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Editorial on the Research Topic

Recent Progresses of Non-coding RNAs in Biological and Medical Research

INTRODUCTION

Short (<200 nt) and long (>200 nt) non-coding (nc) RNAs account for majority of mammalian
transcriptional output and encompass RNA species critical for various aspects of development and
disease (Ambros, 2001; Kapranov et al., 2002, 2007; Bartel, 2004; Carninci et al., 2005). We have
witnessed an ever-increasing pace of discovery of these transcripts in the last decade, in a large
measure owing to the wide-spread application of high-throughput sequencing technologies for
RNA analysis. These ncRNAs include, but not limited to, novel members of known classes such
as miRNAs and siRNAs; new classes of small RNAs, for example, those associated with promoters
and termini of genes; new classes of long non-coding (lnc) RNAs; plethora of antisense transcripts;
circular RNAs derived from exons and introns; and many others (Laurent et al., 2015; Li et al.,
2016; Kristensen et al., 2019; Zhang et al., 2019). Non-coding RNAs have been associated with
almost every important biological process and human disease (Calin et al., 2004; Esteller, 2011;
Wapinski and Chang, 2011; Mendell and Olson, 2012). However, our understanding of most of
these transcripts is still at the initial stages.

Deeper insight into these enigmatic RNA species clearly requires efforts from both wet-lab
and computational avenues of research (Zheng et al., 2017). Therefore, this Research Topic
aimed to provide works from both directions to converge on generation of new insights into the
functionalities of ncRNAs. Thirteen papers included in it serve as a collection of recent results and
advances across multiple areas of ncRNA research field.

WET-LAB EXPERIMENTAL STUDIES OF NCRNAS

Lin et al. identified miR-30c secreted by bovine embryos as a potential biomarker for hampered
preimplantation. Two miRNAs, i.e., miR-30c and miR-10b, were found at much higher levels in
conditioned medium of slow cleaving embryos compared to intermediately cleaving ones (Lin
et al.). One of them, miR-30c, directly repressed cyclin-dependent kinase 12 (CDK12) through
a complementary site in the 3′ UTR (Lin et al.). Several DNA damage response (DDR) genes
were significantly downregulated after introducing miR-30c or repressing CDK12, suggesting that
miR-30c regulates embryo development through the DDR pathway (Lin et al.).

5

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00187
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00187&domain=pdf&date_stamp=2020-02-28
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zhengyun5488@gmail.com
mailto:philippk08@hotmail.com
https://doi.org/10.3389/fgene.2020.00187
https://www.frontiersin.org/articles/10.3389/fgene.2020.00187/full
http://loop.frontiersin.org/people/58230/overview
http://loop.frontiersin.org/people/26995/overview
https://www.frontiersin.org/research-topics/8584/recent-progresses-of-non-coding-rnas-in-biological-and-medical-research
https://doi.org/10.3389/fgene.2019.00315
https://doi.org/10.3389/fgene.2019.00315
https://doi.org/10.3389/fgene.2019.00315
https://doi.org/10.3389/fgene.2019.00315


Zheng and Kapranov Recent Progresses of Non-coding RNAs

Mature hair follicles in mammals undergo periodic self-
renewal processes called hair follicle cycles. Understanding
the molecular regulatory mechanisms of the renewal cycle is
important in medicine and developmental biology. Zhao et al.
examined deregulated miRNAs, lncRNAs and circRNAs in the
hair follicle cycle of Angora Rabbit (Oryctolagus cuniculus)
and provides comprehensive repository of ncRNAs potentially
relevant to this process.

Wang et al. profiled lncRNAs in the CD4+ T cells in the
mouse model of acute asthma. They found 36 up- and 98 down-
regulated lncRNAs in the disease compared with the control
samples (Wang et al.). The potential functions of deregulated
lncRNA were analyzed by performing miRNA binding analysis
(Wang et al.).

It has been well-established that miRNAs work by guiding
RNA-induced silencing complex (RISC) to their target RNA
binding sites in cytoplasm (Bartel, 2004). However, a steady
stream of evidence shows that some miRNAs localize and
potentially function in nucleus (Place et al., 2008; Ritland Politz
et al., 2009; Liu et al., 2018). Xun et al. proposed an efficient
experimental method to find miRNA binding sequences in
genomic DNA in vivo, thus potentially identifying miRNA
binding sites in the regulatory regions of genes.

COMPUTATIONAL STUDIES OF NCRNAS

Ou-Yang et al. proposed a novel method called two-side
sparse self-representation (TSSR) for predicting lncRNA-
disease associations. TSSR significantly outperformed other
tested methods and identified some candidate lncRNA-disease
associations (Ou-Yang et al.).

Zhang et al. proposed a method called CRlncRC2 for
predicting associations between lncRNAs and cancers. More
than four hundred cancer-related lncRNA candidates were
identified, which were evaluated by examining the Lnc2Cancer
database, reviewing literature, and performing statistical analysis
of multiple relevant data sources containing information on
mutations and differential gene expression in cancers (Zhang
et al.). These results demonstrated that CRlncRC2 is an effective
and accuratemethod for identification of cancer-related lncRNAs
(Zhang et al.).

LncRNAs are assumed to realize their functions by interacting
with other molecules, such as proteins, chromatin and other
RNA species. Shen et al. proposed a new method for
identifying lncRNA-protein interactions by employing Kernel
Ridge Regression, based on Fast Kernel Learning (LPI-FKLKRR).
LPI-FKLKRR demonstrated a superior performance compared
with a series of other methods as judged by area under precision
recall curve.

Huang et al. introduced a computational method to predict
interactions between lncRNAs and miRNAs leveraging the
information of expression profile data for these transcripts and
the graph convolution technique. The proposed model is based
on the assumption that the interaction between an lncRNA and
a miRNA could be deciphered from their co-expression pattern.
Compared with the conventional miRNA-target prediction
algorithms based on sequence matching, their work presents a
new approach to predict lncRNA:miRNA interactions.

Fukunaga et al. introduced a web server, called LncRRIsearch,
for predicting lncRNA:lncRNA and lncRNA:mRNA interactions
in human and mouse. The tissue-specific expression and
cellular localization data of lncRNAs are integrated in this web
server to explore tissue-specific or subcellular-localized lncRNA
interactions (Fukunaga et al.).

REVIEWS AND PERSPECTIVES

Li and Liu summarizing recent evidences suggesting that coding
and non-coding properties are inherent to both coding and
non-coding transcripts. In other words, some lncRNAs and
circRNAs could be used to produce short peptides, i.e., have
coding capabilities. On the other hand, 3′ and 5′ UTRs of coding
genes have non-coding functions such as recruiting RNA-binding
proteins (Li and Liu).

Smith et al. reviewed the miRNAs and lncRNAs that play key
roles in the initiation and progression of pediatric solid tumors.
Pediatric tumors, due to lower mutation load compared with
adult ones, are assumed to arise from mis-regulation of networks
normally functioning during development at transcriptional level
(Smith et al.). The authors summarized accumulating evidence of
involvement of miRNAs and lncRNAs in the regulatory networks
functioning during oncogenesis.

Watson et al. explored small RNAs in neurodegenerative
diseases. This comprehensive review discusses roles of various
small RNAs in multiple neurodegenerative diseases, including
Alzheimer’s, Parkinson’s, multiple sclerosis, Amyotrophoic
lateral sclerosis, and Huntington’s disease.

Recent evidences show that ncRNAs, both miRNAs and
lncRNAs, could serve as communication factors between cells
(Bayraktar et al., 2017; Bär et al., 2019). Ramón y Cajal et al.
proposed that the interactions between miRNAs and lncRNAs
might contribute to the cell-type specific outcomes and to the
determination of cell fate. In one model, miRNAs could be
competitively sequestered by tissue-specific lncRNAs. In another
context, miRNAs released to extracellular space as ligands could
interact with lncRNAs in different organs as receptors to either
sequester the miRNAs or induce degradation of the miRNAs or
the lncRNAs.

SUMMARY

Non-coding RNAs have been associated with various biological
processes and human diseases. These phenomena were further
expanded and reviewed by several studies in this Research Topic.
A number of wet lab and computational methods as well as
database resources reported in the Topic should help to refine
the connections between ncRNAs and diseases and identify the
mechanisms of actions of the former, thus further contributing
to the advancement of the ncRNA field.
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Long non-coding RNAs (lncRNAs) constitute a large class of transcribed RNAmolecules.

They have a characteristic length of more than 200 nucleotides which do not encode

proteins. They play an important role in regulating gene expression by interacting

with the homologous RNA-binding proteins. Due to the laborious and time-consuming

nature of wet experimental methods, more researchers should pay great attention to

computational approaches for the prediction of lncRNA-protein interaction (LPI). An

in-depth literature review in the state-of-the-art in silico investigations, leads to the

conclusion that there is still room for improving the accuracy and velocity. This paper

propose a novel method for identifying LPI by employing Kernel Ridge Regression,

based on Fast Kernel Learning (LPI-FKLKRR). This approach, uses four distinct similarity

measures for lncRNA and protein space, respectively. It is remarkable, that we extract

Gene Ontology (GO) with proteins, in order to improve the quality of information in

protein space. The process of heterogeneous kernels integration, applies Fast Kernel

Learning (FastKL) to deal with weight optimization. The extrapolation model is obtained

by gaining the ultimate prediction associations, after using Kernel Ridge Regression

(KRR). Experimental outcomes show that the ability of modeling with LPI-FKLKRR

has extraordinary performance compared with LPI prediction schemes. On benchmark

dataset, it has been observed that the best Area Under Precision Recall Curve (AUPR)

of 0.6950 is obtained by our proposed model LPI-FKLKRR, which outperforms the

integrated LPLNP (AUPR: 0.4584), RWR (AUPR: 0.2827), CF (AUPR: 0.2357), LPIHN

(AUPR: 0.2299), and LPBNI (AUPR: 0.3302). Also, combined with the experimental

results of a case study on a novel dataset, it is anticipated that LPI-FKLKRR will be a

useful tool for LPI prediction.

Keywords: lncRNA-protein interactions, multiple kernel learning, fast kernel learning, kernel ridge regression,

gene ontology
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1. INTRODUCTION

Long non-coding RNAs (lncRNAs) constitute a large class of
transcribed molecules. They have a characteristic length of more
than 200 nucleotides which do not encode proteins (St Laurent
et al., 2015). Existing research has proven that lncRNAs
can control gene expression during the transcriptional, post-
transcriptional, and epigenetic procedures through interacting
with the homologous RNA-binding proteins (Guttman and Rinn,
2012; Quan et al., 2015; Tee et al., 2015). A most recent research
found that, a kind of lncRNA named lnc-Lsm3b can refrain the
activity of the receptor RIG-I, by the induction of viruses during
the regulation of immune response (Jiang et al., 2018). This is
consistent with previous studies which have proven that lncRNAs
are playing potential roles in complex human diseases (Li et al.,
2013). Due to the laborious and time-consuming nature of wet
experimental methods in molecular biology, many state-of-the-
art computational researches have been carried out dealing with
the conundrum, in an effort to enhance accuracy and time
efficiency (Zou et al., 2012; Jalali et al., 2015; Han et al., 2018).

Since it is very difficult to extract any actual details on
the 3D structures of lncRNAs and relative proteins, many
sequence-based and secondary structure-based approaches
for the prediction of lncRNA-protein interaction (LPI)
have been published in the literature. Bellucci et al. have
established the well-known catRAPID (Bellucci et al., 2011)
by leveraging both physicochemical properties and secondary
structure information, which could be employed as compound
information to handle the problem of predicting LPI. Meanwhile,
the hybrid schema RPISeq has been introduced by Muppirala
et al. (2011), which employs both Support Vector Machines
(SVM) and Random Forest (RF). Wang et al. have proposed a
classifier combining Naive Bayes (NB) and Extended NB (ENB)
classifier to extrapolate LPI (Wang et al., 2012). Lu et al. have
established lncPro, which translates each LPI into numerical
form, and applies matrix multiplication (Lu et al., 2013). Suresh
et al. developed RPI-Pred based on SVM, by using the structure
and sequence information of lncRNAs and proteins (Suresh
et al., 2015).

In contrast to the aforementioned works, Li et al. have
introduced the LPIHN by employing an heterogeneous network,
assembled with a kind of random walk on lncRNA-protein
association profile, with a restart mechanism (RWR) (Li et al.,
2015). Ge et al. have used resource allocation mode on a
dichotomous network, and they have published the algorithm as
LPBNI (Ge et al., 2016). Lately, Hu et al. have proposed a kind of
semi-supervised link prediction scheme, entitled LPI-ETSLP (Hu
et al., 2017), which was soon upgraded to the IRWNRLPI. This
method actually integrates RWR and matrix factorization (Zhao
et al., 2018).

Zhang et al. have suggested two classes of state-of-the-art
computational intelligence approaches (Zhang et al., 2017).
The first includes supervised LPI binary classifiers, which
do not require prior knowledge of interactions as negative
instances (Bellucci et al., 2011; Muppirala et al., 2011;Wang et al.,
2012; Lu et al., 2013; Suresh et al., 2015). second category includes
semi-supervised approaches which combine known interactions

to suggest unknown LPI. The following are characteristic cases
of this class: LPIHN (Li et al., 2015), LPBNI (Ge et al., 2016),
LPI-ETSLP (Hu et al., 2017), and IRWNRLPI (Zhao et al., 2018).

Transfer learning (Jonathan et al., 1995), which can recognize
and leverage skills or knowledge learned in previous tasks to
novel tasks, is viewed as a kind of burgeoning machine learning
branch. Whereas, zero-shot learning in pairwise learning with
two-step Kernel Ridge Regression (KRR) (Stock et al., 2016), is
a special type of transfer learning, constructing predictors from
a dataset which contains both labeled and unlabeled samples.
Hence, it is a kind of effective mechanism which can reduce the
need of labeled data. In order to detect the pairwises of lncRNAs
and proteins that can interact with each other, the state-of-the-art
statistical methods have been exploited, such as Recursive Least
Squares (RLS), Kronecker RLS, Sparse Representation based
Classifier (SRC), and Multiple Kernel Learning (MKL). All these
techniques have already been applied in predicting Protein-
Protein Interactions (PPIs) (Ding et al., 2016; Liu X. et al., 2016),
Drug-Target Interactions (DTIs) (Xia Z. et al., 2010; Laarhoven
et al., 2011; Twan and Elena, 2013; Nascimento et al., 2016; Shen
et al., 2017b), binding sites of biomolecules (Ding et al., 2017;
Shen et al., 2017a) identification of disease-resistant genes (Xia J.
et al., 2010), andmicroRNA-disease associations (Zou et al., 2015;
Peng et al., 2017) with comparative consequences.

With reference to the above researches, we have enriched the
categories of similarity measures adopted during LPI prediction.
Integration of the heterogeneous kinds of similarity information
is achieved by applying Fast Kernel Learning (FastKL) which
deals with kernel weight optimization. This is done through
the integration of the prediction architectures for weighting
heterogeneous kernels. This research proposes a kind of two-
step Kernel Ridge Regression (KRR) applied in the field of
LPI prediction. LPI-FKLKRR has proven to be a more reliable
and effective approach for LPI prediction, compared with other
competitive methods. The core of the algorithm proposed herein
has been evaluated on the benchmark dataset of LPIs. What
is especially encouraging, is that many of the LPI predictions
made by our method have been confirmed, with a high degree
of correlation. Also, we have conducted a comparative testing
on a novel dataset to illustrate the stable performance of the
LPI-FKLKRR.

2. METHODS

In this section, we focus on the elaboration of architecture
for our model. Its basic structural components-entities are
the following: The known interactions matrix of LPI and the
multivariate information that consists of lncRNA expressions,
the local network, the sequence information and moreover
the Gene Ontology (GO). It is imperative to combine
all the similarity information together with the respective
combination weights. Finally, we have developed and employed
the LPI with Fast Kernel Learning based on Kernel Ridge
Regression Prediction (LPI-FKLKRR) identification strategy,
which utilizes a kind of two-stage Kernel Ridge Regression in LPI
prediction.
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2.1. Problem Specification
Suppose there are m lncRNAs and n proteins involved in LPI.
We formally define two kinds of molecules as L = {li | i =

1, 2, · · · ,m} and P = {pj | j = 1, 2, · · · , n}, respectively. Hence,
the interactions between lncRNAs and proteins can be intuitively
and succinctly expressed as an adjacency matrix F with m × n,
which can be formulated as Equation (1)

F =





















f1,1 f1,2 · · · f1,j · · · f1,n
f2,1 f2,2 · · · f2,j · · · f2,n
...

...
. . .

...
. . .

...
fi,1 fi,2 · · · fi,j · · · fi,n
...

...
. . .

...
. . .

...
fm,1 fm,2 · · · fm,j · · · fm,n





















m×n

(1)

where fi,j in matrix F corresponds to the prediction value of
pairwise 〈li, pj〉, 1 ≤ i ≤ m, 1 ≤ j ≤ n, and m, n ∈ N

∗. If
lncRNA li can interact with protein pj, the value of fi,j is marked
as 1, otherwise it is marked as 0.

Obviously, the identification of new interactions between
lncRNAs and proteins can be viewed as a task suitable for a
recommender system (Koren et al., 2009) of a bipartite network,
which can mine and detect the potential associated individuals.
To this end, we use Multiple Kernel Learning (MKL) to design
the optimization with respect to the prediction of LPI. In
the following chapter, we will support the argument that the
similarity matrix is equivalent to a kernel.

2.2. lncRNA Kernels and Protein Kernels
In order to conduct MKL, it is inevitable to construct
similarity matrices of molecules in lncRNA and protein kernel
spaces, respectively. Specifically, lncRNA expression, protein GO,
lncRNA sequence, protein sequence, and known interactions
between one lncRNA and all proteins are considered in our
framework. In addition, the training adjacency matrix Ftrain is
obtained bymasking the known pairwise 〈li, pj〉, where the partial
known elements in the matrix are set to 0 for the validation set,
which are represented in Figure 1.

2.2.1. Gaussian Interaction Profile Kernel
Interactions can be reflected in the connectivity behavior in the
subjacent network (Laarhoven et al., 2011; Twan and Elena,
2013). For the lncRNAs, we extract information of lncRNA
interactions corresponding to each row of the training adjacency
matrix Ftrain. Then we use a broadly applicable Gaussian
Interaction Profile (GIP) kernel to device interaction kernel
defined for lncRNA li and lk (i, k = 1, 2, · · · ,m). GIP about
protein pj and ps (j, s = 1, 2, · · · , n) can be generated in a similar
way. As a summary, each element value in GIP can be represented
as follows:

Klnc
GIP(li, lk) = exp(−σlnc‖Fli − Flk‖

2) (2a)

K
pro
GIP(pj, ps) = exp(−σpro‖Fpj − Fps‖

2) (2b)

where Fli , Flk and Fpj , Fps are the matrices of interactions for
lncRNA li, lk and protein pj, ps, respectively. The Gaussian kernel

bandwidths σlnc and σpro are initialized to the value of 1 in
the experiments. Practically, when employing 5-fold CV and
LOOCV, the GIP kernel similarity should be recalculated each
time based on the training samples.

2.2.2. Sequence Similarity Kernel
A sequence S with length d is an ordered list of characters,
which can be written as S = c1c2 · · · ch · · · cd (1 ≤ h ≤

d). Enlightened by state-of-the-art methods (Yamanishi et al.,
2008; Nascimento et al., 2016), we use normalized Smith-
Waterman (SW) score (Smith and Waterman, 1981) to measure
the sequence similarity. The formulations are represented as
follows:

Klnc
SW(li, lk) = SW(Sli , Slk )/

√

SW(Sli , Sli )SW(Slk , Slk ) (3a)

K
pro
SW(pj, ps) = SW(Spj , Sps )/

√

SW(Spj , Spj )SW(Sps , Sps ) (3b)

where SW(·, ·) stands for Smith-Waterman score; Sli and Slk
are the sequences for lncRNA li and lk; Spj and Sps denote the
sequences for protein pj and ps.

2.2.3. Sequence Feature Kernel
We obtain the sequence feature kernel by extracting the feature of
the sequences about lncRNAs and proteins. In practice, Conjoint
Triad (CT) (Shen et al., 2007) and Pseudo Position-Specific
Score Matrix (Pse-PSSM) (Chou and Shen, 2007) are adopted
to describe lncRNA and protein sequences, respectively. Both
Sequence Feature kernels (SF) Klnc

SF and K
pro
SF are constructed

based on a Radial Basis Function kernel (RBF) with bandwidth
equals to 1.

2.2.4. lncRNA Expression Kernel
It is interesting to identify genes with concordant behaviors
because different genes always show different behaviors (Lai et al.,
2017). Expression profiles of lncRNAs refers to 24 cell types
which come from NONCODE database (Xie et al., 2014). After
expressing each lncRNA as a 24-dimensional expression profile
vector, the kernel of lncRNAs expression Klnc

EXP can be generated
according to the RBF, and kernel bandwidth is also set to 1.

2.2.5. GO Kernel
Inspired by a former research (Zheng et al., 2012), similar Gene
Ontology (GO) with proteins are expected to act in similar
biological processes, or to reside in similar cell compartments, or
to have similar molecular functions. Therefore, GO annotations
are employed in this paper to generate a similarity matrix in
protein space. The files of Gene Ontology (GO) terms have been
downloaded from the GOA database (Wan et al., 2013).

Semantic similarity is always based on the overlap of the terms
associated with two proteins (Wu et al., 2013). Jaccard value
which we exploited in measuring the semantic similarity of two
GO terms tj and ts related to proteins pj and ps is defined as
follows:

Jaccard(tj, ts) =
|tj ∩ ts|

|tj ∪ ts|
(4)
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FIGURE 1 | Technical flow chart of our LPI prediction model. (A) LncRNAs and proteins belong to two separated and independent spaces, respectively; (B) Fast

kernel learning is applied to estimate the weight of each kernel in the corresponding space; (C) Kronecker Product is adopted in generating the final kernel matrix;

(D) Kernel Ridge Regression (KRR) is applied in LPI prediction.

where tj ∩ ts denotes the common terms between pj and ps, and
tj ∪ ts refers to total number of terms of pj and ps. However, there
has not been any formal definition with GO common terms tj∩ ts
given before.

We denote that, if the two sequences are completely
consistent, two sequences S1 and S2 have common terms of GO.
For example, given three sequences S1 = 〈3, 1, 5〉, S2 = 〈3, 2, 5〉,
and S3 = 〈3, 2, 5〉, if we only follow that all the corresponding
locations of three sequences have non-zero values, then all three
sequences have common terms. Nevertheless, for sequence S2,
it can be said that S2 has common terms with S3, but does not
have common terms with S1, because the second characters of S1
and S2 are different. Thus, we obtain a more sparse GO similarity
matrix K

pro
GO which can facilitate the computation.

2.3. Fast Kernel Learning
In MKL, we need to find an optimal mapping vector w, i.e.,
we require to choose a kind of optimal weighting strategy so
that object similarity matrices can be appropriately constructed.
Concretely, the vector of parameter weight values for lncRNA
kernels and protein kernels are represented as wlnc and wpro,
respectively. We have already described that there are four
kernels in lncRNA space including Klnc

GIP, K
lnc
SW , Klnc

SF , and Klnc
EXP,

and four kernels in protein space including K
pro
GIP, K

pro
SW , K

pro
SF , and

K
pro
GO, respectively. The optimal lncRNA and protein kernels are

given as follows:

Klnc =

4
∑

a=1

wlnc
a Klnc

a , Klnc
a ∈ R

m×m (5a)

Kpro =

4
∑

a=1

w
pro
a K

pro
a , K

pro
a ∈ R

n×n (5b)

where wlnc
a and w

pro
a denote each element in wlnc and wpro;

Klnc
a and K

pro
a correspond each kind of normalized similarity

matrix among the heterogenous similarity kernels in lncRNA and
protein spaces.

According to the description of Fast Kernel Learning
(FastKL) (He et al., 2008),w is used as a substitute for the required
optimal solution wlnc or wpro, and K denotes kernel matrix Klnc

or Kpro. FastKL is not only minimizing the distance between K

and Y, where Y = yyT, y is a matrix corresponds to all training
set labels. It considers the regularization term ‖w‖2 that is used
to prevent overfitting. To this end, w can be drawn from the
Formula 6 as follows:

min
w,K

‖K− Y‖2F + λ‖w‖2

s.t.

J
∑

a

wa = 1
(6)

where F represents Frobenius norm and λ is the tradeoff
parameter. In practice, we set λ 10000 when selecting the optimal
parameter value.

As a step forward to deduct Equation (6), since the Frobenius
norm of a matrix equals to the trace about the product between
the matrix itself and matrix of its transformation, i.e., ‖X‖2F =

tr(XXT), the object function with respect to the optimal solution
w can be simplified as follows:

min
w

wT(A+ λI)w− 2bTw

s.t.

J
∑

a

wa = 1 (7)

Au,v = tr(KT
uKv)

bv = tr(YTKv)

where tr(·) is the symbol of the trace operator; Au,v represents
each element in matrix A; Ku and Kv denote two different kernel
matrices.

Recapitulating the above statement, through gaining the final
wlnc and wpro, we have achieved the goal of MKL for fusing all
kinds of similarity matrices so that the input matrix of KRR can
be generated.
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FIGURE 2 | Schematic diagram of two-step Kernel Ridge Regression. (A) An

intermediate prediction of LPI is conducted using an lncRNA KRR model. (B)

Protein KRR is trained using the last step information for predicting new

proteins.

2.4. Kernel Ridge Regression
Stock et al. developed a scenario of pairwise learning, called
Kernel Ridge Regression (KRR) (Stock et al., 2016), which can
be applied in binary classification. The basic idea of KRR is to
minimize a suitable objective function with an L2-complexity
penalty so that it can fit the labeled dyads as much as possible.
Specifically, the KRR prediction for the LPI pairwise 〈li, pj〉 has
two steps which are shown in Figure 2.

In the first step, a prediction with respect to the new protein
for all intermediate LPI pairwise is obtained as an 1×n vector fi,·,
which can be computed as follows:

fi,· = kTlnc(Klnc + λlI)
−1F (8)

where klnc denotes the vector of lncRNA kernel evaluation
between lncRNAs in the training set and a protein in the test set,
and λl is the regularization parameter.

In the second step, we can obtain each element f ∗i,j in the

prediction matrix F∗ by using another regularization parameter
λp as following Equation (9):

f ∗i,j = kTpro(Kpro + λpI)
−1fTi,· (9)

Considering the optimal lncRNAs and proteins kernels Klnc and
Kpro, the general objective function of the two-step KRR is
defined as follows:

min
F∗

∑

(i,j,f )∈F

(fi,j − f ∗i,j)
2
+ vec(F∗)T4−1vec(F∗) (10)

where vec(·) is a vectorization operator that can rearrange the
matrix elements in one row; F∗ denotes the prediction of the
original matrix F which can be estimated with the application
of the LPI-KRR. Objective function in Equation (10) need to be
minimized by iterations, and the iterations usually gets converged
in about 5–10 iterations.

The kernel matrix 4 that is used in Equation (10) is defined as
Equation (11):

4 = Kpro ⊗ Klnc(λlλpI⊗ I+ λpI⊗ Klnc + λlKpro ⊗ I)−1 (11)

By using the lncRNAs, the proteins’ kernels and the two
regularization parameters λl and λp, each element in matrix F∗

can be represented as Equation (12):

F∗ = Klnc(Klnc + λlI)
−1F(Kpro + λpI)

−1Kpro (12)

The LPI-FKLKRR calculation framework is illustrated in the
following Algorithm 1.

Algorithm 1 Fast Kernel Learning based on Kernel Ridge
Regression (LPI-FKLKRR).

Input: Klnc
GIP, K

lnc
SW , Klnc

SF , K
lnc
EXP ∈ R

m×m and K
pro
GIP, K

pro
SW , K

pro
SF ,

K
pro
GO ∈ R

n×n; F ∈ R
m×n.

Output: F∗.
1: Calculate wlnc and wpro and adjust the parameter λ by Eq.7;
2: Calculate Klnc and Kpro by using Eq.5a and Eq.5b;
3: Calculate the prediction value in matrix F∗ by Eq.12;
4: Adjust the parameters λl and λp by using Eq.10 and Eq.11,

and produce the optimal F∗.

3. RESULTS

This section provides a quantitative evaluation that employ
benchmark dataset to assess our approach. We first show a result
of 5-fold cross validation, then conduct an independent analyzing
about performance of single kernel. Moreover, LPI-FKLKRR
is not only compared with mean weighted model but also be
assessed in parallel comparison including other outstanding
methods. Furthermore, we utilize the case study to evaluate our
method in predicting unknown lncRNA-protein interactions.
What’s more, there is also a comparison between LPI-FKLKRR
and state-of-the-art work on a novel dataset.

3.1. Benchmark Dataset
Although there exists a high volume of web-based
resources (Park et al., 2014), available datasets should be carefully
selected. We have acquired the benchmark dataset according
to the state-of-the-art work by Zhang et al. (2017). They
have experimentally determined lncRNA-protein interactions
with 1114 lncRNAs and 96 proteins from NPInter V2.0 (Yuan
et al., 2014). Non-coding RNAs and sequence information of
proteins were gleaned from NONCODE (Xie et al., 2014) and
SUPERFAMILY database (Gough et al., 2001), respectively.
Zhang et al. also removed lncRNAs and proteins whose
expression or sequence information were unavailable in order
to reduce the pressure of computation. Those lncRNAs and
proteins with only one interaction were removed for the same
reason. A dataset with 4158 lncRNA-protein interactions which
contains 990 lncRNAs and 27 proteins were finally collected.
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3.2. Evaluation Measurements
To gauge the stability of our model, 5-fold Cross Validation (5-
fold CV) has been employed. The Area Under ROC curve (AUC)
and Area Under the Precision-Recall curve (AUPR) measures
have been utilized to evaluate our approach. We would like to
emphasize that AUPR is more significant than AUC as a quality
measurement because of the sparsity of the true lncRNA-protein
interactions.

3.3. Experimental Environment
The proposed LPI-FKLKRR algorithm, has been implemented by
using MATLAB as the development and compilation platform.
All programs have been validated on a computer with 3.7 GHz
4-core CPU, 20 GB of memory, and 64-bit Windows Operating
Systems.

3.4. Parameter Optimization
Grid search schema has been adopted to get the optimized values
of the parameters λl and λp. The range of λl is from 20 to 980
while λp parameter ranges from 2 to 27. The criteria used to select
the optimal values of λl and λp were the highest AUPR value and
the lowest values of λl and λp, due to the fact that the smaller
values of λl and λp, the less is the running time of the algorithm.

TABLE 1 | The AUPR and AUC of different kernels on benchmark dataset.

Kernel type AUPR AUC

GIP kernel 0.6429 0.8671

Sequence feature kernel 0.4885 0.8250

Sequence similarity kernel 0.5024 0.8342

Gene expression & protein GO 0.2663 0.6626

Multiple kernels with mean weighted 0.6433 0.8840

Multiple kernels with FastKL weighted 0.6950 0.9063

Bold values represent the best value in columns.

We have found that λl = 20.89 and λp = 0.02 are the best values
for the two parameters (AUPR: 0.6950).

3.5. Performance Analysis
After testing different kinds of kernels on the benchmark dataset,
we obtain that the AUPRs of GIP kernel, sequence feature kernel,
sequence similarity kernel and gene expression & protein GO
kernel are 0.6429, 0.4885, 0.5024, and 0.2663, respectively. The
detailed results are listed in Table 1. It is obvious that GIP kernel
has the highest AUPR value (among the single Kernels). Multiple
kernels with the FastKL weighted model achieves AUPR equal to
0.6950, which is an outstanding performance. In Figure 3, we can
see that the FastKL performs better than the other models. It is

FIGURE 4 | The kernel weights in the experiment of LPI-FKLKRR on

benchmark dataset.

FIGURE 3 | The ROC and PR curve of different models.
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clear that the FastKL is effective in improving the performance of
LPIs prediction.

In addition, Figure 4 shows the weight of each kernel,
including lncRNA space and protein space in a 5-fold
CV experiment. Conspicuously, weights of GIP kernel
obtain the largest values on the lncRNA space. However,
four kinds of protein similarity matrices equally divide the
weights in protein space. This occasion should be explained
that four kinds of protein similarity have low degree of
overlapping in the representation space, i.e., each kind
of protein similarity presents a specific aspect of protein
feature.

3.6. Comparing to Existing Predictors
The comparison between our approach and other existing
methods are showed in Table 2. It should be mentioned that
the highest AUPR 0.6950 is achieved by our proposed approach,
which is superior to all others. The AUPR values for the
other established methods are the following: integrated LPLNP
(AUPR: 0.4584) (Zhang et al., 2017), RWR (AUPR: 0.2827) (Gan,
2014), CF (AUPR: 0.2357) (Sarwar et al., 2001), LPIHN (AUPR:
0.2299) (Li et al., 2015), and LPBNI (AUPR: 0.3302) (Ge et al.,

TABLE 2 | Comparison to existing methods via 5-fold CV on benchmark dataset.

Method AUPR AUC

LPI-FKLKRR 0.6950 0.9063

Integrated LPLNP* 0.4584 0.9104

RWR* 0.2827 0.8134

CF* 0.2357 0.7686

LPIHN* 0.2299 0.8451

LPBNI* 0.3302 0.8569

*Results are derived from Zhang et al. (2017). Bold values represent the best value in

columns.

2016). There are two well-founded reasons for the successful
improved performance of our method. Firstly, FastKL effectively
combines multivariate information by employing multiple kernel
learning. Simultaneously, LPI-KRR is an effective prediction
algorithm employing two-step KRR to fuse lncRNA and protein
feature spaces. Due to the fact that there are extrapolation
difficulties for the imbalanced datasets, PRC is more effective
than ROC on highly imbalanced datasets. Therefore, we have
obtained acquire competitive AUC value, compared to the state-
of-the-art algorithms. From all the above we conclude that our
approach can be a useful tool in the prediction of LPI.

3.7. Case Study
We have also used Local Leave-One-Out Cross-Validation
(LOOCV) to evaluate the predictive performance. Local LOOCV
masks the relationship between one protein and all lncRNAs.
Our model is trained by the rest of the known information
no matter if they are interacting or not and it is tested on a
masked relationship. For a protein not appearing in the trial,
our approach can predict the strength of interactions between
this protein and gross 990 lncRNAs in the experiment. We
have ranked these values of interactions in descending order,

TABLE 3 | The AUPR and AUC of different kernels by local LOOCV on benchmark

dataset.

Kernel AUPR AUC

GIP kernel 0.1690 0.5189

Sequence feature kernel 0.2814 0.6800

Sequence similarity kernel 0.3546 0.7333

Gene expression & protein GO 0.3101 0.7301

Multiple kernels with mean weighted 0.4956 0.7898

Multiple kernels with FastKL weighted 0.5506 0.7937

Bold values represent the best value in columns.

FIGURE 5 | The ROC and PR curve by local LOOCV on benchmark dataset.
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since high ranking is connected to high interaction possibility.
In Figure 5, we can see that the performance of single kernel,
average weighted kernels and weighted kernels with FastKL have
failed. The FastKL weighted model using Multiple kernels, gains
the best performance with values 0.5506 and 0.7937 for the
AUPR and the AUC respectively. The detailed results are listed
in Table 3.

As shown in Table 4, two cases of the top 20 interactions
(including proteins ENSP00000309558 and ENSP00000401371),
have been extrapolated by LPI-FKLKRR. Also, two cases
in Table 5 including lncRNAs, NONHSAT145960 and
NONHSAT031708 of the top 10 interactions have been
extrapolated by the LPI-FKLKRR. We check them up in the
masked relationship between one protein and all lncRNAs,
or one lncRNA and all proteins. Our approach achieves
successful identification proportion equal to 11/20 and 12/20

on the proteins ENSP00000309558 and ENSP00000401371,
respectively, and it achieves identification proportion equal
to 6/10 and 6/10 on lncRNAs NONHSAT145960 and
NONHSAT031708.

3.8. Speed Comparison on Benchmark
Dataset
Practically, running speed is also play an important role in
predicting LPI. The state-of-the-art methods of peer groups, such
as LPLNP, can produce high-accuracy performances. Hence, the
overall evaluation of the success of each approach, should also
consider the Running Time (RT). Thus, a comparison between
the RT of LPLNP and LPI-FKLKRR, has been performed. The
comparative RT analysis between LPLNP and LPI-FKLKRR after
running the available source code of LPLNP from the network, is
illustrated in Table 6.

TABLE 4 | Top 20 interactions rank on protein ENSP00000309558 and ENSP00000401371.

lncRNA ID Protein ID Rank Confirm? lncRNA ID Protein ID Rank Confirm?

NONHSAT011652 ENSP00000309558 1 Confirmed NONHSAT002344 ENSP00000401371 1 Confirmed

NONHSAT027070 ENSP00000309558 2 Confirmed NONHSAT104639 ENSP00000401371 2 –

NONHSAT104991 ENSP00000309558 3 Confirmed NONHSAT027070 ENSP00000401371 3 Confirmed

NONHSAT001511 ENSP00000309558 4 Confirmed NONHSAT104991 ENSP00000401371 4 Confirmed

NONHSAT079374 ENSP00000309558 5 – NONHSAT101154 ENSP00000401371 5 –

NONHSAT009703 ENSP00000309558 6 Confirmed NONHSAT041921 ENSP00000401371 6 Confirmed

NONHSAT138142 ENSP00000309558 7 Confirmed NONHSAT042032 ENSP00000401371 7 –

NONHSAT104639 ENSP00000309558 8 Confirmed NONHSAT131038 ENSP00000401371 8 Confirmed

NONHSAT135796 ENSP00000309558 9 Confirmed NONHSAT084827 ENSP00000401371 9 –

NONHSAT077129 ENSP00000309558 10 – NONHSAT021830 ENSP00000401371 10 Confirmed

NONHSAT023404 ENSP00000309558 11 – NONHSAT001953 ENSP00000401371 11 Confirmed

NONHSAT063901 ENSP00000309558 12 Confirmed NONHSAT145923 ENSP00000401371 12 Confirmed

NONHSAT099046 ENSP00000309558 13 – NONHSAT039675 ENSP00000401371 13 –

NONHSAT031489 ENSP00000309558 14 – NONHSAT135796 ENSP00000401371 14 Confirmed

NONHSAT041921 ENSP00000309558 15 Confirmed NONHSAT011652 ENSP00000401371 15 Confirmed

NONHSAT013639 ENSP00000309558 16 – NONHSAT044002 ENSP00000401371 16 –

NONHSAT027206 ENSP00000309558 17 – NONHSAT112849 ENSP00000401371 17 –

NONHSAT134595 ENSP00000309558 18 – NONHSAT114444 ENSP00000401371 18 Confirmed

NONHSAT054716 ENSP00000309558 19 – NONHSAT007429 ENSP00000401371 19 Confirmed

NONHSAT122291 ENSP00000309558 20 Confirmed NONHSAT123220 ENSP00000401371 20 –

TABLE 5 | Top 10 interactions rank on lncRNA NONHSAT145960 and NONHSAT031708.

lncRNA ID Protein ID Rank Confirm? lncRNA ID Protein ID Rank Confirm?

NONHSAT145960 ENSP00000258962 1 – NONHSAT031708 ENSP00000385269 1 Confirmed

NONHSAT145960 ENSP00000240185 2 Confirmed NONHSAT031708 ENSP00000258962 2 –

NONHSAT145960 ENSP00000385269 3 – NONHSAT031708 ENSP00000240185 3 Confirmed

NONHSAT145960 ENSP00000349428 4 Confirmed NONHSAT031708 ENSP00000349428 4 –

NONHSAT145960 ENSP00000379144 5 Confirmed NONHSAT031708 ENSP00000258729 5 Confirmed

NONHSAT145960 ENSP00000338371 6 Confirmed NONHSAT031708 ENSP00000338371 6 –

NONHSAT145960 ENSP00000401371 7 Confirmed NONHSAT031708 ENSP00000379144 7 –

NONHSAT145960 ENSP00000254108 8 – NONHSAT031708 ENSP00000254108 8 Confirmed

NONHSAT145960 ENSP00000258729 9 Confirmed NONHSAT031708 ENSP00000401371 9 Confirmed

NONHSAT145960 ENSP00000413035 10 – NONHSAT031708 ENSP00000371634 10 Confirmed
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Although LPLNP and LPI-FKLKRR have competitive AUC
(according to results shown in Table 2) it is clear that the LPI-
FKLKRR achieves better average running performance using
only 11.48 s to accomplish the prediction task of LPI. This
is much faster than the 352.93 s of the LPLNP (as shown in
Table 6. Moreover, the standard deviation also manifest that LPI-
FKLKRR is both fast and stable. Furthermore, considering the
higher AUPR value of LPI-FKLKRR, we can strongly suggest that
LPI-FKLKRR can be both a time-saving and useful tool for LPI
prediction.

3.9. Evaluation on Novel Dataset
To support the results of the benchmark experiments, we have
employed another dataset which is published by Zheng et al. The
size of the novel dataset is larger than the benchmark dataset,
which is shown in Table 7.

Originated from the same databases as the benchmark dataset,
the novel dataset consists of 4467 LPIs, including 1050 unique
lncRNAs and 84 unique proteins. We have conducted the
comparison of LPI-FKLKRR and PPSNs (Zheng et al., 2017)
by applying 5-fold CV on novel dataset, and list the results in
Table 8. The AUC value for the LPI-FKLKRR algorithm is equal
to 0.9669, which is higher than the one of PPSNs. What’s more,
the AUPR value which is equal to 0.7062 for the novel dataset
proves the robustness performance of the LPI-FKLKRR on an
imbalanced dataset.

Apart from the baseline methods that we have done test
in Figure 2, we make a new comparison on the dataset that
proposed by Zheng et al. with methods including NRLMF
and CF. NRLMF, which is also capable of integrating various
data sources, achieved good performance for both MDA
prediction (Yan et al., 2017; He et al., 2018) and DTI
prediction (Liu Y. et al., 2016). And CFmethod that has proposed
by Sarwar et al., is another state-of-the-art work. From Table 8,
we notice that no matter from the aspect of AUPR or AUC, the
value of LPI-FKLKRR are higher than NRLMF (AUPR:0.4010,
AUC:0.8287) and CF (AUPR:0.4267, AUC:0.8103).

Both the 5-fold CV and local LOOCV are also done in
the novel dataset experiment. After testing different kinds of
kernels on the novel dataset, we obtain that in the 5-fold CV,
the AUPRs of GIP kernel, sequence feature kernel, sequence
similarity kernel and gene expression & protein GO kernel are
0.6812, 0.4819, 0.4846, and 0.2379, respectively. Multiple kernels
with the FastKL weighted model achieves AUPR equal to 0.7076,
which is an outstanding performance. In Figures 6, 7, we can
see that the FastKL performs better than the other models.

TABLE 6 | Comparison of running time between LPI-FKLKRR and LPLNP in 10

times.

Method Average running time(s) Standard deviation(s)

LPI-FKLKRR 11.48 0.2126

LPLNPa 352.93 2.6656

aThe address of LPLNP is given by Zhang et al. (2017). Bold values represent the best

value in columns.

This result is consistent with the consequence on benchmark
dataset.

CONCLUSIONS AND DISCUSSION

In this paper, we have proposed a novel prediction method
for the prediction of lncRNAs-protein interactions by using
Kernel Ridge Regression, combined with a multiple kernel
learning approach (LPI-FKLKRR). LPI-FKLKRR employs fast
kernel learning to fuse lncRNA and protein similarity matrices,
respectively. A two-step Kernel Ridge Regression is adopted to
forecast the interactions between lncRNAs and proteins. The
5-fold cross validation (5-fold CV) testing of the proposed
LPI-FKLKRR algorithm, achieved very reliable and promising
results when applied on the benchmark dataset (AUPR: 0.6950).
Furthermore, LPI-FKLKRR achieves satisfactory prediction
performances compared with the state-of-the-art approaches.
A comparison on a novel dataset illustrates the stability
performance of our model.

From the view point of the classification method about the
prediction, the problem setting of lncRNA-protein interaction
prediction can be the same with miRNA-disease interaction
prediction and drug-target interaction prediction (Ezzat et al.,
2018). For instance, CF method, which has proposed by
Sarwar et al, has a recent work named MSCMF, which
projects drugs and targets into a common low-rank feature
space Zheng et al. (2013). This method can be transfered to
the area of LPI prediction. Ezzat et al. have supposed that
chemogenomic methods can be categorized into five types,
including neighborhood models, bipartite local models, network
diffusion models, matrix factorization models, and feature-based
classificationmodels. Consequently, in the future wewill improve
the predicting performance by adding information such as
available 3D structure data, by constructing more heterogeneous
similarity matrices, by changing weighting strategy or by drawing
other effective regression models.

TABLE 7 | The information of two datasets in the experiment.

Dataset Number of lncRNAs Number of proteins LPIs

benchmark dataset* 990 27 4,158

novel dataset* 1,050 84 4,467

*The benchmark dataset and the novel dataset come from the paper of Zhang et al. (2017)

and Zheng et al. (2017), respectively.

TABLE 8 | The AUPR and AUC of different methods on novel dataset.

Method AUPR AUC

LPI-FKLKRR 0.7062 0.9669

PPSNs –a 0.9098

NRLMF 0.4010 0.8287

CF 0.4267 0.8103

aAUPR is not exploited by Zheng et al. (2017). Bold values represent the best value in

columns.
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FIGURE 6 | The ROC and PR curve of different models with novel dataset by 5-fold CV.

FIGURE 7 | The ROC and PR curve by local LOOCV on novel dataset.
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Intercellular communication is essential for the development of specialized cells, tissues,
and organs and is critical in a variety of diseases including cancer. Current knowledge
states that different cell types communicate by ligand–receptor interactions: hormones,
growth factors, and cytokines are released into the extracellular space and act on
receptors, which are often expressed in a cell-type-specific manner. Non-coding RNAs
(ncRNAs) are emerging as newly identified communicating factors in both physiological
and pathological states. This class of RNA encompasses microRNAs (miRNAs, well-
studied post-transcriptional regulators of gene expression), long non-coding RNAs
(lncRNAs) and other ncRNAs. lncRNAs are diverse in length, sequence, and structure
(linear or circular), and their functions are described as transcriptional regulation,
induction of epigenetic changes and even direct regulation of protein activity. They
have also been reported to act as miRNA sponges, interacting with miRNA and
modulating its availability to endogenous mRNA targets. Importantly, lncRNAs may have
a cell-type-specific expression pattern. In this paper, we propose that lncRNA–miRNA
interactions, analogous to receptor–ligand interactions, are responsible for cell-type-
specific outcomes. Specific binding of miRNAs to lncRNAs may drive cell-type-specific
signaling cascades and modulate biochemical feedback loops that ultimately determine
cell identity and response to stress factors.

Keywords: cancer, cellular communication, cell signaling, long non-coding RNA, microRNA, epigenetics

INTRODUCTION

Cancer is a complex disease and a major cause of death worldwide. Development of neoplastic
disease is a multistep process involving the accumulation of numerous molecular changes. These
changes impact cellular function within the tumor and its microenvironment, ultimately resulting
in the hallmarks of cancer (Hanahan and Weinberg, 2011).

To date, most researchers have aimed to define the molecular mechanisms of tumorigenesis
and cancer progression based on the classical gene expression theory – transcription of coding
genes followed by protein synthesis. Following this approach, numerous genetic (e.g., mutations
and genomic aberrations) and epigenetic alterations have been identified to have an association
with carcinogenesis (Lengauer et al., 1998; Kagohara et al., 2018). In addition, alterations in
post-transcriptional regulation of gene expression (e.g., splicing), mRNA translation (e.g., miRNAs)
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and post-translational protein modification (e.g., phosphory-
lation) have been reported in almost every type of cancer.
When different combinations are taken into consideration, the
potential alterations are almost infinite. However, studies have
mainly been based on around 20,000 protein-coding genes,
corresponding to approximately 2% of the whole transcribed
genome (Bertone et al., 2004; Carninci et al., 2005); the other
transcripts include a large variety of non-coding RNAs (ncRNAs).
Continuous generation of RNA sequencing (RNAseq) data shows
that ncRNAs are strongly deregulated in pathological processes –
particularly in multifactorial diseases like cancer (Cipolla et al.,
2018). Hence, current limitations to deciphering the molecular
mechanisms of cancer might be due to the fact that the putative
implications of a large part of the genome remain undefined.

While ncRNA genes were for years considered as an irrelevant
part the genome there is growing evidence that mammalian cells
produce them in their thousands (Bertone et al., 2004; Carninci
et al., 2005). Yet, in the absence of experimental verification
of their function, most (>95%) of these transcripts are still
considered transcriptional noise (Ponjavic et al., 2007). Studies
dating back to the early 1990s indicated that certain lncRNAs
may have similar functions to common mRNAs (Brannan et al.,
1990; Brown et al., 1991), and since then, detailed studies on
certain well-characterized non-coding transcripts have provided
mechanistic insights. However, the variety in their mode of
action, ranging from protein activity regulation to epigenetic
control and regulation of other ncRNAs, implies that we are
just beginning to understand their importance for a multitude
of biochemical and cellular functions. Importantly, the role of
these transcripts in certain tumor types is beginning to become
apparent, and lncRNA expression profile has been proposed as
a strong prognostic factor (Jiang et al., 2016; Bolha et al., 2017;
Ali et al., 2018). It is therefore conceivable that elucidating the
function of lncRNAs in normal cells and their deregulation in
cancer cells will be one of the next milestones toward a more
detailed understanding of the molecular mechanisms of cancer.

In this review, we propose a new role of ncRNAs in cancer.
This model, analogous to the well-established ligand–receptor
interactions, proposes intercellular communication via ncRNA
interactions as a fundamental concept in cancer. This model
could provide a hypothetical basis to explain the different types
of biochemical feedback in tissues, which in turn could be linked
to the differing response to drugs in tumors harboring similar
genetic alterations, the different sites of tumor metastases, and
the activation of different microRNA profiles depending on the
tumor type and location.

THE NON-CODING TRANSCRIPTOME

RNAs comprise a diverse range of molecules. In addition to
the well-characterized RNAs with established functions such
as coding genes (mRNAs), protein synthesis (rRNAs and
tRNAs), or mRNA splicing (snRNAs), a multitude of additional
non-protein-coding RNAs has been described in recent years.
According to their size, ncRNAs are categorized as small
(<200 bp) or long non-coding RNAs (lncRNAs, >200 bp).

SMALL NON-CODING RNAS

The group of short ncRNAs consists of microRNAs (miRNAs),
small interference RNAs (siRNAs), small nucleolar (snoRNAs),
and Piwi-interacting RNAs (piRNAs) (Zamore and Haley, 2005).
Of these, miRNAs have been best characterized in terms of
their function, regulation and role in multiple human diseases
such as cancer. Initiated by the discovery of the first miRNA,
lin-4 in Caenorhabditis elegans (Lee et al., 1993; Wightman
et al., 1993), large research efforts have led to a detailed
characterization of miRNA biogenesis and regulatory functions
in recent years (Ambros, 2004; Bartel, 2004; He and Hannon,
2004; Ebert and Sharp, 2012). Binding of miRNAs to specific sites
in their target transcripts, called miRNA recognition elements
(MRE), results in either transcript degradation or translational
inhibition (Lee et al., 1993; Shivdasani, 2006). Currently there
are just under 2,000 human high-confidence annotated miRNAs
(Kozomara et al., 2018), and it is believed that they collectively
regulate at least one third of the genome (Hammond, 2015).
Importantly, gene expression profiling studies have demonstrated
altered miRNA expression in a wide range of human diseases,
including cancer.

miRNAs AND CANCER

miRNAs have been shown to participate in cancer throughout the
various stages: from tumor origin, to immortalization, metastatic
steps and interactions with the host tissue (Saliminejad et al.,
2018), and they are able to regulate oncogenes and tumor
suppressor genes. In the clinical setting, miRNA expression
signatures are emerging as important diagnostic and prognostic
predictors (Cho, 2007; Kong et al., 2012; Hayes et al., 2014;
Drusco and Croce, 2017). Functional studies clearly support a
relevant role of certain miRNAs in cancer. However, a remaining
challenge is to understand the exact signaling pathways altered
by miRNA deregulation. Several factors contribute to this
complexity: (1) the 3′ UTR of a particular target gene contains
multiple MREs; (2) multiple MREs can act either alone or
cooperatively and (3) the same miRNA can regulate different
targets (Doench and Sharp, 2004; Grimson et al., 2007).

In addition to cell-type-specific gene expression profiles,
deregulation of miRNAs can result in tumor suppressive or
oncogenic effects in a context-dependent manner (Zhang et al.,
2007). Furthermore, the existence of feedback loops involving
certain transcription factors such as c-Myc, which is both a
regulator of miRNA expression and a target of miRNAs, adds
yet another layer of complexity to the role of miRNAs in cancer
(Jackstadt and Hermeking, 2015).

miRNA TRAFFICKING

While the main mechanism of action is to control mRNA
stability or translation in the cytoplasm, miRNAs can be found
in unexpected cellular compartments such as the nucleus,
mitochondria, and endoplasmic reticulum (Leung, 2015).
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They are also found in the extracellular space – this was first
described in 2008, when it was proposed that circulating miRNAs
may serve as biomarkers of certain cancers (Mitchell et al.,
2008). Since then, miRNAs have been discovered in various
extracellular environments including blood (Weber et al., 2010),
urine (Gidlof et al., 2011), saliva (Park et al., 2009; Patel et al.,
2011), and ascitic fluid (Husted et al., 2011). These findings
opened up two new fields of investigation on miRNA. First,
as they are easy to detect in body fluids, clinical research has
focused on the use of extracellular miRNAs as biomarkers as
an alternative, non-invasive method for diagnosis and disease
monitoring (Duttagupta et al., 2011; Ajit, 2012). Second, because
miRNAs are found in the extracellular space, it was proposed that
they may act not only in the cells in which they are transcribed
but also in neighboring cells. This intriguing idea of horizontal
transfer of genetic material subsequently gained major attention.
To date, five non-exclusive mechanisms of miRNA release from
donor cells have been proposed: (i) miRNA bound to RNA-
protein complexes (e.g., in complex with Argonaut) (Arroyo
et al., 2011; Turchinovich et al., 2011); (ii) transport via lipid or
lipoprotein particles (Rayner and Hennessy, 2013); (iii) vesicles
shed directly from the plasma membrane (Hunter et al., 2008;
Callis et al., 2009; Shefler et al., 2010; Jaiswal et al., 2012); (iv)
vesicles of endosomal origin (exosomes) (Valadi et al., 2007;
Skog et al., 2008; Rechavi et al., 2009) and (v) vesicles from
apoptotic bodies (Zernecke et al., 2009; Hergenreider et al.,
2012). Currently, the coexistence of these different forms of
miRNA transport is supported in the literature, but improved
biochemical methods and molecular tools with higher temporal
and spatial resolution are required to strengthen the evidence
(Tkach and Thery, 2016).

Many groups have clearly demonstrated that isolated
miRNA containing fractions (e.g., exosomes) from donor
cells are capable of inducing phenotypic alterations in
the recipient cells. However, studies on the underlying
mechanisms are rare thus far, and basic questions concerning
the amount of miRNA (signaling-like or enzymatic function)
or the type of miRNA [individual or pool of miRNA(s)]
remain unaddressed.

LONG NON-CODING RNAs

All RNAs longer than 200 nucleotides that are not translated
into proteins are collectively categorized as lncRNAs (Carninci
et al., 2005; Guttman et al., 2009; Ponting et al., 2009; Cabili
et al., 2011; Derrien et al., 2012; Housman and Ulitsky,
2016; Lagarde et al., 2017). Similarly to mRNAs, lncRNAs
are transcribed by RNA polymerase II and are often subject
to post-transcriptional modification like 5′ capping, 3′ poly-
adenylation and splicing (Quinn and Chang, 2016). Although
less well-studied than miRNAs, several thousand lncRNAs have
already been described, and thanks to technical advances in
RNAseq techniques and computational prediction methods,
the total number of lncRNAs identified continues to increase
(Quinn and Chang, 2016; Hon et al., 2017). Solely defined by
their length, lncRNAs constitute the largest class of ncRNAs

in the mammalian genome, and can be further categorized
into long intergenic ncRNAs (lincRNAs), antisense RNAs
(asRNAs), pseudogenes, and circular RNAs (circRNAs) (Quinn
and Chang, 2016; Lagarde et al., 2017). lncRNAs fulfill a variety
of functions by interacting with DNA, RNA and proteins,
and they may be described according to their mechanism of
action toward their interacting molecule as enhancers, decoys,
guides or scaffolds (Wang and Chang, 2011; Fok et al., 2017;
Kopp and Mendell, 2018).

The first unsupervised clustering analysis of individual
transcripts in different tissues revealed that 78% of lncRNAs
(in comparison to 19% of mRNAs) were expressed in a
tissue-specific manner (Cabili et al., 2011). As sequencing
techniques advanced, this specificity of expression has been
observed at the individual cell level, and even differential
cell-to-cell expression has been observed by Lv et al.
(2016); we could confirm this in our own (unpublished)
studies in the triple negative breast cancer cell line MB-
MDA231. In the field of cancer biology, lncRNA expression
profile has recently been proposed as a strong prognostic
factor and even as a therapeutic target (Chen et al., 2014;
Yarmishyn and Kurochkin, 2015).

Despite the growing catalog of lncRNAs, the majority of
detected transcription products remain functionally unanno-
tated. Gene function prediction based on sequence homology for
protein-coding genes is challenging (Ulitsky, 2016). Therefore,
lncRNA classification requires either specialized computational
tools or genome-wide functional studies as currently performed
by the use of gene knockout techniques (e.g., CRISPERi) (Gilbert
et al., 2013; Goyal et al., 2017).

lncRNAs IN CANCER

Differential expression of lncRNAs has been described in a
variety of pathological conditions including cardiovascular,
autoimmune, neurodegenerative diseases and particularly in
cancer (Walsh et al., 2014; Nguyen and Carninci, 2016; Zhang
et al., 2016; Aune et al., 2017; Bhan et al., 2017; Viereck and
Thum, 2017; Wan et al., 2017). The first reported lncRNA
with an aberrant expression in cancer was prostate cancer
associated 3 (PCA3) (Bussemakers et al., 1999), which was
identified via differential display analysis of transcripts in normal
human prostate cancer. PCA3 was the first FDA-approved
lncRNA-based biomarker for use in clinical practice. Since then,
it has proven a useful, non-invasive test for prostate cancer
(Wei et al., 2014). In subsequent years, many other lncRNAs
have been identified as having a highly predictive value in
the diagnosis of different cancers. Among those, deregulated
expression of the lncRNA HOTAIR, originally described in
breast cancer, is associated with cancer progression in 26
human tumor types (Gupta et al., 2010; Bhan and Mandal,
2015; Teschendorff et al., 2015). Recently, the application of
next-generation sequencing in a variety of different cancer
transcriptomes uncovered thousands of lncRNAs with aberrant
expression in different cancer types (Huarte, 2015). These
numbers increase further when single nucleotide polymorphisms
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(SNPs) that are associated with cancer are taken into account
(Freedman et al., 2011).

Regarding metastasis, some lncRNAs have been associated
with more aggressive, metastatic tumors and even with cancer cell
colonization to specific organ sites (Li et al., 2018). For example,
in colorectal carcinoma, expression of the lncRNA CCAT2
correlated with a higher incidence of liver metastasis (Ling et al.,
2013). Another example is the association of elevated levels of
HOTAIR with a higher incidence of liver metastasis in gastric
cancer (Zhang et al., 2015) and with brain metastasis in non-small
cell lung carcinoma (Nakagawa et al., 2013).

Despite the enormous number of lncRNAs described
as having aberrant expression in different cancer types,
to date, only a few have been functionally characterized
(reviewed in Huarte, 2015); existing studies have identified
tumor-suppressor and oncogenic functions of lncRNAs
(Prensner and Chinnaiyan, 2011; Huarte, 2015). In many
cases, the functional role of these lncRNAs has been linked
to well-known oncogenic pathways like p53 and c-myc or
participating in different steps of classical cancer processes
such as epithelial mesenchymal transition (EMT). Functional
analysis will probably expand with the recent application of the
CRISPR/Cas9 system, which will provide the tools required to
study the function of lncRNAs in genome-wide studies. These
unsupervised studies will be crucial to functionally annotate
the role of lncRNAs in cancer and shed further light on the
regulation of the underlying molecular events (Han et al., 2014;
Ho et al., 2015).

lncRNA AND miRNA INTERPLAY

Different lncRNAs are known to interact with DNA, RNA,
and proteins; therefore, the functions of the class of lncRNAs
appear to be pleiotropic, ranging from chromatin remodeling to
the regulation of transcription, splicing, and translation (Wang
and Chang, 2011; Fok et al., 2017; Kopp and Mendell, 2018).
A subclass of lncRNA has recently been shown to regulate gene
expression in trans by acting as miRNA “sponges” (Karreth et al.,
2011; Salmena et al., 2011; Tay et al., 2011; Karreth and Pandolfi,
2013; Su et al., 2013; Yoon et al., 2014; Ulitsky, 2018). These
lncRNAs belong to a group of RNAs named ceRNA (competitor
of endogenous RNA) (Tay et al., 2014; Thomson and Dinger,
2016; Zhong et al., 2018). While there is no unifying definition of
ceRNAs, their function as miRNA “sponges” minimally requires
their cytoplasmic localization and the presence of MRE in their
sequence. ceRNAs contain MREs for one or multiple miRNAs,
and binding is thought to sequester miRNAs and thereby enable
translation of endogenous miRNA targets (Figure 1).

