared to 614 m for Lower Barun and 729 m for Imja (Haritashya et al., 2018). Imja Lake was reportedly lowered by 3 m in 2016 to reduce its hazard but a corresponding change in lake area was unclear (Lala et al., 2018).


TABLE 1. Lake characteristics.
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Thulagi Lake Field Surveys

An uncrewed aerial vehicle (UAV) survey was flown at Thulagi Lake on 27 October 2017 using a DJI Phantom 4 Pro + operated from the lake shore. The UAV collected still images every 2 s with an oblique viewing angle, which were processed following a structure from motion with multi-view stereo (hereafter SfM) workflow to generate topography and an orthophoto (e.g. James and Robson, 2012; Westoby et al., 2012; Smith et al., 2015) (section ‘Structure-From-Motion Model Generation and Iceberg Volume’). Ground control points (G) were collected around the lake on lateral moraines and stable ground in October 2018 using Emlid Reach RS L1 Global Navigation Satellite System (GNSS) receivers (Figure 1A). GCPs were collected on large boulders that were occupied with a receiver for approximately 10 min at each point. A second receiver was used as a temporary base station.

The vertical water temperature profile was measured at Thulagi Lake using six temperature sensors on a rope that were set to log with a 10-min interval (28–30 October 2017). The rope was suspended by buoys at the lake surface and anchored by a rock on the lakebed, and contained one sensor slightly submerged (a few centimetres deep) near the lake surface and at depths of 1, 2, 5, 10 and 55 m (on the lakebed). Except for the sensor on the lakebed, the sensors (TinyTag TGC-0020) were rated to 15 m maximum depth with a manufacturer stated accuracy of ∼0.5°C. The temperature sensor on the lakebed (TinyTag Aquatic 2) was rated to 500 m maximum depth with an accuracy of 0.5°C. Temperature sensor calibration in a controlled temperature environment (4.5°C) indicated a relative accuracy (precision) of ± 0.04°C. A HOBO Onset MX2001 (accuracy ± 0.44°C) was used to measure the water temperature at ∼1 m depth in the outlet of Thulagi Lake.

The downwelling panchromatic light intensity in the water column, integrated over nearly a hemisphere, was measured using a Li-Cor sensor down to about four metres depth. The light field also must involve upwelling light, but this is a small fraction of the downwelling beam and was not measured. The measurements were recorded as a function of time, and depth was reconstructed based on the deployment geometry of the cable connected to the sensor and the known distance interval as the sensor was increasingly submerged to record light intensity. Several profiles were taken, but we use only the highest quality profile; the others were disturbed by the passage of clouds, the accidental movement of the kayak over the light sensor, instability of the deployment geometry and so on. With the best quality profile, the light sensor was deployed in such a way as to minimise the interference by the kayak, from which the sensor was deployed. The sky was slightly hazy but gave uniform incident solar radiation, with no dense clouds or clearings passing by during the measurements. The light field was first measured just above and just beneath the water surface. Then the sensor cable, to which we had applied length markings to provide submergence information, was extended by fixed increments to the best of our ability to maintain steady manual deployment and for kayak station keeping relative to the cable deployment point. The deployment methodology allowed the vertical depth of the sensor, hence the vertical profile of downwelling light intensity, to be reconstructed. The water was optically thick (deep), such that no bottom reflectance was sensed.



Iceberg Calving


Iceberg Delineation

The areal extent of glacier calving and icebergs were derived using 35 PlanetScope satellite images collected 16 April 2017–28 November 2017 with acquisition times ranging from 10:01 AM Nepal Time (NPT) to 11:12 AM (Supplementary Table S1). The imagery were acquired at ∼3.7 m resolution but delivered at 3 m resolution after orthorectification and processing to surface reflectance (Planet Team, 2019). Icebergs were semi-automatically classified in cloud-free satellite imagery using manually determined thresholds (t) applied to a normalised difference water index (NDWI) band ratio of near-infrared (NIR) and green 3 m resolution PlanetScope bands (Eq. 1) (Figure 2A).
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FIGURE 2. (A) Calved area of Thulagi Glacier shown on a PlanetScope satellite image (27 October 2017). Inset shows iceberg classification (white polygon) on an NDWI image. (B) Orthophoto generated from UAV flights on 27 October 2017. Inset shows the same icebergs as A. (C) Oblique view of the structure-from-motion model showing icebergs (white) and the calved area shifted up-glacier in order to estimate the calving event volume. (D) Height above lake level used to estimate the volume of the calved area.
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NDWIIceberg thresholds ranged from −0.23 to 0.01 and were determined through manual inspection of iceberg classification with NIR, blue and red band false colour composites. The thresholded band ratio image was masked to the lake boundary and was used to extract the area and number of icebergs in each image (e.g. Figure 2A). Manual adjustment of the iceberg polygons was required in several cases to remove areas of brash ice or of shadow at the calving front in some images. Uncertainty in the iceberg delineation was estimated using a ± 0.5 pixel boundary to account for systematic over- or under-estimation of iceberg area due to the use of variable band ratio thresholds. The relative precision of image-to-image area measurements is better than the absolute accuracy; hence, we also report the random uncertainty following Krumwiede et al. (2014).



Structure-From-Motion Model Generation and Iceberg Volume

Images from the UAV survey (n = 431) were processed in Agisoft Photoscan 1.3.5 following an SfM workflow with ‘high’ quality settings. Points with a reprojection error > 0.6 pixels and clear outliers were excluded from the sparse point clouds. Dense point clouds were used to generate a DEM and orthophoto at 0.5 and 0.2 m resolution, respectively. Seven GCPs within the UAV survey extent were used to georeference the model. GNSS data were processed using RTKLIB (RTKPOST v.2.4.3. Emlid b28) using precise global positioning system (GPS) and global navigation satellite system (GLONASS) ephemeris data. First, the temporary base station data were processed against the UNAVCO permanent base station at Lamjung (∼38 km away). Second, the mobile rover data were processed against the corrected temporary base station location to extract GCPs for use in the SfM model. The final model had a root-mean-square error (RMSE) of 0.56 m.

Icebergs were manually digitised in Photoscan using the generated orthophoto (Figure 2B). We could not use the spectral ratio above to delineate icebergs in the UAV imagery since the onboard camera only had RGB bands. The iceberg polygons were used to clip the dense point cloud, which was then rasterised at 0.5 m resolution in CloudCompare using the mean point elevation in each cell. Above-surface iceberg volumes were calculated using the iceberg elevation above the lake level, which was derived through inspection of the shoreline elevation in the SfM model. Two example iceberg profiles are shown in Supplementary Figure S1. The model RMSE (0.56 m) was used to derive upper and lower bounds of the lake level, which affects the relative iceberg height. Total iceberg volume was calculated assuming 91.7% of the iceberg lies beneath the water line (from an ice density of 917 kg m3).

Iceberg volumes at Lower Barun Lake were derived using a 2 m resolution DEM (15 January 2015) (Shean, 2017). The mean lake elevation respective to the DEM (4503.59 m ellipsoid), and one standard deviation (0.13 m) was calculated using a 0.3 km2 iceberg-free patch of the lake. The lake was frozen at the time of DEM acquisition, so we used a minimum elevation of 0.5 m above the lake surface to separate icebergs from the frozen and snow-covered lake surface. Icebergs were converted to polygons and manually edited where required. The total iceberg volume at Lower Barun was derived following the method applied at Thulagi Lake, but using ± 0.13 m as the lake level uncertainty, which was equal to one standard deviation of the mean lake surface elevation.



Calving Volume

The total area change at the glacier terminus due to two calving events was estimated using PlanetScope images from 16 April 2017 and 9 September 2017, which extended across both calving events (Figure 3). The glacier terminus, split into a lower ice ledge and the main glacier, was manually digitised in each image (Figure 2A). The post-calving terminus location was converted to points at 1 m intervals, which were shifted up-glacier using the summer velocity raster (section ‘Satellite Measurements of Glacier Velocity’) and a 146-day separation period to remove the effect of glacier displacement (mean of ∼7 m across the calving front). The calved area was then delineated as the area between the two terminus lines. Since pre- and post-calving DEMs were not available, we estimated the above lake height of the calved glacier using the SfM model (27 October 2017) (Figure 2D). The area of the calved glacier was manually translated up-glacier and the height values were used to calculate the above-lake volume (Figures 2C,D). Here we assume that the contemporary glacier surface was similar in morphology to the area that calved. The below-surface calved volume was estimated using lake bathymetry from Haritashya et al. (2018) within the calved area. Since the bathymetry survey did not extend fully into the calved area, we allocated depth values to NoData areas using the values of the nearest neighbour. The total calving volume was estimated as the sum of the above- and below-surface volumes for the area of calved terminus. We did not attempt to estimate the volume of the lower ledge since the height and below-surface characteristics were unknown. None of the glaciers are expected to have large sectors of their tongues in flotation except for thinned areas near the margins of the tongue (Haritashya et al., 2018) and some sections where thermal undercutting occurs (see section ‘Discussion’).
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FIGURE 3. PlanetScope satellite image showing (A) the calving front of Thulagi Glacier on 16 April 2017, (B) 7 September 2017 and (C) post-calving (second event) 9 September 2017. (D) Area and number of icebergs on Thulagi Lake classified using PlanetScope imagery. (E) The relationship between planimetric iceberg area and total iceberg volume derived at Thulagi (n = 181) and Lower Barun (n = 389) lakes. (F) Conceptual diagram of glacier calving.




Satellite Measurements of Lake Temperature

ASTER L2 Surface Kinetic Temperature images collected 17 February 2001–27 October 2017 (10:38–11:09 NPT) were used to quantify seasonal lake temperature (Supplementary Table S2). The data are delivered at ∼100 m resolution; however, the thermal signature of each pixel is influenced by the neighbouring ∼2 pixels (Ramachandran et al., 2014). To calculate the mean lake temperature for each image, we applied an internal buffer of 150 m to the lake boundaries and used the remaining pixels in the lake interior to derive the lake temperature, excluding any pixels containing icebergs. We also used the thermal infrared bands of Landsat 5, 7 and 8, which generally had a slightly earlier acquisition time compared to ASTER (∼30 min earlier), to derive lake temperatures 2000–2018 using the Google Earth Engine (GEE)-based Landsat Land Surface Temperature tool (Parastatidis et al., 2017). The tool used a single channel algorithm applied to thermal infrared data and includes atmospheric and emissivity corrections, and the application of a cloud mask. We removed observations with a standard deviation greater than 2°C, which can signal thermal contamination from icebergs, including possible debris. The Landsat thermal observations are much more abundant than ASTER, although their spatial resolution is lower than ASTER and more model-dependent and perhaps less accurate due to having fewer bands (one band Landsat 5 and 7, two bands Landsat 8, five bands ASTER), and Landsat probably has a similar adjacency effect as ASTER.



Satellite Measurements of Glacier Velocity


Corona Pre-processing

Several studies have shown that subsets of declassified stereo Corona satellite imagery (<5 m spatial resolution, available from https://earthexplorer.usgs.gov/) can be processed using photogrammtery software packages without knowledge of the panoramic distortion model present in the imagery (Altmaier and Kany, 2002; Casana and Cothren, 2007; Watanabe et al., 2017). Here, we follow Casana and Cothren (2007) to process subsets of the imagery (∼4000 × 4000 pixels) for each glacier in Agisoft Metashape 1.5.1 by treating images as a frame camera. Ground control points were added using a Pléiades DEM and orthoimage of Imja/Lhotse Shar, and GoogleEarth for Thulagi and Lower Barun. Control point RMSE (XYZ) for the models was 5 m at Lhotse Shar, 12 m at Thulagi and 19 m at Lower Barun. We follow a similar method to that recently proposed by Cook and Dietze (2019) to align the Corona images by initially processing the images from different years in the same chunk during the image alignment step, which permits matching of stable ground but does not match the dynamic glacier surface. The images from the two time periods are then separated before processing the dense cloud, DEM and co-registered orthophotos. In the case of Thulagi and Lower Barun where suitable stereo imagery was not available for multiple time periods, we orthorectify images using a single DEM.



Feature Tracking

The ENVI software add-on Cosi-Corr (Leprince et al., 2007) was used to derive glacier velocity for pairs of Sentinel-2 (10 m resolution) and PlanetScope (3 m resolution) satellite images (2016–2018) applied to the near infrared bands (Table 2). We selected images to cover annual, summer and winter periods; however, the presence of snow and cloud cover dictated the image availability for the summer and winter comparisons. We used a correlation window of 64 to 16 pixels with a step size of four pixels for the Sentinel-2 imagery, 128 to 16 pixels with a step size of 4 pixels for the PlanetScope imagery and 64 to 16 (Thulagi and Lhotse Shar) and 128 to 32 (Lower Barun) pixels for Corona imagery. Post-processing of the data included a signal-to-noise threshold of > 0.95, a displacement direction filter to exclude pixels deviating more than 45° from the median direction within a circle of radius nine pixels, and a focal mean of 3 × 3 pixels was used to fill small gaps. Off-glacier displacement was calculated on slopes < 20° to estimate the velocity uncertainty in the Sentinel-2 and PlanetScope correlations (e.g. Quincey et al., 2009). Corona uncertainties were assessed using the mean off-glacier displacement in a manually defined 9 km2 area of stable ground adjacent to the glaciers, which was required to exclude areas of poor correlation due to image contrast and shadows.


TABLE 2. Glacier velocity data.
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Glacier and Lake Characteristics

Ice cliffs, supraglacial ponds, supraglacial streams, crevasses and lateral moraines of the three study glaciers were manually digitised using fine-resolution satellite imagery in Google Earth from 2015. The ice cliff and supraglacial ponds data of Watson et al. (2017a) for 2015 were combined and used for Imja and Lhotse Shar glaciers. Lake depth and glacier ice thickness at the calving front were derived for each glacier (Supplementary Figure S2). Here, the raw bathymetry data points of Haritashya et al. (2018) were used to derive the lake depth. Ice thickness was derived from the modelled ice thickness data of Farinotti et al. (2019), which is an ensemble of model outputs used to improve overall robustness (Farinotti et al., 2017). The ice thickness dataset was also used to identify glacier bed overdeepenings in conjunction with glacier surface topography from the ALOS World 3D–30 m (AW3D30) DEM. Mean lake expansion rates 2008–2018 (Haritashya et al., 2018) were used to approximate future lake expansion (e.g. Rounce et al., 2016), although the assumption of a constant expansion rate and uncertainties in modelled ice thickness data (e.g. Farinotti et al., 2019) mean that the predictions should be revised through time. Glacier mass balance was derived using the surface elevation change and uncertainty data of Brun et al. (2017b), which was gap-filled using the median elevation change in each 100 m elevation band (e.g. Ragettli et al., 2016).

We use the flotation thickness hf to determine how close the glacier termini are to flotation (Boyce et al., 2007):

[image: image]

where d is the water depth, ρw is the density of water (1000 kg m3) and ρi is the density of ice (917 kg m3) (e.g. Carrivick et al., 2017).



RESULTS


Thulagi Lake Iceberg Production and Evolution

We observed two iceberg production events in 2017. The first occurred 30 June–14 July 2017; however, the exact date is unknown due to cloud cover in the satellite imagery. This first event did not appear linked to subaerial glacier calving and an ice ledge appeared, suggesting flotation of subaqueous ice occured, probably from a submerged part of an ice ramp (Supplementary Figure S3b). The second event began with crevasse expansion at the glacier terminus, which was visible on 30 August 2017, and calving occurred 7–8 September 2017 (Figure 3). The total calved area was comprised of a lower ramp (17,100 m2) and the main icewall-fronted glacier terminus (6800 m2). We estimated the calved area of the glacier terminus to have an above-lake volume of 307,000 m3 and a submerged volume of 180,000 m3, suggesting that this sector of the glacier was grounded. The volume of the lower ledge could not be calculated; therefore, the total calved volume of 487,000 m3 is likely a lower bound.

The area and number of icebergs (n = 135) produced in the first calving event decreased over the summer, before increasing during the second event to an area of 32,600 m2 on 9 September 2017 (Figure 3D). Notably, the areal increase of icebergs associated with the second event was small, despite a large number of icebergs (n = 172 on 9 September 2017). The rate of iceberg shrinkage slowed throughout the year, but the iceberg area decreased until November 2017 when most icebergs had melted. Icebergs were wind-drifted across the lake over the study period and collected preferentially at the glacier terminus and the lake outlet, as observed by a compilation of positions of icebergs in the morning satellite imagery acquisitions (Supplementary Figure S4). Satellite imagery show that icebergs shifted back and forth across the length of the lake, but the period was not possible to rigorously estimate by satellite because the imaging times lacked coverage through the day and night (cf section ‘Lake Surface Temperature Depression Due to the September 2017 Calving Event’).



Iceberg Areas, Heights and Volumes

Icebergs in Thulagi Lake (27 October 2017) had a mean planimetric area of 55 m2 and a maximum area and height of 710 m2 and 4 m. By comparison, icebergs in Lower Barun Lake (15 January 2015) had a mean planimetric area of 270 m2 and a maximum area and height of 13,800 m2 and 11 m. The difference may relate to the differing thicknesses of the two glaciers, different ice wall heights and differing lake depths and ability to float icebergs. The iceberg heights imply submerged depths that extend 10–11 times deeper than their heights, so up to a maximum of around 40 m below-water roots for Thulagi’s biggest icebergs and 110 m for Lower Barun’s. These are both well within flotation over much of the lakes’ areas.

Icebergs displayed a similar area-volume relationship for both Thulagi and Lower Barun Lakes (Figure 3E). The total above-surface volume of Thulagi icebergs (27 October 2017) was 11,500 ± 5400 m3, which suggests a total iceberg volume of 139,000 ± 65,000 m3 assuming that 91.7% of the iceberg volume was below the waterline. The volumes of course would be lower if a lower iceberg mean density was adopted. Using the derived area–volume equations for either Thulagi or Lower Barun (Figure 3E), approximately 80% of the total iceberg volume was predicted using the planimetric iceberg areas from 27 October 2017. Approximately 70% of the iceberg volume at Lower Barun Lake was predicted using the same equations applied to the iceberg areas dataset from 15 January 2015.



Lake Temperature and Other Water Conditions


Satellite Surface Temperature Measurements

As expected, lake surface temperatures follow a seasonal cycle related to spring thawing of the lakes’ surfaces, a peak temperature during or shortly after the summer monsoon, followed by decreasing temperatures until the lakes freeze when approaching winter (Figures 4A,B). The warmest mean lake temperatures observed with ASTER and Landsat thermal imagery were 10.7 and 10.8°C for Thulagi Lake on 29 September 2015 and 30 September 2016; 4.2 and 7.2°C at Lower Barun Lake on 9 October 2004 and 30 September 2015 and 8.6 and 9.6°C for Imja Lake on 9 October 2004. When interpreting Figure 4, we should recall the RMSE evaluated for Landsat 8 surface temperatures of + −1.6–2 K (García-Santos et al., 2018) and ASTER (about + −0.8 K, Ramachandran et al., 2014), and the temperature bias of + 0.8 K for ASTER (Ramachandran et al., 2014). Considering these errors, it may be seen that Thulagi Lake well exceeds the 4°C density-maximum temperature of water, but for Lower Barun, it did not clearly ever exceed that temperature. Imja Lake might significantly exceed the 4° threshold in some September and early October measurements, but for the most part it also remains near or below 4°C. Satellite-based observations were sparse during the summer monsoon due to the presence of cloud cover but generally show a plateau or depression of temperatures during the monsoon (Figure 4B). Lake temperature comparisons between ASTER and Landsat thermal data had an RMSE (mean difference) of 1.1°C (Figure 4D), which is comparable to the RMSE of 1.52°C (between ASTER and Landsat sensors) found by Parastatidis et al. (2017) for land surfaces. ASTER might be more accurate as temperature is derived from five bands, instead of two for Landsat 8, but Landsat 8 gives a much better frequency of measurements.
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FIGURE 4. (A) Mean lake temperature derived from ASTER L2 Surface Kinetic Temperature data (n = 17, 14 and 21, for Imja, Lower Barun and Thulagi, respectively). Error bars indicate one standard deviation. (B) Mean lake temperature from Landsat thermal data (n = 300, 291 and 338, for Imja, Lower Barun and Thulagi, respectively). (C) Vertical temperature profile at Thulagi Lake (28–30 October 2017). (D) Comparison of coincident ASTER- and Landsat-derived lake temperatures (n = 24).


Satellite thermometry and imaging shows that Thulagi Lake is likely dimictic (two distinct convective mixings per year and intervening periods of thermally density stratified conditions)—with formation of lake ice in the winter, and surface temperatures exceeding 4°C in summer and early autumn. We infer that spring and autumn temperature-driven convective overturning likely occurs—in accordance with the lake classification by Lewis (1983). Calculations of lake overturning are complicated by the presence of a high suspended sediment load and forced convection driven by wind and iceberg drift (see Supplementary Figure S5). However, as considered below, the lake appears to be very well mixed in suspended load at least in the upper few metres and across the whole lake surface, so the 4°C maximum density of pure water still likely controls density stratification and lake overturning by thermal convection, but forced convection is a different matter. The depths, elevations and latitudes of Lower Barun and Imja Lake also place them firmly into a region where dominantly monomict behaviour (one overturning per year) and temperatures attaining a maximum of 4°C or less are expected (Lewis, 1983).



Lake Surface Temperature Depression Due to the September 2017 Calving Event

Supplementary Figure S6 is the same multi-year compiled lake surface data from Landsat 8 shown in Figure 4B for Thulagi Lake. As mentioned, there is a plateau of temperatures related to the monsoon. The 2017 data show what appears to be a strong temperature depression starting at the time of the September calving event, and cold-water conditions continued while iceberg melting was in progress. The thermal influence of icebergs is likely caused by iceberg generation of meltwater. A mechanism to cool the lake quickly: The meltwater does not initially mix, and 0°C water is buoyant relative to warmer underlying ambient lake water (up to 8°C if pure water, or up to almost 12°C if underlying lake water contains 500 mg/l suspended sediment). So the meltwater spreads over the lake quickly. However, thermal convection and forced convection must mix this water over the upper 30–40 m of the lake (section ‘Iceberg Areas, Heights and Volumes’).

The depression of temperatures by roughly 2°C in the first several days relative to the seasonal normal (running average in Supplementary Figure S6) represents a lot of rapidly lost energy which most likely went into melting of ice. If this temperature depression occurred throughout the upper 40 m—a volume of roughly 3.2 × 107 m3 of water—implies a thermal energy loss during those days of about 2.7 × 1014 J as calculated from the heat capacity of liquid water. When calculated as a volume of ice that must melt in order to drive that much cooling (the enthalpy of melting—rendered as per cubic metre of ice— is 3.06 × 108 J/m3), we find that about 880,000 m3 of ice must have melted in the first days of the calving event to drive temperatures that low, assuming the cooled water was mixed over the top 40 m of the lake. This is about double the lower limit of the amount of calved ice as calculated in Section ‘Thulagi Lake Iceberg Production and Evolution’. The numbers may be brought into alignment if mixing was not initially thorough through the upper 40 m. However, certainly by some weeks into the event, the upper 40 m would have become well mixed, and still temperatures were depressed by roughly 2°C. It is possible that the autumn was colder than normal, thus explaining the temperature depression. However, seeing the number of record-cold and near-record cold lake temperature measurements during that period, we think melting ice is the cause, and that the amount is roughly as estimated—880,000 m3. In turn, this implies that much of the ice came from the submerged ice ramp, as that volume was not determined in Section ‘Thulagi Lake Iceberg Production and Evolution’.



In situ Temperature Measurements and Weather Conditions of Thulagi Lake

During our bathymetry surveys, we visually observed icebergs drifting each afternoon at estimated speeds of a few hundred metres per hour as katabatic breezes blew up the valley. The afternoon winds generally brought clouds, falling temperatures and then rain or snow by midafternoon, when icebergs also converged near the upstream end of the lake. Each night icebergs tended to shift down the lake, converging by morning near the downstream end, completing a daily cycle.

We measured the temperature of the water column in Thulagi Lake for just over 48 h, 28–30 October 2017 using six thermistors at one site (Figure 4C). At that time, nightly lake ice was forming over part of the lake surface and melting by mid-morning. Icebergs were plying the lake surface as driven by daily reversing katabatic winds and the lake water currents (section ‘Thulagi Lake Iceberg Production and Evolution’), which also are mostly wind driven. Most of the large icebergs had surface elevations about 2–3 m above lake surface, implying depths extending to 20–30 m, and deeper for the very largest icebergs. Direct comparisons between satellite- and field-derived water temperatures were only available on 4th and 5th November at ∼10:30 NPT. The mean field-derived temperature (2.6°C) was 0.6°C lower than the satellite-derived temperature (3.2°C) but the measurements had overlapping error bars (Supplementary Figure S7).

The surface water had the largest thermal cycling, as one would expect from solar heating and nightly cooling. Convection—both free thermal convection and forced wind- and iceberg-drift-driven—was also clearly affecting the surface water and down to 10 m depth (Figure 4C). Thermal oscillations decreased in magnitude with depth down to 10 m. In general, the surface water was the coldest, and the deepest water the warmest during the period of measurement, implying an overall stable density stratification at that time in the year. However, with the daily cycle of solar heating, the surface warmed briefly to become the warmest measured. Since all the in situ measured temperatures were below 4°C, and since turbidity was nearly constant close to the surface both across the lake and with depth in the upper few metres [hence, the effect of suspended sediment on density was constant, section ‘In situ Light Level (Turbidity) Measurements of the Water Column’] (Supplementary Figure S8), we conclude that thermal convection must have been occurring in the upper metre during those warmest parts of the mid-day. Otherwise, all indications of convection must involve forced convection by either wind-driven currents and wind-driven iceberg ploughing of the water column.

At the lake bottom, the measured temperature at 55 m depth was steady and so was not mixing with shallow water. Clearly, there was a thermocline somewhere between 10 and 55 m depth, and we surmise that it was likely around 30–40 m deep, where forced convection by passing icebergs probably became minimal. Excluding only the bottom thermistor (55 m deep), the temperatures at all depths from near surface to 10 m almost converged for each of 3 days roughly mid-day. We believe this was due to nearly thorough mixing of at least the upper 10 m caused by a combination of daytime warming of the lake surface layer by solar heating, thermal convection and forced convection by wind-driven currents and drifting icebergs. A similar convergence did not occur at night, when instead the surface water plunged in temperature. However, the surface temperature showed short-term thermal oscillations that were sympathetic with measurements made at 1, 2 and 5 m, again indicating that convection was occurring in the upper water column during the night also. Such convection must be forced, not free thermally driven convection.



In situ Light Level (Turbidity) Measurements of the Water Column

Measurements of downwelling panchromatic light intensity show a monotonic log-linear (exponential) decrease in light intensity (Supplementary Figure S8). The implications are that: (a) The turbidity of the water column in the upper four metres is uniform, hence suggesting thorough mixing on time scales that are short compared to expected seasonally variable inputs, settling and stream discharge of suspended sediment. (b) Solar heating is primarily in the upper metre of the lake, and almost all the rest is absorbed in the next few metres. The measured local solar absorption rate in the visible wavelengths, recalculated for the sun at zenth, is a factor of two for every 71 cm increase of depth. (c) Since thermal conduction is not significant on time scales of days and distances of metres, we also infer any changes of temperature beneath of a few metres (Figure 4C) is due to convection, either forced or free, or due to uptake of heat by melting of passing icebergs.



Glacier Dynamics

Thulagi Glacier is heavily crevassed in the lower 500 m (Figure 5A). Ice cliffs are prevalent farther up-glacier and supraglacial ponds only have sporadic coverage. A network of supraglacial streams was present, which appear to transition englacially upon their termination. Lower Barun Glacier was comparable to Thulagi Glacier for the size of debris-covered area, supraglacial pond coverage and ice cliff density (Table 3). Thulagi and Lower Barun glaciers also had a similar mass balance of −0.21 ± 0.38 and −0.20 ± 0.31 m.w.e. a–1, respectively (2000–2016) (Table 1). Imja/Lhotse Shar Glacier had a three times larger debris-covered area (6 vs. 2 km2) and percentage pond coverage compared to Thulagi and Lower Barun Glaciers but a similar ice cliff density (Table 3). All three glaciers display high rates of surface lowering in their debris-covered areas (Figure 6).
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FIGURE 5. Surface morphology of (A) Thulagi Glacier (inset is a terminus photo from October 2017) and (B) Lower Barun and Lhotse Shar/Imja glaciers. (C) Aerial photographs of the calving fronts of Lower Barun (left) and Lhotse Shar Glacier (right) taken October 2015.



TABLE 3. Glacier surface features in 2015.
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FIGURE 6. Centreline profiles (shown in Figure 1) for (A) Thulagi, (B) Lower Barun and (C) Lhotse Shar/Imja Lake. Lake bathymetry data are from Haritashya et al. (2018), surface elevation change data are from Brun et al. (2017b), ice thickness data are from Farinotti et al. (2019) and glacier topography from the AW3D30 DEM. Note that the exact nature of the lake–glacier interface is not known for the three lakes.


All glaciers in the current study exhibit active flow in their debris-covered ablation areas (Figure 7); however, velocities were lowest for Imja and Lower Barun Glaciers, and highest for Thulagi Glacier, which had increasing velocities with distance up-glacier. Thulagi Glacier displayed summer velocity acceleration within ∼1 km of the terminus and at ∼5 km, with summer velocities at the terminus of ∼0.07 m d–1 compared to 0.02 m d–1 in winter (Figure 7). There was not a clear seasonal trend on Lower Barun Glacier; however, winter velocities marginally exceeded summer velocities. On Imja Glacier, there was evidence of localised acceleration within 1 km of the glacier calving front with mean summer velocities of 0.04 m d–1 compared to 0.02 m d–1 in winter. Similar to Thulagi, higher summer velocities were observed at the transition from clean to debris-covered ice on Imja glacier. Velocity change from the 1960s to present day was most apparent on Lower Barun Glacier, where velocities in the vicinity of the present day calving front (< 3.5 km up-glacier) increased from ∼0.03 m d–1 (1962–64) to ∼0.08 m d–1 (2016–2018) (Figure 7B). On Thulagi and Lhotse Shar Glaciers, 1960s velocities were comparable to the present day summer velocities.
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FIGURE 7. Centreline glacier velocity for (A) Thulagi, (B) Lower Barun and (C) Lhotse Shar glaciers. Data are 150 m moving averages. Velocities for annual image pairs are coloured back, those spanning the melt season are red, those spanning winter are blue and those from Corona imagery (1960s) are dotted purple. Distances up-glacier are measured from the lake terminus corresponding to Figure 6.


Meltwater was observed emerging from Thulagi Glacier terminus over a lower ledge that appeared grounded on the lakebed and covered in fine sediment in September 2013 (Figure 8C). In contrast, the terminus had receded > 100 m by October 2017 and the ledge was replaced with an undercut terminus ∼10 m high (Figure 8D). Thulagi Lake had a mean depth of 58 m in the vicinity of the glacier calving front, compared to 145 m for Lower Barun and Imja lakes (Table 4). However, bathymetry data close to the calving front are lacking; hence, the exact nature of the glacier–lake transition zone is unknown.
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FIGURE 8. (A) Photograph of Thulagi Glacier terminus from a helicopter flight in May 2013 and (B) the same view from a textured SfM model (27 October 2017). Red dots indicate stable features for image registration. (C) Calving front and ice ledge in September 2013 (see also Supplementary Figure S3). (D) The calving front and portal in October 2017.



TABLE 4. Calving front characteristics that correspond to the lake and calving front zones shown in Supplementary Figure S2.

[image: Table 4]All three lakes are apt to continue expanding as their parent glaciers retreat and this is most rapid for Imja Lake, followed by Lower Barun and Thulagi (Figures 6, 9 and Table 1). Upon reaching the maximum modelled lake extents, Imja, Lower Barun and Thulagi lakes would contain an additional 90 × 106, 62 × 106 and 5 × 106 m3 of water, respectively, compared to their 2018 volumes. However, there are large unquantified uncertainties present in modelled ice thickness data used to determine these volumes, which would benefit from field-derived ice thickness observations.
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FIGURE 9. Projected glacial lake expansion for (a) Thulagi, (b) Lower Barun and (c) Imja, using mean expansion rates (2008–2019) (Haritashya et al., 2018) and modelled ice thickness data (Farinotti et al., 2019). Colour bands are 5-year intervals. Background: Sentinel-2 Nir, red, blue composites from 2018.




DISCUSSION


Glacier Calving and Iceberg Production

The presence of icebergs in Himalayan glacial lakes is problematic for automated lake classification relying on infrequent satellite overpasses (Bolch et al., 2008b; Strozzi et al., 2012). Previously, it was not possible to observe related calving events with any useful temporal resolution; however, with the availability of daily < 4 m resolution imagery from Planet Labs, the presence and persistence of icebergs can be quantified through time. Icebergs reveal insights into subaerial and subaqueous glacier calving and act to mix the water as they drift around the lake.

The first iceberg production event observed in this study at Thulagi Lake (30 June–14 July 2017) did not appear to be linked to subaerial glacier calving and appeared to be of subaqueous origin. The icebergs could have originated from calving of a submerged ice ramp extending from the terminus of Thulagi Glacier or dead ice on the lakebed, similar to observations at Imja Lake (Somos-Valenzuela et al., 2014) (Figure 3F). The appearance of a sediment-covered ice ledge over the monsoon of 2013 (Figure 8C) also indicates the presence of subaqueous ice. Sediment deposition as glacier meltwater enters the lake was the likely source of sediment observed to partly blanket the ledge, which was elevated to the surface when the submerged ice became detached, but still partially grounded. The second event was linked to crevasse development and undercutting at the glacier terminus (Figure 3). The total calved volume (16 April 2017–9 September 2017) was estimated as 487,000 m3; however, this is assumed to be a lower bound since it did not include the submerged ledge of ice. Nonetheless, using the empirical area-volume relationship (Figure 3E), the predicted iceberg volume on 9 September 2017 of 538,500 m3 suggests our estimate was reasonable. The thermal analysis of the lake surface temperature anomaly seemingly caused by this calving event suggests that a larger volume of submerged ice was involved (section ‘Lake Surface Temperature Depression due to the September 2017 Calving Event’).

The number and area of icebergs declined in the weeks and months following the 7–9 September calving event, and the rate of change slowed approaching winter (Figure 3), which corresponds with decreasing lake temperatures (Figure 4) and lower air temperatures and solar radiation receipt. Wind and water current drifting of icebergs was prevalent across the study period and was also observed in the field. Katabatic breezes—blowing upvalley and accompanied by intrusion of afternoon cloud cover and usually rain or snow, and anabatic breezes blowing downvalley and accompanied by night-time clearing of clouds—were an every-day occurrence during 2013 and 2017 field work at Thulagi Lake. Such breezes and wind-driven surface and deep return water currents and Ekman flow (Shulman and Bryson, 1961) are enough to move the icebergs completely down and across and back up the lake on a daily basis. The observed accumulation of icebergs at the outlet of the lake did not cause any channel blockages, though icebergs were seen to be breaking up and leaving the lake in small bergy bits through the outlet complex. The accumulation of icebergs at the glacier terminus likely contributed to localised cooling of the lake surface and made it more susceptible to night-time freezing here, which impedes thermo-erosional undercutting of the glacier. The seasonal variation in glacial lake temperature was captured using satellite data for all three lakes; however, in situ validation data are lacking and should be collected for comparison with satellite-derived temperature measurements. Coincident field-based and satellite temperature measurements (4–5 November 2017) revealed that field temperatures were 0.6°C lower than those from the satellite data, although the measurements had overlapping error bars.

The measured positive temperature bias of satellite vs. in situ measurements is consistent with previous calibrations/validations of ASTER kinetic surface temperatures (Tonooka and Palluconi, 2005) and our own ASTER thermal validations at an iceberg-choked lake and on melting snow and glacier clean-ice fields (Ramachandran et al., 2014). Validations of Landsat 8 temperatures have involved radiometrically very different types of surfaces (urban buildings, asphalt and orchards for instance) but have also shown biases and RMSEs similar to those of ASTER (García-Santos et al., 2018) and have revealed algorithm-dependent and humidity-dependent biases. Li and Jiang (2018) found a negative bias of about −0.49 K between Landsat 8 temperatures (cooler) compared to MODIS MOD11, which is roughly consistent with the Landsat 8/ASTER bias since ASTER temperatures were partly calibrated using MODIS (Arai, 1996). In general, the temperature dispersion we measured by satellite on Thulagi Lake in a given weekly period (same year and different years) exceeds the biases and RMS errors reported in these other studies; hence, they are tending to show actual temperature differences due presumably to: (i) weather variations on daily/weekly time frames and between years and (ii) variations in ice conditions on daily/weekly time frames and between years. We cannot definitively isolate weather vs. ice disturbances, but given that we observed the iceberg calving event in 2017, that seems the most likely explanation for anomalously cold lake temperatures and then recovery to ‘normal’ a few months later. The influence of calving on lake thermal regime is a desirable focus of future work and should include in situ monitoring of lake temperature.

Although the volume of calved ice is not easily or accurately discernible using optical imagery, empirical relationships between the area and volume of icebergs, similar to those derived for Greenland icebergs (Enderlin and Hamilton, 2014; Sulak et al., 2017), could be used to estimate the calved volume of glacier ice in the absence of DEMs. The derived area–volume relationships can be used to predict iceberg volume using satellite-derived area measurements (Figure 3), but should be explored for other glacial lakes that exhibit different calving regimes due to the inherent variability in iceberg morphology. Complexities also exist due to the autocorrelation of area and volume similar to relationships applied to derive glacial lake volume from area (e.g. Cook and Quincey, 2015; Haeberli, 2015). Nonetheless, empirical area–volume relationships could be particularly valuable for estimating the volume of subaqueous calving events (e.g. Somos-Valenzuela et al., 2014), which unlike glacier calving, cannot be resolved using DEMs of difference. Glacial lakes that are rapidly deepening and expanding, such as Lower Barun and Imja lakes in the Everest region of Nepal, could be expected to produce larger icebergs due to greater calving activity. By contrast, our observations at Thulagi Lake likely capture smaller icebergs associated with slower rates of lake expansion (ICIMOD, 2011; Rounce et al., 2016; Haritashya et al., 2018; Robson et al., 2018).



Lake Thermal Regime and Glacier Dynamics

Thulagi Lake is free-draining through an outlet complex; hence, the water level should be relatively stable, which promotes thermo-erosional undercutting of the glacier terminus and overhanging ice (Benn et al., 2007). Thermo-erosional undercutting promotes a tensional regime on the terminus of Thulagi Glacier, which is expressed through the prevalence of crevasses (Figure 5A). Since the glacier still terminates in Thulagi Lake and is actively flowing at the terminus, calving is likely to continue in spite of the current limited lake expansion. The glacier is grounded in water < 60 m deep and future lake expansion was expected to be limited (e.g. Robson et al., 2018). However, Thulagi Glacier retreated 200 m (2008–2018) (Table 1) and modelled ice thickness suggests that subsequent glacier retreat would continue to allow lake expansion for another ∼1 km up-valley (Figures 6A, 9). The lake level was reported to be dropping by 0.3–0.5 m a–1 (1996–2009), which was in excess of base level (moraine dam) lowering (ICIMOD, 2011). However, observations of a higher water level in 2013 compared to 2017 (Figure 8) suggested this had at least temporarily reversed.

Moraine dam degradation or engineering interventions will determine the future extent of each lake by changing the lake level. It is clear that Imja Lake has the largest potential to expand and is doing so at the fastest rate (Figure 9), which could increase the future hazard due to the potential for avalanches to directly impact the lake (Rounce et al., 2016, 2017). The role of engineering works to lower the lake level by 3 m is not clear and requires further investigation (Lala et al., 2018). Consideration of glacier flotation is critical when considering GLOF mitigation measures such as lake lowering, since loss of hydraulic support for the glacier terminus can lead to large calving events and displacement waves (Reynolds, 1998). None of the three study glaciers are in full flotation, though Lhotse Shar and Lower Barun likely have areas of the calving front in partial flotation (Haritashya et al., 2018) (Table 4).

Velocities on Lhotse Shar Glacier have recently increased close to the lake terminus, reflecting a more dynamic lake–glacier interaction (2013–2015 vs. 1999–2003) (King et al., 2018) and show evidence of seasonal variation similar to Thulagi Glacier (Figure 7). The seasonal speedup of Thulagi Glacier could be linked to the englacial termination of meltwater streams that route water to lubricate the bed (Figure 5), whereas the high lake depth (mean of 145 m, Table 4) adjacent to the terminus of Lhotse Shar Glacier likely induce meltwater intrusion from the lake under the glacier. The impact of the glacial lakes on glacier velocity is most apparent on Lower Barun Glacier, which has highest velocities close to the calving front, which is likely in partial flotation. The present day velocities also contrast with those derived from Corona imagery (1962–1964) where velocities have accelerated by ∼0.5 m d–1 after the formation of Lower Barun Lake (Figure 7B). Several studies have used Corona imagery for DEM generation to assess glacier surface elevation change (e.g. Bolch et al., 2008a; Lamsal et al., 2016). However, to our knowledge, none have utilised the archive to derive glacier velocities in the Himalaya. In this study, we have shown that even over large image separations (> 700 days), automated feature tracking is able to produce useable (but incomplete) velocity fields using Corona imagery. Further use of the archive would help reveal the onset of a general trend of glacier slowdown (e.g. Dehecq et al., 2019) in the context of accelerating glacier mass loss over the last 40 years (Maurer et al., 2019), and also the impact of lakes on glacier dynamics.



CONCLUSION

In this study, we have shown the utility of fine-resolution satellite imagery with a short revisit period for monitoring glacier calving events and capturing events of subaqueous origin. We derived iceberg topography using imagery from a UAV survey and show that empirical relationships between iceberg area and volume could be used to estimate the volume of calving events in the absence of corresponding DEMs, which could be particularly useful when investigating subaqueous calving. The equations should be evaluated for other glacial lakes with different calving regimes. Nonetheless, we show that the relationship derived at Thulagi Lake was able to predict 70% of the iceberg volume at Lower Barun Lake. We observed via satellite and with in situ measurements the effects of a large, discrete iceberg calving event on Thulagi Lake’s thermal structure, including the effects of iceberg drifting and the dynamic melting of icebergs and bergy bits as the lake interacted thermally with the calved ice. This event afforded new insights into glacial lake assisted melting of glaciers. We used published modelled ice thickness data to show that upon reaching their maximum extents, Imja, Lower Barun and Thulagi lakes would contain an estimated 90 × 106, 62 × 106 and 5 × 106 m3 of additional water, respectively, compared to their 2018 volumes. These maximum extents could be reached by 2040, 2060 and 2070 for Lower Barun, Lhotse Shar and Thulagi glaciers, respectively, due to the variable expansion rates. Understanding lake–glacier interactions is essential to predict future glacier mass loss, lake formation and associated outburst flood hazards. However, uncertainties exist in modelled ice thickness data, lake expansion rates and our understanding of moraine dam degradation that are all required to project lake evolution. Utilising declassified spy satellite data as presented in this study offers one means of deriving historic glacier velocities to assess lake–glacier interactions. Application of ice thickness models to the respective pre-lake DEMs derived from declassified stereo imagery could also offer insights into the reliability of the ice thickness estimates by making comparisons with observations of contemporary lake bathymetry. Further validation of in situ and satellite-derived lake temperatures is also a priority.
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An assessment of the water supply and its seasonal and annual changes over the century in the High Mountain Asia (HMA) region is of increasing interest due to its potential impact on one-sixth of the global population. In order to understand the changing hydrology and snow and ice melt, we used remotely sensed Advanced Scatterometer (ASCAT) observations of glacier melt (GM) and a distributed and gridded Glacio-hydrological Degree-day Model (GDM) in three river basins: Tamor, Trishuli and Marsyangdi. The GDM-estimated contribution of snowmelt, icemelt, rainfall and baseflow in river flows is found to be most accurate in the Trishuli River basin, with Nash-Sutcliffe efficiency (NSE) between the estimated and observed discharges of 0.81 and volume differences of −0.5%, and reasonably accurate in the Tamor River basin, with NSE of 0.69 and volume difference of −7.51%. Similarly, NSE of 0.81 and volume difference of 4.64% in Marsyangdi River basin. We find strong similarities in the timing of glacier melting using the GDM and from observations from the ASCAT GM, determining the seasonal start of glacier melting to within 6 days on average. In all basins ASCAT GM observes melting at higher elevations relative to GDM, average of 5,328 m a.s.l. Systematic differences in glacier melting area determined by modeling and satellite observations indicate ASCAT may have suboptimal resolution, view geometry and/or polarimetry for delineating glacier melting at the process-scale in complex topography, especially in the ablation zone. This is the first step in examining the remote sensing products that could potentially be incorporated into hydrologic models to increase the accuracy of the hydrologic flow as well as the ability to estimate river discharge in other basins with limited data.

Keywords: glacio-hydrological model, degree-day factor, snow and ice melt, discharge, advanced scatterometer


INTRODUCTION

An assessment of the water resources and the seasonal and annual changes over the century in the High Mountain Asia (HMA) region is of increasing interest to scientists of multiple disciplines. The water supply in the upper reaches of the HMA is particularly sensitive to climate change (Wagnon et al., 2007; Immerzeel et al., 2010) and it share high percentage contribution from snow and glacier melt in river discharge (Koppes et al., 2015). The water supply in the upper reaches of the HMA is particularly sensitive to climate change because of the high share of river discharge contributed by snow and glacier melt. HMA contains the largest deposit of glacier ice outside of the North and South Pole regions; hence it is sometimes called the “Third Pole.” The Himalayan range encompasses about 15,000 glaciers, which store about 12,000 km3 of fresh water (IPCC, 2007). Many authors have suggested that the shrinking of glaciers in response to climate change might change the hydrological regime in these regions (Bolch et al., 2012; Immerzeel et al., 2012; Kääb et al., 2012). A decrease in glacier volume and area tends to influence the intensity of the seasons and the inter-annual variation on runoff (Juen et al., 2007). Glacier melt’s contribution is projected to increase until 2050 and then decrease in the sub-basins (Immerzeel et al., 2013). Regionally, it is expected to increase discharge until 2050 and then decrease (Lutz et al., 2016). In western Himalaya, glacier melt’s contribution to runoff is projected to increase by 16–50%, with a 1–3°C increase in temperature (Singh and Kumar, 1997; Tahir et al., 2011; Sam et al., 2016). While about 53 million people inhabit the 2400 km of the Himalayas, more than one billion people living downstream depends on the water from HMA, for the food and energy production (Apollo, 2017). The changes in river flow are expected to directly affect the availability of water for hydropower generation, drinking, irrigation, industrial and other purposes affecting one-sixth of the global population.

Hydrologists and glaciologists started to use snowmelt and glacio-hydrological models in the 1990s to estimate river flows as well as the contribution of snow and glacier melt to the flows in the HMA region. The two melt-modeling approaches currently used to calculate the discharge of glacierized river basins are the energy balance model and the temperature index model. The energy balance approach explicitly models melt as a residual in the surface-energy-balance equation when accounting for sums of energy fluxes within the atmosphere and glacier boundary (Reid and Brock, 2010). The temperature-index-model, on the other hand, derives melt from the empirical relationship between air temperatures and melt rates (Braithwaite, 1995; Hock, 2003).

Although the energy balance approach best describes melt totals (Hock, 1999, 2003), this approach is not always feasible for remote Himalayan glaciers, where input data availability is a major constraint (Kayastha et al., 2000). Several studies have used temperature index models in data-scarce Himalayan basins (Takeuchi et al., 1996; Kayastha et al., 2000, 2005; Kayastha and Shrestha, 2019) to estimate river discharge at different temporal scales. Four main reasons for using the model are: (1) the wide availability of air temperature data, (2) the relatively easy interpolation and forecasting possibilities of air temperature, (3) generally good model performance despite its simplicity, and (4) computational simplicity (Hock, 2003).

On the other hand, several studies have modified the simple temperature index model by incorporating different parameters, such as albedo, shortwave radiation and melt factors, to improve the model’s performance (Cazorzi and Fontana, 1996; Hock, 1999). Wortmann et al. (2016) incorporate glacier extents, volume and ice flow into the eco-hydrological soil and water integrated (SWIM) model (SWIM-G) to perform glacio-hydrological modeling of the Upper Aksu catchment in Central Asia. Similarly, Douglas et al. (2016) modified a glacier evolution and runoff model (GERM) to incorporate debris cover and thickness and to redistribute mass losses according to observed surface elevation changes and used it to study the upper Khumbu catchment in Nepal. Ren and Su (2018) coupled an energy-balance glacier-melt scheme with the variable infiltration capacity hydrology model (VIC-glacier) and applied the model in a catchment in eastern Pamir. This model provided a tool for sensitivity tests and for quantifying the response of glacier melt and discharge, enabling estimates of the impact of climate variability with a physically based method.

We examined a range of remotely sensed products that could potentially be incorporated into the Glacio-hydrological Degree-day Model (GDM) to increase the accuracy of the model as well as the ability to estimate river discharge in other basins with limited data. In this study, we made the first step toward incorporating remotely sensed data on glaciers melt estimation, and compare the model-based freeze, thaw, and melt in three river basins of HMA region with Advanced Scatterometer (ASCAT)-derived freeze, thaw, and melt.

Realizing the need for models at a higher spatial resolution to accurately represent the rugged topography of the HMA region, we present the recently developed gridded GDM, which is capable of providing melt data at 4.5 km × 4.5 km grid level. GDM is used to derive the sources of melt – icemelt (debris-covered ice, clean ice), snowmelt, rain and baseflow – in the river discharge. We then compared the results of glacier icemelt from GDM with icemelt estimated using ASCAT data in three basins in the HMA region.



MATERIALS AND METHODS


Study Area

We compared GDM results with ASCAT in three river basins of Central Himalaya: Tamor, Trishuli, and Marsyangdi River basins (Figure 1), which are sub-basins of the Koshi and Narayani River basins in the Himalaya. While the climate of all three basins is dominated mostly by the Indian summer monsoon from June to September and occasionally by the westerly disturbance post monsoon (October–January), the basins differ in the location and the aspect (facing north or south) of the glaciated area at various elevation ranges and are exposed to different orographic effects. The part of Trishuli River basin that lies in Nepal (40%) is influenced by the Indian summer monsoon and orographic effects, while leeward phenomena prevail in the rest of the basin, which lies on the Tibetan plateau. Most of the Tamor River basin lies on the southern flanks of the Central Himalayas and is much influenced by the Indian summer monsoon. Most of the Marsyangdi River basin also lies on the southern flanks of Central Himalayas, and the northwestern part of this basin lies on the leeward side of Annapurna massif.
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FIGURE 1. Location map of (a) Marsyangdi, (b) Trishuli, and (c) Tamor River basins in Nepal (map of Nepal in the inset). The map showing land use types with clean and debris-covered glaciers.




Setup of the GDM

The GDM, Version 1.0 is a gridded and distributed glacio- hydrological model capable of simulating the contribution of hydrological components in river discharge. GDM simulates four different runoff components in total discharge: snowmelt, glacier icemelt, rainfall and baseflow at daily time steps. A melt module is based on the degree-day approach, a simplification of a complex process (Braithwaite and Olesen, 1989) to estimate glacier ice and snow melts with minimal data requirements (Kayastha et al., 2005). The two-reservoir based modeling approach of the soil and water assessment tool (SWAT) (Luo et al., 2012) is adopted to simulate the hydrological response of the baseflow and rainfall runoff contribution to river discharge. In the case of the Trishuli River basin, the basin is divided into 4.5 × 4.5 km grids, and classified land class information from GlobeLand30 is extracted to each grid in order to match the grid size of the ASCAT data. Daily temperature and precipitation are extrapolated to each grid from the reference station for the discharge simulation. The threshold temperature (TT) determines whether the precipitation is in the form of snow or rain in each grid in the respective time step:
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where T is the extrapolated daily air temperature for the grids and TT is threshold temperature, both in°C.

In each grid, daily ice melt from debris-free and debris-covered ice and snow melt from glaciated and glacier free areas is calculated as:

[image: image]

where M is the ice or snow melt in mm day–1 in each grid, T is daily air temperature in°C, and Kd, Ks, and Kb are the degree-day factors for debris-covered ice, snow and clean glacier ice in mm°C–1 day–1. The model takes into account the multilayer melting of the snow above clean ice and debris-covered ice.

