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Editorial on the Research Topic

Use of Earth Observations for Actionable Decision Making in the DevelopingWorld

INTRODUCTION TO THE SPECIAL TOPIC

The global community faces fundamental challenges related to natural resource management,
particularly in low and middle income countries. Increasing populations and changing
climate exacerbate the challenges of food security, water, and environmental management and
sustainability faced by rural communities, cities, and governments alike. Sound environmental
and risk management decisions must often be made with incomplete or inadequate information,
particularly in the developing world. However, Earth Observations (EO) can bring objective data
to developing-country land-users, land managers and policymakers by addressing key information
gaps through consistent and repeatable observations (Zell et al., 2012) and through capacity
development efforts (Kumar et al., 2020).

Technological innovations and proactive EO agendas developed by space agencies around the
world are helping (Brown et al., 2013). In the United States, for example, the prioritization of key
EO science and applications in the recent National Academies decadal survey (National Academies
of Sciences, Engineering, and Medicine, 2019) will ensure continuity of orbiting sensors that
measure critical Earth system parameters. Similarly, the European Space Agency’s Copernicus
program (Brachet, 2004) makes high quality and up to date satellite data freely available, and
consequently the use of these data is expanding rapidly. There is an explosion of active, ongoing
research in the US and in the developing world that can directly translate into working theories and
operational systems for developing countries. Ensuring alignment between the research community
and decision makers, and orienting the latest science from the United States to help solve
local/regional problems, has been the primary objective of the NASA Applied Sciences Program
(Friedl, 2017). The purpose of the articles in the Special Topic “Operational Earth Observation
for Sustainable Development and Risk Reduction in the Developing World” is to focus on the
challenges and solutions for use of EO data for actionable decision making around the world,
particularly in developing countries.

SERVIR is a joint initiative of NASA and the U.S. Agency for International Development
(USAID) which fosters applications of EO to help developing countries assess environmental
conditions to improve planning and management interventions. Working with regional technical
organizations (“regional hubs”) around the world, SERVIR aims to improve resilience and
sustainable resourcemanagement at local, national, and regional scales through the increased use of
Earth Observations, Earth science, and technology. SERVIR hubs have regional mandates to work
with national governments of their member countries, thus promoting strong pathways between
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FIGURE 1 | Geographic regions and primary countries served by the five SERVIR regional hubs.

EO-based solutions and policy makers. SERVIR hubs are active
in five regions (Figure 1), including Eastern and Southern
Africa, the Hindu Kush Himalaya (HKH), lower Mekong, West
Africa, and most recently in Amazonia. SERVIR focuses on four
themes: land use, land cover, and ecosystems; food security and
agriculture; water and related disasters; and weather and climate.
For the land cover theme, SERVIR has ongoing activities in
all regions, to strengthen the capacity of regional partners to
link the latest science to promote sustainable use of natural
resources. In agriculture, SERVIR promotes EO-based crop
monitoring technologies to better analyze and predict food
security conditions. Connecting satellite-derived rainfall and
other datasets helps SERVIR improve the capacity of countries
to forecast streamflow and identify regions where water-related
disasters can occur. Weather and climate activities inform the
other themes in ensuring the latest and robust availability
of weather information, in addition to short- and long-term
weather forecasts.

Articles in this Special Topic introduce a range of EO-based
approaches for monitoring natural resources, risk, and disaster
analysis and prediction in SERVIR regions of Africa, Himalaya-
Hindu Kush, and Southeast Asia. These include the use of EO
for hydrological monitoring, drought and flood prediction, land
use, land cover and agricultural monitoring, and invasive species.
Several papers focused on emerging remote sensing technologies
with applications in less developed regions, while others focused
on applications and stakeholders from local (village) scale to
national, regional, and global scales.

Two papers focus explicitly on the critical phases of
stakeholder engagement during design, development, and
implementation of EO applications to enhance relevance, use and

impact. The paper by Thapa et al. documents the steps involved
in engaging relevant communities to define their needs and
design appropriate EO applications. Saah et al. provide a specific
example of the user engagement process during development of
land cover mapping tools for diverse users in the Mekong Basin
and Hindu Kush-Himalaya regions.

Several papers focused on use of EO as inputs for hydrological
modeling applications. Purdy et al. focused on the use of EO for
analysis of groundwater dynamics and agricultural sustainability
in Bangladesh. Nelson et al. and Alcantara et al. demonstrate
the utility of cloud-based hydrological modeling systems for
stream-flow and flood prediction, with a focus on the transfer
of model outputs into actionable information for regional and
local decision makers. Sikder et al. analyze the impact of EO
inputs, land surface model, and river routing schemes on river-
flow predictions in the critical Ganges-Brahmaputra andMekong
river basins of South and Southeast Asia. Oddo and Bolten
demonstrate that the integration of satellite data into a flood
modeling system for the city of Bangkok, Thailand can be of
immense value in potential lives and property saved through
shorter emergency response times. Phongsapan et al. explore the
utility of satellite data and improved hydrological forecasting for
flood risk reduction in Myanmar.

An analysis by Spruce et al. for the Lower Mekong Basin

revisits the difficult process of land use and land cover (LCLU)

classification, particularly in the context of temporal analysis

of change, where classification errors in individual time-periods

can be compounded in change analysis. The LCLU maps made
available for the region are important for a variety of EO

applications, including hydrological and agricultural monitoring
and modeling. Poortinga et al. analyzed long-term land cover

Frontiers in Environmental Science | www.frontiersin.org 2 November 2020 | Volume 8 | Article 6013406

https://doi.org/10.3389/fenvs.2019.00165
https://doi.org/10.3389/fenvs.2019.00150
https://doi.org/10.3389/fenvs.2019.00155
https://doi.org/10.3389/fenvs.2019.00148
https://doi.org/10.3389/fenvs.2019.00158
https://doi.org/10.3389/fenvs.2019.00171
https://doi.org/10.3389/fenvs.2019.00127
https://doi.org/10.3389/fenvs.2019.00191
https://doi.org/10.3389/fenvs.2020.00021
https://doi.org/10.3389/fenvs.2019.00186
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Hanan et al. Editorial: Earth Observations for Decision Making

estimates for Vietnam, together with national agricultural yield
statistics, to suggest significant increases in agricultural yield
(per unit area) with relatively little change in total cropland
area. Tiwari et al. presented methodologies using Earth Engine
and satellite data to map irrigated and rain-fed wheat in
Afghanistan, providing a tool for crop area estimation critical
for yield forecasting and food security planning in remote
regions. Analyses of this type can contribute significantly to
understanding the spatial and temporal dimensions of land
use and food insecurity in low income and often remote
rural communities.

Three studies focused on rangeland monitoring. Ndungu
et al. outline a comprehensive EO tool for rangeland monitoring
tailored to stakeholder needs at local and regional scales in
East Africa. The Rangeland Decision Support Tool provides
easy access to satellite-based vegetation indices that can be
integrated with ancillary GIS datasets specific to the needs
of local communities and range managers. Anchang et al.
developed a work-flow for mapping woody canopy cover using
Google Earth Engine, local field data and expertise, machine
learning, and data from the Sentinel satellites for Senegal,
West Africa. The cloud-based computing approach reduces
the computational barriers often faced by the EO community
in countries with relatively poor internet bandwidth, and is
a tool available for local calibration and application in other
regions. Meanwhile, Ouko et al. demonstrated an approach
to mapping and modeling invasive plants in the ecologically,
economically, and culturally valuable rangelands of East Africa,
using cell-phone based citizen scientist inputs on invasive
plant locations, satellite, and GIS data, to map the presence
and spread of invasive species. This study focused on an
invasive shrub (Acacia reficiens) and prickly pear (Opuntia
spp.), but similar approaches could be adopted in other regions
where invasive plants are impacting ecosystem integrity and
rural livelihoods.

One paper in this Special Topic, by Flores-Anderson et al.
examined the critical, but less well-known, potential to use
hyperspectral imagery for lake water quality assessment. While
the review paper by Leibrand et al. examines how satellite data
can contribute to all aspects of planning and management of
rural electrification, renewable and sustainable energy planning
and management.

CONCLUSION

The studies in this Special Topic share a major common theme—
the use of EO to facilitate improved decision making by land
users and managers at local, national, and regional scales. The
value of EO for decision making in land cover monitoring,
agricultural assessments, or streamflow predictions is high,
given the spatial continuity, and the temporal return frequency
afforded by space-based platforms. That value is particularly
critical in developing countries where EO information is
sometimes a key source for decision makers. Responsiveness
to the specific needs of different stakeholders, based on local
economic, cultural, and environmental conditions is especially
important, because EO applications then have a higher chance
of achieving real impact for local land users or via sustainable
policy interventions. The result is a diversity of individual
strands (approaches) to EO-informed solutions and it is up to
scientific communities, such as SERVIR, to weave those solutions
together in the hope and anticipation that these approaches will
be replicated in other parts of the world. The scalability and
replicability of activities in a global program such as SERVIR is
critically dependent on these individual efforts. This compilation
of articles provides greater insight into some of those activities.
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Using Earth Observations to Help
Developing Countries Improve
Access to Reliable, Sustainable, and
Modern Energy

Amy Leibrand, Natasha Sadoff*, Tanya Maslak and Amy Thomas

Battelle, Columbus, OH, United States

In this review paper, the authors identify priority areas, and opportunities for electric

utilities in developing and emerging economies to incorporate Earth observation (EO) data

into rural electrification planning, renewable energy resource assessment, distributed

generation, grid operation and reliability, and disaster risk reduction and recovery efforts.

Using a methodological framework, the authors conducted a comprehensive literature

review of primary and gray literature. This paper reviews the many existing applications

for EO data, such as the use of nighttime lights imagery for estimations of rural

electrification, EO-derived normalized difference vegetation index (NDVI) products for

vegetation monitoring for overhead transmission line management, solar radiance data

for renewable energy project planning, and nowcasting for extreme weather events and

other disaster monitoring. These and other applications can enhance energy security

through improved governance of and access tomodern and reliable electricity, renewable

energy management, and disaster risk assessment in developing nations, paving the

way for more sustainable social and economic development. Real-world examples of

EO data use by utilities in developing and emerging economies, as well as barriers

and opportunities for EO technology transfer, are discussed. Recommendations for

stakeholder engagement, future EO training opportunities, and human capacity building

are also presented.
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INTRODUCTION

The 2030 Agenda for Sustainable Development, adopted by the United Nations (UN) Member
States in 2015, provides a shared blueprint of action centered around the 17 Sustainable
Development Goals (SDGs), and an urgent call for action by all countries—developed
and developing—to act in a global partnership to promote peace and prosperity.
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As one of the SDGs, UN SDG 71, “Ensuring access to
affordable, reliable, sustainable, and modern energy for all” and
electrification is a priority in many developing regions. Globally,
about 1.1 billion people are without electricity, mostly in rural
and remote locations in developing countries (International
Energy Agency, 2017a). Lack of access to reliable, modern
electricity is a significant obstacle to social and economic
development, quality of life, and public safety, particularly
within developing countries (International Energy Agency, 2014;
Cook et al., 2015)2. SDG 7 plays a central role in supporting
all other SDGs through direct and indirect contributions
to environmental sustainability, human development, and
sustainable economic growth.

Satellite-based Earth Observation (EO) data offer
opportunities to advance understanding of both natural
and human-induced global changes from which forecast models,
information products and other tools could improve decision-
and policy-making for various societal benefit areas (National
Research Council, 2007; National Academies of Sciences,
Engineering and Medicine, 2015; National Academies of
Sciences, 2018). This is particularly important when addressing
issues that are regional to global in scale or require resources that
may necessitate transboundary cooperation. There are several
distinct roles EO can offer when applied across atmospheric,
marine, and terrestrial systems to assist with environmental
governance, which could also potentially be applied to other
societal benefit areas, such as the energy sector. The roles EO
can offer center around the supply of information (including
identifying data needed to address an issue, monitoring status
of the issue or data trends over time, and assessing or evaluating
success of applied solutions); assisting in early warning and/or
disaster response; and documenting compliance with specific
requirements or prohibitions (Young and Onoda, 2017). EO
data also reduce the manual effort required to conduct feasibility
assessments and increase accuracy. The combination of EOs and
geospatial data with demographic and other sector-specific data
offers an opportunity to provide the derived information needed
by stakeholders to analyze and model potential resource related
supply and demand scenarios, evaluate impacts across sectors
and geographical regions, create maps and other visualizations
to relay information, and otherwise assist end-users in making
informed decisions that will contribute toward achieving the
SDGs. Combined EO and demographic or socio-economic
information can also provide a more nuanced analysis of
environmental risks or management issues, allowing for
improved governance of natural resources, energy resources, and
populations. Applying this framework of EO applications to the
energy sector offers a wide range of opportunities for facilitating
developing countries’ quest to improve access to reliable
electricity and resilience infrastructure, incorporate renewable
energy into the electric sector, and improve energy governance.

Public acceptance of new or unfamiliar technologies and
infrastructure investments and siting is a crucial component
in effectively addressing evolving energy needs and promoting

1https://sustainabledevelopment.un.org/sdg7
2https://sustainabledevelopment.un.org/?page=view&nr=2749&type=13&menu=

1634

good environmental governance (Haggett, 2009a; Devine-
Wright, 2010). While regulatory frameworks vary drastically, in
many countries the potential environmental, social, economic,
and health impacts of large-scale projects, such as renewable
energy installations, require a formal impact assessment process.
For example, EO information can support environmental
impact assessments (EIA) by providing historical, current,
and projected environmental or human settlement-related
information, contributing where knowledge and data gaps may
otherwise occur and otherwise supporting consensus building
between developers and community members (Maclean et al.,
2014). Governing bodies must employ a constructive approach
to obtaining public buy-in, particularly in renewable energy
projects where community opposition to the unfamiliar and
theNot-In-My-Backyard (“NIMBY”) phenomenon often plagues
operational equipment siting (Larson and Krannich, 2016).
Public engagement mechanisms take many forms and at a
minimum should allow the public some degree of influence over
the decision-making process. For example, granting local actors
the authority over organization activities, such as coordination
of meetings or creation of informational leaflets, enables a sense
of ownership of the process and the project, thus increasing
the level of trust (Areizaga et al., 2012). These and other
approaches contribute to public acceptance of new approaches
to energy management. The availability of EO information can
support public engagement processes, such as in the siting
of new renewable energy development projects (Hindmarsh
and Matthews, 2008). Similarly, EO tools can also serve to
provide stakeholders such as potential project developers or
funders, grid operators, or national or private scale transmission
entities, with renewable energy studies that take into account
site-specific, seasonal variability forecasts for improved financial
analyses (Kosmopoulos et al., 2018). Governance and public
engagement can also be improved with greater understanding of
human and physical environments or geography through EOs of
appropriate resolution (Butler et al., 2011). EO tools can help
to inform the public on potential impacts and opportunities
of renewable energy installations by allowing visualizations to
graphically represent relevant data or forecasts contributing to
better understand potential impacts, community benefits, or
justification for a new project. In Morocco, for example, EO
information was used to identify settlements, and the boundaries
of communities when assessing the development of large-scale
solar installations (Hanger et al., 2016).

Additionally, the opportunity to engage end users of
data products, such as those tools and information products
incorporating EO, can influence future satellite mission
design and ensure that investments in future EO capabilities
are applications-oriented and serve both the scientific and
user community. The need to foster closer relationships
between the science and end user community, as well
as incorporate socioeconomic factors in the planning
and implementation of EO missions, is well documented
(National Research Council, 2007; Brown et al., 2013;
National Academies of Sciences, Engineering and Medicine,
2015).

This article provides an overview of the existing gaps and
challenges to the use of EO data, current state of research, and
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examples of how electricity providers are incorporating EO data
into rural electrification planning, renewable energy resource
assessment, grid management, and disaster risk reduction and
recovery efforts throughout the developing world. While there
are myriad opportunities for improved utilization of EO by
developing countries to meet their energy needs and goals,
challenges to the successful use of EO remain and require
careful consideration (Lahoz and Schneider, 2014). This review,
based on a methodological literature search, is not meant to be
exhaustive or encompassing of all applications, tools, research
areas, or case studies, but instead sets a necessary foundation or
baseline for understanding and addressing common barriers for
EO uptake for the energy sector in the developing world. Toward
that end, the article concludes with recommendations on how to
maximize current applications and reduce barriers, particularly
through stakeholder engagement, future tailored EO needs, and
human capacity building.

METHODS

A literature search that followed a methodological framework
was conducted using targeted vocabulary terms to query Google
Scholar and Google Search. Google Scholar allows simultaneous
searching of a large number of unique publication types,
including peer-reviewed journal articles, theses and dissertations,
books, abstracts, and technical reports from academic publishers,
professional societies, online repositories, universities, and other
web sites. Google Scholar was selected over other scholarly
databases because of its breadth of publication types. In an
exploratory scan of literature, the authors found that journal
articles were primarily focused on highly technical research or
one-off projects, whereas non-traditional documents provided
a better representation of information about the existing
use of EO in real-world energy management applications. A
perceived limitation to using Google Scholar is that publication
quality is lower compared with other scholarly databases.
However, a recent comparison of Google Scholar, Scopus,
and Web of Science concluded that Google Scholar found
“nearly all” Scopus and Web of Science citations and that
“most citations found only by [Google Scholar] were from
non-journal sources” (Martín-Martín et al., 2018). Another
potential limitation to using Google Scholar is that results
are ordered largely by citation count, which may not be as
robust as other scholarly databases that rank by relevance.
To mitigate this limitation, the authors used focused search
strings to limit results to those most relevant and performed
a scan of all document titles returned to assess potential
relevancy. Titles deemed potentially relevant were marked for
further review.

The Google Scholar review was supplemented by a query
of Google Search to identify gray literature, which are non-
peer reviewed materials produced by government, business,
and industry in a variety of formats including white papers,
presentations, newsletters, and other non-traditional materials
where “publishing is not the primary activity of the producing
body” (Schöpfel, 2010). Gray literature was an important

component of this review because of the authors’ desire to
highlight the practical applications of EO use outside of a
research context. To ensure coverage of all major aspects
of space-based remote sensing for energy applications, hand
searches of individual websites of select electricity providers and
consortiums were also conducted.

Search terms related to the use of EO data for energy
management were used to query online databases and resources.
Broad keywords used for the search are summarized in a
table included as Supplementary Material. The keywords were
identified in a preliminary review of recent government reports
and similar documents to identify priority areas within the
electricity sector. Search terms were augmented as appropriate
to include plurals and variants, root terms, alternative spellings,
and synonyms. Terms were combined as necessary using Boolean
AND/OR/NOT logic to achieve a manageable number of search
results. Due to the extensive body of research available, the search
focused on resources published from 2010 to the present. Using
this search strategy, 9,856 potential titles related to EO data for
energy management were identified. To further narrow the focus,
the titles were initially scanned for relevancy. A total of 2,763
documents were down selected for abstract/summary review. If
an abstract or executive summary suggested that a document
was relevant or did not make relevance clear, the document was
prioritized for full text review. Of the 2,763 abstracts/summaries
reviewed, 384 documents were prioritized for full text review
according to the following categories and criteria3:

• Key Studies (High Relevance): Documents that described
in detail the specific uses of satellite imagery or data
products related to priority areas or documents that described
sector needs directly related to priority areas. A total of
261 documents were identified as “Key Studies” based on
abstract/summary review. An in-depth review of full text was
performed for these documents.

• Relevant Studies (Intermediate Relevance): Documents that
broadly described general uses of satellite imagery or data
products directly related to priority areas or that were highly
technical in nature. A total of 55 documents were identified
as “Relevant Studies” based on abstract/summary review.
An expedited review of full text was performed for these
documents. Upon expedited review, documents deemed high
relevance were recategorized as “Key Studies” and subject to
an in-depth review.

• Supporting Studies (Low Relevance): Documents that
broadly described uses of satellite imagery or data
products tangentially related to priority areas. A total of
68 documents were identified as “Supporting Studies” based
on abstract/summary review. An expedited review of full text
was performed for these documents. Upon expedited review,
documents deemed high relevance were recategorized as “Key
Studies” and subject to an in-depth review.

• Not Relevant: Documents not meeting the criteria for any of
the preceding categories. A total of 2,379 abstracts/summaries

3The complete list of references deemed relevant are included in

Supplementary Material.
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reviewed were considered “Not Relevant” for the purposes of
this project and were excluded from full text review.

The bibliography sections of particularly useful or key
articles/reports were also further examined for additional
relevant references. These secondary references were then
obtained and reviewed for relevance according to the above
criteria. An exhaustive review of all available literature, however,
was not conducted. The final results of the literature search
included peer-reviewed literature as well as gray literature, such
as industry/consortia reports, workshop/conference reports,
and key research reports from federal government agencies
and others.

REVIEW RESULTS

Results are presented in this section according to four key themes
identified through the literature review: rural electrification,
renewable energy, grid management, and disaster risk reduction,
and response. For each theme, gaps and challenges are discussed,
information regarding the current state of research is presented,
and examples of the real-world use of EO data in developing
countries are provided.

Rural Electrification
While significant progress toward UN SDG 7.1 “Ensuring access
to affordable, reliable, sustainable and modern energy for all”
has been achieved in certain regions of the world, a significant
proportion of the global population, particularly in rural and
remote locations, still lack this critical resource. For example,
sub-Saharan African countries are among the least electrified in
the world4. In Zambia, approximately 72% of a population of 17
million lacks access to electricity, with rates of inaccessibility as
high as 95% in rural areas (Cader et al., 2018). Electrification
rates in urban vs. rural areas may vary drastically even within a
single country. For example, the electrification rate in the urban
areas of Cambodia is 97% while only about 50% of Cambodia’s
rural population has access to modern electricity (International
Energy Agency, 2017b). Cambodia plans to extend the national
grid and build hydropower plants to improve the access of both
urban and rural populations to electricity (International Energy
Agency, 2017b).

In Indonesia and Myanmar, it is estimated that about 45
million people in total were without access to electricity in
2016 (International Energy Agency, 2017b). Improving access in
these countries is a high governmental priority. Myanmar has
developed a National Electrification Plan that includes expanding
the centralized grid and financing DG/microgrid solutions.
Similarly, electrification plans for Indonesia include extension
of the existing grid, as well as microgrids that rely largely on
renewable energy, such as hydro and solar.

The World Bank reported in 2014 that more than 300
million people in India are impacted by frequent outages or a
complete lack of power due to insufficient infrastructure5. In

4https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS
5http://www.worldbank.org/en/news/feature/2014/06/24/switching-on-power-

sector-reform-in-india

2015, the Government of India’s Ministry of Power launched the
“Deen Dayal Upadhyaya Gram Jyoti Yojana” scheme (DDUGJY)
to reform the power sector, which claimed in April 2018
to have electrified all villages in India6. However, the Indian
government considers a village “electrified” if it has basic
electrical infrastructure, public places are electrified, and 10% of
its households have electricity7. Given this interpretation, there
appears to be ample opportunity to expand access to reliable
electrification to most households in India.

Spatial information for energy access planning traditionally
involves labor-intensive field studies and surveys to collect
and analyze data. Freely available EO data have facilitated the
development of spatial maps for developing countries, providing
critical information for addressing the problem of electricity
access. In areas where ground-based data are sparse, EO data
can provide critical insight into environmental or energy-
related parameters. Further, tools that combine satellite-based
EO data with in-situ ground-based data can provide a valuable
resource for understanding conditions for siting new projects or
expanding grid infrastructure.

The application of EO resources offers the potential for
electricity providers in developing nations to identify human
settlement areas that may still be lacking the infrastructure and
access to electricity and monitoring progress in electrification
of remote, rural areas. While EO data cannot completely
replace ground-based information, it provides an actionable,
objective resource for identifying unelectrified areas, ideal siting
locations for grid expansion, and areas suitable for self-sustaining
microgrids to help in meeting electrification goals.

Gaps and Challenges
There aremany barriers to electrification in developing countries,
including inadequate policy or legal mechanisms, market drivers,
governance structures, physical infrastructure, human capital,
and data access or technological gaps (Urmee et al., 2009; Ahlborg
and Hammar, 2014; Chauhan and Saini, 2015). In some cases,
even land acquisition for project siting can be complicated due
to protected land areas. Data on renewable resources is required
but many developing countries are data poor in terms of ground-
based data systems that monitor and map renewable resources.
Often, data for electrification planning are difficult or costly
to access because on-the-ground resources are required. EO
data, particularly open access data, can be used to overcome
the logistical and financial challenges of data acquisition in
particular. The use of nighttime lights imagery is a well-
established method for identifying unelectrified areas and the
extent of rural settlements, although ground-based population
data are often needed to supplement imagery-based population
assessments to ensure accuracy (Cader et al., 2018). EO-based
land use data have been used for the siting of grid infrastructure,
although, without the use of data analytics, this method requires
manual effort to assess aerial imagery for optimal locations.
Further, internet access is required to obtain EO datasets, which
can be a challenge in regions where accessibility is limited.

6https://twitter.com/narendramodi/status/990455176581517312
7http://www.ddugjy.gov.in/portal/definition_electrified_village.jsp
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State of Research
To assess rural access to electricity in regions where census
data may be lacking, data are needed to determine population
density in relation to existing utility assets. Current research
in this area is largely focused on the development of machine
learning models that analyze high-quality EO data to reduce
manual efforts involving field surveys and human interpretation
of aerial images. Researchers have demonstrated the use of data
analytics with EO data products to assess population density and
village attributes. Settlement identification and the evaluation
of density distribution using open access data from satellites
such as Landsat, the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER), Visible Infrared Imaging
Radiometer Suite (VIIRS), and others have been validated by
researchers as useful methods that can supplement survey data
in regions where census data are incomplete or inaccurate. EO-
derived data such as nighttime brightness, tree cover change, and
thermal emission and reflection can be combined and modeled
to predict likely population clusters (Stevens et al., 2015; Longwei
and Dengsheng, 2016; Robinson et al., 2017; Engstrom et al.,
2019). Researchers are also developing machine learning models
with EO data to assess electric infrastructure assets, such as
locations of power plants and overhead transmission lines, and
to estimate asset reliability. Researchers at Duke University’s
EnergyData Analytics Lab recently developed amachine learning
method that automates the evaluation of satellite imagery to
determine electrification rates8. These and other models have
demonstrated the ability to predict the current availability
of electricity in remote areas and the quality of existing
infrastructure using EO data from Landsat 8, Sentinel 1, VIIRS,
Google Maps, and others (Varshney et al., 2015; Mann et al.,
2016; Oshri et al., 2018). EO data and machine learning together
will facilitate improved prediction and analytic capabilities for
efficient grid planning and monitoring of electrification progress.
The US National Aeronautics and Space Administration (NASA)
introduced its Black Marble product in 2012 to replace the
DMSP-OLS nighttime lights dataset. Black Marble provides
images of Earth at night, taken from NASA’s Suomi satellite
using VIIRS, which offers a resolution significantly better than
the previous system used to acquire nighttime lights data. Black
Marble can be used to classify different types of population
centers, such as urban, rural, suburban, villages, towns, etc.
(Altaweel, 2018).

Real World Use of EO Data in Developing Countries
There are a limited number of current applications or real world
uses of EO data in developing countries. Satellite imagery known
as “nighttime lights” has been used to assess the expansion
of electrification and electricity consumption over time and
space. The National Oceanic and Atmospheric Administration
(NOAA) maintains archived Defense Meteorological Satellite
Program Operational Linescan System (DMSP-OLS) nighttime
lights data from 1992 to 2013; however, the ongoing value
of the DMSP-OLS dataset is limited because the data are no

8https://bassconnections.duke.edu/project-teams/energy-data-analytics-lab-

electricity-access-developing-countries-aerial-imagery-2017

longer current. Nonetheless, researchers at the University of
Michigan and The World Bank used this dataset to develop a
map of the nighttime brightness of India’s 600,000 villages as an
indicator of electrification9. The project, known as India Lights,
has been used extensively to assess the value of EO data for
rural electrification planning. An analysis of the India Lights
platform concluded that EO data are “surprisingly accurate” for
assessing rural electrification, less so when the power supply
is unreliable, but GIS maps and processing tools can help to
improve assessments of brightness. On its own, nighttime lights
may not be adequate but can be complemented with field
information to identify specific locations for electricity expansion
or microgrid installations (Dugoua et al., 2018).

EO data can also inform grid infrastructure siting. The Power
Grid Company of Bangladesh Limited (PGCBL) used high-
resolution satellite images in the development of a transmission
line to expand the distribution system and increase access to
electricity. The EO data were used in conjunction with maps and
consultation with local stakeholders to assess geographic land
features and alternative routes as options for the transmission
line. EO data were crucial in identifying an optimal route
that minimized impacts to existing infrastructure, settlements,
and the environment. Specifically, satellite imagery was used to
assess fish habitats along the proposed transmission route, urban
areas, connecting roadways, river crossings, and other areas of
importance (Asian Development Bank, 2017).

Microgrids, a variety of distributed generation (DG) that can
operate autonomously, are widely used in developing countries
to provide access to electricity in rural areas where connection
to the central grid is not feasible. Powerhive East Africa
Ltd., a U.S.-based microgrid solutions provider that is licensed
to generate, distribute, and sell electricity in Kenya, uses a
proprietary tool called SWARM for microgrid site selection10.
The SWARM tool uses EO data to “identify potential customers
and create preliminary microgrid designs for viable sites”11.
In particular, the tool identifies the extent of the existing
electric grid by incorporating nighttime lights imagery derived
from NASA’s Black Marble product, which is a cloud-free,
higher resolution replacement for DMSP-OLS nighttime lights
imagery (Román et al., 2019). As noted earlier, EO data can
be complemented by ground-based data to assess population
clusters and unelectrified areas.

Renewable Energy
Renewable energy is typically used in developing and emerging
economies to power DG or microgrid systems in areas where
connection to the centralized grid is impractical due to lack
of infrastructure or other barriers. Often, these systems are
part of a utility’s overall solution to improving access to
electricity. There are excellent renewable energy opportunities in
many developing regions; however, policy, capacity, or financial
barriers may prevent large-scale deployment of renewable
energy technologies. Conversely, renewables-based small-scale

9http://india.nightlights.io
10http://www.powerhive.com/our-technology/
11Ibid.
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microgrid systems have seen rapid expansion in developing
nations and are a crucial component to providing electricity
access to rural populations (Stiles andMurove, 2018) andmaking
further progress toward SDG 7.1.

The primary renewable technologies used in developing
regions are solar photovoltaics (PV), small wind turbines,
small-scale hydroelectric power, and biomass combustion
devices (Stiles and Murove, 2018). Growth and resource
potential are strong, particularly for solar energy. In 2016,
developing countries added about 34 GW of solar capacity
(BloombergNEF, 2018). In sub-Saharan Africa, solar energy
potential is tremendous, particularly for microgrid solutions.
Studies suggest that there is a “theoretical annual electricity
generation potential of 660,000 TWh for Solar PV in Africa”
(Quansah et al., 2016). Significant solar resources are also noted
inMexico, regions of Central and South America, Southeast Asia,
India, and the Middle East12.

In addition to the potential presented with solar energy,
the World Energy Council estimates that global wind capacity
could grow “from 435 GW in 2015 to 977 GW in 2030”
(World Energy Council, 2016), with China, India, and Brazil
leading installed capacity and continued sector growth among
developing economies (Global Wind Energy Council, 2017).
There is also substantial wind energy potential in Chile,
Argentina, Kenya and other parts of sub-Saharan Africa, the
Middle East, Vietnam, and the Philippines13. The greatest
potential for utilization of wind energy is in remote villages
where connection to a centralized grid is not feasible, and
many of these countries have administrative goals for wind
energy projects, such as the Philippines with a target of 2.3
GW of capacity by 2030 (International Energy Agency, 2017b)
and Kenya with a goal to add 0.4 GW of capacity by 2020
(International Energy Agency, 2014).

Hydroelectric power is “the leading renewable source for
electricity generation globally” (World Energy Council, 2016)
with China, Brazil, and India as the fastest growing countries
for this sector in 2017 (International Hydropower Association,
2018). Although, Brazil has recently removed several hydropower
projects in favor of decentralized energy, other South American
countries are seeing large growth in the hydroelectric power
sector with plans for future plants in Peru, Columbia,
and Argentina. Planned and installed hydroelectric projects
also dominate the renewable energy sector in sub-Saharan
Africa, where there exists significant untapped potential for
hydroelectric power development (Stiles and Murove, 2018).
While the potential growth of the hydroelectric power industry
offers substantial opportunity for new use of EO data-derived
products in this sector, so does the potential decline of water
resources in certain regions due to environmental changes such
as climate variability and change; therefore, electricity providers
must adopt resilience planning for water shortages and manage
risk accordingly if pursuing this energy source.

Geothermal energy is feasible in countries located in the “Ring
of Fire,” such as Mexico, Indonesia, the Philippines, as well

12https://solargis.com/maps-and-gis-data/download
13https://www.globalwindatlas.info/

as other regions worldwide. Turkey and various Pacific coastal
countries in Central and South America have seen strong growth
in the geothermal sector largely due to supportive governmental
policies (Stiles andMurove, 2018). Ethiopia and Kenya in Africa’s
Rift Valley also provide strong potential for geothermal power.
Moreover, Costa Rica, El Salvador, and the Philippines derive
more than 10 percent of their electricity from geothermal sources
(Van Nguyen et al., 2015).

EO data can play an important role in assessing the feasibility
of renewable energy systems and prospecting for resources. Solar
energy resource assessment, management of PV installations,
wind power estimation and wind farm siting, and environmental
impact assessment are long established uses of EO data.
Similarly, EO-derived thermal infrared data, surface wavelength
measurements, and gravity anomalies have been used for more
than a decade in the geothermal prospecting of large land areas.
EO data are also commonly used to assess water quantity and
availability for hydroelectric project planning and monitoring,
determination of ideal dam locations and reservoir size, and
environmental impact from rerouting or damming water.

For successful renewable energy projects, both government,
and community expectations must be met. Participatory
governance for consensus building among stakeholders
should include participation mechanisms throughout the
life of a project, from the early proposal stage to post-
project. Public engagement plays a “crucial role” in the social
acceptance of renewable energy technologies, and may involve
collaborative decision-making, community shareholding, and
public education and consultation (Langer et al., 2017). Such
approaches provide the community some level of control,
which facilitates trust between stakeholders, provided that
the participation process is fair and just. However, research
suggests that mandating engagement between developers and the
public in the siting process is difficult, and without incentives,
developers may not be motivated to address community
concerns (Haggett, 2009b; Bell et al., 2013; Christidis et al.,
2017). Furthermore, public concern over “not being heard”
is a theme repeated in the literature (Walker et al., 2010;
Natarajan et al., 2018). Thus, consideration must be given to
all stakeholders to ensure effective collaboration and trust. The
U.S. Department of Energy (DOE) maintains a toolkit for public
involvement in renewable energy and infrastructure14 and
among its key strategies include identifying issues of concerns
and communicating clear and concise messages. Using EO data
in maps or visualizations can offer the public clear, unbiased
information on environmental parameters such as land use, land
change, and available resources.

Trust is a critical factor in community adoption of renewable
energy and associated data for energy assessment, such as EO.
Level of knowledge and experience pertaining to renewable
energy varies widely between policymakers, researchers,
developers, and the public. Trust between stakeholders is largely
contingent on accurate and timely communication, which is
an “essential component of [the] public engagement process”

14https://openei.org/wiki/RAPID/Best_Practices/Public_Involvement_in

_Renewable_Energy_and_Infrastructure Project_Development

Frontiers in Environmental Science | www.frontiersin.org 6 August 2019 | Volume 7 | Article 12313

https://solargis.com/maps-and-gis-data/download
https://www.globalwindatlas.info/
https://openei.org/wiki/RAPID/Best_Practices/Public_Involvement_in_Renewable_Energy_and_Infrastructure Project_Development
https://openei.org/wiki/RAPID/Best_Practices/Public_Involvement_in_Renewable_Energy_and_Infrastructure Project_Development
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Leibrand et al. Earth Observations for Reliable Energy

(Pellizzone et al., 2015). Accurate information about proposed
projects should be tailored to the community and disseminated
using appropriate methods (e.g., use of leaflets instead of social
media in regions where the internet is inaccessible; McNeish
et al., 2019). Knowledge is a surmountable barrier to behavioral
change provided that the public is confident in the information
source and the information is relatable. For example, Liu et al.
(2019) found that in many countries around the world, trust in
policymakers or decision-makers has supported the successful
development of renewable energy projects, including in China
and the Netherlands. A similar study of renewable energy
development in China found that the public was more open
to project development when accurate and reliable data were
presented, including maps and analyses (Guo et al., 2015).
Encouraging learning through public participation is an effective
tactic to changing public opposition of renewable energy
(Parkins et al., 2018).

Gaps and Challenges
Challenges that have inhibited development of renewable energy-
powered DG and microgrids in developing countries include
difficulty accessing data, lack of tools for energy resource
monitoring, and lack of accurate energy forecasts (Rinaldo et al.,
2017). Lack of technical expertise can be a barrier to appropriately
accessing and applying EO data products to renewable resource
planning. To bridge this knowledge gap, there are a multitude
of web-based viewers and mapping tools available to the public
online. For example, the Global Solar Atlas provides yearly
averaged solar resource and photovoltaic (PV) power potential
data at a resolution of about 1 km in a user-friendly and intuitive
color-coded map with optional data download15. Additionally,
there remains an opportunity to provide capacity building efforts
among electric utility providers or other key stakeholders to
increase awareness of relevant tools and the benefits of utilizing
EO data in this sector, and train technical staff in the proper
access and application of EO data to meet specific needs they
are facing.

Challenges such as resource monitoring and accuracy of
energy forecasts may be mitigated through the application of
EO data to assess renewable energy resources for siting and
ongoing monitoring efforts. Although EO data have been used
extensively for solar resource mapping, one pitfall is the spatial
and temporal resolution for solar forecasts, which is much higher
with ground-based images. Also, satellite instruments may have
difficulty detecting cloud shadow, which can indicate sudden
changes in solar irradiance, a possible issue for larger scale PV
operations (Wan et al., 2015). EO-derived wind data are generally
viewed as having good temporal and spatial coverage for wind
resource planning, although care must be taken when selecting
an appropriate dataset, as some wind data may be captured at
a height suboptimal for comparison with wind turbines. For
example, the NOAA High Density Infrared Cloud Drift Winds
product16 records winds at an approximate height between 3,000
and 13,700m above ground, whereas today’s wind turbines have

15https://globalsolaratlas.info/
16https://www.ospo.noaa.gov/Products/atmosphere/wind.html

a hub height that rarely exceeds 125m above ground (Lantz et al.,
2017). Research supports this concern and has suggested that
“wind profiles from lidar and masts” are more appropriate for
estimating wind resource potential than EO data in estimating
hub height winds (Hasager et al., 2010).

In general, geothermal energy has higher installation costs
than solar and wind installations. As a result, geothermal energy
projects in developing countries typically rely on government
incentives, which can be a roadblock for many countries. Freely
available EO data can address some of the outstanding financial
challenges associated with geothermal exploration and plant
siting by providing a more accessible data source compared with
ground-based exploration.

State of Research
Like other areas of research using EO data for energy solutions,
emerging research largely involves the use of machine learning
models to mechanize the analysis of satellite images. For
example, Duke University Energy Data Analytics Lab researchers
recently developed machine learning models that automate the
identification of DG solar and wind resources using open access
EO and other data17. Most other research in this field is primarily
focused on the automation and validation of solar nowcasting
and forecasting using machine learning methods based on
satellite images to accurately predict fluctuating meteorological
conditions and PV output (Eissa et al., 2013; Jang et al., 2016;
Catalina et al., 2019; Cornejo-Bueno et al., 2019).

Real World Use of EO Data in Developing Countries
EO data are commonly used to assess water quantity and
availability for hydroelectric project planning and monitoring,
determine ideal dam locations and reservoir size, and assess
environmental impacts from rerouting or damming water for
hydroelectric projects. Electric utilities in India and Colombia
have demonstrated the practical use of EO data for hydroelectric
power projects, and India’s Central Electricity Authority best
practices for hydroelectric project development promote the
use of satellite imagery for efficient interpretation of land use
and geology for environmental impact of projects (Central
Electricity Authority, 2002). For the Miel I hydroelectric
power plant in Norcasia, Colombia, Isagen Productive Energy
monitors and tracks landscape restoration efforts as part of
the post-construction process. Satellite imagery and aerial
photographs are used to assess changes in vegetation cover to
understand the adaptation of hydrobiological communities to
the reconstructed habitat. Isagen maintains a comprehensive
environmental management plan for the dam and reservoir, and
EO data are part of the restoration plan to address the effects of
plant construction (Isagen Productive Energy, 2015).

EO-derived thermal infrared data, surface wavelength
measurements, and gravity anomalies have been used for more
than a decade in the identification of likely geothermal hotspots
and exploration of geothermal energy potential of large land
areas. To target ideal locations for geothermal drilling and

17https://ssri.duke.edu/news/gauging-renewable-energy-generation-using-

satellite-imagery
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well siting, the Kenya Electricity Generating Company, also
known as KenGen, uses a GIS system to map potential hotspots
identified using a combination of EO data, seismic maps, surface
geology maps, and other data inputs (Wekesa and Gichini, 2016).
KenGen also operates hydroelectric and wind power plants as
part of its electric generation portfolio. To facilitate effective
management of its resources, KenGen recently proposed the
development of an “Integrated Spatial Resource Management”
GIS system that would incorporate EO data products and other
data sources, such as aerial photography, for resource and
asset management (KenGen, 2018). EO data provide a more
cost-effective data source for renewable energy exploration and
plant siting compared with ground-based exploration.

Grid Management
The success of grid management, i.e., grid infrastructure
operation and reliability, is often dependent on environmental
factors. It is estimated that about 90 percent of load forecasting
errors are weather-related, and the matching of supply and
demand necessitates accurate data, as inaccuracies can instigate
brownouts that impact other sectors, such as manufacturing
and health care (Global Science and Technology Inc, 2016).
Unreliable electricity plagues many developing countries, and
frequent and long outages negatively impact socio-economic
growth. Freely available EO data provide an opportunity for
decision makers in developing countries to improve their
knowledgebase. EO-derived data on current weather conditions
and historical climate trends can be used in energy forecasting
models and for infrastructure planning to improve grid
reliability. Outagemagnitude can be assessed andmonitored with
nighttime lights EO data. Inadequate line maintenance is also
a cause of outages. Overhead transmission lines require routine
vegetation management to mitigate the potential for falling
limbs. Many global EO-derived products that measure vegetation
are freely accessible, such as Terra/Aqua MODIS Normalized
Difference Vegetation Indices (NDVIs) that are available at
variable temporal and spatial resolutions18. These and other EO
data products offer electric utilities an opportunity to enhance
grid operation and reliability.

Gaps and Challenges
One challenge to using EO data for grid management includes
the need for technical expertise to access and use EO data
products. To mitigate this challenge, NASA, NOAA, and
other organizations have developed freely available land use,
nighttime lights, vegetation index products, and other useful
datasets that are available in simple web-based map viewers.
One example is the Visible Infrared Imaging Radiometer Suite
(VIIRS) Day/Night Band (DNB) Nighttime Lights interactive
map, which provides global, nightly imagery at a moderate spatial
resolution19. However, it has been suggested that nighttime lights
may be of limited value in areas where power is intermittent,

18https://modis.gsfc.nasa.gov/data/dataprod/mod13.php
19https://maps.ngdc.noaa.gov/viewers/VIIRS_DNB_nighttime_imagery/index.

html

depending on the temporal resolution of the EO data product
(Dugoua et al., 2018).

Another potential barrier to adoption of EO data products
by utilities is unfamiliarity that could lead to uncertainty or
hesitation in using the data for decision making. Most electricity
providers will need some level of training in the appropriate
use and interpretation of EO data, even in its most simple form
as a map viewer, which could potentially be another roadblock
to use. Depending on the structure of the electricity sector in
any given country or region, training may need to occur across
administrative jurisdictions (National Research Council, 2003).

State of Research
The most notable current trend in grid management is using
artificial intelligence (AI) to manage grid operations and improve
grid resilience. EO data are being integrated into AI systems
along with information on the electrical distribution system and
utility operations to build a body of knowledge that, with the
proper algorithms, allows the grid to operate autonomously or
alerts operators to vulnerabilities. Such systems could identify
fluctuations in power supply and automatically reconfigure loads
and resources (Kosowatz, 2018).

Many recent feasibility studies have been focused on
demonstrating the effectiveness of high-resolution EO data for
monitoring transmission lines for vegetation that might disrupt
distribution. Satellite images can be used in transmission line
management, for example, to determine whether the average
height of vegetation beneath a power line exceeds a specific
threshold and should be trimmed (Häme et al., 2016). EO data
could potentially replace the more costly methods of using
observation helicopters and unmanned aerial vehicles for visual
inspection of overhead lines. Furthermore, emerging research
shows the applicability of machine learning algorithms using EO-
derived NDVI data to effectively identify transmission lines at
highest risk of being affected by vegetation (Klein et al., 2018).

Real World Use of EO Data in Developing Countries
The Central American Electrical Interconnection System, known
as SIEPAC, is an interconnection of the power grids of six Central
American nations: Panama, Costa Rica, Honduras, Nicaragua,
El Salvador, and Guatemala. SIEPAC regularly employs EO
data for environmental impact and geotechnical studies for
electric infrastructure development. For example, SIEPAC used
Landsat images to understand features of geologic importance
for transmission line siting in Nicaragua. The satellite images
were used to identify complex volcanic features, areas of lava
flow, and permanently flooded areas of flat relief. These aspects
were used in part to assess the geological risk of constructing a
transmission line to expand access to reliable electricity in the
region (SIEPAC, 2004).

Falling trees account for most overhead transmission line
failures, and downed power lines can spark fires. Energisa, a
Brazilian power company, uses EO data to track vegetation
conditions to identify trees that need pruning near transmission
lines. Satellite imagery is coupled with an algorithm and digital
photogrammetry, packaged as an “intelligent tool,” which can
estimate the presence and height of trees near overhead lines,

Frontiers in Environmental Science | www.frontiersin.org 8 August 2019 | Volume 7 | Article 12315

https://modis.gsfc.nasa.gov/data/dataprod/mod13.php
https://maps.ngdc.noaa.gov/viewers/VIIRS_DNB_nighttime_imagery/index.html
https://maps.ngdc.noaa.gov/viewers/VIIRS_DNB_nighttime_imagery/index.html
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Leibrand et al. Earth Observations for Reliable Energy

enabling effective and efficient vegetation management with
minimal to no field effort required (Energisa, 2018).

Disaster Risk Reduction and Response
Extreme weather events and other natural disasters that could
impact the energy sector in developing countries may include
hurricanes, flooding, volcanic eruptions, earthquakes, tsunamis,
and landslides. The IPCC finds that weather- and climate-
related disasters have resulted in increased economic loss and
inequity exists among local adaptive capacity for disaster risk
management, with developed countries often better equipped
for disaster response (IPCC, 2012). The Sendai Framework for
Disaster Risk Reduction targets to “substantially reduce disaster
damage to critical infrastructure and disruption of basic services,
among them health and educational facilities, including through
developing their resilience by 203020.” EO data can be integrated
into tools to improve forecasting, risk modeling, and recovery
related to these extreme weather and natural disaster events and
assist electric utility providers with resilience planning efforts to
minimize impact to critical infrastructure and societal services.

Nighttime lights imagery is commonly used in the days
immediately after a natural disaster to determine the extent
of an electric outage. This information is crucial to identify
neighborhoods in the greatest need of assistance. Precipitation,
temperature, and other freely available remotely sensed weather
data can lower costs and increase the accuracy of forecasting
tools for natural disasters or extreme events. Similarly, high-
resolution, near-real time daytime satellite imagery can be used
to identify building damage, debris, and other obstacles that
may impede rescue and recovery efforts after a disaster. Other
research involves measurement of vegetation loss; monitoring of
landslides; the application of machine learning and big data to
improve tropical cyclone/wind forecasts and assess the likelihood
of flooding as well as other types of disasters (Yu et al., 2018); and
the use of differential interferometry from radar satellite data to
monitor surface deformation in evaluating landslide and flooding
hazards to electrical transmission lines (Li et al., 2018).

Gaps and Challenges
One challenge in using EO data to assess impacts to energy
infrastructure and access after a natural disaster is that disaster
response occurs across a wide array of sectors, with many
moving parts, each uniquely important. In many countries,
responding agencies may work in silos, which could result
in a lack of information sharing or inefficient data gathering.
These administrative difficulties could impede effective use of
EO data across a multitude of sectors, including the power
sector (Anderson et al., 2017). It may also be difficult to
determine the best dataset or product resource in a time of
crisis. Routine disaster monitoring may be useful in that, in the
event of a disaster, systems would already be in place to inform
decision making, communication methods could be established,
and hazard mitigation plans would be developed and ready to
implement at the first warning sign.

20https://www.unisdr.org/we/coordinate/sendai-framework

Other challenges include the availability of tools to handle
large amounts of EO data and combine them with data from
other sources, such as maps or measurement studies (Van
Westen, 2000). EO data can also be also limited by an absence
of global coverage and by dependence on weather and daylight
conditions (Washaya et al., 2018).

State of Research
Recent research is largely focused on implementing EO data
for disaster warning systems. For example, the Institute of
Hydrology, Meteorology and Environmental Studies of the
Republic of Colombia (IDEAM) embarked on a project
to strengthen disaster risk management in Colombia. The
organization demonstrated the value of incorporating seasonal
precipitation forecasts derived from GOES16 satellite data into
a warning system for climate-related disasters and disruptions to
energy generation (IDEAM, 2018). Researchers are also focused
on using EO data to assess post-disaster damage. Research spans
the rapid assessment of building damage to inform emergency
responders of areas most severely impacted (Ramlal et al.,
2018) to the evaluation of vegetation loss to inform vegetation
protection strategies (Long et al., 2016; Hu and Smith, 2018).

Other similar research ties the use of EO data to flood
management, tsunami monitoring and forecasting, landslide and
volcanic activity monitoring, and general disaster management.
Concepts covered span such aspects as applications of EO data,
accuracy of EO-derived data processing, integrated management
platforms, and case studies (Alfieri et al., 2018; Novellino et al.,
2018; Schwarz et al., 2018; Wang and Xie, 2018; Korup et al.,
2019).

Emerging research involves applying machine learning to
natural disaster assessment and susceptibility. Projects include
NASA’s Deep Learning-based Hurricane Intensity Estimator,
which uses machine learning methodology to estimate wind
speeds by monitoring EO data from NASA satellites in near-
real time, decreasing the time required to update the forecasting
model21. Other research is largely focused on flood analysis,
such as applying machine learning informed by land use maps
derived from satellite images to estimate flood probability for a
region of interest (Mojaddadi et al., 2017) and using a machine
learning approach to analyze satellite images to classify and
predict whether roads in a flooded region are passable (Said et al.,
2018), among other projects.

Real World Use of EO Data in Developing Countries
Brazil’s Energisa uses satellite imagery to assess weather
conditions that contribute to grid interruptions and
infrastructure damage after weather events have occurred.
In the case of an event where strong winds overturned five
distribution towers near Canarana, Energisa used images from
GOES 16 to analyze the temperature and cloud conditions, along
with wind intensity data from other sources, on the day of the
event. Energisa is using these data to predict future events and to
assess the need to reinforce certain assets to withstand extreme
weather events (Energisa, 2017).

21http://hurricane.dsig.net/
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Empresa de Transmisión Eléctrica S.A. (ETESA), Panama’s
state transmission company, uses satellite imagery obtained
from NOAA’s geostationary satellite GOES-R in near-real
time to “contribute to more accurate and reliable weather
forecasts of severe weather perspectives.” EO-derived climatic
parameters, such as air and soil temperature, relative humidity,
barometric pressure, wind speed and direction, and solar
radiation have expanded automation of Panama’s National
Hydrometeorological Network and modernized measurement
and data processing systems. With the acquisition of receiving
stations to obtain meteorological data from GOES-R, ETESA
is better prepared for severe storms and climate-related
events that may affect electrical transmission and distribution
(Jimenez, 2016).

DISCUSSION

A review of recent literature and relevant websites summarized
current or ongoing research areas as well as identified
key opportunities for electricity providers to incorporate EO
data into rural electrification planning, renewable energy
assessment, grid management, and disaster risk reduction and
recovery efforts. As discussed in this article, EO data have
the potential to be useful in several ways for improving
governance of and access to reliable, affordable, resilient, and
sustainable energy.More specifically, the use of “nighttime lights”
imagery for estimations of rural electrification, EO-derived
NDVIs for vegetation monitoring for overhead transmission
line management, solar radiance data for renewable energy
project planning, and weather event nowcasting for natural
disaster monitoring have all demonstrated value added for
the energy sector in developing countries. Broadly, these
and other applications of EO data can improve access
to electricity, renewable energy management, and disaster
risk management. This review paper provides an important
resource in understanding the broad applications and future
possibilities for improved energy access and management in the
developing world.

This article intends to provide a global overview and baseline
of gaps, challenges, and opportunities for using EO data in the
energy sector in developing countries, as well as providing a
sample of specific examples of real-world application already
occurring in developing nations. However, it is important to
note that such gaps, challenges, and opportunities may vary
between and within regions and countries, and that our focus was
specifically on developing countries, while developed countries,
particularly in Europe, North America, and parts of Asia, may
have additional examples of real-world application of EO data
for energy access, renewable energy management, and disaster
management. Due to the nature of the literature review and
the keywords utilized, no particular region or country was the
subject of in-depth search or analysis. Therefore, this review
provides a high-level overview in developing countries only and
may not include all relevant current applications in the energy
sector worldwide. Further research into country specific needs in
the developing world is needed to uncover additional, nuanced

barriers to uptake of EO data in the energy sector given particular
local context.

Nonetheless, the results of this review outline several
important challenges, gaps, and opportunities for the continued
and expanded utilization of EO data for the energy sector
in developing countries. For example, though myriad EO
information is available for free online, internet access can be
unreliable or unavailable altogether, especially in remote areas.
Some models require automated access to data continuously so
that they can run with the most recent data outputs. Without
consistent access to the internet, obtaining and/or applying EO
data, models, tools, or other resources will remain difficult. To
mitigate this risk, EO data could be accessed using infrastructure
in urban areas where accessibility may be higher. Data could
also be offered via data CDs or external hard drives where
access is limited. Or, electricity providers could partner with
other organizations, stakeholders, or value-added providers to
access information or EO data in alternative arrangements.
However, open data sharing is uncommon in several regions
of the world, potentially making these types of arrangements
complicated. For example, in Kenya, a qualitative study found
that although study participants recognized the importance of
sharing data, additional trust was needed between researchers
before open data sharing policies would be followed (Jao et al.,
2015). A study in Vietnam showed that while many Western
countries share consensus around policy, infrastructure, and
best practices in data sharing, these practices are less often
found in areas where institutions or universities face funding
limitations (e.g., increasing a feeling of competition between
potential collaborators) or a lack of technical, governance,
or practical solutions for data sharing (Merson et al., 2015).
Pursuing a culture of transparency and data sharing, alongside
concrete policies, best practices, and other drivers, is important
within the research and applied management or decision-
making communities.

Evenwith the ability to access EO data online, analysts or other
electricity provider staff may lack general awareness of relevant
EO resources, not to mention how to appropriately apply such
resources to their planning and decision-making efforts. NASA,
NOAA, and other organizations have developed freely available
land use, “nighttime lights,” vegetation index products, and other
useful datasets that are available in simple web-basedmap viewers
or data interfaces that are meant to be easily accessible for
end users. However, without capacity building efforts, through
technical trainings, demonstrations or provision of case studies,
understanding where and how to obtain EO resources–and how
to appropriately apply them—will remain a barrier. This can
lead to uncertainty or hesitation in using EO data for improved
decision making andmanagement. Understanding data or model
uncertainty or other technical limitations is especially important,
particularly with regard to climate information and projections,
and training should accompany initial application of related
datasets. Training on topics could be as preliminary as data
management using statistical or geospatial software to advanced
statistical or AI techniques.

If existing, such training is not always available in the
language, time zone, or context needed for a developing country.
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Researchers and data providers should ensure that trainings or
capacity building is available and adapted for audiences around
the world. Trainings should take place over extended periods
of time so that time-constrained staff are able to accommodate
the additional workload. Focusing on several staff increases the
likelihood of technical capabilities remaining despite turnover.
Documentation of procedures including analyses, modeling, or
other activities should be detailed and maintained over time.

Limitations in staffing is a common but serious practical
human capacity challenge. Many electricity providers (as well
as government ministries working in environmental planning
or energy) are short-staffed and face technical expertise gaps.
If management is aware of the benefit of using EO for energy
management, resources could be committed over time to increase
analysis and planning utilizing EO resources. In addition,
collaboration between the private sector and government or
research bodies, who may have resources or technical expertise,
could benefit electricity providers. While consultants are often
able to provide these services, relying on third party expertise is
expensive and unsustainable.

Instead, further expanding knowledge of EO data applications
through case studies, training, and technical assistance specific
to electricity providers can facilitate access to reliable electricity
in developing countries and lead to increased use of renewable
energy and microgrids, and natural disaster risk reduction.
There are resources available for training, such as NASA’s
Applied Remote Sensing Training (ARSET) program22 which
provides online trainings (guided and self-instructed) on several
EO applications. NOAA’s Climate Resilience Toolkit (CRT)23

includes case studies and other resources on EO applications
across many sectors. Other organizations such as IRENA or
the International Energy Agency (IEA) similarly offer resources
for EO application in the energy management sector. While
several key resources for energy management using EO exist
(Eckman and Stackhouse, 2012), additional work is needed to
determine the use of those resources in developing countries.
Further, additional attention should be paid to if applications are
specifically tailored and adapted for electric utilities or electricity
providers in the developing world.

There are also several opportunities for the research
community to address these barriers and contribute to the
uptake of EO data for utilities in the developing world. Data
providers could provide or compile case studies on how their
datasets have been utilized by other users. Case studies of existing
applications could highlight leaders who have demonstrated EO
data applications. Data providers can seek to make their datasets
available in intuitive, easily accessible formats, providing ample
documentation, and guidance on possible applications. User
communities have noted in previous studies that datasets should
be tailored to user requirements in easily accessible formats that
reflect the software used for analysis (Lautenbacher, 2006).

Communities of practice or other data end user networks offer
opportunities for knowledge exchange and other mechanisms for

22https://arset.gsfc.nasa.gov/
23https://toolkit.climate.gov/

data users to share information and learn from each other. South-
South information exchange, collaboration, and communication
also allow for sharing of common ideas, needs, challenges, and
innovative solutions within and between developing countries.
The United Nations (UN) has advocated for South-South
exchange in tackling issues such as climate change, inequality,
and energy access24. In fact, several UN partnerships exist based
on several themes relevant to sustainable development; data
applications for energy access and management should be added
as a key topic of interest25. The UN Framework Convention
of Climate Change (UNFCCC) has similarly called for South-
South cooperation and “triangular cooperation” on technologies
for adaptation to climate change on topics such as technology
transfer and capacity building26.

Nonetheless, through broad multi-directional dialogue
exchange to understand end user needs and opportunities
from the earth observation research community, refinement of
existing tools and resources, or the development of new tools may
be able to continue to progress efforts to improve electrification,
renewable energy management and disaster management in
the energy sector among developing nations. There may be the
opportunity to leverage existing venues and networks that bring
the EO research community together, such as the Group on
Earth Observations (GEO) or internationally attended scientific
meetings such as the American Geophysical Union (AGU)
or American Meteorological Society (AMS). Participation in
these organizations can allow for the development of innovative
solutions and set new research strategies for future efforts.
Government science agencies as well as other private data
providers could have a role in facilitating those linkages. For
example, the SERVIR program27, jointly funded by NASA and
the US Agency for International Development (USAID), offers a
unique opportunity for funded research teams to work together
with data users to apply EO datasets to development-related
questions including governance of resources and communities.
Similar efforts could encourage a focus on energy management,
providing scientific expertise to practical applications brought
forward by practitioners, decision-makers, or other stakeholders
in developing countries. Increased attention, in the form
of funding, research, technology transfer, and dialogue,
should be paid to energy applications given the central role
that energy access plays in so many SDGs as an enabler of
sustainable development28.

AUTHOR CONTRIBUTIONS

AL conducted the literature review and was the primary author
of the manuscript. AT, NS, and TM assisted in writing. AT
submitted the manuscript. All provided review and revision.

24https://www.un.org/press/en/2019/dev3388.doc.htm
25http://www.expo.unsouthsouth.org/resources/gssd-expo-solutions/
26http://unfccc.int/ttclear/misc_/StaticFiles/gnwoerk_static/tn_meetings/

18e2ee898379443c85397bd1b3d210a4/ee99ac~7846a44132b3bd6c3dca058c5a.pdf
27https://www.nasa.gov/mission_pages/servir/index.html
28https://sustainabledevelopment.un.org/?page=view&nr=2749&type=13&

menu=1634

Frontiers in Environmental Science | www.frontiersin.org 11 August 2019 | Volume 7 | Article 12318

https://arset.gsfc.nasa.gov/
https://toolkit.climate.gov/
https://www.un.org/press/en/2019/dev3388.doc.htm
http://www.expo.unsouthsouth.org/resources/gssd-expo-solutions/
http://unfccc.int/ttclear/misc_/StaticFiles/gnwoerk_static/tn_meetings/18e2ee898379443c85397bd1b3d210a4/ee99ac~7846a44132b3bd6c3dca058c5a.pdf
http://unfccc.int/ttclear/misc_/StaticFiles/gnwoerk_static/tn_meetings/18e2ee898379443c85397bd1b3d210a4/ee99ac~7846a44132b3bd6c3dca058c5a.pdf
https://www.nasa.gov/mission_pages/servir/index.html
https://sustainabledevelopment.un.org/?page=view&nr=2749&type=13&menu=1634
https://sustainabledevelopment.un.org/?page=view&nr=2749&type=13&menu=1634
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Leibrand et al. Earth Observations for Reliable Energy

FUNDING

This work was funded through NASA Grant
No. 80NSSC18K0325.

ACKNOWLEDGMENTS

The authors acknowledge the support of funding from NASA
in making this research possible, as well as the contributions

of Dr. Richard Eckman and Dr. Paul Stackhouse. The authors
also acknowledge the support of Dr. Craig Zamuda of the US
Department of Energy.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fenvs.
2019.00123/full#supplementary-material

REFERENCES

Ahlborg, H., and Hammar, L. (2014). Drivers and barriers to rural electrification

in Tanzania and Mozambique–Grid-extension, off-grid, and renewable energy

technologies. Renew. Energy 61, 117–124. doi: 10.1016/j.renene.2012.09.057

Alfieri, L., Cohen, S., Galantowicz, J., Schumann, G. J.-P., Trigg, M. A., Zsoter, E.,

et al. (2018). A global network for operational flood risk reduction. Environ. Sci.

Policy 84, 149–158. doi: 10.1016/j.envsci.2018.03.014

Altaweel, M. (2018). Black Marble: Nighttime Lights Data from NASA, GIS Lounge.

Anderson, K., Ryan, B., Sonntag, W., Kavvada, A., and Friedl, L. (2017). Earth

observation in service of the 2030 Agenda for Sustainable Development. Geo

Spatial Inform. Sci. 2, 77–96. doi: 10.1080/10095020.2017.1333230

Areizaga, J., Sano, M., Medina, R., and Juanes, J. (2012). Improving public

engagement in ICZM: a practical approach. J. Environ. Manage. 109, 123–135.

doi: 10.1016/j.jenvman.2012.05.006

Asian Development Bank (2017) Bangladesh: Bangladesh Power System

Enhancement and Efficiency Improvement Project: Initial Environmental

Examination. Manila: ADB.

Bell, D., Gray, T., Haggett, C., and Swaffield, J. (2013). Re-visiting the ‘Social Gap’:

public opinion and relations of power in the local politics of wind energy. Env.

Polit. 22, 115–135 doi: 10.1080/09644016.2013.755793

BloombergNEF (2018). Climatescope: Emerging Markets Outlook 2018. Energy

Transition in the World’s Fastest Growing Economies. London: BloombergNEF.

Brown, M. E., Escobar, V. M., Aschbacher, J., Milagro-Pérez, M. P.,

Doorn, B., Macauley, M. K., et al. (2013). Policy for robust space-

based earth science, technology and applications. Space Policy 29, 76–82.

doi: 10.1016/j.spacepol.2012.11.007

Butler, C., Parkhill, K., and Pidgeon, N. (2011). “From thematerial to the imagined:

public engagement with low carbon technologies in a nuclear community,”

in Renewable Energy and the Public: From NIMBY to Participation, ed P.

Devine-Wright (London; Washington, DC: Earthscan), 301–316.

Cader, C., Radu, A., Bertheau, P., and Blechinger, P. (2018). “Remote sensing

techniques for village identification: improved electrification planning for

Zambia,” in Africa-EU Renewable Energy Research and Innovation Symposium

2018, eds M. Mpholo, D. Steuerwald, and T. Kukeera (Cham: Springer), 91–96.

doi: 10.1007/978-3-319-93438-9_7

Catalina, A., Torres-Barrán, A., Alaíz, C.M., andDorronsoro, J. R. (2019).Machine

learning nowcasting of PV energy using satellite data. Neural Proc. Lett. 1–19.

doi: 10.1007/s11063-018-09969-1

Central Electricity Authority (2002). Best Practices on Survey and Investigations of

Hydro Electric Projects. New Delhi: Central Electricity Authority.

Chauhan, A., and Saini, R. P. (2015). Renewable energy based off-grid rural

electrification in Uttarakhand state of India: technology options, modelling

method, barriers and recommendations. Renew. Sustain. Energy Rev. 51,

662–681. doi: 10.1016/j.rser.2015.06.043

Christidis, T., Lewis, G., and Bigelow, P. (2017). Understanding support

and opposition to wind turbine development in Ontario, Canada and

assessing possible steps for future development. Renew. Energy 112, 93–103.

doi: 10.1016/j.renene.2017.05.005

Cook, N., Campbell, R. J., Brown, P., and Ratner, M. (2015). Powering Africa:

Challenges of and U.S. Aid for Electrification in Africa. Washington, DC:

Congressional Research Service.

Cornejo-Bueno, L., Casanova-Mateo, C., Sanz-Justo, J., and Salcedo-Sanz, S.

(2019). Machine learning regressors for solar radiation estimation from satellite

data. Solar Energy 183, 768–775. doi: 10.1016/j.solener.2019.03.079

Devine-Wright, P. (2010). Public engagement with large-scale renewable energy

technologies: breaking the cycle of NIMBYism.Wiley Int. Rev. Clim. Change 2,

19–26. doi: 10.1002/wcc.89

Dugoua, E., Kennedy, R., and Urpelainen, J. (2018). Satellite data for the social

sciences: measuring rural electrification with night-time lights. Int. J. Remote

Sens., 39, 2690–2701. doi: 10.1080/01431161.2017.1420936

Eckman, R. S., and Stackhouse, P. W. Jr. (2012). CEOS contributions to informing

energy management and policy decision making using space-based Earth

observations. Appl. Energy 90, 206–210. doi: 10.1016/j.apenergy.2011.03.001

Eissa, Y., Marpu, P. R., Gherboudj, I., Ghedira, H., Ouarda, T. B. M. J., and Chiesa,

M. (2013). Artificial neural network based model for retrieval of the direct

normal, diffuse horizontal and global horizontal irradiances using SEVIRI

images. Solar Energy 89, 1–16. doi: 10.1016/j.solener.2012.12.008

Energisa (2017). Relatório de Interrupção em Situação de Emergência (ISE). Mato

Grosso: Energisa.

Energisa (2018). Satellite Imagery and Pruning Management: A Revolutionary

Approach. Tulsa: Distributech/Clarion Energy.

Engstrom, R., Newhouse, D., and Soundararajan, V. (2019). Estimating Small Area

Population Density Using Survey Data and Satellite Imagery: An Application to

Sri Lanka.Washington, DC: The World Bank. doi: 10.1596/1813-9450-8776

Global Science and Technology Inc (2016). NCEI Climate Products and Services

Market Analysis: Power Sector Engagement. Oxford: Acclimatise.

Global Wind Energy Council (2017). Global Wind Report: Annual Market Update

2017. Brussels: GWEC.

Guo, Y., Ru, P., Su, J., and Anadon, L. D. (2015). Not in my backyard, but not far

away from me: Local acceptance of wind power in China. Energy 82, 722–733.

doi: 10.1016/j.energy.2015.01.082

Haggett, C. (2009a). “Chapter 2: Planning and persuasion: public engagement in

renewable energy decision-making,” in Renewable Energy and the Public: from

NIMBY to Participation, ed P. Devine-Wright (London: Earthscan).

Haggett, C. (2009b). “Public engagement in planning for renewable energy,” in

Planning for Climate Change: Strategies for Mitigation and Adaptation for

Spatial Planners, eds S. Davoudi, J. Crawford, and A. Mehmood (London:

Taylor and Francis), 297–307.

Häme, L., Norppa, J., Salovaara, P., and Pylvänäinen, J. (2016). Power line

monitoring using optical satellite data. CIRED Workshop, Helsinki, Paper 0383.

Available online at: www.semanticscholar.org

Hanger, S., Komendantova, N., Schinke, B., Zejli, D., Ihlal, A., and Patt, A.

(2016). Community acceptance of large-scale solar energy installations in

developing countries: Evidence fromMorocco. Energy Res. Social Sci. 14, 80–89.

doi: 10.1016/j.erss.2016.01.010

Hasager, C. B., Badger, M., Mouche, A., Astrup, P., Stoffelen, A., and Karagali, I.

(2010). “Offshore wind resource estimation using satellite images: what are the

challenges?” in Geophysical Research Abstracts, eds H. Charlotte Bay, B. Merete,

M. Alexis, A. Poul, S. Ad, and K. Ioanna (Munich: EGU), 2010–4650.

Hindmarsh, R., and Matthews, C. (2008). Deliberative speak at the turbine

face: community engagement, wind farms, and renewable energy

transitions, in Australia. J. Environ. Policy Planning 10, 217–232.

doi: 10.1080/15239080802242662

Frontiers in Environmental Science | www.frontiersin.org 12 August 2019 | Volume 7 | Article 12319

https://www.frontiersin.org/articles/10.3389/fenvs.2019.00123/full#supplementary-material
https://doi.org/10.1016/j.renene.2012.09.057
https://doi.org/10.1016/j.envsci.2018.03.014
https://doi.org/10.1080/10095020.2017.1333230
https://doi.org/10.1016/j.jenvman.2012.05.006
https://doi.org/10.1080/09644016.2013.755793
https://doi.org/10.1016/j.spacepol.2012.11.007
https://doi.org/10.1007/978-3-319-93438-9_7
https://doi.org/10.1007/s11063-018-09969-1
https://doi.org/10.1016/j.rser.2015.06.043
https://doi.org/10.1016/j.renene.2017.05.005
https://doi.org/10.1016/j.solener.2019.03.079
https://doi.org/10.1002/wcc.89
https://doi.org/10.1080/01431161.2017.1420936
https://doi.org/10.1016/j.apenergy.2011.03.001
https://doi.org/10.1016/j.solener.2012.12.008
https://doi.org/10.1596/1813-9450-8776
https://doi.org/10.1016/j.energy.2015.01.082
www.semanticscholar.org
https://doi.org/10.1016/j.erss.2016.01.010
https://doi.org/10.1080/15239080802242662
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Leibrand et al. Earth Observations for Reliable Energy

Hu, T., and Smith, R. B. (2018). The impact of hurricane maria on the vegetation

of dominica and puerto rico using multispectral remote sensing. Remote Sens.

10, 827–847. doi: 10.3390/rs10060827

IDEAM (2018). Strengthening Hydrometeorological Monitoring. Early Warning

Systems and Climate Services in Colombia: The IDEAM, a Successful Case in

Latin America. Bogotá: IDEAM.

International Energy Agency (2014). Africa Energy Outlook: A Focus on Energy

Prospects in Sub-Saharan Africa. Paris: OECD/IEA. doi: 10.1787/weo-2014-en

International Energy Agency (2017a). Energy Access Outlook 2017: From Poverty

to Prosperity. Paris: OECD/IEA.

International Energy Agency (2017b). Southeast Asia Energy Outlook 2017.

Paris: OECD/IEA.

International Hydropower Association (2018). Hydropower Status Report: Sector

Trends and Insights. London: IHA.

IPCC (2012), “Summary for policymakers,” in Managing the Risks of Extreme

Events and Disasters to Advance Climate Change Adaptation, eds C. B.

Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, et al.

(Cambridge; New York, NY: A Special Report of Working Groups, I., and

II of the Intergovernmental Panel on Climate Change; Cambridge University

Press), 1–19.

Isagen Productive Energy (2015). Environmental Management Plan: Miel I

Hydroelectric Power Plant. Medellin: Isagen.

Jang, H. S., Bae, K. Y., Park, H., and Sung, D. K. (2016). Solar power prediction

based on satellite images and support vector machine. IEEE Trans. Sustain.

Energy, 7, 1255–1263. doi: 10.1109/TSTE.2016.2535466

Jao, I., Kombe, F., Mqalukore, S., Bull, S., Parker, M., Kamuya, D., et al. (2015).

Research Stakeholders’ views on benefits and challenges for public health

research data sharing in kenya: the importance of trust and social relations.

PLoS ONE 10:e0135545. doi: 10.1371/journal.pone.0135545

Jimenez, J. (2016). Informe de Gestión. Panama City: ESTESA.

KenGen (2018). Request for Proposals (RFP) for Development of an Integrated

Spatial Resources Management for KenGen. Nariobi: KenGen.

Klein, L., Wamburu, J. M., and Hamann, H. (2018). A Deep Learning Framework

for Vegetation Management for Electrical Utilities Using Multispectral

High-Resolution Satellite Imagery. Washington, DC: American Geophysical

Union, EP51E−1873.

Korup, O., Seidemann, J., and Mohr, C. H. (2019). Increased landslide activity on

forested hillslopes following two recent volcanic eruptions in Chile.Nat. Geosci.

12, 284–289. doi: 10.1038/s41561-019-0315-9

Kosmopoulos, P. G., Kazadzis, S., El-Askary, H., Taylor, M., Gkikas, A., Prestakis,

E., et al. (2018). Earth-observation-based estimation and forecasting of

particulate matter impact on solar energy in Egypt. Remote Sens. 12, 1870–1893.

doi: 10.3390/rs10121870

Kosowatz, J. (2018). Using AI to Manage the Grid. New York, NY: ASME.

Lahoz, W. A., and Schneider, P. (2014). Data assimilation: making sense of Earth

Observation. Front. Environ. Sci. 28, 1–28. doi: 10.3389/fenvs.2014.00016

Langer, K., Decker, T., and Menrad, K. (2017). Public participation in wind

energy projects located in Germany: which form of participation is the key to

acceptance? Renew. Energy 112, 63–73. doi: 10.1016/j.renene.2017.05.021

Lantz, E., Roberts, O., and Dykes, K. (2017). Trends, Opportunities, and Challenges

for Tall Wind Turbine and Tower Technologies, Presented at the AmericanWind

Energy Association Wind Power 2017 Conference, Anaheim, California. Golden,

CO: NREL.

Larson, E. C., and Krannich, R. S. (2016). “A Great Idea, Just Not Near Me!”

understanding public attitudes about renewable energy facilities. Soc. Nat.

Resources 29, 1436–1451. doi: 10.1080/08941920.2016.1150536

Lautenbacher, C. C. (2006). The global earth observation system

of systems: Science serving society. Space Policy 22, 8–11.

doi: 10.1016/j.spacepol.2005.12.004

Li, G., Tan, Q., Xie, C., et al. (2018). The transmission channel tower

identification and landslide disaster monitoring based on INSAR,

Intl. Arch. Photogrammetry Remote Sens. Spat. Info Sci. 42, 807–813.

doi: 10.5194/isprs-archives-XLII-3-807-2018

Liu, L., Bouman, T., Perlaviciute, G., and Steg, L. (2019). Effects of trust and public

participation on acceptability of renewable energy projects in the Netherlands

and China. Energy Res. Soc. Sci. 53, 137–144. doi: 10.1016/j.erss.2019.03.006

Long, J., Giri, C., Primavera, J., and Trivedi, M. (2016). Damage and recovery

assessment of the Philippines’ mangroves following Super Typhoon Haiyan.

Mar. Pollut. Bull. 109, 734–743. doi: 10.1016/j.marpolbul.2016.06.080

Longwei, L., and Dengsheng, L. (2016). Mapping population density

distribution at multiple scales in Zhejiang Province using Landsat

Thematic Mapper and census data. Int. J. Remote Sens. 37, 4243–4260.

doi: 10.1080/01431161.2016.1212422

Maclean, I. M. D., Inger, R., Benson, D., Booth, C. G., Embling, C. B.,

Grecian, W. J., et al. (2014). Resolving issues with environmental impact

assessment of marine renewable energy installations. Front. Mar. Sci. 75, 1–5.

doi: 10.3389/fmars.2014.00075

Mann, M. L., Melass, E. K., and Malik, A. (2016). Using VIIRS Day/Night band

to measure electricity supply reliability: preliminary results from Maharashtra,

India. Remote Sens. 8, 711–723. doi: 10.3390/rs8090711

Martín-Martín, A., Orduna-Malea, E., Thelwall, M., and Delgado López-Cózar,

E. (2018). Google Scholar, Web of Science, and Scopus: a systematic

comparison of citations in 252 subject categories. J. Informetr. 12, 1160–1177.

doi: 10.1016/j.joi.2018.09.002

McNeish, R., Rigg, K. K., Tran, Q., and Hodges, S. (2019). Community-based

behavioral health interventions: developing strong community partnerships.

Eval. Program Plann. 73, 111–115. doi: 10.1016/j.evalprogplan.2018.12.005

Merson, L., Phong, T. V., Nhan, L. N. T., Dung, N. T., Ngan, T. T. D., Kinh, V. N.,

et al. (2015). Trust, respect, and reciprocity: informing culturally appropriate

data-sharing practice in Vietnam. J. Empirical Res. Hum. Res. Ethics 10,

251–263. doi: 10.1177/1556264615592387

Mojaddadi, H., Pradhan, B., Nampak, H., Ahmad, N., and bin Ghazali, A. H.