In recent years, this concept has been described for the
expression of different genes involved in tumor progression (de
Giorgio et al., 2013; Cheng et al., 2015; Wang et al., 2016;
Song et al., 2017). An example of an oncogenic lncRNA is
UCA1, which controls the availability of miR-18a and thereby
determines the expression of the oncogene YAP1 (Zhu et al.,
2018; Figure 2A). In contrast, the tumor suppressor gene PTEN
is regulated by the lncRNA CCAT2 by acting as a competing

FIGURE 1 | Modified version of the central dogma of molecular biology. The
classical “DNA-RNA-protein” pathway is extended by functional role
of ncRNAs.

FIGURE 2 | Competing lncRNAs (ceRNAs) in cancer. LncRNAs can act either
as oncogenes (A) or as tumor suppressor (B) as exemplified by the role UCA1
and CASC2. A detailed literature survey of the reported roles ceRNAs in
cancer is summarized in Supplementary Table S1.

RNA for miR-21 (Figure 2B; Xie et al., 2017). In recent years,
many more ceRNAs have been described in cancer. We have
summarized the known lncRNA/miRNA/mRNA combinations
in Supplementary Table S1.

In addition to sequestering miRNAs, lncRNAs have also been
reported to compete with miRNAs by binding directly to mRNAs
(Faghihi et al., 2010). miRNAs have been reported to induce
destabilization of lncRNAs, yet some lncRNAs contain miRNAs
precursors (Cui et al., 2016). This suggests a complex interplay
between lncRNAs and miRNAs, which ultimately determines
stability and translation of protein-coding mRNAs. Notably,
recent studies have revealed that ceRNAs have significant roles in
cancer pathogenesis (Cheng et al., 2015; Wang et al., 2016). For
example, alterations in the expression of key factors in oncogenic
signaling pathways, like BRAF, have been linked to changes
in the level of ceRNAs (Ergun and Oztuzcu, 2015; Karreth
et al., 2015). We are just starting to understand these complex
molecular interactions, their place in functional regulatory
networks controlling cellular processes, and their implications in
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cancer (Liz and Esteller, 2016; Yang et al., 2016; Cao et al., 2017;
Chan and Tay, 2018).

PROPOSAL: TISSUE-SPECIFIC
INTERPLAY BETWEEN miRNA
AND lncRNA SUPPORTS
CONTEXT-DEPENDENT
CELL SIGNALING

Currently, the mechanisms involved in cancer origin and
progression have been elaborated according to the alterations
found in protein-coding genes, barely 2% of the translated
genome. Following this approach, most of the described
alterations merge into few biochemical routes such as the
PI3K/AKT/mTOR or RAS/MAPK pathways. However, the
outcome of these alterations is sometimes tissue-specific and
cell-context-dependent. It is, for example, still unclear how
certain oncogenic mutations progress to tumor formation only
in a particular set of tissues. There are clear examples with
germline mutations in genes like adenomatous polyposis coli
(APC), cadherin 1 (CDH1), BRCA1, von Hippel-Lindau tumor
suppressor (VHL), and ataxia telangiectasia mutated (ATM)
which are causative for the development of cancer in specific
types of tissue (Schneider et al., 2017). Another paradigmatic
example is the initial good response to specific inhibitors in
melanomas harboring the BRAFV600E mutation, compared to the
protumor effect of the same inhibitors in colon adenocarcinomas
carrying similar BRAF mutations (Prahallad et al., 2012; Sclafani
et al., 2013). Finally, the development of metastases in different
types of cancer is often restricted to certain organs (organotropic
metastasis), and even clonal subpopulations within the primary
tumor display preferences for certain organs (Obenauf and
Massague, 2015).

Therefore, in addition to the classical oncogenic signaling
pathways (PI3K/AKT/mTOR or RAS/MAPK), additional layers
of regulation must exist, to explain tissue- and organ-specific
processes. We hypothesize that these cell-type-specific outcomes
may be caused by interplay between lncRNAs and miRNAs.
Building on the concept of ceRNAs, the tissue and cell-type-
specific expression of lncRNAs might be a key mechanism
to support tissue-specific regulation of oncogenic signaling
pathways. In this sense, the translational profile (i.e., proteome)
of miRNA-regulated mRNAs can be controlled by the cell-
type-specific expression of lncRNAs. Consequently, the interplay
between lncRNAs and miRNAs might affect signaling cascades by
regulating the abundance of proteins within these pathways in a
cell-type-specific manner (Figure 3A).

This core mechanism, acting on the intracellular level, can
also be extended to communication between different cells.
This is because miRNAs not only act in the cells in which
they are transcribed but can also be transferred into different
cells (intercellular level). In this regard, the interplay between
miRNAs and lncRNAs suggests many parallelisms to ligand–
receptor interactions. Ligands like cytokines, hormones and
growth factors are released as soluble factors by the donor cell,

FIGURE 3 | Proposal on the role of tissue specific ceRNAs in cancer
(A) Tissue specific expression of lncRNAs can induce malignant
transformation in cells expressing an equal set of miRNAs and mRNAs.
(B) Tissue specific response to secreted miRNAs dependent on the
expression profile of lncRNAs.

selectively interact with the target cell receptors and activate
signaling cascades which ultimately alter the phenotype of the
target cell. miRNAs have been shown to be released into the
extracellular space, and lncRNAs are expressed in an organ-,
tissue- or cell-type-specific manner. As described above, the
abundance of lncRNAs may ultimately determine the effect of
miRNAs on the expression of protein-coding genes. Therefore,
as occurs in the ligand-receptor model, exposure to the same
miRNA may result in cell-type-specific alterations dependent on
the expression of lncRNAs (Figure 3B).

In summary, the interplay between lncRNAs and miRNAs
at an intra- and intercellular level may provide a framework
for understanding context-specific phenomena in cancer. In the
following section, we will exemplify these putative mechanisms
in two concrete cases.

INTRACELLULAR INTERPLAY BETWEEN
lncRNAs AND miRNAs – BRAFV600E IN
COLON ADENOCARCINOMA VS
MELANOMA

Transduction of a signal from an activated receptor is dependent
on the levels of kinases and phosphatases in these pathways and
is regulated by positive and negative feedback loops. Alterations
in the stoichiometry of factors involved in signaling cascades
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FIGURE 4 | The potential role of lncRNAs in the failure of Vemurafenib in the treatment of colon cancer. Upper panel: BRAFV600E mutation induces malignant
transformation in melanoma and colon cancer. Lower panel (left): treatment with Vemurafenib inhibits malignant transformation in melanoma. Bypassing the inhibition
of BRAFV600E by Vemurafenib might be prevented by miRNAs (e.g., miR-34a or miR-218a) inhibiting the expression of ARAF (Lal et al., 2011; Agarwal et al., 2015).
Lower panel (right): sequestering of the ARAF controlling miRNA(s) by lncRNAs in colon cancer enables the bypass of Vemurafenib inhibition, resulting in
malignant transformation.

can be crucial for the ultimate cellular effect. A paradigmatic
example for such alterations in the same oncogenic pathway
is described for the BRAFV600E mutation. While treatment of

BRAFV600E–bearing tumors with BRAF inhibitors has a good
response in melanomas, a protumor effect has been described
in colon adenocarcinomas. It has been proposed that the local
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feedback in the different cell-signaling pathways could partly
explain this unexpected contradictory effect (Schneider et al.,
2017). In this respect, miRNAs have been described as key
players in fine-tuning the expression of proteins involved in
the Ras/Raf signaling pathway (reviewed in Masliah-Planchon
et al., 2016). However, the expression of the majority of these
miRNAs is not specific for single tissues; therefore, additional
layers of regulation must exist, to explain the different responses.
We propose that the tissue-specific interplay between ncRNAs
might partly explain the different sensitivity to BRAF inhibitors
in colon adenocarcinoma and melanoma harboring the same
oncogenic mutation in BRAF (Figure 4).

INTERCELLULAR INTERPLAY BETWEEN
lncRNAs AND miRNAs –
ORGANOTROPIC METASTASIS

miRNAs are released into the extracellular space and transferred
to target cells. lncRNAs (the “receptors”) show organ-, tissue-
and cell-type-specific expression. Binding of miRNAs to lncRNAs
(akin to a ligand-receptor complex) occurs via a sequence-
specific MRE within the lncRNA. Finally, this interaction
results in miRNA sequestration and/or degradation of miRNA
or lncRNA. As the ligand-receptor model would predict,
these interactions should result in the activation of signaling
cascades enabling significant alterations in biochemical and
cellular functions.

Applying this model to cancer, the mechanisms
underlying organotropic metastasis might be explained
in part by the interplay between miRNAs and lncRNAs.
Even though there is no direct experimental evidence
for this hypothesis, there are theoretical possibilities for
how this interplay could contribute to the development of
site-specific metastasis.

High levels of secreted miRNAs from cancer cells have been
reported for almost all types of tumor cells. Upon arrival of
a disseminated tumor cell to a distant tissue (e.g., lung, bone,
or brain), these miRNAs are first taken up by tissue-specific
endothelial cells. Transfer of miRNAs to endothelial cells in turn
has been shown to alter the expression of proteins required
for maintenance of the endothelial barrier (Zhou et al., 2014;
Tominaga et al., 2015). Therefore, the expression profile of
competing lncRNAs within endothelial cells might determine if
the barrier function can be sustained in the presence of exogenous
miRNAs, and metastasis will be favored in organs in which
ceRNAs are absent (Figure 5).

In addition, aberrant expression of lncRNAs has been
reported in different tumor types, and differential cell-to-
cell expression has even been observed in certain tumor
types (Lv et al., 2016). Therefore, the presence of sponging
lncRNAs might alter (a) the miRNA secretome of tumor cells,
and (b) the responsiveness to secreted miRNAs from other
cells. The latter case in particular might account for clonal
populations of tumor cells with site-specific patterns of metastasis
(Obenauf and Massague, 2015).

FIGURE 5 | The potential role of lncRNAs in organotropic metastasis. Cancer
cell secreted miRNA (e.g., miR-105 and miR181c prevent the expression of
proteins with barrier function in endothelial cells Zhou et al., 2014; Tominaga
et al., 2015). The presence of tissue specific competing lncRNAs can
sequester those miRNAs (lung and brain), the endothelial barrier is maintained
and cancer cells are not able to invade.

It is tempting to speculate that the interplay between
lncRNAs and miRNAs combined with the tissue- or clone-
specific expression of lncRNAs might favor the formation
of metastatic niches in an organ- or tissue-specific manner.
However, future detailed studies will be required to prove
this hypothesis.

FUTURE DIRECTIONS

In our opinion, the continuous accumulation of large amounts of
data by RNAseq of whole cancer transcriptomes or extracellular
miRNAs might be only partially helpful to move forward.
We propose exploring the mechanistic basics in cell-culture-
based systems or even model organisms with a reduced
complexity. Models derived from these studies could later be used
to predict how the extracellular miRNA composition combined
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with a distinct set of intracellular lncRNAs might impact on
disease progression.

In summary, current limitations in our understanding on
the molecular mechanisms of cancer might be due to the fact
that, until now, only 2% of the genome has been taken into
account. Therefore, future studies should aim at expanding our
current view of cancer by including the role of ncRNAs in
the interpretation of cancer as a multifactorial disease. The
proposed model, combining lncRNA-miRNA interactions with
intercellular communication might be particularly helpful in
understanding the tissue-specificity of many cancers, hitherto
one of the least understood phenomena of cancer.
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Recently, secreted microRNAs (miRNAs) have received a lot of attention since they
may act as autocrine factors. However, how secreted miRNAs influence embryonic
development is still poorly understood. We identified 294 miRNAs, 114 known, and
180 novel, in the conditioned medium of individually cultured bovine embryos. Of these
miRNAs, miR-30c and miR-10b were much more abundant in conditioned medium of
slow cleaving embryos compared to intermediate cleaving ones. MiR-10b, miR-novel-
44, and miR-novel-45 were higher expressed in the conditioned medium of degenerate
embryos compared to blastocysts, while the reverse was observed for miR-novel-
113 and miR-novel-139. Supplementation of miR-30c mimics into the culture medium
confirmed the uptake of miR-30c mimics by embryos and resulted in increased cell
apoptosis, as also shown after delivery of miR-30c mimics in Madin-Darby bovine
kidney cells (MDBKs). We also demonstrated that miR-30c directly targets Cyclin-
dependent kinase 12 (CDK12) through its 3′ untranslated region (3′-UTR) and inhibits its
expression. Overexpression and downregulation of CDK12 revealed the opposite results
of the delivery of miRNA-30c mimics and inhibitor. The significant down-regulation
of several tested DNA damage response (DDR) genes, after increasing miR-30c or
reducing CDK12 expression, suggests a possible role for miR-30c in regulating embryo
development through DDR pathways.

Keywords: bovine embryos, secreted miRNAs, miR-30c, CDK12, cell cycle, DNA damage response, individual
in vitro production
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INTRODUCTION

Many studies have indicated that the timing of cell division
during the early embryonic stages is crucial for normal
development and can be used as an indicator of embryo
development competence (Fenwick et al., 2002; Zernicka-Goetz,
2002, 2006; Plusa et al., 2005; Hiiragi et al., 2006; Terriou
et al., 2007). For example, the delay of cell division might be
a consequence of chromosomal aberrations and DNA damage
(Milewski et al., 2018) and slow cleaving embryos have a higher
caspase activity in comparison to fast cleavers (Vandaele et al.,
2007). In general, faster cleaving embryos have a significantly
higher probability of reaching advanced developmental stages
compared to slower cleaving embryos (Van Soom, 1997; Meirelles
et al., 2004; Vandaele et al., 2006), while some studies also
demonstrated that cleaving divisions that are too fast or too
slow are indicative of poor embryo quality (Market Velker et al.,
2012; Gutierrez-Adan et al., 2015). During these early embryonic
stages, miRNA levels undergo dynamic changes (Mineno et al.,
2006; Tang et al., 2007; Yang et al., 2008; Viswanathan et al.,
2009; Goossens et al., 2013), indicating their potential role in
embryonic development.

With this study we wanted to investigate if one or
more miRNAs have potential as a non-invasive biomarker
for preimplantation developmental competence according to
cleavage patterns and blastocyst formation. It has been reported
that miRNAs are not only localized intracellularly but also
secreted via exosomes (Valadi et al., 2007). In addition, miRNAs
have been reported to be transferable to other cells, and can be
functional in the new location (Valadi et al., 2007; Sohel et al.,
2013; Vilella et al., 2015). More specifically, they can be taken
up into cells from the extracellular environment, leading to a
corresponding endogenous miRNA increase in transfected cells.
Recently, secreted miRNA expression was reported to correlate
with developmental competence and sexual dimorphism in
bovine (Kropp and Khatib, 2015; Gross et al., 2017) and
human embryos (Rosenbluth et al., 2014). Although the precise
mechanisms of miRNA release in the cellular environment are
poorly understood, their selective secretion and high stability
(resistant to RNase digestion and other harsh conditions) make
miRNAs good candidates for use as biomarkers (Luo et al.,
2009; Donker et al., 2012). Potential limitations for their use
as biomarkers are their general low abundance, and the high
sequence identity among family members.

miR-30 family members are involved in the regulation of
p53-induced mitochondrial fission and cell apoptosis (Li et al.,
2010). As a member of the miR-30 family, miR-30c has been
shown to regulate the cell cycle and proliferation in human and
mouse (Li et al., 2012; Quintavalle et al., 2013; Shukla et al., 2015;
Liu et al., 2016). One of its potential targets as determined by our
study is CDK12 mRNA. CDK12 is a protein kinase responsible for
mature mRNA synthesis transcriptional elongation (Bartkowiak
et al., 2010; Liang et al., 2015). This kinase has been reported to
be crucial for the development of the inner cell mass in mouse
embryos (Juan et al., 2016) and to maintain genomic stability as
Cyclin K/CDK12 complex (Blazek et al., 2011) through regulating
DDR genes. In this study, we demonstrated that miR-30c is

secreted and taken up by bovine embryos and functions as a
negative regulator of cell growth by targeting CDK12, indicating
that miR-30c can be considered as a promising biomarker
for bovine early embryonic development. These findings may
provide new insights into understanding the regulatory role of
secreted miRNAs in the process of intercellular communication.

MATERIALS AND METHODS

In vitro Embryo Production
and CM Collection
All animal handlings were approved by the Ethical Committee
of the Faculty of Veterinary Medicine (EC2013/118) of Ghent
University. All methods were performed in accordance with
the relevant guidelines and regulations. Bovine blastocysts were
produced according to the previously used routine in vitro
fertilization (IVF) methods in our lab (Wydooghe et al., 2014a).
Briefly, ovaries were collected from the local slaughterhouse
and processed within 2 h. The collected ovaries were washed
three times in warm physiological saline supplemented with
5 mg/ml kanamycin (GIBCO-BRL Life Technologies, Merelbeke,
Belgium). Subsequently, cumulus oocytes complexes were
aspirated from 4 to 8 mm diameter follicles and cultured
in groups of 60 in 500 µl maturation medium-containing
TCM199 (Life Technologies, Ghent, Belgium) supplemented
with 20% heat-inactivated fetal bovine serum (FBS) (Biochrom
AG, Berlin, Germany) for 22 h at 38.5◦C in 5% CO2 in the
air. Frozen-thawed bovine spermatozoa from Holstein bulls were
separated through a 45% and 90% Percoll gradient (GE healthcare
Biosciences, Uppsala, Sweden). The final sperm concentration of
1 × 106 spermatozoa/ml was adjusted in IVF-Tyrode’s albumin-
lactate-pyruvate (IVF-TALP), consisting of bicarbonate-buffered
Tyrode solution supplemented with 6 mg/ml and 25 µg/ml
heparin bovine serum albumin (BSA) (Sigma, Schnelldorf,
Germany). Matured oocytes were washed in 500 µl IVF-
TALP medium and were incubated with spermatozoa. After
incubation for 21 h, presumed zygotes were vortexed for 3 min
to remove spermatozoa and cumulus cells, washed with IVF-
TALP and transferred to 20 µl drops of synthetic oviductal
fluid supplemented with ITS (5 µg/ml Insulin + 5 µg/ml
Transferrin + 5 ng/ml Selenium) and 4 mg/ml BSA. Culture
occurred individually in drops of 20 µl, covered with mineral oil
at 38.5◦C in 5% CO2, 5% O2 and 90% N2.

Bovine embryos were divided into groups according to the
first cleavage patterns, as described previously (Dinnyes, 1999;
Amarnath et al., 2007; Sugimura et al., 2017). Time points
of first cleavage [24.2–33.8 h post insemination (hpi)] were
listed up and were divided in quartiles. The first quartile
was considered as “fast,” the second and third quartiles were
considered as “intermediate” and the last quartile was considered
as “slow.” More specifically, individual droplets were viewed
microscopically at two time points (26.6 and 31.4 hpi), and
three groups were produced according to the embryos’ cleavage
pattern: “fast” (cleavage occurred before 26.6 hpi), “intermediate”
(cleavage occurred between 26.6 and 31.4 hpi) and “slow”
(cleavage had not occurred yet at 31.4 hpi). Additionally, the
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developmental competence of each embryo was microscopically
viewed and assessed at 8 days post insemination (dpi),
enabling a division into two subgroups (degenerate embryos
and blastocysts). Eventually, the embryos were divided into six
groups: FB (fast cleaving blastocyst), IB (intermediate cleaving
blastocyst), SB (slow cleaving blastocyst), FD (fast cleaving
degenerate), ID (intermediate cleaving degenerate), and SD (slow
cleaving degenerate). Conditioned medium of single embryos
was collected (17.5 µl each droplet) and pooled for each
of the six groups.

miRNA Extraction
At 8 dpi, the CM was collected and miRNA was extracted
with the miRNeasy Serum/Plasma kit (Qiagen, Germantown,
United States). To meet the miRNA-sequencing minimum
concentration requirement, RNA was extracted from CM (three
replicates of 3 mL each) and was concentrated with the RNeasy
MinElute Cleanup kit (Qiagen, Germantown, United States).
Finally, the quality and concentration of the RNA samples were
examined using an RNA 6000 Pico Chip (Agilent Technologies,
Carlsbad, CA, United States) and a Quant-iT RiboGreen RNA
Assay kit (Life Technologies, Carlsbad, CA, United States),
respectively. The total RNA isolated from CM ranged from 1.982
to 2.448 ng/µl. The FB and FD group were excluded because
the required amount of secreted miRNAs from the IVF culture
system for sequencing was not obtained.

Small RNA Library Construction and
Deep Sequencing
Small RNA library construction was performed with the
Tailormix v2 kit (SeqMatic, Fremont, CA, United States). The
quality-ensured RNA-seq libraries were pooled and sequencing
was performed in triplicate on the Illumina Miseq (NxtGnt
sequencing facility, Gent, Belgium).

Small RNA-Sequencing Data Analysis
and Differential Expression Analysis
Identification of known miRNAs, prediction of putative novel
miRNAs and reading counting were done using the mirPRo
pipeline (Shi et al., 2015). MicroRNA data from the miRBase
(v21) (Griffiths-Jones et al., 2006) and the annotated cow
genome (GCA_000003055.3) were used as reference. Differential
expression between sample groups was statistically tested in R
(Ihaka and Gentleman, 1996) with both EdgeR (Robinson et al.,
2010) and DESeq2 (Love et al., 2014) via the SARTools wrapper
(Varet et al., 2016). Two comparisons were made after RNA-
Sequencing: IB vs. SB; (I + S) Degenerate vs. (I + S) Blastocysts.
The results were considered statistically significant when the
Benjamini-Hochberg corrected p-value was <0.05.

Pathway Analysis
The functional analysis of the differentially expressed genes
between the groups was performed using DAVID (Huang et al.,
2008, 2009) (predicted target genes as input) and miRWalk
(Dweep and Gretz, 2015) (miR-30c and miR-10b as input) in
terms of enrichment of gene ontologies (GO). In addition,

a pathway analysis was performed using the KEGG database
to identify the significant pathways affected by the differentially
expressed miRNAs. The Benjamini-Hochberg corrected p-values
<0.05 were considered statistically significant.

RT-qPCR
To verify the results of the miRNA sequencing, five mature
miRNAs were quantified using RT-qPCR (real-time quantitative
PCR). Accordingly, total RNA samples (including miRNAs)
isolated from CM (three additional biological replicates of 200 µl
each) were reverse transcribed using a miScript II RT kit (Qiagen,
Germantown, MD, United States) and subsequently quantified
with a miScript SYBR Green Kit containing 10 × miScript
Universal Primer (Qiagen, Germantown, MD, United States).
U6 (Mondou et al., 2012; Abd El Naby et al., 2013) was quantified
to normalize miRNA expression levels.

To check the intracellular expression of the differentially
released miRNAs and if miR-30c is taken up by embryos,
miRNAs were quantified using RT-qPCR. Total RNA samples
(including miRNAs) isolated from embryos (three replicates of
approximate 5 embryos each) using the miRNeasy Mini kit
(Qiagen, Germantown, United States) and reverse transcribed
using a miScript II RT and subsequently quantified with a
miScript SYBR Green Kit containing 10 × miScript Universal.
U6 was quantified to normalize miRNA expression levels.

Additionally, embryos and MDBKs were used to analyze
mRNA abundance of CDK12 and DDR genes. Total RNA samples
were isolated from embryos (three replicates of approximate 5
embryos each) and MDBKs using the RNeasy Micro kit (Qiagen,
Germantown, MD, United States) and reverse transcribed using
the iScript cDNA synthesis kit (BioRad, Brussels, Belgium). The
mRNA levels were quantified with a SsoAdvanced Universal
SYBR Green Supermix kit (BioRad, Brussels, Belgium). GAPDH
(Herrmann et al., 2013; Li et al., 2016), which has been proved to
be a stable reference gene in our sample (data not shown), was
quantified to normalize mRNA expression levels.

All reactions were performed in triplicate, and the 2−11Ct

method was used to analyze the data. The primer sequences used
for RT-qPCR are listed in Supplementary Table S1.

miR-30c Mimics Supplementation to
Embryos Culture Medium
Since individually cultured embryos have less tolerance when
compared to group cultured embryos (Goovaerts et al., 2009;
Wydooghe et al., 2014a,b) and they easily die after changing
the culture environment, group culture was performed for miR-
30c functional analysis instead of individual culture. The IVF
embryos were produced according to the previously described
protocol. This time, however, presumed zygotes were vortexed
for 3 min after 21 h incubation, washed with IVF-TALP
and transferred to drops of SOF supplemented with ITS,
BSA and miR-30c mimics (chemically synthesized, double-
stranded RNAs which mimic mature endogenous miRNAs after
delivery to cells) or control mimics (chemically synthesized,
double-stranded RNAs which have no homology to any
known microRNA or mRNA sequences) (Qiagen, Germantown,
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United States) with a final concentration of 1 µM according
to the instructions. Culture occurred in groups of 25 in
drops of 50 µl, covered with mineral oil at 38.5◦C in 5%
CO2, 5% O2, and 90% N2. On 8 dpi, blastocyst rates were
calculated. Blastocysts were collected for RT-qPCR or assessed
with apoptosis staining.

TUNEL Staining and Differential
Apoptotic Staining
TUNEL staining was performed using a previously described
protocol (Ortiz-Escribano et al., 2017) with an in situ cell death
detection kit (Sigma, St. Louis, MO, United States). Briefly,
∼20 blastocysts for each group were collected and fixed in
4% paraformaldehyde at room temperature (RT) for 1 h, and
then permeabilized in 0.1% Triton X-100 at RT for 10 min.
Afterward, blastocysts were stained with 20 µl TUNEL mixture
for 1 h at 37C and subsequently stained with 10 µg/ml DAPI
for 10 min. The embryos were mounted on the slides and were
examined using a 20× water immersion objective on a Leica
TCS-SP8 X confocal microscope (Leica microsystems, Wetzlar,
Germany). The apoptosis ratio was expressed as the total number
of TUNEL-positive cells relative to the total number of the
cells per blastocyst.

Differential apoptotic staining was performed using previous-
ly described protocols (Wydooghe et al., 2011; Lu et al., 2019).
The first day, ∼20 blastocysts for each group were fixed in
4% paraformaldehyde for 1 h and put in a 4-well dish in
permeabilization solution (0.5% Triton X-100 + 0.05% Tween)
in phosphate buffered saline (PBS) at RT for 1 h. After
washing the blastocysts 3 times during 2 min in PBS-BSA,
they were incubated in 2N HCl at RT for 20 min and then
in 100 mM Tris–HCl at RT for 10 min. The blastocysts were
washed (3 times during 2 min) and then put into 500 µl
of blocking solution at 4C overnight. The second day, the
blastocysts were washed again (3 times during 2 min) and
incubated in primary CDX-2 antibody (Biogenex, San Ramon,
United States) at 4C overnight. On the third day, the blastocysts
were washed twice for 15 min and subsequently incubated in
blocking solution containing the rabbit active caspase-3 antibody
(Cell Signaling Technology, Leiden, Netherlands) overnight at
4C. On day four, the blastocysts were incubated in blocking
solution containing the goat anti-mouse Texas Red antibody
at RT for 1 h and were subsequently incubated in blocking
solution containing the goat anti-rabbit FITC antibody at RT
for 1 h. The blastocysts were washed twice for 15 min and
incubated at RT for 20 min in a dilution 1: 200 Hoechst in
PBS-BSA in the dark. All slides were examined using a 63 ×
water immersion objective on a Leica TCS-SP8 X confocal
microscope. The apoptosis ratio was expressed as the total
number of Caspase-3-positive cells relative to the total number
of the cells per blastocyst.

Plasmid Construction
The full-length coding sequence of CDK12 (4473 bp)
(NM_001205701.1) was amplified from MDBK cDNA and
was inserted into a pEGFP-N1 vector via NheI and XhoI

sites for construction of the CDK12-overexpressing vector.
The empty vector (mock) was used as a negative control.
The CDK12 3′-UTR (282 bp) containing the predicted miR-
30c binding site was amplified from bovine genomic DNA
and inserted into a psi-CHECK2 vector (Promega, Madison,
United States) via NotI and XhoI sites and confirmed by
sequencing. To test whether the predicted miR-30c target site
in the CDK12 3′-UTR is critical for the miR-30c-mediated
repression of CDK12 expression, the seed sequence of the
predicted miR-30c’s binding site was changed (Wu et al.,
2017; Figure 4A). Primers for vector construction are listed in
Supplementary Table S1.

Dual-Luciferase Reporter Assay
The miR-30c mimics/control mimics and luciferase reporter
plasmids were co-transfected into HEK293T cells using
Lipofectamine 2000 (Invitrogen, Carlsbad, United States).
After 24 h of transfection, the Renilla and Firefly luciferase
were assayed using the Dual Luciferase Reporter Kit (Promega,
Madison, WI, United States).

Cell Culture and Transfection
The HEK293T cells and MDBK cells were cultured at 37C in
5% CO2 in DMEM media (Thermo Fisher Scientific, Waltham,
MA, United States) supplemented with 10% FBS (VWR, Radnor,
United States), 100 U/ml penicillin and 100 mg/ml streptomycin.
miR-30c mimics/inhibitor and their negative controls were
delivered into MDBK cells using Hiperfect reagent (Qiagen,
Germantown, MD, United States) following the manufacturer’s
instructions. The short-interfering RNA (siRNA) targeting
CDK12 and a non-target control siRNA (si-NTC) were purchased
from Qiagen (Germantown, MD, United States). SiRNA or the
overexpressing vector was transfected into MDBK cells using
Lipofectamine 2000 according to the manufacturer’s instructions.
Protein or total RNA were extracted for western blotting (WB) or
RT-qPCR 48 or 24 h after transfection.

Western Blotting
Cells were collected after 48 h of transfection and lysed using
Radioimmunoprecipitation lysis buffer consisting of 50 mM
Tris–HCl (pH 7.5), 150 mM NaCl, 0.1% SDS, 1% NP-40, 0.5%
sodium deoxycholate and protease inhibitors. The samples were
denatured at 100C for 10 min before loading onto 10% SDS-
polyacrylamide gels. Separated proteins were then transferred
onto nitrocellulose membranes and blocked with 5% non-fat
milk in PBS with 0.1% Tween-20 for overnight. Membranes were
then incubated overnight with 1/1000 rabbit anti-CDK12 (Novus
Biologicals, Abingdon, United Kingdom) and 1/1000 rabbit
anti-β-actin (Novus Biologicals, Abingdon, United Kingdom).
After three washes, the membranes were incubated with HRP-
conjugated goat anti-rabbit IgG (H + L) (Novus Biologicals,
Abingdon, United Kingdom) for 2 h at room temperature.
Signals were revealed by autograph using SuperSignal West
Femto Maximum Sensitivity Substrate (Thermo Fisher Scientific,
Waltham, United States).
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Cell Cycle Assays: PI Staining
and Flow Cytometry
Madin-Darby bovine kidney cells were cultured in 6-well plates
for 48 h after transfection and were stained with propidium
iodide (PI) at a final concentration of 50 µg/ml PI and 100 µg/ml
RNase A in PBS. Then, the cells were analyzed using AccuriTM C6
flow cytometry (BD, Erembodegem, Belgium) collecting 50000
events. All experiments were replicated three times.

Cell Proliferation Assays: WST-1
Colorimetric Assay
WST-1(4-(3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio)-
1,3-benzene disulfonate) (Merck, Kenilworth, United States)
was used for cell proliferation analysis. The assay was
performed using 96-well plates with ∼20000 cells. After
48 h of transfection, 10 µl of WST-1 was added to 90 µl samples.
The samples were measured at 450 nm wavelength (570 nm
as a reference wavelength) using an EZ read 400 microplate
reader (Biochrom, Holliston, United States). Cell viability was
then calculated by comparing the absorbance values of sample
groups after background subtraction. All experiments were
replicated three times.

Statistical Analysis
The data are presented as mean ± S.D and derived from at
least three independent experiments. The statistical analyses were
performed using ANOVA followed by Tukey’s test or Student’s t
test. For each analysis, P < 0.05 was considered significant.

RESULTS

Intermediate Cleaving Embryos Result in
a Higher Blastocyst Rate Compared to
Slow Cleaving Embryos
According to the timing of the first cell division, 1808 individually
cultured embryos for each of three replicate were labeled as
either fast, intermediate or slow cleaving and evaluated at 8 dpi
for developmental competence. Intermediate embryos produced
significantly (P = 0.027) more blastocysts in comparison to
the slow embryos (41.16 and 18.7%, respectively; Figure 1).
No statistically distinctive differences (P = 0.24) were found
between fast and intermediate cleaving embryos (50.65 and
41.16%, respectively; Figure 1). The fast group was excluded for
sequencing because not enough RNA was obtained due to the low
number of embryos belonging to this group.

miRNAs Secreted by Bovine Embryos
In total 294 miRNAs were found in conditioned media (CM)
after sequencing (MicroRNAs sequencing data are available in
the GEO database under the accession number PRJNA492220):
114 known miRNAs and 180 potential novel miRNAs. The
uncorrected p-value was indicative of differential secretion
from embryos with different cleavage patterns and different
development competences for the following miRNAs: miR-30c

FIGURE 1 | Bovine embryos (n = 1808 for each replicate) were individually
cultured and were grouped according to the two-cell stage cleavage pattern:
fast, intermediate and slow. The developmental competence of each embryo
was assessed at 8 dpi, enabling a division into two subgroups: degenerate
and blastocyst. Data are presented as mean ± SD of three experiments.

TABLE 1 | The differentially expressed miRNAs (p < 0.05) in CM content from
individually cultured bovine embryos (I, intermediate cleaving; S, slow cleaving).

(I + S) Degenerate embryos vs.

(I + S) Blastocysts

Fold Benjamini-Hochberg

Name Change p-value corrected p-value

bta-miR-10b 3.047 0.006246833 0.224885994

bta-novel-miR-113 0.268 0.012946778 0.233041999

bta-novel-miR-45 3.934 0.031555548 0.255968877

bta-novel-miR-44 3.969 0.034171109 0.255968877

bta-novel-miR-139 0.124 0.035551233 0.255968877

SB vs. IB

bta-miR-30c 17.857 0.041729634 0.707989068

bta-miR-10b 3.831 0.048368042 0.707989068

and miR-10b were secreted more in slow cleaving embryos’
CM compared with the CM of intermediate cleaving embryos;
miR-10b, miR-novel-44, and miR-novel-45 were more abundant
in CM from degenerate embryos than in that of blastocysts,
while miR-novel-113 and miR-novel-139 were more abundant
in blastocyst’s CM than degenerate’s CM (Table 1). However,
with the low sample size, due to the practical difficulty to obtain
enough CM, it was unsurprising that none of the differences
remained significant after multiple testing with the Benjamini-
Hochberg corrected p-value. Consequently, the sequencing
results of 5 of the 6 above mentioned miRNAs were confirmed
using RT-qPCR (novel-miR-44 has the same mature sequence as
novel-miR-45) (Figure 2). RT-qPCR showed that miR-30c and
miR-10b have an 18 (P = 0.00072) and 30 (P = 0.00017) fold
higher expression in the CM from slow cleaving embryos in
comparison to intermediate cleaving embryos (Figures 2A,B).
The expression levels of both these two miRNAs in the CM of
fast cleaving embryos and intermediate cleaving embryos showed
no significant difference (Figures 2A,B). MiR-10b and novel-
miR-45 showed a 55 (P = 0.00000) and 8 (P = 0.0068) fold
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FIGURE 2 | miRNAs’ differential expression between embryos with different cleavage patterns and different blastocyst formation. (A,B) The relative expression levels
of miR-30c and miR-10b between the CM of fast, intermediate and slow developing embryos were detected using RT-qPCR. (C,D) Relative expression of miRNAs
between CM of degenerate embryos and blastocyst. (E) Relative expression of miR-30c between conditioned media and control media. (F) Relative expression of
miR-30c and miR-10b between the intermediate and slow developing embryos. (G,H) Relative expression of miRNAs between CM of degenerate embryos and
blastocyst. Data are presented as mean ± SD of three experiments. (∗P < 0.05, ∗∗P < 0.01, n.s, no significance).
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FIGURE 3 | Top-ranking GO terms and KEGG pathways enriched in genes differentially expressed in IB vs. SB. (A,B) Enriched GO and KEGG pathways with
Benjamini-Hochberg corrected p-value <0.05.

higher expression in the CM from degenerate embryos compared
to blastocysts (Figure 2C). Novel-miR-113 and novel-miR-139
displayed, respectively 14 (P = 0.0027) and 22 (P = 0.00033)
fold higher expression in the CM of blastocysts than in that of
degenerate embryos (Figure 2D). In addition, miR-30c was found
to be 20 (P = 0.00067) times more abundant in CM compared to
control media (Figure 2E).

The intracellular miRNAs expression was also validated using
RT-qPCR and similar results were obtained. miR-30c and miR-
10b have a 13 (P = 0.0031) and 21 (P = 0.00044) times
higher expression in slow cleaving embryos in comparison to
intermediate cleaving embryos (Figure 2F). MiR-10b and novel-
miR-45 show a 37 (P = 0.0004) and 5 (P = 0.0081) times
higher expression in degenerate embryos compared to blastocysts
(Figure 2G). Novel-miR-113 and novel-miR-139 displayed 18
(P = 0.00091) and 7 (P = 0.0062) times higher expression in
blastocysts than degenerate embryos (Figure 2H).

Pathway Analysis
Examination of the GO analysis results of the differentially
expressed miRNAs between IB and SB revealed that 11 biological
processes, among which “in utero embryonic development,” “cell
cycle,” “fibroblast growth factor receptor signaling pathway,” and
“Notch signaling pathway” were over-represented (Figure 3A).

Additionally, 16 KEGG pathways, with as top hits: the p53
signaling pathway, the Wnt signaling pathway, the TGF-
beta signaling pathway and apoptosis were over-represented
(Figure 3B). These GO-terms and pathways enriched with
targets provide an intriguing clue to the biological consequences
of miRNAs differential secretion from embryos with different
cleavage patterns.

miR-30c Mimics Can Be Taken Up by
Bovine Embryos and Increase
Embryo Apoptosis
miR-30c has been shown to regulate cell cycle and proliferation
in human breast cancer cells, glioma cells, hematopoietic cells,
osteoblast cells and mice embryonic carcinoma cells (Li et al.,
2012; Quintavalle et al., 2013; Shukla et al., 2015; Liu et al.,
2016), thus, combining the above sequencing/RT-qPCR results
with information from the literature we hypothesized that
miR-30c can be taken up by embryos and might influence
embryonic development through regulation of the cell cycle.
To test this hypothesis, we added the miR-30c mimics into
the IVF culture medium at 21 hpi, thus allowing miR-30c
mimics to influence embryos for at least 5 to 10 h before they
reach the 2-cell stage (26–31 hpi). RT-qPCR results showed
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FIGURE 4 | Effects of miR-30c mimics on miR-30c expression in embryos, embryo growth and apoptosis (A) Embryos were treated with miR-30c mimics or control
mimics and miR-30c expression was evaluated using RT-qPCR. The blastocyst rate was assessed at 8 dpi (B) and cell apoptosis was determined by TUNEL
staining (C,D) and differential apoptotic staining (E,F). Data are presented as mean ± SD of three experiments. (∗P < 0.05, ∗∗P < 0.01).

that the miR-30c levels were approximate 80 times higher
in miR-30c mimics treated embryos compared to the control
mimics group (Figure 4A), indicating that miR-30c was taken
up by the embryos.

No significant difference was found in blastocyst rate between
miR-30c mimics group and control mimics group (Figure 4B).
However, TUNEL staining showed that the miR-30c mimics
group had an apoptosis rate of 12.86% whereas that of the control
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mimics group was 5.05% (Figures 4C,D). Similarly, differential
apoptotic staining showed that the miR-30c mimics group had
an apoptosis rate of 11.85% whereas that of the control mimics
group was 4.05% (Figures 4E,F).

miR-30c Directly Targets Cell
Progression Regulator CDK12
Different miRNA target prediction methods may produce
different results, thus we adopted the method from Ozen (Ozen
et al., 2007) and Li (Li et al., 2011). If a target was identified by at
least three of six used different algorithms (TargetScan, miRDB,
PicTar, miRanda, miRWalk and Tarbase), it was considered
likely to be a miRNA target. Of the putative target genes
identified in this way, CDK12 (identified by Targetscan, miRDB
and miRanda) was chosen for further analysis. This gene was
previously shown to be required for the prevention of apoptosis

(Bartkowiak et al., 2015; Juan et al., 2016) and to protect
cells from genomic instability and inhibit cell differentiation
(Blazek et al., 2011; Dai et al., 2012) through the regulation
of DDR genes in human and mouse. The 3′-UTR segment
of the bovine CDK12 gene containing the putative miR-30c
target binding site region (Figure 5A) was amplified and cloned
into luciferase reporter vector psi-CHECK2 and subsequently
transfected to HEK293T cells. As shown in Figure 5B, the miR-
30c mimics dramatically suppressed the activities of wild-type
(WT) 3′-UTRs of CDK12, while the mutated 3′-UTR binding
site (MUT) was unaffected. To further confirm the regulatory
relationship between miR-30c and CDK12, RT-qPCR, and WB
were performed to determine the CDK12 mRNA and protein
levels in MDBKs. The results showed that CDK12 was suppressed
by miR-30c mimics and enhanced by miR-30c inhibitors at
the protein level (Figure 5C) rather than the mRNA level
(Figure 5D). The direct target relationship was also analyzed

FIGURE 5 | CDK12 is a direct target of miR-30c. (A) 3′-UTR analysis of CDK12 containing putative regions that match the seed sequence of miR-30c. The mutated
nucleotides are underlined. (B) Overexpression of miR-30c inhibited the Renilla luciferase activities. HEK-293T cells were cotransfected with 5 nM miR-30c mimics
and 500 ng of reporter plasmid containing the WT or MUT-type UTRs. 24 h later, Renilla luciferase values were normalized against firefly luciferase and presented.
(C,D) miR-30c mimics or inhibitor were transfected into MDBKs. After 48 or 24 h, cells were harvested for western blot or RT-qPCR. (E,F) Embryos were treated
with miR-30c mimics or control mimics and the relative levels of CDK12 was detected using RT-qPCR and WB. Data are presented as mean ± SD of three
experiments. (∗∗P < 0.01).
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in embryos: miR-30c mimics were supplemented into embryos
culture medium and then CDK12 expression was evaluated using
RT-qPCR and WB. Not surprisingly, embryos showed the similar
results as MDBKs (Figures 5E,F). Collectively, these results show
that miR-30c directly targets CDK12 and inhibits its translation
instead of degrading mRNA.

miR-30c Overexpression and CDK12
Downregulation Direct Transcription of
Key DDR Genes
Given that CDK12 is involved in DNA repair (Paculová et al.,
2017) and has been proven to be a target gene inhibited by miR-
30c in our study, we hypothesized that miR-30c may suppress cell
cycle progression by inhibiting DDR pathways. A previous study
on mouse embryos showed that four DDR genes, namely Brca1,
Fancd2, Fanci, and Atr, had a reduced expression in the absence
of CDK12 (Juan et al., 2016). To our knowledge, in bovine, the
relationship among miR-30c, CDK12, and DDR pathway has
not been investigated yet. Here we examined the expression of
these four genes using RT-qPCR after supplementing miR-30c
mimics into embryos culture medium and modulating CDK12
expression in MDBKs. As shown in Figure 6A, the delivery
of miR-30c significantly decreased mRNA levels of all four
investigated DDR genes BRCA1, FANCD2, FANCI, and ATR in
embryos. As shown in Figure 6B, downregulation of CDK12 also
significantly decreased mRNA levels of the above four genes. We
also examined the expression of DDR genes after overexpressing
CDK12 using the previously mentioned vector construct. As
shown in Figure 6C, overexpression of CDK12 did not have a
significant effect on the mRNA level of these DDR genes.

miR-30c Suppresses the Cell Cycle,
While CDK12 Promotes the Cell Cycle
Although miR-30c has been shown to regulate cell progression in
human and mouse (Quintavalle et al., 2013; Liu et al., 2016), this
regulatory relationship is still unclear in bovine cells. Considering
the fact that the compaction of embryos makes it difficult to use
them for flow cytometry analysis, further studies were performed
using the bovine cell line MDBKs. PI staining was used to
determine the effect of miR-30c mimics or inhibitors on the
MDBK cell cycle. As shown in Figure 7A, cell cycle phase
distribution determined by flow cytometry displayed 8% increase
of treated cells in the G1 phase after delivery of miR-30c mimics,
indicating the cell growth suppression, while delivery of miR-30c
inhibitors resulted in an 8% decrease of cells in G1 phase.

CDK12 expression was assessed after siRNA or vector
transfection. RT-qPCR (Figure 7C) and WB (Figure 7D) showed
that CDK12 expression was indeed upregulated by the vector
construct and downregulated by siRNA at transcriptional level,
showing their usefulness for the next experiments. Transfection
of the CDK12 overexpressing construct resulted in an 8%
decrease of cells in the G1 phase compared with the control
group, whereas knockdown of CDK12 using siRNA resulted in
a 20% increase of cells in the G1 phase and a 15% decrease in the
S phase compared with si-NTC (Figure 7E).

FIGURE 6 | The delivery of miR-30c mimics into embryos and CDK12
downregulation in MDBKs regulate the expression of DDR genes.
(A) Embryos were supplemented with miR-30c mimics or control mimics. The
blastocysts (8 dpi) were then subjected to RT-qPCR. (B,C) MDBKs were
transfected with siRNAs or the overexpressing vector for 24 h. The cells were
then subjected to RT-qPCR. Data are presented as mean ± SD of three
experiments. (∗P < 0.05, ∗∗P < 0.01).

miR-30c Decreases Cell Viability, While
CDK12 Increases Cell Viability
The MDBKs cellular metabolic activity, indicative of the cell
proliferation, was monitored after addition of miR-30c mimics or
inhibitors using the WST-1 assay. As shown in Figure 7B, miR-
30c mimics led to a significant decrease in cell viability (37%),
while miR-30c inhibitors increased cell viability (57%).

As shown in Figure 7F, CDK12 overexpression increased cell
viability (84%), while CDK12 inhibition led to a 49% decrease
in cell viability.

DISCUSSION

Timing of cleavage is regarded as an important marker to
assess embryo quality (Gutierrez-Adan et al., 2015) and it has
been shown that rapid cleaving embryos are of better quality
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FIGURE 7 | Effects of miR-30c mimics/inhibitor and CDK12 overexpression/downregulation on cell process. (A,B) MDBK cells were reverse transfected with
miR-30c mimics or inhibitor for 48 h. The cells were then subjected to cell cycle assay by PI staining and cell proliferation assay by WST-1 assay. (C–F) MDBK cells
were reverse transfected with siRNAs or overexpressed vector for 48 h. The cells were then subjected to RT-qPCR, WB, cell cycle assay by PI staining and cell
proliferation assay by WST-1 assay. Data are presented as mean ± SD of three experiments. (∗P < 0.05, ∗∗P < 0.01).
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than slower cleaving embryos (Meirelles et al., 2004; Vandaele
et al., 2006). Because it has been demonstrated that an embryo’s
potential is determined more in the early developmental stages
than in later developmental stages (Wong et al., 2010; Milewski
and Ajduk, 2017; Milewski et al., 2018), we chose the 2-cell stage
to assess the samples regarding evaluation of embryos quality,
instead of the 4-cell stage or the morula stage. In our study, fast
and intermediate cleaving embryos produced significantly more
blastocysts compared to the slow cleaving embryos (50.65 and
41.16% vs. 18.7%), confirming the above theory.

In addition to their intracellular function, secreted miRNAs
may play a significant role in intercellular communications
(Vickers et al., 2011; Boon and Vickers, 2013; Yang et al.,
2018). However, the dynamics of miRNA secretion and their
transfer mechanisms are still poorly understood. Secreted
miRNAs have been found to be related to cell growth, invasion,
migration, dissemination as well as metastasis and impairment
of the immune system response (Schwarzenbach et al., 2014).
Furthermore, they have potential as biomarkers for cancer and
benign diseases, thus raising the questions whether and how
secreted miRNAs influence embryo development and if they can
be used as non-invasive biomarkers for embryo quality. Given
the current methods for miRNA detection, the main limitation
is the low abundance of miRNAs in CM. However, miRNAs
secreted by a single human embryo have been successfully
detected and extracted (Capalbo et al., 2016), indicating the
potential application for bovine embryos. In our study, to obtain
a sufficient amount of miRNAs for sequencing, we concentrated
the CM from 167 embryos for each replicate and thus achieved
at least 1 million raw reads. The potential of secreted miRNAs as
biomarkers relies mainly on their high stability and their capacity
to reflect embryo developmental status and their prognostic
abilities in relation to IVF success and pregnancy outcome.
Although there are several recent studies focusing on miRNAs
in culture media (Rosenbluth et al., 2014; Kropp and Khatib,
2015) and body fluids, such as follicular fluid (Sohel et al., 2013)
and endometrium (Vilella et al., 2015), providing an indication
of the developmental competence of embryos, improvements
in detection techniques and more knowledge of the miRNA
signaling is needed in order to use secreted miRNA as biomarkers
in embryonic development. In addition, not only technical
aspects currently limit the use of secreted miRNAs as biomarkers
in culture media and also in other body fluids; to date the
source of secreted miRNAs is not clear. Therefore, more extensive
studies are necessary to clarify whether secreted miRNAs detected
in extracellular environment are the product of dead cells or are
secreted in a tissue-specific manner. Furthermore, studies with
large samples sizes are needed and some aspects of experimental
reliability must be assessed before secreted miRNAs can be
used as biomarkers.

Apart from the easy detection, a biomarker should
be clearly discriminatory for the state to be defined, in
casu the developmental competence of the embryo. Here,
we demonstrated that miRNAs are differentially secreted
from bovine embryos with different cleavage patterns and
different qualities: miR-30c and miR-10b were differentially
expressed between slow and intermediate cleaving embryos’

CM; miR-10b, miR-novel-113, miR-novel-44, miR-novel-45, and
miR-novel-139 were differentially expressed between blastocyst’s
and degenerate’s CM.

Among the differentially expressed miRNAs, miR-30c was
found to be 18 times more abundant in slow cleaving embryos’
CM vs. intermediate cleaving embryos’ CM. This distinct
difference makes it a suitable biomarker candidate for the
developmental capacity of bovine early embryos. To gauge the
effect of miR-30c uptake by bovine embryos in correlation with
the cleavage pattern and the proposed roles of miR-30c in cell
proliferation in mouse (Liu et al., 2016), cell apoptosis in human
and mouse (Li et al., 2010; Quintavalle et al., 2013; Liu et al.,
2016), cell differentiation in human and mouse (Karbiener et al.,
2011; Wu et al., 2012) and cell damage in human (Li et al., 2012),
apoptosis assays were performed. RT-qPCR results confirmed
that miR-30c was indeed taken up by bovine embryos and they
showed a higher apoptosis rate, which is in agreement with
previous findings that miRNAs could be both released and taken
up by embryos (Kropp and Khatib, 2015; Vilella et al., 2015;
Gross et al., 2017). The effect was further investigated using
the bovine cell line MDBK. The delivery of miR-30c mimics
to the MDBKs led to reduced cell proliferation and an arrest
at G1 stage, while the delivery of miR-30c inhibitors resulted
in the opposite effects, as expected. Previous studies on human
embryos suggested that miR-30c can serve as a potential marker
of blastocyst implantation potential (Capalbo et al., 2016; Noli
et al., 2016). This is not surprising because although miR-30c is
highly conserved between different species, it has been shown
to act differently among different species. For instance, miR-30c
was found to increase cell proliferation in mouse embryonal
carcinoma cells (Liu et al., 2016), while it was also found to be a
tumor suppressor miRNA in human cancers (Poudel et al., 2013;
Shukla et al., 2015).

We also demonstrated for the first time that miR-30c
downregulates CDK12 expression at a post-transcriptional level
both on bovine embryos and MDBKs. CDK12 is a transcription-
associated CDK that exerts control over Pol II-mediated
transcription (Ekumi et al., 2015) and is essential for splicing and
differentiation (Chilà et al., 2016). Intriguingly, recent research
has shown that CDK12 is essential for embryonic development
and the maintenance of genomic stability by regulating the
expression of DDR genes, and reduced expression of some of
these DDR genes will subsequently trigger apoptosis (Juan et al.,
2016; Chen et al., 2017). During early embryonic development,
DNA replication is prominent and highly efficient DNA repair
is crucial for proper embryo development. For instance, Atr-
and Brca1-lacking embryos were reported to display growth
retardation in mice (Liu, 1996; Brown and Baltimore, 2000).
In our study, both the supplementation of miR-30c mimics into
bovine embryos culture medium and the CDK12 knockdown
in MDBKs caused a decreased expression level of key DDR
genes BRCA1, FANCD2, FANCI, and ATR. These results present
evidence that miR-30c overexpression or CDK12 downregulation
reduces the expression of these DDR genes at the transcriptional
level, leading to a potential failure of DNA damage repair.
Interestingly, while CDK12 overexpression increased cell cycle
progression and cell proliferation, it had no effect on the mRNA
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level of those key DDR genes. This indicates that CDK12
overexpression might influence cell cycle progression at other
levels or through other mechanisms. For instance, in breast
cancer cells, CDK12 overexpression led to altered alternative last
exon splicing of a subset of genes (Tien et al., 2017) and increased
the invasiveness of a breast cancer cell line by decreasing
the expression of the long isoform of DNAJB6 (Paculová and
Kohoutek, 2017). A potential weakness of our study is that due
to technical difficulties, part of the functional analysis of CDK12
was done on MDBKs. It would be better if we can validate this
mechanism in bovine embryos.

In summary, we have found 114 known miRNAs and 180
potential novel miRNAs in CM of bovine embryos. We have also
identified miR-30c, which can be secreted and taken up by bovine
embryos, as a novel potential biomarker related to bovine embryo
apoptosis and reduced development. As miR-30c directly targets
CDK12 and downregulates DDR genes, it may exert its effects on
cell cycle progression by inhibiting the DDR pathways.
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Neurodegenerative diseases (NDs) are becoming increasingly prevalent in the world,
with an aging population. In the last few decades, due to the devastating nature of
these diseases, the research of biomarkers has become crucial to enable adequate
treatments and to monitor the progress of disease. Currently, gene mutations, CSF and
blood protein markers together with the neuroimaging techniques are the most used
diagnostic approaches. However, despite the efforts in the research, conflicting data still
exist, highlighting the need to explore new classes of biomarkers, particularly at early
stages. Small non-coding RNAs (MicroRNA, Small nuclear RNA, Small nucleolar RNA,
tRNA derived small RNA and Piwi-interacting RNA) can be considered a “relatively”
new class of molecule that have already proved to be differentially regulated in many
NDs, hence they represent a new potential class of biomarkers to be explored.
In addition, understanding their involvement in disease development could depict the
underlying pathogenesis of particular NDs, so novel treatment methods that act earlier
in disease progression can be developed. This review aims to describe the involvement
of small non-coding RNAs as biomarkers of NDs and their potential role in future
clinical applications.

Keywords: small non-coding RNAs, microRNAs, neurodegenerative disease, biomarkers, new therapeutic targets

INTRODUCTION

Neurodegenerative diseases (NDs) are classified as a class of disorders affecting the central nervous
system and they are characterized by the progressive loss of neuronal tissues. NDs are age-
dependent disorders which are increasing internationally, due to the ever increasing elderly
population, which is leaving greater numbers of people subjected to the chronic, debilitating
nature of these incurable diseases (Heemels, 2016). Currently, the most represented NDs are:
Alzheimer’disease (AD) with 5 million people affected in America only, followed by Parkinson’s
diseases (PD) with 1 million people; multiple sclerosis (MS) 400,000; Amyotrophoic lateral sclerosis
(ALS) 30,000 and Huntington’s disease (HD) with 3,000 incidents (Agrawal and Biswas, 2015).

Some treatments for ND have aimed to reduce the syndrome of NDs; these include L-dopa and
deep brain stimulation in PD (Groiss et al., 2009; Nagatsua and Sawadab, 2009). However, very
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few have aimed to slow or reverse ND development, and
those that have been investigated e.g., stem cell therapy
(Chung et al., 2002; Rachakonda et al., 2004) highlight the
requirement for more research. Late diagnosis leads to strategic
treatment being ineffective due to irreversible disease progression
(Sheinerman and Umansky, 2013). This has been reported
for example, on anti-AD therapies in late-stage clinical trials
(including dimebon of Medivation and Pfizer, solanezumab of
Eli Lilly and bapineuzumab of Pfizer and Johnson & Johnson).
Biomarkers for early diagnosis could prevent or limit disease
development through prophylactic or early treatment, which
has ignited interest. Currently, the most accurate diagnosis
relies on neuropathology, mainly based on autopsy, or in the
measurement of cerebrospinal fluid (CSF) proteins, such as tau
or Aβ- in AD, which requires invasive procedures. However,
blood proteins, such as Aβ1-42 peptide in AD or cytokines for
ALS or HD (Agrawal and Biswas, 2015), as well as genetics
diagnostics markers such as ApoE isoforms in AD or α-synuclein
or Parkin for PD, have also demonstrated potential clinical utility
(Agrawal and Biswas, 2015).

Neuroimaging techniques can also help to make the correct
diagnosis and monitor the progress of NDs. Magnetic resonance
imaging (MRI) is one of the most widely used neuroimaging
techniques used for AD (Jack et al., 2011; McKhann et al.,
2011) and for dementia with Lewy bodies (DLB) (Ciurleo et al.,
2014). Magnetic resonance spectroscopy (MRS) has also showed
promise in early diagnosis of PD and traumatic brain injury,
measuring metabolic dysfunctions and irreversible neuronal
damage (Vagnozzi et al., 2008).

Recently, a new class of circulating RNAs – non-coding
RNAs – have been re-evaluated and are being considered
as potential biomarkers. After years of the belief that 98%
of the genome was “junk” due to its non-coding nature it
was realized these genes had biologically functionality. Non-
coding genes include introns, pseudogenes, repeat sequences
and cis/trans-regulatory elements that function as RNA without
translation. Estimations have suggested that 99% of total RNA
content is made up of non-coding RNA, with numbers of
validated non-coding RNAs (ncRNAs) increasing every year
(Palazzo and Lee, 2015).

Currently ncRNAs can be defined by length – small 18–200 nts
and long >200nts – or functionality with housekeeping ncRNAs
such as ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs)
or regulatory ncRNAs like microRNAs (miRNAs), small nuclear
RNAs (snRNAs), piwi-interacting RNA (piRNAs), tRNA derived
small RNAs (tsRNAs) and long non-coding RNAs (lncRNAs)
(Dozmorov et al., 2013). Nonetheless, difficulty distinguishing
categories persists due to the crossover of properties.

Small non-coding RNAs (sncRNAs) have diverse roles,
which in conjunction with other molecules involve gene
regulation through either RNA interference, RNA modification
or spliceosomal involvement (Table 1). Consequently, during
disease progression their expression can alter. MiRNAs are the
most studied sncRNA as biomarkers with involvement in various
diseases including cancers, aging and neurodegenerative disease
(Calin and Croce, 2006; Grasso et al., 2014; Di Pietro et al.,
2017). Other sncRNAs have shown promise as biomarkers,

TABLE 1 | Classification of types of small non-coding RNAs.

Type of small non-coding RNA Size (nts) Function

MicroRNA (miRNA) ∼22 Ago – RNAi

Small nuclear RNA (snRNA) ∼150 Spliceosome components

Small nucleolar RNA (snoRNA) 60–140 RNA modification

Piwi-interacting RNA (piRNA) 26–31 PIWI – RNAi

tRNA derived small RNA (tsRNA) 15–50 Diverse

with links to neurodegenerative disease (Munoz-Culla et al.,
2016). There is the potential for multiple sncRNA biomarkers
for neurodegenerative diseases, which if found, could aid
diagnosis in a clinical setting while demonstrating the processes
underpinning the disease development. In future, this could
produce novel therapies to treat neurodegenerative diseases using
original methodologies.

In this review, we consider the evolving role of sncRNAs
and discuss their involvement in neurodegenerative disease with
particular emphasis on their potential as biomarkers.

MICRORNA

MiRNAs are the most studied sncRNA. Their biogenesis
commences with the formation of a pri-miRNA made up of two
stem-loop structure. A Drosha and DGCR8 complex cleaves the
pri-miRNA to form a single stem-loop pre-miRNA. Dicer cleaves
the pre-miRNA to create a double stranded miRNA, which is
loaded onto Argonaute family of proteins to form the miRISC
complex (Figure 1Ai). Accompanied to the miRISC complex,
miRNAs regulate gene expression post-transcriptionally through
degradation and repression of mRNA sequences by an Argonaute
family protein mediated method (Figure 1Aii; O’Brien et al.,
2018). A single miRNA can have multiple targets, likewise a target
mRNA can be bound to by many different miRNAs, to enable
more diverse signaling patterns.

MiRNAs show specific signaling in the brain, and were also
found differentially expressed in bio-fluids. Although there is no
consistent consensus on particular miRNAs or brain area yet, and
no specific miRNA overlap between brain tissues and bio-fluids
(as reported in Table 2) these findings certainly provide insights
in the study of NDs pathogenesis.