Baseflow is calculated using a baseflow simulation approach, as in SWAT (Luo et al., 2012). The surface runoff (QG) in the model does not consider sub daily precipitation; the surface runoff consists of runoff from rainfall and snowmelt from each grid. The surface runoff component is calculated grid-wise based on the following equation:
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where Qr is discharge from rain and Qs is discharge from snowmelt and icemelt in m3 s–1, Cr, and Cs are the rain and snow runoff coefficients, and QG is surface runoff component from each grid in m3 s–1. The total surface runoff contribution QR from all grids and the total baseflow contributions QB from all grids are expressed as:
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where Qb is the baseflow contribution from each grid and n is the number of grids. Total surface discharge QR is then routed with the baseflow contribution QB toward the outlet through the following equation:
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where k is the recession coefficient, Qd is total discharge in m3 s–1 and d is the dth day. The recession coefficient k is obtained by solving Eq. 7 given by Martinec and Rango (1986). The constants x and y computed from this equation are 0.95 and 0.002, respectively, for all river basins.
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Input Data

Daily air temperature, precipitation and stream flow data, which are the main input data of respective river basins to the model, are obtained from Department of Hydrology and Meteorology, Government of Nepal (Table 1). Air temperature and precipitation measured at the climatological station in Taplejung, which is 1732 m above sea level (a.s.l.) is used as input data set for Tamor River basin, together with the hydrological station at Majhitar at an elevation of 533 m a.s.l. Likewise, data from the Khudi Bazar (823 m a.s.l.) and Chame (2680 m a.s.l.) climatological stations are used to derive temperature lapse rate and precipitation gradient in the MRB. Similarly, the Timure (1900 m a.s.l.) and Kyangjing (3862 m a.s.l.) climatological station datasets are used to derive temperature lapse rate and precipitation gradient in Trishuli River basin.


TABLE 1. List of climatological and hydrological stations in the study basins.

[image: Table 1]For the geo-spatial dataset, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global digital elevation model version 2, with 30 m spatial resolution, available from the United States Geological Survey1, is used for the grid elevation information. GlobeLand30 with 30-m resolution2 is used for land cover. Ten different land cover classes from the GlobeLand 30 dataset are merged with similar topology character and surface runoff behavior to create six land classes for similar ranges of rainfall runoff coefficient, as shown in Table 2. In this study, land use type is classified into six classes (land use types 1, 2, 3, 4, debris-covered glacier and clean glacier ice). The shape files from the International Centre for Integrated Mountain Development Glaciers Inventory (2010) are used for clean and debris-covered glacier information. The land use types and hypsometry of all three river basins are shown in Figure 2.


TABLE 2. Re-classification of land cover classes from GlobeLand30 dataset in Tamor, Trishuli, and Marsyangdi River basins.
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FIGURE 2. Area-altitude distribution of debris-covered and clean ice along with other land use types in (A) Tamor, (B) Trishuli, and (C) Marsyangdi River basins based on the ASTER GDEM of 30 m resolution, GlobeLand30 and ICIMOD Glacier Inventory (2010).




Hydrologic Simulation Experiment Design

The performance of GDM is first calibrated in all three river basins by comparing the simulated discharge with the respective observed discharge from 2000–2010 in Tamor River basin, 2007–2013 in Trishuli River basin and 2004–2010 in Marsyangdi River basin at respective hydrological stations of the basins. The melt module parameters, such as degree-day factors for snow and ice melt, are based on field observations in the Nepal Himalayas carried out by Kayastha et al. (2000) and Kayastha et al. (2003). The degree-day factor for ice melt under a debris layer is assumed to be around half than that of clean ice, based on the field observation on Khumbu and Lirung Glaciers in the Nepal Himalayas.



Performance Indices

To assess the model’s performance efficiency, we compared the daily time-series observed and simulated discharges. The Nash-Sutcliffe efficiency (NSE) index (Nash and Sutcliffe, 1970) is used to assess the model’s simulated discharge against the observed discharge, as shown in equation 8.
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where n is the number of days, Qobs is the daily observed discharge, Qsim is the daily simulated discharge, and Qavg is the average observed discharge.

Similarly, volume differences are used to determine the model’s accuracy and calculated by using the following equation:

[image: image]

where VR and V’R are the measured and the simulated discharge, respectively.

A prediction from such a model is associate with a certain degree of uncertainty due to errors during the calibration of parameters, the design of the model and measurements of input data. In this study we assume that the model has higher degree of accuracy and certainty if the NSE index higher than 0.7 and volume difference up to ± 10%.



Glacier Melting Based on Satellite Observation

We used radar observations from ASCAT, on EUMETSAT satellites MetOp-A and -B, to detect glacier melting in mountain basins at a daily time-step (Steiner and McDonald, 2018). The ASCAT Scatterometer is a six-beam radar instrument that measures normalized backscatter at microwave frequencies (C-band, 5.255 GHz) with vertically polarized antennae. These observations are not sensitive to clouds and provide a temporally dense time-series of surface observations. The full-resolution ASCAT swath is normalized to an incident viewing angle of 40° and spatially enhanced using the Scatterometer image reconstruction algorithm (SIR) (Early and Long, 2001). The ASCAT normalized SIR backscatter observations have an effective spatial resolution between 15 and 20 km and are gridded to 4.45 km (Lindsey and Long, 2012).

In glaciated high mountain landscapes, radar backscatter signatures are dominated by scattering from deep snow and firn (Drinkwater et al., 2001). Snowfields in the accumulation zone of mountain glaciers are distinguishable in imaging radar mapping by large-magnitude backscatter caused by volume scattering from subsurface structures (Rignot, 1995). During melting conditions, volume scattering at microwave frequencies is greatly reduced because of increased absorptivity caused by wet snow and ice (Nghiem et al., 2001). Associated time-series changes in backscatter are abrupt as melt onset occurs and lead to discontinuous step-changes in the backscatter time-series that can be detected numerically (Steiner and Tedesco, 2014). We determined the timing of glacier melting events from these radar signatures over the entire Himalayas, from 2007 to 2018, similar to Steiner and Tedesco (2014), using a multiscale analysis to detect negative (melting) and positive (refreeze) changes in backscatter (Mallat, 1999). To isolate glacier-dominated backscatter we apply a criterion to ensure that the frozen season is separable from periods of melting, as detected using wavelet classification. To identify melting conditions, the associated backscatter must be separated from the frozen state backscatter by at least two standard deviation (σ) of the frozen season backscatter variability. These data are stored at the National Snow and Ice Data Center, as part of the ASCAT freeze/thaw and glacier-melt product (ASCAT FTGM) (Steiner and McDonald, 2018). We spatially harmonized the ASCAT FTGM product with output from the GDM model using nearest-neighbor interpolation.



RESULTS


Model Calibration

The positive degree-day factors, snow and rain coefficients, and recession coefficient are the main calibrating parameters of the GDM. The model is calibrated with different positive degree-day factors, and a set of degree-day factors is adopted for different months, within the range of estimated degree-day factors on different glaciers of the Nepal Himalayas. Two sets of degree-day factors for snowmelt and icemelt; lower degree-day factors at altitudes lower than 5000 m and higher degree-day factors at higher than 5000 m altitudes are used. Again higher degree-day factors are used in non-monsoon months and lower degree-day factors are used in monsoon months; June to September. Similarly, the model is also calibrated with snowmelt and rain runoff coefficients and recession coefficients. Snowmelt and rain runoff coefficients are also used higher in monsoon months (from 0.4 to 0.9). All the calibrated parameters and coefficients used in the study are listed in Table 3. The degree-day factors, snow and rain runoff coefficients, recession coefficients, and other input parameters used in the 5-year calibration period were fixed and used for flow simulations for the whole period in all river basins.


TABLE 3. Parameter and coefficients used for calibrating the model in Tamor, Trishuli, and Marsyangdi River basins.

[image: Table 3]Daily simulated discharge is compared with the observed hydrographs of all three river basins Tamor, Trishuli and Marsyangdi River basins as shown in Figure 3. Both high and low simulated discharge were consistent with the observed discharge in the river basins, except in few cases. The model also caught pre-monsoon low flows reasonably accurately. The model could not catch few peaks in the graphs, which may be due to underestimation of the precipitation at high altitudes. Barry (2012) and Baral et al. (2014) reported that the precipitation gradient in the mountainous environment is considered to vary vertically and horizontally. The high Himalayan region, with complex topography within the basin, also affects the spatial and temporal distribution of precipitation, which might be a constraint on representing the precipitation pattern or distribution. In this study, climatological stations within each respective basin were used to derive the precipitation gradient and distribution. Even with such limitations, the model simulated the daily discharge with good NSE values and within 10% of the actual volume, in spite of limited input data (Table 4).
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FIGURE 3. Observed precipitation and discharge with simulated discharge from GDM in (A) Tamor River basin from 2000 to 2010, (B) Trishuli River basin from 2007 to 2013, and (C) Marsyangdi River basin from 2004 to 2010.



TABLE 4. Results of the GDM runs.

[image: Table 4]


Contributions of Snowmelt, Icemelt, Rainfall, and Baseflow

Glacio-hydrological Degree-day Model also estimates the contributions of snowmelt, icemelt, rainfall, and baseflow to river flows. Figure 4 and Table 4 show the mean annual contributions of snowmelt, icemelt (clean and debris-covered), rainfall, and baseflow for in all three river basins of this study. The contribution of snowmelt ranges from 7.8% in the Marsyangdi River basin to 13.93% in the Trishuli River basin. The contribution of icemelt in river flow ranges from 6.6% in the Tamor River basin to 12.88% in the Marsyangdi River basin. Rainfall contribution to river flow is 29.9% in Trishuli River basin and 39.04% in the Tamor River basin, and baseflow varies from 41.35% in Marsyangdi River basin to 45.44% in the Trishuli River basin. This range of contributions to river flow is consistent with the area covered by glaciers and the climatological condition of the river basins.


[image: image]

FIGURE 4. Monthly partition of snowmelt, icemelt, rain and baseflow contributions in (A) Tamor, (B) Trishuli, and (C) Marsyangdi River basins.




Comparison of Snow and Icemelt From GDM and ASCAT Product

Icemelt derived from GDM is compared with the ASCAT FTGM dataset to investigate the differences in melt extent and duration. With this comparison we also evaluate the utility of the ASCAT satellite record in providing observations that can be used to inform, complement, or validate hydrological modeling. Table 5 summarizes some spatial and temporal statistics of observed icemelt during 2007-2010. For all basins ASCAT detects melting extent at substantially higher elevations and over larger areas, on average, than GDM, with exception of the Trishuli River basin. We find that the melt duration detected by ASCAT is longer than the melt duration estimated using GDM. This is especially true in the Trishuli River basin and Tamor River basin where ASCAT-observed melting is 20 and 26% longer, respectively, than modeling suggests. There is also a lesser degree of spatial variability in the duration of melting observed by ASCAT. The longer melting duration observed by ASCAT is largely related to melt persisting later into the season, as ASCAT observes Marsyangdi River basin as having later icemelt start than does GDM whereas Tamor River basin has earlier icemelt starts than GDM.


TABLE 5. Averaged statistics for glacier melting occurrences during years 2007–2010.

[image: Table 5]Summations of annual glacier melt duration derived after running the GDM by increasing and decreasing one σ of the air temperature and precipitation over the Tamor, Trishuli and Marsyangdi River basins compared with the ASCAT observation are shown for water-year 2007 in Figure 5.
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FIGURE 5. The spatial distribution of glacier melting duration during 2007 for the ASCAT Scatterometer are overlain onto contours of elevation, in m a.s.l., for Marsyangdi, Trishuli, and Tamor River basins along with the GDM. The range of melting illustrated for each basin is resultant from a variation of standard deviation (σ) below and above the air temperature and precipitation. The (A) ASCAT observations of melting days for Marsyangdi are shown along with (B) −1σ and (C) +1σ. For the Trishuli River basin, we illustrate (D) ASCAT, (E) −1σ, and (F) +1σ. For the Tamor River basin, we illustrate (G) ASCAT, (H) −1σ, and (I) +1σ.


For the Marsyangdi River basin, the ASCAT FTGM product (Figure 5A) covers a larger area than the GDM at -1σ (Figure 5B) as well as that of +1σ (Figure 5C). Compared to the GDM, the ASCAT product shows less spatial variability at the 4.5 km grid-size. Larger melt extents observed by ASCAT are a result of apparent spatial continuity in surface melt introduced by ASCAT spatial resolution limitations over discontinuous glacier land-cover as well as ASCAT observations of icemelt at higher elevations. There is little variability in melt duration with elevation. For the Trishuli River basin, the ASCAT FTGM dataset shows melting over a lesser area (Figure 5D) than the GDM at −1σ (Figure 5E) as well as +1σ (Figure 5F). Similar to the Marsyangdi River basin, ASCAT FTGM shows melting at higher elevations with little variability in melt duration compared to the GDM. In the Trishuli the ASCAT product does not detect melting over areas where GDM predicts a majority of the melting, at elevations below 5000 m a.s.l. Over the Tamor River basin, the ASCAT FTGM product (Figure 5G) and the GDM maximum ice melting extents are within the −1σ (Figure 5H) and +1σ (Figure 5I) of GDM extents and the satellite observes melting at higher elevations. In the Tamor River basin, both estimates found a similar degree of spatial heterogeneity with a less pronounced elevational gradient from the ASCAT FTGM product. This ±1σ analysis is done to check the elevation dependent of ASCAT melt. Even with +1σ temperatures we are seeing more melting at higher elevations with the ASCAT product. This is due to radiation-driven melting at high elevations. Most of the melt-water will be refrozen in-place, therefore not contributing to runoff. This makes sense as refrozen ice structures are though to drive the radar brightness especially at C-Band. This indicates that ASCAT (C-Band, VV-pol) is not the ideal type of radar to look at hydrological modeling for river flow. There are some places where it will overlap with temperature driven melting but the signal will be dominated by accumulation zone melting.

A comparison of glacier melt with elevation from modeling and radar observations during 2007–2010 finds clear and systematic differences in distribution in the melting magnitude, i.e., melt area over time, with elevation (Figure 6). For the Marsyangdi River basin (Figure 6A) glacier melting has similar magnitude below 5000 m a.s.l. Over 5000 m a.s.l. we find ASCAT observes substantially larger glacier melting occurrences persisting to very high elevations, greater than 6500 m a.s.l. For the Trishuli (Figure 6B) and Tamor River basins (Figure 6C) we find melting distributions with elevations to be translated, relative to the GDM, toward higher elevations with 5000 m a.s.l. being the elevation where these distributions find similar magnitudes of melting.
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FIGURE 6. The number of glacier melt-area days with elevation averaged over the years 2007-2010, with one standard deviation indicated with error bars, as estimated by the GDM and observed with the ASCAT Scatterometer for the (A) Marsyangdi, (B) Trishuli, and (C) Tamor River basins.




DISCUSSION

Using remote sensing datasets to understand processes more accurately in the data-scarce HMA region may support both science and water resource management. We used C-band radar backscatter observations from ASCAT, spatially enhanced and posted to a 4.5 km grid, to examine glacier melting in mountain basins at a daily time-step, and compared that with GDM results. A comparison of the extent of glacier melting in the Tamor, R Marsyangdi and Trishuli River basins indicates systematic differences in GDM estimates and ASCAT observations of melting. ASCAT generally observes melting over longer durations, at higher elevations, and with less spatial variability than GDM predicts.

C-band radar backscatter such as that provided by ASCAT is especially sensitive to melting over snow-fields and glacier firn as occurs over percolation zones (König et al., 2002) because these areas exhibit a strong volume scattering contribution to the radar signature from the complex snow and ice stratigraphy (e.g., Parry et al., 2007). This sensitivity to dry firn gives rise to C-band radar backscatter sensitivity to small changes in the amount of liquid water contained in the upper 1 m of glacier firn even when buried under refrozen snow (Bevan et al., 2018). The persistence of buried liquid water under frozen snow while frozen surface temperatures persist will lengthen the melting season observed by radar. Models that do not account for 2D surface energy balance affecting snow and firn may not account this phenomenon.

Accumulation zone melt-area is likely overestimated by ASCAT because of the coarse spatial resolution of the sensor. The complex terrain of and surrounding mountain glaciers also limits determining the source of the melt signal using coarse resolution remote sensing datasets. It is likely that the subpixel glacier fraction within the ASCAT footprint has a large influence on the radar backscatter response to melt events. The Marsyangdi and Tamor River basins have ASCAT melting areas greater than that predicted by the GDM; here ASCAT is likely attributing melting over areas where glaciers are regularly distributed over mountainous terrain. In the Trishuli River basin, where glaciers are not spatially dense, we find ASCAT observing less melt area than GDM.

Since the ASCAT response to melt onset is strong over much of the glacier accumulation zone, it likely indicates that melting does occur over glaciated areas even though modeling predicts frozen conditions. Accounting for variability in GDM melting (Figure 5) we find that ASCAT observes melting at elevations exceeding that modeled by GDM. Melting driven by shortwave radiation is likely to occur these high elevations in the HMA although surface temperatures are below zero (Litt et al., 2019). With this reason the onset date of ASCAT melting is 31 days earlier and end date of melting is 44 days delayed in Tamor River basin. Very few days are differ in other two river basins; Trishuli and Marsyangdi River basins. It has been demonstrated that much of the water generated from melting over snow and firn is frozen in place and does not contribute to run-off (Meyer and Ian Hewitt, 2017).

Observations of barren landscape and glacier surfaces in the ablation zone are expected to have a lower radar return at C-band frequencies (e.g., König et al., 2002). Without fully polarimetric observations, appreciable signal change with surface melting can be difficult to detect. ASCAT is likely underestimating melting over areas large at elevations below 5000 m a.s.l. because of this limited sensitivity. However, at the basin scale, the ASCAT FTGM dataset and the GDM model results show agreement in seasonal timing of melt onset and freeze-up. It is likely that pronounced variability in slope-aspect effects on the radar backscatter signatures is introduced in the resolution enhancement technique applied to the ASCAT native resolution data thereby affecting observation consistency in complex terrain. Use of high resolution datasets such as provided by Synthetic Aperture Radar may improve characterization of spatial extent and variability and in identifying location of glacier melt.

The contribution of icemelt in river flow estimated by the GDM is comparable to the results obtained by earlier studies. Racoviteanu et al. (2013) used a simple elevation-dependent ice ablation model based on glacier areas from ASTER and IKONOS remote-sensing data combined with hypsometry from the Shuttle Radar Topography Mission to estimate icemelt contribution at 9.5%, which is close to our result of 10.73%, at Betrawati. Using the HBV light model, Bhattarai et al. (2018) found that the contribution of snow and icemelt in river flow was from 27.5 to 33.7% at the Betrawati hydrological station in the Trishuli River basin from 1995 to 2005. When we added snowmelt and icemelt percentages in the river flow at the same station, it was 24.66%, which is also very near to their results. Panday et al. (2013) used the snowmelt runoff model and found that the average contribution of snowmelt in flow in the Tamor River basin at the Majhitar hydrological station from 2002–2006 was 29.7 ± 2.9% (including 4.2 ± 0.9% from snowfall that promptly melts), whereas 70.3 ± 2.6% is attributed to contributions from rainfall. However, the present study using the GDM from 2002 to 2006 showed 9.64% snowmelt and 5.86% icemelt. Such a difference in snowmelt and icemelt may be due to the fact that GDM separately calculates the snowmelt, icemelt, rainfall and baseflow components of river flows rather than considering just two components as the snowmelt runoff model does.



CONCLUSION

The GDM has been successfully used in three glacierized river basins, Tamor, Trishuli and Marsyangdi in Nepal. The calculated discharges from GDM match the observed discharges from the respective rivers: NSE ranges from 0.69 to 0.81 and volume difference from −7.51% to 4.64%. The maximum snowmelt contribution in river flow is 13.93% in Trishuli River and the minimum 7.8% in Marsyangdi River basin; maximum icemelt contribution is 12.88% in Marsyangdi River basin and the minimum 6.6% in Tamor River basin. The maximum and minimum icemelt contribution in Marsyangdi and Tamor River basin, respectively, is consistent with the maximum and minimum permanent ice cover area in those basins. Similarly, the highest rainfall contribution in river flow is found in Tamor (39.04%) and the lowest in Trishuli (29.9%), and the highest baseflow contribution is in Trishuli River basin (45.44%) and the lowest in Marsyangdi River basin (41.35%). The higher contribution of rainfall in Tamor and Marsyangdi River basins is also consistent with the higher precipitation areas within Nepal. Usually, precipitation is higher in east Nepal and Pokhara area near Marsyangdi River basin. About 62% of Trishuli River basin lies in Tibet, China, in a very low precipitation area, and so rainfall contribution is comparatively lower than in the other two basins.

Comparisons between the GDM icemelt and ASCAT FTGM observations find disparities between the spatial extent areas where ASCAT is sensitive to melting and where GDM is predicting melt. Generally, the ASCAT product is more sensitive to melting over ice-fields in the accumulation zone and less sensitive to melting occurring over barren landscape areas and glacier surfaces in the ablation zone. This difference in sensitivity can lead to spatial mismatch between the GDM model and radar estimates of melting area. Glaciers that are spatially dense, like the Tamor River basin, create better agreement. The timings of glacier-melt in the ASCAT FTGM product match increment predictions from GDM.
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The Indus River is a vital resource for food security, ecosystem services, hydropower, and economy for millions of people living in Pakistan, India, China, and Afghanistan. Glacier and snowmelt from the high altitude Himalaya, Karakoram, and Hindu Kush mountain ranges are the largest drivers of discharge in the upper Indus Basin (UIB), and contribute significantly to Indus flows. Complex climatology and topography, coupled with the challenges of field study and meteorological measurement in these rugged ranges, elicit notable uncertainties in predicting seasonal runoff as well as cryospheric response to changes in climate. Here we utilize Sentinel-1 synthetic aperture radar (SAR) imagery to track ablation season development of wet snow in the Shigar Watershed of the Karakoram Mountains in Pakistan from 2015 to 2018. We exploit opportune local image acquisition times to highlight diurnal differences in radar indications of wet snow, and examine the spatial and temporal contexts of radar diurnal differences for 2015, 2017, and 2018 ablation seasons. Radar classifications for each ablation season show spatial and temporal patterns that indicate a dry winter snowpack undergoing diurnal surface melt-refreeze cycles, transitioning to surface snow that remains wet both day and night, and finally snow free conditions following melt out. Diurnally differing SAR signals may offer insights into important snowpack energy balance processes that precede melt out, which could provide useful constraints for both glacier mass balance modeling and runoff forecasting in remote alpine watersheds.

Keywords: synthetic aperture radar, snowmelt, Karakoram Mountains, diurnal radar, Sentinel-1, Indus River


INTRODUCTION

Snow and ice play critical roles worldwide in water resources and climate. An estimated 75% of fresh water resources are stored in ice sheets and glaciers (Meier and Post, 1995). About 1.2 billion people rely on snowmelt for agriculture and consumption (Barnett et al., 2005). At its peak, 57 million square kilometers of northern hemisphere land are covered in snow each season, and over 15 million square kilometers receive 40% or more of total annual precipitation as snowfall (Déry and Brown, 2007). Seasonal and perennial snowpacks and glaciers act as natural reservoirs, providing runoff during the hottest months of the year, and in complementary timeframes. In addition to direct runoff resources, snow and ice play a critical role in climate: significant portions of incident solar radiation are reflected away from the earth surface due to the high albedo of snow and ice, resulting in a cooling effect critical to the surface energy budget. The role of snowmelt in primary production and ecosystems services is important and unique to each area (Vaughan et al., 2013). The most recent IPCC (Core Writing Team et al., 2014) reports a continued shrinkage of worldwide glacier mass balance, as well as a decrease in northern hemisphere snow cover extent, both reported at very high confidence.

Of the major Asian river basins, the Indus relies most heavily on snow and glacial melt (Immerzeel et al., 2010), primarily from the upstream Karakoram, Hindu Kush, and Himalayan mountain ranges (Figure 1). The majority of flows in the upper Indus Basin (UIB) derive from glacier and snowmelt, which are estimated to contribute 65–85% of annual flows (Hewitt et al., 1989; Wake, 1989; Archer and Fowler, 2004; Immerzeel et al., 2009; Tahir et al., 2011; Mukhopadhyay and Khan, 2015; Shrestha et al., 2015). An arid regional climate necessitates direct reliance on these flows for food security, economy, and hydroelectric power for millions of people living in the Indus River Basin (Immerzeel and Bierkens, 2012; Hasson et al., 2014; Immerzeel et al., 2015). As the Indus River Basin incorporates portions of China, India, Afghanistan, and Pakistan, this reliance also strongly impacts international relations (Wescoat et al., 2000; Wheeler, 2011).
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FIGURE 1. Major ranges in High Mountain Asia (HMA). Highlighted is the Shigar Watershed, located in the Karakoram Mountains. (A) Chogo Lungma glacier. (B) Biafo Glacier. (C) Choktoi and Panmah Glaciers. (D) Baltoro Glacier. (E) Shigar WAPDA DCP meteorological station approximate location.


The Karakoram Mountains, located in the far northwest of the Himalayan arc, contribute to flows of the UIB with nearly 8,000 glaciers that span an area of 18,000 km2, ranging in altitude from 2300 to 8600 m.a.s.l (RGI Consortium, 2017). More than 90% of the total area can be snow covered seasonally, and perennial snow cover is significant (Hewitt et al., 1989; Immerzeel et al., 2009; Hasson et al., 2014).

The Karakoram stand at the nexus of large-scale atmospheric circulation systems, the interaction of which directly impact snowpack and glaciers in the region. Mediterranean Westerly flows deliver the bulk of annual precipitation in the winter months, although the South Asian Monsoon can also penetrate the range in summer months, providing a portion of yearly precipitation (Hewitt et al., 1989; Wake, 1989; Winiger et al., 2005; Maussion et al., 2014). Forsythe et al. (2017) have identified the interplay of these two major atmospheric circulation systems as the primary climatic driver of declining summer temperatures – and thus reduced glacial ablation – in the Karakoram region for the latter part of the 20th century. Forsythe et al. (2017) note both that the “Karakoram Anomaly” (or summer temperature reduction) has been weakening in the first part of the 21st century, and also that the impact of climate change on large-scale atmospheric circulation patterns remains an open question. This dynamic interplay, coupled with the paucity of meteorological measurements in high altitude catchments, perhaps explain the large number of studies with contradictory conclusions for climatic trends in the Karakoram including precipitation, temperature, snow covered area, and streamflow (Archer and Fowler, 2004; Hewitt, 2005, 2011; Winiger et al., 2005; Fowler and Archer, 2006; Immerzeel et al., 2009; Chen et al., 2010; Bocchiola et al., 2011; Tahir et al., 2011, 2015, 2016; Kapnick et al., 2014; Mukhopadhyay and Khan, 2014; Kääb et al., 2015; Reggiani et al., 2016).

Considering the challenges of field study and climatic complexity in the region, utilizing remote sensing techniques that offer information on differing electromagnetic, spatial, and temporal scales can provide useful information on the status of snow and ice. Digital elevation model (DEM) difference techniques offer critical and high spatial-resolution insight into glaciological change, but limit knowledge of variability in between image timestamps and do not provide direct evidence of the mechanism(s) responsible for any changes. Daily optical datasets such as MODIS snow cover area offer temporally useful information, but at spatial resolutions (typically 500 m) that limit insight into many important snowpack processes. MODIS snow cover products, often used for snowmelt runoff modeling, have been found to perform less accurately in High Mountain Asia (HMA) compared to North American mountain ranges, likely due to steep topography (Rittger et al., 2013). Cloud cover continues to pose a significant challenge in utilizing optical imagery for identifying snow cover, and can result in missing data and misclassified pixels (Parajka and Blöschl, 2008).

The European Space Agency’s (ESA) Sentinel-1 (S1) C-band synthetic aperture radar (SAR) sensor provides publicly available imagery with an overpass repeat of approximately 12 days. SAR images are acquired regardless of cloud cover or sun illumination, at a spatial resolution on the order of tens of meters. Because of backscatter sensitivity to surface roughness and dielectric properties, radar offers unique insight to surface states that may elucidate energy balance conditions for the snowpack prior to seasonal melt out (Mätzler and Hüppi, 1989; Cogley, 2011; Ragettli et al., 2013). In this study, we utilize S1 SAR imagery in the heavily glaciated Shigar Watershed of the Karakoram Mountains to examine seasonal and diurnal snowpack conditions through multiple ablations seasons. We compare SAR-derived snow conditions maps with optically-derived snow cover maps, and track inter-annual variability in radar snowmelt conditions. When acquisition patterns allow, we also identify diurnal changes in radar indications of snowmelt. We quantify the diurnal differences (contrast between night and day) in radar signals, and explore their spatial and temporal context throughout the melt seasons of 2015, 2017, and 2018.

Synthetic aperture radar indications of snowpack conditions can offer critical insight into energy balance processes on a subseasonal timescale, in an area with limited field measurement and variable cryospheric responses to climate. This information could be integrated into both glacier mass balance modeling as well as runoff forecasting, which could improve with physically based parameterizations and multivariate calibration to understand the current drivers of cryospheric change.



BACKGROUND

To understand the potential, limitations, and implications of radar interpretation of snowpack conditions, we first discuss snowpack energy fluxes and in particular the processes that dominate the seasonal transition prior to runoff. Next, we examine the impact of snowpack conditions on radar backscatter.


Snowpack Energy Balance


Seasonal Transitions: A Melting Snowpack

The transition of a cold winter snowpack to an isothermal (or ripe) snowpack at the melting point is the result of complex processes of energy transfer at the boundaries of and within the snowpack (DeWalle and Rango, 2008). Understanding this transition is crucial for energy balance modeling and runoff forecasting for snow and ice; however, its onset and duration can vary substantially from year to year (Kattelmann and Dozier, 1999). This transition can be understood in three general phases: (1) warming, (2) ripening, and (3) runoff. Energy for all three of these phases is dominated at the surface by net solar radiation, which is determined by irradiance and snow albedo (Oerlemans, 2000; Bales et al., 2006; Painter et al., 2007, 2012). Once the snow surface warms to 0°C and excess energy generates melt, liquid water dominates mass and energy exchange within the snowpack (Colbeck, 1976; Pfeffer et al., 1990; Sturm et al., 1997; Macelloni et al., 2005; DeWalle and Rango, 2008; Cuffey and Paterson, 2010; Painter et al., 2012).



Diurnal Fluctuations in Energy Balance

As shortwave radiation is a dominant source of melt energy during daylight hours (DeWalle and Rango, 2008), nighttime radiative fluxes consequently contrast strongly to those during the day. Liquid water held by capillary forces in the snowpack can refreeze overnight due to a negative energy flux to the atmosphere, often dominated by longwave and sensible heat fluxes from a melting snowpack constrained to 0°C. At the surface, refrozen crusts can develop quickly and become quite thick overnight (Mätzler and Hüppi, 1989; Macelloni et al., 2005). Early in the ablation season, the entire depth of liquid water within the snowpack can refreeze overnight (Mätzler and Hüppi, 1989). Later in the season, the bulk of the snowpack more often remains wet with a thin layer of refreeze just at the surface, typically in the first 10 centimeters; in this case, the snowpack remains ripe but the refrozen crust presents an energy deficit that must be overcome before melt can resume the next day (Macelloni et al., 2005; Samimi and Marshall, 2017). The “recycling” of melt water due to nightly refreeze can act as a significant energy sink. For example, Samimi and Marshall (2017) concluded that 10–15% of available melt energy for a given season was diverted to warm and melt refrozen meltwater on the Haig Glacier in Canada.



Synthetic Aperture Radar


Radar and the Snowpack

Radar interaction at microwave wavelengths with the snowpack takes place at three different boundaries: the air-snow interface, within the snowpack, and the snow-substrate interface. In dry snow, C-band radar (centered at 5 cm wavelength) penetration depth varies from 5–20 m (Mätzler, 1987; Rignot et al., 2001; Langley et al., 2007). The primary source of backscatter and reflection stems from radar interaction at the snow-ground or snow-ice interface, although refrozen features in the snowpack can also contribute volumetric scattering (Mätzler, 1987).

With liquid water present in the snowpack, microwave interaction changes drastically, primarily because of the order of magnitude difference in permittivity of liquid water compared to ice or air. In a 0.3 m thick snowpack with 1% liquid water content by volume (likely less than irreducible water content), Nagler (1996) found C-band radar penetration limited to 0.11 m, approximately two wavelengths. In snow with liquid water content of 5% by volume, radar penetration is typically limited to a singular wavelength, resulting in extremely low backscatter (Mätzler, 1987; Martinec and Rango, 1991; Techel and Pielmeier, 2011). With increasing water content, backscatter values from the snowpack decrease, providing the basis for threshold-based wet snow identification (Mätzler, 1987; Ulaby et al., 2014). Developed as a means to circumnavigate topographic effects on backscatter values, the threshold-based comparison is possible because backscatter values from similar SAR geometries of snow-free or dry-snow covered surfaces vary little over time, compared to the strongly attenuated backscatter of snow with liquid water present (Nagler, 1996). In this case, the actual backscatter value – which may be influenced by local incidence angle – is less important than the relative change in backscatter values over time. Threshold-based wet snow identification is derived from the ratio between a melt season image and a reference image from the same orbital track (and thus nearly identical SAR imaging geometry). Ideally, the reference image is an average of several images during dry snow or snow free conditions, reducing potential small inter-image variations. Based on field study and comparison with optical data, threshold ranges from −2 to −3 dB have been shown to consistently identify wet snow in alpine areas using co-polarized SAR data; a threshold of −3 dB is most commonly used (Nagler, 1996; Nagler and Rott, 1998, 2000; Floricioiu and Rott, 2001; Valenti et al., 2008; Nagler et al., 2016).

Radar-based wet snow identification is only indicative of liquid water in the uppermost centimeters of the layer in which it is identified. Because of the significant attenuation in C-band radar, the presence or absence of liquid water in the snowpack underneath this layer likely does not affect backscatter values. The time difference between first surface wetting and snowpack ripening can vary from hours to weeks, and is a significant challenge in runoff forecasting that cannot be resolved by remote sensing data alone (Kattelmann and Dozier, 1999; Heilig et al., 2015). However, the clear identification of liquid water in the snowpack possible with radar offers an important indicator of seasonal transitions in snowpack energy balance, as well as spatially explicit information of areas of the snowpack that could potentially contribute to runoff.



Diurnal Changes in Radar Return

Several studies of microwave signatures in alpine snowpacks have observed temporal variations of backscatter in wet snowpacks due to surface refreezing, which causes an increase in backscatter due to the high volumetric scattering of the large grains of the refrozen layer (Brun, 1989; Floricioiu and Rott, 2001; Nagler et al., 2016; Reber et al., 1987; Strozzi et al., 1997). A paucity of SAR sensors with consistent acquisition patterns has limited ongoing research of spaceborne backscatter signals from refrozen snow surfaces and their seasonal evolution. However, Strozzi et al. (1997) observed backscatter changes in sensors at varying frequencies for melt-freeze crusts in the Austrian Alps. While higher frequency wavelengths were better able to identify refrozen crusts stratigraphically over either wet or dry snow, C-band radar could reliably detect refrozen crusts over a dry snowpack, e.g., early melt season diurnal cycles that refreeze the entirety of melt water in a snowpack that is not yet ripe (Mätzler and Hüppi, 1989; Fahnestock et al., 1993; Nagler, 1996; Strozzi et al., 1997).



STUDY AREA, DATA, AND METHODS


Shigar Watershed

The Shigar Watershed (Figure 1) is located in the central Karakoram Mountains, with an altitude spanning about 2100 m to over 8600 m. The watershed area is approximately 7000 km2, about 30% of which is glaciated (Pfeffer et al., 2014). Though one of the smaller watersheds of the UIB, the Shigar contributes significantly to total UIB flows – about 8% of annual flows, and 10–11% of the flows during July, August, and September (Mukhopadhyay and Khan, 2014). Flow analysis by Mukhopadhyay and Khan (2014) led them to conclude that mid-altitude snowmelt from the Shigar peaks in June, while high altitude source-flows show two distinct peaks: in July, which they posit originates from snow melt, and also in August originating from glacial melt. In their study, Mukhopadhyay and Khan (2015) calculated snow and glacier melt to contribute 43% and 35% of total runoff for the Shigar basin, respectively. An analysis of snow cover by Hasson et al. (2014) using MODIS products from 2001 to 2012 concludes that the Shigar holds the highest annual snow cover percentage of the UIB sub-basins, averaging 90 ± 3% of the total area at maximum and a minimum coverage of 25 ± 8%. Snow cover trends from 2001 to 2012 for the Shigar were not statistically significant, but nevertheless showed a decrease in the winter and autumn months, and an increase in spring and summer months. The glaciers of the central Karakoram have been reported in near-balance, albeit with significant spatial and temporal heterogeneity, including surge-type glaciers (Gardelle et al., 2012b; Brun et al., 2017; Lin et al., 2017; Zhou et al., 2017).



Data


Sentinel-1 SAR Imagery

Radar imagery is collected from the ESA S1 constellation, operating at a center frequency of 5.407 GHz (C-band) with single look complex (SLC) images in 5 m by 20 m spatial resolution in range and azimuth directions, respectively. The first S1 satellite launched in April of 2014; after a ramp-up and exploitation phase, and along with the launch of Sentinel-1 B in April 2016, the S1 observation scenario now consistently offers a revisit frequency in the Karakoram region of 12 days for ascending and descending passes in dual polarization (VV and VH). Of significance for our study of the Shigar Watershed is the timing of acquisition: 2015, 2017, and 2018 acquisitions regularly consisted of an ascending pass at approximately 18:00 local time, followed by a descending pass the next morning at 6:00 local time. As the minimum daily snowpack liquid water content has been found to occur in early hours of the morning (e.g., Kattelmann and Dozier, 1999), these acquisition times are opportune to examine diurnal differences in radar indications of snow conditions. It is worth noting that, at C-band, cross-polarized wavelengths distinguish wet snow at low incidence angles more accurately than co-polarized (Nagler et al., 2016). However, S1 dual polarization images are only consistently available starting with the 2017 melt season; in order to compare multiple ablation seasons, only co-polarized (VV) images are utilized in this study.

European Space Agency’s S1 imagery was downloaded through the Alaska Satellite Facility Distributed Active Archive Center (Copernicus a). Singular ascending and descending S1 tracks were selected that cover the entire Shigar Watershed, and every available image downloaded from October 2014 through October 2018 in SLC format. From these images, at least three winter reference dates were selected for each year, as well as images throughout the 2015–2018 ablation seasons (approximately April through October) along matching orbital tracks (Supplementary Table S1).



SRTM 1 Arc-Second Digital Elevation Model

The shuttle radar topography mission (SRTM) 1 arc-second global DEM, void filled and openly distributed through the US Geological Survey (USGS) at a resolution of 30 meters, was used for processing and analysis (USGS). Though SRTM operated at C-band wavelength, which has been estimated to penetrate Karakoram ice by an average of 2.7–3.0 m (Gardelle et al., 2012a; Zhou et al., 2017), it showed fewer artifacts in comparison to other available DEMs for the region with comparable spatial resolution [e.g., advanced spaceborne thermal emission and reflection radiometer (ASTER) global digital elevation map (GDEM)]. As we are interested in the relative elevation change of wet snow (which will limit radar penetration to a few centimeters) overlying either ice or ground, we assume ice penetration to be an irrelevant issue in this study.



Sentinel-2 Level 2A Snow and Cloud Confidence Maps

We compare SAR-derived snow conditions maps to snow cover maps from Level 2A Sentinel-2 (S2) snow and cloud confidence products. ESA’s S2 is a high spatial resolution optical sensor with a repeat time of 5 days, utilizing two sensors with sun-synchronous orbits. 13 spectral bands offer reflectance measurements at three different spatial resolutions (10–60 m). Level 1C (top-of-atmosphere reflectance) products were downloaded from the USGS and processed into Level-2A products (Copernicus b, USGS). Level-2A products, which denote atmospherically corrected reflectance, include both snow and cloud confidence maps. The snow confidence map is derived from a four-step filtering process utilizing the Normalized Difference Snow Index (Hall and Riggs, 2010) as well as thresholds on bands 2, 4, 8, and 11. The output of the snow confidence map also feeds into the cloud confidence map, a seven-step filter utilizing NDSI and Normalized Difference Vegetation Index thresholds, as well as ratios from bands 2, 3, 8, and 11 to minimize misclassification with soils and water, rock and sand, and senescing vegetation (Richter et al., 2012).



Meteorological Data

Daily temperature readings at the Pakistan Water and Power Development Authority (WAPDA) Shigar data collection platform (DCP), located at 2367 m.a.s.l (Figure 1) are compared to SAR-derived snow conditions for the 2015 ablation season. These data are generously provided by the WAPDA Glacier Monitoring and Research Center (GMRC) through correspondence with Pakistan’s Global Change Impact Studies Centre (GCISC).



HMA ASCAT Freeze/Thaw/Melt Status

S1 wet snow maps are compared with daily freeze/melt status over the Shigar Watershed from the NSIDC HMA ASCAT Freeze/Thaw/Melt Status dataset (Steiner and McDonald, 2018). Derived from C-band backscatter measurements from the Advanced Scatterometer (ASCAT) on EUMETSAT Metop-A and Metop-B satellites, images are spatially enhanced using the Scatterometer Image Reconstruction algorithm (Early and Long, 2001), and 3-day composites of ascending morning acquisitions are interpolated to create a daily product at approximately 4.45 km spatial resolution. This product is available from January 1, 2009 through October 12, 2017.



Methods


S1 Image Processing

The SAR image processing and postprocessing workflows for each melt season image can be viewed in Figure 2. After applying precise orbit information, each interferometric wideswath (IW) image is “deburst” and radiometrically calibrated to beta nought, or radar brightness, in preparation for terrain-flattening (Small, 2011). After calibration, multi-looking (spatial averaging) is performed; eight looks in the range and two looks in the azimuth direction result in pixels with approximately 30 m resolution in both directions. In order to minimize terrain effects on backscatter, radiometric terrain flattening is then performed according to the methodology developed by Small (2011), utilizing the SRTM 1 Arc-Second DEM. Radiometric terrain flattening spatially integrates brightness values (in original radar geometry) through a reference DEM to determine a specific illuminated area according to each radar position, which is then used for reference area normalization, resulting in a quantity referred to as gamma nought. Small’s method provides a more robust incorporation of local topography in SAR processing, and potentiates cross-track and even cross-sensor comparisons, which have previously been challenged due to varying SAR acquisition geometries especially in regions of high relief.
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FIGURE 2. (A) SAR processing and (B) post processing workflows, the product of which is a (C) binary wet snow map. White pixels indicate wet snow. Processing was accomplished with ESA open source SNAP software; postprocessing accomplished through R.


Melt season images are co-registered with a reference image, which is an average of at least three images from the previous winter. Due to S1 instrument stability and precise orbital information, sub-pixel co-registration is achieved. After co-registration, speckle filtering is performed using the Refined Lee filter (Lee, 1981). Lastly, geometric terrain correction is accomplished through bilinear interpolation re-sampling with the SRTM DEM, resulting in images with a final pixel spacing of 29.02 m. As a final step in processing, images are subset to Shigar Watershed boundaries. Along with geometrically terrain-corrected gamma nought values, layover and shadow information, as well as local incidence angle calculations are collected for each image. Images are processed with the Sentinel-1 Toolbox within the open-source Sentinel Application Platform (SNAP–ESA).



S1 Postprocessing

Following image processing, a ratio image is generated by comparing backscatter values of the melt image to the co-registered reference winter image. Pixels with a ratio value at or less than −3 dB (Nagler, 1996) are designated as “wet snow,” resulting in a binary wet snow map, visible in Figure 2C. Noting that more recent studies of threshold-based wet snow mapping select a threshold of −2 dB (e.g., Nagler et al., 2016), we test different threshold values within a range of −2 and −3 dB on an image from May 23–24, 2015. This image is selected as it has appreciable areas of pixels classified as both wet and dry, as well as a notable amount of pixels that change classification overnight (refer to Figure 9). Along with the ratio image, a mask is generated for each date that excludes pixels in layover or shadow, as well as extreme local incidence angles. While radiometric terrain flattening significantly improves radiometric accuracy, we find backscatter values are still impacted by extreme incidence angles. Thus, we adopt a conservative approach as in Nagler et al. (2016) and mask out any pixels with local incidence angles less than 15 or greater than 75 degrees.



Pixel Classification

Once binary wet snow maps are generated for each orbit, coinciding ascending, and descending passes are re-sampled to the same grid using the nearest neighbor method. To generate snow conditions maps, we use two separate approaches: first, we combine orbital passes in order to mitigate the loss of information due to layover and shadow, as in Nagler et al. (2016). In this “Combined Image” case, a pixel identified as wet snow in either ascending or descending passes will remain in that category; in other words, differences between evening and morning results are ignored. As dry snow backscatter values at C-band are dominated by radar interaction at the snow-ground interface, co-polarized backscatter values do not reliably differentiate between dry snow and bare ground. In order to generate a cohesive snow cover map with which we might compare optical imagery, we designate any “not wet” pixel that lies above the median elevation of wet snow as “dry snow.” As pixel classification does not incorporate slope angle, this is likely to overestimate snow cover area for steep rocky areas that might shed snow. Lastly, we also mask any pixels below an elevation of 3000 m.a.s.l: this omits backscatter analyses of features in the Shigar River. The finished product from this pixel classification process, separated by orbital pass and also combined, can be viewed in Figures 3A–C.
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FIGURE 3. Image May 12–13, 2017. Resulting image from the pixel classification process for (A) Ascending pass. (B) Descending pass. (C) Combined orbits for wet snow. Panel (D) Shows the result of diurnally differing pixel classifications for this same image pair.


Secondly, we develop a “Diurnal Image” (Figure 3D) to examine pixels with differing designations in evening versus morning passes. A pixel-wise comparison between evening and morning images results in a classification into one of four main categories: (1) pixels that register as wet for both evening and morning acquisitions, (2) pixels that register as wet in the evening but not the morning after, (3) pixels that register as wet in the morning but not the evening before, and (4) pixels that do not register as wet. As in our Combined Image approach, pixels that do not register as wet in either image are subcategorized further: pixels below the median elevation of wet snow are assumed snow free, whereas pixels above the median elevation of wet snow are assigned as “dry snow.” We continue to mask pixels beneath 3000 m.a.s.l. The decision-tree process for pixel categorization can be viewed in Figure 4. S1 postprocessing, pixel classification, and subsequent analyses are accomplished using R (R Core Team, 2017).
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FIGURE 4. Pixel designation methodology for diurnal radar snow conditions.




S2 Snow Probability Map Comparison

As cloud cover is significant in the Shigar Watershed (Hasson et al., 2014), finding optical S2 imagery that is relatively cloud free and that also temporally coincides with S1 retrievals is a challenge for snow extent comparisons, even with frequent S2 overpass repeats. We select three dates in the 2017 and 2018 melt seasons with relatively cloud-free S2 images and near coincidental (within 1–2 days) S1 acquisitions: May 23, 2017, September 20, 2017, and June 12, 2018. For this comparison, S1 snow maps are generated from “Combined” images, which minimize masked areas due to layover and shadow or extreme local incidence angle. In this case, S1 pixel classifications are simplified to either snow covered (whether wet or dry), or snow free. Selected S2 Level-1C images were processed using the ESA third-party plug-in Sen2Cor, resulting in Level-2A images (Louis et al., 2016). Level-2A products are atmospherically corrected and come with quality bands that include snow and cloud confidence maps. For a pixel-wise comparison with S1 snow conditions maps, we assign any pixel with a snow confidence >50 (out of 100) as snow covered. We also mask any pixels with cloud confidence >70 (out of 100). Masked pixels in either S1 or S2 maps are consolidated, so only snow cover assignments are compared between the two products.



Wet Snow Qualitative Assessment

Temperature measurements at the Shigar DCP station from the ablation season of 2015 are qualitatively used to contextualize S1 snow wetness results. In order to estimate temperatures at different elevations in the Shigar Watershed, we apply a simple lapse rate of −6.8 degrees Celsius per 1000 m of elevation gain, a rate used by researchers in the nearby Hunza Basin (Immerzeel et al., 2012). Recognizing the limitation of a singular meteorological station, we include scaled temperatures solely to gauge whether our radar snow conditions are commensurate with reasonable estimated temperatures, and note that the derived temperatures should be interpreted qualitatively. For quantitative interpretation, a lapse rate better rooted in local environmental conditions must be determined. Minimum and maximum temperature measurements for 2015, scaled to the median elevation of the Shigar Watershed (4678 m.a.s.l), can be viewed in Figure 5.
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FIGURE 5. 2015 maximum and minimum temperature record from the Shigar DCP meteorological station (2367 m.a.s.l). Temperatures are scaled to the median elevation (4678 m.a.s.l) of the Shigar Watershed using a simple lapse rate of –6.8 degrees per 1000 m of elevation gain.


S1 wet snow extents are also compared to HMA ASCAT Freeze/Melt status products (Steiner and McDonald, 2018). The ASCAT Freeze/Melt product comes with 3 bands: freeze/thaw on land, freeze/melt on permanent snow and ice, and quality. We utilize the permanent snow/ice band, masking any pixels flagged for quality. As this daily product is available from January 1, 2009 through October 12, 2017, we compare it to S1 wet snow maps for ablation seasons 2015–2017.



Distribution Comparison of Diurnal Pixel Designation

Our diurnal pixel categorization perpetuates the simplicity of threshold-based wet snow designation, and merits examination. For example, a pixel with a ratio of −5 dB in the evening followed by −1 dB in the morning indicates a greater change in surface characteristics than a pixel with a diurnal comparison of −3.2 dB in the evening and −2.9 dB in the morning ratio value, yet these two cases will result in the same classification. Accordingly, we explore the distribution of ratio values for each of our pixel categories based on the classification process delineated in section “Pixel Classification.” For this analysis, we select the image from April 29–30, 2015, as it includes significant areas of each pixel categorization. For each pixel category, we compare the morning pass ratio values and also compare the absolute difference in ratio values from evening to morning. It is worth reiterating that by comparing ratios, we are devaluing specific backscatter values in order to focus on changes in surface characteristics from dry snow imagery taken from the same viewing geometry.



RESULTS


Topographic Impacts

Extreme topography limits a significant portion of the Shigar Watershed from receiving a radar signal due to layover and shadow (Figure 6). Pixels masked due to extreme local incidence angle significantly increase the area without measurement. For ascending orbital passes, 1917 km2 or approximately 27% of the total watershed area is affected by radar layover or shadow. Along with masked pixels for extreme local incidence angles, the total area lost is 2374 km2, about 34% of the total watershed area. Descending orbital passes show a similar pattern, with 1872 km2 in layover or shadow and, including extreme local incidence angle, a total of 2400 km2 or 34% of watershed area masked. Combined Wet Snow images, created when ascending and descending passes are acquired within 12 h of each other, significantly reduce layover and shadow area to 705 km2, about 10% of watershed area. Including masked pixels for extreme local incidence angle, the area of lost information approximates 21% of the total area.


[image: image]

FIGURE 6. Areas lost due to (A) layover and shadow. (B) Extreme local incidence angle. (C) The two combined for separate orbital passes, combined pass images, and diurnal images.


To explore the diurnal contrast in backscatter from ascending and descending passes, lost information must be accumulated rather than reduced: to compare pixel values, information from both ascending and descending passes must be present, and extreme local incidence angles must also be eliminated from both orbital passes. Pixel-wise comparison to create Diurnal Images results in a total masked area of 3301 km2, approximately 47% of the Shigar Watershed. Near polar orbits of the S1 satellites result in blocked pixels that lie primarily in east and west aspects for the Diurnal Image. Figure 6 displays a map of masked pixels according to orbital pass and orbital compilation. Because of similar satellite viewing geometries, masked areas show very little inter-image change, with a maximum standard deviation of 10 km2 for total masked area for any melt season.



Radar Threshold Impact on Pixel Classification

Diurnal snow conditions maps with dB thresholds of −2 and −3 dB can be viewed in Supplementary Figure S1. The −2 dB ratio threshold, which reflects a smaller inter-image change than the −3 dB threshold, results in more pixels that are classified as “wet” snow (1260.7 km2 compared to 1047.6 km2 on the date analyzed in Supplementary Figure S1). For diurnally differing pixels, a −2 dB threshold increases the area of pixels classified as wet in the evening but not in the morning by 22.87 km2, or about 5.7%. For pixels that are not classified as wet in the evening but do register as wet in the morning, a −2 dB threshold increases the total area by 61.29 km2, an increase of about 36.1%.