(2017). Ensemble machine-learning-based geospatial approach for flood risk

assessment using multi-sensor remote-sensing data and GIS. Geomat. Nat.

Hazards Risk 8, 1080–1102. doi: 10.1080/19475705.2017.1294113

Natarajan, L., Rydin, Y., Lock, S. J., and Lee,M. (2018). Navigating the participatory

processes of renewable energy infrastructure regulation: a ‘local participant

perspective’ on the NSIPs regime in England and Wales. Energy Policy 114,

201–210. doi: 10.1016/j.enpol.2017.12.006

National Academies of Sciences, Engineering and Medicine (2015). Continuity of

NASA Earth Observations from Space: A Value Framework. Washington, DC:

The National Academies Press.

National Academies of Sciences, Engineering and Medicine. (2018). Thriving on

Our Changing Planet: A Decadal Strategy for Earth Observation from Space.

Washington, DC: The National Academies Press.

National Research Council (2003). Using Remote Sensing in State and Local

Government: Information for Management and Decision Making. Washington,

DC: NAP.

National Research Council (2007). Earth Science and Applications from Space:

National Imperatives for the Next Decade and Beyond. Washington, DC: NAP.

Novellino, A., Jordan, C., Ager, G., Bateson, L., Fleming, C., and Confuorto, P.,

(2018). “Remote sensing for natural or man-made disasters and environmental

changes” in Geological Disaster Monitoring Based on Sensor Networks,

eds. T. Durrani, W. Wang, and S. Forbes (Singapore: Springer), 23–31.

doi: 10.1007/978-981-13-0992-2_3

Oshri, B., Hu, A., Adelson, P., Chen, X., Dupas, P., Weinstein, J., et al. (2018).

“Infrastructure Quality Assessment in Africa using Satellite Imagery and Deep

Learning” in Proceedings of the 24th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (New York, NY: ACM), 616–625.

doi: 10.1145/3219819.3219924

Parkins, J. R., Rollins, C., Anders, S., and Comeau, L. (2018). Predicting intention to

adopt solar technology in Canada: The role of knowledge, public engagement,

and visibility. Energy Policy 114, 114–122. doi: 10.1016/j.enpol.2017.11.050

Pellizzone, A., Allansdottir, A., De Franco, R., Muttoni, G., and Manzella, A.

(2015). Exploring public engagement with geothermal energy in southern Italy:

a case study. Energy Policy 85, 1–11. doi: 10.1016/j.enpol.2015.05.002

Quansah, D. A., Adaramola, M. S., and Mensah, L. D. (2016). Solar Photovoltaics

in Sub-Saharan Africa – Addressing Barriers, Unlocking Potential. Energy

Procedia 106, 97–110. doi: 10.1016/j.egypro.2016.12.108

Ramlal, B., Davis, D., and De Bellot, K. (2018). A rapid post-hurricane building

damage assessment methodology using satellite imagery. West Indian J. Eng.

41, 74–83.

Frontiers in Environmental Science | www.frontiersin.org 13 August 2019 | Volume 7 | Article 12320

https://doi.org/10.3390/rs10060827
https://doi.org/10.1787/weo-2014-en
https://doi.org/10.1109/TSTE.2016.2535466
https://doi.org/10.1371/journal.pone.0135545
https://doi.org/10.1038/s41561-019-0315-9
https://doi.org/10.3390/rs10121870
https://doi.org/10.3389/fenvs.2014.00016
https://doi.org/10.1016/j.renene.2017.05.021
https://doi.org/10.1080/08941920.2016.1150536
https://doi.org/10.1016/j.spacepol.2005.12.004
https://doi.org/10.5194/isprs-archives-XLII-3-807-2018
https://doi.org/10.1016/j.erss.2019.03.006
https://doi.org/10.1016/j.marpolbul.2016.06.080
https://doi.org/10.1080/01431161.2016.1212422
https://doi.org/10.3389/fmars.2014.00075
https://doi.org/10.3390/rs8090711
https://doi.org/10.1016/j.joi.2018.09.002
https://doi.org/10.1016/j.evalprogplan.2018.12.005
https://doi.org/10.1177/1556264615592387
https://doi.org/10.1080/19475705.2017.1294113
https://doi.org/10.1016/j.enpol.2017.12.006
https://doi.org/10.1007/978-981-13-0992-2_3
https://doi.org/10.1145/3219819.3219924
https://doi.org/10.1016/j.enpol.2017.11.050
https://doi.org/10.1016/j.enpol.2015.05.002
https://doi.org/10.1016/j.egypro.2016.12.108
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Leibrand et al. Earth Observations for Reliable Energy

Rinaldo, R., Coppola, D., Walawalkar, R., and Thacker, H. (2017).

Integrated Applications for Microgrids in Developing Economies: Webinar.

Paris: ESA.

Robinson, C., Hohman, F., and Dilkina, B. (2017). “A deep learning approach

for population estimation from satellite imagery” in Proceedings of the 1st

ACM SIGSPATIALWorkshop on Geospatial Humanities (NewYork, NY: ACM),

47–54. doi: 10.1145/3149858.3149863

Román, M., Wang, R., Shrestha, R., Yao, T., and Kalb, V. (2019). Black Marble User

Guide Version 1.0. Washington, DC: NASA.

Said, N., Pogorelov, K., Ahmad, K., Riegler, M., Ahmad, N., Ostroukhova, O., et al.

(2018). “Deep learning approaches for flood classification and flood aftermath

detection” in MediaEval 18 (Sophia Antipolis).

Schöpfel, J. (2010). “Towards a Prague Definition of Grey Literature” in Twelfth

International Conference on Grey Literature: Transparency in Grey Literature

(Prague: Národní technická knihovna).

Schwarz, B., Pestre, G., Tellman, B., Sullivan, J., Kuhn, C., Mahtta, R.,

et al. (2018). “Mapping floods and assessing flood vulnerability for disaster

decision-making: a case study remote sensing application in senegal” in

Advanced Remote Sensing Technology for Tsunami Modelling and Forecasting,

eds P. P. Mathieu and C. Aubrecht (Boca Raton: CRC Press), 293–300.

doi: 10.1007/978-3-319-65633-5_16

SIEPAC (2004). Geotechnical Study and Classification of Soils in the Line of

Transmission. SIEPAC Final Review, Revision 01: Tomo V – Nicaragua. San

José: SIEPAC.

Stevens, F. R., Gaughan, A. E., Linard, C., and Tatem, A. J. (2015).

Disaggregating census data for population mapping using random

forests with remotely-sensed and ancillary data. PLoS ONE 10:e0107042.

doi: 10.1371/journal.pone.0107042

Stiles, G., and Murove, C. (2018). SADC Renewable Energy and Energy Efficiency

Status Report. Paris: REN21.

Urmee, T., Harries, D., and Schlapfer, A. (2009). Issues related to rural

electrification using renewable energy in developing countries of Asia and

Pacific. Renew. Energy 34, 354–357. doi: 10.1016/j.renene.2008.05.004

Van Nguyen, M., Arason, S., Gissurarson, M., and Pálsson, P. G. (2015). Uses

of Geothermal Energy in Food and Agriculture: Opportunities for Developing

Countries. Rome: FAO.

Van Westen, C. J. (2000). Remote sensing for natural disaster management. Int.

Arch. Photogrammet. Remote Sens. 33, 1609–1617.

Varshney, K. R., Chen, G. H., Abelson, B., Nowocin, K., Sakhrani, V., Xu, L., et al.

(2015). Targeting villages for rural development using satellite image analysis.

Big Data 3, 41–53. doi: 10.1089/big.2014.0061

Walker, G., Cass, N., Burningham, K., and Barnett, J. (2010). Renewable

energy and sociotechnical change: imagined subjectivities of ‘the public’

and their implications. Environ. Plann. A 42, 931–947. doi: 10.1068/

a41400

Wan, C., Zhao, J., Song, Y., Xu, Z., Lin,., J., et al. (2015). Photovoltaic and solar

power forecasting for smart grid energy management. CSEE J. Power Energy

Syst. 1, 38–46. doi: 10.17775/CSEEJPES.2015.00046

Wang, X., and Xie, H. (2018). A review on applications of remote

sensing and Geographic Information Systems (GIS) in water resources

and flood risk management. Water 10, 608–619. doi: 10.3390/w1005

0608

Washaya, P., Balz, T., andMohamadi, B. (2018). Coherence change-detection with

sentinel-1 for natural and anthropogenic disaster monitoring in urban areas.

Remote Sens. 10:1026. doi: 10.3390/rs10071026

Wekesa, F., and Gichini, B. (2016). The Use of GIS in Geothermal Resource

Management—A Case Study of Olkaria Geothermal Project. Nairobi: KenGen.

World Energy Council (2016).World Energy Resources 2016. London: WEC.

Young, O. R., and Onoda, M. (2017). “Chapter 1.4 Taxonomy of Roles,” in Satellite

Earth Observations and Their Impact on Society and Policy, eds M. Onoda and

O. Young (Singapore: Springer), 13–17.

Yu, M., Yang, C., and Li, Y. (2018). Big data in natural disaster management: a

review. Geosciences 8:165. doi: 10.3390/geosciences8050165

Conflict of Interest Statement: All authors are employed by Battelle Memorial

Institute, a non-profit research institute. All authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Leibrand, Sadoff, Maslak and Thomas. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Environmental Science | www.frontiersin.org 14 August 2019 | Volume 7 | Article 12321

https://doi.org/10.1145/3149858.3149863
https://doi.org/10.1007/978-3-319-65633-5_16
https://doi.org/10.1371/journal.pone.0107042
https://doi.org/10.1016/j.renene.2008.05.004
https://doi.org/10.1089/big.2014.0061
https://doi.org/10.1068/a41400
https://doi.org/10.17775/CSEEJPES.2015.00046
https://doi.org/10.3390/w10050608
https://doi.org/10.3390/rs10071026
https://doi.org/10.3390/geosciences8050165
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


ORIGINAL RESEARCH
published: 03 September 2019
doi: 10.3389/fenvs.2019.00127

Frontiers in Environmental Science | www.frontiersin.org 1 September 2019 | Volume 7 | Article 127

Edited by:

Daniel Eric Irwin,

Marshall Space Flight Center (NASA),

United States

Reviewed by:

Guy Jean-Pierre Schumann,

University of Bristol, United Kingdom

Daniel Lapidus,

RTI International, United States

*Correspondence:

Perry C. Oddo

perry.oddo@nasa.gov

Specialty section:

This article was submitted to

Interdisciplinary Climate Studies,

a section of the journal

Frontiers in Environmental Science

Received: 01 June 2019

Accepted: 16 August 2019

Published: 03 September 2019

Citation:

Oddo PC and Bolten JD (2019) The

Value of Near Real-Time Earth

Observations for Improved Flood

Disaster Response.

Front. Environ. Sci. 7:127.

doi: 10.3389/fenvs.2019.00127

The Value of Near Real-Time Earth
Observations for Improved Flood
Disaster Response
Perry C. Oddo 1,2* and John D. Bolten 2

1Universities Space Research Association, Columbia, MD, United States, 2Hydrological Sciences Laboratory, NASA

Goddard Space Flight Center, Greenbelt, MD, United States

Information is a critical resource in disaster response scenarios. Data regarding the

geographic extent, severity, and socioeconomic impacts of a disaster event can help

guide emergency responders and relief operations, particularly when delivered within

hours of data acquisition. Information from remote observations provides a valuable tool

for assessing conditions “on the ground” more quickly and efficiently. Here, we evaluate

the social value of a near real-time flood impact system using a disaster response case

study, and quantify the Value of Information (VOI) of satellite-based observations for rapid

response using a hypothetical flooding disaster in Bangkok, Thailand. MODIS imagery

from NASA’s Land, Atmosphere Near real-time Capability for EOS (LANCE) system is

used to produce operational estimates of inundation depths and economic damages.

These rapid Earth observations are coupled with a decision-analytical model to inform

decisions on emergency vehicle routing. Emergency response times from vehicles routed

using flood damage data are compared with baseline routes without the benefit of

advance information on road conditions. Our results illustrate how the application of

near real-time Earth observations can improve the response time and reduce potential

encounters with flood hazards when compared with baseline routing strategies. Results

indicate a potential significant economic benefit (i.e., millions of dollars) from applying near

real-time Earth observations for improved flood disaster response and management.

Keywords: value of Information, near real-time, emergency response, applied Earth observations, socioeconomic

INTRODUCTION

Natural disasters like floods can have devastating societal impacts. Direct damages from flooding,
such as the loss of human life or the destruction of infrastructure have immediate social
ramifications, while indirect impacts like reduced business production or loss of income can lead
to more protracted socioeconomic effects (Haraguchi and Lall, 2015). This is especially true in
regions like the Lower Mekong River Basin (LMRB), where its combination of high population
density, seasonal monsoons, and low-lying topography make it particularly susceptible to flooding
(Gale and Saunders, 2013) (Figure 1a).

Managing flood hazards in such a flood-prone region requires an acute understanding of the
risk of future events. Flood risks are defined by the function of the probability of occurrence, the
exposure (e.g., population and assets subject to flooding), and vulnerability, which is a measure of
the society’s ability to cope with an event (Koks et al., 2015). Emergency management operations
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FIGURE 1 | (a) Map of Lower Mekong River Basin countries with flood extent from 2011 event (pink shaded region). (b) Study extent showing results of the triangular

interpolated network (TIN) produced by extracting land elevations from around the perimeter of the flood extent. (c) Resulting inundation depth raster produced by

flood impact analysis.

are typically divided into four phases: Preparedness, Response,
Recovery, and Mitigation (Altay and Green, 2006). Preparedness
refers to the capacity-building period before a disaster strikes.
After the onset of an event, the Response phase focuses on
saving lives and averting additional damages. Post-event activities
include Recovery, in which communities seek to return to pre-
flood capabilities, and Mitigation, which refers to resiliency
initiativesmeant to strengthen the community from future events
(Howden, 2009).

Each stage in the disaster management cycle presents its own
set of challenges, with the highest uncertainties occurring in the
Response phase immediately after a disaster strikes (Okuyama,
2003; Ortuño et al., 2013). A single flood event can impact
multiple interdependent systems, such as telecommunications,
transportation, and power infrastructure, thereby hindering

coordination between decision makers, emergency responders,
and populations in need (Comfort et al., 2004).

In such situations, information about the extent, severity,
and impacts of flooding becomes a time-critical resource. The
2005 World Disasters Report notes that in disaster response
scenarios, information can be considered as vital a form of aid
as “. . .water, food, medicine, or shelter,” with respect to its ability
to save lives and extend resources (Walter, 2005). Due to the high
uncertainties and dynamic nature of the disaster response phase,
information is most valuable when obtained as soon after the
flood event as possible. In a survey of 52 EmergencyManagement
Agencies, 82% expressed a need for flood impact information
within 24 h of the event (Hodgson et al., 2009).

Geospatial technologies like remote sensing, aerial footage, or
volunteered geographic information (VGI) provide a valuable
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way of obtaining useful intelligence at broader scales and with
shorter latency than traditional methods (Hodgson et al., 2009;
Goodchild and Glennon, 2010; Haworth and Bruce, 2015). These
Earth-observing technologies have been widely incorporated
into the emergency management cycle, from providing early
warning systems for flood preparation (Koriche and Rientjes,
2016) to improving hazard mapping to inform long-term
planning and mitigation strategies (Shivaprasad Sharma et al.,
2017). Yet despite the obvious benefits of Earth observations,
comparatively little research has been done to quantify the
value that these data provide, particularly in the Response phase
(Hodgson et al., 2009).

To this end, there remain several questions regarding
the extent to which satellite-based information can aid in
disaster management and planning, rapid response cases, and in
improving the allocation of resources. To investigate the utility
of operational Earth observations during a flood, we present
a simple decision-analytical model based on a hypothetical
flood response scenario. We use a Value of Information (VOI)
framework to identify management objectives that could benefit
from applied satellite data, and determine the potential time and
cost savings achieved when incorporating geospatial information
into emergency vehicle routing. In this context, routing is defined
as the turn-by-turn navigation from a predefined dispatch center
to a location of potential need. We accomplish this by coupling
flood inundation estimates from an operational near real-time
(NRT) satellite-based flood monitoring system with an open-
source routing platform to evaluate how management objectives
perform both in the presence and absence of advance flood
information. In doing so we attempt to address the following
main questions:

(1) How does the presence of NRT flood impact information
affect the response times of emergency vehicles when
compared to baseline routes?

(2) What model parameters are most important in determining
vehicle response times?

(3) What is the potential social value of rapid earth observations
when applied to a disaster response scenario?

Thus, the objective of this study is not to assess the
performance of the flood monitoring system against other flood
monitoring methods or products. Rather, we aim to get a better
understanding of the value of these or similar satellite-based NRT
observations and quantify to what degree they can potentially
improve and support disaster risk management and response
decisions. The following sections introduce the concept of VOI
and review its application to geospatial data. We then describe
the model design using the 2011 Southeast Asia Floods as an
illustrative example. Finally, we present the results and discuss
the broader impacts from the analysis.

BACKGROUND AND PREVIOUS WORK

Quantifying the Value of Information
In a decision making context it is important to understand
how the introduction of new information can improve a
given strategy. VOI methodologies were originally presented in

economics literature as a way to quantify the marginal benefits
produced by reducingmodel uncertainties (Howard, 1966, 1968).
In economic terms, the VOI describes the amount of money
a rational agent would be willing to pay for new information
before making a decision (Alfonso et al., 2016). While these
concepts have been widely implemented in the field of decision
analysis, they have become increasingly common in Earth science
applications. Some recent examples include investigations into
learning about potential climate thresholds (Keller et al., 2007),
petroleum engineering (Bratvold et al., 2009), or drought
monitoring (Bernknopf et al., 2017). Here, we extend the VOI
concept to a flood-related disaster management scenario.

Since the creation of the first weather satellites, global Earth-
observing technologies have raised new questions about the
benefits of geospatial data (Mjelde et al., 1989; Obersteiner
et al., 2017). Macauley (2006) provides a broad overview of
the concept of VOI in decision making using a simple crop
harvesting scenario (Figure 2). In this example, a farmer has a
choice whether to harvest the crop immediately or to harvest
over the course 2 days. Harvesting over 2 days would net a
higher payout, yet there is a chance that if it rains, part of
the harvest could be ruined. Improved information about the
probability of rain would be valuable to the farmer, and the
information is of the most value when the farmer’s subjective
uncertainty is highest. In the diagram describing this decision

FIGURE 2 | Illustration of Value of Information based on the decision whether

or not to harvest crops. Table shows the expected payout matrix for the

decision of when to harvest. (a) Expected payout based on the subjective

probability of heavy rain in the future. (b) Expected Value of Information for

improved rain forecast. The dashed vertical line represents the point at which

the farmer’s uncertainty is highest, representing the highest value of

information. Figure adapted from Macauley (2006).
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problem, the vertical dashed line represents this threshold where
the farmer’s subjective belief about the probability of rain is the
most uncertain (in this case, p= 5/22.5, or∼22%). At this point,
the most the farmer would be willing to pay is $3,888; above that,
the expected costs of improved weather information outweigh its
benefits. This simple approach can be applied in numerous ways
to help quantify and convey the VOI for informing decisions.
In this analysis, access to satellite-based maps of inundated
regions serve as a proxy for information on the current state of
the world.

The Value of Applied Earth Observations in
Emergency Management
In the field of Emergency Response operations, improvements to
satellite spatial resolution and latency have led to a wide adoption
of geospatial informatics. Some data, such as those provided
through NASA’s Land, Atmosphere Near real-time Capability for
EOS (LANCE) system, can commonly be made available within
3 h of overpass, making it suitable for NRT applications (Davies
et al., 2015). Examples of such initiatives include NASA’s NRT
Flood Mapping (Ahamed et al., 2017; Fayne et al., 2017; Policelli
et al., 2017), UMD’s Global Flood Monitoring System (GFMS,
Wu et al., 2014), and the Dartmouth Flood Observatory (DFO,
Brakenridge and Anderson, 2006).

In the LMRB, several recent studies have demonstrated
how rapid Earth observations can be used operationally
to inform flood management. Ahamed and Bolten (2017)
produced automatic flood extents by applying a dynamic surface
water classifier to data from the Moderate-resolution Imaging
Spectroradiometer (MODIS) sensors on the Aqua and Terra
satellites. Oddo et al. (2018) then demonstrated how the resulting
flood extents can be combined with socioeconomic data to
produce rapid estimates of flood impacts using depth-damage
curves for different types of land cover and infrastructure. This
study attempts to determine how the flood detection and impact
assessment metrics produced by the preceding analyses can be
further applied to emergency response (Figure 3).

METHODS

To investigate how applied Earth observations can be used to
improve flood response operations, we consider a hypothetical
emergency response scenario based on the 2011 Southeast Asia
Floods. In this scenario, we use the output of the previously
described flood damage assessment to identify a number of
population sites that may have been impacted and require
emergency attention. Emergency response vehicles stationed at
dispatch centers are routed to each of the population sites and
their response times and navigation details are evaluated in the
presence and absence of information on flood conditions. The
following sections outline these steps in more detail.

Flood Impact Assessment: 2011 Southeast
Asia Floods
The 2011 Southeast Asia Floods resulted in the highest-ever
insured losses of any freshwater flood disaster (Gale and

Saunders, 2013). In parts of Thailand, rainfall increase of up to
143% combined with land subsidence to produce widespread
flooding in the region around Bangkok (Haraguchi and Lall,
2015). A surface flood extent raster for this 2011 flood was
obtained through the DFO, which maintains an archive of
historical events. Imagery collected by NASA’s MODIS sensor
shows the extent of surface inundation between December 24,
2011 and January 2, 2012 at a spatial resolution of 250-m
(Brakenridge et al., 2011) (Figure 1a). The flood extent was
vectorized using QGIS software and a triangular interpolated
network (TIN) was generated by sampling land surface elevations
around the perimeter (Figure 1b). The resulting TIN serves as
an estimate of flood surface elevation across the detected extent.
Subtracting the underlying digital elevation model (“Multi-
Error-Removed Improved-Terrain”—MERIT DEM) produces a
raster of estimated flood depths (Figure 1c) (Yamazaki et al.,
2017). For a more detailed discussion of the methodology
and limitations of this approach, see sections 3 and 5 of
Oddo et al. (2018).

Estimated flood depths were intersected with a land
use/land cover map produced by NASA SERVIR’s Regional
Land Cover Monitoring System (https://rlcms-servir.adpc.
net/en/landcover/). Land cover classifications were derived
from atmospherically-corrected imagery from Landsat 4, 5,
7, and 8 to produce a map of the entire LMRB at ∼30-m
ground resolution. Damages to specific land cover types were
assessed using regionally-derived depth-damage functions
(Oddo et al., 2018). Additionally, damages to populations
and infrastructure were estimated by intersecting flood
depths with population data from NASA’s Socioeconomic
Data and Applications Center (SEDAC) and open-source
infrastructure data from OpenStreetMap (OSM), respectively
(CIESIN, 2016; OpenStreetMap Contributors, 2019).

The resulting socioeconomic damage map
(Supplementary Figure 1) was used to identify a total of
75 potential population sites that may have been most highly
impacted by the flooding. Emergency response dispatch sites
were chosen as ambulance and fire station locations in OSM (n=
10). Finally, estimated flood depths were used to delineate areas
that were considered Highly Flooded to average vehicles. The
threshold for Highly Flooded areas was identified as 300mm of
inundation, according to the modeled relationship between flood
depth and vehicle speed in Pregnolato et al. (2017) (Figure 4).
This was found to be the average depth at which a passenger
vehicle would begin to float, signifying areas that would cause
the most significant delays to emergency vehicles. Regions within
the flood extent that exceed this threshold were exported as a
GeoJSON object using QGIS for use in the routing model. Those
areas that impacted yet were below the 300-mm threshold were
identified as simply Flooded.

Routing Model
The coordinate locations of the dispatch and populations
sites were used as endpoints for the vehicle routing model,
which was built using the open-source OpenRouteService (ORS)
navigation service. ORS provides free location based-services
generated from user-defined geographic data from OSM. In
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FIGURE 3 | Workflow for generating near real-time (NRT) routing information from Earth observations. MODIS imagery is ingested from LANCE server to produce

surface water extents. Extents are digitized and used to estimate flood depths and damage estimates. Finally, these damages can be incorporated into the value of

information analysis for emergency response.

addition to providing travel routes and navigation information
via a graphical front-end, ORS also provides an application
program interface (API) for the directions service with a variety
of customizable parameters. Among these parameters is an
“avoid_polygon” option, which allows users to identify the
coordinates of polygon vertices to avoid when calculating the
optimal routes (Figure 5). Route information is returned as
a GeoJSON object, which includes information on distance

(meters), travel time (seconds), and velocity (meters/second) for
each segment along the route. Average velocities across an entire
route were calculated for use in the decision analytical model
by averaging the travel time and distance across each individual
segment (see section Decision Analytical Model).

Vehicle routes were generated under both baseline conditions,
and in the presence of flood information. Baseline routing simply
used the coordinate locations from each of the 10 dispatch
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FIGURE 4 | Modeled relationship between flood depth and vehicle speed. Estimated function was used to determine extent of Highly Flooded zones for routing.

Figure adapted from Pregnolato et al. (2017).

centers and found the optimal route to each of the 75 population
sites for a total of 750 routes. Of these, a number of the
routes resulted in an unsuccessful API response (i.e., no viable
route found) and did not return an accompanying GeoJSON.
Possibilities for undetermined routes could be due to incomplete
road segments not attached to the full network or the lack of
a geolocated address at either the start or end points. These
were removed from the analysis, resulting in a total of 518
valid routes.

We contrast the baseline routes against those generated using
the NRT flood information. In this scenario, we assume the
vehicles have been given some advance warning of potentially
adverse road conditions and choose to circumvent the most
highly impacted regions. Here, we assign the coordinates of
the Highly Flooded polygon to the “avoid_polygon” parameter
when calculating routes (Figure 5c). Routes which intersect
flooded regions are assumed to experience a decrease in
velocity for the duration of the impacted road segment.
A velocity reduction coefficient, derived from the empirical
relationship between flood depth and vehicle velocity, is
used to impose slower speeds on impacted routes (Figure 6).
Routes which intersect Highly Flooded regions are assumed
to experience more severe reductions, modeled here as
reductions greater or equal to the 75th percentile of the
coefficient distribution.

Decision Analytical Model
For each of the 518 valid route combinations, we evaluate
how emergency response vehicles perform both under baseline
conditions and with the benefit of NRT Earth observations. To
do this we identify the following management objectives:

1. Minimize the length of impacted roads relative to the total
route length (O1). The objective function is:

1

r

r
∑

n=1

DF+DHF

DT
(1)

where DF is the “flooded” length, DHF is the Highly Flooded
length, and DT is the total route length for each route, r.

1. Minimize the expected value of emergency response time
(O2). The objective function is:

E

[

1

r

r
∑

n=1

DT

µr
+

DF

(µr ∗ α)
+

DHF

(µr ∗ β)

]

N

(2)

In this formulation, µ represents the average velocity for each
route, r, while α and β are stochastic rate reduction coefficients
which reduce the average velocity by a specified percentage
according to the degree of flooding. The E[ ]N notation refers
to the expected value for each of r routes over 10,000 uncertain
states-of-the-world. We focus on the expected (average) outcome
due to its emphasis on classic decision theory, which states
that a rational agent will seek to optimize expected utility (Von
Neumann and Morgenstern, 1945).

Sensitivity Analysis
Finally, we perform a one-at-a-time sensitivity analysis to
determine how variations in the model parameter inputs affect
the objective outcomes (Hamby, 1994). Sensitivity analyses can
serve as useful diagnostic tools to identify the parameters that
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FIGURE 5 | (a) Demonstration of OpenRouteService routing API from origin

point A to destination point B. (b) Example of “avoid_polygon” parameter in

which the system will route around a user-specified roadblock. (c) Coordinates

of the flood vertices used as “avoid_polygon” feature to simulate Highly

Flooded areas.

may require additional calibration and to identify potential
knowledge gaps. The one-at-a-time method is known as a local
sensitivity analysis because it quantifies the extent to which
individual parameters influence model output. We perform
this analysis by varying individual parameters in isolation

while holding all others constant. The isolated parameters are
sampled from the 1st to 99th percentile of its prior distribution
(Supplementary Figure 2). The results of this analysis then serve
to rank the parameters in order of their impact to model variance
(Saltelli, 2002).

RESULTS

The geographic distribution of baseline routes differed
significantly from the routes that avoided the Highly Flooded
areas (Figure 7a). Without any forewarning of possible flood
conditions, baseline routes optimized the route for fastest arrival,
often taking the most geographically direct path. Doing so,
however caused many of the baseline routes to unknowingly
intersect Flooded and Highly Flooded road segments. Routes
that avoided Highly Flooded areas were an average of 11.1 km
longer across all 518 route combinations. That said, by avoiding
the Highly Flooded areas, the routes utilizing the satellite-based
maps of flood inundation also incidentally avoided much of
the less severe Flooded regions. Baseline routes contained an
average of 16.6 km of impacted roadway (DF + DHF), while
the avoidance routes by definition encountered no Highly
Flooded areas (Figure 7b), and contained an average of 8.7 km
of Flooded roadway.

The response times for the baseline and avoidance routes
showed similar distributions. Baseline routes results had lower
minimum and maximum response times than the corresponding
avoidance routes, yet the median, mean (expected), and third
quartile response times of the avoidance routes were lower than
the baseline counterparts (Figure 8). When evaluating for the
expected response time over each uncertain SOW, routes that
avoided the Highly Flooded regions (and thereby much of the
Flooded region as well), were on average∼9 min faster.

The results of the one-at-a-time sensitivity analysis
demonstrate which parameters exert the largest influence
on the response time objective (Figure 9). The left pane shows
the percent of the total model variance attributable to each of
the individual parameters, with the width of the colored bars
representing the magnitude of the influence. Similarly, the
vertical displacement of the curves in the right pane indicate
the degree of sensitivity as parameters are varied from the 1st
to the 99th percentile of their prior distribution. We see that
the rate reduction coefficient for Flooded road segments, α, has
the highest degree of influence over the response time objective.
The comparatively smaller influence of the Highly Flooded
coefficient, β, may be explained by the fact that, on average,
Highly Flooded segments only comprised about 2.3% of the total
route length. Flooded segments comprised an average of 14% of
the total route length, indicating that vehicles were roughly six
times more likely to encounter roads that were Flooded but not
necessarily ones that were Highly Flooded.

DISCUSSION AND CONCLUSIONS

The disaster response scenario described in this study represents
a theoretical example of how NRT Earth observations can
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FIGURE 6 | Rate reduction coefficient used to adjust velocity of flooded road segments. Distribution derived from empirical relationship between water depth and

vehicle velocity outlined in Figure 4.

FIGURE 7 | (a) Geographic distribution of routes under baseline conditions (black) and with advance Earth observations (green) with opacity indicating density of

routes. (b) Example of single route combination. Inset graph shows relative lengths of Flooded and Highly Flooded roads (blue and red shading, respectively).

potentially be used to inform a disaster management decision.
When evaluating the social value of that decision, we can
relate our management objectives to an established economic
metric. In a review of Thai emergency services, Jaldell et al.
(2014) investigated the relationship between ambulance response
time and mortality to quantify the social benefits of improved
emergency operations. They found the value of a 1-min
decrease in response time for each dispatch over the course
of a year totaled 1.6 billion Thai baht (∼$50,500,000 US).
While Jaldell et al. (2014) doesn’t explicitly consider explore
flood disaster scenarios, they found that the greatest monetary
savings occurred during medical emergency and traffic accident
calls—both scenarios being likely results of extreme flooding.
The potential time savings demonstrated in this analysis are
highly dependent on the fidelity of the inundation estimates
and the choice of velocity reduction coefficient. Yet while the

apparent improvements may appear small initially (∼9min, on
average), when viewed in aggregate, the economic value of the
improved information can result in substantial cost reductions
and potential lives saved.

An important component of a NRT flood mapping system,
as demonstrated here, is how readily it can be deployed to
produce potentially useful information. While geospatial
data is increasingly commonplace in disaster response
and humanitarian logistics, only a small fraction of studies
operationally integrate real- or near-real time data (Özdamar
and Ertem, 2015; Yagci Sokat et al., 2016). Some of the variables
discussed in this analysis have non-trivial uncertainties (e.g.,
the depth raster and resulting damage map (see section
Caveats and Future Research Needs for a discussion of these
limitations). That said, imperfect information—delivered
operationally and at a latency determined by regional service
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providers and disaster responders—may often outweigh
more reliable information that comes too late (Eidsvik et al.,
2015).

We find that emergency response times are highly
dependent on the detected flood inputs, as well as the
relationship between estimated inundation depths and
vehicle speeds. When accounting for parametric uncertainties
and evaluating for model objectives over different route
combinations, we find that routes which circumvent
the most impacted regions (i.e., Highly Flooded) also
avoid additional Flooded regions, resulting in shorter
expected response times. The social value of these Earth
observations, particularly when evaluated in the context
of potential lives saved, can be on the order of millions of
dollars annually.

FIGURE 8 | Boxplots of expected (mean) response times across 10,000

states-of-the-world for 518 routes. Red star shows mean values.

CAVEATS AND FUTURE RESEARCH
NEEDS

While the results presented here demonstrate the potentially
high value of applied satellite information, the analysis has
some notable caveats and limitations. One such limitation is the
resolution and availability of the data used to generate the flood
detection and impact analysis. Because time is a critical factor in
any emergency response situation, MODIS imagery was selected
to produce the flood detection due to its fast revisit time (twice
daily) and low latency (∼3 h). An important tradeoff is that the
imagery is only of moderate resolution (250-m) and is unable
to penetrate cloud cover, making it not as suited for applications
requiring high-resolution floodmaps. Future implementations of
the analysis could feasibly utilize any flood extent—regardless of
the sensor used to generate it—providing that imagery is available
immediately following the event.

The impact assessment portion of the analysis also includes
non-trivial uncertainties. Depth estimates were generated using
the MERIT DEM, which improves on many of the sources
of error in other global elevation datasets (e.g., vegetation
biases, striping, and speckling), yet still has significant errors in
vertical accuracy (Yamazaki et al., 2017). The use of open-source
materials, including the OpenRouteService routing platform
and infrastructure data from OpenStreetMap provide important
benefits for accessibility and scalability, yet they often present
the challenge of being incomplete and potentially inconsistent.

Therefore, the socioeconomic damage map used to identify the

potential population sites (Supplementary Figure 1) also has

associated uncertainties. Despite this, we find that the provisional
damage estimates can still be instructive for identifying areas that

may be most highly impacted [for more detail, see the discussion

section 5.2—Damage Estimate Validation in Oddo et al. (2018)].

Another broad limitation of this analysis is how it models

the complex geophysical and behavioral dynamics inherent

in a real-world disaster response scenario. The flood extent
used here is currently treated as static. In reality, floods are

highly dynamic phenomena, causing inundated areas to change

over time. Furthermore, in a real-life scenario there could be

FIGURE 9 | One-at-a-time (OAT) sensitivity analysis for the emergency response time objective. Width of the bars and steepness of curve inclines indicate the degree

of sensitivity to each model parameter.
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a number of compounding factors that could affect vehicle
response times during flood conditions. Congestion from other
cars due to evacuations, for instance, would likely be a significant
factor, particularly in a densely populated area like Bangkok.
This analysis only considers road impediments due to flood
inundation, whereas other factors (e.g., fallen trees, construction,
or downed power lines) would likely also occur.

On the behavioral side, the model contains several simplifying
assumptions for how individuals respond to the potentially
chaotic conditions during a flood event. For one, it is assumed
that the satellite data is the only source of information on
regional road conditions, and that this information is able to be
communicated readily to emergency responders. In reality, there
may be other sources of intelligence available (i.e., radios, satellite
phones, or aerial imagery) and the ability to process and transmit
flood maps may be impaired. We also make assumptions for how
emergency responders utilize the satellite data. Currently, once a
driver decides on a specified route (either the most direct route
under baseline conditions or when avoiding the Highly Flooded
regions), they do not deviate over the course of the trip. A more
realistic portrayal would allow a rational driver to continue until
encountering an impediment before subsequently choosing to
re-route. Finally, we only consider ground transportation as a
mechanism for emergency response, whereas a coordinated flood
operation would likely involve support through other means
(e.g., helicopters or boats).

Due to the assumptions described here, this analysis is not
intended to be prescriptive in how to route emergency vehicles
in a real-world flood situation. Rather, the results are intended
to serve as a didactic example of how applied Earth observations
can be operationally combined with econometric data to produce
insights for decision-making. Future refinements to this system
could include routes constrained by actual emergency vehicle
observations, more advanced behavior on the part of the drivers,
and a more dynamic treatment of how flooded areas change
through time.
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Tethys Platform is an open source framework for developing web-based applications

for Earth Observation data. Our experience shows that Tethys significantly lowers the

barrier for cloud-based app development, simplifies the process of accessing scalable

distributed cloud computing resources and leverages additional software for data and

computationally intensive modeling. The Tethys software development kit allows users

to create web apps for visualizing, analyzing, and modeling Earth Observation data.

Tethys platform provides a collaborative environment for scientists to develop and deploy

several Earth Observation web applications across multiple Tethys portals. We work in

partnership with leading regional organizations world-wide to help developing countries

use information provided by earth-observing satellites and geospatial technologies for

managing climate risks and land use. This paper highlights the several Tethys portals

and web applications that were developed as part of this effort. Implementation of the

Tethys framework has significantly improved the Application Readiness Level metric for

several NASA projects and the potential impact of Tethys to replicate and scale other

applied science programs.

Keywords: Tethys platform, earth observations, decision-making, hydroinformatics, SERVIR

INTRODUCTION

SERVIR is a joint initiative of the National Aeronautics and Space Administration (NASA)
and the United States Agency for International Development (USAID) that seeks to
build the capacity of local decision-makers dealing with a wide range of climate-related
problems by making global earth observation data and associated tools available. The
SERVIR model brings together regional hubs supported by USAID grants with scientific
experts in the areas of Agriculture and Food Security, Water Resources and Hydroclimatic
Disasters, Land Cover and Land Use Change and Ecosystems, and Weather and Climate.
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For example, the NASA Applied Sciences Program funds
scientists from United States (US) institutions with the
expectation that technology transfer to the hubs and local
stakeholders in their regions occurs by the end of the 3-year grant
period. The NASA Applied Sciences Program measures research
becoming integrated into stakeholder and end-user decision-
making using a 9-point Application Readiness Level (ARL) scale
where ARL 1 represents basic research and ideas in their infancy
to ARL 9 where data, models, and tools are approved, and fully
integrated by the stakeholders and have sustained use in making
decisions (see Figure 1).

The hydrologic cycle and other earth systems including
the atmosphere and land surface processes are extremely
complex integrated systems. Understanding and simulating
the hydrologic cycle has been a scientific challenge for many
decades, which is further complicated by the vast amount
of data, computational horsepower, and human resources
it requires (Sood and Smakhtin, 2015). In too many ways
and places, our understanding of the hydrologic system is
incomplete, and humanity suffers from a lack of information
that leads to uninformed decisions. To address this challenge, the
NASA/USAID SERVIR program is leveraging advances in earth
observations, numerical weather prediction, supercomputing,
hydrologic modeling, cloud services, big data visualization, and
the collaboration of the scientists that make up the SERVIR
Applied Science Team (AST).

The term “Big Data” has been used variously to describe the
massive and growing quantity of data available for scientific
research, as well as advanced machine learning methods
for interpreting and deriving meaning from extremely large
databases. When considering the massive datasets themselves—
before attempting to automatically extract relationships and

FIGURE 1 | NASA application readiness level scale. Available online at: https://www.nasa.gov/sites/default/files/files/ExpandedARLDefinitions4813.pdf (accessed

September 20, 2016).

predictions from the data—it is critical but also challenging to
achieve basic data management and visualization. This problem
is exacerbated by the variety of often domain-specific file formats
and software tools that have evolved to support these data.

For example, within the hydrologic modeling community,
time-series oriented data is often stored in simple text files or
Microsoft Excel files. The Consortium of Universities for the
Advancement of Hydrologic Science (CUAHSI) has developed
networked database systems using web services to advance data
storage and sharing beyond these simple methods (Tarboton
et al., 2009; Ames et al., 2012; Kadlec et al., 2015; Horsburgh
et al., 2016). Additionally, the Open Geospatial Consortium
(OGC) has promulgated data structure and storage standards
such as WaterML and TimeseriesML (OGC, 2012). However,
even with these developments over the past decade, much
time series hydrology data continues to be stored and shared
using less efficient and outdated methods. In the atmospheric
sciences, multivariate flexible data and file format standards such
as NetCDF (Rew and Davis, 1990) are commonly used. And,
in the case of earth observations data, the Hierarchical Data
Format (HDF) has been widely adopted (Folk et al., 1999). This
distinction between time series and spatially-oriented data has
been termed a “digital divide” and various efforts have been
undertaken to integrate spatial and temporal data standards,
thereby “crossing” this digital divide (Maidment et al., 2010; Salas
et al., 2012).

While tight integration of spatial (e.g., earth observation)
and temporal (e.g., hydrologic observations) data in a unified
data model and associated file format would be a potentially
optimal solution to this earth systems science big data problem,
another point-of-view on the challenge is to maintain original
datasets in their “native” file formats and rather, develop
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FIGURE 2 | Cyberinfrastructure requirements for hydrologic information

development.

visualization and analysis tools that can work with these formats
directly. This is the approach that has largely been adopted by
SERVIR Hubs working to make earth science data actionable
for decision-makers and stakeholders. Indeed, various web
application technologies exist to support such decision-support
tools that operate on spatial and temporal data. For example, Esri
Story Maps technology has been used for community outreach
in the SERVIR program (Adams et al., 2016) and Esri ArcGIS
Online technology has been used to develop interactive flood
inundation forecast and mapping tools (Souffront Alcantara,
2018). In addition to these well-established commercial tools for
web application development, a number of custom tools built on
open source web technologies have recently been presented in
the literature for the analysis and visualization of large spatial
and temporal data sets (Brendel et al., 2019; da Costa et al.,
2019; González et al., 2019; Markert et al., 2019; Strömbäck
et al., 2019). The remainder of this paper explores the use of a
relatively new big data visualizationweb application development
toolkit called Tethys Platform and its adoption and use within
the SERVIR community. Tethys Platform was developed to help
lower barriers to web application development in water and
environmental modeling (Swain et al., 2016) and has been used
successfully as an open source data portal in several applications
(Ames et al., 2018; Jackson et al., 2018; Markert et al., 2018;
Souffront Alcantara et al., 2018).

TETHYS PLATFORM

In the era of big data, desktop computing is not efficient or
sustainable, which has the benefit of leveling the computational
and decision-making landscape for stakeholders, especially in

developing countries where the resources to maintain hardware,
software, and technical capacity is limited. International
development and relief agencies pour millions into strengthening
capacity of water resources managers with often only a small
return on investment, because while initial investment in
cyberinfrastructure and training may yield working systems,
the ability of the receiving countries/agencies to maintain the
systems is limited. Figure 2 illustrates the cyberinfrastructure
requirements for developing good hydrologic information from
earth observation and modeling resources. At the center are
computational resources that must have internet access and
bandwidth to continually update both in situ and remotely sensed
data along with numerical weather predictions that are used to
drive hydrologic and hydraulic models.

The challenge is that there remains a heavy burden to
both stand up such systems as well as operate and maintain
them in such a way that actionable information is sufficiently
reliable to enable informed decision making for national
hydrometeorological services. Even after making the investment
of such systems, a large amount of the effort and resources are
expended just to produce the information necessary to make
good decisions. Cloud computing has become a powerful and
affordable solution that can aid in shifting the decision-making
responsibilities of local agencies from one of developing the
reliable hydrologic information needed for informed decision-
making to one of focusing on the application and decision-
support tools that are populated with established hydrologic
information services from reliable sources (see Figure 3).

Tethys Platform is a web-based app development framework
for rapid deployment of end-user-focused tools that follow
modern, consistent, scalable, cross-platform, reusable, web
programming paradigms. Tethys is a relatively new software
system built on commonly used web programming frameworks
(e.g., Django, GeoServer, PostGIS, and OpenLayers). It is stable
and supported by a growing user and developer community.
Tethys Platform leverages recent advances in cloud computing
to facilitate better use of large earth observation data sets and
water resource models as decision-making tools. These modeling
and visualization tools can be hosted on a server and used
by multiple remote users via a web interface, which eliminates
the need to procure and maintain high performance hardware
typically required by models. Further, it deals with issues related
to software installation and platform incompatibilities (Mac vs.
PC vs. Linux, etc.), monitor and install software updates, or
download large data sets; problems that are exacerbated in
regions where financial and technical capacity can be limited. An
internet connection and a web browser are all that is required to
access the models and associated data, which means challenges
associated with downloading data and updating software are not
a barrier to sustainable use.

The Tethys Platform software architecture is illustrated in
Figure 4. Tethys is built on the Django framework and Python
programming language—significantly lowering the barrier for
app development (Swain et al., 2016). Tethys Platform apps
are hosted in a Tethys Portal and are intended to ease the
burden of science information access by enabling web based
interaction with spatial resources stored in repositories such
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FIGURE 3 | Disruptive technologies for hydrologic information delivery.

as the commercial ArcGIS Online or open source approaches
such as GeoServer and Openlayers (Swain et al., 2016). The
base of the system is the Tethys Software Development Kit
(SDK) which integrates a broad suite of open source tools
for rapid development of web-based water resource data and
modeling applications. The Tethys software suite includes
components for distributed computing, spatial publishing,
geoprocessing, spatial data management, and visualization.
It includes external connections for cloud computing and
dataset storage and supports integration of both open source
components (GeoServer, OpenLayers, etc.) and proprietary
systems (ArcGIS Online, ArcGIS Server, and ArcGIS JavaScript
Mapping API) so that applications for stakeholders within
collaborative organizations such as SERVIR can be custom-
tailored to address a variety of needs and circumstances.

App views, or web pages, use the Django templating language,
but the Tethys framework provides a base template that includes
a standard layout for app pages with areas for a header,
navigation links, action buttons, and primary content rather than
requiring developers to start from scratch with each template
using Django. This reduces the amount of repetitive coding
required for developing web apps and also leads to a familiar user
interface experience.

Tethys Portal is the Tethys Platform component that provides
the primary runtime environment for Tethys web apps. It is
implemented as a Django website project and it extends Django
capabilities to provide the core website functionality that is often
taken for granted in modern web applications. It includes a user
account system complete with user profiles and a password reset
mechanism for forgotten passwords. It also provides a landing

page that presents the associated Tethys Platform instance and an
app library page that provides an access point for installed apps.
It includes an administrator backend that can be used to manage
user accounts, permissions, link to elements of the software suite,
and customize the instance. This architecture and the associated
apps have been developed at BYU and also now being used by the
SERVIR Global science coordination office (Figure 5).

SERVIR—HKH APPLIED SCIENCE TEAM

Tethys Platform, described above, has been used extensively
to support SERVIR Hub data visualization and dissemination,
and as the basis for several regional decision support tool. In
particular, we have applied this technology to support the Hindu
Kush Himalayan (HKH) SERVIR region. This region is often
referred as a disaster hotspot due to increasing geophysical and
hydro-meteorological events resulting in growing loss of lives and
livelihood support systems. The region accounts for 36% (940 out
of 2,564) of disaster events in Asia between 1900 and 2015 (Guha-
Sapir, 2009). Flooding is the most prominent disaster that affects
all the countries in the region (Shrestha and Pradhan, 2015).
International Center for Integrated Mountain Development
(ICIMOD) is a regional intergovernmental organization that
aims to support sustainable development in the HKH region
through information and knowledge generation and sharing
and evidence-based decision making to reduce the impact of
climate change. ICIMOD hosts the SERVIR HKH hub serving
five countries including Afghanistan, Bangladesh, Myanmar,
Nepal, and Pakistan. The aim is to enhance the capacity of
relevant institutes and people to use earth observation and
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FIGURE 4 | Tethys platform cloud-based app architecture for delivering SERVIR decision support tools.

FIGURE 5 | BYU Tethys portal (Left) and SERVIR global Tethys portal (Right).

geospatial technology-based solutions in four service areas,
including agriculture and food security, water resources and
hydroclimatic disasters, land use landcover and ecosystem, and
weather and climate.

To better serve the HKH countries, a series of consultation
and assessments were conducted to understand their needs and
capacities. Flood early warning was identified as one of the key

priorities by all of the countries. However, the existing capacity
and type of information needs varied by government agencies,
community organizations, and countries. Early warning and
transboundary flow were identified as key needs in Bangladesh
for both riverine and flash flood. In Nepal, both riverine flood
and flash flood warnings were identified as priorities. At present,
all the countries are familiar with the Global Flood Awareness
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System (GLOFAS) to support their flood warning service (Alfieri
et al., 2013). However, because of the coarse resolution of the
GLOFAS-based forecasts, they are applicable to only a few major
river systems. SERVIR promotes the use of earth observations
and builds capacity in the region by linking projects of the NASA
AST to the region’s needs.

The SERVIR AST projects in the HKH region aim to enhance
the capacity of ICIMOD to better serve the stakeholders flood
early warning needs. In this context, the AST team brings the
tools and models to address the modeling and information
gaps and build capacity of ICIMOD to address the needs of
its stakeholders. The ICIMOD team engages with users and
stakeholders to develop customized dissemination tools, build
capacity of stakeholders and validate the model results. The
following sections describe the four primary AST projects and
how each was able to leverage the Tethys Platform to provide
a consistent and easy to use system for water management and
forecasting of both floods and long-term storage and drought.

South Asia Streamflow Prediction From

ECMWF Ensemble Forecasts
A high-density large-scale streamflow prediction system covering
South Asia was developed using the GloFAS runoff, ERA
Interim data, and the RAPID routing model with sufficient
detail to provide local forecasts where decisions are made. The
workflow to generate these forecasts was deployed completely
on the cloud. Two principal Tethys web applications exist to
interact with the results, while a REST application programmer
interface (API) has also been developed to easily retrieve data
without the need of a web interface. GloFAS is an ensemble
hydrologic model that generates 51 different runoff forecasts
for the major rivers of the world on a global grid with a
resolution of 16 km2 on a continuous basis. A 52nd forecast
is generated at a resolution of 8 km2. GloFAS was released in
2011 by ECMWF and the European Commission’s Joint Research
Center (JRC) as part of the Copernicus Emergency Management
Services and has been operational since July 2011. The GloFAS
system is composed of an integrated hydrometeorological
forecasting chain and of a monitoring system that analyzes
daily results and shows forecast flood events on a dedicated
web platform (Alfieri et al., 2013). This model uses real-
time and historical observations in combination with a Data
Assimilation System (DAS) and a Global Circulation Model
(GCM). The underlying framework used to create GloFAS is
ECMWF’s Integrated Forecasting System (IFS). GloFAS uses
the HTESSEL for its land surface scheme. HTESSEL is a
hydrologically revised version of the Tiled ECMWF Scheme for
Surface Exchanges over Land (TESSEL) model (Balsamo et al.,
2009). This new land surface scheme corrected the absence of
a surface runoff component in its predecessor, among other
minor improvements.

The ERA-Interim data is the result of a global atmospheric
reanalysis produced also by ECMWF. This data covers from
January 1980 to December 2014 (35 years) for the entire
globe. One of the advantages of using reanalysis is that
the data provides a global view that encompasses many

essential climate variables in a physically consistent framework,
with only a short time delay (Dee et al., 2011). This
type of data becomes invaluable in areas where no actual
observed data are available and provides a surrogate in
regions where no historical observations are available. A runoff
derivative of this atmospheric reanalysis was produced on a
40 km2 global grid using a land surface model simulation
in HTESSEL.

Streamflow Prediction Tool Tethys App
The Streamflow Prediction Tool was created as part of the
initial experiment to produce higher resolution results on
stream networks in the United States (Snow, 2015). The
application now provides support for global watersheds and is the
primary web application used for visualization and dissemination
through an Application Programming Interface (API) to develop
customized solutions (see Figure 6).

Nepal Streamflow Prediction System Tethys App
As an alternate to accessing the entire South Asia stream
networks, or any of the larger modeled regions, a custom viewer
for a specific country or region can be developed through the
API. In this case a national model for Nepal was created as a
separate Tethys web application so that it could be customized for
use by the Department of Hydrology and Meteorology (DHM).
The streamflow network is derived from the subset of the larger
South Asia network and then using the unique ID of each
river the API to retrieve a streamflow forecast or retrospective
historical simulation can be retrieved and displayed. In this
instance in order to make the application more responsive a
workflow updates a local database of all streams through the API
each day as they are computed and then in real time the app
accesses forecasts from the local database rather than through
the API. Additional layers which indicate important geographic
references to provinces and districts have been added as could any
other layer’s functionality as needed by the specific stakeholders
(see Figure 7).

Bangladesh Transboundary Flow Tethys App
Bangladesh is a country that sits at the downstream of the Ganges
and Brahmaputra rivers, while the country itself represents
only about 8% of the entire drainage area belonging to those
two major networks. Because of this there are repeated floods
whose flows originate upstream and out of the country such
that good information is difficult to obtain. Because of this the
most important need was to have an application that provided
the streamflow forecast at these two major transboundary
locations along with other minor river networks that also
originate outside the country. The ECMWF ensemble forecasts
enabled through the streamflow prediction tool API along with
a Tethys application that displays the forecasts at each of the
transboundary rivers allows the Bangladesh Flood Forecast and
Warning Center (FFWC) access to a probabilistic forecast with
15 days of lead time that can be used in downstream hydraulic
and flood mapping applications (see Figure 8).
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FIGURE 6 | Tethys streamflow prediction tool for visualization and dissemination of the 15-day ECMWF ensemble global forecasts.

FIGURE 7 | Nepal streamflow prediction system derived from the global streamflow prediction tool.

The HKH Sub-seasonal-to-seasonal

Hydrological Forecast System (HKH-S2S)
The HKH and downstream areas in South Asia experience

some of the most significant sub-seasonal to seasonal (S2S)

variability on earth. The South Asian monsoon is both the
lifeblood of the region and a source of significant hazard. Its

precipitation sustains agriculture, feeds mountain snowpack and

glaciers, and replenishes surface and groundwater resources. But

torrential monsoon rains triggers floods and landslides, sub-

seasonal monsoon dry spells can cause crops to fail, and years of

weak monsoon can endanger food and water security across the

region. S2S prediction of HKH meteorology is a grand challenge
for atmospheric research and modeling, but significant progress

has been made in recent years. Forecasts like those produced by

the NASA Global Modeling and Assimilation Office (GMAO)

and the NOAA Climate Prediction Center (CPC) now offer

meaningful skill that can be applied to disaster preparedness and

water and agriculturemanagement. This is particularly true when
these atmospheric forecasts are applied to predict hydrological

conditions, including drought outlooks and estimates of S2S
flood risk. Hydrological forecasts derive skill both from the S2S
meteorological prediction and from accurate estimates of initial

hydrological conditions, including water storage in snow and soil
moisture, so an S2S hydrological forecast can be more skillful
than the meteorological forecast that drives it (see Figure 9).

Recognizing this potential, HKH-S2S makes use of a land
data assimilation system (LDAS)—in this case, the South Asia
Land Data Assimilation System (Ghatak et al., 2018)—to provide
near-real time hydrological monitoring. The LDAS consists
of a suite of gridded land surface models, parameterized
using satellite-derived estimates of vegetation, land use, and
other parameters, that draw meteorological forcing from a
combination of downscaled Global Data Assimilation System
(GLDAS) atmospheric analysis fields and precipitation estimates
from the Climate Hazards Group InfraRed Precipitation with
Stations (Funk et al., 2014) product. The LDAS also has
the capability to assimilate terrestrial water storage anomaly
estimates from GRACE and snow-covered area estimates
from MODIS. The LDAS provides automated near real-time
monitoring, and these monitoring products are disseminated
through a Tethys app (Figure 10). The LDAS is also used to
provide initial conditions for ensemble S2S forecasts. These
ensemble forecasts draw meteorological forcing fields from the
NASA GEOS forecast system (other forecasts may be added
in the future), downscaled using the Generalized Analog and
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FIGURE 8 | Bangladesh transboundary flows Tethys application.

FIGURE 9 | Nepal drought watch—national Tethys application.

Regression Downscaling (GARD) tool (Gutmann et al., 2018).
The resulting forecasts are used to generate probabilistic forecasts
of drought indicators defined in consultation with end users

throughout the region. These drought indicators can be accessed
as maps and timeseries products via two different Tethys
apps that have been created. The national drought monitoring
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FIGURE 10 | The SERVIR-HKH agricultural drought watch Tethys app.

system uses five parameters (soil moisture, precipitation, air
temperature, evapotranspiration, and standard precipitation
index) from the SALDAS dataset as the drought indicators, which
is further grouped in dekad (10 days), monthly and quarterly
intervals, making it more relevant as a drought application. The
system is highly interactive and can view a historical dataset
in time-series, draw points or polygon and view the charts of
the interested drought indices. During the SERVIR program,
large amounts of climate data has been generated by scientific
communities but the use of that data/information by decision
makers at local and management levels remain low. In-order to
fill the information gap, the drought monitoring system provides
a good visualization platform for these drought parameters to
meet the diverse needs of decision maker.

A second high-level agricultural drought watch Tethys app
was created to aggregate data over Nepal Districts (i.e., states)
and provide a series of plots with statistics that can be helpful
in assessing risk and making plans for agricultural productivity.

Grace
The Gravity Recovery and Climate Experiment (GRACE)
mission (Tapley et al., 2004), a collaborative effort between
NASA and the German Aerospace Center (DLR), measured
monthly anomalies in the Earth’s gravity field from 2002 to
2017. Because water has a high density−1,000 kg m−3–changes
in terrestrial water storage can be inferred from the gravity
anomalies measured by the two twin satellites of GRACE.
Note that the total quantity of water integrated vertically at
any given place of the Earth is not provided by GRACE, but
rather its variations compared to a long-term mean. In other
words, GRACE can tell us if there is more or less water than

usual (i.e., Terrestrial Water Storage Anomalies: TWSA), but
not how much water there actually is (i.e., Terrestrial Water
Storage: TWS). GRACE has also proven to be a useful asset
in estimating the otherwise unknown changes in groundwater
storage. To do so, estimates of water storage anomalies—for
snow, soil moisture, canopy interception, and surface water—are
obtained from numerical models (e.g., GLDAS: Rodell et al., 2004
and removed from the TWSA estimates to extract Groundwater
Storage Anomalies (GWSA). The value of such a methodology
has been demonstrated in numerous studies (e.g., Rodell et al.,
2009; Famiglietti et al., 2011; Castle et al., 2014) and is therefore
mature for water management applications. Yet, the analysis
involved in the combination of hydrological models and satellite
observations is complex and has been a barrier for the broader
use of GRACE-based estimates of Terrestrial Water Storage or
Groundwater Storage Anomalies.

An open-source software specifically tailored for the joint
analysis of GRACE and GLDAS data was therefore developed
to ease the access to satellite-based water availability assessment.
The software allows for the generation of on-the-fly estimates of
storage anomalies for the various components of the hydrologic
cycle and only requires the description of the study domain—in
the form of a shapefile—as input. A specific Tethys Application
was then developed to allow web-based servicing and exploration
of the data (Figure 11). The app displays aggregate times
series and raster animations of GRACE-derived water storage
anomalies for selected subregions. It displays results derived
using the JPL, CSR, and GFZ signal processing methods
(Frappart et al., 2010, 2011). It also displays the surface water
and soil moisture storage components obtained from the GLDAS
model (Syed et al., 2008). The groundwater storage component
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FIGURE 11 | GRACE Tethys app illustrating groundwater storage anomaly for the La Plata Basin in South America.

is found by subtracting the surface water and soil moisture
components from the total water storage obtained from the
GRACE data.

High Impact Weather Assessment Toolkit

(HIWAT)
The High Impact Weather Assessment Toolkit (HIWAT)
was designed for filling a gap in weather forecasting services
across the HKH region. In particular, HIWAT provides high
resolution, probabilistic-based forecasts of extreme weather
hazards (e.g., damaging winds/tornadoes, hail, lightning and
flash flooding). To do this, HIWAT utilizes the Weather
Research and Forecasting (WRF) model (Skamarock et al.,
2008) in the framework of the Unified Environmental Modeling
System (UEMS) (NWS, 2018), which is a collection of scripts
that facilitate a relatively simple means for managing the
workflow of numerical weather prediction (NWP). HIWAT
consists of a 12-member ensemble WRF configuration that
includes several combinations of four microphysical and
three planetary boundary layer parameterizations relevant to
thunderstorm initiation and evolution. To further capture
the range of possible forecast solutions, each ensemble
member uses a different initial and boundary condition
provided by the NCEP Global Ensemble Forecast System
(Zhou et al., 2017). Each HIWAT HKH member uses
a 12-km resolution outer domain over South Asia to
downscale the GEFS initial/boundary conditions to a 4-km
resolution convection-allowing model domain over Nepal
and Bangladesh.

A demonstration of HIWAT over the HKH region was
conducted during the pre-monsoon and monsoon seasons of
2018. The objective was to assess the capability and utility of
HIWAT for enhancing early warning services in the region. A
Tethys application was developed to facilitate efficient forecast
product interpretation (Figure 12). One of the most useful
features of this application is its data interrogation capabilities,
thereby enabling decision-makers to readily assess where, what
time and the probability of thunderstorm-related hazards during
the forecast period. This interactive app enables the user to
select a point (or draw a polygon) anywhere on the map to
interrogate the hourly forecasts data. Hence a decision-maker
(e.g., operational weather forecaster) can quickly assess where
strong storms can be expected during the first 24-h in the region
from eastern Nepal, across northern Bangladesh to northeast
India and central Bangladesh. Going a step further, the user
can also quickly ascertain frequent lightning, hail and damaging
winds can be expected in northern Bangladesh.

SERVIR SCIENCE COORDINATION

Given the low barrier to development as well as the replicability
of current applications and the success amongst principal
investigators assigned to the SERVIR-HKH hub, the SERVIR
Science Coordination Office (SCO) has leveraged the Tethys
platform to support existing applications, deployment of regional
Tethys portals beyond the HKH, and application development
for hubs and global services. The demand for web applications
from other regions supporting SERVIR services has grown
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FIGURE 12 | Tethys-based application for HIWAT ensemble forecast weather hazards.

FIGURE 13 | Tethys portals for SERVIR regional hubs. (top left) ICIMOD http://tethys.icimod.org/apps (top right) ADPC http://tethys-servir.adpc.net (bottom left)

AGRHYMET (bottom right) http://tethys.rcmrd.org.

and the Tethys application enables quick prototyping and
deployment of the applications within the portal framework
leading to additional Tethys portals in all of SERVIR’s
hubs (Figure 13).

In the case of East and Southern Africa, RCMRD is running a
complex coupled land surface crop model within an assimilation
framework call the Regional Hydrologic Extremes Assessment
System (RHEAS) (Andreadis et al., 2017). RHEAS was developed
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FIGURE 14 | Tethys-based application for the visualization of RHEAS outputs. The portal allows for the display and inspection of land surface outputs such as

drought onset, standardized precipitation, or soil moisture (Left) and crop yield trends and water stress (Right).

FIGURE 15 | AltEx web application user interface over Tonle Sap, Cambodia (Left) and water level chart as rendered in AltEx web application (Right). Figure taken

from Markert et al. (2019).

as part of an AST project and is used to support national
ministries in East and Southern Africa in monitoring and
forecasting drought and its impact on agriculture. The RHEAS
system is run in a Linux environment in a command line
interface, making it not ideal for end-users in the region. Tethys
Platform is being used to efficiently access the RHEAS database
(PostGIS) and visualize both the land surface components
in a user-friendly geographical interface. Though still in
development, Figure 14 shows both components of the RHEAS
output visualization. The portal allows the user to inspect the
land surface outputs, generate, plot and download time series
data. On the crop model page, the app generates the ensemble
spread of crop yield by county for the season at hand. Another
case that the SERVIR SCO has supported with the hubs is the
reimplementation of the EcoDash (Poortinga et al., 2018) and the
Mekong Suspended Sediment application into Tethys Platform.

As a global application provided by the SERVIR SCO to the
hubs and the Earth science community, the Altimetry Explorer
(AltEx) (Markert et al., 2019) was developed using Tethys
to make global water levels data derived from altimetry data
available to stakeholders. The AltEx application automatically
extracts Jason-2 and Jason-3 data from data sources and
allows users to dynamically select overpass segments to display
water level data. Figure 15 displays the AltEx user interface

where a water layer is provided, users select a start and end
point on the altimetry ground track that intersect with water,
and the extracted water level time series is provided. This
application is also API enabled allowing users programmatically
query the application and use the returned water level
data for other use. As future needs for global services and
regional applications arise the SERVIR SCO will continue
to support the development and use of Tethys within the
SERVIR network.

CONCLUSIONS AND FUTURE

DIRECTIONS

This paper presented and discussed a number of web applications
developed by SERVIR AST members primarily using the
open source Tethys Platform software development toolkit
for accessing, visualizing, analyzing spatial and temporal earth
observation data and providing stakeholder decision support.
While many tools and technologies exist to support these types
of applications, we found that the Tethys Platform did indeed
lower many barriers to web app development allowing for team
members with a variety of technical backgrounds to actively
contribute to creating these apps. The developed tools meet our
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definition of a “web app” as essentially single function, self-
describing, “easy” to use, web-based applications presented in
a unified portal. As such, these web apps can be considered
significantly distinct from “web pages” inasmuch as these apps
are extremely modular and can be installed and uninstalled
in different Tethys Portals as needed to support the needs of
individual user communities. Some of the apps developed and
presented here could be readily deployed and made useful in
any of the SERVIR Hubs, however, regionally specific apps, or
apps that are focused problems not present in certain hubs, can
be installed or installed in specific portals. In all more than
20 Tethys apps were created in support of the applied science
developed by all four of the principal investigators of the HKH
hub and deployed across five different SERVIR portals as well as
the BYU portal.

Because much of this work presented here has only recently
been completed, we recognize the lack of extensive user statistics,
usability analysis, and other metrics indicating exactly how
successful these apps are in supporting on the ground decision
making. We anticipate addressing a part of this deficiency
in the near future by deploying new versions of the Tethys
Portals that integrate web-based analytics code to gather usage
statistics and user information. We also anticipate interesting
use and usability results to naturally emerge in the form of
white papers, and technical reports from the SERVIR Hubs.
The wide-ranging use of Tethys within SERVIR in such a short
time is evidence of its promise within SERVIR and perhaps
across similar applied sciences groups, however it is still early
and feedback is needed to further improve its usability for
SERVIR and other organizations that which to join the growing
community of this open-source project.

In terms of future technical work in this area, we are actively
pursuing the development of an “App Warehouse” which will
function much like an app store for a mobile device, allowing
user communities to readily launch an empty decision support
data portal and, through a few clicks and server commands,
identify and install apps from a library of Tethys Apps. This
work is currently underway as part of the NASA Water Science
Team GeoGLOWS project and is expected to yield operational
technology within the timeframe of this project. We expect
that this new effort will open more doors for both stakeholder
communities and also app developers in much the same way that
the availability of an app store for mobile devices has resulted
in an explosion of mobile apps and app developers. The Tethys
App Warehouse will likely host a relatively small number of

apps (in comparison to the Apple App Store, for example) but
it is expected that this approach can help motivate both the
development, deployment, and adoption of earth observation
data visualization and decision support tools throughout the
developing and developed world.

SOFTWARE AVAILABILITY

Tethys Platform:

• Purpose: Integrated package of open source web app
development tools and app portal environment targeted
toward water and environmental science and engineering.

• Source Code: https://github.com/tethysplatform/tethys.
• Developers: Brigham Young University, independent code

contributors, and the Tethys Platform Steering Committee.
• License: Open Source under the BSD 2-Clause

“Simplified” License.
• Initially Release Date: 2015.
• Current Release Version: 2.1.

Additional Software Tools:

• All of the apps presented in this paper are provided through
open source licenses on the Brigham Young University
Hydroinformatics Research Lab github.com repository located
at: https://github.com/BYU-Hydroinformatics.
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Capacity Building Approach and
Application: Utilization of Earth
Observation Data and Geospatial
Information Technology in the Hindu
Kush Himalaya
Rajesh Bahadur Thapa*, Mir A. Matin and Birendra Bajracharya

International Centre for Integrated Mountain Development, Kathmandu, Nepal

While the Earth observation (EO) data and geospatial information technology (GIT) are

getting more open and accessible, lack of skilled human resources and institutional

capacities are limiting effective applications in the Hindu Kush Himalayan (HKH) region.

This paper aims to present the capacity building approach and applications designed

to fill these gaps and empower decision makers and practitioners in using EO data and

GIT through information education and training. The capacity building approach consists

of four components: assessment, design, implementation, and monitoring (ADIM). The

assessment component focuses on identifying the needs and priorities of capacity

building for targeted groups or institutions. The design component develops training

content in order to execute the plan in coordination with subject matter experts (SME).

The implementation component executes the capacity building activity in any of these

four formats—standard training, training of trainers, on-the-job training, and exposure

learning. The monitoring component helps to identify the participants’ expectations,

learning achievements, and feedback so as to improve future capacity building events.

In the application of ADIM, we conducted needs assessment in four countries, designed

26 types of capacity building contents and implemented 39 capacity building events.

A range of thematic topics—from agriculture and food security, water resources and

hydro-climatic disasters, land use, land cover and ecosystem, weather and climate

services, to crosscutting issues—were covered in the events. Altogether, the activities

reached out to over 1,000 individuals (35% of them women) from over 200 unique

institutions in 30 countries. Institutional capacity was built for universities in Afghanistan

and Bangladesh to design and deliver courses independently. The capacity of partner

agencies were built to co-design and co-develop data and applications. The approach

also experienced challenges in the nomination process and in identifying women

participants due to the lack of women professionals in the field and in the respective

agencies. The ADIM approach and its workflow focused on bridging the gap between

the current trend and progression in EO and GIT fields and the existing state of capacity

of the agencies involved in the decision-making process. It promoted gender equity,

adopted frontier technologies, engaged SMEs and provided sustainable solutions, which

are starting to bring success stories in the region.

Keywords: capacity building, informal education, SME, SERVIR, GIT, HKH region
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INTRODUCTION

The increasing trend of extreme weather events and climate
uncertainty poses new challenges for governments, communities,
and individuals around the world. The mountain ecosystems of
the Hindu Kush Himalaya (HKH) region is more vulnerable to
climate change (Sharma et al., 2019). The Himalayan ecosystem
houses a population of around 250 million people in the
mountains; it is geologically fragile and experiences climate
change and rapid social transformations driven by globalization,
human conflicts, migration, infrastructural development,
urbanization, and tourism. The complex interaction of
these drivers is imposing major environmental and social
consequences on the region. To mitigate these consequences,
regional governments, communities, and individuals must work
together whereby they can design and implement measures
to adapt to change, deal with loss and damage, set up credible
measures to monitor various parameters, adopt new technologies
and methods, and raise awareness on climate change. Like other
developing countries, the countries in the HKH region also
lack the human, technical, and institutional capacities to deal
with many of these challenges (World Bank, 2005; GEO, 2006;
Merino and Carmenado, 2012; ECBI, 2018). Thus, they require
customized capacity building approach and implementation
programs which enhance organizational and technical abilities,
as well as relationships and values that enable countries,
organizations, groups, and individuals to carry out relevant
functions and achieve their development objectives (Morgan,
2006; Balcazar et al., 2008; Whittle et al., 2012; Chandler
and Kennedy, 2015). The challenges are multifaceted as they
influence actions at local, subnational, national, and regional
scales. The need for capacity building actions is highlighted
in Article 6 of United Nations Framework Convention on
Climate Change (UNFCCC), Article 10 of the Kyoto Protocol
and Article 11 of the Paris Agreement. As the importance
of information derived from Earth observing satellites and
geospatial technologies is being widely recognized for supporting
decisions on climate change mitigation worldwide, in this study,
we focused on capacity building in the area of data utilization
from Earth observation and geospatial information technology
(EO&GIT). This paper aims to present the capacity building
approach and applications designed to empower decision makers
and relevant practitioners by providing them with geospatial
data, tools, products, and services in order to act locally on
climate-sensitive issues such as disasters, agriculture, water, land
use, and ecosystems in the HKH region.

The HKH region covers the highest mountain range in the
world where difficult terrain and high degree of inaccessibility
present a formidable challenge to collect and manage data and
information (Bajracharya et al., 2015). EO data, in combination
with emerging GIT, helps to acquire information from remote
regions and provides viable solutions to bridge the important
data and knowledge gaps in the HKH region. The SERVIR-HKH
Initiative (http://servir.icimod.org) of the International Centre
for Integrated Mountain Development (ICIMOD), one of the
five hubs (implementing agencies) of SERVIR Global (https://
www.servirglobal.net/), is working on bridging the capacity
and data gaps in the region. SERVIR is a joint development

initiative of the National Aeronautics and Space Administration
(NASA) and the United States Agency for International
Development (USAID). It provides support to build the capacity
of governmental institutions and other development stakeholders
whereby EO data and GIT can be incorporated into the decision-
making process; whereby free and open information sharing
can be promoted through national and regional platforms
and collaborations; whereby innovative, user-tailored analyses,
decision-support services, and trainings that advance scientific
understanding can be developed; and thus information can be
delivered to those who need it (SERVIR Global, 2018).

Capacity building is an integral part of the SERVIR program
globally as well as of the SERVIR-HKH Initiative for the
HKH region. Capacity building for SERVIR-HKH refers to a
process wherein the necessary skills and abilities are developed
for using EO data and GIT in order to make and execute
decisions that enable effective, efficient, and sustainable results.
The initiative organizes training programs in the development
and use of EO and GIT applications for partner institutions and
end users to maximize the benefit of GIT in the region. The
initiative provides technical support and conducts customized
trainings, and also shares opportunities as per the needs of
its regional partners. SERVIR-HKH strengthens the capacity
of ICIMOD to forge better partnerships with the national
institutions in theHKH. Capacity building efforts under SERVIR-
HKH focus primarily on four thematic areas: Agriculture and
Food Security; Water Resources and Hydro-climatic Disasters;
Land Cover, Land Use and Ecosystems; and Weather and
Climate Services. Capacity building is at the center of this
whole initiative that supports institutions, communities and
individuals in Afghanistan, Bangladesh, Myanmar, Nepal, and
Pakistan (SERVIR-HKH, 2016). In an effort to meet the capacity
building demands from these countries, we have designed and
implemented an efficient capacity building approach. Details
about the approach, implementation results, and the lessons
learnt are discussed in the following sections.

OVERVIEW OF CAPACITY BUILDING GAPS
AND NEEDS IN THE REGION

While developing successful capacity building in EO&GIT
applications, we need to focus on the requirements of the national
institutions and the end users of the system. The essence of
implementing successful EO applications lies in the capacities of
the implementing agencies and end users to maintain and utilize
these applications to support the intended decision-making
process. In the HKH region, a number of country consultation
workshops were carried out in Afghanistan, Bangladesh, Nepal,
and Pakistan to identify the national priorities, requirements, and
gaps in terms of data, information products and the capacity
of the institutions to utilize EO&GIT in supporting decision-
making processes in the respective countries (ICIMOD, 2015,
2016a,b,c,d).

Data and Knowledge Gaps
The assessment of the institutions across the countries in
the region showed varying degrees of geospatial capacities in
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terms of GIT infrastructure and human resources. Some gaps
in geospatial capacities, including in the areas of data, and
physical and human resources, were observed. For instance,
most of the institutions in Bangladesh indicated that they
needed hydro-climatic data on a daily and weekly basis in
order to develop early warning forecasting products (e.g., for
riverine floods, flash floods, and abnormal water surge in the
coastal areas) and also to predict related vulnerabilities such as
riverbank erosion, crop loss, and landslide hazards (ICIMOD,
2016a). Institutions in Nepal mentioned that they needed data
based on elevation as there are big variations in terms of
land and climate variables (ICIMOD, 2016b,c). Afghanistan’s
institutions mentioned that their agencies relied on annual
data to produce geospatial products for irrigation planning
and also for assessing the impacts of hazards such as drought,
floods and landslides (ICIMOD, 2015). In some places, data
was required on a daily basis, in some others it was seasonal,
while in yet others, it was annual—so as to perform various
kinds of spatial analysis and to produce final map products
and services. There were also knowledge gaps in terms of
EO&GIT applications at decision- and policy making levels.
In the case of some countries, prominently Afghanistan, there
was insufficient coordination between the universities and the
government agencies.

Lack of Human Resources and Gender
Equality
Many institutions in the region are lacking in strategy to sustain
GIT projects as the majority of the geospatial applications
are project based, thereby creating challenges in maintaining
and upgrading GIT infrastructures, as well as in updating
geospatial data and strengthening human resources after the
completion of the project. Government agencies across the region
have been finding it difficult to retain qualified professionals
for a longer term in the field of EO&GIT. Besides, there
is a large gender gap in capacity building as indicated by
the educational attainment indicator of the region, where
Bangladesh, Nepal and Pakistan are ranked 116th, 123rd, and
139th, respectively, among 149 countries (World Economic
Forum, 2018). This is also reflected in the gender imbalance in
the GIT workforce in the HKH region. Despite the vital role
that women play in environmental management and decision-
making, their involvement and participation in GIT is rather
low. While the crucial role played by female professionals in
geospatial applications is recognized, their numbers are still
less in the institutions. Thus, capacity building and gender
equality have been acknowledged as twin challenges in building
pathways to sustainable development (ICIMOD, 2017). Capacity
building that promotes regional cooperation and knowledge
exchange via organizing trainings and workshops with the
collaboration of the regional member countries (RMCs) will
pave the way for the next generation to see more women in
the sphere of science and technology, thereby bridging the
gender gap.

Lack of Institutional and Technical
Capacity
The provision for sharing geospatial data among the institutions
in the region is poor. For instance, while Pakistan has fairly good
capacities and infrastructure for using geospatial technologies,
there are no platforms available for sharing data and products
beyond single intuitional use (ICIMOD, 2016d). There is also
a need to build geospatial capacities (infrastructural as well
as in terms of human resources) in assessing the impacts of
hydro-climatic disasters (e.g., flood-affected area mapping in
Bangladesh, landslide susceptibility in Nepal, change detection
in irrigated agriculture in Afghanistan) and in setting up early
warning and forecasting systems in Afghanistan, Bangladesh,
Nepal, and Pakistan. Furthermore, there is a lack of institutional
capacity in the educational arena to institute a formal degree in
geospatial technology. Presently, geospatial technology is being
taught in the region through modules as part of other degree
programs like in geography, water resources, and urban planning.
Moreover, the curriculum for these modules are not up to date,
and hence not in tune with the advancement in the field; the lack
of trained faculty is also a limitation in this area.