MiRNAs are best studied in Alzheimer’s disease (AD), which
manifests itself as deposition of neurofibrillary tangles (NFT)
and extracellular amyloid-β (Aβ), before neuronal degeneration
and clinical symptoms materialize in the form of behavioral
changes such as memory issues. NFT, Aβ and neuronal
degeneration have been associated with dysregulation of miRNA
gene expression, which could emanate from altered Aβ or Tau
metabolism. MiRNAs effect Aβ metabolism by interacting with
amyloid precursor protein (APP) through direct binding of
the 3′untranslated region (3′UTR) to the APP mRNA, indirect
inhibition through downregulation of Beta-secretase 1 (BACE1)
and ATP-binding cassette transporter (ABCA1) or regulating
alternative APP splicing. MiRNAs also affect Tau through
regulation of microtubule associated protein tau (MAPT)
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FIGURE 1 | Biogenesis of sncRNAs and an example of their biological function. A (i) MicroRNAs are single stranded ∼22 bp sequences formed from double
stranded precursors (ii) that prevent mRNA translation. B (i) Small nuclear RNAs biogenesis is made up of two classes Sm class snRNA and Lsm-class snRNA (Not
shown), (ii) which form the major and minor spliceosome. C (i) Small nucleolar RNAs have two different classes formed using different machinery; Box C/D RNA and
Box H/ACA RNA, (ii) which cause methylation and pseudouridylation respectively. D (i) Piwi interacting RNAs are formed by either primary alone or by both primary
and secondary biogenesis (ii) that prevent transposon translation through methylation. E (i) Transfer RNA cleavage forms transfer RNA derived fragments to be
formed, (ii) which can prevent translation or cause gene repression.

splicing, affecting tau isoforms 3R and 4R. Direct or indirect
binding either modulates phosphorylated Tau-associated protein
kinases or influences degradation of phosphorylated tau by
binding 3′-UTR BCL2 associated athanogene 2 (BAG2) mRNA
(Zhao et al., 2017).

MiRNAs have an established involvement in neurobiological
functions and pathogenesis of numerous other neurodege-
nerative diseases (Serafin et al., 2014; Fransquet and Ryan, 2018;
Ricci et al., 2018). Mitochondrial dysfunction caused by miRNA
dysregulation leads to oxidative stress, which causes cell death,
α-synuclein aggregation and neurodegeneration known to be
present in PD (Spano et al., 2015). In ALS, both TAR DNA
binding protein (TARDBP) and fused in sarcoma (FUS) are
well-established causative genes, which are involved in miRNA
processing. TARDBP has specific roles in facilitation of post-
transcriptional processing achieved through association directly
with miRNA or processing factors such as Dicer (Kawahara
and Mieda-Sato, 2012). FUS regulates miRNA-mediated gene
silencing through facilitation of the interaction between miRNA,
mRNA and RISC components (Zhang et al., 2018). In HD,
a miRNA formulation is being trailed as therapeutic agents
to alter the aberrant Huntingtin (HTT) protein expression
(Aronin and DiFiglia, 2014).

MiRNA involvement in ND development has demonstrated
the capability of distinguishing between disease subtypes and
shown promise for future stratification. For example in AD,
30 differentially regulated miRNAs found in the brain and
blood of AD patients were assigned to different Braak stages,
a methodology for classifying AD pathology, with 10 associated
with Braak stage III (hsa-mir-107, hsa-mir-26b, hsa-mir-30e, hsa-
mir-34a, hsa-mir-485, hsa-mir200c, hsa-mir-210, hsa-mir-146a,
hsa-mir-34c, and hsa-mir-125b) (Swarbrick et al., 2019). Likewise
in PD, miR-331-5p is differentially expressed in plasma of early
onset Parkinson’s disease (EOPD) patients, which was not seen
in late onset Parkinson’s disease (LOPD) patients (Cardo et al.,
2013; Table 2). Studies comparing between subtypes of NDs are
still in the minority and more are required to understand the true
capability of miRNA markers in stratification of NDs.

SMALL NUCLEAR RNAs

Small nuclear RNAs (snRNAs), the component parts of the
spliceosome – responsible for removal of non-coding introns
from precursor mRNA – are highly conserved uridine rich
sequences with five snRNAs making up its spine; U1, U2, U4, U5,
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TABLE 2 | MiRNAs with an involvement in the neurodegenerative disease development.

Neurodegenerative
disease

Source miRNA

Alzheimer’s disease Whole blood miR-106b-5p, miR-106a-5p, miR-107, miR-9-5p (Yilmaz et al., 2016a)
Let-7d-5p, Let-7f-5p, miR-107, miR-26a-5p, miR-26b-5p (Leidinger et al., 2013)
miR-142-5p (Sorensen et al., 2016)

Brain tissues miR-9, miR-128 (Lukiw, 2007)
miR-26a, miR-27b, miR-30e-5p, miR-34a, miR-92, miR-125, miR-145, miR-200c, miR-381, miR-422a,
miR-423 miR-9, miR-132, miR-146b, miR-212 (Cogswell et al., 2008)
miR-197, miR-511, miR-320, let-7i, miR-101, miR-106b, miR-15a, miR-181c, miR-19b, miR-22, miR-210,
miR-26b, miR-29b-1, miR-363, miR-9, miR-93 (Hebert et al., 2008)
miR-29a (Shioya et al., 2010)
miR-26b (Absalon et al., 2013)
miR-370, miR-328, miR-138, miR-132 and miR-15a (Bekris et al., 2013)

CSF let-7f, miR-105, miR-125a, miR-135a, miR-138, miR-141, miR-151, miR-186, miR-191, miR-197, miR-204,
miR-205, miR-216, miR-302b, miR-30a5p, miR-30a3p, miR-30b, miR-30c, miR-30d, miR-32, miR-345,
miR-362, miR-371, miR-374, miR-375, miR-380-3p, miR-429, miR-448, miR-449, miR-494, miR-501,
miR-517, miR-517b, miR-518b, miR-518f, miR-520a∗, miR-526a, miR-10a, miR-10b, miR-125, miR-126∗,
miR-127, miR-142-5p, miR-143, miR-146b, miR-154, miR-15b, miR-181a, miR-181c, miR-194, miR-195,
miR-199a∗, miR-214, miR-221, miR-328b, miR-422, miR-451, miR-455, miR-497, miR-99a (Bekris et al., 2013)
miR-9, miR-125b, miR-146a, miR-155 (Alexandrov et al., 2012)
let-7b (Lehmann et al., 2012)
miR-146a, miR-155 (Lukiw et al., 2012)
miR27a-3p (Sala Frigerio et al., 2013)
miR-100, miR-146a, miR-296, miR-3622b-3p, miR-4467, miR-505, miR-766, miR-103, miR1274a, miR-375,
miR-708, miR-219 (Denk et al., 2015)

Plasma miR-142-3p, miR-483-5p (Nagaraj et al., 2017)
miR-125b-5p, miR-29b-3p, miR-3065-5p, miR-342-3p/5p (Lugli et al., 2015)
miR-107 (Wang et al., 2008)
miR-34a (Bhatnagar et al., 2014)
miR-146a, miR-34a (Kiko et al., 2014)
Let-7d-5p, Let-7g-5p, miR-142-3p, miR-15b-5p, miR-191-5p (Kumar et al., 2013)

Serum miR-143, miR-146a, miR-93 (Dong et al., 2015)
miR-125b, miR-26b (Galimberti et al., 2014)
Let-7d-5p, Let-7g-5p, miR-191-5p, miR-26b-3p, miR-30e-5p, miR-342-3p, miR-483-3p (Tan et al., 2014b)
miR-125b, miR-181c, miR-9 (Tan et al., 2014a)
miR-106b-3p, miR-181c-3p, miR-26a-5p (Guo R. et al., 2017)
Let-7f-5p, miR-26b-5p, miR-501-3p (Hara et al., 2017)
miR-125b (Jia and Liu, 2016)
miR-106a-5p, miR-106b-3p, miR-143-3p, miR-15b-3p, miR-3065-5p, miR-30e-5p, miR-342-3p, miR-93-5p
(Cheng et al., 2015)
miR-181c (Geekiyanage et al., 2012)
miR-455-3p (Kumar et al., 2017)
miR-222 (Zeng et al., 2017)
miR-29c-3p, miR-19b-3p (Wu et al., 2017)

PBMCs miR-29b (Villa et al., 2013)
Let-7f, miR-34a (Schipper et al., 2007)

Early onset Parkinsons
disease (EOPD)

Whole blood miR-1, miR-22, miR-29a (Margis et al., 2011)

Brain tissues miR-34b,c (Minones-Moyano et al., 2011)

Plasma miR-331-5p (Cardo et al., 2013)

Serum miR-141, miR-146b-5p, miR-193a-3p, miR-214 (Dong et al., 2016)

Late onset Parkinson’s
disease (LOPD)

Whole Blood miR-103a, miR29a, miR-30b (Serafin et al., 2015)
miR-3143, miR-335-3p, miR-4671-3p, miR-561-3p, miR-579-3p (Yilmaz et al., 2016b)

Brain tissues miR-34b,c (Minones-Moyano et al., 2011)
miR-181a,b,c,d, miR-22, miR-29a,b,c (Liao et al., 2013)
miR-106a, miR-21, miR-224, miR-26b, miR-301b, miR-373 (Alvarez-Erviti et al., 2013)
miR-205 (Cho et al., 2013)
miR-135b, miR-198, miR-485-5p, miR-548d (Cardo et al., 2014)
Let-7i-3p/5p, miR-10b-5p, miR-1224, miR-127-3p, miR-127-5p, miR-16-5p, miR-184, miR-29a-3p (Hoss
et al., 2016)
miR-144, miR-145, miR-199b, miR-221, miR-488, miR-543, miR-544, miR-7 (Tatura et al., 2016)
miR-225, miR-236, miR-46 (Wake et al., 2016)

(Continued)
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TABLE 2 | Continued

Neurodegenerative
disease

Source miRNA

CSF Let-7g-3p, miR-1224-5p, miR-127-3p, miR-128, miR-132-5p, miR-19a,b, miR-212-3p, miR-370,
miR-409-3p, miR-4448, miR-485-5p, miR-873-3p (Burgos et al., 2014)
Let-7g-3p, miR-1, miR-103a, miR-10a-5p, miR-119a, miR-126, miR-127-3p, miR-132-5p, miR-136-3p,
miR-151, miR-153, miR-16-2, miR-19b-3p, miR-22, miR-26a, miR-28, miR-29a,c, miR-301a, miR-30b,
miR-331-5p, miR-370, miR-374, miR-409-3p, miR-433, miR-485-5p, miR-873-3p (Gui et al., 2015)
miR-1249, miR-1274b, miR-150, miR-16, miR-18b, miR-199b, miR-20a, miR-21, miR-320a,b, miR-378c,
miR-4293, miR-671, miR-769, miR-92b (Soreq et al., 2013)

Plasma miR-222, miR-505, miR-626 (Khoo et al., 2012)

Serum miR-19b, miR-29a,c (Botta-Orfila et al., 2014)
miR-133b (Zhao et al., 2014)
miR-29a,b,c (Bai et al., 2017)
miR-146a, miR-214, miR-221, miR-29c (Ma et al., 2016)
miR-1294, miR-16-2-3p, miR-30a,e, miR-338-3p (Burgos et al., 2014)
miR-148b, miR-223, miR-24, miR-30c, miR-324-3p (Vallelunga et al., 2014)
miR-15b, miR-181a, miR-185, miR-195, miR-221 (Ding et al., 2016)

PBMCs miR-126, miR-126∗, miR-147, miR-151-3p,5p, miR-199a-3p,5p, miR-199b, miR-19b, miR-26a, miR-28-5p,
miR-29b,c, miR-301a, miR-30b,c, miR-335, miR-374a,b (Martins et al., 2011)
miR-155, miRNA-146a (Caggiu et al., 2018)

Amyotrophic lateral
sclerosis (ALS)

Whole Blood let-7a-5p, let-7d-5p, let-7f-5p, let-7g-5p, let-7i-5p, miR-103a-3p, miR-106b-3p, miR-128-3p, miR-130a-3p,
miR-130b-3p, miR-144-5p, miR-148a-3p, miR-148b-3p, miR-15a-5p, miR-15b-5p, miR-151a-5p,
miR-151b, miR-16-5p, miR-182-5p, miR-183-5p, miR-186-5p, miR-22-3p, miR-221-3p, miR-223-3p,
miR-23a-3p, miR-26a-5p, miR-26b-5p, miR-27b-3p, miR-28-3p, miR-30b-5p, miR-30c-5p, miR-342-3p,
miR-425-5p, miR-451a, miR-532-5p, miR-550a-3p, miR-584-5p, miR-93-5p (Liguori et al., 2018)

CSF miR-150, miR-99b, miR-146a, miR-27b, miR-328, miR-532-3p (Butovsky et al., 2012)
miR-132-5p, miR-132-3p, miR-143-3p, miR-143-5p, miR-574-5p (Freischmidt et al., 2013)
miR-338-3p (De Felice et al., 2014)
miR-181a-5p, miR-21-5p, miR-195-5p, miR-148-3p, miR-15b-5p, miR-let7a-5p, miR-let7b-5p, miR-let7f-5p
(Benigni et al., 2016)
miR-124-3p, miR-127-3p, miR-143-3p, miR-125b-2-3p, miR-9-5p, miR-27b-3p, miR-486-5p, miR-let7f-5p,
miR-16-5p, miR-28-3p, miR-146a-3p, miR-150-5p, miR-378a-3p, miR-142-5p, miR-92a-5p
(Waller et al., 2017b)

Plasma miR-4649-5p, miR-4299 (Takahashi et al., 2015)
miR-424, miR-206 (de Andrade et al., 2016)
miR-206, Pairs miR-206/miR-338-3p, miR-9∗/miR-129-3p, miR-335-5p/miR-338-3p
(Sheinerman et al., 2017)

Serum miR-132-3p, miR-132-5p, miR-143-3p, miR-143-5p, let-7b (Freischmidt et al., 2013)
miR-206, miR-106b (Toivonen et al., 2014)
miR-4745-5p, miR-3665, miR-4530, miR-1915-3p (Freischmidt et al., 2014)
miR-1825, miR-1234-3p (Freischmidt et al., 2015)
miR-206, miR-133a, miR-133b, miR-146a, miR-149∗, miR-27a (Tasca et al., 2016)
miR-1, miR-133a-3p, miR-133b, miR-144-5p, miR-192-3p, miR-195-5p, miR-19a-3p, let-7d-3p, miR-320a,
miR-320b, miR-320c, miR-425-5p, miR-139-5p (Raheja et al., 2018)
miR-206, miR-143-3p, miR-374b-5p (Waller et al., 2017a)
miR-142-3p, miR-1249-3p (Matamala et al., 2018)

Huntington’s disease Brain tissues miR-9/miR-9∗, miR-124a, miR-132 (Packer et al., 2008)
miR-10b-5p, miR-196a-5p, miR-615-3p, miR-10b-3p, miR-1298-3p, miR-196b-5p, miR-302a-3p,
miR-1247-5p, miR-144-3p, miR-223-3p, miR-3200-3p, miR-302a-5p, miR-1264, miR-6734-5p,
miR-144-5p, miR-138-2-5p, miR-431-5p, miR-132-3p, miR-200c-3p, miR-23b-5p, miR-448, miR-486-3p,
miR-490-5p, miR-5695, miR-885-5p, miR-1224-5p, miR-1298-5p, miR-142-3p, miR-346, miR-891a-5p,
miR-16-2-3p, miR-363-3p, miR-148a-3p, miR-199a-5p, miR-4449, miR-106a-5p, miR-142-5p, miR-549a,
miR-214-5p, miR-141-3p, miR-5680, miR-3065-5p, miR-224-5p, miR-4787-3p, miR-452-5p,
miR-129-1-3p, miR-4443, miR-101-5p, miR-483-5p, miR-2114-5p, miR-1185-1-3p, miR-670-3p,
miR-129-5p, miR-135b-5p, miR-194-5p, miR-208b-3p, miR-4488, miR-888-5p, miR-126-5p, miR-34c-5p,
miR-218-1-3p, miR-150-5p, miR-486-5p, miR-433-3p, miR-219b-3p, miR-548n, miR-663b, miR-148a-5p,
miR-29a-3p, miR-320b, miR-181a-3p, miR-153-5p, miR-28-5p, miR-7-2-3p, miR-877-5p, miR-3687,
miR-4516, miR-3139, miR-663a, miR-34b-3p, miR-1538 (Hoss et al., 2015a)

CSF miR-520f-3p, miR-135b-3p, miR-4317, miR-3928-5p, miR-8082, miR-140-5p (Reed et al., 2018)

Plasma miR-10b-5p, miR-486-5p (Hoss et al., 2015b)
miR-34b (Gaughwin et al., 2011)
miR-877-5p, miR-223-3p/5p, miR-30d-5p, miR-128, miR-22-5p, miR-222-3p, miR-338-3p, miR-130b-3p,
miR-425-5p, miR-628-3p, miR-361-5p, miR-942 (Diez-Planelles et al., 2016)

∗Passenger miRNA strand.
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TABLE 3 | Interactions of small non-coding RNAs with
Neurodegenerative diseases.

sncRNA Disease Interaction

snRNA major
spliceosome

AD U1 snRNPs present in cytoplasmic
aggregates

SMA SMN1 gene dysregulation alters U
snRNA levels

Neurodegeneration U2 snRNA mutation alters
pre-mRNA splicing

ALS
FTD

A disease related di-peptide repeat
C90RF72 interacts with U2 snRNP

RP Mutation found in PRPF4 which
encodes U4/U6 di-snRNP protein

snRNA minor
spliceosome

ALS Decreased U12 snRNA in spinal
motor neurones

Decreased TDP-43 disrupts U12
mediated pre-mRNA splicing

FUS mutants cannot bind U11 so
decreased minor intron splicing

snoRNA AD Differential expression of two C/D
box snoRNAs e307 and e470 in
mouse model

ASD SNORD115 duplication in mouse
causes abnormal brain development

piRNA AD 9 piRNAs found to be differentially
regulated in AD risk variant patients
(6 APOE and 3 RNU6-560P)

PD 70 differentially expressed piRNAs in
combined patient tissue and cells

tsRNA ALS ANG mutants implicated in
pathogenesis

PD A subset of ALS-associated ANG
mutants

Intellectual disability NSun2 mutation causes 5′tiRNA
accumulation

PCH CLP1 gene mutation disruption of
tRNA splicing

Neurodegenerative
patient

KAE1 gene mutation alters tRNA
modification

and U6. These snRNAs combine with partner proteins to form
the small nuclear ribonucleoprotein (snRNPs) complex, which is
essential pre-mRNA splicing to enable production of functional
mRNA for protein translation.

Sm-class snRNAs are synthesized by RNA polymerase II
and after transcription contain a 7-methylguanosine cap, Sm-
protein binding site and 3′ stem-loop. The latter two are
recognized by the SMN complex, which recruits a set of
Sm proteins to create the Sm-core RNP. Following this,
the cap undergoes hypermethylation by trimethylguanosine
synthase-1 (TSG1) creating a 2,2,7-trimethylguanosine cap. The
3′ end is then trimmed by an unknown exonuclease before
subsequent maturation through modifications (Matera et al.,
2007; Figure 1Bi).

Two types of spliceosome “major” and “minor” (0.35% of
all introns) can be assembled. Major spliceosome assembly
commences by U1 interacting with the 5′ splice site while
U2 snRNP binds to the branch point sequence. This leads to
the recruitment of the premade U4/U6.U5 tri-snRNP complex,
in this state the spliceosome is inactive. After destabilization or

release of either U1 or U4, the spliceosome becomes active. The
active spliceosome undergoes two phases of catalysis leading to its
dissociation – including U2, U5, and U6 that are recycled – when
it releases the mRNA, as mRNP (Wahl et al., 2009; Figure 1Bii).
The minor spliceosome has divergent and highly conserved 5′
splice site and branch point sequences, which interact with U5
as well as alternative factors U11, U12, and U4atac/U6atac that
are functional analog of its major counterpart (Verma et al., 2018;
Figure 1Bii). Both spliceosomes show the capability to contribute
to the development of neurodegenerative disease, demonstrating
snRNA involvement (Bai et al., 2013; Tsuiji et al., 2013; Ratti and
Buratti, 2016; Jutzi et al., 2018).

In sporadic and familial AD, U1 snRNP subunits – including
U1-70K and U1A – were present in cytoplasmic aggregates,
which occurs by the basic-acidic dipeptide (BAD) domain
binding to tau in U1-70K (Bishof et al., 2018). Inordinate levels
of unspliced RNA also reside, caused by dysregulation of RNA
processing. In conjunction with evidence that inhibition of U1
snRNP increases APP, this implicates U1 snRNP dysregulation
in the pathogenesis of AD (Bai et al., 2013; Hales et al.,
2014a,b). Recent evidence has shown abnormal expression of
U1 snRNA can cause premature cleavage of pre-mRNA via
polyadenylation (PCPA) at the 3′ poly-A site. This affects
splicing and could demonstrate a novel AD causing pathology
(Cheng et al., 2017) (Table 3).

U snRNAs are also associated with spinal muscular atrophy
(SMA). SMN1 gene dysregulation alters U snRNA levels through
its role in U snRNA biosynthesis; nonetheless, the underlying
pathology is still unclear (Zhang et al., 2013). Many studies have
proposed a reduction in U snRNAs is key to SMA pathology due
to their involvement in mRNA processing, with U1 and U11 of
particular interest (Gabanella et al., 2007; Zhang et al., 2008).
In contrast, U snRNAs can accumulate in the motor neurons of
ALS patient spinal cords when compared to control patients, to
cause defects showing that U snRNA level can depict disease state,
depending of cell type (Tsuiji et al., 2013).

More recently, when considering induced pluripotent stem
cell (iPSC) derived motor neurones cultures, a study suggested
that an imbalanced ratio of variant U1 to U1 might cause
the SMA phenotype rather than an overall reduction in U1
snRNA (Vazquez-Arango et al., 2016). Demonstrating that
purely measuring U snRNA level may be an oversimplified
measurement and variant U snRNA could indicate the
underlying pathophysiology of aberrant spliceosome related
neurodegeneration.

Other U snRNAs studied in neurodegenerative disease include
U2. A U2 snRNA mutation causes neuron degeneration, through
altering pre-mRNA splicing at select splice sites that are
associated with alternative pre-mRNA splicing (Jia et al., 2012).
In addition, a dipeptide repeat (C90RF72) linked to both ALS and
frontotemporal dementia (FTD), interacts and interferes with
U2 snRNP. In patient derived cells, this led to mislocalisation
but mis-splicing linked to ALS/FTD has yet to be established
(Yin et al., 2017).

Mutations found within the gene PRPF4 – which encodes
hPrp4 a U4/U6 di-snRNP protein – undertake an important
role in the development of retinitis pigmentosa (RP)
(Chen et al., 2014). hPrp4 is known to interact with
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CypH and hPrp3 to regulate the stability of the tri-snRNP,
U4/U6.U5. Thus, aberrant splicing could cause RP through
direct or indirect mechanisms that have been hypothesized,
but not defined.

The minor spliceosome has ND relevance as in ALS, TDP-43
functionality decreases (Colombrita et al., 2012), which reduces
the number Gemini of coiled bodies (GEMs). GEMs contribute
to U12 snRNA biogenesis, so in spinal motor neurones of ALS
patients there was a decrease of U12 snRNA and U11/U12 snRNP,
which may disrupts pre-mRNA splicing (Ishihara et al., 2013).
Additionally, an ALS mutant (P525L) cannot promote minor
intron splicing due to an aberrant FUS gene that routinely binds
to U11 snRNP to direct splicing. This leads to mislocalisation of
FUS-trapped U11 and U12 snRNAs, which form aggregates in
the cytoplasm so incorrect splicing results (Reber et al., 2016). In
addition, a cerebral ataxia mutation RNU12 causes minor intron
retention in homozygous mutant patients (Elsaid et al., 2017).
When combined this demonstrates a likely role for minor intron
splicing in motor neurone maintenance.

SMALL NUCLEOLAR RNAs

Small nucleolar RNAs (SnoRNAs) modify RNA through there
conserved motifs, with boxes C/D guiding methylation and
H/ACA guiding pseudouridylation, respectively (Ohtani, 2017;
Figure 1Cii). Each class of snoRNAs displays a unique secondary
structure composed of conserved proteins to form the defined
C/D and H/ACA snoRNPs. SnoRNAs mainly target rRNA to
modify functionally important regions of the ribosome (Decatur
and Fournier, 2002) but other purposes include pre-rRNA
endonucleolytic processing (Tollervey and Hurt, 1990), guiding
snRNAs such as U6 snRNA (Tycowski et al., 1998) and more
recently mRNA guiding (Sharma et al., 2016) or regulation of
alternative splicing in pre-mRNAs (Falaleeva et al., 2016).

Box C/D snoRNP biogenesis commences when a protein
complex of SNU13 and NOP58 is pre-formed and loaded onto
the snoRNA with the help of HSP90/R2TP. This recruits assembly
factors and the pre-snoRNPs are transferred to the Cajal bodies
where final processing occurs. Box H/ACA RNPs biogenesis
starts by SHQ1 and DKC1 combining to prevent to non-specific
RNAs binding. SHQ1 is released with the help of the R2TP
complex allowing DKC1 to bind H/ACA RNAs at the site
of transcription. Numerous assembly factors including NHP2,
NOP10, and NAF1 are present during this pre-snoRNP form.
When NAF1 – which binds the C-terminal domain of RNA
polymerase II to keep H/ACA RNP inactive – is replaced by
GAR1, mature and functional H/ACA RNPs are produced. Both
forms are transported to the nucleolus to elicit their actions
(Massenet et al., 2017; Figure 1Ci).

A study showed differential regulation of two C/D box
snoRNAs (e307 and e470) prior to the development of AD
in mouse model. After formation of a β-amyloid plaque, this
differential expression is no longer present, demonstrating that
they could be useful in early diagnosis. No clear evidence of
pathogenesis just hypothesized using bioinformatics methods
(Gstir et al., 2014) (Table 3).

Despite the fact that autism spectrum disorder (ASD) might
not be considered a neurodegenerative disease. Studies have
found links in ASD with numerous snoRNA genes found to
be differentially expressed using RNA-seq (Wright et al., 2017).
Duplication of SNORD115 in mouse chromosome 7 that mirrors
human chromosome 15q11-13 – duplication of this is one
of the most common chromosomal abnormalities in ASD –
has been shown to increase SNORD115 levels and results in
abnormal brain development. In addition, SNORD115 (HBII-
48 and HBII-52) levels are dysregulated in superior temporal
gyrus of human ASD brain samples, which could explain 5-HT
changes (Gabriele et al., 2014) and alternative splicing seen in
ASD (Voineagu et al., 2011) as HBII-52 may regulate 5-HT2C
receptor mRNA levels (Stamova et al., 2015) as well as alternative
splicing (Kishore et al., 2010).

Another study demonstrated that maternal alcohol
consumption in pregnancy alters the C/D box RNA levels
in brain cells during abnormal fetal development. DNA
methylation, microRNA and snoRNA levels altered with
emphasis on SNORD115 increasing and SNORD116 decreasing
(Laufer et al., 2013).

PIWI-INTERACTING RNA

Piwi-Interacting RNAs (PiRNAs) are a diverse range of small
RNAs that are highly enriched in the germline tissues. They
interact with PIWI-class Argonaute proteins with sequence bias
for only the first 5′ nucleotide to be a Uracil. This diverse
population can be mapped back to distinct areas of the genome
known as piRNA clusters, which contain highly enriched areas of
fragmented dysfunctional transposable element (TE) sequences.
These are thought to emanate from the memory of previous
TE invasions, and can be utilized to protect against TEs (Toth
et al., 2016). In addition, PIWI proteins function at the chromatin
level by guiding DNA methylation and deposition of repressive
histone marks to silence TE transcription (Le Thomas et al.,
2013; Figure 1Dii).

The biogenesis of piRNAs gives rise to two different forms
primary and secondary of 26–30 bps in length, stemming
from single-stranded precursors (Yan et al., 2011; Mani and
Juliano, 2013), which are best studied in Drosophila. Primary
piRNAs biogenesis is poorly defined but precursors of around
200 bp stemming nearly entirely from piRNA clusters are
cleaved – Zucchini (ZUC) is thought to do this – to enable
loading onto a PIWI protein in association with other factors
(Figure 1Di). This piRNA-PIWI complex interacts with TEs
to prevent insertion through methylation or transcriptional
repression, thereby affecting gene expression (Toth et al., 2016).

In Drosophila, secondary piRNAs are formed through a more
defined “ping-pong” pathway, which utilizes the primary piRNAs
formed from TE fragments present in piRNA clusters loaded
onto Aubergine (AUB) to find complementary antisense TE
transcripts (Figure 1D). Once found the complementary TE
mRNA binds, and is cleaved ten nucleotides along from the
5′ end by AUB, which terminates its function. Additionally it
creates a new 5′ end and piRNA precursor, which accompanied by
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AGO3 is processed into secondary piRNA. The secondary piRNA
promotes the development of more cluster-derived piRNAs – it is
representative of the sense TE strand – through complementary
cluster transcripts to develop a greater repertoire against active
TEs (Toth et al., 2016; Figure 1Di).

Originally piRNAs were solely thought to be present in
germline cells, more recently they have been found in other
areas of the body including blood (Yang et al., 2015), blood
plasma (Freedman et al., 2016) and the brain (Roy et al.,
2017) as well as interacting with diseases in the liver (Rizzo
et al., 2016), cardiovascular system (Loche and Ozanne, 2016)
and brain (Roy et al., 2017) demonstrating their roles are far-
reaching. In neurodegenerative disease there have been recent
studies on PD and AD.

Risk variants APOE (rs2075650) and RNU6-560P (rs10792835
+ rs3851179) have been linked with AD through genome-
wide association studies (GWAS). These risk variants were
significantly correlated with nine (6 APOE and 3 RNU6-
560P) different piRNAs, showing regulatory capabilities (Guo X.
et al., 2017). PiRNA dysregulation may be integral to the
development of AD through aberrant downstream signaling.
The link to pathogenesis in AD was clarified in three AD
dysregulated piRNAs (piR-38240, piR-34393, and piR-40666)
after establishing complementary target genes (CYCS, KPNA6,
and RAB11A) through inverse expression correlation (Roy
et al., 2017). The target genes were known to regulate AD
pathways through oxidative stress induced neurodegeneration,
apoptosis and vesicular trafficking of Aβ. This demonstrates a
regulatory role for piRNAs in preventing AD and so monitoring
dysregulation could allow early diagnosis and implicate a
treatment method.

There was a difference found in piRNA expression between
PD- and control- patient derived cells. Patient tissue samples
showed the same trend, with 70 different piRNAs overlapping
between both (Table 3). Two distinct trends come from these
piRNAs, up or down regulation (Schulze et al., 2018). In
the down-regulated piRNA fraction, those that were short-
interspersed nuclear elements (SINE) and long-interspersed
nuclear elements (LINE) derived elements in cell lines
and LINE in tissues, showed significant enrichment when
compared to genome-wide expression (Schulze et al., 2018).
This is indicative of an inability to silence SINE and LINE
derived elements in PD-derived neurones, which could show a
pathogenesis of PD disease.

TRANSFER RNAs

Transfer RNAs (tRNAs) are the most abundant form of sncRNA,
making up 4–10% of all cellular RNAs. Previously thought
to be static contributors to gene expression, acting as an
adaptor molecule in translation. Recently it has been found
that small non-coding tRNAs have unique function that enable
wider signaling and dynamic regulation of various functions
(Gebetsberger and Polacek, 2013).

Mature tRNA is formed through transcription of precursor
tRNA (pre-tRNA) using RNA polymerase III. Endonucleolytic

ribonuclease P (RNase P) and ribonuclease Z cleave the
transcribed pre-tRNA at the 5′ leader sequence and 3′ polyuracil
(poly –U) tail, respectively, before tRNA nucleotidyl transferase
adds a 3′CCA tail (Figure 1Ei). Many post-transcriptional
modifications will occur during maturation and only tRNAs
appropriately processed will leave the nucleus via nuclear
receptor-mediated export process, with wrongly processed
terminating. The mature tRNAs are between 73–90 nts in
length and contain a clover-leaf shaped secondary structure,
composing of a D-loop, an anticodon loop, a T-loop, a variable
loop and an amino acid acceptor stem (Kirchner and Ignatova,
2015). The mature of pre-tRNA can be cleaved – into specific
products unlike previously thought – into two main categories of
cleaved tRNAs have been categorized; (1) tRNA-halves, (2) tRNA
derived fragments.

tRNA halves are produced by cleavage of the anticodon
loop giving rise to two halves; 30–35 nt 5′-tRNA halves and
40–50 nt 3′tRNA halves (Li and Hu, 2012; Figure 1Eii). A subtype
of tRNA halves known as tRNA-derived stress-induced RNAs
(tiRNAs) are by-products of stress. They induce cleavage by
angiogenin (ANG) – a ribonuclease – of mature cytoplasmic
tRNAs (Yamasaki et al., 2009).

tRNA derived fragments (tRFs) are produced from either
pre-tRNAs or mature tRNAs (Figure 1Eii). Four main types
have been established stemming from the fragment location on
tRNAs: 5-tRFs, 3-tRFs, 1-tRFs, and 2 tRFs. 5-tRFs – located most
abundantly in the nucleus – are generated from cleavage of the
D-loop of tRNAs by Dicer, with adenine being present at the
3′ ends. Further subdivision classifies 5-tRFs isoforms into “a”
(∼15 nts), “b” (∼22 nts) and “c” (∼30 nts) (Kumar et al., 2015;
Lee et al., 2009). 3-tRFs result from cleavage by Dicer, ANG or
another member of the Ribonuclease A superfamily of the T-loop,
containing a CCA tail sequence (18–22 nts) (Lee et al., 2009;
Maraia and Lamichhane, 2011; Kumar et al., 2015). 1-tRFs are
formed by the cleavage of the 3′-trailer fragment of pre-tRNAs
by either RNaseZ or ELAC2, this usually commences after the
3′-ends of mature tRNA and contains a poly-U 3′-end (Lee et al.,
2009; Liao et al., 2010). 2-tRFs, less known about but may be
formed from the anticodon loop (Goodarzi et al., 2015).

Numerous neurodegenerative disorders are associated with
tRFs. ANG mutants show reduced ribonuclease (RNase) activity
and were first implicated in the pathogenesis of amyotrophic
lateral sclerosis (ALS) (Greenway et al., 2006). Latterly, a subset of
the ALS-associated ANG mutants were observed in Parkinson’s
disease (PD) patients (van Es et al., 2011). Recombinant ANG can
improve life span and motor function in an ALS [SOD1 (G93A)]
mouse model, demonstrating that tRFs may have an important
role in motor neuron survival (Kieran et al., 2008) (Table 3).

The link between ANG-induced tiRNAs, cellular stress and
neurodevelopment disorders was strengthened with the finding
of NSun2 (Blanco et al., 2014). Mutations in the cytosine-5 RNA
methyltransferase NSun2 have been shown to cause intellectual
disability and a Dubowitz-like syndrome in humans (Abbasi-
Moheb et al., 2012; Martinez et al., 2012). NSun2 methylates
two different cytosine residues of tRNA. Without NSun2,
cytosine-5 RNAs are not methylated, which increases the stress-
induced ANG-mediated endonucleolytic cleavage of tRNAs and
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so 5′-tiRNAs accumulate. Accumulation of these factors leads
to cell death in hippocampal and striatal neurons because of
translational repression leading to cellular stress. Subsequently,
NSun2 knockout mice show reduced neuronal size and impaired
formation of synapses, which could explain the impairment of
NSun2 gene mutation patients (Blanco et al., 2014).

A mutation in CLP1 gene (R140A) – a RNA kinase involved in
tRNA splicing – is present in pontocerebellar hypoplasia (PCH)
patients, a heterogeneous group of inherited neurodegenerative
disorders characterized by the loss of motor neurons, muscle
paralysis, impaired development of various parts of the brain
and differential tRNA splicing (Karaca et al., 2014; Schaffer et al.,
2014). The role of CLP1 in RNA splicing means the mutant gene
has reduced kinase activity and affinity to the tRNA endonuclease
complex (TSEN), impairing pre-tRNA cleavage and elevating
unspliced pre-tRNAs in patient derived neurons (Schaffer et al.,
2014). TSEN cuts the transcript at 3′ intron-extron junctions,
so the absence of CLP1 means 5′-unphosphorylated tRF cannot
interact with the pre-tRNAtyr 3′-exon and subsequent splicing
steps are interrupted (Cassandrini et al., 2010).

N6-threonyl-carbamoyl-adenosine (t6A) is a complex modifi-
cation of adenosine involved in cytoplasmic tRNA modification.
It is located next to the anticodon loop of many tRNAs
that decode ANN codons, at position 37 (t6A37). Recently,
a biosynthetic defect in the t6A molecule resulting from a
mutation in the kinase-associated endopeptidase (KAE1) gene,
which is part of the kinase, endopeptidase and other proteins of
small size (KEOPS) complex was found in two phenotypically
neurodegenerative patients, implicating tRNA modification in
neuronal maintenance (Edvardson et al., 2017).

Although, tRNA-derived small non-coding RNAs, have
already demonstrated a role in cancer progression (Sun et al.,
2018), their role as biomarkers in NDs has not been fully
investigated yet.

However, animal studies showed 13 dysregulated tRFs in
brain samples of SAMP8 mouse model for AD. In particular,
four were upregulated (AS-tDR-011775, AS-tDR-011438, AS-
tDR-006835 and AStDR-005058) and 9 down regulated (AS-tDR-
013428, AS-tDR-011389, AS-tDR-009392, AS-tDR012690, AS-
tDR-010654, AS-tDR-008616, AS-tDR-010789, AS-tDR-011670,

and AS-tDR-007919), demonstrating their potential involvement
of tRFs in early detection of AD.

CONCLUSION

The key problem with the ND field is the lack of understanding in
the events preceding the development of protein-based markers –
such as Tau – currently used to diagnose NDs. By this stage, the
diseases become more difficult to treat.

SncRNAs play an important regulatory role in the
maintenance of the homeostatic brain. Therefore, changes in
their concentration levels can be indicative of mechanistic
changes that could precede protein-based markers. One single
sncRNA biomarker is unlikely to differentiate between diseases.
However, a combination of sncRNA biomarkers could be
illustrative of the mechanistic development of NDs to enable
early diagnosis, enhanced disease monitoring as well as defining
subtle differences between NDs. Consequently, novel treatment
methods directly related to their mechanistic underpinning of
specific NDs, and potentially other brain related pathologies
can be envisaged.

Novel, less-well studied sncRNAs could be integral to
understanding the overall disease progression. So new
methodologies may be necessary to quantify these changes and
allow for future biomarker development.
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The hair follicle (HF) cycle is a complicated and dynamic process in mammals,
associated with various signaling pathways and gene expression patterns. Non-coding
RNAs (ncRNAs) are RNA molecules that are not translated into proteins but are
involved in the regulation of various cellular and biological processes. This study
explored the relationship between ncRNAs and the HF cycle by developing a
synchronization model in Angora rabbits. Transcriptome analysis was performed to
investigate ncRNAs and mRNAs associated with the various stages of the HF
cycle. One hundred and eleven long non-coding RNAs (lncRNAs), 247 circular
RNAs (circRNAs), 97 microRNAs (miRNAs), and 1,168 mRNAs were differentially
expressed during the three HF growth stages. Quantitative real-time PCR was used
to validate the ncRNA transcriptome analysis results. Gene ontology (GO) enrichment
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses provided
information on the possible roles of ncRNAs and mRNAs during the HF cycle. In
addition, lncRNA–miRNA–mRNA and circRNA–miRNA–mRNA ceRNA networks were
constructed to investigate the underlying relationships between ncRNAs and mRNAs.
LNC_002919 and novel_circ_0026326 were found to act as ceRNAs and participated in
the regulation of the HF cycle as miR-320-3p sponges. This research comprehensively
identified candidate regulatory ncRNAs during the HF cycle by transcriptome analysis,
highlighting the possible association between ncRNAs and the regulation of hair growth.
This study provides a basis for systematic further research and new insights on the
regulation of the HF cycle.

Keywords: rabbit, non-coding RNA, sequencing, hair follicle cycle, ceRNA

INTRODUCTION

Hair follicle (HF) development is a complex morphogenetic process that relies on a variety of
signaling systems, and on interactions between mesenchymal and epithelial tissues (Hardy, 1992;
Oro and Scott, 1998). Under the biological regulation of stem cells, mature HFs undergo a cycling
and continuous self-renewal process, with periods of active growth (anagen), followed by regression
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(catagen), and rest (telogen) (Cotsarelis et al., 1990; Paus and
Cotsarelis, 1999; Fuchs and Segre, 2000; Oshima et al., 2001).
In murine HF cycling, key parameters for the recognition
of distinct stages have been defined in many studies (Chase
et al., 1951; Chase, 1954; Straile et al., 2010). Moreover, the
immediate removal of hair shafts could induce homogeneous
anagen development in the murine model, which leads to
the spontaneous entering of consecutive stages (catagen and
telogen). In this way, the methods for the analysis of murine
HF growth were provided, and were based on histologic and
ultrastructural studies on murine hair cycling (Veen et al., 1999;
Müller-Röver et al., 2001). During the anagen phase, the hair
root is dividing and adding to the hair shaft. The HFs actively
grow, surrounded by dermal fibroblasts that have not reached
the subcutis. During the catagen phase, interfollicular dermal
fibroblasts fully surrounded the HFs, the blood supply is cut off,
and the hair bulb starts to atrophy. Finally, HFs enter the telogen
phase, where hair shafts stop growing, and begin to fall due to
synthesis and release of hair cycle inhibitor (Stenn and Paus,
2001). The molecular mechanisms underlying the regulation of
the hair cycle and of HF development are of interest in medicine
and developmental biology (Shirokova et al., 2016; Ahmed et al.,
2017; Sardella et al., 2017).

Long non-coding RNAs (lncRNAs), microRNAs (miRNAs),
and circular RNAs (circRNAs) are non-coding RNA (ncRNA)
that are not translated into proteins but regulate many cell
functions and play vital roles in many biological processes
(Mattick and Makunin, 2006; Guttman and Rinn, 2012). miRNAs
are small ncRNA molecules (∼22 nucleotides length) that repress
gene expression by recognizing specific target mRNAs (Ding
et al., 2009). An increasing number of studies reported that
lncRNAs (non-coding RNAs containing more than 200 base
pairs) regulate interactions between genes and proteins, act as
decoys that bind to miRNAs or proteins, or bind to enhancer
regions or neighboring loci to modulate the transcription of their
target gene as enhancers (Winkle et al., 2015; Chen et al., 2016; Li
et al., 2016; Song et al., 2017; Lu et al., 2018). CircRNAs consist of
continuous loop structures, are more stable than linear mRNAs,
and are conserved between different species (Stoffelen et al.,
2012; Memczak et al., 2014). As sponges for miRNAs, circRNAs
act as competitive inhibitors that interfere with the binding of
miRNAs to their target genes (Hansen et al., 2013; Zhong Z. et al.,
2016). circRNAs may also regulate the function of RNA-binding
proteins and the transcription activity of the host gene (Reut et al.,
2014; Li et al., 2015). Although circRNAs have been categorized
as ncRNA, they have been reported to have the ability to code
proteins as gene regulators (Pamudurti et al., 2017).

Accumulating evidence suggests that lncRNAs are involved
in the regulation of the HF cycle (Wang et al., 2017; Song
et al., 2018; Zhu Y.B. et al., 2018). Specific lncRNAs, such
as HOTAIR, H19, and RP11-766N7.3, have been reported to
be differentially expressed in dermal papilla cells after Wnt
signaling by using lncRNA microarrays, and integrated analysis
by RNA-seq techniques has led to the identification of potential
lncRNA, which may play a role during the initiation of secondary
HFs (Lin et al., 2015; Yue et al., 2016). Moreover, aberrantly
expressed miRNAs may participate in the regulation of the

development of skin and HFs. miRNAs play important roles in
several signaling pathways and control gene expression patterns
during the HF cycle (Mardaryev et al., 2010; Chao et al., 2013;
Ahmed et al., 2014; Zhou et al., 2018). In addition, the expression
levels and functions of circRNAs associated with skin color
during different skin differentiation stages have been analyzed by
RNA-seq (Zhu Z. et al., 2018).

However, only very few studies have systematically
investigated ncRNAs during the HF cycle. This study established
a HF cycle synchronization model in the rabbit, allowing
an integrated analysis of ncRNAs and mRNAs expressed
during the different HF cycle phases (anagen, catagen, and
telogen). Numerous essential factors related to the HF cycle
have been uncovered, contributing to the understanding of
HF cycle regulation and suggesting new potential therapies for
hair-related diseases.

MATERIALS AND METHODS

Animals
Twelve 6-month-old male Wanxi Angora rabbits were used to
establish the HF synchronization model. They were all housed
under the same conditions, including temperature, and were
fed the same diet (feed pellet and grass). Animals were reared
in a controlled environment and had the same length of the
hair coat phenotypes. The experimental procedures in this study
were approved by the Animal Care and Use Committee of
Yangzhou University.

To estimate the wool growth rate and to determine the
onset of the anagen phase, the dorsal area of experimental
animals was shaved with electronic clippers and entry into
anagen was determined by the appearance of light pink skin
and by hair regrowth. The length of the hair coat was
measured, skin samples were collected after shaving, samples
were fixed in 4% formaldehyde, and paraffin sections were stained
with hematoxylin–eosin (HE) for histological observations.
Longitudinal sections of the HFs showed the skin status and the
phase of the HF cycle.

Tissue Collection
Rabbits were anesthetized via ear vein injections of 0.7%
pentobarbital sodium (6 mL/kg), dorsal skin samples (1 cm2)
were collected, and placed immediately in liquid nitrogen for
RNA extraction. Iodine solution was applied on the wound to
prevent bacterial infection. Samples were harvested at different
phases of the HF cycle for gene expression profiling: growth
(anagen), cessation (catagen), and rest (telogen). Three sample
replicates were collected at days 90, 130, and 150 of the HF cycle
for ncRNA and mRNA sequencing analysis.

RNA Isolation and RNA Quantification
Total RNA from nine samples was extracted from skin tissue
using Trizol reagent (Invitrogen, Carlsbad, CA, United States),
according to the manufacturer’s instructions. RNA degradation
and contamination were monitored by running samples on 1%
agarose gels. RNA purity was analyzed via a NanoPhotometer R©
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spectrophotometer (IMPLEN, CA, United States). RNA
concentration was measured using the Qubit R© RNA Assay
Kit and a Qubit R© 2.0 Fluorometer (Life Technologies, CA,
United States). RNA integrity was assessed via the RNA
Nano 6000 Assay Kit and a Bioanalyzer 2100 system (Agilent
Technologies, CA, United States). lncRNAs and miRNAs were
quantified following the same procedure used for conventional
mRNAs. Quantification of circRNAs was performed adding
an exonuclease to degrade non-circRNAs. Briefly, two samples
containing the same amount of RNA were collected. In one
sample, linear RNA was digested with RNase R (Cat. No.
RNR07250, Epicentre Company, United States), leaving only the
circRNAs, while the other sample was not treated with RNase
R. The two RNA samples were reverse transcribed. The samples
subjected to RNase treatment were used to detect circRNAs,
whereas the untreated samples were used to detect β-actin.

Library Construction for lncRNA and
circRNA Sequencing
A total amount of 3 µg of RNA per sample was used for lncRNA
sequencing and of 5 µg for circRNA sequencing. First, ribosomal
RNAs were removed with the Epicentre Ribo-zeroTM rRNA
Removal Kit (Epicentre, United States) and the rRNA-depleted
samples were purified by ethanol precipitation. Subsequently,
sequencing libraries were generated using the rRNA-depleted
RNA and the NEBNext R© UltraTM Directional RNA Library
Prep Kit for Illumina R© (NEB, United States), following the
manufacturer’s recommendations. First strand cDNA was
synthesized using random hexamer primers and M-MuLV
Reverse Transcriptase (RNaseH). Second strand cDNA synthesis
was performed using DNA Polymerase I and RNase H. After
adenylation of the 3′ ends of DNA fragments, NEBNext
Adaptor with hairpin loop structure were ligated to prepare
for hybridization. To select cDNA fragments with a preferential
length of 150∼200 bp, the library fragments were purified
with the AMPure XP system (Beckman Coulter, Beverly, MA,
United States). Then, 3 µl of USER Enzyme (NEB, United States)
was used with size-selected, adaptor-ligated cDNA before the
PCR. Finally, the PCR products were purified (AMPure XP
system) and the library quality was assessed with the Agilent
Bioanalyzer 2100 system.

Library Construction for Small RNA
Sequencing
A total amount of 3 µg of RNA per sample was used
as input material for the small RNA library. Sequencing
libraries were generated using the NEBNext R© Multiplex Small
RNA Library Prep Set for Illumina R© (NEB, United States),
following the manufacturer’s recommendations. Briefly, NEB
3′ SR Adaptor was directly and specifically ligated to the 3′
end of miRNAs, siRNAs, and piRNAs. After the 3′ ligation
reaction, the SR RT Primer was hybridized to the excess of 3′
SR Adaptor, transforming the single-stranded DNA adaptor into
a double-stranded DNA molecule. Then, the 5′ ends adapter
was ligated to the 5′ ends of the miRNAs, siRNAs, and piRNAs.
First strand cDNA was synthesized using M-MuLV Reverse

Transcriptase (RNase H–). DNA fragments of 140–160 bp length
(the length of small non-coding RNAs plus the 3′ and 5′ adaptors)
were recovered and dissolved in 8 µL of elution buffer. Finally,
the library quality was assessed using the Agilent Bioanalyzer
2100 system and DNA High Sensitivity Chips.

Clustering and Sequencing of lncRNAs,
circRNAs, and miRNAs
Clustering of the index-coded samples was performed on a
cBot Cluster Generation System using TruSeq PE Cluster
Kit v3-cBot-HS (Illumina), according to the manufacturer’s
instructions. After cluster generation, the lncRNA and circRNA
libraries were sequenced on an Illumina Hiseq 4000 platform
and 150 bp paired end reads were generated. The miRNA library
was sequenced on an Illumina Hiseq 2500 platform and 50 bp
single-end reads were generated.

Quality Control
For lncRNA and circRNA sequencing, raw data (raw reads)
in fastq format were first processed through in-house perl
scripts. In this step, clean data (clean reads) were obtained by
removing reads containing adapter, reads containing ploy-N, and
low-quality reads from the raw data. For miRNA sequencing, raw
data (raw reads) in fastq format were first processed through
custom perl and python scripts. In this step, clean data (clean
reads) were obtained by removing reads containing ploy-N, with
5′ adapter contaminants, without 3′ adapter or the insert tag,
containing ploy A or T or G or C, and low-quality reads from
raw data. At the same time, the Q20, Q30 scores, and GC-content
of the raw data were calculated. A specific length range from the
clean reads was selected to conduct all the downstream analyses,
based on clean data of high quality.

Genome Mapping, Transcriptome
Assembly, and ncRNAs Identification
For lncRNA and circRNA sequences, the reference genome
(Oryctolagus cuniculus genome obtained from Ensembl
OryCun2.0) and annotation files were directly downloaded
from the genome website. An index of the reference genome
was built using bowtie2 (Langmead and Salzberg, 2012), and
paired-end clean reads were aligned to the reference genome
using HISAT2 v2.0.4 (Pertea et al., 2016). Also, the small RNA
tags were mapped to the reference sequence with bowtie2
(Langmead and Salzberg, 2012) without mismatch to analyze
the expression and distribution of miRNA sequences in the
reference genome.

The mapped lncRNA and mRNA reads from each sample
were assembled by means of StringTie (v1.3.1) (Pertea et al.,
2016), following a reference-based approach. The circRNAs were
detected and identified using find_circ (Memczak et al., 2014).
Alignment of the small RNA tags to miRBase20.0 identified
known Oryctolagus cuniculus and Mus musculus (near-source
species) miRNAs. Mirdeep2 software (Friedländer et al., 2011)
was used to identify potentially novel miRNAs and to draw
the secondary structures and the characteristics of the hairpin
structures of miRNA precursors.
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Quantification of lncRNA, circRNA,
mRNA, and miRNA Expression Levels
Cuffdiff (v2.1.1) was used to calculate fragments per kilo-base
millions of exon per million fragments mapped (FPKM) of
both lncRNAs and mRNA in each sample (Trapnell et al.,
2010). FPKMs of genes were computed by summing the
FPKMs of transcripts in each gene group. Also, the raw counts
were first normalized using transcripts per million (TPM)
(Zhou et al., 2010) and normalized expression levels = (read
count∗1,000,000)/lib size (lib size is the sum of circRNA
read counts). This was used to determine the circRNA
expression levels. On the other hand, miRNA expression
levels were estimated by TPM based on the following criteria:
Normalization formula: Normalized expression = mapped
read count/total reads∗1,000,000. The differential expression of
ncRNAs was determined using the DESeq R package (1.10.1)
(Wang et al., 2010).

Target Gene Prediction, GO, and KEGG
Enrichment Analysis
In cis regulation, lncRNAs can act on neighboring target genes.
Coding genes 10 k/100 k upstream or downstream of the lncRNA
gene were searched for and their function was analyzed. For trans
regulation, lncRNAs and their target genes were analyzed based
on their expression levels. The correlation between lncRNAs
and coding gene expression levels were calculated with custom
scripts; then, the genes from different samples were clustered
using WGCNA (Langfelder and Horvath, 2008) to search for
common expression modules and to analyze the function via
functional enrichment analysis. The target genes of miRNAs and
miRNA target sites in exons of circRNA loci were identified using
miRanda (version 3.3a, main parameter: -sc 140; -en -10; -scale
4; -strict) (Enright et al., 2004). Differentially expressed (DE)
ncRNAs were annotated by gene ontology (GO) enrichment and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analyses to investigate their biological functions. Briefly, GO
analysis was applied to elucidate genetic regulatory networks
of interest by forming hierarchical categories according to
the molecular function (MF), cellular component (CC), and
biological process (BP) aspects of the differentially expressed
genes1. KEGG pathway analysis was performed to explore the
significantly enriched pathways of DE genes2.

Quantitative Real-Time PCR
Eight mRNAs, four lncRNAs, and five circRNAs associated
with skin and the HF cycle were selected for validation by
qRT-PCR analysis. Approximately 1µg of total RNA was used
to synthesize cDNA using HiScript II Q Select RT SuperMix
for qPCR (Vazyme). qRT-PCR was performed using the AceQ
qPCR SYBR R© Green Master Mix (Vazyme), according to
the manufacturer’s instructions, and data were analyzed via
QuantStudio R© 5 (Applied Biosystems). The specific primer
sequences are listed in Supplementary Table S1. The expression

1http://www.geneontology.org
2http://www.genome.jp/kegg/

levels were calculated using the 2−11Ct method (Schmittgen and
Livak, 2008), with glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) as reference gene.

To confirm the miRNA transcriptome data, three miRNAs
were selected for qRT-PCR analysis. Approximately 2µg of
total RNA was used to synthesize cDNA after adding a poly
(A) tail to the 3′ end of the miRNAs using the miRcute Plus
miRNA First-Strand cDNA Synthesis Kit (Tiangen). qRT-PCR
was performed using the miRcute miRNA qPCR Detection Kit
(SYBR Green), according to the manufacturer’s instructions. The
specific primers were designed by Beijing Tiangen Co., Ltd. and
the product code sets are listed in Supplementary Table S1.
The U6 small nuclear RNA gene was chosen as internal control.
The expression levels were calculated using the 2−11Ct method
(Schmittgen and Livak, 2008), and the results of the experiments
were normalized to the expression levels of the constitutively
expressed U6 gene.

Construction of ncRNAs Regulatory
Networks
To investigate the role and interactions between ncRNAs and
mRNAs during the HF cycle, ncRNAs regulatory networks were
constructed. For the interaction network of lncRNA–miRNA, DE
lncRNAs were filtered out according to the homology between
lncRNA and miRNA precursor; then, the targeted relationships
between lncRNA and miRNA were predicted by miRanda.
Then, the regulatory networks of lncRNA–miRNA–mRNA
pairs and circRNA–miRNA–mRNA pairs were constructed
according to the following steps: (i) the ncRNAs and mRNAs
that were upregulated or downregulated were retained; (ii)
the interactions of lncRNA–miRNA, miRNA–mRNA, and
miRNA–circRNA were predicted by miRanda, which predicts
miRNA binding seed sequence sites, as well as overlapping the
same miRNA binding site in lncRNAs, circRNAs, and mRNAs;
(iii) The lncRNA–miRNA–mRNA pairs network covered
two cases: one was the upregulated lncRNA-downregulated
miRNA-upregulated mRNA, the other was the downregulated
lncRNA-upregulated miRNA-downregulated mRNA. The
circRNA–miRNA–mRNA pairs network covered two
cases: one was the upregulated circRNA-downregulated
miRNA-upregulated mRNA, the other was the downregulated
circRNA-upregulated miRNA-downregulated mRNA. Cytoscape
software was used to build and visually display the networks.

Luciferase Assay
The dual-luciferase reporter system E1910 (Promega,
Madison, WI, United States) was used to perform luciferase
activity assays. The miR-320-3p mimic and miR-320-3p
negative control mimics were purchased from Shanghai
GenePharma Co., Ltd. Wild-type luciferase reporter vectors
(pMir-HTATIP2-3’UTR-WT, pMir-LNC_002919-WT, and
pMir-novel_circ_0026326-WT) were constructed using the
primers shown in Supplementary Table S2. Their substitution
mutants (pMir-HTATIP2-3’-UTR-MUT, pMir-LNC_002919-
MUT, and pMir-novel_circ_0026326-MUT) were synthesized by
Beijing Tsingke Co., Ltd. Briefly, the skin fibroblast cells of rabbit
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(RAB-9, ATCC R© CRL-1414TM) were cultured in 24-well tissue
culture plates. Cells were co-transfected with the pMir-report
luciferase reporter, the miRNA (miR-320-3p) mimics and
pRL-TK using LipofectamineTM 2000 (Invitrogen). After 48 h
of culture at 37◦C, transfected cells were lysed with 100 µl of
passive lysis buffer. Next, 20 µl of lysates were mixed with 100 µl
of LAR II, and firefly luciferase activity was measured by using
a luminometer. As an internal control, 100 µl of Stop & Glo
reagent was added to the sample. Firefly luciferase activity was
normalized to the corresponding Renilla luciferase activity.

RESULTS

Hair Follicle Cycle Synchronization
Model
For the HF cycle synchronization model, Angora rabbits were
used. The obtained observations showed that the length of the
hair coat increased steadily until day 110. Between days 120 and
150, the growth rate of wool declined rapidly. Then, between
days 160 and 180, the wool recovered and once again showed an
increased growth rate (Figure 1A). Histological analysis showed
rapid growth of the hair shaft and increasing depth of the HF
between days 0 and 110. Then, the growth of the hair shaft and the
depth of the HF decreased between days 120 and 130. Finally, the
hair shaft started to fall off and the hair bulbs atrophied between
days 140 and 150. After the HF cycle ended, a new HF appeared,
the growth of the hair shaft recovered and the HFs moved into
a new cycle (Figure 1B). In conclusion, the hair cycle of Angora
rabbits is characterized by an anagen phase between days 0 and
110, a catagen phase between days 120 and 130, and a telogen
phase between days 140 and 150.

Differentially Expressed lncRNAs,
mRNAs, miRNAs, and circRNAs
A summary of the lncRNA-seq, miRNA-seq, and circRNA-seq
data from the three HF cycle phases is shown in Supplementary
Table S3, indicating the relatively high quality of the
transcriptome data. The lncRNA-seq, miRNA-seq, and

circRNA-seq data were deposited in the Short Read Archive
(SRA) of the National Center for Biotechnology Information
(NCBI) under the bioproject numbers PRJNA479733,
PRJNA495446, and PRJNA495449. DE ncRNAs and mRNAs
were analyzed using Cuffdiff software with a criterion of p< 0.05.
Volcano plots, clustering maps, and Venn diagrams were used
to illustrate the distribution of the DE ncRNAs and mRNAs
between the three groups (Figures 2–5). Table 1 summarizes the
number of DE ncRNAs and mRNAs. Differential expressions
of 111 lncRNAs (60 upregulated and 51 downregulated),
247 circRNAs (128 upregulated and 119 downregulated), 97
miRNAs (38 upregulated and 59 downregulated), and 1,168
mRNAs (750 upregulated and 418 downregulated) were found
between the three HF cycle stages. Complete information on
all DE lncRNAs, circRNAs, miRNAs, and mRNAs is listed in
Supplementary Tables S4–S7. Several lncRNAs were found
to be associated with the HF cycle, such as LNC_002694,
LNC_002919, LNC_003354, LNC_003790, LNC_008354,
LNC_008931, and LNC_005484, which could regulate gene
expression by recognizing their target mRNAs. Based on analysis
of their biological function, the candidate lncRNAs associated
with the HF cycle are listed in Supplementary Table S8.
Moreover, analysis of the relationships between circRNAs
and genes allowed identification of novel_circ_0004876,
novel_circ_0005177, novel_circ_0026326, novel_circ_0034968,
and novel_circ_0036671, which may play a role during the
HF cycle. In addition, several miRNAs, including miR-128-3p,
miR-200a-3p, miR-27a-3p, miR-30e-5p, and miR-320-3p;
mRNAs, such as BMP2, CSNK2B, KRT17, LAMB1, FZD4,
SMAD2, HTATIP2, and SIAH1 were identified to play pivotal
roles during the HF cycle and during skin development.

Validation of Differentially Expressed
lncRNAs, circRNAs, miRNAs, and
mRNAs by qPCR
To validate the lncRNAs, mRNAs, miRNAs, and circRNAs
differential expression results, the relative expression of four
DE lncRNAs (LNC_002694, LNC_002919, LNC_003354,
and LNC_005484), five DE circRNAs (novel_circ_0004876,

FIGURE 1 | Hair follicle synchronization model in Angora rabbits. (A) Measurement of length of the hair coat after shaving the dorsal area of Angora rabbits. (B) HE
staining of sequential skin samples after shaving the dorsal area of rabbits. The anagen, catagen, telogen, and subsequent anagen stages were determined based
on the histomorphology of hair follicles.
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FIGURE 2 | Changes in lncRNA expression during the Angora rabbit hair follicle cycle. (A–C) Volcano plots showing up- and down-regulated lncRNAs between days
90, 130, and 150 of the hair follicle cycle. (D) Venn diagram showing the number of overlapping differentially expressed lncRNAs between days 90, 130, and 150.
(E) Heat map of lncRNAs showing hierarchical clustering of DE lncRNAs between days 90, 130, and 150. Up- and down-regulated lncRNAs are shown in red and
blue, respectively.