Sentinel-2 Snow and Cloud Confidence Maps

Figure 7 offers a comparison of S1 and S2 snow cover maps for three dates in 2017 and 2018 (section “S2 Snow Probability Map Comparison”). Snow map comparisons yield a pixel-to pixel accuracy of 89.2%, 84.1%, and 86.8%, respectively. For both 2017 images, the pixel discrepancies are evenly distributed between sensors. For the 2018 image, the S1 snow map shows more pixels as snow covered (approximately 10% of compared pixels) than S2. Confusion matrices for each image comparison are visible in Supplementary Tables S2–S4.
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FIGURE 7. Sentinel-1 and Sentinel-2 snow extent comparisons for 3 dates. (A) S1: May 23–24, 2017, S2: May 23, 2017. (B) S1: September 21–22, 2017, S2: September 20, 2017. (C) S1: June 12–13, 2018, S2: June 12, 2018. Difference maps are also provided for each comparison.




HMA ASCAT Freeze/Melt Status Comparison

Time series of HMA ASCAT Freeze/Melt Status for melt seasons 2015–2017 can be viewed in Supplementary Figures S2–S4. The S1 and ASCAT results show good spatial agreement in wet snow identification. For each ablation season, melt signals first appear in both S1 and ASCAT products in the northwest region of the Shigar Watershed (Chogo Lungma Glacier). The high-altitude Baltoro Glacier in the east, which holds multiple 8,000 meter peaks such as K2 and Broad Peak, is the last to show surface snowmelt, although each ablation season does classify “wet” pixels in the higher elevations of the watershed for both products.


Combined Image Season Comparison

A seasonal comparison of wet snow evolution for ablation seasons of 2015, 2016, 2017, and 2018 is detailed in Figure 8. Individual wet snow maps for each season are in Supplementary Figures S5–S8. To avoid outlying pixels, we adopt the minimum and maximum elevations of wet snow to be at 2.3% and 97.7% quantiles, respectively (approximating two standard deviations above and below the mean elevation for normal distributions). The elevation distribution of the lower 5% quantile of wet snow can be viewed in Supplementary Figure S9. The minimum elevation of wet snow, or the transient snow line (TSL), is tracked through each season (Figure 8, left column). Aside from some variability in the early ablation season, the TSL shows a similar rate of rise for seasons 2015–2017, with elevations peaking at approximately 4200 m in mid-July or early August each year. The maximum rate of rise occurs early in the melt season each year, and approximates 20 m day–1. 2017 shows the most rapid rate of rise, approximately 35 m day–1 in early April. 2018 shows a much slower rate of rise than the other seasons (a maximum of approximately 13 m day–1), and also a lower maximum TSL of 3880 m in early August. For each season, TSL elevations begin to generally decrease in late July or early August.
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FIGURE 8. Combined image wet snow seasonal comparison of wet snow minimum elevation (2.3% quantile) in the left column and area ratio (area scaled to the total calculated snow cover area for that date) in the right column. (A) Combined ascending and descending passes. (B) Ascending orbital pass, at approximately 18:00 local time. (C) Descending orbital pass, at approximately 6:00 local time.


We also compare “area ratios” – or the area of wet snow normalized to the total classified snow cover area for that date – which show strong interannual variability, most evident in the rate of early season development (Figure 8, right column). Each year shows peak wet snow area ratio in July – August, with wet snow accounting for a ratio of nearly 0.90 of the total snow covered area. 2016 shows a lower maximum wet snow area ratio, approximately 0.77 in early August. In April and May, wet snow area ratio shows prominent inter-image fluctuations; in 2017, for example, area ratio drops from 0.54 to 0.23 from April 19–20 to April 30-May 1 images, thereafter increasing to 0.77 on May 12–13. Beginning in August of each year, wet snow area ratio decreases, although 2016 shows variability in late ablation season.

To explore the justification of comparing diurnal differences in radar-assessed snow conditions, we generate the same seasonal comparisons of transient snowline and area ratio, separated by orbital pass (Figures 8B,C). TSL elevations are generally corroborated by separate orbital passes, although the maximum TSL elevation for each season occurs in the ascending pass (approximately 18:00 local time) and generally occurs later in the season for the ascending pass. However, orbital pass variability is much more prominent in area ratio measurements. For both 2017 and 2018, the ascending pass wet snow area ratio shows strong variability through the month of June in contrast to the descending pass.



Diurnal Image Comparison


Distribution Comparison of Pixel Designation

We first focus on the morning ratio distribution for each pixel designation, as their value will ultimately determine pixel categorization. Table 1 details the median value of each pixel classification morning ratio, as well as its median absolute deviation. Pixels classified as wet both evening and morning measure a median morning ratio of −5.0 with a median absolute deviation of 2.0 dB. In contrast, pixels that register as wet in the evening but not in the morning measure a median morning ratio of −0.48, with a median absolute deviation of 1.7 dB. Finally, pixels that are not designated as wet in the evening, but wet in the morning pass show a median morning ratio of −3.6, with a median absolute deviation of 0.9 dB.


TABLE 1. Pixel classification distribution values.

[image: Table 1]We also explore the absolute difference of overnight change in ratio values, as these provide an indication of changes in surface conditions (Table 1). Pixels that register as wet in both evening and morning passes show a median absolute difference of 2.2, and a median absolute deviation of 1.9 dB. Pixels that register as wet in the evening but not the following morning measure an overnight median absolute difference of 4.5, and a median absolute deviation of 1.8 dB. Finally, pixels that are not classified as wet in the evening but as wet in the morning have a median absolute difference of 2.4, and a median absolute deviation of 2.0 dB.

Pixels that register as wet both evening and morning typically have morning ratio values well below the −3 dB threshold, and show relatively small overnight change in ratio values. For the remainder of this study, we refer to these pixels as “wet snow.” Pixels that register as wet in the evening but not in the morning measure a morning ratio value that is well above the −3 dB threshold, and show a much greater overnight change than any other pixel classification; we will subsequently refer to these pixels as “diurnally different.” Pixels that do not register as wet in the evening but do in the morning show a morning ratio value close to the – 3dB threshold, and also show less change overnight than diurnally different pixels. They also have a small presence in this classification scheme: for example, in 2017 the average area for this pixel classification is 96 km2 (1.4% of watershed area). For these reasons, we will not analyze them further in this study; future field study could clarify the conditions responsible for this phenomenon. However, we do include these pixels in diurnal difference images (Figures 9–11) so their spatiotemporal context is clear throughout the melt season.
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FIGURE 9. 2015 melt season radar snow conditions.
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FIGURE 10. 2017 melt season radar snow conditions.
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FIGURE 11. 2018 melt season radar snow conditions.




2015, 2017, and 2018 Diurnal Seasonal Snow Conditions

We compile six diurnal difference images from the ablation season of 2015 (Figure 9), and due to an accomplished ramp up and exploitation phase for S1-A and -B, 15 images for 2017 (Figure 10) and 16 images for 2018 melt seasons (Figure 11). 2016 acquisition patterns do not enable diurnal comparison, although melt images are available for this season in Supplementary Figure S6.

As we are interested in the areal and altitudinal distribution of diurnally different radar snow conditions, we explore the seasonal evolution of their median rather than minimum elevation as we did with the Combined Pass. A seasonal comparison of the median elevation and area ratio for each pixel designation can be viewed in Figure 12. For each season, the median elevation of diurnally differing pixels remains above that of wet pixels until about mid June, after which the median elevation of wet pixels remains slightly higher. The greatest variability in median elevations for each pixel classification occurs in early and late ablation season. The maximum median elevation for diurnally differing pixels is 5187 m.as.l. on May 24–25, 2017.
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FIGURE 12. Melt season diurnal radar snow conditions comparison for ablation seasons 2015, 2017, and 2018. (A) Median elevation, and (B) area ratio (area scaled to the total calculated snow cover area for that date).


A comparison of snow condition area ratios (Figure 12) also shows most variability occurring in early ablation season. 2017 and 2018 diurnally different pixel area ratios are as high as 0.27 and 0.30, respectively, in late April. As melt season progresses for each year, wet snow dominates total snow covered area, showing significant decreases starting in September.



DISCUSSION


Radar Threshold Impact on Pixel Classification

While decreasing the threshold value for the change in backscatter to −2 dB has an impact on wet snow total area, the overall spatiotemporal pattern of pixel classification is not significantly altered when the threshold is varied (Supplementary Figure S1). It is noteworthy that the area of pixels that are classified as diurnaly different are the least impacted by a change in threshold value. Pixels classified not wet in the evening but wet in the morning are the most impacted by a change in threshold, confirming that they are closer to the threshold value and therefore a noisier signal. A lack of in situ snow wetness validations supports a more conservative −3 dB threshold until field measurements prescribe an appropriate local threshold.



Optical Image Snow Extent Comparison

S1 snow extent agrees quite well with S2 snow confidence maps, with some consistent discrepancies (Figure 7). S2 regularly classifies snow cover on glacier tongues that S1 maps do not corroborate; this is most prominent in the late ablation season comparison on September 20–22, 2017 (Figure 7B). On the other hand, discrepancies in which only S1 pixels are classified as snow covered often occur off of glacier tongues on steeper hillsides in this rugged catchment. Because ‘dry snow’ S1 pixel classification is determined in relation to the elevation of pixels determined to be “wet,” steep rocky slopes and other land covers are not taken into account – a limitation of this methodology. Additionally, this S1 snow extent methodology is likely inadequate in early or late melt season, when the spatial extent of dry snow is far greater than that of wet snow (a similar issue described in Storvold and Malnes, 2004). A more accurate snow cover map could likely be achieved by incorporating cloud-free optical imagery or multiple SAR polarizations. However, when wet snow is present, SAR sensor identification of snow cover regardless of cloud cover is valuable, especially considering the common misclassification of cloud, ice, and snow pixels in optical imagery. In these image comparisons, S1 masked pixels calculate greater area than S2 masked pixels (derived from S2 cloud confidence values). However, S2 masked cloud pixels are often located low on glacier tongues or along the Shigar River, in spatial patterns suggesting potential pixel misclassification, further illustrating the challenge of spectrally separating clouds, ice, water, and snow.



Wet Snow Conditions

S1 snow conditions show an appreciable extent of wet snow during each ablation season, notable for one of the highest altitude watersheds in HMA. While a single meteorological station does not suffice for quantitative analyses of temperatures, it does offer qualitative validation for whether S1 snow classifications are reasonable. The daily maximum and minimum temperatures for 2015, scaled to the median elevation of the Shigar Watershed (4768 m.a.s.l), show reasonable maximum temperature values for daytime snowmelt to occur throughout the watershed. The estimated minimum temperatures at the median altitude are also reasonable when considering diurnal differences in snow conditions, as they remain below 0 degrees C until nearly July.

HMA ASCAT Freeze/Melt products also corroborate the spatial extent of S1 wet snow for each season (Supplementary Figures S2–S4). Pixel-to-pixel comparison ASCAT and S1 products is not ideal as most of the Shigar Watershed has been assigned pixel classifications as “permanent snow or ice” in the ASCAT product. With that designation, a given pixel is either given a “melt” or “freeze” status; in other words, as melt out reveals bare glacier ice, reducing the extent of S1 snow conditions maps, ASCAT will still assign each pixel as either frozen or melting. Each season, however, shows both products determining melt occurring at high elevations in the Shigar Watershed. The maximum elevation for S1 wet snow typically reaches nearly 6000 m.a.s.l, although in 2017 the maximum wet snow reached 6245 m.a.s.l in July. Abnormally warm temperatures for that season were confirmed by climbers on the Choktoi Glacier, who had to retreat from their objectives because above-freezing overnight temperatures resulted in unsafe climbing conditions (personal communication, 2017).



Diurnal Radar Comparisons

Beyond the quantitative indications of changing surface conditions discussed in section “Distribution Comparison of Pixel Designation,” on a watershed scale, the spatial and temporal context of pixel designation matches what we would expect to see from a snowpack exposed to surface energy balance changes throughout the melt season. In 2015 (Figure 9), the early April image is dominated by dry snow. By the end of the month, both wet and diurnally different pixels are present throughout the watershed. From May, wet snow increases in area throughout the watershed until late August, when melt out appears to have occurred except for at the highest altitudes.

The 2017 melt season shows a similar evolution (Figure 10), although early season comparison suggests more rapidly developed melt conditions and greater volatility than 2015. After strong early season melt signals, with large areas of both wet as well as diurnally different signals, images through June and July are increasingly dominated by wet pixels. Classification patterns from August onward show a strong signal of snow melt out, exposing glacier ice to surface conditions.

2018 shows prominent areas of diurnally different pixels in early and late April (Figure 11). Compared to the 2017 season, however, snowmelt develops more slowly in the month of May, also evident in area ratio comparisons in Figure 12B. Similar to previous seasons, wet snow begins to dominate the total snow cover area beginning in late June. This corresponds with the time that median elevation of diurnally different pixels drops beneath that of wet pixels, intimating a seasonal shift.

The seasonal spatial development of pixel classifications, along with distinct distribution values discussed in section “Distribution Comparison of Pixel Designation,” both support our hypothesis that diurnally differing radar signals indicate changes in surface conditions. Considering radar sensitivity to surface roughness and dielectric properties, physical surface changes could potentially be associated with: (1) a change in surface roughness, (2) a change in liquid water content due to overnight drainage, or (3) a change in liquid water content due to refreeze. Refreezing could either involve the entirety of snowpack liquid water content (i.e., refreezing of wet layers over a dry snowpack), or a thin surface layer of refreeze overlying wet snow (Mätzler and Hüppi, 1989).

Although surface roughness of wet snow can impact backscatter values late in the melt season (Nagler, 1996), the early season prevalence of diurnally different pixels limits the feasibility of explanation (1). Significant changes in surface roughness overnight also seem unlikely to occur. Explanations (2) and (3), both involving changes in liquid water content of the snowpack, are worth consideration.

In early melt seasons of 2015, 2017, and 2018, diurnally different pixels occur at higher elevations than wet snow. As saturated snow does not store water beyond its capillary pressure requirements over time (e.g., DeWalle and Rango, 2008; Samimi and Marshall, 2017), a change in liquid water content due to overnight drainage does not necessarily explain the spatial context of early season diurnal changes in radar response. In other words, if the entire snowpack typically drains to its irreducible water content overnight, explanation (2) does not explain diurnally differing pixels occurring at higher elevations than wet snow in the early melt season. However, a change in liquid water content due to refreeze does offer a reasonable explanation for early season pixel designations. Recall that Mätzler and Hüppi (1989) found C-band backscatter to be sensitive to refrozen crusts over a dry snowpack, but relatively insensitive to refrozen crusts over a ripe snowpack (1989). As melt-freeze crusts over a ripe snowpack can occur throughout the melt season (Macelloni et al., 2005; Samimi and Marshall, 2017), the early season prevalence of diurnally different radar signals seems most likely due to a refreeze of liquid water overlying a dry snowpack. If this is the case, diurnally differing radar signals can offer important insight into portions of the snowpack that are experiencing surface melt but not yet contributing to runoff, or still in the warming and ripening phases. Beyond the spatiotemporal context of diurnally different pixels in the Shigar Watershed, this hypothesis is corroborated with recent findings in the Alps using S1 backscatter to identify snow melt periods of moistening, during which the authors point out a diurnal difference in backscatter indicating afternoon melt and overnight refreeze before the snowpack has become isothermal (Marin et al. in discusson).

The spatial context of diurnally different radar signals in late ablation season merits a separate evaluation of potential surface condition changes. Again, overnight changes in surface roughness make (1) an unlikely explanation. A reduction in liquid water content due to overnight drainage or surface refreeze does allow greater radar penetration depth, and in the case of a very thin snowpack could result in radar interaction with the snow-ground or snow-ice interface during the morning pass, thereby increasing backscatter values (e.g., Nagler, 1996). This hypothesis is also reasonable considering the spatiotemporal context of pixels that register as wet in the morning but not the evening before, for example on August 4–5, 2017 (Figure 10): in this image, morning wet pixels cluster around Lukpe Lawo, a basin high on the Biafo Glacier commonly known as “Snow Lake.” Overnight drainage from a very wet snowpack at higher elevations could result in melt ponds growing overnight.



SUMMARY AND NEXT STEPS

We have explored the topographic effects of layover, shadow, and extreme local incidence angle on SAR imagery in the Shigar Watershed of the Karakoram Mountains. Combined Images mask 21% of pixels, while Diurnal Images mask 47% of the total watershed area. Layover and shadow impact primarily east and west aspects, although topographic impacts do not prevent observation of seasonal trends in snow conditions even in this challenging terrain.

Comparing our SAR-derived snow maps with S2-derived snow maps shows good pixel-wise agreement of 84–89% at different times in the melt season. This agreement encourages the use of SAR-derived snow conditions maps in areas with significant cloud cover, for example in monsoonal regions of HMA. We have developed SAR wet snow maps in order to track interannual variation in transient snow line altitudes and wet snow area ratios for the ablation seasons of 2015–2018. Transient snow lines show similar trends, while wet snow area ratios show strong interannual variability, particularly in early melt season.

Additionally, we have explored diurnal differences in radar signals for coincident orbital passes in the melt seasons of 2015, 2017, and 2018. Early ablation season variability is evident comparing each ablation season, with 2017 showing much stronger and more rapid development of wet and diurnally different pixels. Examination of pixel classification distributions suggests that diurnally different pixels are indicative of overnight changes in snow surface conditions. Additional validation is necessary, but the seasonal evolution and spatial context of diurnally differing radar signals in the early ablation season may be due to overnight melt-freeze crusts overlying a dry snowpack, a valuable indication of a supraglacial snowpack in warming or ripening phases and not yet contributing to runoff. If this is the case, diurnally differing SAR signals could offer constraining information for physically based energy balance and runoff models in an area with sparse measurement. Field measurements of snow wetness profiles during melt-refreeze cycles coinciding with satellite overpasses will be pursued as a next step, as well as incorporating these data into energy balance and runoff models.
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Glaciers in High Mountain Asia are an important freshwater resource for large populations living downstream who rely on runoff for hydropower, irrigation, and municipal use. Projections of glacier mass change and runoff therefore have important socio-economic impacts. In this study, we use a new dataset of geodetic mass balance observations of almost all glaciers in the region to calibrate the Python Glacier Evolution Model (PyGEM) using Bayesian inference. The new dataset enables the model to capture spatial variations in mass balance and the Bayesian inference enables the uncertainty associated with the model parameters to be quantified. Validation with historical mass balance observations shows the model performs well and the uncertainty is well captured. Projections of glacier mass change for 22 General Circulation Models (GCMs) and four Representative Concentration Pathways (RCPs) estimate that by the end of the century glaciers in High Mountain Asia will lose between 29 ± 12% (RCP 2.6) and 67 ± 10% (RCP 8.5) of their total mass relative to 2015. Considerable spatial and temporal variability exists between regions due to the climate forcing and glacier characteristics (hypsometry, ice thickness, elevation range). Projections of annual glacier runoff reveal most monsoon-fed river basins (Ganges, Brahmaputra) will hit a maximum (peak water) prior to 2050, while the Indus and other westerlies-fed river basins will likely hit peak water after 2050 due to significant contributions from excess glacier meltwater. Monsoon-fed watersheds are projected to experience large reductions in end-of-summer glacier runoff. Uncertainties in projections at regional scales are dominated by the uncertainty associated with the climate forcing, while at the individual glacier level, uncertainties associated with model parameters can be significant.
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1. INTRODUCTION

High Mountain Asia has the largest coverage of glaciers outside of the polar regions. The meltwater from these glaciers provides valuable freshwater for hydropower, irrigation, and municipal use to people living downstream (Biemans et al., 2019; Pritchard, 2019). Projections of glacier mass change in this region from up to five global glacier evolution models for an ensemble of General Circulation Models (GCMs) and Representative Concentration Pathways (RCPs) estimate by 2100 the glaciers could lose 45 ± 8% (RCP 2.6) to 69 ± 14% (RCP 8.5) of their total mass relative to 2015 (Hock et al., 2019). These results are consistent with projections from Kraaijenbrink et al. (2017). As a result of glacier mass loss, glacier runoff typically first increases as glacier melt intensifies, but then reaches a peak beyond which annual runoff declines (Jansson et al., 2003). Most river basins in High Mountain Asia are expected to experience maximum glacier runoff (“peak water”) by the middle of the century (Bliss et al., 2014; Lutz et al., 2014; Huss and Hock, 2018). River basins in Southwest and Central Asia will be more adversely affected since the glacier runoff is a significant component of total runoff especially in the dry season (Huss and Hock, 2018). Given the large, growing populations living downstream of these glaciers are already considered to be water stressed, the importance of glacier meltwater is expected to grow in the future, especially in times of drought (Pritchard, 2019). Advancing our understanding of the timing and quantity of peak water is therefore crucial for assisting regional water resources planning and management.

Despite the general consensus that High Mountain Asia is expected to experience significant glacier mass loss by 2100, there is considerable spatial variability and uncertainty associated with these mass loss projections. The spatial variability is predominantly driven by the complex interactions between the summer monsoon and the winter westerly disturbances, which fundamentally alter the timing and amount of precipitation (Kapnick et al., 2014). For example, the balanced/positive mass budgets observed in the Karakoram and Kunlun Shan (Brun et al., 2017; Berthier and Brun, 2019; Shean et al., 2020) are consistent with increasing trends in snow accumulation attributed to stronger winter westerly disturbances (Forsythe et al., 2017; Smith and Bookhagen, 2018). Unfortunately, existing climate datasets are too coarse to accurately resolve precipitation at high altitudes (Immerzeel et al., 2015; Dahri et al., 2016; Wortmann et al., 2018), so most glacier evolution models calibrate a model parameter that adjusts the precipitation (Radić and Hock, 2014). As a result, a model’s ability to resolve spatial variability in precipitation, and consequently mass change, is strongly dependent on the calibration data (Rounce et al., 2020).

Previous models have been calibrated with sparse measurements from less than 100 glaciers (e.g., Marzeion et al., 2012) and/or regional-scale mass balance estimates from a combination of glaciological, geodetic, gravimetric, and altimetric data (e.g., Huss and Hock, 2015; Kraaijenbrink et al., 2017). New datasets of systematic geodetic mass balance observations of nearly all glaciers in High Mountain Asia (Brun et al., 2017; Shean et al., 2020) provide unique opportunities to more accurately resolve the spatial variations in mass balance to inform future projections.

The dominant source of uncertainty in these future projections of mass change comes from the GCMs (Hock et al., 2019). Models quantify this uncertainty by running simulations for an ensemble of GCMs and reporting the mean and variability. The other main sources of uncertainty are simplified model physics and inaccuracies in input data. Uncertainties associated with model physics are difficult to quantify since all existing glacier evolution models are over-parameterized due to the use of limited calibration data. Hence, even if a specific process is not included or poorly represented in a model, the model parameters will likely compensate for it through the calibration. For example, Kraaijenbrink et al. (2017) is the first study that explicitly accounts for the changes in ablation rates due to debris cover, supraglacial ponds, and ice cliffs, yet their projections of glacier mass change are similar to previous studies (Hock et al., 2019). Since the calibration data used in previous studies includes debris-covered glaciers, these surface processes are inherently compensated for by the model parameters. Previous studies have sought to quantify uncertainty associated with model physics by performing sensitivity analyses on the model parameters (e.g., Kraaijenbrink et al., 2017) or on specific components of the model (e.g., Huss and Hock, 2015).

The purpose of this study is to project the mass changes of all glaciers in High Mountain Asia and quantify spatial variations and the resulting impacts on glacier runoff. We use the global Python Glacier Evolution Model (PyGEM) and a new dataset of geodetic glacier mass balances to more accurately resolve the spatial variability of glacier mass change and runoff projections and to quantify the uncertainty associated with model parameters. The calibrated model is validated against available historical direct observations. The calibrated parameter sets are used to run simulations from 2015 to 2100 for an ensemble of GCMs and RCPs. The spatial variability in mass change and runoff are discussed, the timing and quantity of peak water are investigated in detail, and the various sources of uncertainties are evaluated.



2. DATA


2.1. Study Area and Glacier Inventory Data

Our study region includes the three primary regions in High Mountain Asia (Central Asia, South Asia West, and South Asia East) from the Randolph Glacier Inventory (RGI; RGI Consortium, 2017) spanning from 65–105°E and 26–46°N (Figure 1). The entire region comprises 95,536 glaciers that cover an area of 97,606 km2 (RGI Consortium, 2017). Meltwater from these glaciers supplies upwards of 40% of the runoff in major river basins (Immerzeel et al., 2010; Armstrong et al., 2019; Zhang et al., 2019), which include the Brahmaputra, Ganges, Indus, Amu Darya, and Tarim. Given the complex topography and large-scale climate systems that affect the glaciers, studies have reported the spatial variability in glacier mass change using 15 RGI subregions (Kraaijenbrink et al., 2017), 12 subregions (Gardelle et al., 2013; Kääb et al., 2015) or 22 subregions (Bolch et al., 2019). Our study uses the 22 subregions from Bolch et al. (2019) for mass change and 14 major river basins for glacier runoff. These river basins are defined based on Vörösmarty et al. (2000) at a 6-min spatial resolution. The percent of the total basin area that is glacierized ranges from less than 0.1 to 3.2% with a mean of 1.2% (Huss and Hock, 2018).


[image: image]

FIGURE 1. Map of High Mountain Asia showing subregions according to Bolch et al. (2019) (black) and some of the major rivers (blue). Inset shows the location of High Mountain Asia with the three primary RGI regions (RGI Consortium, 2017). Background map data: Google, Digital Globe.


RGIv6.0 is the starting point for PyGEM as it provides general information about each glacier including its glacier Id (RGIId), region, subregion, center latitude, center longitude, and terminus type (RGI Consortium, 2017). Glacier area, ice thickness, and width for every 10 m elevation bin of each glacier is estimated by Huss and Farinotti (2012, updated to RGIv6.0). The total volume for all glaciers in High Mountain Asia is estimated to be 7590 km3, which is well within the uncertainty associated with the recent estimate of 7020 ± 1150 km3 by Farinotti et al. (2019). Compared to all the glaciers in the world excluding the Antarctic and Greenland ice sheets, glaciers in High Mountain Asia account for 44% of the total number of glaciers, 14% of the glacier area, and 4% of the glacier volume (Farinotti et al., 2019). Roughly 11% of this glacier area and 18% of the volume is debris-covered, and if one only considers the ablation area, 30% of the total glacier volume is debris-covered (Kraaijenbrink et al., 2017).



2.2. Climate Data

The glacier evolution model is forced with monthly air temperature, precipitation, and temperature lapse rate data from gridded global climate data. For each glacier, the model uses climate data from the nearest neighboring pixel relative to the glacier’s center latitude and longitude. ERA-Interim reanalysis data from the European Centre for Medium Range Weather Forecasts is used as the reference climate data for model calibration over the period 2000–2018. GCMs from the Coupled Model Intercomparison Project Phase 5 (CMIP5) (Taylor et al., 2012) are used for future simulations over the period 2000–2100.

ERA-Interim reanalysis data provide monthly near-surface (2 m) air temperature (monthly means of daily means), air temperature at various pressure levels (300–1000 hPa), and precipitation (monthly totals of daily data) from 1979 to present at a native resolution of ∼0.7°, which is bilinearly interpolated to a resolution of 0.5° (Dee et al., 2011). The near-surface air temperature is used to calculate the positive degree days and distinguish snow from rain (see Section 3.1), while the pressure level data are used to calculate the monthly temperature lapse rates in the free atmosphere. Precipitation data are converted to monthly precipitation by multiplying the precipitation by the number of days in each month.

Data from 22 GCMs and several RCPs (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) are used to quantify uncertainty in projections due to the climate model and emission scenario (Supplementary Table S1). The RCP is an emission scenario that is named after the approximate increase in radiative forcing relative to pre-industrial levels that is reached before (RCP 2.6, RCP 4.5), after (RCP 6.0), or near (RCP 8.5) the end of the 21st century. In total, 81 combinations of models and RCP scenarios are used. The resolution of these GCMs ranges from 0.94 to 3.75°. All simulations use the r1i1p1 ensemble member. Monthly temperature lapse rates for the GCMs are estimated from the mean monthly lapse rate from the reference climate data (ERA-Interim) over the calibration period.

Since the model is calibrated with ERA-Interim climate data (see Section 4.1), the GCM temperature and precipitation data are adjusted for each glacier to account for any biases between the two datasets over the calibration period (2000–2018). GCM temperatures from 2000–2100 are adjusted using an additive correction factor ensuring the mean monthly temperature for the period 2000–2018 is equal and the interannual variability in temperature for each month is similar to ERA-Interim following Huss and Hock (2015). Precipitation is adjusted using a multiplicative correction factor ensuring that the monthly mean precipitation is equal and the variability in the monthly mean precipitation is similar. For some glaciers, the mean monthly GCM precipitation is near zero (<10–3 m), which can result in large multiplicative correction factors that cause unrealistic values of monthly precipitation (>10 m). Since precipitation may increase or decrease in the future, the maximum adjusted precipitation in any given month is considered to be the maximum monthly precipitation from the reference period adjusted for future increases or decreases based on the normalized interannual variations. If the monthly precipitation exceeds this maximum adjusted precipitation, the value is replaced by the monthly mean precipitation from the reference period adjusted by the normalized interannual variation for that given year.



3. GLACIER EVOLUTION MODEL

The Python Glacier Evolution Model (PyGEM; Rounce et al., 2020) is an open-source glacier evolution model coded in Python1 that estimates the transient evolution of glaciers. PyGEM has a modular framework that allows different schemes to be used for model calibration or model physics (e.g., climatic mass balance, glacier dynamics). The user-specified schemes and parameterizations selected to run the model depend on data availability, computational resources available, and the focus of the study. The minimum data required to run the model is a glacier inventory (glacier attributes, area, and ice thickness) and climate data (temperature and precipitation). This study also uses glacier thickness, area, and width data for the glacier dynamics scheme. Model parameters need to be calibrated and results should be validated using some form of mass balance (altimetric, glaciological, geodetic, or gravimetric), runoff, snowline, or equilibrium line altitude data. The model has been developed to seamlessly integrate with publicly available glaciological and geodetic measurements (WGMS, 2018), although we have opted to use geodetic measurements from Shean et al. (2020) as they provide an unprecedented level of spatial coverage at a high resolution in the study region.

Here we present an application of PyGEM using model parameterizations for the mass balance and glaciers dynamics that rely heavily on Radić and Hock (2011) and Huss and Hock (2015). Each glacier is modeled independently using a monthly timestep using 10 m elevation bins. The major advance in this study is the application of a Bayesian model (Rounce et al., 2020) to calibrate every glacier in High Mountain Asia and quantify the uncertainty associated with the model parameters. Furthermore, the model is open-source and the bias correction for the precipitation has been modified to avoid unreasonably high values for glaciers located in dry regions. Details of the model parameterizations are described below.


3.1. Mass Balance Components

The specific climatic mass balance (m w.e.) for each elevation bin (10 m) is computed each month as the sum of the ablation, accumulation, and refreezing. Mass loss is negative, while mass gain is positive. Ablation is calculated using a degree-day model based on the monthly mean temperature and number of days per month. The degree-day factors for snow, ice, and firn are assumed to be related to one another to reduce the number of model parameters. The ratio of the degree-day factor for snow to the degree-day factor of ice is 0.7 (Kayastha et al., 2000; Singh et al., 2000; Yong et al., 2006; Huss and Hock, 2015; Lutz et al., 2016), and the degree-day factor of firn is assumed to be the mean of the degree-day factors for snow and ice. This study does not explicitly account for debris cover, but rather treats such surfaces as clean ice.

Temperature for each elevation bin is assigned by selecting the temperature from the gridded climate data (see Section 2.2) based on the nearest neighbor, which is adjusted based on the calibrated temperature bias and then downscaled to each elevation bin based on the temperature lapse rate (Huss and Hock, 2015). As the glacier evolves, the ice thickness in a bin may increase or decrease thereby changing the bins elevation and air temperature. This feedback may greatly alter the glacier’s evolution, so the bin temperature is further adjusted based on the temperature lapse rate derived from ERA-Interim air temperatures at various pressure levels, and the difference between the present ice thickness and the initial ice thickness.

Precipitation at each elevation bin of the glacier is computed using the scheme from Huss and Hock (2015). Precipitation from the gridded climate data (see Section 2.2) based on the nearest neighbors downscaled to each elevation bin using a calibrated precipitation factor and a precipitation gradient on the glacier. The precipitation gradient is assumed to be 0.01% m–1. Additionally, for glaciers with an elevation range that exceeds 1000 m, the precipitation in the uppermost 25% of the glacier’s elevation is reduced using an exponential function to account for reduced air moisture and wind erosion. Accumulation is calculated by partitioning the precipitation into liquid and solid based on the air temperature and snow temperature threshold (assumed to be 1°C). Within ±1°C of the snow temperature threshold, the liquid and solid precipitation ratio is linearly interpolated.

Following Radić and Hock (2011), refreezing is calculated as a function of its weighted annual mean air temperature according to Woodward et al. (1997) and cannot be negative. The model assumes that refreezing occurs in the snow pack as opposed to being superimposed ice, so refreezing cannot exceed the snow depth. In October of each year, any melt is assumed to refreeze up to the maximum refreeze potential; after which the snow and refreezing completely melts and the model can melt the underlying ice or firn.



3.2. Surface Type

The glacier surface is classified as snow, firn, or ice. Initially, the surface type is defined based on the glacier’s median elevation (Braithwaite and Raper, 2009), with higher elevations classified as firn and lower elevations classified as ice. The surface type evolves based on the 5-year running average of the glacier bin’s annual climatic mass balance (Huss and Hock, 2015). If the 5-year running average is positive, the surface is classified as firn; if negative, the surface is classified as ice. The surface type is classified as snow when snow accumulates on the surface.



3.3. Glacier Area and Elevation Changes

Glacier geometry changes in large-scale glacier evolution models typically rely on volume-area-length scaling (e.g., Radić and Hock, 2011), mass redistribution using empirical equations (e.g., Huss and Hock, 2015), or simplified glacier flow models (e.g., Maussion et al., 2019; Zekollari et al., 2019). These methods all allow the glacier to evolve over time in response to the total glacier-wide mass balance. The benefit of volume-area-length scaling and mass redistribution is that they are computationally inexpensive.

This study uses the mass redistribution curves developed by Huss and Hock (2015) based on Huss et al. (2010). The approach is only applied to glaciers that have at least three elevation bins. At the end of each mass-balance year the glacier-wide annual mass change is redistributed over the glacier using empirical equations that set the normalized surface elevation change as a function of the glacier’s elevation bins. The glacier bed is assumed to be parabolic. Here, we explicitly solve for the updated glacier area (A), width (W), and ice thickness (H) based on mass conservation and similar shapes as follows:
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This avoids any mass loss or gain that can result from not solving for the area and ice thickness simultaneously, which was the case for Huss and Hock (2015) and required them to perform an additional correction of the ice thickness after updating the area in order to enforce mass conservation.

Modeled glacier retreat occurs when the volume change in an elevation bin causes the ice thickness for the next time step to be less than zero. In this case, the ice thickness is set to zero and the remaining volume change is redistributed over the entire glacier according to the mass redistribution described above.

Following Huss and Hock (2015), modeled glacier advance occurs when the ice thickness change exceeds the ice thickness advance threshold of 5 m. When this occurs, the ice thickness change is set to 5 m, the area and width of the bin are calculated accordingly, and the excess volume is recorded. The model then calculates the average area and thickness associated with the bins located in the glacier’s terminus, which is defined by the lowest 20% of glacier area. Another minor modification to our implementation of Huss and Hock (2015) is that our calculation of the average area and thickness excludes the bin located at the terminus because prior to adding a new elevation bin, the model checks that the bin located at the terminus is “full.” Specifically, the area and ice thickness of the lowermost bin are compared to the terminus’ average, and if the area and ice thickness is less than the average, then the lowermost bin is first filled until it reaches the terminus average. This ensures that the lowermost bin is full and prevents adding new bins to a glacier that may only have a relatively small excess volume in consecutive years. In other words, if this criterion did not exist, then it would be possible to add new bins over multiple years that had small areas, which would appear as though the glacier was moving down a steep slope.

If there is still excess volume remaining after filling the lowermost bin to the terminus average, then a new bin is added below the terminus. The ice thickness in this new bin is set to be equal to the terminus average and the area is computed based on the excess volume. If the area of this bin would be greater than the average area of the terminus, this indicates that an additional bin needs to be added. However, prior to adding an additional bin the excess volume is redistributed over the glacier again. This allows the glacier’s area and thickness to increase and prevents the glacier from having a thin layer of ice that advances down-valley without thickening. The one exception for when a glacier is not allowed to advance to a particular bin is if the bin is over a known discontinuous section of the glacier, which is determined based on the initial glacier area. For example, it is possible, albeit unlikely, that a glacier could retreat over a discontinuous section and then advance in the future. This discontinuous area is assumed to be a steep vertical drop, hence why a glacier currently does not exist, so a glacier is not allowed to form there in the future. The glacier instead skips over this discontinuous bin and a new bin is added below it.



3.4. Glacier Runoff

Following Huss and Hock (2018), we define glacier runoff, Q, as all water that leaves the initial glacierized area, which is computed from rain (pliquid), ablation (a), and refreezing (R) as follows:
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This is equivalent to the runoff that would be measured at a fixed-gauge station at the initial glacier terminus. For clarity we use the term “fixed-gauge” glacier runoff throughout the text. When discussing fixed-gauge glacier runoff, we separate it into two components: (i) the runoff from the changing glacierized area, which we refer to as “moving-gauge” glacier runoff as this is equivalent to the runoff that would be measured at a gauging station that moved with the terminus (Bliss et al., 2014), and (ii) the runoff from the ice-free portion of the initially glacierized area once the glacier has retreated, which we refer to as “off-glacier” runoff.

The off-glacier runoff is computed as the sum of rain, seasonal snow melt, and refreezing from the non-glacierized portion of the initial glacier area. No other processes, e.g., evapotranspiration or groundwater recharge, are accounted for in these off-glacier areas. In the case of glacier advance, runoff is computed over the present glacier area, which may exceed the initial glacierized area. Given that most glaciers are retreating, the increase in glacier runoff due to the additional glacier area is considered to be negligible.

Excess meltwater is defined as the runoff caused by the net glacier mass loss. A glacier that melts completely contributes its entire mass as excess meltwater, while a glacier in equilibrium or with consistently positive mass balances produces no excess meltwater. First, we compute the total excess meltwater for each glacier over the period 2000–2100, which is equivalent to the total net mass change over this period or the sum of all (positive and negative) annual mass balances. Since interannual glacier mass change is highly variable, i.e., a glacier can lose, gain, and then lose mass again, we determine the amount of excess meltwater for each individual mass-balance year retroactively (Supplementary Figure S1). We distribute the total amount of excess meltwater in sequential order, starting from the first year, to all mass-balance years that are negative and where the lost mass is not regained in the future. This way the amount of excess meltwater over the entire period is maintained, even when the glacier experiences some positive mass-balance years. If the total mass change is zero or positive, excess meltwater is zero for all years.

From the projected time series of annual glacier runoff, peak water is calculated based on 11-year moving averages following Huss and Hock (2018).



4. MODEL CALIBRATION AND VALIDATION


4.1. Model Calibration

Geodetic mass balance observations from 2000 to 2018 of 95,086 glaciers (99.6% of the total glacier area) from Shean et al. (2020) are used for model calibration. These mass balance observations were primarily derived from time series of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEMs. They were quality controlled by identifying outliers using a 3-sigma filter for (a) the uncertainty of the glacier mass balance compared to the uncertainty of all glacier mass balances, and (b) the glacier mass balance compared to its corresponding regional mass balance (Rounce et al., 2020). Any glaciers that were not initially observed or were deemed outliers (1401 glaciers; 0.5% of the total glacier area) were replaced with the regional specific mass balance and uncertainty. This dataset was used instead of Brun et al. (2017), since it has fewer data gaps, integrates an additional 2 years of ASTER DEMs and more than 2 years of high-resolution DEMs from WorldView/GeoEye imagery, and calculates the mass balance for nearly every glacier in High Mountain Asia regardless of its size (Shean et al., 2020).

The three model parameters that require calibration are the temperature bias, precipitation factor, and degree-day factor of snow. The temperature bias and precipitation factor are meant to account for any biases or inability of the climate data to properly resolve the temperature and precipitation on the glacier, while the degree-day factor of snow is meant to account for any variations in the relation between the temperature and ablation. In reality, these three model parameters also compensate for any physical processes that are poorly accounted for or missing in PyGEM (e.g., debris cover, firn development, glacier dynamics).

Calibration is performed using a Bayesian model (Rounce et al., 2020), which combines mass balance observations with prior information of the model parameters to estimate the model parameters and their uncertainty for every glacier. The Bayesian model is applied using Markov chain Monte Carlo methods. These methods produce a chain of model parameter sets that is formed by iteratively sampling combinations of model parameters (Carlin and Louis, 2008). Sets of model parameters that agree well with the mass balance observations are more frequently accepted than those that agree poorly; however, some of the poorer sets are also accepted such that the chain of model parameters properly reflects the uncertainty associated with the observations. The theory behind Markov chain Monte Carlo methods is that if the chain is long enough, i.e., enough iterations are performed, the chain will converge to a unique stationary distribution such that the model parameters in the chain are from the joint posterior distribution (Carlin and Louis, 2008). In other words, once the chains are sufficiently long, we can be confident that the parameter sets are representative of the true distribution of potential sets of model parameters based on the observations and prior information. A detailed description of the calibration methods is presented in Rounce et al. (2020).

We calibrate each glacier independently using the geodetic mass balance observations from 2000 to 2018 (Shean et al., 2020) and the calibration scheme described above. The calibration scheme generates at least 100 independent sets of model parameters, which are used in the model simulations to quantify the uncertainty associated with the model parameters. For each GCM and RCP scenario, 100 simulations are run based on these sets of model parameters.



4.2. Model Validation

Model performance is evaluated at both a regional and glacier level comparing simulations forced by ERA-Interim from 1980 to 2017 with available observations not used in the calibration. Since the glacier volume at the start of the simulation in 1980 is not known (the input ice volumes refer approximately to the year 2000) the period 1980–2017 is split into two periods. For the period 1980-2000 the model is run in reverse (2000, 1999,…, 1980), and for the period 2000–2017 the model is run normally (2000, 2001,…, 2017), and both simulations are then merged. This ensures that the modeled glacier volume and area at year 2000 is consistent between the simulations used for validation (1980–2017) and calibration (2000–2018) and thus avoid any uncertainty that could be introduced from changes in glacier geometry between 1980 and 2000.

At the regional scale, the model is compared to regionally averaged time series of annual mass balance from 1980 to 2016 for each of the three primary RGI regions (Zemp et al., 2019) derived primarily from geodetic mass balances covering 51–72% of the total glacier area in each region, but also from glaciological mass balances covering 1–3% of the total glacier area in each region. At the glacier scale, the model is compared to all publicly available glacier-wide geodetic and glaciological observations (WGMS, 2018) between 1980 and 2017. This includes 41 observations of 17 different glaciers for the geodetic data and 112 annual, 154 winter, and 158 summer observations of 24 different glaciers for the glaciological data. In addition, model results are compared with observed equilibrium line altitudes from approximately year 2000 derived from end-of-summer snow lines averaged over 15–26 glaciers in various subregions (Gardelle et al., 2013).

All modeled and observed values are compared using the root-mean-square-error (RMSE) and regression analysis, where perfect agreement would result in a correlation coefficient (r) of 1.0 and a slope of 1. Geodetic mass balance data from Brun et al. (2017) are not used for validation because these mass balances agree well with the calibration data (Shean et al., 2020). Hence, good agreement would merely reflect the similarities between datasets, i.e., both were derived using time series of ASTER DEMs from 2000 to 2016 or 2018, and not properly evaluate model performance.



4.3. Propagation of Model Parameter Uncertainty

While the model generates output for every glacier in High Mountain Asia, the model results are typically aggregated to regions or river basins. When the root sum of squares method is used to estimate regional uncertainties based on the individual glaciers, the uncertainties are unrealistically low (e.g., <0.01 m w.e. yr–1) due to the large sample size. Shean et al. (2020) performed an analysis of the spatial autocorrelation of the glacier elevation change uncertainty and found a characteristic length of 32 km. For their regional estimates, they first aggregated the elevation change uncertainty into 55 km hexagonal cells assuming the glaciers are perfectly correlated. The regional elevation change uncertainty was then estimated by aggregating the uncertainty of each hexagon within a given region using the root sum of squares method, i.e., assuming the hexagons are independent. Lastly, the regional mass balance uncertainty was estimated by aggregating the regional elevation change uncertainty with the density and area uncertainty in quadrature. For consistency with the calibration data, we apply the same methods to propagate the glacier mass balance uncertainty to regional scales. Since PyGEM outputs the glacier mass balance and uncertainty, we first isolate the elevation change uncertainty by assuming the dimensionless fractional uncertainty is 0.10 for the area and 0.071 for the density according to Shean et al. (2020, eq. (4)).

The propagation of uncertainty is also important for comparisons with the mass balance observations, since monthly mass balances must be aggregated. In these cases, the uncertainty associated with the two extreme cases is reported, i.e., assuming each month is independent or perfectly correlated. The actual uncertainty is likely somewhere between these two end members. Note that for projections we report the uncertainty as the multi-GCM mean ± standard deviation instead of the model parameter uncertainty (see Section 6.3.1 for a comparison of the two sources of uncertainties).



5. RESULTS


5.1. Model Performance

The calibration of the glacier evolution model using geodetic mass balance observations of more than 95,000 glaciers enables the model to resolve spatial variability in mass balance at an unprecedented level of detail. Regional mass balances, aggregated by the three RGI regions, show the model and observations agree reasonably well between 1980 and 2016, especially when uncertainty is considered (Zemp et al., 2019) (Figures 2A–C). By comparison, the uncertainty associated with the modeled results is much less due to the large sample size. Agreement is best in Central Asia (RMSE = 0.18 m w.e. yr–1, r = 0.44) followed by South Asia West (RMSE = 0.24 m w.e. yr–1, r = 0.40) and South Asia East (RMSE = 0.31 m w.e. yr–1, r = 0.44) (Supplementary Table S2). This reflects the methods used to extrapolate long-term trends in High Mountain Asia, which were solely based on glaciological measurements in Central Asia (Zemp et al., 2019).
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FIGURE 2. Validation of model performance via comparison of (A–C) RGI regional annual specific mass balances (m w.e. yr– 1) from 1980 to 2016 with Zemp et al. (2019), (D) equilibrium line altitudes (ELA, m a.s.l.) with Gardelle et al. (2013), and mass balances from (E) geodetic (Bgeo, m w.e. yr– 1) and (F) annual, winter, and summer glaciological balances (Bglac, m w.e.) (WGMS, 2018). Uncertainty reported by the observations and for the model (standard deviation) are shown for (A–D).


Comparison with equilibrium line altitudes (Gardelle et al., 2013) shows good agreement (RMSE = 86 m, r = 0.98; Supplementary Table S2) with all regions lying close to the 1:1 line (Figure 2D). The good agreement provides confidence that the modeled accumulation and ablation areas are well represented in the model, which suggests the sets of model parameters generated by the calibration procedure are good.

The comparison of mass balances derived from geodetic and glaciological measurements (WGMS, 2018) show relatively good agreement around the 1:1 line with a fair amount of scatter (Figures 2E,F and Supplementary Table S3). For all geodetic and glaciological measurements, the mean ± standard deviation of the difference between the observed and modeled annual and seasonal mass balances is −0.12 ± 1.00 m w.e. yr–1. The agreement is much better when only considering the geodetic mass balances (−0.01 ± 0.46 m w.e. yr–1) or only the annual glaciological balances (−0.21 ± 0.52 m w.e. yr–1). The mean uncertainty (expressed as the standard deviation) of the modeled mass balances ranges from 0.35–0.74 m w.e. yr–1 assuming that the monthly modeled values are uncorrelated or perfectly correlated, respectively. In other words, the modeled uncertainty derived from the sets of calibrated model parameters is comparable to the differences between the observed and modeled mass balances, which suggests that the model’s uncertainty at the glacier scale is reasonably quantified.

The model performed poorly at the seasonal scale and typically had less negative summer balances (−0.71 ± 1.3 m w.e. yr–1) and less positive winter balances (0.53 ± 0.50 m w.e. yr–1). Hence, the good agreement with annual observations provides confidence that the model can reasonably resolve interannual variability in the mass balance, while the poorer agreement with seasonal observations suggests caution should be used when interpreting results on a sub-annual time scale. While the model’s intended use is for large-scale applications, the relatively good agreement on a glacier scale when considering model uncertainty highlights the unprecedented level of detail that is resolved by calibrating every glacier with a mass balance observation. At the regional level, the comparison with equilibrium line altitudes and historic mass balance estimates also suggest the model performs well at this scale.



5.2. Projections

The calibrated model parameters were used to estimate the glacier mass change and runoff of every glacier in High Mountain Asia from 2015 to 2100 for 22 GCMs forced by three to four RCPs each. All GCMs were run for RCP 2.6, RCP 4.5, and RCP 8.5, while only 15 of the GCMs had input data for RCP 6.0. Since projections are heavily dependent on the climate forcing, results are reported as multi-GCM means ± standard deviation of all the GCMs for a given RCP scenario.


5.2.1. Mass Change Projections

Projections estimate that from 2015 to 2100, glaciers in High Mountain Asia will lose 1900 ± 748 Gt (29 ± 12%, RCP 2.6), 3003 ± 705 Gt (46 ± 11%, RCP 4.5), 3200 ± 698 Gt (50 ± 11%, RCP 6.0), and 4327 ± 648 Gt (67 ± 10%, RCP 8.5). As expected, mass loss by 2100 increases for higher emission scenarios. While all regions are projected to experience significant mass loss, the relative mass loss (fraction of initial glacier mass) varies greatly by region (Figure 3). Some of the smallest regions (Dzhungarsky Alatau, Gangdise Mountains, and Tanggula Shan) are expected to experience the most relative mass loss (more than 67% even for RCP 2.6), while Karakoram and Western Kunlun Shan are projected to experience the least relative mass loss (less than 55% for RCP 8.5). Despite experiencing the least relative mass loss, Karakoram and Western Kunlun Shan contribute 24–34% of the total mass loss depending on the RCP scenario due to their large initial glacier mass. Mass change for 12 regions from Kääb et al. (2015) and the three primary RGI regions are provided in Supplementary Figures S2, S3, respectively.
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FIGURE 3. Regional multi-GCM means (±1 standard deviation) of normalized mass remaining, relative to 2015, for up to 22 GCMs and 4 RCP scenarios from 2015 to 2100. Uncertainty only shown for RCP 2.6 and RCP 8.5 for clarity. Numbers in lower left corner of each subplot refer to the region’s initial glacier mass (Gt). Subplots of regions from Bolch et al. (2019) are roughly ordered by geographic location. C, Central; E, Eastern; N, Northern; W, Western; Int, Interior; Mtns, Mountains.


The spatial variability in projected mass loss is dependent on present-day mass balance, projected changes in air temperature and precipitation, and various glacier attributes (e.g., glacier hypsometry, ice thickness). Since the model was calibrated with mass balance data for every glacier, the model is able to resolve subregional variations. The mass balance evolution of every glacier greater than 1 km2 for RCP 4.5 shows significant spatial and temporal variability exists due to spatial variations in the temperature and precipitation projections (Figure 4). By the end of the century, temperature in all regions is projected to increase by 2–3°C, relative to the 2000–2015 mean, with Eastern Hindu Kush and Gandise Mountains experiencing the greatest increase closer to 3°C. Changes to precipitation are more variable with some regions projected to increase by ∼10% (Altun Shan, Eastern Kunlun Shan, Gandise Mountains, Qilian Shan), while others show no significant change (Eastern Hindu Kush, Western Himalaya).
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FIGURE 4. Mass balance and bias adjusted temperature and precipitation changes relative to the mean from 2000 to 2015 for each glacier greater than 1 km2 from 2015 to 2100 for RCP 4.5. Each row is a glacier and glacier number refers to the number greater than 1 km2 in each region. Glaciers are ordered according to the RGIId in each subregion. Lines show the normalized regional mass remaining relative to 2015, and the area-weighted bias adjusted temperature and precipitation changes relative to the mean from 2000 to 2015. White color for the mass balance indicates the glacier has completely melted. Regions are from Bolch et al. (2019). C, Central; E, Eastern; N, Northern; W, Western; Int, Interior; Mtns, Mountains. RCP 2.6, RCP 6.0, and RCP 8.5 are shown in the Supplementary Figures S2–S4.