In order to fulfill all the gaps and needs systematically and
effectively, operational capacity building approach with verified
applications on the use EO&GIT is necessary to strengthen the
capacity of government institutions and other stakeholders in
the region.

MATERIALS AND METHODS

Keeping in view the diverse capacities of the institutions in
the region, the gaps need to be bridged in a coordinated
manner through customized training programs, institutional
strengthening, coordination, and regional cooperation. The
capacity building process must develop the skills and ability of
the users of EO&GIT so that they canmake and execute decisions
that ensure effective and efficient results. There are many ways
in which the capacity of the users can be built and they have
been evolving over the years (Potter and Brough, 2004; World
Bank, 2005; GEO, 2006; Balcazar et al., 2008; Wignaraja, 2009;
Merino and Carmenado, 2012; Whittle et al., 2012; Chandler
and Kennedy, 2015; Bergeron et al., 2017; Raynor et al., 2018).
Here, we have opted for a strategy based on the lessons that have
been learnt; so we have developed a sequential capacity building
workflow (Figure 1) with four major tasks: Assessment, Design,
Implementation and Monitoring—ADIM for short.

Assessment
The capacity assessment of the targeted institutions is very
important to identify gaps, requirements, and priority needs
for delivering effective capacity building programs. In this
regard, four country consultation workshops (Table 1) were
organized in 2015–2016 where gaps, needs, priorities, and
capabilities of organizations, communities and individuals were
systematically assessed. The need assessments were focused
on the four thematic areas of SERVIR: Agriculture and Food
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FIGURE 1 | ADIM—capacity building workflow.

TABLE 1 | Country consultation workshops in four countries in 2015–2016.

Country Location No. of

institutions

No. of

participants

Date

Afghanistan Kabul 13 27 14–15

December

2015

Bangladesh Dhaka 20 67 26 January

2016

Nepal Kathmandu 12 39 10 February

2016

29

March 2016

Pakistan Islamabad 23 37 23 February

2016

Participants from the relevant government organizations, universities, and research

institutes, bilateral and multilateral organizations attended these workshops.

Security (AFS); Water Resources and Hydro-climatic Disasters
(WRHD); Land Use, Land Cover and Ecosystems (LULC&E);
and Weather and Climate Services (WCS). The assessment
process helped us to gain an understanding about the necessary
EO&GIT products and services, physical capabilities (hardware
and software), and the available human resources in the targeted
organizations of the selected countries. The following specific
activities were completed during the consultation process in
each country:

• Introduced the overall framework and objectives of SERVIR-
HKH to the relevant partner agencies;

• Assessed the existing context in the country in terms of
the institutional capacity and expertise in the application of

EO&GIT in various climate services; and studied the status of
data availability and data access and sharing mechanisms;

• Identified the priorities for specific applications, products and
decision support tools in the relevant thematic areas; and

• Explored potential collaboration with institutions to engage in
the implementation of relevant capacity building activities.

The country consultation workshops helped to promote active
user engagement in strengthening the on-going partnerships,
building new ones and enhancing more engagements within the
SERVIR-HKH team and with the users and other stakeholders.
The partnership approach framework and principles were used in
the workshops as one of the tools for fostering more engagements
internally and externally, and for building awareness about
capacity building among the SERVIR-HKH team and other
stakeholders. With the feedback mechanism in place to know
about the users’/partners’ requirements in terms of specific
applications, capacity building needs/demands were identified.
This crucial information served as inputs to start on the
Design workflow.

Design
After understanding the requirements from the assessment
process, we, along with the SMEs, started designing the
curriculum based on background notes, learning objectives,
expected outcomes, targeted audience, and the daily agenda.
The necessary materials (theoretical and hands-on exercises),
including PPTs, manual, and exercise data, were prepared in
modular approach with real-world examples for each activity.
The training program devoted most of its time (60–80%)
to hands-on activities. Here, four types of capacity building
activities were designed: on-the-job training (OJT), standard
training, training of trainers (ToT), and exposure learning.

OJT activities are semi-structured, focusing on building the
capacity of partner institutes to enhance their capacity to develop,
operate and maintain specific applications and services. They
are designed keeping in view the background and skills of the
participants. In OJT, the participants worked with the SMEs
at ICIMOD on a rotational basis and learnt specific tasks
objectively. After a certain period of guided training (1 or 2
weeks), independent assignments related to specific applications
were handed out which were to be finished within a given period
of time, along with the submission of a report. As for “standard
trainings,” they are curriculum based designed for specific
purposes; some are general remote sensing and GIS trainings
while some are application oriented toward a specific subject
or cross-thematic areas. Professionals from various backgrounds
participate in these types of training. In addition, internships are
also accommodated. In the case of ToTs, they are aimed to build
the capacity of institutes to deliver training at their respective
institutes and countries so as to reach out to more participants.
These are designed for teaching staff from academic institutions
and focus not only on content but also on skills related to
the delivery of training (e.g., communication and presentation).
After receiving such training, it is expected that the participants
will be able to transfer knowledge to wider audiences in their
respective institutions. In ToT, the participants are also engaged
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in refining training materials, for instance, in the development
of hands-on exercises with local data and case studies. A ToT
program is different from a standard training program as it
includes additional contents in the form of adult training,
scientific communication, and monitoring and evaluation; also,
in this specific project, back-end support were rendered to the
participants of ToT while they were conducting trainings in
their home institutions. As regards “exposure learning,” it is of
a short term and designed to make the participants aware of
current development, applications, benefits, and future prospects
of EO&GIT. And these activities were often organized alongside
professional conferences, workshops, competitions and technical
exchanges. In exposure learning, the competitions were meant
for the youth; the conferences and workshops for decision-
and policymaking professionals; and the technical exchanges for
high-tech professionals.

While OJT and ToT were considered as institutional capacity
building activities, the other two were considered as individual
capacity building activities. The institutional capacity building
activities were very specific and focused on the requirements
of particular institutions; while the individual capacity building
activities were more general in nature, linking thematic
applications with common topics that cater to a wider audience.
In this regard, we worked closely with the thematic leads and
developed a training definition document (TDD) for each
capacity building activity. The TDD provides a comprehensive
capacity building activity plan that covers baseline information,
requirements, participants, training schedule, gender
considerations, activity inputs and the expected outputs from
particular products, and services. In addition, in the case of some
activities, we opted for a co-development module where multiple
stakeholders such as in-house professionals, SMEs (Flores-
Anderson et al., 2019) and user partners developed curriculum
and training materials, and shared the resources. The use of open
source GIS/RS software/platforms such as Quantum GIS, SNAP,
and Google Earth Engine were encouraged in these activities.

Implementation
This refers to the execution of a capacity building activity.
To implement the activities, we categorized participants into
three groups: policy/decision makers; technical professionals;
and youth. The makers of policies and decisions form a very
crucial set of target audience who can greatly influence the
successful implementation of any EO&GIT-related services in
partner institutions. Therefore, to bring in the participation
of the national institutions in utilizing the applications, it is
important to make the leadership aware and convinced about
these technologies and their potential applications. So, exposure
learning events were organized for this category of participants.
The technical professionals are those who are responsible
for the development of databases and EO applications in
different thematic areas; they run the applications and derive
the products which can be used by the decision makers and
general users. So, the OJT, ToT and standard training activities
were offered to this category. As for the youth, their role
as agents of change and effective communicators has been
especially recognized in view of the emergence of numerous
youth networks working on climate change. And as EO&GIT

is a vital tool that improves our understanding about the
climate change phenomenon, we organized exposure learning
and standard training activities in this area, specifically targeting
youth or early career professionals. Such as NASA SpaceApps
challenge, miss technology, internship, selected training for
young women (ICIMOD, 2018a) were organized for this
group. Importantly, maintaining gender balance among the
participants was given high priority. Strategically, we tried to
ensure that at least 30% women took part in each capacity
building activity.

Furthermore, the capacity building activities were organized
at both national and regional levels. The national-level training
courses were conducted jointly by ICIMOD and a local institute
in the partner country. The selection of participants was based
on the nomination process wherein we had invited nominations
from ICIMOD’s partner institutes in the region relevant to the
training theme; but when the trainings had broader goals and
required wider participation, the field was opened out. OJT,
ToT, and exposure learning activities were based on nomination;
while either nomination or open call or both were applied in
the case of standard training activity. Sometimes, individual
requests for internship were also considered in standard
trainings. Based on the activity theme, basic eligibility criteria
for participation were also set. And by using the basic principles
of communication, we were able to ensure that the relevant
training opportunities reached the targeted group of people;
gender-sensitive language was used to encourage the maximum
participation of women; we reached out to the disadvantaged
groups too; and also conveyed our objectives to communities
of practice and social media channels in order to gain a
larger audience.

Monitoring
Monitoring and evaluation is an important part of any capacity
building event. It helps to improve performance and achieve
better results. Monitoring and evaluation has to do with the
quality and relevance of capacity building efforts. Structured pre-
and post-assessment tools were developed and used for each type
of capacity building activity, except for the exposure learning
type, in order to monitor a participant’s expectations, his or her
progress in understanding the contents, and to get feedback for
continuous improvement. We conducted pre- and post-training
evaluation surveys for each capacity building event so that the
cognitive growth of the participants could be monitored and
documented. A representative pre- and post-assessment results
after the monitoring and evaluation practice from one of the
capacity building activities is reported.

In this research, we also compiled and used data for results
analysis from the country consultation reports (ICIMOD, 2015,
2016a,b,c,d) and the capacity building events data during
October 2015–September 2018 (the first 3 years of SERVIR-HKH
Phase II).

RESULTS AND DISCUSSIONS

Capacity Building Needs and Priorities
During the country consultation meetings, several capacity
building needs and priorities were identified and grouped into
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thematic areas (Table 2). Most of the needs and priorities—
such as climate data analysis for drought monitoring in the
AFS thematic area; strengthening capacity on regional flood
outlook in the WRHD thematic area (SERVIR-HKH, 2016);
and the South Asia Land Data Assimilation System (SALDAS)
in the WCS thematic area—were common for all countries.
In the case of three countries—Afghanistan, Bangladesh and
Nepal—capacity building in land cover mapping and monitoring
system, and hydrological modeling were in the priority list.
We could also observe common needs and priorities in the
case of Bangladesh and Nepal. However, many country-specific
unique needs and priorities—such as WebGIS, water resource
management, and wheat area mapping for Afghanistan; and
REDD and food security information analysis for Nepal—were
also identified.

Furthermore, the institutions in Bangladesh and Afghanistan
insisted that more OJT programs for government institutions
were required for the effective implementation of EO&GIT tools
in their planned activities. Afghanistan stated that universities
and training institutes needed to include EO&GIT in their
curriculum in order to ensure the sustainability of capacity
building activities; while Bangladesh required more trainings for
university faculty so that they could replicate and disseminate
capacity building activities in the longer run. In addition,
during our assessments, we identified common needs and
priorities of all countries in crosscutting areas such as, cloud
computing, empowering women and youth and policymakers
in the EO&GIT field, and enhancing the capacity to adopt
emerging technologies.

Capacity Building Activity Design
Based on the results from the country consultation exercises, we
designed 26 capacity building modules covering various topics
from the thematic areas (Table 3). These modules were used
to deliver OJT, standard training, ToT and exposure learning
type of activities multiple times in the last 3 years. The AFS
theme has five modules—two in OJT and the rest in standard
training type of capacity building formats. Most of the modules
consist of a daily training activity plan and associated materials
in the form of PPT, alongside theoretical discussions and hands-
on tutorials. In addition, the training module for climate data
analysis for drought monitoring consists of a manual. Similarly,
we designed six training activity modules for the WRHD theme.
All these modules were used in the standard training program.
Since the expected outcomes from OJT and ToT were different
from the standard training program, the modules on “mapping
and monitoring of glaciers” and “Remote Sensing and GIS
for water resources management” were slightly modified to fit,
respectively, into the OJT and ToT activities. All modules in
this theme consist of PPT and hands-on tutorials to cover both
theory and practice in the field. Also, detailed training manuals
are available for three of the modules—hydrological modeling;
mapping and monitoring of glaciers; and remote sensing and
GIS for water resource management. Like the WRHD theme, six
training modules were designed for the LULC&E theme, where
five of them were delivered in the standard training format.
A course on tree cover estimation was also developed for OJT
activity. One of the five standard training modules, i.e., on land
cover and land use mapping, was slightly modified to be used for

TABLE 2 | Capacity building needs and priorities in the four countries.

Capacity building needs by thematic areas Countries

Agriculture and food security (AFS)

Food security information analysis Nepal

Climate data analysis for drought monitoring Afghanistan, Bangladesh, Nepal, Pakistan

WebGIS application development; irrigation information management; wheat area mapping Afghanistan

Application of synthetic aperture radar data and cloud computing technology Afghanistan, Pakistan

Water resources and hydro-climatic disasters (WRHD)

Strengthening capacity on regional flood outlook Afghanistan, Bangladesh, Nepal, Pakistan

Hydrological modeling Afghanistan, Bangladesh, Nepal

Water resources management; mapping, and monitoring of glaciers, glacial lakes and snow cover Afghanistan

Enhancing capacity in stream flow forecasting tools and flood early warning system Bangladesh, Nepal

Land use, land cover, and ecosystems (LULC&E)

Land cover mapping and monitoring system Afghanistan, Bangladesh, Nepal

Enhancing capacity to understand ecosystem services; application of synthetic aperture radar for forest

monitoring; tree cover estimation

Bangladesh, Nepal

Reducing emissions from deforestation and forest degradation (REDD) Nepal

Weather and climate services (WCS)

Implementation of South Asia Land Data Assimilation System (SALDAS) Afghanistan, Bangladesh, Nepal, Pakistan

Crosscutting*

Cloud computing; empowerment of women, youth, decision-/policymaking professionals; GIS and remote

sensing applications development; topographic applications; and adaptation of emerging EO and GIT

Afghanistan, Bangladesh, Nepal, Pakistan

*Indicates inclusion of multiple thematic areas.
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ToT activity. All modules consist of PPT and tutorials. Besides,
a manual was developed for land cover and land use mapping.
The Synthetic Aperture Radar (SAR) for the forest monitoring
module was covered by a part of the SAR Handbook (Flores-
Anderson et al., 2019), a collaborative effort of SERVIR networks
and partners worldwide.

The WCS thematic area consisted of only one course module
as this theme has only one service (SALDAS). The module
was in the standard training format and supported by PPT
and hands-on tutorial materials. Among the total number of
modules, eight are in the crosscutting areas. These modules
deal with cross-disciplinary topics and are linked to more
than one thematic area. Five modules were designed for the
standard training format, while the Google Earth Engine module
was extended to ToT activity with slight modification. The
GIS application development module was designed for OJT
activity. Under the crosscutting areas, the exposure learning visit
type of capacity building activity was divided into two parts:
capacity building conferences, i.e., Geospatial World Forum
and Global Forest Observations Initiative; and competition
events, i.e., NASA SpaceApp and “Miss Technology.” We closely
collaborated with the event organizers for developing an agenda
and supporting the activities wherein senior policymakers and
technical professionals would get exposure learning on EO&GIT
in the conferences and the youth would get exposure learning
during the competitions. In the exposure learning type of
activities, only PPT materials of corresponding conferences
were available while the R&D prototypes developed through
competitions were also available.

Capacity Building Activity Implementation
Using the course modules and materials, we implemented 39
capacity building events in the last 3 years (Table 4). These events
served 1,001 people—a combination of technical professionals,
policy/decision makers and youth—from 213 unique institutions
in the HKH region and beyond. The participating individuals
were from government ministries, departments and local offices,
as well as from INGOs, NGOs, academic institutions, research
organizations, and the private sector.

Most of the events (14) were crosscutting in nature and
served half of the total institutions. Twelve events were organized
within theWRHD theme where 264 participants from 32 partner
institutions were engaged in various types of capacity building
activities. The second major thematic area was LULC&E under
which six events were organized to serve 49 institutions. Five
capacity building events were organized under the AFS thematic
area to build the capacity of 68 people from 30 institutions. Two
capacity building events were organized under theWCS thematic
area to train 14 professionals from four partner institutions.

In terms of gender, 35% of those who participated in the
capacity building activities were women. This shows progress
toward the goal of the Fourth Mid-Term Action Plan (MTAP) of
ICIMOD which proposed to ensure 30% participation of women
in event organizations (ICIMOD, 2017). While gender balance
was observed in the crosscutting areas where female participants
exceeded the number of male ones, more than 75% of the
participants in the other thematic areas, such as AFS,WRHD, and

TABLE 3 | Designing capacity building content, type, materials during SERVIR

years (10/2015–09/2018).

Thematic

areas

Modules CB type Materials

AFS 5 OJT, ST PPT, manual, hands-on tutorials

WRHD 6 OJT, ST,

ToT

PPT, manual, hands-on tutorials

LULC&E 6 OJT, ST,

ToT

PPT, book, manual, hands-on

tutorials

WCS 1 ST PPT, hands-on tutorials

Crosscutting 8 OJT, ST,

ToT, EL

PPT, hands-on tutorials, R&D

prototype

AFS, Agriculture and Food Security; WRHD, Water Resources and Hydro-climatic

Disasters; LULC&E, Land Use, Land Cover and Ecosystems; WCS, Weather and Climate

Services; Crosscutting indicates inclusion of multiple themes; ST, Standard Training; OJT,

On-the-Job Training; ToT, Training of Trainers; EL, Exposure Learning.

TABLE 4 | Capacity building activities by thematic area during October

2015–September 2018.

Capacity building Participants

Thematic areas Event Institution Total Male (%) Female (%)

AFS 5 30 68 83.82 16.18

WRHD 12 32 264 80.30 19.70

LULC&E 6 49 179 75.42 24.58

WCS 2 4 14 64.29 35.71

Crosscutting 14 158 476 48.95 51.05

Total 39 213 1,001 64.54 35.46

LULC&E, were male. In this regard, we shall continue to strive
toward ensuring gender balance in all the events by requesting
partner institutions to make gender-balanced nominations, and
by providing extra seats for women, implementing women-only
programs and by establishing childcare facilities on campus.
The participants in these capacity building events under the
four thematic areas had been chosen based on the institutional
nomination process where selection decisions were completely
made by partner institutions.

As many as 28 out of the 39 capacity building events
were in the standard training format (Table 5). This type of
training alone served more than 778 participants, including
34% women, from 188 partner institutions. Standard training
type of capacity building activities are often more general in
content and serve various purposes of the EO&GIT applications.
Therefore, it can accommodate greater number of participants
and institutions. Exposure learning was the second major activity
in the capacity building program. Through its capacity building-
related competitions and conferences, it engaged nearly 200
people from 42 institutions. Here, as compared to other types of
activities, a smaller gender gap was observed.

There were only two ToTs and four OJTs type of capacity
building activities in the last 3 years. Since these two types
of activities were very specific to particular institutions on
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TABLE 5 | Different types of capacity building activities during October

2015–September 2018.

Capacity building Participants

Type Event Institution Total Male (%) Female (%)

Standard training 28 188 778 65.94 34.06

On-the-job training 4 6 16 87.50 12.50

Training of trainers 2 4 12 83.33 16.67

Exposure learning 5 42 195 55.90 44.10

EO&GIT applications, they served a lesser number of people
and institutions. However, these activities were found to have
an effective impact on the institutional capacity building of
partner organizations. To ensure sustainability, we collaborated
with our partner agencies for targeted capacity building on
specific applications in order to set up self-managing information
systems that could meet organizational needs. This was achieved
through a combination of ToT and OJT. The ToT program
helped to attainmultiplicity in our training courses by developing
trainers who could conduct courses independently and transfer
the knowledge to a wider audience such as university students.
We also collaborated with universities in the HKH region for
the ToT program. We have successfully trained the faculty of
Kabul University and Jahangirnagar University, respectively, in
EO&GIT applications for water resource management and big
data analysis using GEE. Thus, ToT and OJT types of capacity
building activities are playing instrumental roles in institutional
capacity building in the region. Through this process, Kabul
University has independently organized training courses for
its students and updated its curriculum on EO and GIS
courses. Meanwhile, Jahangirnagar University has established an
institute for remote sensing and GIS, while independent training
programs were conducted in Bangladesh by trainers who had
received ToT from SERVIR-HKH.

Although the SERVIR-HKH programs focused on
Afghanistan, Bangladesh, Myanmar, Nepal, and Pakistan,
they also provided capacity building services to other regional
member countries of ICIMOD (Bhutan, China, and India)
and beyond (Table 6). Among these countries, Nepal and
Afghanistan were on the top of the list in terms of participation
and events. Along with specific events organized for Nepali
women and youth, many capacity building events were held
in Nepal which eventually provided more opportunities to
the professionals working in that country; thus, Nepal found
itself on the top of the list. In the 26 out of the 39 events that
were organized, we served 473 participants from 94 institutions
in Nepal. As part of our special focus on EO&GIT capacity
building of our Afghanistan partners, 274 participants from 22
institutions participated in 18 capacity building events. In the
case of Bangladesh, the capacity building activities provided
opportunities to a relatively larger number of institutions (31)
where 91 professionals participated in 12 different types of
activities. Among the countries within the ambit of SERVIR,
Pakistan registered the lowest number of participants—only
17 professionals from 13 institutions attended the 10 capacity

TABLE 6 | Country participation in capacity building events during October

2015–September 2018.

Capacity building Participants

Country Event Institution Total Male (%) Female (%)

Afghanistan 18 22 274 87.23 12.77

Bangladesh 12 31 91 73.63 26.37

Bhutan 8 6 14 78.57 21.43

China 2 3 5 60.00 40.00

India 8 10 17 64.71 35.29

Myanmar 7 18 42 57.14 42.86

Nepal 26 94 473 49.68 50.32

Pakistan 10 13 17 70.59 29.41

Others 11 33 68 64.71 35.29

Others include: Australia, Brazil, Canada, Germany, Finland, France, Gabon,

United Kingdom, Guatemala, Italy, Kenya, Cambodia, Mongolia, Malawi, Mozambique,

Netherlands, Papua New Guinea, Thailand, United States and Vietnam.

building events. This may be due to the lesser number of
Pakistan-focused services in SERVIR and delay in product
development. However, there is a push toward implementing
more capacity building programs in Pakistan.

A significant number of institutions from Bhutan (6), India
(10), Myanmar (18), and China (3) participated in various types
of capacity building events. We also served some 33 institutions
from 20 countries outside the HKH region on EO&GIT capacity
building—some of them were Thailand, Cambodia, Vietnam,
Mongolia, Malawi, and Kenya. In terms of gender balance in
participation, Nepal was the most impressive, registering 50%
women participants. Such a balance has been achieved through
women-focused programs in Nepal such as “Miss Technology”
and “Empowering Women in GIT” (ICIMOD, 2018a). The
institutions fromMyanmar and China maintained the minimum
participation level of 40% women, while the number of women
were very less from Afghanistan. This may be due to the fact
that very few women are engaged in EO&GIT-related professions
in that country; thus, more effort has to be put in to bring
in more women from Afghanistan. Similarly, the participants
from Bangladesh and Pakistan were mostly male−73.63 and
70.56%, respectively; here too, efforts are required to increase the
participation of women.

Monitoring of Capacity Building Activities
Monitoring and evaluation is an integral part of capacity building
activities. We conduct pre- and post-assessments of each type
of capacity building activity, except for exposure learning visits.
The pre-assessment provides guidelines about the participants’
awareness and expectations about the capacity building content,
while the post-assessment provides the level of knowledge
acquisition by the participants and feedback for the purpose of
improvement. In this paper, we present pre- and post-assessment
monitoring and evaluation results from one of the 39 capacity
building activities. It is a representative application of monitoring
activity as it will be difficult to accommodate the results from each
activity due to unique characteristics, response, and feedback.

Frontiers in Environmental Science | www.frontiersin.org 8 October 2019 | Volume 7 | Article 16555

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Thapa et al. Capacity Building Approach and Application

FIGURE 2 | Structural composition of the participants and their technical skills.

A case from training on “SAR for Mapping of Forest
Degradation and Deforestation” is presented here with details
about its targeted audience, course contents and the results
from the monitoring exercise. The training aimed to provide
theoretical and practical knowledge so that SAR data and
its applications could be effectively used to map forest
degradation and deforestation. This 5-day training program
covered theoretical background while providing hands-on
knowledge about basic processing procedures using relevant data
sets from active radar systems; it also outlined the limitations
and error sources of each processing technique. Further, it
covered various steps on SAR data processing and data analysis
(ICIMOD, 2018b). The training was attended by 32 participants
from SERVIR networks and partner institutes from ICIMOD
member countries, including Afghanistan, Bangladesh, Bhutan,
India, Myanmar, Nepal, and Pakistan. Two SMEs from US
institutions were also brought in as resource persons.

We conducted two pre- and post-training evaluation surveys.
These surveys focused on assessing the participants’ level of
knowledge and skills in the subject matter. This helped in
understanding the overall experience of the participants. Figure 2
provides an overview of the composition of the participants
and their technical skills before the training. Each participant
responded to all questionnaires in both surveys. Due to various
external reasons and the nomination process in selecting the
participants, the gender structure of the training was largely
imbalanced, as only about 19% women professionals took part
in the program. In terms of remote sensing knowledge, most of
the participants reported that they had either intermediary or
expert level of knowledge. Almost all the participants were using
ArcGIS for geospatial analysis in their works. Very few of them
were using Python. About 53% of the participants were familiar
with SAR data and GIS applications; the remaining participants
reported that they had never used SAR data. From the survey, we
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TABLE 7 | Participants’ response to the technical capacity building support (in %).

QN Description Strongly agree Agree No comment Disagree Strongly disagree

1 The presentation was clear and to the point 70.0 30.0 0.0 0.0 0.0

2 The training was interactive 73.3 23.3 3.3 0.0 0.0

3 The presenter(s)/facilitator(s) were experts in their subject domain 96.7 3.3 0.0 0.0 0.0

4 The training achieved its goals and objectives 50.0 46.7 3.3 0.0 0.0

5 The materials/handouts were useful 70.0 23.3 6.7 0.0 0.0

6 The presentations were interesting and practical 66.7 33.3 0.0 0.0 0.0

7 Adequate time was provided for attendee questions 73.3 26.7 0.0 0.0 0.0

8 The content was well organized and easy to follow 56.7 40.0 3.3 0.0 0.0

9 The training met my expectations 53.3 43.3 3.3 0.0 0.0

10 Appreciation of coffee break and lunch 70.0 26.7 3.3 0.0 0.0

11 Appreciation of hotel and other services provided 40.0 20.0 40.0 0.0 0.0

12 Appreciation of training facilities (equipment, space, internet, etc.) 46.7 33.3 20.0 0.0 0.0

13 Appreciation of logistics (airport pickup, transport, travel arrangements, etc.) 53.3 10.0 36.7 0.0 0.0

found that most of the participants expected to gain theoretical
as well practical knowledge about SAR data analysis for forest
monitoring applications.

In the post-training assessment, 13 questions were related
to the participants’ response to the technical capacity building
support (Table 7). The results show that the participants were
satisfied with the training as all of them either responded with
“Strongly Agree” or “Agree;” no one ticked on “Disagree” or
“Strongly Disagree.” However, some of the questions, such as
QN# 11–13, received “No Comment,” which was mainly due
to responses from the residential participants from Nepal as
they did not use the accompanying facilities such as hotel
and transport.

Table 8 provides the results on whether the participants’
knowledge and skill levels increased after the training. All
the participants responded that their capacity had increased
and assured us that they would apply the knowledge that
they had gained from the training. Most of the participants
agreed that they have learnt the basic principles of SAR and
processing steps such as radiometric terrain correction, SAR data
visualization and image interpretation, time series data analysis,
forest change detection, Python scripting and automation, and
the use of Jupiter notebook and Hype3 application. They
also stated that they have acquired brief theoretical knowledge
about interferometric SAR and flood applications. Some of
the participants also wanted to learn about time-series data
creation method, cloud processing system for bulk data analysis,
use of artificial intelligence in mapping, methods of forest
degradation mapping, and way to measure confidence intervals
of change detection; besides, they wanted more tutorials on
Python API for SAR processing and data cube. They also
sought to learn about the procedures in data fusion of optical
and radar, polarimetric and interferometric SAR for forest
applications, biomass estimation and uncertainty reporting. They
noted that SAR applications on forest reference emission level
(FREL) and measurement, reporting and verification (MRV),
biomass change detection, classification and mapping are very
important, but had not been covered in the training. Thus,

TABLE 8 | Learning–knowledge/skills abilities gained (in %).

QN Description Yes No

14 Has your capacity increased because of the training? 100 0

15 Will you be able to apply the knowledge that you have gained? 100 0

for the to-do list of future trainings, the following have been
identified: advanced SAR data analysis; hands-on exercise with
complete case study; operational SAR for forest applications;
coding to access voluminous data; more scripting for large-
scale data processing; automated system for forest degradation
identification; forest health monitoring using SAR; and more
discussions on cloud computing implementation. One of the
shortcomings some of the participants pointed out was that the
time for discussions was too short.

All these primary pieces of information derived from the
pre-assessment survey were very helpful in refining the training
module during the training period itself to meet the expectations
of the participants. The results from the post-assessment survey
were helpful in improving the next training module. In addition,
we are planning to conduct tracer surveys to understand the
status of capacity building in the past 3 years. The relevant
questionnaire of this survey will be sent to all the participants
who attended any of the 39 training programs. Furthermore,
institutional capacity assessment using OCAT (Organizational
Capacity Assessment Tool) is also planned to examine the
long-term impact of the capacity building activities on select
partner institutions in Afghanistan, Bangladesh, Myanmar,
Nepal, and Pakistan.

Challenges and Opportunities
We have presented the approach adopted for building the
capacity of individuals and organizations on EO&GIT in the
region where 39 events were conducted successfully in the last 3
years. Some institutional success stories, from establishing a GIS
lab to preparing a glacier data inventory, and many more are
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documented in http://servir.icimod.org/stories. However, there
are many challenges and opportunities that we learnt about while
implementing the capacity building activities.

Challenges
Bringing the key stakeholders to the meeting table for
consultations and engaging them in prioritizing the capacity
needs of their country was a big challenge. In some cases, it was
also difficult to get policy-level people who could provide wider
inputs on capacity gaps and the EO&GIT needs of the country.

Influx of variety of EO data and emerging GIT are making
challenges to keep frequent updating capacity of individuals and
institutions. When new technologies emerge, new curriculum,
materials and programs on capacity building become necessary,
but they are ultimately resource intensive and the appropriate
SMEs may not be available immediately.

OJT, ToT, exposure learning and most of the standard
trainings were nomination based, which made it difficult to
ensure gender balance in certain capacity building events.
Furthermore, sometimes, we received nominations of less
relevant people for highly technical training modules.
Geopolitical tension between some of the countries in the
region was also a major challenge—it made difficult to ensure
the participation of particular countries within the stipulated
time frame. In the HKH region, while there are lesser number of
women professionals in the EO&GIT field, there’s also the added
factor of women having more social and religious obligations
than men; thus, bringing more women to the capacity building
events was also a key challenge.

Moreover, the region has diverse sociocultural systems, so we
had to pay special attention to this context while organizing a
capacity building event. Sometimes, language was also a barrier.
We provide best efforts to engage resource persons with multiple
language skills, however, some time it becomes either difficult or
cost intensive for language translation services.

We also received the feedback that after investing much
resources in capacity building, many organizations in the region
were facing challenges in retaining technical professionals for a
longer tenure. Retaining technical professionals is a key challenge
in the region because of reshuffle, promotion, and administrative
engagement of professionals within the organization, transfer of
professionals into other organization, and lucrative opportunities
outside the organization. Challenges were also faced in the
monitoring and evaluation aspect of capacity building activities,
as some participants were either reluctant or less motivated to
provide true responses to the survey questionnaires.

Opportunities
The country consultation meetings provided opportunities to
bring the stakeholders closer and engage them in the assessment
of capacity building gaps and needs in their respective countries.
Their priority list helped in the designing of activity and in the
smooth implementation of plans. They ensured demand and
ownership which eventually helped them to include capacity
building experiences in their workflows.

The capacity building activities also provided a platform
for people from various segments and contexts—from young

men and women, experienced professionals and technicians, to
policymakers—to work together in the larger interests of the
region; this helped in achieving great benefits from a small
investment. The influx of a wide variety of EO data, tools and
literature provided cost-effective choices on developing training
materials and implementing capacity building activities in some
resource-starved areas. The co-organization of capacity building
activities had multiplier effects in terms of learning, value-
added knowledge and a greater feeling of ownership among
the stakeholders.

The EO&GIT communities are now moving toward open
access tools and data which reduces the cost of capacity building
of individuals as well as institutions. As for the nomination-based
selection process, it reduced the liability of selecting the right
participants from the partner institutions. Meanwhile, employing
the services of SMEs brought cutting-edge expert knowledge to
the region.

As the number of women engaged in this field is rather
less, there is a vast opportunity to design women-focused
capacity building programs which can empower them in the
field of EO&GIT and nurture a gender-balanced workforce in
the future. In terms of multicultural participation in the capacity
building events, it provided a great opportunity to interact with
people from different social backgrounds and countries, which
ultimately strengthened partnerships and professional networks.
Themonitoring and evaluation process provided the opportunity
to understand the expectations and learning achievements, trace
the impacts of the activities, and consider the necessary measures
that must be taken in future capacity building plans.

CONCLUSION AND WAY FORWARD

The simple but robust ADIM (assessment, design,
implementation, and monitoring) approach presented in
this paper was able to cater to the needs as is evident from the
results. This innovative approach identified gaps and needs,
designed efficient capacity building activities, implemented the
plans to achieve a lasting impact and monitored the delivery
results so that a feedback mechanism could be established. This
approach is cost-efficient, sustainable and gender balanced,
and so should go a long way in securing effective workforce
development. The complete workflow focused on bridging
the gap between current trends/progressions in the EO&GIT
field and the existing state of capacity of the agencies involved
in the decision-making process. The OJT and ToT type of
capacity building activities played a very important role in
institutional capacity building. The standard training type of
activities were powerful in building individual capacity and
improving the gender balance in the technical professional
workforce. The exposure learning visit brought young people
together and provided a competitive environment of learning
wherein they gained and shared knowledge among themselves
and others. In addition, this type of capacity building program
brought together high-level policy/decision makers, and they
were exposed to and became aware of emerging geospatial
technologies—thus, they are now capable of integrating such
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technology in their institutional workflows. Our approach was
successful in delivering capacity building activities based on the
priorities of our partners, and this should strengthen the ability
of governments and development stakeholders in the region
to sustain the program. By engaging global experts as SMEs
and building the capacity on the use of EO&GIT in the region,
we have laid a strong foundation for positive technological
interventions. Despite the challenges, the approach was able to
provide capacity building services to a large number of unique
organizations and communities worldwide; it will also pave way
toward a more gender-balanced workforce in the future. The
paper reveals the several opportunities that arise from capacity
building activities—from sociocultural experiential learning to
the use of frontier technology. Our approach promoted gender
equity, adopted frontier technology, engaged SMEs and provided
sustainable solutions, all of which will have a positive bearing on
the region. Apart from this effective capacity building approach,
the detailed sharing of unique experiences will be of great help to
capacity building practitioners in the HKH region and beyond.

As for the way forward, there is still much that needs to be
fixed improvement in the coming years. Regular organizational
capacity assessment (OCA) and tracer surveys, at least once in
5 years, are mandatory to monitor the periodic impact of the
capacity building efforts in the region. In fact, we have already
started conducting OCA and tracer surveys. There’s also the
avenue to set up an interactive web-based training portal to host
existing and upcoming training materials for wider distribution.
Such a portal would enable video-based online tutorials whereby

the users can learn by themselves about all the aspects of capacity
building. And that will surely have a path breaking impact on
building capacities in the region and beyond.
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Hydrologic modeling can be used to aid in decision-making at the local scale. Developed

countries usually have their own hydrologic models; however, developing countries often

have limited hydrologic modeling capabilities due to factors such as the maintenance,

computational costs, and technical capacity needed to run models. A global streamflow

prediction system (GSPS) would help decrease vulnerabilities in developing countries

and fill gaps in areas where no local models exist by providing extensive results that

can be filtered for specific locations. However, large-scale forecasting systems come

with their own challenges. These New hydroinformatic challenges can prevent these

models from reaching their full potential of becoming useful in the decision making

process. This article discusses these challenges along with the background leading to

the development of a large-scale streamflow prediction system. In addition, we present

a large-scale streamflow prediction system developed using the GloFAS-RAPID model.

The developed model covers Africa, North America, South America, and South Asia.

The results from this model are made available using a Hydrologic Modeling as a Service

approach (HMaaS) as an answer to some of the discussed challenges. In contrast to

the traditional modeling approach, which makes results available only to those with the

resources necessary to run hydrologic models, the HMaaS approach makes results

available using web services that can be accessed by anyonewith an internet connection.

Web applications and services for providing improved data accessibility, and addressing

the discussed hydroinformamtic challenges are also presented. The HydroViewer app,

a custom application to display model results and facilitate data consumption and

integration at the local level is presented. We also conducted validation tests to ensure

that model results are acceptable. Some of the countries where the presented services

and applications have been tested include Argentina, Bangladesh, Colombia, Peru,

Nepal, and the Dominican Republic. Overall, a HMaaS approach to operationalize a

GSPS and provide meaningful and easily accessible results at the local level is provided

with the potential to allow decision makers to focus on solving some of the most pressing

water-related issues we face as a society.

Keywords: cyberinfrastructure, data visualization, hydroinformatics, hydrologic modeling, XaaS
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1. INTRODUCTION

The creation of a global high-resolution streamflow prediction
system fills a critical need for many water-related application
areas, including food security, climate change, and risk reduction.
The United Nations (UN) has adopted a set of goals that aspire to
greater prosperity for our society while maintaining a sustainable
approach. The list, known as the Sustainable Development Goals
(SDGs), includes seventeen different goals aimed at areas of need
such as poverty and hunger. This set of goals highlights how
important water is for the success of humankind as more than
half of the seventeen goals are directly related to water, and
one can argue that many other goals if not all are indirectly
and positively affected by a greater understanding and use
of water resources. Complementary to the UN’s SDGs, the
SENDAI Framework for Disaster Risk Reduction constitutes an
agreement endorsed by the UN to reduce disaster risk, and
subsequently the losses of lives, livelihoods, and environmental
assets at the individual, community, and country scale due to
natural disasters.

Early warning systems have been identified a one of the
main strategies to help reduce environmental risks, especially
those due to hydrological events (Hallegatte, 2012; Alfieri et al.,
2013; Wilhite et al., 2014; Cools et al., 2016). The main
concept behind any disaster risk reduction or mitigation is
to lower the costs of such events. The effectiveness of flood
preparedness has been proven by various general and localized
estimates that compare the initial cost of the initiative with
the potential cost of a given flood event or a number of
them (Godschalk et al., 2009; Kelman, 2013; Kull et al., 2013).
Developed countries usually possess the resources required
to develop and operate models that provide the necessary
information to drive their own flood warning system. The US
National Water Model and the European Flood Awareness
System are prime examples of such models. While most of
the developed world has adequate data, models, tools, and
experience, developing countries often lack the capacity to
produce and maintain their own modeling infrastructure, which
in turn increases their vulnerability. Organizations like theWorld
Bank have recognized that international assistance is essential
for developing countries to overcome vulnerability. With floods
being one of the most recurrent and costly natural disaster
around the world, the development of a global streamflow
prediction system (GSPS) as a source to feed local early
warning systems also has the potential to markedly improve risk
reduction, especially in areas lacking the resources to develop
their own models. A GSPS that supplements and fills gaps in
local information can be used to help us understand how to
better respond to extreme events such as floods and droughts,
and prepare accordingly.

The development of a functional global high-resolution

hydrologic model was deemed one of the “grand challenges”

within hydrology (Wood et al., 2011). A functional global model

must have sufficient resolution to be relevant at local scales. The
development of large-scale high-resolution models has become
a focus for many hydro-meteorological scientists in response to
this challenge.

In recent years, a number of large-scale models have emerged
(Rodell et al., 2004; Lindström et al., 2010; Alfieri et al., 2013;
NOAA, 2016). The development of such models has been
possible due to the evolution of hydrologic modeling, which
includes a number of internal scientific advances, but also a
vertical expansion where elements from other sciences such as
meteorology have been integrated. As a result, we have increased
our ability to predict hydrologic events by linking atmospheric
and land surface models so they can work as one integrated
hydrometeorological model. Advances in other disciplines, such
as information technology and computer science, have also made
the development of larger-scale models possible, by providing
local access to large datasets that cannot be downloaded and
explored on a desktop environment. In addition, probabilistic
forecasts offer an alternative to incorporate the uncertainty
introduced by the inputs used to run a hydro-meteorological
model through ensemble forecasting (Demeritt et al., 2013).
This expansion of hydrologic modeling opens the door for
greater application in all the earth sciences and provides
valuable support to solving the wider set of interdisciplinary
problems articulated in the SDG’s. Figure 1 shows a concept
example of how hydrometeorological models can provide water
intelligence in a multidisciplinary environment that aims to solve
complex problems.

While many advancements and improvements to
hydrometeorological models have been and are being made,
there are major challenges remaining to make these large-scale
models relevant at the local scale where decisions are made.
For example. the inherent uncertainty introduced by models
themselves can be significant and should not be overlooked
(Butts et al., 2004). In addition, while traditional discharge
calibration from observed discharge can improve model
performance in a specific area, it is difficult to find a single
parameterization that works well for a large-scale model given its
inherent (Sperna Weiland et al., 2015).

On the other hand, the amount of data produced by large-
scale models presents yet a new hydroinformatic challenge.
Furthermore, integrating and communicating model results has
historically been a major challenge due to the evolving nature of
hydrology and hydrologic models (Beran and Piasecki, 2009).

In general, communicating water data to different groups
(e.g., scientists, emergency responders, decision makers, and the
general public) has also been a major challenge due to their
distinct contexts and needs (Souffront Alcantara et al., 2017). The
answer to this challenge is being answered by the adoption of
standards, a push to create Earth Observation Systems (EOS) and
model results that can be accessed as services, and the creation of
derivative tools that facilitate the interpretation and application
of data.

Replicating a hydrologic model, with the same or different
inputs and coverage, requires technical skill, and computational
resources. The overall cost of deploying, running, and
maintaining the model are also limiting factors. Since
decision makers and stakeholders are not expected to have
the skills necessary to provide sustainable hydrologic modeling
predictions, capacity building and specific training at the
technical level is usually the solution. However, this is often
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FIGURE 1 | The expansion of hydrology.

FIGURE 2 | Traditional vs. HMaaS approach.

a short-term solution mainly due to maintenance costs after
the end of the project/funds, and to the loss of the original
trained staff over time. While a number of large-scale models
that provide hydrologic information useful for areas lacking
a local model already exist, the available resolution for these
models is usually not adequate at the local scale. A HMaaS
approach solves these issues by taking advantage of the latest
cloud computing and information communication technologies
to provide model results as a service at a meaningful resolution,
thus alleviating local maintenance costs, reducing the necessary

technical training, and allowing investors to focus on providing
training and funds for the actual problems that hydrologic
modeling is needed for such as water distribution issues, and
early warning systems (Figure 2).

This paper summarizes our effort to create a streamflow
prediction system coveringmost of the globe with sufficient detail
to be useful locally while emphasizing the need to make results
readily available to different user groups using a state-of-the-
art service-oriented technology. Implementation and validation
results are presented. Additionally, the extended challenges
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resulting from the creation of such a model are discussed
in detail.

2. HYDROLOGIC MODELING AND
HYDROINFORMATIC CHALLENGES

Communicating model results has historically been a major
barrier between engineers and scientists, and decision makers.
A successful model needs to provide clear and actionable
information to meet the demand of its user community.
However, in the case of hydrologic models, there is a range of
distinct users with very specific, but totally different needs. These
groups range from scientists to the general public. The nature of
scientific research makes data discovery and retrieval a need that
requires constant attention. This is not the case for other user
groups. In other words, finding model data is not a priority in
decision making. Therefore, most models often fail to be relevant
to other groups due to the difficulty of obtaining model results in
a relatively straightforward way.

Modeling as a Service (MaaS) is a distribution mechanism in
which a provider makes a model, or modeling results available
to stakeholders through the use of web services. This concept,
which evolved from the Software as a Service (SaaS) (Choudhary,
2007), and the Anything as a Service (XaaS) (Duan et al.,
2015) principles has gained speed as an answer to challenges
in the deployment of environmental models in general. Roman
et al. (2009) discussed the challenge of migrating stand-alone
applications to services on the web. Furthermore, Li et al.
(2017) proposed a MaaS as a solution to the many challenges of
deploying models in the geospatial sciences.

The realization that even if a robust model that provides
clear and accurate results won’t be useful unless results are
readily available and presented in context has opened the
doors to addressing some of these extended challenges in the
field of Hydroinformatics. These challenges do not only cover
communication issues like data accessibility, relevancy, and
clarity; but also include big data issues like storage, maintenance,
and metrics tracking, and adoption issues like ownership,
partnering, branding, and overall implementation alternatives at
the local level. Adding to these issues is data validation, which
has traditionally been a model challenge, but more so in the case
of large-scale models. We have divided these hydroinformatic
challenges in four main areas in order to better discuss them.

• Big Data
• Communication
• Adoption
• Validation

2.1. Big Data
A GSPS requires a solid cyberinfrastructure where results can
be computed, stored, visualized, and retrieved. Moreover, a
continuous operational forecast system requires a workflow that
can be run automatically. This would include the download
and organization of model inputs, which would add to the
already large amount of data produced by the model. Therefore,
the cyberinfrastructure for a global model is bound to include

organizational tasks to download, archive, and delete data.
Traditionally, hydrologic models have been run on local
servers, however with the latest advances in Information and
Communication Technologies (ICT), and in accordance with
the MaaS concept, cloud storage and computing has become an
indispensable resource.

Cloud computing offers a number of advantages for the
development of an operational global forecast prediction system
using a MaaS approach. Some of the most obvious advantages
include: the removal of expensive computing hardware and
storage for every local agency, cloud cyberinfrastructures are
scalable, maintenance time and costs are removed with machines
being maintained by the cloud provider. In addition, the entire
system can be managed from one place (usually a dashboard).
A task manager can handle the entire workflow from data
input collection to model results storing. This is not unique
to cloud computing environments, but it becomes a must
when dealing with High Performance Computing (HPC) as
would be the case with a global high resolution streamflow
prediction system.

2.2. Communication
In the last few decades, the emergence of standards for the sharing
and distributing hydrologic data has made communicating and
disseminating water data much easier. Some of these standards
include WaterML, which offers a simple structure for working
with time series data (Almoradie et al., 2013); netCDF, which
offers a more solid structure for working with multi-dimensional
data (Rew and Davis, 1990); and GIS open web service standards
like Web Mapping Service (WMS), Web Feature Service (WFS),
and Web Processing Service (WPS), which offer a common
denominator for exposing geospatially enabled water data in a
dynamic way that is compatible with most available web-based
visualization tools.

The adoption of the standards mentioned above has
helped reduce the existing gap between data producers and
data users in the hydrologic community. However, most
of the focus on data communication is usually placed on
scientific/research users. Furthermore, water data needs to be
effectively communicated not only to the scientific community,
but also to decision makers, emergency responders, and the
general public. Water data needs to be presented as actionable
information that is accessible and understandable for all user
levels (Souffront Alcantara et al., 2017).

A solution to communicating results to the broad set of groups
needing access to results is to develop intuitive web applications
and services that allow users to interact with the data according
to their specific needs. HMaaS through the use of a web app has
many benefits. Results can be displayed using open standards,
while other functionality can be added to satisfy user needs
from a simple web browser. Web apps can successfully link the
back-end cyberinfrastructure needed to generate forecast results
with state-of-the art web development technologies to create
a dynamic environment where users from different levels can
access information that is relevant to them by taking advantage of
open standards likeWaterML, and OGC’sWMS,WFS, andWPS.
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2.3. Adoption
Adopting a new technology usually depends on the estimated
benefits and costs of implementation. In the case of a large-scale
streamflow prediction system, there are a number of general and
specific factors that will determine such benefits and costs, and
therefore influence implementation at the local level. Some of the
general factors include the existence of a local system, and the
disposition of the local community to incorporate or integrate
a global system. In such a case, the global system’s value would
most likely be in serving as a secondary tool to trigger action,
to corroborate when an extreme event is forecasted by the local
system, or fill gaps from the limitations of local models in space
or application. Obviously, the greatest value of a global system
comes when there is no local system available.

More specific factors regarding the adoption of a global
forecasting system include the time it takes to adopt new
technologies, and who would take responsibility for the
success/failure of the model in predicting events accurately.
Principles like the Technology Acceptance Model (TAM)
suggest that the adoption of a new technology depends on
the perceived ease of use and usefulness of the technology
(Davis, 1986). In theory, a HMaaS system offers a relatively
ease of use by eliminating the costs of producing the model
in favor of offering forecast results as web services that can
be consumed by anyone and through programmatic means
to develop derivative applications as needed. However, it is
important to notice that while a forecast is provided, model
results still need to be interpreted by able professionals, and
decision support systems that enable responses to forecasted
events remain the responsibility of the local community.
Therefore, an understanding of model assumptions, limitations,
and application is required at the local level. In addition, each
country/region that decides to implement a global prediction
system will have a vested interest in the good performance of the
model. To this end, a mechanism to provide feedback and keep
track of model performance is necessary.

The success or failure of the model to predict imposes certain
responsibility on the owner of the model. But with a global
system, ownership may not be initially clear. While the developer
of the model provides results, interpretation, and response to
the model fall at the local level. In practical terms, the weight
of the decision support system developed from the model is
of far more importance than the generation of a model. As a
result, it is advised that a multi-criteria approach be used to
support decisions whenever possible. Examples of such systems
usually include multiple models, or observation data integration
(Niswonger et al., 2014; Wan et al., 2014; Horita et al., 2015;
Svoboda et al., 2015; Ahmadisharaf et al., 2016). Based on these
factors, users may welcome or reject ownership and therefore
responsibility over certain aspects of a global model. To this end,
there are a number of implementation levels that would depend

on what is determined to work better at the local level by the local

agency itself.

1. External model consumption through a web app: The model
is accessed from a generic web app developed to display
the complete global model. Additional functionality in the

app would allow for extraction and visualization of data
for a specific area. This generic app could be hosted
by an international organization working with different
countries/regions.

2. Internal model consumption through a web app: The model is
generated on-premise and displayed and accessed the generic
web app. Internal generation would allow for computation of
areas of interest only.

3. External model consumption through web services: The
model is accessed through open standards and a REST API,
and displayed using a customizable web app or integrated into
an existing visualization tool.

2.4. Validation
The accuracy and uncertainty of a model need to be quantified
before forecasts can be trusted for any decision-making.
Traditionally, models are tested and calibrated for specific areas.
This poses an additional challenge for a large-scale forecast
system. Given the global extent, validation and calibration would
be a very arduous task. To this end, many large-scale models have
instead carried over the uncertainty of their inputs by presenting
an ensemble result that accounts for input uncertainty.

Another way the accuracy of the forecast can be evaluated
is by comparing results to observed data. Assuming a global
model has been adopted at a regional or local scale, the model
could be easily compared to regional or local observed data.
Moreover, a global forecast that uses open standards improves
the ability to compare with any other existing dataset. However,
a mechanism to facilitate data comparison would be needed to
ensure that comparisons could be made in any specific area
following similar criteria.

3. MATERIALS AND METHODS

Ahigh-density large-scale streamflow prediction system covering
most of the world has been developed using GloFAS runoff, ERA
Interim data, and the RAPID routing model. The workflow to
generate these forecasts was deployed completely on the cloud.
Two main web applications exist to interact with the results,
while a REST API has also been developed to easily retrieve
data without the need of a web interface, or for which custom
views and subareas can be created in a separate web interface.
A number of validation tests have also been performed to assert
that: (1) the high-density routed forecasts yield, in essence, the
same result as the original GloFAS and ERA Interim result; (2)
variability on the chosen resolution to route the runoff does not
alter the results at a given location; (3) model results are close to
observed data at different locations around the world.

GloFAS is an ensemble hydrologic model that generates
51 different runoff forecasts for the major rivers of the
world on a global grid with a resolution of 16 km2 on a
continuous basis. A 52nd forecast is generated at a resolution
of 8 km2. GloFAS was released in 2011 by ECMWF and the
European Commission’s Joint Research Centre (JRC) as part
of the Copernicus Emergency Management System (CEMS),
and has been quasi-operational since July 2011, and fully
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FIGURE 3 | River network and subbasin generation example for the South Asia region.

FIGURE 4 | HydroViewer app design.

operational since April 2018. The GloFAS system is composed
of an integrated hydrometeorological forecasting chain and of
a monitoring system that analyzes daily results and shows
forecast flood events on a dedicated web platform (Alfieri et al.,
2013). This model uses real-time and historical observations
in combination with a Data Assimilation System (DAS) and a
Global Circulation Model (GCM). The underlying framework

used to create GloFAS is ECMWF’s Integrated Forecasting
System (IFS). GloFAS uses HTESSEL for its land surface scheme.
HTESSEL is a hydrologically revised version of the Tiled
ECMWF Scheme for Surface Exchanges over Land (TESSEL)
model (Balsamo et al., 2008). This new land surface scheme
corrected the absence of a surface runoff component in its
predecessor, among other minor improvements.
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FIGURE 5 | Station locations in Colombia.

FIGURE 6 | Station locations in Nepal.

The ERA-Interim data is the result of a global atmospheric
reanalysis produced also by ECMWF. This data covers from
January 1980 through December 2014 (35 years) for the entire
globe. One of the advantages of using reanalysis is that the
data provides a global view that encompasses many essential
climate variables in a physically consistent framework, with only
a short time delay (Dee et al., 2011). This type of data becomes
invaluable in areas where no actual observed data are available.
A runoff derivative of this atmospheric reanalysis was produced

on a 40 km2 global grid using a land surface model simulation
in HTESSEL.

GloFAS forecasts can be visualized from their main
website (http://www.globalfloods.eu/glofas-forecasting/),
which combines the forecasts from GloFAS and the simulated
historic run from the ERA Interim to provide an awareness
system that displays warning points and the probability of an
event occurring based on the ensemble forecasts and return
periods extracted from the ERA data.
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TABLE 1 | Watershed attributes.

Basin Area [km2] USGS Stream Gauge ID

Arizona 1013.89 09494000, 09492400

Idaho 2085.71 13340600

Montana 2391.49 07014500, 07013000, 07014000

New York 262.32 01413500, 01413408, 01413398

Oregon 532.69 14306500, 14306400, 14306100

Colombia 1767 N/A

TABLE 2 | Catchment resolution description.

Resolution Number of catchments Average area [km2]

Low 3 506.94

Medium 7 217.26

High 20 75.64

RAPID is a numerical model that simulates the propagation
of water flow waves in networks of rivers composed of tens to
hundreds of thousands of river reaches (David et al., 2016). The
RAPID model is based on the Muskingum method, which has a
time and a dimensionless parameter as its main variables. RAPID
successfully created a way to efficiently adapt the Muskingum
method to any river network.

In an effort to create a higher density version of GloFAS
that would include smaller, but important streams Snow et al.
(2016) combined GloFAS with the River Application for Parallel
Computation of Discharge (RAPID) routing model covering the
main hydrologic regions within the United States. This work
addresses GloFAS’ density challenge by routing model results
through a predefined river network that provides results not only
for major rivers but for any potential river in the world. The
Streamflow Prediction Tool (SPT), a web app similar to the main
GloFAS application, was also originally developed as part of this
work. The SPT provides an intuitive user interface that allows for
the easy lookup and visualization of results. Other advances of
this app include the capability to present dynamic hydrographs
as opposed to static images. We have improved the SPT by
incorporating a REST API, and improving the visualization
of results.

We created a river network and weight tables for Africa,
North America, South America, and South Asia following the
methodology presented by Snow et al. (2016) as shown in
Figure 3. A river network for a specific area is created using
the HydroSHEDS dataset, which is a hydrographic dataset based
on elevation data from the Shuttle Radar Topography Mission
(SRTM) that provides data at a global scale (Lehner et al., 2008).
In addition to generating hydrography, this preprocessing also
generates weight tables, and Muskingum/RAPID parameters for
converting the gridded results from GloFAS to a vector-based
forecast using the river network.

3.1. Implementation and Visualization
We have deployed two web applications to display results using
the Tethys Platform framework. Tethys is a web framework for
facilitating the development of water resources web applications.

It includes specific open-source software components that
address the unique development needs of water resources web
apps with the main goal to lower the barrier of web app
development for water resource scientists and engineers (Swain
et al., 2016). The first web app, the SPT, was originally developed
by Snow et al. (2016). The SPT provides an interactive map where
users can select a specific river reach and display a hydrograph for
that reach with a 10-day forecast and the 2, 10, and 20 year return
periods corresponding to that reach. Some of the improvements
to the SPT include the visual design of the app, especially
the graph area, but more significantly the incorporation of a
REST API.

A REST API is a web service that can be used to access data
without the need of a web interface. REST APIs use the http
protocol to request data where parameters are passed through a
Uniform Resource Locator (URL) string using a predetermined
organization. This development facilitates integration of our
forecast results with third-party web apps, or any other workflow;
the automation of forecast retrievals using any programing
language; and the development of derived applications that
consume these results through the API and further process them
as opposed to incurring on the same computational costs of
generating their own forecast results. This last use, allows for the
development of lightweight applications that provide complex
results by relying on APIs from other apps.

The HydroViewer app is an example of such a lightweight web
application. It was designed to visualize streamflow forecasts for
specific regions using different model alternatives, which can be
added to the app in a relatively easy way. So far the app includes
the aforementioned GloFAS-RAPID model, the South Asia Land
Assimilation System (SALDAS), and the High Intensity Weather
Assessment Toolkit (HIWAT) model for monitoring intense
thunderstorms. This app relies on the use of REST APIs to
retrieve and visualize water data as opposed to incurring into
computational costs. The HydroViewer app was also designed to
allow customizations for the specific region it is deployed to. This
allows users to rebrand the web app and integrate it into their
system. Figure 4 shows the HydroViewer app design.

A cloud-computing environment approach was used to
deploy our workflow and make it accessible on the Internet.
Two Virtual Machines were deployed on the cloud, one for
performing the main computations necessary to generate the
forecasts, and the other for hosting spatial web services for data
visualization purposes.

3.2. Validation
Modeled data validation is essential for determining the value and
limitations of the data. Jackson et al. (2019) compiled a number
of commonly used error metrics that can be used to compare
hydrologic modeled data to observed data. Some of these metrics
include the Root Mean Square Error (RMSE) and derivatives,
Coefficient of Determination, Coefficient of Correlation,
Anomaly Correlation Coefficient, Nash-Sutcliffe Efficiency
(NSE), and the Spectral Angle. Most of these error metrics
have been compiled in a Python package called HydroStats
(https://github.com/BYU-Hydroinformatics/Hydrostats).
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FIGURE 7 | Updated streamflow prediction tool.

FIGURE 8 | Hydroviewer Colombia displaying observed data customization.

Using HydroStats, we compared our modeled results to
observed data from Colombia, and Nepal. We analyzed eight
stations for the former, and 12 stations for the latter (Figures 5,
6). In our analysis, we used a number of different metrics.
We used the anomaly correlation coefficient, the root mean
square error, the interquartile range normalized root mean
square error, the Nash-Sutcliffe Efficiency metric, the Pearson

correlation coefficient, the Spearman correlation coefficient, the
spectral angle metric, the improved Kling-Gupta efficiency, and
the refined index of agreement. We chose to use this suite of
metrics to give amore complete picture of howwell the simulated
data correlates to the observed data (Krause et al., 2005).

We performed a comparison between our high-density routed
results with the gridded result from GloFAS at selected locations.
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Data was collected from six GloFAS locations found in Nepal
including Chatara, Chepang, Chisapani, Devghat, Kusum, and
Parigaun. Our assumption was that if our result had similar
trends and values to those of the original GloFAS runoff then
it meant that our RAPID processing did not introduce any
significant bias by converting the gridded GloFAS results to
a higher density vector result based on a river network. In
addition, we also assumed that the results of this comparison
could be applied to other areas outside of the locations used for
the comparison.

Data was collected every day for 9 weeks and summarized
weekly. We used the mean flow of both datasets to perform the
comparison as the best representation from all the ensembles.
The flows from the GSPS were easily accessed through the use
of the developed REST API. Because the flows fromGloFAS came
exclusively in a hydrograph image, values had to be digitized from
the hydrograph images.

Multiple watersheds from distinct regions in the United States
were tested to determine the effect of varying the catchment area
resolution of the sub-basins within the watershed. The following
criteria were used to select the watersheds.

• Watershed size of several hundred square kilometers.
• United States Geological Survey (USGS) gage station

proximity to mouth.
• Relatively pristine area with no reservoirs.

Potential watersheds were selected from the USGS Hydro-
Climatic Data Network, a collection of roughly 700 watersheds
with relatively unimpaired flows.

The selected sites included: the Meramec River near Sullivan,
MO; the East Branch Delaware River at Margaretville, NY; the
Alsea River near Tidewater, OR; the White River near Fort
Apache, AZ; and North Fork Clearwater River near Canyon
Ranger Station, ID. Another similar site, the Negro River in
Colombia, was also tested (see Table 1).

The GloFAS-RAPID historical simulation was run for each
watershed at three different resolutions (Table 2). The streamflow
at the basins’ mouths were compared using HydroStats. The
resulting streamflows were also compared to observed data from
USGS stream gage stations.

4. RESULTS

A GSPS covering Africa, North America, South America, and
South Asia at a resolution of 350 m2 was developed and deployed
using cloud services and following a MaaS approach. The cloud
cyberinfrastructure andworkflows develop provide an alternative
to the storing and data management side of the big data
challenges described in section 2.1. Two web applications as well
as a REST API were developed to communicate forecast results
and provide alternatives that users can choose depending on their
needs. These web applications and services directly address the
communication challenges described in section 2.2. A series of
validation tests were also performed on the results to determine
that (1) our downscaling process did not alter results compared
to the original GloFAS forecasts, (2) changing the catchment
area of a river reach did not alter results downstream; that is,

streamflow volume remained the same for downstream reaches,
and (3) modeled results were close to observed results at different
locations around the world.

The new SPT provides visualization of our GloFAS-RAPID
results as well as data retrieval in CSV and WaterML formats.
Forecast results are available in the app for 1 week, after
which they are removed and archived. Forecasts for a specific
reach can be accessed by clicking on the reach. A pop-
up window displays the dynamic hydrograph, which includes
common interactions like zoom in or out, and data download
as an image or CSV file. The hydrograph includes the 2, 10,
and 20-year return periods to provide context of how much
water is too much for a specific reach. The 51 ensembles are
displayed using statistics that include the mean, min, max, and
standard deviation. A percent exceedance table also displays
the probability of a specific flow value surpassing a return
period based on the prediction in each individual ensemble
(Figure 7).

The SPT REST API was developed to facilitate data access. It
includes methods to programmatically retrieve forecast statistics,
as well as individual forecast ensembles. It also provides methods
to retrieve the computed 35 year historic simulation, and
derivatives such as return periods of each river reach within the
regions. The REST API includes the following methods:

• GetForecasts: a method to extract forecast statistics from
the 51 different ensembles available from the GloFAS-RAPID
results. The available statistics are mean, max, min, and
standard deviation. A high-resolution 52nd ensemble result is
also available.

• GetEnsemble: a method to extract individual ensembles. Each
ensemble can be retrieved separately, or a range of ensemble
can be selected.

• GetHistoricData: a method to extract the 35 years of historic
simulated data for a specific river reach.

• GetReturnPeriods: a method to extract the 2, 10, and 20 year
return periods for a specific river reach calculated using the
historic simulation.

• GetAvailableDates: a method for extracting the available
forecasted dates.

• GetWarningPoints: a method that returns the center of a river
reach along with information about the forecasted flow and
if it is greater than any of the calculated return periods for
that reach.

The REST API is the key functionality behind the HMaaS
approach. It allows for programmatic data retrieval, and in
turn, for the development of lightweight applications that
provide results by relying on the API as opposed to local
computational resources.

The HydroViewer app is a lightweight web application that
allows users to display relevant data and customize the web
app according to stakeholder needs. This app makes use of web
services to display results as opposed to replicating the hardware,
software, and modeling cyberinfrastructure to generate its own
hydrological forecasts. The app uses the REST API to access
forecast results and publicly available geospatial web services
to display hydrographic data. The interface of the app can be
customized to display the colors and logo of the organization it
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FIGURE 9 | Bangladesh’s Transboundary Streamflow Prediction tool.

FIGURE 10 | ICIMOD workflow.

is deployed for, thus allowing users at the local scale to rebrand it
as their own and market it as their own product. In addition, the
HydroViewer app was designed with the principle of visualizing
hydrologic results from different models, not only the GloFAS-
RAPID model.

Customizations for different organizations also include
the addition of hydrographs displaying observed data, data
comparison displays, or the inclusion of other important
geospatial data such as districts or country boundaries.
Instances of the HydroViewer have been deployed for the

following countries: Argentina, Bangladesh, Brazil, Colombia,
La Hispaniola (The Dominican Republic, and Haiti), Nepal,
and Peru. Figure 8 shows the customized HydroViewer
for Colombia.

The incorporation of a REST API has enabled the
development of more complex web applications that use
forecast results retrieved using the REST API. Some of these web
apps include flood mapping, reservoir monitoring, and statistical
analysis applications. These apps benefit from a REST API
by consuming the forecast results made available through the
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FIGURE 11 | Hispaniola HydroViewer displaying both the Flash Flood Guidance and the Global Streamflow Prediction systems.

FIGURE 12 | Simulated vs. observed data for Bheri station in Nepal.

REST API endpoints. This allows for the creation of specialized
apps that do not have the need to spend computational
resources on recalculating essential input data such
as streamflow.

The developed REST API was used to develop custom
applications at the International Centre for Integrated
Mountain Development (ICIMOD) and also during trainings
at the national and regional level to retrieve hydrologic

information. One of the applications developed is the Bangladesh
Transboundary Streamflow Prediction Tool (Figure 9). This
app provides streamflow predictions for Bangladesh’s Flood
Forecasting and Warning Center (FFWC), in combination with
observed data from twenty stations near the international border
areas of Bangladesh. The data produced is mainly used as an
input to feed internal hydraulic models in an effort to improve
lag-time estimations.
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TABLE 3 | Error metrics for Colombia and Nepal (Data sheet 1 has the charts for Colombia and Data Sheet 2 the charts for Nepal).

Location ACC RMSE RMSLE NRMSE (IQR) NSE R (Pearson) R (Spearman) SA KGE (2012) dr

COLOMBIA

Aceitico 0.827 2286.773 0.608 0.502 0.478 0.827 0.902 0.366 0.594 0.660

Bacuri 0.620 4761.954 0.455 0.890 −0.293 0.621 0.717 0.370 0.513 0.435

Calamar 0.666 4451.048 0.436 0.636 0.276 0.666 0.711 0.372 0.481 0.627

Cuayare 0.693 3465.712 0.449 0.563 0.441 0.693 0.804 0.425 0.677 0.680

Nazareth 0.854 10722.792 0.421 0.502 0.416 0.854 0.888 0.250 0.561 0.610

Roncador 0.802 8468.616 0.414 0.396 0.604 0.802 0.882 0.368 0.719 0.760

Tarapaca 0.530 2324.521 0.348 0.826 −0.096 0.530 0.588 0.298 0.414 0.457

Tres Cruces 0.579 1223.259 0.460 0.650 0.306 0.579 0.623 0.405 0.480 0.617

NEPAL

Asaraghat 0.679 455.667 0.621 0.746 0.112 0.679 0.837 0.614 0.560 0.693

Babai 0.320 137.209 0.926 2.778 0.048 0.320 0.880 1.109 0.090 0.658

Bheri 0.694 315.363 0.727 0.889 0.393 0.695 0.811 0.637 0.507 0.730

Kaligandaki 0.690 427.634 0.773 0.953 0.393 0.690 0.849 0.654 0.493 0.727

Kamali 0.722 1132.257 0.624 0.772 0.446 0.722 0.858 0.584 0.605 0.739

Kankai 0.447 168.701 0.694 3.269 0.192 0.447 0.852 1.010 0.294 0.669

Marsyangdi 0.600 228.728 0.966 0.823 0.156 0.600 0.774 0.754 0.238 0.663

Narayani 0.702 1383.591 0.789 0.700 0.351 0.702 0.855 0.627 0.411 0.707

Rapti 0.411 235.208 0.710 2.277 0.085 0.411 0.906 1.032 0.317 0.717

Saptakosi 0.774 1103.025 0.432 0.536 0.527 0.774 0.912 0.511 0.696 0.789

Seti 0.691 234.586 1.173 1.212 0.258 0.691 0.653 0.674 0.271 0.651

Tinaukhola 0.135 631.093 1.840 17.618 −0.055 0.135 0.452 1.331 −0.279 0.695
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In addition, ICIMOD has fully integrated the HMaaS
services into their cyberinfrastructure (Figure 10). ICIMOD has
improved the performance of their applications and data center
by implementing a workflow that downloads daily forecast data
during low demand times using the REST API. The stored data is
then used for different applications during high demand.

The Dominican Republic provides another example where
the web services and visualization tools have helped strengthen
vulnerabilities. An array of derivative applications that take
advantage of the REST API have been subsequently developed.
These applications range from reservoir storage monitoring
to flood mapping and risk management. In particular, the
custom version of the HydroViewer app for the Dominican
Republic provides another layer of information by combining the
previously existing Flash Flood Guidance system (Georgakakos,
2006) with the developed GSPS (Figure 11).

In general, the development of the HydroViewer app
and the REST API facilitate the adoption and integration
of the developed streamflow prediction system by providing
a lightweight application that can be easily deployed and
customized to visualize and interpret results, and providing a way
for results to be integrated and combined with existing resources
through the use of the REST API.

4.1. Validation Results
We compared our historic simulation results to observed
data from 20 different locations in Nepal and Colombia.
Figure 12 shows that the routed historic simulation successfully
follows the same pattern as the observed data and captures
most events with a tendency to under-predict. Data sheet 1

has the charts for Colombia and Data Sheet 2 the charts
for Nepal. Table 3 shows a summary of the error metrics
when comparing forecasted results with observed data at the
selected locations.

We performed an analysis to determine if our GloFAS-RAPID
routed results were similar to the coarser GloFAS results. Data
was collected for 9 weeks during the summer of 2017 and
summarized weekly.

We found that GloFAS-RAPID provides a very similar
result to the original GloFAS and follows trends with very
similar shapes. This information demonstrates that even though
GloFAS-RAPID is routing results over smaller watersheds, results
from the same locations are still very similar in volume,
with the main differences being the initialization methods
used with each model, and the differences in the terrain and
hydrography used for the routing. Table S1 corresponds to the
validation exercise.

Finally, we performed an analysis to determine if our selected
watershed size for routing results had any effect or introduced
any variability on forecasted results. This was done by comparing
forecasted results at the mouth of a watershed using three
different spatial decompositions of the watershed upstream.

As expected, the results from varying resolutions at the
mouth of all the tested watersheds did not yield any significant
differences in the results. These results are consistent with the fact
that the RAPID preprocessing methodology assigns a percentage
of the total runoff volume to each sub-basin. The sum of these

volumes at the mouth of a watershed should always be about
the same. Aside from initial validation, data validation for a
large-scale forecast prediction system at specific locations is a
complicated task. This is in part due to the extent covered by
the model. Local involvement is necessary to validate results
and to provide feedback about the model. The collaboration
efforts described above, as well as the development of validation
tools, and accessibility tools such as REST APIs that facilitate
forecasted and observed data analyses, provide a long term
approach to validating and improving overall model results at the
local level.

5. CONCLUSION

The traditional hydrologic modeling approach presents a major
barrier for areas that lack the necessary resources to run a
model. A HMaaS was developed to answer the need for water
information in areas lacking the resources to run their own
models. A large-scale streamflow prediction system based on
the ECMWF ensemble global runoff forecast. However, this new
model presents a series of challenges to run in an operational
environment and to make the resulting streamflow information
useful at the local scale. These “hydroinformatic” challenges
were divided into four categories: big data, data communication,
adoption, and validation. The developed model provides a high-
density result by routing runoff volume from ECMWF using
the RAPID routing model. A HMaaS approach was used to
provide an answer to the communication challenges faced by a
model covering such a large area. A cloud cyberinfrastructure
was developed to host model workflows, inputs, and outputs.
Web applications were deployed to expose results over the
Internet. Web services such as a REST API and geospatial
services were created to provide accessibility to forecasted results.
Additional web applications were created with the main goal to
allow customizations and provide flexibility for local agencies
to use results according to specific needs. These projects were
demonstrated in different countries around the world. Some of
these countries include: Argentina, Bangladesh, Brazil, Colombia,
Haiti, Peru, Nepal, Tanzania, the Dominican Republic, and the
United States. We tested our results by comparing our forecasts
to observed data. We determined that our model results are in
essence the same as the GloFAS results, but in a higher density.
We also determined that the our forecasted results are usually
close to observed values and are able to capture most extreme
events. Finally, we analyzed the effect of density variations on our
model, and determined that sub-basin sizes do not significantly
affect results at the mouth of the watershed.

DATA AVAILABILITY STATEMENT

The high-density results from our GloFAS-RAPID model
runs can be accessed through the SPT or for a specific
area using the HydroViewer app. These apps are currently
available online at two different portals: the NASA SERVIR
app portal (https://tethys.servirglobal.net/apps/), and the BYU
app portal (https://tethys.byu.edu/apps/). The source code
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for the latest version of the SPT can be found at https://
github.com/BYU-Hydroinformatics/tethysapp-streamflow_
prediction_tool, while detailed documentation including
installation and use can be found at https://byu-streamflow-
prediction-tool.readthedocs.io/en/latest/. The source code and
documentation for the HydroViewer app can be found at
https://github.com/BYU-Hydroinformatics/hydroviewer.
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Bangladesh lies at the intersection of the Ganges, Brahmaputra, and Meghna rivers

with a combined average discharge of 38,000 m3s−1 ranking fourth globally. Despite

the volume of water flowing through and seasonally inundating parts of the landscape,

groundwater reliance is necessary to support an intensive agricultural industry. Here

we use newly-developed open-source software to combine observations from the

Gravity Recovery and Climate Experiment (GRACE) satellites with hydrologic estimates

of land water storage from the Global Land Assimilation Data System (GLDAS) to isolate

basin-scale groundwater anomalies in Northwest Bangladesh from 2002 to 2016. We

place our estimates in the context of previously-published water management estimates

and our results suggest the largest losses in water storage are due to groundwater

abstractions with groundwater storage decreasing at a rate of 0.88 cm yr−1. We estimate

basin-averaged total water storage loss from 2002 to 2016 at 27.92 cmwith groundwater

and surface water storage loss accounting for 12.46 cm or 44.6%. For Bangladesh, a

region where 80% of landcover is dedicated for agricultural use and over half of the

country’s population is employed in the agricultural sector, the estimated declines in water

storage hold long-term implications for the livelihood and food supply of the region.

Keywords: water resources, groundwater, sustainable management, food security, open-source software

INTRODUCTION

Having a holistic understanding of water availability is necessary to combat the challenges of
managing water resources under a changing climate (Famiglietti and Rodell, 2013; Rodell et al.,
2018). With evidence of more intense rainfall (Durack et al., 2012), an increased probability of
flooding (Milly et al., 2002), decreasing glacier melt (Gardner et al., 2013), changes in seasonal
snowpack (Smith and Bookhagen, 2018), and shifts in the intensity of drought (Trenberth et al.,
2014), water managers require as much relevant information as possible to meet water needs of
a growing populations to support food and energy production (Vörösmarty et al., 2000; Milly
et al., 2005). Traditionally humans have met agricultural and urban water demands by routing
surface water or pumping groundwater. While in situ surface water observations have provided
rich datasets to support management (Fekete et al., 2012), limited observations of groundwater
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have prevented a complete understanding of water availability
and use to support sustainable management (Taylor et al., 2013;
Famiglietti, 2014).

Globally, groundwater provides a drinking water source
for half of the world (IGRAC, 2018) and supports over 40%
of irrigated lands worldwide (Siebert et al., 2010). While
groundwater use varies greatly region to region depending on
infrastructure and climate, all regions increase reliance under
drought (Famiglietti et al., 2011; Castle et al., 2014).With 5 billion
people expected to feel the impacts on freshwater availability
from a changing climate, regions that are already over-
reliant on groundwater will be more susceptible to devastating
consequences of degraded quality and reduced availability
(Vörösmarty et al., 2000). Unfortunately, many regions still
lack the infrastructure to monitor changes in availability across
basins scales.

In 2002, with the launch of the Gravity Recovery And Climate
Experiment (GRACE) mission (Tapley et al., 2004), the global
extent of this shared problem of over-reliance on groundwater
began to emerge (Famiglietti et al., 2011; Voss et al., 2013;
Richey et al., 2015). Numerous studies have utilized GRACE
observations of terrestrial water storage anomalies (TWSa),
the combined anomalies of snow, soil moisture, canopy water,
surface water, and groundwater, to study the global water cycle
and impacts on water resources (Equation 1).