FIGURE 3 | Changes in circRNA expression during the Angora rabbit hair follicle cycle. (A–C) Volcano plots showing up- and down-regulated circRNAs between
days 90, 130, and 150 of the hair follicle cycle. (D) Venn diagram showing the number of overlapping differentially expressed circRNAs between days 90, 130, and
150. (E) Heat map of circRNAs showing hierarchical clustering of DE circRNAs between days 90, 130, and 150. Up- and down-regulated circRNAs are shown in red
and blue, respectively.
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FIGURE 4 | Changes in miRNA expression during the Angora rabbit hair follicle cycle. (A–C) Volcano plots showing up- and down-regulated miRNAs between days
90, 130, and 150 of the hair follicle cycle. (D) Venn diagram showing the number of overlapping differentially expressed miRNAs between days 90, 130, and 150.
(E) Heat map of miRNAs showing hierarchical clustering of DE miRNAs between days 90, 130, and 150. Up- and down-regulated miRNAs are shown in red and
blue, respectively.

novel_circ_0005177, novel_circ_0026326, novel_circ_0034968,
and novel_circ_0036671), four DE miRNA (miR-128-3p,
miR-200a-3p, miR-27a-3p, and miR-320-3p), and eight DE
mRNAs (BMP2, CSNK2B, FAM45A, FUOM, HTATIP2, KRT17,
ME1, and SIAH1) were measured by qRT-PCR (Figures 6–9).
The qRT-PCR results were consistent with the transcriptome
sequencing data.

GO and KEGG Pathway Analysis
lncRNAs can regulate neighboring protein-coding genes;
therefore, a colocalization threshold of 100 kb upstream or
downstream of lncRNAs was set for the GO and KEGG analyses.
Several GO terms were found that were significantly enriched
in the three experimental groups (Supplementary Table S9),
including skin and HF-related GO terms like HF development
(GO: 0001942), hair cycle (GO: 0042633), hair cycle process (GO:
0022405), regulation of HF development (GO: 0051797), and
skin morphogenesis (GO: 0043589), among others. The top 20
KEGG pathways associated with DE lncRNAs between days 90,
130, and 150 of the HF cycle based on the function of colocalized
mRNAs (Supplementary Figure S1) and co-expressed mRNAs
(Supplementary Figure S2) included the Wnt signaling
pathway, TGF-β signaling pathway, MAPK signaling pathway,
and JAK/STAT signaling pathway.

In addition, based on the relationship between circRNAs
and genes, GO analysis of genes producing DE circRNAs was
performed (Supplementary Table S10). The GO terms identified

HF development (GO: 0001942), hair cycle process (GO:
0022405), hair cycle (GO: 0042633), and skin development (GO:
0043588), which were all related to skin and HF development.
The top 20 KEGG pathways associated with genes producing
DE circRNAs between 90, 130, and 150 days (Supplementary
Figure S3) of the HF cycle were likewise related to skin and
HF development, such as the Hedgehog signaling pathway, Wnt
signaling pathway, and MAPK signaling pathway.

Furthermore, GO enrichment analysis of genes targeted by
DE miRNA (Supplementary Table S11) identified GO terms
related to HF development, such as HF morphogenesis (GO:
0031069), negative regulation of HF development (GO: 0051799),
and regulation of HF development (GO: 0051797), among others.
The top 20 KEGG pathways associated with DE miRNAs are
shown in Supplementary Figure S4. They include pathways
related to HF cycle, such as the Hedgehog signaling pathway,
NF-κB signaling pathway, and JAK/STAT signaling pathway.

Finally, GO and KEGG analyses of DE mRNAs are
shown in Supplementary Table S12. The GO terms identified
include, for example, skin morphogenesis (GO: 0043589) and
positive regulation of HF development (GO: 0051798). The
top 20 enriched KEGG pathways for DE genes between the
different stages of the HF cycle are shown in Supplementary
Figure S5. These KEGG pathways include the Wnt signaling
pathway, the MAPK signaling pathway, and the TGF-β signaling
pathway, which participate in skin development and HF cycle.
Differentially expressed genes between days 90, 130, and 150 of
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FIGURE 5 | Changes in mRNA expression during the Angora rabbit hair follicle cycle. (A–C) Volcano plots showing up- and down-regulated mRNAs between days
90, 130, and 150 of the hair follicle cycle. (D) Venn diagram showing the number of overlapping differentially expressed mRNAs between days 90, 130, and 150.
(E) Heat map of mRNAs showing hierarchical clustering of DE mRNAs between days 90, 130, and 150. Up- and down-regulated mRNAs are shown in red and
blue, respectively.

TABLE 1 | Summary of the number of differentially expressed
ncRNAs and mRNAs.

Groups Regulation lncRNA circRNA miRNA mRNA

130 vs. 90 days Up 21 52 8 152

Down 10 42 9 64

150 vs. 90 days Up 30 49 23 387

Down 34 48 39 136

150 vs. 130 days Up 9 27 7 211

Down 7 29 11 218

Total 111 247 97 1168

the HF cycle, as well as their biological functions, are listed in
Supplementary Table S13.

ceRNA Regulatory Networks
Study of the relationship between ncRNAs and mRNAs may
increase our understanding of the molecular mechanisms
operating during skin development and HF cycle. According to
the competing endogenous RNA (ceRNA) regulatory hypothesis,
ncRNAs and mRNAs can compete for the same miRNAs,
resulting in additional layers of regulation of gene expression.
Based on the analysis of DE lncRNAs, circRNAs, miRNAs, and
mRNAs, a network of lncRNAs and miRNAs was first constructed
(Figure 10). In lncRNA-miRNA-mRNA regulatory networks,
miRNA may act as the center, lncRNA as the decoy, and mRNA
as the target, which suggests that lncRNAs could act as miRNA

sponges to regulate gene expression (Figure 11). In addition,
certain circRNAs can competitively bind miRNAs and act as
miRNA sponges; therefore, circRNA-miRNA-mRNA triads were
constructed with the circRNA as the docoy, miRNA as the center,
and mRNA as the target (Figure 12).

LNC_002919 and novel_circ_0026326 were identified
as ceRNAs for miR-320-3p, which targets HTATIP2.
A dual-luciferase reporter system was used to verify the binding
relationships between the identified lncRNA and miRNA,
circRNA and miRNA, and mRNA and miRNA. Luciferase assay
showed that miR-320-3p could decrease luciferase activity by
binding to sites on LNC_002919, novel_circ_0026326, and the
HTATIP2 3′UTR (Figure 13). The interactions between ncRNAs
and mRNA suggest the existence of novel regulatory mechanisms
during skin development and HF cycle.

DISCUSSION

The HF cycle is similar in most mammalian species, and
many animal models have been used to study the process of
hair growth, including mice (Wolbach, 1951; Chase, 1954),
rats (Johnson and Ebling, 1964), monkeys (Uno, 1991), cats
(Hendriks et al., 1997), and sheep (Hynd et al., 1986). In mice,
the hair growth period lasts only 17–19 days, and anterior
regions can enter the resting period before the posterior regions
regrow (Chase, 1954). By plucking the hairs of rats, the first
wave of hair growth was observed between 31 and 22 days,
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FIGURE 6 | Validation of lncRNA differential expression results at 90, 130, and 150 days. qRT-PCR validation of LNC_002694, LNC_002919, LNC_003354, and
LNC_005484 lncRNA expression levels in skin samples between 90, 130, and 150 days. The lncRNA expression levels at 130 and 150 days were normalized to the
value at 90 days. Error bars indicate the mean ± SD of triplicate experiments. ∗P < 0.05; ∗∗P < 0.01.

FIGURE 7 | Validation of circRNA differential expression results at 90, 130, and 150 days. qRT-PCR validation of novel_circ_0004876, novel_circ_0005177,
novel_circ_0026326, novel_circ_0034968, and novel_circ_0036671 circRNA expression levels in skin samples between 90, 130, and 150 days. The circRNA
expression levels at 130 days and 150 days were normalized to the value at 90 days. Error bars indicate the mean ± SD of triplicate experiments. ∗∗P < 0.01.

and HF from resting clubs were collected at 55 days of
age (Johnson and Ebling, 1964). Although animal HFs show
a circannual rhythm, the HF cycles producing sheep wool,

horse mane, and human scalp hair have special characteristics,
including a biological clock that is independent from day and
night, season and temperature over a period of 2–6 years
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FIGURE 8 | Validation of miRNA differential expression results at 90, 130, and 150 days. qRT-PCR validation of miR-128-3p, miR-200a-3p, 27a-3p, and
miR-320-3p miRNA expression levels in skin samples between 90, 130, and 150 days. The miRNA expression levels at 130 days and 150 days were normalized to
the value at 90 days. Error bars indicate the mean ± SD of triplicate experiments. ∗P < 0.05; ∗∗P < 0.01.

FIGURE 9 | Validation of mRNA differential expression results at 90, 130, and 150 days. qRT-PCR validation of BMP2, CSNK2B, FAM45A, FUOM, HTATIP2, KRT17,
ME1, and SIAH1 mRNA expression levels in skin samples between 90, 130, and 150 days. The mRNA expression levels at 130 days and 150 days were normalized
to the value at 90 days. Error bars indicate the mean ± SD of triplicate experiments. ∗P < 0.05; ∗∗P < 0.01.

(Stenn and Paus, 2001). The structure, composition, and growth
of hair fibers are similar between Angora rabbits and other rabbit
breeds. However, the appearance of a mutation in Angora rabbits
leads to a prolongation of the anagen phase, so this phase lasts
approximately 5 weeks in New Zealand white rabbits but more
than 3 months in Angora rabbits (Moore et al., 1987). The HF

clock in Angora rabbits has its own characteristic chronobiology,
with a long growing period, and independence from seasons
and temperature. This study established a synchronization model
for hair growth in Angora rabbits. The HFs initiated vigorous
growth after shaving the dorsal area, and measuring the length
of the hair coat and analyzing the histological characteristics
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FIGURE 10 | LncRNA–miRNA regulatory networks in Angora rabbit skin. (A) Interaction network of lncRNA–miRNA between 130 days and 90 days. (B) Interaction
network of lncRNA–miRNA between 150 days and 90 days. (C) Interaction network of lncRNA–miRNA between 150 days and 130 days.

FIGURE 11 | lncRNA–miRNA–mRNA regulatory networks in Angora rabbit skin. (A) Interaction network of lncRNA–miRNA–mRNA between 130 days and 90 days.
(B) Interaction network of lncRNA–miRNA–mRNA between 150 days and 90 days. (C) Interaction network of lncRNA–miRNA–mRNA between 150 days and
130 days.

FIGURE 12 | circRNA–miRNA–mRNA regulatory networks in Angora rabbit skin. (A) Interaction network of circRNA–miRNA–mRNA between 130 days and 90 days.
(B) Interaction network of circRNA–miRNA–mRNA between 150 days and 90 days. (C) Interaction network of circRNA–miRNA–mRNA between 150 days and
130 days.
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FIGURE 13 | Verification of target binding. (A) miR-320-3p putative binding sites in HTATIP2 3′-UTR. Blue letters indicate wild type sites and red letters indicate
mutated sites in the pMir-report luciferase reporter vector. Luciferase assays were performed in RAB-9 cells co-transfected with pMir-report-HTATIP2-3′-UTR-WT
and miRNA-320-3p mimics, or pMir-HTATIP2-3′-UTR-MUT, and miRNA-320-3p mimics. (B) Putative binding sites for miR-320-3p in LNC_002919. Blue letters
indicate wild type sites and red letters indicate mutated sites in the pMir-report luciferase reporter vector. The luciferase assays were performed in RAB-9 cells
co-transfected with pMir-LNC_002919-WT and miRNA-320-3p mimics, or pMir-LNC_002919-MUT, and miRNA-320-3p mimics. (C) Putative binding sites for
miR-320-3p in novel_circ_0026326. Blue letters indicate wild type sites and red letters indicate mutated sites in the pMir-report luciferase reporter vector. The
luciferase assays were performed in RAB-9 cells co-transfected with pMir-novel_circ_0026326-WT and miRNA-320-3p mimics, or pMir-novel_circ_0026326-MUT,
and miRNA-320-3p mimics. Error bars indicate the mean ± SD of triplicate experiments. ∗∗P < 0.01.

showed that the growth phase lasted about 110 days, the
regression period started at about 120 days, and the resting
period at about 150 days. The HF synchronization model can
contribute to the field of research in the chronobiology of
HFs. ncRNAs are epigenetic, translational and genetic regulators
that may play a role in numerous biological processes in
eukaryotes (Mattick and Makunin, 2006). ncRNAs could play
complicated and vital roles during the hair cycle; investigation
of the regulatory and functional interactions between lncRNAs,
circRNAs, miRNAs, and mRNAs may increase understanding of
this biological process.

The present study investigated ncRNAs and mRNAs that
were significantly up-regulated or down-regulated during the
three stages of the HF cycle. Recent studies have shown that
DE lncRNAs modulate biological functions in dermal papilla
cells, which regulate postnatal hair cycling and HF cycle (Lin
et al., 2015). Likewise, RNA-seq technology has been used for
the analysis of lncRNAs and mRNAs during the initiation of
sheep secondary HFs (Yue et al., 2016). In addition, miRNAs
have been the focus of intense research for several years, and
have been associated with HF morphogenesis and development
(Mardaryev et al., 2010; Ahmed et al., 2014; Hochfeld et al.,
2017). However, only few studies analyzed the involvement
of circRNA in skin development and HF cycle. circRNAs
can act as miRNA sponges, suppressing miRNA activity and
resulting in increased RNA expression (Hansen et al., 2013). This
study employed high-throughput sequencing for the analysis
of DE ncRNAs in the HF during the different hair cycle
stages, based on the synchronization model. A total of 111
lncRNAs, 247 circRNAs, 97 miRNAs, and 1,168 mRNAs were
differentially expressed during the hair cycle stages. Moreover,
several differentially expressed mRNAs were identified during
hair cycling. As a dermal papilla signature gene, BMP2 is
expressed in the hair matrix and can regulate HF cycling
(Nakamura et al., 2003; Rendl et al., 2008). In this study, its

expression in the catagen was significantly decreased. A previous
study reported that KRT17 acts as a key factor to regulate the
hair cycling, which affects the transition of anagen-catagen (Tong
and Coulombe, 2006). The present results showed that KRT17
is highly expressed in catagen (via the identified candidates
mRNA) between days 130 and 90 as well as between days
150 and 90. Moreover, the co-location relationships between
LNC_004603 and KRT17 were obtained via functional analysis
of lncRNA, which indicates that LNC_004603 may act as a
potential factor for the regulation of hair cycling. Furthermore,
miR-200a-3p is highly expressed in the anagen, which has
been proved the be preferentially expressed in the epidermis
(Yi et al., 2006). In addition, the expression of miR-128-3p
significantly increased from days 90 to 150, with high expression
in the telogen. In human HF mesenchymal stem cells, miR-128
could regulate the cell differentiation by targeting SMAD2
(Wang et al., 2016).

Gene ontology analysis includes three domains describing
the cellular and molecular roles of genes and gene products
(MF, CC, and BP) (Harris, 2004). KEGG is a pathway database
for the systematic analysis of gene function, linking genomic
and functional information (Ogata et al., 2000). GO and KEGG
were used to investigate the potential mechanisms of action
of the DE ncRNAs in this study. The obtained results suggest
that multiple signaling pathways form a complex regulatory
network during skin and HF development. These include the
Wnt signaling pathway, the Hedgehog signaling pathway, the
TGF-β signaling pathway, the MAPK signaling pathway, the
BMP signaling pathway, and the JAK/STAT signaling pathway.
These signaling pathways have been previously reported to
regulate HF morphogenesis and development (Andl et al., 2002;
Mill et al., 2003; Jamora et al., 2005; Kulessa et al., 2014;
Akilli Öztürk et al., 2015; Harel et al., 2015). Both SMAD2
and SIAH1 were enriched in the Wnt signaling pathway,
and SMAD2 was upregulated at day 150 compared to the
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differential expression at day 90. In addition, SIAH1 decreased
significantly from days 90 to 130, but increased from days 130
to 150, and was highly expressed when comparing day 150
to day 90. In the cashmere goat, SIAH1 and SMAD2 were
significantly expressed during the telogen-anagen HF transition.
SIAH1 is highly significantly expressed from telogen to early
anagen, and the expression of SMAD2 increased from telogen
to late anagen (Liu et al., 2018). Via functional analysis of
lncRNA, the co-expression relationship between LNC_002690
and SIAH1 was identified, indicating that LNC_002690 might
play a central role in hair cycling via regulation of SIAH1
expression. Hence, these candidates could act as key candidates
during HF cycling.

RNA transcripts are regulated by ceRNAs, which compete
for the binding of shared miRNAs. miRNA response elements
(MREs) are sequences where miRNAs can bind and repress
target gene expression. Acting as miRNA sponges, pseudogenes,
lncRNAs, circRNAs, and mRNAs can suppress miRNA function
through shared MREs (Salmena et al., 2011). Therefore,
to try to understand the role of ncRNAs during the HF
cycle, lncRNA–miRNA–mRNA and circRNA–miRNA–mRNA
regulatory networks were constructed. LNC_002919 and
novel_circ_0026326 acted as sponges for miR-320-3p, which
targets HTATIP2. MiR-320-3p has been reported to either
directly or indirectly target genes that regulate the cell cycle
and differentiation of the HF (Liu et al., 2013). HTATIP2
was highly expressed during the catagen and telogen phases,
suggesting that HTATIP2 could inhibit cellular activities during
the hair cycle. Decreased or absent HTATIP2 activity modulated
through JAK-STAT3 signaling has been shown to play an
important role in certain cellular processes. Furthermore,
the study shows a link between the JAK-STAT signaling
pathway and hair growth (Zhang et al., 2012; Harel et al.,
2015). In this analysis of DE lncRNAs, a relationship was
found between LNC_002919 and KRTAP11-1, suggesting
that LNC_002919 could modulate KRTAP11-1 expression.
KRTAP11-1 influences keratin-bundle assembly and can
regulate the physical properties of hair (Fujimoto et al.,
2014). Therefore, LNC_002919 could be a potent regulator
of the HF cycle. However, the molecular mechanisms
underlying the regulation of HTATIP2 by LNC_002919 and
novel_circ_0026326, which may act as miR-320-3p sponges, need
to be further explored.

CONCLUSION

In summary, this study established a rabbit HF synchronization
model and investigated the lncRNA, circRNA, miRNA, and
mRNA expression profiles by transcriptome analysis of samples
collected at different stages of the HF cycle. GO and KEGG
pathway enrichment analyses were carried out to identify
candidate ncRNAs and mRNAs involved in the regulation of
the HF cycle. In addition, ceRNA networks were constructed,
which may be active during the HF cycle. These results provide
a basis for an improved understanding of the mechanisms
underlying the HF cycle.
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FIGURE S1 | Top 20 KEGG pathways based on mRNA colocalization with
differentially expressed lncRNAs between 90, 130, and 150 days. (A) Scatterplot
showing KEGG pathway enrichment between 130 and 90 days. (B) Scatterplot
showing KEGG pathway enrichment between 150 and 90 days. (C) Scatterplot
showing KEGG pathway enrichment between 150 and 130 days.

FIGURE S2 | Top 20 KEGG pathways based on mRNA co-expression with
differentially expressed lncRNAs between 90, 130, and 150 days. (A) Scatterplot
showing KEGG pathway enrichment between 130 and 90 days. (B) Scatterplot
showing KEGG pathway enrichment between 150 and 90 days. (C) Scatterplot
showing KEGG pathway enrichment between 150 and 130 days.

FIGURE S3 | Top 20 KEGG pathways associated with differentially expressed
circRNAs between 90, 130, and 150 days. (A) Scatterplot showing KEGG
pathway enrichment between 130 and 90 days. (B) Scatterplot showing KEGG
pathway enrichment between 150 and 90 days. (C) Scatterplot showing KEGG
pathway enrichment between 150 and 130 days.

FIGURE S4 | Top 20 KEGG pathways associated with differentially expressed
miRNAs between 90, 130, and 150 days. (A) Scatterplot showing KEGG pathway
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enrichment between 130 and 90 days. (B) Scatterplot showing KEGG pathway
enrichment between 150 and 90 days. (C) Scatterplot showing KEGG pathway
enrichment between 150 and 130 days.

FIGURE S5 | Top 20 KEGG pathways associated with differentially expressed
mRNAs between 90, 130, and 150 days. (A) Scatterplot showing KEGG pathway
enrichment between 130 and 90 days. (B) Scatterplot showing KEGG pathway
enrichment between 150 and 90 days. (C) Scatterplot showing KEGG pathway
enrichment between 150 and 130 days.

TABLE S1 | Primers used for the quantitative real-time PCR analysis.

TABLE S2 | Primers used for construction of the luciferase reporter vector.

TABLE S3 | Summary of RNA sequencing for each sample.

TABLE S4 | Analysis of differentially expressed lncRNAs between 90,
130, and 150 days.

TABLE S5 | Analysis of differentially expressed circRNAs between 90,
130, and 150 days.

TABLE S6 | Analysis of differentially expressed miRNAs between 90,
130, and 150 days.

TABLE S7 | Analysis of differentially expressed mRNAs between 90,
130, and 150 days.

TABLE S8 | Differentially expressed lncRNAs associated with the hair follicle cycle
by target prediction.

TABLE S9 | Gene ontology classification of differentially expressed lncRNAs
between 90, 130, and 150 days.

TABLE S10 | Gene ontology classification of differentially expressed circRNAs
between 90, 130, and 150 days.

TABLE S11 | Gene ontology classification of differentially expressed miRNA
between 90, 130, and 150 days.

TABLE S12 | Gene ontology classification of differentially expressed mRNAs
between 90, 130, and 150 days.

TABLE S13 | Differentially expressed genes between 90, 130, and 150 days of
the hair follicle cycle.

REFERENCES
Ahmed, M. I., Alam, M., Emelianov, V. U., Poterlowicz, K., Patel, A., Sharov,

A. A., et al. (2014). MicroRNA-214 controls skin and hair follicle development
by modulating the activity of the Wnt pathway. J. Cell Biol. 207, 549–567.
doi: 10.1083/jcb.201404001

Ahmed, N. S., Ghatak, S., El Masry, M. S., Gnyawali, S. C., Roy, S., Amer, M., et al.
(2017). Epidermal E-cadherin dependent β-catenin pathway is phytochemical
inducible and accelerates anagen hair cycling. Mol. Ther. 25, 2502–2512.
doi: 10.1016/j.ymthe.2017.07.010

Akilli Öztürk, Ö, Pakula, H., Chmielowiec, J., Qi, J., Stein, S., Lan, L., et al.
(2015). Gab1 and mapk signaling are essential in the hair cycle and hair
follicle stem cell quiescence. Cell Rep. 13, 561–572. doi: 10.1016/j.celrep.2015.
09.015

Andl, T., Reddy, S. T., Gaddapara, T., and Millar, S. E. (2002). WNT signals are
required for the initiation of hair follicle development. Dev. Cell 2, 643–653.
doi: 10.1016/s1534-5807(02)00167-3

Chao, Y., Wang, X., Geng, R., He, X., Lei, Q., and Chen, Y. (2013). Discovery of
cashmere goat (Capra hircus) microRNAs in skin and hair follicles by Solexa
sequencing. BMC Genomics 14:511. doi: 10.1186/1471-2164-14-511

Chase, H. B. (1954). Growth of the hair. Physiol. Rev. 34:113.
Chase, H. B., Rauch, R., and Smith, V. W. (1951). Critical stages of hair

development and pigmentation in the mouse. Physiol. Zool. 24, 1–8.
doi: 10.1086/physzool.24.1.30152098

Chen, Z. Z., Lan, H., Wu, Y. H., Zhai, W. J., Zhu, P. P., and Gao, Y. F.
(2016). LncSox4promotes the self-renewal of liver tumour-initiating cells
through Stat3-mediated Sox4 expression. Nat. Commun. 7:12598. doi: 10.1038/
ncomms12598

Cotsarelis, G., Sun, T. T., and Lavker, R. M. (1990). Label-retaining cells reside in
the bulge area of pilosebaceous unit: implications for follicular stem cells, hair
cycle, and skin carcinogenesis. Cell 61, 1329–1337. doi: 10.1016/0092-8674(90)
90696-c

Ding, X. C., Weiler, J., and Grosshans, H. (2009). Regulating the regulators:
mechanisms controlling the maturation of microRNAs. Trends Biotechnol. 27,
27–36. doi: 10.1016/j.tibtech.2008.09.006

Enright, A. J., Bino, J., Ulrike, G., Thomas, T., Chris, S., and Marks, D. S. (2004).
MicroRNA targets in Drosophila. Genome Biol. 5:R1.

Friedländer, M. R., Mackowiak, S. D., Li, N., Chen, W., and Rajewsky, N. (2011).
miRDeep2 accurately identifies known and hundreds of novel microRNA genes
in seven animal clades. Nucleic Acids Res. 40, 37–52. doi: 10.1093/nar/gkr688

Fuchs, E., and Segre, J. A. (2000). Stem cells: a new lease on life. Cell 100, 143–155.
Fujimoto, S., Takase, T., Kadono, N., Maekubo, K., and Hirai, Y. (2014). Krtap11-1,

a hair keratin-associated protein, as a possible crucial element for the physical
properties of hair shafts. J. Dermatol. Sci. 74, 39–47. doi: 10.1016/j.jdermsci.
2013.12.006

Guttman, M., and Rinn, J. L. (2012). Modular regulatory principles of large
non-coding RNAs. Nature 482:339. doi: 10.1038/nature10887

Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard,
C. K., et al. (2013). Natural RNA circles function as efficient microRNA sponges.
Nature 495, 384–388. doi: 10.1038/nature11993

Hardy, M. H. (1992). The secret life of the hair follicle. Trends Genet. Tig 8:55.
doi: 10.1016/0168-9525(92)90350-d

Harel, S., Higgins, C. A., Cerise, J. E., Dai, Z., Chen, J. C., Clynes, R., et al. (2015).
Pharmacologic inhibition of JAK-STAT signaling promotes hair growth. Sci.
Adv. 1:e1500973. doi: 10.1126/sciadv.1500973

Harris, M. A. (2004). The Gene Ontology (GO) Database and Informatics Resource.
New York, NY: WCB/McGraw-Hill.

Hendriks, W. H., Tarttelin, M. F., and Moughan, P. J. (1997). Seasonal hair growth
in the adult domestic cat (Felis catus). Comp. Biochem. Physiol. Part A Physiol.
116, 29–35. doi: 10.1016/s0300-9629(96)00113-2

Hochfeld, L. M., Anhalt, T., Reinbold, C. S., Herrerarivero, M., Fricker, N., Nöthen,
M. M., et al. (2017). Expression profiling and bioinformatic analyses suggest
new target genes and pathways for human hair follicle related microRNAs. BMC
Dermatol. 17:3. doi: 10.1186/s12895-017-0054-9

Hynd, P. I., Schlink, A. C., Phillips, P. M., and Scobie, D. R. (1986). Mitotic activity
in cells of the wool follicle bulb. Aus. J Biol. Sci. 39:329. doi: 10.1071/bi9860329

Jamora, C., Lee, P., Kocieniewski, P., Azhar, M., Hosokawa, R., Chai, Y.,
et al. (2005). A signaling pathway involving tgf-β2 and snail in hair follicle
morphogenesis. PLoS Biol. 3:e11. doi: 10.1371/journal.pbio.0030011

Johnson, E., and Ebling, F. J. (1964). The effect of plucking hairs during different
phases of the follicular cycle. J. Embryol. Exp. Morphol. 12, 465–474.

Kulessa, H., Turk, G., and Hogan, B. L. M. (2014). Inhibition of Bmp signaling
affects growth and differentiation in the anagen hair follicle. Embo J. 19,
6664–6674. doi: 10.1093/emboj/19.24.6664

Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted
correlation network analysis. BMC Bioinformatics 9:559. doi: 10.1186/1471-
2105-9-559

Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie
2. Nat. Methods 9, 357–359. doi: 10.1038/nmeth.1923

Li, D., Liu, X., Zhou, J., Hu, J., Zhang, D., Liu, J., et al. (2016). LncRNA HULC
modulates the phosphorylation of YB-1 through serving as a scaffold of ERK
and YB-1 to enhance hepatocarcinogenesis. Hepatology 65:1612. doi: 10.1002/
hep.29010

Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., et al. (2015). Exon-intron
circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol.
22:256. doi: 10.1038/nsmb.2959

Lin, C. M., Liu, Y., Huang, K., Chen, X. C., Cai, B. Z., Li, H. H., et al. (2015). Long
noncoding RNA expression in dermal papilla cells contributes to hairy gene
regulation. Biochem. Biophys. Res. Commun. 453, 508–514. doi: 10.1016/j.bbrc.
2014.09.119

Frontiers in Genetics | www.frontiersin.org 14 May 2019 | Volume 10 | Article 40773

https://doi.org/10.1083/jcb.201404001
https://doi.org/10.1016/j.ymthe.2017.07.010
https://doi.org/10.1016/j.celrep.2015.09.015
https://doi.org/10.1016/j.celrep.2015.09.015
https://doi.org/10.1016/s1534-5807(02)00167-3
https://doi.org/10.1186/1471-2164-14-511
https://doi.org/10.1086/physzool.24.1.30152098
https://doi.org/10.1038/ncomms12598
https://doi.org/10.1038/ncomms12598
https://doi.org/10.1016/0092-8674(90)90696-c
https://doi.org/10.1016/0092-8674(90)90696-c
https://doi.org/10.1016/j.tibtech.2008.09.006
https://doi.org/10.1093/nar/gkr688
https://doi.org/10.1016/j.jdermsci.2013.12.006
https://doi.org/10.1016/j.jdermsci.2013.12.006
https://doi.org/10.1038/nature10887
https://doi.org/10.1038/nature11993
https://doi.org/10.1016/0168-9525(92)90350-d
https://doi.org/10.1126/sciadv.1500973
https://doi.org/10.1016/s0300-9629(96)00113-2
https://doi.org/10.1186/s12895-017-0054-9
https://doi.org/10.1071/bi9860329
https://doi.org/10.1371/journal.pbio.0030011
https://doi.org/10.1093/emboj/19.24.6664
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1002/hep.29010
https://doi.org/10.1002/hep.29010
https://doi.org/10.1038/nsmb.2959
https://doi.org/10.1016/j.bbrc.2014.09.119
https://doi.org/10.1016/j.bbrc.2014.09.119
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00407 May 2, 2019 Time: 20:20 # 15

Zhao et al. ncRNA in Hair Follicle Cycles

Liu, G., Liu, R., Li, Q., Tang, X., Yu, M., Li, X., et al. (2013). Identification
of microRNAs in wool follicles during anagen, catagen, and telogen
phases in Tibetan Sheep. PLoS One 8:e77801. doi: 10.1371/journal.pone.007
7801

Liu, Z., Yang, F., Zhao, M., Ma, L., Li, H., Xie, Y., et al. (2018). The intragenic
mRNA-microRNA regulatory network during telogen-anagen hair follicle
transition in the cashmere goat. Sci. Rep. 8:14227. doi: 10.1038/s41598-018-
31986-2

Lu, Q., Shan, S., Li, Y., Zhu, D., Jin, W., and Ren, T. (2018). Long noncoding RNA
SNHG1 promotes non-small cell lung cancer progression by up-regulating
MTDH via sponging miR-145-5p. FASEB J. 32, 3957–3967. doi: 10.1096/fj.
201701237RR

Mardaryev, A. N., Ahmed Mivlahov, N. V., Fessing, M. Y., Gill, J. H., Sharov, A. A.,
and Botchkareva, N. V. (2010). Micro-RNA-31 controls hair cycle-associated
changes in gene expression programs of the skin and hair follicle. Faseb J. 24,
3869–3881. doi: 10.1096/fj.10-160663

Mattick, J. S., and Makunin, I. V. (2006). Non-coding RNA. Hum. Mol. Genet. 15,
R17–R29.

Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., et al. (2014).
Circular RNAs are a large class of animal RNAs with regulatory potency. Nature
495, 333–338. doi: 10.1038/nature11928

Mill, P., Mo, R., Fu, H., Grachtchouk, M., Kim, P. C., Dlugosz, A. A.,
et al. (2003). Sonic hedgehog-dependent activation of Gli2 is essential for
embryonic hair follicle development. Genes Dev. 17:282. doi: 10.1101/gad.103
8103

Moore, G. P. M., Thébault, R. G., Rougeot, J., Dooren, P. V., and Bonnet, M.
(1987). Epidermal growth factor (EGF) facilitates depilation of the Angora
rabbit. Annales De Zootechnie 36, 433–438. doi: 10.1051/animres%3A19870407

Müller-Röver, S., Foitzik, K., Paus, R., Handjiski, B., Veen, C. V. D., Eichmüller,
S., et al. (2001). A comprehensive guide for the accurate classification of
murine hair follicles in distinct hair cycle stages. J. Invest. Dermatol. 117, 3–15.
doi: 10.1046/j.0022-202x.2001.01377.x

Nakamura, M., Matzuk, M. M., Gerstmayer, B., Bosio, A., Lauster, R., Miyachi, Y.,
et al. (2003). Control of pelage hair follicle development and cycling by complex
interactions between follistatin and activin. Faseb J. 17:497. doi: 10.1096/fj.02-
0247fje

Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., and Kanehisa, M. (2000).
KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 27, 29–34.

Oro, A. E., and Scott, M. P. (1998). Splitting hairs: dissecting roles of signaling
systems in epidermal development. Cell 95:575.

Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K., and Barrandon, Y. (2001).
Morphogenesis and renewal of hair follicles from adult multipotent stem cells.
Cell 104, 233–245. doi: 10.1016/s0092-8674(01)00208-2

Pamudurti, N. R., Bartok, O., Jens, M., Ashwal-Fluss, R., Stottmeister, C., Ruhe, L.,
et al. (2017). Translation of CircRNAs. Mol. Cell. 66, 9.e7–21.e7. doi: 10.1016/j.
molcel.2017.02.021

Paus, R., and Cotsarelis, G. (1999). The biology of hair follicles. N. Engl. J. Med.
341, 491–497.

Pertea, M., Kim, D., Pertea, G. M., Leek, J. T., and Salzberg, S. L. (2016). Transcript-
level expression analysis of RNA-seq experiments with HISAT, StringTie and
Ballgown. Nat. Protoc. 11:1650. doi: 10.1038/nprot.2016.095

Rendl, M., Polak, L., and Fuchs, E. (2008). BMP signaling in dermal papilla cells
is required for their hair follicle-inductive properties. Genes Dev. 22, 543–557.
doi: 10.1101/gad.1614408

Reut, A. F., Markus, M., Nagarjuna Reddy, P., Andranik, I., Osnat, B., Mor, H.,
et al. (2014). circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell.
56, 55–66. doi: 10.1016/j.molcel.2014.08.019

Salmena, L., Poliseno, L., Tay, Y., Kats, L., and Pandolfi, P. P. (2011). ceRNA
hypothesis: the rosetta stone of a hidden RNA language? Cell 146, 353–358.
doi: 10.1016/j.cell.2011.07.014

Sardella, C., Winkler, C., Quignodon, L., Hardman, J. A., Toffoli, B., Gmp, G. A.,
et al. (2017). Delayed hair follicle morphogenesis and hair follicle dystrophy
in a lipoatrophy mouse model of pparg total deletion. J. Invest. Dermatol. 138,
500–510. doi: 10.1016/j.jid.2017.09.024

Schmittgen, T. D., and Livak, K. J. (2008). Analyzing real-time PCR data by the
comparative CT method. Nat. Protoc. 3, 1101–1108. doi: 10.1038/nprot.2008.73

Shirokova, V., Biggs, L. C., Jussila, M., Ohyama, T., Groves, A. K., and
Mikkola, M. L. (2016). Foxi3 deficiency compromises hair follicle stem cell

specification and activation. Stem Cells 34, 1896–1908. doi: 10.1002/stem.
2363

Song, S., Yang, M., Li, Y., Rouzi, M., Zhao, Q., Pu, Y., et al. (2018). Genome-
wide discovery of lincRNAs with spatiotemporal expression patterns in the
skin of goat during the cashmere growth cycle. BMC Genomics 19:495.
doi: 10.1186/s12864-018-4864-x

Song, Y., Sun, J., Zhao, J., Yang, Y., Shi, J., Wu, Z., et al. (2017). Non-
coding RNAs participate in the regulatory network of CLDN4 via ceRNA
mediated miRNA evasion. Nat. Commun. 8:289. doi: 10.1038/s41467-017-
00304-1

Stenn, K. S., and Paus, R. (2001). Controls of hair follicle cycling. Physiol. Rev.
81:449. doi: 10.1152/physrev.2001.81.1.449

Stoffelen, R., Jimenez, M. I., and Dierckxsens, C. (2012). Circular RNAs
are the predominant transcript isoform from hundreds of human genes
in diverse cell types. PLoS One 7:e30733. doi: 10.1371/journal.pone.003
0733

Straile, W. E., Chase, H. B., and Arsenault, C. (2010). Growth and differentiation
of hair follicles between periods of activity and quiescence. J. Exp. Zool. 148,
205–221. doi: 10.1002/jez.1401480304

Tong, X., and Coulombe, P. A. (2006). Keratin 17 modulates hair follicle cycling
in a TNFα-dependent fashion. Genes Dev. 20:1353. doi: 10.1101/gad.138
7406

Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., Van
Baren, M. J., et al. (2010). Transcript assembly and quantification by
RNA-Seq reveals unannotated transcripts and isoform switching during
cell differentiation. Nat. Biotechnol. 28, 511–515. doi: 10.1038/nbt.
1621

Uno, H. (1991). Quantitative models for the study of hair growth in vivo.
Ann. N.Y. Acad. Sci. 642, 107–124. doi: 10.1111/j.1749-6632.1991.tb24
384.x

Veen, C. V. D., Handjiski, B., Paus, R., Müller-Röver, S., Maurer, M., Eichmüller,
S., et al. (1999). A comprehensive guide for the recognition and classification
of distinct stages of hair follicle morphogenesis. J. Invest. Dermatol. 113:523.
doi: 10.1046/j.1523-1747.1999.00740.x

Wang, L., Feng, Z., Wang, X., Wang, X., and Zhang, X. (2010). DEGseq: an
R package for identifying differentially expressed genes from RNA-seq data.
Bioinformatics 26, 136–138. doi: 10.1093/bioinformatics/btp612

Wang, S., Ge, W., Luo, Z., Guo, Y., Jiao, B., Qu, L., et al. (2017). Integrated
analysis of coding genes and non-coding RNAs during hair follicle cycle of
cashmere goat (Capra hircus). BMC Genomics 18:767. doi: 10.1186/s12864-017-
4145-0

Wang, Z., Pang, L., Zhao, H., Song, L., Wang, Y., Sun, Q., et al. (2016). miR-128
regulates differentiation of hair follicle mesenchymal stem cells into smooth
muscle cells by targeting SMAD2. Acta Histochem. 118, 393–400. doi: 10.1016/
j.acthis.2016.04.001

Winkle, M., Van, D. B. A., Tayari, M., Sietzema, J., Terpstra, M., Kortman, G., et al.
(2015). Long noncoding RNAs as a novel component of the Myc transcriptional
network. Faseb J. 29:2338. doi: 10.1096/fj.14-263889

Wolbach, S. B. (1951). The hair cycle of the mouse and its importance in the study
of sequences of experimental carcinogenesis. Ann. N.Y. Acad. Sci. 53, 517–536.
doi: 10.1111/j.1749-6632.1951.tb31954.x

Yi, R., O’carroll, D., Pasolli, H. A., Zhang, Z., Dietrich, F. S., Tarakhovsky,
A., et al. (2006). Morphogenesis in skin is governed by discrete sets
of differentially expressed microRNAs. Nat. Genet. 38:356. doi: 10.1038/
ng1744

Yue, Y., Guo, T., Yuan, C., Liu, J., Guo, J., Feng, R., et al. (2016). Integrated analysis
of the roles of long noncoding rna and coding RNA expression in sheep (Ovis
aries) skin during initiation of secondary hair follicle. PLoS One 11:e0156890.
doi: 10.1371/journal.pone.0156890

Zhang, W., Sun, H. C., Wang, W. Q., Zhang, Q. B., Zhuang, P. Y., Xiong,
Y. Q., et al. (2012). Sorafenib down-regulates expression of htatip2 to promote
invasiveness and metastasis of orthotopic hepatocellular carcinoma tumors
in mice. Gastroenterology 143, 1641.e5–1649.e5. doi: 10.1053/j.gastro.2012.
08.032

Zhong, Z., Lv, M., and Chen, J. (2016). Screening differential circular RNA
expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-
107-CDK6 pathway in bladder carcinoma. Sci. Rep. 6:30919. doi: 10.1038/
srep30919

Frontiers in Genetics | www.frontiersin.org 15 May 2019 | Volume 10 | Article 40774

https://doi.org/10.1371/journal.pone.0077801
https://doi.org/10.1371/journal.pone.0077801
https://doi.org/10.1038/s41598-018-31986-2
https://doi.org/10.1038/s41598-018-31986-2
https://doi.org/10.1096/fj.201701237RR
https://doi.org/10.1096/fj.201701237RR
https://doi.org/10.1096/fj.10-160663
https://doi.org/10.1038/nature11928
https://doi.org/10.1101/gad.1038103
https://doi.org/10.1101/gad.1038103
https://doi.org/10.1051/animres%3A19870407
https://doi.org/10.1046/j.0022-202x.2001.01377.x
https://doi.org/10.1096/fj.02-0247fje
https://doi.org/10.1096/fj.02-0247fje
https://doi.org/10.1016/s0092-8674(01)00208-2
https://doi.org/10.1016/j.molcel.2017.02.021
https://doi.org/10.1016/j.molcel.2017.02.021
https://doi.org/10.1038/nprot.2016.095
https://doi.org/10.1101/gad.1614408
https://doi.org/10.1016/j.molcel.2014.08.019
https://doi.org/10.1016/j.cell.2011.07.014
https://doi.org/10.1016/j.jid.2017.09.024
https://doi.org/10.1038/nprot.2008.73
https://doi.org/10.1002/stem.2363
https://doi.org/10.1002/stem.2363
https://doi.org/10.1186/s12864-018-4864-x
https://doi.org/10.1038/s41467-017-00304-1
https://doi.org/10.1038/s41467-017-00304-1
https://doi.org/10.1152/physrev.2001.81.1.449
https://doi.org/10.1371/journal.pone.0030733
https://doi.org/10.1371/journal.pone.0030733
https://doi.org/10.1002/jez.1401480304
https://doi.org/10.1101/gad.1387406
https://doi.org/10.1101/gad.1387406
https://doi.org/10.1038/nbt.1621
https://doi.org/10.1038/nbt.1621
https://doi.org/10.1111/j.1749-6632.1991.tb24384.x
https://doi.org/10.1111/j.1749-6632.1991.tb24384.x
https://doi.org/10.1046/j.1523-1747.1999.00740.x
https://doi.org/10.1093/bioinformatics/btp612
https://doi.org/10.1186/s12864-017-4145-0
https://doi.org/10.1186/s12864-017-4145-0
https://doi.org/10.1016/j.acthis.2016.04.001
https://doi.org/10.1016/j.acthis.2016.04.001
https://doi.org/10.1096/fj.14-263889
https://doi.org/10.1111/j.1749-6632.1951.tb31954.x
https://doi.org/10.1038/ng1744
https://doi.org/10.1038/ng1744
https://doi.org/10.1371/journal.pone.0156890
https://doi.org/10.1053/j.gastro.2012.08.032
https://doi.org/10.1053/j.gastro.2012.08.032
https://doi.org/10.1038/srep30919
https://doi.org/10.1038/srep30919
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00407 May 2, 2019 Time: 20:20 # 16

Zhao et al. ncRNA in Hair Follicle Cycles

Zhou, G., Kang, D., Ma, S., Wang, X., Gao, Y., Yang, Y., et al.
(2018). Integrative analysis reveals ncRNA-mediated molecular
regulatory network driving secondary hair follicle regression in
cashmere goats. BMC Genomics 19:222. doi: 10.1186/s12864-018-
4603-3

Zhou, L., Chen, J., Li, Z., Li, X., Hu, X., Huang, Y., et al. (2010).
Integrated Profiling of MicroRNAs and mRNAs: MicroRNAs
Located on Xq27.3 Associate with Clear Cell Renal Cell
Carcinoma. PLoS One 5:e15224. doi: 10.1371/journal.pone.001
5224

Zhu, Y. B., Wang, Z. Y., Yin, R. H., Jiao, Q., Zhao, S. J., Cong, Y. Y., et al. (2018).
A lncRNA-H19 transcript from secondary hair follicle of Liaoning cashmere
goat: Identification, regulatory network and expression regulated potentially
by its promoter methylation. Gene 641, 78–85. doi: 10.1016/j.gene.2017.
10.028

Zhu, Z., Li, Y., Liu, W., He, J., Zhang, L., Li, H., et al. (2018). Comprehensive
circRNA expression profile and construction of circRNA-associated ceRNA
network in fur skin. Exp. Dermatol. 27, 251–257. doi: 10.1111/exd.13502

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Zhao, Chen, Hu, Yang, Wang, Liu, Li, Xiao and Wu. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org 16 May 2019 | Volume 10 | Article 40775

https://doi.org/10.1186/s12864-018-4603-3
https://doi.org/10.1186/s12864-018-4603-3
https://doi.org/10.1371/journal.pone.0015224
https://doi.org/10.1371/journal.pone.0015224
https://doi.org/10.1016/j.gene.2017.10.028
https://doi.org/10.1016/j.gene.2017.10.028
https://doi.org/10.1111/exd.13502
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00496 May 20, 2019 Time: 15:45 # 1

MINI REVIEW
published: 22 May 2019

doi: 10.3389/fgene.2019.00496

Edited by:
Philipp Kapranov,

Huaqiao University, China

Reviewed by:
Florent Hubé,

UMR7216 Epigénétique et Destin
Cellulaire, France

Dieter August Wolf,
Sanford Burnham Prebys Medical
Discovery Institute, United States

*Correspondence:
Changning Liu

liuchangning@xtbg.ac.cn

Specialty section:
This article was submitted to

RNA,
a section of the journal

Frontiers in Genetics

Received: 24 February 2019
Accepted: 06 May 2019
Published: 22 May 2019

Citation:
Li J and Liu C (2019) Coding or

Noncoding, the Converging Concepts
of RNAs. Front. Genet. 10:496.

doi: 10.3389/fgene.2019.00496

Coding or Noncoding, the
Converging Concepts of RNAs
Jing Li and Changning Liu*

CAS Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden,
The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, China

Technological advances over the past decade have unraveled the remarkable
complexity of RNA. The identification of small peptides encoded by long non-coding
RNAs (lncRNAs) as well as regulatory functions mediated by non-coding regions of
mRNAs have further complicated our understanding of the multifaceted functions of
RNA. In this review, we summarize current evidence pointing to dual roles of RNA
molecules defined by their coding and non-coding potentials. We also discuss how the
emerging roles of RNA transform our understanding of gene expression and evolution.

Keywords: messenger RNA, long noncoding RNA, coding potential, ribosome profiling, micropeptide

INTRODUCTION

Benefiting from the advances in science and technology, our understanding of the complexity of
organisms is constantly increasing. The “central dogma” of molecular biology states that genetic
information is typically processed from DNA to RNA to protein, and this decides cellular and
organismal phenotype (Crick, 1970). In the past, RNAs, except for infrastructural RNAs (such as
rRNAs and tRNAs), were commonly considered as an intermediate between DNA and proteins.
However, over recent decades, the rapid development of high-throughput sequencing technologies
has revealed the pervasive transcription of eukaryotic genomes (Okazaki et al., 2002; Carninci
et al., 2005; Kapranov et al., 2007; Lander, 2011), thus revealing RNA-mediated gene regulation.
The fact that most regulatory RNAs function without involvement in protein translation led us to
re-examine the roles of RNAs in the development and evolution of higher organisms.

In higher organisms, only a small fraction of genetic transcripts (less than 3%) have the capability
to encode proteins, despite pervasive transcription across genomes. This raises the question
of whether the remaining non-protein-coding transcripts are transcriptional “noise” or contain
more genetic information. Large-scale projects for the systematic annotation and functional
characterization of genes (such as ENCODE and FANTOM) have reported that at least 80% of
mammalian genomic DNA is actively transcribed and elaborately regulated, with the vast majority
of this considered to be noncoding RNA (ncRNA) genes (Consortium, 2012; Hon et al., 2017). The
numbers of ncRNA genes vary between species, and interestingly, the complexity of an organism is

Abbreviations: 4E-BP, Eukaryotic translation initiation factor 4E (eIF4E)-binding protein; aa, amino acid; CCR2, C-C
chemokine receptor type 2; ceRNAs, competing endogenous RNAs; circRNAs, circular RNAs; FBXW7, F-Box and WD repeat
domain containing 7; Foxo, Forkhead box-o; HIST1H1C, histone cluster 1 H1 family member C; hnRNPC, heterogeneous
nuclear ribonucleoprotein C; hTR, human telomerase RNA; IRES, internal ribosome entry site; lncRNA, long non-
coding RNA; Mbl, Mannose-binding lectin; Mdm2, mouse double minute 2; MLN, myoregulin; MOTS-C, mitochondrial
open reading frame of the 12S rRNA-c; MS, mass spectrometry; nt, nucleotide; ribo-seq, ribosome profiling sequencing;
Scl, sarcolamb; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; sORF, small open reading frame; SR, sarcoplasmic
reticulum; SRA, steroid receptor RNA activator; SRAP, steroid receptor RNA activator protein; Ube3a1, ubiquitin-protein
ligase E3A; UTRs, untranslated regions; VEGF, vascular endothelial growth factor; ZNF609, zinc Finger Protein 609.
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highly associated with the abundance of ncRNA genes but
not protein-coding genes, implying the potential importance
of ncRNAs (Rubin et al., 2000; Stover et al., 2000; Mattick,
2001; Venter et al., 2001; Kapusta and Feschotte, 2014). Among
these, lncRNAs that are defined as transcripts longer than 200
nucleotides with low/no protein-coding potential, represent a
considerable proportion.

Long non-coding RNAs can regulate gene expression in
various ways, including epigenetic, transcriptional, post-
transcriptional, translational and protein location effects.
Corresponding to functional diversity, the modes of action of
lncRNAs are also quite varied. lncRNAs can recruit epigenetic
factors to modify chromatin state (Rinn and Chang, 2012),
assemble transcriptional machinery to trigger the initiation
of transcription (Bonasio and Shiekhattar, 2014), or act as a
structural organizer to participate in the formation of subcellular
organelles (Naganuma and Hirose, 2013). Additionally, lncRNAs
can complementarily bind with other forms of RNA molecules to
modulate gene expression at transcriptional, post-transcriptional
and translational levels, for example as a moderator of mRNA
activity or a decoy/sponge for miRNA (Poliseno et al., 2010; Gong
and Maquat, 2011; Bonasio and Shiekhattar, 2014; Tay et al.,
2014; Yoon et al., 2014). Moreover, lncRNAs couple with proteins
through particular structures to act as a location transferor, or to
modulate enzyme activities (Wang and Chang, 2011).

Based on the “noncoding” definition, the modes of action
of lncRNAs mentioned above are exerted primarily through
ncRNAs. Intriguingly, recent bioinformatics analyses of large-
scale data from ribosome-protected RNA fragments (ribosome
profiling or ribo-profiling) have revealed that a considerably
large part of these transcripts tends to contain sORFs and binds
with ribosomes (Aspden et al., 2014; Ruiz-Orera et al., 2014;
Anderson et al., 2015; Mackowiak et al., 2015; Olexiouk et al.,
2016), suggesting that the coding potential of lncRNAs has
been vastly underestimated. Several functional experiments have
demonstrated that some lncRNAs can encode small peptides
(named “micropeptides” with a length less than 100 aa) that
are involved in various biological processes, although this is
rare (Hubé and Francastel, 2018). In addition, certain coding
transcripts, such as TP53 mRNA, could also function as RNA,
without translation to proteins, to regulate significant biological
processes (Candeias, 2011; Kloc et al., 2011). Therefore, it
seems reasonable to presume that the demarcation of RNA
depending on its coding or noncoding status is somewhat
blurred, and partially intertwined. That is, RNA roles are likely
not tightly constrained (such as RNA functioning only as mRNA
or ncRNA), but rather converge and overlap: lncRNAs can
function by encoding small peptides, while mRNAs can use their
special structural features, such as the 3′ UTR or 5′ UTR, to
function (Figure 1).

In the present article, we will review current studies of
the bilateral functionality of lncRNAs and mRNAs in terms
of their coding potential, as well as the advancement of
high-throughput techniques that would facilitate a deeper
recognition of functional diversity of RNAs. This review
will highlight the cases that illuminate the contrapositive
roles between lncRNAs and mRNAs, and briefly discuss

the biological significance of these discoveries for gene
expression and evolution.

LONG NONCODING RNAs ENCODE
SMALL PEPTIDES/PROTEINS WITH
REGULATORY FUNCTIONS

Peptides/Proteins Encoded by Regular
Long Noncoding RNAs
The original definition of lncRNAs concerns their low/non-
coding potential. However, with accumulating evidence from
bioinformatics and ribosome transcriptome profiling, lncRNAs
have been shown to display strong ribosomal associations in
many species, varying from plant to animal, indicating a potential
coding capacity in lncRNA sORFs (Kageyama et al., 2011; Nam
et al., 2016; Yeasmin et al., 2018). In recent years, several
micropeptides derived from lncRNAs have been shown to be
functional. We have summarized these micropeptides in Table 1.

Steroid receptor RNA activator is a prototypic example of
lncRNAs with both coding and noncoding products (Lanz et al.,
1999; Mattick, 2003; Hubé et al., 2006, 2011). SRA was initially
identified as a noncoding gene with multiple RNA isoforms,
which is critical in many biological processes, such as acting as
a co-activator of nuclear receptors and a regulator of steroid
receptor-dependent gene expression (Hubé et al., 2006, 2011;
Cooper et al., 2011). Interestingly, SRA can also encode for a
conserved SRAP, which, in turn, represses the transcriptional
regulatory activity of the SRA1 gene by interacting with a specific
SRA stem-loop (Emberley et al., 2003; Chooniedass-Kothari
et al., 2006; Hubé et al., 2011). The transmissible functionalities
between the coding and noncoding SRA gene are caused by
alternative splicing (AS) of introns/extrons (Colley and Leedman,
2011), suggesting the significance of AS events in the generation
of bifunctional RNA.

Of note, among the small number of already-known
functional micropeptides, a few are muscle-specific, and have
been implicated in the regulation of the activities of SERCA
(Anderson et al., 2016; Nelson et al., 2016; Matsumoto
et al., 2017). For example, MLN, a 46-aa micropeptide
specifically expressed in skeletal-muscle, is encoded by a lncRNA
(LINC00948 in human and 2310015B20Rik in mouse); it can
directly interact with SERCA to decrease the affinity of this
ATPase for Ca2+ and inhibit Ca2+ entry into the SR (Anderson
et al., 2015). The Scl micropeptide is encoded by the noncoding
pncr003:2L gene, and can affect Ca2+ traffic in cardiac muscle
in the fly; the mutation of this gene triggers an arrhythmic
phenotype (Magny et al., 2013). The MOTS-C micropeptide can
regulate insulin sensitivity and metabolic homeostasis in the
mitochondria of muscle cells, and derives from mitochondrial
12S rRNA (Slavoff et al., 2014; Lee et al., 2015). In the
above example, the Scl peptides and their respective regulatory
functions in the heart are quite conserved between species,
including the fly and humans (Magny et al., 2013). These results
indicate that several sORFs embedded in the noncoding region
of the genome seem to undergo a relatively stricter natural
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FIGURE 1 | The interchangeable roles between coding and long noncoding RNAs. Traditionally, RNAs could be divided into two categories in accordance with their
coding potential, that is, coding RNAs and noncoding RNAs. Coding RNAs generally refers to mRNA that encodes protein 1© to act as various components
including enzymes, cell structures, and signal transductors. Noncoding RNAs act as cellular regulators without encoding proteins 3©. However, it appears that the
boundaries blur between coding RNA and noncoding RNA as some coding mRNAs can function without translating to protein via the formation of RNA secondary
structure primarily derived from the UTR 2©; some lncRNAs can bind with ribosomes, and encode peptides to modulate cellular activities 4©.

selection than adjacent sequences, raising the question of whether
these sORFs have a capability to sprout into a new gene in situ
or to be integrated as a component into new genes elsewhere
during evolution.

The tal gene in Drosophila is of vital importance in tarsal
morphogenesis in the fly leg, and stage-and position-specific
expression have been reported in embryonic development.
Although tal is regarded as a noncoding gene as none of its ORFs
are over 100 aa, deeper analysis has found that the functionality
of tal is predominantly dependent on the ORF regions (Manak
et al., 2006). There are five ORFs in the tal gene, four of which
contain a similar and conserved 7 aa motif that determines the
functionality of the gene, with the shortest peptide of only 11
aa. Phylogenetic analysis revealed that these tal-like peptides are
conserved in metazoans and represent a new class of eukaryotic
genes. The discovery of these mini-peptides further expands the
possible scope and function of lncRNA-encoded peptides that are
hidden in currently sequenced genomes and the transcriptome
(Galindo et al., 2007).

Peptides/Proteins Encoded by
Circular RNAs
Circular RNAs pertain to a sub-category of specialized lncRNAs,
which are primarily produced by backsplicing the 3′ end to the
5′ end of exons in the same transcript (often a coding gene) via
the spliceosome, thereby forming lncRNAs in a circular shape
(Ashwal-Fluss et al., 2014; Zhang X.O. et al., 2014; Starke et al.,
2015). Through bioinformatics analysis and high-throughput

sequencing, many circRNAs have been identified in multiple
species (Sanger et al., 1976; Capel et al., 1993; Danan et al.,
2012; Memczak et al., 2013; Jeck and Sharpless, 2014; Wang
et al., 2014). However, understanding of circRNA function is
still very limited. The reported biological activities of circRNAs
include acting as a sponge for microRNAs (Hansen et al., 2013;
Memczak et al., 2013), as a competitor during pre-mRNA splicing
(Ashwal-Fluss et al., 2014), and as a transcriptional regulator
in the nucleus (Li et al., 2015). The majority of circRNAs are
chimeric lncRNAs derived from mRNA transcripts and likely in
part encompass the exons of protein-coding genes. This poses the
question of whether circRNAs have protein coding capabilities.
In fact, many studies have demonstrated that circRNAs have
coding capabilities both in vitro and in vivo in terms of cap-
independent translation (Chen and Sarnow, 1995; Li and Lytton,
1999; Guo et al., 2014; Jeck and Sharpless, 2014; Abe et al., 2015;
Wang and Wang, 2015; Pamudurti et al., 2017). Moreover, some
functional protein products are encoded by circRNAs (such as
circ-FBXW7; circ-Mbl, circ-ZNF609 and circ-SHPRH) (Rybak-
Wolf et al., 2015; Pamudurti et al., 2017; Yang et al., 2018; Zhang
et al., 2018a).

circ-ZNF609 was initially screened out in a functional genetic
screen, and is differentially expressed during myogenesis (Legnini
et al., 2017). This circRNA contains an ORF covering almost
all ORF regions of the host gene, but has a small variation
at the splice junction. Its protein product lacks the zinc-finger
domain compared with its linear counterpart, with an obvious
impact on myoblast proliferation. Interestingly, heat shock could
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TABLE 1 | Peptides encoded by lncRNAs in plants and animals.

Origin Micropeptides Gene Function Size (AAs) References

Plants Early nodulin 40 (Enod 40) Enod 40 Nodule organogenesis 12; 24 Rohrig et al., 2002

Plants POLARIS (PLS) POLARIS Leaf morphogenesis 36 Chilley et al., 2006

Plants ROTUNDIFOLIA (ROT4) ROT4 Leaf morphogenesis 53 Narita et al., 2004

Plants ROT18/ DLV1 DEVIL1 (DVL1) Plant organogenesis 51 Wen et al., 2004

Plants Kiss of death (KOD) Kiss of death (KOD) Programmed cell death regulation 25 Blanvillain et al., 2011

Plants and animals Brick1 (Brk) Brick1 (Brk) Leaf morphogenesis 84 Frank and Smith, 2002

Poaceae Zm401p10; Zm908p11 Zm401 Pollen development 89; 97 Ma et al., 2008

Mammals DWORF LOC100507537 Enhance muscle performance 34 Nelson et al., 2016

Vertebrates Toddler LOC100506013 Promotes cell migration; activator of
APJ/Apelin receptor signaling

54 Pauli et al., 2014

Vertebrates Myomixer LOC101929726 Functionally involve in controlling
muscle performance

84 Bi et al., 2017

Fruit fly Pri polished rice (pri) Epidermal morphogenesis in
embryogenesis

11; 32 Kondo et al., 2007

Fruit fly MOTS-c 12s rRNA Insulin sensitivity and metabolic
Homeostasis.