The glaciers’ response to temperature and precipitation is complex. For example, Eastern Himalaya, which had the most negative specific mass balance from 2000 to 2018 (Shean et al., 2020), is projected to experience less relative mass loss by 2100 for RCP 4.5 compared to other regions in part due to increases in precipitation and comparatively smaller increases in temperature (Figures 4, 5). Conversely, Pamir Alay, which had an almost balanced present-day mass budget, is projected to experience more mass loss than other regions as it gets warmer but not wetter. While the climate forcing is likely responsible for a significant amount of these changes, the glacier’s hypsometry, ice thickness, and elevation range will also impact how quickly the glacier is able to retreat in search of a new equilibrium. Hence, mass balance and overall mass change may significantly differ between regions even if they appear to have similar climate forcing (e.g., Eastern Kunlun Shun and Gandise Mountains).
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FIGURE 5. Spatial distribution of bias adjusted (see Section 2.2), multi-GCM mean temperature change (ΔT) (A–C) and precipitation change (ΔP) (D–F) from 2085–2100, relative to 2000–2015, aggregated by 0.5° grid cells for (A,D) RCP 2.6, (B,E) RCP 4.5, and (C,F) RCP 8.5. Note the difference in the colorbar scales for the temperature change subplots. The circles are scaled by the initial glacier area (km2) within the cell. Outlines of major river basins are shown for reference.


Figure 4 also shows substantial variations in specific mass balance projections within a region due to differences in changes to the temperature and precipitation. This is most apparent in Karakoram, Nyainqentangla, Western Himalaya, and Western Pamir, where parts of these regions experience an increase in precipitation that coincides with a strong increase in temperature, while other parts of these regions experience a decrease in precipitation that coincides with a smaller temperature increase. Interestingly, the parts of these regions that appear to become warmer and wetter appear to have less negative mass balances near the end of the century compared to the beginning of the century (Figure 4). In most subregions the individual glaciers’ specific mass balances tend to become considerably less negative throughout the 21st century, indicating that glaciers retreat to higher elevations. However, in some regions (e.g., Dzhungarsky Alatau, Altun Shan, Tanggula Shan, and the Eastern Tibetan Mountains) the trend is reversed with increasingly negative specific mass balances.

The same regional and subregional variations are also apparent in the projections of mass balance, temperature, and precipitation for RCP 2.6, RCP 6.0, and RCP 8.5 (Figure 5 and Supplementary Figures S4–S6). For RCP 2.6, the temperature is projected to increase ∼1°C by the middle of the century and stabilize, which allows many glaciers to reach a new equilibrium (Supplementary Figure S4). RCP 6.0 projects a relatively steady temperature increase of 3–4°C by 2100, while precipitation change is highly variable by region, leading to higher rates of total mass loss by 2100 compared to RCP 4.5 (Supplementary Figure S5). Lastly, RCP 8.5 projects a constant increase in temperature throughout the century such that all regions increase by 5–6°C. While the precipitation is also projected to increase in most regions, it does not compensate for the severe mass loss rates (<−1.5 m w.e. yr–1) and many glaciers subsequently melt completely by 2100 (Supplementary Figure S6). For glaciers that do not completely melt, the mass balance at the end of the century is very negative (<1 m w.e. yr–1) indicating these glaciers are still far from equilibrating with the new climate and continue to rapidly retreat.



5.2.2. Glacier Runoff Projections

Similar to the regional variations in the mass balance projections, projected peak water varies significantly among large-scale river basins (Figure 6). The projections of fixed-gauge annual glacier runoff indicate that, on average, a peak has already been reached or will be reached within approximately two decades, followed by declining glacier runoff, in several major river basins (Brahmaputra, Ganges, Ili, Salween, and Syr Darya) regardless of the RCP scenario. Glacier runoff in all river basins will have reached peak water by ∼2080 for all RCP scenarios.
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FIGURE 6. Time series of multi-GCM means (±1 standard deviation) of annual fixed-gauge glacier runoff (i.e., the runoff from the initially glacierized area) in eleven river basins for each RCP scenario from 2015 to 2100, relative to the mean annual fixed-gauge glacier runoff from 2000 to 2015 (given in bottom right in Gt yr– 1). Uncertainty only shown for RCP 2.6 and RCP 8.5 for clarity. Dashed lines show peak water for each RCP. Center map shows major river basins in study area (Vörösmarty et al., 2000). Abbreviations in center map are Sw, Salween; TP, Tibetan Plateau; Yz, Yangtze.


Higher RCP scenarios will delay peak water due to increasing excess glacier melt, while lower RCP scenarios will allow many glaciers to approach a new equilibrium and therefore reduce glacier runoff earlier in the century. In some basins (e.g., Indus and Tarim), the timing of glacier melt is projected to cause peak water to be later for RCP 6.0 than RCP 8.5, but the percentage increase in total runoff at the time of peak water will be less for RCP 6.0 than RCP 8.5. The later timing may also be a consequence of the smaller sample of GCMs for RCP 6.0 (15 instead of 22). The basin averaged increases in annual glacier runoff when peak water occurs can be substantial, e.g., in the Tarim basin glacier runoff increases by ∼80% of the initial glacier runoff, while glacier runoff on the Tibetan Plateau and Amu Darya increase by more than 50% (multi-GCM mean for RCP 8.5). The relative increases in glacier runoff tend to be more pronounced for higher emission scenarios in most basins, and in basins where peak water is later.

Spatial variations within these large-scale drainage basins are most apparent in the Indus and Tarim (Figure 7), where some sub-basins have already reached peak water for all emission scenarios, while others (Karakoram and Kunlun) will reach peak water much later, e.g., after 2080 for RCP 8.5 (Figure 7C). Given that these latter subregions contain ∼42% of the total glacier mass in High Mountain Asia, mass loss from these regions drives the peak water within their river basins. In general, these sub-basins are located in the interior (e.g., Karakoram) and their bias adjusted, multi-GCM mean temperature change from 2085–2100, relative to 2000–2015, is projected to be higher than the exterior (e.g., Western Himalaya) sub-basins for all emission scenarios (Figures 5A–C). The differences in precipitation are much less pronounced, although the interior appears to become slightly wetter than the exterior (e.g., Western Himalaya and Eastern Hindu Kush) sub-basins for RCP 8.5 (Figure 5F). Given that temperature drives both the ablation rates and accumulation rates (since the temperature dictates whether precipitation falls as rain or snow), these higher temperature changes promote more negative mass balances.
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FIGURE 7. Spatial distribution of peak water (i.e., the year of maximum annual fixed-gauge glacier runoff) aggregated by 0.5° grid cells for (A) RCP 2.6, (B) RCP 4.5, and (C) RCP 8.5. The circles are scaled by the multi-GCM mean annual glacier runoff (Gt yr– 1) from 2000 to 2015 within the cell. Major river basins are shown (Sw, Salween; TP, Tibetan Plateau; Yz, Yangtze).


Conversely, peak water in Southeast Asia (e.g., Ganges and Brahmaputra) shows significantly less variability with almost all sub-basins reaching peak water by 2050 for all emission scenarios (Figure 7). This may reflect that glaciers in these river basins have already been experiencing high mass loss rates since 2000 (Shean et al., 2020). The subregional spatial variations in the timing of peak water are consistent for the various emission scenarios, although the spatial variations are more pronounced for the higher emission scenarios (Figure 7).

The spatial variability and timing of peak water is driven by the amount of excess meltwater, i.e., the additional runoff due to annual glacier net mass loss, and the relative importance of meltwater compared to other components of the fixed-gauge glacier runoff in each river basin (Figure 8). Excess meltwater is essentially the release of a long-term water supply that is not replenished. River basins that have significant amounts of excess meltwater (e.g., Amu Darya, Indus, Tarim) cause peak water to occur later in the century. As these glaciers continue to melt, the excess meltwater becomes depleted thereby reducing the amount of glacier runoff. Unsurprisingly, glacier meltwater in these river basins is the largest contributor to the fixed-gauge glacier runoff (upwards of 80%) as they receive most of their precipitation as snow from the winter westerlies.
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FIGURE 8. Multi-GCM mean of annual fixed-gauge glacier runoff and the relative contribution from various components for RCP 4.5 from 2015 to 2100 relative to the mean annual fixed-gauge glacier runoff from 2000 to 2015 (given below region name in Gt yr– 1). Results for RCP 2.6, RCP 6.0, and RCP 8.5 are shown in the Supplementary Figures S7–S9.


River basins fed by the summer monsoons (e.g., Brahmaputra and Ganges) receive 50% or more of their fixed-gauge glacier runoff from precipitation (Figure 8 and Supplementary Figures S7–S9) and their annual runoff only decreases a little by 2100 regardless of the emission scenario (Figure 6). Excess meltwater in these river basins appears to have already peaked and therefore does not drive the timing of peak water to the same extent.

For all river basins, as the glaciers retreat the glacier melt is replaced by off-glacier (seasonal snow) melt, which becomes an increasingly important component of the fixed-gauge glacier runoff (Figure 9 and Supplementary Figures S10–S12). Since these off-glacier areas replace portions of the glaciers that have already retreated, they are inherently located at lower elevations and will be the first to experience snow melt each year. Figure 9 shows the relative components of fixed-gauge glacier runoff for each month near the end of the century (2085–2100) for RCP 4.5 relative to the monthly runoff from 2000 to 2015. All river basins show a clear lag in the timing of snow melt followed by glacier melt later in the summer. The relative importance of the glacier melt varies based on the climate system.
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FIGURE 9. Mean monthly fixed-gauge glacier runoff averaged over 2000–2015 and 2085–2100 for RCP 4.5. Runoff for both period averages is normalized relative to the maximum monthly runoff from 2000 to 2015. Relative contribution from various components are shown for the runoff from 2085 to 2100. Maximum monthly decrease (or, when all months show an increase, maximum increase) of runoff between June and September is given in parentheses. Results for RCP 2.6, RCP 6.0, and RCP 8.5 are shown in the Supplementary Figures S10–S12.


For RCP 4.5, in monsoon-fed river basins (e.g., Brahmaputra and Ganges), glacier melt contributes ∼20% in August, while precipitation contributes ∼70% of the fixed-gauge glacier runoff (Figure 9). In westerlies-fed river basins (e.g., Amu Darya and Tarim), glacier melt is a much greater contributor (50% or more). Interestingly, despite relying on glacier runoff less, monsoon-fed river basins are expected to experience the most significant reductions in fixed-gauge monthly glacier runoff (∼40% in August). Conversely, some westerlies-fed river basins are projected to be reduced by ∼20% (Amu Darya), while the Tarim basin is expected to see an increase in fixed-gauge glacier runoff by the end of the century due to contributions from excess meltwater despite its steady decrease after peak water around 2060 (Figure 8). In general, monthly runoff reductions are considerably higher for RCP 8.5 reaching 65% or more in four basins (Ili, Mekong, Salween, Syr Darya; Supplementary Figure S12).



6. DISCUSSION


6.1. Mass Change Projections

Glaciers in High Mountain Asia are projected to lose 29 ± 12% (RCP 2.6), 46 ± 11% (RCP 4.5), 50 ± 11% (RCP 6.0), and 67 ± 10% (RCP 8.5) of their total mass by 2100. These projections generally fall within the range of those from previous studies considering uncertainties (Kraaijenbrink et al., 2017; Hock et al., 2019). The major advance in this study is the availability of geodetic mass balance data for almost every glacier to calibrate each glacier individually. Given that the model physics are almost identical to those from Huss and Hock (2015), a comparison shows the added value of the calibration data.

Huss and Hock (2015) was calibrated using regional data from Gardner et al. (2013). A comparison between Shean et al. (2020) and Gardner et al. (2013) reveal there are significant differences in the present-day mass balance. For example, in Eastern Himalaya, the specific mass balance used in our study is half as negative as that used by Huss and Hock (2015). Unsurprisingly, the mass loss in South Asia East (RGI region 15) was 18–31% less in our study (Supplementary Figure S3). Similarly, in Karakoram and Tien Shan, where the most mass in High Mountain Asia resides, Gardner et al. (2013) is significantly more negative than Shean et al. (2020). Consequently, we project 15–30% less mass loss in Central Asia (RGI region 13) and South Asia West (RGI region 14). These differences illustrate that advances in the systematic measurement of indirect glacier mass balance (e.g., Brun et al., 2017; Shean et al., 2020) are important for future projections.

The calibration of every glacier enabled the model to capture the spatial variability that is present within subregions (Figure 4). While quantifying mass change for large regions is helpful for water resources planning at the scale of major river basins, our model’s ability to resolve subregional differences provides important data for much smaller river basins such as those containing hydropower plants. The comparison with geodetic and annual glaciological measurements from WGMS (2018) showed that the model agreed well with observations (Figure 2). Since PyGEM is currently designed for large-scale applications and its model physics are consequently relatively simple to enable rapid calculations over large areas (e.g., use of mass redistribution curves), caution should be used when analyzing the results of individual glaciers, especially for smaller glaciers (see Section 6.3; Figure 10C).


[image: image]

FIGURE 10. (A–C) Examples of the normalized mass remaining from 2015 to 2100, relative to 2015, for various RCP scenarios for a large (61 km2) glacier (A,B) and a small (0.4 km2) glacier (C) showing the uncertainty for RCP 2.6 and RCP 8.5 (shaded colors) associated with the model parameters and GCMs for various RCP scenarios, and (D) the uncertainty associated with the mass balance data (σB) used for calibration (Shean et al., 2020) versus glacier area.




6.2. Glacier Runoff Projections

Glacier runoff projections provide critical information for the planning and management of water resources. Two approaches have been used for projecting glacier runoff: (1) using an imaginary fixed-gauge station at the initial glacier terminus (e.g., Huss and Hock, 2018) or (2) using a moving-gauge station that tracks the glacier terminus over time (e.g., Bliss et al., 2014). Figure 8 shows the difference in fixed-gauge glacier runoff (solid line) versus the moving-gauge glacier runoff that does not account for off-glacier runoff (dashed line). If off-glacier runoff is not included, both the timing and amount of peak water is severely underestimated, indicating that glacier runoff calculations should always use a fixed-gauge station approach. The major limitation for the fixed-gauged station approach starting with the initial glacierized area is how to account for glaciers that advance, since theoretically the glacier runoff associated with the glacier area that exceeds the initial area should not be counted. In this study, we have not removed any runoff for advancing glaciers, which is considered to have negligible implications on the total runoff since projections show glaciers are rapidly retreating (Figure 3).

The spatial distribution of the timing of peak water in this study for RCP 4.5 (Figure 7) is fairly consistent with Huss and Hock (2018, Figure 2), which estimates peak water to be later in the Karakoram and Kunlun and much earlier in Southeast Asia. However, the exact timing of peak water does show significant variations. For the major monsoon-fed river basins (Ganges, Brahmaputra, Salween, and Mekong), our study estimates peak water will occur in 2030, 2016, 2015, and 2023, respectively, which is 14, 33, 34, and 26 years prior than Huss and Hock (2018), respectively. For westerlies-fed river basins, our study estimates peak water will occur in 2053 for the Indus, 2061 for the Tarim, and 2047 for the Aral Sea (the combination of Amu Darya and Syr Darya). The timing of peak water in the Indus and Tarim are 8 and 10 years later than Huss and Hock (2018), respectively, while the Aral Sea is 2 years earlier.

Given the nearly identical model physics between our study and Huss and Hock (2015), we attribute the differences in the timing of peak water to differences in the calibration data. The use of mass balance data for every glacier to calibrate our study enables us to resolve subregional variations in mass change and provides improved estimates of the timing and amount of peak water. Kraaijenbrink et al. (2017), who used subregional mass balance data for calibration, mention meltwater peaks around 2050 for RCP 8.5 and earlier around 2030 for the other RCPs, but did not account for any other components of the fixed-gauge glacier runoff. Our study finds for RCP 8.5 meltwater can peak as late as 2080 (Supplementary Figure S9) and as early as 2020 for RCP 2.6 (Supplementary Figure S7), although this varies considerably based on the river basin. Given our study does not account for debris cover, future work should assess how the response of debris-covered glaciers affects the timing of glacier runoff.

The timing of peak water, which is driven by excess meltwater, is more important in westerlies-fed river basins than monsoon-fed river basins, since glacier meltwater contributes a significantly higher percentage of the fixed-gauge glacier runoff (Figure 8). Consequently, the annual glacier runoff in the two major monsoon-fed river basins (Brahmaputra and Ganges) only declines by ∼20% (−10.4 Gt yr–1 and −4.3 Gt yr–1, respectively) by the end of the century relative to the mean over 2000–2015. As Huss and Hock (2018) highlighted, the glacier melt contribution to end-of-summer (August, September) fixed-gauge glacier runoff is significant (Supplementary Table S4). The Brahmaputra and Ganges are projected to experience a decline in the end-of-summer glacier runoff of 35–54% and 32–41% (RCP 2.6 – RCP 8.5), respectively (Supplementary Figures S10–S12). These declines are much higher than those projected by Huss and Hock (2018), which varied from 21 to 35% and 19 to 23%, respectively.

The Indus and Amu Darya are also expected to experience declines in August fixed-gauge glacier runoff ranging from 23–7% and 22–33% (RCP 2.6 – RCP 8.5), respectively. The Tarim differs from other river basins as excess meltwater will actually cause an increase in glacier runoff in all months by the end of the century relative to 2000–2015 by at least 11% for RCPs 4.5, 6.0, and 8.5 (Figure 8, Supplementary Figures S11, S12, and Supplementary Table S4) despite steady declines following peak water; however, for RCP 2.6 many glaciers would reach an equilibrium (Supplementary Figure S7) and cause a decline in end-of-summer months of up to 24% (Supplementary Figure S10). These projections for the Tarim for RCP 4.5 and RCP 8.5 are much different than Huss and Hock (2018) who report glacier runoff will decline in August by 18–24%. Nonetheless, while these increases in glacier runoff may be beneficial in the short-term, projections show glacier melt and excess meltwater significantly decline toward the end of the century, so these increases will likely not remain after 2100.



6.3. Uncertainties


6.3.1. Uncertainties Associated With Model Parameters and Climate Forcing

One of the major advances in this study is the use of Markov chain Monte Carlo methods, which enable the uncertainty associated with the model parameters to be quantified for every glacier based on the uncertainty associated with the mass balance data used for calibration. This uncertainty was used to assess the model performance (see Section 5.1). The model projections on the other hand reported the multi-GCM mean ± standard deviation, which we refer to as the uncertainty associated with the climate forcing (see Section 5.2). Figure 10 shows that for a large glacier, RGI60-15.03473, the uncertainty in future projections associated with the model parameters for a single GCM (±10%) is approximately half as much as the uncertainty in future projections associated with the climate forcing (±20%) (Figures 10A,B). However, for a small glacier, RGI60-15.03854, the uncertainty associated with the model parameters is much greater than the uncertainty associated with the climate forcing (Figure 10C).

The considerable difference in the sources of uncertainty is due to the glacier’s initial mass and the uncertainty associated with the mass balance data used for calibration. Since the mass change is shown relative to 2015, glaciers with more initial mass are inherently less sensitive to uncertainty associated with the model parameters. Additionally, the uncertainty associated with the mass balance data is larger for smaller glaciers (<1 km2) (Figure 10D). For example, the mass balance of the smaller glacier, RGI60-15.03854, is −0.39 ± 1.09 m w.e. yr–1. Since the Markov chain Monte Carlo methods generate parameter sets corresponding to the 99.7% confidence interval (−3.66 to 2.88 m w.e. yr–1) and the initial mass is small (8.8 × 10–3 Gt), the uncertainty associated with the model parameters will cause the glacier to completely melt or experience tremendous growth.

One issue caused by these large uncertainties is that the mean mass change is inherently skewed toward these positive values because a glacier’s maximum mass loss is limited by its initial mass, while there is no limit for how large a glacier can grow. Hence, reporting mass or runoff change and its corresponding uncertainty for model parameters and/or climate forcing would be better represented using the median and normalized median absolute deviation. Fortunately, when these smaller glaciers are aggregated with other glaciers to subregions, the regional mass change signal and its uncertainty are dominated by larger glaciers, so these issues associated with the uncertainty of smaller glaciers become minor.



6.3.2. Other Sources of Uncertainty

Uncertainty associated with glacier projections comes from the climate forcing (GCM and RCP scenarios), calibration data/scheme, model physics, and input data. The dominant source of uncertainty in this study is the climate forcing. Even at large-scales, the uncertainty associated with the climate forcing, expressed by the standard deviation of multiple GCMs, can range from 10 to 15% of the initial volume. Given the difference in multi-GCM means for RCP 2.6 and RCP 8.5 ranges from 20 to 50% depending on the region (Figure 3), this amount of uncertainty is considerable.

While the uncertainty associated with the model parameters is smaller than the uncertainty associated with the climate forcing, it is considerable for individual glaciers (Figure 10). The use of Bayesian inference to quantify the uncertainty associated with the model parameters (Rounce et al., 2020) is a major advance for large-scale glacier evolution models and provides a framework to integrate multiple datasets in the future. As more systematic observations of mass balance are performed, it is likely that every glacier in the world will be able to be calibrated independently. While these systematic observations of mass change (e.g., Brun et al., 2017; Shean et al., 2020) are an excellent source of data that enable models to resolve the spatial variability in projections (Figure 4) and can significantly improve those projections (see Section 5.2.1), all existing models are still over-parameterized. Until this over-parameterization issue is solved, glacier projections will likely only be as good as their model physics and calibration data.

For example, Kraaijenbrink et al. (2017) is the first study to incorporate debris cover. Our study projects 7% less net mass loss by 2100 for RCP 2.6, 3% less for RCP 4.5, 1% less for RCP 6.0, and 3% more mass loss for RCP 8.5. While these differences are well within the range of reported uncertainties, the change from estimating less net mass loss for RCP 2.6 to estimating more net mass loss for RCP 8.5 may be because we did not account for debris and therefore do not capture the delayed response of debris-covered glaciers (Kraaijenbrink et al., 2017). If true, this suggests that accounting for debris is more important for higher emission scenarios. One possible explanation could be that glaciers are able to reach a new equilibrium for lower emission scenarios (e.g., RCP 2.6; Supplementary Figure S4), but are unable to do so for higher emission scenarios (e.g., RCP 8.5; Supplementary Figure S6); hence, the lag in the response of debris-covered glaciers becomes more important. However, given the differences in model physics, calibration data, GCMs used, and bias correction methods applied to the GCMs by each study, this is highly speculative. Future work should seek to quantify the impact debris-covered glaciers have on projections of glacier mass change and runoff. This type of analysis requires accurate debris thickness estimates that can resolve thick (>0.5 m) debris (e.g., Rounce et al., 2018), and advanced glacier dynamic modules (e.g., Maussion et al., 2019; Zekollari et al., 2019) that can capture feedbacks between spatial variations in subdebris melt and reduced driving stresses (Kraaijenbrink et al., 2017).

Model intercomparisons like GlacierMIP (Hock et al., 2019) can help identify sources of uncertainty and develop additional controlled experiments to quantify these uncertainties. However, as long as models are over-parameterized, it will remain difficult to assess the relative importance of a specific physical process because calibration schemes may inherently account for them. This issue applies to glacier dynamics, firn development, avalanching, and any other physical processes that may be missing or poorly represented in models. Until the over-parameterization issue is resolved, the only way to definitively quantify these uncertainties will be to control all input data (e.g., glacier inventories, climate data, calibration data) and methods (e.g., calibration scheme, model physics, GCM bias adjustments), which is albeit impossible to coordinate amongst multiple research groups. As more glacier evolution models become open-source like PyGEM and the Open Global Glacier Model (OGGM; Maussion et al., 2019), these controlled experiments will be easier to perform.

Fortunately, recent advances in systematic observations of elevation change (Brun et al., 2017; Shean et al., 2020) and surface velocities (Dehecq et al., 2019) that could be paired with consensus ice thickness estimates (Farinotti et al., 2019), provide unique opportunities to estimate climatic mass balance (e.g., Brun et al., 2018; Rounce et al., 2018) and potentially minimize the over-parameterization issue in the near future. Given that changes in glacier velocities in High Mountain Asia are mainly driven by changes in ice thickness (Dehecq et al., 2019), combining these new observations with new schemes for glacier dynamics (e.g., Maussion et al., 2019; Zekollari et al., 2019) and modules accounting for debris cover (e.g., Kraaijenbrink et al., 2017) may greatly improve future projections.



7. CONCLUSION

This study used a new dataset of glacier mass balances in conjunction with Bayesian inference to calibrate every glacier in High Mountain Asia independently and quantify the uncertainty associated with the model parameters. This enabled us to resolve spatial and temporal variability in mass change and glacier runoff with an unprecedented level of detail. The comparison with historical mass balance observations shows the model captures regional variations well and even agrees well at the glacier-level with longer (>1 year) observations when one considers the uncertainty associated with the model parameters.

Projections of mass change show glaciers in High Mountain Asia are expected to lose between 29 ± 12% for RCP 2.6 and 67 ± 10% for RCP 8.5 by 2100 relative to 2015. While the Karakoram and Western Kunlun Shan will contribute the most mass loss due to their large initial glacier volume, significant regional variability exists and the smallest glacierized regions are projected to experience the most mass loss in terms of percent of their initial mass. The glaciers’ response to future climate forcing is complex as considerable variability in the temperature and precipitation changes, and glacier attributes (thickness, hypsometry, elevation range) will alter how each glacier responds.

Projections of glacier runoff show the timing of peak water is driven by excess meltwater, especially in river basins fed by the winter westerlies. These river basins are expected to hit peak water in the latter half of the century, while most monsoon-fed river basins are expected to hit peak water before 2050. Interestingly, these monsoon-fed river basins that appear to rely on glacier meltwater the least are expected to be most negatively impacted in the future due to declining estimates of runoff in the end-of-summer months. This could have major implications for future water resources and is an important area of future work.

The new calibration scheme used in this study shows that at regional scales the uncertainty associated with GCMs dominates the uncertainty associated with model parameters. While the use of this new mass balance dataset enabled the model to resolve spatial variations in mass change, the model is still over-parameterized. Future work should seek to continue generating systematic datasets that may be used to solve this issue. Once this issue is resolved, models will be able to assess how much of an impact accurately accounting for various physical processes (e.g., debris cover, glacier dynamics) have on projections, which will likely greatly improve these projections as well.
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High-mountain Asia (HMA) constitutes the largest glacierized region outside of the Earth's polar regions. Although available observations are limited, long-term records indicate sustained HMA glacier mass loss since ~1850, with accelerated loss in recent decades. Recent satellite data capture the spatial variability of this mass loss, but spatial resolution is coarse and some estimates for regional and HMA-wide mass loss disagree. To address these issues, we generated 5,797 high-resolution digital elevation models (DEMs) from available sub-meter commercial stereo imagery (DigitalGlobe WorldView-1/2/3 and GeoEye-1) acquired over HMA glaciers from 2007 to 2018 (primarily 2013–2017). We also reprocessed 28,278 ASTER DEMs over HMA from 2000 to 2018. We combined these observations to generate robust elevation change trend maps and geodetic mass balance estimates for 99% of HMA glaciers between 2000 and 2018. We estimate total HMA glacier mass change of −19.0 ± 2.5 Gt yr−1 (−0.19 ± 0.03 m w.e. yr−1). We document the spatial pattern of HMA glacier mass change with unprecedented detail, and present aggregated estimates for HMA glacierized sub-regions and hydrologic basins. Our results offer improved estimates for the HMA contribution to global sea level rise in recent decades with total cumulative sea-level rise contribution of ~0.7 mm from exorheic basins between 2000 and 2018. We estimate that the range of excess glacier meltwater runoff due to negative glacier mass balance in each basin constitutes ~12–53% of the total basin-specific glacier meltwater runoff. These results can be used for calibration and validation of glacier mass balance models, satellite gravimetry observations, and hydrologic models needed for present and future water resource management.

Keywords: digital elevation model (DEM), Himalaya, geodetic, ASTER, WorldView, high-resolution satellite imagery, photogrammetry, hydrology


1. INTRODUCTION

Glaciers are sensitive climate indicators that primarily respond to interannual changes in temperature and precipitation (e.g., Bertrand et al., 2012; Harrison, 2013). They constitute important seasonal and long-term hydrologic reservoirs, providing water for hydropower, agriculture, and municipal use (Guido et al., 2016; Ragettli et al., 2016; Milner et al., 2017; Pritchard, 2019) Glaciers can also be a significant natural hazard, especially for regions subject to catastrophic glacier outburst floods (Harrison et al., 2017; Haritashya et al., 2018; Allen et al., 2019).

Worldwide, glaciers, and ice caps are losing mass, with an estimated 0.71 ± 0.08 mm yr−1 sea level equivalent (SLE) contribution from 2003 to 2009 (Gardner et al., 2013), 0.92 ± 0.39 mm yr−1 from 2006 to 2016 (Zemp et al., 2019), and 1.85 ± 0.13 mm yr−1 from 2012 to 2016 (Bamber et al., 2018). Glaciers and ice caps contributed ~21% of total global SLE rise from 1993 to 2018 (WCRP Global Sea Level Budget Group, 2018), roughly equivalent to the combined contribution from the Antarctic and Greenland ice sheets during this period.

High-mountain Asia (HMA), which comprises the Tibetan Plateau and its surrounding mountain ranges (including the Himalaya, Karakoram, Tien Shan, and Pamir) contains the largest concentration of glacier ice outside of the polar regions, earning it the informal title of “The Third Pole” (Vaughn et al., 2014). The Randolph Glacier Inventory (RGI v6.0; RGI Consortium, 2017) includes 95,536 glaciers over HMA (regions 13, 14, and 15), covering an area of ~97,605 ± 7,935 km2 (assuming ~8% uncertainty; Pfeffer et al., 2014). Approximately 11% of this glacier area and 18% of the corresponding glacier volume is debris-covered (Kraaijenbrink et al., 2017; Scherler et al., 2018). Most glaciers in the central and eastern Himalaya receive ~80% of their annual accumulation from the summer monsoons (Bookhagen et al., 2005), while glaciers in the western Himalaya and Karakoram receive ~60–70% from westerly extratropical cyclones (Bolch et al., 2012; Kapnick et al., 2014; Maussion et al., 2014; Cannon et al., 2015).

Many studies have documented changes in HMA glaciers, and their total contribution to global sea level rise. Many earlier studies of HMA glaciers leveraged “traditional” glaciological measurements, while more recent efforts rely on geodetic remote sensing observations, including satellite laser altimetry (e.g., Ice, Cloud, and Land Elevation Satellite [ICESat]), satellite gravimetry (e.g., Gravity Recovery and Climate Experiment [GRACE]), and digital elevation model (DEM) differencing (e.g., DEMs from Pléiades, Satellite Pour l'Observation de la Terre [SPOT], and Advanced Spaceborne Thermal Emission and Reflection Radiometer [ASTER]). These methods have inherent differences in sampling strategy, resolution, and sensitivity, which can lead to discrepancies in results. For detailed reviews of past work, we refer the reader to Bolch et al. (2012), Farinotti et al. (2015), Kääb et al. (2015), Brun et al. (2017), Azam et al. (2018), and Bolch et al. (2019).

Long-term records of glacier length and area suggest that Himalayan glaciers have been retreating since ~1850 (Bolch et al., 2012). Since the 1960s, traditional and geodetic mass balance observations document mass loss rates of −0.3 to −0.7 m w.e. yr−1, with greater loss since the mid-1990s (Bolch et al., 2012). Gardner et al. (2013) reported 2003–2009 glacier mass loss rates of −0.24 ± 0.11 m w.e. yr−1 (−29 ± 13 Gt yr−1) from ICESat altimetry, −0.16 ± 0.17 m w.e. yr−1 (-19 ± 20 Gt yr−1) from GRACE observations, and −0.72 ± 0.22 m w.e. yr−1 (−86 ± 26 Gt yr−1) from extrapolating traditional mass balance observations to the full region. The larger mass loss estimate from the traditional data was attributed to a sampling bias of glaciers in accessible areas at lower elevations (Gardner et al., 2013). Kääb et al. (2015) used ICESat data and Shuttle Radar Topography Mission (SRTM) DEM to estimate glacier surface elevation change for 1° × 1° cells, with an estimate for total HMA glacier mass loss rate of −0.37 ± 0.1 m yr−1 from 2003 to 2008. While the ICESat and GRACE data provided the first systematic estimates of mass change for the entire HMA region, the sparse sampling of ICESat tracks, coarse resolution of GRACE mascons, and potential mixing of glacier mass change signals with terrestrial water storage and groundwater depletion contributed to high uncertainty estimates.

Brun et al. (2017) improved these estimates using time series of ASTER DEMs between 2000 and 2016 to estimate total HMA glacier mass loss of −0.18 ± 0.04 m w.e. yr−1 (−16.3 ± 3.5 Gt yr−1). The observed spatial variability across 1° × 1° cells was generally consistent with past work: mass change in the Himalayas was negative (−0.33 ± 0.20 to −0.42 ± 0.20 m w.e. yr−1), while the Karakoram was near zero (−0.03 ± 0.07 m w.e. yr−1), and Kunlun Shan was positive (+0.14 ± 0.08 m w.e. yr−1). The near-zero mass change in the Karakoram (a.k.a. the “Karakoram anomaly”) is consistent with many other studies (Gardelle et al., 2012, 2013; Rankl and Braun, 2016). This situation has persisted for at least ~50 years (Bolch et al., 2017), and has been attributed to increased winter precipitation (Archer and Fowler, 2004) and decreased mean summer temperature (Fowler and Archer, 2006) since the 1960s (Bashir et al., 2017; Forsythe et al., 2017). Glaciers in the Western Kunlun Shan have also been near a balanced state since the 1970s despite an increasing trend in mean summer and annual temperatures (Wang et al., 2018). de Kok et al. (2018) hypothesized that the positive mass balance in the Kunlun sub-region may be related to increased irrigation in the Tarim basin, which caused an increase in summer snowfall and cloud cover over the Kunlun Shan, with associated decrease in net incoming shortwave radiation.

To assess glacier evolution under future climate scenarios, geodetic glacier mass balance observations can be used to calibrate and validate glacier evolution model projections. These models estimate ~36–87% mass loss for HMA glaciers by 2100, depending on the glacier evolution model, climate forcing, and representative concentration pathway (RCP) scenario (Kraaijenbrink et al., 2017; Hock et al., 2019). This loss will lead to a significant decrease in seasonal glacier meltwater runoff, with important implications for downstream stakeholders (Huss and Hock, 2018).

While glacier mass balance intercomparison efforts have improved considerably, they are often incomplete, or integrate datasets spanning different time periods with different spatial extent and resolution. Spatially continuous, systematic high-resolution observations are needed to capture both the spatiotemporal evolution of glacier mass balance and the processes that influence glacier mass balance (e.g., debris cover evolution, mass redistribution during surging) on a regional scale. To address these issues, we generated a new dataset of high-resolution DEMs from DigitalGlobe/Maxar stereo satellite imagery with unprecedented coverage and accuracy. We also reprocessed the archive of daytime ASTER stereo imagery acquired between 2000 and 2018. We integrated these observations to derive robust elevation change trends and mass balance estimates for ~99% of the glacierized area in HMA, with no minimum glacier area threshold. Our results will provide important calibration and validation for mass balance models needed to improve estimates of future HMA glacier change and understand associated downstream impacts in the region.



2. DATA AND METHODS


2.1. WorldView/GeoEye (WV/GE) DEMs

We processed all available Level-1B (L1B) panchromatic stereo imagery over HMA from the DigitalGlobe/Maxar archive through late 2017. This included imagery collected by WorldView-1 (0.50 m ground sample distance [GSD] at nadir, beginning in late 2008 for HMA), WorldView-2 (0.46 m GSD, mid 2010), WorldView-3 (0.31 m GSD, late 2014), GeoEye-1 (0.41 m GSD, late 2009), and Quickbird-2 (0.65 m GSD, 2002). A total of 2,562 in-track and 3,235 cross-track stereo pairs were processed using the NASA Ames Stereo Pipeline (ASP) (Shean et al., 2016; Beyer et al., 2018) v2.6.0 (Beyer et al., 2017) following the methods outlined by Shean et al. (2016) (Figure 1). Cross-track pairs were formed by monoscopic images with acquisition time separation of <7 days, convergence angle of 10–70°, minimum intersection width and height of 6 × 6 km, and cloud cover of <25%. We used the void-filled SRTM-GL1 (Farr et al., 2007) as a seed DEM for initial orthorectification, enabling efficient stereo correlation (Shean et al., 2016). We also used an absolute elevation difference filter of ±200 m relative to the SRTM-GL1 products to remove spurious pixels from the output DEMs. Output DEMs were posted at 2, 8, and 32 m in the appropriate universal transverse mercator (UTM) zone, with elevation values relative to the WGS84 ellipsoid. These data products, detailed processing information, and metadata are available from the National Snow and Ice Data Center (NSIDC) (Shean, 2017a,b,c).


[image: Figure 1]
FIGURE 1. Composite products for WorldView/GeoEye (A–C) and ASTER (D–F) DEMs after co-registration and quality control. Rows show per-pixel weighted mean, count, and normalized median absolute deviation (NMAD). Note difference in color ramp for count maps in B and E.




2.2. ASTER DEMs

We generated DEMs from 28278 Level-1A (L1A) stereo images collected by the ASTER Visible and Near Infrared (VNIR) instrument (Fujisada, 1998) between June 2000 and June 2018 (Figure 1). We queried the NASA EarthData archive for daytime stereopairs (panchromatic bands 3N and 3B, 15 m GSD) with cloud cover <50%. The ASTER pairs were processed with ASP v2.6.0 using the void-filled SRTM-GL1 product as a seed DEM for initial orthorectification. We used the ASP semi-global matching (SGM) correlator (Hirschmuller, 2008) with default parameters (7 × 7 pixel window), which can offer improved results over the default ASP correlation routines for scenes with limited image resolution and/or texture (i.e., fresh snow-cover and cloud-shadowed areas). We used ASP's default SGM disparity map filters (3 × 3 pixel median filter and a 3 × 3 pixel “texture-aware smoothing filter” with scaling factor 0.13) to remove residual artifacts. Finally, isolated clusters of <50 pixels surrounded by missing data (“islands”) were removed from the disparity map. We used the rational polynomial coefficient (RPC) model bundled with each L1A scene for stereo triangulation, and culled outliers with large triangulation error (exceeding 3 × 75th-percentile) from the resulting point cloud. Output DEMs were posted at 30 m with elevations relative to the WGS84 ellipsoid. Finally, we performed a 2-pixel erosion of the outer DEM boundaries to remove any residual edge artifacts and filtered the resulting DEMs using an absolute elevation difference filter, removing any DEM pixels with ±100 m offset relative to the void-filled SRTM-GL1. The ASTER DEMs contain more noise than the WorldView/GeoEye DEMs, so we chose a more conservative threshold to remove spurious DEM pixels (e.g., artifacts near cloud margins), while also preserving the elevation change signals of interest over glacier surfaces.



2.3. TanDEM-X Global DEM

We used the publicly available TanDEM-X 1-arcsec (90 m) global DEM as a reference basemap for the region (Rizzoli et al., 2017; Wessel et al., 2018). While relatively coarse, this product offers excellent horizontal and vertical (~3.5 m absolute and <2 m relative) accuracy. We used the auxiliary products bundled with each DEM tile to mask artifacts/errors observed over some of the relatively steep terrain in HMA, including the theoretical height error map (HEM ≤ 1.5 m), water mask (33 ≤ WAM ≤ 127), and consistency mask (COM ≠ {0,1,2}). Qualitative inspection of DEM tiles around the region suggest that these filters removed most spurious pixels. Further details and code for TanDEM-X processing is available in the tandemx repository (Shean, 2019). The resulting products were used as a reference DEM for co-registration.



2.4. DEM Processing
 
2.4.1. Co-registration

All individual 30-m ASTER and 8-m WV/GE DEMs were co-registered to remove any horizontal and vertical offsets relative to the filtered reference TanDEM-X DEM. We identified “static” control surfaces that we assume did not change between the DEM acquisition timestamp and the reference DEM acquisition timestamp (~2011–2014 for TanDEM-X products). Both input DEMs were clipped to a common intersection and resampled to 30 m via bicubic interpolation. Glacier surfaces were masked with the RGI v6.0 polygons (RGI Consortium, 2017), and outlier elevation difference values over remaining static surfaces were identified and removed. We then used an iterative implementation of the Nuth and Kääb (2011) method, with robust filtering and outlier removal. If the resulting translation exceeded a 200 m threshold or if more than 30 iterations were required, the DEM was not used for subsequent analysis. For all other DEMs, the resulting horizontal translation was applied to each DEM and the median vertical bias was removed. We did not apply any corrections to residual differences (e.g., 5th order polynomials used by Brun et al., 2017), to avoid introducing additional elevation error over glacier surfaces due to overfitting of limited static control surfaces with poor spatial distribution. The dem_align.py script in the demcoreg package (Shean et al., 2019) outlines the full co-registration workflow.

We then analyzed the full set of co-registered ASTER and WV/GE DEMs to identify and remove any remaining problematic and/or low-quality DEMs. We estimated population statistics for both DEM sources using metrics from all individual DEMs before and after co-registration (Figure 2). We used these statistics to identify outliers and removed hundreds of DEMs with anomalously high residual bias and spread (Figures 2B,D). The dem_align_post.ipynb notebook in the demcoreg package (Shean et al., 2019) outlines the full post-coregistration outlier removal workflow. Figure 2 shows statistics for the final set of co-registered and validated DEMs.


[image: Figure 2]
FIGURE 2. Temporal coverage and error metrics for WorldView/GeoEye (A,B) and ASTER (C,D) DEMs before and after co-registration. Each point shows the median elevation offset between an individual DEM and the TanDEM-X Global DEM reference over surfaces assumed to be static. Error bars show the 16–84% spread of these elevation offset values for each DEM. The final set of DEMs used for subsequent analysis and trend-fitting are shown with orange points/bars (“inliers”). Note the apparent drift in median offsets throughout the ASTER mission (C), and zero bias after co-registration.




2.4.2. Regional DEM Composites and Mosaics

We generated tiled DEM composite and mosaic products for the HMA region (Shean, 2017a) using the co-registered, filtered DEMs (Figure 1). All products use a custom Albers Equal Area projection that encompasses the RGI glacier polygons (PROJ4 string: +proj=aea +lat_1=25 +lat_2=47 +lat_0=36+lon _0=85 +x_0=0 +y_0=0 +ellps=WGS84 +datum = WGS84 +units=m +no_defs). We generated separate products for WV/GE and ASTER datasets, as well as a combined, blended, gap-free mosaic. Mosaic grid spacing was 8 m for WV/GE products and 30 m for ASTER products, with 100 × 100 km tiles. We also generated 1/3 arcsecond (~10 m) and 1-arcsecond (~30 m) resolution products using 1° × 1° tiles to conform with previous standards for global DEM mosaics (e.g., SRTM). The ASP dem_mosaic utility was used to generate seamless weighted-average composites and per-pixel composites of count, median, standard deviation, and normalized median absolute deviation (NMAD) using all valid DEM elevations at each pixel. We also generated timestamped mosaics using “forward” (most recent DEMs on top) and “reverse” (earliest DEM on top) per-pixel sort order, with associated products showing decimal year of elevation at each pixel. The code for composite and mosaic generation is available in the make_mos.sh and dem_mosaic_validtiles.py scripts in the gmbtools package (Shean and Bhushan, 2019).



2.4.3. Glacier DEM Stack Generation and Elevation Change Trend

We generated “stacks” of combined ASTER and WV/GE DEMs for each glacier polygon (plus a 1 km buffer) at 30 m posting. We computed linear elevation change trend ([image: image], with units in m yr−1) (Figure 3, Figure S1) for each pixel with >5 DEMs and >5 years between the first and last DEM timestamp. Several methods for the trend fitting were considered (Figure S1), including ordinary least-squares, random sample consensus (RANSAC), and the Theil-Sen estimator (scikit-learn implementation: https://scikit-learn.org/stable/modules/linear_model.html#theil-sen-regression). We reviewed maps of trend and residual values for a large sample of glaciers across the region, and confirmed that the robust Theil-Sen estimator offered superior output quality for the noisy ASTER+WV/GE DEM stacks (Figure S1).


[image: Figure 3]
FIGURE 3. Annualized elevation change rate ([image: image]) for RGI glacier polygons (black outlines) from robust trend fits to stacks of ASTER+WV/GE DEMs for the period from 2000 to 2018.


The output elevation change trend map for each glacier was then filtered to remove artifacts. For each glacier (plus the buffered extent), a stack per-pixel median grid was created. From this grid, minimum (0.01 percentile) and maximum (99.99 percentile) stack elevation values were determined. These elevation values typically sampled the bottom of a valley floor, and the top of the highest peak in the scene. Then, these minimum and maximum elevation values were padded by and additional −150 and +150 m, respectively. Per-pixel elevation change trends were extrapolated to obtain surface elevation maps for May 31, 2000 and May 31, 2018. If the extrapolated elevations fell outside of the padded bounds, the pixel was masked. A 1-pixel erosion step removed trend values near data gaps, and a 3 × 3-pixel median filter followed by a 3 × 3-pixel Gaussian filter were used to remove residual outliers and smooth the output trend maps (Figure 3). Details of this workflow can be found in the stack_interp.py script in the gmbtools package (Shean and Bhushan, 2019).




2.5. Glacier Mass Balance

We computed glacier mass balance and mass balance uncertainty at multiple spatial scales: individual glacier polygons, tessellated hexagonal grid cells, glacierized regions, river basins, and the full HMA domain. We use [image: image] notation for pixel values, and Δ notation for spatially aggregated values, with both representing the annualized rate of change for the period from 2000 to 2018.


2.5.1. Individual Glacier Mass Balance

We used the elevation trend maps to estimate geodetic mass balance for glacier polygons with a minimum of 85% coverage. In practice, 95% of the glaciers in the study area had >97% coverage, eliminating the need to rely on gap-filling approaches (e.g., McNabb et al., 2019). We computed [image: image] statistics for each glacier polygon, computed mean glacier elevation change Δh, and multiplied by polygon area A to estimate total individual glacier volume change ΔV. We used a standard bulk density estimate ρ = 850 kg m−3 (Huss, 2013) to convert this volume change to individual glacier total mass balance ΔM:

[image: image]

In contrast to many previous studies, we did not impose a minimum glacier area threshold, and consider all 95536 HMA glacier polygons in RGI v6.0.



2.5.2. Individual Glacier Mass Balance Uncertainty

We calculated individual glacier mass balance uncertainty using approaches similar to those outlined in recent geodetic analyses with similar DEM sources (e.g., Fischer et al., 2015; Berthier et al., 2016; Brun et al., 2017; Menounos et al., 2019).

To estimate glacier elevation change error σΔh, we calculated statistics for per-pixel [image: image] trend values within a 500 m buffer around each glacier polygon, assuming [image: image] values should be 0 for these “static” or “stable” surfaces. We then combined “random” and “systematic” error components to estimate total error.

To estimate random error [image: image] (i.e., spread of [image: image] noise), we considered both the NMAD and standard deviation of [image: image] values over static surfaces. We used the Rolstad et al. (2009) “rule of thumb” approach, and a decorrelation length scale L of 500 m between pixels in the [image: image] maps. We scaled the [image: image] values for glaciers with A ≥ πL2 (~0.78 km2) by an area-dependent coefficient [image: image] (Rolstad et al., 2009), which accounts for the fact that larger areas dominated by uncorrelated random error will approach 0 mean error. To account for any residual systematic error [image: image] (i.e., local [image: image] bias), we computed the mean of [image: image] values over the same static surfaces. We then combined this [image: image] value with the scaled [image: image] value (computed from the standard deviation of [image: image] values) in quadrature to estimate total root-mean-square error (RMSE):

[image: image]

Many previous studies report σΔh as the scaled [image: image] component from the NMAD of [image: image] values. These NMAD-only error estimates are more robust to outliers and tend to be relatively small. The combined RMSE estimates from Equation (2) are larger and more conservative, and we use these values for σΔh in this study.

Though the reported RGI inventory uncertainty is ~8% for HMA (Pfeffer et al., 2014), we assumed glacier polygon area uncertainty of 10% (σA = 0.1·A) (e.g., Kääb et al., 2012) to account for any polygon digitization error, temporal evolution of glacier extent during the study period [e.g., changes related to retreat, surging, and other ice dynamics (e.g., Azam et al., 2018)], and offsets between the source image timestamps used for RGI polygon digitization (~1998–2014) and the DEM timestamps. We assumed density uncertainty σρ = 60 kg m−3 (Huss, 2013), which is 7.1% of ρ = 850 kg m−3.

Assuming that the three error components (σΔh, σA, σρ) are independent and uncorrelated, the total mass change uncertainty for each glacier polygon is:

[image: image]

(using Equation 10 in Joint Committee for Guides in Metrology, 2008). An alternative form of this equation can be written in terms of normalized, dimensionless fractional uncertainty:

[image: image]

which is convenient given that our area and density uncertainty are provided as percentages. While Equation (4) appears to be undefined for |Δh| = 0, if we distribute the |ΔM| term, then as [image: image]. The mb_parallel.py script in the gmbtools package (Shean and Bhushan, 2019) contains the detailed workflow used for individual glacier mass balance and uncertainty estimation.

As defined above, we assume [image: image] and [image: image], so the minimum glacier mass balance uncertainty will be ~12.2% when [image: image] is 0. In practice, the [image: image] term tends to dominate the mass balance uncertainty for individual glaciers, but aggregation over larger areas reduces its influence on total mass balance uncertainty.



2.5.3. Aggregated Glacier Mass Balance

We aggregated the individual glacier mass balance results for the full HMA region and different sub-regions. We computed centroids for each glacier polygon and performed spatial joins to compile statistics for the centroids that fell within larger sub-region polygons. The sub-region aggregation was performed for the commonly used glacierized regions of Kääb et al. (2015) and the HIMAP project (Bolch et al., 2019), the major hydrologic basins (Vörösmarty et al. (2010), updated to 6-min spatial resolution), and the Goddard GRACE mascon boundaries (Loomis et al., 2019). We modified three of the Kääb et al. (2015) regions to remove references to country names (“Bhutan” → “East Himalaya,” “East Nepal” → “Central Himalaya” and “West Nepal” → “West Himalaya”).

For each sub-region, we computed the sum of glacier mass balance (ΔM) for all nglac glaciers in cubic meters water equivalent (m3 w.e. yr−1) and gigatons per year (Gt yr−1) and divided by aggregated glacier area to obtain mean specific mass balance (m w.e. yr−1). We converted Gt to mm sea level rise equivalent using a global ocean area estimate of 3.625 × 108 km2 (Cogley et al., 2011), and considered total contributions from all glaciers and then only those glaciers within exorheic basins.



2.5.4. Aggregated Glacier Mass Balance Uncertainty

Estimating total mass balance uncertainty for larger aggregation areas is more complex than for individual glaciers. Many previous studies compute Δh for all valid [image: image] pixels over glaciers and σΔh for all [image: image] pixels over stable surfaces in the area of interest (e.g., river basin, 1° × 1° cells), often aggregating statistics for elevation bins and scaling using observed glacier hypsometry. The uncertainty is sometimes scaled to account for relatively short autocorrelation length scales of [image: image] pixel values over stable areas (e.g., ~500 m), but rarely for longer autocorrelation length scales (e.g., 10s of km). It is also possible that glacier polygons could be split across aggregation boundaries (e.g., glacier accumulation area in one 1° × 1° cell and ablation area in adjacent cell), which will bias aggregated mass balance estimates.

To avoid these issues, we aggregated mass balance uncertainty values for individual glacier polygons, not [image: image] pixels. Initially, we used the individual glacier mass balance uncertainty values (σΔM) from Equation (3). Combining these values in quadrature resulted in unrealistically low aggregated uncertainty estimates for the full-HMA region (0.3 Gt yr−1 or 1.7%) due to the large glacier sample size (nglac ≈ 95,000 for full-HMA region). This approach assumes that the σΔM values for all glacier polygons are independent and completely uncorrelated, which is incorrect for several reasons: the density uncertainty σρ is constant for all glaciers (perfect spatial autocorrelation), area uncertainty percentage [image: image] is also constant for all glaciers, and there is inevitably some large-scale (~10s of km) spatial autocorrelation of [image: image] pixel values over stable terrain that is not accounted for using the scaling described in section 2.5.2. This large-scale σΔh spatial autocorrelation is controlled by the input DEM sample counts (Figure 1), DEM dimensions (~ 60 × 60 km for ASTER), DEM artifact length scales, and slope- and aspect-dependent residual co-registration errors.

If we instead assume that the σΔM values are perfectly correlated and compute the sum of all σΔM during aggregation, we obtain unrealistically high aggregated uncertainty estimates for the full-HMA region (21.5 Gt yr−1 or 113.4%). A more appropriate estimate of aggregated mass balance uncertainty falls between these two approaches, as the errors are correlated, but only over a limited range of length scales (e.g., Rolstad et al., 2009; Anderson, 2019). To estimate these length scales, we calculated the range of autocorrelation for σΔM values using experimental semivariograms with a lag distance equal to the median of the nearest neighbor distances between glacier polygon centroids (~786 m). We fit a spherical semivariogram to the experimental semivariogram using ordinary least squares, and obtained an autocorrelation length scale estimate of ~42 km for σΔM using the RMSE error metric (Equation 2) and ~27 km for σΔM using the NMAD error metric. See Figure S2 for details and the Mass_balance_cor_working.ipynb notebook in the raster_geostatistics repository (Bhushan, 2020) for additional details.