TWSa = SMa+ SWEa+ CANa+ SWa+ GWa (1)

where, SMa is soil moisture anomaly, SWEa is the snow
water equivalent anomaly, CANa is canopy intercepted water
anomaly, and SWa is surface water storage anomaly. GRACE
observations have supported quantifying: flood potential (Reager
and Famiglietti, 2009), drought (Thomas et al., 2014), basin
evapotranspiration (Rodell et al., 2011), global discharge
(Chandanpurkar et al., 2017), and the fingerprint of human
management on the water cycle at basin scales (Anderson
et al., 2012; Castle et al., 2016; Massoud et al., 2018). GRACE’s
unique ability to quantify total terrestrial water storage anomalies
facilitates tracking rates of groundwater depletion across the
globe (Famiglietti, 2014). From India and the Middle East
to the California Central Valley and Colorado River Basin,
GRACE observations have revealed how each region relies
on groundwater to meet freshwater demands from irrigated
farmland, industry, and growing populations (Rodell et al., 2009;
Famiglietti et al., 2011; Voss et al., 2013; Castle et al., 2014).
Many of the regions with evidence of water loss have limited
surface water availability, other regions, such as Bangladesh, show
evidence of persistent storage declines despite high rates of mean
annual rainfall and river discharge (Shamsudduha et al., 2012;
Burgess et al., 2017).

Bangladesh lies at the confluence of the Ganges, Brahmaputra,
and Meghna Rivers with a mean discharge topping 38,000 m3s−1

(Gain et al., 2011). The volume of water flowing in these rivers
makes up large fraction of the total water within the country
(Getirana et al., 2017). Furthermore, Bangladesh experiences
seasonally intense rainfall during the monsoon season from June
to September (Dash et al., 2012). In fact, some Eastern parts of the

country experience more than 2m yr−1 of annual rainfall, among
the highest rates in the world. Despite seasonal inundations
on much of the landscape, a large agriculture industry relies
on groundwater to irrigate farmland (Figure 1). In Bangladesh,
where over 160million people live, more than half the population
relies on agriculture to support their livelihood (Food Agriculture
Organization, 2011). The importance of agriculture to sustain
food production and local workforces places a strain on regional
water resources. Previous in situ measurements of documented
declines in groundwater spurred legislation in 1999 and 2001
to curtail over-use (Food Agriculture Organization, 2011). The
Northwest Region is home to the highest fractions of irrigated
farmland in the country and relies heavily on groundwater during
the dry season to maintain crop production. Unfortunately, this
happens to be the area in Bangladesh most susceptible to drought
and its impacts (Dey et al., 2012; Alamgir et al., 2015). Water
management challenges in Bangladesh are compounded by water
contamination (e.g., arsenic) and salinity intrusion (Nickson
et al., 2000; Mahmuduzzaman et al., 2014). During prolonged
dry years the arsenic-rich groundwater being pumped to the
surface for irrigation accumulates in soils used to grow rice
(Roberts et al., 2010). In addition, projected increases in peak
flow intensity may limit this region’s ability to store surface water
(Gain et al., 2011). Like many similar regions around the world

FIGURE 1 | Fraction of irrigated area in Bangladesh (Siebert et al., 2013).

Country boundary in black, Northwest Bangladesh region (i.e., Rangpur and

Rajshahi divisions) boundary in red. The irrigated area data were accessed

from FAO AQUASTAT http://www.fao.org/nr/water/aquastat/irrigationmap/.
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facing complex water management challenges, regional scale
observations of water storage changes hold potential to support
long-term planning (Adhikary et al., 2013).

Here we use 159 months of GRACE data, from April 2002
through January 2017, to evaluate water storage changes in
Bangladesh. To isolate changes in groundwater storage we
supplement GRACE observations with model estimates of soil
moisture, snow, and canopy storage. While GRACE observations
(2002–2007) have been demonstrated to accurately capture the
seasonal water cycle including the monsoon intensity over the
entire Bengal Basin (Steckler et al., 2010; Shamsudduha et al.,
2012), regions with the most intense groundwater use have yet
to be analyzed in isolation and the shorter records used in
previous analysis limited the computation of regional trends. In
addition to a national scale analysis over Bangladesh, we focus
additional analysis on Northwest Bangladesh where irrigated
farmland and groundwater use is among the highest in the
country (Figure 1). Furthermore, we here present the Satellite
Hydrology Bits Analysis and Mapping (SHBAAM), an entirely
open-source python-based tool, to perform regional-scale water
budget analysis using GRACE observations and model data for a
given region of interest.

DATA AND METHODS

Study Region
In Rangpur and Rajshahi, the two Divisions that make
up Northwest Bangladesh (Figure 1), groundwater is the
predominant source of water for irrigation. Compared to the
rest of the country, this region experiences substantially less
rainfall (Dash et al., 2012). Northwest Bangladesh is bordered
to the South by the Padma River, the main distributary of the
Ganges River, to the West and North by India, and to the East
by the Jamuna River, the lower course of the Brahmaputra River.
While seasonal inundation occurs within the floodplains of these
major rivers, farmers still pump groundwater during the dry
season to support crops such as rice, wheat, potato and fruits
including lychees and mangos, among others (Food Agriculture
Organization, 2011). On top of the large presence of agriculture,
Bangladesh is one of the most densely populated countries in the
world with more than 1,100 people per km2. These two factors
exacerbate stress on water resources and create a need to bring
the regional water back into balance.

GRACE Terrestrial Water Storage
Observations
In this analysis, we use the Jet Propulsion Laboratory Release
5 GRACE mascon solutions from April 2002 through January
2017 (Watkins et al., 2015). This dataset provides mass equivalent
terrestrial water storage (TWS) anomalies on a 0.5◦ grid. Gain
factors, generated with CLM4 model outputs, were used as
multiplying factors along with the GRACE TWS anomalies to
minimize leakage errors and distribute mass changes within each
3◦ mascon solution (Wiese et al., 2016). Additionally, we remove
the temporal mean for the entire time period and present TWS
anomalies relative to the complete record from 2002 to 2017.
To evaluate changes in all the components of the water budget,

we supplement GRACE observations with model estimates of
snow water equivalent, canopy storage, soil moisture storage, and
surface water storage; as discussed below.

GLDAS Land Surface Model Elements
Outputs from the Global Land Data Assimilation System
(GLDAS, Rodell et al., 2004) provide multiple land surface
model (LSM) estimates globally. GLDAS utilizes observation-
based forcing datasets of precipitation and radiation to run land
surface models at 3-hourly timesteps to globally resolve fluxes
and storage of water and energy. We use monthly outputs from
four models within GLDAS including: Noah (NOAH) (Chen
et al., 1996, 1997; Ek, 2003), Variable Infiltration Capacity (VIC)
(Liang et al., 1994), Common Land Model (CLM) (Dai et al.,
2003), and Mosaic (MOS) (Koster et al., 2000). Each LSM
provides an independent estimate of snow water equivalent,
soil moisture, and canopy water storage. While each LSM uses
the a common set of soil types and atmospheric forcing, the
maximum depth of soil water storage varies from 1.9m (VIC),
2.0m (NOAH), 3.0m (MOS), to 3.43 meters (CLM), and the
total number of layers ranges from 3 (VIC and MOS), 4
(NOAH), to 10 (CLM). Surface water storage, such as lakes,
reservoirs, and rivers, is not directly resolved by any of the
GLDAS models. Instead, we apply the Routing Application for
Parallel computation of Discharge (RAPID) river routing model
(David et al., 2011) to estimate mean surface water storage
for each GLDAS model across every reach in the Ganges,
Brahmaputra, and Meghna Basins (Sikder et al., in press). Sikder
et al. (in press) simulated 3-hourly discharge using all GLDAS
models for the Ganges-Brahmaputra-Meghna Basin on a 15-
arc second river network from HydroSHEDS (Lehner et al.,
2008). These discharge simulations result in standard errors≤2%
with correlation coefficients ranging from 0.6 for the Meghna
River to 0.8 for the Brahmaputra River. We sum the volume
from all the river reaches within Bangladesh and compute
monthly mean surface water storage and associated uncertainty
using multi-model statistics (Richey et al., 2015; Thomas et al.,
2017). To compare LSM and river routing outputs with GRACE
TWS anomalies, each storage component was converted to an
equivalent water height anomaly by removing the temporal mean
from April 2002 to January 2017 and dividing by the surface area.

Computing Groundwater Anomalies With
SHBAAM
The Satellite Hydrology Bits Analysis and Mapping (SHBAAM)
software developed here completes the pre and post-processing
tasks on GRACE TWS anomalies that are necessary to study
the terrestrial water cycle and compute changes in groundwater.
SHBAAM is an open-source Python and bash shell toolbox that
is available online via GitHub (https://github.com/c-h-david/
shbaam) or Docker (https://hub.docker.com/r/chdavid/shbaam).
This toolbox automates the downloading and processing of the
GRACE andGLDAS datasets to evaluate changes in water storage
for any region around the globe. Groundwater anomalies for a
given region are computed by rearranging (Equation 1):

GWa = TWSa− SMa− SWEa− CANa− SWa (2)
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SHBAAM simplifies this computation by preparing and sub-
setting the necessary prerequisite data to the same temporal
resolution and spatial domain. Scripts retrieve GRACE terrestrial
water storage anomalies, land-ocean masks, and gain factors
from the Physical Oceanography Distributed Active Archive
Center (PO.DAAC), and individual monthly GLDAS snow
water equivalent, soil moisture, and canopy storage from the
Goddard Earth Science Data and Information Service Center
(GES-DISC). Missing GRACE observations are automatically
filled according to Hamlington et al. (2019). First, GRACE
TWSa data are multiplied by spatially distributed gain factors.
Then the scaled TWSa data are detrended and the annual
climatology is removed. Gaps in the remaining data, the inter-
annual variation, are filled using cubic interpolation. Lastly, the
climatology and trend are reintroduced to provide a continuous
TWSa record. These gap-filling steps provide more accurate
estimates of missing observations during winter maximums
and summer minimums. Additional processing steps include
concatenation of the individual monthly GLDAS LSM outputs
and LSM anomaly computation to compare with GRACE TWS
anomaly observations. Any shapefile in a geographic coordinate
reference system can be used in SHBAAM for the joint regional
analysis of GRACE and GLDAS. SHBAAM finds the intersecting
grid coordinates for both GRACE and GLDAS and computes
area-weighted averages for each water storage component to
determine groundwater storage anomalies within the domain
following (Equation 2). Groundwater anomalies are computed
using the multi-model mean values. Outputs from SHBAAM
include tables of monthly water storage anomalies and figures
of the time-series changes in each component (Figure 2). These
output tables support supplemental analyses on basin water
storage changes, such as trend analysis or quantifying the total
volume of water lost.

Error variances in SWEa, SMa, and CANa are computed using
the multi-model standard deviation. The errors in TWSa are on
average 7 cm for the study region. Errors inmonthly groundwater
assume the absence of error covariances and are computed as:

σGWa =

√

(σTWSa)2 − (σSMa)2 − (σSWEa)2 − (σCANa)2 − (σSWa)2

(3)

where σXa is the standard deviation or error variance in each
hydrologic component X. SHBAAM can be used to reproduce
the results from this study or to complete similar analyses on any
basin globally granted that the basin size is large-enough to be
used along with GRACE data.

RESULTS

Hydrographs for each water storage component from GRACE
and GLDAS reveal variations in water storage and similar
annual amplitudes for terrestrial water storage and soil moisture
(Figure 2). In both Bangladesh and Northwest Bangladesh
snow water equivalent and canopy water storage anomalies are
negligible. The SHBAAM outputs show declines in GRACE
terrestrial water storage anomalies from 2002 to 2017 for both

FIGURE 2 | Changes in water storage anomalies for GRACE terrestrial water

storage (Top), soil moisture (2nd from Top), surface water (3rd from Top), snow

water equivalent (4th from Top), and canopy water storage (Bottom). Red lines

show changes in storage for Bangladesh. Blue dashed lines show changes in

storage for Northwest Bangladesh. GRACE observations show a decline in

storage from 2003 to 2016.

Bangladesh and Northwest Bangladesh. Trends in TWSa reveal
average storage declines at a rate of −0.85 cm yr−1 (−1.16 km3

yr−1) and −1.99 cm yr−1 (−0.60 km3 yr−1), respectively. Soil
moisture anomalies show similar declines from 2002 to 2015,
but a recovery in 2016. Non-zero trends for each water storage
component are listed in Table 1. We estimate total storage lost
for each region using the trend of decline and the area. From
2002 to 2017 GRACE observations reveal Bangladesh lost a total
of 16.26 km3 freshwater. During the same time period we find
the Northwest Region lost 8.42 km3 of water. Outputs from
SHBAAM reveal two hot-spots of water decline in the Northwest
region (Figure 3).

Groundwater anomalies uncover large declines in storage
across the time period (Figure 4). Groundwater storage decreases
across Bangladesh at a rate of −0.75 cm yr−1 (−1.02 km3
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yr−1) and in Northwest Bangladesh at a rate of −0.88 cm yr−1

(−0.27 km3 yr−1). These rates are consistent with previously
published ranges of in situ estimates (−0.85 to −1.61 km3 yr−1)
(Shamsudduha et al., 2012). During the study period, Bangladesh
lost approximately 14.3 km3 with the Northwest region
accounting for roughly 3.74 km3. Interestingly, we find changes
in surface water storage anomalies, as computed from routed

TABLE 1 | Trends for water storage components in Bangladesh and Northwest

Bangladesh.

Component Bangladesh Northwest Bangladesh

Total Water Storage −0.890 cm yr−1
−2.24 cm yr−1

Soil Moisture −0.134 cm yr−1
−1.355 cm yr−1

Groundwater −0.755 cm yr−1
−0.886 cm yr−1

Trends are computed for 2003–2016. Trends of 0 cm yr−1 are not displayed for canopy

water storage or snow water equivalent.

GLDAS runoff do not change the trajectory of Bangladesh-wide
changes in groundwater anomalies (Supplementary Figure 1).
The Rangpur and Rajshahi Divisions lie in regions more
susceptible to pre-monsoon and post-monsoon droughts and are
known to rely more heavily on groundwater to irrigate farmland.

We compare changes in water storage and groundwater
storage for all of Bangladesh to published values for 2008 (Food
Agriculture Organization, 2011). Previously reported total water
withdrawal for 2008 is estimated at 35.87 km3, with groundwater
extraction accounting for approximately 80% or 28.42 km3.
The same report estimates groundwater recharge to be 21 km3

yr−1. Here we estimate the amplitude of groundwater storage
for 2007, 2008, and the mean climatology for the GRACE
record to be 30.7, 36.0, and 27.6 km3, respectively (Figure 5).
Our estimates are therefore of the same order of magnitude as
study previous, although they notably differ by over 30%. This
disagreement can be attributed to numerous factors, including:
(1) a potential underestimation in water withdrawal estimates
used previously for the region or (2) known limitations in the

FIGURE 3 | Changes in water storage represented as the slope from 2002 to 2017 for the sum of GLDAS water storage components (A) and GRACE total water

storage (B). The plots demonstrate the difference in spatial resolution of the two datasets (GLDAS 1◦ and GRACE 0.5◦).

FIGURE 4 | Changes in groundwater anomalies for Bangladesh (red line) and Northwest Bangladesh (blue line). Slopes for Bangladesh (gray) and Northwest

Bangladesh (black) show a decline in groundwater from 2002 to 2017. Shaded regions represent monthly groundwater uncertainty for each study region as computed

by Equation (3).

Frontiers in Environmental Science | www.frontiersin.org 5 October 2019 | Volume 7 | Article 15581

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Purdy et al. GRACE Water Management in Bangladesh

FIGURE 5 | Changes in groundwater storage with uncertainty for Bangladesh. The blue line indicates the monthly changes in groundwater storage and the red line

indicates the corresponding monthly climatology. Shaded regions represent monthly groundwater uncertainty as computed by Equation (3).

combination of GRACE and GLDAS to estimate changes in
groundwater storage (Scanlon et al., 2018), (3) high uncertainty
in surface water storage anomalies, or (4) natural aquifer
recharge and discharge processes make up for the difference.
Nonetheless, our methodology provides an alternative means to
estimating regional water storage changes from remotely-sensed
observations combined with global hydrologic simulations, and
is here indicative of over-consumptive use.

DISCUSSION

Despite large amounts of annual discharge from the Ganges,
Brahmaputra, and Meghna, GRACE observations suggest that
intense agricultural practices sustained water storage declines
from 2002 to 2017 in Bangladesh. Previous exploration of this
regional signal found changes in precipitation being the driving
cause for total water storage declines (Rodell et al., 2018).
Here, we find evidence that groundwater depletion contributes
to this regional signal, especially in Northwest Bangladesh.
Despite observations and model estimates indicating potentially
dire circumstances, further on-ground validation is required to
validate the magnitude of potential groundwater over-reliance.
Recent work revealed GRACE observations and GLDASmodeled
total water storage disagree on trend direction across the
majority of global river basins (Scanlon et al., 2018). We
found consistent trends across models in Northwest Bangladesh
but contrasting trends across the Bangladesh study region
(Supplementary Figure 2). Multi-model statistics help quantify
the uncertainty in the monthly GWa estimates but relating the
SHBAAAM outputs to previous studies can reveal opportunities
to further improve these estimates. For example, the ratio of
SWSa to TWSa estimated by GLDAS is lower than previous
studies using the Noah-MP model with HyMAP river routing
(Getirana et al., 2017). Further efforts to quantify seasonal and
inter-annual surface water storage anomalies in the region may
shed a clearer light on the degree of severity for particular regions.

While the uncertainty of groundwater anomalies computed
with GRACE increases for smaller scale analyses, our results

still capture trends and spatial patterns of groundwater reliance
similar to previous in situ analysis for the region (Shamsudduha
et al., 2012). The findings from this study suggest groundwater
use exceeds natural recharge rates in Bangladesh extending to
as recently as 2017, especially in the Rangpur and Rajshah
Divisions. For this region, projected changes in surface discharge
pose to only further complicate regional water management
by increasing seasonal groundwater reliance and increasing the
difficulty of storing surface water with larger peak flows. In
addition to these potential challenges in managing freshwater
quantity, Bangladesh also faces rising sea levels that intrude on
coastal aquifers, and arsenic accumulation in farm soils during
dry spells (Roberts et al., 2010; Mahmuduzzaman et al., 2014).
These local issues mirror similar challenges faced around the
world that require as much information as possible to understand
and plan for actionable solutions.

GRACE and GLDAS-based hydrologic estimates provide
a potential tool for water managers to support long-term
management strategies by evaluating regional changes with
relatively low latency, constraining basin-scale modeled
estimates, and identifying regions facing or moving toward
severe water shortages. The outputs from SHBAAM are not
meant to replace in situ monitoring as many water management
decisions are made at scales finer than the GRACE satellites can
resolve. Instead, these datasets hold potential to support regional
and seasonal management by complementing efforts focused
on short-term forecasting of transboundary water flows (e.g.,
Biancamaria et al., 2011). SHBAAM lowers the barriers to access
and use of these NASA datasets to support water management
and scientific research. The increased exposure to these datasets
may lead to new, creative avenues for water managers to harness
the value of this tool and relevant associated datasets.

Since its generation, successful SHBAAM tutorials have been
given to trainers at international agency partners through the
NASA SERVIR program. However, creating and maintaining
open-source software such as SHBAAM does not come without
challenges. Hosting the toolbox and documentation on Github
and Docker reduces many of the challenges such as installation
requirements for different operating systems. Recent effort has
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moved toward simplifying the coding interface through the
introduction of Python-backed notebooks. These steps can be
expected to further broaden the user base, and overcome a
general lack of familiarity around command line interfaces
outside of the research community. Additionally, with the
recently launched GRACE-Follow On and improvements to
GLDAS, updates to SHBAAM processing will be required
to leverage near-real time observations and guide water
management into the next decade (Tapley et al., 2019).
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Numerical models have become essential tools for simulating and forecasting hydro-

meteorological variability, and to help better understand the Earth’s water cycle across

temporal and spatial scales. Hydrologic outputs from these numerical models are

widely available and represent valuable alternatives for supporting water management

in regions where observations are scarce, including in transboundary river basins

where data sharing is limited. Yet, the wide range of existing Land Surface Model

(LSM) outputs makes the choice of datasets challenging in the absence of detailed

analysis of the hydrological variability and quantification of associated physical processes.

Here we focus on two of the world’s most populated transboundary river basins—the

combined Ganges-Brahmaputra-Meghna (GBM) in South Asia and the Mekong in

Southeast Asia—where downstream countries are particularly vulnerable to water related

disasters in the absence of upstream hydro-meteorological information. In this study,

several freely-available global LSM outputs are obtained from NASA’s Global Land

Data Assimilation System (GLDAS) and from the European Centre for Medium-Range

Weather Forecasts (ECMWF) Re-Analysis-interim/Land (ERA-interim/Land) and used

to compute river discharge across these transboundary basins using a river network

routing model. Simulations are then compared to historical discharge to assess runoff

data quality and identify best-performing models with implications for the terrestrial

water balance. This analysis examines the effects of meteorological inputs, land surface

models, and their spatio-temporal resolution, as well as river network fineness and

routing model parameters on hydrologic modeling performance. Our results indicate

that the most recent runoff datasets yield the most accurate simulations in most cases,

and suggest that meteorological inputs and the selection of the LSM may together be

the most influential factors affecting discharge simulations. Conversely, the spatial and

temporal resolution of the LSM and river model might have the least impact on the

quality of simulated discharge, although the routing model parameters affect the timing

of hydrographs.

Keywords: water balance, discharge, global LSM, GLDAS, ERA-interim, GBM, Mekong
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INTRODUCTION

South and Southeast Asia are currently home to the world’s
most densely populated areas (FAO, 2016). This region is also
characterized by extreme hydrologic variability with ∼70–80%
of the total annual rainfall occurring during the short June to
September window of the summer monsoon, causing flooding to
be a regular annual event (Mirza, 2011; Hoang et al., 2019). In
addition, the combination of climate change and anthropogenic
water diversions from rivers affect the region through increased
drought frequency (Khandu et al., 2016). Such demographic and
hydrologic extremes together make the two principal rivers of
South and Southeast Asia—the combined Ganges-Brahmaputra-
Meghna (GBM) and the Mekong—some of the world’s largest
rivers (e.g., Dai et al., 2009) and most populous transboundary
basins (Webster et al., 2010; Lakshmi et al., 2018). Surface water
from these rivers provides great benefits because it helps support
critical agricultural and energy production needs for over 690
million people (FAO, 2016), i.e., a tenth of the human population.
Yet, the benefits of surface water also come with challenges, most
notably for the downstream parts in these basins, which were
determined to have the world’s highest risks of exposure to floods,
but also to droughts (UNEP, 2016).

In Bangladesh, which is situated in the downstream portion
of the GBM basin, losses due to flooding are severely hampering
the economic growth of the country. Approximately 80% of the

country consists of floodplains such that, in a typical year, about

a third of Bangladesh is flooded during the monsoon (Brouwer

et al., 2007). During extreme flood years, two thirds of the

country can be inundated for ∼3 months, causing widespread
devastation on the region (Mirza et al., 2003). The mean annual
loss caused by normal flooding in Bangladesh is estimated about
US$175 million (Mirza, 2011). The World Resources Institute
ranks Bangladesh as first in the world in terms of percentage of
country GDP regularly exposed to flooding and second in terms
of population exposed (Priya et al., 2017).

While the Mekong River Basin is also characterized by the
intensity of its wet season (Hoang et al., 2019), the most critical
ongoing hydrologic challenge is the expected increase of large
hydropower dams on the main stem of the Lower Mekong River
(Kummu and Sarkkula, 2008; Bonnema and Hossain, 2017). The
proposed construction of 11 hydropower dams on the now free-
flowing river (Orr et al., 2012) is anticipated to have a significant
impact on the region’s ecohydrology (Pokhrel et al., 2018) and
aquaculture—the Mekong contains the world’s largest inland
fisheries (Hecht et al., 2019). These degradations are expected
to continue to grow in the future with a total of 90 and 136
dams to be built within the Lower Mekong basin by the year
2030 and 2060, respectively (Räsänen et al., 2012). Recent studies
reporting a 10-fold increase from water storage capacity from 2
to 20% of annual flow by 2025 indicate that the drastic impacts
of the proposed dam constructions on fisheries, agriculture, and
the environment are likely to persist (Kummu et al., 2010; Hecht
et al., 2019).

The high population density and hydrologic extremes in South
and Southeast Asia therefore pose a variety of challenges to
water management. The transboundary aspect of river basins in

the area and associated geopolitical challenges in data sharing
make water management endeavors rely heavily on simulations
from computer models (Hossain et al., 2014). Much of the
existing literature in the region has therefore focused on detailed
hydrologicmodeling endeavors with locally-tailoredmodels (e.g.,
Nishat and Rahman, 2009; Hossain et al., 2017). In the case of
Bangladesh, much effort has been dedicated to flood mitigation
through forecasting to further the economic progress and food
security with particular emphasis on increased lead time of flood
forecasting systems (CEGIS, 2006; Webster et al., 2010), i.e., the
latency between available forecasts and real-time events. Other
notable applications include the flood forecasting system of
Sikder and Hossain (2018), and antecedent studies of hydrologic
and hydraulic model development (e.g., Siddique-E-Akbor et al.,
2014; Maswood and Hossain, 2015).

Similarly, the planned and ongoing development of
hydroelectric dams in the Lower Mekong Basin has been a
subject of intense national and international argument for
the stakeholder countries of the Mekong basin and numerical
models have played an important role in such debate. Hanington
et al. (2017) showed how hydrological models can be used for
water resources planning and management in the Mekong delta
to support the agricultural production. Räsänen et al. (2012)
studied the hydrological impact of the proposed dams on the
downstream portion of the Mekong basin. Haddeland et al.
(2006) and Tatsumi and Yamashiki (2015) investigated the effect
of water diversions on the water and energy balances of the
Mekong basin using hydrological models. Hoang et al. (2019)
used a hydrological model to study the impact of climate change,
construction of dams and flow diversion on the future flow
of the Mekong river. Similar efforts by Johnston and Kummu
(2012) and Pokhrel et al. (2018) have studied the expected
evolution of the Mekong water resources in in the context of a
changing climate.

Besides the aforementioned water resources applications
of hydrologic models in the GBM and the Mekong basin,
Land Surface Models (LSMs) are also used as a core tool
for understanding the spatio-temporal variation of hydro-
meteorological variables and associated physical processes. The
importance of understanding the water cycle and quantifying
its various fluxes using LSMs is even more acute in the
case of ungauged and transboundary regions, where such
data can prevent large-scale disasters (Siddique-E-Akbor et al.,
2014; Murshed and Kaluarachchi, 2018). At this time, several
operational global LSMs are producing continuous estimates of
different hydrological fluxes, which can be used as an easily-
accessible alternative to locally-tailored hydrological models.
Numerous studies have used these readily available LSM outputs
to analyze different components of the water cycle. For example,
Lakshmi et al. (2018) quantified water availability in the world’s
major river basins using the Global Land Data Assimilation
System (GLDAS) model outputs (Rodell et al., 2004).

Perhaps the most widespread use of GLDAS or other global
LSMs in South and Southeast Asia is along with the Gravity
Recovery and Climate Experiment (GRACE) data to determine
groundwater fluctuations and changes in water storage. Rodell
et al. (2009) and Chinnasamy et al. (2015) used GLDAS soil
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moisture along with GRACE to estimate the groundwater
depletion rate in North India. Khandu et al. (2016) used GRACE
along with soil moisture estimates from different LSMs to
estimate the influence of precipitation extremes on the Total
Water Storage (TWS) in the GBM basin. A recent study by
Murshed and Kaluarachchi (2018) used GLDAS soil moisture
data to estimate freshwater availability in the Ganges Delta and
demonstrated how LSMs can be used to identify the complex
issues of water security.

Global LSM outputs are also often applied throughout the
world’s largest basins for comparison and validation against
satellite-derived data. Syed et al. (2008) used GLDAS and GRACE
separately to characterize the Terrestrial Water Storage Change
(TWSC) in major river basins and found a good agreement
in satellite- and model-derived TWSC. Rodell et al. (2011)
used GRACE and other observed and modeled data together
to estimate evapotranspiration for a few major river basins
and compared the results with models. Chen et al. (2013)
compared the Advanced Microwave Scanning Radiometer—
Earth Observing System (AMSR-E) and all four GLDAS LSM-
derived soil moisture with the in-situ station averaged soil
moisture data in the Tibetan Plateau and reported that three out
of four GLDAS LSMs perform better than the satellite product
in that region, though the LSMs generally underestimated
soil moisture.

Global LSM data products therefore have strong potential
for practical applications in ungauged and transboundary river
basins, including in South and Southeast Asia, and the accuracy
of these models is therefore critical for associated water resources
management endeavors (Wang et al., 2011). For these LSMs to
be most useful, they must be validated against in-situ data in
anticipation for practical (i.e., “real-world”) applications, as done
previously in several published studies. Berg et al. (2005) used
GLDAS and NLDAS models to prepare hydro-meteorological
forcing data (i.e., the continuous input data used to run
the model) for global soil moisture estimation and compared
their simulations with in-situ soil moisture data to find good
agreement between the anomaly of observed and modeled soil
moisture. Similarly, Bi et al. (2016) used in-situ soil moisture data
to validate the GLDAS LSMs in the Tibetan Plateau and found
that models can accurately capture the temporal variations, but
systematically underestimate soil moisture. However, validating
LSMs using distributed hydrological fluxes is challenging, since
the evaporation, soil moisture, and groundwater are difficult
to measure in-situ, and in-situ measurements only capture the
local state.

River flow does not face the same distributed challenge
because it is the integration of all upstream hydrologic processes
and many in-situ discharge datasets in the major rivers of the
world have continuous record. Therefore, river discharge can
also be used to validate global LSM simulations, granted that the
discharge is routed correctly (Zaitchik et al., 2010), the effects of
anthropogenic activities in hydrological processes are addressed
properly, and noting that observations are often difficult to obtain
(Hossain et al., 2014). Such a validation is critical because it
allows for the verification of the LSM estimates in an integrated
manner. Yet, most of the validations of existing operational LSMs

using river flow have been conducted in data-rich regions of
the world. For example, Mitchell et al. (2004) used the in-situ
discharge of the Contiguous United States (CONUS) to validate
the North American Land Data Assimilation System (NLDAS).
Xia et al. (2012b) updated the same validation study using the
LSMs of NLDAS-2. In contrast, very few studies were conducted
in other parts of the world. To the extent of our knowledge, only
Zaitchik et al. (2010) used discharge estimates for the world’s
major rivers to validate GLDAS, and identified that the four LSMs
of GLDAS performed differently and with distinct geographic
patterns to estimate the river flow. They also found that the
choice of meteorological forcing has a notable impact in the
simulated discharge.

Recently-updated global LSM products (e.g., GLDAS-2) are
now available but have not yet been evaluated against observed
river flow. Such a validation effort is particularly needed for
the transboundary river basins of South and Southeast Asia
where global LSMs can provide valuable estimates of water fluxes
and states. In this context, the primary goal of this study is to
identify optimal global LSMs for estimating river flow in South
and Southeast Asia. Furthermore, the accuracy of the model-
simulated river discharge can be expected to be sensitive to
the choice of the LSM, meteorological forcing, spatio-temporal
resolution of the models, and routing model parameters. A
secondary goal of this study is hence to identify the most
influential factors affecting the accuracy of the simulated flow.

This paper is organized as follows. Section Model and Data
describes the data and models used in this study, including
the global LSMs, the river routing model, and the in-situ
discharge data. TheMethodology follows in sectionMethodology
and section Results and Discussions describes our results and
discusses our analysis. Finally, section Conclusions presents
our conclusions.

MODEL AND DATA

Land Surface Models
Several publicly available LSM outputs from different projects
were considered for this study. Model outputs from 2001 to
2009 were used for river routing simulation and preliminary
analysis. This time window was carefully chosen to ensure that
the data from all global LSMs considered are available. A list and
the details of these LSMs are provided in Table 1, and further
discussed below.

The GLDASv1 (denoted by GLDAS hereafter) consists of four
different LSMs. These models are the Mosaic model (Koster
and Suarez, 1996), the Noah model (Chen et al., 1996; Koren
et al., 1999), the Common Land Model (CLM) (Dai et al.,
2003), and the Variable Infiltration Capacity (VIC) model (Liang
et al., 1994). A combination of meteorological datasets were
used as the input (i.e., “forcing”) for these LSMs: the National
Oceanic and Atmospheric Administration (NOAA) Global
Data Assimilation System (GDAS) atmospheric analysis fields,
the spatio-temporally disaggregated NOAA Climate Prediction
Center Merged Analysis of Precipitation (CMAP) fields, and
the Air Force Weather Agency’s AGRicultural METeorological
modeling system (AGRMET) method based in-situ downward
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TABLE 1 | Details of the Land Surface Model (LSM) outputs used in this study.

Projects Version Forcing LSM Resolution

Precipitation Radiation Others Temporal Spatial

GLDAS v1 CMAP AGRMET GDAS CLM v2.0 3 h 1◦

Mosaic

Noah v2.7.1

VIC

v2.0 Princeton meteorological forcing Noah v3.3 3 h 0.25◦, 1◦

v2.1 GPCP AGRMET GDAS Noah v3.3 3 h 0.25◦, 1◦

ECMWF ERA-interim/Land GPCP v2.1 ECMWF Re-Analysis HTESSEL Daily 80 km

shortwave and longwave radiation fields. The GLDASv1 outputs
are available from January 1979 to date. More details about
these models can be found in Rodell et al. (2004) and Rui and
Beaudoing (2017).

An updated GLDAS is now available and denoted GLDAS-2.
Two different versions of GLDAS-2 are available: GLDASv2.0 and
GLDASv2.1. Both GLDASv2.x used more recent meteorological
forcing than GLDAS in a unique LSM which is a newer version
of Noah. GLDASv2.0 used the Princeton meteorological forcing
data (Sheffield et al., 2006) that is available from January
1948 to December 2010. GLDASv2.1 used a combination
of NOAA/National Center for Environmental Prediction’s
GDAS atmospheric analysis fields, the spatio-temporally
disaggregated Global Precipitation Climatology Project (GPCP)
precipitation fields, and the updated AGRMET downward
shortwave and longwave radiation fields as the forcing data.
Other enhancements in GLDAS-2 include switching to MODIS
based land surface parameter datasets, and initialization of
soil moisture over desert (Rui and Beaudoing, 2019). The
model outputs of GLDASv2.1 are available for the period of
January 2000—present.

Another set of global LSM outputs is available from
the European Centre for Medium-Range Weather Forecasts
(ECMWF). These simulations used the ECMWF Re-Analysis
(ERA)-Interim data and the GPCPv2.1 adjusted precipitation
field as forcing for the latest version of the Hydrology-Tiled
ECMWF Scheme for Surface Exchanges over Land (HTESSEL)
LSM to produce the ERA-Interim/Land products. The outputs of
this model are covering a period of January 1979 to December
2010. More details of this dataset can be found in Balsamo et al.
(2012, 2015).

River Network Routing Model
The Routing Application for Parallel computatIon of Discharge
(RAPID) (David et al., 2011) is used as the river routing model
in this study to derive the daily flow throughout the river
basins. RAPID uses the Muskingum method (McCarthy, 1938)
to calculate flow at all nodes of a given river network using
surface and subsurface runoff from an LSM as inputs. One
of the key advantages of RAPID is that it can efficiently be
executed in a parallel computing environment by using a matrix
form of the Muskingum method. More detailed descriptions of
the Muskingum method and its use to propagate runoff from

LSMs are available in David et al. (2011). The river network
data for this study were obtained from the Hydrological Data
and Maps Based on Shuttle Elevation Derivatives at Multiple
Scales (HydroSHEDS) (Lehner et al., 2008). The fine resolution
river network was directly extracted from the 15 arc second
HydroSHEDS river network. The coarse river network was
derived from the upscaled 0.1◦ HydroSHEDS grid (Alfieri et al.,
2013; Snow, 2015). Apart from the given surface and subsurface
runoff from any LSM and a given river network, the basic model
setup requires two sets of model parameters. These parameters
are the Muskingum dimensionless diffusion coefficient (denoted
by x) and flow wave propagation time (denoted by k); and the
parameters can vary spatially on a reach-by-reach basis although
they are temporally constant.

Observed Discharge Data
Observed river flow data for different locations of the GBM
and Mekong river basins were obtained from the Bangladesh
Water Development Board (BWDB) and the Mekong River
Commission (MRC), respectively. The location of these in-situ

discharge stations are shown in Figure 1. The GBM discharge
data were available for the entire routingmodel simulation period
(2001–2009). The Mekong river flow data were available up to
2007 in a few stations, while the data were available up to 2006 in
most stations. Therefore, the in-situ flow data in between 2001
and 2006 were considered for the performance analysis of the
daily flow in all river stations for consistency. All available in-situ
flow stations downstream of the Tonlé Sap Lake were excluded
from the analysis due to its complex hydrological behavior.

METHODOLOGY

The primary objective of this study is to evaluate the performance
of each global LSM in South and Southeast Asia by comparing
routed runoff from a river model to daily in-situ river flow
observations. The secondary objective is to identify the factors
that significantly affect the simulated flow. To get a preliminary
perspective on the relative performance of each LSM, the basin-
averaged mean annual precipitation, evapotranspiration, and
runoff were computed. At first, the basin-scale mean annual
water budget error analysis was carried out in a way similar to
Xia et al. (2012a) who used 28 years of data to evaluate LSM
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FIGURE 1 | Location of the Ganges-Brahmaputra-Meghan (GBM) and Mekong river basins along with the in-situ discharge stations. The fine and coarse river

networks used for flow routing are shown in the background.

performance in the CONUS. In this study, the mean annual total
model input (i.e., precipitation) and mean annual total model
outputs (i.e., evapotranspiration, Runoff) were compared while
assuming that the change in water storage for a long-term average
should be negligible or close to zero. Here, 9 years of data (2001–
2009) were used, and the difference between the mean-annual
total input and output was reported as a percentage of the total
input (i.e., precipitation). Note that the assumption of water
balance closure over a 9-year period can be debated in light of
the numerous past studies highlighting the effect of groundwater
extraction on the terrestrial water balance (e.g., Rodell et al., 2009;
Purdy et al., 2019) although it is justified in this study given our
intended focus on readily-available LSM outputs. We define the
mean annual percentage error in water budget as:

errorma =
(ET + Qs + Qsb)ma − (Rain+ Snow)ma

(Rain+ Snow)ma

∗ 100 % (1)

Where, error, ET, Qs, Qsb, Rain, Snow are for the area-averaged
water budget error, the LSM simulated evapotranspiration,
surface runoff, sub-surface runoff, input rainfall, and
snowfall, respectively.

The evapotranspiration-precipitation and runoff-
precipitation ratios were also derived from the area averaged
mean annual variables. The spatio-temporal averaged runoff
was then compared to the observed mean annual discharge,
itself derived from the in-situ discharge of the most downstream
station of each river basin. These stations are the Pakse, Hardinge
Bridge, Brahmaputra, and Amalshid in the Mekong, Ganges,
Brahmaputra, and Meghna basins, respectively (Figure 1). Note
that all the area-averaged values discussed above were calculated
with respect to these downstream in-situ stations. Therefore, the
area covered by the spatio-temporal averaged variables is the
same as the upstream basin area of each station (i.e., not the
entire basin but a significant portion of it).

The river network routing model (i.e., RAPID) was then
used to derive the daily flow at multiple locations in the river
basins, and compared with available in-situ discharge data. To
identify the factors that affect the simulated flow significantly, the
simulated daily flows were compared to the observed discharge
while varying the choice of the LSM, atmospheric forcing,
model resolution, and routing parameters. Several experimental
setups were therefore designed to reveal the relative impact of
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these four different design factors on the simulated flow. The
comparisons were performed using a series of five traditional
metrics: correlation coefficient, Nash–Sutcliffe efficiency (NSE),
root mean square error (RMSE), bias, and standard error.

The impact of the choice of the LSM was first assessed. Since
GLDAS uses the same forcing in four different LSMs, data only
from this version (i.e., GLDASv1) were used for this initial
analysis. The ECMWF ERA-interim/LAND derived daily flow
was also used here for comparison with the other four LSMs,
although the forcing data and the LSM resolution of ECMWF
are different. To be consistent, in all cases the routing model
was executed using the fine resolution river network. The name
of each test case contains the project name and version, LSM
name, model spatial resolution (i.e., 10 for 1◦ LSM outputs),
and the river network resolution. For example, the name for the
GLDAS Mosaic derived flow from the 1◦ runoff using the fine
river network is: GLDAS-MOS10-Fine.

Precipitation—the primary input of water to land surface
models—and other meteorological inputs are also sources of
uncertainty in simulated streamflow. Therefore, a performance
analysis was conducted for different forcing inputs to the same
LSM. The Noah LSM outputs are available which was forced
by different meteorological datasets; GLDAS, GLDASv2.0, and
GLDASv2.1. Although GLDAS-2 products are available in two
different spatial resolutions (i.e., 0.25 and 1◦), only 1◦ resolution
LSM products were used here for consistency with GLDAS.
Like the previous experiment, the daily flow was derived using
only the fine resolution river network in all cases, and the
ECMWF ERA interim/LAND derived daily flow was used here
as reference. It is important to note that the Noahv2.7 was
used in GLDAS, while both GLDAS-2 versions used Noahv3.3
as the LSM. Also, the LSM used with the ECMWF ERA
interim data was different from Noah, and has a different model
resolution (∼80 km). The experimental design nomenclature
remains similar, but different GLDAS (i.e., v1, v2.x) versions were
used here.

In a third experiment, models with different spatio-temporal
resolutions were used. To control for LSM and forcing
variabilities, only the GLDASv2.1 was used here with different
spatial and temporal resolution, and discharge was simulated
using fine (∼5 km) and coarse (∼20 km) river networks
(Figure 1). The GLDASv2.1 (Noah LSM) model outputs are
available in 0.25 and 1◦ spatial resolution and with 3 h temporal
resolution. The 3 hourly data were temporally averaged to derive
daily forcing for the routing model with different temporal
resolutions (i.e., as daily LSM input). The name of each test
case starts with the project name and version, followed by
the LSM name, resolution (i.e., 10 and 025 for 1 and 0.25◦,
respectively), temporal resolution only for the daily scale (i.e.,
D) and the river network resolution (i.e., fine or coarse). For
example, both GLDASv2.1-NOAH025-Coarse and GLDASv2.1-
Noah025D-Coarse stand for the simulated river flow using the
coarse river network with the 0.25 GLDASv2.1 Noah LSM output,
but for the 3-hourly and daily temporal resolutions, respectively.

In a final experiment, river routing simulations were
performed by changing the two parameters of the routing model
(i.e., RAPID). These parameters are the diffusion coefficient

(denoted by x) and propagation time (denoted by k) of the
Muskingum method. Although, it is possible to vary sets of
parameters independently for each reach in RAPID, it is not
practical to do so for the large river basins with numerous river
reaches used here. Therefore, both sets of parameters were first
determined and subsequently changed through multiplication
by a spatially-constant scale factor from experience. The initial
values of the storage constants (k) of all cells of the model were
determined from a spatiotemporally-constant wave celerity of
1 km/h while accounting for the variable length of river reaches.
Similarly, the weighting coefficients (x) were initially set to the
commonly accepted value of 0.1. Note that no specific parameter
calibration is performed in this study. All the test simulations
were then conducted using the ECMWF ERA interim/LAND
outputs. The name of each test case starts with the model name
and followed by the k scale factor (i.e., k02 and k035 for k
scale factor 0.2 and 0.35, respectively), the x scale factor (i.e.,
x2, x3, and x4 for x scale factor 2, 3, and 4, respectively), river
network resolution. For example, ERAi-Land-k02-x3-Coarse
means the RAPID model was simulated using the ECMWF ERA
interim/LAND with coarse resolution river network, while the
scaling factor for k and x were 0.2 and 3, respectively. Note that
the values of the scale factors are based on accepted ranges of
values (e.g., Fread, 1993) and on past experience from previous
RAPID studies (e.g., David et al., 2011).

The timing of hydrograph is also a concern for discharge
simulations and motivate the use of an additional metric. To
determine the accuracy of the hydrograph timing, a lagged
cross-correlation was used (e.g., David et al., 2011; Allen et al.,
2018). The lagged cross-correlation determines the correlation
between two timeseries as a function of lag that is added
between them. Optimal simulations flow should therefore show
the maximum correlation with observations when the lag time is
zero. The lagged cross-correlation between the simulations and
observations is shown in Equation (2).

ρ =

∑n
t=1

[

Qob
(t)

− Qob

]

[

Qsim

(

t+τlag
)

− Qsim

]

√

∑n
t=1

[

Qob
(t)

− Qob

]2
[

Qsim

(

t+τlag
)

− Qsim

]2
(2)

Where, ρ, Qob, Qsim, t, and τlag are the lagged cross
correlation, observed flow, simulated flow, time step, and lag
time, respectively.

TABLE 2 | Mean annual error in model water budget with respect to the input

precipitation (%).

Model/Basin Mekong Ganges Brahmaputra Meghna

GLDAS-CLM 0.45 0.06 0.51 0.02

GLDAS-MOS 4.63 1.04 2.35 −0.36

GLDAS-NOAH 1.05 −0.18 0.5 −0.21

GLDAS-VIC 1.52 0.61 1.28 0.3

GLDASv2.0-NOAH 0.1 −0.06 0.05 0.17

GLDASv2.1-NOAH 0.15 −0.41 −0.01 0.11

ECMWF-ERAi/Land 0.15 −0.21 0.23 0.33

Frontiers in Environmental Science | www.frontiersin.org 6 October 2019 | Volume 7 | Article 17190

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Sikder et al. Transboundary Water in South/Southeast Asia

A maximum of 10-day lag time was considered in this study,
and correlations between the observed and (–)10-day to (+)10-
day temporal offset of the simulated flow were calculated.

RESULTS AND DISCUSSIONS

The analysis of themean annual water budget following Equation
(1) is summarized in Table 2 where the errors are shown here as
a percentage of the input (i.e., precipitation). Assuming steady
state, the error should be close to zero for the most optimized
LSM, hence demonstrating that the water balance is properly
satisfied. Our results show that the overall performance of the
newer versions of GLDAS (i.e., GLDAS-2) and ECMWF is better
in terms of the accuracy in water balance. Among the four LSMs
of GLDAS, CLM is maintaining the lowest water balance errors
in all the river basins, while Mosaic shows the largest errors.
Additionally, and although all the four GLDAS models are using
the same input data, the variation in water balance errors is
significant within these LSMs. This may be due to differences in
the fluxes and storage within soil layers given that the number
of soil layers and their associated depths differ among models.
The Mosaic model has three soil layers up to 350 cm below the
ground, while the Noah model is using four soil layers up to
200 cm. CLM and VIC are using ten layers up to 343.3 cm and
three layers up to 190 cm depth, respectively (Bi et al., 2016; Rui
and Beaudoing, 2017).

The evapotranspiration-precipitation ratio was then used
to evaluate the models, as shown in Figure 2, and suggests
that the newest projects (i.e., GLDAS-2 and ECMWF) have
relatively similar behaviors throughout all river basins (with
little ET/P ratio variability on a per-basin basis) while the
earlier GLDAS LSMs (i.e., GLDASv1) have inconsistent behaviors
(high ET/P variability in each basin). Although consistency
among different models cannot be directly linked to simulation
quality, it does add confidence in simulations. CLM may be
showing the closest evapotranspiration-precipitation ratio to the
newer version of the models. However, if the mean annual
evapotranspiration (Figure 2, values are reported above the bars
in mm/year) is considered in place of the ratio, then VIC
and Noah appear to be the closest to the newer version of
the models and CLM would underestimates the mean annual
evapotranspiration. A similar pattern was found by Xia et al.
(2012b), where simulated evapotranspiration was compared
with observations for the CONUS using the NLDAS-2, and
where VIC and Noah produce similar evapotranspiration. The
GLDAS-2 and ECMWF were forced with similar amounts of
input precipitation (Figure 2, values are reported below the
bars in mm/year), while the GLDAS LSMs were forced with
low-biased precipitation relative to GPCP (Rui and Beaudoing,
2019). The case of the Ganges basin may be of particular
interest here, given that the amounts of input precipitation
are all very close in GLDAS, GLDAS-2, and ECMWF. In
this basin, CLM shows consistently lower evapotranspiration-
precipitation ratios, while Noah is more consistent with newer
simulations in GLDAS-2 and ECMWF. Our experiments are
therefore generally inconclusive in recommending a specific

LSM for evapotranspiration given that both evapotranspiration-
precipitation ratio and precipitation itself both vary greatly
in available experiments. However, the expected increase in
the quality of precipitation dataset and the consistency of
precipitation and evapotranspiration-precipitation ratios among
latest projects provides some level of confidence in GLDAS-2 and
ECMWF simulations.

Similarly, the runoff-precipitation ratio was derived
(Figure 3) along with the model simulated mean annual
runoff values (Figure 3, above the bars in mm/year) and the
observed mean annual runoff (Figure 3, on top of the charts).
Here again GLDAS-2 and ECMWF are showing similar results,
although the comparison with observed runoff (computed from
observed discharge) is here able to confirm better performance
in terms of mean annual runoff for the most recent projects. All
the four earlier GLDAS LSMs are consistently underestimating
runoff which is perhaps due to underestimated precipitation
for this earlier dataset. CLM appears to perform relatively
better in terms of runoff compared to the other GLDAS
LSMs. This may be related to CLM’s underestimation of
evapotranspiration combined with lower amounts of input
precipitation (Figure 2), generating relatively larger runoff.
However, CLM also overestimates runoff in the Ganges basin
due to more accurate precipitation there, which is associated
with the underestimated evapotranspiration by CLM in Ganges
basin. This confirms that a more accurate precipitation as input
in the earlier GLDAS LSMs could have changed their accuracy.
In general, GLDAS-2 and the ECMWF provide more accurate
runoff estimation, in addition to low errors in annual water
balance (Table 2). However, all LSMs significantly underestimate
runoff in the case of the Brahmaputra basin, which may be due
to unrealistic runoff-precipitation ratios or flawed amounts of
precipitation in that basin.

The RAPID model was then used to derive daily flows
from available global LSMs runoff throughout river basins and
simulated flows were compared with the in-situ measurements.
The analysis was carried out for the four aforementioned
experimental setups, since the simulated flow may be sensitive to
the selection the LSM, meteorological forcing, model resolution,
and model parameters. A sample output of RAPID simulation
is shown in Figure 4 for the Pakse station in the Mekong basin
where the simulated and observed discharge are plotted as a
function of: different LSMs (Figure 4A), different meteorological
forcing (Figure 4B), different spatio-temporal resolutions of the
models (Figure 4C), and different river network routing model
parameters (Figure 4D). Note that the number of test cases
considered in each experiment differs; and that this lack of
consistency in the number of ensembles of the experimental
setup may impede the fairness of comparisons. However, the
ensemble sizes for the first two experiments (i.e., for different
LSMs and different meteorological forcing) is dictated by
data availability and beyond our control. Nevertheless, this
preliminary analysis suggests that the simulated flow is mostly
influenced by the selection of the LSM and by the meteorological
forcing than it is influenced by the spatio-temporal resolution
of the models and by the routing model parameters. Further
analysis was conducted in all discharge stations of Figure 1 for
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FIGURE 2 | Mean annual Evapotranspiration-Precipitation ratio the Mekong and GBM basins. All the values shown above the bars and in the boxes are the simulated

mean annual evapotranspiration and input precipitation in mm, respectively.

FIGURE 3 | Mean annual Runoff-Precipitation ratio of the Mekong and GBM basins, along with the observed mean annual river flow. All the values reported above the

bars are the simulated mean annual runoff in mm. Analysis for Mekong basin was conducted up to 2006, constrained by the in-situ river flow data availability.
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FIGURE 4 | Example of the simulated daily flow hydrograph in the Mekong basin as a function of different (A) LSM, (B) input forcing, (C) spatio-temporal resolution of

LSM and routing model, and (D) routing model parameter. Observed river flow is shown in black line.

these four different design factors using the correlation, NSE,
RMSE, bias, and standard error, as discussed below.

Figure 5 shows the evaluation of the global LSMs as a function
of different land surface models used. In this experiment, all
the four models of GLDAS were considered, which were forced
by the same meteorological data. Outputs using the ECMWF—
forced with a different set of data—are also shown as a reference
for comparison. Based on the five metrics used in this analysis
(Figure 5), the selection of the LSM is an influential factor in river
discharge simulations, as expected because LSMs are responsible
for determining the amount of runoff that is available as inputs
to rivers. The NSEs show that CLM performs consistently better
among the other GLDAS LSMs. This can be explained by the
low estimation of evapotranspiration in CLM combined with the
underestimated precipitation forcing in GLDAS. CLM produces
relatively higher runoff among the GLDAS LSMs, which is closer
to the in-situ discharge observations. Overall, the model biases
show that the GLDAS generally underestimates runoff likely in
part due to the underestimated precipitation forcing. It is also
worth noting here that the discharge estimates obtained from
the ECMWF LSM runoff are far superior to that of the GLDAS
LSMs, for all stations considered, although the determination of
the underlying reasons for the relative higher quality is beyond
the stated scope of this study.

Figure 6 shows the evaluation metrics for the simulated river
flow at multiple locations as a function of the meteorological
forcing used. To be consistent, we focus on the Noah model with
different meteorological forcing. The ECMWF-based simulations

are also shown for reference, as done in the previous analysis.
Clearly, the forcing also has an impact on the accuracy of
the simulated flow, particularly in model bias. This impact on
simulated flow is also to be expected because precipitation is
a key driver of the terrestrial water cycle. Figure 6 suggests
that the updated precipitation forcing in GLDAS-2 helps reduce
the aforementioned negative bias of the simulated river flow
and improves model accuracy, which is evidenced by the
high NSE values obtained. The performance of the ECMWF
and GLDASv2.1 is similar in most cases. Yet, the ECMWF
performs better for all in-situ stations except the Meghna, where
the GLDASv2.1 metrics are slightly better. The accuracy of
the simulated flow using GLDASv2.1 is greater than that of
GLDASv2.0, and is followed by that of GLDAS.

The simulated flows are then evaluated for different spatio-
temporal resolutions of the LSMs and for the spatial resolution
of the river routing model (Figure 7). This analysis was carried
out for 3-hourly and daily LSM data with 0.25 and 1◦ spatial
resolution and using both fine and coarse resolutions for the river
network used in the RAPID model. Surprisingly, despite these
rather different spatio-temporal resolutions, Figure 7 shows that
the performance in all cases is very similar. The linearity of the
Muskingum equations that drive the RAPID model may be the
source of this similarity in discharge outputs. The analysis was
repeated using a few smaller catchments (e.g., 2,000–5,500 km2)
within the Mekong basin (not shown here) and suggests some
sensitivity of the simulated flow to varying spatial resolutions of
LSM (i.e., 0.25 or 1◦), which may be explained by the boundary of
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FIGURE 5 | Performance of simulated daily stream flow at different locations of the Mekong and GBM basin as a function of different LSMs. All the GLDAS LMSs in

this experiment were forced with the same meteorological inputs. ERA-interim/Land from ECMWF (with different resolution and uses a different meteorological forcing)

is shown here as a reference.
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FIGURE 6 | Same as Figure 5, but as a function of different meteorological forcing in the same LSM (i.e., Noah model).
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FIGURE 7 | Performance of simulated daily stream flow as a function of different spatio-temporal resolution of the same LSM using the same meteorological forcing

(i.e., GLDASv2.1-NOAH). Here, NOAH10 and NOAH025 are for different spatial resolutions, 1 and 0.25◦, respectively. The LSM outputs in daily scale, denoted here

by “D,” and the other test cases (i.e., without “D”) are for 3-hourly LSM outputs. The last part of each test case name is representing the river network resolution

(Figure 1) used for flow routing.
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FIGURE 8 | Sensitivity of using different flow routing parameters at different locations of the Mekong and GBM basins. All the routing simulations were conducted with

the same LSM outputs (i.e., ECMWF-ERA-interim/Land).
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the smaller catchments being better defined by the fine resolution
grid, also such effect remains limited.

The influence of the routing model parameters was also
evaluated for the simulated river flow (Figure 8). The river
flow was simulated using the ECMWF model runoff data with
different weighting coefficient (x) and storage constant (k) scale
factors. The analysis shows that the variation in simulated
flow accuracy due to different routing model parameter is
not as significant as the selection of the LSM or that of the
meteorological forcing. Note here again that the number of test
cases in this experiment (i.e., different routing model parameter)
is different from the number of test cases considered for different
LSMs and meteorological forcing. However, it is to be expected
that the storage constant should have an influence on the timing
of hydrograph, since this parameter is related to the time of
concentration of the basin. This variation is not visible with
the five metrics used in this analysis, possibly due to the large
temporal window of the analysis (i.e., 6 year). Therefore, an
additional metric was used here to determine the accuracy in the
timing of the simulated hydrograph.

The lagged cross-correlation was hence calculated by applying
a temporal offset to the simulated flow and determining the lag

for which the cross-correlation with observed data was highest.
The results of this analysis are shown in Figure 9, where the
lag time of the simulated flows corresponding to the maximum
correlation with the observed flows are reported. This analysis
was carried out for the simulated flow with different routing
model parameters (Figure 9A), as well as for different LSM
with different meteorological forcing (Figure 9B). Figure 9A

illustrates that the timing of hydrograph influenced by the storage
constant (k), as expected. Therefore, while the routing model
parameters are not significantly changing the accuracy of the
simulated flow as measured by traditional metrics (Figure 8),
the storage constant is important to fine-tune the hydrograph
timing of the simulated flow (Figure 9A). This suggests that
existing spatially-varying values of k (e.g., Allen et al., 2018)
may lead also to improved peak timing. However, the diffusion
parameter is relatively insignificant, as was already shown
previously (Koussis, 1978). Furthermore, the same analysis for
different LSMs with different meteorological forcing (Figure 9B)
shows that the timing of hydrograph is also influenced by the
selection of LSM, as it is by the meteorological forcing. Here
again, the timing of hydrograph for the ECMWF experiments
is relatively better than that of all versions of GLDAS LSMs

FIGURE 9 | Lag time corresponding to the maximum lagged cross correlation in between the observed and simulated flow at different locations of the Mekong and

GBM basins, as a function of different (A) routing model parameters, (B) LSMs and input forcing.
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in all discharge stations with the exception of the Meghna
basin (Figure 9B).

The overall analysis of the available global LSM data therefore
shows that GLDAS-2 and ECMWF performed relatively better
than the earlier GLDAS. This relative superiority is reported
here for mass balance residual errors (although with caveats
for the absence of groundwater processes and the relatively-
short study period), and for mean annual flow. The analysis
of the RAPID simulated daily river flow using five traditional
metrics (correlation, NSE, bias, RMSE, and standard error) with
respect to different LSMs and different meteorological forcing
together indicate that in most cases ECMWF outperforms the
other datasets considered in this study. Note that the different
ensemble sizes used for LSMs (five), precipitation (four), model
spatiotemporal resolution (eight), and river routing parameters
(four) is inconsistent among our experiments partly due to
data availability. However, the demonstrated sensitivity obtained
for available ensembles (Figures 4–8) remains remarkable. In

addition, the analysis of lagged cross-correlations also suggests
that the ECMWF-derived river flow more accurately maintains
the timing of hydrograph. In general, the ECMWF’s ERA-
interim/Land runoff derived river flow shows the most optimal
performance in our study of the Mekong and the GBM
river basin, although the determination of the source for this
superiority is beyond the scope of this paper. For further
illustration, the simulated flow hydrographs from the ECMWF
model along with the in-situ data at different locations of the
aforementioned river basins are shown in Figure 10.

CONCLUSIONS

Global Land Surface Models (LSMs) have the potential to help
fill the observational gap of ungauged and of transboundary river
basins. These models can be particularly valuable to mitigate
water resources challenges in the large and densely populated

FIGURE 10 | Comparison of the simulated daily stream flow using the ECMWF-ERA-interim/Land outputs in the fine scale routing model (i.e., with fine river network)

and in-situ discharge at different locations of the Mekong and GBM basins.
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transboundary river basins of South and Southeast Asia because
they provide valuable estimations of the hydrological fluxes and
states. Thus, the investigation of the appropriate global LSM
among the many available operational models is critical in order
to make best use of these model outputs. The primary goal of this
study is therefore to identify the most optimal global LSMs for
the region as it pertains to river flow estimation for the region.
Concurrently, it is of value to determine the factors influencing
the variance in the quality of model simulated flow.

The first part of this study’s analysis was carried out based
on the mean annual water fluxes estimated by several global
LSMs (i.e., GLDAS, GLDAS-2, ECMWF ERA-interim/Land)
to generally illustrate model accuracy. The ratios of the
model simulated mean annual evapotranspiration and runoff to
precipitation was evaluated in this context. The investigation
of available global LSMs was conducted with respect to in-situ
discharge because these data are reliable and more frequently
available than the distributed observed water fluxes. The analysis
of the simulated flow was executed using four traditional metrics
(correlation, Nash-Sutcliffe Efficiency, bias, standard error, and
root-mean-square error) to evaluation the sensitivity of the
simulated flow to the selection of the LSM, the meteorological
forcing, the spatio-temporal resolutions of the models, and the
routing model parameters. Finally, the lagged cross-correlation
analysis was conducted to evaluate the accuracy in the timing of
the simulated hydrograph.

The analyses based on the mean annual water fluxes indicate
that GLDAS-2 and ECMWF show better consistency with
observed data than the earlier version of GLDAS. The model
estimated mean annual runoff from GLDAS-2 and ECMWF
products are also show better agreement with the observed
runoff. Among the four LSMs of the GLDAS, CLM may appear
to perform relatively better in terms of the runoff, although
this may be due to underestimated precipitation combined with
underestimates of evapotranspiration. The four experimental
cases for the sensitivity analysis reveal that simulated river flow
is mostly influenced by the selection of the LSM and by its
input meteorological forcing. In contrast, the impact of the
spatio-temporal resolutions of the LSMs is much lower for
large river basins. A similarly low sensitivity is shown in the
case of different routing model parameters for the traditional
discharge metrics used. One should note that the varying size
of ensembles in our experiments was largely a result of data
availability and may have an impact in the sensitivity analysis
of this study although enforcing consistency in ensemble sizes
is beyond our intended scope. However, the analysis of lagged
cross-correlation suggests that the flow wave propagation time
has notable impact on the timing of hydrographs. Overall, the
discharge simulations using runoff from the ECMWF ERA-
Interim/Land outperform those from all other tested LSMs in
terms of the simulated river flow accuracy as well as the timing
of hydrograph in our study of the GBM and the Mekong basins.
Our results suggest that the accuracy of ECMWF-derived flows
is then followed by that of GLDASv2.1 GLDASv2.0, and GLDAS.
One notable limitation of this study is that it does not include
the anthropogenic effects (e.g., water diversions, dams, or land
use change) in the models or their analysis. However, previous

studies argued that the Brahmaputra basin is relatively in pristine
condition since there is no major human intervention in the
river (Biancamaria et al., 2011). There are also several existing
dams and barrages in the Mekong River basin, but the impact
of water use (i.e., for irrigation) on the mean annual flow
for these diversions is relatively insignificant, at least during
the study period. Haddeland et al. (2006) reported that the
total use of water in Mekong basin is only 2.3% of the mean
annual flow. While this small water use portion is applicable
to our study period, it is expected to grow for later dates as
a few large dams are under construction on the mainstem of
the Mekong river, which is expected to change the impact on
mean annual flow from ∼2% in 2008 to ∼20% in 2025 (Hecht
et al., 2019). Future similar studies could therefore consider the
inclusion of these anthropogenic activities, particularly in the
Mekong basin, but also in the GBM. It is important to note
here that the determination of the underlying reasons for the
relative superiority of ECMWF runoff in our study of South
and Southeast Asia is beyond the scope of this paper, and that
our results are likely to be geographically dependent. We do not
therefore make any recommendation for other river basins.
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Land cover maps are a critical component to make informed policy, development,

planning, and resource management decisions. However, technical, capacity, and

institutional challenges inhibit the creation of consistent and relevant land cover maps

for use in developing regions. Many developing regions lack coordinated capacity,

infrastructure, and technologies to produce a robust land cover monitoring system that

meets land management needs. Local capacity may be replaced by external consultants

or methodswhich lack long-term sustainability. In this study, we characterize and respond

to the key land cover mapping gaps and challenges encountered in the Lower Mekong

(LMR) and Hindu Kush-Himalaya (HKH) region through a needs assessment exercise

and a collaborative system design. Needs were assessed using multiple approaches,

including focus groups, user engagement workshops, and online surveys. Efforts to

understand existing limitations and stakeholder needs resulted in a co-developed and

modular land cover monitoring system which utilizes state-of-the-art cloud computing

and machine learning which leverages freely available Earth observations. This approach

meets the needs of diverse actors and is a model for transnational cooperation.

Keywords: land cover/land use, GIS, remote sensing, Lower Mekong region, Hindu Kush region

1. INTRODUCTION

Accurate and timely land cover maps play a critical role in a variety of sectors in the developing
world including food security, land use planning, hydrology modeling, and natural resource
management planning. Countries like Cambodia and Vietnam suffer from substantial rice
crop yield losses and understanding the spatial distribution of such variable yields are critical
for agricultural planning for food security (Pandey et al., 2007; Saah et al., 2019). National
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development plans use land cover as a basis for understanding
changes in a country’s natural capital, that in turn forms the
basis for budget priorities and allocations (Tucker et al., 1985;
Bounoua et al., 2002; Foley et al., 2005; Jung et al., 2006;
Running, 2008). Land cover maps also underpin hydrology
models that are used by governments to inform flood risk and
preparedness in order to build resilience to climate change
(Ge et al., 2007; Hibbard et al., 2010; Imaoka et al., 2010;
Gong et al., 2013; Tolentino et al., 2016). Foresters use land
cover maps to develop sustainable harvest management plans,
integrate biodiversity conservation, and engage in climate finance
initiatives such as Reducing Emissions from Deforestation and
forest degradation and the role of conservation, sustainable
management of forests and enhancement of forest carbon stocks
in Developing countries (REDD+) or Nationally Appropriate
Mitigation Action (NAMA) (Buchanan et al., 2008; Hall et al.,
2011; Potapov et al., 2019). However, many developing regions
lack the coordinated capacity to produce timely, accurate, and
temporally comparable geospatial data products sufficient to
meet their management needs (Jha and Chowdary, 2007).

The Lower Mekong (LMR) and Hindu Kush-Himalaya
(HKH) regions are both experiencing an acceleration in the
rate of land cover change that is impacting the long-term
sustainability of ecosystem services including food, water, and
energy. Local decision makers are using infrequently updated
national maps with no ability to monitor in a timely or integrated
fashion. Furthermore, existing classification systems do not
always meet the user group’s needs, data products are often not
widely shared between agencies and institutions, and accuracy
assessment is often lacking. The users and developers of these
maps are typically from different organizations, with different
priorities and technical understandings. These differences pose a
variety of challenges that often create roadblocks to the effective
use of appropriate land cover data for policy formulation,
planning, management, and other decision contexts. As a result,
global land cover products are frequently used as the best
available alternative when appropriate and timely maps are not
available at the regional, national, or sub-national levels. The
global products have their limitations in that they have been
created using different sensors and different techniques and vary
in spatial resolution and classification typology, and contain
inconsistencies on global (Hansen and Reed, 2000; McCallum
et al., 2006; Herold et al., 2008; Hansen et al., 2013) and regional
(Fritz et al., 2010; Perera et al., 2010; Leinenkugel et al., 2013,
2014) scales. These inconsistencies hinder more widespread and
effective use of land cover data to valuably contribute to policy
formulation, planning, management, and other processes where
more effective, transparent, and defensible decisions are known
to lead to better real-world outcomes.

To understand and respond to the key gaps and challenges
encountered in regional, national, and subnational land cover
mapping efforts, we compiled existing information, undertook
proactive and targeted needs assessment activities, and compiled
other information relevant to this topic from a variety of
ongoing activities and communications. This paper summarizes
the details and findings of those efforts and proposes a framework
for addressing the identified challenges. The purpose of this

paper is to review the key challenges in land cover mapping
and monitoring in the Lower Mekong and HKH region and to
outline design principles for the co-development of a Regional
Land Cover Monitoring System.

The process of cooperatively developing a consistent,
flexible Regional Land Cover Monitoring System (RLCMS)
across multiple nations in SE and South Asia will allow the
creation of a unified pool of land cover data and land cover
mapping/monitoring architecture that can be shared across
agencies and countries. Such an RLCMS will also allow for
consistent change analysis to be performed going into the future,
and potentially over the entire historical satellite record. Such
a system would represent a landmark improvement in the
availability of remote sensing-based data products for use in
planning and governance.

2. STUDY AREA AND HISTORICAL
CONTEXT

SERVIR is a unique partnership between the U.S. Agency for
International Development (USAID) and the U.S. National
Aeronautics and Space Agency (NASA) focused on bringing
space-based technologies to environmental decision makers in
developing regions. SERVIR is represented in different parts of
the world through regional hubs. The program is harnessing
space-based remote sensing technology and open data to help
address development challenges related to climate resilience. As a
development program aimed at promoting use and development
of regional geospatial data, SERVIR works in partnership with
leading regional organizations to help countries in the hub
regions use information provided by Earth observing satellites
and geospatial technologies to manage climate risks and improve
disaster preparedness. The program services are driven by a
needs assessment of the partnering agencies. We selected the
SERVIR hubs within the LMR and HKH regions to identify
what challenges exist in creating and using land cover data
products due to its multidimensional diversity that includes
political differences, vegetation gradients, and a variety of needs
for and uses of land cover (Figure 1). The Mekong hub was
initiated in 2014, and the work during the first year was focused
on conducting a needs assessment with organizations working in
the partnering countries. The SERVIR HKH hub was established
prior to the Mekong hub, and while their outreach methods
varied slightly they also conduct needs assessments with their
country stakeholders. Land cover/use mapping and monitoring
challenges facing our stakeholders were compiled during the first
year user needs assessment phase in the Mekong and the on-
going needs assessment work in the HKH, and provides the basis
for this manuscript.

2.1. The Lower Mekong Region (LMR)
The LMR covers a 1.9 million km2 area, has a population
of 240 million people, and includes five continental Southeast
Asian countries: Cambodia, Laos, Myanmar, Thailand, and
Vietnam (Figure 1). The LMR is largely tropical, with subtropical
extensions in Laos, Myanmar, and Vietnam, and minor areas
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FIGURE 1 | Study area map highlighting South-Southeast Asia with the Hindu Kush-Himalaya (HKH) and the Lower Mekong region (LMR) and countries of focus.

of temperate vegetation in Northern Myanmar (Peel et al.,
2007). The region falls within the Indo-Burma biodiversity
hotspot and over three-quarters of the population depends
directly or indirectly on agriculture (Kityuttachai et al., 2016)
and other economic activities including tourism, forestry, fishing,
manufacturing, and energy production (Costenbader et al.,
2015). Between 1973 and 2009, LMR lost almost a third of its
forest cover with national level reductions amounting to 43%
in Vietnam and Thailand, 24% in Lao PDR and Myanmar,
and 22% in Cambodia (Watch, 2015). The main proximate
drivers of land cover change in the past decade included
expansion of agriculture and plantation estates, development of
infrastructure and settlements, extraction of minerals and gas,
dam and water infrastructure development, logging, and forest
fires (Curtis et al., 2018). Underlying drivers of land cover change
included population and economic growth, often intensified by
weak governance (Stibig et al., 2013; Costenbader et al., 2015;
Poortinga et al., 2019).

2.2. The Hindu Kush Himalayan Region
(HKH)
The HKH region extends 3,500 km over all or part of eight
countries from Afghanistan in the west to Myanmar in the east
(Figure 1). The eight countries include Afghanistan, Bangladesh,
Bhutan, China, India, Myanmar, Nepal and Pakistan. The region

has the highest number of mountain peaks in the world,
including Mt. Everest. The predominant land cover of the region
is grassland (54%), followed by agriculture (26%), and forest
(14%) (Singh et al., 2011). It is the source of ten large Asian river
systems and provides water, ecosystem services, and the basis
for livelihoods to a population of around 210 million people.
These river basins provide water to 1.3 billion people, a fifth of
the world’s population. It supports a rich variety of gene pools,
species, ecosystems, and endemic species of global importance;
making up four of the global biodiversity hotspots—Himalayan,
Indo-Burma, Mountains of South-West China and Mountains of
Central Asia (Myers et al., 2000).

Despite the emphasis on conservation, with 39% of land
under protected areas (Chettri et al., 2008), the HKH region is
facing significant deforestation (Ives and Messerli, 2003; Pandit
et al., 2007). The dependency on fuel wood and timber from
forests, population pressure for conversion of forest to agriculture
and agriculture to built up area, shifting cultivation, and forest
fire are among the many anthropogenic and natural causes of
land cover change. The lack of historical land cover maps using
a comparable and consistent methodology and classification
scheme makes it difficult to analyze land cover changes within
countries while inconsistency in typologies among different
countries makes it difficult to develop regionally consistent land
cover maps for regional analysis, studies and models.
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3. METHODS

3.1. Stakeholder Engagement
There is a significant and growing body of evidence that
meaningful participation of stakeholders in the identification
of problems and the formulation of corresponding solutions
has numerous benefits–especially in the context of complex,
transdisciplinary challenges (Reed, 2008). To understand
stakeholder needs in the HKH and LMR and focus their program
strategies accordingly, each hub conducted both a general
geospatial user needs assessment and a follow up workshop
focused specifically on challenges regarding land cover mapping
and monitoring.

3.1.1. Geospatial-Focused Needs Assessment
The Mekong hub completed the general needs assessment phase
most recently, from late 2014 to mid-2015. Data was collected
through (1) a literature review of relevant reports and articles,
(2) in person consultations with regional stakeholders (in part
during regional workshops and focus groups), and (3) an online
questionnaire. The stakeholder outreach campaign completed by
the HKH hub was similar. The specific aims of the assessment
were to identify geospatial data and technology needs in the
following thematic areas:

• Key areas where geospatial information is considered
important for decision making such as land governance and
management, water governance and management, climate
change adaptation, disaster risk assessment etc.

• Capacity building requirements such as basic GIS skills,
managing complex server structures etc.

• Availability of geospatial data such as Landsat remote sensing
products, land cover maps, flood forecast maps, etc.

• Data sharing practices and protocols such as sharing of data
from public agencies with the public, sharing of data between
agencies, standards for metadata and data quality to facilitate
sharing, etc.

• Access to geospatial tools and applications including decision
support tools, online information portals, custom desktop
applications, etc.

A snowball sample strategy was used, which entails building up
the initial sample size via enrolments of relevant stakeholders
made by participants during the course of the study (Biernacki
andWaldorf, 1981). This resulted in a list of country and regional
stakeholders produced from government agencies, academic and
research institutions, non-governmental organizations (NGOs)
and other civil society organizations, multi- and bilateral aid
agencies, United Nations agencies and similar extra-national
governance and support institutions, private sector entities, and
individual citizens. The sample is not a probabilistic sample,
however there was good representation from the targeted
organizations by type (e.g., government, civil society) and by
country. Further details are provided in Appendix A.

3.1.1.1. Focus groups and regional workshops
Stakeholder consultations were implemented in two formats and
included the participation of 199 people from 128 organizations.

Consultation trips to Cambodia, Vietnam, Myanmar, Thailand,
and the Lao PDR were conducted between December 2014
and May 2015. These trips included roundtable discussions and
direct meetings.

3.1.1.2. Online questionnaire
An invitation to complete an online questionnaire was circulated
via e-mail to more than 300 potential respondents thought to
have valuable perspectives on the above topics. The respondents
were queried regarding their professional role, institutional
affiliation, and GIS and remote sensing background; perspectives
on geospatial data needs and gaps, data sharing challenges,
technology issues, capacity needs and gaps, and decision
support tools and applications. A special effort was made to
reach stakeholders who could not attend the live stakeholder
consultations by means of the questionnaire.

3.1.1.3. Literature review
Relevant published scientific reports, articles, and papers were
used to complement the primary data collected through in-
person consultations and the online questionnaire. The full list
of documents reviewed is included in the Appendix A.

3.1.2. Land Cover Mapping Workshops
A series of four land cover mapping workshops were first
conducted in the Mekong region from 2016 to 2017. The
first workshop focused on user needs and objectives and
outline a system design to address these challenges. The
findings presented in this manuscript summarize the findings
from this event. There were also three subsequent workshops:
two production workshops and a product launch. Eighty
stakeholders from the LMR contributed perspectives and ideas
during these four regional land cover mapping workshops.
Participants were involved in everything from conceptualization
to classifications and algorithm development for emergent
challenges from discussions.

The same approach of conducting at least four workshops
began with regional partners in the HKH in 2018, with
some slight adjustments. The initial needs assessment was a
regional workshop that included participants from Afghanistan,
Bangladesh, Nepal, and Myanmar. During the event the
participants discussed and agreed on the conceptual framework
and approach for typology and algorithm at regional scale.
However, the two subsequent production workshops were
organized as separate events with each mapping agency, as
opposed to a series of integrated regional production workshops.
These country level workshops are being conducted with larger
groups of stakeholders to address the needs and approach for
customizing the framework to need the country specific needs.
This approach allowed for a greater number of participants
from each agency, targeted the data generation focus in on one
geospatial region, and helped garner agency ownership of the
national product. At the culmination of the national workshops,
the land cover products will be integrated into a regional data set.

Separate manuscripts are being prepared to describe the
resulting land cover product and co-designed system architecture
that resulted from these production workshops (Poortinga et al.,
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2019; Potapov et al., 2019; Saah et al., 2019, in press). The current
manuscript summarizes only the results regarding challenges and
design principles from the geospatial needs assessment campaign
and first land cover focused workshop.

4. RESULTS

The results are presented in two sections. First is a description
of the major land cover mapping challenges facing government
and civil society organizations in the LMR and HKH regions.
These results summarize the findings from the geospatial needs
assessment, workshop activities, and experiences with local land
cover mapping efforts from multiple agencies, countries, and
programs. Second, we present the co-designed solution that was
developed during the land cover monitoring workshop aimed at
designing solution(s) to address these challenges. The goal was
to design a system which can be implemented in a long-term
sustainable fashion.

4.1. Identification of the Challenges and
Gaps in Land Cover Mapping and
Monitoring Practices
Participants of the regional geospatial needs assessment identified
two major types of challenges. The first was an insufficient
commitment to land cover mapping efforts, and the second
was the challenge accessing geospatial infrastructure. The first
major challenge highlights the integration issues associated with
people, finance, and priorities. These issues are common among
many organizational structures but have specific implications
when trying to develop land cover mapping products in the
developing world.