16 Lee et al., 2015

Fruit fly Pgc polypeptide pgc Positivephosphorylation of transcription
elongation factor b (P-TEFb)

71 Hanyu-Nakamura
et al., 2008

Fruit fly sarcolamban (Scl) pncr003:2L Calcium transport and muscle
contraction,

28; 29 Magny et al., 2013

Fruit Fly Tarsal-less/tal LP10384 Morphogenesis, including tissue
morphogenesis and pattern formation

11 Galindo et al., 2007

Mammals PINT87aa LINC-PINT Inhibit the transcriptional elongation of
multiple oncogenes

87 Zhang et al., 2018b

Mammals Mitoregulin (Mtln) LINC00116 Mitochondrial respiration, ROS, and
Ca2+ retention capacity

56 Stein et al., 2018

Mammals MRI-2 C7orf49 Non-homologous end-joining DNA
repair

69 Slavoff et al., 2014

From humans to
zebrafish

AGD3 AGU1 Human stem Cell differentiation 63 Kikuchi et al., 2009

Mammals NoBody LINC01420/ LOC550643 mRNA turnover and
nonsense-mediated decay (NMD)

67 D’Lima et al., 2017

Mammals Minion LOC101929726 Muscle development 84 Zhang et al., 2017

Human and mouse SPAR LINC00961 Regulate muscle regeneration 90 Matsumoto et al., 2017

Primates HOXB-AS3 peptide HOXB-AS3 Suppresses colon cancer growth, PKM
splicing and subsequent metabolic
reprogramming

53 Huang et al., 2017

Different species Humanin 16s rRNA Program cell death 24 Hashimoto et al., 2001

Human SRAP SRA Diverse roles in both normal biological
processes and pathological changes

224; 236 Emberley et al., 2003;
Chooniedass-Kothari
et al., 2006

Mouse and human Myoregulin (MLN) LINC00948 in human;
2310015B20Rik in mouse

Inhibit the SERCA activity and regulate
Ca2+ flow in muscle

46 Anderson et al., 2015

significantly activate the translation of circ-ZNF609; suggesting
a possible regulatory role of circRNA translation under specific
stimuli (Legnini et al., 2017).

circ-Mbl was first detected in the lodge of the second exon
of the splicing factor muscleblind (MBL/MBNL1) in flies and
humans, with a function of competing with pre-mRNA splicing
(Ashwal-Fluss et al., 2014). Recently, through a bioinformatics
analysis of ribosome foot-printing datasets, Pamudurti and co-
workers revealed that circ-Mbl could encode a peptide in the
fly head, as detected through MS. Both circ-Mbl1 RNA and its
protein-related product reside in the synaptosome and can be
regulated by the 4E-BP and the transcription factor in forkhead

family – FOXO, suggesting that this circRNA translation might
be distinctively important in the brain (Pamudurti et al., 2017).

The observation that circRNAs generate proteins can be traced
back to much earlier studies in Archaea, where circularized
introns produce a site-specific endonuclease (Dalgaard et al.,
1993). However, to date, direct experimental evidence for
circRNA translation to peptides is still scarce; as a result,
it is even tougher to understand the function of their
translated products. Considering that most circRNAs stem from
coding transcripts and contain complete exons, it is possibly
assumed that the circRNAs and their coding-products might
provide uncharacterized modes of regulation of gene and
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protein expression (Pamudurti et al., 2017). Therefore, it is
important to further investigate the possible functions associated
with circRNA coding.

Large-Scale Approaches for the
Identification of Potential sORFs
To date, hundreds of thousands of lncRNAs have been discovered
in various species, and there is a desire to study their relevant
functional mechanisms (Okazaki et al., 2002; Liu et al., 2005;
Kapranov et al., 2007; Ponting et al., 2009; Ulitsky and
Bartel, 2013; Volders et al., 2013). However, it is unpractical
to identify lncRNAs and predict their functions using only
traditional technical approaches, irrespective of the requirement
for intensive validation of the exact mechanisms underlying
lncRNA activities. The same is true for the identification of
lncRNA coding capacity. Therefore, new large-scale technologic
approaches based on computational analysis of transcriptome
data and proteomics data have been developed, all of which are
mutually reinforcing and cross-validated.

A ribo-seq technique has been recently developed and is
widely used to measure the full coding potential of RNA
transcripts on a genome scale through deep sequencing of
ribosome-protected RNA fragments (Ingolia et al., 2009). By
identifying the precise ribosomal positions of RNAs, ribo-seq
can plot the potential on-going events of translation in the
cytosol, which is useful in identifying potentially functional
micropeptides (Ingolia et al., 2011; Ingolia, 2016). With the
advent of Ribo-Seq, thousands of translated sORFs were
discovered in lncRNAs (Ingolia et al., 2011; Bazzini et al., 2014;
Ruiz-Orera et al., 2014; Ji et al., 2015), with a few functional
peptides, such as MLN (Anderson et al., 2015) and HOXB-
AS3 (Huang et al., 2017). However, the proportion of coding
lncRNAs estimated by various ribosome-profiling studies differ
widely (Guttman et al., 2013; Ingolia et al., 2014), resulting from
false positive and distinct prediction thresholds. Therefore, MS
has emerged as a complementary method.

Mass spectrometry demonstrates excellent performance in
detecting and characterizing the products of proteins/peptides
in a complex biological sample. The detection of lncRNA-
encoded peptides is the most direct evidence for lncRNA
coding potential. However, to date, the proportion of coding
lncRNAs detected by MS-based proteomes is small compared
with that in ribo-seq results (Verheggen et al., 2017). The
main weakness attributed to this approach is that MS-
based proteomics is obviously impacted by the length and
concentration of the detected samples. Therefore, specialized
methods have been developed to circumvent these detection
limitations. Short translation products at low abundance can
surmount the threshold of MS detection through the use
of peptidomics approaches (Schulz-Knappe et al., 2005) and
enrichment protocols (Mustafa et al., 2015).

Both of the above techniques have their respective advantages
and shortcomings; therefore, “proteogenomics” has been
developed (Nesvizhskii, 2014; Menschaert and Fenyö, 2017;
Ruggles et al., 2017). In proteogenomics, proteomics data
are systematically integrated and analyzed with genomics

and transcriptomic data generated from DNA-sequencing,
RNA-sequencing and ribosome-profiling. The predicted
sequences of proteins/peptides are tracked back to the genome
and transcripts to identify the gene expression patterns and actual
translational events. The significance of proteogenomics studies
lies in improving genome annotation, and reasonably applying
multi-omics data to explore complex and profound mechanisms
in biological activities and complex diseases (Zhang B. et al.,
2014; Zhang et al., 2016; Mertins et al., 2016).

NONCODING RNA REGULATORY
FUNCTIONS EMBEDDED IN mRNAs

3′ UTR Regulatory Roles of mRNAs
Based on current research results, the noncoding regulatory
functions discovered in mRNAs are mainly present in the 3′
UTRs, which were previously supposed to be the vital regulative
elements for mRNA self-stability and location. Compared with
highly conserved coding regions that have to undergo strictly
selected pressure, the 3′ UTR displays more flexibility and
plasticity between species. Its size varies from a few to hundreds
of nucleotides, and likely has a close relationship with biological
complexity (Chen et al., 2012; Mayr, 2016). Moreover, for an RNA
molecule, other than the impact on base pairing, the changes
in sequence are most likely to induce corresponding changes
in structure, resulting in information transmitted from RNA to
protein (Berkovits and Mayr, 2015).

By comprehensively estimating up-to-date cases where
mRNAs regulate biologic activities without translating to protein,
we found that the 3′ UTR of mRNA plays a large role as an
effectors. Increasing evidence has demonstrated that the 3′ UTRs
of mRNAs are actively involved in repressing the occurrence and
progression of cancer cells, such as the 3′ UTRs of α-tropomyosin
mRNA, prohibitin mRNA and ribonucleotide reductase mRNA
(Rastinejad et al., 1993; Fan et al., 1996; Manjeshwar et al.,
2003). These studies demonstrate that the 3′ UTRs of some
mRNAs can antagonize tumor development, likely through
RNA interactions with regulatory factors involved in cellular
growth in a post-transcriptional pattern. Indeed, the 3′ UTR can
recruit RNA-binding proteins, as in the case of CD47 mRNA.
CD47 mRNA has two isoforms of the 3′ UTR, long (CD47-
LU) and short (CD47-SU), and only the CD47-LU, which is
AU-rich, can interact with the RNA-binding protein TIS11B to
form a membraneless organelle with a specific biochemical and
biophysical environment which is separate from the cytosol (Ma
and Mayr, 2018). However, the most prevalent mode of action of
the 3′ UTR is as ceRNAs, such as in the cases of CCR2 mRNA and
Ube3a1 RNA, which confer to the function of lncRNAs (Valluy
et al., 2015; Hu et al., 2017).

Noncoding Regulatory Roles of mRNA
Not Involving the 3′ UTR
Other than the 3′ UTR, the 5′ UTR and ORF can also be
involved in RNA-mediated regulatory function, although recent
reports of this phenomenon are scare. Two mRNAs, TP53 mRNA
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and HIST1H1C mRNA, are recognized as being involved in
ORF-mediated regulation. TP53 protein is a tumor suppressor
implicated in many processes during tumor occurrence and
development. However, a triple synonymous mutant (TriMp53)
in codons led to a misshapen structure, resulting in loss
of the IRES activity of p47 (one isoform of p53) and an
abrogated affinity of hnRNPC, but with better binding to Mdm2,
which is an E3 ubiquitin-protein ligase in mediating p53/TP53
ubiquitination, and an augmented ability of p53 to activate
apoptosis. These facts indicate that TP53 has intricate regulatory
roles at both the RNA and protein levels, suggesting that
the functions of the RNA and protein molecules are closely
intertwined (Candeias, 2011). HIST1H1C mRNA participates in
regulating telomere length homeostasis. Aside from the protein-
related product, a 15-nt long region in the ORF region (nt334–
nt348) is attributed to HIST1H1C-mRNA-mediated biological
activity, through complementation with the terminal stem-
loop sequence of the P6b region of hTR, in a base-pairing
pattern. These results extend the functional potency of mRNA
ORF regions in a non-traditional and noncoding direction
(Ivanyi-Nagy et al., 2018).

In terms of the 5′ UTR, there are only two examples. VEGF is
a key regulator of angiogenesis during embryonal and cancerous
development, and this regulatory function is closely correlated
with the 5′ UTR. vegf mRNA has an unusually long 5′ UTR
of 1,038 nucleotides, and contains two IRES, resulting in an
intricate regulation of VEGF expression. In addition, the presence
of the 5′ UTR of vegf mRNA alone in tumor cells could
promote the expression of anti-apoptotic genes but repress pro-
apoptotic genes, suggesting an anti-apoptotic role of the vegf
5′ UTR, and demonstrating its potential as a target for cancer
treatment. To the best of our knowledge, the 5′ UTR of vegf
mRNA represents the only example of an mRNA UTR which can
promote tumor progression (Akiri et al., 1998; Huez et al., 1998;
Masuda et al., 2008).

The c-myc P0 transcript is an isoform transcript from the
promoter 0 (P0) of the c-myc gene, which has an extra ˜639-
nucleotide extension of the 5′ UTR when compared with two
major isoforms (P1 and P2) of c-myc mRNA. Ectopic expression
of the 5′ UTR of the c-myc P0 transcript alone in HeLa cells
results in significantly increased expression of the c-Myc1 (p67)
and c-Myc2 (p64) proteins as well as incremental apoptosis
sensitivity, but decreased tumorigenicity, all of which are
likely attributable to competitive regulation of gene expression
in the c-myc locus. These results demonstrate that the 5′
UTR potentially functions in trans to perform gene regulation
(Blume et al., 2003).

PERSPECTIVE

In recent years, researchers have begun to pay close attention
to the development of bifunctional RNAs, and have discussed
the evolved roles of RNAs with multiple functions (Dinger
et al., 2011; Ulveling et al., 2011; Kageyama et al., 2011; Hubé
and Francastel, 2018). In the early stages of such research,
researchers discovered individual gene on a case-by-case basis.

However, in the last ten years, rapid advances in large-scale
detection and identification techniques (such as ribo-seq and MS-
based proteomics) have facilitated multi-faceted investigations of
genomes and vital processes, thus shedding light on the complex
activities of various RNA molecules. Bifunctional RNAs raise
questions about the concept of a gene, in terms of whether
RNA, both coding and noncoding, is an independent gene
type or a convergence of coding and noncoding genes which
occurred during evolution. In this review, we intend to not only
investigate the current status of bifunctional RNAs as reported
in recent years, but also discuss the potential pervasiveness
of bifunctional RNAs from a global perspective in terms of
large-scale data.

With recent estimates of ribosome profiling, small peptides
encoded by lncRNAs have significantly expanded the extent
and diversity of the proteome, and predictions suggested that a
large fraction of the annotated lncRNAs in various eukaryotic
organisms would be translated with sORFs (Aspden et al.,
2014; Ruiz-Orera et al., 2014; Mackowiak et al., 2015; Olexiouk
et al., 2016). Proteogenomic evidence has confirmed that many
small peptides which stem from regions of lncRNA genes
are expressed differentially in different cell types and during
different developmental/disease stages, although their functions
are somewhat enigmatic (Nesvizhskii, 2014; Zhu et al., 2018).
However, other studies have revealed that mRNAs could also be
involved in cellular regulatory processes in a coding-independent
manner (Nam et al., 2016). The results from a large-scale
RNA structure analysis revealed that the secondary structures
of mRNA have an essential regulatory effect on its maturation
and stability, even for the evolutionarily conserved RNA silencing
pathways of eukaryotes, suggesting that mRNAs partially retain
the functionality of structure that exists in many RNA molecules
(Katz and Burge, 2003; Li et al., 2012; Taggart et al., 2012).
All these facts indicate that the coding potential and biological
roles of mRNAs and lncRNAs could be switched in some
cases, implying a conceptual blurring between coding and
noncoding genes.

Many lncRNAs share similar features with classical mRNAs,
such as transcription by polymerase II with a 5′-cap and
3′-polyadenylated tail, and frequent accumulation in the
cytoplasm (van Heesch et al., 2014). Therefore, when associated
with ribosomes, sORFs embedded in lncRNAs have a significant
chance to be translated to peptides. The peptides derived from
lncRNAs have a relatively shorter chain length and weaker
conservation across different species, and this is consistent
with the original lncRNAs which often have few introns, a
low expression level and weak phylogenetic conservation
(Cabili et al., 2011; Derrien et al., 2012; Kutter et al., 2012;
Necsulea et al., 2014). From the perspective of proteins
driving evolution, these peptides are likely considered to
be an important source for new protein (Ruiz-Orera et al.,
2014). Previously reported experimental evidence indicates
that noncoding RNAs expressed at low levels could contribute
to the birth of novel protein coding genes (Levine et al.,
2006; Cai et al., 2008; Reinhardt et al., 2013). Given that
several lncRNA-derived peptides have been demonstrated
to play essential roles in many biological activities, it
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is worth investigating the putative significance of the
generation of these lncRNA-derived peptides in gene evolution,
expression and regulation.

However, in view of the huge quantity, diversified
mechanisms of action, and intricate functions of lncRNAs,
it is inappropriate to regard lncRNAs just as a pool for
evolved peptides. In terms of RNA alone, its roles are
diverse, including the potential to be retro-transcribed into
DNA, or to act as an enzyme to participate in complex
biochemical processes (Cech, 1986). Moreover, random RNA
sequences can inoculate structurally complex and highly
active RNA ligases, suggesting that randomness can produce
functionality (Ekland et al., 1995). Therefore, it is very
likely that RNA molecules alone comprise abundant genetic
information, such as particular structural features and ultra-
conservative sequence elements, which could regulate the timing
and place of gene expression during cellular differentiation
and development.

In recent decades, because of the addition of the huge
family of noncoding genes, RNAs have provoked great interest
for their mysterious roles in organisms. lncRNA-encoded
peptides expand the horizon of functional mechanisms for
these bio-macromolecules. To date, thousands of peptide

products have been identified in human cells, with limited
understanding of their function. The current review has
summarized the recently discovered micropeptides implicated
in various biological processes. We also discussed the potential
noncoding roles of mRNAs as a regulator. The continued
discovery and functional characterization of bifunctional RNAs
will provide new insights into important cellular processes and
organismal evolution.
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Evidences increasingly indicate the involvement of long non-coding RNAs (lncRNAs)

in various biological processes. As the mutations and abnormalities of lncRNAs

are closely related to the progression of complex diseases, the identification of

lncRNA-disease associations has become an important step toward the understanding

and treatment of diseases. Since only a limited number of lncRNA-disease associations

have been validated, an increasing number of computational approaches have been

developed for predicting potential lncRNA-disease associations. However, how to

predict potential associations precisely through computational approaches remains

challenging. In this study, we propose a novel two-side sparse self-representation (TSSR)

algorithm for lncRNA-disease association prediction. By learning the self-representations

of lncRNAs and diseases from known lncRNA-disease associations adaptively, and

leveraging the information provided by known lncRNA-disease associations and the

intra-associations among lncRNAs and diseases derived from other existing databases,

our model could effectively utilize the estimated representations of lncRNAs and diseases

to predict potential lncRNA-disease associations. The experiment results on three

real data sets demonstrate that our TSSR outperforms other competing methods

significantly. Moreover, to further evaluate the effectiveness of TSSR in predicting potential

lncRNAs-disease associations, case studies of Melanoma, Glioblastoma, and Glioma are

carried out in this paper. The results demonstrate that TSSR can effectively identify some

candidate lncRNAs associated with these three diseases.

Keywords: lncRNAs-disease associations prediction, computational approaches, sparse representation, lncRNA

similarity, disease similarity

1. INTRODUCTION

Long non-coding RNAs (lncRNAs), which are a class of non-coding transcripts with the lengths
longer than 200 nucleotides (Derrien et al., 2012; Harrow et al., 2012; Guttman et al., 2013; Chen
et al., 2016b), have been proven to be involved in various biological processes (Chen et al., 2012,
2016b, 2018) and closely correlated with the development of complex diseases, such as cancers
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and rheumatic diseases (Bussemakers et al., 1999; Managadze
et al., 2011; Bhartiya et al., 2012; Schonrock et al., 2012; Li
et al., 2013; Lu et al., 2013; Zhao et al., 2014; Chen et al.,
2016b). For example, studies have revealed the roles of lncRNAs
in regulating gene expression (Taft et al., 2010; Wapinski and
Chang, 2011). As the development of complex diseases are
closely related to the mutations and abnormalities of lncRNAs,
to understand the pathogenesis of human diseases systematically,
and identify the biomarkers of disease progression and prognosis,
it is important to predict the potential associations between
diseases and lncRNAs (Chen et al., 2016b; Yu et al., 2018).
However, only a small number of lncRNA-disease associations
have been validated. Therefore, efficient methods for predicting
the associations between lncRNAs and diseases are emergent
needed (Lu et al., 2018).

In recent years, identifying the associations between diseases
and lncRNAs has attracted a lot of attentions (Chen and Yan,
2013; Lu et al., 2018). Prediction methods based on biological
experiments or computational approaches are proposed to
undertake this task. Due to the limitations of biological
experiments such as time-consuming and expensive in cost,
computational approaches provide an alternative for biological
experiments and have been widely used to identify the
associations between lncRNAs and diseases (Chen et al., 2016b).
Existing computational approaches for association prediction
can be roughly classified into three categories. The first
category is based on machine learning approaches. These
models predict the associations between diseases and lncRNAs
based on known lncRNA-disease associations. For example,
Chen et al. proposed a semi-supervised learning-based method
named Laplacian Regularized Least Squares for LncRNA-disease
Association (LRLSLDA) (Chen and Yan, 2013) to predict
the associations between diseases and lncRNAs. Zheng et al.
formulated the problem of association prediction as a matrix
factorization problem and introduced a collaborative matrix
factorization model (CMF) (Zheng et al., 2013) to predict the
associations. However, the performance of machine learning-
based methods depend on the choice of hyperparameters such
as the dimensionality of the latent space in matrix factorization-
based methods, and the suitable values for these hyperparameters
are usually previously unknown and hard to determine.

The second category is based on random walk. These
models identify potential lncRNA-disease associations by
integrating known associations between diseases and lncRNAs
and similarities among diseases and lncRNAs. For example, Zhou
et al. predicted the associations between diseases and lncRNAs
by implementing random walk with restart on the constructed
similarity networks among lncRNAs and diseases (Zhou M.
et al., 2015). The third category is based on data integration.
These models focus on integrating multiple heterogeneous
data sources. For example, Lu et al. (2018) developed a model
named SIMCLDA for identifying the associations between
diseases and lncRNAs based on disease-gene and gene-gene
ontology associations. However, the above methods rely heavily
on the similarity networks or external information (e.g.,
similarity networks among diseases and lncRNAs, and gene-gene
associations) that are inferred based on predefined metrics.

Moreover, the information extracted from other databases or
data platforms may include some irrelevant or noise information
that may mislead the prediction of associations.

To address the above problems, in this paper, we introduce
a novel two-side sparse self-representation (TSSR) model
for lncRNA-disease association prediction. Based on known
lncRNA-disease associations, our model can adaptively learn
two non-negative sparse self-representation matrices which
capture the intra-similarities among lncRNAs and diseases
respectively. Moreover, our model could also drawn support
from the intra-associations among disease and lncRNAs that
derived from external information of lncRNAs and diseases
to generate more accurate estimation of the representation
matrices. Experiment results on three real datasets demonstrate
that compared with six state-of-the-art association prediction
algorithms, our TSSR model could achieve more accurate
prediction results. Furthermore, case studies on three cancers
(i.e., Glioblastoma, Glioma, and Melanoma) also demonstrate
the effectiveness of TSSR in predicting the associations between
lncRNAs and diseases. The source code of TSSR is available at
https://github.com/Oyl-CityU/TSSR.

The rest of this paper is organized as follows. In section
2, we formulate our two-side sparse self-representation model
and introduce a relaxed Majorization-Minimization algorithm to
solve the optimization problem. The experiment results and case
studies are given in section 3. In section 4, we conclude our works.

2. METHODS

2.1. Notations and Problem Statement
In this paper, we use D = {di}

m
i=1 to represent the set of lncRNAs

and T = {tj}
n
j=1 to represent the set of diseases, where m and

n denote the number of lncRNAs and the number of diseases,
respectively. A binary matrix Y = [Yij] ∈ {0, 1}m×n is introduced
to represent the associations between lncRNAs and diseases,
where Yij = 1 if there is an association between lncRNA di and
disease tj, and Yij = 0 otherwise. Note that there are two reasons
that may lead to Yij = 0. The first reason is that it has been
experimentally verified that there is no association between di
and tj. The second reason is that whether there is an association
between di and tj is still unknown. Therefore, we usually refer to
the zero elements in Y as unknown pairs. The lncRNA-disease
association prediction problem can be formulated as the problem
of predicting the scores of unknown pairs in Y , which can be used
for ranking the pairs. In this study, we first rank the unknown
pairs in Y based on the predicted scores in descending order, and
then select the top-ranked pairs as potential association pairs.

In particular, unlike matrix factorization methods that project
lncRNAs and diseases into a shared latent space and predict
lncRNA-disease associations based on the inner product of
their latent vectors, we try to learn the intra-similarities among
lncRNAs and diseases from the observed associations in Y ,
and utilize the learned similarity matrices to reconstruct Y
and thus predict the scores of unknown pairs in Y . Here,
instead of using predefined metrics to construct the similarity
matrices of lncRNAs and diseases (which makes the predicted
results sensitive to the selected metrics and input data), we
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introduce a novel two-side sparse self-representation (TSSR)
model to adaptively learn the intra-similarities among lncRNAs
and diseases from the observed associations in Y , and effectively
utilize external information of lncRNAs and diseases to enhance
the prediction performance.

2.2. Two-Side Sparse Self-Representation
Model
Sparse representation techniques which focus on finding a sparse
representation of a sample in the form of a linear combination
of basic elements (also called atoms) in a dictionary, have
been widely used to numerous applications such as computer
vision and machine learning (Zhang et al., 2015). In traditional
sparse representation models, the objective is to solve the
following problem

min
x

‖x‖0 s.t. y = Dx. (1)

where ‖ · ‖0 denotes L0 norm, y ∈ Rm×1 is a sample vector, D
is a m × l matrix which denotes the dictionary and x ∈ Rl×1 is
the sparse representation coefficient of y. In practice, L0 norm
is usually replaced with L1 norm to make the above problem
(1) solvable in polynomial time. Since the above problem (1)
needs to take extra time to construct the dictionary D and has
not data-adaptiveness. Many approaches are proposed to employ
the dataset itself as the dictionary, which results in the following
sparse self-representation model

min
X

‖Y − YX‖2F + β‖X‖1. (2)

where ‖.‖F is the Frobenius norm, Y denotes the feature set of all
samples (each row denotes a feature and each column represents
the feature vector of a sample), X is the sparse self-representation
coefficient matrix of the columns of Y (each column X·j of X
denotes the representation coefficient of j-th sample Y·j, with
all samples in Y as dictionary) and β is a tuning parameter to
control the trade off between the minimization error and the
sparsity. By solving the above model (2), X can capture the most
similar relationships among the columns of Y , based on the
information provided in Y . In this study, Y ∈ {0, 1}m×n describes
the observed associations between lncRNAs and diseases and we
would like to predict potential associations between lncRNAs
and diseases based on their intra-similarities learned from Y .
Thus, instead of just finding the representations of the columns
of Y , we prefer to explore the representations of the rows and
columns ofY simultaneously, which capture the intra-similarities
within lncRNAs and diseases respectively. Based on the idea of
sparse self-representation, we introduce a novel two-side sparse
self-representation (TSSR) model to handle the task of lncRNA-
disease association prediction. In particular, we formulate the
framework of TSSR into the following optimization problem

min
U,V

‖Y − UYV‖2F + β(‖U‖1 + ‖V‖1),

s.t. U ≥ 0,V ≥ 0,

m
∑

z=1

Uiz = 1,

n
∑

k=1

Vkj = 1.
(3)

where U = [Uii′ ] ∈ R
m×m
+

and V = [Vjj′] ∈ R
n×n
+

are two non-
negative sparse matrices which represent the row and column
representation coefficient matrices of Y , respectively, and β is a
tuning parameter which controls the sparsity of U and V . Based
on this definition, U denotes the coefficient matrix based on the
dictionary YV , which captures the similarities among lncRNAs.
For example, Uii′ denotes the similarities between the i-th and
i′-th lncRNAs, which correspond to the i-th and i′-th rows of Y .
On the other hand, V denotes the coefficient matrix based on the
dictionary UY , which captures the similarities among diseases.
For example, Vjj′ denotes the similarities between the j-th and
j′-th diseases, which correspond to the j-th and j′-th columns
of Y . With the sparse regularization term, we can control the
sparsity of the learned representation matrices U and V , and
find the most similar relationships within lncRNAs and diseases.
The constraints

∑m
z=1 Uiz = 1 and

∑n
k=1 Vkj = 1 are used to

guarantee the probability properties of Ui· and V·j, respectively.
In the above objective function (3), the representation

matrices are learned from the original data matrix Y , which
means that they will be sensitive to the input data Y . If the input
data only includes a small number of known associations, it may
be hard to learn a comprehensive representation matrix. With
the development of high-throughput experimental techniques
and the accumulation of clinical information, we could also
collect some functional annotations and phenotype information
for lncRNAs and diseases respectively. Based on these prior
information, we can infer the intra-associations among diseases
and lncRNAs. To utilize these pairwise associations inferred from
other databases to promote the estimation of two representation
coefficient matrices U and V , two regularization terms are added
to Equation (3). Moreover, we introduce a weight matrix W
in a similar way to Zheng et al. (2013) to prevent unknown
instances (for which association information is not available)
from contributing to the determination of the row and column
representations of Y (i.e., U and V). The final objective function
of our TSSR model is as follows.

min
U,V

‖W ⊙ (Y − UYV)‖2F + β(‖U‖1 + ‖V‖1)

+ λd‖Sd − U‖
2
F + λt‖St − V‖2F ,

s.t. U ≥ 0,V ≥ 0,

m
∑

z=1

Uiz = 1,

n
∑

k=1

Vkj = 1.

(4)

where λd and λt are two tuning parameters controlling the
influences of prior intra-associations among lncRNAs and
diseases, Sd ∈ R

m×m and St ∈ R
n×n denote the affinity matrices

of lncRNA and disease respectively, where (Sd)ii′ describes the
association between lncRNAs di and di′ , and (St)jj′ describes
the associations between diseases tj and tj′ . ⊙ denotes the
element-wise product or Hadamard product of two matrices and
W ∈ R

m×n is a weight matrix where Wij = 0 for unknown
entries in Y and Wij = 1 for known entries in Y . Consequently,
unknown entries in Y do not contribute to the minimization of
the first term of Equation (4).
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2.3. Optimization Algorithm
Here, to handle the constraints in (4), we employ a relaxed
Majorization-Minimization algorithm (Yang and Oja, 2011,
2012) to obtain the solution of objective function (4). For more
details about this optimization method, please refer to Yang and
Oja (2012). In particular, we denote ▽U as the gradient of our
objective function with respect to U.

▽U = −2[W ⊙ (Y − UYV)]VTYT
− 2λd(Sd − U)+ β . (5)

Let ▽+

U = 2W ⊙ (UYV)VTYT
+ 2λdU + β and ▽

−

U = 2(W ⊙

Y)VTYT
+ 2λdSd denote the positive and negative parts of ▽U ,

respectively. Thus, we have▽U = ▽
+

U −▽
−

U .

Due to the constraint
m
∑

z=1
Uiz = 1 and Uiz ≥ 0, we obtain the

following updating rule for Uiz :

Unew
iz = Uiz ·

aUi (▽
−

U )iz + 1

aUi (▽
+

U )iz + bUi
. (6)

where aUi and bUi can be obtained by Equations (7) and
(8), respectively.

aUi =

∑

z

Uiz

(▽+

U )iz
, (7)

bUi =

∑

z

Uiz
(▽−

U )iz

(▽+

U )iz
. (8)

Similarly, we denote▽V as the gradient of our objective function
with respect to V .

▽V = −2(YTUT)[W ⊙ (Y − UYV)]− 2λt(St − V)+ β . (9)

Let ▽
+

V = 2YTUT[W ⊙ (UYV)] + 2λtV + β and ▽
−

V =

2YTUT(W⊙Y)+ 2λtSt denote the positive and negative parts of
▽V , respectively, we have▽V = ▽

+

V −▽
−

V .
Similarly, the updating rule for Vkj is as follows:

Vnew
kj = Vkj ·

aVj (▽
−

V )kj + 1

aVj (▽
+

V )kj + bVj
. (10)

where aVj =
∑

k

Vkj

(▽+

V )kj
and bVj =

∑

k Vkj

(▽−

V )kj

(▽+

V )kj
.

The details of the optimization algorithm to the proposed TSSR
model are described in Algorithm 1. U and V can be updated
by Equations (6) and (10), respectively. In this study, we stop
the iteration when the changes of U and V are less than 1e-
6, measured by L1 norm. Finally, the predicted label matrix Ŷ
can be returned by Ŷ = UYV when algorithm arrives at the
convergence conditions.

Algorithm 1: Algorithm for the TSSR model

• Inputs: Partial label matrix Y , lncRNA affinity matrix Sd,
disease affinity matrix St , tuning parameter λd, λt ,β , weight
matrixW.

• Output: Predicted label matrix Ŷ .
• Main algorithm:

1. Initialize U and V ;
2. While not converged do

3. Update U according to Equation (6)

Unew
iz = Uiz ·

aUi (▽
−

U )iz + 1

aUi (▽
+

U )iz + bUi
;

4. Update V according to Equation (10)

Vnew
kj

= Vkj ·
aVj (▽

−

V )kj + 1

aVj (▽
+

V )kj + bVj
;

5. Check the convergence conditions.
6. End while

7. Return Ŷ = UYV .

3. RESULTS

In this section, we demonstrate the performance of various
algorithms on three real datasets. Furthermore, case studies of
three cancer diseases (i.e., Melanoma, Glioblastoma, and Glioma)
are performed to validate the effectiveness of our TSSR model.
The materials, experimental settings, and parameter settings are
described as follows.

3.1. Materials
3.1.1. LncRNA-Disease Associations

We collect three datasets to evaluate the performance of various
prediction algorithms. The first dataset is downloaded from the
supplementary data of a article (Lu et al., 2018), which contains
621 experimentally confirmed lncRNA-disease associations
between 226 diseases and 285 lncRNAs from the LncRNADisease
database1 established in 2015. The second dataset involving 260
high-quality associations between 95 lncRNAs and 81 human
disease is obtained from the supplementary files of the published
article (Chen et al., 2015), which retrieved data from MNDR
database2 (Wang et al., 2013) in March 2015 . The third dataset
is downloaded from the Lnc2Cancer database 3 in 2015. By
getting rid of the duplicate lncRNA-disease associations for the
same lncRNA-disease pair, we obtain 677 distinct associations,
including 54 human cancers and 436 lncRNAs. The statistics of
the three datasets are illustrated in Table 1.

3.1.2. Disease Similarities

As previous studies have discovered that diseases with similar
phenotypes are usually related with similar dysfunctions of
lncRNAs (Chen et al., 2015), incorporating the similarities among
diseases estimated from other database may help to infer the

1http://www.cuilab.cn/lncrnadisease
2http://www.rna-society.org/mndr/
3http://www.bio-bigdata.com/lnc2cancer/
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TABLE 1 | The statistics of three datasets.

Datasets No.of lncRNA No.of disease No.of associations Density

LncRNA Disease 285 226 621 0.01

MNDR 95 81 260 0.03

Lnc2Cancer 436 54 677 0.03

potential associations between diseases and lncRNAs based on
known lncRNA-disease associations. Similar to previous studies
(Wang et al., 2010; Chen et al., 2015), we construct the similarity
matrix St of diseases by integrating the disease semantic similarity
matrix inferred from the structure of directed acyclic graph that
describes the relationships among diseases (Wang et al., 2010;
Chen et al., 2015) and disease Gaussian interaction profile kernel
similarity matrix inferred from known associations between
diseases and lncRNAs (Chen and Yan, 2013; Chen et al., 2015).
In particular, we obtain the similarity matrix St by averaging the
disease similarity matrix and disease Gaussian interaction profile
kernel similarity matrix (van Laarhoven et al., 2011; Chen and
Yan, 2013; Chen et al., 2015, 2016a).

3.1.3. LncRNA Similarities

Since lncRNAs with similar functions tend to exhibit similar
associations with diseases, calculating the similarities among
lncRNAswill promotes the identification of potential associations
between diseases and lncRNAs. In this study, we calculate the
similarity matrix Sd of lncRNAs by integrating the functional
similarity matrix calculated by the model of LNCSIM (Chen
et al., 2015) and the lncRNA Gaussian interaction profile kernel
similarity matrix estimated from known associations between
lncRNAs and diseases (Chen and Yan, 2013). Similar to the
disease similarity matrix St , we obtain the lncRNA similarity
matrix Sd by averaging the lncRNA functional similarity matrix
and Gaussian interaction profile kernel similarity matrix (van
Laarhoven et al., 2011; Chen and Yan, 2013; Chen et al., 2015;
Chen et al., 2016a).

3.2. Experimental Settings
To illustrate the effectiveness of our proposed TSSR model, we
compare our method with other six state-of-the-art association
prediction methods, namely NetlapRLS (Xia et al., 2010), BLM-
NII (Mei et al., 2012), CMF (Zheng et al., 2013), PBMDA (You
et al., 2017a), PRMDA (You et al., 2017b), and SIMCLDA (Lu
et al., 2018). All these methods are designed for predicting the
inter-associations between different types of biological entities
and all of them can make use of the prior intra-associations
among biological entities to improve their performance. Thus,
all these algorithms are well suited for undertaking the
task of lncRNA-disease association prediction. Moreover, our
experiment results show that they are effective in inferring
the associations between diseases and lncRNAs. Specifically, 15
repetitions of 10-fold cross validation (CV) are conducted for
each model, with receiver operating characteristic (ROC) curve
as the main metric to evaluate the performance. By stacking the
columns of matrix Y , we obtained the vector, a mn × 1 vector,

denoted as vec(Y). In each repetition of 10-fold CV, we divide
vec(Y) into ten disjoint folds randomly. Nine folds are treated
as the training set while the remaining one fold is left out as
the testing set. The AUC (Area Under Curve) score is calculated
for each 10-fold CV repetition, and the final AUC score for each
model are obtained by averaging over 15 such repetitions.

3.3. Parameter Settings
As each model has some hyperparameters that need to be
predefined, we perform cross validation on the training set to
determine the values of these hyperparameters. In particular, the
parameter settings for various models are described as follows.
For NetLapRLS (Xia et al., 2010), the hyperparameters satisfy
γd2
γd1

=
γp2
γp1

, βd = βp with their values chosen from {10−6, 10−5,

. . . , 102}. For BLM-NII (Mei et al., 2012), the value of the linear
combination weight α is chosen from {0, 0.1, 0.2, . . . , 1.0}.
The max function is utilized to combine the interaction scores
inferred from the disease and lncRNA sides. For the matrix
factorization based methods, the dimensionality of the latent
space K is selected from {50, 100} (Zheng et al., 2013). For CMF
(Zheng et al., 2013), the regularization coefficient λ1 is chosen
from {2−2, . . . , 21} (Zheng et al., 2013), while the values of λd
and λt are chosen from {2−3, 2−2, . . . , 25}. For PBMDA (You
et al., 2017a), the maximum path length L is set to 3 and the
weight threshold T is selected from {0.2, 0.3, . . . , 0.8} with the
step size set to 0.1, while the decay factor α is set to 2.26. For
SIMCLDA (Lu et al., 2018), we set the values of αl and αd from
0.1 to 1 with stepsize 0.1 and select the regularization parameter
from {10−3, 10−2, . . . , 103}. For TSSR, we choose the three
parameters β and λd = λt from {2−10, 2−9, . . . , 29, 210}. Note
that the most suitable hyper-parameters of a machine learning
model on different datasets are usually different. Therefore,
in this work, we adopt grid search (Bergstra and Bengio,
2012) to select the optimal hyperparameters for each model on
each dataset.

3.4. Comparison With State-of-the-Art
Methods
We conduct the experiments with 10-fold CV to shed light
on the performance of TSSR in predicting potential lncRNA-
disease associations, compared with other six state-of-the-
art methods. Here, the AUC score is used to evaluate the
predictive performance of various methods. The experiment
results measured by AUC are shown in Figures 1–3. As shown
in Figure 1, on LncRNADisease dataset, TSSR obtains an AUC
score of 0.8736, which is higher than other methods (BLM-
NII 0.8641, NetLapRLS 0.7837, CMF 0.7273, PBMDA 0.6885,
PRMDA 0.7231, SIMCLDA 0.6067), indicating the superiority
of our TSSR in predicting lncRNA-disease associations. We can
find from Figure 2 that on MNDR dataset, TSSR achieves the
best AUC score (TSSR 0.8369, BLM-NII 0.7929, NetLapRLS
0.8210, CMF 0.8078, PBMDA0.7722, PRMDA0.6596, SIMCLDA
0.6187). On Lnc2Cancer dataset (the results are shown in
Figure 3), TSSR still has competitive performance with other
six methods with respect to AUC score (TSSR 0.9814, BLM-
NII 0.9859, NetLapRLS 0.9392, CMF 0.9864, PBMDA 0.9680,
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PRMDA 0.8179, SIMCLDA 0.6190). Note that on Lnc2Cancer,
our TSSR achieves similar performance with BLM-NII and CMF.
This may due to the parameter setting of TSSR. In this study,
the values of the hyperparameters λd and λt (which control
the influences of prior intra-similarities among lncRNAs and
diseases) in our TSSR are set to same for simplicity, which is
reasonable when the two data sets are balanced. However, the
number of lncRNAs and diseases in Lnc2Cancer dataset are
imbalanced. Thus, forcing λd and λt to be equal may limit the
performance of TSSR. If the values of λd and λt are tuned
separately, TSSR could achieve better performance. Moreover, to
evaluate the effect of external information on the performance
of TSSR, we remove the regularization terms related to the
external information (i.e., setting λd = λt = 0) and show the
results in Figure 4. As shown in this figure, the performance
of TSSR and TSSR without external information (denoted by
TSSR_original) is comparable (on LncRNADisease, TSSR 0.8736,
TSSR_original 0.8735; on MNDR, TSSR 0.8369, TSSR_original
0.8367; on Lnc2Cancer, TSSR 0.9814, TSSR_original 0.9614),
whichmeans the improved performance of TSSR is mainly due to
the self-representation learning. Thus, our TSSR does not depend
heavily on the external information. All these results demonstrate
the effectiveness of the proposed TSSR in predicting potential
lncRNA-disease associations.

3.5. Effects of Parameters
The proposed TSSR involves three parameters, λd, λt , and β ,
where λd and λt control the influences of prior intra-associations
among lncRNAs and diseases and β controls the sparsity of
U and V . We will study how these parameters affect the
performance of TSSR.

Figure 5 shows the prediction performance of TSSR on
LncRNADisease dataset, MNDR dataset and Lnc2Cancer
dataset, measured by AUC with respect to different values
of λd and λt . As shown in Figure 5, the optimal value
of λd = λt for these three datasets is 2−10, 20, and 22,
respectively, while β is set to 21, 28, and 28, respectively.
We find that TSSR usually performs well when the
values of λd and λt are relatively small, which means the
additional use of external information is not always helpful
for performance improvement. On the contrary, if the
external information contains noise, the performance of
TSSR may decrease if we overemphasizing the effect of
external information. These results demonstrate that our
TSSR can effectively learn the representation matrices from
known lncRNA-disease associations, and flexibly utilize
external information to promote the prediction of potential
lncRNA-disease associations.

In addition, we also study the impact of sparsity control
parameter β . Figure 6 illustrates the AUC scores obtained
by TSSR in terms of different values of β . As shown in
Figure 6, on these three datasets, TSSR achieves the best AUC
score when the value of β is 21, 28, and 28, respectively,
while λd = λt is set to 2−10, 20, and 22, respectively.
We can also find from this figure that larger values of β

can generally achieve better performance, which indicates the

importance of controlling the sparsity of the representation
matrices U and V .

3.6. Case Studies
To further validate the performance of our algorithm, based
on the LncRNADisease dataset, we apply our TSSR model
to identify the most possible lncRNAs that associated with
three cancers (i.e., Melanoma, Glioma, and Glioblastoma).
Here, all the known associations in the LncRNADisease
dataset are used to train the model. Then we select the
top 20 associated lncRNAs which get the highest predicted
ranks for each cancer and verify these predictions based on
MNDR and Lnc2Cancer databases. Moreover, the relevant
literatures that support the prediction results are listed to
indicate whether the predicted lncRNA-disease associations
have been experimentally validated. Specially, MNDR database
contains both experimental and prediction evidence (Ning
et al., 2016; Ping et al., 2018). The results for the three
cancers are shown in Tables 2–4, respectively. Note that
we only show the predictions that are not included in
the training set.

Melanoma is a deadly malignancy which develops from
the pigment-containing cells with increasing incidence than
that of any other types of cancer (Aladowicz et al., 2013).
People with low level of skin pigment exposure in excess
ultraviolet light (UV) have a high risk to be infected a melanoma
(Kanavy and Gerstenblith, 2011). It has been estimated that
by 2030, melanoma could overtake colorectal cancer as the
fifth most common cancer (Rahib et al., 2014). Therefore, we
apply our TSSR model to predict the potential melanoma-
associated lncRNAs. According to the results shown in Table 2

(the complete list of the top 20 identified lncRNAs is shown
in Supplementary Material), 10 out of the top 20 identified
lncRNAs have been verified. For example, Luan et al. (2016)
discovered that MALAT1 could promote the cell proliferation,
invasion and migration of melanoma. Li et al. observed that
MEG3 was obviously decreased in melanoma cells (Li et al.,
2018). They also found melanoma cell apoptosis was induced by
up-regulation of MEG3, and consequently come to a conclusion
that overexpression of MEG3 has a significant repression impact
in melanoma cell migration and invasion ability.

Glioma is one of themost common primarymalignant tumors
originating in the brain, which comprises approximately 30% of
all brain tumors (Goodenberger and Jenkins, 2012; Boele et al.,
2015). Glioma can be graded from I to IV by World Health
Organization (WHO) grading system according to their grade
(Louis et al., 2016a,b). The exact causes of glioma are still unclear
at the present (Kwiatkowska and Symons, 2013; Li et al., 2015).
Studies have revealed the roles of lncRNAs in the development
of human disease, including glioma (Zhou et al., 2018). Here, we
utilize the TSSR to identify the potential lncRNAs that are more
likely to related to glioma. Based on the experiment results, 9
out of the top 20 identified lncRNAs have been validated in the
MNDR and Lnc2Cancer databases, and other relevant literatures.
The results are shown in Table 3 (the complete list of the top
20 identified lncRNAs is shown in Supplementary Material).
For example, Ma et al. discovered that compared with paired
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FIGURE 1 | AUC scores of various algorithms in LncRNADisease dataset (* indicates TSSR significantly outperforms the competitor with p < 0.05 using t-test, error

bars denote 95% confidence intervals).

FIGURE 2 | AUC scores of various algorithms in MNDR dataset (* indicates TSSR significantly outperforms the competitor with p < 0.05 using t-test, error bars

denote 95% confidence intervals).

normal tissues, the expression level of lncRNA MALAT1 was
increased in glioma tissues, whichmeansMALAT1 can be treated
as a convictive marker for the prognosis of glioma patients
(Ma et al., 2015). Zou et al. revealed that glioma patients with
high PVT1 expression had low survival rate (Zou et al., 2017).
Moreover, patients who received chemotherapy and radiotherapy
could improve their survival by down-regulating PVT1. They
also indicated that PVT1 could be served as potential target for
the treatment of diffuse gliomas.

Glioblastoma, also known as glioblastoma multiform (GBM)
(grade IV of Glioma), is the most common and aggressive
form of primary brain tumors and kills nearly every patient in
a median time of 15 months (Bleeker et al., 2012; Jovčevska
et al., 2013). More importantly, there is still no clear way to
prevent the disease (Gallego, 2015). Therefore, it is urgent to
predict the potential glioblastoma-associated lncRNAs. In this
study, we use our TSSR to undertake this task. As shown
in Table 4, 8 out of the 20 lncRNAs have been verified in
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FIGURE 3 | AUC scores of various algorithms in Lnc2Cancer dataset (* indicates TSSR significantly outperforms the competitor with p < 0.05 using t-test, error bars

denote 95% confidence intervals).

FIGURE 4 | Performance of TSSR with and without external information (denoted by TSSR and TSSR_original, respectively) on LncRNADisease, MNDR, and

Lnc2Cancer datasets, measured by AUC (error bars denote 95% confidence intervals).

FIGURE 5 | Performance of TSSR on LncRNADisease, MNDR, and Lnc2Cancer datasets, measured by AUC with different values of λd and λt (error bars denote

95% confidence intervals).
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FIGURE 6 | Performance of TSSR on LncRNADisease, MNDR, and Lnc2Cancer datasets, measured by AUC with different values of β (error bars denote 95%

confidence intervals).

TABLE 2 | The identified novel lncRNAs that have been verified to be associated with Melanoma.

Rank lncRNA Evidence(Database) Evidence(PMID) Expression pattern

1 CCAT2 MNDR Prediction evidence

2 TUSC7 MNDR Prediction evidence

9 GHET1 MNDR Prediction evidence

12 MEG3 MNDR/lnc2Cancer 29781534,29808164 Up-regulated, differential expression

13 HOTAIR MNDR/lnc2Cancer 28067428,23862139 up-regulated

14 SOX2-OT MNDR Prediction evidence

15 MALAT1 MNDR/lnc2Cancer 27725873, 27564100,27966454,24892958,19625619 Up-regulated,differential expression

17 SNHG5 MNDR/lnc2Cancer 26440365 Up-regulated

18 BCAR4 MNDR Prediction evidence

19 CCAT1 lnc2Cancer 28409554 Up-regulated

Prediction evidence denotes the prediction associations in MNDR database.

TABLE 3 | The identified novel lncRNAs that have been verified to be associated with Glioma.

Rank lncRNA Evidence(Database) Evidence(PMID) Expression pattern

2 HOTAIR MNDR/lnc2Cancer 29323737,28083786 ,29218099, 27277755,24203894 Up-regulated, down-regulated

3 MALAT1 MNDR/lnc2Cancer 28551849,27134488,26649728,25613066,26619802 Up-regulated, down-regulated

4 GAS5 MNDR/lnc2Cancer 26370254,28666797 Up-regulated, down-regulated

7 PVT1 lnc2Cancer 28351322,29108264,29620147,29501773,29046366 Up-regulated, differential expression

11 SPRY4-IT1 MNDR/lnc2Cancer 29467908,27460732,26464658 Up-regulated

12 GHET1 MNDR Prediction evidence

15 IGF2-AS MNDR Prediction evidence

18 LincRNA-p21 lnc2Cancer 28689810 Down-regulated

19 SNHG4 MNDR Prediction evidence

Prediction evidence denotes the prediction associations in MNDR database.

the MNDR and Lnc2Cancer databases, and other relevant
literatures (the complete list of the top 20 identified lncRNAs
is shown in Supplementary Material). For example, Zhou et al.
described that HOTAIR has a significant increased expression

in multiple human cancers including GBM and they found

HOTAIR is necessary for GBM formation in vivo (Zhou X.

et al., 2015). Thus, HOTAIR could be a potential therapeutic

target in glioblastoma. Liu et al. found that NBAT1 has lower
expressions in glioblastoma tissues compared with those in
normal brain tissues and they also observed that up-regulated
NBAT1 inhibits proliferation of T98 and U87 cells via regulating

Akt, suggesting that NBAT1 may be related to prognosis of
glioblastoma (Liu et al., 2018).

Based on the above case studies, we find that our TSSR
is effective in identifying novel associations between lncRNAs
and diseases based on known lncRNA-disease associations and
intra-associations among lncRNAs and diseases.

4. CONCLUSION

Increasing evidences indicate the role of lncRNAs in biological
processes, which motivates the development of computational
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TABLE 4 | The identified novel lncRNAs that have been verified to be associated with Glioblastoma.

Rank lncRNA Evidence(Database) Evidence(PMID) Expression pattern

1 MEG3 MNDR/lnc2Cancer 27306825,28187000,22234798,25378224,26111795 Up-regulated

2 HOTAIR MNDR/lnc2Cancer 27306825,25428914,25823657,26111795,26943771 Up-regulated

6 BCYRN1 MNDR 25561975 Differentially expressed

8 GAS5 MNDR/lnc2Cancer 27784795,23726844 Up-regulated, differentially expressed

10 NEAT1 lnc2Cancer 23046790 Up-regulated

11 HIF1A-AS2 MNDR/lnc2Cancer 27264189 Up-regulated

15 NBAT1 lnc2Cancer 29771423 Up-regulated

17 NDM29 MNDR 25561975 Differentially expressed

Prediction evidence denotes the prediction associations in MNDR database.

models to identify the potential associations between lncRNAs
and diseases. Predicting the potential associations between
lncRNAs and diseases based on known lncRNA-disease
associations is equivalent to a recommendation problem with
implicit feedback, where the task is to predict whether the
unknown pairs in Y are potential associations or not. In
this paper, we present a novel model, named two-side sparse
self-representation (TSSR), to predict the scores of unknown
pairs in Y . Based on these predicted scores, we could identify
potential associations between lncRNAs and diseases. Unlike
previous matrix factorization techniques that project lncRNAs
and diseases into a shared latent space and predict lncRNA-
disease associations based on the inner product of their latent
vectors (where the dimension of latent space is previously
unknown and hard to determine), our model directly learn
the intra-similarities among lncRNAs and diseases from the
observed associations in Y , and utilize the learned representation
matrices to reconstruct Y by regarding original Y as a dictionary.
As shown in Equation (4), our TSSR does not need to make
many assumptions of the model in advance. Moreover, by
forcing the representation matrices to be sparse, our TSSR
could learn the most similar relationships among lncRNAs

and diseases based on the observed associations in Y . Thus,

our TSSR has data-adaptiveness and avoids the determination
of some sensitive parameters such as the dimension of latent
space and number of nearest neighbors. Unlike random walk-
based or data integration-based methods that rely heavily on
the similarity networks inferred from external information
with predefined metrics, our model could adaptively learn the
self-representations of lncRNAs and diseases according to their
performance in reconstructing observed associations in Y .
Moreover, in case the input data Y only includes a small number
of known associations, our model could draw support from the
intra-associations among lncRNAs and diseases derived from
external information to enhance the learning of representation
matrices. Therefore, our model could effectively predict potential
lncRNA-disease associations by leveraging the information
provided by known lncRNA-disease associations and external
information of lncRNAs and diseases. Experiment results on
three real data sets show that our TSSR could achieve better
performance than other six state-of-the-art methods. The
effectiveness of TSSR in predicting potential lncRNA-disease
associations is also evaluated based on three case studies.
As a link prediction algorithm, our TSSR model is flexible

and could be used to handle other link prediction tasks in
bipartite networks.

Furthermore, since external information of lncRNAs and
diseases are utilized to enhance the performance of various
methods, we also perform sensitivity analysis to assess the
influences of noise information on the performances of
various methods. In particular, we generate the similarity
matrices Sd and St randomly (i.e., the elements in Sd and
St are generated randomly) and test the performances
of various methods. The detailed experiment results
are shown in Tables S4–S6. As shown in these tables,
although the performance of TSSR is affected by the noise
information, it could still achieve the best performance,
which means our TSSR could be used to undertake the
lncRNA-disease prediction task even when the collected
external information of lncRNAs and diseases contains a
lot of noise.

With the development of high-throughput experimental
techniques, an increasing number of data for lncRNAs and
diseases are becoming available. We can calculate the similarities
among lncRNAs (or diseases) based on different views of data
and different metrics. How to efficiently seek the optimal
combination of these similarities is an interesting future work.
We will try to extend our model to handle this problem.
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Long non-coding RNAs (lncRNAs) play critical roles in various biological processes, but

the function of the majority of lncRNAs is still unclear. One approach for estimating a

function of a lncRNA is the identification of its interaction target because functions of

lncRNAs are expressed through interaction with other biomolecules in quite a few cases.

In this paper, we developed “LncRRIsearch,” which is a web server for comprehensive

prediction of human and mouse lncRNA-lncRNA and lncRNA-mRNA interaction. The

prediction was conducted using RIblast, which is a fast and accurate RNA-RNA

interaction prediction tool. Users can investigate interaction target RNAs of a particular

lncRNA through a web interface. In addition, we integrated tissue-specific expression and

subcellular localization data for the lncRNAs with the web server. These data enable users

to examine tissue-specific or subcellular localized lncRNA interactions. LncRRIsearch is

publicly accessible at http://rtools.cbrc.jp/LncRRIsearch/.

Keywords: lncRNA, RNA-RNA interaction, web server, tissue-specific expression, subcellular localization

1. INTRODUCTION

Long non-coding RNAs (lncRNAs) were initially considered to be transcriptional noise or
experimental artifacts, but recent research has revealed that lncRNAs play important roles
in various biological processes, such as cell differentiation (Fatica and Bozzoni, 2014) and
functioning of the immune system (Carpenter et al., 2013). While large-scale RNA sequencing
studies have discovered several tens of thousands of lncRNAs in the human transcriptome (Iyer
et al., 2015; Hon et al., 2017), the function is known in detail for only a small number of lncRNAs
(Quek et al., 2014; de Hoon et al., 2015). To understand the molecular mechanisms of complex
biological systems, elucidating the functions of more lncRNAs is an important research topic.
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Recent discoveries of lncRNA-mRNA interactions regulating
biological processes (Gong and Maquat, 2011; Kretz et al.,
2013; Abdelmohsen et al., 2014) suggest that comprehensive
lncRNA-mRNA interaction predictions are helpful for the
estimation of lncRNA function. Several databases or web
services have been developed for the function prediction
based on lncRNA-mRNA interactions, but there are no
web services for comprehensive prediction of human and
mouse lncRNA interaction. RAID contains some lncRNA-
mRNA interaction data taken from the literature, but the
number of interactions is limited and comprehensiveness is
low (Yi et al., 2017). RISE includes experimentally validated
lncRNA-RNA interactions based on high-throughput sequencing
methods (Lu et al., 2016; Nguyen et al., 2016), but the
number of lncRNA interactions is also limited (Gong et al.,
2017). The database compiled by Terai et al. (2016) contains
predicted lncRNA-mRNA and lncRNA-lncRNA interaction data
at transcriptome scale, but the database does not store more
than one local base-pairing interaction for each lncRNA-RNA
interaction. In addition, the database includes only human
lncRNA-RNA interactions.

To address these shortcomings, we have constructed the
LncRRIsearch, which is a web server for comprehensive
prediction of human and mouse lncRNA-mRNA and lncRNA-
lncRNA interactions. We applied RIblast to human and mouse
transcriptome to predict RNA-RNA interactions (Fukunaga and
Hamada, 2017). LncRRIsearch provides multiple local base-
pairing interactions predicted by RIblast for each lncRNA-
RNA interaction. In addition, unlike previous databases or
web services, we integrated tissue-specific RNA expression
and subcellular localization data of lncRNAs with our web
service. These data help us to verify the correctness of
the predicted interactions. Actually, we showed the tissue-
specificity information improves the prediction accuracy for
lncRNA-RNA interactions in previous research (Iwakiri et al.,
2017). LncRRIsearch is freely accessible at http://rtools.cbrc.jp/
LncRRIsearch/.

2. MATERIALS AND METHODS

2.1. Dataset of lncRNA and mRNA
Sequences
We downloaded human and mouse RNA sequences from
GENCODE version 25 and M14, respectively (Harrow et al.,
2012). While we used all lncRNA transcript sequences in our
analysis, we used the longest mRNA transcript for each gene to
reduce the size of the dataset. In addition, we excluded transcripts
in the pseudoautosomal region on the Y-chromosome from the
analysis. As a result, we obtained 27,674 lncRNA and 20,360
mRNA transcripts as human RNA dataset, and 16,113 lncRNA
and 22,468 mRNA transcripts as mouse RNA dataset. Note
that LncRRIsearch contains an additional 175 mRNA and 3,776
lncRNA transcripts in comparison with the database previously
compiled by Terai et al. (2016) as human RNA dataset. This
difference is derived from the version update of GENCODE.

2.2. Prediction of lncRNA-RNA Interactions
RNA-RNA interaction prediction for long RNAs is time-
consuming calculation, and even the fastest programs at present
cannot be predict the interactions in real-time. Therefore, we
predicted comprehensive human and mouse lncRNA-mRNA
and lncRNA–lncRNA interactome in advance, and stored the
interaction results in MySQL database. By selecting a query
RNA or a target RNA, users can obtain pre-calculated prediction
results of the selected RNA.

We used the RIblast program, which has been recently
developed by our group, for comprehensive RNA-RNA
interaction prediction (Fukunaga and Hamada, 2017). RIblast
predicts local base-pairing interactions based on interaction
energy that is computed by using both accessibility energy and
hybridization energy. Briefly, RIblast considers both effects on
stabilization energy derived from hybridization between two
RNA sequences and the energy for preventing the formation of
intramolecular double-stranded structure. (If an RNA region
forms double-stranded structure in the secondary structure, the
region does not tend to interact with the other RNA molecules
via base-pairing.) RIblast output multiple candidates for local
base-pairing interactions for each RNA-RNA pair. The threshold
interaction energy was set to −12 or −16 kcal/mol. We regarded
the query and target RNA pairs (A, B) and (B, A) as being
different because RIblast predicts slightly different interactions
for these pairs. Users can sort target transcripts for each query
transcript by two criteria: MINENERGY and SUMENERGY.
MINENERGY denotes the minimum interaction energy of
local base-pairing interaction among all interactions between
the query RNA and the target RNA. SUMENERGY means the
sum of all interaction energies of local base-parings for the
RNA-RNA pair.

We investigated whether the experimentally validated
lncRNA-mRNA interactions were predicted by RIblast.
We verified that RIblast predicted human 1/2-sbs RNA
(ENST00000548810) and SERPINE1 (ENST00000223095)
interaction, and human 1/2-sbs RNA and ANKRD57
(ENST00000356454) interaction (Gong and Maquat, 2011).
In addition, human 7SL RNA (ENST00000635274) and
TP53 mRNA (ENST00000617185) interaction (Abdelmohsen
et al., 2014) was also predicted by RIblast. As we did not
predict mRNA-mRNA interactions, LncRRIsearch does not
provide human TINCR-mRNA interactions (Kretz et al.,
2013) (TINCR ENST00000448587) was annotated as mRNA
in GENCODE ver.25). In summary, our prediction results
include experimentally validated lncRNA-mRNA interactions
for lncRNAs.

2.3. Expression Analysis for
Tissue-Specific lncRNA-RNA Interaction
Expression levels of human lncRNA and mRNA genes were
estimated from RNA-seq data derived from five international
consortia. The first RNA-seq dataset was derived from 32
tissues collected from 122 human individuals, which was
produced by the Human Protein Atlas Project (Expression
Atlas ID: E-MTAB-2836) (Uhlén et al., 2015). The second
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RNA-seq dataset was derived from 30 representative tissues,
released by the GTEx Consortium (Expression Atlas ID: E-
MTAB-2919) (GTEx Consortium, 2015). The third RNA-seq
dataset was produced by the Human Body Map Project from
16 tissues (Expression Atlas ID: E-MTAB-513) (Cabili et al.,
2011). The fourth RNA-seq dataset, derived from 19 tissues
isolated from fetuses with congenital defects, was released by the
Epigenome Roadmap Project (Expression Atlas ID: E-MTAB-
3871) (Kundaje et al., 2015). The last RNA-seq dataset, the
largest collection of primary cells, was derived from 56 tissues
produced by FANTOM5 project (Expression Atlas ID: E-MTAB-
3358) (Forrest et al., 2014). Note that the second RNA-seq
dataset originally contained 53 tissues derived from several
cell lines and subregions of a single tissue. To reduce the
number of redundant cell types, 30 representative tissues were
arbitrarily selected.