This approach using total mass balance uncertainty for each glacier (σΔM), however, fails to consider variable spatial autocorrelation length scales for the individual components of σΔM in Equation (4). A better strategy is to isolate and consider the spatial autocorrelation of only the σΔh values, as the σρ and [image: image] values are constant across the region, and their inclusion will increase apparent spatial autocorrelation of the σΔM values. We repeated our semivariogram analysis for the σΔh values and found an autocorrelation length scale of ~32 km for the σΔh RMSE and ~24 km for the σΔh NMAD error metrics (Figure S2) (dh_dt_sigma_error.ipynb in Bhushan, 2020).

Based on the range of influence for the σΔh RMSE values, we defined a tessellated grid of hexagonal cells across the HMA domain to represent independent spatial samples with “radius” of 32 km. The width between opposite sides of these hexagon cells is 55 km, which is roughly equivalent to a quarter-degree cell. We note that aggregation for cells defined in units of decimal degrees (e.g., 1° × 1° cells used by many previous HMA-wide inventories) can be problematic, as the cells cover variable total area at different latitudes. For example, a 1° × 1° cell at 25°N covers ~11,182 km2 while a 1° × 1° cell at 47°N covers ~8,455 km2, an areal difference of ~24%. To avoid potential sampling bias, we defined these equal-area hex cells in our custom equal-area projection (section 2.4.2).

We computed the mean glacier elevation change for each hex cell (Δhcell) using the sum of all individual glacier volume change (ΔV = Δh·A) estimates for the nglac glacier polygon centroids that fell within each cell:

[image: image]

where Acell is the total area of the nglac glacier polygons in the cell. Mean sample size (nglac) for the 55-km hex cells was 119, with a range of 1–585 (Figure S3). We substituted Δhcell and Acell into Equation 1 to compute cell-level total mass balance ΔMcell.

To estimate hex cell elevation change uncertainty (σΔhcell), we computed the sum of all individual glacier volume uncertainty (σΔV = σΔh·A) estimates for the nglac glacier polygon centroids that fell within each hex cell, assuming they were correlated (based on the semivariogram analysis above):

[image: image]

With this approach, we effectively weight the σΔh estimate for each glacier by the relative glacier area [image: image]. While the area terms in Equation (6) also have some uncertainty, the common 10% relative area uncertainty will cancel, so it does not directly contribute to the σΔhcell estimate. We used Equation (4) to compute total mass balance uncertainty for the cell (σΔMcell), which accounts for this area uncertainty.

For subsequent aggregation over larger HMA sub-regions, we computed mean glacier elevation change (Δhagg) as the sum of all hex cell glacier volume change (ΔVcell = Δhcell·Acell) estimates for the ncell hex cell centroids that fell within each aggregation polygon containing total glacier area Aagg:

[image: image]

which is similar to Equation (5). We assumed that σΔhcell errors for adjacent hex cells were independent and uncorrelated, and computed aggregated elevation change uncertainty (σΔhagg) in quadrature for all ncell hex cells that fell within each aggregation polygon:

[image: image]

Sample sizes for this aggregation (ncell) were 7–79 for HIMAP regions, 22–327 for Kääb et al. (2015) regions, and 3–117 for hydrologic basins, with a total of 793 hex cells for the full-HMA region. We used these values and Equations (1) and (4) to compute total mass balance ΔMagg and uncertainty σΔMagg for the aggregated regions.

To summarize, we estimated uncertainty for each glacier using observed [image: image] values on surrounding terrain. We aggregated glacier mass balance and uncertainty values for spatially correlated hex cell samples, then aggregated these independent samples in quadrature for regional and full-HMA uncertainty estimates.




2.6. Glacier Meltwater Runoff

While we cannot directly estimate total glacier meltwater runoff contributions from glacierized HMA river basins using our geodetic mass balance estimates, we can estimate the “excess meltwater runoff” (e.g., Radić and Hock, 2014; Brun et al., 2017) or “imbalance component of runoff” (e.g., Pritchard, 2019). This excess glacier meltwater runoff is equal to the glacier mass loss in a given basin (Brun et al., 2017; Pritchard, 2019; Rounce et al., 2020b). In this study, we compute mass loss at multiple scales (individual glaciers, hex cells, basins), and we report excess glacier meltwater runoff for a given basin as the water-equivalent loss from only the glaciers or hex cells with negative mass balance (ΔM < 0) in that basin. The total excess glacier meltwater runoff can therefore be larger than the total glacier mass loss for the basin, as any glaciers or hex cells with positive mass balance are not included. To avoid thresholding issues (e.g., Anderson, 2019), we conservatively estimate excess glacier meltwater runoff uncertainty as the aggregated total glacier mass balance uncertainty for each basin.

To assess the relative importance of this excess glacier meltwater runoff, we compared with existing model output for the “total glacier meltwater runoff” and “total runoff” in each basin, which provided estimates for excess meltwater “percent of total glacier meltwater runoff” and “percent of total runoff.”

The total glacier meltwater runoff was estimated from Python Glacier Evolution Model (PyGEM, https://github.com/drounce/PyGEM), forced with ERA-Interim reanalysis data (Rounce et al., 2020a,b). The monthly meltwater runoff was modeled for a single “gauging station” that moves with the terminus of each glacier and is the sum of modeled balance runoff expected if all glaciers were in equilibrium and any excess (or imbalance) runoff due to mass loss. The monthly values were annualized, and the 2000 to 2018 mean annual total glacier meltwater runoff was computed for each HMA basin, with final values of ~0.1 to 25 Gt yr−1 (Rounce et al., 2020a,b).

The total runoff for each basin includes all water that moved from the land surface to the river system, including total glacier meltwater runoff, surface runoff (precipitation, snow melt), and groundwater baseflow. We used output from the Water Balance Model (WBM) (Wisser et al., 2010) forced with 1980–2016 ERA-Interim reanalysis data (Grogan, 2016) to estimate mean annual total runoff (at basin mouth for exorheic basins, and total area runoff for endorheic basins) during the 2000–2016 period (D. Grogan, personal communication). These basin-specific values ranged from ~12 to 1,094 Gt yr−1, and they show good agreement with available gauge observations (GRDC, 2018) and model output (Huss and Hock, 2018).




3. RESULTS


3.1. Glacier Mass Balance

The total HMA glacier mass balance for the period from 2000 to 2018 was −19.0 ± 2.5 Gt yr−1 (−0.19 ± 0.03 m w.e. yr−1). Maps of aggregated values for hex grid cells show the detailed spatial distribution of glacier mass change across the full HMA region (Figure 4, Figure S4). The Himalayan range displays relatively large mass loss, with some spatial variability. Clusters of grid cells with more positive mass balance are observed in the Kunlun and Karakoram ranges. The mass balance gradient across the Karakoram (slightly positive/near-balance in the west, slightly negative in the east) is consistent with results from recent analyses (Lin et al., 2017; Berthier and Brun, 2019). Hex cell uncertainty values are highest in the Nyainqentanglha and Eastern Tien Shan, where total DEM counts are lowest (Figure 1E) and individual glacier uncertainty is high.


[image: Figure 4]
FIGURE 4. (A) Specific glacier mass balance (m w.e. yr−1) and (B) uncertainty for the period from 2000 to 2018, aggregated over 55 km hex grid cells. The size of the circle for each cell is scaled by total glacierized area within that cell. Approximate international borders from Natural Earth 1:10M products are plotted for reference. See Figure S4 for units of Gt yr−1.


Regional aggregations show greatest specific mass loss rates (Figure 5) and total mass loss rates (Figure S5) across Western, Central, and Eastern Himalayas, Nyainqentanglha, and the Central and Eastern Tien Shan. The Western Kunlun Shan and Eastern Pamir showed slightly positive mass balance, while the Karakoram showed slightly negative mass balance. Our results suggest that the HiMAP sub-region aggregation offers better spatial resolution of mass change patterns than the Kääb et al. (2015) sub-regions. This is especially true for the Tien Shan and Inner Tibetan Plateau, with more negative specific mass balance is observed in the eastern HiMAP sub-regions, though total mass loss for these sub-regions is relatively small (Figure S5).


[image: Figure 5]
FIGURE 5. Specific glacier mass balance (m w.e. yr−1) for the period from 2000 to 2018, aggregated over glacierized sub-regions from (A,B) HiMAP (Bolch et al., 2019) and (C,D) Kääb et al. (2015). Circle color shows mass balance and circle size is scaled by total glacier area for each sub-region (white outlines). Bar plots are sorted by x-coordinate of the sub-region polygon centroid. Updated values (Brun et al., 2018) from Brun et al. (2017) are plotted in (D) for comparison. See Figure S5 for units of Gt yr−1.




3.2. Mass Balance and Glacier Area

Our results show that larger glaciers dominate total HMA mass balance (Figure 6). In terms of specific mass balance (m w.e. yr−1), we found that glaciers between ~0.1 and ~10 km2 clustered around the mean specific mass balance for the full dataset (Figure 6A). Glaciers smaller than ~0.1 km2 had more positive specific mass balance relative to the mean, while glaciers between ~10 and ~30 km2 were more negative (Figure 6A). Glaciers larger than ~100 km2 are concentrated in western HMA (Figure 6C), where more positive mass balance was observed during the period from 2000 to 2018. This indicates that the limited sample of very large glaciers is not necessarily representative of glacier change across the full HMA domain.


[image: Figure 6]
FIGURE 6. (A) Relationship between specific glacier mass balance and glacier area. (B) Histogram of glacier area. (C) Spatial distribution of glaciers in each area bin, represented as circles scaled by glacier area. The largest circle in the lower right plot covers 1077 km2. Subplot titles include area bin bounds in km2 (e.g., “A = [0.01, 0.316]”) and number of glaciers in the bin (e.g., “n = 3593”). Annotation in upper right corner shows total mass balance and mean specific mass balance for all glaciers in the bin.




3.3. River Basins and Meltwater Runoff

All glacierized HMA river basins had negative glacier mass balance for the period from 2000 to 2018 (Figure S6). Glacier mass balance for exorheic and endorheic basins was −13.28 ± 2.28 Gt yr−1 and −5.69 ± 1.49 Gt yr−1, respectively. The Brahmaputra had greatest total glacier mass loss (−4.87 ± 1.01 Gt yr−1), followed by the Indus (−3.53 ± 0.97 Gt yr−1) and Ganges (−3.19 ± 0.58 Gt yr−1).

Total HMA-wide excess glacier meltwater was −22.71 ± 3.01 Gt yr−1 when calculated using all individual glaciers with negative mass balance, −20.61 ± 2.73 Gt yr−1 when calculated using all hex cells with negative mass balance, and −19.0 ± 2.5 Gt yr−1 when calculated using all aggregated basins with negative mass balance (identical to total mass balance, as all basins are negative). These differences emphasize the importance of aggregration level and methodology for this calculation. The Brahmaputra, Indus, and Ganges river basins had the greatest total excess glacier meltwater runoff, with glaciers contributing 5.23 (4.87) Gt yr−1, 4.55 (3.92) Gt yr−1, and 3.26 (3.19) Gt yr−1 above balance glacier meltwater runoff to their respective river systems during the 2000 to 2018 period (Figure 7A) for all glaciers (hex cells).


[image: Figure 7]
FIGURE 7. Excess glacier meltwater runoff between 2000 and 2018 for major river basins in HMA: (A) Spatial distribution (Gt yr−1), and (B) as a percentage of mean annual PyGEM model total (combined balance and imbalance) glacier meltwater runoff (Rounce et al., 2020a,b). To highlight excess glacier meltwater runoff contributions for highly glacierized basins, bar width is scaled by the percent glacierized area in each basin (total glacier area divided by basin area, with values of ~0.0–2.1%). Error bars combine basin-specific excess glacier meltwater uncertainty and interannual variability of modeled total glacier meltwater runoff for the 2000–2018 period. The Irrawady, Yellow, and Mekong basins have negligible glacierized area (~30–200 km2) and are sensitive to basin definitions and aggregation strategy, resulting in less-reliable percentages.


The basin-specific excess glacier meltwater runoff percentage of total glacier meltwater runoff ranged from ~12 to 53%, with values of ~25–53% observed for the interior, endorheic basins of the western Tibetan Plateau (Tarim, Ili, Inner Tibetan Plateau), and values of ~18-29% observed for highly glacierized, exorheic basins (Indus, Ganges, Brahmaputra) (Figure 7B). The basin-specific excess glacier meltwater runoff percentage relative to total basin runoff (including precipitation, snow melt, base flow) ranged from ~0.0–3.3%, with relatively high values (~1.7–3.3%) for interior, endorheic basins (Tarim, Ili, Inner Tibetan Plateau Extended), ~1.5% for the Indus, and ~0.6% for the Ganges and Brahmaputra.



3.4. Sea Level Rise Contribution

The total potential sea level rise contribution from HMA glacier mass loss between 2000 and 2018 was up to 0.052 ± 0.007 mm SLE yr−1 (19.0 ± 2.5 Gt yr−1). The contribution from exorheic basins was 0.037 ± 0.006 mm SLE yr−1 (13.3 ± 2.3 Gt yr−1).

This HMA contribution was ~4-6% of the 0.92± 0.39 mm SLE yr−1 total contribution from all global glaciers and ice caps for this period (Zemp et al., 2019), and a small but non-negligible fraction (~1.0-1.5%) of total global sea level rise estimates of 3.5 ± 0.2 mm SLE yr−1 from 2005-2018 (WCRP Global Sea Level Budget Group, 2018). The total cumulative sea level contribution of HMA glaciers for the period from 2000 to 2018 was up to 0.94 ± 0.13 mm SLE, with 0.65 ± 0.11 mm SLE from exorheic basins.




4. DISCUSSION


4.1. Glacier Mass Balance Methodology

The nearly complete inventory (99% of RGI polygons) of glacier mass balance provides an important snapshot of the detailed spatial pattern of glacier change across the region. We considered all glaciers in HMA (without a minimum area threshold), aggregated these glaciers into independent samples based on observed autocorrelation length scales, and then aggregated these independent samples over larger regions for improved uncertainty estimates. This approach offered a systematic regional assessment, with better coverage over sub-regions containing relatively small and/or sparse glaciers (e.g., eastern Tibetan Plateau) that could not be measured or were excluded from previous assessments.

A common issue with geodetic glacier mass balance studies is missing data over portions of glacier polygons, especially accumulation areas. These data gaps can be filled using several methods (McNabb et al., 2019), which can lead to significant differences in estimates for glacier mass balance and uncertainty. Our study involves the most complete coverage for HMA glaciers to date, with mean polygon coverage of 99.5% and <5% missing data for 98% of all RGI glacier polygons, precluding the need for more complex gap-filling approaches.



4.2. Glacier Mass Balance Uncertainty

Our results underscore the importance of aggregation methodology for mass balance uncertainty calculations. Individual glacier mass balance uncertainty estimates can be large, often exceeding the magnitude of the apparent change, especially for smaller glaciers. Aggregation significantly reduces the combined mass balance uncertainty, though final estimates can vary greatly depending on methodology.

Unlike many other studies (Rolstad et al., 2009; Nuth and Kääb, 2011; Brun et al., 2017), we did not fit higher-order, 2-D polynomials to [image: image] residuals and remove from static surfaces after co-registration. While doing so would significantly reduce apparent [image: image] bias and large-scale spatial autocorrelation, it would inevitably overfit sparse [image: image] samples in many areas and adversely impact glacier mass balance estimates.

We found that large-scale autocorrelation length scales varied depending on the choice of error metric (section 2.5.2), with ~24 km for σΔh from NMAD, ~32 km for σΔh from RMSE, ~27 km for σΔM from NMAD, and ~42 km for σΔM from RMSE (Figure S2). The increased range of influence for the RMSE metrics is likely related to spatially coherent residual [image: image] bias over static surfaces. In addition, we found that the apparent autocorrelation length scales (range of influence) was sensitive to the step and total lag distance used during semivariogram analysis. Finally, we found that common assumptions about circular, isotropic range of influence are likely an oversimplification, as we observe different autocorrelation length scales for directional semivariogram analysis (dh_dt_sigma_error.ipynb in Bhushan, 2020).

Our hex cell approach attempts to account for spatial autocorrelation of σΔh error between individual glacier polygon centroids. This is potentially an oversimplification. For one, adjacent polygons may share the same “stable” ground (e.g., ridge between two valley glaciers), resulting in greater apparent spatial autocorrelation than would be found with a regional analysis of [image: image]. In addition, rather than the geometric centroid of 2-D glacier polygons, it would be better to use the 3-D “center of mass” for each glacier from gridded ice thickness products (e.g., Huss and Farinotti, 2012), especially when aggregating over GRACE mascons. While this approach will not affect smaller glaciers, it could better represent longer glaciers with curved centerlines.

The hex cell and sub-region aggregation mass balance uncertainty is sensitive to the hex cell size, though full-HMA mass balance values are not affected. We experimented with several hex cell widths (27–55 km) and multiple offsets for the hex cell grid origin. Due to assumptions about spatial dependence (Equation 6), the individual hex cell uncertainty values increase with greater cell area, as do the corresponding uncertainty values for regional aggregation. A related issue involves width-dependent hex cell centroid locations and partitioning amongst different regional aggregation polygons (e.g., adjacent river basins). In practice, we did not observe significant differences in aggregated mass balance values for the range of hex cell widths tested.

Instead of an intermediate hex cell aggregation based on spatial autocorrelation of σΔh values assigned to glacier centroids, one could explore a nested spherical semivariogram model (Rolstad et al., 2009) to simultaneously account for small-scale (~500 m) and large-scale (~20–30 km) autocorrelation of [image: image] values over arbitrary aggregation areas. This nested approach would require a relatively large sample of well-distributed [image: image] values over stable surfaces to properly capture the large-scale variability. There are also potential issues with this approach for complex (i.e., non-circular) aggregation polygon geometry (e.g., elongated mountain ranges) and observed anisotropy in spatial autocorrelation.

Our ~10% glacier polygon area uncertainty assumption is likely overestimating actual uncertainty for the RGI v6.0 inventory, especially when aggregated over the entire region. While inventory error is difficult to assess, the study by Pfeffer et al. (2014) estimated area uncertainty of ~8% for HMA and ~5% for all glacier regions in the RGI v3.2 inventory. While an individual glacier may have area uncertainty of 10% or more (e.g., a relatively small, surging glacier), it is unlikely that all glaciers in aggregated regions have area uncertainty of 10%. For larger aggregation areas, the area uncertainty term dominates the total mass balance uncertainty in Equation (4), which justifies future efforts to improve time-variable inventories of glacier outlines.

We are hopeful that future community-driven, open-source software development will continue to standardize these methods, enabling more systematic glacier mass balance and uncertainty estimates for HMA and other glacierized regions.



4.3. Comparison With Previous Work

Our results are generally consistent with other full-HMA glacier mass balance assessments, including the comprehensive review by Bolch et al. (2019) and recent analysis by Brun et al. (2017). Considering the range of methods, datasets, time periods and spatial coverage of previous studies, we limit our direct comparison with the “reference” analysis by Brun et al. (2017) (similar methods, similar time period), and refer the reader to Brun et al. (2017) for detailed comparisons with earlier work, and to Bolch et al. (2019) for more complete context.


4.3.1. Full HMA Glacier Mass Balance

Our total HMA-wide mass balance of −19.0 ± 2.5 Gt yr−1 (−0.19 ± 0.03 m w.e. yr−1) is larger than the −16.3 ± 3.5 Gt yr−1 (−0.18 ± 0.04 m w.e. yr−1) estimate by Brun et al. (2017), although the two are within uncertainty bounds. While this difference in total mass loss rate may be related to differences in methodology, it could also be influenced by the inclusion of an additional 2+ years (2016–2018) of DEMs later in the 2000 to 2018 study period. Based on observed long-term glacier mass balance trends for HMA (e.g., Mukherjee et al., 2018; Zhou et al., 2018; Maurer et al., 2019) and glaciers worldwide, we might expect greater mass loss toward the end of the record as opposed to earlier in the record. Despite a more negative total mass balance, we find a smaller sea level rise contribution from exhoreic basins (13.3 ± 2.3 Gt yr−1) compared to the 14.6 ± 3.1 Gt yr−1 estimate by Brun et al. (2017).



4.3.2. Sub-region Glacier Mass Balance

We used the recently published HiMAP sub-region definitions (Bolch et al., 2019) during aggregation, which provide improved geographic partitioning of mass balance for HMA mountain ranges, especially over the Inner Tibetan Plateau and Tien Shan. However, most existing full-HMA geodetic mass balance assessments are limited to the sub-regions defined by Kääb et al. (2015). We generally observe good agreement between our results and those of Brun et al. (2017) for the Kääb et al. (2015) sub-region definitions (Figure 5D, Figure S5D). The most notable differences for total mass balance in Gt yr−1 (Figure S5D) are over the Kunlun, where our mass gain estimates are smaller, and the Inner Tibetan Plateau where our mass loss estimates are larger. Larger differences in specific mass balance (Figure 5D) are observed for the Eastern Himalaya and Nyainqentanglha. These differences potentially arise from relatively limited observations for these sub-regions in the study by Brun et al. (2017).



4.3.3. River Basins and Meltwater Runoff

Our estimates for total mass balance in HMA river basins are generally similar to those by Brun et al. (2017) (Figure S6), with notable differences for the Tarim and Inner Tibetan Plateau (Figure S6D). In both cases, our mass loss estimates are larger than those of Brun et al. (2017), with an apparent sign change for Tarim (−0.87± 0.71 Gt yr−1 in our study vs. +0.4± 1.3 Gt yr−1 in Brun et al., 2017), which is important for full HMA excess glacier meltwater estimates. Some of this discrepancy may be related to basin boundary definitions, but our estimates are consistent with observed differences in glacierized sub-region mass balance estimates over the Kunlun and Tien Shan (Figure S5).

While the total mass balance estimates are important for assessing HMA contributions to sea level rise, the excess glacier meltwater runoff potentially provides information on the long-term mean of seasonal glacier contributions to downstream hydrology. The largest differences between the two metrics are observed for basins with a relatively high percentage of glaciers with positive mass balance (e.g., Indus, Tarim). Our estimates for total excess glacier meltwater runoff are generally similar to those provided by Brun et al. (2017). We note that estimates for excess glacier meltwater runoff vary based on aggregation methodology, with more negative values obtained when aggregating at the glacier polygon level compared with the hex cell or basin level (used by Brun et al., 2017).

To provide context for our observed excess glacier meltwater runoff estimates, we considered the percentage of modeled total glacier meltwater runoff and total runoff in each basin. While these estimates vary based on glacier/hydrologic model, forcing data, and true interannual variability, the long-term mean runoff (2000–2016) should capture the relative magnitudes across HMA basins. Our results show that a significant portion of large, endorheic basins on the Tibetan Plateau contain relatively high percentages of excess glacier meltwater (Figure 7). In other words, the long-term mean of seasonal discharge in these river systems may be disproportionately sourced from thinning glaciers that are not being replenished by “excess accumulation” during the accumulation season.

Pritchard (2019) used the excess (imbalance) glacier meltwater estimates by Brun et al. (2017) for a subset of glacierized HMA basins, and estimated that total HMA glacier meltwater production was 1.6x the balance meltwater rates, with higher ratios in drought years. This value would correspond to approximately 38% if plotted on Figure 7B (excess glacier meltwater runoff percentage of total glacier meltwater runoff for each basin), which is slightly higher than our mean value, but comparable. Pritchard (2019) also estimated that the total glacier meltwater runoff contributions were 0.3–3.2% of “gross water inputs” in an average climatic year, though these percentages increased in drought years. The magnitude is similar to our estimates of 0.0–3.3% for the percentage of excess glacier meltwater runoff compared to the 2000–2016 mean of basin-specific total runoff values. While a detailed evaluation is beyond the scope of this study, these percentages offer a sense of the relatively small, but non-negligible contribution of excess glacier meltwater runoff in each basin for a typical year.



4.3.4. Glacier Mass Balance Methodology

Beyond the inherent value of reproducible science, it is worth noting the differences in data and methodology used in our study compared to those used in the study by Brun et al. (2017). We used the more recent, multi-source RGI v6.0 glacier inventory vs. the single-source GAMDAM inventory (Nuimura et al., 2015), processed ASTER DEMs with improved stereo correlation methodology to reduce data gaps (especially over accumulation areas), incorporated an additional 2+ years of ASTER DEMs, integrated an additional 5+ years of high-resolution DEMs from WorldView/GeoEye imagery with improved resolution, dynamic range and geolocation accuracy, used the accurate, self-consistent TanDEM-X global DEM as a reference for co-registration, implemented robust approaches to estimate elevation change trends for each glacier, and relied on a different method to estimate glacier mass balance and uncertainty (without a need to bin [image: image] by elevation bands for regional analyses).

Considering the range of methodological differences, it is very promising to see good agreement between our results and those of Brun et al. (2017) across the full HMA region and most sub-regions. As a community, we have transitioned from a large spread in estimates for HMA glacier mass balance (factor of ~2–3), to less than ~15–20% uncertainty in recent years. The agreement demonstrates value of publicly available remote sensing archives that span multiple decades, and robust approaches involving elevation change trend estimation using long records of potentially noisy observations.




4.4. Factors Controlling Glacier Mass Balance

Our assessment of glacier mass balance, which includes smaller glaciers across the Tibetan Plateau, can potentially provide an important constraint for climate reanalysis data evaluation (e.g., Immerzeel et al., 2015). The observed spatial variability in glacier mass balance depends on climatology (forcing) and glacier sensitivity to this forcing. The former involves variables such as temperature, precipitation, seasonality, and insolation. The latter involves factors such as local environmental setting, geometry, ice thickness, bed properties, debris cover properties, and the presence of proglacial lakes. Recent work suggests that glacier sensitivity to climate is the dominant control on HMA mass balance, at least during the 2003–2009 period (Sakai and Fujita, 2017). In general, maritime HMA glaciers are most sensitive to air temperature, while continental HMA glaciers are sensitive to a combination of temperature, precipitation seasonality, and snow/rain differentiation (Wang et al., 2019). Our results show an apparent mass gain in the Kunlun Shan and East Pamir, with relatively limited mass loss in the Karakoram and West Pamir (Figure 5), which is consistent with both the observed increases in winter snow water equivalent from 1987 to 2009 (Smith and Bookhagen, 2018), and the higher sensitivity of these continental glaciers to precipitation. Our results also show local spatial variability in glacier mass balance across the region (Figure 4). This is consistent with the hypothesis that glacier sensitivity, controlled for example by variable glacier geometry and terminus type, may play an important role in local glacier mass balance patterns (e.g., Brun et al., 2019). While a detailed analysis of these factors is beyond the scope of this paper, our observations provide a new baseline to interpret glacier mass loss in the context of regional climatology and local geomorphology.



4.5. Mass Balance and Glacier Area

The contribution of small glaciers (<0.1 km2) to total HMA mass balance is relatively limited (see annotations in Figure 6C). For example, 46 large glaciers with area >100 km2 lost more mass than >55,000 glaciers with area <0.3 km2 (Figure 6C). However, our results suggest that small glaciers displayed a specific mass balance that was approximately half the specific mass balance of larger glaciers. This is consistent with geodetic mass balance results for the Swiss Alps (Fischer et al., 2015). We now consider several possible explanations and explore further.

There are potential issues with our ability to assess small glacier change. We used the multi-source RGI glacier inventory, which was digitized from medium-resolution imagery (~30 m) with variable digitization area thresholds used by different operators. As a result, there is likely a bias in the spatial distribution of small glaciers in this inventory. Figure 6C shows that the spatial distribution of small glaciers with area between 0.03 and 0.1 km2 in the RGI inventory offers a good regional sample. However, many small glaciers with area between 0.01 and 0.03 km2 are located in the Karakoram and Kunlun. This observation potentially indicates a real increase in the density of small glaciers and/or a bias in the digitization of small glaciers in these sub-regions, which had more positive mass balance than the regional mean for the 2000–2018 period.

It is also possible that the 30 m resolution of our [image: image] products is too coarse to properly resolve small glaciers, or that our DEM and trend filtering methodology preferentially smoothed values over small glaciers. For reference, a 0.1 km2 glacier polygon spans ~300 × 300 m or ~10 × 10 pixels for a 30-m elevation change analysis, while a 0.01 km2 glacier polygon spans ~100 × 100 m or ~3 × 3 pixels. In theory, this 9-pixel sample should be sufficient to estimate mass balance, but in practice (and after filtering during DEM generation and post-processing), this is approaching a minimum threshold for significance. To test this, we repeated our analysis without filtering the trend maps. The uncertainty for individual glaciers increased, and the spread of binned mass balance for small glaciers increased, but we observed a bin mean/median distribution that was nearly identical to Figure 6A. Another potential complication involves the static RGI polygon outlines that we used for the 2000–2018 period. Smaller glaciers should experience a greater percent area change, with increased influence of reduced apparent [image: image] over surfaces that became ice free between 2000 and 2018.

Many of these small glaciers may actually be perennial snowfields and/or rock glaciers, which we might expect to display reduced elevation change compared to clean ice. This is challenging to assess without high-resolution observations of glacier velocity and debris cover. If we assume that these features are clean ice, the reduced loss rates from small glaciers could be related to the fact that they do not descend to low elevations and hence experience cooler climate conditions. Small glaciers also tend to occupy protected alcoves with limited insolation and more windblown/avalanche snow accumulation. These factors favor the preservation of small glaciers even under conditions of climate warming (DeBeer and Sharp, 2009). Smaller, thinner glaciers should also have shorter response times and will reach equilibrium more quickly than larger glaciers under the same climate forcing (Bahr et al., 1998).

Regardless of the explanation, this result highlights the importance of minimum glacier area threshold selection for geodetic mass balance studies. Small glaciers have received increased attention in recent years (e.g., Huss and Fischer, 2016) and their ~0.17–0.53 mm SLE yr−1 contribution in the past century is needed to close the total sea level rise budget (Parkes and Marzeion, 2018). It is possible to introduce systematic bias if calculating specific mass balance only from larger glaciers and then multiplying by total glacier area in a region. While the total mass balance and recent/future contribution to sea level rise may not be significantly affected, there are potential implications for water resource management. For example, small glaciers may have increased significance for dry season streamflow in some watersheds, particularly interior endorheic basins where glacier meltwater runoff represents a higher percentage of total runoff. Similarly, future projections from models that were calibrated using only larger glaciers in the region could incorrectly estimate timescales for loss of smaller glaciers.




5. CONCLUSIONS AND SUMMARY

We generated ~34000 high-resolution DEMs and produced the first regional high-resolution DEM composites for HMA using stereo imagery acquired by multiple satellite platforms (WorldView-1/2/3, GeoEye-1, and ASTER) between 2000 and 2018. We produced robust elevation change trend maps and geodetic mass balance estimates for 99% of HMA glaciers over the full 18-year period, and aggregated independent samples based on observed spatial autocorrelation of uncertainty estimates. The HMA-wide glacier mass balance was −19.0 ± 2.5 Gt yr−1 (−0.19 ± 0.03 m w.e. yr−1) during this period, with potential sea-level rise contribution of up to 0.052 ± 0.007 mm SLE yr−1 (0.037 ± 0.006 mm SLE yr−1 from exorheic basins). We documented the spatial pattern of HMA glacier mass change with greater detail and coverage than previous assessments, with aggregated estimates of glacier mass change for glacierized sub-regions and hydrologic basins. We observed negative mass balance across nearly all sub-regions, with greatest total mass loss across the Himalayas, Nyainqentanglha, and the Tien Shan and positive mass balance in the Western Kunlun Shan and Eastern Pamir. We found that smaller glaciers (<0.1 km2) had less negative specific mass balance than the regional mean, with implications for regional scaling of mass balance estimates from a limited glacier sample. Finally, observed excess glacier meltwater runoff due to negative mass balance was ~12–53% of total basin-specific glacier meltwater runoff and ~0.0–3.3% of total basin-specific runoff between 2000 and 2018.

The mass balance results presented here provide a new baseline for future studies of glacier mass balance and landscape evolution in HMA. These results are currently being used for calibration and validation of glacier mass balance models, GRACE trends in total water storage, and hydrologic models used to assess present and future water resources in the region.

Ongoing tasking campaigns for in-track WV/GE sub-meter stereo imagery will fill gaps in existing DEM coverage and provide better repeat high-resolution DEM coverage for HMA glaciers. Combining these growing archives with additional ASTER stereo DEMs, improved ASTER artifact correction algorithms (e.g., Girod et al., 2017), and new satellite laser altimetry archives (NASA ICESat-2 and Global Ecosystem Dynamics Investigation [GEDI]) should enable new elevation change analyses with robust trend fits over shorter intervals. The refined observations of spatiotemporal evolution will enable detailed analysis of the relationships between observed glacier mass balance and evolving climate forcing, surface processes affecting glacier sensitivity (e.g., debris cover evolution), and glacier dynamics—all of which must be better understood to properly assess the present and future role of HMA glaciers for downstream water resources.
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Water stored in the form of snow and glaciers in the High Mountain Asia (HMA) region regulates the water supply, and resultant water-based economies, that support the livelihoods of millions of people. Trends in the seasonal and long-term melting of snow and glaciers, governed by initial ice reserves, meteorological factors and geographic features, vary across sub-basins in the HMA region. We examined the economic impacts of climate-led changes in river flow in two drainage basins, one each from the Karakoram and Central Himalaya region. We used an integrated assessment framework to estimate the changes in economic value of the hydropower generation from hydropower plants on rivers fed by snow and glacier melt in the two sub-basins. The framework, developed under a NASA High Mountain Asia project, coupled biophysical models (a suite of climate models, snow/glacier-hydrology, and hydropower model) with economic analysis. We compared the differences in estimated river flow over historic and future time using the water balance model in sixteen scenarios (eight climate models and two emissions scenarios) for rivers upstream of hydropower plants in each sub-basin. Using the hydropower model we developed, we estimated the changes in hydropower generation at the Naltar IV hydropower plant, with an 18 MW capacity, located in Hunza, Karakoram, and the Trishuli hydropower plant, with a 19.6 MW capacity, in Trishuli, Central Himalaya. When compared to their baselines, the estimated impact of climate change and temporal variability were higher for the Naltar plant than for the Trishuli plant. Our sensitivity analysis shows that hydropower plants with water storage facilities help reduce the impact of changes, but the estimated impacts are higher for the higher capacity plants. This study provides an example of the differential impacts of climate change on hydropower plants located in rivers fed by varying amounts of snow and glacier melt at different decades in this century. This type of integrated assessment of climate change impact will support the scientific understanding of hydrologic flow and its impacts on a hydropower economy under various climate scenarios, as well as generate information about water resource management in a changing climate.
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INTRODUCTION

Water stored in the form of snow and glaciers in the High Mountain Asia (HMA) region regulates the water supply, and resultant water-based economies, that support the livelihoods of millions of people (Viviroli et al., 2011; Lutz et al., 2014; Biemans et al., 2019; Immerzeel et al., 2019; Pritchard, 2019). Climate-mediated changes, such as retreating glaciers, variability in precipitation, snow cover extent, and melting, have changed the availability of water downstream seasonally and over the century. The hydrologic cycles of the sub-basins in the HMA are impacted differently by climate drivers and the geographic and socioeconomic diversity across the study footprint results in a range of impacts across the sub-basins.

The hydrology of the HMA region is influenced by the quantity of snowfall and rainfall, the characteristics of the glaciers, the atmospheric temperature in the melt season, and the share of snow and glacier melt in river flows. The extent of westerly and monsoon influence varies with the location of a given sub-basin in the region, but the melting of snow and glaciers differ from sub-basin to sub-basin depending upon such factors as the quantity, location and orientation of snowpack, solar radiation, rainfall, etc. Governments in this region have been encouraging the development of relatively low-cost electricity production from hydropower plants to meet the increasing demand for electricity in the region. Information about projected changes in river flow, seasonally and over the century, is important for infrastructure development and planning downstream, including critical hydropower and irrigation infrastructure.

Climatic drivers and their influences on the hydrology in the Karakoram are different from those in the Central Himalaya region. Figure 1 shows the locations of the two regions in HMA. Fowler and Archer (2006) and Khattak et al. (2011) observed trends of increasing precipitation as well as rising winter mean and maximum temperature (including at high elevations) in the Karakoram region. In Central Himalaya, an increasing temperature trend was observed, but no significant trend in precipitation (Shrestha et al., 1999; Liu and Chen, 2000; Shrestha et al., 2000; Lutz, 2016). In the HMA region, the snow cover peaks in winter, but in the Karakoram region of the Upper Indus basin the maximum snow cover occurs in the spring, and a negative winter snow cover trend was observed (Immerzeel et al., 2009). In the Karakoram region, summer precipitation is increasing, but glacier and snowmelt contributions to river flow during the summer season are decreasing. Glaciers cover 12,500 km2 of the Karakoram distributed across four sub-basins (Bajracharya et al., 2014). Kraaijenbrink et al. (2017) estimated that by 2099, 64 ± 7% of the ice mass stored in HMA glaciers will remain with a global temperature increase of 1.5°C. Glacier mass loss is greater for Himalaya (−0.32 m w.e. yr–1) than for the Karakoram (ranges from 0.18 to 0.11 m w.e. yr–1) (Lutz, 2016; Brun et al., 2017; Shean et al., 2020). Glaciers in the Karakoram exhibit characteristics of both the “summer accumulation” due to the summer monsoon and the “winter accumulation” due to the winter westerly disturbances (Kapnick et al., 2014; Bashir et al., 2017). The stable or positive rate of glacier mass change in the Karakoram has been associated with trends of increased snow accumulation and attributed to stronger winter westerly disturbances (Forsythe et al., 2017; Smith and Bookhagen, 2018). As a result, the rate of glacier mass change in the Karakoram is neutral or positive. The seasonal changes in river flow pose a threat to downstream economic activities, such as hydropower generation and crop irrigation in the region, because the water demand for hydropower generation and crop irrigation is highest in the spring season.
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FIGURE 1. High mountain Asia, Hindu-Kush-Himalaya, Karakoram and Central Himalaya regions. Karakoram region is the northernmost Pakistan, covered by the glaciers and borders Tajikistan in the North.


Nepal and Pakistan are investing in hydropower development to meet the growing demand for electricity. Pakistan’s energy security is considered to be at risk due to the large share of imported fossil fuel in its energy mix (Rehman et al., 2019). Primarily due to supply problems, in 2013 Pakistan typically shed load (cut electricity supply to consumers) up to 8 h per day in urban areas and 16–18 h in rural areas (Khokhar et al., 2015). To achieve energy security, stability, and reliability goals, the government of Pakistan has promoted renewable development in the energy mix (Kessides, 2013). In 2015, 438 MW of hydropower projects were added to the national grid, raising the share of hydropower electricity to 30.4% of the total electricity production in Pakistan (Ministry of Finance, 2013; Ahmed and Suphachalasai, 2014). By 2030, with the completion of 24 hydropower projects, Pakistan is expected to have a total capacity of 42 GW (Water Power Development Authority Report [WAPDA], 2013). The Gilgit-Baltistan (GB) region of the Karakoram is estimated to have a hydropower potential of 19,696 MW (Abbasi et al., 2017). Currently, 126 hydropower plants are operating in the region with an installed capacity of 132 MW. According to the WAPDA GB government, in 2016 the region faced a capacity shortfall of 52 MW in the summer and 173 MW in the winter. WAPDA is working on mega-hydropower projects with a total capacity of 18,720 MW, and 27 of the hydropower projects with a total capacity of 248 MW are in Gilgit-Baltistan region (Abbasi et al., 2017).

In Nepal, where the current electrical generating capacity is less than 1000 MW, the Department of Electricity Development (DED) granted generation licenses to hydropower companies that are expected to develop hydropower capacity of 5,465 MW (Nepal Electricity Authority [NEA], 2015). According to Nepal Electricity Authority [NEA] (2015), the DED has also approved survey licenses for an additional 266 new hydropower plants (6000 MW capacity). It is therefore important to understand how projected changes in climate will affect river flows and the resultant electricity generation. Hydropower developers are deeply concerned about making investments based on limited information about historic hydrologic flow and no data on projected flow under a changing climate.

Earlier studies have focused on climate change impacts on glaciers in larger drainage basins such as the Indus, Ganga, and Brahmaputra basins; however, water resource management-decisions take place at a smaller sub-basin scale. Glaciers melt is estimated to contribute 26% and 3% of total runoff in Indus basin and Ganga Basin respectively (Immerzeel and Bierkens, 2012). A few studies, including Alford and Armstrong (2010), Pradhananga et al. (2014), and Tahir et al. (2015) have looked at hydrological impacts on smaller sub-basins. Tahir et al. (2011) found that (a) a 1% increase in snow cover area in Hunza under constant temperature will increase summer discharge by 0.7%, (b) an increase in 1°C mean temperature (keeping precipitation and snow cover constant) is expected to increase summer discharge by 33%, and (c) a 20% increase in snow cover in combination with a 2–4°C rise in mean temperature is expected to increase future stream flows by 100%.

In the high-altitude Langtang River tributary in the Trishuli basin, glaciers contribute more than 50% of the total annual streamflow (Racoviteanu et al., 2013; Brown et al., 2014). The projected change in river flow in Representative Concentration Pathways (RCP) 4.5 exhibited an increase in flow until 2050 and a slight decrease from 2050 to 2099, while RCP 8.5 projected an increase from 0.03 to 11.10 m3s–1(Mishra et al., 2018; Kayastha and Shrestha, 2019). However, only a few studies, like Mishra et al. (2018), have investigated the potential impacts of climate-led changes in river flow on hydropower generation. Hydropower generation in run-of-the-river hydropower plants (typical in the HMA region) are impacted by low flow during certain seasons including late spring and early summer seasons. Coupled with the high demand and resultant high price (and value) of electricity in those seasons, the impact of low seasonal flow quickly adds up. This work is the first of its kind that compares the impacts of changes in hydrology on hydropower generation in two basins in the HMA region, one located in the Karakoram and the other in Himalaya.

In order to quantify the size and extent of the impacts of river flow changes on hydropower generation in two different regions of HMA, we generated information on hydrologic flow under various climate change scenarios and estimated the economic costs/benefits of climate change, focusing on hydropower value streams. Specifically, we used sixteen general circulation models (GCM)/RCP combinations to explore a range of possible futures in two sub-basins in the Karakoram and Central Himalaya regions. We estimated the hydrologic flow under these climate scenarios using the University of New Hampshire Water Balance Model (WBM). We quantified the impacts on seasonal river flow and translated that into cumulative economic output of the rivers, with a focus on hydroelectricity energy production. An integrated assessment approach (IAA) developed by Mishra et al. (2018) under a NASA High Mountain Asia project was used for the comprehensive assessment and comparison.



STUDY AREA

For this study we compared the westerly dominated snow-and-glacier-fed Hunza sub-basin of the Karakoram region to the monsoon-dominated snow-and-glacier-fed Trishuli sub-basin of the Central Himalayan region (Figure 2). The Hunza sub-basin with a surface area of 13,733 km2 is located in the upper Indus River, with altitudes ranging from 1,415 m to 7,809 m a.s.l. (Figure 2). Sixty-four percent of the sub-basin is at or above an altitude of 4,300 m, 25% of the area is between 3,301 and 4,300 m, and the rest is below 3,300 m (Supplementary Figure S1). The estimated glacier-covered area in the Hunza is 3,840 km2 (RGI Consortium, 2017), which is the second highest area under ice and snow among the eight sub-basins of the upper Indus (Bajracharya and Shrestha, 2011; Baig et al., 2016). In the Trishuli sub-basin, only 603 km2 out of 5,757 km2 total area is glacier-covered. More information on the sub-basins is shown in Supplementary Table S1. The elevation ranges from 411 m to 7,381 m a.s.l., and half of the area has an elevation range between 4,301 m and 7,900 m (Figure 2). In both sub-basins, several small hydropower plants are operational and large hydropower plants are under construction. The impacts of climate change on river flow in Hunza and Trishuli were assessed using comparative methods that measure the relative difference of river channel flow and hydropower production in Naltar IV and Trishuli hydropower plants using WBM output that is driven by climate model projections.
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FIGURE 2. Study areas in HMA region: Hunza sub-basin in Karakoram and Trishuli sub-basin in Central Himalaya showing elevation characteristics and locations of glaciers and hydropower plants (Power plants < 10 MW are not included in the figure).


In order to provide an example of the difference in the impacts of climate change from sub-basin to sub-basin, we selected two hydropower plants of similar generation capacity located in snow and glacier fed rivers in the two HMA sub-basins. Trishuli is a “pure” run-of-river hydropower plant. As Trishuli is a run-of-river plant without a dam for water storage, the flow of water that is diverted into the power plant is at all times equal to the water discharge (i.e., outflow). The timing of the electricity generated from the hydropower is therefore primarily a function of river water inflows and the attributes of the hydropower facility. Naltar IV has a small reservoir that holds enough water to generate electricity at full capacity for approximately 2 h. To a limited extent, the plant can shape hourly water releases during the day such that production is highest during peak load hours. Characteristics of the two power plants are provided in Table 1.


TABLE 1. Characteristics of hydropower plants.
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DATA AND METHODS

Based on the IAA developed by Mishra et al. (2018), we coupled the principles of climate science, cryosphere sciences, hydrology, and hydropower engineering with economic analysis to analyze and compare the economic impacts of climate change in the two sub-basins, as illustrated in Figure 3.
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FIGURE 3. Major components of the coupled water balance model, hydropower systems model and economic analysis.



Water Balance Model (WBM)

The University of New Hampshire WBM is a process-based, spatially distributed, gridded model incorporating the major elements of the hydrological cycle. Full model details can be found in Grogan (2016). WBM simulates both the vertical water exchange between the atmosphere and land surface and horizontal water transport, through both land surface runoff and via the river network. Both natural and human processes, such as evapotranspiration, snowpack development and melt, glacier melt, river flow, and river impoundments from dams and diversions, are included in the model. Snowpack is based on a sub-grid approach using elevation bands (Lammers et al., 1997; Hartman et al., 1999) of 200 m to account for the strong vertical temperature gradients in this region. The model was run for all GCM in all historical and RCP combinations, at daily time steps, at a spatial granularity of 0.8 × 0.8 km grid cells for the entirety of the Hunza and Trishuli basins. Daily river flow was output from the model, and these fields were sampled at the hydropower stations locations.



WBM Configuration

Two separate spatial domains for the Nepal and Karakoram regions were used to run WBM. Both domains were subsets of a digital river network representing surface flow direction clipped from the HydroSHEDS 30 arc-second (approximately 0.8 km at these latitudes) resolution dataset for Asia (Lehner and Grill, 2013) downloaded from the USGS HydroSHEDS web site (HydroSHEDS, 2019). This network resolution allowed for a sufficient allocation of land features to represent all relevant hydrological processes in the catchment area of the studied sites listed in Table 1. Flow impediments, such as managed reservoirs, have been included (Nepal domain only) from the Global Reservoir and Dam database (GRanD) (Lehner et al., 2011), but no water diversions for irrigation or other human demands (such as domestic, industrial, livestock) have been accounted for, due to limited agricultural hydro-infrastructure development in these high mountain regions. Because climate input variables from the CMIP5 collection (see below) are limited, evapotranspiration was simulated using the Hamon method (Hamon, 1961). We use Hamon because of its simplicity and because it has the smallest bias over a range of climate zones (Federer et al., 1996). Deep groundwater aquifers have not been included in the WBM model setup for this study because information and input data layers for these regions are not available.

The elevation grid for the WBM run-time climate downscaling is based on 30 m resolution ASTER DEM v.2 dataset (Tachikawa et al., 2011). A temperature lapse rate of 6.4°C km–1 (Rennick, 1977) is applied at a sub-grid cell resolution to represent elevation gradients within the high-resolution grid cell. This sub-grid cell elevation correction is essential for representing snow accumulation and melt in high elevation gradient regions All other land cover, soil properties, and basic input layers required to run WBM were taken from Global 30 and 6 arc-minute resolution datasets used in previous global hydrological studies (Vörösmarty et al., 2000; Lammers et al., 2001; Wisser et al., 2010; Liu et al., 2017).


Climate Drivers

Monthly temperature and precipitation are used to drive WBM simulations. The ERA-Interim climate reanalysis dataset (Dee et al., 2011) is used for historical simulations, and CMIP5 GCMs are used for future simulations (Table 2). The spatial resolution of both ERA-Interim and CMIP5 climate drivers are too coarse for this study’s domain, due to the steep elevation gradients. To address this issue, two spatial downscaling steps were applied to increase the resolution. First, a bi-linear interpolation was applied to both the temperature and precipitation fields, resulting in a higher-resolution grid scale matching WBM’s river network resolution. Second, due to the high elevation gradients in the study domain, an elevation-based correction was applied to temperature at the high-resolution grid scale. A lapse rate of 6.4°C km–1 (Rennick, 1977) was applied based on the elevation difference between the high-resolution river network and the lower-resolution geopotential layer of the climate driver, resulting in elevation-based temperature variation at sub-climate driver resolution. In addition to downscaling, we also applied the delta-change bias correction method to the GCM climate drivers for future simulations by applying, on a pixel level, the monthly climatology difference between the ERA-Interim and corresponding GCM fields. While WBM represents monthly river flows, it makes use of sub-monthly variability in precipitation. For precipitation, the delta change was applied to a constant daily variability over each month, using year 2001 values, which represents the fewest precipitation extremes (Fekete et al., 2004). Temporal downscaling of temperature does not have a significant effect on the monthly model output used for all analyses in this paper, so a constant monthly temperature was used by WBM to project future water flow rates. Spatial variability, through snowpack formation and melt, is important, and this is discussed in section “Water Balance Model (WBM).”


TABLE 2. Historical and future climate CMIP-5 datasets used in WBM simulations.
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Integrated Glacier Runoff

WBM used output data from the Python Glacier Evolution Model (PyGEM) developed at the University of Alaska at Fairbanks (Rounce et al., 2020; in press). PyGEM estimated the mass balance of every glacier using 10 m elevation bins and a monthly time step. The model was forced with air temperature and precipitation data from the same climate drivers as WBM (Table 2), and computed glacier melt using a degree-day model, accumulation based on a temperature threshold, and refreezing based on mean annual air temperature. Glacier retreat/advance was modeled using mass redistribution curves from Huss and Hock (2015). The model provided glacier runoff, glacier volume, glacier area and other point data variables in the study basins for each glacier in the RGI Version 6.0 database (RGI Consortium, 2017). PyGEM output was rasterized for the study area using the same spatial grid as the river network. Given the monthly temporal resolution of the PyGEM output, no daily temporal downscaling was applied. For each 1 × 1 km grid cell in WBM, glacier outflow was summed and provided as an input to the river system. Precipitation from the GCMs proportional to the glacier area was removed from WBM input precipitation fields to avoid double counting precipitation over the glaciers, because the glacier runoff produced by PyGEM accounts for precipitation, snow accumulation and melt, glacier melt, and refreezing. Hence, all PyGEM outputs (including the water entering the glaciated area as precipitation) are passed to WBM as an input (Rounce et al., 2020, in press).



River Network and Topography

Digital river networks were used to establish horizontal connectivity of the land surface within each drainage basin. Elevation for the snow bands was derived from the 30 m ASTER GDEM v.2 dataset (Tachikawa et al., 2011). Soil properties required to simulate runoff generation in WBM were from the Harmonized World Soil Database v1.2 (Fischer et al., 2008). Data used for calibration and validation included hydrologic flow observation obtained from power plant and stream gauges located at Naltar and Trishuli river basins, from WAPDA, Pakistan and Department of Hydrology and Meteorology Nepal respectively.

The WBM model output provides local runoff, streamflow (river discharge), and primary water source components (fractions) in surface flows and storage. The latter allows tracking of the glacier melt, snowmelt, and rainwater components downstream from the originating runoff grid cells. The component tracking is critical in understanding the streamflow changes over the century in the regions with substantial presence of cryospheric processes, e.g., glacier and snow dynamics.



Hydropower Systems Model (HSM)

To gain a better understanding of the potential impacts of future climates on hydropower operations in the Trishuli and Hunza sub-basins, the hydropower systems model (HSM) was used to estimate daily energy production, in megawatt hours (MWh), between January 1, 2020, and December 31, 2099, inclusive. More specifically, we modeled and analyzed the Trishuli hydropower plant located in the Trishuli sub-basin and the Naltar-IV hydropower plant in the Naltar sub-basin of the Hunza basin.