4.1.1. Summary of Stakeholder Inputs
An online questionnaire was sent to 300 individuals within the
LMR region with 55 responses, and 199 contributed to in-person
meetings and discussion during the 2015 kick-off phase of the
LMR SERVIR hub. Of the online survey respondents, 81% were
familiar with GIS and internet mapping tools, while 60% reported
familiarity with remote sensing. Similarly, 72% of respondents
indicated that their organization acquired GIS data at least
annually, while 54.5% indicated they acquired remotely sensed
data at least annually. The majority (52 out of 53) of respondents
indicated that the top priority application of geospatial data
was for management purposes, including disaster reduction,
early warning systems, and flood monitoring and management.
Responses to gaps in data sharing and capacity building are
depicted in Figure 2 (see also Tables 1–5 in Appendix B). These
results identify an understanding of and a need for geospatial data
and training within the LMR region.

This online survey was not completed by individuals that
attended in person consultation events, nor was it delivered in
theHKH region. However, participants that attended the regional
geospatial needs assessment workshops, focus groups, or the land
cover monitoring workshop identified similar challenges.

Stakeholder involvement fostered participation which proved
to be critical toward building a spirit of collaboration and

trust. Based on the overall data gathered, the following salient
challenges and gaps were identified which led to the co-
development of a viable strategy to address key issues in land
cover mapping.

4.1.2. Current Challenges and Gaps in Land Cover

Mapping and Monitoring Practices
Key challenges found from the assessment are outlined as follows.
In general, participants pointed out insufficient commitment to
the provision of resources, building of capacity, and setting up of
unrealistically tight timelines for work for geospatial applications.
Within these identified gaps, lack of coordination was noted to
lead to disconnected workflows which reinforced many of the
other stated challenges. The interrelated shortages were found to
be lack of data access, computing power, availability of technical
capacity and proper procedures, as well as modeling and use of
consistent land cover maps.

With respect to data challenges, lack of consistent (spatially
and temporally), pre-processed satellite data was expressed as
a common obstacle which oftentimes led to production of
outdated maps. This also meant stakeholders were not able to
meet user requirements or provided inconsistent products with
respect to user needs. Another byproduct of these practices
is the production of multiple maps for different agency needs
which were not based on the same underlying data. Participants
also cited political/bureaucratic issues which are often entangled
with scientific procedures and decisions–often these limitations
are undocumented or unacknowledged (e.g., reference data
collection and compilation, mapping procedures, etc.). One
example that was referred to frequently in the discussions was
the resistance to using the updated Mekong River Commission
(MRC) land cover maps, because they had not been produced
under explicitly approved procedures. Further analysis of the
stakeholder inputs also revealed a lack of proper understanding
of error structures in the map making process and final map
products. This finding can be attributed to a lack of proper
communication of geospatial science and related technologies in
the region.

Results from the needs assessment in HKH show that
multiple agencies are involved in land cover mapping, and
have inconsistencies related to the classification schema,
underlying satellite datasets used, and interpretation methods.
The inconsistencies across spatial and temporal dimensions
create problems when comparing land cover products and
change analyses. The topographic variability in the HKH region
also poses a challenge for generating land cover interpretation
and collection of field data for training and validation.
Restrictions on data sharing vary between countries. While
multiple agencies within the same nation are independently
producing their own land cover maps, generating redundant data
sets with conflicting statistics. The typologies used are also varied
across different countries, which makes it difficult to harmonize
the datasets across the region.

A crippling limitation was the provisioning of and access
to resources. Resource limitations included financial as well
as human resources. Well funded organizations often could
not find the right personnel, others reported that adequately
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FIGURE 2 | Information on stakeholder responses and representation in the needs assessment process from the online questionnaire distributed in the

Mekong region.

staffed organizations had a hard time retaining qualified team
members. Land cover mapping often requires diverse teams
that are technically skilled and understand departmental needs.
We found that within the represented organizations, these
individuals were often over-tasked and under-resourced. Also
local land cover mapping programs are often partially resourced
for a specific project or program related to a country’s donor
activities with no core funding for sustainable support of land
cover monitoring programs.

Local land cover mapping professionals had a hard time
remaining abreast of new data, emerging technologies, and
the latest science. Many organizations had standard operating
procedures developed by donor countries which relied on
accessing commercial data, which have not been updated
to take advantage of new data streams and information
products. This has often left departments using dated data
products that introduce time lags. Geospatial professionals often
lacked access to emerging new technologies due to budgetary
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constraints, licensing issues, or barriers in language. Professional
geospatial growth was dependent on participation in donor-
related activities focused on free and open source solutions. The
same was also true for accessing data.

4.2. Enabling Connected Workflows:
Co-development of a Land Cover
Monitoring System
A key outcome of the stakeholder engagement process that
aims to address the challenges stated above was the decision of
stakeholder to collaborate on the co-development of a regional
land cover monitoring system (RLCMS). This system can serve
as a vehicle for a shared process of development and capacity
building. Ultimately it serves as an example of a working land
cover monitoring system based on best practices, and leverages
state of the art technologies.

The first component of the system is the representation
of a land cover scheme, or typology. The design of the
typology is guided by the following list of 10 principles, which
were established from the literature review (e.g., Running
et al., 1994; Triepke et al., 2008; Lillesand et al., 2014) and
group discussions:

1 Stakeholder engagement: Stakeholders identify their needs as
a basis for the typology

2 Objective driven: A typology facilitates stakeholder objectives
3 Simple: A typology is no more complex than necessary to

address stakeholder objectives
4 Exhaustive: Each location on the map is represented in

the typology
5 Integrity among classes: Classes are mutually exclusive and

have explicit class boundaries
6 Consistent: The typology is consistent from one area of the

map to another, and from one generation of land cover
mapping to another to support trends monitoring

7 Clear definitions: Map classes reflect measurable, diagnostic,
biophysical features

8 Differentiates land use from land cover: The typology
separates land use and land cover themes

9 Mappable: The typology is technologically and operationally
feasible, for given budget and time constraints

10 Considers existing land cover schemes: Uses components
of existing typologies whenever possible to maximize
compatibility, shareability, and the use of available mapping
technology, data, and applications.

Stakeholders further proposed that any land cover monitoring
system appropriate for regional or national use meets (at
minimum) the following design criteria:

1 Flexibility

• The system accommodates land cover typologies that
vary by country by implementing a process to create
and assemble biophysical land cover layers, referred to
as primitives. These are continuous layers of biophysical
attributes, such as fractional forest cover and forest height.

• Land cover primitives can be swapped for the most state-of-
the-science product available at any time.

2 Consistency

• Every country uses the same primitives and the same
assembly system, but can customize an assembly logic to
create maps that accommodate regionally varying land
cover semantics and objectives.

3 Based on remotely sensed data

• The system is data-driven with access to publicly available
big Earth observing geodatasets, provided by cloud
computing platforms.

4 Explicit quantification of uncertainty

• Monte-Carlo methods will be used in conjunction with
independent validation data sets to incorporate uncertainty
at the primitive level to provide pixel-based estimates of land
cover uncertainty of the final map product.

5 Capacity building

• The collaborative nature of the system facilitates
information and technology exchange.

• Free and broadly accessible, open tools are used
wherever possible.

On the basis of these principles, the basic structure of a
RLCMS typology and architecture was co-developed and a
collaborative development process was completed through a
series of four workshops and production segments from 2016
to 2017 in the Mekong. The HKH region began this process in
2018. During the first regional production workshop partners
defined their end user objectives, a uniform land cover typology,
data requirements, and laid out the collaborative design and
production process (Steps 1 and 2 in Figure 3). The proposed
land cover monitoring system production process includes
six elements: typology development, land cover algorithms,
reference data, accuracy assessment, assemblage of land cover
algorithms, and production/metadata. At the conclusion of the
first workshop, Mekong participants formed six co-development
teams, each focusing on one of six key processes envisioned as
central to the example system. However, the approach in the
HKH was organized by as separate production events with each
mapping agency.

In the Mekong, the development of each of the six land
cover monitoring system components would be completed and
refined during three follow up workshops. During the second
regional workshop, prototype algorithms for generating land
cover primitives were drafted along with documentation of
the tools, procedures and reference data needed to successfully
execute the algorithms (steps 3 and 4 in Figure 3). Participants
worked on three objectives during the third workshop, including
(1) the development of a flexible, customizable assembly protocol
to combine thematic primitives maps into a final land cover
classification with the users’ specific target land cover classes, (2)
specifying accuracy assessment procedures and (3) documenting
end user needs to ensure the system responds (steps 5 and 6 in
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FIGURE 3 | Operational framework for a representative Regional Land Cover Monitoring System for the LMR. The arrows represent the direction of the process, while

the dotted lines represent the iterative phases of the development of the system.

Figure 3). The final workshop culminated in the presentation of
preliminary land cover maps and a road map to support end
users customize the products to meet their specific needs. The
HKH production phase also followed this three step workshop
approach. However, their focus was on testing, refining, and,
as necessary, customizing design principles and algorithms
developed by the Mekong team to meet the needs of a new set
of stakeholders. These production phases were co-implemented
with the Mekong SERVIR hub to ensure that lessons learned
were transferred between the two hubs to continue the joint
improvement of the system.

4.3. Examples of the Operationalized
System and Architecture
The system is implemented in Google Earth Engine, a freely
available cloud computing infrastructure (Gorelick et al., 2017).
For the first iteration, most primitives were built using a random
forest classifier built primarily with data from the Landsat archive
(Saah et al., in press). The Landsat program made the full
archive of moderate resolution data with a long temporal range
freely available (Wulder et al., 2012; Roy et al., 2014). However,
because the system is modular other classification approaches are
available and being tested, such as neural networks. Additionally,

depending on the temporal requirements of the primitive layers,
some are created from a data fusion between Landsat, MODIS
(Justice et al., 1998), Sentinel-1 and Sentinel-2 (Berger et al.,
2012), or climate hazards infrared precipitation (CHIRPS) (Funk
et al., 2015) data sets, to name a few. For example, maps of
rubber and palm oil plantations were developed using Sentinel-1
and Sentinel-2 data (Poortinga et al., 2019). The assembly logic
includes a user-specified decision tree. The final land cover map
product is created through a series of Monte Carlo iterations
of the assembly logic and primitive error rates. Error rates are
generated for both the primitive and land cover products using
independent, probabilistic reference data sets. For the full details
of the system architecture and co-designed products, please refer
to Poortinga et al. (2019), Saah et al. (2019), Saah et al. (in press),
and Potapov et al. (2019); other manuscripts are forthcoming.
TheMekong data is available at https://rlcms-servir.adpc.net/en/.
The launch date of the HKH data products is scheduled for 2020.

5. DISCUSSION

Land cover monitoring is a key activity which helps ensure
health and sustainability of ecosystems. Earth observations and
geospatial technology are playing an increasingly important role
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in this regard (Poortinga et al., 2017; Simons et al., 2017). In
this paper we have outlined a SERVIR-facilitated stakeholder
engaged approach to identify needs and key challenges faced
in the countries of the Lower Mekong and Hindu Kush
Himalayan regions. There is a shared view among stakeholders
in the region working on land cover mapping that there are
significant gaps in the capacity, technical tools and systems,
and data needed to undertake effective land cover mapping.
This includes lack of commitment of resources and support
by relevant authorities and disconnected workflows due to
limited access to data, computing power, and availability of
technical capacity. Similar challenges were echoed during the
stakeholder workshops in the HKH region. Many projects
have been conducted in HKH countries to develop land cover
maps for specific target years. In most cases these maps
were generated using different data sources and typologies
that makes it difficult to understand the changes. Also the
topographic and terrain heterogeneity in the HKH region
put additional challenges for accurate land cover mapping
and monitoring.

We found this approach useful as it fostered collaboration
and trust, leading to the co-development of a RLCMS,
which aims to address all of the issues raised, and provide
greatly improved access to, and quality of land cover data
products. However, data sharing challenges and perceptions
about data uncertainty remain formidable obstacles to analysis
and acceptance of spatial data products. The former is due
to existing data sharing policies and the latter reflects the
widely held view that error and/or uncertainty is a flaw rather
than an inherent feature of both scientific measurement and
modeling. Uncertainty tended to be viewed as a negative
to be minimized by people on both sides of the decision
making process, to the point that it may be under-represented
or simply left out of how results are presented to policy
makers. However, presenting uncertainty hand-in-hand with
the costs of making poor decisions can be vital in using
scientific data to inform decision making (Reckhow, 1994).
Fischhoff and Davis (2014) presented a useful outline for
how to productively think about and present uncertainty in
a decision-making context: careful identification of the core
question to be answered, assessment of the degree and nature
of uncertainty around the methods used to answer the question,
and conveying that uncertainty in a clear, precise way that
addresses any gaps that might exist in the mental models
of the world used by decision makers compared to scientists
or analysts. Ultimately, this boils down to understanding the
important role of uncertainty as a natural part of research and
decision-making that depends on everything from the precise
question asked, whether one method was chosen over another,
the real-world conditions in which the work takes place, and
the appropriateness of a given data product to answer the
question being asked. This process can be facilitated through the
development and application of spatial data standards, with a
standardized representation and level of acceptable error that can
be applied across many data products. This could be expressed
in terms of standards for completeness of coverage, confidence
intervals and root mean square error in position, or through
other criteria.

Respondents in both the online questionnaire and in-person
discussions mentioned problems with data accessibility and
sharing. Data producers are concerned about data security
and ownership leading data providers to be possessive or
defensive of the use of their data products, keeping them
within their departments and minimizing availability to other
work groups or agencies. While surprisingly common at
many levels of government around the world, this behavior
is antithetical to effective resource management, and greatly
impedes the ability of groups to work together effectively
for large scale projects, such as MRV for compliance with
international programs like REDD+. These views and behaviors
toward data sharing ultimately lead to inconsistent data across
regions inhibiting progress toward environmental monitoring
and policy. Moving toward an open, non-proprietary model
of cooperation and data sharing is essential in establishing
resilient, high functioning institutional arrangements necessary
for sustainable development and addressing climate change
challenges (GFOI, 2016). Many of these gaps can be addressed
through the application of well established prevailing best
practices such as, (1) data standardization, (2) metadata
collections, (3) common data formats, and (4) open and
transparent methods (i.e., free and open source code). Promoting
these best practices facilitates interoperability, data exchange
among different institutions, and reduction of barriers to
access data.

Fortunately, in many cases the cost and technical expertise
needed to apply these technologies and practices to address
gaps is generally decreasing. The availability of high-quality
remotely sensed and GIS data has steadily increased with
processing packages and large public data repositories such
as that hosted by Google Earth Engine (GEE) now freely
available to academic, NGO, and public sectors (Gorelick et al.,
2017; Markert et al., 2018; Poortinga et al., 2018). Many
new tools, sites, and organizations have emerged to increase
the power and ease of web-mapping and web-based map
and GIS services, while reducing the cost and other barriers
to entry. Similarly, high quality technical training for use
with tools like GEE, QGIS, Python, R, SEPAL, OpenFORIS,
and other free or low cost spatial analytical tools is now
increasingly available. In addition to these tools that can
be used for self-directed learning and improvement, many
organizations (including the authors of this paper) are working
to produce workshops that develop new tools and help build
institutional capacity.

6. CONCLUSION

In summary, our stakeholder based approach can potentially be
applied in other contexts to foster collaborative work toward
addressing similar issues and building partnerships and networks
including institutions, agencies and experts across countries with
shared goals. In our case, this development process was fostered
by actively engaging regional end user groups in discussion,
consultation and capacity building to ensure that the RLCMSwas
effectively embedded in policy formulation and implementation
at all levels regionally, while also acting as a means of extending
regional cooperation in land management.
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Land cover change and its impact on food security is a topic that has major implications

for development in population-dense Southeast Asia. The main drivers of forest loss

include the expansion of agriculture and plantation estates, growth of urban centers,

extraction of natural resources, and water infrastructure development. The design and

implementation of appropriate land use policies requires accurate and timely information

on land cover dynamics to account for potential political, economical, and agricultural

consequences. Therefore, SERVIR-Mekong led the collaborative development of a

Regional Land Cover Monitoring System (RLCMS) with key regional stakeholders across

the greater Mekong region. Through this effort, a modular system was used to create

yearly land cover maps for the period 1988–2017. In this study, we compared this 30-year

land cover time-series with Vietnam national forest resources and agricultural productivity

statistics. We used remote sensing-derived land cover products to quantify landscape

changes and linked those with food availability, one of food security dimension, from a

landscape approach perspective. We found that agricultural production has soared while

the coverage of agricultural areas has remained relatively stable. Land cover change

dynamics coincide with important legislation regarding environmental management and

sustainable development strategies in Vietnam. Our findings indicate that Vietnam has

made major steps toward improving its’ food security. We demonstrate that RLCMS is a

valuable tool for evaluating the relationship between policies and their impacts on food

security, ecosystem services and natural capital.

Keywords: food security, land cover, earth observation, ecosystems, SERVIR, sustainability, land cover change,

Mekong
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1. INTRODUCTION

Land governance is at the center of development challenges

in Southeast Asia: between 1973 and 2009 the lower Mekong
sub-region lost almost a third of its forest cover (WWF, 2013).
Such a drastic loss in an area of rapidly growing populations

can result in dangerously reduced food security and ecosystem

services. The main drivers of land cover change include
expansion of agriculture and plantation estates, development of
transportation, energy and water infrastructure, urbanization,
extraction of natural resources, logging and forest fires (Curtis
et al., 2018). Shifts in population dynamics coupled with
economic growth are cited as underlying causes of land cover
change, often intensified by weak governance (Bui et al., 2014;
Stibig et al., 2014). Socioeconomic development, land cover and
use and food security are all interconnected at different scales
and have far-reaching impacts for not only local people, but the
region at large. The development of appropriate land policies is
therefore crucial for healthy economic and social development at
the national and sub-national level.

Land covermaps are essential for assessing the five biophysical
dimensions of food security (Bartholomé and Belward, 2005;
Liu et al., 2008; See et al., 2015), which include estimations of
cultivated area, crop type, cropping suitability, irrigation and
water use, and crop yield. Traditional methods of acquiring
information on crop yields and area were through in-person
or field surveys using questionnaires, interviews, observations
and sampling. These data were then combined and reported in
statistical yearbooks. However, such methods vary depending
upon skill level of surveyor, community boundaries, local
traditions and definitions, and knowledge of those surveyed. Such
an approach also requires significant time, personal equipment,
and costs. To minimize the need for these resources, satellite
data are often used to generate land cover maps (Friedl et al.,
2010; Congalton et al., 2014). These maps, however, often lack
ground-level validation, or the desired land cover typology
is not detectable at the ideal spatial or temporal resolution.
Moreover, the generation of satellite- based land cover maps
requires technical expertise in the fields of remote sensing
and information technology; such expertise is limited to a
relatively small subset of people worldwide. New cloud-based
geo-computational platforms enable a broader array of technical
specialists to process large amounts of data without investing
in expensive storage, extensive training and/or processing
infrastructure (Gorelick et al., 2017; Markert et al., 2018;
Poortinga et al., 2018).

To assess the food security within a country or smaller
jurisdictional boundary, one must consider the landscapes
and their impacts on food production. For example, forested
highlands, which are often located upstream of agricultural areas,
provide a wide variety of ecosystem services including raw
materials, erosion control, water and nutrient regulation, and
micro-climate regulation. These benefits are often conceptualized
and quantified in an ecosystem service framework (Costanza
et al., 1997; Daily et al., 1997; Stürck et al., 2014). Good
environmental legislation must take these ecosystem services,
and the dynamic trade-offs and synergies between them, into

account. But to understand such dynamics, one must quantify
the different dimensions of food security and their relations
to the landscape. Current technologies provide capabilities for
creating high resolution multi-temporal data series on land
cover. These products have well known sources of error.
For example, representing continuous land cover as discrete
classes often results in misclassification at land type boundaries
(Olofsson et al., 2014). Other errors in the data may include
image aberrations from atmospheric conditions and flaws in
the analysis methods (Foody, 2010). To accurately assess food
security within a landscape, statistically robust, easily replicable
and transparent approaches are required to translate pixel counts
into unbiased estimates of change Olofsson et al. (2014).

This study used a landscape approach to characterize the
trajectory and quantify change of two dimensions of food
security in Vietnam: area under cultivation and crop types. The
term “landscape approach” has been discussed since the 1980s,
when the Global Landscape Forum defined it as “balancing
competing land use and land cover demands in a way that is
best for human well-being and the environment.” This means
that socio-economic development solutions must embed food
and livelihoods, finance, rights, restoration and progress toward
climate and development goals. Landscape approaches thus
provide a framework for integrating policy and practice for
multiple land uses within a given area, all while ensuring
equitable and sustainable land use and improved measures to
mitigate and adapt to environmental change (Reed et al., 2015).

We first assessed land cover change using Earth observation
data from the Regional Land Cover Monitoring System
(RLCMS). The RLCMS was developed by SERVIR-Mekong,
a joint United States Agency for International Development
(USAID) and National Aeronautics and Space Administration
(NASA) collaborative project that aims to support development
and sustainable landscape projects in theMekong region. For this
study, the RLCMS was used to produce annual land cover maps
for the period from 1988 to 2017. The map products were used
to characterize 30 years of changes in area under cultivation and
crop type.

This Earth observation data was then coupled with crop
productivity estimates from census data and estimates from
statistical yearbooks. The crop type categories included in
the assessment were aquaculture, rice, orchard and plantation
forests, and other croplands. We applied best practices for area
estimations to estimate coverage of crop commodities and other
land cover classes over the same 30 years period. The assessment
was applied at the national and, on a subset of the land, at
the provincial level. Analyses at these two levels allowed us to
demonstrate variation in observed trends across the country. We
then qualitatively related these land cover and crop production
trends to the adoption of key sustainable development policies
in Vietnam.

We have been able to document what land covers are
expanding, and what these expanding regions are replacing. This
study demonstrated the capabilities of a cloud-based system like
the RLCMS to accurately detects land cover dynamics, allowing
developing counties like Vietnam to better address food security
and nutrition needs of its’ people.
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2. MATERIALS AND METHODS

Vietnam’s natural capital is provided by a total area of 33 million
hectares of land and more than 3,000 km of coastline. The
country is covered by a snaking and dense river and stream
network, with an average total volume of surface water estimated
at 830 billion cubic meters. It has rich forest resources, a wide
range of minerals, fossil fuels, and a high level of biodiversity–
with nearly 15 thousand species. The natural capital in Vietnam
is of great value and plays an important role in the overall
sustainable development strategy.

Vietnam is modernizing rapidly, with high rates of population
growth and socioeconomic development since the promulgation
of Doi Moi (Renovation) in 1986. As testament to this rapid
growth, Vietnam’s poverty rate fell from 58% in 1993 to 14.5%
in 2008 (Begun, 2012). However, this swift development has
negatively impacted the environment, leading to widespread
land, forest and water overuse and degradation (Meyfroidt and
Lambin, 2008). Deforestation, poor water quality, and decreased
biodiversity are additional impacts.

FIGURE 1 | Map of Vietnam with Nam Dinh, Nghe An, Dak Lak, Lam Dong,

and Ca Mau indicated with orange colors.

Beginning in 1992 Vietnam started integrating sustainable
development strategies into the country’s legislative frameworks.
In August 2004, Vietnam adopted the Strategic Orientation for
Sustainable Development (Agenda 21), resulting in remarkable
achievements in the economic, social, and environmental fields.
Food security in Vietnam has improved significantly since 1986,
with Vietnam becoming one of the biggest rice exporters in the
world since 2010. The agricultural sector accounts for over 22%
of the country’s GDP, 30% of the country’s exports, and 52% of
the country’s employment (IFAD, 2012). Agricultural growth has
accelerated in recent decades through a combination of improved
land use practices, better irrigation, technology adoption, and
incentives, such as price liberalization and land titling, to
encourage agricultural investment (Van Khuc et al., 2018).
We study these dynamics in five provinces (Figure 1), which
were selected to represent a range of agricultural production
systems, biomes, and communities. A brief description of each
province follows.

2.0.1. Nam Dinh
Nam Dinh province is part of the coastal area of northern
Vietnam and located in the southern part of the Red River
delta (Ha et al., 2018). The province has a total area of 1,676
km2 and 72 km of coastline. Nam Dinh is surrounded by a
dyke system that protects the land from inundation. Nam Dinh
has alluvial, nutrient rich soil highly suitable for agriculture.
The coastal province is well-known for its large Ramsar
site wetland (Xuan Thuy National park), and its productive
mangrove ecosystems. The province is frequently affected by
natural disasters, including typhoons and floods. These affect
the development of important economic sectors, including
agriculture, aquaculture and fisheries. Economic development
has also sparked debate about land reclamation into the sea and
led to loss of mangrove forest area. Coastline erosion also has
been impacting economic development in recent years.

2.0.2. Nghe An
Nghe An province is located in the north central coastal region
of Vietnam. The total area of the province is 16,490 km2.
The provinces Eastern border is coastline with high mountain
ranges in the west. The monsoon tropical climate supports a
rich biodiversity. The total population of Nghe An was over 3.5
million in 2019. The Kinh people make up the majority group.
The practice of shifting cultivation has led to an increase in
fallow land over the past decades (Leisz, 2009). Urbanization
and industrial zone development in the coastal zone area
has increased rapidly. Recent numbers show that services and
tourism contribute to over 40% of the GDP, whereas agriculture
and forestry account for 20%.

2.0.3. Lam Dong
Lam Dong province is located in the southern part of Vietnam’s
central highland region and encompasses a total area of 9,764
km2. There are 1.3 million people and 28 ethnic groups in this
province. The majority of the population are Kinh people, at 97%
of the population. The province is separated by the Di Linh and
Lam Vien plateaus, which have altitudes ranging from 800 to

Frontiers in Environmental Science | www.frontiersin.org 3 December 2019 | Volume 7 | Article 186116

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Poortinga et al. Food Security in Vietnam

1,500 meters above sea level. The sloping terrain attracts many
tourists. Lam Dong is the most biodiversity-rich province in the
Central Highlands and south-central region. A large portion of
the province is covered by natural or planted forests, that are
home to a number of rare flora and fauna species. The province
also contains a variety of soil types, which makes it suitable for
industrial plant and crop cultivation as well as a source of mineral
resources. However, the latter is a threat to the environment and
biodiversity. After Vietnam released the Payment For Ecosystem
Services (PFES) decree in 2009, Lam Dong was the first province
that implemented the decree.

2.0.4. Dak Lak
Dak Lak province is located in the central highlands of Vietnam.
The province has an average altitude of 600m above sea level. The
point with the highest elevation, at 2,442 m, is located in the Chu
Yang Sin National Park. The province has a total area of 13,125
km2 and a population of more than 2 million people from 44
ethnic groups. The province contains a dense river and stream
network providing an abundance of surface water. Moreover, the
province is known for rich forest resources. The soils in Dak
Lak are of basalt origin, with high fertility which make them
suitable for industrial crop plantations including coffee, pepper,
and rubber.

2.0.5. Ca Mau
Ca Mau province is located in the Mekong Delta region,
located in the southernmost part of Vietnam’s inland territory.
The province has a total area of 5,331 km2 and supports a
population of more than 1.2 million people. There are three
main ethnic groups: the Kinh, Kh’mer, and Chinese. The province
is situated in low, flat terrain which is frequently flooded. The
average elevation is between 0.5 and 1.5 m above sea level.
Ca Mau is a geologically young region, formed from silt and
sediment accretion. The young, fertile lands support aquaculture,
rice, mangroves, and brackish forests. In recent years a large
proportion of rice paddies were converted into aquaculture uses.

2.1. Land Cover Maps
The land cover time series maps used in this study are from the
Regional Land CoverMonitoring System (RLCMS) implemented
across the Mekong region. They were created for the period from
1988 to 2017 using the Landsat legacy collection and machine
learning methods in the Google Earth Engine open platform.
The paper of Saah et al. (2020) provides specific technical details
regarding the work flow and data processing of this system. We
provide a short description below. Examples of the 1988 and 2017
maps are shown in Figure 2.

2.1.1. Annual Satellite Image Composites
The USGS Landsat 4, 5, 7, and 8 surface reflectance images were
used to create land cover time series maps. These atmospherically
corrected and orthorectified Landsat images are hosted in the
Earth Engine data archive. Landsat 8 data were atmospherically
corrected using the Landsat Surface Reflectance Code (LaSRC)
(Holden and Woodcock, 2016; Roy et al., 2016a; Vermote et al.,
2016), while the images from Landsat missions 4, 5, and 7 were

corrected with LEDAPS (Vermote et al., 1997; Masek et al., 2006;
Ju et al., 2012; Schmidt et al., 2013). All images come with a
cloud, shadow, water and snow mask produced using CFMASK
(Zhu and Woodcock, 2012), as well as a per-pixel saturation
mask. Images from Landsat 7 ETM+ acquired after the 2003
Scan Line Corrector failure were not included in the analysis,
as scan line effects were found to propagate through the data
analysis into the final products. Additional image pre-processing
steps were applied to account for sensor, solar, atmospheric, and
topographic distortions (Young et al., 2017) and create a reliable
and consistent time series.We applied shadow and cloud removal
(Housman et al., 2018; Chastain et al., 2019), a bidirectional
reflectance distribution function (BRDF) (Lucht et al., 2000; Roy
et al., 2008, 2016b, 2017; Gao et al., 2014) and topographic
correction (Smith et al., 1980; Justice et al., 1981; Teillet et al.,
1982; Soenen et al., 2005).

2.1.2. Primitives
Primitives are the suite of biophysical and end member layers
used to construct land cover products using a customizable
assembly logic. Primitive examples include forest canopy height
and fractional canopy cover (Potapov et al., 2019). The
information represented by the suite of primitive layers is used
to make decisions in a dichotomous key for land cover typing.
To create the input primitives used in this study, we ran
a supervised classification predicting the presence or absence
of each land cover class. Reference data were merged with
coincident values from the image stack to create a training data
set used in a random forest classifier. Data for each class (presence
observations) were combined with a random sample of all other
classes (absence observations) to create a sample representing
both classes for each primitive layer. The training data were used
in a random forest model in R (Breiman, 2001; Liaw andWiener,
2002; R Core Team, 2018) to determine the most important
covariates. We used this information to select a subset of images
and image derivatives, such as median normalized difference
vegetation index (NDVI), from the full list of potential covariates.
The random forest classifier was implemented on the subset of
covariates in Google Earth Engine (GEE). It was trained with
100 decision trees and the output was saved using the probability
mode option (instead of majority vote). The classifier was run
on each annual image stack, creating a new time series stack of
probability maps for each primitive class.

2.1.3. Assembly Logic and Monte-Carlo Simulations
The final land cover assemblage was created using a decision
tree and Monte-Carlo simulation. The decision tree specifies the
order and thresholds used to combine all primitives together into
a final land cover map. This decision tree was run 100 times using
a Monte-Carlo simulation process (Binder et al., 1993). In the
Monte-Carlo process, random numbers were added to each of
the primitives based on the error structure of the primitive layer.
The final land cover map was the mode of the 100 simulations
and a probability map which contained the count of the mode
divided by the total number of model runs.
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FIGURE 2 | Vietnam land cover map for the years 1988 (Left) and 2017 (Right). Land cover maps of all years can be found online on the SERVIR-Mekong data

portal, accessible at https://rlcms-servir.adpc.net/en/.

2.2. Typology
This study focuses on assessing the 8 main land cover types. Since
definitions of land cover types vary between studies, we have
included the precise definitions we used for each class below.

• Aquaculture is the farming of aquatic organisms, including
fish, molluscs, crustaceans and aquatic plants. Areas defined
as aquaculture consist of man-made pond systems on
fresh or salt water surfaces, and can be permanently or
temporarily flooded.

• Cropland is defined as land with temporary crops followed by
harvest and a bare soil period Loveland and Belward (1997).
These include single and multiple cropping systems. Example
crops include cereals, oils seeds, vegetables, root crops and
forages. Some areas include mixed rice and seasonal crop
cultivars. Herbaceous and shrubby cultivated plants (e.g., tea
and coffee) are included in this layer; but it excludes orchards,
forest croplands, and forest plantations.

• Mangroves are defined as coastal sediment habitats with more
than 10% woody vegetation canopy cover where the majority
of cover is higher than 2 m (Loveland and Belward, 1997).

• Forest is land spanning more than 0.5 hectares with trees
higher than 5 m and a canopy cover of more than 10%, or trees

able to reach these thresholds in situ. It does not include land
that is predominantly under agricultural or urban land use.

• Orchard or plantation forests are defined by FAO as land
cultivated with perennial crops that occupy the land for long
periods (Blanchez, 1997). Commercial tree crops in Vietnam
include mainly rubber, cashew nut, and fruit trees. Forest
plantations such as eucalyptus and acacias are included in
this category.

• Rice paddies are defined as irrigated or flooded fields, or low
land paddy fields where rice is intensively planted for more
than 1 cycle per year (can be up to 2 or 3 cycles). Rice makes
up the majority of vegetation cover.

• Surface water is defined as open water bodies larger than 30m2

which are open to the sky, including both fresh and saltwater
(Pekel et al., 2016).

• Urban and built-up areas include cultural lands covered by
buildings, roads, and other built structures.

2.3. Response Design for Area Estimation
Statistically robust and transparent methods to assess map
accuracy and estimate an unbiased area (of change) are critical
to ensure the integrity of land change statistics. Area estimations
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from only counting pixels in land cover maps are often biased
because of the inherent errors of the classification process
(McRoberts, 2011). Errors are rarely equally distributed between
land cover classes; instead there are specific land cover categories
that are more difficult to separate than others. This is due
to similarity and overlap in spectral and temporal signatures
between these classes. Performance can also vary between
ecoregions, provinces and even districts. These errors will
propagate and create biased area estimations. Hence, based on
these considerations, we apply the guidelines of Olofsson et al.
(2013, 2014) to estimate map accuracy and provide unbiased
area estimates. We apply a stratified random sample design to
ensure that classes that cover a small portion of the total area are
adequately represented in the sample, while still maintaining a
manageable sample size. Equation (1) (Cochran, 1978) was used
to estimate the total sample size.

n =

(
∑

WiSi)
2

[S(ô)]2 + 1
N

∑

WiS
2
i

≈

(
∑

WiSi

S(ô)

)2

(1)

where:

n = Number of sample points
N = Number of units in the Region of Interest (ROI)
Wi = Mapped area of class i (proportion)
Si = Standard deviation of stratum i (Equation 2)
S(ô) = Standard error of estimated overall accuracy.

The total sample size estimate is based on the assumption that N
is large, which is valid for our present study. This approach was
also suggested as a good practice in Olofsson et al. (2014) and
Stehman (2009). The standard deviation of stratum i is,

Si =
√

Ui(1− Ui)) (2)

where:

Ui = User’s accuracy (commission error).

Table 1 shows the number of samples used in this study, the
proportional area, users’ accuracy, and standard deviation for
each land cover strata (Equation 2). The proportional area was
estimated for the 2017 map and the users’ accuracies were
previously reported in Saah et al. (2020). Filling out Equation (1)
using an S(o) of 0.01 leads to a total of 1,567 sample points. We
applied a minimum threshold of 100 points for each land cover
class, increasing the sample size of the surface water, mangrove,
urban and built up and aquaculture strata.Without theminimum
threshold we would have high uncertainty in the error estimates
for these land cover strata due to their low occurrence in the
landscape. The remaining points were proportionally allocated
by area.

Area proportions were calculated using the confusion matrix
from the validation data and Equation (3) (Stehman and
Czaplewski, 1998; Olofsson et al., 2014).

p̂ijy = wiy
nij

ni
(3)

TABLE 1 | Sampling strata for the different land cover classes.

Wi Ui Si prop n

Surface water 0.02 0.96 0.20 28 100

Mangrove 0.01 0.69 0.46 6 100

Forest 0.46 0.87 0.34 721 577

Orchard or Plantation Forest 0.19 0.45 0.50 303 242

Urban and Built up 0.02 0.96 0.20 29 100

Cropland 0.11 0.74 0.44 172 137

Rice 0.17 0.74 0.44 265 211

Aquaculture 0.03 0.75 0.43 44 100

Total 1.00 1,567 1,567

Prop indicates the area-proportional number of points, while n is the final number of points

included in the sample per strata after taking into account the minimum size threshold

of 100.

TABLE 2 | Number of validation points per province.

Dak Lak Ca Mau Lam Dong Nam Dinh Nghe An

Aquaculture – 335 – 100 100

Cropland 316 – 100 – 100

Forest 521 – 589 – 466

Mangrove – 100 – 100 –

Plantations 122 100 166 - 136

Rice – 102 – 242 100

Urban 100 100 100 100 100

Water 100 100 100 100 100

Total 1,159 837 1,038 642 1,102

Not all classes were included for every province as the areas were too small or not present.

where:

pij = Estimated area proportion for year y
Wi = Mapped area of class i (proportion) for year y
nij = Sample counts
ni = Total sample counts of class i.

We created a separate response design for the five provinces as
the area proportions vary between these regions. Table 2 shows
the number of points included for each class and province. It
should be noted that not all classes are represented in each
province or only cover a small portion of the total area. Hence,
they were not included in the response design.

Reference data were collected in Collect Earth Online (CEO;
Saah et al., 2019). CEO is a custom built, open-source, high
resolution satellite image viewing and interpretation system, an
on-line successor of Collect Earth (desktop) (Bey et al., 2016). No
desktop installation is required and only an internet connection
is needed. It includes a customizable widget interface where the
project administrator can set up the display of image chips and
time series plots using Google Earth Engine.

High resolution images are not available for each year of
the analysis, therefore it was not possible to use this approach
to validate the change areas for all years in our time series
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TABLE 3 | Confusion matrix from the Vietnam country level map validation.

Aqua Crop Forest Mangr Plant Rice Urban Water Users accuracy

Aquaculture 94 0 0 0 1 1 2 2 0.94

Cropland 0 107 0 0 11 1 2 0 0.88

Forest 0 18 497 0 31 0 2 2 0.90

Mangrove 4 0 8 73 3 0 1 3 0.79

Plantations 0 5 24 0 172 0 1 3 0.84

Rice 3 0 0 0 8 168 16 2 0.85

Urban 1 1 0 0 2 0 91 1 0.95

Water 0 0 0 0 0 1 0 96 0.99

Prod Accuracy 0.92 0.82 0.94 1.00 0.75 0.98 0.79 0.88

FIGURE 3 | Land cover area distribution of Vietnam in 2017.

assessment. Therefore, we integrated census data from the
Vietnam national statistical yearbook to triangulate our findings
with an independent data source.

3. RESULTS

The results of the national level map evaluation are displayed in
Table 3. It is notable that the numbers do not match the number
of samples defined in the response design; this is due to low-
quality or a completely lack of high resolution satellite imagery.
The overall accuracy of the national map was 89%, with users’
accuracies of the land cover classes varying between 79% and
99% and producers’ accuracies between 79% and 100%. Notable
overlap was found between urban and rice, forest and plantations,
and forest and cropland.

We used producers’ accuracy to estimate the total area
of each land cover class. The results for 2017 are shown in
Figure 3. The largest land cover class across the country is
forestland, followed by plantations and paddy rice. Cropland also
accounts for a large portion, whereas aquaculture, surface water,
urban, and mangrove forest constitute a small percentage of the
total territory.

The 1988–2017 time series land cover maps were used
for change analysis. Figure 4 (Supplemental Data) shows the
change in relation to the total area in 1988. The urban category
gained the most area, followed by plantations and aquaculture.
Rice and surface water expanded slightly but increases leveled off

FIGURE 4 | The percent of change of coverage for each land cover class in

Vietnam, using the 1988 area composition as the baseline.

after 2010. Forest and mangrove areas declined, but the decline
stabilized in 2000 (for forests) and in 2010 (for mangroves). The
change trajectories for cropland are particularly interesting: they
show a sharp increase beginning in 2000, a decline after 2003 and
a stabilization after 2010. Figure 4 shows that land cover change
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dynamics in Vietnam were divided into three periods: (1) before
2000 when all land cover types changed rapidly; (2) a slow down
in change between 2000 and 2005; and (3) stabilization of change
from 2005 to 2010.

The change dynamics of Figure 4 were compared with the
numbers from the national statistical yearbook. Figure 5 shows
the reported area of cassava, sweet potatoes, maize, spring,
winter and autumn paddy reported in the yearbook as well
as the changes in detectable with the RLCMS. As the figure
shows, the yearbook reports an increase in area of spring and
autumn paddy, maize and cassava. The yearbook reports that
the total cropland area increases, albeit at a greater magnitude
than total cropland increased estimated from the RLCMS.
This difference might indicate an intensification as only a
small portion of the change is explained by an expansion of
agricultural area.

FIGURE 5 | Area from statistical yearbook and area calculated from the

RLCMS landcover map.

The response design was then applied to each province.
Table 4 shows the province level users’ and producers’ accuracies.
The highest overall accuracy was in Ca Mau, followed by Nghe
An, Nam Dinh, Lam Dong and Dak Lak. Producers’ accuracies
were lower than the users’ accuracies for plantations and crops.
For the forest strata, producers’ accuracies were higher than the
users’ accuracies.

Data from Table 4 was used to map land cover change
dynamics for each selected province in relation to the reported
changes in cropland area and crop production from the
statistical yearbook. Figure 6 (Supplemental Data) plots the
change dynamics between 1988 and 2017 as estimated by
RLCMS and reported by the statistical yearbook for each
province. Figures 7–11 show the land cover changes at a
5 year interval between 1990 and 2017. Transitions from
forest to cropland are most noticeable between 1990 and
2000. Charts show the estimated changes in area from
the total area expressed as a percentage from the 1988
baseline. The statistics charts show the changes as reported
in the statistical yearbook. The production numbers were
also included (titled prod) and are expressed in thousand
tons (kg).

The greatest increase in urban area was found to be in
Nam Dinh, apparently at the expense of rice paddies. This
is in agreement with the data from the statistical yearbook
which also shows a decrease in rice area. Dak Lak province
shows the highest increase in crop area, which is confirmed by
the statistical data. It also shows a sharp decrease in forested
area, as does Lam Dong province. In both provinces forest
area was replaced by agricultural lands and tree plantations
from 1988 to 2000, but this stabilized after 2000. Ca Mau
province experienced rapid expansions in aquaculture ponds,
mostly as a result of conversion from rice paddies and
mangroves. This is well represented in both the RLCMS
results and the statistical data. Land cover changes have been
relatively less dynamic in Nghe An province, compared to other
provinces; there were only slight increases in urban, rice, and
forest areas.

The yearbook data on agricultural production levels tell
a different story than the aerial coverage estimates. Figure 6
shows that the production of almost all agricultural products

TABLE 4 | Overall user and producer accuracy for each province.

Aqua Crop Forest Mangrove Plantations Rice Urban Water Overall

Dak Lak users 0.87 0.75 0.74 0.95 1.00 0.82

producers 0.74 0.92 0.64 0.83 0.93

Ca Mau users 0.96 0.85 0.93 0.74 0.94 0.80 0.91

producers 0.91 1.00 0.90 0.93 0.94 0.80

Lam Dong users 0.90 0.81 0.90 0.93 0.94 0.86

producers 0.72 0.98 0.61 0.91 0.96

Nam Dinh users 0.92 0.97 0.87 0.95 0.79 0.89

producers 0.79 0.96 0.97 0.80 0.88

Nghe An users 0.89 0.88 0.94 0.81 0.85 0.85 0.97 0.90

producers 0.96 0.87 0.95 0.76 0.85 0.88 0.90
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FIGURE 6 | The change in area from RLCMS, the statistical yearbook (stat) and the total production (prod) for different crop types. Change in area from RLCMS and

the statistical yearbook are expressed as a percentage (%), the unit of production is in thousand tons.
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FIGURE 7 | Land cover change in Dak Lak with 5 year intervals from 1990 to 2017. The statistics can be found in Supplementary Table 4.

FIGURE 8 | Land cover change in Ca Mau with 5 year intervals from 1990 to 2017. The statistics can be found in Supplementary Table 2.

has increased across all provinces, without a proportional
expansion in area under cultivation. Nam Dinh shows stable rice

production, yet the area supporting rice cultivation decreased.
Production levels in Nghe An province also increased while
cultivated area decreased. For Dak Lak province we found
an increase in maize production that coincides with areal
expansion up to the year 2000, but after 2000 production
continues to increased while area under cultivation does

not. Aquaculture shows a linear increase in productivity
over all years analyzed, while areal expansion stabilized
after 2000.

4. DISCUSSION

In this study, we estimated national forest cover levels at 43.8%,
which is close to the estimates of 42.7 and 44.6% reported by
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FIGURE 9 | Land cover change in Lam Dong with 5 year intervals from 1990 to 2017. The statistics can be found in Supplementary Table 3.

FIGURE 10 | Land cover change in Nam Dinh with 5 year intervals from 1990 to 2017. The statistics can be found in Supplementary Table 6.

the Food and Agricultural Organization of the United Nations
(FAO) for the years 2010 and 2015 (FAO, 2015; Vogelmann et al.,
2017). FAO also reports a sharp decline in primary forest between
1990 and 2000, and an increase in naturally regenerated forest

from 2000. This is all in line with our analysis. Previous studies
regarding the decrease in area of mangroves are also in line with
our findings. Mangroves were estimated to cover around 1.2% of
the country in 1943 (Maurand, 1943) but decreased to 0.42% in
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FIGURE 11 | Land cover change in Nghe An with 5 year intervals from 1990 to 2017. The statistics can be found in Supplementary Table 5.

2010 mostly because of the expansions of aquaculture and rice
paddies (Richards and Friess, 2016; Grellier et al., 2017). These
dynamics are clearly shown in Figure 4, but are particularly clear
for Ca Mau province in Figure 6.

Applying best practices for data validation and area
estimations using a stratified random sampling design are labor
and resource demanding. This is because interpreting hundreds
of data-points on high resolution satellite imagery is labor
intensive, and acquiring high resolution satellite imagery is
resource-demanding when large areas need to be covered. A
limitation of this study is that validation was done using high
resolution satellite imagery from only 2017, whereas the lower
resolution time-series covers 30 years. Validation of the data over
multiple years would further improve the quality of the area
estimations. However, we attempted to triangulate our estimates
by comparing the results to report from the national statistical
yearbook, and we see good agreement between the two sources of
crop coverage estimates.

Overall, our analysis shows a notable increase in production
with little expansion of area under cultivation. These dynamics
coincide with liberalized markets, improved standards,
intensified production systems, more efficient fertilizer
application, better land and water management practices,
the new and more efficient plant varieties (OCDE, 2015; Nguyen
et al., 2017; Xuan, 2018). These improvements happened because
Vietnam adopted incentives in the agriculture sector such
as the Vietnamese Good Agricultural Practices (VietGAP)
and the Climate-Smart Agriculture (CSA) programs, which
include a number of innovative technologies and practices
that aim to increase agriculture production while preserving
the environment.

Figure 12 provides a decadal timeline highlighting important
legislation on environmental management in Vietnam. This
timeline of improvement beganwhenVietnam participated in the

1992 Earth Summit in Brazil, where country committed to new
sustainable development strategies. This helped the country to
develop the foundation and legal framework for environmental
and natural resource protection, the forest protection and
development law, the environmental protection law, and the
national plan on biodiversity and nature conservation, all of
which were enacted between 1990 and 2000, and tied to economic
development targets. As the results above show, these new
policies led to a period of increased land cover transitions.

Between 2000 and 2010, the country began integrating
the Strategic Orientation for Sustainable Development
(Vietnam Agenda 21) into development policies, and also
joined the World Trade Organization (WTO) and well
as other international trade bodies. These memberships
meant that Vietnam had to produce products that met
requirements for world markets. International legislation
was adapted to the Vietnamese context and integrated
into national, ministerial, and local development and
certification strategies. This ensured better linkages between
economic, social, and environmental objectives, as well
improved law enforcement, helping the country sustain
healthier ecosystems.

Post-2010, Vietnam adopted the national Green Growth
Development Strategy; this strategy defined important
environmental policies, such as the national strategy on
climate change mitigation and a nationwide policy on payments
for forest environmental services (PFES). These new policies
have undoubtedly promoted forest recovery, increased forest
plantations and stabilized cropland expansion. These dynamics
are also coupled with increasing food production, which is
essential for national food security.

In particular, the PFES scheme seems to show promise
for improved land use and socio-economic development.
The implementation of the PFES program has mobilized
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FIGURE 12 | Decadal environmental policy change timeline for Vietnam.

hundreds of thousands of households to protect and manage
more than 5 million hectares of forestland in under 10
years. The program aims to promote sustainable livelihoods
and incomes for local people who protect and manage
forests. As a next step Vietnam is currently developing a
monitoring framework to support effectiveness and transparency
of PFES. Indicators in this framework include: forest area,
forest quality, landscape, land use and land cover change
dynamic, water quality, quantity and sedimentation. Monitoring
change in these indicators will be essential for successful
policy implementation.

Swidden agriculture was not included in the analysis as
it is considered a land use type rather than land cover.
Swidden cultivation has been a common land use systems in
the tropics including Vietnam (Fox et al., 2000; Mertz et al.,
2009; Van Vliet et al., 2012). Resolution 10 of 1988 and the
Land Law of 1993 have played an important role in eliminate
shifting cultivation by allocating fixed fields to shifting cultivators
while encouraging them to cultivate these permanently in the

northern and central mountainous region in Vietnam (Castella
et al., 2006). Moreover, measures have been implemented on
upland cultivation such as sloping agricultural land technology
(SALT) to enhance the efficiency and crop productivity (Folving
and Christensen, 2007). However, swidden agriculture is still
practiced (Pham et al., 2018) and have evolved to accommodate
the changing land laws and also to incorporate tree crops.
Areas that were classified as forests in this study may be
made up of trees that are part of managed regrowth in a
fallow system. Similarly, croplands in the upland areas may
be part of swidden systems. A land cover change analysis on
using the RLCMS time series can provide more information
on this.

In this paper we applied the landscape approach to analyze
the land use and land cover change both nationally and in
selected provinces in Vietnam. This approach allowed us to
link physical land use change and changes in agricultural
production to evolving policy and sustainable development
strategies in Vietnam over that past 30 years. The assessment
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shows how increasingly complex environmental, social and
political challenges that transcend traditional management
boundaries can be addressed through good sustainable
development policies.

Ecosystems are directly affected by changes in land use and
land cover. Such changes affect ecosystem services by increasing
the availability of certain services while reducing others, thus
reducing the ecosystems ability to support human needs. This in
turn further accelerates ecological degradation and the decreases
the resiliency of communities reliant on these services (Polasky
et al., 2011). With this study we showed that land cover data and
information provided by RLCMS can be used for relatively quick
and efficient ecosystem service evaluation and assessments that
can support better policy implementation and monitoring.

5. CONCLUSION

We cross-walked a remote sensing-derived 30 year land cover
time-series with national statistical data of forest resources
and agricultural productivity in Vietnam. We have shown
that most land use and land cover changes occurred before
the year 2000 and have stabilized since. This stabilization
coincides with the implementation of important national
environmental and sustainable development policies and
strategies. We also show that agricultural production has
soared while the coverage of agricultural areas has remained
relatively steady. We demonstrated that RLCMS is an
important tool to evaluate the effectiveness of sustainable
development policies and the evaluation of ecosystem service
and natural capital.
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People, livelihoods, and infrastructure in Myanmar suffer from devastating monsoonal

flooding on a frequent basis. Quick and effective management of flood risk relies

on planning and preparedness to ensure the availability of supplies, shelters and

emergency response personnel. The mandated government agency Department of

Disaster Management (DDM) as well as local and international organizations play

roles in producing, disseminating, and using accurate and timely information on flood

risk. Currently, systematic flood risk maps are lacking, which leaves DDM to rely on

inconsistent historic reports and local knowledge to inform their emergency planning.

Although these types of knowledge are critical, they can be complemented to reduce

bias and human error to planning processes and decisions. As such, the present

situation has led to ineffective distribution of emergency response resources prior to

flooding, leaving vulnerable populations less-than-prepared for inevitable flood events.

Given these issues, we have developed a flood risk decision-support tool in collaboration

with DDM. The tool uses surface water maps developed by the Joint Research Center

(JRC), which were derived from more than 30 years of Landsat imagery. We have also

incorporated population data, land cover data, and other information on flood exposure

and vulnerability to create the first scalable and replicable Flood Risk Index (FRI) for flood

risk reduction in Myanmar.

Keywords: flood frequency, remote sensing, water management, Google Earth Engine, disaster preparedness,

Myanmar, disaster management, earth observations

1. INTRODUCTION

Floods are considered to be one of the most recurrent natural hazards which can rapidly become
significant disasters. Impacts of floods are amplified in the wake of increased vulnerability due to
many factors such as rapid land cover changes (Markert et al., 2018b), urbanization, and changing
climate (Tolentino et al., 2016). According to a recent United Nations Office for Disaster Risk
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Reduction report, floods were reported to be the most frequent
disasters, where 3,148 occurrences accounted for 43.4% of total
types of disasters from 1998 to 2017. The damages from these
events were also found to be the largest at an estimated 2 billion
lives affected, which accounted for 45% of the total impacts
from all disasters (Wannous and Velasquez, 2017). Developing
countries are particularly vulnerable to floods due to the lack of
resources to prevent, mitigate, and adequately respond to floods
(Adger et al., 2003; Douglas et al., 2008; Poortinga et al., 2017).

Given the occurrence and widespread damages due to floods,
it becomes imperative to address flood risks from a disaster risk
reduction (DRR) approach. In this regard, a variety of scientific
approaches are being used for mapping flood hazard and
informing risk assessments. Risk assessment is a key component
in risk management and reduction in the broader sense. Disaster
management aims to avoid or reduce potential risks from
floods and assure immediate and appropriate response to flood
events. Furthermore, effective disastermanagement enables rapid
and effective recovery after a flood event. Four phases of
disaster management have been used by governments, including
mitigation, preparation, response, and recovery (Thieken et al.,
2007; Carter, 2008). Implementing these four components in a
disaster risk reduction approach is expected to increase resilience
and reduce economic and human losses.

Flood risk is a function of spatio-temporal hazard of floods,
exposure to floods, and vulnerability to floods (UNISDR, 2011).
Flood hazard is defined by the spatial extent and temporal
frequency of flood events themselves (Winsemius et al., 2013).
Exposure is considered by the intersection of the hazard with the
people and assets who may experience the hazard. Vulnerability
refers to the susceptibility of those people and objects to potential
loss and is defined by their intrinsic characteristics (Alexander,
2002; Plate, 2002). Flood risk is a combination of the magnitude
and frequency of the hazard, along with the vulnerability of
people and assets exposed to floods (Alexander, 2002). Hence,
understanding of the geographic location and extents is an
essential input into any flood risk assessment.

Winsemius et al. (2013) identified the probability density
of flood hazard, socio-economic indicators, resilience, and
adaptive capacity as main components of their flood risk
framework. Reducing the probability of a flood hazard affecting
populations is therefore a straightforward way to reduce flood
risk. Probability of flood can be derived from historic records
and flood forecasting systems (Carsell et al., 2004; Verkade
and Werner, 2011). However, forecasting systems adequate for
local and national disaster management often rely on complex
models that require extensive inputs and computational power.
Developing countries often lack the capacity, infrastructure and
data to run such sophisticated models. Despite the complex
nature of flood events, knowledge of the location and extent
of floods is often concentrated in specific flood prone areas.
Thorough analysis of historical data is therefore crucial in
complementing existing knowledge to better identify flood
prone areas.

It has been recognized that socio-economic and vulnerability
data are crucial components in disaster risk reduction (Gornitz,
1991). Studies of e.g., Abuodha and Woodroffe (2006) and

Boruff et al. (2005) include examples of vulnerability analyses
that include statistical data on education, family structure, and
social dependence in a robust and consistent manner. Such
vulnerability indices are useful in distinguishing the relative
vulnerabilities of different areas to disasters (Balica et al.,
2012). Recognition of the spatio-temporal dimensions in the
local context are important in determining the degree of flood
exposure and vulnerability. Geographic Information Systems
(GIS) are useful in managing and analyzing data from different
sources to map and understand the spatio-temporal dynamics of
flood risk.

Recent advances in the field of EO have resulted in
technologies and products that make data more easily accessible
for non-experts. Examples are cloud-based platform for
planetary-scale environmental data analysis (Gorelick et al.,
2017) that allow for the development of real-time applications to
monitor environmental conditions (Simons et al., 2017; Markert
et al., 2018b; Poortinga et al., 2018, 2019). Moreover, there are
a large variety of readily available EO derived global products
on surface water extent (Pekel et al., 2016), rainfall (Funk et al.,
2015), surface elevation (Farr et al., 2007; Tadono et al., 2016),
and others. These data can be used directly without experience
in processing raw satellite data. These products are a great
resource in a wide variety of disciplines including hazard and
risk mapping.

In this study we present an innovative approach to flood
risk mapping in a disaster risk reduction framework, leveraging
open data and state-of-the-art cloud computing technologies.
We present a framework to map spatially explicit flood hazard,
exposure and vulnerability, and to merge those data into a single
flood risk index (FRI). The study is presented in the context
of Myanmar, a developing nation that faces many challenges in
the field of disaster risk reduction. The work conducted was
under the auspices of the SERVIR-Mekong project, which is
a collaborative venture between the US National Aeronautics
and Space Administration (NASA) and the US Agency for
International Development. Given the mandate of serving the
Lower Mekong countries, SERVIR-Mekong presently addresses
the needs of Cambodia, Laos, Myanmar, Thailand and Vietnam.
Driven by user-based needs, this program responds to local
issues via provision of cutting edge EO, science and associated
technologies as solutions to development challenges. Key among
these needs are requirements for addressing various aspects of
floods, which includes hazard and risk mapping, monitoring, and
forecasting, via provision of publicly available EO within user-
defined web based applications. Toward addressing flood hazard
mapping, SERVIR-Mekong has developed a Historical Flood
Analysis (HFA) product which was modified to meet the flood
hazard mapping requirement by the Department of Disaster
Management (DDM), Myanmar. This product is based on open
source approach and is available here: https://hfa.adpc.net/en/.

2. MATERIALS AND METHODS

2.1. Study Area
Myanmar is located in Southeast Asia and shares its borders with
China, Lao People’s Democratic Republic,Thailand, Bangladesh
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and India (Figure 1). Myanmar’s climate is classified as a tropical
monsoon climate and experiences heavy rainfall events. It has
high humidity and an annual average temperature ranging
from 22 to 27◦C. The monsoon gives variations in the water
levels of the Ayeyarwaddy, Chindwin, Thanlwin, and Sittoung,
which are the four main rivers in the country (Taft and
Evers, 2016). These rivers are a vital source for drinking water,
transportation, irrigation and generation of electricity. However,
due to regular flooding events in the monsoon season, effective
disaster management is a major concern which requires a
systematic approach to address the impacts of these events.
Toward meeting these aims, in the following sections, we
provide details of an operational index developed for flood risk
assessment for Myanmar.

2.2. Flood Risk Assessment
Flood risk is calculated from various sources of information
including satellite-derived data products and area-aggregated
statistical data. Most data layers are normalized so that data
from different sources can be compared qualitatively. The final
risk map is calculated using Equation (1), multiplying the flood
hazard, flood exposure, and flood vulnerability indices. Figure 2
shows that different data layers are used to calculate the hazard,
exposure, and vulnerability and how those layers are combined
into the final flood risk index. The flood risk index (FRI) is
calculated from the risk map, in which risk values are aggregated
over a township. We describe how the different indices are
calculated in the following sections.

FRI = FHI × FEI × FVI (1)

where:

FHI = Flood frequency (-)
FEI = Exposure (-)
FVI = Vulnerability (-).

2.3. Flood Hazard Index
Historical trends in flooding are important for understanding
the current risk and what might happen in the future (Klis
et al., 2005). As field data are scattered and difficult to obtain in
Myanmar, we used remote sensing derived products to estimate
flood hazard from historical data. The JRC global water dataset
was used to generate flood frequency maps across Myanmar.
The JRC team developed a method to calculate water pixels
from Landsat satellite imagery. The imagery is going through
a sequence of steps where they detect water while accounting
for false positives including shadow effects. The JRC Monthly
Water History (V1) was used in this study. The dataset contains
monthly layers of the location and temporal distribution of
surface water from 1984 to 2015. The data contains information
on (0) no data, (1) not water and (2) water. The flood frequency
for any given period is calculated by dividing the number of water
observation by total number of observation where no data is not
taken into account. We used all available Landsat data in the JRC
tool as historical occurrence contain valuable information on the
probability of occurrence. As the data-series contains monthly

layers, different time-slices such as months or seasons could also
be investigated.

Permanent water was removed from the data in order to only
include flood events. The United Nations Institute for Training
and Research (UNITAR) provides data on natural disasters
through the Operational Satellite Applications Programme
(UNOSAT) including flood maps. The UNOSAT flood map
is a well recognized data source and was used to distinguish
permanent from temporary water. We used the 2015 data for
the comparison. Figure 3 shows both our water occurrence
map and the UNOSAT permanent water data. It can be seen
that pixels with high water occurrence values are marked as
permanent water in the UNOSAT data. By cross-walking the
data, we found 82% a suitable threshold to distinguish permanent
from temporary water in our study area. Permanent waters were
masked out to distinguish them from flooded areas.

2.4. Flood Exposure Index
Exposure to floods is defined by the assets and values located in
flood-prone areas (Jongman et al., 2014). We separated between
assets that are under direct threat from flood (i.e., land use)
and the distance from assets that offer potential relief to people
exposed to floods. In the category of assets we used a landcover
map containing information on urban, cropland and rice. We
consider these classes important for supporting livelihood which
could be negatively impacted by floods. In the other category
we calculated distance from hospitals, schools and roads as they
provide shelter to the people in case of flood emergencies. The
population density was taken into account as the most important
factor. The calculation for exposure is shown in Equation (2) and
the data sources are shown in Table 1. The different data-layers
are described in the next sections.

FEI = Wp
C + 0.5R+ U + Sd +Hd + Rd

5.5
(2)

where:

FEI = Flood Exposure Index (-)
Wp = Population data (-)
C = Cropland (-)
R = Rice (-)
U = Urban (-)
Sd = School distance (-)
Hd = Hospital distance (-)
Rd = Road distance (-).

2.4.1. Land Cover

Buildings and agricultural lands are directly affected by floods
due to loss of property and means of production. Whereas
floods have played an important role in traditional agricultural
systems (Van Liere, 1980), they have also caused severe damage
to the major crops and threatening the food security of large
regions (Del Ninno et al., 2003). We used the SERVIR-Mekong
cropland, rice and urban probability layers from the regional
land cover monitoring system (https://rlcms-servir.adpc.net/
en/). These yearly maps were created from the Landsat legacy
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FIGURE 1 | Political map of Myanmar/Southeast Asia.
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FIGURE 2 | Schematic overview of how the indices on Hazard, Exposure, and Vulnerability are combined into the flood risk index.

FIGURE 3 | The water occurrence map calculated from the JRC surface water data (left) and UNOSAT permanent water map data on the right.
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TABLE 1 | Data sources for the Flood Exposure Index (FEI; Equation 2).

Layer Data sources

Population World population data (Stevens et al., 2015)

Cropland SERVIR-Mekong Land cover data (Saah et al., 2020)

Rice SERVIR-Mekong Land cover data (Saah et al., 2020)

Urban SERVIR-Mekong Land cover data (Saah et al., 2020)

School Myanmar Information Management Unit (MIMU, 2019)

Hospitals Open Street Map (OpenStreetMap Contributors, 2017)

Roads Open Street Map (OpenStreetMap Contributors, 2017)

archive using reference data from the field and collected through
high resolutions satellite imagery (Saah et al., 2019) in a machine
learning algorithm. The probability layers were scaled between
0 and 1. The rice map was multiplied by a 0.5 fraction as the
negative consequences of floods on rice are generally less severe
in comparison to other land cover types.

2.4.2. Infrastructure

Infrastructure is a key component in disaster risk reduction as
failure or capacity degradation directly affects the community
(Luathep et al., 2013). We selected hospitals, schools and roads
as the key components for the risk assessment. Roads are the
lifeline for communities of goods and services and enable people
to evacuate from the area in case of emergency. Hospitals also
provide direct relief to crisis situations for affected people in
the neighborhood. Schools play an important role in raising
awareness among students, teachers, and parents (Strike, 2000).
The school can also serve as a shelter when the integrity of the
building compromised during the flood.We used the Open Street
Map data vector data and calculated the shortest distance to a
feature on a 30 by 30 meter grid. The maximum distance was set
to 10 km. These data were normalized to values between 0 and 1.

2.4.3. Population

Inundation of densely populated areas poses many threats
including the loss of human lives and property as well as the
spread of infectious diseases (Levy et al., 2016). Population
exposure was calculated with the Worldpop dataset. We used
the 2015 national totals adjusted to match UN population
division estimates (Stevens et al., 2015). The product was created
using a random forest regression tree-based mapping approach
integrating census and a wide range of remotely-sensed and
geospatial datasets.

2.5. Flood Vulnerability Index
Vulnerability reduction and increasing resilience are key
components in disaster risk reduction. A first step is to analyze
the current vulnerability of a community, township or region
to floods. However, there are a wide variety of definitions of
vulnerability including a variety of different indicators (e.g.,
Cannon, 1994; Pelling et al., 2004; Borden et al., 2007). We
include three main socio-economic indicators of literacy, age
composition and urbanization, as data on other indicators were
found to be scarce. These data were collected from (http://www.

dop.gov.mm/en) and contain data on the township level. All data
were scaled between 0 and 1 using the maximum value. This
approach was suited to be appropriate as it reflects the relative
vulnerability on a country level. Higher literacy was considered
to decrease vulnerability. In the age composition young and old
people were considered to be more vulnerable. Rural people were
also considered to be more vulnerable than people in the city.
The composition of these vulnerabilities are formulated in an
equation shown below (Equation 3).

FVI =
A+ U + L

3
(3)

where:

FVI = Vulnerability Index (-)
A = Age composition (-)
U = Urbanization (-)
L = Literacy (-).

2.6. Flood Risk Index
The flood risk data were aggregated based on administrative
boundaries, which was used for risk index calculations. Data
aggregation on the administrative level was done to align it with
the scales of social-economic including information on social
vulnerability, environmental vulnerability and capacity. Another
advantage of data aggregation is the reduction of uncertainty
related to individual pixels.

We aggregated the pixel based maps on flood hazard
and exposure into administrative boundaries (with township
boundary representing a particular flood hazard index) by
summing up all the pixel values and then divided this by the
township area. The FRI Equation (1) and figure below describe
the calculation of the flood hazard index for individual Township.
Flood risk per pixel is represented by Fi,N is the number of pixels
per township and A the area of Township (km2). A graphical
presentation is shown in Figure 4, where two townships are
compared. It can be seen that township A has a higher FHI than
township B.

FHI =

∑n
i=1 FiNi

A
(4)

2.7. Computational Framework
The workflow was built using Google Earth Engine (GEE). This
is an online platform that applies cloud computing and storage
frameworks to allow for parallel calculations of large geospatial
datasets (Gorelick et al., 2017). The archive contains a large
amount of Earth observations data such as the JRC global surface
water product. Detailed information on the GEE can be found
in the website (https://earthengine.google.com/). The GEE has a
Python Application Programming Interface (API) which can be
used to develop web applications. The web application provides
an interface to the data while calculations and visualizations are
done in real time. All data layers were ingested into the GEE
which enables users to investigate the separate risk components
and apply different weighing factors in the flood risk analysis.
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FIGURE 4 | Example of flood hazard index calculation for individual Townships.

3. RESULTS

The flood hazard map containing the flood frequencies for the
period 1984–2015 is shown in Figure 5. Areas with high flood
occurrence can be found near the Irrawaddy river and in the
delta and near the coast. The central part of the country also
shows areas with historical floods. It can be noted that recently
constructed dams are visible in the map.

The exposure map is shown in Figure 6. It can be seen that
the vegetated highlands have a low exposure while the higher
exposure can be found in the agricultural and population centers.
The coastal areas of the Rakhine State, located at the western
coast also show high exposure rates. Naypyitaw is the modern
capital of and Yangon, the former capital also show high exposure
risk. We also found higher exposure risk along the Irrawaddy
river. This river is one of the least regulated rivers in Asia
(Hedley et al., 2010; Taft and Evers, 2016) and known for its
dynamic morphology.

The flood vulnerability map composed from age composition,
literacy, and urbanization, is shown in Figure 7. The
map shows the risk in different shades of brown and
districts with no information are shown in white. In
contrast to the flood frequency and exposure map, the
vulnerability map is calculated on a district level. Shan
State in the eastern part of the country bordering China
and Thailand shows a particular high vulnerability. But
also districts in western Myanmar show high vulnerability.
The lowlands show a generally low to medium level
of vulnerability.

The flood risk map for the country on a pixel level is
shown in Figure 8. It can be seen that the Irrawaddy
delta and coastal regions in western Myanmar have
the highest risk. But also riverine areas throughout
the country show higher risk. The high risk in central
Myanmar is particularly notable. It can also be seen
that the eastern and western provinces, which have
vulnerability show a low risks because of the low hazard and
exposure rates.

We calculated the FHI for all townships in Myanmar and
normalized the values between 0 an 100 using the minimum

and maximum values. We then created three categories of
low, moderate and high to classify township in an easy
to understand manner. Classification was done by means
of data exploration and expert knowledge. The threshold
classification are <5 percent, 5–10 percent and more than
10 percent. Those percentage represents low, moderate and
high classification respectively. The resulting map is shown
in Figure 9. It can be seen that districts with a high risk
are concentrated in the deltas and central parts of the
country. Population centers such as Yangon and Mandalay
were found to have a high risk whereas Naypyitaw has a
low risk.

4. DISCUSSION

There is very limited detailed knowledge on river basins and
water dynamics in Myanmar (Taft and Evers, 2016). Although
at a relatively coarse resolution, this study and the tool provides
valuable information on water dynamics and potential human
impacts on a district level. Applications of the tool were identified
from various organizations and departments in Myanmar. They
included the Department of Urban and Housing Development
(DUHD) can use the flood frequency results as one of their
consideration on selecting construction site locations to avoid
frequently flooded areas. The Directorate of Water Resources
and Improvement of River Systems (DWIR) may potentially
use the flood hazard index to identify townships along rivers
where the level of hazard is high to consider for constructing of
the mitigation infrastructure. The Department of Meteorology
and Hydrology (DMH) are interested to use flood frequency
maps for selecting locations of new meteorological stations. The
Department of Disaster Management (DDM) wants to use the
flood hazard index to adjust the amount of the relief items for
the stockpiling. The threshold value of flood hazard index is
applicable only for Myanmar. Different countries may need to
re-adjust the threshold with the expert consultation.

A limitation of this study it that we have not performed
any validation of the data to quantify the uncertainty and
errors. This could not be done as there very limited field data
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FIGURE 5 | Flood frequency map of Myanmar calculated from the JRC surface water data.
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FIGURE 6 | Flood exposure map of Myanmar. Flood exposure includes land cover, infrastructural, and population data.
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FIGURE 7 | Flood vulnerability on a township level for Myanmar. Vulnerability was calculated from literacy, population composition, and urbanization.
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FIGURE 8 | Flood risk at the country-wide scale for Myanmar.
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FIGURE 9 | Flood risk index at a township level in Myanmar.
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available from Myanmar. This was also identified by previous
studies of for example Salmivaara et al. (2013), Varis et al.
(2012), and Taft and Evers (2016). Remote sensing can fill an
important data gaps, but has limitations. For example, Landsat
has a revisit schedule of 16 days, and does not capture surface
data in cloudy conditions. Hence, some historical flood events
might not be captured, or the maximum extents of historical
floods may be underrepresented. The MODIS archive could
add valuable information to the system as it contains daily
imagery for the period 2000–2018. With the recent availability
of the European Space Agency (ESA) Copernicus Sentinel-
1a/b satellites that acquire synthetic aperture radar (SAR) data,
observations of flood extent during cloudy conditions will
improve. The forthcoming NASA-ISRO SAR (NISAR) mission
will acquire additional SAR data. Radarsat-1 archived data and
ALOS PALSAR-1 data have also recently become available and
could add to the flood record. Furthermore, including data
fusion methods that incorporate multiple sensors (both optical
and SAR data) can potentially increase temporal resolution
across cloudy regions (Markert et al., 2018a), thus improving
surface water observations which in turn can improve the flood
frequency analysis.

In this work, we have developed a novel approach to
distinguish surface water from floods. However, the JRC tool
Pekel et al. (2016) does not separate water in paddy from other
floods; therefore, a process to distinguish standing water in
paddy field from floods that impact populations, infrastructure,
and other land use types, would enhance the FHI. Additionally,
the current FHI data derived from the JRC surface water data
is only available from 1984 to 2015. Further improvements to
this approach are planned including the update of the JRC
tool to the present date for the Lower Mekong Region and
beyond. Inputs to each of the indices were available at different
spatial resolutions. The FHI relied on Landsat pixels at a 30m
horizontal resolution. The FEI used 30 m land cover data and
100 m gridded population data. Inputs to the FVI were available
at the township level, and the final FRI was produced at the
township level.

The method to calculate FHI could consider other parameters
that influence floods (e.g., rainfall intensity, elevation, land
use, distance from drainage network). Other approaches could
capture more sudden, fleeting flash floods that are unlikely
to appear in the Landsat-based observations. Therefore, the
final FRI produced in this study likely represents riverine and
coastal floods, and not flash or finer scale urban floods.Future
studies could integrate potential damage assessments as
inferred from flood depth and duration as well (Oddo et al.,
2018). While GIS allows for overlaying and combination of
disparate data layers, it does not solve the decision-making
processes involved in assigning weights or significance to
quantitative and qualitative data. Roy (2018) discusses multi-
criteria analysis (MCA) approach in applying geospatial
indices toward reducing flood risk in India, the lessons of
which could be applied to risk mapping and related decisions
in Myanmar.

New cloud based geo-computational technologies make it
easy to develop online tools that perform real time calculation.
This enables end users with limited knowledge in the field
of remote sensing and GIS to perform analysis which were
beyond their reach before. This is particularly useful in the
context of developing countries and disaster risk reduction.
The end-user will be able to select and prioritize variables
of the model and assign different weight to them. Results
can be calculated and displayed in real time in a spatial
explicit manner.

5. CONCLUSIONS

For the purposes of incorporating EO into planning and
risk reduction, it is important to distinguish between flood
and surface water, and our approach achieves this objective
for the DDM in Myanmar. We have applied an index-
based approach to reclassify historic flood frequency into
a flood hazard index. We have also created geospatial
exposure and vulnerability indices using socioeconomic and
land use data. Combined, this resulted in a nationwide flood
risk map, summarized at the township scale for Myanmar
as depicted in Figure 9. Such knowledge aids in a more
objective and complete understanding of historic flood patterns,
which may inform annual budget decisions on the pre-
allocation of flood relief supplies before each monsoon season.
Further, this new characterization of overall flood risk by
township pinpoints critical areas for additional disaster risk
reduction investments.

Further refinement of the present work are planned
in order to address the limitations outlined in section
3.1 above. This includes an update of the JRC dataset
including data from additional sensors such as Sentinel-
2, inclusion of other layers of locally available exposure
and vulnerability data (including different types of social
and socio-economic data) as are made available in the
collaboration with DDM and other participating departments
in Myanmar.

The risk map developed in this work and in collaboration
with DDM is now being considered by other relevant
departments including the Road Transportation Administration
Department (RTAD) in Myanmar. With the feedback
from end-user’s, we expect to refine and build upon
methods for improved decision support and planning for
flood hazards.
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The Kenyan rangelands contribute significantly to the country’s GDP through livestock

production and tourism. With dependence on rain-fed pastures, climate variability

coupled with human induced factors such as overgrazing have adversely affected the

rangeland ecosystems. And while indigenous communities and conservation experts

already use their knowledge of the landscape to make decisions, this information

is usually localized. Earth observation imagery provides a bigger picture that can

complement indigenous knowledge and improve decision making. This research

leverages on data from the MODIS receiver located at the Regional Centre for Mapping

of Resources for Development (RCMRD) to develop the indices for the web-based

Rangelands Decision Support Tool (RDST). The tool (RDST) automates data processing

and provides an easy to use interface for accessing indices for rangeland monitoring.

MODIS Normalized Difference Vegetation Index (NDVI), anomalies and deviation indices

are provided on the tool at decadal, monthly, and seasonal time steps. Users begin their

assessments by selecting their monitoring units and an NDVI index that responds to their

specific questions. These questions respond to assessing current conditions, monitoring

trends and changes in vegetation, and evaluating proxies for drought conditions. The

information can then be overlaid with other ancillary datasets (roads, water sources,

invasive species, protected areas, place names, conflict areas, migration routes), for

context. At the click of a button, the information can be downloaded as a map for

further analysis or application in sub regional decision making. Information and maps

generated by this tool are being used decision making tool by rangeland managers in the

counties and in other management units (conservancies and ranches). Specifically, inform

adjustments to existing grazing plans, managing movement of livestock from designated

grazing areas in wet and dry season, monitoring the success of rehabilitation efforts

and resilience of the rangeland ecosystems, monitoring drought, managing scarce water

resources, and monitoring the spread of invasive species. Successful implementation

and application for decision making has relied heavily on local indigenous knowledge
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and capacity building on use of the earth observation indices. The SERVIR project

service planning engagement approach was used in engagements with stakeholders.

This improved their participation in co-development of the tool and indices; and in

adoption of the tools for decision making.

Keywords: ASALS, rangelands, NDVI, MODIS, vegetation indices, Kenya

INTRODUCTION

Rangelands make up 80% of Kenya’s land mass which is classified
as arid and semi-arid. The rangelands generate 90% of the
tourism revenue, host 70% of the country’s livestock, and are
home to ∼10 million people. Approximately 75 to 85% of the
population’s livelihoods depends on rainfed pasture production
(Government of Kenya, 2012; REGLAP, 2012).

The rangelands are under continuous threat due to climate
variability, coupled with rapidly growing livestock and human
populations. Extreme events are also increasing in intensity
and frequency, resulting in notable decline in productivity in
the rangelands due to shorter recovery time (Landmann and
Dubovyk, 2014). Drought has been considered to be a major
factor triggering land degradation processes especially in the
rangelands. Studies have stressed the importance of drought
episodes in explaining the occurrence of major degradation in
some regions (Indeje et al., 2005; Vågen et al., 2014; Vicente-
Serrano et al., 2015; Kyuma et al., 2016).