In addition, expression levels of mouse lncRNA and mRNA
genes were also estimated from RNA-seq data. The first RNA-
seq dataset was derived from nine tissues harvested from an
adult male C57BL/6 mouse (Expression Atlas ID: E-GEOD-
74747) (Huntley et al., 2016). The second RNA-seq dataset
was derived from three mouse strains (C57BL/6, DBA/2J, and
CD1) (Expression Atlas ID: E-MTAB-2801) (Merkin et al., 2012).
In this dataset, gene expression data across eight (C57BL/6
strain) or nine mouse tissues (DBA/2J and CD1 strains)
is available.

Tissue-specificities of lncRNA and mRNA genes were
investigated based on an outlier analysis of the RNA-seq data
using ROKU (Kadota et al., 2006). For each lncRNA and mRNA
gene, the tissues in which the gene was specifically expressed
were detected based on its extremely high or low expression
levels in one or a few tissues. These tissue-specificity data

allow the user to investigate the tissue-specific lncRNAs which
regulate the expression levels of their target mRNAs through
the base-pairing interactions. The tissue-specific lncRNA-RNA
interactions derived from the aforementioned five human RNA-
seq datasets and four mouse RNA-seq dataset are provided in
LncRRIsearch (Tables S1–S9).

2.4. Integration With Subcellular
Localization Data to LncRRIsearch
Subcellular localization dataset was downloaded from the
LncAtlas database (Mas-Ponte et al., 2017). This dataset
includes 15 human cell-line subcellular localization data, and
the localization was quantified by “relative concentration
index” (RCI), which was defined as log2-transformed ratio
of FPKM between two expression data. For example,
high cytoplasmic/nuclear RCI means that the transcript
tends to localize in cytoplasm rather than nucleus. For
14 cell-lines, two types of RCIs (cytoplasmic/nuclear and
nuclear/cytoplasmic RCIs) are included in the dataset.
On the other hand, for the K562 cell-line, five types
of RCI data (Chromatin/Nucleus, Nucleolus/Nucleus,
Nucleoplasm/Nucleus, Cell membrane/Cytoplasm, and
Insoluble fraction/Cytoplasm RCIs) are additionally included in
the dataset. These subcellular localized RNA-RNA interactions
are also provided in LncRRIsearch (Tables S10–S12). The
detail of the dataset was described in the original publication
(Mas-Ponte et al., 2017). Note that mouse subcellular localization
data are not included in LncRRIsearch.

2.5. Database Organization
In LncRRIsearch, tissue-specific expression data and subcellular
localization data were stored in a series of MySQL databases. For

FIGURE 1 | Three workflows for investigating lncRNA–RNA interaction using LncRRIsearch.
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FIGURE 2 | Investigation of lncRNA–RNA interactions using LncRRIsearch. In this example, detailed information about the interaction between NORAD lncRNA (used

as query, Gene ID:ENSG00000260032, Transcript ID: ENST00000565493) and TUBB4A mRNA (used as target, Gene ID:ENSG00000104833, Transcript

ID:ENST00000264071) is shown.

RNA-RNA interaction data, all pre-calculated SUMENERGY and
MINENERGR scores were also stored in the databases, but the
local base-pair data were not stored in the databases because the
data size is too large. In the web service, the base-pairs are re-
predicted by RIblast in real time when both the query and target
RNAs are selected based on SUMENERGY or MINENERGY
scores. However, because RIblast cannot predict interactions of
long RNAs in real-time, base-pair prediction results for RNA
sequences longer than 5,000 nt were stored in the databases, and
the data is referenced in the web service.

3. RESULTS

LncRRIsearch provides three types of interaction prediction
method (Figure 1): a name/ID based method, an expression
pattern-based method, and a localization-based method.

3.1. Investigation of an RNA-RNA
Interaction Based on Name or ID
Users firstly select target species (human or mouse) and the
energy threshold (−12 or −16 kcal/mol), and then inputs name
or ID of genes or transcripts (Figure 1). LncRRIsearch supports
GENCODE gene/transcript names or IDs as input type, and
either query lncRNA or target lncRNA/mRNA is required as
input RNA. After specifying a gene of interest, several transcript
isoforms derived from the gene are listed for selection of a
single lncRNA transcript if multiple isoforms are encoded in
the gene. For the selected lncRNA transcript (query transcript),
all interacting RNAs (target transcripts) predicted by RIblast
are provided. After selecting a single target transcript, the
details of the RNA-RNA interaction between query and target
transcripts are described (Figure 2). In this step, all local base-
pairing interactions are listed, and users can download the
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prediction results as a text file. In addition, the global base-
pairing interaction is described as an image (The center left of
Figure 2). In this figure, the query RNA and the target RNA are
represented as a blue line and a red line, respectively, and the
predicted interactions are displayed as gray or black lines between
two RNAs. The color consistency means strength of interactions.
For each local base-pairing interaction, text (output of RIblast)
and a graphical view based on VARNA (Darty et al., 2009) are
also provided (The lower left and the lower right of Figure 2).

3.2. Investigation of Tissue-Specific
RNA-RNA Interactions
LncRRIsearch helps users to investigate lncRNA-RNA
interactions exhibiting tissue-specific expression patterns
(Figure 1). Users can select an RNA-seq dataset from four
different RNA-seq studies and select a tissue of interest. For the
selected tissue, one of three possible tissue-specific expression
patterns for the query and target RNA transcripts should be
selected: Query and target RNAs are specifically up-regulated
in the same tissue; query RNAs are specifically up-regulated
and target RNAs are down-regulated in the same tissue; or
query RNAs are specifically down-regulated and target RNAs are
up-regulated in the same tissue.

After selecting the tissue-specific expression pattern, the
corresponding query and target RNAs predicted by RIblast are
listed. In this step, once a query RNA is selected, the list of
possible target RNAs is automatically updated for the selected
query. By selecting the tissue-specific query and target RNAs,
detailed information about interactions between the query and
target RNAs is provided (Figure 2). In addition, the expression
values of query and target RNAs are provided as a graphical view
in the results page (The upper right of Figure 2).

3.3. Investigation of Subcellular Localized
RNA-RNA Interactions
Users can investigate subcellular-localized human lncRNA-RNA
interactions (Figure 1). Users firstly select a energy threshold and
select a cell line of interest. For the selected cell line, a type of
RCI and the threshold of RCI should be selected. Except for K562
cell line, users can choose which one of the nucleus/cytosol or
cytosol/nucleus RCI. For K562 cell line, users have five choices of
sub-compartments RCIs in addition to the above-mentioned two
RCIs. The subsequent steps are the same as the investigation of
tissue-specific RNA-RNA interactions. The RCI values of query
and target RNAs are displayed as a graphical view in the results
page (The center right of Figure 2).

4. DISCUSSION

We developed LncRRIsearch, which is a web server for
comprehensive prediction of human and mouse lncRNA-
mRNA and lncRNA-lncRNA interactions including tissue-
specific expression and subcellular localization data. There
are two advantages of LncRRIsearch over other lncRNA-RNA
interaction databases or web services; the comprehensiveness of
interaction prediction and the ability to investigate tissue-specific
or subcellular localized interaction patterns.

We envision three future improvements of LncRRIsearch.
The first is the development of real-time RNA-RNA interaction
prediction software. Although LncRRIsearch provides
comprehensive human and mouse lncRNA-RNA interaction
based on GENCODE version 25 and M14, novel lncRNAs will be
discovered in the future. Real-time prediction would be useful for
the discoverers of new lncRNAs to investigate their interactions.
The acceleration of RNA-RNA interaction prediction is still
an important research topic. One possible direction is the
simplification of the energy model. RIblast uses a complete
nearest-neighbor energy model in the search step, but some
researchers have reported that the use of an approximated energy
model produces a marked increase in the calculation speed in
exchange for only a slight decrease in the prediction accuracy
(Tafer et al., 2011; Wenzel et al., 2012; Alkan et al., 2017).

The second improvement is the integration of the results of
RNA-RNA interaction detection experiments. Recently, several
high-throughput sequencing methods for the exhaustive
identification of RNA-RNA interaction sites have been
developed, including PARIS (Lu et al., 2016) and MARIO
(Nguyen et al., 2016). Although only a few lncRNA-related
interactions have been detected in these experiments,
simultaneously displaying predicted and experimentally
verified interactions (where available) should be useful for
users. In addition, such data will encourage researchers
to develop machine-learning-based RNA-RNA interaction
prediction programs.

The third improvement is an increase in the number of
target species. This improvement would enable us to not only
investigate the lncRNA interactions of newly added species but
also compare lncRNA interactomes between species. Nguyen
et al. recently showed that the conservation of experimentally
confirmed lncRNA-RNA interaction regions is high, although
lncRNA generally lacks sequence conservation (Nguyen et al.,
2016). This means that conservation information should be
useful for the verification of predicted lncRNA-RNA interactions.
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Background and Aims: Although long non-coding RNAs (lncRNAs) have been linked
to many diseases including asthma, little is known about lncRNA transcriptomes of
CD4+ T cells in asthma. The present study aimed to explore the lncRNAs profile in the
CD4+T cells from the mouse model of acute asthma.

Methods: Next generation sequencing for lncRNAs and mRNAs was performed
on CD4+ T cells from asthma and control mice. Gene ontology (GO) and kyoto
encyclopedia of genes and genomes (KEGG) pathway analyses were performed to
predict the functions and signal pathways for the aberrant lncRNAs. The selected
lncRNAs were further measured using quantitative real-time PCR (polymerase chain
reaction) and observed in the fluorescence in situ hybridization (FISH). The lncRNA–
mRNA co-expression network was constructed via Pearson’s correlation coefficient
and Cytoscape 3.6.

Results: Next generation sequencing revealed 36 up-regulated lncRNAs and 98
down-regulated lncRNAs in acute asthma compared with controls. KEGG pathway
analysis showed that cytokine-cytokine receptor interaction had the highest enrichment
scores. A co-expression network was constructed in which 23 lncRNAs and 301
mRNAs altered formed a total of 12424 lncRNA and mRNA pairs. To validate the
RNA sequencing results, we measured the 4 different lncRNAs using qPCR. The
lncRNA fantom3_9230106C11 was significantly reduced in CD4+ T cells of asthma.
Bioinformatics analysis showed that lncRNA fantom3_9230106C11 had the potential to
interact with many miRNAs and transcription factors related to Th2 differentiation.

Conclusion: This study provided the first evidence for different expression of lncRNAs
of CD4+T cells in asthma and may serve as a template for further, larger functional
in-depth analyses regarding asthma molecular lncRNAs.

Keywords: asthma, CD4+ T lymphocyte, long non-coding RNA, mRNA, next-generation sequencing
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INTRODUCTION

Allergic asthma is a type of asthma provoked by allergens,
including pollen, animal dander, fungal spores, or house dust
mites (HDM) (Takyar et al., 2013; Hondowicz et al., 2016).
Once processed and presented by dendritic cells, allergens
promote the differentiation and expansion of Th2 cells, releasing
type 2 cytokines (IL-4, IL-5, IL-13) and expressing the master
transcription factor GATA-3. Th2 cells orchestrate eosinophil
maturation and survival, airway hyperresponsiveness, and B cell
isotype switching to IgE (Holgate, 2012). Consequently, Th2 cells
play crucial roles in the cascade reactions of allergic asthma.

Non-coding RNAs emerged as essential players in Th2 cell
differentiation and allergic asthma. Recently, we reported the
aberrant microRNA (miRNA) profile in CD4+ T cells from a
murine model of acute asthma (Liu et al., 2018). In addition to
miRNAs, long non-coding RNAs (lncRNAs), which comprise 200
nucleotides lacking putative open reading frames, may regulate
CD4+ T cell differentiation in asthma (Zhang F. et al., 2017).
In allergic asthma, the lncRNA profile has been documented
in primary airway smooth muscle cells, CD8+ T cells or blood
samples (Tsitsiou et al., 2012; Austin et al., 2017; Zhu et al., 2018).
To our knowledge, lncRNA expression in the CD4+ T cells in
asthma remains elusive.

In this study, we performed next-generation sequencing and
data mining to investigate the whole spectrum of transcriptional
signatures (mRNAs and lncRNAs) of CD4+ T cells in the
murine model of acute asthma. Some lncRNAs were measured
in CD4+ cells ex vivo or in Th2 cells in vitro using real-
time quantitative reverse transcription PCR (qRT-PCR) and
fluorescence in situ hybridization (FISH). Moreover, cross-talk
between mRNAs and lncRNAs associated with CD4+ T cell
differentiation was revealed.

MATERIALS AND METHODS

Establishment of the Model of Acute
Asthma
Specific pathogen-free female C57BL/6J mice (18 to 22 g)
aged 6 to 8 weeks were obtained from the College of
Veterinary Medicine Yangzhou University (Yangzhou, China).
All experiments that involved animal and tissue samples were
performed in accordance with the guidelines and procedures
approved by the Institutional Animal Care and Use Committee
of Nanjing Medical University (IACUC-1709011).

The model of acute asthma was established as described
previously (Liu et al., 2018). Briefly, the asthmatic mice (n = 3)
were sensitized on days 0 and 14 by the intraperitoneal injection
of 20 µg ovalbumin (OVA) (Grade V, Sigma-Aldrich) emulsified
in 2 mg aluminum hydroxide gel (InvivoGen, San Diego, CA,
United States) in a total volume of 200 µl. These sensitized mice
were exposed to aerosolized 1% OVA in sterile saline for 30 min
from day 20 to day 22, consecutively. The control subjects (n = 3)
were sensitized and challenged using the same protocol as used
for saline alone. All mice were monitored daily and were alive
before sacrifice.

Twenty-four hours after the final challenge, lung function
was evaluated by the direct measurement of lung resistance
and dynamic compliance in restrained, tracheostomized,
mechanically ventilated mice via the FinePointe RC System
(Buxco Research Systems, Wilmington, NC, United States) under
general anesthesia as described previously (Kerzerho et al., 2013).
The sera were collected to measure total IgE using an ELISA
kit according to the manufacturer’s instructions (eBioscience,
Thermo Fisher Scientific, United States). To determine lung
tissue inflammation, the right upper lung lobe was removed,
fixed, dehydrated and embedded in paraffin. The fixed embedded
tissues were cut into 5 µm sections on a Leica model 2165 rotary
microtome (Leica, Nussloch, Germany), and the tissue slides
were stained with hematoxylin and eosin (H&E).

CD4+ T Cell Purification From the Spleen
Mice were anesthetized by i.p. injection of a mixture of 10 mg/kg
xylazine (MTC Pharmaceuticals, Cambridge, ON, Canada) and
200 mg/kg ketamine hydrochloride (Rogar/STB, London, ON,
Canada). The anaesthetized mice were sacrificed with cervical
dissociation. The spleen was removed, ground and prepared
into single cell suspensions. CD4+ T cells in the spleen were
sorted using CD4 (L3T4) micro beads (130-049-201, Miltenyi
Biotec, United States). Briefly, the single cell suspensions were
incubated with CD4 (L3T4) micro beads. The magnetically
labeled cells were flushed and collected. Finally, the purity of
CD4+ T cells was quantified using anti-CD4-APC antibodies
(17-0041-81, eBioscience).

RNA Isolation, Library Preparation, and
Sequencing
Total RNA was isolated using the miRNeasy Mini Kit (Qiagen,
Germany) and stored at −80◦C until use. RNA purity was
assessed using the ND-1000 Nanodrop. Each RNA sample had
an A260:A280 ratio above 1.8 and A260:A230 ratio above

TABLE 1 | Primers used in qRT-PCR.

Name Sequence

β-actin-F GAGAAGCTGTGCTATGTTGCT

β-actin-R CTCCAGGGAGGAAGAGGATG

fantom3_9230106C11-F CTCTGTCCTGGAAAGTGGTGTC

fantom3_9230106C11-R TGCTGCCAAGCTAGATGGTC

fantom3_4933428M03-F TGTCATGCTGTGGTAACAGTGA

fantom3_4933428M03-R ACACCAGGTAGATATGCAAGGAA

fantom3_F630107E09-F TTCCTGTTGCCCCAACTGTAG

fantom3_F630107E09-R GGCAGGGAGTCTTCTACTTCC

T-bet-F AATCGACAACAACCCCTTTG

T-bet-R AACTGTGTTCCCGAGGTGTC

IFN-γ-F ACAATGAACGCTACACACTGC

IFN-γ-R CTTCCACATCTATGCCACTTGAG

GATA3-F GAACCGCCCCTTATCAAG

GATA3-R CAGGATGTCCCTGCTCTCCTT

IL-4-F AACTCCATGCTTGAAGAAGAACTC

IL-4-R CCAGGAAGTCTTTCAGTGATGTG
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FIGURE 1 | Ovalbumin (OVA)-induced acute model of asthma. (A) Pulmonary inflammatory response was increased in the mice challenged with OVA, bar = 20 µm.
(B) The airway hyperresponse was elevated in the mice from the asthma group, ∗p < 0.05 (C). Sera IgE was significantly increased in the mice from the asthma
group, ∗p < 0.05. (D) CD4+ T cells magnificently sorted from the spleen were validated by flow cytometry. Representative results of two independent experiments
with five mice in each group, ∗∗p < 0.01, ∗∗∗p < 0.01, ∗∗∗∗p < 0.0001.
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2.0. RNA integrity was evaluated using the Agilent 2200
TapeStation (Agilent Technologies, United States) and each
sample had the RIN above 7.0. Briefly, rRNAs were removed
from Total RNA using Epicenter Ribo-Zero rRNA Removal
Kit (illumina, United States) and fragmented to approximately
200bp. Subsequently, the purified RNAs were subjected to
first strand and second strand cDNA synthesis following by
adaptor ligation and enrichment with a low-cycle according to
instructions of NEBNext R© UltraTM RNA Library Prep Kit for
Illumina (NEB, United States).

The purified library products were evaluated using the
Agilent 2200 TapeStation and Qubit R© 2.0 (Life Technologies,
United States) and then diluted to 10 pM for cluster generation
in situ on the pair-end flow cell followed by sequencing
(2 × 150 bp) on HiSeq 3000. The clean reads were obtained
after removal of reads containing adapter, ploy-N and at low
quality from raw data. Sequence data were mapped to mouse
reference genome mm10 with TopHat v2.0.13. gfold v1.1.2 was
subsequently employed to count the number of reads mapped

to each gene. Differential expression was assessed by DEGseq
using RPKM as input. Differentially expressed genes were chosen
according to the criteria of fold change >2 and adjusted P-value
<0.05. All the differentially expressed genes were used for
heat map analysis and KEGG enrichment analyses. For KEGG
enrichment analysis, a P-value <0.05 was used as the threshold
to determine significant enrichment of the gene sets.

Bioinformatics Data Analysis and Data
Mining
The transcriptome was assembled using Cufflinks and Scripture
based on the reads mapped to the reference genome. The
assembled transcripts were annotated using the Cuff compare
program from the Cufflinks package. The unknown transcripts
were used to screen for putative lncRNAs. Three computational
approaches, including CPC/CNCI/Pfam, were combined to sort
non-coding RNA candidates from putative protein-coding RNAs
in the unknown transcripts. Putative protein-coding RNAs were

FIGURE 2 | Volcano plots and heat maps of lncRNA expression between the asthma and control groups. (A) Volcano plot assessment of lncRNA expression in
CD4+ T cells between the asthma and control groups. Red dots represent different lncRNAs (p < 0.05) showing fold changes >=2 or <= −2. (B) Heat map
analysis of differentially expressed lncRNAs between the asthma and control groups. Green indicates low expression, and red indicates high expression. A4, A5, and
A7 were the control group; B4, B6, and B7 were CD4+ T cells from the asthma group.
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filtered out using a minimum length and exon number threshold.
Transcripts with lengths greater than 200 nt and with more
than two exons were selected as lncRNA candidates and further
screened using CPC/CNCI/Pfam, which distinguished protein-
coding genes from non-coding genes.

The UCSC genome browser was used to locate lncRNA
fantom3_9230106C11. The predicted potential target genes
whose loci were within a 10-kb window upstream or downstream
of the given aberrantly expressed lncRNA were considered cis-
regulated genes. Other genes in the co-expression network were
identified as trans-regulated according to complementary base
pairing by LncTar (Li et al., 2015). In addition, Bibiserv (Sczyrba
et al., 2003) and RNA22 (Miranda et al., 2006) were used to
predict the interactive miRNAs. Different mRNAs in the our
NGS were compared with known genes about asthma in the
human disease database Malacards associated with asthma1 and
asthma-associated genes2 using Wayne chart3.

CD4+ T Cell Differentiation in vitro
Naive CD4+ T cells in the spleen were sorted using a Naive CD4+
T Cell isolation kit (130-104-453, Miltenyi Biotec, United States).
Briefly, the single cell suspensions were incubated with biotin-
antibody cocktails, which depleted the non-T cells and memory
CD4+ T cells. The untouched naive CD4+ T lymphocytes were
seeded onto anti-CD3 (85-16-0031-85, eBioscience, 1 mg/ml)
precoated 96-well plates. For Th1 polarization, naive CD4+
T cells were further stimulated with anti-CD28 (85-16-0281-
85, eBioscience, 2 µg/ml), IL-2 (212-12, PeproTech, 20 ng/ml),
IL-12 (210-12, PeproTech, 50 ng/ml) and anti-IL-4 (85-16-
7041-85, eBioscience, 10 µg/ml). For Th2 polarization, naive
CD4+ T cells were further stimulated with anti-CD28 (85-16-
0281-85, eBioscience, 2 µg/ml), IL-2 (212-12, PeproTech, 20
ng/ml), IL-4 (214-14, PeproTech, 200 ng/ml), anti-IFN-γ (85-
16-7311-85, eBioscience, 10 µg/ml), and anti-IL-12 (85-16-7123-
85, eBioscience, 10 µg/ml). Half of the complete RPMI-1640
medium (16000-044, Gibco, United States) with 10% FBS (Gibco,
United States) was replaced with fresh medium to maintain the
cytokine environments. The CD4+ T cells were harvested and
analyzed on day 5.

Flow Cytometry Analysis ex vivo and
in vitro
For nuclear protein assays, spleens from animal experiments
were prepared as single-cell suspensions. After RBC (red
blood cell) lysis, the cells were stained with CD16/CD32
FcR (Fc Receptor) blocking antibody, Fixable Viability Dye
eFluorTM 506 and anti-CD4-APC (eBioscience, 17-0041-83). For
intracellular staining, the cells were fixed and permeabilized
(eBioscience, 00-5523-00) according to the manufacturer’s
instructions, and then intracellular products were stained.
Flow cytometry was performed with anti-Gata3-PE-Cy7 (BD
Biosciences, 560405), anti-T-bet-PE-Cy7 (eBioscience, 25-5825-
80) and isotype controls.

1https://www.malacards.org/
2https://www.ncbi.nlm.nih.gov/gene/?term=asthma
3http://bioinformatics.psb.ugent.be/webtools/Venn/

For cytokine assays, T cells were restimulated on day 5 of
culture for 5 h with 20 nM PMA (70-CS1001, Multiscience,
China) and blocked with BFA (70-CS1002, Multiscience, China).
After 5 h, the cells were harvested, gently washed with PBS
containing 1% bovine serum albumin (BSA) and fixed in IC
fixation buffer (00-822-49, eBioscience, United States). The
fixed cells were permeabilized with permeabilization buffer (00-
8333-56, eBioscience, United States) and stained with PE-anti-
IFN-γ (85-12-7311-84, eBioscience, United States), PE-anti-
IL4 (85-12-7041-83, eBioscience, United States) or the isotype
control. The stained CD4+ T lymphocytes were analyzed on
the BD FACSCalibur, and the data were analyzed by FlowJo
software (TreeStar).

Real-Time Quantitative Polymerase
Chain Reaction
RNAs from cells or tissues were isolated using a miRNeasy
mini kit. The cDNA was synthesized using the Prime Script RT
Reagent Kit (TaKaRa, Kyoto, Japan) following the manufacturer’s
instructions. The quantitative PCR analysis was performed using
the CFX96 system (Bio-Rad laboratories) in conjunction with
ready-to-use fast-start SYBR Premix Ex Taq II (TaKaRa, Kyoto,
Japan). The cycling conditions were 95◦C for 30 s, followed by
95◦C for 5 s and 60◦C for 30 s for up to 40 cycles and dissociation
at 95◦C for 15 s, 60◦C for 30 s and a final extension at 95◦C for
15 s. The relative abundance of gene targets was determined by
the comparative CT (cycle threshold) number normalized against
tested β-actin comparative CT. The primers used are shown in
Table 1, which were designed by RiboBio Institute (Guangzhou,
China) or from primerbank by using primer5.

TABLE 2 | Top 20 lncRNAs in CD4+ T cells between asthma and control groups.

LncRNA control asthma P-value

fantom3_E230007F07 8.78 0.61 0.0006

fantom3_4933428M03 14.37 1.08 < 0.0001

fantom3_B230105C15 10.41 0.99 0.0005

fantom3_E030028L20 12.64 1.76 0.0003

fantom3_A530047B01 21.82 4.05 < 0.0001

fantom3_9230106C11 24.67 5.02 0.0002

fantom3_C130024N02 121.92 26.59 < 0.0001

fantom3_9230022E05 100.13 22.58 0.0001

fantom3_D130005M09 37.46 9.67 < 0.0001

fantom3_6430516O08 25.14 7.87 0.0006

fantom3_F630107E09 3.96 20.46 0.0001

fantom3_9930009M05 3.87 20.74 0.0006

fantom3_9530065C24 4.89 27.20 0.0001

fantom3_D130059M16 3.25 21.04 < 0.0001

fantom3_3021401C12 2.21 23.19 < 0.0001

fantom3_I830062N05 5.59 62.54 < 0.0001

fantom3_F730001C01 4.58 52.60 < 0.0001

fantom3_9830118H07 4.92 58.38 < 0.0001

fantom3_E130019F23 1.31 16.65 < 0.0001

fantom3_4930418C01 0.33 9.44 < 0.0001

The P-value indicates the difference between the control and asthma groups.
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FIGURE 3 | Continued
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FIGURE 3 | Volcano plots and heat map of mRNA expression between asthma and control groups. (A) Volcano plot assessment of gene expression in CD4+ T cells
between asthma and control groups. Red dots represent different mRNAs (p < 0.05) showing fold changes >=2 or <= −2. (B) Heat map analysis of differentially
expressed mRNAs between the asthma and control groups. Green indicates low expression, and red indicates high expression. A4, A5, and A7 were the control
groups; B4, B6, and B7 were CD4+ T cells from the asthma group. (C) The Venn diagram of genes about asthma from sequencing compared with gene database
and malacards database.

Correlation and Co-expression Analysis
The co-expression analysis was based on Pearson’s correlation
coefficient. Considering the influence of random factors, it is
found that using Pearson correlation coefficient only is not strict.
Therefore, when the number of samples is less than eight, due to
the small number of samples, we use the mixed washing method
to calculate the P-value to further screen.

The co-expression relationship was screened according
to Pearson correlation coefficient and P-value. Differentially
expressed lncRNAs and mRNAs with fold changes ≥2 and
p < 0.05 were analyzed. For each lncRNA-mRNA pair, the
Pearson correlation (COR) was calculated to identify significantly
correlated pairs. The Pearson correlation value cutoff was 0.95
and p < 0.05. To create a visual representation, a lncRNA-mRNA
regulatory network was constructed using Cytoscape 3.6.

Fluorescence in situ Hybridization (FISH)
Fluorescence in situ hybridization assays were performed using
the RiboTM Fluorescent in situ Hybridization Kit and the
RiboTM lncRNA FISH Probe Mix (Ribo, Guangzhou, China)
according to the manufacturer’s protocols. Briefly, the cells
were fixed in 4% formaldehyde for 10 min and then washed
with PBS. The cells were incubated with 20 µmol/L lncRNA
FISH probe mix at 37◦C overnight. After washing, the FISH
preparations were counterstained with DAPI observed in
confocal microscopy for appropriate fluorescence filter sets
(Zeiss, Oberkochen, Germany). The lncRNA probe labeled with
Cy3 was designed and synthesized by RiboBio Co., Ltd., RiboTM

U6 and RiboTM 18S were used as reference controls for the
subcellular localization of lncRNA.

Statistical Analysis
The statistical analysis was performed using GraphPad Prism
version 5.0 (GraphPad, San Diego, CA, United States). The results
for variables that were normally distributed are displayed as
the means ± SEM. An ANOVA was performed to establish
equal variance, and a 2-tailed Student’s t-test with Bonferroni
correction was applied to determine statistical significance, which
was defined as P < 0.05.

RESULTS

Establishment of an Acute Model of
Asthma
As the well-established murine model of asthma, OVA
challenge provoked evident pulmonary inflammation, airway
hypersensitivity and higher IgE in serum (Figures 1A–C). CD4+
T cells were magnetically sorted from the spleen, and the purity

was validated by flow cytometry. As shown in Figure 1D, 98.5%
of the cells were CD4 positive (Figure 1D).

LncRNA Profile of CD4+ T Cells in
Asthma
To obtain a global overview of CD4+ T cells in the asthma
transcriptome, we constructed and sequenced 6 RNA-Seq
libraries, including controls (n = 3) and asthma mice (n = 3).
All of the data have been submitted to Sequence Read Archive
(SRA4) with the accession number of PRJNA540404. In total, 134
lncRNAs were significantly altered in expression, including 98
downregulated lncRNAs and 36 upregulated lncRNAs (Figure 2).
The top 10 decreased lncRNAs and top 10 increased were listed
in Table 2.

The mRNA Profile of CD4+ T Cells in
Asthma
In RNA sequencing, we explored not only the lncRNAs but
also the mRNAs from the same samples. With respect to
mRNAs, 141 mRNAs were significantly downregulated and 160
mRNAs were significantly upregulated in the CD4+ T cells from

4www.ncbi.nlm.nih.gov/sra

TABLE 3 | Top 20 mRNAs in CD4+ T cells between asthma and control groups.

mRNAs control asthma P-value

Kbtbd12 11.39 0.76 < 0.0001

Kbtbd12 14.37 1.08 < 0.0001

Hunk 13.10 1.45 0.0008

Slc6a1 24.04 4.20 0.0006

Vsig4 25.70 4.53 < 0.0001

Fstl4 57.58 13.73 < 0.0001

Col19a1 32.03 8.25 < 0.0001

Trim30d 121.32 34.58 < 0.0001

Trim30d 94.45 28.47 < 0.0001

Agmo 44.13 13.48 < 0.0001

Prg2 22.40 296.72 < 0.0001

F10 2.23 31.00 < 0.0001

Ascl2 2.65 39.68 < 0.0001

9830107B12Rik 0.97 14.54 0.0004

9830107B12Rik 0.97 14.86 0.0003

Irg1 5.78 92.58 < 0.0001

9830107B12Rik 0.67 12.84 0.0008

Epx 4.59 88.82 < 0.0001

Ear6 1.02 26.46 < 0.0001

Ear7 0.69 22.45 < 0.0001

The P-value indicates the difference between the control and asthma groups.
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asthma (Figure 3). The top 10 decreased and top 10 increased
mRNAs are listed in Table 3, including reduced Kbtbd12,
Hunk, and Slc6a1 and elevated Ear7, Ear6, and Epx. Among
of the 301 differently expressed mRNAs, 17 mRNAs were in
the human disease database Malacards associated with asthma
(see text footnote 1), 28 mRNAs were in the asthma-associated
genes5. More importantly, 11 mRNAs were overlapped in our
sequencing data, MalaCards database and asthma-associated
genes, including IL4, IL-10, MMP9, VCAM-1, Il1rl1, Alox5, Il1rn,
Ccr3, Cysltr1, Epx, and Ccl24.

5https://www.ncbi.nlm.nih.gov/gene

The lncRNA-mRNA Co-expression
Network
To further examine the function of these differentially expressed
lncRNAs in CD4+ T cells in asthma, we constructed an lncRNA-
mRNA co-expression network between 301 differentially
expressed mRNAs and 23 differentially expressed lncRNAs.
The results showed that the co-expression network comprised
12424 connections between lncRNAs and mRNAs. Notably,
fantom3_4933428M03 and fantom3_9230106C11 exhibited a
high degree of connectivity, suggesting that these two lncRNAs
may play key roles (Figure 4 and Table 4). Moreover, our
results highlighted the potential internal adjustment correlations

FIGURE 4 | LncRNA–mRNA co-expression networks. Twenty-three lncRNAs and 301 mRNAs were included in the co-expression network | COR| >0.95; p < 0.05).
The red boxes indicate upregulated lncRNAs, and the blue boxes indicate downregulated lncRNAs. The green nodes indicate downregulated mRNAs, and the
yellow nodes indicate upregulated mRNA. The value of “degree” indicates the size of the boxes or nodes. The width of the lines denotes the Pearson correlation
coefficient, where the full line indicates a positive correlation and the imaginary line indicates a negative correlation.
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TABLE 4 | The “degree” of lncRNAs in the co-expression network.

lncRNA style Degree

fantom3_3021401C12 Up 126

fantom3_4930418C01 Up 43

fantom3_9230022E05 Down 102

fantom3_9230106C11 Down 86

fantom3_9530065C24 Up 30

fantom3_9530072G02 Up 39

fantom3_9830118H07 Up 99

fantom3_A330048C04 Down 160

fantom3_C130024N02 Down 39

fantom3_D130059M16 Up 33

fantom3_E130019F23 Up 158

fantom3_F630107E09 Up 108

fantom3_F630119J15 Up 52

fantom3_F730001C01 Up 78

fantom3_A530047B01 Down 120

fantom3_I830062N05 Up 94

fantom3_4933428M03 Down 185

∗<30◦ was not shown.

between the differentially expressed lncRNAs and mRNAs in
CD4+ T cells between the asthma and control groups.

Validation of RNA-Seq Data With
Real-Time PCR
To confirm the differentially expressed gene data, we further
analyzed some dysregulated lncRNAs using qRT-PCR ex vivo
and in vitro. In OVA-induced asthma, Th2 cells orchestrate the
pathological cascades reactions. As shown in Figure 5A,
CD4+ T cells from the asthma group showed higher
expression of the Th2 master transcription factor Gata-3
and decreased expression of the Th1 master transcription factor
T-bet. Different from the sequencing data, the expression of
LncRNA fantom3_4933428M03 or fantom3_F630107E09 was
unexpectedly similar in the CD4+ T cells from either the asthma
or the control group. However, lncRNA fantom3_9230106C11
was in accordance with sequencing data, which was significantly
decreased in the asthma CD4+ T cells (Figure 5B). To
further explore the data reliability, we induced Th1 or Th2
cells in vitro (Figures 6A,B). As expected, the expression of
lncRNA fantom3_9230106C11 was significantly decreased in
Th2 cells (Figure 6C). FISH assays indicated that lncRNA
fantom3_9230106C11 was localized in the cytoplasm of CD4+ T
cells (Figure 7).

Prediction of lncRNA
fantom3_9230106C11 Targets
The above results indicated that lncRNA fantom3_9230106C11
may be involved in Th2 cell differentiation in asthma. LncRNA
fantom3_9230106C11 was located at chr6:34412743–34415062
(GenBank: AK033773.1), overlapping with intron 3, exon 4,
and intron 4 of Akr1b7 (chr6: 34412362–34423137). Sequence
blast analysis shows that lncRNA fantom3_9230106C11 is

FIGURE 5 | Measurement of selected lncRNAs using qRT-PCR ex vivo.
(A) CD4+ T cells in the asthma had lower T-bet and increased Gata-3
expression. Representative result for 3 independent experiments. (B) The
expression of randomly selected lncRNAs in CD4+ T cells between the
asthma and control groups were quantified ex vivo. ∗p < 0.05, 6∼8 samples
were analyzed in each group.

99.8% similar with Mus musculus lncRNA URS00009B6C6F6.
In the NONCODE (current version v5.0) http://www.noncode.
org/, Mus musculus lncRNA URS00009B6C6F is renamed
with NONMMUT056297.2, which is highly expressed in the
hippocampus (Data Source:ERP000591).

We further explored the potential candidates that may interact
with the lncRNA. Diverse transcription factors, such as T-bet,
Gata-3, c-maf, stat4, stat5, stat6, jun-b, Dec-2, IRF4, Notch, Gfi-
1, and YY1, may be involved in Th2 differentiation (Hwang
et al., 2013; Lee, 2014). We used LncTar (Li et al., 2015) and

6https://rnacentral.org/rna/URS00009B6C6F
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FIGURE 6 | Quantification of LncRNA in Th1 and Th2 cells in vitro. (A) Typical cytokines and transcription factors for Th1 or Th2 were measured using qRT-PCR. Th1
cells exhibited elevated T-bet and IFN-γ levels. In contrast, Th2 cells expressed higher levels of Gata-3 and IL-4. In each group, 4 samples were analyzed.
(B) Intracellular cytokines in Th1 and Th2 cells were measured by flow cytometry. Representative result for 3 independent experiments. (C) LncRNA
fantom3_9230106C11 was measured in Th1 and Th2 cells in vitro using qRT-PCR. In each group, 5 samples were analyzed. ∗p < 0.05.

found that lncRNA fantom3_9230106C11 had no effects on the
mRNAs of these transcription factors. The Consite Predication
Database (Mahmood et al., 2018) showed that transcription
factors Gata1, Gklf, SOX17, S8, and Ahr-ARNT may be bound
to the promoter of LncRNA fantom3_9230106C11. In addition
to transcription factors, a wide range of miRNAs contribute
to Th2 differentiation, i.e., miR-17∼92, miR-29, miR-126, miR-
132-3p, miR-148a, mir-24, mir-27, mir-19, and mir-155 were
confirmed to regulate Th2 differentiation (Istomine et al., 2016;
Pua et al., 2016). In the LncTar, Bibiserv, and RNA 22 analysis,
lncRNA fantom3_9230106C11 was predicted to bind with miR-
19 and other miRNAs. Collectively, the potential candidates of

LncRNA fantom3_9230106C11 may include Akr1b7, Gata1 and
miRNAs (Figure 8).

DISCUSSION

Allergic bronchial asthma is a common chronic inflammation
with well-defined pathological features, including intermittent
airway hyperresponsiveness, pulmonary eosinophil infiltration,
and excessive mucus secretion (Chang et al., 2015). Numerous
studies have demonstrated that allergic asthma is driven
predominantly by a Th2 type of immune response in both human
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FIGURE 7 | Intracellular location of fantom3_9230106C11 expression in CD4+ T cells by FISH. The nucleus was stained with DAPI, and lncRNA was stained with
probe-cyt3. RiboTM U6 and RiboTM 18S were used as reference controls for subcellular localization.

and mouse models of asthma (Kaiko and Foster, 2011). LncRNAs
have been linked with airway smooth muscle cells in asthma
(Zhang et al., 2016; Austin et al., 2017; Yu et al., 2017; Zhang X.-
Y. et al., 2017). However, to our knowledge, there is no report
on lncRNA expression in CD4+ T cells in asthma. Therefore,
we constructed a mouse model of acute asthma and screened
RNA transcripts (mRNAs, lncRNAs) from CD4+ T cells via
next-generation sequencing.

In our study, we identified 134 lncRNAs and 301 mRNAs
abnormally expressed in CD4+ T cells of asthma compared with
controls. In the mRNA expression pattern analysis, elevated Ear7,
Ear6 and Epx were closely associated with eosinophils and type
2 inflammations (Ochkur et al., 2017). IL-4, IL-13, and IL-21
(Lajoie et al., 2014), which promoted Th2 differentiation and
allergic asthma, were also significantly increased in the CD4+ T
cells from the asthma mouse model. However, the Th1 master
transcription factor T-bet and the Th2 master transcription factor
Gata3 were comparable in CD4+ T cells from both control and
asthma mice, suggesting that Th2 differentiation in asthma may
be independent of Gata3 (O’Shea and Paul, 2010). In the lncRNA
profile analysis, the roles of a wide range of lncRNAs with varied
expression in asthma CD4+ T cells were largely unknown. In
the lncRNA and mRNA co-expression network, lncRNAs may
regulate diverse mRNAs, including Ear6 and Epx, which are
required for Th2 differentiation and asthma etiology.

Using real-time qRT-PCR, we demonstrated that lncRNA
fantom3_9230106C11 was decreased in CD4+ T cells

from asthma mice ex vivo and in Th2 cells in vitro. By
filtering the aberrantly expressed genes located near the
lncRNA fantom3_9230106C11s, we found that lncRNAs
might regulate the transcription of Akr1b7 in cis. lncRNA
fantom3_9230106C11s covered intron 3, exon 4, and intron 4
of Akr1b7. Akr1b7 encodes aldose reductase-related protein
1, which may catalyze xenobiotic aromatic aldehydes (Liu
et al., 2009). The roles of Akr1b7 in Th2 differentiation or
asthma, however, remain uncertain. The bioinformation
prediction indicated that the transcription factors Gata1, Gklf,
and Ahr-ARNT may be potential candidates for lncRNA
fantom3_9230106C11. Gata1 served as a surrogate for Gata3 in
its canonic role of programming Th2 gene expression (Sundrud
et al., 2005). Gklf (gut-enriched Krüppel-like factor; or Kruppel-
like factor 4, KLF4) was required in Th2 cell responses in vivo
(Tussiwand et al., 2015). Ahr-ARNT, which may regulate IL-33,
IL-25, and TSLP, was closely associated with allergic severe
asthma (Weng et al., 2018). Moreover, considering that lncRNA
fantom3_9230106C11 resides in the cytoplasm, it may interact
with miR-19 and other miRNAs, which are closely associated
with Th2 differentiation.

Our study was not without limitations. First, BALB/c and
C57BL/6 mouse strains are the two most commonly used in
asthma models. Compared with the C57BL/6 mice used in
this study, BALB/c mice were more prone to a Th2 immune
response (Gueders et al., 2009). Although allergic asthma was
Th2-dominated, Th1 and other CD4+ T subpopulations were
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FIGURE 8 | Bioinformatics analysis of lncRNA fantom3_9230106C11. (A) Putative transcription factor binding sites found along the lncRNA fantom3_9230106C11
using Consite and TF scores >95%. (B) The Venn diagram of potential miRNA candidates using LncTar, Bibiserv, and RNA22.

also involved in the initiation and aggravation of disease.
Therefore, the C57BL/6 mouse model was well recognized in
the recapitulation of disease features in asthma. Second, spleen
CD4+ T cells rather than lung CD4+ T cells were analyzed in
the present study. We tried to sort CD4+ T cells from lung
parenchyma and pulmonary lymph nodes. However, there were
not enough purified CD4+ T cells (5∗106 from each mouse)
to complete the NGS experiment. Previously, adoptive transfer
experiments demonstrated that peripheral CD4+ T lymphocytes
regulate asthma pathogenesis (Cohn et al., 2004; Hubeau et al.,
2006). Therefore, we postulated that spleen CD4+ T cells may
be surrogates for peripheral CD4+ T lymphocytes. Third, we
have not validated our observations in the clinical samples.
LncRNAs are considered poorly conserved across different

species (Ma et al., 2013). However, the conservation may be
multidimensional (Diederichs, 2014). The expression of aberrant
lncRNAs (lncRNA fantom3_9230106C11) in the clinical samples
should be evaluated.

CONCLUSION

In conclusion, we conducted a comprehensive analysis of
lncRNA profiles in CD4+ T cells from an asthma model
using next-generation sequencing. The co-expression network
of lncRNAs and mRNAs was constructed. The present study
provided a platform for elucidating the roles of lncRNAs in Th2
differentiation and asthma pathogenesis.
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In the past decade, hundreds of long noncoding RNAs (lncRNAs) have been identified 
as significant players in diverse types of cancer; however, the functions and mechanisms 
of most lncRNAs in cancer remain unclear. Several computational methods have been 
developed to detect associations between cancer and lncRNAs, yet those approaches 
have limitations in both sensitivity and specificity. With the goal of improving the prediction 
accuracy for associations of lncRNA with cancer, we upgraded our previously developed 
cancer-related lncRNA classifier, CRlncRC, to generate CRlncRC2. CRlncRC2 is an 
eXtreme Gradient Boosting (XGBoost) machine learning framework, including Synthetic 
Minority Over-sampling Technique (SMOTE)-based over-sampling, along with Laplacian 
Score-based feature selection. Ten-fold cross-validation showed that the AUC value of 
CRlncRC2 for identification of cancer-related lncRNAs is much higher than previously 
reported by CRlncRC and others. Compared with CRlncRC, the number of features 
used by CRlncRC2 dropped from 85 to 51. Finally, we identified 439 cancer-related 
lncRNA candidates using CRlncRC2. To evaluate the accuracy of the predictions, we 
first consulted the cancer-related long non-coding RNA database Lnc2Cancer v2.0 
and relevant literature for supporting information, then conducted statistical analysis of 
somatic mutations, distance from cancer genes, and differential expression in tumor 
tissues, using various data sets. The results showed that our approach was highly 
reliable for identifying cancer-related lncRNA candidates. Notably, the highest ranked 
candidate, lncRNA AC074117.1, has not been reported previously; however, integrated 
multi-omics analyses demonstrate that it is the target of multiple cancer-related miRNAs 
and interacts with adjacent protein-coding genes, suggesting that it may act as a 
cancer-related competing endogenous RNA, which warrants further investigation. In 
conclusion, CRlncRC2 is an effective and accurate method for identification of cancer-
related lncRNAs, and has potential to contribute to the functional annotation of lncRNAs 
and guide cancer therapy.
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INTRODUCTION

Cancer is a leading cause of death worldwide (Siegel et al., 2018) 
and it is established that cancers are caused by genetic and 
epigenetic changes (Kanwal and Gupta, 2010; You and Jones, 
2012). Hence, high throughput technologies to characterize 
genes associated with cancer have applications with crucial 
implications for human health. Long non-coding RNAs 
(lncRNAs) account for the vast majority of non-coding RNAs 
longer than 200 nucleotides, and were previously considered 
“junk” RNA, due to their low coding potential; however, over 
recent decades, lncRNAs have been recognized as significant 
regulators of multiple major biological processes impacting 
development, differentiation, and metabolism (Bhan and 
Mandal, 2015). In cancer, lncRNAs act via multiple mechanisms, 
including regulation of chromatin topology in both cis and trans 
(chromatin remodeling, chromatin interactions), scaffolding 
of proteins and other RNAs, acting as protein and RNA decoys 
(competing endogenous RNA, ceRNA), regulating neighboring 
genes as natural antisense transcripts (NATs), and producing 
micropeptides (Aab et al., 2016; Ransohoff et al., 2018).

The aberrant expression of lncRNAs has been linked to typical 
cancer hallmarks, such as continuous proliferation, bypassing 
apoptosis, genomic instability, drug resistance, invasion, and 
metastasis (Renganathan and Felley-Bosco, 2017; Bhan et al., 
2017; Balas and Johnson, 2018; Wang et al., 2019). For example, 
the lncRNA growth arrest-specific transcript 5 (GAS5), which 
is down-regulated in almost all tumor tissues, can suppress 
the tumorigenesis of cervical cancer by downregulating miR-
196a and miR-205 (Yang et al., 2017), while LncRNA‐PVT1, 
which is up-regulated in non-small cell lung cancer (NSCLC), 
can improve tumor invasion and metastasis (Yang et al., 2014). 
Further, Hox transcript antisense intergenic RNA (HOTAIR), 
which contributes to epigenetic regulation of genes, plays an 
important role in various cellular pathways by interacting with 
Polycomb Repressive Complex 2 (PRC2) (Mercer and Mattick, 
2013). In addition, due to dynamic changes in their expression 
levels as cancer develops, some lncRNAs are regarded as potential 
biomarkers and therapeutic targets (Hanahan and Weinberg, 
2011; Bhan et al., 2017). The most prominent example of such 
a biomarker is prostate cancer antigen 3 (PCA3), a lncRNA 
expressed at high levels in prostate cancer (De Kok et al., 2002; 
Yarmishyn and Kurochkin, 2015). The detection of PCA3 in 
urine is a more specific marker for prostate cancer diagnosis 
than the commonly used factor, prostate specific antigen 
(PSA), and has been widely applied in the clinic (Hessels et al., 
2003; Tinzl et al., 2004). Another example is lncRNA TUC339, 
which is highly enriched in extracellular vesicles secreted by 
hepatocellular carcinoma cells, where it regulates the growth and 
adhesion of tumor cells (Kogure et al., 2013). These features of 
lncRNA prompted us to search for efficient methods to predict 
functional lncRNAs in cancer, to facilitate deeper understanding 

of malignancies and the potential application of lncRNAs as 
targets for cancer therapies and diagnostics.

Systematic understanding of the contributions of lncRNAs to 
cancer is challenging, partly due to the unpredictability of lncRNA 
functional elements, as well as their relatively low conservation, 
low expression levels, and diverse functional mechanisms. 
The functions of a single lncRNA, or several lncRNAs, can be 
determined using experimental methods; however, this approach 
is time consuming and costly. The successful implementation of 
machine learning systems for the study of genomics, proteomics, 
systems biology, and evolution, has been a great inspiration to 
the field of life sciences more generally (Larranaga et al., 2006). 
Using machine learning algorithms, we can determine the high 
dimensional characteristics of functional lncRNAs from an 
informatics perspective. To successfully apply machine learning 
to the identification of functional lncRNAs in cancer genomics, 
it is fundamental to first identify positive and negative sets. For 
this purpose, there are a number of repositories from which 
cancer-related lncRNAs can be conveniently obtained, including 
Lnc2Cancer v2.0, a manually curated database that provides 
comprehensive experimentally supported associations between 
lncRNAs and human cancer (Gao et al., 2019), and CRlncRNA, 
another manually curated database that uses stricter criteria 
to retain only data related to cancer hallmarks that have been 
experimentally confirmed (Wang et al., 2018). These databases 
can be exploited to develop machine learning models to predict 
and rank cancer-related lncRNAs. There has been relatively little 
research that has attempted to use machine learning methods to 
predict functional lncRNAs in cancer. For example, Zhao et al. 
(2015) presented the first naïve Bayes based machine learning 
method, and identified 707 cancer-related lncRNA candidates. In 
our previous work, we used a Random Forest based algorithm, 
CRlncRC, to classify cancer-related lncRNAs and other lncRNAs, 
through integration of 85 features (Zhang et al., 2018); however, 
compared with the computational prediction work reported 
for cancer-related protein-coding genes, the identification of 
cancer-related lncRNAs remains preliminary. The sensitivity and 
specificity of methods to predict cancer-related lncRNAs require 
further improvement.

In this study, we developed a new cancer-related lncRNA 
classifier, CRlncRC2. Compared with CRlncRC, CRlncRC2 uses 
the Laplacian score feature selection method to reduce training 
time and prevent over-fitting. In addition, unlike the naïve 
under-sampling method adopted by CRlncRC, we address the 
data imbalance problem, which is caused by the relatively small 
size of available positive sets of cancer-related lncRNAs, using 
the Synthetic Minority Over-sampling Technique (SMOTE) 
method, to balance imbalanced data, while aiming to retain 
all important information. Moreover, CRlncRC2 uses a more 
powerful machine learning model, extreme gradient boosting 
machine (XGBoost), to improve its predictive performance. 
Ten-fold cross-validation showed that the area under the 
receiver operating characteristic curve (AUC or area under 
ROC curve) score of CRlncRC2 is much higher than those 
of CRlncRC (0.86 vs. 0.82) and the method developed by 
Zhao et al. (0.90 vs. 0.79). Finally, 439 possible cancer-related 
lncRNAs were identified using CRlncRC2, of which 5 in the 

Abbreviations: AUC, area under the ROC curve; ceRNA, competing endogenous 
RNA; DT, decision tree; lncRNA, long non-coding RNA; ROC, Receiver operating 
characteristic; SVM, support vector machines; XGBoost, extreme gradient 
boosting machine
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top 20 were confirmed using the Lnc2Cancer v2.0 database. 
Further, statistical analyses show that the identified lncRNAs 
are closer to cancer protein genes, carry more mutations, and 
are more likely to be differentially expressed in tumor tissues 
than negative lncRNAs. In addition, survival analysis revealed 
a significant difference in overall survival between the low and 
high expression groups of the top 10 predictions. In particular, 
one lncRNA, AC074117.1 (ENSG00000234072), which was the 
top ranked of our predictions and has not been reported in the 
literature, is suggested as being highly likely to be associated with 
cancer in the lncRNA-related ceRNA network. In conclusion, 
CRlncRC2 exhibited good performance in both cross-validation 
and prediction evaluation. We believe our framework will be a 
useful tool for study of lncRNA–cancer associations.

MATERIALS AND METHODS

Our experiment followed the pipeline illustrated in Figure 1A, 
which consisted of four main steps: Data preparation, Feature 
engineering, Model training, and Prediction and validation. The 
detailed processes of feature selection and cross-validation are 
presented in Figures 1B, C.

Data Preparation
Cancer-related lncRNAs (positive set) and cancer unrelated 
lncRNAs (negative set) were downloaded from CRlncRC (https://
github.com/xuanblo/CRlncRC). The criteria for cancer-related 
lncRNA collection include either differentially expressed in 
cancer (as verified by Real-Time qRT-PCR), co-occurred with a 
significant relevant clinicopathological parameter (e.g., tumor 
differentiation, clinical stage, and survival time), or proven by 
functional experiments (e.g., colony formation assay, matrigel 
invasiveness assay, xenograft mouse model, and metastasis nude 
mouse model). As the category of cancer unrelated lncRNA is 
difficult to define, and for consistency with other classifiers, we 
located a large number of single-nucleotide polymorphisms 
(SNPs) associated with phenotypes derived from the NHGRI-EBI 
GWAS Catalog (Welter et al., 2014) in the sequences of lncRNAs, 
and only those lncRNAs which had no phenotype-related SNPs 
detected within its 10 kb up/down stream were selected as cancer 
non-related lncRNAs. Finally, we identified 158 positive lncRNAs 
(Data Sheet 1) and 4,533 negative lncRNAs (Data Sheet 2).

We downloaded lncRNA feature data from CRlncRC; 
CRlncRC retrieves 85 features and groups them into four 
categories: genomic features, expression features, epigenetic 
features, and network features. Feature category, name, 
source database, and description information are detailed in 
Data Sheet 3.

Feature Engineering
Features play an essential role in classification, and appropriate 
features can improve classification performance significantly. 
In cancer genomic research, the currently known cancer-
related lncRNA (positive) set are only available because they 
were identified by humans. It is possible that some samples in 

the negative set may be considered to belong to the positive set 
in the future. Hence, we employed Laplacian scoring (He et al., 
2005), which is designed to select features without labels, as a 
criterion to evaluate the correlations of each feature. The basic 
idea of Laplacian score is to evaluate the features according to 
their locality preserving power, which is from the Laplacian 
Eigenmaps (Chung, 1997) and Locality Preserving Projection 
(He and Niyogi, 2003).

In detail, we applied the scikit-feature (Li et al., 2017) to 
calculate Laplacian scores; the parameters for the affinity matrix 
used for the calculation are as follows: metric = euclidean, 
neighbor mode = knn, and k = 5. Calculated scores range from 
0 to 1, with smaller values indicating more important features. 
The distribution of calculated Laplacian scores is presented in 
Figure 2 and clearly shows that there are large margins in each 
category of features. In this case, we can determine the difference 
between the sorted Laplacian scores (asc) and use the first two 
differential values to set a threshold. Specifically, we set the 
margins in “Epigenetic” to the second and third largest differential 
values, because these appeared to be the inflection points. Hence, 
the features were split into three parts, and the features located 
in the lower part (i.e., those with scores indicating that the 
features are more important) retained immediately. Nevertheless 
it is not advisable to simply remove those features located in the 
other parts, as these also contain some information. Therefore, 
we merged the features according to the mean in each part and 
retained the merged features to preserve the information. For 
example, the middle scoring part of “Expression” contains two 
features, and we removed these two features, while retaining their 
mean value. The mean-merged feature obtained from the high 
scoring parts were also retained. Finally, generated training and 
validation sets by concatenating the processed category features. 
Changes in the feature number in each category are summarized 
in Table 1. After feature selection, we obtained 51 features, eight 
of which are synthetic. A “Bigtable”, containing 11194 lncRNAs 
from CRlncRC, with 85 features, is included in Data Sheet 4.

Model Training
The machine learning method, XGBoost (Chen and Guestrin, 
2016), was tuned to search for an optimal prediction solution. 
XGBoost is a type of gradient boosting decision tree method; its 
objective function is defined in equation (1).

 
( ) ( ˆ ) ( ),φ = +

= =∑ ∑loss i i
i

n

k
k

K
y y f

1 1
Ω

 
 (equation 1)

where loss is the training loss, Ω(f) is the complexity of the tree, 
and K is the number of trees in the model. This model can be 
optimized by minimizing this objective function. To this end, 
an additive training method was employed for training loss, and 
prediction at the additive tth training round could be quickly 
optimized using Taylor expansion. The greedy algorithm [31] 
was used to determine optimal tree complexity.

In our study, we used the dmlc XGBoost library (https://
xgboost.ai/) for implementation of the XGBoost model. To tune 
the hyper-parameters, we first adopted Bayesian optimization to 
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FIGURE 1 | Pipeline for the experiment. (A) Designment of experimental workflow. (B) Details of feature selection. (C) Details of 10-fold cross validation with 
over-sampling.
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search for potential hyper-parameters and then manually fine-
tuned those hyper-parameters to improve the performance of the 
model. The hyper-parameters for XGBoost primarily control the 
growth and the robustness of the model:

• Growth: n estimators, max depth, and learning rate
• Robustness: colsample bytree, subsample, and gamma

In addition, as our sample was unbalanced (the ratio of 
the minority positive class versus majority negative class was 
approximately 1/30), we adopted SMOTE (Nakamura et al., 2013) 
to re-sample our training set by Bayesian optimization, which 
reduces the impact of data imbalance. The final tuning result for 

this model is n estimator = 546, max depth = 10, learning rate = 
0.01, colsample bytree = 0.7, subsample = 0.826, and gamma = 
0.036.

Ten-fold cross validation was adopted to evaluate the model 
trained by parameters obtained using Bayesian optimization. The 
algorithm stratified shuffles the total samples into 10 folds, and 
begins an iteration: each time 9 folds are initially over-sampled, 
and then assigned for training. The single remaining fold is 
adopted as the pair for validation. Subsequently, the over-sampled 
training set was used to fit the model, while the validation set 
was utilized to evaluate the model’s performance. Note that the 
validation set in each iteration is not re-sampled and does not 
include any data used for training. Further, the models trained 

FIGURE 2 | Laplacian score distribution. Right, sorted scores (asc). Red dotted line and dashed line, assumed thresholds.

TABLE 1 | Changes in feature number for each type of feature.

Epigenetic Expression Genomic Network

Feature number before feature selection
LP* MP* UP* LP* MP* UP* LP* MP* UP* LP* MP* UP*
20 5 2 12 2 2 9 2 7 4 9 11
Feature number after feature selection
22 14 11 6

*LP, lower part of Laplacian Score; MP, middle part of Laplacian Score; UP, higher part of Laplacian Score.
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on each iteration are independent of one another. To rigorously 
evaluate the performance of our model, we measured the AUC 
scores using the abovementioned 10-fold cross-validation 
(Figure 1C).

Further, to rigorously evaluate the model’s performance, we 
measured the recall, precision, and F1 score, using the 10-fold 
cross-validation process described above.

The recall is the ratio of correctly predicted positive 
observations to all observations in a specific class, and was 
calculated using equation 3:

 
Recall FN= TP

TP
+ , (equation 2)

The precision is the ratio of correctly predicted positive 
observations to total predicted positive observations, and was 
calculated using equation 4:

 
Precision = TP FP

TP
+ ,  (equation 3)

The F1 Score is the weighted average of Precision and Recall, 
and was calculated using equation 5:

 
F score1 2= ∗ ∗

+
( )
( )

,Recall Precision
Recall Precision  (equation 4)

Prediction and Evaluation
To predict novel cancer-related lncRNAs, we used our pre-trained 
model to predict 7,253 unknown lncRNAs from TANRIC [33]. 
To evaluate the accuracy of our model, we used various methods 
to test the reliability of our predictions. First, predictions were 
searched against the Lnc2Cancer v2.0 database. Next, the 
Kolmogorov-Smirnov test was used to examine whether there 
were significant differences among the different sets (positive, 
negative, and predictive) in the distance to cancer protein-coding 
genes, mutation numbers, and numbers of samples differentially 
expressed between tumor and normal tissues. Mutation data 
and cancer protein-coding gene sets were download from 
COSMIC [34]. Tumor and normal tissue expression profiles were 
downloaded from TANRIC. Further, survival analysis for the top 
10 predictions was conducted using TANRIC.

RESULTS

Data Collection
We collected 158 highly trusted cancer-related lncRNAs from 
CRlncRC as our positive data set. All have been reported in 
the literature with the support of strict experimental validation 
and are involved with cancer hallmarks. lncRNAs (n = 4,553) in 
CRlncRC without phenotype-related SNPs within 10 kb up- or 
down-stream were used as our negative data set. In CRlncRC, 
we collected 85 features that could potentially facilitate the 

recognition of cancer-related lncRNAs and grouped them into 
four different categories (see Data Sheet 3 for details): Genomic 
features (such as GC content and sequence conservation score), 
Expression features (the expression profiles of lncRNAs in 16 
different tissue types), Epigenetic features (different types of 
epigenetic signals in different types of cell lines), and Network 
features (the interactions between lncRNAs and cancer-related 
protein-coding genes and miRNAs). After feature selection using 
Laplacian scores, we reduced the feature number from 85 to 51. 
Cumulative curves were plotted and showed that the distribution 
of the feature values between the positive and negative sets was 
significantly different (Kolmogorov-Smirnov test, p-value < 0.05) 
(Data Sheet 5). The number in each feature category before and 
after feature selection is shown in Table 1.

Performance Evaluation
The results of 10-fold cross-validation are presented in Figure 3. 
We drew 10 ROC curves, which had minimum and maximum 
AUC values of 0.73 and 0.93, respectively, and an average value 
of 0.86 ± 0.6. In addition to AUC values, additional evaluation 
indicators were used to assess our results, including precision, 
recall, and F1-Score (Table 2). The average precision, recall, and 
F1-Score values were 0.72, 0.62, and 0.65, respectively. Overall, 
these data demonstrate that CRlncRC2 is an efficient tool for 
identification of lncRNAs related with cancer, with high accuracy 
and stable performance.