Because the characteristics of these two hydropower plants differ, and the available data describing the plants and their historical operations are dissimilar, the HSM was customized for each application. Both models take into account power plant capacity and generator unit availability, the efficiency of converting flowing water to electricity and other plant-specific characteristics presented in Table 1. The WBM model water discharge results are a key HSM driver/predictor of daily hydropower production for both power plants. In addition, at both Trishuli and Naltar we modeled water-diversion structures and the routing of water through power plant turbines and flows that circumvent the power plant (non-power water flows). Using historical power plant inflows and generation data, the water-to-power conversion factor used for this study was set to 0.32 MW per cubic-meter per second (MW cms–1). We computed the maximum turbine flow rate using this power conversion factor and the capacity of the plant. Trishuli inflows estimated by WBM that are in excess of this maximum turbine flow rate are assumed to be non-power releases (water diverted around plant). Daily generation levels were simulated for each plant for 16 GCM/RCP combinations.

For computational efficiency, we used a simulation model that projects daily unit-level generation levels under a large number of unit on/off states, in which a randomly drawn “off” state represents a unit outage. On and off states were estimated for each day of the 2020–2099 time period using a random number generator. Various random trials were modeled, all of which had similar results. For consistency among RCP 4.5 and RCP 8.5 HSM runs, all model runs used the same set of random draws. The selected outage set was nearly identical to the target outage.

The representation of Naltar in the HSM is based primarily on information supplied by the WAPDA and turbine efficiency surface for Pelton turbines.1 Modeled power generation at Naltar uses WBM daily simulated water discharges and an adjusted power conversion efficiency surface. Because the hydraulic head is much higher at Naltar than Trishuli, Naltar turbines typically generate more than 10 times the amount of electricity per volume of turbine water release than the Trishuli hydropower plant. Unlike at the Trishuli complex, the water diversion structure that is located upstream of Naltar is capable of redirecting virtually all of the Naltar River to the channel that connects the river to the reservoir.

The HSM also accounts for plant outages and idle hours.2 These include outages for scheduled maintenance that occur during the months of February, June, September, and December. Based on historical outage levels, HSM assumed that each unit would be available 90% of the time for Trishuli. Historically, each unit is on average “idle” approximately 90 min per day.



Economic Analysis Model

The economic impacts of climate change are estimated as the change in welfare or the welfare-equivalent income loss (Tol, 2018). While no estimate of the economic impact of climate change is perfect (Pindyck, 2013; Tol, 2018), we attempted to use a method consistently across the two geographic domains to compare and contrast the climate change impacts on hydropower plants located in the HMA regions. We estimated the changes in economic values for Naltar under RCP 4.5 and RCP 8.5 scenarios and compared the changes in economic values with those for Trishuli.

The change in welfare associated with hydropower generation is the sum of the change in the benefits to producers and consumers (residential, commercial and industrial) of the electricity produced at the plant. The hydropower owner/manager’s objective is represented as the following profit maximization function:

[image: image]

where π is the profit from electricity generation, Pe is the price of electricity, Qeis the quantity of electricity generated (which is a function of the amount of water available qwtattimet, water to power conversion factor μ, operational efficiency factor σ, head of reservoir, Ht at time t) (Hirsch et al., 2014). The cost Cis the total cost of electricity production. Cost is mostly independent of the actual operation, because employees will be paid regardless of hourly input, and water is a common property and a free resource. Therefore, cost is eliminated from profit maximization.

Both state-owned and private power producers have power purchase agreements (PPAs) with the central regulatory authority (Nepal Electricity Authority [NEA] and Water and Power development authority Report [WAPDA], 2013) respectively. A provision is made in the PPAs to allow a price difference during the dry months (December to March) and wet months (April to November) of the year (for Nepal, for example, current prices are 7.4 ȼ per KWh in dry months and 4.2 ȼ in wet months). A change in water flow in February or March will have a higher impact on the producers than an equal change in flow in wetter months.

The change in profits for each producer due to changes in water availability is estimated by applying the chain rule to the (Equation 1):
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where [image: image] is the change in quantity of electricity generation as a result of change in water availability.

Using equation three below, we estimated the total value of the impact of climate-led change in water availability for the hydropower producers as the marginal change in profit resulting from a change in seasonal water availability.

[image: image]

The total value of the impact on electricity consumers is estimated as the change in total benefit from electricity usage, or consumers’ surplus. In Nepal, 95% of the total consumers of electricity are domestic (Nepal Electricity Authority [NEA], 2012). Rural households use electricity for lighting, watching television, and in some cases for cooking and refrigeration. Farmers with larger farms and more capital use electricity for farming activities as well. However, large farms in rural mountain regions are few and cannot be considered representative. Due to the lack of factories and industries in these rural regions, households act as the production units that use electricity and the consumption units that consume the intermediary or final outputs.

The benefits of electricity consumption to the rural population include increased working hours due to lighting provided by electrical appliances, improved information through television programs, educational benefits due to increased study time for students and improved school facilities, improved health due to reduced indoor pollution, and reduced postharvest crop loss with the availability of refrigeration facilities. The population also benefits from higher quality healthcare facilities due to refrigeration and other facilities that are possible only with a continuous supply of electricity.

For this paper, without established collaboration, it was difficult to collect all the data required to run an econometric model to estimate the consumers’ surplus of electricity. The price of electricity in Nepal and Pakistan is regulated by a central authority. In Nepal, the Electricity Tariff Fixation Committee fixes the price of electricity. The National Electric Power Regulatory Authority (NEPRA) of Pakistan fixes the price in Pakistan. Prices have been changed only two times in the past twenty years in Nepal, although demand is projected to grow at an annual rate of 8.34% and is expected to exceed 17,400 GWh by 2027 — about four times the current demand of 4,430 GWh (Nepal Electricity Authority [NEA], 2012). At the same time, electricity supply increased from less than 1,000 to 5,000 MW within a decade, and additional 5,000-MW-capacity power plants are likely to contribute energy production to the power grid in the next decade. While the marginal increase in electricity demand attributed to climate change is likely to further increase under the high-emission scenario, projecting the demand, price, and consumer surplus under various climate scenarios is an exercise that falls outside the scope of this study. Because our objective is to compare climate change impacts using a consistent method, we estimated the consumer surplus per unit of electricity consumption using a benefit transfer method. The World Bank Report (2008) developed a method and analyzed the benefits of rural electrification from a large number of projects implemented in developing countries from across the world, including Nepal and Pakistan. The estimated benefit of electricity to provide lighting and television services ranged from $0.20 to $0.60 per kWh in developing countries.

In addition, we estimated the benefits to people globally from carbon dioxide emissions displaced by the hydropower plants. That is, electricity from these hydropower plants displaces the energy supply from other sources, such as fossil fuel and biomass, so electricity translates into displacement of carbon dioxide emissions. The avoided social cost of carbon provides global benefits in addition to the local benefits discussed earlier. Carbon prices estimated by the High-Level Commission on Carbon Prices (Stiglitz and Stern, 2017) were used for the benefit transfer. The report recommends using a low and high estimate of carbon price of US$40–$80 per ton CO2 by 2020 and increasing to $50–$100, $110–$130, and $130–$160 by 2030, 2040, and 2050 respectively. We used the recommended price per ton CO2 for 2020 to derive the value of carbon dioxide displacement per KWh and used that for our further analysis.

We used the benefits of electricity estimated by the World Bank Report (2008) adjusted to 2017 USD using consumer price index (CPI) data (World Bank) for Nepal and Pakistan. The values used to estimate the benefits from electricity are $0.8 to $2.5 per kWh for Nepal and $0.4 to $1.2 per kWh for Pakistan. The change in value associated with increased electricity demand and prices, corresponding to changes in temperature, economic prosperity, mechanization, urbanization, and industrialization, is not incorporated in this study due to unavailability of data.

We estimated and compared the change in electricity value for the months that were identified as the most affected by climate change, as well as for the annual and decadal periods, to compare the long-term impacts of the two hydropower plants in the two countries. We derived a set of discounting factors required to estimate discounted present value. Based on the GDP growth rates for the past ten years (2008 to 2017) of the two countries, the average discount rates used were 9.1% for Nepal and 7.5% for Pakistan. Because projects with environmental benefits, such as benefits from carbon dioxide emissions reduction, should use a lower discount rate, we also estimated the change in value for each basin using a discount rate of 3% for the benefits associated with displaced CO2 emission. We then compared the impacts of climate change on the economic value of electricity generated at the Naltar and Trishuli hydropower plants.



RESULTS


Hydrologic Flow Estimation and Future Estimates

We estimated historic river flow using the WBM model, validated the results, and projected flows to the end of the century for 16 GCM/RCP scenarios. The observed monthly discharge from 2000 to 2010 for the Trishuli hydropower plant site (Department of Hydrology and Meteorology, Nepal) was used to validate WBM results. A Nash-Sutcliffe coefficient (NSC; Nash and Sutcliffe, 1970) of 0.78 between the observed and modeled streamflow indicates a very good match (Figure 4).
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FIGURE 4. Comparison of observed river discharge to water balance model values at the Trishuli site.


Despite the good match to the NSC metric, seasonal differences between observed and modeled discharge were observed. Summertime high flows deviated from observations by 10–35%, but it is more important for hydro-power generation capacity limitations that the winter and early spring low flows match well with the observation. The deviations of high flows are controlled by the quality of the input climate driver (ERA-Interim), which has a coarse spatial resolution and a limited set of variables (Table 2). Also, it is known that gauging high flows at a river reach is often difficult to calibrate, which may lead to significant observation errors (Shiklomanov et al., 2006).



Analysis of WBM Streamflow for 21st Century Projections

The results show different projected seasonal variability of discharge in the Karakoram and Central Himalaya (Nepal) study sites. In addition to seasonal change, we present variability and trends of projected annual, decadal, mid-century and end of century hydrological regimes in these two sub-basins (see Supplementary Tables S2, S3 for Mann-Kendall test and Sen’s slope analysis results). In most GCM/RCP combinations, the summer discharge initially tends to increase by about 10% at the mid-century for both site, and then experience a sharper decline — by about 50% for Karakoram site — toward the end of the 21st century (Figure 5).
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FIGURE 5. Simulated river discharge for each GCM/RCP are as thin lines, and a non-parametric loess smoothing is shown as thick lines for (A) average annual river discharge at Trishuli, (B) average annual river discharge at Naltar, (C) average summer (JJA) discharge at Trishuli, and (D) average summer (JJA) discharge at Naltar. For all panels, RCP 4.5 is shown in blue and RCP 8.5 is shown in red.


Annual changes are primarily driven by changes in spring and early summer flows (April to June for the Karakoram, and March to May for Nepal). These increase significantly (over 90.4 and 32.6% respectively for the Karakoram and Nepal sites) by the middle of the 21st century (Tables 3, 4), due to temperature-enhanced snow and glacier melt, until the time of peak-water (Supplementary Figure S5), which occurs in 2050–2080 in Karakoram and 2035–2050 in Nepal. Toward the end of the century, the model predicts a moderate decline in streamflow (3.6% in the Karakoram and 5.3% in Nepal) during the summer and fall seasons (July to August for the Karakoram, and June to September for Nepal), compared to contemporary hydrology represented by WBM simulations for ERA-Interim (2000–2017) climate drivers (Tables 3, 4).


TABLE 3. Trishuli monthly streamflow changes by CMIP5 climate as compared to contemporary flows by ERA-Interim, in %.
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TABLE 4. Naltar monthly streamflow changes by CMIP5 climate as compared to contemporary flows by ERA-Interim, in %.

[image: Table 4]We found that decline in the end-of-century average annual flow was three times larger for Naltar (35% drop) than for Trishuli (10% drop). While no significant differences were observed between river flow trend lines between the RCP 4.5 and RCP 8.5 scenarios, the latter has higher intra-annual variability and divergence over time.

In addition to the above-described seasonal low volumes, the timing of glacier runoff and snowmelt changes greatly thereby affecting the seasonality and inter-annual variability of river flow at both study sites. The onset of the snow and glacier melt season shifts from May to March-April for both sites. However, winter flows in the Nepal region increase by 20–40% due to sporadic snow melt events caused by warm weather waves. That is not predicted for the Karakoram winter flows.

The decline of glaciers and snow storage upstream of the hydropower plants is quite evident (Supplementary Figures S3, S4). Our analysis shows the steepest glacier mass loss to occur at mid-century, around 2035–2050 in Nepal and 2050–2070 in the Karakoram. The rate of glacier mass loss (Supplementary Figure S2) can be directly translated to an additional discharge contribution. This comparison allows us to conclude that the rate of core mass loss yields about 5% and 10% additional high-flow seasonal discharge for the Trishuli and Naltar sites, respectively.

In addition to the shifts in snow accumulation, melt seasons and glacier runoff evolution, changes in precipitation patterns and volumes will influence river flows over the 21st century. A moderate to strong decline in annual precipitation is projected toward the end of the century in most of the GCM/RCP combinations at both Naltar and Trishuli. This directly impacts runoff and discharge volumes, along with the seasonality shifts due to changes in snow accumulation, melting seasons and the intensity of glacier runoff in the summer. However, some GCMs, e.g., GFDL-CM3, project an increased precipitation that leads to increased monsoon runoff in Trishuli. In addition, the projected late start of snow accumulation, coupled with increased monsoon rainfall, translates to much higher (about 25%) late summer and fall river flow in Trishuli (Supplementary Figure S5).

Details of the inter-annual changes in discharge during the 21st century for both regions are illustrated in Figure 6. Estimated changes in spring (March to June) river flow were found to be the largest compared to other seasons. Discharge almost doubles in Trishuli, while at Naltar the estimated increase was almost an order of magnitude higher than observed flows (Tables 3, 4, most GCMs with RCP 8.5). The source of water during the spring months was observed to be dominated by significantly higher volumes of snowmelt in RCP 8.5 as compared to RCP 4.5 (Figure 7). Summer (June to August) seasonal streamflow trends exhibited changes over the century (Figure 6). In Naltar, we observed an increase in flows from 15 to 19 m3 s–1 in 2060 and by the end of the century flow decreased to 4–18 m3 s–1. We also observed an increase in variability from 7 m3 s–1 in 2060 to 16 m3 s–1 by the end of the century corresponding to about 25 and 70% of the mean discharge. During the mid-summer months, lower river flow was seen in RCP 8.5 (Figure 6). From the standpoint of water availability for hydropower the most important flows are the hydrograph changes during the winter when streamflow values fall below plant capacity (see section “Hydroelectricity generation model results” below). Our study indicates a significant increase of winter flows from 2018 to 2100 for both sites, specifically by 25.0 and 46.4% for Trishuli and Naltar sites respectively (Figure 7).
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FIGURE 6. Decadal discharge volume by month for two GCMs (GFDL-CM3 and NorESM1-M) and two RCPs (RCP 4.5 and RCP 8.5) from year 2000 to 2099. The upper panel bar graphs (A) and (B) represent Trishuli site under climate models GFDL-CM3 and NorESM1-M respectively and the lower panel (C,D) represent Naltar site under GFDL-CM3 and NorESM1-M respectively.
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FIGURE 7. Average monthly snow and glacial melt fractions in discharge for Trishuli (A) and Naltar (B) sites. Solid line is for historical (2000–2017) and dashed line is for average combined future climates (2018–2100). Thick dashed line is all GCM/RCP combinations, top thin dashed line for all RCP 8.5 and bottom thin dashed line for RCP 4.5 scenarios. Where the sum of snow melt and glacier melt fractions is less than one, the remainder is composed of rain water.


Source water analysis, which identifies the rain, glacier melt, and snow melt discharge fractions, is presented in Figure 7. At Trushuli, snow melt accounts for 30% of river discharge from April through June, then declines to 10–12% for the rest of the year, with the lowest contribution (∼9%) occurring in August through September. Under both RCP scenarios, the pattern of snow melt contribution is similar at Trishuli, but the decline from 30% to 10% occurs more rapidly, and the lowest fraction is 5%. Glacier melt at Trishuli is out of phase with snow melt, providing water later in the season. Glacier melt contributes 0% to flows from November through April, but then increases rapidly from 0 to 30% between April and July, and remains around 30% through August, declining back to 0% by November. Under all RCP scenarios, glacier contributions decline significantly, with maximum contributions in July at 18–21%. At Naltar, snowmelt contributes more to flow than at Trishuli through most of the year; snow melt fractions are 50–58% from October through June historically, and decline to ∼32% in the late summer months. This large contribution is due to the dominant presence of snowmelt in groundwater storage, which returns to the surface flows through baseflow. This pattern continues in the future under both RCPs, though with a reduced amplitude. The maximum contribution is reduced to 40–52%, while the minimum contribution is increased to 40–45%. The glacier melt fraction for the Naltar site shows a much shorter summer melt season than Trishuli, with a greater maximum contribution (50%). As in Trishuli, glacier melt contributions at Naltar are projected to decrease during the summer melt season, declining from 50% to ∼25% in July and August.

Comparison of contemporary and future component fractions indicate (a) an increase of glacier runoff at mid-century followed by sharp decline, (b) the snowmelt component declines in all simulations, and (c) there was an increase of total precipitation under some climate models (Figure 7). The recession of glaciers and snow storage in the catchment area above the study hydropower plant locations is observed in Supplementary Figure S2. Peak glacier melt (peak-water) occurs at mid 21st century, caused by accelerated glacier mass loss due to climate change, and is followed by a sharp decline as glacier volume becomes depleted (Supplementary Figure S3). Snow melt, as a primary component of streamflow especially at the Naltar site (Supplementary Figure S4B), also reflects the impact of climate change. Unlike glacier waters, the snow component does not have a peak and gradually declines toward the end of the century (Figure 7).



Hydroelectricity Generation Model Results


Electricity Generation

We compared the observed monthly electricity generation levels with the HSM computed hydropower generation using the WBM streamflow rates for the 2000 through 2010 historical period. The HSM results were similar to historical average generation at both Naltar and Trishuli (Figure 8). At Trishuli, the modeled generation is slightly lower than observed levels from March through June and is higher during the late winter and early spring. For Naltar, the modeled generation levels are noticeably lower than the historical average from February through June. During the summer high flow months, both Trishuli and Naltar generation levels are largely unaffected by WBM underestimates, because during these periods water flow rates are above the maximum turbine rate a vast majority of the time (see Supplementary Figure S6 for more details).
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FIGURE 8. Comparison of historical average monthly generation and hydropower model simulation results for Trishuli (A) and Naltar (B).




Projection of Generation

Projections are based on (a) simulations that used WBM streamflow driven by all 16 GCM/RCP model combinations and (b) potential alternative hydropower plant development in the two basins. Figure 9 shows projected hydropower production, assuming that no changes will be made to Trishuli and Naltar and future hydropower resource development above the plants will be pure ROR resources. The estimated changes in annual electricity generation over the 80 years study period (trend lines) over all climate models range from a 6.2% increase to a 4.7% decrease for Trishuli (Figure 9A) and from a 7.5 increase to an 8.4% decrease for Naltar (Figure 9B). The average change in generation over all climate models is expected to be less than 2 percent (Figures 9C,D). Annual variability in electricity generation was found to be about ± 7% in both RCP 4.5 and RCP 8.5 for Trishuli, while a maximum deviation of about ± 25% is projected for Naltar (Supplementary Figure S7 shows more details).
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FIGURE 9. Trends and ranges of annual hydropower production at Trishuli (A,C) and Naltar (B,D) under RCP 4.5 and RCP 8.5 scenarios based on GCM models.


Changes in the timing of snow and glacier melt as well as precipitation dictate the impact of climate change on power production. Our results show that the projected increase in summertime river flow through mid-century does not impact hydropower generation at Trishuli, although some impact was noted at Naltar. This occurs because the additional water is routed around the power plants (i.e., non-power flows) eight months of the year for Trishuli and five months of the year for Naltar. However, during lower flow periods, when power generation is below the capacity of the plant, the projected changes in inflows in various climate futures impact generation levels.

The difference between solid and dashed lines of the same color in Figure 9 indicates the difference in hydropower production between the RCP 4.5 and RCP 8.5 scenarios. The largest differences in generation between RCP 4.5 and RCP 8.5 scenarios were in February, March, and April for Trishuli, and February, March, April, October, November, and December for Naltar. Although the gaps are relatively small, the differences were larger at Naltar (see Supplementary Figures S8, S9 for more details).

The characteristics of hydropower and associated upstream water storage have an impact on power production. Based on the current characteristics of Naltar and Trishuli, the impacts are expected to be small, because both plants underutilize available water resources as measured by the large amounts of non-power water flows. Therefore, we analyzed a set of scenarios with alternative hydropower characteristics and/or water storage at Trishuli to investigate how water and power resource characteristics impact model outcomes. The alternative scenarios analyzed include (a) only water storage, (b) higher capacity, and (c) both water storage and higher capacity (Figure 10). The intent of these purely hypothetical scenarios is to demonstrate the potential impacts on new hydropower plants with higher capacities as well as the potential for mitigation of climate change impacts through water storage. It is not intended to suggest that any changes should be made to Trishuli.
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FIGURE 10. Average 80-year monthly generation in alternative scenarios: (A) water storage (top left); (B) higher capacity (middle left) and (C) higher capacity with water storage (lower left). Average monthly generation increase in a warmer climate by alternative scenario: (D) higher capacity (middle right) and (E) higher capacity with water storage development (lower right).


In the water storage scenario, water resource managers can regulate monthly water flow volumes to maximize power production. All climate models predict nearly the same pattern under all 16 runs of GCM/RCPs futures when water storage resources are available. In other words, Trishuli generation changes due to a warmer climate are zero. This occurs because water storage and water management allows the hydropower plants to be fully utilized at maximum output at all times. Therefore, the average annual generation levels are estimated to increase by approximately 15% over the previous model runs.

The second alternative scenario replaces the current plant with one that has a total capacity of 350 MW and assumes that an increase in head will double the water-to-power conversion efficiency. Under this scenario, all eight GCMs indicate year-round impacts of a warmer climate on power generation (Figure 10D). The largest impacts are expected to occur during the summer and autumn, with minimal impact in February through April; that is, the opposite of the existing system. We also noted that modeled generation levels were higher compared to smaller capacity power plants with storage only.

The third alternative scenario combines a larger plant and water storage capabilities. By reshaping the monthly water released and dampening daily flow volatility, the average annual generation of the larger power plant increased by more than 10% over the previous scenario. The reshaping of monthly flows at Trishuli reduces non-power flow releases, allowing for an increased utilization of water resources for power production. As compared to the previous scenarios, the addition of storage significantly increases generation levels during both winter and early spring and increases the sensitivity of the plant to climate change. Also, note that climate change impacts are more evenly distributed throughout the year when storage resources are developed.



Comparison of Changes in Economic Value of Electricity Supplied by Hydropower Plants in the Karakoram and Himalaya

We estimated and compared the changes in the multimodal median values of the impacts on Naltar and Trishuli hydropower plants under RCP 4.5 and RCP 8.5 as compared to baseline conditions for the pre-peak-water decade, peak-water decade, and post-peak-water decade. Because the available longitudinal data was insufficient (<10 years for Naltar) to scientifically project a business as usual condition, we used historical monthly data as a proxy for the baseline condition in order to maintain consistency between the Trishuli and Naltar. We found differences in the estimated economic impacts on Naltar and Trishuli. The peak- water period is 2035–2050 for Trishuli and 2051–2065 for Naltar. We estimated the average value of the economic impacts for the peak-water periods of 2046–2055 for Trishuli and 2051–2060 for Naltar. For both the Naltar and Trishuli, we did not find significant differences between the estimated annual revenues for the hydropower owners under either RCP 4.5 or RCP 8.5 scenarios as compared to baseline conditions for the pre-peak-water decade.

During the peak-water period, the estimated additional annual benefits for both Naltar and Trishuli hydropower plants under both climate scenarios are higher than the baseline. For the Naltar, the estimated additional annual profits ranges from US $140,000 – 378,000 million under RCP 4.5 and US $228,000 – 618,000 under RCP 8.5. Similarly for Trishuli power plant owners, the additional estimated average annual profit ranges from US $ 33,000 – 139,000 and US $52,000 – 222,000 respectively under RCP 4.5 and RCP 8.5 scenarios.

We analyzed the changes in economic benefits for the hydro-electricity consumers and the global value of displaced CO2 emission from hydroelectricity generation. The estimated annual societal value of Trishuli for the peak-water decade ranges from $3.8 – $4.2 million and $4.7 – $5 million higher in RCP 4.5 and RCP 8.5 scenarios, respectively. The values for Naltar in RCP 4.5 and RCP 8.5 range from $2.6 – 6.3 million and $3.2 – 8.4 million respectively. Similarly, the estimated value of displaced CO2 emission at Trishuli ranges respectively from $65,000 – 70,000 and from $78,000 – 85,000 higher under RCP 4.5 and RCP 8.5. For Naltar, the annual average values range from $117,000 – 253,000 and $158,000 – 354,000 for RCP 4.5 and RCP 8.5 respectively.

Similarly, the societal benefit of the electricity generated by Naltar during the peak-water period ranges from $2.1 – 6.3 million and $ 3.4 – 10.3 million higher in RCP 4.5 and RCP 8.5 scenarios respectively as compared to the baseline. The estimated value of CO2 displacement averaged over the peak-water decade ranges from $ 97,000 – 196,000 under RCP 4.5 and $160,000 – 319,000 under RCP 8.5 higher than the baseline. In Trishuli however, the estimated average annual values of the societal benefit for the peak-melt decade ranges from $1.01 – 3.06 million and $1.6 – 4.8 million and the value of CO2 displacement ranges from $ 22,000 – 46,000 and $ 36,000–73,000.

While the estimated annual values over the decades lay out a picture for long-term expected changes, observed annual variation and seasonal variation in the estimated values could of import from short term operational perspectives as well as from the perspectives of mitigating the inter-annual variation through various interventions in hydro power plants.

In Trishuli, while the loss for the months of February, March and April in the peak-water decade is lower than the pre- peak-water decade, the Trishuli power companies will keep incurring losses. In the Naltar however, the average estimated value for the months of January through April are higher than the baseline under both the RCP 4.5 and RCP 8.5. While profits in January under both RCP 4.5 and RCP 8.5 generation higher than the baseline, a high inter-annual variation in revenues for the plant owners in pre-peak-water period under RCP 4.5 and RCP 8.5 was observed for February as compared to baseline. Increased profits under RCP 8.5 in the peak-water period for April is double than that in RCP 4.5. In contrast, expected average profit for the month of May in peak-water period, is negative in both the RCPs as compared to the baseline.

The future economic and financial value of existing run-of-river hydropower plants such as Trishuli and Naltar are subject to a several uncertainties. One uncertainty is that future water inflow rates are subject to large forecast errors as driven by weather and climatic events. As shown in Figure 4, historical inflows at the Trishuli Site (blue line) display large variations between the winter (low inflows) and summer (high inflows). In addition, peak summertime flow rates varied significantly from year to year from over 850 m3/sec to less than 400 m3/sec; that is, by a factor of more than 2. This summertime volatility is projected to continue in the future under both climate projections (see Figure 5). On the other hand, wintertime minimum inflow rates are fairly stable at Trishuli with base flow rates that, in absolute terms, change relatively little from year to year Figure 4.

Under status quo operations in which water storage and hydropower resources do not change at Trishuli and Naltar, this high summertime inflow volatility does not impact power production because the lowest historical summertime flow rates far exceed the turbine flow rate maximums; that is power production is always at the physical maximum level. The impact of summertime inflow volatility on power system uncertainty is, therefore, inconsequential. In addition to inflow uncertainty, another uncertainty that impacts power production is the availability status of hydropower generating units. This uncertainty was modeled as random independent events during which time it was assumed that specific generating unit(s) were unavailable for power production. Figure 9 shows the band of future power system generation output and therefore one simple measure of uncertainty under both climate projections (RCP 4.5 and RCP 8.5).

In addition to generation uncertainty the value of hydropower is also dependent on time-dependent incremental values of grid firm capacity and energy production that vary by geographical locations (e.g., grid buses). Hydropower has power grid value because it displaces generation that is, under most but not all situation, costly to produce. That is, for example, hydropower production may reduce the generation requirements for other resources that typically burn expensive fuel (e.g., natural gas). These marginal values of energy production are a function of production supply curves and load, both of which evolve over time. These grid incremental value uncertainties were beyond the scope of this paper and were not quantified in this study. We were limited by the extremely limited data that we collected using all possible means, to complete all the analysis.



DISCUSSION AND CONCLUSION

Interactions within and among physical processes and economic activities, such as those that occur during global climate change, are both complex and uncertain (Abbasi et al., 2017). Our study customized an integrated assessment-modeling framework to explore and learn about the relative impacts of projected changes in river flow and its constituents — snow and glacier melt and rainfall — in two basins located in different sub-regions of HMA. Because each individual tool in the framework is subject to modeling errors and uncertainty about the future, we used the framework to gain high-level insights into relative impact trends and magnitudes in the two basins.

The WBM simulations of future river discharge showed an increase in river flow at Trishuli and reduced flows at Naltar. Separating the flow into the primary sources of rain, snow and glacier meltwater shows decreased contribution of both glacier melt and snowmelt to river flow, with glacier meltwater reduced by 40 and 60% for the Trishuli and Naltar sites respectively. A strong seasonal shift in river flow is consistent across most GCMs and RCPs. There is a significantly higher variability across the models toward the end of the century, which is expected given the uncertainties in running these GCMs so far into the future. An earlier spring melt and later accumulation of the snowpack reduce the length of the winter low-flow period, and this is more pronounced for Naltar. We also observed a reduced summer river flow in the model output, although the time of year is different for each location due to lower contributions of glacier meltwater. At Trishuli, the reduction in summer flows occurs primarily in May to June, while at Naltar the lower summer flows are mostly concentrated in July and August. Lutz (2016) found projected river flow in the Hunza decreased during the melt season under both RCP 4.5 and RCP 8.5. The fall and spring shifts in melt move more of the snowmelt away from the summer period, causing overall reduced river flows during this high-flow period. Tahir et al. (2015) found that despite stable or increasing snow cover trends, the river flow trend is decreasing in Hunza. The shortening of the snowmelt period from April through June only is very distinct to the Nepal watershed. The overall expected effect is a longer high-flow season, but with lower streamflow intensity (discharge).

The results from our glacier and hydrology modeling components, showing increasing glacier melt driving increasing river discharge from glaciers and a subsequent decline in river flow, are a characteristic of “peak water” (Kraaijenbrink et al., 2017; Huss and Hock, 2018). These changes are strongest in the RCP 8.5 simulations. Immerzeel and Bierkens (2012) found the dominant factors for changing water supply in the Indus and Ganges basins to be uncertainty in precipitation, population growth, and in the Indus only, groundwater depletion. Lutz et al. (2014) focused on the upstream basins in HMA and showed the greatest future contribution to runoff was glacier melt in the Indus and rainfall in the Ganges. In both cases the metrics were based on large areas where the results used basin wide (Immerzeel and Bierkens, 2012) and aggregated HMA headwaters (Lutz et al., 2014) that do not necessarily indicate the dominant factors at play in the small, headwater basins explored in this research.

The impact of changes in annual inflows does not translate to significant changes in annual power production at small power plants (<20 MW) at Trishuli and Naltar. However, the timing of water inflows during the year and projected changes in flow during low-flow periods in a changed climate are important. In both RCP 4.5 and RCP 8.5 scenarios, during most of the year most of the river water bypasses the Trishuli and Naltar hydropower plants because river flow rates exceed the maximum rate of turbine-water-flow. Power plants therefore mostly operate at the maximum physical limit and are unresponsive to climate change under the current system configuration. However, with an upcoming large storage type hydropower four km upstream from the power plant may influence the power plant especially in drier months. While GCM/RCP results agree that changes are expected to be small at both Trishuli and Naltar, we cannot conclude that a changed climate will have minimal impacts on power systems in HMA.

We found that climate change impacts differ significantly by location, water resource diversity, power plant attributes, electricity demand and sectors, and the attributes of the electricity users. For example, Naltar is projected to have larger impacts than at Trishuli. We also found that the water bypass period is expected to be about twice as long for Trishuli than for Naltar. The estimated changes in economic values under both emission scenarios, compared to their respective baseline scenarios, vary more for Naltar than for Trishuli. We disaggregated the economic impacts in terms of private benefit for the power plant owners, societal benefits for the electricity consumers and benefits of displaced carbon dioxide emission to understand the impacts on various stakeholders. Our estimates show that while the impacts during the peak-water periods are similar for the two power plants, the impacts prior to and after peak-water decades are different. Hydropower plants in both regions are expected to benefit from increased flow during the peak-water period. In Trishuli, the benefits are not significantly different prior to or after peak-water period. However, in Naltar, the estimates show a high variability in potential changes in benefits in the post peak-water period.

In the dry months, when the monthly electricity generation is at the lowest, Trishuli was found to gain from increased melt during dry months. While in Naltar, all dry months are projected to have increased profit except for May in peak-water duration. The loss is further exacerbated for Naltar for the months of June after peak-water duration.

We also estimated the value of carbon dioxide emissions displacement from increased electricity generation during the peak-water duration. This is to showcase the potential carbon credits associated with hydropower plants that could be used to mitigate climate change impacts and generate discussions on mitigation infrastructure financed by carbon credit funds. For e.g., water storage infrastructure upstream of hydropower plants funded through carbon credit could dampen the impacts of inter-annual variability in flow, as well as embankment infrastructure could potentially reduce the impact in case of glacial lake outburst and flow events.

The future economic and financial value of existing run-of-river hydropower plants such as Trishuli and Naltar are subject to several uncertainties. One uncertainty is that future water inflow rates are subject to large forecast errors as driven by weather and climatic events. We tried to address that by analyzing the values for the multimodal minimum, median, and maximum of the projected riverflow for RCP 4.5 and RCP 8.5. Historical inflows at the Trishuli Site display large variations between the winter (low inflows) and summer (high inflows). In addition, peak summertime flow rates varied significantly from year to year. This summertime volatility is projected to continue in the future under both climate projections.

At Trishuli and Naltar, this high summertime inflow volatility is not expected to impact power production because the lowest historical summertime flow rates far exceed the turbine flow rate maximums; that is power production is always at the physical maximum level. The impact of summertime inflow volatility on power system uncertainty is, therefore, inconsequential. On the other hand, wintertime minimum inflow rates are stable at Trishuli with base flow rates that, in absolute terms, change relatively little from year to year. In addition to inflow uncertainty, another uncertainty that impacts power production is the availability status of hydropower generating units. This uncertainty was modeled as random independent events for which it was assumed that specific generating unit(s) were unavailable for power production.

The interactions between climate variables, the source water composition (contribution of glaciers, snow, rain, base flow) of river flow, and the projected changes in hydrologic regime vary geographically from sub-basin to sub-basin and temporally (seasonal, annual, as well as before and after peak-water). The impact of such changes of hydrologic regime on downstream hydropower plants also varies from sub-basin to sub-basin. Our sensitivity analysis shows that power production in storage-type power plants of similar capacity in Trishuli would increase by 15%, and the climate change impacts are negligible. However, higher-capacity power plants in Trishuli were found to be more sensitive to climate change led changes in river flow in our analysis. Because of the rapidly evolving power grids in the region, it is important to understand the dynamics and interactions among existing and new hydropower plant designs and characteristics, water storage development, the overall power grid and projected changes in climate.

The HMA nations, including India, Nepal, and Pakistan, are investing in hydropower development to meet the growing demand for electricity and achieve energy security, stability, and reliability goals. In Pakistan, a combined hydropower capacity of 42 GW is expected to be operating by 2030, and Nepal granted generation and survey licenses to develop hydropower capacity of 5.5 and 6 GW, respectively. In Trishuli’s main river, 770 MW capacity hydropower plants are expected to start operation in near future. A sub-basin-level analysis for the HMA region will help the government and the private sector make informed decisions and assess financial risks based on site-specific analyses that encompass the power grid and hydrological dynamics, using an ensemble of projected flows driven by a set of projected downscaled climatic variables.
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FIGURE S1 | Elevation histograms for the Trishuli, Nepal and Naltar, Karakoram study sites.

FIGURE S2 | Glacier melt contribution in Trishuli (A) and Naltar (B).

FIGURE S3 | Trend lines of glacier water fractions in discharge for (A) Trishuli, Nepal, and (B) Naltar, Karakoram sites. The mid-century increase is caused by additional contribution of core glacier mass loss due to changed climate.

FIGURE S4 | Trendlines of snow melt fractions in discharge for (A) Trishuli, Nepal, and (B) Naltar, Karakoram site.

FIGURE S5 | Average inter-annual changes of discharge for 2010/2050/2090 decades by select GCM/RCPs projections for Nepal (A,C, top row) and Karakoram (B,D, bottom row) sites.

FIGURE S6 | Average monthly increase in monthly hydropower production in Trishuli and Naltar.

FIGURE S7 | Annual hydropower production under RCP 4.5 and RCP 8.5 based on climate model.

FIGURE S8 | Average monthly hydropower production during the 80-year study period under RCP 4.5 and RCP 8.5 based on eight climate models for the static resource development future Trishuli (upper), Naltar (lower).

FIGURE S9 | Impacts of a warmer climate on average monthly hydropower production in Trishuli.

TABLE S1 | Key characteristics of Hunza and Trishuli sub-basins.

TABLE S2 | Mann-Kendall and Sen’s Slope results for the Trishuli basin.

TABLE S3 | Mann-Kendall and Sen’s Slope results for the Naltar basin.


FOOTNOTES

1 The efficiency surface is a function of both hydraulic head and water flow rate. According to information provided by APDA, each Naltar turbine has a maximum turbine efficiency of 85%, and at full turbine release the water-to-power conversion factor is approximately 3.53 MW cms–1. Given these two data points, the generic Pelton efficiency curve was adjusted such that the two WAPDA data points are on the efficiency surface. Using identical efficiency curves for each turbine, a power equation related efficiency, head, and water flows to electricity production. Using the power equation, the optimal unit-commitment and dispatch (i.e., output) of each unit was determined at power plant inflow levels ranging from the minimum turbine flow rate of 0.17 cms, to the maximum turbine flow rate of 5.12 cms.

2 Idle hours are represented in the model as the times when a unit is capable of producing power but it is not operating.
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As our global climate warms, people, and economies utilizing water resources sourced by snow and ice melt in mountain areas are disproportionately affected relative to locations that rely on rainfall. Worldwide, the vast majority of those impacted by snowfall changing to rainfall and earlier melt from a warming climate live in Asia. The Brahmaputra River originates in the declining glaciers and snowfields of the Chinese and Bhutanese Himalaya before flowing to the mega population centers of the Bangladesh delta. Bhutan’s economy relies on water resource-dependent hydropower and agriculture imposing important questions about the impact of climate change on the long-term viability of water supplies in these important economic sectors. To clarify potential effects on water supplies in a warming world, and specifically to quantify the role of meltwater to river discharge in the headwaters of the Brahmaputra basin, we utilize a combined field observation-remote sensing approach to quantify river discharge source waters in a representative headwater basin, the Chamkhar Chhu. Using 4 years of water isotope and chemistry data together with a Bayesian Monte Carlo mixing model run seasonally in 2016, we find that the Chamkhar Chhu is mostly a rain-dominated basin at the lower elevation of our study domain (2591 m a.s.l.), with peak contributions from snowmelt in the early-monsoon and ice melt in the post-monsoon seasons. The radioactive tritium isotope shows glacier ice at the terminus was formed before the 1960s bomb spike while groundwater and river water samples taken in August (late monsoon) are sourced from mostly newer water inputs that show little tritium. The influence of the highly reacted Tsampa tributary, sourced by a debris covered glacier, and additional groundwater inputs generally increase major ion concentrations with distance from the glacier snout. An overall decreasing trend in the minimum snow and ice cover extent maps produced using MODIS Terra data from 2000 to 2017 suggest a lessening of cryospheric water resource availability in the basin, although this timeseries is short compared to the timescale of atmospheric-oceanic oscillations controlling snowfall. While decreasing snow and ice resources will likely lead to changing melt water contributions to river discharge, the overall impact on the water resources may be buffered by rainfall contributions as previous studies forecast an increase in precipitation for the region that will likely make up for lower melt water inputs.

Keywords: Brahmaputra, meltwater, climate change, water resources, Bayesian Monte Carlo mixing model, snow and glacier ice cover trends, water isotopes, tritium


INTRODUCTION

Increasing global temperatures are disproportionately affecting people and environmental systems in high mountain areas. Resources and ecosystems existing near the freezing threshold, including snow and ice water resources stored as snow and glaciers in the mountains of High Mountain Asia (HMA), are especially prone to changing seasonal regimes – both accumulation and melting patterns – as freezing levels march upward in elevation. Snowpacks and glaciers serve as important seasonal water supply storage reservoirs to downstream communities and industries (Immerzeel et al., 2020) that utilize large snow melt volumes in the spring and summer melting of glaciers below the equilibrium line. Of all people whose water supplies are at risk due to changes to glacial melt contributions, 90% live in Asia (Schaner et al., 2012).

One of HMA’s major rivers, the Brahmaputra River, starts as snow and ice in the Bhutanese, Chinese, and Indian Himalaya before flowing to the massive population centers on the Bangladesh delta. Remotely sensed Landsat data shows Bhutan’s glaciers – the frozen headwaters of the Brahmaputra – have lost nearly a quarter of their area between ∼1980 and 2010 (-6.4 ± 1.6% year–1), with an approximate 180 m increase in equilibrium line altitude (Bajracharya et al., 2014). Maximum glacier runoff, “peak water,” is forecasted in the Brahmaputra sub-basins by 2050 under varying (conservative to aggressive) climate projections (Rounce et al., 2020) leading us to question: what impact will this change have on water supplies downstream and what does this mean for the regional economy given the reliance on hydropower and agriculture, sectors that are highly dependent on water resources?

Indeed, hydropower has transformed Bhutan’s gross domestic product (GDP) from one of the lowest in South Asia in the early 1980s to one of the highest in the region following hydropower development and energy exports to India (Biswas, 2011) that makes up 45% of Bhutan’s GDP (Bisht, 2012). Even though topographically Bhutan does not lend itself to large scale agricultural operations, 57% of the Bhutanese population rely on agriculture for jobs and their livelihood (National Statistics Bureau of Bhutan, 2018). Despite these high stakes, regional planning for climate change adaptation is hindered by limited technical knowledge about climate, and how it may affect these important sectors (Hoy et al., 2016).

Strategizing for climate change adaptation in water resources requires gaining a first order understanding of the relative importance of the sources of water in the basin, specifically the role of climate-sensitive snow and ice melt contributions to water supplies. The vast and remote nature of HMA mandates the use of remote sensing datasets coupled with synoptic field observations to clarify hydrologic processes in the region. The Moderate Resolution Imaging Spectroradiometer (MODIS) imagery provides global data for snow mapping at a daily timescale, allowing analysis of snow cover trends across seasons, years and regions (Painter et al., 2009, 2012). Seasonal water sampling allows “un-mixing” of river water into its various source water contributions at a snapshot in time. Mixing model methods use isotopic and geo-chemical tracers that give water a unique “fingerprint,” and they have successfully been used in snow and ice fed regions to quantify the role of meltwater to river flow over space and time (Liu et al., 2004; Arendt et al., 2015; Wilson et al., 2016; Cowie et al., 2017; Hill et al., 2017, 2018). Combining the two spatial and temporal scales of remote sensing and field data, we can gain an initial understanding of the hydrologic processes generating streamflow in the study basin.

We present a quantitative analysis of meltwater and rain contributions to river flow over the spatial scale of river systems in the Brahmaputra headwater region. Using a combination of multi-year in situ hydrochemistry and isotope datasets that drive mixing models, together with trend analysis of remotely sensed cryosphere data, we analyze how meltwater’s role changes seasonally and with distance from the snow and ice reservoirs themselves in the Chamkhar Chhu (Chhu meaning “River”) in central Bhutan. The Chamkhar Chhu is representative of the character of meltwater-sourced headwater basins in the larger Brahmaputra catchment, suggesting this study may be indicative of the hydrologic behavior across other high elevation areas in the Brahmaputra basin. This study provides the context to forecast changes to water resources in Bhutan’s Brahmaputra headwaters as glaciers continue to deplete (Huss and Hock, 2015) and snow increasingly falls as rain in a warming world (Barnett et al., 2005).



MATERIALS AND METHODS


Hydroclimate of Study Area

Bhutan is a tiny country by global standards with huge topographic gradients. Measuring only 170 by 300 km the country spans the Himalayan crest over 7300 m a.s.l. to the lowlands near sea level. The terrain is rugged imposing unpredictable climate patterns over small scales. Located in north central Bhutan (Figure 1D), the Chamkhar Chhu basin is sourced by the snowfields and glaciers of the eastern Himalaya, draining into the Manas River that feeds into the Brahmaputra River in India. After joining with the Ganges and Meghna Rivers a few hundred kilometers before emptying into the Bay of Bengal, this river system is the third largest in the world (Chowdhury and Ward, 2004).
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FIGURE 1. (A) The Chamkhar Chhu basin including glacial areas (Bhutan National Center for Hydrology and Meteorology 2018 glacier inventory), all sampling locations, meteorological station, flow gauge location (GS), and precipitation bucket (JP). (B) Cryospheric sampling points at the toe of the Thanagang glacier. (C) River sampling locations at the mainstem-Tsampa tributary confluence. (D) Regional locator.


The mainstem of the Chamkhar Chhu lies at the base of the clean ice Thanagang (Thana) glacier (Figure 1A). The debris-covered Burtsham glacier (Figure 1A) is also located within the basin at the top of the Tsampa River tributary which joins the Chamkhar at approximately 3700 m a.s.l. (Figure 1C).

The Chamkhar Chhu is relatively data rich by Himalayan standards, with a meteorological station, flow gauge, and bulk precipitation collector installed within the basin (Figure 1A). These datasets are used to characterize the hydroclimate of the basin. The flow gauge station (GS) is located at 2591 m a.s.l. with a record extending from 1992 to 2016. The precipitation bucket (JP) used for chemistry and isotope sampling is at 2771 m a.s.l. and was established in 2016. The meteorological station measures daily temperature and precipitation amounts and is located at 2470 m a.s.l. with a record extending from 1996 to 2016.



Trends in Minimum Snow and Ice Extent

Cryospheric trends over the multi-decadal time scale provide helpful context for understanding historical and possible future changes to snow and ice inputs within a basin. We mapped annual minimum snow and ice extent (SIEmin) across the basin using the Moderate Resolution Imaging Spectroradiometer (MODIS) Persistent Ice (MODICE, Painter et al., 2012) algorithm based on the time series of fractional snow cover from the MODIS snow covered Area and Grain size algorithm (MODSCAG, Painter et al., 2009). MODSCAG is particularly better at determining fractional snow and ice cover during summer months than empirically based methods (Rittger et al., 2013). The MODICE algorithm first limits snow cover inputs to sensor view zeniths ≤ 25°. It then searches the record of each pixel for days with no snow. The original algorithm indicated the pixel to be snow or ice for any pixel that had zero days with no snow. For this study we use a threshold of 2 days with less than 0.15 fractional snow-covered area to designate a pixel as “no snow.” This more lenient threshold has been found to remove spurious low fractional snow cover data values and reduce variation from errors from year to year (Armstrong et al., 2018). We use annual maps of SIEmin from 2000 to 2017 to investigate SIEmin trends in the Chamkhar Chhu basin.



Field Observations

In situ water samples (river water, rain, snow, ice, glacier outflow, groundwater) were collected across the mainstem of the Chamkhar Chhu (Figure 1) from 2014 to 2017 and were analyzed for stable water isotopes and hydrochemistry. Samples were also taken to analyze for tritium (H3), a radioactive isotope, in 2016.

A total of 204 river water and source water samples were collected along a 2697 m elevation gradient from 2538 m a.s.l. to 5235 m a.s.l. (Figure 1). Source water samples include glacier ice (n = 17), glacier outflow (n = 9), seasonal snow (n = 2), rain (n = 4), and three groundwater-sourced springs (n = 30). Precipitation samples (rain) were collected as monthly bulk samples from a bucket collector at Chokhortoe village (2772 m a.s.l., JP in Figure 1). Samples were collected over 4 years (2014–2017) in various seasons (Table 1). Mixing model analysis focuses on the most intensive sampling in 2016 utilizing 4 campaigns that capture the pre-monsoon, monsoon, and post-monsoon periods.


TABLE 1. Field sampling campaigns (gray boxes) over the study period.

[image: Table 1]Major ion sampling was conducted by pressure filtering liquid water through 47 mm diameter Gelman A/E glass fiber filters with an approximate 1 μm pore size into high density polyethylene bottles, and stored following the protocols delineated in Wilson et al. (2016). Borosilicate vials with a taper seal cap were used to capture 25 mL stable isotope water samples, ensuring zero headspace within the vial to prevent any potential for fractionation. To capture glacier ice and snow samples, chunks of ice or snow were collected in a sterile plastic bag using sterile latex gloves or a clean shovel, melted at room temperature, and then filtered into bottles as described above.

Tritium isotopes can be used to decipher the age of waters within the modern era due to a spike of tritium inputs into the atmosphere experienced during nuclear weapon testing during the 1950s and 1960s. Qualitatively the bomb peak in 1963 can be used to identify waters originating in the system prior to the 1960s (tritium poor water) as compared to those with relatively higher levels that entered the system since these nuclear tests were performed. Quantitative approaches to determining water movement within systems can also be performed using tritium’s half-life decay rate (12.43 years). In this study tritium isotopes were evaluated in high elevation waters to coarsely estimate the age of glacier ice and groundwater within the study basin, as well as provide a qualitative complementary approach to mixing models (refer section Bayesian Monte Carlo Mixing Model below) regarding the role of glacier melt in alpine river flow. We collected 1 L samples in August 2016 at the following locations as referred to by sample site names in Figure 1: glacier ice (n = 3, collected at TI1, TI2, IT1 between 5150 and 5154 m a.s.l), rain (n = 1, collected at JP, 2772 m a.s.l), groundwater (n = 3, collected at G1, G2, G3 between 3160 and 3617 m a.s.l), and glacier outflow (n = 1, collected at S1 at 5147 m a.s.l). River water samples in the top half of the study basin (n = 6 between 3188 and 4556 m a.s.l.) were also analyzed for tritium.



Laboratory Analysis

Major ions that were analyzed at the Kiowa Laboratory at the University of Colorado-Boulder across all samples include Ca2+, Na+, Mg2+, K+, Cl–, NO3–, and SO42–. Anions were analyzed on the Metrohm 930 Compact Ion Chromatography and cations were evaluated by a Perkin Elmer AAnalyst 200 Atomic Absorption Spectrometer.

Isotopic analysis for 2014 and 2015 samples were conducted at the Kiowa Laboratory. Utilizing a recently established in-country stable isotope laboratory facility in Bhutan, 2016 and 2017 samples were run for δ18O and δ2H at the wet chemistry laboratory at the Center for Science and Environmental Research, Sherubtse College, Royal University of Bhutan. Analysis in both labs for all samples was performed on a L2130-i Picarro Cavity Ringdown Spectrometer. Units for δ18O and δ2H values are the conventional delta (δ) notation in per mil (‰) units relative to Vienna Standard Mean Ocean Water (VSMOW) (Craig, 1961).

All tritium (3H) isotope samples were processed at the United States Geological Survey Menlo Park Tritium Lab by liquid scintillation counting. Tritium is reported in tritium units, a measurement of the rate of decay of tritium in the water sample over the analysis period. Detection limits depend in part on the original volume of the sample that is electrolyzed down to the final 9 mL of sample that is then processed by liquid scintillation. Detection limits reported here are based on 1 L samples.



Precipitation Isotope Characterization

Stable isotopes in water, Oxygen-18 and deuterium, are affected by many physical and atmospheric factors, allowing for their use as tracers to differentiate snow from ice from rain. These factors include temperature, the origin and amount of precipitation, post-depositional processes like evaporation and sublimation, among others. We use isotopes as a central tracer to decipher the relative contributions of water sources to river flow in the Bayesian Monte Carlo mixing model, where snow and rain are end members to the mixing solution. For this reason, it is important to have confidence in the representativeness of our limited sample size of in situ snow and rain observations used as end members given the isotopic variability experienced on the site. We investigated the representativeness of field observations as compared to longer term records in the region through the International Atomic Energy Agency Global Network of Isotopes in Precipitation dataset (GNIP, IAEA/WMO, 2016).