Degradation when not managed, leads to desertification and
colonization of the degraded lands by invasive species. Between
1997 and 2000, severe degradation was estimated to have grown
from 23 to 30% in Kenya (Mulinge et al., 2015). The increase
in degradation in Kenya can be linked to a combination of
factors such as unsustainable land use/land cover changes. Some
of those, are caused by human factors such as felling of trees for
charcoal and timber, overgrazing, exceeding the carrying capacity
of the land and encroachment into protected areas (Mulinge
et al., 2015).

Degraded lands in Kenya and especially in the North, when
continually put into production, without restoration or other
conservation measures, can become irreversibly unproductive,
jeopardizing the livelihoods of millions of people who depend on
these systems (Herrick et al., 2013; Vågen et al., 2014;Winowiecki
et al., 2018). Current adaptation strategies that include shifts
from purely pastoral to agro-pastoral systems have resulted in

Abbreviations: ASAL, Arid and Semi-Arid Lands; FEWSNET, Famine Early

Warning Network; GDP, Gross Domestic Product; GHA, Greater Horn of

Africa; LWF, Laikipia Wildlife Forum; MAM, March April May; MDNKOAL,

Ministry for the Development of Northern Kenya and other Arid Lands;

MODIS, Moderate Resolution Imaging Spectro-radiometer; MVC, Maximum

Value Composite; NASA, National Aeronautical Space Agency; NDMA, National

DroughtManagement Authority; NDVI, NormalizedDifference Vegetation Index;

NRT, Northern Rangelands Trust; OND, October, November and December;

PREG, Partnerships for Resilience and economic growth; RCMRD, Regional

Centre for Mapping of Resources for Development; RDST, Rangelands Decision

Support Tool; REGLAP, Regional Learning and Advocacy Programme; SDG,

Sustainable Development Goals; USAID, United States Agency for International

Development; VCI, Vegetation Condition Index; VI, Vegetation indices; WMS,

Web Map Services.

increased conflict as livestock and wildlife migration routes
become closed due to changes in land ownership.

Despite these challenges, the role of the rangelands in
contributing to food security in Kenya is set to grow with the
changing dietary wants especially due to urbanization (Herrero
et al., 2010; Silvestri et al., 2012). In developing countries,
as economies grow, the dietary wants of the population are
changing from cereal based to meat based, giving rise to the
projected need for sustainable livestock systems tomeet the needs
of the population in what was termed as a “livestock revolution”
(Delgado et al., 2001). For example, the total consumption of
meat and milk is projected to grow by 119 and 74%, respectively
by 2020 (Alexandratos and Bruinsma, 2015). The Kenyan
rangelands have a diverse potential that is not fully utilized in
livestock production and tourism, but also in renewable energy,
natural resources, and resilient communities (Government of
Kenya, 2012).

Recognizing the critical role that the rangeland plays in
Kenya’s economy, organized groups have been established
to develop mechanisms for improving the health of the
rangelands. This has led to growing investments in the
rangeland’s different actors. Private and donor partners have
implemented resilience programs to promote rangeland
conservation in the counties. The United States Agency for
International Development (USAID), has been working through
the Partnerships for Resilience and economic growth (PREG)
and through collaborations such as RCMRD and its SERVIR
East & Southern Africa project, to promote development of
technologies, products and tools for decision making.

Locally, organized groups have been established to develop
mechanisms for improving the health of the rangelands. These
include conservancies such as the Northern Rangelands Trust
(NRT) which brings together 35 community led conservancies
to collectively implement initiatives for sustainable management
of the rangeland ecosystems. This is achieved through efforts
such as reseeding and practicing planned rotational grazing. The
conservancies use emerging technologies and the indigenous
knowledge of the rangelands landscape, to implement measures
geared toward improving the rangelands ecosystem.

The government of Kenya also set up a Ministry for
the Development of Northern Kenya and other Arid Lands
(MDNKOAL) in recognition of the prolonged under-investment
and inequalities in the rangelands. This was in cognizant of
the fact that the failure to specifically fast track and prioritize
developments in the rangelands was affecting achievement of
development agendas such as Kenya’s Vision 2030 among others
(Government of Kenya, 2012).

Successful management of the rangelands requires reliable
and relevant information on vegetation changes to quantify the
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effects of these changes on the rangeland ecosystem. Intensive
and long-term ground-based assessments can produce fine
scale, accurate and localized information. However, they are
expensive, time and labor intensive; and do not provide full
coverage and visualization of the spatial dynamism in rangeland
ecosystem. Increasing availability in multi-temporal and multi-
spatial satellite imagery provides an avenue for their application
to provide an in-depth understanding of the vegetation dynamics
at different scales and time steps (Trodd and Dougill, 1998).
NDVI has been widely used to monitor vegetation changes in
the arid and semi-arid lands. These changes include vegetation
response and improvement in vigor following rainfall events.
Further, the changes in vegetation abundance and changes in
total plant cover and greenness due to utilization as livestock
graze and move through the landscape or monitoring units can
be observed using earth observation data (Trodd and Dougill,
1998).

Rationale
Different online data catalogs and repositories provide satellite
imagery, while others host static maps on vegetation condition
and indicators of rangeland productivity. These repositories do
not provide users with the freedom to create their own outputs.
Sometimes, the information required to make a decision is in
different locations. The developed Rangelands Decision Support
Tool (RDST) seeks to facilitate near real time assessment and
monitoring of rangeland resources by developing a web-based
tool that aggregates key indicators of rangeland productivity
with ancillary data and allow for integration of user selected
indicators to produce maps at different administrative and
conservancy boundaries.

The greatest challenge in uptake of technologies and tools
meant for decision making is sustainability of initiatives and
especially ensuring data recency, coupled with insufficient
capacity in understanding and interpreting information. The
RDST has been simplified using easy to understand color
schemes, simplified interface and detailed information snippets
that allow users from different backgrounds such as grazing
coordinators and rangeland managers to utilize the tool, generate
the maps and make informed assessments. All data processing
is automated.

Continuous engagement with stakeholders was done to
build their capacity in application of the indices integrated
in the RDST for decision making. During training, practical
application-based scenarios were developed to demonstrate
application of the tool to inform decision making. Specifically,
in monitoring of vegetation condition changes in dry and
wet seasons, monitoring the effectiveness of grazing plans,
assessment of pasture availability by delineating usable pastures
from invasive species, monitoring trends and assessing the
success of interventions for rehabilitation or improvement of
the rangelands.

STUDY AREA

While data was generated for the entire country, the application
of the tool for decision making focuses on 24 counties

(Figure 1) which comprise the arid and semi-arid areas
(ASALS) where aridity levels range between 30 and 100%.
Rainfall in the arid areas ranges between 150 and 550mm
per year, and in semi-arid between 550 and 850mm per
year. These areas are characterized by high temperatures
throughout the year with high evapotranspiration rates. The
ASALs experience high variability in the frequency and intensity
of rainfall events.

Population in the rangelands varies by region. For example
population density ranges from 1 or 2 people per km2 in parts
of Turkana and Marsabit to 358 people per km2 in parts of Kilifi.
Areas where conservancies, community and private monitoring
units have been established have been highlighted in Figure 1.
These include the NRT group of conservancies and Laikipia
Wildlife Forum (LWF) monitoring units.

MATERIALS

Data and Data Sources
Satellite Imagery
Vegetation indices (VI) are transformations of multi spectral
data that enhance information about the vegetation properties
and reduce effect of external factors such as atmospheric effects.
Identification of the different vegetation types due to their
properties is based on spectral signatures. The VI quantifies
the amount and vigor of vegetation (Xu and Guo, 2015).
They normally change over time with the seasonal behavior of
vegetation and decrease in cases of vegetation stress. Dead or light
vegetation reflect more red light while green vegetation absorbs
red light. Many factors affect VI values like plant photosynthetic
activity, total plant cover, biomass, plant and soil moisture, and
plant stress.

This study utilized the Normalized Difference Vegetation
Index (NDVI) from the Moderate Resolution Imaging
Spectroradiometer (MODIS) receiver, located at RCMRD.
Modis NDVI was selected due to correlation with many
ecosystem attributes, availability of the data and coverage
over the study area at 250m resolution. The dataset, which is
freely available, can be acquired daily, however a Maximum
Value Composite (MVC) every 10 days is preferred to allow
for error reduction and corrections due to cloud cover and
other distortions. Because of its ease of use and relationship to
many ecosystem parameters (Landmann and Dubovyk, 2014),
NDVI has seen widespread use in rangeland ecosystems such as
monitoring vegetation dynamics or plant phenological changes
over time, estimating biomass production g/m2, monitoring
grazing impacts or attributes related to grazing management
(e.g., stocking rates), assessing changes in rangeland condition,
vegetation or land cover classification and carbon sequestration
(Indeje et al., 2005; Baumann, 2009; Landmann and Dubovyk,
2014).

Ancillary Data
Relevant ancillary data to assist in interpretation and
contextualization of the NDVI indices was prepared. In
consultation with the stakeholders, administrative, and
monitoring boundaries (counties, wards, conservancies were

Frontiers in Environmental Science | www.frontiersin.org 3 December 2019 | Volume 7 | Article 187147

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Ndungu et al. MODIS NDVI for Monitoring Kenya’s Rangelands

FIGURE 1 | Study area.

added to the web-based tool. Stakeholders provided shapefiles of
their monitoring units such as grazing blocks that were divided
into wet and dry grazing blocks and buffer zones. Other datasets
included rivers, roads, surface water points (dams and water
pans), conflict zones, migration routes and protected areas.
Invasive species maps showing location of Opuntia and Prosopis
Juliflora with a time stamp based on date of data collection are
included in the tool (see Supplementary Table 1).

METHODS

The methodology workflow is illustrated in Figure 2.

Data Acquisition and Processing
MODIS Terra NDVI is acquired between 8 a.m. and 9:30 p.m.
since the passes within this time frame produced clear images
with less cloud cover. The raw files are automatically projected
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FIGURE 2 | Methodology workflow.

to WGS84 coordinate system and then clipped using the Kenya
national boundary shapefile. The physical NDVI values were
then computed from the digital numbers. Some digital values
were used to flag specific pixels: 255 for invalid pixels, 254 for
water/sea, 253 for snow/ice, 252 for cloud/shadow, and 251 for
missing data. Ten-day MaximumValue Composites (MVC) were
computed from the daily files. NDVI values range between −1
and 1. The values lower than 0.1 typically correspond to areas
with little or no vegetation (rocks, ice, and desert). Moderate
values (∼0.2 and 0.3) correspond to shrub and grasslands

and high values (0.5 and above) typically correspond to dense
vegetation. Monthly and seasonal NDVI was also generated. The
seasons were loosely defined for the long rains (March, April and
May) and short rains (October, November, and December).

At a monthly and seasonal interval, NDVI absolute anomalies,
standard anomalies and the Vegetation Condition Index (VCI)
were also generated. Anomalies are quantitative measurements
applied to assess how the greenness of the vegetation varies
over space and time. The standard anomalies represent the
difference between the current values and the long-term mean.
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They highlight deviations from normal vegetation development
portraying both positive and negative changes that give a
qualitative indication of how good or bad the current season
or month is compared with other similar periods. Below-
normal conditions relate to less than normal conditions such
as drought or stress while above normal conditions relate to
increased/improved productivity. Anomalies help highlight areas
of potential concern and take into account the variations over
time (dekad, month, and season) in productivity of the vegetation
hence giving the bigger picture. Continuous persistence of
negative anomalies is a red flag especially due to dependence
on rain-fed pastures for livelihoods in the rangelands. VCI was
also calculated due to its ability to detect and spatially delineate
anomalies in vegetation condition and growth, both in extension
and intensity which is useful for monitoring vegetation changes
within a season for early warning.

1. Monthly NDVI (NDVIi,m,y) for each Monitoring Unit (MU) i
in month m and year y is obtained by averaging the 3 dekadal
values in each month:

NDVIi,m,y =

∑

d∈m

NDVIi,d,m,y

2. NDVI Absolute Anomalies (AANDVIi,m,y) for each MU i in
monthm and year y is obtained by subtracting monthly NDVI
from a baseline monthly mean (2001 to 2017)

AANDVIi,m,y = NDVIi,m,y − E(NDVIi,m)

3. Standard Anomalies (Z-score) of the NDVI for each MU i in
each month m and each year y (NDVIi,m,y) were calculated
with a baseline monthly mean (2001 to 2017) mean (E) and
standard deviation (SD) of the particular MU and month:

SANDVIi,m,y =
NDVIi,m,y − E(NDVIi,m)

SD(NDVIi,m)

4. VCI for each MU i in each month m and each year
y (NDVIi,m,y) were calculated with a baseline monthly
minimum(min) and maximum(max) from 2001 to 2017

VCIi,m,y =
NDVIi,m,y −min(NDVIi,m)

max
(

NDVIi,m
)

−max(NDVIi,m)

Similar computations were applied for computation of the
seasonal variables with long term mean and standard deviation
calculated for the months within the season.

Development of the Spatial Database
A relational database was designed and implemented with rules
for integration of spatial and non-spatial data effected. The
database was implemented in PostgreSQL/PostGIS. PostGIS is
an Extender for PostgreSQL that allows its ability to manage
geospatial data within a relational database structure. The
database was then populated with both raster and vector datasets.

Development of the Web Application
The web application was built using JavaScript libraries—
ExtJS, OpenLayers, and jQuery. Extjs renders the viewport
containing the panels, forms, toolbars and menus. Web maps
were rendered using Openlayers which connects to theWebMap
Services (WMS) published via Geoserver and ArcGIS Server.
The vector and raster datasets found on the application reside
in a Geoserver where they are updated frequently. The ArcGIS
server provided the web processing service which enables on-
the-fly generation of downloadable maps. Both the front-end and
backend applications were deployed on the web by the Apache2
web server running in Ubuntu Linux OS. Communication
between the front-end and backend was enabled via Ajax requests
and responses with a REST API. JSON was used as the data
format during information exchange.

Automation
Python scripts were developed to automate the data processing
chain and automatic publishing of final indices. This ensures that
data is automatically available for users at preset intervals at the
beginning of a new dekad, month, or season. A parallel dataset
is downloaded as backup to ensure that local servers’ failure does
not affect timely availability of the indices.

Navigation
The Rangelands decision support tool interface is illustrated in
Figure 3. It allows users to select indices, the necessary ancillary
data, and produce downloadable maps. The system is able to
link user selection in the production of final maps providing
the user with the freedom of working with specific inputs from
the wide array of indices and ancillary data provided at a user
defined boundary.

The SERVIR Service Planning Approach
Development of the tool adopted a consultative needs assessment
method, where rangeland actors were involved to identify
gaps and challenges in their decision-making processes. Initial
consultations engaged three groups from NRT, LWF and
FEWSNET (Famine Early Warning Network). The need for a
spatially and temporally flexible dynamic tool was identified
and the stakeholders were involved in co-development of the
tool. An understanding of information flow in decision making
and identification of key actors in the process informed the
selection of indices, temporal and spatial extents and monitoring
units. By developing stakeholder maps, critical rangeland actors
were identified and engaged and this led to a growth in
the number users for the tool. With the expected growth,
processing of the indices was done for the entire ASAL region
to allow for new users to plug in their monitoring units and
use the tool.

Through the PREG partnership, Kenya RAPID, SERVIR
E&SA, and Mercy Corps Livestock Market Systems program,
supported five counties (Turkana, Isiolo, Marsabit, Garisa,
and Wajir) to digitize their grazing plans and rehabilitation
areas. This will enable them use to the tool to monitor
the rangelands and assess the success of interventions. With
an understanding of the multiple stakeholders with different
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FIGURE 3 | The rangeland decision support tool interface.

backgrounds, the tool’s main goal was to provide an easy
to use interface, processed indices for different monitoring

needs, easily interpretable and relatable legends where green

colors represent improving vegetation conditions and browning

represent declining conditions; and the flexibility to allow users

select ancillary data from an array of relevant indicators to

produce maps at the click of a button. To support understanding

of the indices and correct interpretation, awareness and capacity

building trainings were conducted.

The trainings included all relevant rangeland actors such

as researchers, data producers, rangeland managers, rangeland

coordinators, and county officers. The approach on capacity

building required users to apply the tool in solving challenges

or informing relevant decisions. The participants were required

to identify management problems or concerns they were

experiencing and apply the tool to assess/monitor the situation

and come up with actionable information that would be

presented management for reporting, or to influence/emphasize

on a suggested plan of action, or even to an understanding

of conditions being experienced. The use cases focused on
short term and long-term trends assessments, monitoring
vegetation recovery or decline, and monitoring success
of interventions.

RESULTS

Context
Application of the tool for decision making requires
interpretation within the right context. Some of the
considerations include an understanding of the response
of the Kenyan ASALS to the challenges being experienced.
Recurrent droughts that leave no time for recovery and
diminishing resources for grazing due to privatization of land
and agro pastoralism has contributed to increasing the strain on
available resources, resulting in degradation and colonization of
invasive species in degraded lands (Figure 4).

Further there is need to interpret negative changes within the
right context. Negative values or browning can be caused by
normal seasonal changes such as the loss of annuals which leave
the land bare. Identification of degradation should be done by
use of multiple indices to observe trends of vegetation changes
over time. Greening in the rangelands can also be attributed to
colonization by invasive species.

Careful interpretation of the VCI is called for since it can show
very unpredictable and sharply fluctuating results for regions
with rather constant vegetation index profiles, such as warm and
cold deserts and equatorial forests and therefore users should
apply it in assessments in areas with clear phenological profiles.
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FIGURE 4 | Contextualizing interpretation of rangeland conditions.

FIGURE 5 | Standardized anomalies for lewa conservancy during the 2017 and 2018 long rains season.

Application of the Tool for Addressing

Specific Management and Monitoring

Challenges
The tool has been successfully applied for monitoring by NRT
and LWF groups of conservancies. Specifically, monitoring
utilization of grazing resources over time in the wet and dry
grazing areas by using the tool to inform movement of livestock
from one paddock to the next. This resulted in time saved and
efficiency by eliminating the need to frequently send scouts to
monitor vegetation changes in the grazing blocks. The tool has
also been used to monitor improvements or decline in vegetation
productivity, an assessment of degradation or resilience of the
landscape and the success of investments in conservation and
rehabilitation of the rangeland’s ecosystem. NRT and LWF
provided their grazing blocks and rehabilitation areas shapefiles
as an input to the tool. With capacity building, the stakeholders
realized the value of spatially viewing the health of the ecosystem
which allows them to identify hotspots where interventions
should be prioritized. By using the tool, the stakeholders were
able to assess the success of their grazing plans and identify areas
where they need to be reviewed. Specific application examples are
provided below.

Assessment of the Resilience of Lewa Conservancy
Concerns that the conservancy was experiencing degradation
raised during a drought year (2017) led to the assessment
to ascertain if the loss in vegetation productivity was linked
to drought or degradation. An assessment of the vegetation
conditions from 2016 to 2018 using standardized anomalies
for the long rains season (MAM) (Figure 5) found that the
decline in vegetation productivity was linked to the drought and
the conservancy demonstrated full recovery when the drought
ended and the long rains commenced. The information was
submitted to management to array concerns on the efficacy
of management strategies implemented as the ecosystem was
resilient and recovered quickly after the major drought.

Assessment of the Drought Events in Ol-Pejeta

Conservancy
Assessment of drought impact on vegetation conditions from
onset to recovery over several years was assessed in Ol Pejeta
Conservancy using absolute anomalies. Feedback from the
conservancy confirmed that there were four prolonged dry spells
between 2006 and 2017 which affected the communities. From
the maps it was clear to see that drought events are becoming
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more frequent with the sequence alternating between a good
(wet) year and a dry (drought) year leaving little time for total
recovery. The maps were developed and used for reporting to
management. Figure 6 shows the drought progression between
2009 and 2011, and 2017 to 2017 Long Rains Season in Ol-Pejeta
Conservancy using Absolute Anomalies.

Assessment Human Induced Degradation on

Mathews Range Forest Reserve
Mathews mountain range in Namunyak Conservancy in
Samburu County, is protected forest reserve made of an expanse
of lush indigenous forest which hosts abundant populations of
wildlife and rare plant species (NumanyakWildlife Conservancy,
2010).

Due to increased frequency of drought events with little
time for recovery, strain on the protected resource is clearly
visible in Figure 7, even in good years such as 2011 and 2012
where degradation (dark brown) can be observed. Discussions
with conservancy managers confirmed that the situation was
as a result of an influx of livestock from the North of Kenya,
resulting in exceeded carrying capacity and encroachment by
livestock on the protected resource. Further due to the impact
of the droughts on livelihoods of the communities, cutting of
trees for charcoal burning after the drought in 2010 contributed
to the observed trends. The assessment further correlated to

evaluation of the forest, which established that parts of the forest
were experience slight to severe degradation (NumanyakWildlife
Conservancy, 2010) due to human activities such as cutting of
trees and overgrazing.

Prompting a Paradigm Shift From “Business as

Usual” to Rehabilitate Degraded Areas in Il Ngwesi

Conservancy
The NRT’s Il Ngwesi conservancy has established rotational
grazing with clear delineation of wet and dry grazing areas.
However, with frequent droughts, the capacity of the ecosystem
is strained and recovery, even when the drought ends is slow.
Further encroachment by invasive species such as the Prosopis
Juliflora, further reduces available pastures. The NRT team used
the maps to verify both the loss in vegetation productivity,
coupled with their knowledge on the ground, to delineate extent
of invasive species. From the maps developed, the proposed a
review of the current grazing plans which outlined the need to
prioritize and set aside part of the conservancy for rehabilitation
through reseeding and clearing of the invasive species to promote
recovery. VCI maps were developed for the short rains season to
assess the situation (Figure 8).

From their grazing map in Figure 9, Region A represents
Mukogondo forest which is a dry season grazing resource. Region
C represents the area where degradation notable by continued

FIGURE 6 | Drought progression between 2009 and 2011, and 2017 to 2017 long rains season in ol-pejeta conservancy using absolute anomalies.
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FIGURE 7 | Implication of prolonged drought events on Mathews Range Forest Reserve.

FIGURE 8 | Seasonal VCI for IlNgwesi on two drought years during the long rains (MAM) and Short rains (OND) seasons.

vegetation productivity decline over time has been recorded.
Toward the north in Region B is the Ol-Donyiro area where
the invasive species (prosopis Juliflora) has dominated. Region
B&C which are generally drier represent the wet season grazing

area. To promote recovery in B&C the grazing coordinator,
proposed that those areas should be set aside for rehabilitation,
with clearing of invasive species done in Area B and reseeding
in B & C.
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FIGURE 9 | Proposed revised grazing plan for Il Ngwesi Conservancy.

CONCLUSIONS

Sample case studies demonstrate the application of the tool for
decision making in the rangelands. Specifically, the application
of the tool for monitoring changes in vegetation condition due
to events such as drought, with local knowledge identification of
human induced and climate induced changes in vegetation, and
the assessment of the ability of a rangeland ecosystem to recover
after drought events.

Clearly, supplementary local and indigenous knowledge was
critical in the assessments. Emphasis is therefore given on the
combination of local indigenous knowledge of the rangeland
landscape coupled with the web-based tool indices for improved
decision making. During the discussions with stakeholders,
it was clear that the tool can support assessment of the
success of current management plans and identify areas where
interventions were not successful for review. For example, due
to recurrent dry spells, some areas in Namunyak conservancy
were becoming degraded and the grazing coordinators developed
maps that demonstrated these negative changes. They planned
to present the maps to management to suggest a review of the
management plans in terms of livestock movements in wet and
dry season to ensure recovery. The tool in such case was used
to prompt action by reviewing the management plans. The tool
was also applied to allay alarm and panic by the management on

alleged degradation in Lewa since the maps provided proof that
ecosystem recovered well and quickly after drought.

RECOMMENDATIONS

While the application of the tool for decision making is
clear, further improvements are required to improve its
capabilities. Based on feedback from stakeholders, addition of a
monitoring component on surface water is under development
to complement the vegetation indices. Addition of a smoothing
algorithm is also required to improve the indices especially VCI.
Development of an NDVI utilization component to support
improved assessments per land cover class within a monitoring
unit is required. This would allow quantification of the
changes in different classes of interest for different monitoring
needs. Data collection should be done for validation of the
vegetation indices.
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Savanna woody plants can store significant amounts of carbon while also providing
numerous other ecological and socio-economic benefits. However, they are significantly
under-represented in widely used tree cover datasets, due to mapping challenges
presented by their complex landscapes, and the underestimation of woody plants by
methods that exclude short stature trees and shrubs. In this study, we describe a Google
Earth Engine (GEE) application and present test case results for mapping percent
woody canopy cover (%WCC) over a large savanna area. Relevant predictors of %WCC
include information derived from radar backscatter (Sentinel-1) and optical reflectance
(Sentinel-2), which are used in conjunction with plot level %WCC measurements to train
and evaluate random forest models. We can predict %WCC at 40 m pixel resolution
for the full extent of Senegal with a root mean square error of ∼8% (based on
independent sample evaluation). Further examination of model results provides insights
into method stability and potential generalizability. Annual median radar backscatter
intensity is determined to be the most important satellite-based predictor of %WCC in
savannas, likely due to its relatively strong response to non-leaf structural components
of small woody plants which remain mostly constant across the wet and dry season.
However, the best performing model combines radar backscatter metrics with optical
reflectance indices that serve as proxies for greenness, dry biomass, burn incidence,
plant water content, chlorophyll content, and seasonality. The primary use of GEE in the
methodology makes it scalable and replicable by end-users with limited infrastructure
for processing large remote sensing data.

Keywords: earth observation, vegetation structure, Copernicus Sentinel data, cloud-computing, machine
learning

INTRODUCTION

The Ecological and Socio-Economic Importance of Woody
Vegetation in Savannas
Woody plants are an important component of terrestrial ecosystems; they play a
major role in carbon, nutrient and hydrological cycles (Vitousek, 1982; Jackson et al.,
2002; Huxman et al., 2005) and provide habitat for other species (Ratter et al., 1997).
Savannas occur across tropical, sub-tropical and temperate latitudes, and feature the
co-dominance of woody and herbaceous plant forms (Werner, 2009). While they may exhibit
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on average lower woody densities relative to closed canopy
forests, their vast spatial extent (up to 40% of the Earth’s
terrestrial surface, depending on definition; see Scholes and
Archer, 1997; Bond and Midgley, 2000; Sankaran et al., 2005;
Ratnam et al., 2011, and references therein) indicates an
important role in global and regional carbon storage. As
such, a lack of detailed information on woody vegetation
cover in savannas contributes uncertainties in current carbon
stock estimates and constrains scientific understanding of
the role they may play in long-term climate change. In
socio-economic terms, trees and shrubs are key to the basic
livelihoods of millions living in regions such as the West
African Sahel. The predominantly agro-pastoralist societies
rely on woody biomass for energy (fuelwood and charcoal)
and food (including livestock browse) (Wessels et al., 2013;
Hanan, 2018). An accurate quantitative and spatially explicit
assessment of woody vegetation cover in such regions is
thus crucial to local, regional and global efforts aimed at
understanding and combating the effects of climate change
through carbon sequestration, reducing food insecurity
through extensive livestock systems, and promoting sustainable
land use practices.

Challenges to Large Area Mapping of
Woody Vegetation in Savannas
Savannas have complex landscapes; a picture of individual shrubs
and trees or discontinuous tree canopies against a background
of grassland and/or cultivated surfaces comes to mind. This
picture is often the result of millennia of climate and human
induced changes that continuously alter landscapes on short-
and long-term basis (Behling and Hooghiemstra, 1999; Werner,
2009). Medium and coarse resolution land cover maps that
categorize individual pixels into unique land cover/land use
types cannot adequately separate different vegetation types in
such areas. At the same time, using commercial very high
resolution (VHR) imagery (e.g., <1 m) for detailed mapping
remains impractical beyond the local scale, due to the insufficient
coverage of currently archived data, high cost of new large area
acquisitions, and steep computation and storage requirements
for processing.

In lieu of categorical land cover maps, Vegetation Continuous
Fields (VCF) land cover products have been developed to fill
the need for more detailed vegetation mapping over large
areas; by providing sub-pixel/fractional estimates of specific
canopy properties (e.g., percent tree cover) (Defries et al.,
2000b; Hansen et al., 2002). VCF methodology generally
involves using satellite-derived metrics as discriminants
in an empirical model that is calibrated with continuous-
scale measurements obtained from the field (or from higher
resolution imagery) (Foody and Cox, 1994; Hansen et al.,
1996; Defries et al., 2000a; Gessner et al., 2013; Baumann
et al., 2018). Existing global VCF products are however
not ideal for estimating canopy properties in drylands and
savannas. For example, the annual MODerate Resolution
Imaging Spectrometer (MODIS) VCF product (MOD44B)
(Hansen et al., 2002), and the Landsat equivalent (Sexton
et al., 2013), are designed to only represent tree canopies

with certain characteristics based on the definition of forests
provided by the Food and Agricultural Organization (e.g.,
canopy height > 5 m) (FAO, 2000). Consequently, these
datasets are known to significantly underestimate woody plant
cover in dry savannas, where trees and shrubs tend to be of
considerably lower stature (Figure 1, as well as Gessner et al.,
2013; Brandt et al., 2016a).

The Use of Satellite Remote Sensing in
Mapping Woody Cover in Savannas
Satellite-obtained optical reflectance data have been used for
decades to map and monitor vegetated surfaces over large extents
(Matthews, 1983; DeFries et al., 1995; Hansen et al., 2002). This is
largely due to their ability to provide scalable spectral information
relevant to plant canopies such as greenness, leaf area index and
phenology (Zhang et al., 2003; Xie et al., 2008). The extensive
spatiotemporal coverage and free availability of data from sensors
such as MODIS and Landsat, and more recently Copernicus
Sentinel instruments, has also contributed to making remote
sensing data a far less costly and laborious option to derive global
and regional vegetation maps. However, particularly in tropical
and subtropical regions, these benefits are counteracted by
problems associated with cloud coverage, atmospheric scattering,
background reflectance, and saturation of optical indices in more
densely vegetated landscapes (Huete et al., 1997).

In the context of open savannas and woodlands, phenology
and seasonality metrics derived from optical reflectance data
have been used to discriminate woody and non-woody plant
forms. Brandt et al. (2016a) demonstrated this using dry-
season integrated Fraction of Absorbed Photosynthetically
Active Radiation (FAPAR), derived from MODIS and SPOT-
VEGETATION (SPOT-VGT), to estimate woody plant cover
at 1km resolution scale for the West African Sahel. In this
region, annual vegetation productivity is strongly controlled
by precipitation which typically falls within a short window
(3–5 months) (Nicholson and Webster, 2007). Herbaceous
vegetation would typically green-up and senesce during this brief
period, while trees and shrubs can flush leaves before the rains
and often retain leaves for some months into the dry season
(Hiernaux et al., 1994). In theory, this means woody vegetation
may be distinguished from herbaceous vegetation using time
series optical reflectance data to detect differences in phenophases
between woody and non-woody plants. However, such precise
phenology information is harder to obtain using remote sensing
data at finer (sub-100 m) scales, where operational instruments
have lower revisit times; and also, where the differences in
phenophases among woody species (see Brandt et al., 2016a,b)
becomes more visible, making it harder to collectively separate
them from herbaceous vegetation.

Unlike optical reflectance, microwave (radar) backscatter
is largely insensitive to atmospheric/cloud conditions and,
depending on wavelength, can be sensitive to the seasonally
invariant structural components of trees and shrubs. For
example, the leaves of small trees and shrubs would be largely
transparent to Sentinel-1 C-band radar backscatter (∼5 cm
wavelength) but these wavelengths are sensitive to the stems
and branches (Flores-Anderson et al., 2019). Thus, the addition
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FIGURE 1 | An illustration of how the MODIS Vegetation Continuous Fields Tree Cover data (MOD44B) effectively excludes global dryland regions (yellow and
orange) where VCF generally indicates canopy cover is 0–5%. Closer examination (inset images A, B, and C) suggests these areas can contain significant amounts
of woody cover in the form of (smaller) trees and shrubs. Imagery Source: ESRI Basemaps, DigitalGlobe.

of radar backscatter should improve our ability to discriminate
woody vegetation in savannas with or without the benefit
of knowledge on tree-grass phenological differences. This was
demonstrated in a recent study that used ALOS PALSAR
L-band backscatter to map woody vegetation in a Southern
African savanna (Urbazaev et al., 2015), and another study that
showed that fusion of Sentinel-1 (C-band) radar backscatter with
Landsat 8 optical reflectance data significantly improved the
accuracy of mapping tree and shrub cover in South America
(Baumann et al., 2018).

Objectives
Against this background, our main objective is to describe the
methodology and present prototype results for mapping %WCC
over a large, predominantly savanna region in West Africa. Our
approach combines relevant metrics, derived from both radar
backscatter and optical reflectance data, as empirical correlates
of %WCC at medium resolution (40 m) in an ensemble decision
tree (random forest) model. Furthermore, we interpret our test

case results to answer the following questions: (1) Which earth
observation metrics contribute most to accurate predictions of
%WCC in tropical savannas? (2) Given the ‘black box’ nature
of machine learning models used for prediction, can we discern
meaningful (statistical or mechanistic) relationships between
important predictors and %WCC? (3) How does our derived
%WCC compare with other similarly published datasets for the
region? Answers to these questions should indicate how our
approach contributes a new and useful tool for reliably mapping
savanna tree and shrub cover at relatively fine scales using remote
sensing data, and its transferability to other regions.

Local, national and regional institutions in developing
regions such as West Africa face tremendous difficulties in the
operational use of remote sensing data for environmental and
natural resource monitoring. These difficulties mostly arise from
the technical requirements (e.g., internet bandwidth, computer
processing power, and storage capacity) required for handling
large volumes of satellite data. In anticipation of these difficulties,
and to make our approach accessible for implementation in
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other regions, our methodology relies on the use of geospatial
cloud computing resources provided by Google Earth Engine
(GEE; Gorelick et al., 2017), with automated and documented
workflows that facilitate local adaptation by relevant stakeholder
communities. This framework is scalable and repeatable and aims
to support mapping in arid and semiarid regions around the
world with woody plant canopy/height varying from open/short
(<5 m) to closed/tall (>5 m).

MATERIALS AND METHODS

Study Area
Our study area is the full geographic extent of Senegal in West
Africa (Figure 2). Senegal has a bio-climatic gradient ranging
from the arid Sahel in the north (mean annual precipitation
or MAP < 300 mm, with low %WCC and shrubs and trees
generally 1–2 m tall), through the semi-arid Sudano-Sahelian
zone (300 mm < MAP < 900 m, a blend of woodland and
grassland savannas, with shrubs and trees 2–6 m tall), to the
humid Guinean savanna/forest mosaic south of The Gambia
(MAP > 900 mm, trees up to ∼10 m tall) (Kumar et al.,
2019). Geomorphologically, Senegal is a mostly flat country
with a maximum elevation less than 200 m above sea-level
(Diouf et al., 2015; Anchang et al., 2019). The northern,
central and eastern parts of Senegal are the main zones
of pastoral activity and have been divided into 4 ecological
zones reflecting soil and land use characteristics: Sandy Ferlo
(north), Ferruginous Ferlo (north east), mixed agro-pastoral
zone (central) and savanna-woodland transition zone (East)
(see Figure 2, as well as Diouf et al., 2015). Senegal has an
estimated population of 16 million people, with a rural populace
that is principally engaged in rain-fed agriculture and pastoral
(livestock grazing) activities, both of which directly impact woody
resource availability and sustainability. Urban populations also
exert notable influence on woody resources through a high
household demand for fuelwood and charcoal (2002 Census data
from Minnesota Population Center, 2018).

Software Tools
The methodology described in this paper was designed
and implemented mostly using Google Earth Engine (GEE;
Gorelick et al., 2017), a cloud-based computing platform that
allows for planetary scale geospatial data retrieval, processing
and analyses. It can be accessed programmatically using a
Java code editor browser interface or a Python application
programing interface. GEE significantly lowers the technical
and infrastructural requirements for geospatial analysis of
large areas, as the ‘heavy lifting’ is carried out by server-side
functions. It currently boasts an impressive and constantly
improving library of free earth observation/geospatial datasets
and open source analytic tools. We used GEE for all satellite
data retrieval and preprocessing, model training and validation,
and deriving final %WCC maps (see Supplementary Material
for details on how to access project code materials and
an online demo).

Collect Earth Online (CEO)1 is another free online tool
featured in our methods. It is a browser-based adaptation of
the Collect Earth desktop tool (Bey et al., 2016). CEO allows
for augmented visual analysis of VHR imagery to derive land
cover data at the field/plot scale. We used CEO to acquire
supplementary measurements for model training and validation.

The use of offline (i.e., desktop) tools was intentionally limited.
ArcGIS Pro (ESRI, 2017) was used to prepare GIS point shapefiles
of field/CEO data for upload to GEE environment (any open
source GIS software, e.g., QGIS, could also be used for this).
Python machine learning libraries were also used to reproduce
model results on the desktop environment and to access advanced
model utilities not currently available in GEE.

Methodology
Workflow Description
Figure 3 illustrates the steps (preprocessing, compositing, and
modeling) employed in mapping %WCC from combined optical-
radar remote sensing data.

Data Preparation
Plot level woody canopy cover
We combined plot level measurements obtained from the
field and from VHR imagery to train and validate empirical
models for predicting %WCC. Field data were collected in
2015 from 24 field sites located in relatively homogenous
landscapes in the Northern, Central and Eastern regions of
Senegal (Figure 2; green dots). These sites are part of a
long-term in situ biomass monitoring effort by the Ecological
Monitoring Center (Centre de Suivi Ecologique or CSE) located
in Dakar, Senegal. Each site is a 1km transect along which
four (4) circular plots with radius varying from ∼19 m
(totaling 0.5 hectare per site) to ∼28 m (totaling 1 hectare
per site) are placed at regular intervals (200, 400, 600, and
800 m), giving a total of 96 plots with data available for our
analysis. %WCC is assessed within each plot at the end of
the growing season (i.e., peak canopy greenness) every 2 years,
through an exhaustive inventory process that includes, amongst
other things, measuring the diameter along two axes of the
visible crown surface area of every woody plant (Diouf and
Lambin, 2001). Normally, the plot data are aggregated for
each site to provide estimates of %WCC at the hectare (ha)
scale. For our purposes, however, the circular plots are at a
scale well-matched to that of medium resolution (<100 m)
remote sensing data. Thus, for this study we utilized the non-
aggregated (i.e., plot level) measurements obtained during the
2015 field campaign.

Given that the field sites are largely restricted to the drier parts
of Senegal (the Ferlo regions, Figure 2), field measured %WCC
was mostly in the 0 – 60% range. We thus additionally sampled
the southern more humid/forested portion of the country (i.e.,
southeast Senegal and the Casamance region located south of
The Gambia). This was done to acquire additional %WCC
measurements at the field plot scale, using VHR image data,
for reliable predictions in the 60 – 100% range (Figure 2; blue

1https://collect.earth/
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FIGURE 2 | Map of Study Area (Senegal). Centre de Suivi Ecologique (CSE) field sites indicated in green. Locations of plots analyzed using very high resolution (VHR)
imagery within Collect Earth Online (CEO) indicated in blue. Isohyets (mean annual precipitation in mm for the years 1981–2018) were derived using Climate Hazards
Infra-Red Precipitation with Stations (CHIRPS) rainfall data (Funk et al., 2015).

dots). In total 200 random locations were chosen within this
region to be assessed using the CEO tool. To be consistent as
possible with both the CSE field data and satellite data (described
hereafter), we set up a 40 by 40-m rectangular plot at each
random point location and filtered the DigitalGlobe imagery
to the years 2015–2017. Each plot was populated with gridded
sample points spaced 5 m apart inclusive of plot edges (i.e.,
9 × 9 = 81 sample points per plot) (Figure 4). The %WCC
fraction within a plot was determined by labeling each sample
point as either covered by a tree/shrub or not and obtaining
a tally for the entire plot (1 labeled point = 1/81 or ∼1.23%
of cover). To ensure accurate results in the CEO analysis,
we only assessed plots with the highest visual quality in the
DigitalGlobe imagery available for the given years, leading to a
very low retention rate (47/200 or ∼25% of plot data retained).
Added to the 96 CSE field plots, this gave us a total of 143
plot level measurements to be used in calibrating our %WCC
prediction models.

Satellite data
Using the code editor (Java) interface of GEE, we retrieved
all Sentinel-1 (C-band synthetic aperture radar) and
Sentinel-2 (optical reflectance) data, acquired at 12- and
5-day intervals respectively within a 3-year period (01
January 2015 – 31 December 2017), and covering the
entirety of Senegal (Copernicus Sentinel Data, 2015).
We used these data to create gap-free annual composite
metrics, aggregated to 40 m spatial scale, that would
serve as empirical correlates of per-pixel %WCC. Tree
cover mapping studies have shown that using multi-year
imagery leads to more accurate and stable predictions
than using single date imagery (Karlson et al., 2015;
Urbazaev et al., 2015; Brandt et al., 2016a). Longer-term
composites are less susceptible to variations in image
acquisition conditions that would otherwise influence
backscatter/reflectance from single-date imagery or very
short-term composites.
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FIGURE 3 | Methodology used to model woody canopy cover (%WCC) from remote sensing data. CEO, Collect Earth Online; VV, vertical-vertical polarization; VH,
vertical-horizontal polarization.

FIGURE 4 | Example of plot level assessment of %WCC using Collect Earth Online (https://collect.earth/). Plot dimensions are 40 m by 40 m with 9 × 9 (81) sample
points spaced 5 m apart. In this illustration, the proportion of ‘green’ dots provides an estimate of percent %WCC within the plot. Base VHR image shown is a 2017
acquisition (Courtesy of DigitalGlobe).

For Sentinel-1 (S1), we specifically used the Interferometric
Wide (IW) Ground Ranged Detected (GRD) high resolution
(10m) product, with both vertical-vertical (VV) and vertical-
horizontal (VH) polarization, acquired in the ascending orbit.
S1-GRD data in GEE is already pre-processed as follows: orbital
file application, thermal noise removal, radiometric calibration,
and terrain correction. Our workflows additionally applied a
spectral noise filtering function using the Enhanced Lee Speckle

Filter (Lopes et al., 1990) and an incidence angle correction
function to minimize inter-scene variation.

For Sentinel-2 (S2), we used the Level 1C (non-
atmospherically corrected) product, retrieving spectral bands
in the visible (10 m), near infra-red (NIR) (10 m), red-
edge (RE) (20 m), and short-wave infrared (SWIR) (20 m)
electromagnetic region. We note that GEE has already ingesting
atmospherically corrected (Level 2A) S2 products as of early

Frontiers in Environmental Science | www.frontiersin.org 6 January 2020 | Volume 8 | Article 4162

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/environmental-science#articles


fenvs-08-00004 January 28, 2020 Time: 16:48 # 7

Anchang et al. Mapping Woody Canopy Cover in Savannas

2019. However, these do not yet offer enough temporal
coverage for our current analysis and are reserved for future
iterations. For the present analysis, however, we performed
the following steps to minimize atmospheric effects and
improve the overall quality of composite metrics: (i) cloud
and cloud shadow masking, (ii) bi-directional reflectance
distribution function (BRDF) correction (Roy et al., 2017a,b),
(iii) geometric and topographic correction, (iv) monthly
‘greenest’ (i.e., maximum NDVI) compositing, (v) use of
‘median’ instead of ‘mean’ when averaging to minimize effects of
temporal outliers.

Satellite-Derived Metrics as Empirical Determinants
of %WCC
A total of 16 remote sensing metrics were generated as a single
multiband composite image, at a 40 m resolution scale, and used
to provide independent variables for predicting %WCC. These
metrics were chosen to be relevant in sensing diverse vegetation
properties, including those that are useful in discriminating
woody from non-woody plants (Table 1). Most importantly, they
could be derived directly from S1 and S2 data. The pixel values
of each band were then extracted for the 143 plot locations to
produce a single data table for modeling.

TABLE 1 | Satellite-derived metrics evaluated for predicting %WCC.

Variable Description Units Relevance References

med_vv Median radar backscatter (VV) Decibels (dB) Detection of canopy structural and
water content properties.

Urbazaev et al., 2015; Baumann et al.,
2018; Flores-Anderson et al., 2019

med_vh Median radar backscatter (VH)

std_vv Standard deviation of radar
backscatter (VV)

Standard deviation values could
capture seasonality to help discriminate
woody-herbaceous signals.

std_vh Standard deviation of radar
backscatter (VH)

med_nd Median of normalized difference
vegetation index (NDVI)

Unitless Detection of green vegetation material Tucker, 1979; Karlson et al., 2015

(NDVI = ρNIR-ρRED/ρNIR + ρRED)

med_ndw Median of normalized difference
water index (NDWI)

Unitless Detection of plant water content and
stress

Gao, 1996

(NDWI = ρNIR-
ρSWIR1/ρNIR + ρSWIR1)

med_ndre Median of Red-Edge normalized
difference Index

Unitless Detection of leaf chlorophyll content Sims and Gamon, 2002

(RE-NDVI = ρRE2-
ρRE1/ρRE2 + ρRE1)

med_swir21 Median of ratio of shortwave
infra-red bands

Unitless Empirical surrogate for cellulose
absorption index used to detect
senescent biomass high in cellulose
content

Key and Benson, 2005; Guerschman
et al., 2009; Hill et al., 2016

(SWIR21 = ρSWIR2/ρSWIR1) Also potentially correlates to burn
activity

max_nd Maximum of NDVI Unitless Intra annual/seasonal leaf phenology to
help discriminate woody-herbaceous
signal

DeFries et al., 1995; Gessner et al.,
2013; Karlson et al., 2015; Brandt
et al., 2016a

Min_nd Minimum of NDVI

rge_nd Range of NDVI

dry_nd Dry season NDVI (Median NDVI of
driest 3 months)

wet_nd Wet season NDVI (Median NDVI of
greenest 3 months)

wet_minus_
dry_nd

Difference in wet and dry NDVI

med_red Median of red band reflectance Brightness indices (Baumann et al., 2018)

med_nir Median of near infra band related to albedo change with
vegetation cover

VV, vertical-vertical polarization; VH, vertical-horizontal polarization; NIR, near infra-red; RE1, Sentinel-2 red edge band 1 (∼704 nm); RE2, Sentinel-2 red edge band 2
(∼740 nm); SWIR1, Sentinel-2 short wave infra-red 1 (∼1610 nm); SWIR2, Sentinel-2 short wave infra-red 2 (∼2200 nm); ρ, reflectance. Although potentially relevant to
tree canopy albedo, metrics derived from blue and green S-2 bands were excluded to minimize effect of atmospheric noise in model input reflectance data.
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Random Forest Model Training and Validation
We used random forest regression (Breiman, 2001) within GEE
to predict percent %WCC (response variable) from our selected
satellite-derived metrics (independent variables, Table 1). The
random forest technique belongs to the family of ensemble
decision tree models where final predictions are obtained by
averaging the predictions of multiple individual regression
trees. Generalization error in random forests is minimized by
increasing diversity among the tree population through the
random subsampling of observations and variables (features).
Current implementation of the machine learning algorithms in
GEE is relatively ‘barebones,’ with missing utilities such as the
ability to visualize variable importance and partial dependence
on the fly. As such we also replicated the modeling exercise in a
desktop environment using the random forest regressor function
provided in the Python machine learning library (Scikit-learn)
(Pedregosa et al., 2011). To allow use of python tools to evaluate
and fine-tune GEE based models, we established reproducibility
of results between GEE and Python for the same data and basic
model parameters.

A 70%/30% random split was used to create independent
training and test samples, respectively, for the random forest

model. Hyper-parameter tuning of the model was done by
trial and error: sequentially altering individual parameters (e.g.,
number of trees) and observing the effect on training root
mean square error. We eventually settled on the following
model settings for our case of Senegal: 150 trees, minimum
leaf prediction size of 4, 1/3 of variables randomly selected per
tree, and a bag fraction of 0.9 (i.e., fraction of training sample
randomly chosen with replacement for each tree model). The
choice of a high bag fraction was necessary due to the relatively
small size of our training sample (i.e., 70% of only 143 plot level
measurements) ensuring enough data for model learning while
allowing for some cross validation within the model. Eventually,
independent model validation was done by calculating the root
mean square error (RMSE) of predictions on the test sample (plot
observations not exposed to model fitting and tuning).

Model Interpretation
In addition to our main objective of accurate %WCC mapping,
we also sought to identify the most important satellite-derived
determinants of savanna %WCC and the possible causal
(statistical or mechanistic) relationships driving the model. We
used two model-agnostic interpretation tools (i.e., tools that are

FIGURE 5 | Map of percent %WCC in Senegal, predicted from combined radar and optical remote sensing metrics using a random forest model trained and
evaluated using field and VHR imagery data (Figure 1).
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not specific to any given model), namely variable permutation
importance (Breiman, 2001) and the Accumulated Local Effects
(ALE) (Apley, 2016; Molnar, 2019). Permutation importance
measures the mean decrease in model accuracy (mean increase
in prediction error) when a specific variable is excluded, by
shuffling its original values to create noise drawn from the
same distribution (Breiman, 2001). We calculated permutation
importance using only the test sample data, in order to place it in
the context of model generalization (Molnar, 2019). By contrast,
the ALE plot shows the locally averaged marginal effect of a
specific independent variable on predictions of the dependent
variable and is an improvement over the more commonly used
partial dependence plot (Friedman, 2001). For each observation
of a specific predictor (i.e., x-value), the ALE plot calculates
the average change in the target prediction within a local
multidimensional window around x-value. This alleviates the
requirement for model covariates to be uncorrelated and provides
an unbiased visualization of the shape (e.g., linear, monotonic)
of the individual predictor-response space. We used ALE plots
to infer underlying statistical and/or biophysical drivers of the
model, using our knowledge of savannas and radar/optical
remote sensing principles.

Finally, we used several sub-models to examine the value of
the optical-radar data fusion approach. A separate model was
developed for each of the following sets of independent variables:
(1) only radar-based metrics, (2) only optical-based metrics,
(3) only radar-based median metrics, (4) only optical-based
median metrics, (5) only radar-based inter-annual variability
metrics, (6) only NDVI seasonality metrics. We compared the
performance (RMSE) between sub-models and with the full
model to determine which combinations of metrics were most
optimal for accurately predicting %WCC.

RESULTS AND DISCUSSION

%WCC in Senegal
Using all available predictor variables, our random forest model
was able to predict %WCC for Senegal at 40 m spatial resolution
(Figure 5) with a high degree of accuracy (training sample RMSE
of ∼5%, independent test sample RMSE of ∼8%, Figure 6).
A visual examination of the final map showed the distribution of
predicted %WCC in Senegal to be consistent with what we expect
of woody resource distributions across climatic, biogeographic
and anthropogenic gradients in Senegal. With the exception of
riparian vegetation and irrigated agriculture along the Senegal
River in the northern border with Mauritania, predicted %WCC
in Senegal generally followed a latitudinal (southward increasing)
gradient, supporting the ecological postulation that maximum
%WCC in African savannas is constrained by precipitation levels
(Sankaran et al., 2005).

In northern Senegal (the region known as the Sandy Ferlo),
low %WCC cover was predicted by our model (mostly < 10%,
Figure 5), consistent with the expectation that low rainfall (MAP
∼300 mm or less) limits the establishment and maintenance of
woodland systems. However, despite the low cover, other time-
series studies have inferred long-term gains in woody vegetation

FIGURE 6 | Random forest model training (N = 104) and validation (N = 39)
accuracy for %WCC estimates in Senegal.

in this area, mostly as recovery from 1970s/80s drought events
(Kaptué et al., 2015; Anchang et al., 2019), but also due to
relatively low human influence in areas that are largely not
suitable for agriculture (Brandt et al., 2017). Our ability to detect
low cover of trees and shrubs in this region can play a key role in
supporting such conclusions in future studies.

In the Sudano-Sahel savanna ecoregion, predicted %WCC was
noticeably lower on the western side (mostly < 30%, Figure 5),
a likely result of the greater population density and prevalence
of agricultural activities in this area. Western Senegal is home
to large urban population centers like Dakar and Touba, as well
numerous other built-up settlements (Figure 4, gray colored
areas) which exert more pressure on local woody resources due
to the greater demand for wood products such as fuelwood
and charcoal. By contrast, in the eastern Ferruginous Ferlo and
savanna-woodland transition zones (Figure 5), predicted %WCC
increased to intermediate levels (30 – 60%). In this area, where
the urban footprint is considerably less, %WCC is more strongly
influenced by herbivory (grazing) and fire activity (Kahiu and
Hanan, 2018b).

In the regions of Senegal south of The Gambia (i.e.,
Casamance region), and furthest to the southeast of Senegal,
where MAP > 900 mm, mapping results showed highest levels
of %WCC, with pockets of >80% cover predicted in some areas.
These high levels of %WCC are evident in the southwestern
corner, particularly in the Saloum delta area and along the
Casamance River, where riparian/mangrove systems abound.
Results also showed, however, instances of fragmentation (breaks
in high %WCC) in the southern forested landscape, notably in the
southcentral zone (Figure 5), a likely outcome of forest clearance
for cultivation.

Interpreting Model Predictions of %WCC
From Satellite-Derived Metrics
Variable Importance
We used variable importance (permutation importance) scores
obtained from the fitted random forest model to examine the
importance of individual metrics in accurately predicting %WCC
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FIGURE 7 | Variable importance in predicting %WCC (refer to Table 1 for full description of abbreviated variable names). Importance weights (x-axis; blue color)
reflect the mean increase in test sample prediction error (with associated standard deviation indicated in orange) arising from iterative permutations of each predictor
variable (y-axis).

in the validation sample (Figure 7). Results indicate that the
median of VV and VH backscatter (med_vv and med_vh), the
median of SWIR21 (med_swir21), and the median of NDVI
(med_nd), were the most important predictors. Meanwhile,
the standard deviation of backscatter (std_vv and std_vh), the
minimum of NDVI (min_nd), and the median NDVI of the driest
quarter of the year (dry_nd) were the least important.

The importance of VV backscatter in predicting woody
cover in our model (more than twice as important as the
runner-up, med_swir21, Figure 7) is supported by previous
savanna mapping studies. Co-polarized radar (i.e., HH and
VV polarization) is known to be sensitive to non-leaf canopy
components (such as branches and stems) compared to cross-
polarized radar (HV and VH polarization), and hence should
be more effective in sensing woody vegetation in the dry
regions like the Sahel where most trees are absent leaves at
some point during the prolonged dry season (Urbazaev et al.,
2015). The second most influential variable was the median of
SWIR21, the ratio SWIR band 2/SWIR band 1 (see Table 1).
Sentinel 2-derived SWIR21 is analogous to the MODIS-derived
SWIR32 (ratio of MODIS SWIR bands 3 and 2), which has
been found to be correlated with cellulose absorption index
(CAI), derived from hyperspectral data and used primarily in
remote sensing of dry/senescent biomass (Guerschman et al.,
2009; Hill et al., 2016, 2017). We therefore postulate that SWIR21
in our model correlates to the abundance and persistence of
(dry) herbaceous biomass, and that its relatively high importance
for predicting %WCC arises indirectly from the competitive
interactions between trees and grasses in mesic savannas (Scholes
and Archer, 1997; Dohn et al., 2013; Kahiu and Hanan, 2018a).

An interesting perspective gleaned from the variable
importance plot is that metrics measuring annual central
tendency (i.e., ‘median’) in remote sensing data appeared to be
more useful than metrics measuring intra-annual variability
(seasonality) (e.g., standard deviation of radar backscatter and the

maximum, minimum, range of NDVI). In an attempt to explain
this, we consider that the most seasonally variant component
of savanna trees and shrubs are the leaves, which are mostly
transparent to C-band radar (l∼5 cm) (Flores-Anderson et al.,
2019) and depending on phenology (i.e., level of deciduousness),
would mostly senesce and fall off during the long dry season. The
intra-annual variability of radar backscatter thus offers little in
the way of discriminating woody canopies due to the (mostly)
unchanging nature of non-leaf components. At the same
time, the prevalence of deciduous woody species with varying
phenologies (Brandt et al., 2016a,b) combined with long dry
periods weakens the model’s ability to discriminate woody plants
collectively from herbaceous vegetation based on inter-seasonal
variations in ‘greenness’ (NDVI). We anticipate however that
precise phenology metrics that capture the onset/length of the
greening and leafing (e.g., the MODIS Land Surface Phenology
product or MCD12Q2.006; Ganguly et al., 2010; Friedl et al.,
2019) may be more useful for mapping %WCC in savannas.
However, for our application, these metrics would need to be
derived at a spatial scale similar to Sentinel data.

Relationship Between Predicted %WCC and
Important Satellite-Derived Variables
We used ALE plots to examine the relationship between
individual independent metrics and %WCC predictions
(Figure 8). ALE plots measure the sensitivity of the dependent
variable to a specific predictor, by averaging the change in
prediction derived using all values of other variables found
within a local window. The ALE plot for Median VV backscatter
showed a strong monotonic association with %WCC prediction.
The average change in predicted %WCC generally increased
with the value of median VV backscatter, most strongly between
the values of ∼−16 dB (below which we expect sample plots
observations to be mostly void of trees and shrubs) and∼−10 dB
(above which we expect woody canopy saturation) (Figure 8A).

Frontiers in Environmental Science | www.frontiersin.org 10 January 2020 | Volume 8 | Article 4166

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/environmental-science#articles


fenvs-08-00004 January 28, 2020 Time: 16:48 # 11

Anchang et al. Mapping Woody Canopy Cover in Savannas

FIGURE 8 | Plots showing Accumulated Local Effects (ALE) plots of percent woody canopy cover (%WCC) prediction sensitivity to the 4 most important
independent variables: (A) median of VV backscatter in dB, (B) median of SWIR2/SWIR1 band ratio, (C) median of VH backscatter in dB, (D) median of NDVI.
Y-axis indicates average change in %WCC prediction. Red lines are plots for 50 different Monte Carlo samples drawn from the model training data, with black lines
showing response without Monte Carlo sampling. Blue markings on x-axis show the distribution of each independent variable.

A similar relationship was observed between change in predicted
%WCC and the median of VH backscatter (Figure 8C), although
the latter’s effect on increasing %WCC predictions begins to
saturate at much lower values. This supports our findings (from
variable importance analysis) of the greater effectiveness of VV
polarized radar to sensing woody canopies.

The ALE plot of med_swir21 (median of SWIR2/SWIR1 band
ratio) revealed a strong negative effect on %WCC predictions
(Figure 8B), also supporting its relatively high position (second)
in variable importance ranking. As we have previously explained,
SWIR21 is used in this case a proxy for detecting dry herbaceous
biomass, and so its annual median value should positively
correlate with grass cover and production in a given location, and
hence may negatively correlate with %WCC due to the dynamics
of tree-grass competition (Dohn et al., 2013). Incidentally, the
numerator of the SWIR21 ratio (i.e., SWIR band 2, ∼2200 nm
wavelength) is also used to calculate normalized burn ratio (NIR-
SWIR/NIR + SWIR) in which low values are used detect large
area burn scars (Key and Benson, 2005). By extension, this means
the model could be picking up the likely correlation between
SWIR21 and persistent burning activity, which also negatively

impacts woody cover (Scholes and Archer, 1997). The ability of
tree-based models to incorporate such latent information and
handle interactions is what makes them powerful (though not
always transparent) tools for predictions.

As would be expected, median NDVI was positively correlated
with %WCC prediction, though with a noticeable saturation at
NDVI>∼0.35 (Figure 8D). This is a reminder of the important,
but limited, role of spectral indices that respond to only green
material in vegetation; they become less effective if used without
other data sources in the prediction of the abundance of woody
components of the landscape.

Differences in the Performance of Sub-Categories of
Satellite-Derived Metrics
The best overall model in terms of accuracy was the full model
with all variables present (lowest test sample RMSE of 8.2%,
Figure 9A), supporting the assertion that combining radar and
optical data sources allows for a more accurate mapping of
trees and shrubs (Baumann et al., 2018). It also means less
important variables were still useful in minimizing the model
generalization error and need not be excluded. Although the
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FIGURE 9 | Woody canopy cover (%WCC) prediction accuracy (training = green, validation = red) for models fitted using different groupings of satellite-derived
variables: (A) Full model with all metrics, (B) all radar-based metrics, (C) all optical-based metrics, (D) radar-based median metrics, (E) optical-based median
metrics, (F) radar-based standard deviation metrics, (G) optical-based (NDVI) seasonality metrics.
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median backscatter metrics individually ranked high in predictive
importance, models using only radar-based metrics did not
achieve the highest model accuracy (test sample RMSE of ∼12%,
Figures 9B,D). In fact, models using optical reflectance metrics,
with or without NDVI-based seasonality metrics, collectively
outperformed the radar-only models (test sample RMSE of ∼9%
and ∼10%, Figures 9C,E, respectively). A possible explanation
is that the optical reflectance metrics collectively provide more
diverse information that is always useful in an ensemble tree-
based model. The overall weakness of metrics only capturing
intra-annual variability or seasonality in both backscatter and
greenness is once again evident (Figures 9F,G). As we have
explained previously, variability in radar backscatter (particularly
the VV band) will not produce a strong signal for discriminating
woody canopies as the most seasonally variable component (i.e.,
small leaves than senesce and fall off during the dry season) are
mostly transparent to C-band radar. However, the usefulness of
variables that capture annual variability of NDVI for woody-grass

differentiation depends on the relative abundance of woody
species with long versus short leaf production periods.

Comparisons With Other Existing Woody
Canopy Cover Datasets
Our derived %WCC map for Senegal reveals minor similarities
and very strong differences when compared to other currently
available datasets. Just like its MODIS counterpart, Landsat VCF
tree cover data is based on methodology that only considers
woody plants greater than 5 m tall, and as such underestimates
canopy cover in the savannas by significant margins (in this
case indicating < 10% for most of Senegal, and <20% for even
the southern densely forested mangrove region in the Saloum
delta, Figure 10C).

Much closer to the estimates in this study are those by
Brandt et al. (2016a), who used FAPAR phenology metrics and
regression models to predict mean 2009-2013%WCC at 1km

FIGURE 10 | Comparison of different woody cover datasets currently available for Senegal: (A) ∼2016 %WCC derived in this study, (B) 2009 – 2013 mean %WCC
estimated by Brandt et al. (2016a) for the West African Sahel using FAPAR phenology metrics, (C) 2015 Landsat VCF tree cover by Sexton et al. (2013). All raster
data shown above are resampled to 1 km cell size for direct comparisons and classified using the same color legend.
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resolution for the entire West African Sahel (Senegal subset
shown in Figure 10B). It is worth noting that both studies
share commonality in the field datasets used for modeling,
with differences in acquisition years and spatial aggregation
scale (individual plot versus site scale, see description of field
data in section “Data preparation”). Agreements can be seen
to a certain extent in the northern and western parts of
Senegal, where both products report mostly < 20% of %WCC
(compare Figures 10A,B). However, although both maps show
a steady southward increase in woody cover, a divergence in
the values is noticeable in the Ferruginous Ferlo to the east,
and the woodlands to the southeast, with differences of up to
20% or more for the same locations. This likely stems from
the significant difference in the spatial scale of the models
used to derive both maps (40 m vs. 1 km). Our 40 m scale
allows us to detect fine but clearly visible patterns of woody
occurrence in otherwise open landscapes. For example, for

a small area in the eastern Ferlo (Figure 11), we correctly
detected high canopy cover (50–70%) for a subset of 40 m
pixels, leading to a higher (and potentially more accurate)
average %WCC estimate when scaled to a larger (e.g., 1 km)
area (Figure 11B).

Mapping at a coarse spatial resolution may also weaken
the ability of phenological metrics, as used by Brandt et al.
(2016a), to discriminate woody canopies in principally deciduous
landscapes. At 1 km scale, it would be challenging to capture
variability in leaf production patterns among woody species.
The relative dominance of a specific phenological type (e.g.,
an Acacia sp. with short duration in annual leaf production)
would influence model predictions of canopy cover for the area.
Meanwhile, the lack of precise phenology metrics in our Sentinel-
based model is offset by the higher spatial resolution and the
inclusion of radar backscatter metrics which is less sensitive to
seasonal leaf dynamics.

FIGURE 11 | A zoomed-in (approximately Lat. 15.09
◦

, Long. −13.62
◦

) comparison of woody cover data in the eastern Ferlo region of Senegal. (A) VHR imagery, (B)
∼2016 %WCC derived in this study at 40 m resolution, with an average of 27.5% over a 1 km × 1 km area, (C) %WCC by Brandt et al. (2016a) at 1 km resolution
with a single pixel value of 17.5% woody cover, (D) Landsat VCF Tree cover at 30 m with an average of 0% woody cover. Imagery source: ESRI Basemaps,
DigitalGlobe.

Frontiers in Environmental Science | www.frontiersin.org 14 January 2020 | Volume 8 | Article 4170

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/environmental-science#articles


fenvs-08-00004 January 28, 2020 Time: 16:48 # 15

Anchang et al. Mapping Woody Canopy Cover in Savannas

CONCLUSION

In this paper we described an approach to efficiently and
accurately map percent %WCC over large savanna areas. We
relied on the use of radar backscatter and optical reflectance
metrics as empirical predictors of %WCC in a random forest
model. The workflow was implemented almost entirely in
Google Earth Engine to leverage the computational power
and ease of data-access made possible in geospatial cloud
computing applications. The intent being to facilitate adoption
by potential users in other countries and regions where low
internet bandwidth and limited access to compute facilities might
otherwise prevent similar analysis.

Using the full extent of Senegal as a test area, we were
able to predict percent %WCC at 40 m resolution with a high
degree of accuracy (RMSE of 8.2% with test plot predictions).
Exploring the inner workings of the model revealed that median
radar backscatter with ‘vertical-vertical’ (VV) polarization was
the most important metric in predicting %WCC, while metrics
measuring intra-annual or inter-seasonal variation in satellite-
derived information were the weakest; a likely result of the
phenological variability within local savanna woody species
in West Africa, which complicates their collective separation
from herbaceous cover at fine scales solely based on seasonal
leaf dynamics. However, our results confirm the findings of
other studies that fusion of backscatter and optical reflectance
data allows for the most effective mapping of tree and shrub
canopies in savannas.

Earth observation data is increasingly important to developing
countries seeking more cost-effective tools for monitoring
and evaluation in the context of reducing emissions from
deforestation and degradation (REDD+), monitoring resource
use, and assessing progress toward sustainable development
goals and targets. However, countries in regions such as West
Africa continue to face challenges in large-scale operational use
remote sensing data. In the case of vegetation mapping, the
advent of improved and freely available satellite imagery such
as the European Space Agency’s Copernicus Sentinel data, and
cloud computing technologies such as Google Earth Engine,
can significantly impact the accessibility of larger datasets and
more complex analysis approaches. This will increase capacity
of local and regional stakeholders for environmental and natural
resource management.

The approach described in this study is designed to fill the
need for woody resource mapping tools tailored for tropical
savanna regions, where current datasets tend to underperform.
Our methodology can be applied across multiple geographic
scales, from local to national and regional levels, and is

transferable to other areas, ideally using local data and expertise
to calibrate and validate predictive models. The remote sensing
and cloud-computing approach advocated here makes for a
highly automated, scalable and repeatable tool that can allow
management agencies and scientists to implement activities for
carbon and woody resource monitoring, adapted to regional
conditions and local stakeholder needs.
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In this study we evaluated the applicability of a space-borne hyperspectral sensor,

Hyperion, to resolve for chlorophyll a (Chl a) concentration in Lake Atitlan, a tropical

mountain lake in Guatemala. In situ water quality samples of Chl a concentration were

collected and correlated with water surface reflectance derived from Hyperion images,

to develop a semi-empirical algorithm. Existing operational algorithms were tested and

the continuous bands of Hyperion were evaluated in an iterative manner. A third order

polynomial regression provided a good fit to model Chl a. The final algorithm uses a blue

(467 nm) to green (559 nm) band ratio to successfully model Chl a concentrations in

Lake Atitlán during the dry season, with a relative error of 33%. This analysis confirmed

the suitability of hyperspetral-imagers like Hyperion, to model Chl a concentrations in

Lake Atitlán. This study also highlights the need to test and update this algorithm with

operational multispectral sensors such as Landsat and Sentinel-2.

Keywords: hyperspectral remote sensing, water quality, chlorophyll a concentration, Lake Atitlán, Guatemala

INTRODUCTION

Fresh water bodies provide multiple services ranging from recreation to ecological and economical.
In Guatemala, the combination of poor development planning, lack of sewage treatment
infrastructure, and overuse of land for agriculture with absent soil protective practices, has led
to the degradation of inland water bodies (Perez Gudiel, 2007; Pérez et al., 2011; Romero-
Oliva et al., 2014). Lake Atitlán, located in the highlands of Guatemala (14.68 N, 91.16 W)
exemplifies a fresh water body subjected to pressures that have increased over the years. Lake
Atitlán is the second most visited tourist attraction in the country, as such represents the
livelihood of communities located around it. The 15municipalities in Lake Atitlán’s watershed hold
about 368,000 inhabitants (INE, n.d.; AMSCLAE, 2017), from which about 170,000 inhabitants are
surrounding the lake (INE, n.d.; SIGSA, 2019). In October 2009 the lake experienced a never before
seen algal bloom that lasted about 2months. At its highest point this algal bloom covered about 40%
of the 132 square kilometers lake’s surface. The bloom was caused by cyanobacteria, first tentatively
identified as Lyngbya robusta (Rejmánková et al., 2011) and later as Limnoraphis robusta (Komárek
et al., 2013). This bloom affected the local economy as tourism came to a halt. In addition, the lake
is a direct source of drinking water, use with no purification, for two of the municipalities around
the lake (Romero Santizo, 2009; Dix et al., 2012b).
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The data available for the lake show its degradation overtime
(Chandra et al., 2013; AMSCLAE, 2017). Lake Atitlán is
considered a unique example of an oligotrophic lake, given its
unusual transparencies (Secchi disk transparency) that in the
1960s were as high as 20 m (Weiss, 1971) and in 2010 as high
as 15 m (Dix et al., 2012a). The scientific data available for
the lake, even though existent, is confined to a few monitoring
points measured over a few months per year. Due to limited
resources the data is not published on the regular basis. The
two most complete studies published for Lake Atitlán’s water
quality are from Weiss (1971) and Dix et al. (2012a) and both
are based on in situ standard water quality monitoring methods.
Both studies report and provide evidence of the oligotrophic
condition of the lake during the dry season. However, there
exists a significant time gap between both studies. Weiss and
Dix’s year long studies showed that the optical properties of
Lake Atitlán such as transparency (measured by Secchi disk),
vary by season. The rainy season had lower transparencies than
the dry season. Weiss found maximum transparencies of 22 m
in February 1969, in a station equidistant from San Pablo, San
Pedro, and San Marcos towns and Dix et al. (2012a) maximum
of 15.5 m in March 2010, at the center of the lake in the station
Center Weiss G.

The limited published information available undermines the
understanding of the factors promoting the degradation of
the lake and the intrinsic behavior and dynamics of Lake
Atitlán. Despite recent efforts to invest more in science and
technology in Guatemala (UNESCO, 2015), funding for water
quality monitoring is minimal. In addition, standard methods to
monitor water quality are generally expensive, time consuming
and require special equipment and trained personnel, which
consequently provides data with limited spatial coverage and
temporal frequency (Palmer et al., 2015). Earth observing
satellites, on the other hand, can provide a cost-effective solution
to Guatemalan authorities and academia to complement water
quality measurements on the ground. Several studies exemplified
how satellite data can be used for water quality monitoring
in inland water bodies, particularly algal bloom monitoring
(Vincent et al., 2004; Ogashawara and Moreno-Madriñán, 2014;
Watanabe et al., 2015; Page et al., 2018). During Lake Atitlán’s
algal bloom in 2009 images fromNASAEarth observing satellites,
such as Landsat, Advance Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) and Earth Observing 1 (EO-
1) were used to estimate the extent and progression of the
algal bloom and provided authorities and general public a
complete picture of the event (SERVIR, 2009). In 2011, satellite
images were also used to study water surface extent and other
minor algal blooms events for the same lake (SERVIR, 2011).
Thus far, the common factor among the different analyses
using satellite imagery for this region has been their qualitative
nature. Still, satellite remote sensing can be more beneficial
and actually represent a reliable, quantitative source of water
quality parameters that can effectively complement the in situ
data collected. In addition, the use of satellite imagery to
estimate water quality parameters can increase the timeliness
of information and can also provide estimates for the entire
water body and not only from single points of measurement.

To evaluate if the combination of in situ measurements and
satellite imagery can enhance our understanding of lake’s Atitlán
dynamics, the present study is aimed to evaluate satellite
remote sensing to estimate water quality parameters, specifically
chlorophyll-a (Chl a) concentration. Chlorophyll concentration
is an indirect measurement of phytoplankton biomass (Schalles,
2006). Chl a is a dominant light harvesting pigment and
is universally present in eukaryotic algae and cyanobacteria
(Rowan, 1989). Therefore, all algae, whether toxic or non-
toxic, have Chl a. In this study we evaluate the applicability
of a space-borne hyperspectral sensor, Hyperion, to resolve for
Chl a concentration. Hyperion was a hyperspectral imager on
board of the EO-1 satellite. It is foreseen that this study will
contribute to the transition of remote sensing applications from
a qualitative to a quantitative nature for algal bloom monitoring
and assessment in Guatemala. In addition, this study provides
valuable information on the capabilities of hyperspectral satellite
data for Chl a concentration retrieval, relevant to ongoing and
future hyperspectral satellite missions.

Satellite Remote Sensing and Chlorophyll

Algorithms
The Chl a algorithms in ocean waters are based on a simple
interaction of phytoplankton density with water, in which usually
blue to green band ratios have a robust and sensitive relation to
Chl a during low concentrations 1–30 mg/m3 situations. This
relationship becomes less sensitive at higher Chl a concentrations
(above 30mg/m3Chla) and is highly compromised by the effects
of colored dissolved organic matter (CDOM) in turbid and
optically complex waters (Schalles, 2006). According to Schalles
(2006) andMobley (1995) (1) extremely lowChl a concentrations
< 2 mg/m3Chla show higher reflectances in the blue part of the
spectrum (400–500 nm) and reflectance decreases as wavelength
increases, with extremely low reflectance values, near to 0, in
the NIR (700–800 nm); (2) Chl a concentrations between 2 and
30 mg/m3 show higher reflectances in the green (500–600 nm)
and red bands (600–700 nm), with peak reflectance in the green
part of the spectrum; and (3) higher Chl a concentrations, >

300 mg/m3, show peak reflectances in the NIR and minimum
high in the green part of the spectrum, the blue and red bands
show low reflectances. These principles are used to select bands
and develop algorithms to retrieve Chl a from satellite images,
since it is evident that spectral signature changes depending on
the content of Chl a in water. Usually local-based algorithms
are needed for inland water bodies, and they vary significantly
from one site to another since their development is based on the
specific optical constituents of a water body. The measurement
of Chl a in water is commonly used (a) as an indicator to
monitor water quality programs in coastal and inland waters,
(b) in surveillance programs of harmful algal blooms, (c) and
in ecological studies of phytoplankton biomass and productivity
(Jordan et al., 1991; Morrow et al., 2000). Moreover, Chl a has
also been used as an indicator of cyanobacteria (Ogashawara and
Moreno-Madriñán, 2014). Satellite remote sensing has been used
for decades to estimate Chl a concentrations, most notably with
operational applications in the oceans (Mobley, 1995; O’Reilly
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et al., 1998; Schalles, 2006; Hu et al., 2012). However, significant
progress has been made in applying satellite remote sensing
in inland water bodies with positive outcomes as described in
Palmer et al. (2015) and Bukata (2013). The main challenge to
use remote sensing is to isolate the Chl a signal from other
cell components and other optically active compounds and the
effects of the vertical distribution variation of chlorophyll in
the water column.

The first satellite sensor developed to evaluate water
properties, particularly Chl a concentration was the Coastal Zone
Color Scanner (CZCS) on board Nimbus 7 and launched in
late 1978. A two-band ratio of 443–550 nm was calibrated and
routinely used for Chl a estimation (O’Reilly et al., 1998). Later,
another two operational sensors were also designed to monitor
Chl a estimations using bands in the blue and the green regions
(Sea-viewing Field of view sensor—SeaWIFS- and Moderate
resolution Imaging Spectroradiometer — MODIS-) (O’Reilly
et al., 1998; Schalles, 2006). The current operational algorithm
used for Chl a estimation has been updated for the sixth
time (version 6) and is generated by the NASA Ocean Biology
Processing Group (OBPG). These algorithms are based on a
multi-band optimization procedure called OC4 (for Ocean Color
4) and their approach is termed Maximum Band Ratio (MBR).

These operational algorithms are based on comparing blue to
green ratios. The largest value of the ratios is used in a fourth
order polynomial regression equation as the exponential term
in a power function equation. These exponential equations best
represent the sigmoidal relationship between Chl a and band
ratio calculations (O’Reilly et al., 1998).

The operational algorithms for Chl a concentration
estimations are based on blue to green band ratios and
have been generated for oceanic waters which color is dominated
by phytoplankton. The good performance of blue and green
ratios in oceanic waters is due to the general tendency that as the
phytoplankton concentration increases, reflectance decreases in
the blue (400–515 nm) and increases in the green (515–600 nm)
(Kirk, 1994).

Evaluating all the algorithms utilized to estimate Chl a
concentration, we can deduct that the majority of passive remote
sensing chlorophyll algorithms use either (a) blue to green band
ratio, or (b) a NIR/red band ratio, or (c) spectral curvature or
slope at different regions of the spectrum to estimate Chl a, this
last one uses three bands.

In summary, Chl a algorithms develop for: (a) pythoplankton
dominated-waters are based on blue to green band ratios, and
(b) for optically complex waters are based on either a two-band
ratio usingNIR and red bands or the spectral curvature approach.
Even though these approaches are mostly for oceanic waters,
they represent the basis to inland fresh water bodies. Moreover,
these approaches can be extrapolated onto inland fresh water
bodies, per appropriate calibration and validation with in-situ
data. Per previous studies in the lake (Weiss, 1971; Dix et al.,
2012a; Chandra et al., 2013), we can deduct that the color of Lake
Atitlán’s waters is dominated mostly by pythoplankton during
the dry season and during the rainy season, given all the runoff
and sediment deposited in the lake, the waters become more

optically complex, with a mix of constituents affecting the color
of the water.