Compared with other methods, CRlncRC2 has superior 
performance. Relative to CRlncRC, CRlncRC2 reduced features 
number from 85 to 51 and the mean AUC value reached 0.86, 
which is 0.04 higher than that achieved using CRlncRC (Figure 
4A). Further, we compared the prediction performance of 
CRlncRC2 with that of the method described by Zhao et al. 
(2015). To ensure a fair comparison, we retrained our CRlncRC2 
method using the dataset reported by Zhao et al. Compared with 
the method of Zhao et al., the resulting mean AUC value for 
CRlncRC2 was much higher (0.90 vs. 0.79) (Figure 4B).

To determine why CRlncRC2 performed better than CRlncRC, 
we analyzed the feature importance (XGBoost importance weight) 
in CRlncRC2 (Data Sheet 6). Compared with the features used 
in CRlncRC, it is clear that the epigenetic and expression feature 
numbers in CRlncRC2 were almost unchanged, while those of 
genomic features were reduced by half, while network features 
were decreased by two thirds (Figure 5A). Expression features 
were two among the top ten most important features in CRlncRC2, 
while they were not among the top ten in CRlncRC (Figure 5B). 
In addition, there are four types of features in the top 20 features 
of CRlncRC2, indicating that CRlncRC2 can make better use 
of different features (Figure 5C). Furthermore, as illustrated in 
Figures 5C, D, the proportions of epigenetic features among the 
first 20 and 50 features for CRlncRC2 were much larger than 
those for CRlncRC. Surprisingly, although genomic and network 
features accounted for a small proportion, the three synthetic 
genomic and network features (Gen_LevelTwo, Gen_LevelOne, 
and Net_LevelTwo) ranked the highest, indicating that synthetic 
features generated by combining low Laplacian score features 
may contribute substantially to the model (Figure 5E). Two 
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repeat features, short interspersed nuclear element (SINE) 
and long interspersed nuclear element (LINE) signals on gene 
bodies, ranked No. 4 and No. 5, followed by gene expression 
level in colon tissue (No. 6), prostate gland (No. 8), “H3k4me1” 
epigenetic modification signals within the Transcription Start 
Site upstream and downstream 5k (TSS5k) region in GM12878 
(No. 7), and “H3k4me3” epigenetic modification signals within 
lncRNA gene body/TSS1k region in H1hesc/GM12878 cell line 
(No. 9 and No. 10).

We further evaluated the effectiveness of our approach to 
dealing with the available imbalanced data. The SMOTE over-
sampling method was used to balance the imbalanced data, and 
it contributed to an increase of 0.01 in the AUC value, relative to 
non-SMOTE adjusted data (Figure 6A). In addition, to compare 
the performance of different machine learning algorithms, 
several models were compared using the non-SMOTE adjusted 
over-sampling data. ROC curve analysis showed that the 
XGBoost-based method performed better than Decision tree 
(DT) (0.85 vs. 0.60) and Support Vector Machine (SVM) (0.85 
vs. 0.74) -based approaches (Figure 6B). These results indicate 
that our new method facilitated superior performance relative 
to previous methods. XGBoost contributed substantially to the 
AUC values, while data over-sampling was also very important.

Statistical Analysis of Candidate Cancer-
Related lncRNA Candidates
We used the pre-trained model to predict novel candidate cancer-
related lncRNAs from 7,253 unknown lncRNAs, which were not 
in our training or testing sets. Finally, we predicted 439 cancer-
related lncRNA candidates (Data Sheet 7). First, we used the data 
from the newly updated database, Lnc2Cancer v2.0, to test our 

FIGURE 3 | ROC for 10-fold cross-validation.

TABLE 2 | Performance of 10-fold cross-validation.

Ten-fold 
cross-validation

Precision Recall F1-Score

macro avg fold 0 0.74 0.56 0.59
macro avg fold 1 0.90 0.66 0.72
macro avg fold 2 0.57 0.55 0.56
macro avg fold 3 0.77 0.62 0.67
macro avg fold 4 0.71 0.62 0.65
macro avg fold 5 0.78 0.71 0.74
macro avg fold 6 0.67 0.65 0.66
macro avg fold 7 0.74 0.65 0.68
macro avg fold 8 0.65 0.59 0.62
macro avg fold 9 0.70 0.60 0.63

124

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Cancer-Related LncRNAs Identification Using XGBoostZhang et al.

8 August 2019 | Volume 10 | Article 735Frontiers in Genetics | www.frontiersin.org

predictions, since we did not collect our positive dataset from 
this database. We studied the intersection of our predictions and 
their collections. Among our top 10, 20, and 50 predictions, 2, 5, 
8 lncRNAs, respectively, were also collected by Lnc2Cancer, and 
were functionally validated as cancer-related (Figure 7A). In total, 
47 candidate cancer-related lncRNAs were found in Lnc2Cancer 
(Data Sheet 7). According to the tag information provided in the 
Lnc2Cancer database, these lncRNAs can be classified into several 
categories: drug-resistant, methylation, circulating, transcription 
factor (TF), and variant (Data Sheet 8, Figure  A). Further, we 
selected the top 10 among these 47 cancer-related lncRNAs and 
evaluated their expression in cancers. Surprisingly, almost all 
lncRNAs exhibited inconsistent changes in expression in various 
tissues (Data Sheet 8, Figure B), confirming their functional 
diversity and reflecting the strong tissue specificity of lncRNAs. 
In addition, the 47 predicted lncRNAs had roles in numerous 
malignant tumors, including 17 involved in colorectal cancer, 
10 in gastric cancer, and 10 in hepatocellular carcinoma (Data 
Sheet 8, Figure C).

Using statistical methods and multigroup data, we further 
analyzed the reliability of our predictions. First, we hypothesized 
that the potential cancer-related lncRNAs were likely to have 
more somatic mutations in cancer genomes, since many previous 
studies have demonstrated that mutations in functional genes are 
a primary cause of carcinogenesis. To validate this assumption, 
we compared the number of somatic mutations (documented in 
COSMIC) between different lncRNA sets and a cancer-related 
protein-coding gene set (Figure 7B). The results showed that the 
cancer-related protein-coding gene set, as the positive control, 
contained far more somatic mutations than the cancer-unrelated 
lncRNA set (negative control, Kolmogorov-Smirnov test, 
p-value = 6.10e-33). The somatic mutation numbers in both the 
positive and predicted cancer-related lncRNA sets were between 
those of cancer-unrelated lncRNAs and cancer-related protein-
coding genes, with a significantly higher quantity than those in 
cancer-unrelated lncRNAs (Kolmogorov-Smirnov test, p-value 
2.35e-07 and 8.27e-06, respectively).

As a number of lncRNAs exert their function in cis, by influencing 
neighboring genes, we assumed that these potential cancer-related 
lncRNAs were likely closer to cancer-related protein-coding genes 
than cancer-unrelated lncRNAs. Therefore, we calculated the 
distances of different lncRNA sets to their closest cancer-related 
proteins, and compared them with the random background (i.e., 
the distance between cancer-related protein-coding genes and 
random positions in genome) (Figure 7C). We found that the 
distances between cancer-unrelated lncRNAs and cancer-related 
protein-coding genes were significantly larger than those between 
cancer-related lncRNAs and cancer-related protein-coding genes 
(Kolmogorov-Smirnov test, p-value = 4.1e-4). Similarly, the distance 
of predicted cancer-related lncRNAs from cancer-related protein-
coding genes was far shorter than that of cancer-unrelated lncRNAs 
(Kolmogorov-Smirnov test, p-value = 4.9e-06). Moreover, no 
significant difference in distance was detected between background 
and the cancer-unrelated lncRNA set, as expected.

Next, we examined whether the expression levels of cancer-
related lncRNAs differed from those of cancer-unrelated lncRNAs 
in cancer samples (Figure 7D). Using lncRNA expression data 
from the TANRIC database, we calculated the percentage of 
lncRNAs that were differentially expressed (absolute log2-fold 
change > 1) between cancer and paracancerous tissue sample 
pairs, to determine whether this differed among the lncRNA 
sets. We found that lncRNAs in the positive set had the highest 
percentage of differentially expressed genes (approximately 
40%), while the value for the negative set was only approximately 
20%. Among predicted cancer-related lncRNAs, > 35% of them 
showed differential expression. These results further support 
the association of our prediction products with cancer, and 
also reveal that simple dependence on differential expression to 
identify cancer-related lncRNAs is far from sufficient.

Case Study
Although functional identification of lncRNAs is very challenging, 
using bioinformatics analysis, database searches, and literature 

FIGURE 4 | Comparison of accuracy. (A) CRlncRC2 ROC generates an AUC value 0.04 higher than that achieved using CRlncRC. (B) CRlncRC2 ROC generates 
an AUC value 0.11 higher than that achieved using the method of Zhao et al.
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FIGURE 5 | Comparison of feature numbers in the four feature categories. (A) Comparison of total features in CRlncRC2 and CRlncRC. CRlncRC contains 85 
features, and after feature selection, 51 remained in CRlncRC2. (B) Comparison of the top 10 features in CRlncRC2 and CRlncRC. (C) Comparison of the top 20 
features in CRlncRC2 and CRlncRC. (D) Comparison of the top 50 features in CRlncRC2 and CRlncRC. (E) Bar plot of the top 10 features used in CRlncRC2.
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FIGURE 6 | Comparison of SMOTE and non-SMOTE, non-SMOTE XGBoost, and others. (A) The ROC generated using SMOTE XGBoost has AUC value 0.01 
higher than that achieved using non-SMOTE XGBoost. (B) The XGBoost-based ROC without SMOTE generated AUC values 0.11 and 0.25 higher than the SVM-
based and Decision Tree-based ROC curves, respectively.

FIGURE 7 | Validation of our predictions. (A) Bar plots of cancer-related lncRNA numbers confirmed by Lnc2Cancer in the top 10, top 20, and top 50.  
(B) Cumulative distribution of mutation number. (C) Cumulative distribution of the closest distance to cancer-related proteins. (D) Bar plot of the percentage of 
differentially expressed lncRNAs. 

127

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Cancer-Related LncRNAs Identification Using XGBoostZhang et al.

11 August 2019 | Volume 10 | Article 735Frontiers in Genetics | www.frontiersin.org

review, we can uncover evidence that our predictions represent 
lncRNAs with functions in cancer. For the top 10 candidate genes 
we used the TANRIC database to generate Kaplan-Meier survival 
curves for each cancer type. The results showed that there was a 
significant difference in the overall survival rate between low and 
high lncRNA expression groups for all genes in at least one tumor 
tissues (Figure 8A).

For example, survival analysis of the No. 1 lncRNA, 
AC074117.1, indicated significant differences in survival time 
between low and high expression groups in individuals with 
invasive breast carcinoma (BRCA) and kidney renal clear 
cell carcinoma (KIRC), with p-values of 1.5e-2 and 4.0e-5, 
respectively (Figure 8B, C). To study the regulatory function 
of AC074117.1, we downloaded data on cancer-related small 

FIGURE 8 | Characterization of lncRNA AC074117.1. (A) Survival statistics for the top 10 lncRNA predictions. (B) Survival analysis of AC07117.1 in BRCA.  
(C) Survival analysis of AC07117.1 in KIRC. (D) Sub-network of AC07117.1 and cancer-related miRNAs. (E) Gene structure, epigenetic features, conservation, and 
repeats of AC07117.1 in the UCSC genome browser.
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RNA molecules from The Human microRNA Disease Database 
(HMDD) (Huang et al., 2019), and the interaction network 
between lncRNAs and miRNAs from StarBase (Li et al., 2014). 
Subsequently, we constructed an interaction network between 
AC074117.1 and cancer-related microRNAs (Figure 8D). In 
addition, according to predictions using the LncRNA and Disease 
Database (version 2.0), AC074117.1 likely targets a gene cluster 
on chromosome 2, and is associated with a variety of cancers (Bao 
et al., 2019). Together, all these clues suggest that AC074117.1 
may be involved in cancer and act as a ceRNA. As shown in 
Figure 8E (data from the UCSC genome browser), AC074117.1 
is highly expressed in almost all tissues. Further, there is histone 
methylation signal in the AC074117.1 transcription start site. 
The H3K4Me3 and H3K27Ac signals in the first exon were high, 
while the H3K4Me1 signals were relatively weak. Moreover, high 
conservation signals (100 vertebrates basewise conservation 
scores generated using PlyloP) were found in its exon regions. 
Notably, there are a large number of repetitive elements in the 
whole body region of AC074117.1. These methylation signals and 
repeat elements may contribute to the mechanism by which this 
lncRNA is involved in cancer progression (Anwar et al., 2017; 
Di Ruocco et al., 2018; Solovyov et al., 2018). In conclusion, 
our predictions indicate that lncRNA AC074117.1 has a strong 
potential correlation with cancer.

In addition, recent literature reports support some of 
the predicted lncRNAs in the top 10 list; for example, the 
TRAF3IP2-AS1 lncRNA ranked second (No. 2) among our 
predictions and is a hub gene in a lncRNA-mediated ceRNA 
network that competes with the onco-lncRNAs, PVT1 and XIST, 
and could be a clinically relevant biomarker in glioblastoma (Zan 
and Li, 2019). TTC28-AS1 (No. 4) is an antisense RNA of TTC28 
which is associated with colorectal cancer (Pitkanen et al., 2014). 
Further, C1RL-AS1 (No. 10) has been linked to angiogenesis, as 
predicted in the ANGIOGENES database (Muller et al., 2016).

DISCUSSION

Accumulating reports demonstrate that lncRNAs have significant 
roles in human cancers. Using experimental methods to study the 
relationships between lncRNA and cancer is time consuming and 
costly. In contrast, computational methods enable integration of 
multi-omics data and provide additional information for data 
mining. In this study, we developed a new method, CRlncRC2, 
based on a powerful machine learning algorithm — XGBoost, 
Laplacian score feature selection, and SMOTE over-sampling, 
to predict associations of lncRNAs with cancer. Compared with 
CRlncRC, CRlncRC2 improves the performance while requires 
fewer features (see Table 3 for a detailed comparison). The results 

show that CRlncRC2 is much more sensitive and specific than 
the previous version (CRlncRC), primarily due to the selected 
algorithm model, as the results show huge differences between 
results generated using other methods and those from application 
of XGBoost. XGBoost has also been used in numerous other 
projects, achieving good results. For example, Zheng et al. 
developed a scalable, flexible approach, BiXGBoost, to reconstruct 
gene regulatory networks (GRNs), and tested it on DREAM4 and 
Escherichia coli datasets, demonstrating good performance of 
BiXGBoost in different scale networks (Zheng et al., 2018).

Machine learning algorithms have important roles in 
bioinformatics, where they facilitate the solution of problems, such 
as classification, clustering, regression, and prediction; however, 
the machine learning approach still faces a number of obstacles 
in predicting cancer-related lncRNAs. First, for biological data, 
frequently, only small positive sets are available, due to the difficulty 
of collecting information, such as patient data and experimental 
verification of functional genes, which greatly impedes the practical 
application of machine learning. Further, machine learning 
models require optimization for high performance, according to 
the specific data and situation. To address these problems, in this 
study, we selected the most stringent criteria to select the positive 
and negative sets, and used the latest histological information for 
feature extraction. We chose over-sampling in our new algorithm 
because it enables use of more information relative to under-
sampling, and the results confirmed that it can improve accuracy 
and specificity. Moreover, we merged features with high Laplacian 
scores and got eight synthesis features, which had a highest feature 
importance rank. Our findings suggest that high Laplacian score 
features still contain useful information and is not good practice to 
simply discard them.

LncRNAs have been applied in clinical practice as new 
biomarkers and prognostic indicators. Research on the relationships 
between lncRNAs and cancer is attractive and progressing very 
rapidly. Machine learning methods have the power to discover 
novel lncRNAs, including disease associated lncRNAs (Kang et al., 
2017; Bao et al., 2019). Efforts should continue to improve the ability 
of machine learning algorithms to predict cancer associations. 
Moreover, with increasing research into lncRNAs, greater quantities 
of relevant high-throughput data are becoming easier to obtain. 
The development of functional research into lncRNAs has revealed 
additional functional elements and mechanisms (Zhang et al., 2014; 
Brockdorff, 2018). Further, numerous new tools for evaluating the 
similarity of non-linear sequences, using k-mer content (Kirk et al., 
2018) and a new evolutionary classification perspective (Chen et 
al., 2016), have been developed, which can be used to extract new 
features, such as lncRNA conservation. These can facilitate better 
application of bioinformatics methods to predict cancer-related 
lncRNAs and assist in cancer diagnosis and treatment.

TABLE 3 | Comparison of CRlncRC and CRlncRC2.

Method Algorithm model Number of Features Feature selection Sampling strategy AUC

CRlncRC Random Forest 85 No Under-sampling 0.82
CRlncRC2 XGBoost 51 Yes Over-sampling 0.86
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CONCLUSIONS

In this study, we upgraded CRlncRC to CRlncRC2, using a 
powerful machine learning algorithm (XGBoost), Laplacian 
score feature selection, and an advanced over-sampling 
method (SMOTE). The results show that both XGBoost and 
SMOTE can help to improve model accuracy and specificity. 
After feature engineering, most of the expressed and 
methylated features are retained, indicating their importance 
for predicting lncRNAs with potential functions in cancer. 
Using much fewer features, CRlncRC2 has a mean AUC value 
0.04 higher than that of CRlncRC. In addition, our predicted 
top-ranking cancer-related lncRNA candidates are supported 
by Inc2Cancer v2.0, literature reports, and statistical data. In 
summary, CRlncRC2 is an effective and useful method for 
lncRNA-cancer association identification.
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The interaction of miRNA and lncRNA is known to be important for gene regulations. 
However, the number of known lncRNA-miRNA interactions is still very limited and 
there are limited computational tools available for predicting new ones. Considering that 
lncRNAs and miRNAs share internal patterns in the partnership between each other, the 
underlying lncRNA-miRNA interactions could be predicted by utilizing the known ones, 
which could be considered as a semi-supervised learning problem. It is shown that the 
attributes of lncRNA and miRNA have a close relationship with the interaction between 
each other. Effective use of side information could be helpful for improving the performance 
especially when the training samples are limited. In view of this, we proposed an end-
to-end prediction model called GCLMI (Graph Convolution for novel lncRNA-miRNA 
Interactions) by combining the techniques of graph convolution and auto-encoder. Without 
any preprocessing process on the feature information, our method can incorporate raw 
data of node attributes with the topology of the interaction network. Based on a real 
dataset collected from a public database, the results of experiments conducted on k-fold 
cross validations illustrate the robustness and effectiveness of the prediction performance 
of the proposed prediction model. We prove the graph convolution layer as designed in 
the proposed model able to effectively integrate the input data by filtering the graph with 
node features. The proposed model is anticipated to yield highly potential lncRNA-miRNA 
interactions in the scenario that different types of numerical features describing lncRNA or 
miRNA are provided by users, serving as a useful computational tool.

Keywords: LncRNA–miRNA interactions, graph convolution network, computational prediction model, regulation 
network, system biology model

INTRODUCTION

In recent years, the knowledge of the role of RNA in gene regulation has emerged from the advances 
in next-generation sequencing technologies, allowing a deeper and more comprehensive study on 
full transcriptomes of organisms. It is demonstrated by the ENCODE project that in mammals 
noncoding RNA could constitute a substantial majority of transcripts within the genome (Science, 
2004). There is as much as 98% of the whole human genome encoding for noncoding transcripts, 
most of which are processed to generate small noncoding RNA such as miRNA, or long noncoding 
RNA (lncRNA). 
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Even though the current understanding of lncRNA functions 
is still limited, it is revealed that they are key regulators of multiple 
biological processes through a complex mechanism in which their 
modular structure permits them to interact with specific proteins, 
RNA, and DNA (Wapinski and Chang, 2011). On the other hand, 
miRNAs post-transcriptionally regulate the expression of their 
target genes. Accumulating studies are showing that, similar to 
the protein-coding genes, both of these two types of noncoding 
RNA influence almost all aspects of biology (Lu et al., 2005). The 
aberrant expression level of noncoding RNAs appears to be one 
of the initiating factors of different types of disease including 
cancers (Lewis et al., 2003; Calin and Croce, 2006).

A number of studies have begun to uncover the interactions 
between miRNA and lncRNA and more and more details about 
the influence of miRNA on lncRNA function is now coming into 
view (Tay et al., 2014). In some cases, miRNA triggers lncRNA 
decay. In other cases, lncRNA acts as miRNA sponges/decoys, or 
competes with miRNA for binding mRNAs or generate miRNAs. 
Recently, the hypothesis of competing endogenous RNA (ceRNA) 
has been proposed and become a mainstream view for explaining 
the interaction between lncRNA and miRNA (Salmena et al., 
2011). Specifically, lncRNA competes with pseudogenes, circular 
RNAs and messenger RNAs for binding or sequestering 
microRNAs from the same pool through matching the miRNA 
response elements (MREs). Considering that both lncRNA and 
miRNA are keys to regulate gene expression and they interact 
with each other, it is not unexpected that their relationship in 
interaction network is firmly regulated. Understanding the 
lncRNA-miRNA interactions networks governing the initiation 
and development of diverse diseases is essential but remains 
largely uncompleted (Karreth and Pandolfi, 2013).

LncRNAs and miRNAs interact with each other forming a huge 
and complex regulation network for controlling gene expression 
on transcriptional, post-transcriptional, and post-translational 
levels. Through this multi-level regulation, these two vast families 
of noncoding RNAs are involved in almost all aspects of cell 
cycles including cell division, senescence, differentiation, stress 
response, immune activation, and apoptosis (Shi et al., 2013). In 
view of this, interactions of noncoding RNAs on the regulation 
network have attracted widespread attention in medical research 
(Huang et al., 2016a). A comprehensive understanding of the 
molecular and cellular effects of such noncoding interaction can 
offer great insight into the disease mechanism at a molecular 
level. Noncoding RNAs in those interactions newly discovered to 
be associated with a specific disease can be regarded as potential 
diagnostic markers and therefore is of high value in therapeutic 
approaches.

Some efforts have been made to design a computational 
method to meet the emerging need for an accurate prediction 
of lncRNA-miRNA interactions on a large scale. One popular 
direction is to do statistical analysis on the data collected from 
biological experiments. For example, Sumazin et al. attempted 
to construct a miRNA-mediated network of coding and non-
coding RNA interactions for inferring the key dysregulation of 
ncRNA expression in pathogenesis (Sumazin et al., 2011). The 
algorithm of Hermes they proposed for such network calculates 
the statistical significance of each RNA-miRNA-RNA triplet 

by matching the expression profiles of gene and miRNAs in 
glioblastoma. Similarly, Paci et al. and Conte et al. construct 
lncRNA-miRNA-RNA interaction network by calculating 
so-called sensitivity correlation which denotes the difference 
between Pearson correlation coefficient and partial correlation 
coefficient for each triplet obtained from the breast cancer data 
(Paci et al., 2014; Conte et al., 2017). To investigate the underlying 
roles of lncRNA in the diseases of prostate cancer and lung 
adenocarcinoma, Du et al. and Sui et al. integrate different types 
of attribute data of RNA to construct a regulatory network in 
which lncRNAs centrally mediate miRNAs (Du et al., 2016; Sui 
et al., 2016). All of these methods are designed based on statistics 
measure and their statistics analysis is for a specific type of disease. 
To identify the noncoding RNA-mediated sponge regulatory 
network in various diseases recorded in TCGA and UCEC, Wang 
et al. construct lncRNA-miRNA-gene triplet networks yielded 
by prediction algorithms. Based on such constructed networks, 
hypothesis testing approach is implemented for predicting those 
triplets associated with diseases (Wang et al., 2015).

Another direction for predicting lncRNA-miRNA is based 
on matching seed sequences. Most computational tools of such 
type, such like TargetScan, miRanda and RNAhybrid, aim at 
predicting miRNA targets selecting evolutionarily conserved 
microRNA binding sites (Zheng et al., 2017). However, it is 
pointed out by Natalia et al. that prediction using these methods 
could be of high false positives and often biologically irrelevant 
(Pinzón et al., 2017). They show that the interaction between 
lncRNAs and miRNAs is dose-sensitivity. In view of this, it 
is hardly to predict miRNA target only using the sequence 
information as they are not always dose-sensitive enough to be 
functionally regulated by miRNAs.

The past decade has witnessed the exponential growth of 
noncoding RNA expression profiling data in cancers but the 
number lncRNA-miRNA interactions underlying such big 
data is still limited (Zheng et al., 2016b). Considering that 
different attributes of noncoding RNAs are being continuously 
updated, the big data about noncoding RNAs poses significant 
challenge for data analysis and integration, which is important 
for predicting new links on the current sparse lncRNA-miRNA 
interaction network. In taking forward this area of work, some 
methods based on machine learning have been proposed. Huang 
et al. propose the first prediction model for inferring lncRNA-
miRNA on a large scale. Specifically, the EPLMI model uses a 
network diffusion method on weighted networks associated 
with expression profiles, sequence information and biological 
function (Huang et al., 2018). The basic assumption of this 
method is based on the finding that miRNAs of similar patterns 
tend to interact with similar lncRNA and vice versa. However, 
how to define the similarity among noncoding RNAs based on 
their expression profile is still an open problem. EPLMI model 
use Person correlation coefficients to compute such similarity, 
which means it assumes each element in the noncoding RNA 
features equally contributes to the similarity score. However, it 
would be inappropriate for the nature of its mechanism.

In recent years, the advance of deep learning fuels the 
widespread use of data mining in many different science areas 
including bioinformatics (Li et al., 2016). Specially, graph 
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convolution comes to be a powerful and popular technique in 
data mining for graph-based data. It proves to be powerful for 
its ability to automatically learn latent features from an end-to-
end model structure. The hidden layers within the model thus are 
able to extract meaningful information from the raw input data. 
In this work, we introduce the technique of graph convolution 
into the model of autoencoder for building an end-to-end deep 
learning prediction model called GCLMI for inferring new 
lncRNA-miRNA interaction on a large scale. Specifically, two 
different layers are respectively designed to encode and decode 
the raw feature of each nodes on the input graph. As a result, 
the decoder can yield a fully-connected network in which the 
predicted score of each link represent the confidence coefficient 
of it to be true. Different from the sequence-based algorithms 
which only consider the sequence information, GCLMI is a 
network-based algorithm which considers the known lncRNA-
miRNA interactions along with the expression levels of lncRNA 
and miRNA. In addition, GCLMI aims to compute the possibility 
of a lncRNA-miRNA pair to be interactive in biological processes 
while sequence-based tools aim to predict the binding sites of 
miRNA in transcripts.

To evaluate the prediction performance of the proposed 
model, we implement it in a real dataset of lncRNA-miRNA 
interactions. By using the frameworks of 2-fold, 5-fold and 10-fold 
cross validation, the prediction model yielded average AUCs 
of 0.8492+/−0.0013, 0.8567+/−0.0009 and 0.8590+/−0.0005, 
respectively. The results of a series of comparison experiments 
show that the model we present is superior to some methods 
previously proposed. In addition, the results also illustrate the 
ability of graph convolution to integrate the raw features of 
nodes and the topology of graph. The experimental results 
overall prove that the deep learning-based model we proposed is 
reliable to yield accurate results and robust to parameter settings. 
It is anticipated that the proposed model could be served as a 
useful computational tool for predicting large-scale lncRNA-
miRNA interactions in the scenario that know lncRNA-miRNA 
interactions along with their expression profile are given by users.

METHOD

Materials
The number of known lncRNA-miRNA interactions is still 
limited and expression profiles of lncRNA and miRNA are 
often be used for inferring those lncRNA-miRNA pairs of 
high correlations. Although the number such results is huge, 
but they are not truly confirmed by the experiments based on 
CLIP-Seq techniques and therefore would negatively affect the 
prediction results (Zheng et al., 2016a). To obtain the ground 
true data resource for our prediction, we collected a dataset of 
lncRNA-miRNA interactions that are experimentally confirmed 
from the lncRNASNP database (version v1.0). lncRNASNP is 
a comprehensive database for lncRNA and provides different 
kinds of relevant data resource including lncRNA expression 
profiling, expanded lncRNA-associated diseases, and noncoding 
variants in lncRNAs (available at http://bioinfo.life.hust.edu.cn/
lncRNASNP). The database matches the IDs of lncRNAs and 

integrates data from different public databases including that 
of lncRNA-miRNA interactions from starBase. Eight thousand 
ninety-one pairwise interactions including 780 types of lncRNA 
and 275 types of miRNA are totally recorded (Gong et al., 2014). 
Such interactions have already been verified via laboratory 
examination and therefore are of high confidence.

There are different types of data able to be used as the features of 
lncRNA and miRNA, such as sequence information of nucleotides, 
expression profiles, target genes and predicted functional 
annotations (Zheng et al., 2018). Sequence information is 
complete for both of lncRNA and miRNA but is too complicated 
for model to learn as it is nominal and of different length for 
different types. The links between noncoding RNA and target 
genes would be meaningful for inferring their interactions but 
such information is scarce and incomplete for many types of them. 
The functional annotation of noncoding RNA is important for 
understanding the characters of one noncoding RNA and many 
works have been made to inferring them by considering different 
types of complementary data. However, such information is 
yielded by prediction algorithms with additional assumptions 
and therefore is possible to cause computation bias on further 
prediction models. The superiority of expression profile data 
to others has been illustrated in our previous work by the 
experimental results (Huang et al., 2018). For such reason, we only 
focus on the expression profiles of noncoding RNAs in this work.

To collect the expression profile data of lncRNAs, we match 
the ids of lncRNAs from two different databases of lncRNASNP 
and NONCODE (http://www.noncode.org/) (Bu et al., 2011). 
For 780 types of lncRNA recorded in the lncRNASNP database, 
450 of them are successfully matched with their expression 
profiles. The data of expression profile for each type of lncRNA 
present the expression level of it in 22 different human tissues 
or cell lines. For the features of miRNAs, we collect them from 
the microRNA.org database (http://www.microrna.org/) (Betel 
et al., 2008). As a result, the ids of 230 out of 275 types of miRNA 
are successfully converted from lncRNASNP into microRNA.org 
database. Each entry of miRNA expression profiles consists of 
172 values describing the expression level of such miRNA in 172 
various tissues and cell lines in human body.

Graph Convolution
It is still an open problem to define the convolution operator on 
a graph and generalizing convolutional neural networks (CNNs) 
to arbitrary graphs comes to be a recent area of interest (Kearnes 
et al., 2016). So far, the approaches with graph convolution could 
be categorized into two types: i) one is based on definitions of 
spatial convolution and ii) the other is based on the graph spectral 
theory. The latter is more popular and is elegantly defined as 
a multiplication in the graph Fourier domain. The spectral 
framework was first to be introduce in the context of graph 
CNNs by Bruna et al. (Bruna et al., 2013). Along this direction, 
Kipf et al. propose an optimization strategy based on approximal 
first-order on the spectral filters, reducing its complexity from 
O(n2) to O(|ε|) (see Figure 1) (Kipf and Welling, 2016).

To formulate the operator of spectral convolution on graph, 
given an adjacent matrix A of graph G with its Laplacian L := 
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D – A and attributes of each node on graph (say s), Defferrard et 
al. (2016) propose spectral graph convolution to filter s by a non-
parametric kernel gθ(Λ) = diag(θ), where θ is a vector of Fourier 
coefficients. Given L can be decomposed by L = UΛUT, where Λ 
is the diagonal matrix of eigenvalues and U is eigenvector matrix, 
such operator could be defined as 

 g s Ug U sT
θ θ* =  (1)

Approximating the spectral filter by using a truncated 
expansion in terms of Chebyshev polynomials Tk(s) up to Kth 

order, the definition is as follows:

 g s T L sN
k

K

θ θ* ≈ ( )
=∑ k k´

0
 (2)

where Tk denotes Chebyshev polynomials and θʹ is a vector 
of Chebyshev coefficients. Considering the complexity of 
computing L is as large as O(n2), Kipf and Welling. (2016) further 
simplified this definition by limiting K = 1 and approximating 
the largest eigenvalue of L by 2. The convolution operator comes 
to be:

 g s I D AD sθ θ* ( )= +
− −1

2
1
2  (3)

By introducing the renormalization tricks: 

I D AD D ADn + →
− − − −1

2
1
2

1
2

1
2



  with Ã = A + IN and D Aii ij
j



= ∑ , 
formula (3) can be simplified as:

 g s D AD sθ θ* =
− −






1
2

1
2  (4)

In this work, we follow this definition as formula 4 for design 
our deep learning model based on the graph convolution.

GCLMI: An Auto-Encoder Prediction 
Model for lncRNA-miRNA Interactions
In this work, we cast the prediction task for lncRNA-miRNA 
interactions as a link prediction problem on a heterogeneous 
bipartite graph. Consider an adjacent matrix of such graph M 
of shape Nl × Nm, where Nl is the number of lncRNA nodes and 
Nm is the number of miRNA nodes. Entry Mij in this matrix 
encode either the interaction between i-th type of lncRNA and 
j-th type of miRNA is identified by biological experiments or not. 
The task of prediction can be considered as referring the value of 
unobserved entries in M using semi-supervised learning on the 
observed ones. 

In an equivalent picture, we can also represent the interaction 
data by an undirected graph G = (ν, ε, Xl, Xm), where Xl and Xm 
are the feature matrices for the lncRNA nodes and miRNA nodes, 

FIGURE 1 | The diagram of spectral graph convolution.
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respectively. The goal is to learn embedding features for lncRNAs 
and miRNAs E by building a graph-based encoder [El, Em] = fen (ν, ε, 
Xl, Xm) and predicting new links by building a decoder M’ = fde (El, 
Em). El and Em are the feature matrices for lncRNAs and miRNA 
with shapes of Nl × L and Nm × L, respectively (see Figure 2).

To this aim, our proposed model is composed by two layers 
of different types: i) an encoder layer for filtering node features of 
lncRNA and miRNA on the graph of their interaction network and 
ii) a decoder layer for predicting fully-collected interaction network 
using the embedding features learned from the former layers.

The inputs of encoder layer include the feature matrixes of 
lncRNA and miRNA (i.e. Fl and Fm) and the adjacent matrix of 
known lncRNA-miRNA interaction network (i.e. M). In order 
to integrate the features of lncRNA and miRNA into one input 
matrix, an expanded matrix X is constructed based on Fl and Fm 
as follows:

 X =
F

F
l

m

0
0













 (5)

Accordingly, the adjacent matrix of known lncRNA-miRNA 
interaction network is expanded as:

 A= 0
0
M

MT













 (6)

Based on the above two input matrixes, we compute a graph 
convolution matrix G according to formula 4:

 G= X I D ADrw +( )− −1
2

1
2  (7)

The hidden layer is then built based on G by introducing its 
weight matrix We and bias matrix Be. With ReLU as the activation 
function, the output E of the encoder layer would be as follows:

 E G W B
E
Ee e

l

m

= ⋅ +( ) =












ReLU  (8)

where the trainable weight matrix We∈(Dl + Dm) × Ne 
transforms the convolution matrix G into a hidden matrix E. 
Ne denotes the number of latent factors and is set manually. The 

output layer learned from the encoder layer is a projection from 
the space of raw features into a hidden space with lower rank. As 
lncRNA and miRNA are known to interact with each through 
the MRE on transcripts, the design of hidden accords with the 
nature that lncRNA, MRE, miRNA is associated in a three-layer 
relation network. 

The output of the encoder layer has two components, which 
are the matrix of the embedding feature matrix of lncRNA El and 
that of miRNA Em. Introducing a trainable weight matrix Wd, the 
decoder layer is then built based on these separate matrixes of the 
same raw dimension as follows:

 ′ =M E W El d m
T  (9)

The output matrix M’ clearly has the same shape out the input 
matrix M. As matrix M’ is numerical, it describes the weight of 
links in a fully-connected network. All lncRNA-miRNA pairs 
with value of 0 in matrix M would be assigned a predicted 
value by the decoder. Those pairs with high predicted scores are 
anticipated to more possibly be connected.

To train the model of GCLMI in a semi-supervised learning 
manner, we use the strategy of negative sampling. Specifically, 
in each epoch of training process, we randomly select a fixed 
number of negative samples from the unlabeled lncRNA-miRNA 
pairs. The loss function of our training is defined as follows:

 

 =
= = ′ −( )

+

∑
∑
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 (10)

where the matrices Ωp
N Nl m∈{ } ×

0 1,  and Ωn
N Nl m∈{ } ×

0 1,  denote 
the masks for positive samples and the negative samples from 
random sampling, respectively. The first term in equation (10) 
aims to minimize the prediction error and the second and the 
third term define the constraint on the weight matrix in encoder 
and decoder, respectively. As negative sampling is implemented 
for training, in each epoch the Ωn would be randomly generated 

FIGURE 2 | The flowchart of GCLMI.
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in which the number of “1” would be fixed as a specific percentage 
of the number of positive samples. Hence, we would only optimize 
over the positive samples if we set this percentage as 0 or optimize 
over the positive samples and partial negative samples otherwise.

RESULTS AND DISCUSSION

Evaluation of Graph Convolution’s 
Effectiveness
Using techniques of graph convolution, spectral filter function 
integrates the information of attribute feature of input node with 
that of its neighbor nodes on the graph. GCLMI model uses graph 
convolution to build a data pre-processing module so that it can train 
the embedding features of nodes in an end-to-end learning manner. 
In this section, we evaluate the effectiveness of graph convolution 
with regard to its ability to integrate the raw data of input feature. 
Specifically, we compare the standard pipeline of GCLMI with the 
case that the input features are removed. To this aim, each entry of 
the input feature matrix A in formula 7 is replaced with the value 
of 1. In this case, the operator of graph convolution would be 
meaningless as all node features are the same. We implemented such 
modified computation process in 5-fold cross validation. As a result, 
without any input of node feature, the GCLMI model yield an AUC 
of 0.8483 on the 5-fold cross volition experiment, significantly lower 
than AUC of 0.8567 yield by the standard computational pipeline 
(see Figure 3). The result shows that the graph convolution designed 
in the model of GCLMI is feasible and effectively to integrate the raw 
data of feature inputs (see Figure 4).

Evaluation of the Impact of Negative 
Sampling
There is still no biological experiment confirming any lncRNA-
miRNA pair that are definitely not interactive so that no database 
can provide the data of negative samples for our training. For 

this reason, the prediction task in this work can be considered 
as a semi-supervised learning problem. Considering the known 
lncRNA-miRNA network is sparse, sampling on the unlabeled 
samples could generate a data source in which underlying negative 
samples are involved. Information of unlabeled data can be 
properly leveraged to push the limits of poor data resource for 
training (Zheng et al., 2014). To do so, we implement negative 
sampling on the unlabeled samples in each training epoch to 
construct negative sample set for training. However, the number 
of samples from negative sampling can have an effect on the 
prediction performance of the proposed model. A larger amount 
of negative sample can provide data resource for training and good 
performance could be achieved with more information for model 
to learn. However, it can also cause the problem of unbalanced 
training data. In this view, the choice of the size of negative sample 
set is important for an accurate prediction of GCLMI model. In 
each training epoch, the size of negative sample set is fixed as a 
ratio p of that of positive samples. In this section, we explore the 
prediction performance of GCLMI with different values of p (i.e. 
0, 0.5, 1.0, 3.0, 5.0, 10.0). 

Figure 5 shows the training loss and training error along 
with increased training epoch in this series of experiments. We 
calculated the training loss and training error whose definitions are 
as the Equation 10 and the first term of Equation 10, respectively. 
The curves of Figure 5(A) and Figure 5(B) show that the training 
processes of GCLMI with different sizes of negative sample set 
are similar. For most of experiments, the corresponding training 
loss and training error could be convergent to their lower bounds 
before the 250th epoch and 150th epoch, respectively, illustrating 
the computational process is robust to different negative 
sampling. The prediction performance of GCLMI with different 
negative sampling is also evaluated. As shown in the Figure 5, 
the prediction performance varies with different sizes of negative 
sample set in term of the AUC value. Specifically, when the 
number of negative samples is set as 3 times of positive samples, 

FIGURE 3 | The ROC curves yielded by GCLMI on 2-fold, 5-fold and 10-fold 
cross validation.

FIGURE 4 | Evaluation of graph convolution layer w.r.t ROC curves on 5-fold 
cross validation.
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the model achieves its highest prediction performance with AUC 
of 0.8567. It also should be noted that the prediction performance 
of GCLMI declines greatly with p set as 0. As setting p = 0 means 
that no negative sample is used for training, this result illustrates 
that negative sampling is effective and necessary for an accurate 
prediction of large-scale lncRNA-miRNA interactions.

Prediction Performance of GCLMI on 
k-Fold Cross Validation
For the evaluation of the performance of our proposed model with 
regard to the prediction accuracy on lncRNA-miRNA interactions, 
we adopt the evaluation frameworks of 2-fold, 5-fold and 10-fold 
cross validation. All experiments in this work are conducted on a 
real dataset involving experimentally-confirmed lncRNA-miRNA 
interactions. Specifically, in the k-fold cross validation, all known 
lncRNA-miRNA interactions are roughly divided into k parts, 
each of which is used as testing sample set in turn and the rest 
is used as training sample set. After implement the prediction 
process of GCLMI with training set as input, each testing sample 
obtain its prediction score presenting the confidence coefficient 
about the link existence. We consider all the 209,152 unlabeled 
lncRNA-miRNA pairs as candidate samples and compute the 
ranks of prediction scores among the candidates. 

We consider those testing samples with a higher rank than a 
given threshold as positive. By setting different threshold in the 
experiments, we compute the corresponding true positive rates 
(TPRs, sensitivity) and FPRs (1-specificity) for each threshold. 
Specifically, given a threshold, sensitivity denotes the percentage of 
testing samples with higher ranks and specificity is the percentage 
of testing sample with lower ranks. Based on TPRs and FPRs, the 
corresponding ROC curve (receiver operating characteristic curve) 
is plotted and the area under the curve (AUC) is computed as a 
main evaluation criterion for the performance. The value of AUC 

lies between 0.5 and 1, where 0.5 means a purely random guess and 
1 denotes a perfect prediction. As some of known lncRNA-miRNA 
interactions take turns to be used as testing samples and assumed 
to be unknown in the prediction process, if they obtained a high 
rank among those unlabeled samples in general, it means the 
prediction performance is good and prediction model is feasible. 
In addition, as the division of sample sets is random, we repeat the 
sampling implement GCLMI model with different sample division 
20 times to avoid the bias caused by such partition. The standard 
deviation is also calculated for each cross validation. As a result, 
conducting GCLMI on the collected dataset, we obtain good 
prediction performance with average AUCs of 0.8492+/−0.0013, 
0.8567+/−0.0009 and 0.8590+/−0.0005 in 2-fold, 5-fold and 
10-fold cross validation, respectively (see Figure 6). As shown in 
Table 1, the increase of fold number in cross validation boosts the 
performance of GCLMI because more data resource in training 
set would benefit the prediction performance. In this view, we 

FIGURE 5 | Training process of GCLMI in different training epochs with different negative sample sets. (A) and (B) illustrate the training loss and training error in 
training process, respectively.

FIGURE 6 | Comparison of prediction performance of GCLMI with different 
negative sample sets.
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anticipate that GCLMI model is able to yield more reliable results 
with more ground true input data in the future. The results of high 
AUCs illustrate the reliable performance for predicting lncRNA-
miRNA interaction on a large scale.

Performance Comparison With Other 
Similarity-Based Methods
Current approaches to predict new links on biological bipartite 
networks are mainly based on similarity-based assumption 
(Sun et al., 2018). Given a network in which two types of nodes 
representing two kinds of research objects are involved, most of 
previous prediction model assumes that similar objects of one 
type tend to be associated with those of another type (Huang 
et  al., 2016b). Therefore, their prediction performance could be 
greatly influenced by the measurement they adopt to calculate the 
similarity scores among object of the same types (Huang et al., 
2017b). For example, KATZHMDA model calculates the similarity 
of microbes using the Gaussian kernel and EPLMI model uses 
Person correlation coefficient for the similarity of lncRNA and 
miRNA based on their expression profiles (Huang et al., 2016a; 
Huang et al., 2018). However, such linear computation method may 
so simple that it fails to describe the general similarity of lncRNA 
or miRNA with regards to their roles in regulation network based 
on their expression profile. To bypass such barrier, we propose an 
end-to-end prediction model using graph convolution technique 
and therefore the prediction is free of any calculation for similarity.

To further evaluate the prediction performance, several 
similarity-based methods are implemented on the same dataset 
for performance evaluation, using the same similarity matrices of 
lncRNA and miRNA based on Person correlation coefficients of 
expression profiles. The comparison methods include two types of 
neighbor-based collaborative filtering (i.e. lncRNA-based CF and 
miRNA-based CF), matrix factorization-based method (i.e. SVD-
based CF and basic latent factor model) and EPLMI. Using 5-fold 
cross validation on the same dataset, the comparison result shows 
that the proposed model has the best prediction ability among five 
comparison methods with highest AUC values of 0.8567+/−0.0009 

(see Table 2). We consider such superior in performance on link 
prediction is benefited from the end-to-end learning approach as 
GCLMI model was designed. It is anticipated that such end-to-
end prediction model as we proposed would yield more accurate 
prediction results with a larger amount of high-dimension data as 
inputs in the future.

CONCLUSION

Increasing evidence show that lncRNA and miRNA collaborate 
to form a regulation network for gene regulation. Interactions 
between lncRNA and miRNA thus provide great insights into 
understanding the molecular mechanism of the initiation and 
development of various types of complex diseases. However, 
little effort has been made to develop computational approach 
to predict lncRNA-miRNA interaction on a large scale. The main 
challenge comes from the small number of known interactions 
between lncRNA and miRNA (i.e. the sparsity of lncRNA-
miRNA interaction network) and the limited understanding on 
the underlying pattern on lncRNA-miRNA interaction. 

To address this issue, we proposed a deep learning-based 
prediction model named GCLMI which can effectively predict large-
scale lncRNA-miRNA interactions. Given raw data as RNA attribute 
features, the GCLMI model is able to extract meaningful embedding 
features for both miRNA and lncRNA in an end-to-end training 
manner. The results of a series of experiments show that the low-
dimension embedding learned from the proposed model is of good 
representation ability with regards to their relation on the interaction 
network. Benefited from the deep learning structure as GCLMI is 
designed, we anticipate that the proposed model could be used as a 
useful tool for an accurate prediction of large-scale lncRNA-miRNA 
interactions in the scenario that additional information describing 
features of lncRNA and miRNA is offered by the users. In the current 
version of GCLMI, other types of data relevant to intrinsic features 
of lncRNA and miRNA, such like ncRNA sequence information and 
structural data are still inapplicable for GCLMI to handle with, as the 
graph convolution operator needs numerical data as inputs. In the 
future, we will investigate solutions about this limitation.
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TABLE 2 | Performance comparison among different methods by using RNA 
expression profile-based similarity in the framework of 5-fold cross validation.

Method 5-fold cross validation

lncRNA-based CF 0.6359 + /−0.0024
miRNA-based CF 0.8235 + /−0.0015
SVD-based CF 0.4967 + /−0.0340
Katz-based method 0.7439 + /−0.0017
Basic latent factor model 0.8253 + /−0.0024
EPLMI (Huang et al., 2018) 0.8447 + /−0.0017
The proposed model 0.8567 + /−0.0009

TABLE 1 | Prediction performance w.r.t. AUC in 2-fold, 5-fold and 10-fold cross 
validation.

Cross validation 2-fold CV 5-fold CV 10-fold CV

Average AUC 0.8492 + /-0.0013 0.8567 + /-0.0009 0.8590+/-0.0005
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Combination with genomic DNA is one of the important ways for microRNAs (miRNAs) 
to perform biological processes. However, because of lack of an experimental method, 
the identified genomic sites targeted by microRNA were only located in the promoter and 
enhancer regions. In this study, based on affinity purification of labeled biotin at the 3′-end 
of miRNAs, we established an efficiently experimental method to screen miRNA binding 
sequences in the whole genomic regions in vivo. Biotinylated miR-373 was used to test 
our approach in MCF-7 cells, and then Sanger and next-generation sequencing were 
used to screen miR-373 binding sequences. Our results demonstrated that the genomic 
fragments precipitated by miR-373 were located not only in promoter but also in intron, 
exon, and intergenic. Eleven potentially miR-373 targeting genes were selected for further 
study, and all of these genes were significantly regulated by miR-373. Furthermore, the 
targeting sequences located in E-cadherin, cold-shock domain-containing protein C2 
(CSDC2), and PDE4D genes could interact with miR-373 in MCF-7 cells rather than HeLa 
cells, which is consistent with our data that these three genes can be regulated by miR-
373 in MCF-7 cells while not in HeLa cells. On the whole, this is an efficient method to 
identify miRNA targeting sequences in the whole genome.

Keywords: miRNA, target sites, genome, DNA, affinity precipitation

INTRODUCTION

MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that are processed from 
pre-miRNAs by Dicer into 21- to 25-nt double-stranded sequences (Bartel, 2004; He and Hannon, 
2004). Through regulating gene expression at the post-transcriptional level, miRNAs can take part in 
many biological processes including development, cell proliferation, apoptosis, organogenesis, and 
tumorigenesis (Carrington and Ambros, 2003; Bartel, 2004; Filipowicz et al., 2008). It has been shown 
clearly that miRNAs regulate gene expression on the post-transcriptional level via RNA-induced 
silencing complex (RISC) pathway in the cytoplasm (Liu et al., 2005a; Dong et al., 2013). However, 
with the development of new techniques, numerous miRNAs were found enriched in nucleus, 

Abbreviations: CSDC2, cold-shock domain-containing C2; ITSN2,intersectin 2; Hsp60, heat shock protein family D (Hsp60) 
member 1; ALOX5, arachidonate 5-lipoxygenase; ARID2, AT-rich interaction domain 2; PDE4D, phosphodiesterase 4D; 
SUN1, Sad1 and UNC84 domain-containing 1; ZNF76, zinc finger protein 76; ZNF385B, ZNF385B; TTC34, tetratricopeptide 
repeat domain 34; TPM1, tropomyosin 1; EVI5, ecotropic viral integration site 5; RPL37, ribosomal protein L37; FANCC, FA 
complementation group C.
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which suggests that microRNAs play important roles in nucleus 
(Liu et al., 2018). Several studies have proved that miRNA can 
regulate gene expression via interacting with genomic sequences. 
In 2008, Place et al. reported that miR-373 can up-regulate cold-
shock domain-containing protein C2 (CSDC2) and E-cadherin 
via sequence complementarity with the promoter of these genes. 
MiR-223 can combine with the promoter of NF1A and down-
regulates the expression of NF1A (Place et al., 2008).

Based on the existing rule of interaction between miRNA 
and mRNA, some software tools for predicting miRNA binding 
sites in genome are developed. However, it is hard to accurately 
predict microRNA target sites in genome, for the mechanism 
of gene regulation by miRNAs via combination with genomic 
DNA remains to be elucidated. First, the location of miRNA 
binding sites in genome should be further studied. Janowski et al. 
found that small dsRNAs, which are completely complimentary 
with the sequence in the region −56 to +17 of the promoter, 
can up-regulate the expression of genes (Janowski et al., 2007). 
Then Meng et al. reported that the siRNA binding position can 
be located around −1611 from the transcription start site (Meng 
et al., 2016). Moreover, it was also reported that miRNA can bind 
in the enhancer region and increase the transcription activity of 
neighboring genes (Xiao et al., 2017). Second, the mechanism 
of interaction between genome and miRNA has not been fully 
illustrated. Some papers suggested that the 2–8  nt from the 
5′-end of the antisense is the key to transcription activation (Xiao 
et al., 2017). However, it is also reported that let-7i can interact 
with promoter TATA-box motifs of interleukin (IL)-2 because of 
low minimal free energy (MFE) value (−27.6  kcal/mol), while 
the “seed region” of let-7i is not completely complementary with 
IL-2 promoter, which suggests that the complement of 5′-end 
of miRNA with target sequence is not the only principle for 
microRNA target prediction (Zhang et al., 2014). Finally, the 
prediction based on bioinformatics is insufficient to reflect the 
real condition in vivo, for the epigenetic modification of genome 
may affect the interaction of miRNA with targeting site (Liu 
et al., 2018).

Our recent study reported a convenient experimental 
approach for the isolation and identification of binding miRNAs 
for messenger RNA by applying short biotinylated DNA anti-
sense oligonucleotides mix to enhanced green fluorescent 
protein (EGFP) mRNA, which was fused to target gene mRNA 
(Wei et al., 2014). We wonder whether this affinity assay could 
be used to screen miRNA binding sequence in genomic regions 
via biotinylated miRNA of interest. In the present study, based 
on biotinylated miRNA capture affinity technique, we have 
developed an experimental procedure for searching miRNA 
targeting sequences in the promoter and even in whole genomic 
regions (Figure 1). MiR-373 has been used to test our method 
in MCF-7. First, we proved that biotinylated miR-373, with 
the same function as miR-373, can up-regulate the expression 
of E-cadherin, which have been reported to be up-regulated 
by miR-373 via targeting its promoter. Then using the method 
as described in this paper, we have collected DNA fragments 
precipitated by biotinylated miR-373 or negative control RNA. 
Semi-quantitative polymerase chain reaction (PCR) and 
real-time PCR showed the E-cadherin promoter and CSDC2 

promoter, in the previously reported miR-373 binding site, can 
be pulled down by biotinylated miR-373 rather than negative 
control RNA, which suggests that our approach is feasible. 
Then to find the unknown miR-373 binding sequence, the DNA 
fragments were inserted into pGEM-T vectors (Promega) and 
sequenced. Ten unreported miR-373 binding sequences were 
identified. Interestingly, six identified sequences were located 
in intron of genes and two sequences in intergenic. Only two of 
the rest sequences were in the promoter of gene. Western blot 
and real-time PCR demonstrated that six of seven identified 
genes can be up-regulated by miR-373 in MCF-7. Interestingly, 
our results shown that miR-373 cannot improve the expression 
of E-cadherin, CSDC2, and PDE4D in HeLa cells, which is 
consistent with our data that miR-373 targeting sequences of 
these genes cannot be precipitated by miR-373 in HeLa cells. 
Finally, to efficiently screen miRNA targeting genomic sequence, 
next-generation sequencing experiment was used to detect 
the samples precipitated by miR-373 and numerous miR-373 
targeting sites were sequenced. On the whole, we developed an 
efficient approach to screen miRNA targeting genomic sequence 
and provided a new perspective for studying the interaction of 
miRNA and genome.

MATERIALS AND METHODS

Materials
The biotinylated miR-373 and biotinylated negative control 
miRNA (biotinylated NC miRNA) were synthesized from TaKaRa 
Biotechnology (Dalian, China) via labeling with biotin at the 
3′-end of the miRNA (Table 1). pGEM-T vectors were purchased 
from Promega (Madison, USA). ARID2, SUN1, E-cadherin, 
and ZNF76 antibodies were purchased from ABclonal, Inc. 
(Wuhan, China).

Cell Culture and miRNA Transfection
MCF-7 and HeLa cells were purchased from the Cell Bank 
of the Chinese Academy of Sciences (Shanghai, China) and 
cultured in Dulbecco’s modified Eagle’s medium (DMEM) 
(Gibco-BRL, Carlsbad, USA) supplemented with glutamine, 
antibiotics, and 10% fetal bovine serum (Gibco-BRL, Carlsbad, 
USA) in a humidified atmosphere of 5% CO2 at 37°C. 
Plasmid DNA or miRNA was transfected into cells using 
Lipofectamine 2000 (Invitrogen, Carlsbad, CA) according to the 
manufacturer’s instructions.

Western Blot
Cells were harvested 24, 48, or 72  h post-transfection. Then cells 
were lysed in radioimmunoprecipitation assay (RIPA) buffer [150-
mM NaCl, 1-M Tris-HCl (pH 7.2), 1% (v/v) Triton X-100, 1% 
(w/v) sodium deoxycholate, 0.1% (w/v) sodium dodecyl sulfate 
(SDS)] with protease inhibitors. Proteins were separated on 10% 
or 15% SDS–polyacrylamide gel and transferred to poly(vinylidene 
difluoride) (PVDF) membranes. The resulting blots were blocked 
with 5% non-fat dry milk, and specific proteins were detected with 
appropriate antibodies. The proteins were detected using horseradish 
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peroxidase (HRP)-conjugated secondary antibody and Super Signal 
West Pico Chemiluminescent substrate kits (Pierce).

DNA–miRNA Pull-Down Assay
The procedures used for affinity purification of biotinylated 
miRNAs were partly in reference to those previously described by 
Tidi Hassan and colleagues (Liu et al., 2005b). Cells were transfected 
by biotinylated miRNA or biotinylated NC miRNA for 24 h. Then 
cells were treated with 37% formaldehyde to a final concentration of 
1% and incubated at room temperature for 15 min for cross-linking. 
The cross-linking reaction was stopped by the addition of 100-mM 

glycine. Next, cells were collected; lysed in lysis buffer that contains 
1% SDS, 1-mM EDTA, 50-mM HEPES (pH 7.5), 140-mM NaCl, and 
1% Triton X-100; and supplemented with 100× protease inhibitor 
(Boehringer cocktail) and 1-U/μl RNase inhibitor (Invitrogen). The 
genomic DNA was sheared by sonicator equipment. This step should 
be performed on ice to avoid the denaturation of chromatin and 
miRNA. The supernatants were recovered by 12,000g centrifugation 
for 10 min and incubated with equilibrium streptavidin beads for 
1 h at room temperature. Streptavidin beads were washed four times 
by washing buffer, which contains 10-mM Tris-HCl (pH 7.5), 1-mM 
EDTA, 0.15-mM LiCl, and 10-mM Tris-HCl. Proteinase K (Roche 
Applied Science) and RNase A (Roche Applied Science) were be used 

FIGURE 1 | Strategy for screening microRNA binding sequences in the whole genomic regions.
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to degrade protein and RNA. Then the DNA was separated from 
streptavidin beads after treating beads at 80°C for 5 min. The eluted 
DNA was recovered using Chromatin Immunoprecipitation (ChIP) 
Kit (Millipore, USA) according to manufacturer’s instructions.

Illumina HiSeq 2000 Next-Generation 
Sequencing and Bioinformatics Analysis
The PCR products were fragmented to an average length of 150 bp. 
After DNA-end repair, 3′dA overhang, and ligation of methylated 
sequencing have been performed, the DNA samples were sent 
to Beijing Genomics Institute (BGI, China) for sequencing by 
Illumina Genome Analyzer. Bioinformatics analysis steps for ChIP-
Seq libraries are presented below. First, the original image data are 
transferred into sequence data via base calling, which is defined 
as raw data or raw reads, and saved as FASTQ file. Second, quality 
control was performed to detect whether the data are qualified. In 

addition, filtering of raw data was used to decrease data noise. As a 
result, “dirty” raw reads which contain the sequence of adapter, more 
than 10% unknown bases, or low-quality bases have been removed 
in this step. Third, the clean reads were mapped to the Homo sapiens 
genome reference, and only the alignments within two mismatches 
and unique mapping reads were considered in further analyses. Then 
genome-wide peak scanning was performed in UCSC Genome 
Browser to get the information of peak location and peak sequence. 
Peaks were classified based on the location (UCSC annotation 
data) and showed in the following genome regions: intergenic, 
introns, downstream, upstream, and exons. Furthermore, after peak 
scanning, all the related genes related to miR-373 or NC RNA can 
be listed. Last, to predict potential functions of the putative miRNA 
targets in different cellular components, biological processes, and 
molecular functions, we used gene ontology (GO) categories (http://
www.geneontology.org/) to classify the identified target genes. 
Besides, the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database (fttp://fttp.genome.jp/pub/kegg/pathway/) was applied for 
KEGG pathway analyses. We also submitted the HiSeq 2000 next-
generation sequencing data to National Center for Biotechnology 
Information (NCBI).

Validation of miRNA Targets via qRT–PCR
Total RNA was isolated from cells that were transfected with 
synthetic miRNAs using TRIzol reagent (TaKaRa) according to the 
manufacturer’s instructions. For quantification of mRNA, 1 µg of 
total RNA was reversely transcribed using the Reverse Transcription 
System (Promega, Madison, USA). The resulting cDNA was used 
as template for semi-quantitative PCR or quantitative real-time 
PCR. β-Actin served as an endogenous control used to normalized 
expression data. Each sample was analyzed in triplicate. Relative 
expression and standard error were calculated by the supplied ABI 
7900HT Real-Time System software. All primers used in the qRT–
PCR experiments are listed in Table 1.

Statistical Analysis
Data were expressed as means  ±  SD from three to four 
independent experiments. Data were analyzed using Student’s 
t test for two groups or analysis of variance (ANOVA) with 
Tukey–Kramer tests for multiple group comparisons. P  <  0.05 
was considered statistically significant.

RESULTS

E-Cadherin Is Up-Regulated by Both miR-
373 and Biotinylated miR-373 in MCF-7
Previous reports described that miR-373 can increase the expression 
of E-cadherin via targeting to its promoter in PC-3 cells (Figure 2A), 
while it has no impact on E-cadherin expression in HCT-116 and 
LNCaP cells (Place et al., 2008). To ensure whether miR-373 and 
biotinylated miR-373 could regulate E-cadherin in MCF-7 cells, 
biotinylated miR-373, non-biotinylated miR-373, or NC miRNA 
was transfected into MCF-7 cells for 48 h. Both semi-quantitative 
PCR and real-time PCR showed that E-cadherin increases over 
four times in the mRNA level after transfection with miR-373 or 

 TABLE 1 | miRNA sequences and real-time quantitative PCR primers.