A lack of GNIP sites located in the immediate vicinity of the Chamkhar Chhu basin led to utilizing GNIP sites located on either ends of the typical trajectories of the moisture masses arriving to the subject site (Figure 2). The origin of the moisture mass dictates the initial isotope signature of a moisture mass (Bowen and Revenaugh, 2003). As moisture moves across topographic features its isotopic signature gradually shifts, producing a somewhat predictable isotopic gradient between initial and final trajectory point. We use this reasoning to estimate reasonable bounds of the precipitation isotopes received in the Chamkhar Chhu, and to identify if the precipitation isotope values measured as in situ rain and snow samples as part of this study are representative of those expected in the Chamkhar Chhu.
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FIGURE 2. Global Network of Isotopes in Precipitation (GNIP) sites used to determine representative bounds for precipitation isotope values at the Chamkhar Chhu (red dot) including representative trajectory of seasonal air flow patterns.


The predominant air flow patterns relevant to the Chamkhar Chhu are the Indian summer monsoon (ISM) and the winter westerly (Figure 2). The ISM moves moisture from its origin in the Bay of Bengal (between India and Indochinese Peninsula) northward across the Himalaya (Lang and Barros, 2002; Li et al., 2016; Kumar et al., 2018). The ISM isotope gradient was investigated using a south-north transect made from two opportunely located GNIP stations: Dinajpur, Bangladesh is located at 35 m a.s.l. elevation on the plains below the Himalaya, while the Lhasa, Tibet GNIP site is in the northern lee of the high Himalaya at 3649 m a.s.l. In contrast to the ISM, much of the region’s cold-season snow (outside of the monsoon) is brought by the winter westerly (Li et al., 2016; Kumar et al., 2018) and is characterized using four sites both west and east of the Chamkhar Chhu subject site (Figure 2), at varying elevations.



Bayesian Monte Carlo Mixing Model

We used an open source Bayesian Monte Carlo (BMC) mixing model (Arendt et al., 2015) to evaluate the fractional contributions of source waters to river flow over the 2016 sampling periods. BMC approaches are increasingly used for source water separation applications because of their ability to quantify associated uncertainties of contributions (Ogle et al., 2004; Cable et al., 2011). BMC utilizes a prior probability density function (PDF) derived from end member samples’ isotopic signatures as well as physical constraints on fractional contributions to the system to solve for a posterior PDF. In our model the physical constraint imposed on the system is simply that the sum of all fractions must equal 1.

The natural variability in the suite of isotopic values obtained for a given end member sample set is used in the prior PDF and can explain either the uncertainty in the source water fraction solution or the isotopic variability existing within samples of the same type. Gaussian and uncorrelated uncertainties are assumed across observed isotopic values. Details of the modeling framework are described in Arendt et al. (2015).



RESULTS


Hydrologic Landscape


Hydroclimate

The hydroclimate of the Chamkhar Chhu basin is typical of the monsoonal eastern Himalaya. The monsoon months (June to September) exhibit peak discharge (Figure 3A), the highest annual temperatures (Figure 3B), and maximum monthly rainfall (Figure 3C). Warmer temperatures induce snowmelt coincident with the onset of monsoon rains intensifying the high flow period. During the monsoon, large events often deliver significant precipitation over short periods of time leading to extreme flow peaks. In contrast, winter months experience low baseflow conditions and below-freezing daily minimum temperatures as measured at 2470 m a.s.l.
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FIGURE 3. The hydroclimate record for the Chamkhar Chhu basin. (A) Monthly discharge measured at GS (Figure 1) at 2591 m a.s.l. with mean discharge over the period 1992–2016 shown in black and 2016 shown in red. (B) Daily maximum and minimum air temperatures at the meteorological station (MS, Figure 1) with freezing line at 0°C shown as black dotted line. (C) Monthly precipitation as measured at the meteorological station peaks during the monsoon season in July and August. Temperature and precipitation records extend from 1996 to 2016.




Cryospheric Trends

Figures 4A–C shows the MODICE SIEmin maps described in section Trends in Minimum Snow and Ice Extent from the driest (2012), median (2011), and wettest years (2004) over the period of record from MODIS (2000–2017). MODICE SIEmin maps indicate only where the pixel was snow covered or not (i.e., a binary classification). The minimum fraction of snow cover is tracked in the MODSCAG algorithm, and here we show the minimum fraction of snow cover of each pixel annually. For example, light blue pixels have approximately 50% of the MODIS 500 m pixel’s surface area covered at the time of SIEmin.
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FIGURE 4. Top row: Minimum snow and ice extent (SIEmin) in the Chamkhar Chhu basin (red dotted outline) for the driest (A), median (B), and wettest (C) years over the MODIS record. Colors represent the percent coverage per pixel of snow and ice at its minimum extent. The sampled Thanagang glacier is shown by white circle in (A). Insets are close up of the most glaciated region of the basin. (D) SIEmin hypsometries for the years shown in (A–C). For comparison, SIEmin hypsometry is also shown for the driest year over the MODIS record experienced by the larger Brahmaputra basin. Y-axis scales are color coded to the relevant lines.


Hypsometries of the minimum snow and ice extent areas (Figure 4D) for the driest year on the MODIS record (2012, Figure 4A) are an appropriate representation of glacier area hypsometry because SIEmin during a very dry year indicates glacier surface areas and only permanent snowfields that will persist even in very dry years. The Randolph Glacier Inventory (RGI) v6 glacier outlines in the study area, shown as black outlines in Figures 4A–C, support MODICE as a proxy for glacier area. RGI glaciers extents do not match MODICE maps in two situations: (1) when tongues are debris covered, or (2) when the glacier width is less than MODIS’s 500 m pixel size. Accordingly, some small glaciers are not identified on MODICE maps. While MODICE does not include debris covered glacier surfaces, RGI glacier maps are inconsistent in including debris covered tongues as they are hard to delineate using remote sensing data from which many are derived. In addition, the RGI data is sourced from different years and sometimes created by different methods whereas MODICE is consistently calculated for each pixel. So, neither approach provides a fully accurate glacier map but either provides an appropriate approximation and the datasets are complementary.

Most permanent snow or ice-covered area exists at the Himalayan crest along the northern border of the Chamkhar Chhu basin. The sampled glacier, the Thanagang glacier (3.77 km2 in area) as identified by the white circle in Figure 4A, spans 5100–5700 m a.s.l. and is situated in a similar topography and elevation band as other glaciers in the Chamkhar Chhu. This suggests the Thanagang is representative of the other glaciers in the basin that contribute meltwater inputs to the Chamkhar Chhu.

To understand the representativeness of the study basin to the larger Brahmaputra catchment we compare dry year minimum snow and ice extents at these different spatial scales (red and blue solid lines, Figure 4D). Dry year SIEmin at both scales show similar peak frequencies between 5,000 and 5,500 m a.s.l., although the larger Brahmaputra has a greater distribution of dry year SIEmin area at elevations lower than 5,000 m a.s.l. than the study basin. Of note, the Chamkhar Chhu does not contain dry year permanent snow and ice area at elevations lower than 4,800 m a.s.l. Generally glacier elevations increase to the south and east across HMA in the direction of an intensifying monsoon.

The central difference between the minimum snow and ice extent in the driest and median years is snow cover between 5,300 and 5,500 m a.s.l. (Figure 4D) whereas the wettest year (2004) has considerably more snow across the same elevation band than the median year. Additionally, the wettest year retains snow in relatively lower elevation sub-ranges (<5,200 m a.s.l.) throughout the basin which likely leads to greater contributions to river flow from snow melt longer into the summer and further from the glacier snout as compared to other years.

The total SIEmin area within the Chamkhar Chhu basin summed over 2000–2017 shows wettest years in 2002–2006 and driest years in 2000, 2001, and after 2006 (Figure 5). A linear trend analysis (Figure 5, dashed line) shows a significant decreasing trend (p = 0.005) with an average area loss of 128 km2year–1 SIEmin. A decreasing trend of this size could be an overestimate because of the large seasonal variability of snow, for example, 2004 SIEmin is almost twice most years. Additionally, the longer time periods over which atmospheric and oceanic circulations affect snowfall may influence this trend. An autocorrelation and partial autocorrelation analyses show correlations at 1 and 2 years and at 1 year, respectively, which physically could be attributed to seasonal snow that has persisted for more than 1 year.
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FIGURE 5. The trend in annual minimum snow and ice area extent (SIEmin) in the Chamkhar Chhu basin shows a statistically significant decline in minimum snow and ice coverage from 2000 to 2017 as calculated using fractional SIEmin maps.




Precipitation Isotopes

Precipitation isotope ranges calculated using a smoothed linear model of GNIP data and the 95% confidence interval envelope captures most of the observed snow and rain isotopic values observed in the Chamkhar Chhu within each season (Figure 6).
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FIGURE 6. Global Network of Isotopes in Precipitation (GNIP) monthly isotope records for sites along the prevailing weather transects relative to the subject site (Figure 2). The westerly flow (A) is prevalent from November to April and the transect captures sites west and east of the Chamkhar Chhu. The Indian monsoon (B) dominates moisture paths from May to October, with the transect perpendicular to the Himalaya. Light gray shading is the 95% confidence level interval. Months not applicable to each season are covered by dark gray boxes.


The winter westerly isotope patterns (Figure 6A) are relatively constrained despite the nearly 3,000 km between east and west sites. We have only one in situ rain observation during the westerly season in November, but it falls squarely within the expected east-west isotope gradient. The constrained seasonal isotope variation patterns observed in Figure 6A suggest the Chamkhar Chhu’s precipitation isotope values can be reasonably estimated to be between those at the west and east sites.

The larger difference between monthly Lhasa and Dinajpur isotope values (Figure 6B) is testament to the impact that topography has on fractionation processes as moisture moves up and over the major topography of the Himalaya. Both snow and rain observations during the ISM fall mostly within the expected range, with the exception of the June rain sample which is unusually enriched. Extreme high and low precipitation isotope values during the monsoon are not uncommon, and are mostly controlled by the origin of the moisture source, not temperature (Li et al., 2016).

The snow samples were both collected during the monsoon but not necessarily as new snow, thus may have arrived earlier, and/or been subjected to post-deposition isotope change. These samples plot closer to the Lhasa trend line as expected due to both higher elevation and colder temperatures at the snow collection site (5235 m) similar to the Lhasa GNIP site. Utilizing a similar north-south transect near the subject site Li et al. (2016) predict δ18O and its lapse rates in the region, also finding good agreement in predicted δ18O with this approach during the time periods examined in that study (January winter and August monsoon). This suggests the GNIP gradient approach may provide a reasonable approximation of ISM seasonal trends at the study site.



In situ Chemistry and Isotope Elevation Trends

Glacier ice is consistently depleted in δ18O, whereas seasonal isotope variation is seen in both snow and rain (Figure 7B). Early monsoon (June) snow and rain are more enriched than inputs at other times of the year. The three different groundwater sources have isotope values between cryospheric and rain inputs indicating a mixture of source waters to the groundwater, with variation between spring locations and seasons. The highest elevation groundwater spring, Tsampawog, is the most reacted end member sampled (Figure 7A), whereas the other springs have more moderate SO42– concentrations indicating less water-soil/rock interaction possibly due to a combination of shorter residence time, shallower flow paths, and variations in the bedrock geology local to the spring. SO42– is shown as a characteristic geochemical tracer (Figure 7A), but other major ions analyzed as part of this study and indicative of water-rock interaction demonstrate similar patterns. Snow and glacier ice have dilute ion concentrations, as expected. Interestingly, the isotopically enriched June rain sample has an unusually high SO42– concentration (62.67 μEqL–1) as compared to other new inputs.
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FIGURE 7. Elevation gradients of source waters (A,B) and river waters (C,D) for SO42– (A,C) and δ18O (B,D) indicating the evolution of river water as it moves downstream (x-axis decreases in elevation from left to right). Color gradient demonstrates seasonal variation.


Patterns observed in δ18O indicate a general enrichment in river water (Figure 7D) with decreasing elevation across all years and seasons. The most depleted waters are present during the post-monsoon period (October to December) suggesting a higher percentage of meltwater in river flow as compared to other times of the year. In contrast, the most enriched period is during the summer monsoon, when presumably most inputs across elevations are rain. A rain event prior to sampling in 2016 may account for the unexpected enrichment of waters at the highest elevation sites that is not seen in other years. Isotope values during the pre-monsoon timeframe lie between the monsoon and post-monsoon isotopes.

In general, increasing SO42– concentrations (Figure 7C) are observed with decreasing elevation across sampling campaigns until approximately 3000 m a.s.l. where there is a slight dilution effect thereafter. The increasing ion trend with downstream distance (i.e., decreasing elevation) is indicative of cumulative groundwater inputs into the stream channel as the river progresses downstream. SO42– concentrations rise gradually from the glacier terminus as the river flows downstream before a noticeable jump between 3700 and 4000 m. This increase coincides with the location of the inflow of the Tsampa tributary. Using a simple 2-part mixing model, the median flow contribution of the Tsampa tributary to the mainstem calculated across all analytes is between 43 and 45% for the four sampling periods in 2016. The Tsampa River drains outflow from the debris-covered Burtsham glacier. The highly reacted outflow from the Burtsham glacier is consistent with previous findings that the increased water-rock interaction afforded by flow across and through debris cover substantially increases hydro-chemical concentrations (Wilson et al., 2016). With nearly half of the Chamkhar Chhu flow provided by the Tsampa tributary at this confluence, it is logical that the Tsampa exerts a strong influence on the mainstem water chemistry. As the river continues downstream a gradual ion dilution is experienced across all seasons below 3000 m a.s.l. in 2016 and 2017, possibly due to increased inputs in unreacted snowmelt or rain inputs during those years.



Bayesian Monte Carlo Mixing Model

To calculate the relative contributions of snow melt, glacier melt, and rain to river flow over the year 2016 we used stable isotopes δ18O and δD as tracers in a Bayesian Monte Carlo mixing model. The ice end member is characterized by the average δ18O and δD values for glacier ice samples collected in each seasonal sampling campaign. The precipitation isotope investigations presented in section Precipitation Isotopes suggest that the GNIP isotope gradient approach provides reasonable approximations for precipitation isotope patterns at the study site. Amidst seasonal variability and uncertainties at GNIP sites used in this analysis (Figure 6), precipitation isotopes used in the mixing model are taken as the midpoint between the smoothed linear model of the transect extremes during each month (Figure 6). This is considered an appropriate estimation given rain samples fall roughly half way between the transect extremes, and in lieu of more extensive in situ data that would be able to provide a more refined estimate. As discussed in section Precipitation Isotopes, winter precipitation is well characterized by the Lhasa GNIP site, and accordingly the snow end member was calculated as the monthly average of values from the Lhasa GNIP. End member inputs used in the Bayesian Monte Carlo mixing model are provided in Supplementary Material.

Mixing model results based on 20 million model runs (Figure 8 and Table 2) indicate pre-monsoon (March) baseflow is comprised of mostly rain and snow (38 and 39%, respectively) but with ice also contributing 23%. With the onset of the monsoon, the river changes to a rain-dominated system with rain making up the majority of June (52%) and August (71%) discharge as snow and ice contributions gradually lessen over the monsoon season. In the post-monsoon (October) the river transforms to essentially a 2-part system with ice and rain each sourcing nearly half the flow whereas annual snow, now mostly melted, contributes a mere 3%.
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FIGURE 8. (A) Bayesian Monte Carlo mixing model results of river flow source waters 2016 based on the four sampling campaigns in March, June, August, and October overlaid on the 2016 hydrograph. (B) Fractional contributions and the associated uncertainties of the mixing model solution. Error bars indicate 1 standard deviation.



TABLE 2. Fractional contributions of source waters to 2016 river flow and 1 standard deviation of the model trials.
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Tritium

Tritium samples from August 2016 (late monsoon) indicate a mixture of water ages within the basin (Figure 9). Glacier ice (n = 3) sampled in this study comes from the terminus of the glacier. These samples are tritium dead with all samples reported below the detection limit indicating the sampled glacier ice originated prior to the 1960s bomb spike. In contrast, groundwater samples (n = 3) have the highest reported tritium signal with a mean value of 5.05 TU suggesting 2016 groundwater is sourced by newer (post 1960) inputs and its residence time is less than 50–60 years. Groundwater’s tritium signature are likely a combination of rain and meltwater isotopes mixed over years-to-decades. Glacier outflow and rain were sampled only once with values 3.03 and 3.77 TU, respectively. Glacier outflow’s higher tritium value suggests that at the time of sampling (11am) source waters for glacier outflow are likely younger waters such as snow and rain routed through the glacial plumbing as opposed to glacier ice. River water ranges from 3.56 TU (GO5) to 5.15 TU (GO3), with no significant elevational trend. River water tritium is statistically different than glacier ice (p < 0.05) but appears similar to groundwater (p = 0.35). Detection limits across all samples (n = 14) range from 0.23 to 0.27 TU.
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FIGURE 9. August 2016 tritium presence across source waters and high elevation river water samples. Statistical relationships between sample types are noted by blue dotted lines: river water and glacier ice samples are statistically different (p < 0.05) while river water and groundwater are not (p = 0.35).




DISCUSSION


Meltwater’s Role in River Flow

Overall we find that the Chamkhar Chhu is a rainfall dominated basin, with seasonally varying snow and ice melt contributions. The BMC mixing model results conceptually agree with our expectations of the annual cycle of seasonal snow, exposed glacier ice, and rain in the eastern Himalaya.

During the low flow pre-monsoon season small volumes of snow, ice and rain source baseflow. These waters, possibly stored from the previous season are likely routed through sub-surface flow arriving to the channel as groundwater, as suggested by the highest concentrations of major ions observed during this period (Figure 7). The pre-monsoon occurs during the cold winter months when the annual snowpack is accumulating and covering most glacier ice surfaces, but when much of the frozen water sources have not yet begun to melt. As temperatures warm and the monsoon starts in June, snow melt onset likely coincides with large precipitation events. Also during this time, the lowest ion concentrations are observed in river water signaling short residence time and little water-soil interaction of waters before reaching the main channel. This may be explained by the combination of rain events and snowmelt (possibly exacerbated by rain-on-snow events) creating high discharge events and overland surface flow, resulting in quick transference of new inputs to the main channel.

As the monsoon progresses, rain increases its dominance on river flow as annual snow fields are melted away, eventually creating exposed glacier ice surfaces at glacier tongues, though the highest elevations likely remain snow covered. August tritium results generally agree with the BMC mixing model for the late monsoon period when rain and snow make up 92% of the river flow contributions, and the older glacier ice plays a much smaller role. Waters analyzed for tritium (only available for August 2016) indicate that sampled glacier ice at the terminus of the glacier, typically where the older ice within the glacier resides, originated before the bomb spike in the 1960s. The tritium concentration of higher elevation glacier ice is unknown but would likely indicate that it is younger than the sampled ice. In contrast to the terminus glacier ice, the higher tritium presence in August river water and groundwater suggests these supplies consist of newer water inputs, and that neither river or groundwater are strongly influenced by glacier ice melt contributions during the late monsoon. There is likely some mixing of tritium dead waters (glacier ice) and waters richer in tritium (rain and snow) into both river flow and groundwater, but this mixing cannot be quantitively characterized without better snow and rain tritium data. Whatever the mixing, river water’s tritium values suggest glacier meltwater plays a limited role.

In the post-monsoon period, glacier ice, no longer protected by seasonal snow cover, is more susceptible to melting and contributes a majority of river flow during this period. This contrasts with results in Rupper et al. (2012) which finds that, using a degree-day melt model (Hock, 2003), snow and ice meltwater originating within the glacier footprint in Bhutan’s monsoonal Himalaya mostly occurs in summer, before peak monsoonal rains arrive. When this same study parsed out only ice melt, meltwater contributions move later toward the post-monsoon season but not as late in the year as indicated in our results. Analysis of remotely sensed ELAs in the nearby Trishuli basin indicate the largest amount of exposed glacier ice in November and December (Racoviteanu et al., 2019) supporting our finding. Direct comparisons to other previous studies are challenging because this study does not provide for estimating annual overall contributions (e.g., Bookhagen and Burbank, 2010) with four mixing model seasonal snapshots, or estimating seasonal contributions under future climate scenarios (Lutz et al., 2014).

A spatially consistent comparison can be made to a temperature index (TI) melt model run at a daily timescale in 100 m elevations bands over the Chamkhar Chhu domain defined at Kurjey flow gage for 2001 to 2014 (Brodzik et al., 2019). Full modeling details are described in Armstrong et al. (2018). Over the 14-year period the TI model finds that, on an annual basis, snow – not ice – dominates the story around new meltwater inputs in the basin, even in the post-monsoon period. In general, the BMC results do not show a snow-dominant system over the four periods presented here for 2016, however, rain inputs are not considered in the TI model so this is not an apples-to-apples comparison.



What Do Cryospheric Trends Mean for Future Water Supplies?

The larger societal question arising from this work relates to the future implications of a changing cryosphere to the downstream water resources in the Chamkhar, Manas and Brahmaputra basins. Minimum snow- and ice-covered area (SIEmin) results presented here show a decreasing trend in SIEmin in recent decades though our analysis is short relative to atmospheric-oceanic oscillations controlling snowfall. In addition, SIEmin is not synonymous with a seasonal snowpack’s snow water content measured by snow water equivalent (SWE), however, the lessening SIEmin over time implies a general lowering of available snow and ice resources to water supplies.

The general forecast for cryospheric water resources in the Brahmaputra headwaters in previous studies echoes the SIEmin trends presented here. “Summer accumulation” type glacier systems like those in Bhutan accumulate and ablate during the same season and have higher sensitivity to temperature than precipitation (Rupper and Roe, 2008; Sakai et al., 2015), making them especially prone to changes in a warming world. The temperature sensitivity of glaciers in this region may be linked to effects on the snow-rain line, which also change the surface albedo and thus the energy balance. Even with no additional climate warming, Rupper et al. (2012) show that Bhutan’s glaciers are currently out of equilibrium resulting in a significant loss in glacier mass and increase in meltwater flux even under the current climate. Other studies suggest little change is projected in glacier melt contributions through 2050 because of the balance between shrinking glacier size and increasing melt rates (Lutz et al., 2014).

However, total precipitation’s effect on snow accumulation, not temperature effects on melt, may have a larger overall influence on future river discharge. With a precipitation increase (both rain and snow) in the Upper Brahmaputra of up to 12% forecasted for RCP4.5, an increase in river discharge is expected year round, not just in the monsoon season (Lutz et al., 2014). At the scale of the larger Brahmaputra basin, rain likely also exerts control on river flow due to the high precipitation experienced along the lowlands at the southern Bhutanese border (Dorji et al., 2016). The mega population centers within the Brahmaputra basin are located downstream of these high precipitation areas, so effects from long-term decreasing meltwater supplies originating in the headwaters are likely overwhelmed by changes in rain patterns.



CONCLUSION

Snow and glacier resources in Bhutan’s eastern Himalaya are responding to increasing temperatures with smaller annual snowpacks and ablating glaciers. Discharge in melt-sourced rivers like the Chamkhar Chhu have the potential to change in response to variations in melt inputs. We find using a Bayesian Monte Carlo mixing model analysis, at 2591 m, river flow is heavily influenced by rainfall year-round, with seasonal influences from snow and ice melt contributions. Snow melt plays a larger role in supplying river flow in early monsoon, whereas ice melt is important in the post-monsoon period when much of the lower elevation seasonal snow has melted and the glacier ice is exposed and no longer has the protection of seasonal snow cover. Previous studies indicate a range of impacts to river discharge due to changes in the cryosphere, in terms of both the extent and timeframe for experiencing effects. Regional precipitation increases, not decreasing snow or ice meltwater supplies, may dictate changing river discharge at the non-alpine elevations where people, hydropower and agriculture utilize the water.

The field data-driven mixing model approach used here is challenged by limited end member isotope and chemistry data of snow and rain which are both critical water inputs in this system. Estimating the signature of these source waters using transects of regional GNIP datasets are shown to be an appropriate, albeit imperfect approach to managing the data scarcity issue of this basin. Complimenting limited field observations with remotely sensed datasets provides important regional and longer-term context for interpreting results like the hydrograph separation that applies to a limited timeframe and spatial area.

While remote sensing offers profound new capabilities at the regional scale, in situ data scarcity in remote regions like the high Himalaya continues to challenge the scientific community’s ability to characterize rapidly changing environmental systems. Deriving alternative approaches to managing data limitation issues such as that presented here may allow for a wider understanding of future changes to our natural resources that may, in turn, provide much needed background information for climate change adaptation strategies in vulnerable areas.
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Due to their high sensitivity to changes in climate, glaciers are one of the best natural indicators of climate change. Despite this, many underlying processes that control glacier response to climate change are poorly understood. One potentially important set of such processes are feedback mechanisms that can amplify or dampen glacier melt in response to a change in climate. Though feedbacks are recognized as important processes affecting glacier mass balances, little has been done to systematically quantify their effects. This study develops a surface energy and mass balance model to quantify the contribution of the albedo-feedback to glacier mass balance. Specifically, we quantify the roles of three trigger processes that initiate the albedo-feedback: snowpack thickness, snowfall event frequency, and heat flux supplied by precipitation. The model follows common energy balance methods but includes “switches” to turn these trigger processes off. The model is applied to Chhota Shigri Glacier using meteorological inputs from three different climate regions in High Mountain Asia (HMA). The results show that up to 80% of the average glacier melt increase from a +1°C temperature change can be attributed to the albedo-feedback. Furthermore, the system gain due to the albedo-feedback depends most on snowfall event frequency and the availability of incoming shortwave radiation during the melt season, and are thus generally largest in summer accumulation settings of HMA. This sensitivity to snowfall timing and frequency results in system gains being highest near the equilibrium line altitude, where a small change in temperature can shift precipitation phase from snow to rain. Regional analysis using climatological estimates suggests that many glaciers in the monsoonal Himalayas and southern Tibetan Plateau are likely to exhibit particularly strong albedo feedbacks. These results contribute to a growing body of literature suggesting that the mass balance of summer-accumulation type glaciers is strongly controlled by summer snowfall amount and frequency, which is closely linked with changes in air temperature. It also highlights the significance of the albedo feedback on glacier mass balance and the need to further explore feedbacks associated with glacier surface processes.

Keywords: glacier, energy balance, mass balance, feedbacks, High Mountain Asia


INTRODUCTION

Because of their high sensitivity to changes in climate, glaciers are one of the best natural indicators of climate change (Oerlemans, 1994; IPCC Report, 2001; Roe et al., 2016). However, the relationship between glacier mass balance and climate is often obfuscated by other variables such as limited in situ measurements, interannual variability, glacier response times, etc. In particular, glacier sensitivities to changes in climate can vary significantly (Fujita and Nuimura, 2011; Wang et al., 2019). For example, some studies have found that glaciers that receive the bulk of their annual precipitation during the summer, such as in the monsoon-dominated central and eastern Himalayas, are more sensitive to changes in temperature than are glaciers in winter-accumulation regions such as the western Himalayas (e.g., Fujita and Ageta, 2000; Fujita, 2008; Rupper and Roe, 2008; Zhang et al., 2013; Sakai and Fujita, 2017). Thus, attributing glacier length or mass balance changes to changes in climate is often not straightforward (Roe and Baker, 2016; Sakai and Fujita, 2017).

As a result of this, increased recognition of the significance of glacier sensitivity to climate change has led to an increased focus on identifying the drivers of glacier sensitivity to changes in climate (e.g., Oerlemans and Fortuin, 1992; Arnold et al., 2006; Fujita, 2008; Mölg et al., 2012; Azam et al., 2014; Pepin et al., 2015; Liang et al., 2018). Within these, the majority have noted the significance of complex glacier-climate feedbacks, particularly related to surface albedo and precipitation seasonality. While these feedbacks are often recognized as important factors in determining glacier mass balance (e.g., Arnold et al., 2006; Pepin et al., 2015), their influence has yet to be quantified in a systematic way.

For the purposes of this study, feedbacks are defined following Roe (2009), wherein “a feedback is a process that, when included in the system, makes the forcing a function of the response.” Given the albedo-feedback considered in this study, the forcing is a change in surface albedo, and the response is a change in melt. Note however that the changes in surface albedo are all in response to an initial change in temperature.

As average global temperature rises, the vast majority of glaciers around the world thin and retreat in response (e.g., Gardner et al., 2013; Zemp et al., 2015, 2019). This occurs because of a number of direct processes. As an example, as temperature increases, melt generally increases, which decreases glacier mass balance. Additionally, as temperature increases, the fraction of precipitation that falls as snow may decrease, which also decreases mass balance. Importantly, this increase in the fraction of precipitation falling as rain gives rise to a feedback loop. Because of this effect, glaciers in some regions may have an amplified response to changes in temperature. A detailed description of this feedback is provided in section Model Calibration.

Here we quantify the magnitude of the albedo-feedback on glacier mass balance in High Mountain Asia (HMA) by developing a new surface energy and mass balance model with the unique capability to turn the albedo-feedback off. We further use this framework to quantify the individual contributions of three unique trigger processes to the overall magnitude of the albedo-feedback. We use the term “trigger processes” to describe processes which initiate a feedback. These trigger processes are described in section Trigger Process Descriptions.

We use the model to evaluate the contribution of the albedo-feedback to the mass balance of a single glacier that is modeled with meteorological inputs from different climate regimes (Locations A–D, Figure 1), providing an idealized, controlled estimate of mass balance and feedback contribution. We use the idealized modeling results to identify glaciated regions of HMA likely to be most affected by the albedo-feedback under future climate scenarios. While feedbacks associated with other glacier surface processes (e.g., valley wall shading, melt/refreeze, etc.) may play important roles in glacier mass balance in many regions, the albedo-feedback is likely to impact glaciers nearly worldwide. Thus, its contribution to glacier mass balance and identifying the factors controlling its magnitude will be important for accurately predicting the global response of glaciers to climate change. For this reason, this study focuses on the albedo-feedback.


[image: Figure 1]
FIGURE 1. Region of High Mountain Asia, with glaciers outlined in blue and the specific climate regions considered in the study as yellow points. Glacier outlines were obtained from the Randolph Glacier Inventory version 6.0 (2017).


This study has three primary objectives:

1. Quantify the contribution of the albedo-feedback to glacier mass balance.

2. Identify which trigger processes result in a larger albedo-feedback.

3. Determine the climatic characteristics that maximize system gains due to the albedo-feedback.



METHODS


Overview

In order to test the magnitude and variability of the albedo-feedback and its trigger processes, this study develops a distributed surface energy and mass balance model with the unique capability to turn individual trigger processes on and off (hereafter referred to as trigger switches). A surface energy and mass balance model is a two-component model that accounts for (1) all major energy fluxes to and from the glacier surface, and (2) the associated mass gains and losses due to snow accumulation and surface melt. Surface energy and mass balance models inherently include feedbacks. The addition of switches in the model allows individual trigger processes to be turned off either individually or in conjunction with other trigger processes. Melt estimates between scenarios in which trigger processes are turned off, both individually and simultaneously, are then compared to one another to evaluate what the net change in melt is as a result of the inherent feedbacks.

The surface energy and mass balance model is first calibrated for one glacier using available climate and mass balance data. After calibration, the same glacier (Figure 2) is evaluated using meteorological data from different climate regions (i.e., the glacier size and shape remain constant, but meteorological inputs are varied). The elevation of the glacier is adjusted for each climate region, simply by adding, or subtracting a fixed value uniformly to the glacier digital elevation model (DEM), such that the annual mass balance is equal to zero. Thus, it approximates steady state for each individual climate setting prior to applying a climate perturbation. The model is run on a daily resolution for 13 years (1 January, 2001 to 31 December, 2013) to ensure high enough temporal resolution to capture important feedback processes and a long enough record to provide representative sampling of climate variability in each target climate region. The exact duration of the model runs is constrained by the available climate data, described below. By utilizing a single glacier morphology, we provide a controlled test of albedo feedbacks for different climate settings without complicating factors such as differing glacier aspect, shading, hypsometry, etc.


[image: Figure 2]
FIGURE 2. The selected glacier for this study is north facing and is ~16 km2. (A) The colors show the extent of the glacier and results of modeled mass balance across the glacier for the control run, with the white areas being the ELA. The spatial resolution is 30 m. (B) Area distribution vs. elevation for the selected glacier, summed over 10 m elevation bands. The ELA is approximated by the black line.




Study Area

HMA is an ideal location to study the effect of the albedo-feedback on glacier mass balance due, in part, to its wide range of precipitation regimes. For example, within HMA, the eastern monsoonal Himalayas receive most of its precipitation during the summer and tend to have high annual precipitation rates; meanwhile, the western Himalayas are more arid, and receive the bulk of their precipitation during the winter (Curio and Scherer, 2016). The diversity of its climates thus makes HMA an excellent location to study the trigger processes that give rise to the albedo-feedback and how they vary spatially and temporally. In addition to its scientific suitability, HMA is also uniquely societally relevant. Meltwater runoff from glaciers feed many of the largest rivers in Asia, which are an important source of water to an estimated 1.4 billion people (Immerzeel et al., 2010). They also play a significant role in global sea level rise, regional water resources, ecosystem stability, energy production, agriculture, and risk management (Barry, 2006; Immerzeel et al., 2010, 2020; Moors et al., 2011; Gardner et al., 2013; Pritchard, 2019; Zemp et al., 2019). While geodetic mass balance estimates have recently shed light on regional patterns of mass balance in HMA (e.g., Gardelle et al., 2013; Brun et al., 2017; Maurer et al., 2019; Shean et al., 2020), the physical processes governing these large-scale patterns remain poorly understood (Azam et al., 2018; Kumar et al., 2019; Maurer et al., 2019). As a result, the projected responses of glaciers in HMA to climate change remain uncertain (Immerzeel et al., 2010; Bolch et al., 2019). By focusing this study on HMA, we will help improve our physical understanding of processes governing the mass balances of these glaciers and their sensitivity to climatic change.



Data

Meteorological inputs needed for the surface energy and mass balance model are from the High Asia Refined analysis (HAR10) (Maussion et al., 2014), a gridded 10 km resolution dataset generated using the Weather Research and Forecast model. HAR10 is available for the period October, 2000 to October, 2014. The primary HAR10 outputs used in this study include daily 2-m air temperature, air pressure, precipitation, relative humidity, incident solar radiation, 10-m wind speed, and incoming longwave radiation, as well as hourly incident solar radiation. The meteorological variables were downscaled to the resolution of a DEM covering the glacier area (downscaling details in section Downscaling). The DEM used in this study is from the ALOS1 30 m dataset.

The glacier selected for this study, Chhota Shigri Glacier, is located at 32.23° N 77.51° E (Location C in Figure 1). The glacier was delineated using the Randolph Glacier Inventory v6.0 (RGI Consortium, 2017). The glacier is a clean ice glacier (3.4% debris cover as of 2011; Vincent et al., 2013) and ~16 km2. This glacier was chosen in part because there are both geodetic mass balance and in situ data available that overlaps much of the period covered by HAR10, allowing for calibration and validation of the surface energy and mass balance model (Azam et al., 2016, 2019; Brun et al., 2017; Maurer et al., 2019).



Surface Energy and Mass Balance Model

The surface energy budget of a glacier is estimated by:
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where Qm is the net surface energy, Snet is the net shortwave radiative flux, Lnet is the net longwave radiative flux, QS is the sensible heat flux, QL is the latent heat flux, Qp is the heat flux supplied by precipitation, and QG is the subsurface heat flux due to conduction through the snow or ice. Incoming (outgoing) energy fluxes are denoted as positive (negative). Positive (negative) net surface energy is used to warm (cool) the surface up to the melting point (0°C), at which point any remaining positive energy causes the surface to melt. We assume melt run-off in all scenarios here. See Tables S1, S2 for a list of all variables, parameters, and constants used in the model.


Radiative Energy Fluxes

The radiative energy budget consists of all shortwave and longwave radiative fluxes to the surface of the glacier, Snet and Lnet, respectively. The net shortwave radiative flux is equal to the difference between the incoming solar radiation and the reflected shortwave radiation, modified by the angle of incidence:
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where Sin is the incoming shortwave radiation, α the surface albedo, and θ the incidence angle. Because the model uses a daily time step, calculation of the incidence angle is not possible with standard methods (which depend on sub daily resolutions). Thus, this model uses a modification which utilizes hourly incoming shortwave radiation from the High Asia Refined analysis:
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where Sin(h) and θh are the incoming shortwave radiation and incidence angle, respectively, at hour h. Here, cos(θ) becomes essentially a scaling factor (between 0 and 1) representing the fraction of solar radiation that reaches the surface of an inclined plane relative to a horizontal plane. The angle of incidence for each hour is calculated as
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where β is the slope angle, Zh the zenith angle, φsun(h) the solar azimuth, and φslope the slope azimuth (Garnier and Ohmura, 1968).

Surface albedo, α, on a given day (i) is calculated following Oerlemans and Knap (1998), but uses adjusted values for the parameters (αfrs, αice, αfi, d*, and t*) following Mölg and Hardy (2004):
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where αice is an albedo for bare ice, d is snow depth (in cm), d* is an e-folding constant for snow depth, and αs is the albedo of snow at day (i). αs is a function of the time since the last snowfall:
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where αfi is an albedo for firn, αfrs is an albedo for fresh snow, s is the day of the last snowfall event, and t* is an e-folding time constant that accounts for the decreasing albedo of snow over time. Thus, net shortwave radiation is a function of solar radiation incident at the surface, whether the surface is snow or ice covered, as well as age and depth of the snow.

Net longwave radiative flux (Lnet) is equal to the sum of incoming longwave radiation, Lin, and outgoing longwave radiation, Lout:
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Incoming longwave radiation is calculated in two steps. First, the effective emissivity of the air, εa, is calculated from HAR10 temperature, Ta0, and incoming longwave radiation, L0. This provides a temporally-downscaled, self-consistent estimate of the emissivity of the air.
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Next, incoming longwave radiation, Lin, is spatially distributed across the glacier using the lapse rate-downscaled air temperature, Ta, such that
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where σ is the Stefan-Boltzmann constant. Outgoing longwave radiation, Lout, is then given by
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where σ is the Stefan-Boltzmann constant, εs is the emissivity of the surface, and Ts is the temperature of the surface.



Turbulent Heat Fluxes

The turbulent heat fluxes are calculated following a well-established bulk aerodynamic approach (e.g., Oerlemans, 1992; Wagnon et al., 2003; Mölg and Hardy, 2004; Anderson et al., 2010; Cuffey and Paterson, 2010), whereby the sensible heat flux, Qs, and the latent heat flux, QL, are estimated by:
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where ρa is the density of the air at sea level, cp is the specific heat capacity of the air, U, is the wind speed (at 10 m), Ta, is the temperature of the atmosphere (at 2 m), Ts, is the surface temperature, Lv, is the latent heat of vaporization for water, ea is the vapor pressure of ambient air (at 2 m), es is the vapor pressure of air at the glacier surface, Pa is the air pressure, P0 is the air pressure at sea level, and kE and kH are the bulk transfer coefficients for neutral conditions for latent and sensible heat (respectively), defined (following Webb, 1970) as:
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where k0 is the von Karman constant, zm is the wind speed measurement height above the surface (10 m), z0m is the roughness length for wind, zv is the measurement height for water vapor pressure (2 m), z0v is the roughness length of water vapor, zh is the measurement height for temperature (2 m), and z0h is the roughness length of temperature. We adapt constant values (for snow and ice, respectively) for z0m (0.001, 0.016 m), z0v (0.001, 0.004 m), and z0h (0.001, 0.004 m) from Azam et al. (2014).



Precipitation and Conductive Heat Fluxes

The advected heat flux due to liquid precipitation, QP, follows the commonly used method (e.g., Singh et al., 2011)
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where cw is the specific heat of water, P is the rainfall intensity, Ta is the air temperature, and Ts is the temperature of the surface. This assumes all precipitation falls at air temperature and that precipitation falls as rain if the air temperature is above 2°C.

Conductive heat flux, QG, is given by Mölg and Hardy (2004):
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where κi is the thermal conductivity of ice, Δzi is the depth in the ice (here Δzi = 10 m) where the temperature of the ice is assumed to be constant, unaffected by fluctuations in air temperature, and equal to the average annual air temperature at each grid location on the glacier. While snow and ice typically have different thermal conductivities, using a constant thermal conductivity here across the entire glacier surface is unlikely to impact results significantly due to the minimal contribution of QG to the overall surface energy budget.



Downscaling

Air temperature and pressure from HAR10 were downscaled from 10 km to 30 m resolution. Temperature downscaling was applied using a constant 6.5°C km−1 lapse rate, the mean tropospheric lapse rate (Hartmann, 1994). While it is well-known that temperature lapse rates vary significantly by region, time of day, season, and even over glacier surfaces (Petersen and Pellicciotti, 2011; Azam et al., 2014; Shea et al., 2015; Thayyen and Dimri, 2018), temperature lapse rate measurements across HMA are not widely available. Additionally, a constant temperature lapse rate provides a consistent means for scaling in different regions of HMA, ensuring that the results for each region are directly comparable.

Air pressure was downscaled using a derivation of the hydrostatic (Equation 17) and the equation of state (Equation 18), as follows.
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where ΔPa is the change in air pressure, ρ is air density, g is the gravity constant, Δh is the change in elevation, Pa is air pressure, Rd is the universal gas constant for dry air, and Tv is the virtual air temperature. Tv is defined as:
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Here, Ta is air temperature, e is vapor pressure, and ϵ is the ratio of gas constants for air and water vapor.

Solving for ρ in Equation (18), substituting equations for ρ and Tv into (Equation 17), and finally, solving for the pressure gradient, ΔPa/Δh, allows the pressure gradient to be calculated solely as a function of air temperature and pressure:
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While it is well-established that precipitation gradients can have significant impacts on glacier mass balances, this study does not apply a precipitation gradient for several reasons. First, precipitation gradients in HMA are known to vary significantly both spatially and temporally but remain poorly constrained (e.g., Singh and Kumar, 1997; Anders et al., 2006; Jarosch et al., 2010; Cuo and Zhang, 2017). Indeed, even neighboring basins can have very different precipitation gradients. Additionally, it is unclear how including a precipitation gradient in this study would improve the robustness of the results found here when glaciers in different climates are likely to have different precipitation gradients. Future studies should evaluate how the precipitation gradient parameterization affects feedback mechanisms. Thus, to maintain direct comparability between regions without adding additional complexities to the model that lack validation, we forego the use of a precipitation gradient in this study.



Surface Temperature Calculation

The surface energy and mass balance model presented here solves for the temperature of the glacier surface and energy available to melt using an iterative method, as follows. Initially, the model assumes that energy available to melt the glacier surface (Qm in Equation 1) is zero. Using this initial guess for the melt energy, it then calculates the surface temperature. If the calculated surface temperature is ≤0°C, the model records that surface temperature and proceeds to the next time step. However, if the calculated surface temperature is positive, the model sets the temperature of the surface to 0°C and recalculates the energy available to melt. The melt energy is then used to melt the glacier surface.




Model Calibration

The model is calibrated using a combination of in situ measurements available from the World Glacier Monitoring Service (WGMS, 2018) database and geodetic mass balance data (Maurer et al., 2019). In-situ measurements are available in 50–250 m elevation bands along the glacier each year from 2003 to 2006 (Figure 3). The values for the albedo of fresh snow, αfs (0.85), the albedo of firn, αfi (0.40), the albedo of bare ice, αi (0.3), and the phase transition threshold, Tpt (2°C), for partitioning rainfall/snowfall were adjusted until good agreement was reached between the modeled mean annual mass balance profile and the 4 years of in-situ elevation-distributed mass balance measurements.


[image: Figure 3]
FIGURE 3. Modeled mean glacier mass balance profile plotted against in-situ glacier mass balance profiles for the years 2003–2006. The shaded area represents one standard deviation from the mean of the modeled mass balance profile from 2001 to 2013.


In addition to comparing the mass balance profiles, the modeled mean annual glacier mass balance (−0.42 m w.e. a−1, for 2001–2013) also compares well with both the geodetic mean annual mass balance (−0.37 m w.e. a−1, for 2000–2016; Maurer et al., 2019) and in situ mean annual mass balance (−0.59 m w.e. a−1, for 2002–2012; Azam et al., 2016). Additional mass balance estimates for Chhota Shigri Glacier covering a range of time periods are summarized by Azam et al. (2019).



Model Sensitivity

Here we test the sensitivity of modeled glacier mass balance to key input parameters to determine which parameters are most likely to affect the results presented here (Figure 4). The test was performed using inputs for Region C, the default location of Chhota Shigri Glacier. Ten parameters were varied independently in the model with both an increased and a decreased value relative to the default values used in this study. The results indicate that the model is most sensitive to the precipitation phase threshold, followed by the albedo of ice, the e-folding time constant for determining the evolution of albedo for aging snow, and the temperature lapse rate. This suggests that the model is most sensitive to parameters that have direct influences on surface albedo.


[image: Figure 4]
FIGURE 4. Results from testing glacier mass balance sensitivity to input parameter values. Gray bars represent increased parameter values (relative to the defaults), while black bars represent decreased parameter values. The range of parameter values tested is included above and below each bar. See Table S1 for default parameter values.




Feedbacks and Triggers

Here we present a description of the individual trigger processes targeted in this study (see Figure 5 for a schematic diagram of each), as well as an explanation of how the model “turns off” each trigger process (i.e., the switches). Note that all three trigger processes described initiate the albedo-feedback, but that each impacts albedo via a different mechanism. We name each trigger process (e.g., “accumulation trigger”) only to distinguish between the mechanism that leads to a change in the albedo of the surface. In reality, because albedo and surface melt are dependent on one another, any mechanism that affects albedo will likely result in a feedback loop. Note also that all three trigger processes are a result of changes in precipitation phase but are measured by their net effect on glacier melt.


[image: Figure 5]
FIGURE 5. Schematic diagram of feedbacks and trigger processes. (A) Illustrates feedbacks generally. (B–D) Illustrate the individual trigger processes tested in this study. Top panel adapted from Roe (2009).



Trigger Process Descriptions
 
Accumulation trigger

An increase in air temperature increases the fraction of precipitation that falls as rain. This results in less snowfall, which leads to a thinner snow cover. Thinning the snow cover decreases the albedo of the surface, which causes the surface to absorb more energy and triggers a positive feedback loop. This further thins the snow cover, etc.



Precipitation heat flux trigger

An increase in air temperature increases the fraction of precipitation that falls as rain. This results in an increase in the heat flux supplied by precipitation to the surface, which causes increased melt. Increased melt leads to a thinner snow cover, which decreases the albedo of the surface and triggers a positive feedback loop. This causes the surface to absorb more energy, which further increases melt, etc.



Albedo reset trigger

An increase in air temperature increases the fraction of precipitation that falls as rain. This results in fewer snowfall events on the glacier, which “resets” the albedo of the surface less frequently (i.e., because each snowfall event “resets” the surface albedo to that of fresh snow). Resetting the albedo of the surface less frequently decreases the albedo of the surface, which causes the surface to absorb more energy. This causes increased melting resulting in a thinner snow cover, which further decreases the albedo of the surface, etc.




Trigger Process Switches and Albedo Feedback

To facilitate conceptualization of the functionality of the trigger switches used in this study, we present an idealized scenario with which we will present each trigger switch. In each case, measuring the strength of the albedo-feedback necessarily requires three distinct iterations of the scenario. First, the surface energy balance model is run with present-day climate as the input (ΔT = 0°C, and all trigger switches remain on). Note that when all trigger process switches are turned on, the full magnitude of the albedo-feedback is included in the calculation. This is the control run. Second, the model is run using a +1°C temperature change (ΔT = +1°C, and all trigger switches remain on). Third, the model is run using a +1°C temperature change (ΔT = +1°C), but with the trigger switch(es) turned off. Note that if all trigger switches are turned off, the albedo-feedback mechanism is turned completely off and no albedo-feedbacks occur. If a subset of trigger switches are turned off, only a portion of the albedo-feedback mechanism operates. The following idealized scenario will describe the first two iterations of the scenario, while each feedback description thereafter will describe the third iteration of the scenario, with the respective trigger switch turned off.

Consider an idealized scenario where the average temperature at location x at time i on the glacier is 1.5°C. It snows (because precipitation is assumed to fall at air temperature and in a solid state if the temperature is <2°C). This is the control run. In the second iteration, a +1°C change is applied (ΔT = +1°C), increasing the temperature to 2.5°C. In this iteration, it now rains instead of snows. Because it rains rather than snows, (1) the snowpack is thinner (Δd is negative relative to the control; Equation 5), (2) rain now supplies heat to the surface (ΔQP is positive relative to the control; Equation 15), potentially further decreasing snowpack thickness, and (3) surface albedo is not reset (s stays the same, rather than being set equal to i as in the control; Equation 6). All three of these trigger processes decrease surface albedo and initiate the albedo-feedback loop.

Trigger switches turn off the trigger processes to determine the change in melt due to a temperature change in the absence of that process. The following descriptions of the trigger switches are described in the context of the scenario presented above.


Accumulation switch

Turning the accumulation trigger off (with ΔT = +1°C) would force the thickness of the snowpack to remain the same as if there had been no temperature change (Δd = 0), but would not affect the impact of ΔT on the precipitation heat flux (ΔQP is positive) or albedo reset (s stays the same, rather than being set equal to i) due to changes from snow to rain. Thus, we artificially keep the snowpack thickness the same as in the control run but allow the precipitation heat flux and albedo reset triggers to respond to the temperature change and associated change in precipitation phase from snow to rain. In this scenario, we are testing the magnitude of the albedo-feedback when changes in snowpack thickness due to changes in temperature are not included.



Precipitation heat flux switch

Turning the precipitation heat flux trigger off (with ΔT = +1°C) would prevent the precipitation (which would now fall as rain) from supplying any additional heat to the surface (ΔQP = 0). In this scenario, the snowpack is thinner relative to the control (Δd is negative) and the surface albedo is not reset (s stays the same, rather than being set equal to i). In other words, we artificially keep the heat flux supplied by precipitation the same as in the control run, but allow the accumulation and albedo reset triggers to respond to the temperature change. In this scenario, we are testing the magnitude of the albedo-feedback when changes in precipitation phase due to changes in temperature are not included.



Albedo reset switch

Turning the albedo reset trigger off (with ΔT = +1°C) would cause the surface albedo to reset (s is set equal to i), even though precipitation would actually fall as rain at 2.5°C. In this scenario, the snowpack is thinner relative to the control (Δd is negative) and the heat flux from precipitation is still supplied to the surface (ΔQP is positive). In other words, turning off the albedo reset trigger forces the albedo to reset with the same frequency as in the control run, but allows the accumulation and precipitation heat flux triggers to respond to the temperature change. In this scenario, we are testing the magnitude of the albedo-feedback when changes in the frequency of snowfall events due to changes in temperature are not included.




Gains Due to Feedbacks

We use system gains as a measure of how strongly the albedo-feedback and trigger processes impact glacier mass balance in a given region. The system gain due to feedbacks, G, is “the factor by which the system response has gained due to the inclusion of the feedback(s), compared with the reference-system response” (Roe, 2009), here defined as:
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where Δm is the change in melt (including full albedo feedback with all trigger processes turned on) resulting from a perturbation to the system (i.e., a change in albedo resulting from a +1°C temperature change), ΔmRef is the change in melt (with only a subset of trigger processes turned on) resulting from a +1°C temperature change, mT0 is glacier melt with no temperature change, mT1 is glacier melt with a +1°C temperature change and all trigger processes turned on, and mT1F is glacier melt with a +1°C temperature change with the trigger process(es) turned off.




Regions

Four regions with significantly different annual climatologies were selected from within the HAR10 dataset (Figure 6 and Table 1). Each “region” in this context refers only to the use of a single 10-km grid location from the HAR10 dataset. The meteorological data for each region in this study is therefore treated effectively like data collected at a single weather station. The meteorological data from these regions were used as input to the model to test the dependence of the albedo-feedback on precipitation amount and timing. For each control scenario, the glacier elevation is adjusted to force each glacier into equilibrium (i.e., so the magnitude of melt is equal to the magnitude of accumulation for the 13-year model run). Note that for the control run in Region C, the actual location of Chhota Shigri Glacier, the elevation is also adjusted to force it into equilibrium. It maintained its original elevation only when it was being calibrated and validated. This forced equilibrium in all regions is done in order to make results more directly comparable between all four regions.


[image: Figure 6]
FIGURE 6. Precipitation frequency (black line) and mean precipitation (blue dashed line) averaged for each day (e.g., each 1 March is averaged) across 2001–2013 for each region. Precipitation frequency as presented here is the number of times a given day exhibited precipitation divided by the total number of years of data (13). For example, if it rained all 13 years on 1 June, then the precipitation frequency for that day would be 1.