Area of Study
Lake Atitlán is a tropical mountain lake located in the
Department of Sololá, Guatemala at 14.70◦N, 91.19◦W. Its origin
is volcanic and is situated within a caldera that was formed 84,000
years ago (Chesner andHalsor, 2010). Located at 1,565masl, Lake
Atitlàn has a volume of 24 km3, a maximum depth greater than
300 m with an average of 188 m, and a surface area of about
132Km2. Lake Atitlàn is surrounded by three volcanoes and
forms part of an endorheic basin, where the point of discharge
is the lake and there is not an obvious outflow. However, Weiss
(1971) proposed the possibility that the lake discharges through
subterranean passages into River Madre Vieja, on the Pacific
slope drainage, since chemical water characteristics were similar
between the lake and river waters. river waters. Figure 1 shows
the unique topography of the basin and its location.

METHODS

Remote-sensing spectra was collected from Hyperion satellite
images and correlated with in situ measurements of Chl a
concentration. Below we explain how in situmeasurements were
acquired, how satellite data was processed and how the algorithm
was developed and tested.

Field Measurements
The Centro de Estudios Atitlán from the Universidad del Valle
de Guatemala (UVG) collected 40 in situ measurements of Chl
a concentration in synchronization with Hyperion overpasses
between January and April 2013. We use the term “in situ” in
this paper for data that was collected in the field. These months
represent the dry season in Lake Atitlán and consequently the
months in which the lake’s water is the clearest (Weiss, 1971;
Dix et al., 2012b). Samples were collected in the field, placed in a
cooler with ice and transported to the laboratory where they were
filtered the same day. A standard volume of water (180 ml) was
filtered through Whatman GFF filters with 7 micrometer mesh
and 25 mm diameter. The filters were individually packaged in
aluminum foil and frozen for 24 h. Chlorophyll measurements
were carried out using 20 ml methanol to extract the pigment
during 12–24 h refrigeration in the dark. Readings were carried
out using a Turner fluorometer following Standard Method
(Eaton, 2005) and based on Ritchie (2006).

The Chl a measurements used in this study were collected at
the same time than the Secchi disk transparencies. In addition,
AMSCLAE supported the collection of in situ data, measuring
Secchi disk transparencies. A total of five field campaigns were
carried out between UVG and AMSCLAE to collect in situ
measurements of Chl a and Secchi disk transparency. Figure 2
shows the locations of these in situmeasurements.

The extremely low values of chlorophyll concentration
measured during the dry season in Lake Atitlán at the subsurface
level (below limit of detection) provided the initial foundation
to determine the depth for the in situ Chl a measurements,
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FIGURE 1 | Map of Lake Atitlán Watershed. Topography of the Lake Atitlán watershed located on the highlands of Guatemala. Data source: ASTER GDEM, MAGA.

ASTER GDEM is a product of METI and NASA (NASA et al., 2009).

which was based on less than the minimum transparency depth,
in this study in situ samples of Chl a were measured at 3 m
depth. Since there are no profile measurements of chlorophyll
concentration or any other optically active components available
that corresponded to coinciding overpass Hyperion imagery, it is
not possible to determine the influence of the vertical structure
of chlorophyll concentration on the surface reflectance measured
by the satellite. This is a limitation of this study. However,
calculation of Kd490 based on Mueller (2000) derived an average
value of 0.3/m, and a median of 0.2/m. These Kd490 values
indicate that the intensity of the visible light in the blue to
green region of the spectrum will be reduced about 0.3 units
per meter. Therefore, at 3m depth there is still available light
in the blue and green region of the spectrum in the water
column. As described by Stramska and Stramski (2005), even
the operational empirical algorithms for chlorophyll retrieval
(Ocean color algorithms) are affected to an unknown degree by
the nonuniformity of Chl a profiles.

Satellite Data
Hyperion was a hyperspectral imager on board of the satellite
Earth Observing-1 (EO-1), launched in 2000 as part of a 1-year
technology validation/demonstration mission (U.S. Geological
Survey, 2018). The EO-1 mission was undertaken originally
to meet the needs of Landsat continuity program. After the
baseline mission of EO-1 was accomplished, NASA approved
the Extended Mission operations phase, with the objective of
maximizing the use of EO-1 data, in December 2001, and this

ran through early 2017, when the satellite was decommissioned.
Hyperion has continuous spectral bands of about 10 nm
width that cover from 0.4 to 2.5µm of the electromagnetic
spectrum, containing 220 spectral bands. The images have 30
m spatial resolution and cover a swath of 7.6 km. The EO-
1 satellite flew in formation with the Landsat-7 satellite in
a sunsynchronous, 705 km orbit with an equatorial crossing
time 1 min later than that of Landsat-7 (Liao et al., 2000).
Level 1 Gst data of Hyperion was used for this study. Level 1
Gst is radiometrically corrected and resampled for geometric
correction and registration to a geographic map projection
(USGS, 2006). There were two main reasons to use Hyperion
in this study, first for research purposes, to assess suitability
of a hyperspectral sensor to retrieve Chl a concentration and
second, due to the ability to task image acquisitions. Hyperion
satellites images were tasked at time of in situ data collection
during cloud free conditions. A strong coordination effort
to acquire in situ data and satellite data at the same time
allowed us to generate a sound scientific dataset suitable for
algorithm development.

Atmospheric Correction
The digital numbers obtained from the Hyperion satellite
imagery were first converted to top of atmosphere (TOA)
radiances and then to reflectance. Reflectance is a dimensionless
value obtained from the ratio between the upwelling radiance
emittance and the incoming radiant flux (irradiance).
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FIGURE 2 | Location of in situ samples. Samples were collected by UVG and AMSCLAE. Topography of the Lake Atitlán watershed. Data source: ASTER GDEM,

MAGA. ASTER GDEM is a product of METI and NASA (NASA et al., 2009).

The spectral radiance is obtained by radiometrically
calibrating the digital number collected in Hyperion Level 1
data. Hyperion data are scaled to limit the amount of saturation
and storage space (Beck, 2003). The digital values of the Level
1 product are 16-bit radiances and are stored as a 16-bit signed
integer (Beck, 2003). The visible and NIR infrared bands are
divided by 40 and the SWIR bands by 80 to de-scale the data
and obtain the radiance in W/m2srµm. Then, Hyperion top
of the atmosphere (TOA) reflectance was calculated using the
following equation:

ρTOA = (π ∗ Lλ ∗ d2)/(ESUNλ ∗ cosφs) (1)

where: ρTOA= measured spectral radiance in W/m2srµm d =
Earth-Sun distance in astronomical units. These values were
obtained from the Earth-Sun distance table provided by U.S.
Geological Survey (2018) ESUNλ = Mean solar exoatmospheric
irradiance phis = Solar zenith angle in degrees, obtained from the
Hyperion imagery metadata.

The ρTOA calculated using 1 was transformed to surface
reflectance to be compared with in situ values, for this a radiative
model was used. The second simulation of satellite signal in the
solar spectrum-vector (6SV) was the radiative transfer model
used to account for the atmospheric effects on the signal recorded

by Hyperion satellite sensor. According to Vermote et al. (2006)
the 6SV radiative transfer code “is the most widely used,
rigorously validated, and heavily documented radiative transfer
code known in the scientific remote-sensing community.” In
addition, 6S has been successfully used for remote sensing of
water quality (Potes et al., 2012; Shang and Shen, 2016; Markert
et al., 2018), which makes it a suitable method for this analysis.

Python code was used to transform ρTOA to surface remote
sensing reflectance using 6SV. P6S was run for satellite data
accounting for each in situ sample.

The following criteria were used to compare satellite and
in situ data following (Le et al., 2013): (1) both measurements
(satellite and in situ sample) were acquired within a narrow
window of ±3 h (Bailey and Werdell, 2006); and (2) a mean,
maximum and median value from a 3 × 3 pixel box centered
at the in situ sample site was used to filter sensor and algorithm
noise (Hu et al., 2001). All the in situ samples were acquired
in locations where the shallow bottom (depths < 2 m) was
not a problem.

Testing Chlorophyll a Algorithms
Existing operational algorithms were tested, including the default
blue to green ratio OCx algorithms (O’Reilly et al., 1998; Werdell
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TABLE 1 | List of algorithms tested for Chlorophyll a estimations.

Reference Model (bands based on references) Equation

Blue to green ratio

O’Reilly et al. (1998),

Werdell and Bailey

(2005)

X = 443/550 Chla = a+ bX

(linear)

X = 490/550 Chla = a+ bX

X = 510/550 Chla = a+ bX

Red to NIR ratio

Gitelson et al. (2009) X = 675/710 Chla = a+ bX

Fluorescence line height (FLH)

Gower et al. (1999) X = SS(λ) =

R2 − R1 − (R3 − R1)(λ2 − λ1)/(λ3 − λ1)

R2 = 685 nm

Chla = a+ bX

Maximum Chlorophyll Index (MCI)

Gower et al. (2005) X = SS(λ) =

R2 − R1 − (R3 − R1)(λ2 − λ1)/(λ3 − λ1)

R2 = 710 nm

Chla = a+ bX

OCx

O’Reilly et al. (1998),

Werdell and Bailey

(2005)

X = R = log10(R
443
550 > R490

550) Chla =

10(a− bX + cX2

+ dX3
− eX4)

Band information provided in nm and as Surface Reflectance (SR), OCx = Ocean Color

algorithm.

and Bailey, 2005), the red to NIR band ratios and the three-
band approach for spectral shape, specifically the Fluorescence
Line Height (FLH) and Maximum Chlorophyll Index (MCI),
mathematical formulations are presented in Table 1. FLH as
described by Gower et al. (1999, 2005) and Wynne et al.
(2008) uses a central band at 685nm and it measures the
fluorescence of Chl a, which produces a narrow peak at this
part of the spectrum for Chl a concentrations up to 30 mg/m3.
Above this concentration the absorption by water and Chl
a pigments combine to shift the peak to longer wavelengths
(706 nm at 300 mg/m3) (Gower et al., 2005), which is the
central band used in MCI. These last two algorithms use the
reflectance height relative to a baseline formed linearly between
two neighboring bands which are distributed evenly, hence
the priority on the central band. The continuous bands of
Hyperion were evaluated in an iterative manner to determine
optimal position that would be used in the band ratio approach.
Linear, power and polynomial equations were tested to find
the best statistical correlations between in situ Chl a and
satellite reflectance. For the algorithm development 75% of
the in situ measurements (30 samples) were used and for
the algorithm evaluation the remaining 25% (10 samples)
were used.

Regression Analysis
From the total (40) in situ Chl a samples one was diskarded
since it did not match the correspondent Hyperion image. From
the resulting 39 samples, 30 were selected randomly for the
algorithm development. The least squaremethodwas used for the
regression analysis which was tested using linear and polynomial
fits. To further select the best algorithm the analysis of variance
(ANOVA) was used.

TABLE 2 | Summary of statistics on the in situ samples used in this study.

Parameter Unit Mean Min Max St Dev

Chl a mg/m3 5.44 1.01 10.91 2.87

Secchi m 5.68 3.65 8.00 0.94

Source: UVG, AMSCLAE.

Inference of Best Fit and Algorithm Evaluation
This explains the methodology used to select and validate final
algorithm. To validate the resulting algorithm a cross-validation
resampling procedure was employed. With a data set of n
data stations, the data will be randomly resampled n times,
leaving out one station each time, following Chernick (2012).
The predictive power of the algorithm will be evaluated using
different statistical parameters. The best results obtained from
the linear and polynomial regression are evaluated further with
other statistical parameters such as the analysis of variance
(ANOVA). In the ANOVA analysis the F-test (or F-ratio) and
p-value (or p(F), significance of F) were evaluated. The F-test is
used to evaluate the hypothesis that all predictor variables under
consideration have no explanatory power and that all regression
coefficients are zero (Chatterjee et al., 2000).

RESULTS AND DISCUSSION

Field Measurements
Chl a measurements collected in situ were relatively low,
in a range of 1.01 − 10.91mg/m3 (see Table 2). Secchi
disk transparency and Chl a display modes values of 6 m
and 7 mg/m3, respectively. The datasets represent low optically
complex waters, as expected for the dry season, when these
datasets were acquired on the field. Forty samples were collected
for Chl a concentration and 60 samples for Secchi disk
transparency. These samples were acquired on January 16, 24, 29;
February 22 and April 05, 2013.

Linear Regression
The coefficient of determination, R2 and the Standard error of
estimate were used to assess the results of the linear regression
analysis based on band ratios and spectral shape models (FLH
and MCI) described in Table 1. First, simple surface reflectance
(SR) band ratios were assessed and then log-transformed
ratios were used. Log-transformation datasets are used in the
development of ocean color algorithms (O’Reilly et al., 1998).
Extremely low R2 were obtained using linear regressions for both
approaches, the highest R2 was 0.302, representing not good fit.
However, given themultiple bands assessed in this study, this step
was used to pre-select band ratios that will be further tested in
polynomial regressions. The hyperion bands assessed were in the
blue and red-edge part of the spectrum.

Polynomial Regression
Polynomial regressions using a third order polynomial fit
following the methods of the ocean color algorithms (O’Reilly
et al., 1998;Werdell and Bailey, 2005) were tested. SeeOCx model
in Table 1.
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TABLE 3 | Analysis of variance (ANOVA) for the best fit.

Algorithm Dataset R2 Tabulated

F(0.01,3,26)

F-ratio ρ-value

Polynomial

Log(R467/R559)

Median

values

0.7027 4.637 20.486 5.04 × 10−7

Polynomial

Log(R467/R548)

Median

values

0.7073 4.637 20.945 4.13 × 10−7

Polynomial

Log(R467/R559)

Mean

values

0.7054 4.637 20.752 4.49 × 10−7

Polynomial

Log(R467/R548)

Mean

values

0.6999 4.637 20.215 5.69 × 10−7

Tabulated F-value from Table A1 in Chatterjee et al. (2000).

O’Reilly et al. (1998) and Werdell and Bailey (2005) reported
the SR443/SR555 ratio maximal to be at Chl a < 0.3 mg/m3,
SR490/SR555 ratio was maximal between 0.3 and 2.0mg/m3 and
the SR510/SR555 was maximal above 2.0 mg/m3 and below 30
mg/m3. Given the Chl a concentration values obtained in the
study (1–11mg/m3), in theory the analogous band ratios used to
represent SR490/SR555 and SR510/SR555 (SR487, SR498/SR559
and SR508/SR559, respectively) should have performed better
to simulate the Chl a. Nonetheless, our best fit was obtained
with SR467/SR555, using all datasets. The regression was tested
using different combinations of bands. Two datasets, one with
all stations containing the whole range of Chl a concentration
(a), and another with Chl a concentrations < 9 mg/m3 (b)
were assessed. Overall, group b had better fits, this is due to
the nature of the data, since most of the observations were in
this range. This also implies that the algorithm resolves better
real Chl a conditions that are lower than 9 mg/m3. Band ratios
SR487/SR559 and SR498/SR559 provided good R2, between 0.65
and 0.66, using mean reflectance values, but were outperformed
by SR467/SR555 with an R2 of 0.7. The 3-band algorithm, FLH,
did not improve significantly in the polynomial regression, R2

of 0.52. Given the overall good performance of the polynomial
regression, the band ratios with the best R2 in this step were
selected for further evaluation.

Inference of Best Fit
A summary of the results for the analysis of variance (ANOVA)
for the polynomial regressions that have the higher R2 are shown
in Table 3. All the algorithms have larger F-ratios than the one
tabulated for the significant level of 0.01. Therefore, it can be
stated that the results are significant at level 0.01. Consequently
the hypothesis that the predictor variables have no explanatory
power can be rejected. This means that the Chl a concentration
can be modeled using a blue to green band ratio. A blue to green
band ratio satisfactorily explains the behavior of Chl a in the
waters of Lake Atitlán at a significant level of 0.01. Evaluating
the results from the mean and median values it can be deducted
that the third order polynomial of the ratios 467/559 and 467/548
have the best results. The F-ratio is larger than the tabulated
one and the ρ-values are significantly smaller than 0.01, see
Table 3. Figures 3, 4 show the polynomial regression graphs for
band ratio 467/559, both using the median and mean values
datasets respectively.

FIGURE 3 | Logarithm plot using median values dataset.

FIGURE 4 | Logarithm plot using mean values dataset.

This is the algorithm selected in this study for chlorophyll a
concentration estimation in Lake Atitlán.

Evaluation of the Algorithm
A cross-validation resampling technique was performed to
generate a data set that will be used to assess the adequacy
of the model. The leave-one-out method was used for this
purpose (Chernick, 2012). In this method the complete data set
(n = 39) conformed by the data points used for the algorithm
development (30) together with the other points that were left
out of the algorithm development (9) are randomly resampled
n times leaving one point out (n−1). Then the accuracy of
the model is tested on the data point left out. This method
was used since the number of samples for validation was too
small (9 points) which can result in a very large bias (Chernick,
2012). Multiple statistical parameters were used to evaluate the
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TABLE 4 | Statistical results for the model evaluation.

Dataset MRE

(%)

RMSE

mg/m3

BIAS

mg/m3

PBIAS

(%)

RSR

(dimensionsless)

NSE

(dimensionsless)

Cross

validation

35.12 2.468 ±0.2067 −10.21 0.913 0.325

Validation 31.58 1.542 ±0.3189 −8.91 0.629 0.603

Average 33.35 2.005 ±0.2628 −5.15 0.771 0.464

Cross validation data set, n = 39. Validation data set, n = 9.

model performance. The Mean relative Error (MRE) is the ratio
of the absolute error to the real observed measurement, which
is assumed to be error free. The MRE provides an estimate
of how relevant is the absolute error. MRE is presented as a
percentage. The Root mean square error (RMSE) is a common
measure to evaluate model performance (Willmott et al., 1985;
Moriasi et al., 2007). RMSE has the advantage of indicating an
error in the units of the constituent of interest, in this case
mg/m3. However, its disadvantage lies in that large errors are
weighted heavily, producing a large RMSE even if there are
small errors in a good portion of the data. RMSE values of 0
indicate a perfect fit and the general interpretation is that the
smaller the RMSE the better the model performance. Given the
uncertainty of what is considered a low RMSE another model
evaluation statistic is used to aid the interpretation of RMSE,
the RMSE-observations standard deviation ratio (RSR). RSR
standardizes RMSE using the observations standard deviation
and is calculated as the ratio of the RMSE and standard deviation
of observations (Moriasi et al., 2007). The closer the RSR is
to zero (0) the better the model performance. The bias error
(BIAS) indicates an average model “bias”; that is average over-
or under prediction (Willmott and Matsuura, 2005). The percent
bias (PBIAS) measures the average tendency of the simulated
data to be larger or smaller than their observed counterparts
(Gupta et al., 1999). The optimal value of PBIAS is 0.0. Positive
values indicate model underestimation bias, and negative values
indicate model overestimation (Gupta et al., 1999; Moriasi et al.,
2007). PBIAS is the deviation of the data being evaluated,
expressed as a percentage (Moriasi et al., 2007). The Nash-
Sutcliffe efficiency is a normalized statistic that determines the
relative magnitude of the residual variance (“noise”) compared to
the measured data variance (“information”) (Nash and Sutcliffe,
1970; Moriasi et al., 2007).

Table 4 displays the results of the model evaluation statistics.
In general the results obtained from the validation and cross-
validation data sets agree. It is important to mention that in this
analysis the algorithm development and evaluation is being done
with satellite data. Meanwhile, the majority of the algorithms
developed for water quality parameters had been generated
using in situ measured reflectance (O’Reilly et al., 1998; Schalles,
2006). The evaluation of these algorithms performances is also
commonly done using in situ measured reflectance (Le et al.,
2013). Our analysis portrays a different approach for algorithm
development and evaluation, for an understudied area where,
in situ reflectance is not available, which can be more easily
replicated using a variety of satellite remote sensing data in future
research projects.

The algorithm assessed had a MRE error of about 33%. Le
et al. (2013) reported its lowest MRE value of 25.66% for a 2-
band algorithm using in situ reflectance Rrs(λ) in the Tampa Bay
area. Le et al. (2013) also reported higher MRE values for 3-band
and 4-band algorithms with 50.68% and 48.05%, respectively,
using in situ reflectance as well. Le et al. (2013) evaluated
algorithm performance using real satellite data from MODIS
and MERIS. There was no meaningful statistical relationship
between in situ measurements of Chl-a and coincident MODIS
reflectance. This was attributed to atmospheric correction errors
in MODIS data and abscence of appropiate spectral bands. The
algorithm evaluation performed by Le et al. (2013) using real
satellite data from MERIS provided better statistical results, with
a MRE of 35.33% for the 2-band algorithm and 46.93%, and
69.15% for the 3-band and 4-band algorithm, respectively. The
2-band algorithm evaluated by Le et al. (2013) was a NIR-red
band ratio generated for optically complex waters with Chl a
concentrations that ranged between 2 and 80mg/m3.

However, the MRE was degraded when using the MERIS
satellite data (35.33%) compared to using the in situ reflectance
(25.66%) due to spatial patchiness, differences in Chl a
concentrations between in situ measurement and satellite over
pass (Chen et al., 2010; Le et al., 2013) and even atmospheric
correction errors (Le et al., 2013). All of these sources of error
apply for the analysis performed in Lake Atitlán, and the MRE
obtained for the Hyperion data (33%) is very similar to that
observed by Le et al. (2013) with MERIS data (35.33%). The
algorithm performance results obtained by Le et al. (2013)
provide a source of reference for our analaysis, since they are
reported for both in situ reflectance measurements and satellite-
derived reflectance measurements. The RMSE obtained for the
algorithm evaluated in this study had an approximate value of
2.0 mg/m3, which is very similar to the optimal obtained by
Le et al. (2013) using MERIS-derived data, 2.01 mg/m3. To
further support the interpretation of the RMSE, the RSR statistic
was calculated. An optimal value of RSR would be zero, which
indicates zero residual variation, and therefore perfect model
simulation (Moriasi et al., 2007). The average RSR value obtained
for the algorithm performance evaluation is of 0.77 (see Table 4)
which is close to zero. The BIAS and PBIAS measurements
indicate that overall the model evaluated is overestimating by
0.26 mg/m3 the simulated Chl a concentration values. Finally,
the NSE statistic value of 0.46 (see Table 4) falls into the range
to determine that the model has an acceptable performance.

Discussion
The data set utilized for algorithm development represented
a small range of Chl-a concentration (1–10 mg/m3), which
limits the application of the algorithm generated within this
concentration range. The final algorithm selected to simulate Chl
a concentration follows the form of the Ocean color algorithms
(OCx), of a polynomial regression fit using blue and green
bands. Band ratios of blue and green bands are used for low
Chl a concentrations, such as the measured in Lake Atitlán
in which the major constituent driving the color of water is
chlorophyll. The latter was also true for the conditions under
which the algorithm was developed in Lake Atitlán. Even though
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FIGURE 5 | Scatter plot of in situ Chl-a from the data sets used for model

evaluation and algorithm using satellite reflectance Rrs(λ).

the overall performance of the algorithm selected provided
an overestimation of the simulated Chl a, the algorithm also
presents an under estimation of Chl a concentrations when
in situ Chl a was higher than 9 mg/m3, Figure 5 portrays this.
It is recommended to use a larger calibration and validation
data set to fit and test the algorithm to a broader Chl
a concentration range.

The blue to green ratio selected in this study represents
the theoretical behavior of the water dominated by Chl a, in
which the Chl a absorption and scattering characteristics strongly
influence the spectral signature of the water. For example, in these
waters Chl a absorbs in the blue part of the spectrum (400–500
nm) and scatter in the green part of the spectrum (500–600 nm)
with an evident reflectance peak at about 550 nm (Schalles, 2006).
The band ratio selected in this study SR467/SR559 represents
these spectral regions. As recorded by Schalles (2006) this
absorption in the blue and scatter in the green is consistent
from low (3.3 mg/m3) to high (more than 60 mg/m3) Chl a
concentrations. In theory these blue to green ratios are applicable
for water dominated by Chl a in concentrations that range from
low to high Chl a above 60 mg/m3. However, the evaluation
performance of the algorithm in this analysis exhibited larger
errors especially in low and high Chl a concentrations, for our
case the low was defined < 2–4 mg/m3 and high > 9 mg/m3,
see Table 2. This is due to the low representation of these values
for the algorithm development and it can be deduced that the
majority of data sets are between 6 and 8mg/m3.

CONCLUSIONS AND FUTURE

PERSPECTIVES

After evaluating the different wavelengths and band ratios used
in previous studies to model Chl a in Lake Atitlán, the best result
was obtained by a blue to green band ratio. The final algorithm

obtained had relative error of 33% and assumes that the color
of the water in Lake Atitlán is mainly driven by phytoplankton.
Given that the data sets used to generate and evaluate this
algorithm reflect a small range of Chl a concentration (1–10
mg/m3) it is expected that the relative error will increase when
the algorithm is applied in Chl a concentrations > 10 mg/m3.
In addition, the analyses performed confirmed the suitability of
Hyperion satellite images to model Chl a concentrations in Lake
Atitlán. The developed algorithm was applied to experimentally
estimate Chl a in Lake Atitlán during a bloom event, using
Landsat OLI data in August 2015. The water quality parameters
of Lake Atitlán present a seasonal pattern that is related to
the dry and rainy season of the area. At the end of the rainy
season lower transparencies and higher Chl a concentrations
are recorded. Meanwhile, at the end of the dry season higher
transparencies and lower Chl a concentrations are recorded.
Thermal stratification and mixing processes take place seasonally
in Lake Atitlàn but given the limited measurements in the
lake this seasonality is not well characterized yet (Dix et al.,
in preparation).

The results of this study represent an early effort, known to the
authors, to use satellite images to quantitatively monitor water
quality parameters in an inland water body in Central America.
The only existing applications of satellite remote sensing
for water quality monitoring has been limited to qualitative
applications in this region. Therefore, the results of this sutdy
demonstrate that Chl a can be estimated from hyperspectral
imagers like the now-defunct Hyperion, with a relative error of
33%. The algorithm developed is relevant for the current Venµs
satellite, DLR Earth Sensing Imaging Spectrometer (DESIS) and
the upcoming Hyspiri mission, all hyperspectral, that are or
will capture data useful to monitor Chl a concentration in
Lake Atitlan using the developed algorithm. Given the rapid
eutrophication of fresh water bodies world wide (Ho et al., 2019),
it is imperative to develop cost-effective methods, such as the one
presented in this work, that allow local water managers monitor
water quality of their fresh water resources.

The error obtained is slightly below the desired error set
by NASA’s Ocean Biology and Biogeochemistry Program of
35% (McClain et al., 2006). This confirms the adequacy of
the results. Other studies that retrieve Chl a concentration
in fresh water bodies using multispectral sensors show low
degree of certainty (Boucher et al., 2018). However, better
performance was obtained when time window of multispectral
satellite data acquisition was closer to acquisition of in situ data
used in correlation. This highlights two issues, (1) the high
applicability of hyperspectral sensors and use of narrow spectral
bands to retrieve Chl a concentration and (2) the relevance
of methodologies encompassing same time/date acquisition of
satellite data and in situ observation to develop algorithms to
retrieve water quality parameters from satellite images.

The main sources of error for this algorithm stem from the
estimation of surface reflectance obtained from the satellite image
and the optical variability presented in the in situ data set that
was used to generate the algorithm. The latter is related to the
in situ Chl a data set used for the algorithm development, which
in this case represented a range of 1–10 mg/m3. Under higher
Chl a concentrations (>10mg/m3) it is expected that the current
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algorithm will underperform given the data sets used for its
generation. Our validation shows that locations with maximum
Chl a concentrations (> or = to 10 mg/m3) retrieved simulated
Chl a concentration lower than real. Additional testing of
applicable band combinations would be required. The significant
conclusions of this study can be summarized as follows:

• Hyperion satellite images can be successfully used to model
Chl a concentrations in Lake Atitlán.

• A semi-empirical algorithm that uses a blue to green band
ratio is suitable to model Chl a concentrations in Lake
Atitlán during the dry season. This algorithm has a relative
error of 33%.

The Chl a concentrations described in this study are relatively low
(1.0 – 10mg/m3), but the demonstration of Hyperion’s suitability
tomodel such low concentrations (represented by low reflectance
values) is promising. It is reasonable to expect that Hyperion
can be applied to distinguish Chl a in lakes with more variable
or higher Chl a concentrations. This could be achieved with
further in situ sampling in more varied conditions and would
require fine tuning. The methodology used in this work can also
be replicated in other lakes of the region to generate ad-hoc
algorithms that represent the unique water quality characteristics
of those individual water bodies.

Future research should be oriented toward determining the
performance of ALI and other multispectral satellite images,
such as Landsat MSS, ETM+, and OLI, in estimating Chl a
concentration re-calibrating this algorithm. This will expand the
applicability of the results obtained in this study. The accuracy
of the algorithm should be very straightforward to calculate
using ALI because images are available for the same dates on
which the in situ Chl a data were collected. The original bands
selected from Hyperion will need to be replaced by the closest
ALI bands. Landsat 8 and Copernicus, Sentinel 2 is the other
logical next step in testing the performance of multispectral
imagers, but this will only be possible through the careful
coordination of field sampling efforts with satellite overpasses
and clear-sky conditions.

Multi-algorithm approaches that combine indices and
look-up table approaches are promising (Salem et al., 2017)
developments that can expand applicability of locally-
tuned algorithms and should be explored when using
hyperspectral datasets.

Since the development of this algorithm to the release of the
peer-reviewed article, EO-1 has been decommissioned. Hence,
it is critical to test and calibrate algorithms using operational
sensors, such as Landsat and Sentinel-2.

As a final conclusion we would like to stress the local impact
that this research has had in the area of Atitlán and Guatemala.
The results of study have provided with new tools to the Lake
Authorities (AMSCLAE, CONAP) and academia (UVG, San
Carlos) to monitor Chl a, such as in the case of the algal bloom

in 2015. Satellite remote sensing applications like this will allow
for the creation of a systematic record of Chl a concentration
in the lake that will document the progress of the water quality
conditions. At the same time it will be possible to determine the
more critical factors that are affecting the water quality of the
lake and evaluate the impacts that the implemented policies or
conservation actions are having in the lake’s water quality.
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APPENDIX

TABLE A1 | Comparison of results of curve fitting of data to published

semi-empirical algorithms for predicting chlorophyll a (Chl a) concentration.

Algorithm aR2

mean

bR2

mean

aR2

max

bR2

max

aR2

med

bR2

med

SR498/SR548 0.6465 0.7635 0.619 0.693 0.663 0.730

SR467/SR548 0.6999 0.7519 0.549 0.634 0.700 0.738

SR487/SR548 0.5001 0.5371 0.513 0.504 0.576 0.565

SR508/SR548 0.4501 0.4075 0.488 0.520 0.694 0.737

SR498/SR559 0.6618 0.7946 0.562 0.673 0.670 0.750

SR508/SR559 0.5418 0.5954 0.559 0.621 0.693 0.761

SR487/SR559 0.6507 0.766 0.519 0.562 0.675 0.715

SR467/SR559 0.7054 0.760 0.545 0.611 0.703 0.740

SR681/SR711 0.3203 0.397 0.405 0.488 0.214 0.183

FLH 0.5223 0.566 0.336 0.409 0.501 0.533

Regression model: non-linear third polynomial. All Log-transformed data.
a all stations; b Chl a < 9 mg/m3; mean, mean reflectance value in a 3 × 3 pixel box; max,

maximum value in a 3 × 3 pixel box; med, median value in a 3 × 3 pixel box.

SR, Surface Reflectance; R2, coefficient of determination.
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The Lower Mekong Basin (LMB) is biologically diverse, economically important, and
home to about 65 million people. The region has undergone extensive environmental
changes since the 1990s due to such factors as agricultural expansion and
intensification, deforestation, more river damming, increased urbanization, growing
human populations, expansion of industrial forest plantations, plus frequent natural
disasters from flooding and drought. The Mekong river is also heavily used for human
transportation, fishing, drinking water, and irrigation. This paper discusses use of pre-
existing LULC maps from 1997 and 2010 to derive a LMB regional LULC change
map for 9 classes per date using GIS overlay techniques. The change map was
derived to aid SWAT hydrologic modeling applications in the LMB, given the 2010
map is currently used in multiple LMB SWAT models, whereas the 1997 map was
previously used. The 2010 LULC map was constructed from Landsat and MODIS
satellite data, while the 1997 map was from before the MODIS era and therefore based
on available Landsat data. The 1997–2010 LULC change map showed multiple trends.
Permanent agriculture had expanded in certain sub-basins into previously forested
areas. Some agricultural areas were converted to industrial forest plantations. Extensive
forest changes also occurred in some locations, such as areas changed to shifting
cultivation or permanent crops. Also, the 1997 map under classified some urban areas,
whereas the 2010 LULC map showed improved identification of such areas. LULC
map accuracy were assessed for 213 randomly sampled locations. The 1997 and 2010
LULC maps showed high overall agreements with reference data exceeding 87%. The
LULC change map yielded a moderately high level of overall agreement (78%) that
improved to ∼83% once LULC classification scheme specificity was reduced (forests
and agriculture were each mapped as singular classes). The change map regionally
showed a 4% decrease in agriculture and a 4% increase in deciduous and evergreen
forests combined, though deforestation hot spot areas also were evident. The project
yielded LULC map data sets that are now available for aiding additional studies that
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assess LMB LULC change and the impacts such change may pose to water, agriculture,
forestry, and disaster management efforts. More work is needed to map, quantify and
assess LULC change since 2010 and to further update the 2010 LULC map currently
used in the LMB SWAT models.

Keywords: Lower Mekong Basin, land use land cover change, SWAT hydrologic model, agricultural monitoring,
deforestation

INTRODUCTION

The Lower Mekong Basin (LMB) is a region in the southeast
Asia known for its agriculture, forests, fisheries, wildlife, and
diverse, natural ecosystems [Mekong River Commission MRC
(2010)]. About 65 million people live in this region, depending
on the Mekong River and its tributaries for transportation, water
for drinking and bathing, fishing, and agricultural irrigation.
The MRC (2014) reports that agriculture is the most important
economic activity in the LMB with rice cultivation occurring on
millions of hectares.

The LMB human inhabitants are experiencing multiple
environmental threats to their ways of life that include land use
land cover (LULC) change (e.g., from river damming, agricultural
expansion, and deforestation) and frequent natural disasters
(e.g., flooding from severe storms, and drought). The drivers
of LULC change in the region include anthropogenic (e.g.,
economic and demographic) and environmental factors (Tran
et al., 2015). Both negative and positive forest change drivers
occur, which can collectively affect the amount of agricultural
expansion and contraction, well as the amount of deforestation
and afforestation (Costenbader et al., 2015a,b; Imai et al., 2018).
The causes (i.e., drivers) of LULC change in the Mekong
region are multifaceted with the prices of agricultural and forest
products, road accessibility, and changes in land titles identified
as important drivers of LULC change (Rowcroft, 2008; Xing,
2013). Other drivers of LULC change in the Mekong include
anthropogenic drivers such as the construction of large-scale
hydropower dams and other abiotic drivers such as climate
change (e.g., sea level rise) (Keskinen et al., 2010; Evers and
Pathirana, 2018). Subsidence in conjunction with ground water
extraction and sea level rise is another driver negatively affecting
coastal LMB agriculture (Minderhoud et al., 2018). Climate
change in the LMB is regarded as a threat to agriculture
(MRC, 2010; MRC, 2014; Pokhrel et al., 2018a) and forests
(Estoque et al., 2019).

Such LULC change drivers can affect human settlements
and livelihoods, as well as the natural resources that are
depended upon by the inhabiting humanity, wildlife, fisheries
and other valued wild and domestic life forms (MRC, 2010).
The management and sustainability of water resources in the
region is particularly of great concern to people in the LMB,
given a growing number of hydrologic modifications along the
main waterways (e.g., river damming), increased demand on
water for irrigation from agricultural intensification, expansion
of agriculture into areas formerly occupied by forest, and a
growing human population (MRC, 2010; Pokhrel et al., 2018a).
In addition, meteorological disasters such as severe droughts and

flooding events further threaten regional inhabitants and their
economic activities, such as agriculture, forestry, commercial
fishing, and transportation (Ribbe et al., 2013).

The LMB and the Mekong region at large has reportedly
undergone substantial LULC change in recent decades (Lyon
et al., 2017; Yasmi et al., 2017; Pokhrel et al., 2018b), though
questions and uncertainties remain as to the location and
geospatial extent for specific kinds of LULC change. An
assortment of satellite data has been used to map and quantify
LULC change in the region, including AVHRR (Giri et al.,
2003), Landsat data (Heinimann et al., 2007), SPOT-4 Vegetation
(Stibig et al., 2004), and MODIS data (Leinenkugel et al., 2015).
Unfortunately, it is difficult to effectively compare results from
such change maps given that they can differ in terms of the
kind of satellite data used, the observed time span, the methods
for generating and validating such products, the LULC change
classification scheme employed, spatial resolution of the map,
the geographic domain covered by the map, the objectives of the
mapping project, and the organizations responsible for making
LULC maps. Some of these issues are discussed by Patil and
Gumma (2018) with respect to updating south Asia cropland
and other land cover types. The challenges arising from the
differences in LULC mapping methods may be addressed in part
by comparing provenance of geospatial workflows (Tullis et al.,
2015). Note that the LULC maps referred to in this paper are
digital geospatial data sets as opposed to cartographic hardcopy
mapping products.

To help address water, disaster management, and crop security
concerns, the Mekong River Commission has been using the
Soil and Water Assessment Tool (SWAT) framework (Gassman
et al., 2007) for hydrologic modeling in the non-coastal portion
of the LMB, including sub-basins 1–8, as discussed by Rossi et al.
(2009). The LULC map is a key input parameter to the SWAT
framework, given the effect that an area’s LULC characteristics
can have on surface water flow and runoff. The initial MRC
SWAT model employed a LULC map that was based on 1997
Landsat data (Dat, 2013). More recently, MRC SWAT models
were updated with a 2010 LULC map for the LMB that was
developed using a combination of monthly MODIS NDVI and
Landsat data (Spruce et al., 2018). The updated map included
more detailed agricultural LULC classes in order to revise and
improve SWAT hydrologic modeling products and applications
(Mohammed et al., 2018a,b).

The purpose of the project discussed in this paper was to map,
quantify and assess spatio-temporal changes in non-coastal LMB
LULC that occurred from 1997 to 2010, using pre-existing LULC
map data sets as inputs. This work aimed to assess apparent
LULC changes during the observed time frame mainly with
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respect to forest and agricultural areas. Such information was
needed to augment understanding and interpretation of LULC
effects on SWAT modeling of runoff using either the 2010
or 1997 data. The LULC patch mosaic can either accelerate
or impede the runoff depending on the characteristics of
LULC, including the location and extensiveness of LULC types.
Although the runoff characteristics of common LULC types
are generally known (USDA, 1986; Hong and Adler, 2008), an
assessment of LULC change for the updated versus previous
LULC map datasets was needed to help resource management
organizations (e.g., the MRC and the Asian Disaster Preparedness
Center or ADPC) assess SWAT modeled hydrologic response of
surface runoff in the LMB, especially in watershed reaches with
extensive LULC change. In doing so, such an assessment could
help further document and understand the provenance of the
LMB SWAT models.

There are several published reviews of raster imagery-based
two date change detection methods on the use of remotely sensed
data or pre-existing map datasets from remotely sensed data
(Mas, 1999; Coppin et al., 2004; Jensen et al., 2012; Hussain
et al., 2013). These methods include: (1) image ratioing; (2)
image differencing; (3) Principal Components Analysis (PCA);
(4) multi-date classification; and (5) Change Vector Analysis
(CVA); and (6) post classification comparison. The choice of
method can depend on such factors as the input data used
for deriving the change map dataset and the kind of change
map (e.g., general forest change or more specific LULC change).
Excluding the post-classification method, most change detection
mapping methods require that remotely sensed imagery from two
or more dates as input to a data processing workflow in order to
derive a change map.

The post-classification method is the main method used
to derive LULC change maps from pre-existing LULC map
digital datasets. In doing so, Geographic Information System
(GIS) methods (e.g., additive overlays or indexing techniques)
are employed to integrate the two LULC map datasets into
a digital change map. Jensen et al. (2012) reported that post
classification comparison is one of the more commonly used
change detection methods. Also termed the delta classification
technique, the post classification comparison method has the
advantage of not requiring that remote sensed data be acquired
and then processed into a digital change map. Post classification
change map datasets are also relatively easy to calculate and yield
“from to” change information that resource managers can usually
understand (Wang et al., 2009). However, the accuracy of this
method depends heavily on the accuracy of the two input LULC
map datasets. The accuracy of a post classification comparison-
derived change map dataset can approximate the product of the
accuracies of the 2 input LULC digital maps (e.g., each map
scaled on a 0 to 1 floating point scale) (Coppin et al., 2004).
This can but not necessarily result in a low accuracy change
map dataset. However, the same kind of change detection errors
can also occur with change maps derived with methods other
than the post classification comparison technique. For example,
change maps regardless of method can include thematic mapping
errors due to misregistration (i.e., geo-positional or locational)
errors in the input data sets used to derive the digital change

map. Also, the post classification method can produce superior
change map datasets. For example, Mas (1999) conducted a study
comparing different change mapping methods, observing that
the post classification method yielded the best results. The post
classification method is also employed as a method used in part to
compute operational, digital LULC mapping products, including
the USGS National Land Cover Database (NLCD) (Yang et al.,
2018) and NOAA Coastal Change Analysis Program (C-CAP)
(McCombs et al., 2016) LULC datasets.

All maps of LULC and LULC change are imperfect and have
biases (e.g., classification and positional errors) and uncertainties
about the quality of such products (Verberg et al., 2011). The
biases (i.e., errors) that occur for a given LULC change map
data product can depend on kind and quality of remotely sensed
data, how it is processed, minimum mapping unit, classification
scheme, characteristics of the study area, and other factors
(Jensen et al., 2012; Congalton, 2015). Such imperfections can
limit and pose challenges on how digital LULC maps should be
used, depending on the application. LULC and LULC change map
accuracy assessments can provide information on the quality of
such map data set and how to effectively use these products.

MATERIALS AND METHODS

Study Area Description
The LMB study area is in southeast Asia that includes portions
of Laos, Myanmar, Thailand, and Vietnam, and Cambodia
(Figure 1). The area includes 8 sub-basins (SBs) discussed by
Rossi et al. (2009) that are used in the MRC SWAT modeling
applications. This location includes extensive areas agricultural
and forested land uses in addition to locally present land uses
(e.g., urban). The study area includes most of the interior
LMB, excluding the most coastal portion (e.g., Tonle Sap Basin
and Mekong Delta). The study area has a tropical climate
with dry and wet seasons, an average maximum temperature
of 20.4 to 33.6◦C, and a mean annual precipitation of ∼900
to 3300 mm, based on data from International Centre for
Environmental Management (ICEM, 2013) study that is hosted
on a Greater Mekong Subregion Environment Operations Center
(GMS-EOC) Information Portal (GMS-EOC, 2019). The study
area mostly has a moderately high or high hydrologic runoff
potential, according to a 250 m hydrologic soil group (HSG) map
by Ross et al. (2018). Elevations in the study area varies from ∼9
to 2,433 m, based on a 90-m Digital Elevation Model (DEM) data
from the Shuttle Radar Topography Mission (SRTM) (NASA and
JPL, 2013).

Data Acquisition
The project used pre-existing LULC GIS data layers for the 1997
and 2010 time periods to generate the needed LULC change map.
Acquired from the MRC as a vector data layer, the 1997 LULC
map was derived from image interpretation, delineation, and
digitization of LULC patches from 1:250,000 scale hard copies
of Landsat Thematic Mapper imagery (Malyvanh and Feldkotter,
1999). The 2010 LULC map dataset was obtained from a previous
project discussed by Spruce et al. (2018) that used a combination
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FIGURE 1 | Study area location in Lower Mekong Basin of southeast Asia with Sub-basins (SBs) 1–8 (in black) along with river boundaries (blue) overlain onto a
colorized 90 m digital elevation model (DEM) from the NASA Shuttle Radar Topography Mission (SRTM). The main branch of the Mekong River is shown in a
magenta tone and the SB #s are included as black text.
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of ∼quarter kilometer resolution 2010 MODIS 8-day reflectance
data from the LP-DAAC web site1 and single date circa 2010
dry season Landsat Thematic Mapper reflectance data at 30 m
resolution from the USGS GLOVIS web site2. For this project,
the 1997 and 2010 LULC maps were nominally gridded to a
∼231.66-m resolution.

To aid the project’s change detection product validation,
additional Level-1 Landsat data for 1997 and 2010 was acquired
from the USGS Earth Explorer3 and GLOVIS web sites. The
LULC change map derivation and assessment also made use of
other LMB LULC data acquired from the MRC, including circa
2010 field survey data (Nam et al., 2015), an alternative circa 2010
LULC map from Landsat data (Kityuttachai et al., 2016), and crop
calendars (Halcrow Group Limited, 2004).

Data Processing and Analysis
To compute the needed LULC change map, the LULC maps for
the 1997 and 2010 time periods were recoded into 9 LULC classes
per date (Table 1). The 1997 map (Figure 2) from the MRC
were coded into intervals of 10 and the 2010 map (Figure 3)
were coded into the intervals of 1. This recoding strategy enabled
the two input maps to be effectively combined into a change
map via the QGIS Raster Calculator (by adding the two LULC
maps together). The recoded LULC maps were first aligned with
each other in QGIS and then added together to derive the LULC
change map (Figure 4). In doing so, change was calculated only
for pixels that were classified as having terrestrial (non-water)
LULC classes on both input dates.

The LULC change map was then assessed for classification
accuracy, considering guidance from Congalton (1991, 2015),
Congalton and Green (2009), and Olofsson et al. (2013, 2014).
The goal of the map validation was to assess the overall accuracy
of the LULC change map compared to available reference data.
In doing so, the LULC change map dataset was reprojected from
geographic coordinates to the UTM map projection and then
summarized in terms of pixel frequency for each LULC change
class. For this analysis, a stratified random sampling of pixels
was then drawn from the LULC change map using the QGIS
(QGIS, 2017) and its plugin “AcATaMa” with the number of
pixels drawn per class based on the proportion of the LULC class
pixel frequency relative to the total number of mapped pixels.
The adjacent pixels around each candidate sample pixel were
considered in the random selection process. Candidate pixels
were selected when they were the center pixel of a 3 by 3 pixel
window and that most of the pixels in that window (5 or more)
were of the same LULC class as that in the center pixel. In all,
a total of 213 pixels were selected for map accuracy assessment.
The frequency of occurrence and the number of samples selected
per LULC change class is given for the 25 most common classes
in Table 2.

Each selected sample location was then assessed by a trained,
experienced image analyst to identify the LULC class for 1997
and 2010 time periods using assorted reference data that included

1https://lpdaac.usgs.gov/
2https://glovis.usgs.gov/
3https://earthexplorer.usgs.gov/

Landsat false color RGBs and higher spatial resolution imagery
from Bing and Google via the QGIS OpenLayers plugin. We
considered using the Collect Earth tool (Bey et al., 2016; Saah
et al., 2019a) for accuracy assessment, though selected QGIS
for this task mainly due to its image enhancement, vector grid
overlay, vector editing, and the “AcATaMa” accuracy assessment
plugin capabilities. Within QGIS, some of the random sample
areas were also reviewed on various dates of high-resolution
true color imagery resident to the Google Earth Pro software.
The sample locations were also compared and assessed with
respect to other digital LULC mapping products primarily from
the MRC, along with descriptive information on LULC classes
from the MRC. In addition, a vector-based grid map of each
pixel’s boundaries was superimposed on remote sensing imagery
products. Each sample was image interpreted at a 1:6,000 scale
which enables viewing individual applicable Landsat pixels of
30 m resolution (∼8 × 8 or 64 pixels) located within a

TABLE 1 | Description of LULC classes used to generate change map.

LULC class Code Description

Barren BA Barren areas that are not
developed, including rock outcrops
(e.g., bare karst topography)

Urban/Developed URB Urbanized and other developed
areas mostly with predominantly
bare inert surfaces (e.g., pavement
and cement).

Permanent Crops PC Current agricultural areas with
intensively managed crops on long
term basis for commercial purposes
(e.g., irrigated and rainfed rice,
annual row crops, and pastures).

Shifting Cultivation SC Current agricultural areas managed
on a rotational basis in which crops
are grown temporarily for a few
years and then allowed to be in
fallow or forested state until the site
has sufficiently recovered for a new
cropping cycle.

Scrub/Shrub/Herbaceous SSH Mixture of low woody (e.g., forest
regeneration) and non-woody
vegetation that is typically
transitional in nature, occurring after
agricultural abandonment or forest
harvesting.

Deciduous Forest/Scrub DFS Deciduous broadleaved forest
and/or scrub that can have variable
canopy closure and degrees of
deciduousness.

Evergreen Forest EGF Evergreen forest that is primarily
composed of broadleaved tree
species and typically has closed
canopies.

Industrial Forest Plantation IFP Industrial forest plantations that
include rubber tree plantations.

Wetland Cover WET Wetland areas with woody and/or
non-woody vegetation that is not
used for agriculture.

Example field photos of these LULC classes can be found in Spruce et al. (2018).
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FIGURE 2 | Study area 1997 LULC map with SB boundaries overlain in cyan for SBs 1–8. The SB #s are included as black text. The backdrop image adjacent to
the LULC map is a 90 m DEM from SRTM data.
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FIGURE 3 | Study area 2010 LULC map with SB boundaries overlain in cyan for SBs 1–8. The SB #s are included as black text. The backdrop image adjacent to
the LULC map is a 90 m DEM from SRTM data.
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FIGURE 4 | 1997–2010 LULC change map for study area with SB boundaries overlain in cyan for SBs 1–8. All LULC change classes are colorized to show the
LULC class for the end date of 2010, as well as whether the class was of a “change” or “no-change” type, given the change map consists of both change and “no
change” classes. For a given LULC category, the “change” class color was assigned a lighter color than the “no change” class (e.g., barren no change was set to
dark brown, while change to barren was set to light brown). The SB #s are included as black text. The backdrop image adjacent to the LULC map is a 90 m DEM
from SRTM data.
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TABLE 2 | Total area for the 25 most common change classes of the 1997–2010 LULC change map, along with # samples drawn per class.

LULC change class # 1997 LULC class description 2010 LULC class description Total area (km2) % total area Rank Total random samples

11 Barren Barren 1,071 0.2% 25 1

32 Permanent Crops Urban/Developed 1,653 0.4% 23 1

33 Permanent Crops Permanent Crops 130,540 28.9% 2 62

34 Permanent Crops Shifting Cultivation 2,948 0.7% 20 1

35 Permanent Crops Scrub/Shrub/Herbaceous 15,668 3.5% 5 7

36 Permanent Crops Deciduous Forest/Scrub 7,809 1.7% 9 4

37 Permanent Crops Evergreen Forest 4,897 1.1% 15 2

38 Permanent Crops Industrial Forest Plantation 1,543 0.3% 24 1

43 Shifting Cultivation Permanent Crops 5,028 1.1% 14 2

44 Shifting Cultivation Shifting Cultivation 2,675 0.6% 21 1

45 Shifting Cultivation Scrub/Shrub/Herbaceous 4,268 1.0% 16 2

46 Shifting Cultivation Deciduous Forest/Scrub 7,129 1.6% 10 3

47 Shifting Cultivation Evergreen Forest 5,295 1.2% 12 3

53 Scrub/Shrub/Herbaceous Permanent Crops 2,104 0.5% 22 1

56 Scrub/Shrub/Herbaceous Deciduous Forest/Scrub 3,906 0.9% 18 2

63 Deciduous Forest/Scrub Permanent Crops 10,373 2.3% 7 5

64 Deciduous Forest/Scrub Shifting Cultivation 3,887 0.9% 19 2

65 Deciduous Forest/Scrub Scrub/Shrub/Herbaceous 5,119 1.1% 13 2

66 Deciduous Forest/Scrub Deciduous Forest/Scrub 22,882 5.1% 4 11

67 Deciduous Forest/Scrub Evergreen Forest 3,956 0.9% 17 2

73 Evergreen Forest Permanent Crops 6,099 1.4% 11 3

74 Evergreen Forest Shifting Cultivation 8,412 1.9% 8 4

75 Evergreen Forest Scrub/Shrub/Herbaceous 12,357 2.7% 6 6

76 Evergreen Forest Deciduous Forest/Scrub 36,928 8.2% 3 18

77 Evergreen Forest Evergreen Forest 138,738 30.7% 1 67

Total 213

See Supplementary Table S1 for comparable summary areas for all mapped LULC change classes.

given LULC change map pixel of a nominally 231.66 m spatial
resolution. The apparent LULC class was assessed separately for
the 1997 and 2010 time periods. For each sampled location, the
reference LULC for each date was then additively combined using
MS Excel into a change map score that was then compared to the
test LULC change map to determine agreement or disagreement.

The assessment results were then used to summarize the
percent overall agreement between the 1997–2010 LULC change
map and reference datasets. An error matrix was constructed
(Supplementary Table S2) to compute the percent overall
accuracy for the LULC change map and the two LULC maps.
This matrix given in basic form differs from guidelines of
Olofsson et al. (2014), who suggested also including information
on the percent area that a given LULC class represents in
relation to the entire mapped area. This information on the
percent of total area per LULC class is alternatively reported in
Supplementary Table S1.

Percent overall agreement with reference data was computed
for the LULC change map as well as the 1997 and 2010 LULC
maps. In addition, individual class accuracies were computed in
terms of user and producer agreement for the permanent crops
and evergreen forest LULC classes, given that each of these two
classes each were allotted 50 or more randomly sampled locations
in the stratified random sample. The results of mentioned overall
and individual classes agreement statistics are shown in Figure 5.
In addition, percent overall agreement of the LULC change map

was also computed for more simplified classification schemes in
which included mature forest (grouping evergreen and deciduous
forest types) and agriculture (grouping permanent crops and
shifting cultivation classes).

The LULC class frequencies for the 1997 and 2010 maps were
summarized in terms percent of total area for each mapped
LULC class (Figure 6) with additional information provided
in Supplementary Table S3. In addition, a Sankey diagram
was computed to illustrate and further assess LULC change
transitions between 1997 and 2010 (Figure 7). Summary areas for
select LULC change classes were then merged into more general
categories to further assess the main LULC changes across the
study area (Figure 8 and Supplementary Table S4).

RESULTS AND DISCUSSION

LULC Change Map Validation
Compared to available reference data, the LULC change map
dataset produced an estimated overall agreement of 78% with
6.7% margin of error at the 95% confidence interval, based on
166 sample locations in agreement out of a total of 213 sample
locations (Figure 5). However, the overall agreement level for
the LULC change map with reference data increases to ∼82%
(174/213 sample locations agreed) if one groups the evergreen
and deciduous forest into 1 class. The overall agreement further
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FIGURE 5 | Results of LULC change map accuracy assessment, including percent overall agreement of LULC change map, 1997 LULC map, and 2010 LULC map
was well as percent user and producer agreement for the no change permanent crops and evergreen forest LULC change classes.

FIGURE 6 | Percent class frequency for the 1997 and 2010 LULC maps.
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FIGURE 7 | Sankey diagram showing LULC change transitions for
1997–2010. LULC class frequency is reported in terms of km2. LULC classes
include: (1) BA (Barren); (2) URB (Urban/Developed); (3) PC (Permanent
Crops); (4) SC (Shifting Cultivation); (5) SSH (Scrub/Shrub/Herbaceous); (6)
DFS (Deciduous Forest/Scrub); (7) EGF (Evergreen Forest); (8) IFP (Industrial
Forest Plantation); and (9) WET (Wetland Cover). For additional descriptions of
these LULC classes, see Table 1.

improved to ∼83% (177/213 total) by grouping the forest classes
into a mature forest category and grouping the agricultural
classes into a single agriculture class. The level of overall
agreement for the LULC change map with reference data was
influenced in part by the complexity of the map in terms of
total mapped 78 change classes out of possible maximum of 81
(Supplementary Table S1).

The validation of the change map also enabled estimates of
percent overall agreement for each input LULC map compared
to reference data (Figure 5). Both the 1997 and 2010 LULC
maps (each with 9 total classes) showed similar levels of overall
agreement to available reference data. The 1997 map produced
an 87.8% overall agreement and the 2010 map yielded an
87.3% overall agreement. The observed disagreement between the
change map and reference data (i.e., classification errors) were
caused by disagreement on either the 1997 and/or 2010 LULC
map compared to reference data, including 6 sample locations
with errors disagreement on both dates of LULC maps, 20
locations with apparent errors only on the 1997 LULC map, and
21 locations with apparent errors only on the 2010 LULC map.
The observed overall agreement for the 1997 and 2010 LULC
maps to reference data is regarded as good for general LULC
classification schemes and single dates of LULC maps, given
that the overall agreement for both dates equaled or exceeded
85% (Anderson et al., 1976). These accuracy assessment results
for the individual dates of LULC maps are also comparable
to what was produced in another multi-date LULC mapping
and change detection study discussed by Ellis et al. (2011)
and Spruce et al. (2014).

In addition, the two most frequent LULC change classes,
no change classes for permanent crops and evergreen forest,
both yielded user and producer class agreements that were
high, ranging from 85 to 96% (Figure 5). The frequency of
occurrence for other mapped LULC change classes were much
lower (Table 2) and as a result the number of samples for other
LULC change classes were much less than 50 sample locations per
class (e.g., the third most frequent LULC change class was allotted
18 samples), which is too small to viably estimate individual class
producer and user agreement statistics. Given available resources,
the main goal of the LULC map validation was to estimate the
overall accuracy of the LULC maps. More analysis is needed to
further assess accuracy of the low frequency, regionally scarce to
rare LULC change classes.

The LMB SWAT models use single dates of LULC map data
as an input and not the LULC change map dataset. Although the
LULC change map is not to be directly utilized by LMB SWAT
models, it provides information that is complementary to the
1997 and 2010 LULC maps.

LMB LULC Change Trends
The LULC maps for 1997 and 2010 are shown in Figures 2, 3 and
the LULC change map for 1997–2010 is given in Figure 4. These
maps collectively show areas with both LULC stability and change
with the main LULC changes occurring in LMB sub-basins that
have more extensive forests and are less agriculturally dominated.
For this region, some conversion of forest to agriculture (i.e.,
deforestation) was observed on the LULC change map. Increases
in permanent crops were apparent in multiple SBs, including SBs
3, 5, and 6. Some of such new permanent agriculture areas for
2010 were mapped as forest in 1997. In addition, some of the
new permanent crops areas in 2010 were mapped as shifting
cultivation in 1997. Agriculture dominated SBs (SBs 7 and 8)
on the 1997 LULC map showed less overall change than other
SBs that were not agriculturally dominated as of 1997. The SBs
that were mixed agriculture and forest in 1997 tended to have
more frequent, visibly apparent forest to agriculture conversion
by 2010. Some areas adjacent to contiguous forests in 1997
appeared to convert from evergreen (broadleaved) forest or
shifting cultivation to deciduous forest/scrub. SBs with extensive
forest in 1997 tended to retain extensive forests as of 2010,
especially with respect to more remote, higher elevations. As of
1997, much of the lowland forests (e.g., in the Khorat Plateau)
were already largely converted to agriculture, including areas
along waterways that were presumably woody wetlands. An
expansion of industrial forest plantations (IFPs) was observed
primarily in SBs 4 and 6. Some expansion of urban/developed
areas was also observed from 1997 to 2010, though some of
the increase in urban areas were due to commission errors on
the 1997 map (compared to Landsat false color imagery) in
addition to urban expansion. In SB 6, some increases in evergreen
forests were observed on the change map, along with increases in
permanent and shifting cultivation that occurred mostly adjacent
to extensive deciduous forests.

Of the 25 most frequent LULC change classes, only 5 were
for “no change” categories where the LULC class stayed the
same for both dates (Table 2). These 5 most frequent non-
change classes represented 65.6% of the total mapped area. In
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FIGURE 8 | Percent frequency of grouped LULC change categories compared to total mapped area. For this figure: (1) forests pertain to semi-natural deciduous
forests, evergreen broadleaved forests, and scrub/shrub/herbaceous areas; (2) agriculture includes permanent crops and shifting cultivation areas; (3) IFP = Industrial
Forest Plantations. For additional information, see Supplementary Table S4.

addition, 3 of the top 5 most frequent LULC change classes
were for non-change categories. The latter categories regarded
evergreen forest, permanent crops and deciduous forest/scrub
and collectively represented ∼64.7% of the total mapped area.
The no change classes for evergreen forest and permanent
crops covered 30.7 and 28.9% of the total area, respectively.
Collectively these 2 classes occurred on ∼59.7% of the total
mapped area. Even for the more stable LULC no change classes
(e.g., evergreen forest and permanent crops) we also observed
losses (to other LULC classes) and gains from other LULC
class changes to a given LULC type. The more transitional
LULC classes were as expected particularly dynamic, including
the shifting cultivation, scrub/shrub/herbaceous, and deciduous
forest/scrub classes that can be related to swidden cultivation
practices. Of the 25 most frequent LULC change classes, 7 of
these regarded permanent crops (including 1 no change class).
In addition, there was a 5 total of LULC change classes each for
shifting cultivation, deciduous forest/scrub, and evergreen forest
LULC classes (including 1 no change class per mentioned LULC
category). The scrub/shrub/herbaceous class mapped in 1997 was
not one of the top 25 most frequent LULC change classes, which
may be in part due to it being a highly transitional or forest
successional LULC class as opposed to a more permanent (i.e.,
stable) LULC class. The 25 most frequent LULC change classes all
together comprised 98.65% of the total mapped area. In contrast,
the highly rare LULC change classes collectively represented

1.35% of the total area and consisted of 53 total classes with
each class ranging from 0.00 to less than 0.24% of the total area.
Supplementary Table S1 includes summary area estimates for
all the LULC change classes, including these rarer classes not
reported in Table 2.

Figure 6 reports percent of total area of individual LULC
classes recorded on the 1997 and 2010 maps and it, along
with Supplementary Table S3, were used to identify multiple
trends: Barren areas were reduced in 2010 slightly from 0.49
to 0.40% of the total mapped area. Although infrequent in
occurrence on both dates, urban areas increased by ∼5 times,
which was due to part to increased urbanization and the
apparent under classification of urban areas on the 1997 LULC
map. The permanent agriculture class decreased by ∼−2.5%
of the total mapped area, which could be due to multiple
factors such as abandonment of permanent crops or the
conversion of permanent crops to forests and other LULC
classes. The shifting cultivation class decreased as well by
∼−1.3%, which was expected due to a reported decreased use
of this agricultural practice in the region (FAO/IWGIA/AIPP,
2015). In contrast, the scrub/shrub/herbaceous category showed
a ∼6.7% increase in total mapped area that could be due
to abandoned agricultural areas reverting to forest. The latter
class also commonly occurs amongst shifting cultivation and
permanent crops areas. The deciduous forest class also appeared
to increase by ∼7.3% with some of this occurring in areas that

Frontiers in Environmental Science | www.frontiersin.org 12 March 2020 | Volume 8 | Article 21198

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/environmental-science#articles


fenvs-08-00021 March 17, 2020 Time: 16:34 # 13

Spruce et al. LMB 1997–2010 LULC Change

were mapped as evergreen broadleaved forest in 1997. This trend
could be due in part to the methods and data used to classify
forest deciduousness in 1997 compared to 2010. In addition,
some agricultural areas in 1997 had changed to deciduous
forest/scrub in 2010.

The evergreen broadleaved forests showed the largest change
in area estimated of any LULC class with a 10.8% decrease
in the total mapped area from 2010 versus 1997 (Figure 6).
The decrease in evergreen forest is probably due to multiple
factors. We think it is in part related to the remotely
sensed data and mapping method used to derive the 1997
LULC map. The forest deciduousness levels for the 1997
LULC map did not include Landsat image data collected at
monthly intervals across the calendar year, while the 2010
LULC map used the monthly MODIS NDVI data to help
classify forest deciduousness according to vegetation greenness
phenology (Spruce et al., 2018). Given that the 2010 map
used higher temporal resolution MODIS data to classify forest
deciduousness, we think that the 2010 LULC map probably
shows forest deciduousness classes more realistically compared
to the 1997 map dataset. The production of the 2010 LULC
map leveraged the vegetation greenness phenology to classify
forest types based on deciduousness and multiple agricultural
types with comparatively unique phenology (Spruce et al., 2018).
Other potential factors include conversion to agriculture or
transition to deciduous forest as a result of timber harvesting
according to Rundel (2009). In addition, the drought of 2010
(Zhang et al., 2013; Guo et al., 2017) may be a factor
why there was less evergreen forest in 2010, given that
drought can cause deciduousness in otherwise evergreen forest
(Rundel, 1999).

In addition, the IFP was mapped in 2010 was ∼3 times
more than in 1997 but still a very small percentage of the total
mapped area (0.3%) (Figure 6). Although rare in occurrence
(0.1% of total area), about 15 times more wetlands were mapped
in 2010, perhaps due to: (1) certain permanent agricultural
areas on wetland sites in 1997 had apparently been abandoned
and reverted to wetland vegetation in 2010; and (2) occasional
commission errors observed on the 2010 LULC map.

The Sankey diagram (Figure 7) shows LULC class change
transitions occurring from 1997 to 2010. The transitions are
colorized on this diagram so that one can trace back from
2010 to 1997 to assess how LULC changed. Most of the
permanent crops and evergreen forest areas in 2010 were also
the same class in 1997. Some of the permanent crops in
2010 was previously either a forest class or shifting cultivation
in 1997. Also, certain areas mapped as agriculture in 1997
transitioned to the evergreen forest class by 2010. The deciduous
forest class in 2010 was previously mapped as a mixture of
forest and agricultural classes in 1997. Also, some areas with
forest and agricultural classes in 1997 had transitioned to the
transient scrub/shrub/herbaceous class in 2010. Only a few
scrub/shrub/herbaceous areas in 1997 were retained as the same
class in 2010, which is related to the transitional nature of
this LULC class. Most of the shifting cultivation areas in 2010
were previously mapped as evergreen forest in 1997. Some
deciduous forest and agricultural areas in 1997 also transitioned

to shifting cultivation in 2010. The remaining 4 of 9 mapped
LULC classes in 2010 were comparatively rare and tended to
be mapped as a wide variety of LULC classes in 1997. Taken
as a whole, the Sankey diagram indicates that extensive forest
and agricultural areas of the LMB region had the same LULC
class for both dates, though some of the forest changed from
evergreen forest to some other forest class or agriculture. Also,
conversely, certain agricultural areas had transitioned to various
forest classes. The mapped area at large includes mixture of
forest and agriculture areas for both dates with occasional
area specific fluctuations between forest and agricultural types
occurring between the two dates. Also, there appears to be a
diminished frequency of shifting cultivation by 2010, which is
possibly related to afforestation or else conversion to permanent
agriculture. The shifting cultivation type is visibly dynamic for
1997 versus 2010 as well.

More generalized groupings of the 25 most frequent LULC
change classes are summarized as a percent of total mapped
in Figure 8 (see Supplementary Table S4 for additional
information). The most frequent group was for no change
LULC classes, representing 65.55% of the total mapped area.
Changes in forest class was 2nd most frequent group estimated
at 12.93% of the total mapped area. In this analysis, forest classes
are regarded as being either evergreen forest, deciduous forest,
or scrub/shrub/herbaceous (i.e., forest regeneration). The 3rd
most frequent LULC change group was for non-forest (mostly
agricultural classes) changing to some form of forest. The latter
change group represented 10.85% of the total area mapped. Forest
to agriculture conversion occurred on ∼6.84% of the total area.
The remaining 3 LULC class groups shown in Figure 8 were
much less frequent in occurrence, including 0.34% (of total area)
for changes from agriculture to IFP, 0.37% for change from
agriculture to urban, and 1.77% for changes in agricultural class
(e.g., from shifting cultivation to permanent crops).

Some of the observed 1997–2010 LULC change areas
(Figure 4) were for locally common yet regionally scarce to
rare classes, including LULC classes of concern such as those
related to the expansion of IFPs and urban areas (Supplementary
Table S1). Such infrequent yet important LULC change classes
were not sampled in the accuracy assessment, due in part to the
comparatively low class frequency, the adopted stratified random
sampling approach, plus the time and resources available to do
the accuracy assessment. In addition, other scarce classes (that
were more frequent than rare but less frequent than common
classes) were only minimally sampled in the accuracy assessment.
The utilized stratified random sampling approach did provide
a means to assess the overall agreement between the LULC
change map and reference data. It also yielded some insight into
the ability of the two most predominant LULC change classes
(evergreen forest and permanent crops no change categories) to
be mapped. However, more work is needed to further assess map
accuracy of other individual LULC change classes, such as the
comparatively scarce to rare LULC change classes.

More effort is also be needed to map and assess LULC
change according to a more specific LULC scheme. To construct
the change map, the adopted LULC classification scheme for
agriculture was more general than desired, given that the 1997
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LULC only included one general permanent crops class and that
it did not distinguish the number of crops per year and between
row crops and rice paddies (Spruce et al., 2018). As a result, the
LULC scheme used for both 1997 and 2010 in this study included
only 1 all-encompassing permanent crops class, due to the 1997
LULC map only containing 1 permanent crops class. It would
be useful from a SWAT modeling perspective to know more
about the changes in irrigated rice cultivation from 1997 to 2010.
Although 1 permanent crops class in the overall LULC scheme
is sub-optimal desired for MRC SWAT modeling applications,
this general category was still useful in our study for assessing the
change status of permanent cropped areas within the study area
and observation period.

The assessment of the LULC change map also revealed other
certain limitations. For example, the 1997 LULC map did not
have complete coverage for all 8 SBs that were used in the SWAT
modeling framework, perhaps due to clouds on the utilized
Landsat data and much less area mapped for SB 1. In contrast,
the 2010 LULC map included full coverage for SB 1 and did not
have no-data areas due to clouds.

Implications of Results
The 1997–2010 LULC change map indicates a mix of forest and
agricultural LULC change classes occurred, including about 2/3
of the total area staying the same LULC class for both dates.
Conversely, about 1/3 of the mapped area underwent some
form of LULC change, according to the LULC change map.
Although some of the study area has undergone noteworthy
LULC change over the 13-year interval from 1997 to 2010,
extensive areas of evergreen forest and permanent crops were
not converted to some other land use. Some of the apparent
LULC change during the observation period appeared to be
of an ephemeral or transitional nature (e.g., change related to
agricultural and forestry practices). Other observed LULC change
was apparently more permanent in nature (e.g., forest cover to
permanent crops). In addition, the LULC change map included
areas with deforestation and afforestation, which help to illustrate
the dynamic nature of LULC in the region during the observed
13-year time frame.

Some new IFP areas were observed with ∼3 times more IFP
mapped on the 2010 vs. 1997 LULC map (Figure 6). The amount
of mapped IFP in 2010 is a very low percentage of the total
mapped area. However, the amount of IFP mapped on at least
the 2010 date is somewhat conservatively estimated, given IFP
mapping for 2010 was based on 1 date of dry season Landsat
data in which some of the IFPs were highly green and other
IFP patches were senesced. Improved classifications of IFP may
be produced using multiple dates of Landsat data from different
times of year when such is available in cloud-free form (Fan et al.,
2015; Hurni et al., 2017). Based on spot checks on more recent
high-resolution aerial and satellite data on Google Earth Pro and
recent publications (Fox and Castella, 2013; Fox et al., 2014), it
seems likely that there has been some expansion of IFP areas
since 2010 in the SBs 1–8 of the LMB. More work is needed to
produce a more up to date LULC map for assessing expansion of
IFP areas as well as other LULC changes in the LMB since 2010.
When doing so, it might be possible to improve maps of IFP areas

using a combination of harmonized Landsat and Sentinel-2 data
so that classification of phenology of rubber trees can be better
leveraged in deriving more effective IFP maps. Such a strategy
could increase the availably of cloud free data in the cloud prone
tropical portion of the LMB for both the leaf-on and leaf-off
states of IFP, though additional data processing may be needed to
effectively combine use of the Landsat and Sentinel-2 data (Flood,
2017; Claverie et al., 2018). Use of time series data processing
methods (Robinson et al., 2017; Jönsson et al., 2018) could further
improve the Landsat/Sentinel-2 reflectance data products needed
to map IFP areas across a broad region like the LMB.

We think there are multiple drivers affecting the patterns
evident on the LULC change map with the importance of specific
drivers somewhat dependent on the SB. LULC change related
to permanent agricultural expansion and intensification, reduced
shifting cultivation patch sizes, and forest practices could be
related to economic and policy drivers. Part of the observed
agricultural intensification may be related to the increased
cultivation of cash crops. Also, the observed increase in industrial
forest plantations mostly pertains to a woody cash crop (i.e.,
rubber plantations). We observed increased urbanization which
in part could be due to demographic drivers (i.e., human
population growth). Based on reviews of 1997 and 2010 Landsat
imagery, we could see some forest change (e.g., deforestation
and conversion to permanent crops) in areas where roads had
expanded into forested areas. Road access was also identified as a
LULC change driver by Rowcroft (2008) and Xing (2013). Based
on summary areas per class for the 1997 and 2010 LULC maps
(Figure 6 and Supplementary Table S3), mature broadleaved
forests (deciduous and evergreen forest combined) increased by
∼4% of the entire mapped area, while all agriculture (permanent
and shifting cultivation) decreased by ∼4% of the total mapped
area. The decreased extent of agricultural areas could possibly
be explained by a combination of agricultural intensification,
technical advances in agriculture that required less but more
intensively cropped land, and agricultural conversion to other
LULC types, such as semi-natural forest, industrial forest, and
urbanized areas. We further believe that the water and land use
planning and policy making in the region may have influenced
forest and agricultural change occurring during the observed
time frame. Although afforestation appears to have occurred in
the LMB at large from 1997 to 2010, the change map also showed
a decrease in evergreen broadleaved forest that is in part related
to recovery from forest disturbances. Also, on the LULC change
map, there are hot spot areas in certain SBs where deforestation
is quite prevalent. Afforestation at the country scale was also
recently noted in a 1990 to 2015 forest change map produced
for the FAO 2015 Global Forest Resources Assessment for Laos,
Thailand, and Vietnam (FAO, 2015). The same study noted
that forest loss occurred in Myanmar and Cambodia, though
very little area in Myanmar is mapped in LMB area covered by
our maps. Also, our study area only partially covers Cambodia.
Netzer et al. (2019) noted that considerable deforestation occurs
is in the Tonle Sap sub-basin of Cambodia, which is outside the
study area for our LULC change map.

The LULC change map showed a moderate level of overall
agreement (∼78%) with reference data, which improved to ∼83%
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by reducing the total number of LULC classes per date from 9 to 5
as follows: (1) merging the deciduous and evergreen broadleaved
forest classes into 1 category; and (2) merging the permanent
crops and shifting cultivation types into 1 class. At 9 classes per
date, the 1997 and 2010 LULC maps used to make the change
map each showed ∼87% level of overall agreement. Although
imperfect, the LULC mapping products provided previously
unavailable information on LULC change from 1997 to 2010.
We acknowledge that the sample intensity used in the accuracy
assessment of LULC mapping products in this study is lower than
some studies, such as those by McCombs et al. (2016) and Yang
et al. (2018). However, our study, as is, enabled quantification
of the percent overall accuracy of the LULC change map and
the individual LULC maps used to compute the change map.
Such information, along with corresponding LULC maps is
now available to aid SWAT modeling efforts in the non-coastal
LMB, which helps given the lack of comparable LULC mapping
studies in the region for the same time frame and purpose.
The total sampling size used in the LULC change map accuracy
assessment was constrained by available resources and time,
though was greater than or comparable to the sample intensities
used in LULC mapping studies by Ellis et al. (2011) and Spruce
et al. (2014). However, the margin of error for our LMB LULC
change map accuracy estimate could be reduced by increasing
the sampling size.

We think it is also possible to improve LULC change map
accuracy for the region and time period, though doing so would
likely require different methods and data than was used in this
project. The 1997 LULC map dataset that we used was based on
Landsat data hard copies that were photo interpreted, delineated,
labeled, and digitized. There also isn’t any MODIS data available
for 1997, given that the first MODIS sensor wasn’t deployed until
2000. In contrast, the 2010 LULC map was based on both MODIS
and Landsat data in conjunction with image classification and
GIS techniques (Spruce et al., 2018). While it is unclear if the
2010 versus 1997 LULC change map data from our project can be
improved with additional processing, a more viable 2010 versus
2003 LULC change map dataset could be derived using MODIS
Terra/Aqua and Landsat data for both dates of LULC. In doing so,
the begin date could be processed at a higher classification scheme
specificity than what was feasible with the 1997 LULC map data
set. In particular, the 1997 LULC map data only included one type
of permanent crops, which is less desirable for SWAT modeling.
The LULC change map for this project was generated to aid
interpretation of SWAT modeling output using either the 2010
or 1997 LULC map data as inputs. However, the SWAT model
requires a single date of LULC data as opposed to a LULC change
map. Given this fact, the overall accuracy of each date of LULC
map used in LMB SWAT models is probably a more important
consideration to SWAT modelers than the overall accuracy of
the LULC change map for application at hand (e.g., SWAT
hydrologic modeling).

LULC map data is an important input to the SWAT hydrologic
model in addition to data on soils, terrain, and precipitation
(Gassman et al., 2007; Rossi et al., 2009). Based on the soils
data alone (e.g., on hydrologic soil group), most of the LMB
is regarded as having either moderately high or high runoff

potential (Ross et al., 2018). The runoff risk is further acerbated at
least seasonally by the high amounts of rainfall that can occur in
this tropical region during the rainy season (MRC, 2010). LULC
classes can have unique runoff potential which are described
in part via Soil Conservation Service (SCS) curve numbers
(USDA, 1986; Hong and Adler, 2008). For example, evergreen
broadleaved forests have a lower runoff potential (i.e., SCS curve
number) than agricultural cropland for given hydrologic soil
group and hydrologic condition class (Hong and Adler, 2008).
Extensive conversion of forests to permanent crops or other
non-forests can change the runoff characteristics within a sub-
basin (Netzer et al., 2019). Consequently, forests are a preferred
LULC type by the MRC for catchments being used for water
supplies (MRC, 2010).