Table 1. Summary of climate conditions for each region.
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RESULTS


Energy Budgets

The energy budget for each region provides a diagnostic tool for examining the processes that lead to differences in glacier mass balance and system gains between regions. Figure 7 shows the energy budgets for each climate region for the control run, averaged over the glacier surface and for each day. Energy fluxes in each region are within reasonable ranges, as compared to other studies in HMA (e.g., Kayastha et al., 1999; Fujita and Ageta, 2000; Zhang et al., 2013; Azam et al., 2014; Acharya and Kayastha, 2018). Note that the turbulent heat fluxes are generally much smaller than the radiative fluxes for all climate regimes (Figure 7). In addition, the variability and magnitude of the fluxes vary between regions (Table 2). For example, incident shortwave is strongly influenced by clouds, with the largest impact occurring in Region B, where precipitation is also largest during those summer months.


[image: Figure 7]
FIGURE 7. Energy fluxes for the control run averaged over the entire glacier for each day over the 13 years covered by this study. Note that QG, the heat conducted into the glacier, is not shown here due to its minimal contribution to the overall energy budget.



Table 2. Summary of energy fluxes (Figure 7) and changes in energy fluxes due to a +1°C temperature change (Figure 8).

[image: Table 2]

The change in energy budgets for each region due to a temperature change is shown in Figure 8. As expected, a +1°C temperature change results in an increase in the net surface energy budget in each region. Regions A, B, and C exhibit a peak increase in net shortwave radiation near the middle of the melt season. This occurs because the average summer temperature in these regions is close to 0°C, where a temperature change can shift the precipitation phase from snow to rain for a large area of the glacier, thereby decreasing the albedo. Figure 9 shows the change in precipitation phase for the temperature change and that the maximum change in precipitation phase occurs near the middle of the melt season for regions A, B, and C. In comparison with regions where the increase in net shortwave radiation peaks near the middle of the melt season, Region D exhibits increased net shortwave radiation that is maximized near the beginning and end of the melt season. This corresponds to an increased fraction of precipitation falling as rain at these times (Figure 9), which decreases the albedo and increases the absorbed shortwave radiation. During the middle of the melt season, however, precipitation falls infrequently enough during the summer that it has little effect on albedo (Region D). The comparison in energy budgets and energy changes between regions suggests the variations and changes in melt and system gains will depend on the initial climate setting.


[image: Figure 8]
FIGURE 8. Change in energy fluxes, for a 1°C temperature increase, averaged over the entire glacier and for each day over the 13 years covered by this study.



[image: Figure 9]
FIGURE 9. Fraction of snow precipitation to total precipitation averaged for each day (for all 13 years of the model runs) over the entire glacier surface for the control run (black lines) and for +1°C temperature change (blue lines). Discontinuities in some lines indicate days in which no precipitation occurred on that day for all 13 years. The red lines show the difference in fraction of precipitation that falls as snow between the control runs (ΔT = 0°C) and runs with a temperature change (ΔT = +1°C).




Mass Balance

Local mass balance for all regions under both summer- and winter-dominated precipitation regimes are shown in Figure 10. Importantly, melt and accumulation gradients fall within reasonable ranges. As expected, an increase in temperature decreases the mass balance of the glacier within all four climate settings, but the amount of change is not uniform. In particular, the mean mass balance changes are largest in Region B (−0.60 m w.e. a−1) where incident shortwave radiation is lowest during the melt season, and smallest in Region D (−0.47 m w.e. a−1) where average summer temperature is significantly higher than in any other region. Thus, while the change in temperature is the same for all scenarios, the mass balance response is dependent upon the climate setting at the time of the change.


[image: Figure 10]
FIGURE 10. Summary of glacier melt (A), accumulation (B), and mass balance (C) for each region with no temperature change (solid lines) and with a +1°C temperature change (dashed lines). Values are averaged over 10 m elevation bands across the glacier surfaces.




System Gain

The system gain, as used in this study, is a measure of how strongly the albedo-feedback impacts glacier melt in a given region for the given trigger process(es) (Equation 21). The gain should not be interpreted as the increase in melt expected from a +1°C temperature change, but rather as the gain due to modeling melt with and without feedbacks included. For example, the gain for Region A with all trigger switches turned off is equal to 6 (Figure 11). This does not mean that the melt is 6 times greater with a temperature increase of +1°C as compared to the control run. Indeed, the average melt increases by <10% in Region A (Figure 10). A gain of 6 means that the additional melt that resulted from a +1°C temperature increase would be 6 times less had the albedo-feedback not been included. In other words, five sixths (~80%) of the melt increase due to the temperature change is attributable to the albedo-feedback.


[image: Figure 11]
FIGURE 11. System gains (averaged across the glacier surface) associated with turning each trigger switch off. Gains correspond to the fractional increase in melt due to the inclusion of the trigger process(es).


The system gains are highly variable for the four different climate settings (Figure 11), with higher system gains indicating conditions under which glaciers have larger responses to a trigger process (e.g., increasing fraction of precipitation falling as rain) than in regions with lower system gains. Here we find that system gains due to the albedo-feedback loop (all trigger switches off) are highest in Region A, where incident shortwave radiation (Figure 7) is high during the summer and where frequent summer snowfall events (Figure 6) have a large impact on melt season albedo. In Region B, frequent summer snowfall events are even more frequent than in Region A, but incident shortwave radiation during the summer is low, thereby muting the effects of these feedbacks. In contrast, Region C has relatively few summer snowfall events, but significantly higher incident shortwave radiation, resulting in somewhat higher overall system gains than Region B. This highlights the importance of both summer snowfall frequency and availability of shortwave radiation in controlling feedback strength. Finally, Region D exhibits the lowest overall gains, despite its high incident shortwave radiation, because precipitation events are infrequent during the summer and typically fall as rain.

Spatially on the glacier, the system gain is maximized between the equilibrium line altitudes (ELAs) with a 0 and +1°C change (Figure 12; see also Figure S1 for distributed maps of system gains for the four regions). This region on the glacier can exhibit a localized (elevation-averaged) system gain of up to 60. This localized maximum is due to a larger change in snowfall frequency near the ELA due to a +1°C change in comparison with other locations on the glacier.


[image: Figure 12]
FIGURE 12. Glacier melt and system gains averaged over 10 m elevation bands across the glacier surface. Panels (A,C,E,G) show average melt with ΔT = 0°C (black line), ΔT = +1°C with all trigger switches turned on (blue line), and ΔT = +1°C with all three trigger switches turned off (red line). Panels (B,D,F,H) show system gains (black line) and average melt increase (dashed blue line) for ΔT = +1°C (with all trigger switches turned on) relative to the control run. The gray rectangle in each plot shows the shift in ELAs due to a temperature forcing of +1°C (i.e., the left side of the rectangle is the ELA with ΔT = 0°C, while the right side of the rectangle is the ELA with ΔT = +1°C).


Of the three trigger processes tested, the albedo reset trigger is consistently the strongest, producing a gain of up to 4.5 (Region C) on its own. This is consistent with findings by Azam et al. (2014) in which they found that the intensity of summer snowfall events was one of the strongest drivers of annual mass balance on Chhota Shigri Glacier due to its strong influence on surface albedo. The precipitation heat flux trigger proved to be negligible in all scenarios. The accumulation trigger produced a maximum gain of 1.2 (Region A). Accounting for all three trigger processes together, the total gains due to the albedo-feedback ranged from 2.1 (Region D) to 6.0 (Region A).




DISCUSSION


Implications/Relevance

In this study, a single glacier was artificially shifted between multiple climate regimes using somewhat idealized scenarios. These results represent a systematic quantification of the contribution of the albedo-feedback to glacier mass balance. Actual feedback contributions on glaciers throughout HMA are likely highly spatially and temporally heterogeneous. However, these results highlight the potential importance of feedbacks on glacier mass balance and its modeling, as well as the conditions under which the albedo-feedback is most important to glacier mass balance. They also provide a first-order estimate of the magnitude of the albedo-feedback contribution, as well as the trigger processes that initiate it, for four very different climate settings.

Most importantly, these results demonstrate that the potential impact of the albedo-feedback on glacier mass balance can be significant. Furthermore, the impact of this feedback is maximized when (1) the accumulation season and the ablation season are synchronous (i.e., summertime accumulation), (2) the frequency of snowfall events is high during the ablation season, and (3) the incoming solar radiation is high during the ablation season. This highlights the importance of the timing, frequency, and form of precipitation events in relation to the ablation season. It may also help explain findings suggesting that melt-dominated regions are often significantly more sensitive to changes in summer temperature than precipitation amount, such as in the monsoonal Himalayas (e.g., Kayastha et al., 1999; Fujita, 2008; Azam et al., 2014; Liang et al., 2018).

Because of the complex ways in which feedbacks interact with one another, even feedbacks that contribute minimally on their own can have significant impacts when other feedbacks are present. In other words, feedbacks are not simply additive (Roe, 2009). This is also true for the individual trigger processes considered here. For example, in Region A, turning triggers 1 and 3 off independently produces a system gain of 1.2 and 3.0, respectively. However, turning triggers 1 and 3 off together produces a system gain of 6.0, which is a 1.8 larger gain than if they were simply additive. Despite this, the contribution of the precipitation heat flux trigger to the overall albedo-feedback is essentially negligible, even in combination with the other two trigger processes tested. This is because the amount of heat supplied by precipitation is so small in comparison with all other energy fluxes that the increased temperature change negligibly changes the amount of energy supplied by precipitation. Thus, trigger processes due to snowpack thickness and the frequency of snowfall events during the ablation season compound each other, while heat supplied by precipitation has little direct effect.

Of the three trigger processes tested, the most significant in terms of glacier mass balance is the albedo reset trigger. This highlights the need to improve both albedo and shortwave radiation parameterizations in future energy balance models, as small inaccuracies in either can be amplified significantly by the albedo-feedback.

While system gains vary both spatially and temporally, they are usually the highest near the ELA. This is likely because the ELA has a maximizing balance. Locations where bare ice is exposed for much of the season (i.e., the glacier toe) are often warm enough that summer precipitation events predominantly occur as rain rather than snow. Meanwhile, locations well above the ELA are cold enough that a small increase in temperature does not change the frequency of snowfall events by a significant amount. The ELA, however, is both cold enough that it can snow relatively frequently, but warm enough that a small change in temperature can have a significant effect on the fraction of precipitation that falls as snow. Because of this effect, overall glacier response to the albedo-feedback probably depends strongly on glacier hypsometry. For example, the albedo-feedback is likely to be more significant on glaciers with large proportions of their area at elevations near the ELA. The Chhota Shigri Glacier does have a large proportion of its area near the ELA (Figure 2), and therefore the magnitude of the albedo-feedback modeled here are likely to be maximized. While outside the scope of this paper, this potential dependency between glacier-wide feedback magnitude and glacier hypsometry should be evaluated in future studies.

Because the total system gain from the albedo-feedback is highly dependent on incident solar radiation, effects of valley wall shading and cast shadowing likely dampen the effects of the albedo-feedback, especially on north-facing glaciers and glaciers in especially steep topography. Though these processes can be very important for glacier mass balance, their effects are frequently neglected or oversimplified in models because of the difficulties involved in modeling them (Olson and Rupper, 2019). Additionally, future studies should examine temporal patterns in feedbacks on diurnal timescales. This study necessarily neglected this aspect due to its daily time step.



Regional Significance

This study uses a theoretical framework to evaluate the relative importance of the albedo-feedback in different climate settings. For discussion purposes, we extend the results of the theoretical approach to the full region of HMA. An examination of the physical drivers of this feedback throughout the region provides a rough estimate of the spatial variability in feedbacks across HMA. For this, we examine the sum of the z-scores (Figure 13, bottom panel) of average summer precipitation frequency (Figure 13, top panel) and average summer incoming solar radiation (Figure 13, middle panel). These two variables are chosen in this analysis since the results in this study show that these are the variables that largely drive the magnitude of the albedo-feedback. Z-scores, zs, for average summer precipitation frequency (calculated identically for average summer incoming solar radiation) are calculated as:

[image: image]

where x is the average summer (JJA) precipitation frequency (incoming solar radiation) at a given point in HMA, μ is the average summer (JJA) precipitation frequency (incoming solar radiation) for all glaciated regions covered by HAR10, and sdev is the standard deviation of the average summer precipitation frequency (incoming solar radiation). This analysis is performed using raw data from HAR10, and thus utilizes a 10 km grid spacing. Only grid squares in HAR10 that contain glaciers (as defined by the RGI glacier masks) are considered in this analysis.


[image: Figure 13]
FIGURE 13. (A) Mean summer (JJA) precipitation frequency. (B) Mean summer incoming shortwave radiation. (C) The sum of the z-scores for the top and middle panels. Assuming these two factors (top two panels) are approximately equally weighted in their contribution to feedbacks, this should provide a rough approximation of where glaciers are likely to be more sensitive to feedbacks (where a higher z-score total corresponds to higher feedback potential). Meteorological data used in this analysis was obtained from HAR10.


In general, this simple exercise suggests that the magnitude of the albedo-feedback should maximize (i.e., highest total Z-score) in HMA in the central to eastern Himalayas and interior Tibetan Plateau, assuming HAR10 captures the regional variability in summer precipitation frequency and solar radiation reasonably well (Table S3). These regions correspond to regions where the summer monsoon plays a large role in regional climate and where solar radiation is relatively high. In these locations, glacier albedo is likely to be highly sensitive to recent weather events, and thus highly variable. This high variability in summertime albedo is likely to give rise to a stronger feedback, particularly in locations where incoming solar radiation is also high.

The regions with the lowest estimates for the albedo-feedback (lowest total Z-score) are the western Himalayas and Kunlun Shan, where the summers are especially dry. Because these locations receive little precipitation during the summer, glacier albedo is likely less variable than in summer accumulation regions. Even in regions with high incoming solar radiation during the summer, changes in air temperature are unlikely to have a significant impact on summertime albedo. Thus, they are likely less sensitive to the albedo-feedback than in summer accumulation regions.

While this simple analysis likely does not perfectly capture the spatial patterns of the albedo-feedback strength in HMA, it highlights the idea that feedbacks across HMA are likely to be highly spatially and temporally variable. However, this analysis is greatly oversimplified. For example, it does not consider temperature, which is likely to have significant impacts on snowline elevation and precipitation phase. It also does not consider heterogeneous warming across the region or glacier hypsometries, which will also have a significant effect on albedo-feedback strength. Despite this, it provides a rough estimate of what parts of HMA have high potential for maximizing the albedo-feedback due to the climatic setting.



Assumptions and Simplifications

The results and discussion presented above must necessarily be interpreted within the context of the theoretical framework of the study. As such, the following discussion examines the capabilities and limitations of the model and its findings.

This study focused only on the spatial distribution of the albedo-feedback and three of its trigger processes, but neglected feedbacks stemming from other glacier surface processes. Additional opportunities exist to examine the effects of feedbacks associated with valley wall shading, aspect, rain-on-snow, and melt/refreeze, among others, as well as other trigger processes that could also initiate the albedo-feedback. While these were outside the focus of this study, future studies should examine the interactions and contributions of such feedbacks.

Estimating precipitation over a glacier is inherently difficult, particularly in regions with complex topography and minimal in situ measurements (e.g., Maussion et al., 2014). Indeed, precipitation estimates from reanalysis products have been shown to have large discrepancies compared to in situ data (Sun et al., 2018). Despite this, the purpose of this study is not to accurately estimate the mass balance of glaciers across the region. Rather, the study aims to isolate the physical drivers of the albedo-feedback on glacier surfaces and provide a first order estimate of the strength of the trigger processes that initiate it. To this end, we do not expect to accurately model precipitation in each region. The larger aim is to create feasible climate scenarios that glaciers in different climate regimes could be reasonably expected to exist in, and to provide a direct comparison between these climate regimes. In this study, we chose not to include a precipitation gradient in order to make the idealized scenarios as directly comparable as possible in lieu of the limited constraints on precipitation gradients on glaciers in HMA. This oversimplification likely affects the precise feedback patterns across the glacier, but it is unlikely to change the relative importance of the trigger processes identified in this study.




CONCLUSIONS

This study develops a surface energy and mass balance model to quantify the contribution of the albedo-feedback to glacier mass balances in different climatic regions of HMA. It further quantifies the individual contributions of three unique trigger processes (accumulation amount, frequency of snowfall events, and precipitation heat flux) to the overall magnitude of the albedo-feedback. The model includes “trigger switches” that can be toggled on and off to evaluate individual and combined effects from trigger processes on the albedo-feedback, and how they contribute to glacier mass balance. The model applies meteorological data from the High Asia Refined analysis to a single glacier, and artificially moves this glacier into four different climate settings.

The results show that up to 80% of the glacier-averaged melt increase from a +1°C temperature change can be attributed to the albedo-feedback. The strength of this feedback is most strongly dependent on the timing and frequency of snowfall events, and on the magnitude of shortwave radiation during the melt season. Specifically, system gains are maximized when the maximum frequency of snowfall events occurs concurrently with the melt season in a region where incoming shortwave radiation is high. Furthermore, system gains in each region are typically maximized near the ELA.

Exact magnitudes of system gains vary significantly for different trigger processes. The precipitation heat flux trigger tested here is found to be essentially negligible, even in the presence of other trigger processes that might serve to amplify its effects. The albedo reset trigger is consistently the strongest of the trigger processes tested here. Overall this study suggests that physical processes that affect albedo (e.g., melt, snow metamorphism, rain-on-snow, etc.) can have a significant effect on the net system gain of the albedo-feedback, and therefore on glacier mass balance. As a result, glacier modeling studies examining regions whose glacier mass balances are dominated by melt will benefit from improved parameterizations or process models for processes such as the temporal evolution of albedo, precipitation phase, and direct/diffuse shortwave radiation.
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Alia L. Khan1,2*, Karl Rittger3, Peng Xian4, Joseph M. Katich5,6, Richard L. Armstrong2, Rijan B. Kayastha7, Jacob L. Dana8 and Diane M. McKnight3

1Department of Environmental Sciences, Huxley College of the Environment, Western Washington University, Bellingham, WA, United States

2National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, United States

3Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, United States

4Naval Research Laboratory, Marine Meteorology Division, Monterey, CA, United States

5Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, CO, United States

6Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, United States

7Himalayan Cryosphere, Climate and Disaster Research Center (HiCCDRC), Kathmandu University, Dhulikhel, Nepal

8Dana Consulting, LLC, Boulder, CO, United States

Edited by:
Anthony Arendt, University of Washington, United States

Reviewed by:
Jonas Svensson, Finnish Meteorological Institute, Finland
Ryan Landon Crumley, Oregon State University, United States

*Correspondence: Alia L. Khan, alia.khan@wwu.edu; alia.khan@colorado.edu

Specialty section: This article was submitted to Cryospheric Sciences, a section of the journal Frontiers in Earth Science

Received: 04 June 2019
Accepted: 10 August 2020
Published: 16 September 2020

Citation: Khan AL, Rittger K, Xian P, Katich JM, Armstrong RL, Kayastha RB, Dana JL and McKnight DM (2020) Biofuel Burning Influences Refractory Black Carbon Concentrations in Seasonal Snow at Lower Elevations of the Dudh Koshi River Basin of Nepal. Front. Earth Sci. 8:371. doi: 10.3389/feart.2020.00371

When deposited on snow and ice, light absorbing impurities (LAIs) such as dust and black carbon (BC) reduce surface albedo and enhance melt. BC comes from incomplete combustion of fossil fuels and biomass. Local and regional sources of BC exist in High Mountain Asia, such as dry-dung burning for heat and fuel, which occurs in close proximity to snow and glaciers. Local dust or dust transported from the Indo-Gangetic Plain is also present. In the Ganges River Basin, meltwater is dominated by seasonal snow, yet relatively few observations of impurities in seasonal snow exist. To understand sources of impurities and their concentrations for seasonal snow on land, we evaluated multiple lines of evidence to scale up from ground-based measurements in the Dudh Koshi River Basin, a remote headwater basin within the Khumbu Region of Nepal. We obtained ground-based in-situ observations of refractory black carbon (rBC) measured by Single Particle Soot Photometer (SP2), including size distributions in snow on land. We interpreted these results in the context of concurrent Moderate Imaging Spectroradiometer (MODIS) satellite observations and speciated aerosol optical depth derived from reanalysis products modeled with the Navy Aerosol Analysis Prediction System global aerosol model. We collected snow samples, mostly in the Gokyo Valley, at varying distances from local tea houses along a 2000 meters above sea level (m a.s.l.) elevation transect from 3250 to 5299 m a.s.l. rBC concentrations ranged from 3.9 to 76.8 μg-rBC/L-H2O. Although previous data do not exist at these lower elevations, our findings are higher than previous surface snow results at higher elevations in the nearby Khumbu Valley. In general, rBC concentrations were lower in fresh snow than aged snow; concurrent MODIS satellite observations of snow albedo also show smaller impacts from LAIs in visible wavelengths in fresh snow. In aged snow samples, rBC decreased with elevation, as did concurrent MODIS albedo observations. rBC-particle size distributions also shifted to a larger mode for aged snow samples. Results from the Navy Aerosol Analysis Prediction System model indicate anthropogenic and biogenic fine aerosols from biofuel (dry-dung burning) are the primary aerosol species in the atmosphere for the study period, at ∼thrice the concentration of dust and smoke.

Keywords: black carbon, snow, yak-dung, burning, Nepal


INTRODUCTION

At the headwaters of the Ganges basin, melt from seasonal snow on land, which can be distinguished from melt of exposed glacier ice or snow on ice, has been found to be the dominant source of meltwater contributions above 2000 meters above sea level (m a.s.l.) (e.g., Figure 3; Armstrong et al., 2018). Armstrong et al. (2018) found that snow on land contributes discharge volumes of 12.5 km3 at 3000–4000 m a.s.l., 22.1 km3 at 4000–5000 m a.s.l. and 30.7 km3 at 5000–6000 m a.s.l. Further, relative to snow on ice melt and exposed glacier ice melt, snow on land contributes 61% melt at 5000–6000 m a.s.l., 91% at 4000–5000 m a.s.l. and 100% from 4000 to 1000 m a.s.l. (Armstrong et al., 2018). However, other recently published studies also show that local basin hypsometry plays an important role in high elevation meltwater contributions (Mimeau et al., 2019). Therefore, contributions of snow on land, snow on ice, and exposed glacier ice may vary from basin to basin at high elevations. The physical and chemical properties of snow are important drivers of albedo and melt, which in turn impact the water cycle. Due to the large snow-covered land area at these elevations, the chemistry of the snowmelt is an important contribution to downstream water quality.

A potential influence on the melting of snow on land in this region is the deposition of light absorbing impurities (LAIs), such as from black carbon (BC) (Xu et al., 2009) and dust from the Indo-Gangetic Plain (Prasad et al., 2007). BC is a light absorbing aerosol produced as a byproduct of incomplete combustion of biomass and fossil fuels (Goldberg, 1985). When deposited on the surface of snow and ice, BC reduces surface albedo and enhances snow and ice melt. Numerous methods to detect BC exist. In this study we focus on refractory BC (rBC) measured by Single Particle Soot Photometer (SP2) (Petzold et al., 2013).

Previous studies in the Ganges basin have documented the presence of rBC in the Khumbu Valley. Concentrations in surface snow ranged from 1.8 to 19.7 μg-rBC/L-H2O at the Nepal Climate Observatory Pyramid Station at 5079 m a.s.l. and other nearby glaciers (Lim et al., 2014), 3–23 μg-rBC/L-H2O at the Nepal Climate Observatory (Kaspari et al., 2014) and a few up to 70 μg-rBC/L-H2O at the Nepal Climate Observatory (Jacobi et al., 2015). Average rBC concentrations across integrated snow pit samples on Mera Peak ranged from 180 μg-rBC/L-H2O at Mera La, 24.4 at Mera High Camp and 1.0 at Mera Col (Kaspari et al., 2014). Furthermore, average rBC concentrations from an ice core were 1.5 μg-rBC/L-H2O on the Rongbuk Glacier, on the Northern slope of the Himalayas (Kaspari et al., 2011). Whereas the average level of rBC from a 19.8 m firn core collected on the southern side of the Himalayas from Mera Peak that spanned 1999–2010 was 7.43 ± 15.07 μgL–1, with a maximin of 116.83 μgL–1 (Ginot et al., 2014). Ginot et al. (2014) also found a higher mean concentration during the inter-monsoon season (13.50 ± 20.00 μgL–1) and a lower mean concentration in the monsoon season (2.15 ± 3.45 μgL–1).

Burning of dry-dung for household fuel and cook fires is a common practice in Nepal (Jayarathne et al., 2016), India (Raj et al., 2016), and Tibet (Xiao et al., 2015). These sources of BC, along with garbage and crop residue burning (Jayarathne et al., 2016) are harmful for both indoor and outdoor air quality (Fullerton et al., 2008). For example, inhalation and exposure to yak-dung burning in high-elevation tea houses has been shown to lead to respiratory impairment (Kanaan et al., 2016). Domestic wildfires and regional wildfires also transport wildfire-derived smoke to the region (Matin et al., 2017) and biofuel burning has previously been considered to account for 50 to 90% of carbonaceous emissions (Gustaffsson et al., 2009). Burning of dried yak-dung is the primary fuel and heat source in the region (Jayarathne et al., 2016). A previous study suggested these local sources of particulates remain in the valley with pristine air aloft (Davidson et al., 1981). Li et al. (2016) found that atmospheric aerosol BC sources on the Southern slope of the Himalayas contained equal contributions from fossil fuel (46 ± 11%) and biomass (54 ± 11%) combustion that were consistent with BC source fingerprints from the Indo-Gangetic Plain, whereas BC in the remote northern Tibetan Plateau was predominantly derived from fossil fuel combustion (66 ± 16%), consistent with Chinese sources and fossil fuel contributions. However, BC concentrations analyzed with a thermal optical transmittance method from snowpits on glaciers on the Northern slope of the Himalayas were suggested to be from internal Tibetan sources, such as yak dung combustion (Li et al., 2016). Atmospheric aerosol measurements of BC have also been collected at the Nepal Climate Observatory from 2006 to 2011 and were shown to have a mean value of 208 ± 374 ng/m3 (± standard deviation) with a well-defined seasonal cycle with maxima during pre-monsoon and minima during the summer monsoon Marinoni et al., 2013). Furthermore, “acute” pollution events were found to mostly occur in the pre-monsoon period when O3 diurnal variability was strongly related to the transport of polluted air-mass rich in BC, which led to dramatic increases of BC (352%) (Marinoni et al., 2013).

In this study we explore the concentration and size distributions in the winter dry season of rBC measured by SP2 in seasonal snow that remained frozen until just prior to analysis. rBC was characterized in the Gokyo Valley, which is one valley west of the Khumbu Valley studied by Kaspari et al. (2014) and Jacobi et al. (2015). Some samples were also collected at lower elevations of the Khumbu Valley. Although BC’s role in reducing surface albedo has been documented, uncertainties remain in the flux and deposition of BC, the concentrations in snow, and the resulting impacts on surface radiative forcing in the Ganges basin, as well as the greater Himalayan region. For the rBC method, snow samples must remain frozen until just prior to analysis. Previous studies have shown losses in rBC concentrations of up to 20% for samples stored in glass vials at 25°C and polypropylene vials at 2°C and up to 30–80% in samples stored in polypropylene vials at 25°C. These losses are due to particles adsorbing to the sides of containers or agglomerating to larger sizes outside of the SP2 detection range, when thawed prior to analysis (Wendl et al., 2014). Samples that were refrozen and thawed after the first melt have resulted in BC losses of up to 60% (Wendl et al., 2014). Obtaining, preserving and transporting in-situ snow samples from this region of the world is extremely challenging due to physical access constraints and electricity demands. As a result, previously published studies from this region are based on samples that melted during transit. Lim et al. (2014) found samples from the Khumbu had larger size distributions of rBC particles than snow samples from Greenland, the French Alps, the Caucasus, and the Himalayas. However, the result was inconclusive because the samples had melted well before analysis. Thus, they could not confirm whether this was natural or if the larger sizes originated from the transportation at room temperature and long-term storage. BC particle sizes have been demonstrated to be larger in snow than the atmosphere, partly due to the removal processes from the atmosphere (Schwarz et al., 2013). This complex process is difficult to model and is a large source of uncertainty for calculating the overall radiative forcing of BC-in-snow on the global climate (e.g., Bond et al., 2013).

Here we use multiple lines of evidence to understand the primary sources, concentrations and impacts on surface albedo, from LAIs in snow in the Dudh Koshi River Basin, a remote headwater catchment in the Khumbu Region of Nepal. Given the difficulty of collecting, preserving and transporting in-situ snow samples, we focused on the relationship between ground-based measurements and the spatial trends in earth-observing satellite remote sensing observations from the Moderate Resolution Imaging Spectroradiometer (MODIS). In this study, we explore the snow-covered area with the MODIS Snow Covered Area and Grain size algorithm (MODSCAG) (Painter et al., 2009) and the radiative forcing derived from the MODIS Dust and Radiative Forcing (MODDRFS) algorithm (Painter et al., 2012). Furthermore, to investigate atmospheric aerosol patterns at the time of sampling and potential LAI sources, aerosol optical depth (was retrieved from MODIS and then modeled by the global Navy Analysis Prediction System Model (NAAPS) to produce speciated aerosol optical depth that is characterized as anthropogenic and biogenic fine aerosols, biomass burning smoke, dust, and marine sea salt (Lynch et al., 2016). Our findings suggest that dry-dung burning, as opposed to wildfires or fossil fuel combustion, could be the primary source of BC to low elevation snow packs in the study site. However, it should be noted that these multiple lines of evidence are a first attempt to compare across spatial scales, ranging from ground based rBC snow observations at individual points to 500 m scale MODSCAG and MODDRFS and 1/3° pixel area of the NAAPS model of speciated aerosol optical depth. These results give us insight into the strengths and weaknesses of potential up-scaling across differing approaches to estimate LAI concentrations and sources at higher elevations, such as above 5500 m a.s.l., that may be less accessible to ground sampling.



MATERIALS AND METHODS


Site Description

The Gokyo Valley lies within the Dudh Koshi River Basin, which is an alpine headwater catchment on the southern slopes of the Himalayas that flows to the Sapta Koshi and ultimately the Ganges River (Figure 1). The Dudh Koshi River Basin encompasses both the Gokyo Valley with the Ngozumba Glacier and the Khumbu Valley with the Khumbu Glacier. Furthermore, snowmelt contributes to streams used for drinking water. Lastly, dried yak-dung is the primary source of fuel in households in this region.
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FIGURE 1. Refractory black carbon (rBC) concentrations at sample locations in the Dudh Koshi River Basin.




Snow Sample Collection

Surface snow samples (<5 cm) were collected with nitrile gloves and a sterile scoop over one season in the winter of 2016 along a 2000 m a.s.l. elevation transect from just above Namche Bazaar at 3550 m a.s.l. and Phunki Thanga at 3250 m a.s.l. to Gokyo Ri at 5299 m a.s.l. One set of snow samples was collected in pre-cleaned glass bottles and kept frozen in the field by packing the samples in snow within vacuum-sealed stainless steel thermoses, which were kept frozen before samples were collected, as well as after. They were then shipped frozen to Boulder, CO for rBC analysis as described in section “Refractory Black Carbon Analysis.” The second set of snow samples were collected in sealed sterile bags and melted in the field in pots of warm water. A subset of well-mixed sample from the sterile bag was filtered in the field on 0.7 μm Glass Fiber Filters into two sets of bottles. One set of bottles were pre-cleaned glass amber bottles; the filtrate was later analyzed for total organic carbon and dissolved organic carbon. The other set of bottles were acid-rinsed plastic Nalgene bottles; the filtrate was later analyzed for major and minor ions, as well as trace elements as described in section “Dissolved Organic Carbon, Total Organic Carbon and Trace Element Analysis.”

Snow samples were classified as either fresh snow (i.e., snow that had fallen within 24 h before sampling) or aged snow (>24 h old). More than 10 cm of fresh snow was deposited while the team was in the field on February 8th, 2016. The top 5 cm of snow was collected. Although there was almost no snow left on the ground in the locations sampled for fresh snow, careful sampling of the top 5 cm was conducted, confirming that there was no potential for the collection of aged snow, in the fresh snow samples. The fresh snow blanketed the ground, whereas the aged snow, was collected from snow patches of remaining snow. The SP2 is less sensitive to interference of materials other than BC (Kondo et al., 2011), we assume there was not interference from other LAIs in the aged snow samples. Total snow depth and snow density were not recorded in the field.



Refractory Black Carbon Analysis

After collection, snow samples for rBC analysis were left outside in a shaded area to stay frozen in the field. They were stored in a freezer in Kathmandu and then shipped frozen during their transport to the Institute of Arctic and Alpine Research (INSTAAR) in Boulder, Colorado. They were then transferred to the Earth System Research Laboratory at the National Oceanic and Atmospheric Administration (NOAA) for rBC analysis. No thaw was apparent in the samples.

rBC mass mixing ratios (MMR) were analyzed by SP2 at NOAA in Boulder, CO as per methods described in Schwarz et al. (2013); Katich et al. (2017), and Khan et al. (2019). In short, snow samples were melted for the first time just prior to analysis and then immediately aerosolized with a calibrated CETAC Marin-5 nebulizer that was interfaced with the SP2. The SP2 was calibrated with fullerene soot (Alfa Aesar, Woodbridge, Massachusetts, Lot F12S011), which is the best known proxy for rBC found in the atmosphere. In comparison to other BC measurement techniques, the SP2 is less sensitive to interference of materials other than BC (Kondo et al., 2011), has a low detection limit of 0.01 μg L–1, requires a small sample volume (<1–2 mL), provides fast analysis (<10 min) (Lim et al., 2014) and produces particle mass size distributions (Slowik et al., 2007).

An attempt was made to extend the detection limit of the SP2 to as large as 1.5 μm, as previous snow measurements have indicated the potential for large mass contributions from particles that are larger than is typically found in the atmosphere (Schwarz et al., 2013). However, a detector failure ultimately limited the upper detection limit of the mass equivalent diameter to 0.6 μm. A sample’s final rBC MMR is determined by comparing its average mass-flux per unit time seen by the SP2 to that of a carefully prepared fullerene concentration standard. A lognormal fit to each sample’s rBC mass-size distributions was used to estimate the amount of rBC beyond the upper limit of detection, and the measured rBC concentrations were scaled appropriately. A reasonable lognormal fit was achieved for all samples. It should be noted that this method fails to account for the possibility of a secondary, larger rBC modes as well as the occasional large rBC particles that could potentially be significant from a mass standpoint. Thus, it is prudent to view the concentrations as lower bounds rather than absolute concentrations. Suspensions of polystyrene latex spheres ranging in size from 220 to 3000 nm diameter were used to characterize size-dependent nebulization efficiency and confirmed a low sensitivity to particle size over this range our detection range, which is consistent with other findings from concentric pneumatic nebulizers (Lim et al., 2014; Wendl et al., 2014; Mori et al., 2016; Katich et al., 2017). Thus, no size correction was applied for nebulizer size dependence.

The nebulization system was rinsed with deionized water between each snow sample to reduce line contamination. rBC fullerene soot samples from a carefully prepared concentration standard were run between every four snow samples for verification that the nebulization/transmission efficiency was not changing. Two hundred and twenty nanometer polystyrene latex spheres were run every eight samples to verify laser power was consistent and the polystyrene latex spheres concentration standard also provides an additional method for nebulizer aerosolization/transmission efficiency. The nebulization system was rinsed with deionized water between each snow sample until no background contamination from the previous sample was evident. Measurements of rBC concentrations in water blanks were also interspersed between samples. The purpose is twofold; first, this allows us to bound our lower limit for rBC concentration measurements. Second, it provides a target concentration to allow our system to settle to before introducing a new sample. These blanks had an average of 0.26 μg/L, which is nearly an order of magnitude lower than the cleanest sample’s rBC concentration.



Dissolved Organic Carbon, Total Organic Carbon, and Trace Element Analysis

The samples in glass and plastic bottles were shipped to INSTAAR in Boulder, CO. There they were analyzed for dissolved organic carbon and total organic carbon concentrations on a Schimadzu TOC-V-CSN. The samples in plastic bottles were analyzed for major cations (Ca, Fe, Na, K) by ICP-OES, as well as major anions (F, Cl, NO3, PO4, SO4) by ICP-MS.



MODIS Snow Cover Fraction and Dust Radiative Forcing

Frequent cloud cover persists in this region making remote sensing observations challenging. For this study we created spatially and temporally complete daily snow cover fraction and dust radiative forcing data using MODIS-Terra inputs. Snow cover fraction was first estimated using MODSCAG (Painter et al., 2009) that relies on a spectral mixture analysis using all land bands from the MOD09GA v006 surface reflectance products. MODIS data is processed at the native resolution of ∼463 m. The MOD09GA product is listed as a nominal 500 m. The MODSCAG algorithm more accurately maps snow than standard MODIS products that use 2 bands (Hall et al., 2002) especially during accumulation and ablation (Rittger et al., 2013). The impact of dust on the visible albedo (Δvis) is calculated as the difference between clean snow spectra, based on grain size, and the satellite observed snow spectra, which is LAI affected. Δvis was estimated using the MODDRFS algorithm (Painter et al., 2012). Therefore, a larger Δvis suggests a larger influence from LAIs on the visible wavelengths.

We gap filled both snow cover fraction and Δvis weighting by the satellite view zenith angle to account for viewing geometry (Dozier et al., 2008). We used additional data products from MODSCAG including fractional vegetation and fractional rock to improve cloud filtering, as well as vegetation height maps to account for snow cover obscured by the canopy (Raleigh et al., 2013; Rittger et al., 2019). Snow cover maps using this method have a RMSE of 20% in the winter likely due to cloud cover, which is spectrally similar to mixed snow and rock. This method can detect snow 98% of the time to correctly capture snow melt out (Rittger et al., 2019). In addition to snow cover fraction and Δvis we derived total snow cover days from the snow cover fraction. Snow covered days are calculated by summing the number of days with snow cover in each pixel for an entire year.



Aerosol Transport Modeling

The NAAPS is a global aerosol transport model, providing aerosol forecasts and analyses at 1/3° latitude/longitude resolution and 42 vertical levels below 100 hPa (Lynch et al., 2016). The NAAPS model characterizes anthropogenic and biogenic fine particles, biomass burning smoke, dust, and marine sea salt aerosols. The total aerosol optical depth is constrained through assimilation of retrievals of aerosol optical depth from the MODIS on Aqua and Terra (Zhang and Reid, 2006). The NAAPS model has been used in a wide range of scientific studies and applications, including aerosol life cycle, climatology, interactions of aerosols with the atmosphere, ocean and cryosphere (e.g., Reid et al., 2012; Xian et al., 2013; Khan et al., 2017a, b, 2019; Markowicz et al., 2017; Ross et al., 2018). In this study, black/organic carbon was separated from sulfate in the anthropogenic and biogenic fine particles (the two are combined by default), so that black/organic carbon concentration and aerosol optical depth due to biofuel and other anthropogenic (e.g., fossil fuel) emission can be exclusively simulated. Black/organic carbon emission from biofuel, which includes dung burning, is adopted from Bond et al. (2013). Biofuel emission contribution is estimated to contribute over 60% to BC and 80% to OC emissions over the Indian subcontinent (Bond et al., 2013).

Smoke from open biomass burning is determined from satellite based near-real time thermal anomaly data (Reid et al., 2009), which include orbital corrections for MODIS-based emissions and regional tunings. The relative magnitude of biomass burning smoke aerosol optical depth vs. black/organic carbon aerosol optical depth provides information on the relative impact of biomass burning vs. biofuel emissions on the rBC measurements sampled in the region.




RESULTS AND DISCUSSION


rBC and Snow Chemistry Concentrations

rBC concentrations ranged from 3.9 to 76.8 μg-rBC/L-H2O (Table 1) with an overall average of 21.6 μg-rBC/L-H2O. In general, rBC concentrations decreased with increasing elevation (Figure 1). As mentioned earlier, previously reported rBC concentrations from the region represent lower bounds on concentrations due to melting well before analysis. Furthermore, it is difficult to provide a fully consistent story between our data and previously published results, given the many confounding variables and underlying factors that could lead to differences in the rBC concentrations. For example, (a) annual variation (b) seasonal variation, (c) age of snow, (d) difference in snow melt processes, (e) the uncertainty of the measurement method and (f) the fact that the samples in both Kaspari et al. (2014) and Jacobi et al. (2015) were thawed well before analysis. However, despite our samples having experienced no melt prior to analysis, we measure similar concentrations to previously reported results (Table 2) of surface snow from the nearby pyramid station (0.1–70 μg-rBC L-H2O) with a mean and median concentration of 10 and 1.5 μg-rBC/L-H2O (Jacobi et al., 2015). In general, the average rBC concentration in our fresh snow samples (10.1 μg-rBC/L-H2O) had lower concentrations than the aged snow samples (33.1 μg-rBC/L-H2O). This was confirmed by a one-tailed t-test (p = 0.03). Jacobi et al. (2015) also found lower average concentrations in fresh snow (5 μg-rBC/L-H2O) than aged snow (15 μg-rBC/L-H2O). Since the samples in Jacobi et al. (2015) represent lower bounds on concentrations due to storage of melted samples well before analysis, the real values could be higher than our observed concentrations. Similarly, fresh snow samples collected at Pyramid Station in 2009 from Kaspari et al. (2014) were also melted in transit and were corrected for nebulizer loss based on Aquadag standards, but not for particle loss during storage. Therefore, the real values observed in Kaspari et al. (2014) may actually be higher than our observations, despite our rBC concentrations being in a similar range. The same study explored integrated snow profiles at three locations on Mera Peak of found that impurities had become concentrated in large ice lenses (Kaspari et al., 2014) and were much lower in an ice core on the Khumbu Glacier (1.5 μg-rBC/L-H2O) (Kaspari et al., 2011).


TABLE 1. Snow chemistry concentrations from this study of snow on land in the Gokyo Valley.
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TABLE 2. Refractory black carbon (rBC) concentrations from this study of snow on land in the Gokyo Valley compared to previously published rBC concentrations in surface snow from the nearby Khumbu Valley at Pyramid Station.

[image: Table 2]
Our results showed a moderate correlation between rBC concentrations and decreasing elevation for the aged snow samples (r2 = 0.420 and r2 = 0.927 when excluding the outlier), (elevation, rBC concentration), Lower Gokyo Valley (<4000 m a.s.l., 51.4 μg-rBC/L-H2O), Middle Gokyo Valley (4000 to 5000 m a.s.l., 20.1 μg-rBC/L-H2O), Upper Gokyo Valley (>5000 m a.s.l., 3.9 μg-rBC/L-H2O). However, it was only a small sample set, n = 6 (Supplementary Figure S1). This pattern of low concentrations at higher elevations has previously been observed across an elevation transect on Mera Peak (Kaspari et al., 2014), from Mera La (5400 m a.s.l., 180 μg-rBC/L-H2O), Mera High Camp (5800 m a.s.l., 24.4 μg-rBC/L-H2O), and Mera Col (6400 m a.s.l., 1.0 μg-rBC/L-H2O). Snow samples from Jacobi et al. (2015) were collected at 5079, 5700, and 5700 m a.s.l. The samples collected in this study were collected at lower elevation than previously reported studies, with the exception of Gokyo Ri at 5299 m a.s.l. Therefore, this study provides new information on rBC data at lower elevation in the region. Our rBC size distribution findings show a slight shift to a larger mode of particle sizes for the aged snow samples (Figure 2), which has not been documented in any previous rBC study of in-situ snow samples. This could be due to aggregation of BC-particles during freeze-thaw processes or due to the collection of larger BC particles over time from local sources. This shift in modal diameter is evident even within our detection limit of 0.6 μm.
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FIGURE 2. Average size distributions of refractory black carbon (rBC) in fresh (n = 6) and aged (n = 6) snow on land samples from the Gokyo Valley, Nepal. The solid gray lines represent the size distributions of all fresh snow samples and the dotted lines represent all aged snow samples. The blue line is the fresh snow sample average and the red line is the aged sample average.


In contrast to the rBC pattern with elevation in aged snow samples, total organic carbon, dissolved organic carbon and trace elements showed no trend with elevation in concentration and location. The low values of Ca and Fe could suggest that dust was not a large factor in these samples because these solutes could be leached from mineral dust. The difference from Kaspari et al. (2014), which reported dust as the dominant light absorber in the snow, is likely due to the difference in the types of samples, as well as the elevation. For example, the samples in this study are surface samples from seasonal snow at lower elevations, whereas the large Fe concentrations reported in Kaspari et al. (2014) were integrated samples from snow pit profiles.



MODIS Snow Cover Fraction and Visible Albedo

The spatially and temporally complete MODSCAG snow cover fraction (Figures 3A,C) tracks the overall observed accumulation and melt trends seen while sampling as evidenced by the greater extent of fresh snow on February 8, 2016 concurrent with fresh snow rBC sampling. However, the small aged snow patches sampled on the ground were not large enough to be captured in the remote sensing data from February 3, 2016. This could be due to the frequent cloud cover in this region that leads to snow and cloud confusion and necessitates the use of a persistence filter and an elevation filter. As a result, MODDRFS is unable to account for small nuances in the changes in snow cover or enable a direct comparison of rBC observations in patchy snow. For this reason, we used data for the areas where snow is most persistent, adding certainty to our satellite analysis beneath the clouds. To show the ability of remote sensing to track snow cover fraction and the impact of dust and BC on the snow pack, we looked at general trends with elevation and chose February 3 (aged snow) and February 8 (fresh snow) which corresponded best to in-situ observations (Table 1).
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FIGURE 3. Snow covered area from spatially and temporally complete MODIS Snow Covered Area and Grain size algorithm (MODSCAG) (A,C), Δvis from spatially and temporally complete MODIS Dust and Radiative Forcing algorithm (MODDRFS) (B,D) for February 3 (aged snow) and February 8 (fresh snow). Latitude and longitude are shown on the x and y axis, respectively. The dots represent sampling locations and the solid line represents the watershed for the headwaters of the Dudh Koshi River.


The spatially and temporally complete MODDRFS Δvis (Figures 3B,D) appears to track with snow fall and snow age patterns. Higher Δvis suggests a higher impact on the albedo in the visible wavelengths from impurities, such as dust and BC, resulting in a lower albedo in the visible range. Whereas, a lower Δvis suggests a higher albedo in the visible wavelengths and therefore “cleaner” snow. The spatially and temporally complete MODDRFS Δvis results showed aged snow on February 3, 2016 had a higher Δvis than new snow on February 8, 2016, which is the general pattern observed in the rBC concentrations, with higher rBC concentrations observed on February 3, 2016.



NAAPS Model

Results from the NAAPS model show large sources of aerosols in Eastern India towards the end of January (Figures 4A–C) and in West India (Figure 4D) across the study period from 2016-01-20 to 2016-02-07. The source areas (red) of black/organic carbon aerosol optical depth (Figure 4) made their way up to the study region around 2016-01-27 (Figure 3B). We analyzed data for the 1/3° pixel covering the Dudh Koshi River Basin shown in Figure 5A using the native MODIS sinusoidal projection, as well as snow covered area and Δvis from MODIS within the 1/3° NAAPS pixel (Figure 5B). The NAAPS speciated aerosol optical depth results suggest there was about three times the amount of anthropogenic and biogenic fine particles aerosols from biofuel (dry-dung burning) relative to BC-smoke from wildfires at the time of our ground-sampling (Figure 5C). There were also two prominent spikes in anthropogenic and biogenic fine particles in the study region during the study period on 2016-01-27 and 2016-01-31 (Figures 4, 5C).


[image: image]

FIGURE 4. NAAPS Model Results of Black Carbon/Organic Carbon (BC/OC) Aerosol Optical Depth (AOD) and 850 hPa wind (vectors) over South Asia over the study period. (A) 20 January 2016, (B) 27 January 2016, (C) 31 January 2016, and (D) 07 February 2016. The Dudh Koshi River Basin is denoted with a *Aerosol optical depth is unitless.
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FIGURE 5. (A) Map of snow cover fraction on 8 February 2016 with location of the Dudh Koshi River Basin, samples locations and corresponding Navy Aerosol Analysis Prediction System model (NAAPS) 1/3° pixel, which is used for (C). (B) Snow covered area and Δvis during the sampling period (C) NAAPS Speciated Aerosol Optical Depth across a 1/3° MODIS gridded area of the study region during the sampling period. Snowfall events occurred on 18 January and 5 February 2016.


These model outputs follow previous emission estimates where anthropogenic and biogenic fine particles have been found to contribute 50–90% of carbonaceous aerosols in the region (Gustaffsson et al., 2009). As mentioned earlier, burning of dried yak dung is common in local tea houses. Further, burning of dried dung is also common across South Asia. Therefore, it is hard to tease out local yak-dung burning from regional sources of dried dung burning in the anthropogenic and biogenic fine particles at the 1/3° resolution of NAAPS or from the rBC method. Thus, the rBC concentrations measured in our samples could be a mixture of local and regional anthropogenic and biogenic fine particles. However, the anthropogenic and biogenic fine particles events that occurred between snowfall events likely provided additional dry deposition of BC and influenced the higher rBC loadings in the aged snow samples (Table 1 and Figure 1). During this time there was no new snowfall and thus the snowpack accumulated aeolian deposition of all LAIs, including both BC and mineral dust. Although these conclusions seem intuitive, it has been rarely corroborated across both observations and modeling.



MODIS-Snow Observations and NAAPS Global Aerosol Modeling

In general, due to smoothing and the algorithms used to process the MODIS-snow albedo data, it is hard to discern high temporal resolution trends between the Δvis and snow covered area in Figure 5A as compared to the six-hourly resolution of aerosol optical depth from NAAPS in Figure 5B. However, the Δvis appears to slightly increase between snowfalls 2016-01-31 and 2016-02-07 and very slightly decrease during snowfalls from 18 to 31 January 2016 and 08 to 11 February 2016. There was also a slight modal shift to larger rBC size distributions in the aged snow samples relative to the fresh snow samples. When comparing snow covered area and aerosol optical depth, the aerosol optical depth spikes in smoke and anthropogenic and biogenic fine particles may be associated with the weather system that brought the new snowfall.




SUMMARY AND CONCLUSION

Although the interpretation of these findings is inherently tentative, we show that there is future potential for up-scaling from ground rBC-snow observations to MODIS-snow albedo products and a global aerosol model in High Mountain Asia. For example, more ground observations over a larger spatial area and elevation gradient would be useful for comparing with MODIS data, which has a fairly course pixel resolution. Additionally, comparison with finer-resolution remote sensing products would also be useful. These first results of rBC from lower elevation seasonal snow in Nepal span a 2000 m a.s.l. elevation transect from ∼3000 to 5000 m a.s.l. Our rBC-concentrations from fresh snow surface samples at lower elevations, <4000 m a.s.l. of the Khumbu Valley, where previous data does not exist, were slightly higher (6.2–17.3 μg-rBC/L-H2O) than previous fresh snow surface samples (average 5 μg-rBC/L-H2O) from Jacobi et al. (2015) at the Nepal Climate Observatory, which is also at a higher elevation of 5079 m a.s.l. However, as mentioned in section “rBC and Snow Chemistry Concentrations,” it is difficult to provide a robust comparison between our data and previously published results given the many confounding variables and underlying factors that could lead to differences in the rBC concentrations. For example, annual and seasonal variation, the age and physical properties of the snow sampled in all studies, the uncertainty of the measurement method and the fact that the samples in both Kaspari et al. (2014) and Jacobi et al. (2015) were thawed well before analysis. There is a paucity of data in the region and a strong need for more ground observations to provide eventual model validation. Our results, from samples that span across lower elevations than previous studies, are also the first published data set of rBC from the Himalayas that remained frozen until just prior to analysis.

Based on the NAAPS global aerosol modeling results, anthropogenic and biogenic fine particles appear to be the largest source of BC in the atmosphere at the time of snow sampling. Additionally, we document a modal shift in size distributions of rBC in aged snow vs. fresh snow, which has not been shown in previous rBC snow studies. However, the remote sensing and modeling approaches used are too coarse to provide direct-detailed comparison of albedo and BC atmospheric sources at individual sampling sites. Additionally, cloud cover in monsoon affected regions makes remote sensing analysis challenging. Furthermore, at lower elevation where the snow is ephemeral, lasting only a few days, the snow pack is not optically thick and is likely more influenced by the albedo of the underlying ground than the impurity concentrations themselves.

Melt from snow on land has been found to be the dominant source of meltwater contributions above 2000 m a.s.l. in the Ganges basin, rather than glacier ice. The total snow melt contribution at lower elevations is the sum of melt at that elevation and all elevations above. As a result, the chemistry of the snow on land will also have more influence on drinking water quality than the chemistry of glacier ice. Earlier melt could also have a cascading impact on ecology, water management and agriculture due to changes in groundwater storage and runoff. Due to the higher rBC concentrations at lower elevations, BC has a greater potential to influence melt dynamics of the snow on land at lower elevation. In the future, changes to LAI and BC deposition may impact meltwater dynamics as well as downstream chemistry and water quality.
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