The LULC change map data product from our study enabled
more insight into the location, extent and kind of LMB LULC
change in the region and within SBs (#1–8) used in SWAT
hydrologic modeling applications, such as SWAT models of
runoff for watersheds within a given SB. The project results
increased understanding of LULC change in the region during the
observed time frame, which could help those using and further
developing LMB SWAT modeling products. For example, we
think the change map from this project can be employed to
aid use and development of LMB SWAT modeling products to
support NASA/USAID SERVIR water and disaster management
applications in the LMB (Mohammed et al., 2018a,b,c; McDonald
et al., 2019). The LULC change map produced through this
project (Supplementary Data File 1) can be used to view and
assess potential 1997–2010 LULC change impacts for watersheds
within LMB SBs 1–8. The data products from this project provide
a baseline on LULC change for 1997–2010 that could be used to
aid management of water, agriculture, and natural disasters in the
region, as well as more in-depth follow-on studies on the LULC
change occurring in the LMB since 2010. Such LULC change
data sets could also possibly benefit the SERVIR Mekong Hub’s
Regional Land Cover Monitoring System (Saah et al., 2019b),
which was recently applied by Ingalls et al. (2018) in LULC
change assessment and land resource planning.

CONCLUSION

A LULC change mapping study for the LMB was conducted
using GIS techniques along with 1997 and 2010 LULC map
data sets to produce a LULC change map. Both dates of LULC
maps have been used as inputs to the MRC SWAT hydrologic
model framework for the SBs 1–8 of the LMB. The change map
was derived to: (1) map, quantify, and assess 1997–2010 LULC
change to aid assessment of the LMB SWAT modeling results;
and (2) to provide previously unavailable information on LMB
LULC change for 1997–2010 that could be used for supporting
water and land resource management and planning. While much
(almost 2/3rds) of the LULC change map showed no change,
there were other observed areas with apparent LULC change.
This was as expected given that the area includes a dynamic mix
of semi-natural and human-dominated LULC. In addition, not all
of the observed change appeared to be of a permanent nature, but
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instead some form of ephemeral or transitional change associated
with agricultural and/or forestry practices.

The study provided needed supplemental geospatial
information on 1997–2010 LULC change to modelers for
assessing LMB SWAT modeling results that are based on either
the currently used 2010 or the previously used 1997 LULC
map. The study also helped to identify LULC change hotspot
locations within specific SBs where LULC change may be affecting
hydrologic parameters of sub-watersheds that are modeled with
the SWAT modeling framework. The project’s LULC change
map dataset (Supplementary Data File 1) and corresponding
analysis discussed in this paper enabled a baseline record of
the LULC change for 1997–2010 that is available for aiding
follow-on studies in support of water, disaster, forest, and
agricultural management efforts in the LMB. The 1997–2010
LULC change map from the project could possibly be refined
with additional data processing techniques. More work is also
needed to further update the 2010 LULC map now used in LMB
SWAT modeling for the current time frame and to map LMB
LULC change since 2010.
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Kenya is composed of diverse geographic regions and is heavily impacted by climatic
variability. Habitat heterogeneity has led to a diverse number of plants and animals.
Invasive species, however, threaten this biodiversity. This study mapped the current
distribution of Acacia reficiens and Opuntia spp. using occurrence data, then applied a
species distribution model to identify where suitable habitats occur under current and
projected climatic scenarios under Representative Climate Pathways (R) 2.6 and 8.5.
Occurrences of the two invasive plant species were sampled using an android-based
application and a GPS (Global Positioning System) device. Predictor variables included:
elevation, distance to streams and rivers, human population density, and vegetation
indices (monthly Normalized Difference Vegetation Indices (NDVI) and Enhanced
Vegetation Indices (EVI) derived from MODIS products 1-km spatial resolution). The
mean of 25 replicates was used in identifying suitable habitats. We evaluated model
performance using the average test AUC, mean testing omission rate metrics, and
mean regularized training gain. The predictive models for both species performed
better than random chance (p < 0.05). Mean test AUC values of 0.96 and 0.97 for
A. reficiens and Opuntia spp. respectively, were achieved and their associated 95%
confidence intervals showed the fitted models realized the high discriminative ability to
differentiate optimal conditions for invasive plant species from random pseudo-absence
points. The mean test AUC results for A. reficiens (0.97 ± 0.02) and Opuntia spp.
(0.985 ± 0.01) were regarded as high. The models yielded moderate test gain values
of 2.4 and 2.7, respectively. The model predictions show the distributions of A. reficiens
and Opuntia spp. may increase under future climatic scenarios; with current extents
estimated at 339,000 and 183,000 ha, respectively, with projected future spread
reaching 732,800 and 206,900 ha, respectively, by 2070. Data on mapping, monitoring,
and assessment of the invasive species can provide governments with insight into how
the poor and vulnerable people are affected by the loss and degradation of biodiversity
and ecosystems due to the spread of such species. This information is key in achieving
the Sustainable Development Goals 15 (SDG) of the UN, aimed at the protection,
restoration, and promotion of sustainable use of terrestrial ecosystems.
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INTRODUCTION

Invasive species are a major threat to global human well-being,
biodiversity, and economies. The threat of incursion is directly
linked to the rate at which the invasive species propagules are
introduced and the level of disturbances that encourages their
establishment (Hernández et al., 2006). Invasive plant species
are plants that produce large numbers of offspring, with greater
chances of spreading widely (Ratnayake, 2015). Deforestation,
climate change, and habitat degradation have led to the loss of
biodiversity and have allowed for the proliferation of invasive
species (Thomas and Thomas, 2013). There are situations when
native species are regarded as “invasive.” This occurs when
conditions responsible for controlling a species are weakened or
absent, for instance, due to climate change. Suddenly, the species
realizes an enormous and abnormal increase. Acacia reficiens,
native to Kenya, have generally shown an aggressive invader
tendency similar to those of invasive species. Though such species
are important components of their habitats and ecosystems at
large, some suggest they should not be referred to as “invasive”
but “expansive” or “super-dominant” (Ratnayake, 2015).

A. reficiens is a bush, or small tree, about 3–4 m tall,
the top is usually flattened, the branches are reddish-brown
and it’s a native of Ethiopia, Somalia, Kenya, Namibia, Sudan,
Uganda, and Angola (Witt, 2017). A. reficiens are regarded
as a very aggressive invader in many places, especially, but
not necessarily, in disturbed areas. Opuntia spp. of the family
Cactaceae is found in many arid and semi-arid parts of
Kenya. They are drought tolerant with flattened succulent
stems that keep moisture most of the year. The spines
cause injury to the intestines and mouths of wildlife and
livestock (Witt, 2017). Opuntia spp. is among the most
spread and naturalized invasives in the arid and semi-arid
areas of Northern Kenya, hampering rural livelihoods and the
ecosystems. The invasion has been linked to changes in land-
use practices which leads to degradation. They were introduced
mostly intentionally for ornamental purposes (Obiri, 2017;
Githae, 2019).

There is no known record or quantification of either
current or potential distribution of A. reficiens or Opuntia
spp. in Kenya. The use of species distribution models can
help identify habitat suitability for the occurrence and potential
distribution based on climate data. Correlative models allow for
the prediction of species’ potential niches by associating their
occurrences to environmental proxies like climate, topography,
vegetation indices, and then apply a relationship to identify
areas of similar environmental conditions over which the
species are likely to establish (Mitchell et al., 2016). The
objectives of this research were to (1) use citizen science
derived A. reficiens and Opuntia spp. occurrence data to map
their current distributions, (2) map the current distribution
of A. reficiens and Opuntia spp. in Samburu – Laikipia
region using a time-series of MODIS vegetation indices
and topographic environmental variables, and (3) predict the
potential distribution under different climate change scenarios
using bio-climatic variables.

MATERIALS AND METHODS

Study Area
The larger Laikipia-Samburu is a diverse ecosystem, consisting
of different habitats and land use practices (Wittemyer et al.,
2010). Laikipia is predominantly made up of large-scale ranches
with resident wildlife species. Conversely, Samburu is a lower-
elevation pastoralist grazing region composed of forested ranges
(Omondi et al., 2002). The region is in a transition area
for the three major vegetation types; semi-desert grassland,
shrubland, and Acacia. The vegetation is mainly grassland,
woodland, bushland, and dry forest with a scattered declining
riparian forest that is important for the maintenance of the
region’s biodiversity. Forests cover 6% of Laikipia, and the
region’s soils are mainly black cotton, with significant areas
also characterized by red sandy soils’ (Jong et al., 2015). The
rainfall is generally bimodal, where the long rains occur during
April-May period, often accounting for 80% of the total yearly
rainfall. The short rains fall later in October-November. The
long-term annual precipitation mean between 1990 and 2010
was recorded at approximately 630 mm (Bergmann et al., 2016).
The Laikipia drainage constitutes the upper Ewaso Ng’iro River
catchment, which is the only major source of water. In dry
spells, water flowing through perennial rivers are fed by the Mt.
Kenya and Ndarua Range catchments (Government of Kenya,
2007; Figure 1).

Species Occurrence Data
The study focused mainly on five counties (Laikipia, Samburu,
Isiolo, Marsabit, and parts of Meru) which have been heavily
affected by A. reficiens and Opuntia spp. reducing forage spaces
for livestock and wildlife. Both Opuntia spp. and A. reficiens
occur in the same geographical space, so we used the same sets
of environmental predictors.

Citizen Science Data
Because reliable spatial information on the invasive plant species
was not available, we collected point locations from the study
area using a custom-built electronic application installed in
android phones, christened the Invasive Species Mapper (ISM)
(see Appendix A) currently available on the Google Play Store.
The ISM is customized to include any list of local invasive plant
species, take photos, and work offline in remote areas with limited
internet access.

We applied the ISM Android App, in fixed plot sizes of
1,000 m2. This ensured that the data collected were consistent
with assessments of the relative cover of invasive species in a
particular location. In addition to fixed plot sizes, plots were
stratified by the conservancy and randomized to ensure that the
landscape was sampled consistently and that the plots without
Opuntia spp. or other invasive species were also included. In
addition to estimating the infested area within each plot, the total
number (count) of individual plants were counted for the invasive
species detected.

Local field assistants and rangeland coordinators that had
functional knowledge of local vegetation distribution, especially
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FIGURE 1 | Study area and locations of records used for modeling.

of the invasive species were trained on how to use the ISM in
data collection. The data collected are remotely archived on an
online platform for visualization and sharing1 (see Appendix A).
To reduce the spatial bias/autocorrelation, the data collection
on A. reficiens and Opuntia spp. occurrences were random
within a minimum distance of 200 m between the occurrence
points. A total of 362 A. reficiens and 338 Opuntia spp. geo-
tagged presence observations were randomly collected from

1http://mobiledata.rcmrd.org/invspec/

2016. Another set was collected from May to June 2017 and finally
from September to November 2019. Five (5) counties of Meru,
Samburu, Laikipia, Marsabit, and Isiolo were targeted. These
counties comprise several conservancies with most occurrences
recorded in Samburu and Laikipia counties (Figure 1).

Environmental Predictors
At the sub-national scale, we assumed climate is an important
parameter for plant growth and survival. Correlative modeling
of species ranges needs environmental data that have a direct
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or indirect link to the species’ spatial distribution. The proximal
variables (direct) have an immediate effect on species while the
distal variables (indirect) are dependent on the former with some
varying degrees (Koh, 2008). Elevation, slope angle, and slope
aspect are indirect variables and only correlate with organisms
through their interactions with parameters like temperature and
precipitation (Austin, 2007). Air temperature, soil water levels,
and solar radiation directly define plant niches (Dymond and
Johnson, 2002). The current and projected future climate data
used were obtained at the highest-available resolution of (30 arc-
seconds (∼1 km). The current climate data were derived through
interpolation of observed data representing 1960 through 1990
(v.1.4). Future climate projections relied on predictions of the
GISS – E2 – R model being part of CMIP5 (IPPC 5th Assessment)
for climate average 2041–2060 for RCPs 2.6 and 8.5 being the
lowest and highest emission climate scenarios, respectively. For
comparison of the single-sourced derived current and future
climate data, the WorldClim’s current data (version 1.4) were
used in the downscaling and calibration process2. MODIS
products (MOD 13Q1) derived at 1-km2 resolution comprising
Enhanced Vegetation Index (EVI) and monthly Normalized
Difference Vegetation Index (NDVI) were used as measures of
vegetation productivity for the year 2017. Non-climatic variables
were resampled to 0.00833 degrees (∼1 km2 at the equator) using
the nearest neighborhood algorithm to coincide with WorldClim
climate derived predictors. Data sets used in modeling were
derived from different sources at different resolutions, so scale
conversion was done for consistent analyses (Park, 2011). Slope
and elevation were derived from Shuttle Radar Topography
Mission (30 m SRTM).

Modeling Approach
The MaxEnt program uses a maximum-likelihood algorithm
to produce a probability distribution. The MaxEnt algorithm
applies pixels of known species occurrence data and randomly
generated pseudo-absence background data to form sample
points (Hernández et al., 2006; Young et al., 2013). A collinearity
analysis was computed to eliminate highly correlated variables.
The correlation coefficient and the variance inflation factor (VIF)
were calculated. The VIF helps measure inflation of variance of
the coefficient estimate due to multicollinearity. In this study, the
analysis of collinearity was done within the full list of original
variables. Any variable with a VIF value above five was flagged
off as collinearity concern (Dormann et al., 2013).

The distal variables are normally avoided because such
indirect correlation tends to propagate errors when models
predict species’ potential niches under different climate scenarios
(Baldwin, 2009; Pearson, 2010). A species distribution model
(SDM) hierarchical process was applied. First, the invasive
species were modeled specifically using the 19 bioclimatic
variables3. The subsequent models run included the 24 MODIS
variables representing monthly EVI and NDVI, elevation,
soils types, distance to rivers, and population density. The
relative importance of the predictors was determined by the

2http://www.worldclim.org/version1
3https://www.worldclim.org/bioclim

percent contribution and permutation importance derived from
MaxEnt results. The variables of less importance were removed
systematically, leaving variables with a significant contribution
to model performance, resulting in an AUC > 0.8. The
initial analyses reduced the number of variables to 8 non-
correlated vegetation indices and topographic predictors for
both A. reficiens and Opuntia spp., respectively, and seven non-
correlated climatic variables for mapping the occurrence and
projecting potential niches, respectively.

The resulting model was tested for variable correlation,
because correlated variables may mislead interpretations. We ran
a pairwise Pearson correlation in R Studio, and only variables
with r ≥ ± 0.8 were used in the final model prediction. In the
mapping of current A. reficiens and Opuntia spp., distribution,
NDVI for August and May, and EVI for August and January were
used. Other remote sensing proxies included: altitude, distance to
rivers, soil drainage, and population density. The current climate
data derived through interpolation of observed data representing
1960 through 1990 (v.1.4) were also used in mapping the
current extent of the invasive species. These were Isothermality,
mean diurnal range, temperature seasonality, precipitation
seasonality, annual precipitation, precipitation of wettest quarter,
and precipitation of wettest month. For predicting the potential
habitats of the two species, similar current climate variables were
used under RCPs 2.6 and 8.5, respectively (Table 1).

The model parameters were set as follows: replication type was
set to sub-sample, 30% random test, the number of iterations
was set to 5,000 with replicates of 25 and a regularization value
of 1. The MaxEnt model allows one to run a model multiple
times and then averages the results from all the model runs.
A default setting of 10,000 background points was used and
over 700 sites across the study area were used to ensure good
representation of all environments (Elith et al., 2011). The model
performance was evaluated based on the mean test AUC, testing
omission rate, and mean training gain. The threshold used in
converting MaxEnt probability outputs into binary maps have
effects on the extent of predicted distribution (Baldwin, 2009).
The minimum training presence logistic considers suitable all
sites that are at least suitable within the training set. It is a
conservative approach preferred in modeling invasive species.
The last models used to identify suitable niches were built based
on the means of 25 replicates grids in MaxEnt. The average
logistic threshold was used in estimating optimal niches for the
invasive plant species. Continuous output binary is created by
choosing a value of the relative occurrence rate under which a
given species being modeled is considered present (Merow et al.,
2013). Determining biologically accurate thresholds may depend
on a species population density or prevalence, for example
in this study this information is not fully known, therefore
arbitral threshold values are not recommended (Hernández
et al., 2006). MaxEnt uses threshold-dependent and independent
tests to evaluate a model output. For the threshold-dependent
tests, it uses a specific threshold to divide a response as either
suitable or unsuitable. A variety of threshold-dependent values
are generated, and it’s at the user’s discretion to choose a value
based on their objectives (Young et al., 2013). For instance,
in the case of research or management reasons, an accurate
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TABLE 1 | Permutation and percent importance of remote sensing and topo-climatic predictor variables of the two MaxEnt models for A. reficiens and Opuntia spp.
under the current and potential distribution.

Variable % contribution Permutation importance % contribution Permutation importance

Acacia reficiens Opuntia spp.

Altitude 48 60 53 70

Population density 29 19 N/A N/A

May NDVI 11 9 4 5

Distance to rivers 7 2 N/A N/A

August NDVI 6 1 8 5

Soil drainage 3 4 0 1

August EVI 2 2 19 8

January EVI 1 5 9 8

Isothermality 45 1 32 10

Temperature Seasonality 19 45 N/A N/A

Mean Diurnal Range 19 6 N/A N/A

Precipitation of the Wettest Month 7 4 N/A N/A

Precipitation Seasonality N/A N/A 22 48

Annual Precipitation NA NA 14 29

Precipitation of the Wettest Quarter NA NA 10 5

Precipitation of Coldest Quarter NA NA 8 1

prediction of species presence (sensitivity) rather than species
absence (specificity) would be of greater emphasis. A threshold
weighted to achieve sensitivity would be ideal for this study.
The models’ significance against random chance is determined
in MaxEnt using the threshold – dependent metrics which
applies a one-tailed binomial test (Phillips, 2008). The output
binary was converted to raster format and the distribution
maps were generated by classifying images into two classes,
0.00 to 0.5 and 0.5 to 1.0. Pixels in the lower range were
considered as areas of less than 50% chances of species occurrence
and the higher ranges to depict areas with at least 50%
probability of species existence, hence a highly suitable habitat.
The areas which are projected to have changed under different
climate scenarios were estimated by calculating the difference
in future distribution and present distribution. The negative
values denoted range expansion; the zero values denoted no
change while positive values were areas of range reduction
(Figures 2, 3). In most cases selecting suitable modeling
algorithms and associated datasets are a challenge in ecological
modeling, so limitations of overestimation of the presence of
species are inherent. The SDMs assume random sampling of
the presence of species within a grid cell, which leads to a high
probability of presence in each grid cell, and overestimation
(Thapa et al., 2018).

RESULTS

The models generated p < 0.005, performing better than
random prediction. The high mean test AUC values (0.97
and 0.98 for A. reficiens and Opuntia spp., respectively), is
an indication that the models fitted could easily discriminate
optimal conditions for the invasive species from the randomly

generated background points. The highest test AUC value of
0.986 was derived from the models built for Opuntia spp. under
future climatic projections (see Appendix B). An analysis of
the relative contributions of individual remote sensing variables
used in mapping the current distribution of both A. reficiens
and Opuntia spp. showed that elevation was the greatest
predictor of presence points of both A. reficiens and Opuntia
spp. with percent importance of 48.3 and 53.4, respectively.
Besides, climate variables whose contribution was significant in
mapping the current extents of both species included temperature
seasonality and Isothermality. In predicting the future extents
under different climate scenarios, Isothermality was the most
important variable predictor for both species (Table 1). We
diagnosed the input variables based on the results of the jackknife
procedure. This helps to identify the loss or gain in the predictor
power as each variable is omitted from the models or used
independently. A jackknife test of variable importance indicated
that the variables which decreased model test AUC most when
removed were August EVI and Soil drainage for A. reficiens
and Opuntia spp., respectively, for the current distribution.
Under future projection Precipitation of Wettest Month and
Mean Diurnal Range reduced the test AUC value the most
for A. reficiens and Opuntia spp., respectively, and contain
information that is not present in other variables. Suitable
habitats for both species under study were predicted widely in
most conservancies. From the areas calculated based on the
model results, the current extents of A. reficiens and Opuntia spp.
were 339,000 and 183,000 ha, respectively, (Figures 2, 3). The
future distribution is predicted to expand to other conservancies
within the projected climate scenarios within RCP 2.6 and RCP
8.5 by the year 2050 and 2070. Quantitatively, reduction of
the suitable habitats is also expected to increase marginally
especially for both species. This will be highly pronounced by
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FIGURE 2 | The current and potential distribution under RCP 2.6 and RCP 8.5 for the years 2050 and 2070 for A. reficiens.

2070 (Figures 2, 3). The future rates of expansion and reduction
of suitable habitats are projected to shift consistently within
the conservancies over different climate scenarios. The average
proportion of suitable habitats for both species under reduction
is slightly higher than areas under expansion over the same RCPs
(see Appendix C).

DISCUSSION

In this study, altitude, population density, distance to rivers,
NDVI of May and August, EVI of January and August
were important variables in identifying the current extents of
the two invasive species whose distributions were modeled.
Minimal seasonal variations in temperature and rainfall were
important predictors in mapping the current extents and
in predicting suitable areas of invasion in 2050 and 2070.
Generally, rainfall, human interventions, distance to rivers, soil
drainage, precipitation seasonality, and temperature seasonality
explained the distributions of A. reficiens and Opuntia spp. (see
Appendix D). The model prediction shows the distributions
of A. reficiens and Opuntia spp. are projected to shift (extend

and reduce) under future climatic scenarios (2050 and 2070).
This could pose an imminent threat to native plants and the
well-being of the local communities who are largely pastoralists.
The current distribution of A. reficiens and Opuntia spp. are
mainly within the community conservancies within Laikipia
and Samburu counties. The areas infested were overlaid on
soil type information, and it showed that well-drained soils on
the slopes of the hills with a mean elevation of about 1200 m
above sea level, provided suitable conditions for the growth of
A. reficiens and Opuntia spp. (see Appendices E, F). Livestock,
humans, and wildlife feed on Opuntia spp. and are believed
to be agents of dispersal (Witt, 2017). This is confirmed by
the existence of Opuntia spp. on the banks of rivers and in
densely populated areas within the conservancies. The relative
probability of presence of A. reficiens and Opuntia spp. increases
with the increase in altitude and population density, though
they diminish with the increase of distance from rivers and
streams (see Appendices E, F). The results show that the current
predicted distributions of A. reficiens infestation cover mainly
Samburu County, while Opuntia spp. is predominant in Laikipia
County. Both range reduction and expansion for A. reficiens
and Opuntia spp. are consistent over different climate scenarios.
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FIGURE 3 | The current and potential distribution under RCP 2.6 and RCP 8.5 for the years 2050 and 2070 for Opuntia spp.

The invasive species range expansion is projected to begin as
early as 2050. A. reficiens and Opuntia spp. are projected to
expand by 5 and 1%, respectively, relative to the study area,
with expansion marginally increasing by 2070. Comparatively,
the rate of reduction of suitable niches for both A. reficiens
and Opuntia spp. is slightly higher than the rate expansion
over 2050 and 2070 climate scenarios (see Appendix C). When
A. reficiens encroaches landscapes, it results in an imbalance
in bush grass ratios and decreasing biodiversity, lowering the
grass productivity (Winowiecki, 2014). Its seeds germinate
easily and can displace other species without disturbance. It
is found mostly on plains but also grows on hills and dry
rivers seldom on the sand. Even though A. reficiens causes
challenges, several of its parts are utilized by the locals as a
source of traditional medicine (Wakshum Shiferaw et al., 2018).
Both fire and herbivory independently can affect tree cover
by altering demographic height transitions. According to the
local communities, A. reficiens is preferred by wild animals
and livestock and could as well explain the increase in their
invasion over-time.

The relative probability of presence of A. reficiens increases
with increases in variance in temperature parameters

(Isothermality, temperature seasonality and mean diurnal
range) (see Appendix D). The phenological variations of
A. reficiens were detected by NDVI of May and August, EVI of
January and August. The grasses, crops, and other herbaceous
vegetation are likely to turn brown in August and January, while
the shrubs and woody vegetation would appear green making
it possible to discriminate predominantly A. reficiens infested
areas. Due to its deep root system, A. reficiens is likely to absorb
moisture from precipitation of the driest months to remain
green and can be easily discriminated in the dry months of
August, January, February, and March due to contrast in general
vegetation cover. With global climate change, the potential
distribution of A. reficiens in northern Kenya may increase;
thereby expanding the areas at risk of invasion. A. reficiens
is an aggressive invader and is expected to increase its water
use efficiency in the future allowing it to invade xeric habitats4

(Accessed on the 1st of May, 2020). Its increased probability of
presence in wide annual temperature ranges may enable it to
out-compete other native species, especially for water resources.

4http://www.nbri.org.na/sites/default/files/treeatlas/pdf/TAP_Acacia%20reficiens.
pdf
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The relative probability presence of Opuntia spp. increases
steadily with an increase in precipitation of the wettest quarter,
precipitation seasonality, and annual precipitation (see Appendix
D). They are easily identified in the dry months of August and
January by both EVI and NDVI of those months. Opuntia spp.
displace native species of plants, degrades the pasture, and
inhibits the free movement of wildlife, people, and livestock. It
also blocks access to water with a high frequency of replication,
creating a dense colony over new areas (Githae, 2019). Most of
Opuntia spp. have shoots comprising of flattened stem portions
(cladodes) which are relatively tolerant to lower temperatures
of −6◦C, though extremely endures high temperatures of up
65◦C (Nobel et al., 2003). It can thrive in rainfall regimes of 250–
1200 mm per year with very hot summers of over 40◦C. Opuntia
spp. have a superficially extending root system, penetrating in
the shallow and rocky substratum. Consequently, precipitation
of the driest months reaches to their roots easily and enable them
to thrive (Rocchetti et al., 2018).

The accuracy of the models was determined by the AUC
value, which can either be ≤0.5 (no-better-than-random) or
1 (perfect). The discriminative ability of species distribution
models has been widely tested using AUC statistics. There are
concerns about relying on the AUC as the sole measure of model
performance (Jiménez-valverde, 2012). Though AUC has been
found to perform comparatively better than other measures in
scenarios where the species, the target area, and the occurrence
data (test and training samples) are uniform across the compared
model, same case as this study (Lecours et al., 2016).

Though model overall accuracy is high for current and future
maps of the two species, we believe this can be improved by
increasing the number of samples within the wider Samburu
Laikipia region. Ecological niche models usually suffer some
limitations, for instance, over-estimation of the presence of
species. MaxEnt uses presence-only data which may lead to
high predicted figures for environmental conditions beyond the
specified range. Though, this is avoided by applying a threshold
value to the output raster (Thapa et al., 2018). The presence-
only and climate-based models can potentially contribute to error
propagation in the interpretation of the results, for instance,
areas visited more often will depict strong geographic bias.
The MaxEnt modeling technique employs cross-validation which
uses fewer data sets as a way to offset the challenges of data
deficiency. Besides, species distribution models can be biased
resulting in local biasness and model generalization impacting
on model reliability. MaxEnt depends on the jackknife kriging
which maintains ordinary kriging simplicity and unbiasedness as
well as reducing local-scale bias and over-generalization tendency
(Odeny et al., 2019).

Information on current and possible future extent of
invasive species would help ecosystem managers focus scarce
conservation and restoration resources on areas with a high
probability of invasion, narrowing down to areas with high
probabilities of suitable environments and regions of lower
probabilities values. Habitat suitability thresholds are usually
selected subjectively with limited information to guide in
choosing appropriate thresholds for presence- dependent
modeling (Phillips et al., 2006). The results of this study

demonstrated that climate and remotely sensed data can be
analyzed to help in the development of predictive models over
areas of conservation concern, providing conservationists with
vital information in developing current and future eradication
and control plans. Early detection methods help in the control
or eradication of the invasive species thereby minimizing the
control costs (Rejmánek and Pitcairn, 2002). Also, the outcome
of this research will help achieve sustainable development
goal number 15, which aims at protecting, restoring, and
promoting sustainable use of terrestrial ecosystems. This
research demonstrated the strengths of citizen science in data
collection through a mobile-based application. Through this
process, over 1,000 presence points of both A. reficiens and
Opuntia spp. have been collected reducing financial and time
constraints. By providing invasive species extent and distribution
data to the conservation practitioners, the impacts of invasive
alien species on land and water ecosystems can be reduced.
Formulating policies on informed data would help in achieving
the SDG target number 15.8 by 2020, through controlling and
eradicating the priority invasive species.

We are cognizant of some challenges associated with species
distribution modeling when applied to near and long-term
climate projections (Thuiller and Maa, 2009; Jarnevich et al.,
2015). In most cases, biological field data are biased representing
an untrue picture of species distribution and abundance.
Important areas may have been under-sampled, models may be
heavily influenced by sample bias, and there may be mismatches
in the resolution of sample plots relative to the resolution and
accuracy of predictor variables. Furthermore, climate projections,
especially long-term climate projections, have unknown (and
often unknowable) accuracies and uncertainty associated with
them. We view these model results as “hypotheses” that can only
be verified and improved with iterative monitoring and modeling
(Jarnevich et al., 2015).

CONCLUSION

Our findings suggest that suitable habitats for A. reficiens and
Opuntia spp. are throughout most parts of Laikipia Samburu
regions. The seeds from A. reficiens and Opuntia spp. can be
dispersed by domestic, wild animals and by run-off water. This
explains the distributions of these species mostly along the
streams and river banks. The predicted expansion of Opuntia
spp. and A. reficiens throughout most of their ranges means that
if the seeds continue to be propagated by agents like floods,
humans, and animals, increased vigilance is needed to identify
and eradicate new invasion with focus on floods, humans,
and wildlife dispersal. It will also be important to raise public
awareness on the proliferation threats posed by invasive species,
identification and, appropriate control measures. For the first
time, this research estimated the current and potential extents of
A. reficiens and Opuntia spp. in Northern Kenya. Though there
was limited occurrence data, we anticipate further expansion
of both species in most parts of Laikipia Samburu region.
The study revealed that topo-climatic variables combined with
remotely-sensed data (vegetation indices) can be used with the
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invasive species occurrence data in a predictive model to quantify
the current and potential extents of A. reficiens and Opuntia
spp. The method used is easy and transferable to areas with
similar challenges of invasive species. Currently, there is a push
for increased evidence-based conservation, with challenges in
collecting better site-specific information to prioritize areas for
conservation and inform actions on priority areas. Documenting
the distribution data on invasive species is important to this
end. The predictive maps created from the models are being
used as a baseline for current and future monitoring initiatives.
Regional governments can use the modeled maps and the
distribution data to help conservationists and decision-makers in
the formulation of policies to assist in managing and monitoring
the ecosystems. For future studies, we propose the inclusion
of presence data from the broader Samburu Laikipia area
including the species native ranges. High-resolution time-series
images and additional variables such as grazing density may
result in new findings on the distribution of invasive species in
Northern Kenya.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: www.worldclim.com.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

ACKNOWLEDGMENTS

The authors are greatly indebted to RCMRD/SERVIR-Eastern
and Southern Africa Project, NASA, and USAID for providing
the technical support and funding, respectively. Special thanks
to Thomas J. Stohlgren and Paul H. Evangelista whose technical
advice made a significant contribution to this publication.

REFERENCES
Austin, M. (2007). Species distribution models and ecological theory: A critical

assessment and some possible new approaches. Ecol. Model. 200, 1–19. doi:
10.1016/j.ecolmodel.2006.07.005

Baldwin, R. A. (2009). Use of maximum entropy modeling in wildlife research.
Entropy 11, 854–866. doi: 10.3390/e11040854

Bergmann, C., Roden, P., Bergmann, C., Ulrich, A., and Nüsser, M. (2016). Tracing
divergent livelihood pathways in the drylands: A perspective on two spatially
proximate locations in Laikipia County, Kenya Tracing divergent livelihood
pathways in the drylands: A perspective on two spatially proximate locations in
Laikipia Co. J. Arid Environ. 124, 239–248. doi: 10.1016/j.jaridenv.2015.08.004

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., et al.
(2013). Collinearity: A review of methods to deal with it and a simulation study
evaluating their performance. Ecography 36, 027–046. doi: 10.1111/j.1600-0587.
2012.07348.x

Dymond, C. C., and Johnson, E. A. (2002). Mapping vegetation spatial patterns
from modeled water, temperature and solar radiation gradients. ISPRS J.
Photogramm. Remote Sens. 57, 69–85. doi: 10.1016/S0924-2716(02)00110-7

Elith, J., Phillips, S. J., Hastie, T., and Dudı , M. (2011). A statistical explanation of
MaxEnt for. Divers. Distribut. 17, 43–57. doi: 10.1111/j.1472-4642.2010.00725.x

Githae, E. W. (2019). Status of Opuntia Invasions in the Arid and Semi-Arid Lands
of Kenya. Wallingford: CABI, doi: 10.1079/PAVSNNR201813003

Government of Kenya (2007). Laikipia fact sheet 2005–2007. Kenya: Government
of Kenya.

Hernández, P. A., Catherine, H. G., Master, L. L., and Albert, D. L. (2006). The
effect of sample size and species characteristics on performance of different
species distribution modeling methods. Ecography 29, 773–785. doi: 10.1111/
j.0906-7590.2006.04700.x

Jarnevich, C. S., Stohlgren, T. J., Kumar, S., Morisette, J. T., and Holcombe,
T. R. (2015). Ecological Informatics Caveats for correlative species distribution
modeling. Ecol. Inform. 29, 6–15. doi: 10.1016/j.ecoinf.2015.06.007

Jiménez-valverde, A. (2012). Insights into the area under the receiver operating
characteristic curve (AUC) as a discrimination measure in species. 5, 498–507.
doi: 10.1111/j.1466-8238.2011.00683.x

Jong, Y. A., De, Africa, E., Diversity, P., Program, C., Butynski, T. M., et al. (2015).
Laikipia County Geography, Environment, and Biodiversity. Kenya: Eastern
Africa Primate Diversity and Conservation Program, doi: 10.13140/RG.2.1.
1257.2640

Koh, L. P. (2008). Assessing ecological responses to environmental change using
statistical models. J. Appl. Ecol. 45, 1321–1329. doi: 10.1111/j.1365-2664.2007.0

Lecours, V., Brown, C. J., Devillers, R., Lucieer, V. L., and Edinger, N. (2016).
Comparing selections of environmental variables for ecological studies: a
focus on terrain attributes. PLoS One 11:e0167128. doi: 10.1371/journal.pone.
0167128

Merow, C., Smith, M. J., and Silander, J. A. (2013). A practical guide to MaxEnt
for modeling species’ distributions: what it does, and why inputs and settings
matter. Ecography 36, 1058–1069. doi: 10.1111/j.1600-0587.2013.07872.x

Mitchell, P. J., Monk, J., and Laurenson, L. (2016). Sensitivity of fine-scale species
distribution models to locational uncertainty in occurrence data across multiple
sample sizes. Methods Ecol. Evol. 8, 12–21. doi: 10.1111/2041-210X.12645

Nobel, P. S., Barrera, E., De, Nobel, P. S., et al. (2003). Tolerances and acclimation
to low and high temperatures for cladodes, fruits and roots of a widely cultivated
cactus, Opuntia ficus-indica. New Phytol. 157, 271–279.

Obiri, J. F. (2017). Invasive plant species, and their disaster-effects in dry tropical.
(forests) and rangelands of Kenya and Tanzania. J. Disaster Risk Stud. 3,
417–428.

Odeny, D., Karanja, F., Mwachala, G., Pellikka, P., and Marchant, R. (2019). Impact
of Climate Change on Species Distribution and Carbon Storage of Agroforestry
Trees on Isolated East African Mountains. Am. J. Clim. Change 364–386. doi:
10.4236/ajcc.2019.83020

Omondi, P., Bitok, E., Kahindi, O., and Mayienda, R. (2002). Total Aerial Count of
Elephants in\nSamburu-Laikipia. Ecosystem

Park, N.-W. (2011). The effects of spatial patterns in low resolution thematic
maps on geostatistical downscaling. Korean J. Remote Sens. 27, 625–635. doi:
10.7780/kjrs.2011.27.6.625

Pearson, R. G. (2010). Species’ distribution modeling for conservation educators
and practitioners. Lessons Conserv. 3, 54–89. doi: 10.1016/S0140-6736(10)
61462-6

Phillips, A. R. S. (2008). A Brief Tutorial on Maxent. Available online at:
https://biodiversityinformatics.amnh.org/open_source/maxent/Maxent_
tutorial2017.pdf (accessed March 25, 2019).

Phillips, S. J., Anderson, R. P., and Schapire, R. E. (2006). Maximum entropy
modeling of species geographic distributions. Ecol. Modell. 190, 231–259. doi:
10.1016/j.ecolmodel.2005.03.026

Ratnayake, R. M. C. S. (2015). Why plant species become invasive?
Characters Related to Successful Biological Invasion. Available online at:
https://www.researchgate.net/publication/273452847_Why_plant_species_
become_invasive (accessed April 20, 2019).

Rejmánek, M., and Pitcairn, M. J. (2002). “When is eradication of exotic pest plants
a realistic goal?,” in Turning the Tide: The Eradication of Invasive Species, eds C.
R. Veitch, M. N. Clout (Gland: IUCN), 249–253.

Frontiers in Environmental Science | www.frontiersin.org 9 June 2020 | Volume 8 | Article 69213

http://www.worldclim.com
https://doi.org/10.1016/j.ecolmodel.2006.07.005
https://doi.org/10.1016/j.ecolmodel.2006.07.005
https://doi.org/10.3390/e11040854
https://doi.org/10.1016/j.jaridenv.2015.08.004
https://doi.org/10.1111/j.1600-0587.2012.07348.x
https://doi.org/10.1111/j.1600-0587.2012.07348.x
https://doi.org/10.1016/S0924-2716(02)00110-7
https://doi.org/10.1111/j.1472-4642.2010.00725.x
https://doi.org/10.1079/PAVSNNR201813003
https://doi.org/10.1111/j.0906-7590.2006.04700.x
https://doi.org/10.1111/j.0906-7590.2006.04700.x
https://doi.org/10.1016/j.ecoinf.2015.06.007
https://doi.org/10.1111/j.1466-8238.2011.00683.x
https://doi.org/10.13140/RG.2.1.1257.2640
https://doi.org/10.13140/RG.2.1.1257.2640
https://doi.org/10.1111/j.1365-2664.2007.0
https://doi.org/10.1371/journal.pone.0167128
https://doi.org/10.1371/journal.pone.0167128
https://doi.org/10.1111/j.1600-0587.2013.07872.x
https://doi.org/10.1111/2041-210X.12645
https://doi.org/10.4236/ajcc.2019.83020
https://doi.org/10.4236/ajcc.2019.83020
https://doi.org/10.7780/kjrs.2011.27.6.625
https://doi.org/10.7780/kjrs.2011.27.6.625
https://doi.org/10.1016/S0140-6736(10)61462-6
https://doi.org/10.1016/S0140-6736(10)61462-6
https://biodiversityinformatics.amnh.org/open_source/maxent/Maxent_tutorial2017.pdf
https://biodiversityinformatics.amnh.org/open_source/maxent/Maxent_tutorial2017.pdf
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://www.researchgate.net/publication/273452847_Why_plant_species_become_invasive
https://www.researchgate.net/publication/273452847_Why_plant_species_become_invasive
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/environmental-science#articles


fenvs-08-00069 June 9, 2020 Time: 21:16 # 10

Ouko et al. A Model for Invasive Plant Species

Rocchetti, G., Pellizzoni, M., Montesano, D., and Lucini, L. (2018). Italian Opuntia
ficus-indica Cladodes as Rich Source of Bioactive Compounds with Health-
Promoting Properties. Foods 7:24. doi: 10.3390/foods7020024

Thapa, S., Chitale, V., Rijal, S. J., and Bisht, N. (2018). Understanding the dynamics
in distribution of invasive alien plant species under predicted climate change in
Western Himalaya Understanding the dynamics in distribution of invasive alien
plant species under predicted climate change in Western Himalaya. PLoS One
13:e0195752. doi: 10.1371/journal.pone.0195752

Thomas, S., and Thomas, S. M. (2013). Predicting the Spatial Distribution of an
Invasive Plant Species and Modeling Tolerance to Herbivory Using Lythrum
salicaria L. as a model system. Graduate Theses and Dissertations, Iowa State
University, Iowa.

Thuiller, X., and Maa, W. (2009). Comparing niche- and process-based models
to reduce prediction uncertainty in species range shifts under climate change.
Ecology 90, 1301–1313. doi: 10.1890/08-0134.1

Wakshum Shiferaw, Demissew, S., and Tamrat Bekele. (2018). Invasive alien plant
species in Ethiopia: ecological impacts on biodiversity a review paper. Int. J.
Mol. Biol. 3, 169–176. doi: 10.15406/ijmboa.2018.03.00072

Winowiecki, L. A. (2014). Baseline Assessment of Rangeland Health - Kalama and
Namunyak Conservancies. Kenya: Northern Rangelands Trust.

Witt, A. (2017). Guide to the Naturalized and Invasive Plants of Laikipia.
Wallingford: CAB International, doi: 10.1079/9781786392152.0000

Wittemyer, G., Douglas-hamilton, I., Samburu, L., Kahindi, O., Wittemyer, G.,
King, J., et al. (2010). Employing participatory surveys to monitor the illegal
killing of elephants across diverse land uses in Laikipia – Samburu, Kenya
Employing participatory surveys to monitor the illegal killing of elephants
across diverse land uses. Afr. J. Ecol. 48, 972–983. doi: 10.1111/j.1365-2028.2009.
01200.x

Young, K. E., Abbott, L. B., Caldwell, C. A., and Schrader, T. S. (2013). Estimating
suitable environments for invasive plant species across large landscapes: A
remote sensing strategy using Landsat 7 ETM +. Int. J. Biodivers. Conserv. 5,
122–134. doi: 10.5897/IJBC12.057

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Ouko, Omondi, Mugo, Wahome, Kasera, Nkurunziza, Kiema,
Flores, Adams, Kuraru and Wambua. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Environmental Science | www.frontiersin.org 10 June 2020 | Volume 8 | Article 69214

https://doi.org/10.3390/foods7020024
https://doi.org/10.1371/journal.pone.0195752
https://doi.org/10.1890/08-0134.1
https://doi.org/10.15406/ijmboa.2018.03.00072
https://doi.org/10.1079/9781786392152.0000
https://doi.org/10.1111/j.1365-2028.2009.01200.x
https://doi.org/10.1111/j.1365-2028.2009.01200.x
https://doi.org/10.5897/IJBC12.057
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/environmental-science#articles


ORIGINAL RESEARCH
published: 19 June 2020

doi: 10.3389/fenvs.2020.00077

Frontiers in Environmental Science | www.frontiersin.org 1 June 2020 | Volume 8 | Article 77

Edited by:

Niall Patrick Hanan,

New Mexico State University,

United States

Reviewed by:

Ahmad Khan,

University of Maryland, College Park,

United States

Qiuyan Yu,

New Mexico State University,

United States

*Correspondence:

Mir A. Matin

mir.matin@icimod.org

Specialty section:

This article was submitted to

Land Use Dynamics,

a section of the journal

Frontiers in Environmental Science

Received: 31 May 2019

Accepted: 19 May 2020

Published: 19 June 2020

Citation:

Tiwari V, Matin MA, Qamer FM,

Ellenburg WL, Bajracharya B,

Vadrevu K, Rushi BR and Yusafi W

(2020) Wheat Area Mapping in

Afghanistan Based on Optical and

SAR Time-Series Images in Google

Earth Engine Cloud Environment.

Front. Environ. Sci. 8:77.

doi: 10.3389/fenvs.2020.00077

Wheat Area Mapping in Afghanistan
Based on Optical and SAR
Time-Series Images in Google Earth
Engine Cloud Environment

Varun Tiwari 1, Mir A. Matin 1*, Faisal M. Qamer 1, Walter Lee Ellenburg 2,

Birendra Bajracharya 1, Krishna Vadrevu 3, Begum Rabeya Rushi 4 and Waheedullah Yusafi 1

1 International Centre for Integrated Mountain Development, Kathmandu, Nepal, 2 Earth System Science Center, University of

Alabama, Huntsville, AL, United States, 3NASA Marshall Space Flight Center, Hunstville, AL, United States, 4 ENSCO, Inc.,

Falls Church, VA, United States

Wheat is cultivated on more than 2.7 million hectares in Afghanistan annually, yet the

country is dependent on imports to meet domestic demand. The timely estimation of

domestic wheat production is highly critical to address any potential food security issues

and has been identified as a priority by the Ministry of Agriculture Irrigation and Livestock

(MAIL). In this study, we developed a system for in-season mapping of wheat crop area

based on both optical (Sentinel-2) and synthetic aperture radar (SAR, Sentinel-1) data to

support estimation of wheat cultivated area for management and food security planning.

Utilizing a 2010 Food and Agriculture Organization (FAO) cropland mask, wheat sown

area for 2017 was mapped integrating decision trees and machine learning algorithms

in the Google Earth Engine cloud platform. Information from provincial crop calendars

in addition to training and validation data from field-based surveys, and high-resolution

Digitalglobe and Airbus Pleiades images were used for classification and validation.

The total irrigated and rainfed wheat area were estimated as 912,525 and 562,611

ha, respectively for 2017. Province-wise accuracy assessments show the maximum

accuracy of irrigated (IR) and rainfed (RF) wheat across provinces was 98.76 and 99%,

respectively, whereas the minimum accuracy was found to be 48% (IR) and 73% (RF).

The lower accuracy is attributed to the unavailability of reference data, cloud cover in the

satellite images and overlap of spectral reflectance of wheat with other crops, especially in

the opium poppy growing provinces. While the method is designed to provide estimation

at different stages of the growing season, the best accuracy is achieved at the end of

harvest using time-series satellite data for the whole season. The approach followed in

the study can be used to generate wheat area maps for other years to aid in food security

planning and policy decisions.

Keywords: sentinel 1, sentinel 2, GEE, crop type, random forest
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INTRODUCTION

The agricultural sector in Afghanistan supports the livelihoods
of nearly three-quarters of the total population and contributes
nearly 28% to the Gross Domestic Product (GDP) (Muradi
and Boz, 2018). Thus, agricultural growth is vital for
driving the country’s economy and for ensuring national
food security (World Bank, 2014). Wheat is the most
important crop in Afghanistan, followed by rice, barley,
and cotton. Most cereal crops are utilized for self-consumption.
Wheat is prominent in all of the major farming systems
prevailing in the country and cultivated in every province.
It dominates the total cultivated cereal area estimated as
2.7 to 3 million hectares. Despite being the dominant cereal
crop in Afghanistan, the production of wheat fails to fulfill
the internal demand. About 1 million tons (equivalent to
25% of internal demand) of wheat are imported annually to
meet internal requirements (Martínez and Gilabert, 2009).
This makes Afghanistan one of the leading importers of
wheat in the world. Afghanistan imports wheat mainly
from Turkmenistan and Pakistan, two of its neighboring
countries. Timely and effective management and estimation
of wheat production in Afghanistan are therefore of high
importance for overall food security. It can help in managing
local food demand and provide stability for social security
(Tilman et al., 2011). It can also support decision-makers in
national-level planning for formulation and implementation
of policies related to food procurement, pricing, import-
export, transportation and storage, advance planning, etc.
(United Nations, 2013; Pham et al., 2017).

Limited work has been done in the past for wheat area
estimation by utilizing a conventional ground-based sampling
approach which only provides a qualitative assessment. In
2016, the Food and Agriculture Organization (FAO) carried
out rice mapping using sentinel data in a few provinces of
Afghanistan (Latham, 2017; Haworth et al., 2018). Similarly, the
United Nations Office of Drugs and Crime (UNODC), a pro-
active organization working in opium poppy monitoring using
high-resolution satellite images, conduct annual assessments
of opium poppy sown areas (Simms and Waine, 2016;
Avetisyan, 2017). Concerning wheat sown area mapping,
some qualitative assessments have been done in the past by
the USDA (United States Department of Agriculture) using
NDVI (Normalized Difference Vegetation Index) anomalies
(Shahriar et al., 2014; Baker, 2015). Currently, the Ministry
of Agriculture Irrigation and Livestock (MAIL), Afghanistan
is undertaking yearly qualitative assessments of wheat sown
area using ground sample data (crop cut survey) and some
conventional remote sensing based techniques, i.e., mainly based
on visual interpretation of satellite images (UN FAO, 2016).
Recently, donor agencies like the United States Agency for
International Development (USAID) have shown interest in
food security management in Afghanistan. They have started
projects, such as the Grain Research and Innovation (GRAIN)
and the Kandahar Food Zone (KFZ), funded by USAID, started
working in crop area mapping and health monitoring to
support livelihoods in Afghanistan (USAID, 2017). Currently,

no operational system exists in Afghanistan to provide a rapid
assessment of wheat sown area which is essential to support the
food security management.

Developing an operational system for wheat sown area
assessment for Afghanistan is challenging despite the availability
of several methods based on remote sensing. The major
challenges include security concerns for collecting the reference
data from the ground, small field sizes, cloudy optical imagery,
low internet bandwidth for satellite data downloads, and limited
computing infrastructure for data processing and analysis.
Despite these challenges, through collaborative efforts with
MAIL and other organizations in Afghanistan, we present a
detailed study that develops a map of wheat sown areas utilizing
advanced satellite remote sensing techniques which can be
used to address food security planning and management in
the country.

Crop type mapping using optical and SAR remote sensing
techniques have been attempted by several researchers globally
(Inglada et al., 2015). Optical remote sensing approaches use
spectral-temporal profiles to identify seasonal thresholds of
phenological characteristics to separate different crop types
(Foerster et al., 2012). The acquisition time of the image
is critical to identify seasonal thresholds and distinguish
different crop types. Although spectral-temporal profiles based
on seasonal thresholds require less ground sample points and
provide good accuracy, they fail to classify crops having similar
phenology. Specific to classification algorithms, machine learning
classifiers, such as Random Forest (RF), Support Vector Machine
(SVM), Artificial Neural Network (ANN), etc. require systematic
sampling approaches and a large number of accurate ground data
for training the classification model (Camps-Valls et al., 2003;
Murmu and Biswas, 2015; Tatsumi et al., 2015). Poor field level
data can result in underfitting or over-fitting of the classification
model and result in overestimation or underestimation of the
classification results (Liakos et al., 2018). Although optical data
have shown potential in the identification of crop types, the
data is not reliable under cloudy conditions. Alternatively,
Synthetic Aperture Radar (SAR) is an emerging technique in
crop mapping (Oguro et al., 2001). SAR utilizes the temporal
backscatter (physical) response of a crop and, along withmachine
learning techniques, can be effectively used for crop mapping
and monitoring (Sonobe et al., 2014; Tamiminia et al., 2015;
Gao et al., 2018). Recent studies utilize coarse to fine resolution
satellite imagery for crop type mapping (Wardlow and Egbert,
2010). Some of the well-known approaches for crop type
mapping using different sensors and resolutions are listed in
Table 1.

In this study, we developed a system for in-season wheat
sown area mapping by harnessing the power of multisensory
remote sensing imagery (optical and SAR) and cloud computing
(GEE) techniques (Dong et al., 2016; Gorelick et al., 2017). The
system is designed keeping in mind the challenges in Afghanistan
and provides the capacity for operationalization. The system
can provide independent and evidence-based information on the
status of annual crops at the province level. Ingesting field data
at regular intervals for different seasons in the system will lead to
higher accuracy in crop area estimates at the province level.
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TABLE 1 | Crop mapping approaches.

Research topic Imagery data Spatial resolution Temporal coverage Approach

A comparison of MODIS 250-m EVI and

NDVI data for crop mapping: a case study

for southwest Kansas (Wardlow and

Egbert, 2010)

MODIS 250m 22 March to 30 September

2001

Spectral-temporal classification

Assessment of an Operational System for

Crop Type Map Production Using High

Temporal and Spatial Resolution Satellite

Optical Imagery (Inglada et al., 2015)

Sentinel-2, SPOT4,

Landsat 8

10–30m NA Temporal-supervised

classification

Corn monitoring and crop yield using

optical and RADARSAT-2 images

(Soria-Ruiz et al., 2007)

RADARSAT-2 Images,

SPOT

3–100m NA Temporal back scattered

classification and LAI

Crop Classification Using Short-Revisit

Multi temporal SAR Data. (Skriver et al.,

2011)

Airborne–SAR April to August 2006 Temporal back scattered

classification

Crop identification using harmonic analysis

of time-series AVHRR NDVI data

(Jakubauskas et al., 2002)

AVHRR 1.1 km NA Harmonic Time series NDVI

classification

Crop type mapping using

spectral-temporal profiles and

phenological information (Foerster et al.,

2012)

Landsat TM/ETM 30m NA Spectral-temporal profiles and

Phenological information

First Experience with Sentinel-2 Data for

Crop and Tree Species Classifications in

Central Europe. (Immitzer et al., 2016)

Sentinel 10m NA Supervised classification

Toward operational radar-only crop type

classification: comparison of a traditional

decision tree with a random forest

classifier (Deschamps et al., 2012)

RADARSAT 2 3–100m NA Decision tree and random

forest classifier

3D Convolutional Neural Networks for

Crop Classification. (Ji et al., 2018)

Gafoen 2 15m NA 3D Convolutional Neural

Networks

METHODS AND MATERIALS

Study Area
The study area (Figure 1) covers the whole of Afghanistan (34◦

32′ and 38◦ 1′ 32.16′′ N latitude and 69◦ 9′ and 38◦ 20′ 49.92′′

E. longitude). The Hindu Kush mountain range divides the
country into three very different geographic regions: (a) The
central highlands, characterized by dry hot summers and very
cold winters; (b) the southern plateau consist of sandy deserts
with arable lands along the rivers; (c) the northern plains,
which are highly fertile and include most of the land under
agriculture. The total area of the country is 652,230 sq km
with a population of 34.9 million. Agricultural lands represent
58% of the country with most designated as permanent pasture
(48%), leaving only 11.8% as arable land (CIA, 2019). Total
arable land is 6.5 million hectares of which 3.1 million ha is
irrigated and 3.4 million ha is rainfed (FAO, 2010). Wheat,
rice, barley, and maize are the main cereal crops grown in
the country, with wheat accounting for 80.2% of total cereal
production. Thus, wheat is the most important crop for the food
security of the country (Ahmad, 2018). However, other than
cereals, fruits, vegetables, and opium poppy are also important
crops. The average area under different crops are: wheat−2.2
million hectares; rice−0.13 million hectares; barley−0.19 million
hectares; maize−0.145 million hectares; pulses−0.102 million
hectares; fruits−0.295million hectares; vegetables−0.104million

hectares; (Rashid, 1997); opium poppy−0.216 million hectares
(Avetisyan, 2017).

Dataset Used
Satellite and Other Data
This study used Sentinel 1 SAR and Sentinel 2 multispectral
optical satellite images as the main data sources (Table 2). For
the wheat area classification, bands B4 (Red), B8 (NIR), and
B11 (SWIR) from the S2 were used; whereas the VV (Vertically
transmit Vertically receive) Polarization band was utilized from
the Sentinel 1 data. High-resolution images from Digitalglobe
and Airbus Company (Pleiades) were also used for collecting
reference data for training and validation.

Apart from satellite datasets, agriculture mask (irrigated and
rainfed) from the Afghanistan 2010 land cover (FAO, 2010) was
used to aid in crop mapping. The land cover maps (Figure 1)
have eleven land cover classes viz. irrigated agricultural land,
rainfed agricultural land, fruit trees, vineyards, barren land, sand
cover, forests and shrubs, rangeland, permanent snow, built up,
and water bodies and marshland (FAO, 2010).

Reference Data
Reference data were collected from various sources for training
and validation of the classification model. The field survey was
conducted by professionals from MAIL to collect samples from
the crop field. A random sampling approach was utilized for the
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FIGURE 1 | Study area.

collection of the field data/sample points. During the collection
of samples, the location of the crop field together with field
multi-direction photographs for different crops were collected.
The second set of reference data were collected by MAIL during
a crop cutting survey that covered 17 provinces. Most of the
reference data collected through field and crop cut survey were
mainly from wheat fields. Very few samples were collected
from non-wheat crops, such as vegetable farms, orchards, and
vineyards. Samples for other crops were generated through visual
interpretation by relevant experts and using earlier land cover
maps and time-series images.

The reference data obtained through field and crop cutting
survey covered only 25 out of 34 provinces. For the remaining
10 provinces, samples were generated from high-resolution
images through visual interpretation and analysis of NDVI
time-series for the current and previous years. Google Earth
images andDigital Globe high-resolution images acquired during
October 2016–June 2017 were used for the interpretation.
Overall 16,383 reference? points from wheat (4,797) and
non-wheat (11,586) class were collected. Out of which 70%,
i.e., 11,468 samples were used for training and 30%, i.e.,

4,915 samples were utilized for validation (discussed in the
validation section).

For Helmand province, a set of reference data were received

from the United Nations Office of Drug Control (UNODC) for

opium poppy fields. Additional reference data were collected

through visual interpretation of Airbus Pleiades images. The
distribution of reference data and sources are shown in Figure 2.

Crop Phenology and Crop Calendar
The goal of the classification algorithm was to distinguish the
phenology of wheat from other crop types and land cover. Land
surface phenology (LSP) refers to the timing of different life-cycle
stages of plants (Martínez and Gilabert, 2009). The study of LSP
is important to understand vegetation-growth pattern changes
(Myneni et al., 1997; Fisher and Mustard, 2007). Satellite-
based analysis of LSP addresses the development patterns in
photosynthetic biomass by way of derived vegetation indices (Ahl
et al., 2006), such as the normalized difference vegetation index
(NDVI), the enhanced vegetation index (EVI), and a two-band
enhanced vegetation index (White et al., 1997; Zhang et al., 2003,
2014; Piao et al., 2006). Phenology is measured commonly by (i)
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FIGURE 2 | Distribution of reference data.

TABLE 2 | Satellite data specification.

Characteristics Sentinel 1 Sentinel 2 Airbus Pléiades

Acquisition date Oct. 2016 to

July 2017

Oct. 2016 to July

2017

1, 4, and 27 April

2017

Bands VV Red (B4), NIR (B8),

SWIR (B12)

Blue

Green

Red

Near-infrared

Wavelength range 5.5 cm 443–2,190 nm 430–950 nm

Spatial resolution (m) 10m 10, 20, 60m 0.5 m

Swath 250 km 290 km 20 km

Temporal resolution 12 days 5.5 days Daily

(constellation)

onset of greening, (ii) onset of senescence, (iii) peak development
during the growing period, and (iv) the length of the growing
season (Hudson and Keatley, 2010). Various methods have
been used for the assessment of phenology including threshold,
derivative, smoothing, and model-based methods (Hudson and
Keatley, 2010). Among these, the threshold-based method is the
simplest and is used by many researchers. In the threshold-based
method, the values of VI are plotted against time of year and
single values are chosen to define different stages of phenology
(Karlsen et al., 2006) though the method for specifying the
threshold varies. Some authors use single arbitrary thresholds,
e.g., 0.17 (Fischer, 1994), 0.09 (Markon et al., 1995), and 0.099

(Lloyd, 1990), whereas some authors use threshold specifiers like
the long-term average (Karlsen et al., 2006) or % peak amplitude
of VI (Jonsson and Eklundh, 2002). In this study we have used
NDVI for training samples to determine the thresholds (see
section Wheat Area Mapping Using Optical Images).

Afghanistan has diverse topographic and climatic conditions
resulting in wide variability in growing seasons across the
entire landscape. Knowledge of the growing season is important
for the acquisition of satellite data. The crop calendar is a
tool that provides information on the sowing, growing and
harvesting stages of crops (in our case, wheat). The crop calendar
information can also be used for crop type mapping using the
satellite data. Broad crop calendars at a province-level were
provided by MAIL; these were compiled in 2012. Because of
the variability in climate/weather and other factors, there can be
a shift in the timing of sowing and harvest of wheat over the
years. The calendars (Figure 3) were utilized as a starting point
to characterize the timing of phenological stages of wheat.

Study Methodology
In this study, optical and SAR data were utilized in two steps
in the process of mapping wheat areas. The flowchart of the
detailed methodology is shown in Figure 4. The description of
the methodology is given in the following sections.

Reference Data Preparation
In the first step, reference data collected from wheat and
other crops for 34 provinces of Afghanistan were subjected
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FIGURE 3 | Cropping Calendar by Agro-Ecological Zones for major crops.

to quality check. This is because some of the sample points
collected by the field staff were not always inside the crop fields.
Accordingly, adjustments were made to correct the location

based on three criteria: (a) direction and orientation of the field
photographs; (b) phenological characteristics of the crop; and
(c) visual interpretation through high-resolution Google Earth
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FIGURE 4 | Flow chart for wheat area mapping and estimation.

images. For each province, the reference points were merged and
divided randomly into two categories, i.e., training and validation
samples; 70% of the samples were used for training and the
remaining 30% for validation.

Wheat Area Mapping Using Optical Images
The wheat mapping was done at the provincial level. Optical
Sentinel-2A Level 1-C (top-of-atmosphere) satellite images
with <30% cloud cover from November 2016–July 2017 were
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used for the analysis. The data were preprocessed to remove
clouds/bad pixels. The cloud masking utilizes Sentinel-2 Band
QA60, a quality flag band, to identify and mask out flagged
cloud and cirrus pixels. After that, the median-compositing
function was used on the cloud-masked Sentinel-2 images to
generate a per-pixel median composite of each of the multi-
spectral bands and the indices for every province (Hird et al.,
2017).

NDVI is an effective means to characterize these growth
patterns during the crop cycle (Menenti et al., 1993). Using
randomly collected training samples and the seasonal composite
of sentinel 2 images, NDVI thresholds were identified to
separate the wheat from other crops during sowing, peak and
harvest time at the provincial level. NDVI thresholds were
identified for different seasons (sowing, peak and harvest) and
were different for each province. The difference in the NDVI
thresholds for different provinces is mainly because of the shift
in the phenological cycle (early and late sowing) of wheat and
other crops.

The Normalized Difference Soil Index (NDSI; Equation 2)
values were used as an additional metric to separate the wheat
from fallow land during peak season. The NDSI is preferred
because it is sensitive to canopy structure (Jin et al., 2016) and
is very effective in separating bare soil from other features like
water and sparse vegetation.

NDVI =
NIR− R

NIR+ R
(1)

NDSI =
SWIR− NIR

SWIR+ NIR
(2)

To define the thresholds for separating the wheat from other
crops, the minimum and maximum values of NDVI were
calculated for wheat using the training samples. The separation
was done as below:

Minimum of NDVIwheat samples < Wheatsowing

≤ Maximum of NDVIwheat samples (3)

Wheatpeak ≥ (Minimum of NDVIwheat samples

and NDSI < 0) (4)

Minimum of NDVIwheat samples < Wheatharvest

≤ Maximum of NDVIwheatsamples (5)

The NDVI threshold derived for 2016–2017 were specifically
derived on the basis of collected ground sample points from
the field. The NDVI threshold values depend on various factors,
such as: (i) whether it is a dry year or wet year; (ii) whether
there has been early or late sowing of the crop; and (iii)
atmospheric conditions at the time of data acquisition. Hence, the
NDVI thresholds are specific to the 2016–2017 growing season.
However, Equations (3)–(5) can be utilized for deriving theNDVI
thresholds for other years if field sample points for that particular
year are available.

Refinement of the Wheat Map Using SAR Data
Compared to the other crops, wheat has a different cropping
calendar and growth patterns (Figure 3), except for barley, some

vegetables and opium poppy have growth patterns similar to
wheat. Due to the similarity in cropping season and growth
pattern, it was difficult to accurately separate barley, opium
poppy and some vegetables using Sentinel 2 data despite having
a 5-days temporal resolution. This is because of the limited
availability of cloud-free images which makes it difficult to utilize
the image of a specific time (where wheat can be separated
from other overlapping crops). To overcome this limitation, the
wheat area map obtained from the optical image analysis was
further refined using Sentinel-1 SAR data. SAR sensors have all-
weather capability to acquire images and are sensitive to plant
structure; however, to use the SAR (S1) based classification alone
would require much more sample data for all the crops. The
initial separation of crops using optical data enabled the use
of SAR for only separating the wheat from crops with similar
crop calendar and phenology. The S1 data has a consistent
time-series in terms of incidence angle and has a wide scope
in mapping different crops (Inglada et al., 2015). Initially, SAR
(S1) datasets were preprocessed with VV polarization imagery.
Pre-processing includes orbital file correction, thermal noise
removal and terrain correction. For removing speckle noise,
the median filter with kernel window size 5 × 5 was used
for this research. The selection is based on previous studies
that demonstrate that the median filter with window size 5
× 5 produces consistent and satisfactory results than other
speckle filters and window sizes (e.g., 3 × 3 or 7 × 7)
(Ozdarici and Akyurek, 2010). Monthly median composites
were developed for the entire wheat crop cycle (i.e., sowing
until harvesting).

The analysis of S1 data shows the difference in response
patterns from different crops. However, the variability of
responses shows overlap and makes it difficult for the threshold-
based separation (Figure 5). Thus, a Random Forest (RF)
classification technique was utilized using time series S1 data
and training points to separate the wheat from other crops.
The Random Forest (RF) randomly selects a subset of training
sample through replacement to build a single tree, i.e., it uses
bagging technique where for every tree, data is sampled from
the original complete training set. There are two important
user- define parameters in RF, i.e., (i) Number of trees; (ii)
Number of variables. The generalization error always converges
as the number of trees increases (Breiman, 2001). Therefore, RF
classifier doesn’t have any issue of overfitting which can also
be attributed to the Strong Law of Large Numbers (Bercovici
and Pata, 1996). There is no well-defined rule for selection
of the number of trees. However, Guan et al. (2013) suggest
that number of trees can be as large as possible but beyond a
certain point, additional trees will not help in improving the
performance of the classifier. Also, the increased number of
trees would require high computation. In this study, we have
used the number of trees as 100. The selection was based on
the hit and trial method. Secondly, the number of variables
highly affects the performance of RF classifier, which is usually
set to the square root of the number of input variables. In
our case, we have used time series of the monthly median of
VV polarized sentinel−1 backscatter values. The application of
Random Forest was applied within the classified mask generated

Frontiers in Environmental Science | www.frontiersin.org 8 June 2020 | Volume 8 | Article 77222

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Tiwari et al. Wheat Area Mapping for Afghanistan

FIGURE 5 | Seasonal phenological characteristics using NDVI. (A) Laghman, (B) Helmand province.

FIGURE 6 | (A) Phenological characteristics of different crops (Laghman Province); (B) Phenological characteristics of wheat in different AEZ.

from the optical image analysis. This step was applied only after
the harvest season.

Accuracy Assessment
In the context of remote sensing based land cover classification,
accuracy assessment can be defined as an agreement between
a standard assumed to be correct and a classified image of
unknown quality (Grenier et al., 2008). Classification errors
occur when a pixel (or feature) belonging to one category is
assigned to another category. Accuracy assessments can be done
using qualitative methods through visual interpretation and
quantitative evaluation based on statistical methods (Cochran,
1997; Olofsson et al., 2014). The accuracy assessment for this
study was conducted in two steps. First, the results were

checked by comparing with various ancillary data to identify
gross errors. Second, the final data were used for quantitative
accuracy assessment. Of the total reference samples (ground
sample points) collected for different crops, 70% were used
for training and the remaining 30% for validation. Error
matrices were generated for each province separately. Using

these error matrices, the statistical accuracy assessment was done
by generating producer’s and user’s accuracy including Kappa
coefficients. Kappa coefficient is an indicator of accuracy of
the classified map. It is a measure of how the classification
results compare to values assigned by chance. The value of the
kappa coefficient ranges from 0 to 1. If kappa coefficient equals
to 0, there is no agreement between the classified image and
the reference image. If kappa coefficient equals to 1, then the
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classified image and the ground truth image are identical. Higher
the value of kappa coefficient, more accurate the classified map is.

Tools Used
The workflow for the wheat area mapping is implemented in
the Google Earth Engine (GEE) environment using custom Java
scripts. The reference data and other required data were loaded
into GEE asset storage. The preprocessed images were also loaded
into GEE asset to run the classification. The resulting wheat
maps were exported as Geocoded rasters and imported to ArcGIS
software for visual interpretation and accuracy analysis.

RESULTS AND DISCUSSION

Understanding the Phenological and

Temporal Backscatter Characteristics of

Wheat and Other Vegetation
Phenological Characteristics Using Optical Data
Cropping calendar information aggregated by province
(Figure 3) suggests that the sowing season of wheat overlaps
with barley, opium poppy, and vegetables. However, some
differences can be seen in the length of the season including the
start and end of the season, and peak. While analyzing the data,
we consulted province-wise crop calendars. However, due to
cloud cover, it was not possible to create monthly composites
of Sentinel 2 images covering all the provinces to generate
monthly phenology. Therefore, seasonal median composites of
NDVI were created during the sowing, peak and harvest seasons
for wheat. As an example, crop growth patterns for Laghman
province are shown in Figures 5A, 6A which depict vineyards
having distinct signals compared to wheat areas during the
sowing season. The growth pattern is also significantly different.
The orchards had higher NDVI both during the peak and harvest
time. NDVI response from vegetables varied a lot but the values
were lower than the wheat during the peak and the harvest
season. The NDVI values for opium poppy showed higher
overlap during the sowing period. It has relatively higher NDVI

values during the peak and the harvest time. The opium poppy
has a shorter cropping season so separation with barley and
opium poppy would have been possible if cloud-free monthly
images could be obtained. The NDVI characteristics of the
opium poppy in Helmand province (Figure 5B) showed higher
separability from the wheat during the sowing and peak season.
Overall, the NDVI seasonal composites were useful to distinguish
the wheat from orchards, vineyards and some vegetables. Not
much separation between these crops could be achieved using
the sowing period data alone; much more improved results can
be obtained by integrating sowing, peak and harvest season
data. However, significant overlap in NDVI was still observed
between the wheat, opium poppy, and barley using the optical
image composites.

Figure 6B shows the difference in the phenological
characteristics of wheat for different Agro-Ecological Zones
(AEZ) in Afghanistan. By examining Figure 6B, it was
observed that there is not much difference in the phenological
characteristics of wheat in the Eastern, Southern and the South
Western Region. The Western and the Central Western region
have late peak and harvest times. In the Northern and North
Eastern Region, the NDVI values at peak season were generally
low compared to other regions and also the harvest time of the
wheat was late. The shift in the sowing, peak and harvest time
of wheat is due to the different altitude, climatic zones and that
varies according to the agro-ecological zones. The difference in
the growth pattern of the wheat in different AEZs also suggests
the use of different NDVI thresholds for sowing, peak and
harvest season for different provinces.

Analysis of Temporal Backscatter Characteristics of

S1 (SAR Data)
SAR has all-weather capability and good temporal resolution.
Therefore, backscatter characteristics of wheat and other
overlapping crops/vegetation features were also examined
using Sentinel 1 SAR data. The monthly temporal median
composite images from November 2016–July 2017 were

FIGURE 7 | Monthly SAR Backscatter profile by crop. (A) Laghman, (B) Helmand.
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utilized to study the response of backscatter characteristics
of overlapping crops at different periods (Figure 7). Since
SAR backscatter varies by plant structure, distinct signals

TABLE 3 | Confusion matrix.

Irrigated wheat

Class Non-wheat Irrigated Total User’s

wheat accuracy (%)

Non-wheat 1,839 282 2,121 86

Irrigated-wheat 341 1,388 1,729 80

Total 2,180 1,670 3,850

Producer’s accuracy (%) 84 83

Overall 83.8 (%)

AC 0.50

Kappa 0.67

Rainfed wheat

Class Non-wheat Rainfed Total User’s

wheat accuracy (%)

Non-wheat 710 59 769 92

Rainfed wheat 58 238 296 80

Total 768 297 1,065

Producer’s accuracy (%) 92 80

Overall accuracy 89 (%)

AC 0.59

Kappa 0.77

were observed for different crops. However, due to high
overlapping responses from different crops (Figure 7), the
threshold-based separation was not possible using SAR
backscatter datasets. Random Forest classification was used
on the monthly composites of backscatter data to constrain
the classification within the mask (threshold from optical S2
data) obtained by phenological analysis from S2 images in the
earlier stage.

The Accuracy of the Wheat Area

Estimation
Classification error matrices were generated for each province
for wheat and non-wheat areas using validation samples. Table 3
shows the confusion matrix for Irrigated and Rainfed wheat.

The statistics of accuracy (overall, users, producers, and
Kappa) achieved at a provincial level for irrigated and rainfed
wheat is depicted in Figure 8. The mean overall accuracy for
all provinces for irrigated and rainfed wheat areas was 83.8
and 89.0%, respectively. The minimum overall accuracy was
48% for irrigated wheat in the Faryab province. This was
exceptional because of three reasons (i) cloud cover, which
hampers the quality of the images over that province; (ii) the
limited number of sample points, which makes it difficult to
identify the thresholds; and (iii) poor quality of ground sample
points. The overall accuracy was <75% for irrigated wheat
for only six provinces out of 34. For rainfed wheat, only one
province had <75% accuracy. The accuracy for the provinces
without the reference data was generally lower than those where
reference samples were available. The Kappa value forirrigated
wheat for provinces with available field data was 0.69 whereas
it was 0.54 for provinces with no field data. After evaluating the
accuracy of each province, the wheat area was estimatedusing the

FIGURE 8 | Accuracy analysis results by provinces.
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TABLE 4 | Area and accuracy using different combinations of datasets (example Kabul province).

Case Sensor used Temporal Overall accuracy (%) Area (ha)

S1 S2 Sowing Peak Harvest

Case 1 – Yes Yes Yes – 72 31,783

Case 2 Yes Yes Yes Yes – 86 17,466

Case 3 – Yes Yes Yes Yes 89 14,780

Case 4 Yes Yes Yes Yes Yes 93 13935.9

FIGURE 9 | Distribution of Irrigated and Rainfed Wheat area of Afghanistan in 2017.

FIGURE 10 | Web mapping system for dissemination and visualization of wheat map.

Frontiers in Environmental Science | www.frontiersin.org 12 June 2020 | Volume 8 | Article 77226

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Tiwari et al. Wheat Area Mapping for Afghanistan

equation (Equation 6).

Wheat area (ha)

=

(

Pixel count
)

∗

(

resolution of the image
)

∗

(

resolution of the image
)

10000

(6)

In the study, we also explored the potential accuracy for using
S1 and S2 datasets and accuracy achieved for the estimation at
different crop growth stages, i.e., sowing, peak, and harvest for
Kabul as a case study (Table 4). The accuracies and the area
estimates for different combinations and periods are presented
in Table 4. From Table 4, it can be observed that the accuracy
of the classification is highest when the assessment is done
at the end of the season, i.e., utilizing both optical and SAR
datasets. However, a decent accuracy can be achieved during peak
season using both optical and SAR images. The peak season area
estimates can be highly useful for food security management and
to address major deviations in the wheat area cultivated during
the specific season.

Distribution of Wheat in Afghanistan
Figure 9 shows the distribution of irrigated and rainfed
wheat areas for 2017 produced using both optical (S2) and
SAR (S1) data and images from sowing until harvest. By
observing the map (Figures 3, 9), it can be concluded that
the majority of the rainfed areas were located in the northern
region of the country, which is mountainous (Hindu Kush
range) and experiences a decent amount of precipitation
and snowfall during the winter season, whereas irrigated
the area is distributed across the entire country. More than
80% of wheat (both irrigated and rainfed) is produced in
sixteen provinces of which Badghis, Takhar, Balkh, Kunduz,
Herat, Helmand, and Kandahar are major wheat-producing
provinces accounting for nearly 50% of the wheat production in
the country.

Operationalization and Dissemination
The wheat mapping workflow is implemented in GEE
using a customized interface for each module. A systematic
capacity building program, including formal and on the job
training, was conducted for MAIL professionals to run the
workflow. A web-based visualization system was developed
(Figure 10) to disseminate the final results. The portal can be
accessed via the following URL link: http://geoapps.icimod.org/
afwheat/.

LIMITATIONS

While the study demonstrated a method for in-season
classification of wheat area for food security planning in
Afghanistan, there are few limitations of the study. Firstly, the
classification system is implemented in the free cloud platform of
Google earth Engine assuming that GEE will continue ingesting
the Sentinel−2 and Sentinel−1 data in its image collection. If
for any reason, GEE discontinues providing access to the GEE

cloud platform, the system could not be automated and all
the Sentinel data would have to be downloaded and processed
offline. Secondly, the threshold-based separation of wheat
from other crops has a limitation in the area where wheat is
mixed with other crops especially vegetables and opium poppy
which have similar phenology. Though SAR images were used
to separate these crops from wheat, it requires field samples
for each year which is quite challenging in the context of
Afghanistan. Alternative source like high-resolution satellite
images could be used for the collection of samples from those
areas. Third, currently, Sentinel-1 SAR images only capture
VV polarized data over Afghanistan. Multiple polarized SAR
data could be a better option for classifying wheat using the
RF algorithm. Fouth, for operationalization of the system,
capacity development has been done for Geospatial staff in
MAIL but, many of the MAIL staff have left during the study
period. Though most of the system is automated and the
system could be implemented with quick training, MAIL has
to ensure the availability of staff and knowledge transfer during
staff turnover.

CONCLUSION AND WAY FORWARD

In this study, a systematic methodology for wheat area
mapping was developed for Afghanistan with the potential
for operationalization to support the management of food
security in the country. To overcome the issues related to
low internet bandwidth, lack of sufficient ground samples
and limited availability of cloud-free optical satellite images, a
cloud-based system combining phenological characteristics using
optical images and temporal backscatter profiles using SAR
images was adopted. The system uses a multi-step approach
to provide area estimation as the wheat season progresses.
The first estimation is provided during the peak season to
give an early indication of wheat cultivated area. The more
accurate estimation is provided immediately after the harvest
season. Considering the low capacity on the use of remote
sensing based crop type mapping in Afghanistan, this approach
was automated in GEE. Through NASA SERVIR, training
activities are underway to enhance the skills of the local staff in
government agencies on mapping and monitoring of crop areas
using GEE.
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