Name Sequence (5′–3′)

miR-373 Sense ACUCAAAAUGGGGGCGCUUUCC
miR-373 Antisense GAAGUGCUUCGAUUUUGGGGUGU-biotin
miRNA-NC Sense UCACAACCUCCUAGAAAGAGUAGA
miRNA-NC Antisense UCUACUCUUUCUAGGAGGUUGUGA-biotin
ARID2 Forward ACACAGTGGTACCAGGACAG
ARID2 Reverse TGAAGTTTGCACAGGTTGGG
PDE4D Forward GACCAATGTCTCAGATCAGTGG
PDE4D Reverse GTCAAGGGCCGGTTACCAG
E-cadherin Forward CCTGGGACTCCACCTACAGA
E-cadherin Reverse GGATGACACAGCGTGAGAGA
ZNF76 Forward CAGGTGACGGTACAGAAAGAAGC
ZNF76 Reverse TGATGAGCGGTGGTGTAGAGAC
SUN1 Forward CAGAAGCACAAACAAATC
SUN1 Reverse CACCATCATCATCAAGAC
ZNF385B Forward GGGCTAACCTGGAAACCGA
ZNF385B Reverse TCAGCTGACAGGAATTTGGACA
ALOX5 Forward TCATCGTGGACTTTGAGCTG
ALOX5 Reverse AGAAGGTGGGTGATGGTCTG
KIAA1958 Forward TAGCCCTTTCTCCCTCA
KIAA1958 Reverse TGCTCTTTCATCCTGGTC
CSDC2 Forward GGCCCACCACATAAAATCTG
CSDC2 Reverse ACCAACAAGCCCTCTCTCAA
β-Actin Forward CGTGGACATCCGCAAAGAC
β-Actin Reverse TCGTCATACTCCTGCTTGCTG
TTC34 Forward TCAAAATCGACTCAGGGCAAC
TTC34 Reverse CAGGGCTTTTTCCAGGTGG
TPM1 Forward TTGAGAGTCGAGCCCAAAAAG
TPM1 Reverse CATATTTGCGGTCGGCATCTT
KIAA1377 Forward GGGCACTGAATCATCGGACAA
KIAA1377 Reverse TTTACGTGCTCGATTTCGACA
EVI5 Forward AGAAACCCTAGTGGGAAACAGG
EVI5 Reverse TGACTGTATGCGATACTGTGTTC
RPL37 Forward TCGCAATAAGACGCACACGTT
RPL37 Reverse CTCATTCGACCAGTTCCGGT
FANCC Forward CTGCCATATTCCGGGTTGTTG
FANCC Reverse AGCACTGCGTAAACACCTGAA
ITSN2 Forward ATACGGTGGCGGCTTGAGTT
ITSN2 Reverse GGAAGGTGGGAAGGAGGTTGA
Hsp60 Forward GCCACGCGGGACTCACCATT
Hsp60 Reverse CGCTCGGTTCCAGAACTTTCCA
GAPDH Forward CTCACCCTGCCCTCAATATCCC
GAPDH Reverse AGCCCTGTAGCCTGGACCTGAT
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biotinylated miR-373 than does NC miRNA (Figures 2B, C). We 
also confirmed that both miR-373 and biotinylated miR-373 can 
up-regulate E-cadherin protein levels in MCF-7 cells (Figure 2D). 
These data demonstrated that miR-373 increases the expression of 
E-cadherin in MCF-7 cells. Furthermore, being labeled with biotin 
at the 3′-end of miR-373 would not significantly affect the function 
of miR-373 to regulate E-cadherin.

The Promoters of E-Cadherin and CSDC2 
Can be Pulled Down by Biotinylated miR-
373 in MCF-7
After having confirmed that biotinylated miR-373 could increase the 
expression of E-cadherin in MCF-7, the miR-373 targeting sequence 

in E-cadherin promoter was regarded as a positive control to test 
whether our method worked. Biotinylated miR-373 or biotinylated 
NC miRNA was transfected into MCF-7 cells. After 24  h post-
transfection, miR-373 targeting sequences were isolated through 
DNA–miRNA pull-down assay described in the Materials and 
Methods section. Then semi-quantitative PCR and quantitative RT–
PCR were performed to detect the enrichment of E-cadherin and 
CSDC2 promoters. As shown in Figures 3A, B, both E-cadherin 
and CSDC2 promoters can be amplified by semi-quantitative PCR 
from the sample transfected with biotinylated miR-373 rather than 
biotinylated NC miRNA. GAPDH promoter, which did not contain 
potential target site of miR-373, has no detectable signal when the 
sample transfected with biotinylated miR-373 was used. As shown 
in Figure 3C, the quantitative RT–PCR results were consistent 

FIGURE 2 | Biotinylated miR-373 can regulate the expression of E-cadherin. (A) The identified miR-373 binding site in E-cadherin promoter. MCF-7 cells were 
transfected with miR-373, NC miRNA, or bio-miR-373 for 48 h. Then semi-quantitative PCR (B), real-time PCR (C), and Western blotting (D) were performed to 
detect the expression of E-cadherin. n = 3, **P < 0.01 compared with the sample transfected with NC miRNA.

FIGURE 3 | Promoters of E-cadherin and CSDC2 can be pulled down by biotinylated miR-373. Bio-miR-373 or bio-NC-miRNA was transfected into MCF-7 cells 
for 24 h. Then cells were harvested, and the DNA fragments were enriched via DNA–miRNA pull-down assay. (A) The enrichments of E-cadherin promoter were 
measured by semi-quantitative PCR. (B) The enrichments of CSDC2 promoter were measured by semi-quantitative PCR. (C) Real-time PCR was performed 
to detect the enrichments of E-cadherin and CSDC2 promoters. U6 fragments added in the samples were taken as an endogenous control. n = 3, **P < 0.01 
compared with the sample transfected with bio-NC-miRNA.
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with those of semi-quantitative PCR. The amount of E-cadherin 
promoter and CSDC2 promoter in the sample transfected with 
biotinylated miR-373 was as over 10 times as the sample transfected 
with biotinylated NC miRNA, while the amount of promoters 
of actin, GAPDH, ITSN2, and Hsp60, which were regarded as 
negative control, is almost the same in the sample transfected with 
biotinylated miR-373, compared with the sample transfected with 
biotinylated NC miRNA. These results suggested that our method 
can be used to enrich miR-373 binding DNA sequences.

Identifying the Potential miR-373 Targeting 
DNA Sequences in Purified DNA Products
To identify unknown miR-373 targeting DNA sequences, we 
inserted the precipitated DNA into pGEM-T vectors (Promega, 
USA) and sequenced the vectors using the primer combining with 
T7 promoter. The specific procedure is shown in Figure 1. First, 
the Quick Blunting Kit (NEB, USA) has been used to convert DNA 
with incompatible 5′ or 3′ overhangs to blunt-ended DNA, because 
bio-miR-373-precipitated DNA fragments sheared by sonicator 
equipment contain fragments with incompatible 5′ or 3′ overhangs, 
which were hard to insert into pGEM-T vectors. Second, we tailed 
the blunt-ended DNA with an adenine in the 3′-end via using Ex Taq 
DNA Polymerase. Third, to improve the efficiency to insert DNA 
fragments into pGEM-T vectors, the A-tailing fragments have been 
condensed by 20% PEG-8000 and purified by 75% alcohol. Fourth, 
the purified DNA fragments have been inserted into pGEM-T 
vectors (Promega, USA). Fifth, the vectors were transformed into 
Top10 (Invitrogen, USA), and blue-white screening was used to 
select positive clones. Over 40 clones have been sequenced, and 10 
sequences have been identified. Last, the sequences were analyzed 
via UCSC Genome Browser and NCBI Map Viewer. As shown in 
Table 2, six identified sequences are located in the introns of ZNF76, 
PDE4D, ALOX5, KIAA1959, and ZNF385B. Two sequences are in 
intergenic. Two sequences are in promoters of ARID2 and SUN1.

The Regulation of the Identified Genes 
by miR-373
The identified miR-373 targeting sequences are not only located 
in promoters but also located in introns. We wonder whether 
miR-373 could regulate these genes via directly binding with 
its  promoter or intron. First, quantitative RT–PCR and Western 
blotting were performed to detect the regulation of the identified 

genes by miR-373. As shown in Figure 4A, the mRNA levels were 
not observed to be significantly changed at 24 h post-transfection 
with miR-373. MiR-373 increases the mRNAs of ALOX, ARID2, 
CSDS2, KIAA1958, PDE4D, SUN1, and ZNF358B only 30% to 80% 
times at 48 h, while it up-regulates the mRNAs of E-cadherin and 
ZNF76 over four times at 48 h. All genes were up-regulated over two 
times in the mRNA level by miR-373 at 72 h, excepting ZNF358B. 
Then we purchased ARID2, SUN1, and ZNF76 antibodies to detect 
the expression of these genes at protein levels. As shown in Figure 
4B, miR-373 can significantly increase these genes at 72 h. These 
data indicated that ARID2, SUN1, and ZNF76 can be obviously 
up-regulated by miR-373.

To investigate whether the regulation by miR-373 to the 
identified genes is a common phenomenon, RT–PCR was 
performed to measure the expression of the identified genes in HeLa 
cells. Interestingly, ALOX5, ARID2, KIAA1958, SUN-1, ZNF76, 
and ZNF385B can be up-regulated by miR-373, while CSDC2, 
E-cadherin, and PDE4D have not significantly increased after being 
transfected with miR-373 (Figure 5A). We also found that miR-373 
cannot bind with the targeting sequence in CSDC2, E-cadherin, 
and PDE4D genes (Figure 5B). Some papers reported that some 
cell lines were resistant to specific miRNAs or dsRNAs-reduced 
transcriptional activation while sensitive to others. Our results 
provide an evidence that the direct interaction between miRNA and 
genomic sequences is key to miRNA-induced regulation of genes.

Screening miR-373 Binding Sequences 
via the High-Throughput Next-Generation 
Sequencing Technology
We have successfully established a method to identify unknown 
miRNA targeting DNA sites, but only 10 sequences have been 
identified in over 40 clones (data not shown). To improve efficiency 
to screen unknown miRNA target sequences, two genomic DNA 
fragment libraries were constructed and subjected to next-generation 
sequencing: one was constructed from miR-373-precipitated sample 
in MCF-7 and named HM-7-DNA, and the other was from NC 
RNA-precipitated sample and named HM-7-DNA-NC. As shown in 
Supplementary Figure 1, the main peak of HM-DNA sample was 
distributed at 360 bp and the main peak of HM-DNA-NC sample 
was distributed at 276 bp. So both of the samples were qualified and 
suitable for further sequencing. Then the quality control was used 
to analyze the quality of raw data obtained from Illumina HiSeq 
2000 sequencing. As shown in Supplementary Figures 1A, C, 
both HM-7-DNA and HM-7-DNA-NC represented good-quality 
sequences, because the base ratios are mostly higher than 20. The 
raw data also had satisfactory base composition, for four bases of A, 
T, G, and C were distributed uniformly, and the AT content exceeded 
the GC content (Supplementary Figures 2B, D). The raw data have 
been submitted into SRA database, and the accession number is 
PRJNA547356.

The information of the peak location and sequence has been 
identified by genome-wide peak scanning in UCSC Genome 
Browser (Supplementary Tables 1, 2). Then we analyzed the 
distribution of the sequences from HM-7-DNA. As shown in Figure 
6A, 49.7% of the sequences are located in intergenic, 25.5% of the 
sequences in intron, 11.7% of the sequences in promoter (Up2k), 

TABLE 2 | miR-373 binding sequences identified by Sanger sequencing.

BLAT location Located 
gene

GenBank 
accession no.

Location

Chr12: 46122709-46123286 ARID2 NC_000012.11 Promoter
Chr6: 35234579-35234951 ZNF76 NC_000006.11 Intron
Chr5: 59660052-59660485 PDE4D NC_000005.9 Intron
Chr7: 814338-814698 SUN1 NC_000007.14 Promoter
Chr2: 180706031-180706314 ZNF385B NC_000002.11 Intron
Chr10: 45883501-45883757 ALOX5 NC_000010.10 Intron
Chr9: 115377923-115378596 KIAA1958 NC_000009.11 Intron
Chr 21: 42657214-42657541 Not found Not found Intergenic
Chr 10: 2979740-2980027 Not found Not found Intergenic
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10.3% of the sequences in exon, and 2.8% of the sequences in 
down2k. Meanwhile, we also analyzed the chromosomal location of 
miR-373 targeting sequences (Figure 6B). The results showed that 
the candidate targets of miR-373 were mainly distributed in 5th, 9th, 
10th, and 20th chromosomes (Figure 6B).

MiRNAs can perform its biological functions via targeting 
genomic DNA and regulating gene expression, so pathway-based 
analysis of miR-373 targeting gene helps us to better understand 
the role of miR-373 in cells. On the one hand, GO analysis was 
performed to annotate the function of genes. Figure 6C shows the 
classification of the peak-related gene of HM-7-DNA based on the 
GO analysis. Biological process, cellular component, and molecular 
function, respectively, included 17, 6, and 5 categories. On the other 
hand, based on KEGG analysis, we found that miR-373 targeting 
genes were related with hypertrophic cardiomyopathy, dilated 

cardiomyopathy, tight junction, cardiac muscle contraction, and 
viral myocarditis (Table 3).

We also compared the differences between HM-7-DNA 
and HM-7-DNA-NC. As shown in Figure 6D, 1,966 genes 
containing miR-373 targeting sequences have been found. 
Interestingly, 443 genes containing NC miRNA targeting 
sequences also have been identified. It cannot be denied that 
all designed NC miRNAs have the ability to combine with 
certain DNAs, so it is a possibility to have NC miRNA binding 
sites in genomic DNA. According to our results, there are 169 
genes containing both miR-373 and NC miRNA target sites. 
These results suggest that the NC miRNA used in our paper is 
not suitable for studying the regulation of these 169 genes by 
miR-373, because NC miRNA also has a possibility to regulate 
these genes. Hence, to better study the genes identified by 

FIGURE 4 | The identified genes can be regulated by miR-373. (A) MCF-7 cells were transfected with miR-373 or NC-miRNA. Cells were harvested after 24, 28, 72, 
or 96 h post-transfection. Real-time PCR was used to measure the mRNA level of identified genes. The expression of β-actin was used as the internal reference. n = 3, 
**P < 0.01 compared with the sample transfected with NC miRNA. (B) MiR-373 or NC-miRNA was transfected into MCF-7 cell for 72 h. The protein levels of identified 
genes were detected by Western blotting.
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our method, it is necessary to use biotinylated NC miRNA 
as negative control to prove that the studied genes have no 
potential NC miRNA binding sites.

So we selected six sequences from 1,827 genes that only contain 
miR-373 targeting sites to do further study. These sequences are 
located in exon or intron (Table 4). Semi-quantitative PCR has been 
performed to detect the enrichment of the six sequences in miR-
373-precipitated DNA. As shown in Figure 7A, all sequences can 
be pulled down by miR-373. Then quantitative RT–PCR results 
demonstrated that the mRNAs of TTC34 and FANCC significantly 
increase after transfection by miR-373 for 48 and 72  h. TPM1, 
KIAA1377, EVI15, and RPL37 can be down-regulated by miR-373 
after 24 h post-transfection, while these genes can be significantly 
up-regulated by miR-373 at 72 h (Figure 7B). We also randomly 
selected 35 potential miR-373 target genes and analyzed the changes 
in these gene expression after transfecting miR-373 for 48  h. As 
shown in Table 5, 21 gene expression changed more than two-fold 

and only four gene expression changed less than quarter-fold after 
transfecting with miR-373 than did NC miRNA.

DISCUSSION

Although it has been proved that binding with promoters is 
an important way for miRNA to regulate gene expression, the 
mechanism of miRNA target recognition in genome should be 
further illuminated. Similar to the miRNA–mRNA interaction 
model, some papers suggested the “seed sequence” in miRNA is 
the key to binding with promoter (Xu et al., 2014; Xiao et al., 2017). 
However, Zhang et al. reported that let-7i can bind with TATA-
box motifs in IL-2 promoter and the seed sequence of let-7i is not 
completely complementary with IL-2 promoter (Zhang et al., 2014). 
Another type of prediction tools, such as RNA hybrid, evaluates 
the interaction ability between miRNA and genomic sequences 

FIGURE 5 | The regulation of identified genes by miR-373 in HeLa cells. (A) HeLa cells were transfected with miR-373 or NC-miRNA. Cells were harvested after 
24, 48, 72, or 96 h post-transfection. Real-time PCR was used to measure the mRNA level of ALOX5, ARID2, E-cadherin, KIAA1958, PDE4D, SUN1, ZNF76, and 
ZNF385B genes. The expression of β-actin was used as the internal reference. n = 3, *P < 0.05, **P < 0.01 compared with the sample transfected with NC miRNA. 
(B) Bio-miR-373 or bio-NC-miRNA was transfected into HeLa cells. After 24 h post-transfection, DNA–miRNA pull-down assays were performed to enrich the 
miR-373 binding sequences. Then real-time PCR was performed to detect the enrichments of the genomic sequences in ALOX5, ARID2, E-cadherin, KIAA1958, 
PDE4D, SUN1, ZNF76, and ZNF385B genes. U6 fragments added in the samples were taken as an endogenous control.
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via measuring thermo-dynamic stability of miRNA and dsDNA 
or ssDNA (Rehmsmeier et al., 2004). Furthermore, Paugh et al. 
proved that miRNAs can form triplexes with dsDNA in genome 

and regulate gene expression (Paugh et al., 2016). Because of lacking 
support by mechanism, computational prediction of miRNA 
targeting site in genome is in an initial step. In this paper, based on 
miRNA targeting–mRNA purification technique, which has been 
reported previously (Hassan et al., 2013), we have established an 
effective biochemical procedure to screen the potential miRNA 
targeting genes via pulling down the genomic sequences, which 
directly combined by miRNA. As a result, the putative target DNA 
sequences that were bound by biotinylated miRNAs can be easily 
isolated from cell extracts. These isolated DNA sequences can be 
analyzed through cloning and sequencing, and then the potential 
target genes may be found using the bioinformatics analysis. As 
described in this article, we successfully identified the known target 
genes of miR-373; moreover, we also detected unreported target 
genes. Therefore, we demonstrated that the target genes of miRNA 
complementary to DNA sequences can be efficiently obtained 
through our biochemical procedure directly from cultured cells.

Another limitation of bioinformatic prediction is that the 
prediction cannot reflect the real situation in vivo. When Li et al. have 
studied the regulation of gene expression by dsRNA via binding with 
promoter, they found that some specific dsRNAs can increase target 
gene expression in some cell lines, but not in others (Li et al., 2006). 
They also reported that E-cadherin expression was up-regulated 
by miR-373 in PC-3 and LNCaP cells, while not in HCT-116 cells 
(Place et al., 2008). Meanwhile, our results demonstrated that the 
expression of E-cadherin, CSCD2, and PDE4D, which can be 

FIGURE 6 | Screening genomic sequences by next-generation sequencing. (A) The distribution of functional elements of DNA sequences in HM-7-DNA. (B) 
The chromosomal location of potential target genes in HM-7-DNA. (C) Gene ontology analysis of peak-related gene of HM-7-DNA. (D) Differential analysis of the 
potential target genes of HM-7-DNA and HM-7-DNA-NC.

TABLE 3 | The significant enrichment analysis of target gene’s function in the 
pathway.

Pathway ID Pathway Q value

ko05410 Hypertrophic cardiomyopathy (HCM) 0.001193353
ko05414 Dilated cardiomyopathy 0.001193353
ko04530 Tight junction 0.001193353
ko04260 Cardiac muscle contraction 0.001361812
ko05416 Viral myocarditis 0.019827399

Q ≤ 0.05 is a pathway that was significantly enriched in the peak-related gene.

TABLE 4 | MiR-373 binding sequences identified by next-generation 
sequencing.

BLAT location Located 
gene

GenBank 
accession no.

Location

Chr1: 2585008-2585961 TTC34 NC_000001.10 Intron
Chr15: 63335003-63335190 TPM1 NC_000015.9 Exon
Chr11: 101785594-101785989 KIAA1377 NC_000011.9 Intron/exon
Chr1: 93143762-93143908 EVI5 NC_000001.10 Intron
Chr5: 40835156-40835380 RPL37 NC_000005.9 Intron/

promoter
Chr9: 97937920-97938060 FANCC NC_000009.11 Intron
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up-regulated by miR-373 in MCF-7 cells, was not significantly 
increased after transfecting miR-373 in HeLa cells. One of the 
reasons affecting miRNA-mediated gene activation is the epigenetic 
state of genome, for it is proved that the promoter of E-Cadherin 
is hypermethylated in HeLa cells, which prevented saRNA-induced 

E-cadherin up-regulation (Li et al., 2006). Furthermore, our results 
demonstrated miR-373 can interact with the sequences located in 
E-cadherin, CSCD2, and PDE4D genes in MCF-7 cells but cannot 
in HeLa cells, which indicated that the direct interaction of miRNAs 
and targeting sequences is key to regulation of targeting genes. On 

FIGURE 7 | The identified genes via next-generation sequencing can be regulated by miR-373. (A) Bio-miR-373 or bio-NC-miRNA was transfected into MCF-7 
cells for 24 h. Then cells were harvested, and the DNA fragments were enriched via DNA–miRNA pull-down assay. The enrichments of TTC34, EVI5, TPM1, RPL37, 
KIAA1377, and FANCC promoters were measured by semi-quantitative PCR. (B) MCF-7 cells were transfected with miR-373 or NC-miRNA. Cells were harvested 
after 24, 48, or 72 h post-transfection. Real-time PCR was used to measure the mRNA level of identified genes. The expression of β-actin was used as the internal 
reference. n = 3, *P < 0.05, **P < 0.01 compared with the sample transfected with NC miRNA.
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the whole, our method can measure the direct interaction between 
miRNA and genomic DNA, which can avoid false positives caused 
by ignoring the modification of genome.

A very noteworthy finding in the present study is that some 
genomic fragments precipitated by miR-373 were located in intron. 
The roles of miRNAs in intron have not been widely studied. Meng 
et al. reported that some miRNAs binding sites are located in intron 
in plants (Meng et al., 2013). It has also been reported that siRNA 
targeting intronic sequences near alternative exons regulate splicing 
of mRNA and that Ago1 is essential for RNAi-mediated alternative 
splicing (Allo et al., 2009). It has been reported that some miRNAs 
and long noncoding RNAs are transcribed from the intron via 
sharing of the promoters with their host genes (Bosia et al., 2012; 
Kung et al., 2013; Chamorro-Jorganes et al., 2014; Ramalingam et al., 
2014), so miRNAs (e.g., miR-373) targeting intron may play a role in 
regulating miRNAs and long noncoding RNAs, which are located in 
intron. Our results demonstrated that miR-373 can interact with the 
sequences located in intron. Then our results showed that ZNF76, 
PDE4D, ALOX5, KIAA1958, ZNF385B, TTC34, EVI5, and FANCC, 
which contain miR-373 binding sites in intron, can be regulated by 
miR-373. So there is existing interaction among miR-373 and intron 
sequences, which might affect gene expression. Taken together, the 
results suggested that the interaction of miRNAs and intron may 

play some biological functions in cells, though we have not provided 
direct evidence that miRNAs regulate gene expression via binding 
with intron. The expression level of ZNF76 mRNA regulated by 
miR-373 was dramatic increased, but this regulated mechanism 
need to study in further study should focus on the mechanism of 
ZNF76 regulation by miR-373. We will investigate whether miR-373 
binding sequence in ZNF76 intron is key to regulate expression of 
ZNF76 by knocking out the sequence.

Although we successfully identified several miR-373 binding 
sequences located in promoter, exon, or intron, there were some 
purified DNA fragments located in genomic DNA region far away 
from any known gene (over 80  kb, data not show). These DNA 
fragments may be located near the uncharacterized genes or may 
be a trigger for mediating the long-range regulation as described 
in a previous report (Zhao et al., 2009).The biological function 
of interaction between miRNAs and these target sites need to be 
further researched. However, our experimental procedure provides 
a way to find this kind of target sites and uncover new regulated 
mechanism of miRNAs.

Strangely, there is lack of connection between Sanger sequencing 
and next-generation sequencing results. Because Sanger sequencing 
and next-generation sequencing results were obtained from two 
independent experiments, many factors, including cell culture 
conditions, ChIP, and library construction, may contribute to 
variability between datasets. Another reason that may contribute to 
variability between two kinds of sequencing is that the samples have 
been prepared via different procedures. Preparing the samples for 
next-generation sequencing, compared with the samples for Sanger 
sequencing, have an extra step in that samples need to be amplified 
by PCR. In this step, some CG-rich sequences may be lost because 
the sequences are hard to be amplified by PCR.

In conclusion, this is a suitable method for identifying miRNA 
target genes that are complementary to genomic DNA. With 
the use of this method, the interaction of miRNA and putative 
miRNA targets can be confirmed by quantitative PCR with 
specific primers. So this method can be used to confirm the 
regulation mechanism of miRNAs to genes via binding genomic 
DNA. Furthermore, the experimental procedure can be applied 
to screen potential miRNA targets. On the whole, the method 
can improve the miRNA research enormously.
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SUPPLEMENTARY FIGURE 1 | Distribution of the main peak of genomic 
DNA. The genomic DNA was sheared by sonicator equipment. Then 1.5% 
agarose gel was used to measure the quality of samples. Results from (A) 
HM-DNA and (B) HM-DNA-NC are; both the main peaks of genomic DNAs 

were distributed between 100 and 500 bp. Agilent 2100 was used to detect 
specific distribution of sample fragments. HM-DNA fragment distributed at 
360 bp (C); HM-DNA-NC fragment distributed at 276 bp (D).

SUPPLEMENTARY FIGURE 2 | Quality distribution and base distribution 
of HM-7-DNA and HM-DNA-NC. Quality distribution of (A) HM-7-DNA and 
(C) HM-7-DNA-NC are shown; the X-axis corresponds to the base site of 
the read. The Y-axis is quality value. Each dot in the image represents the 
quality value of the corresponding position along reads. Base distribution of 
(B) HM-7-DNA and (D) HM-7-DNA-NC is shown; both show a balanced base 
composition. The X-axis was the base position on the reads, and the Y-axis 
was the percentage of the corresponding base at each position. A, C, G, T, 
and N represent different bases.

SUPPLEMENTARY TABLE 1 | The peak information of  HM-7-DNA.

SUPPLEMENTARY TABLE 2 | The peak information of HM-7-DNA-NC.
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Pediatric solid tumors are a diverse group of extracranial solid tumors representing 
approximately 40% of childhood cancers. Pediatric solid tumors are believed to arise as 
a result of disruptions in the developmental process of precursor cells which lead them to 
accumulate cancerous phenotypes. In contrast to many adult tumors, pediatric tumors 
typically feature a low number of genetic mutations in protein-coding genes which could 
explain the emergence of these phenotypes. It is likely that oncogenesis occurs after 
a failure at many different levels of regulation. Non-coding RNAs (ncRNAs) comprise a 
group of functional RNA molecules that lack protein coding potential but are essential in 
the regulation and maintenance of many epigenetic and post-translational mechanisms. 
Indeed, research has accumulated a large body of evidence implicating many ncRNAs 
in the regulation of well-established oncogenic networks. In this review we cover a range 
of extracranial solid tumors which represent some of the rarer and enigmatic childhood 
cancers known. We focus on two major classes of ncRNAs, microRNAs and long non-
coding RNAs, which are likely to play a key role in the development of these cancers 
and emphasize their functional contributions and molecular interactions during tumor 
formation.

Keywords: pediatric tumors, miRNA, long noncoding RNA, cancer biology, gene expression

Pediatric cancers are often categorized as hematologic, intracranial, or extracranial (Chen et al., 
2015). Hematologic cancers include those derived from the blood or blood forming tissues, 
including bone marrow and the lymph nodes. Intracranial cancers are tumors that develop inside 
the brain, whereas extracranial solid tumors, often referred to as pediatric solid tumors, arise 
outside the brain. Collectively, pediatric solid tumors represent approximately 40% of all pediatric 
cancers and commonly form in the developing sympathetic nervous system (neuroblastoma), 
retina (retinoblastoma), kidneys (Wilms tumor), liver (hepatoblastoma), bones (osteosarcoma, 
Ewing sarcoma), or muscles (rhabdomyosarcoma) (Kline and Sevier, 2003; Allen-Rhoades 
et al., 2018). Solid tumors can originate from cells of any of the three germ layers, the ectoderm, 
mesoderm, or endoderm, and likely arise due to disruptions in the developmental processes of 
these precursor cells, leading them to develop cancerous phenotypes (Chen et al., 2015). This 
contrasts with most adult cancers, which tend to be of epithelial origin and are believed to develop 
over time due to exposure to toxins and environmental stress. As a result, adult cancers often 
display a high occurrence of genetic mutations, whereas pediatric solid tumors tend to feature a 
relatively low number of genetic mutations. This has led to investigations into alternative forms 
of gene regulation that may contribute to the emergence and development of cancerous cells in 
pediatric cancers.
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Non-coding RNAs (ncRNAs) form a group of functional 
RNAs lacking protein-coding potential, which play a 
crucial role in the regulation of gene expression at every 
level, from epigenetic regulation via methylation and 
chromatin packaging to post-transcriptional regulation 
(Cech and  Steitz,  2014; Zhao et al., 2016). The most widely 
studied ncRNAs are the microRNAs (miRNAs), small 20- 
to 25-nucleotide-long RNAs that play an important role 
in regulating translation and messenger RNA stability via 
complementary base pairing (Huang et al., 2011). Other 
classes of small ncRNAs include small interfering RNAs 
(siRNAs), Piwi-interacting RNAs (piRNAs), small transfer 
RNAs (tRFs), small nucleolar RNAs (snoRNAs), small nuclear 
RNAs (snRNAs), and small cytoplasmic RNAs (scRNAs). 
Additionally, long non-coding RNAs (lncRNAs) are a loosely 
defined group of RNAs normally larger than 200 nucleotides 
long that lack protein-coding potential and do not fall into 
any of the other categories but nonetheless play key roles 
in the regulation of gene expression (Mercer et al., 2009). 
Increasing data suggest that ncRNAs play a role in regulating 
all biological processes, and it is no surprise that studies have 
observed widespread dysregulation of ncRNAs in nearly all 
forms of cancer (Prensner and Chinnaiyan, 2011; Leichter 
et al., 2017). Interestingly, dysregulated RNA patterns are 
often specific to the type of cancer or even subtype and can 
provide insight into the mechanisms underlying phenotypic 
differences between tumors or cells within a tumor, such as 
their aggressiveness or resistance to certain types of treatments 
(Blenkiron et al., 2007; Li et al., 2014). Additionally, genome-
wide association studies have suggested that over 80% of single 
nucleotide polymorphisms found associated with cancer are 
outside of coding regions (Carninci et al., 2005; Cheetham 
et al., 2013). In this review, we will discuss how two major 
classes of ncRNAs, miRNAs and lncRNAs, may contribute to 
pediatric solid tumors by participating in the regulation of 
established oncogenic networks known to drive these cancers.

MICRORNAS AND GENE REGULATION

Not long after the first human miRNA, let-7, was discovered 
in 2002 by the Ruvkun lab, miRNAs began to emerge as key 
participants in tumorigenesis (Pasquinelli et al., 2000). In 2002, 
two miRNAs were identified as potential tumor suppressors due to 
their frequent downregulation or deletion in chronic lymphocytic 
leukemia (Calin et al., 2002). Calin et al. (2004) later showed that 
many miRNA genes are located close to fragile sites or common 
breakpoints that frequently occur in cancers, suggesting that 
their loss of function was a key event in oncogenesis. Since then, 
oncomiRs—cancer-associated miRNAs—have become a major 
research focus (Esquela-Kerscher and Slack, 2006). A better 
understanding of the mechanisms behind miRNA regulation 
in cancer is invaluable to researchers and clinicians alike, not 
only to aid in the identification of new drug targets but also for 
the development of promising RNA-based therapies and their 
potential use as early detection biomarkers.

miRNAs: Biogenesis and Functions
The life cycle of a miRNA typically begins with its transcription 
into a primary miRNA (pri-miRNA) by RNA polymerase II 
(Ha and Kim, 2014). pri-miRNAs share several similarities 
with messenger RNAs (mRNAs) in that they are 5’ capped, are 
3’ polyadenylated, and can be several hundreds or thousands 
of nucleotides long. In many cases, the pri-miRNA encodes for 
one miRNA species; however, in humans, a substantial number 
are polycistronic and encode several different miRNAs together. 
pri-miRNAs must be processed in the nucleus by the RNAse  III 
enzyme Drosha, which releases shorter ~65-nucleotide-long 
precursor RNAs (pre-miRNAs) with a secondary hairpin structure. 
This hairpin is recognized by the Exportin-5/Ran-GTP transporter, 
which transports the pre-miRNA from the nucleus to the 
cytoplasm. In the cytoplasm, the pre-miRNA is further processed 
by Dicer, another RNAse III enzyme, which cleaves the loop and 
releases a double-stranded miRNA duplex containing the 5 prime 
(5p) and 3 prime (3p) sequences. The duplex is then recognized by 
one of the four human Argonaute proteins, which loads one of the 
strands and discards the other.

miRNAs carry out their functions by binding to Argonaute 
and associating with various other proteins to form the RNA 
induced silencing complex (RISC). As part of this complex, 
miRNAs serve as guides by binding via complementary 
base pairing to target sites that are normally found in the 
3´-untranslated region (3´UTR) of mRNAs. RISCs can regulate 
gene expression by direct cleavage of transcripts, transcript 
destabilization, or blocking translation. In a broader sense, 
miRNAs play a role in globally “fine-tuning” gene expression 
and are particularly important in inducing and maintaining 
differentiated cell states. In cancer, this finely tuned expression 
is often impaired, enabling gene networks that are normally 
switched on or off to reverse and begin influencing cellular 
behavior in a deleterious manner.

miRNAs: Drivers or Passengers in Cancer?
Microarrays and next-generation sequencing technologies 
enabled global measurements of miRNA expression changes 
and have revealed miRNA dysregulation to be a hallmark in 
nearly all cancers. miRNA expression profiles often correlate 
with cancer subtypes and have been effective at classifying 
cancer samples for risk stratification (De Preter et al., 2011). 
However, understanding the contribution of specific miRNAs 
can prove difficult. miRNAs are predicted to regulate hundreds 
to thousands of genes; however, their influence may be minor, 
and often, they must act in concert with other miRNAs. 
Current miRNA target prediction algorithms are imperfect and 
do not capture the true range of regulatory targets; therefore, 
biological validation is still needed (Riffo-Campos et al., 2016). 
Additionally, opposing behavior is seen with many miRNAs, 
where the same miRNA may be considered an oncogene in 
one cancer and a tumor suppressor in another. Because of 
their integration within complex gene networks, it is often not 
obvious whether a dysregulated miRNA actively participates in 
the maintenance of a cancerous state or whether it is simply a 
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bystander. Therefore, it is important to examine how miRNAs 
participate in oncogenic networks on a functional level in order 
to properly understand their role. 

Transcription factors that play an important role in regulating 
cell proliferation, migration, and apoptosis are commonly 
perturbed in pediatric solid tumors. One of the best examples of 
this is in neuroblastoma, where MYCN amplification is present in 
approximately 25% of neuroblastoma patients and disproportionally 
represents high-risk cases (Huang and Weiss, 2013). MYCN 
upregulation is also observed at a higher frequency in several other 
pediatric solid tumors including Wilms tumor, rhabdomyosarcoma 
(Williamson et al., 2005), and retinoblastoma, although generally 
not to the extent seen in neuroblastoma. Germline inactivation 
of the Wilms Tumor 1 (WT1) transcription factor has been 
linked to a genetic predisposition towards Wilms tumor. Several 
transcription factors, including Twist, Snails, and Zebs, involved 
in the epithelial-to-mesenchymal transition have also been 
implicated in the development of osteosarcoma (Yang et al., 2013). 
miRNAs are often closely tied to transcription factors, either as 
regulators or as transcriptional targets (Figure 1) (Sin-Chan et al., 

2019). One of the earliest studies linking miRNAs to an oncogenic 
transcription factor was by O’Donnell et al. in 2005 (O’Donnell 
et al., 2005). In this study, they demonstrated that c-Myc could 
induce expression of the miR-17~92 cluster and that several of 
these miRNAs could in turn regulate E2F1 transcription to control 
cell proliferation.

Disruptions in miRNA Processing
Recent studies have shown that impairments of the miRNA 
processing machinery are common in Wilms tumor and likely 
contribute to this disease. For example, a study by Torrezan 
et  al. (2014) found mutations in miRNA processing genes in 
33% of tumors, most commonly occurring in the Drosha gene, 
with other mutations in DICER1, XPO5, DGCR8 and TARBP2. 
These results are supported by several other studies by Wu 
et  al. (2013),  Rakheja et al. (2014), Walz et al. (2015), Wegert 
et al. (2015), and Gadd et al. (2017). In Rakheja et al.’s study, 
they further examined the potential consequences of several 
of these mutations and found that Drosha mutations often led 
to a loss of RNAse IIIB activity, which prevented processing of 

FIGURE 1 | Regulatory circuitry involving non-coding RNAs in various pediatric solid tumors. Shows elements of a key regulatory circuit involving MYC and E2F 
family transcription factors and many ncRNAs, often dysregulated in pediatric solid tumors. In many cases, recurring dysregulation of specific elements, including 
miRNAs and lncRNAs, is observed and may represent vulnerabilities in the normal development of specific cell lineages. (A) Loss of chromosomal regions where 
let-7 and miR-34 miRNAs are localized is frequently observed in neuroblastoma and may represent a key event in the development of many of these cancers. 
(B) let-7 dysregulation may facilitate overexpression of the oncogenic fusion transcript EWS-FLI-1 in Ewing sarcoma. (C) The RB1 tumor suppressor regulates E2F, 
and loss of function via mutations can lead to the development of retinoblastoma. In osteosarcoma, miR-9 may be able to act as an oncogenic driver as it is often 
overexpressed and can downregulate RB1. (D) In neuroblastoma, miR-9 can display tumor-suppressive properties by cooperating with miR-125a and miR-125b to 
regulate a specific isoform of trkC and suppress cell proliferation (E) The lncRNA TUG1 is suggested to act as a ceRNA against miR-9, which has been shown to 
display tumor-suppressive properties in some osteosarcoma cell lines.
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pri-miRNAs, leading to a global reduction in mature miRNAs. 
DICER1 mutations also frequently affected the RNAse IIIB 
domain; however, this mutation only affected processing of 5p 
miRNAs from precursors, as DICER1 contains a second RNAse 
domain for 3p processing. As a result, this mutation led to a shift 
towards 3p miRNA maturation. These mutations have interesting 
consequences for global miRNA expression and most likely favor 
expression of oncogenic miRNAs or reduce expression of miRNAs 
with tumor-suppressive effects. In line with this, the let-7 family 
is predominantly 5p-derived, and lower expression of several of 
its 5p members was found in both Drosha and DICER1 mutants 
in two of these studies (Rakheja et al., 2014; Walz et al., 2015). 
Additionally, the miR-200 family was found downregulated in 
Wilms tumors with mutated miRNA processing genes, which is 
known to regulate the mesenchymal-to-epithelial transition and 
has been associated with highly aggressive forms of cancer (Ceppi 
and Peter, 2014; Walz et al., 2015). The functional role of several 
oncomiRs has been investigated in detail within the context of 
pediatric solid tumors and is discussed in the following section.

The miR-17~92 Cluster is a Downstream Effector of 
Oncogenic Transcription Factors
The miR-17~92 cluster is expressed during normal development of 
the brain, heart, lungs, and immune system (Koralov et al., 2008; 
Ventura et al., 2008; Bian et al., 2013; Chen et al., 2013) and is known 
to regulate critical genes involved in cell growth, proliferation, 
and apoptosis. This cluster is comprised of six different miRNAs 
that are co-expressed, including miR-17, miR-18a, miR-19a,  
miR-19b-1, miR-20a, and miR-92-1. Dysregulation of the miR-17~92  
cluster has been shown in several pediatric solid tumors 
including neuroblastoma, Wilms tumor, retinoblastoma, and 
osteosarcoma, where a higher expression generally correlates 
with a poorer prognosis (Chen and Stallings, 2007; Baumhoer 
et al., 2012; Li et al., 2014). The miR-17~92 cluster is particularly 
interesting due to its regulation by the transcription factor MYC 
and its homologue MYCN, where it seems to act as a mediator 
for some of MYC/MYCN’s oncogenic effects (Schulte et al., 
2008). Other transcription factors known to target the miR-
17~92 cluster include members of the E2F family and STAT3 
(Mogilyansky and Rigoutsos, 2013).

Several studies have demonstrated that the miR-17~92 cluster 
regulates many downstream components of the transforming 
growth factor beta (TGF-β) pathway, which is known to 
participate in a variety of cellular process such as differentiation, 
proliferation, and immune cell activation. A study by Fontana 
et al. (2008) demonstrated that in neuroblastoma, miR-17 and 
miR-20a downregulate the cyclin-dependent kinase inhibitor 
p21, which is activated by TGF-β. p21 plays a key role in the 
inhibition of cell cycle progression by blocking the transition 
from G1 to S phase, and its deregulation leads to uncontrolled 
cell growth. Additionally, Fontana et al. (2008) showed that miR-
17-5p regulated another downstream component of TGF-β, 
the pro-apoptotic factor Bcl-2 interacting mediator (BIM). 
Mestdagh et al. (2010) later investigated miR-17~92 regulation 
of the TGF-β pathway in more depth and identified miR-17 and 
miR-20a as regulators of TGFBR2 and miR-18a as a regulator 
of SMAD2 and SMAD4, both signal transducers for TGF-β 

receptors. miR-18a and miR-19a have also been shown to repress 
estrogen receptor (ESR1) expression, and prolonged knockdown 
of miR-18a induced morphological differentiation of SK-N-BE 
neuroblastoma cells. Interestingly, the TGF-β pathway interacts 
with ESR1 signaling via several of the SMADs (Band and Laiho, 
2011), suggesting a complex interplay between miR-17~92 and 
its targeted pathways necessary for fine-tuning differentiation 
during neuronal development—a balance that is disrupted 
when miR-17~92 is overexpressed. While no studies have 
investigated in detail the interaction between the miR-17~92 
cluster and TGF-β pathway in Wilms tumor, the TGF-β pathway 
has been implicated in Wilms tumor development. In contrast 
with neuroblastoma, the TGF-β pathway appears to function as 
a promoter of Wilms tumor progression, and TGF-β is highly 
expressed in primary tumors, even more so in metastatic tumors. 
This multifaceted behavior of the TGF-β pathway has been 
shown in other cancers and implies that the pathway’s influence 
is specific to the tumor it is activated in.

The E2F family of transcription factors serve an important 
role in cell cycle control as their expression can cause cells to 
enter the G1 phase to initiate cell division (Chen et al., 2009). 
Several members, including E2F1, E2F2, and E2F3, all regulate 
miR-17~92 expression. In a study by Kort et al. (2008) a member 
of the E2F family of transcription factors, E2F3, was shown to 
be exclusively expressed in Wilms tumor and not in other types 
of kidney tumors. In line with this, they compared expression 
of the miR-17~92 miRNAs in Wilms tumor samples to other 
renal tumor subtypes and found them all to be upregulated. They 
were also able to show a correlation between E2F3 expression 
and the stage of Wilms tumor, where it was highest in late-stage 
metastatic tissues. In retinoblastoma, an early study investigating 
the miR-17~92 cluster identified that one of its members, miR-
20a, participates in an autoregulatory feedback loop with E2F2 
and E2F3 (Sylvestre et al., 2007), as they found both transcription 
factors are themselves downregulated by miR-20a. The authors 
suggested that this autoregulation was critical in preventing 
expression of excessive amounts of E2F transcription factors. 
Given that MYC/MYCN and E2F have previously been shown 
to induce each other’s expression, miR-20a appears to play an 
important role in keeping this positive feedback loop in check 
(Leone et al., 1997; Strieder and Lutz, 2003). Therefore, it is easy 
to see how disruption in one or more of these regulatory elements 
could lead to uncontrolled expression of these proliferative and 
anti-apoptotic signals.

A later study by Conkrite et al. (2011) investigated miR-17~92 
in retinoblastoma and revealed that this cluster was capable of 
driving retinoblastoma formation in RB1/p107-deficient mice. 
RB1 plays a key role in inhibiting cell cycle progression, and 
germline mutations of this gene can lead to familial retinoblastoma 
formation (Friend et al., 1986; Classon and Harlow, 2002). 
RB1’s protein product, pRB, inhibits E2F transcription factors 
by binding and inactivating them, and its absence enables  
miR-17~92–driven tumor formation.

The miR-17~92 cluster also plays a role in driving tumor 
progression and metastasis in osteosarcoma (Li et al., 2014). A 
recent study by Yang et al. (2018) identified QKI2 as a regulatory 
target of the miR-17~92 cluster. QKI proteins have previously 
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been shown to inhibit β-catenin and induce differentiation 
in colon cancer. Yang at el. demonstrated that miR-17~92 
downregulated QKI2, causing upregulation of β-catenin, 
leading to increased proliferation, invasion, and migration in 
osteosarcoma (Yang et al., 2018). Additionally, miR-20a has 
previously been shown to downregulate Fas expression, which 
is a cell surface marker that interacts with FasL to induce 
apoptosis in the lungs, where osteosarcoma almost exclusively 
metastasizes to (Huang et al., 2012).

The miR-17~92 cluster plays a tumorigenic role in a number 
of pediatric solid tumors including neuroblastoma, Wilms 
tumor, retinoblastoma, and osteosarcoma. The use of the 
miRNA pathway by transcription factors such as the MYC and 
E2F families enables them to target a wide range of genes and 
immediately effect gene expression at the post-transcriptional 
level. Continued research into how miRNAs may operate as 
oncogenic drivers will likely expand the repertoire of potential 
drug targets available to us.

Let-7 Dysregulation is a Feature in Many Pediatric 
Solid Tumors
The let-7 family of miRNAs are among the most well-characterized 
tumor suppressors due to their frequent downregulation in 
cancers. In total, there are 12 members of the let-7 family located 
across eight different chromosomes; however, in most cells, only 
a selection of these miRNAs will be expressed (Balzeau et al., 
2017). let-7 miRNAs are important in regulating the cell cycle 
and maintaining cells’ differentiated state by targeting a wide 
range of genes with known roles in cancer biogenesis such as 
MYC/MYCN, RAS, CDK6, and HMGA2 (Buechner et al., 2011; 
Wu et al., 2015).

let-7 is regulated by the LIN28 proteins, LIN28A and LIN28B, 
which mediate uridylation, prevent processing of the let-7 
precursor, and are important for maintaining pluripotency in 
cells (Lehrbach et al., 2009; Balzeau et al., 2017). Both Lin28 genes 
contain let-7 target sites and participate in a double-negative 
feedback loop with let-7 (Yin et al., 2017). Overexpression of 
Lin28 tends to drive cells towards oncogenesis and is a common 
feature in cancers. In a study by Urbach et al. (2014), Lin28b 
overexpression was found in approximately 30% of Wilms 
tumors. Additionally, they found overexpression of Lin28 
could induce tumor formation in specific renal intermediates 
and that restoration of let-7 activity could reverse this effect 
in mice. Similar examples have been shown in mouse models, 
where Lin28b overexpression can drive hepatoblastoma and 
hepatocellular carcinoma in the liver and neuroblastoma in 
the neural crest (Molenaar et al., 2012; Nguyen et al., 2014). 
Molenaar et al. (2012) investigated Lin28b in neuroblastoma and 
demonstrated that Lin28b could enhance MYCN protein levels 
via let-7 regulation. However, a later study by Powers et al. (2016) 
showed that Lin28b expression was redundant in certain MYCN-
amplified neuroblastoma cells, as overexpression of the MYCN 
transcript could function as a miRNA sponge for let-7, thereby 
negating their effect regardless of expression level. Powers et al. 
showed that most neuroblastomas were characterized by a loss 
of let-7 with either MYCN overexpression or chromosomal 
loss of arm 3p or 11q, where several let-7 miRNAs are located 

(Figure 1A). The authors noted that these events were generally 
mutually exclusive and suggested that the presence of one event 
alleviated selective pressure for the other. 

A study by Di Fiore et al. (2016) revealed that let-7d could 
promote and suppress tumor formation within the same 
system. In this study, they found that let-7d overexpression in 
osteosarcoma cells reduced several stemness genes, including 
Lin28b, HMGA2, Oct3/4, and SOX2, and could elicit the 
mesenchymal-to-epithelial transition with upregulation of 
the epithelial marker E-cadherin and downregulation of 
mesenchymal markers N-cadherin and vimentin. However, they 
also found that let-7d enhanced cell migration and invasion, 
presumably by acting via the TGF-β pathway, which is known 
to promote this behavior. let-7d strongly increased versican VI 
expression, which has previously been shown to activate the 
TGF-β pathway in osteosarcoma (Li S. et al., 2014).

In Ewing sarcoma, Hameiri-Grossman et al. (2015) found 
that let-7 downregulated the Ras oncogene, as well as the 
transcription factor HIF-1a, to reduce EWS-FLI-1 expression 
(Figure 1B). EWS-FLI-1 is a hybrid transcript that results from 
a translocation event involving EWS and FLI1, and translocation 
events such as this are present in nearly all Ewing sarcoma cases 
and are believed to drive the disease (Delattre et al., 1994).

Loss of Let-7 plays a key role in many pediatric solid tumors 
as its loss enables expression of transcription factors and other 
genes that participate in oncogenesis. This has been emphasized 
in neuroblastoma, where it has been suggested that loss of let-7 
function is an essential event in tumor development and positions 
the miRNA pathway as a central player in pediatric solid tumors.

miR-9 Has Been Shown to Play Oncogenic 
and Tumor-Suppressive Roles in Different 
Pediatric Tumors
miR-9 is a highly conserved miRNA involved in several different 
cellular processes including cell proliferation, differentiation, and 
migration. Early studies revealed miR-9 to be highly expressed 
in the brain and play a role both during development and in 
the adult brain; however, miR-9 has also been associated with 
many cancers outside the brain, acting as an oncogene or tumor 
suppressor (Coolen et al., 2013). Mir-9 is upregulated by MYC/
MYCN and plays a role in promoting tumor growth and metastasis 
in several cancers including breast cancer, osteosarcoma, and 
rhabdomyosarcoma, where it is often overexpressed (Iorio 
et al., 2005; Luo et al., 2017) However, in other cancers such as 
neuroblastoma, miR-9’s role is less clear, and studies have argued 
for oncogenic and tumor suppressor functions (Laneve et al., 
2007; Zhi et al., 2014).

The role of miR-9 in osteosarcoma appears to be in promoting 
cell growth and metastasis (Zhu et al., 2015; Qi et al., 2016). In 
a study by Zhu et al. (2015), miR-9 knockdown suppressed cell 
growth and migration of osteosarcoma cells. They were also 
able to show that miR-9 downregulated RB1 via the Grap2 
and cyclin D interacting protein (GCIP), thereby promoting 
E2F-mediated cell division (Figure 1C). Similar behavior has 
been observed in the alveolar subtype of rhabdomyosarcoma, 
where miR-9 contributes to increased cell proliferation and 
migration (Missiaglia et al., 2017). In this study by Missiaglia 
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et  al. (2017), miR-9 was shown to be induced by the PAX3/
FOXO1 fusion gene via MYCN, which is specific to this subtype 
of rhabdomyosarcoma.

In neuroblastoma, miR-9 expression has been shown to be 
both up- and downregulated in different studies. An early study 
by Laneve et al. (2007) showed that miR-9 was downregulated 
in 50% of primary neuroblastoma samples, and follow-up 
experiments demonstrated that miR-9 could act together 
with miR-125a and miR-125b to suppress cell proliferation by 
targeting a truncated isoform of the neurotrophin receptor 
tropomyosin-related kinase C (trkC) (Figure 1D). However, 
a later study by Ma et al. (2010) found miR-9 to be a target of 
MYCN and that miR-9 expression correlated with MYCN and 
metastatic status in neuroblastoma tumors. In this same study 
(albeit in breast cancer cells), Ma et al. also demonstrated that 
miR-9 suppressed E-cadherin to activate β-catenin and promote 
the epithelial-to-mesenchymal transition. Mir-9 is frequently 
involved in promoting cell migration; however, its absence has 
also been shown to produce different responses such as cell cycle 
arrest or apoptosis in neurons depending on their origin (Bonev 
et al., 2011). The contradictory behavior seen with studies of 
miR-9 highlight the diverse roles that individual miRNAs can 
play, and more comprehensive studies are needed to identify the 
relevant contextual influences on miRNA behavior.

miR-34 Is a Key Regulator of the Cell Cycle and 
Drug Resistance in Pediatric Solid Tumors
The miR-34 family has garnered significant interest since 
its members were discovered to be direct transcriptional 
targets of the tumor suppressor and transcription factor p53 
(Hermeking, 2010). The miR-34 family consists of three 
miRNAs encoded by two genes, mir-34a and mir-34b/c. All 
three miRNAs play a key role in regulating apoptosis and 
the cell cycle by inducing G1 phase arrest. One of the more 
interesting facts about miR-34a and miR-34b/c is their genomic 
locations, which are located on chromosomes 1p36 and 11q23, 
respectively, regions that are frequently lost in pediatric solid 
tumors (Ruteshouser et al., 2005; Wittmann et al., 2007). In 
particular, loss of 1p36 occurs in 20–30% of neuroblastoma 
cases and correlates with MYCN amplification (Caron et al., 
1993; Maris et al., 1995), whereas loss of 11q23 in occurs in 
approximately 40% of cases but almost never occurs with 
MYCN amplification (Figure 1A) (Guo et al., 1999; Attiyeh 
et al., 2005). miR-34 members are also regulators of the MYC 
family, as miR-34a is known to regulate MYCN and miR-34b 
and mir-34c to regulate c-MYC (Wei et al., 2008).

Studies on mir-34a expression have identified frequent 
downregulation in neuroblastoma, osteosarcoma, and 
hepatoblastoma (Jiao et al., 2016). miR-34a is itself considered 
a tumor suppressor due to its involvement in cell cycle arrest 
and apoptosis (De Antonellis et al., 2014). In neuroblastoma, 
Cole et  al. (2008) investigated the growth-inhibitory effects 
of several miRNAs mapping to common chromosomal 
aberrations by overexpressing them in cell lines. In most 
cases, overexpression did not lead to a noticeable change 
in phenotype; however, miR-34a and miR-34c induced 

significant growth inhibition in cell lines with 1p36 deletion. 
Growth inhibition and suppression of metastasis by miR-34a 
have also been shown in osteosarcoma by several studies, 
where members of key proliferative signal transduction 
pathways such as c-Met, DUSP1, and Eag1 were identified as 
regulatory targets (Yan et al., 2012; Wu X. et al., 2013; Gang 
et al., 2017). The miR-34 family also targets several members 
of the Notch signaling pathway, which has been linked to 
both oncogenic and tumor-suppressive roles depending 
on the cellular context. In osteosarcoma, activation of the 
Notch pathway is known to contribute to tumor growth, and 
miR-34a–mediated downregulation of this pathway likely 
contributes to its tumor-suppressive role. However, in Ewing 
sarcoma, a recent study investigating miR-34b suggested 
that it could act as an oncogene, promoting proliferation, 
migration, and invasion through Notch1 repression (Lu Q. et 
al., 2018). Prior studies have shown correlations between high 
mir-34a expression and patient survival, which would indicate 
a tumor-suppressive role for mir-34a (Nakatani et  al., 2012; 
Marino et al., 2014). It is unclear why miR-34a and miR-34b 
would display contrasting effects given their shared targets, 
and further investigation is needed.

Several studies by Pu et al. (2016) and Pu et al. (2017) have 
suggested that miR-34a may also play a role in promoting 
multidrug resistance in osteosarcoma. In these studies, they 
found that miR-34a-5p enhanced multidrug resistance through 
downregulation of the CD117 and AGTR1 genes in vitro. CD117 is 
often highly expressed in drug-resistant tumors and is commonly 
used as a marker for stemness (Adhikari et al., 2010). In contrast, 
Nakatani et al. found that miR-34a increased chemosensitivity in 
Ewing sarcoma (Nakatani et al., 2012).

Other miRNAs Involved in Multiple Pediatric 
Solid Tumors
A substantial number of other miRNAs have been discovered 
with functional implications in multiple pediatric solid tumors. 
One such miRNA is miR-125b, which typically exhibits tumor-
suppressive properties in cancers such as neuroblastoma, 
osteosarcoma, and Ewing sarcoma, where it is commonly 
dysregulated (Laneve et al., 2007; Li J. et al., 2014; Xiao et al., 
2019). Previously, it was mentioned that miR-125b participates 
in a network with miR-125a and miR-9, regulating expression 
of a truncated trkC isoform to control neuroblastoma growth 
and differentiation (Laneve et al., 2007; Le et al., 2009). 
In osteosarcoma, miR-125b was found to regulate STAT3 
by downregulating MAP kinase kinase 7 (MKK7), which 
inactivates STAT3 via dephosphorylation (Xiao et al., 2019). 
Loss of miR-125b and consequent overexpression of MKK7 
led to increased tumor formation and poorer prognosis. In 
Ewing sarcoma, miR-125b is involved in regulating the PI3K 
signaling pathway; could inhibit cell proliferation, migration, 
and invasion; and induce apoptosis through suppression of 
PIK3CD (Li J et al., 2014). Conversely, in retinoblastoma, miR-
125b is overexpressed and has shown oncogenic properties 
by promoting cell proliferation and migration and inhibiting 
apoptosis (Bai et al., 2016). Conflicting behavior with miR-125b 

158

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Non-Coding RNAs in Pediatric Solid TumorsSmith et al.

7 September 2019 | Volume 10 | Article 798Frontiers in Genetics | www.frontiersin.org

has been observed in many other cancers, which suggests that 
its role is highly dependent on cell identity (Sun et al., 2013).

miR-124 has been widely reported to act as a tumor suppressor 
by inhibiting cell growth and metastasis and acts as a key mediator 
of differentiation in several pediatric solid tumors (Peng et al., 
2014; Feng et al., 2015; Zhao et al., 2017). In neuroblastoma, miR-
124a increased the proportion of differentiated cells possessing 
neurite outgrowths (Le et al., 2009). In retinoblastoma, miR-124 
participates in a regulatory network with lncRNAs Malat1 and 
XIST, which both function as oncogenes by enhancing growth 
and metastasis through downregulation of miR-124 (Liu S. 
et al., 2017; Hu et al., 2018). miR-124 itself was shown to target 
STAT3 to inhibit cell proliferation, migration, and invasion 
(Liu S. et  al., 2016). In Ewing sarcoma, miR-124 expression is 

suppressed, and expression was found to reduce growth and 
metastasis via downregulation of mesenchymal genes such 
as SLUG and cyclin D2 (CCND2) (Li et al., 2017). Finally, in 
osteosarcoma, retinoblastoma, and Ewing sarcoma, miR-143 
has been found to be dysregulated (De Vito et al., 2012; Li S. 
et  al., 2014; Wang et al., 2016; Sun et al., 2018). For example, 
Li et  al. investigated miR-143 function in osteosarcoma and 
showed that miR-143 participated in the TGF-β pathway by 
targeting versican, and TGF-β could reduce miR-143 expression 
to promote cell migration and invasion (Li S. et al., 2014). FOS-
like antigen 2 (FOSL2) was also identified as a miR-143 target, 
which enhanced cell proliferation, migration, and invasion in 
the absence of miR-143 (Sun et al., 2018). Additional miRNA 
studies have been listed in Table 1.

TABLE 1 | miRNAs that have been shown to exhibit oncogenic or tumor-suppressive effects through functional studies in various pediatric solid tumors.

Cancer Oncogenic miRNAs/clusters Comments 

Neuroblastoma mir-15 (Xin et al., 2013), mir-17~92 (Fontana et al., 2008; Loven et al., 2010; Mestdagh et al., 
2010), miR-93 (Chakrabarti et al., 2012), miR-380 (Swarbrick et al., 2010), miR-558 (Shohet et al., 
2011; Qu et al., 2015)

mir-17~92 dysregulation is 
common in MYCN-amplified 
neuroblastomas.

Osteosarcoma let-7d (Di Fiore et al., 2016), miR-9 (Zhu et al., 2015; Qi et al., 2016), miR-17~92 (Huang et al., 
2012; Li X. et al., 2014; Lu et al., 2018a; Yang et al., 2018b), miR-34a (Pu et al., 2016; Pu et al., 
2017), miR-214 (Rehei et al., 2018)

Retinoblastoma miR-17~92 (Conkrite et al., 2011; Nittner et al., 2012; Jo et al., 2014), miR-125b (Bai et al., 2016) Loss of RB1 function may enable 
mir-17~92–mediated oncogenicity.

Wilms tumor miR-19b (Liu G.-L. et al., 2017), miR-483 (Veronese et al., 2010; Liu M. et al., 2013), miR-1180 
(Jiang and Li, 2018)

Hepatoblastoma miR-492 (von Frowein et al., 2018)
Ewing sarcoma mir-17~92 (Schwentner et al., 2017), miR-20b (Kawano et al., 2017), miR-34b, b (Lu et al., 2018b) 

miR-130b (Satterfield et al., 2017)
EWS-FLI-1 may upregulate mir-
17~92 and miR-34b.

Cancer Tumor-suppressive miRNAs/clusters Comments

Neuroblastoma let-7 (Buechner et al., 2011; Molenaar et al., 2012; Hennchen et al., 2015; Powers et al., 2016), 
mir-7-1 (Chakrabarti et al., 2012), mir-9 (Laneve et al., 2007), mir-10 (Foley et al., 2011), miR-34a 
(Welch et al., 2007; Cole et al., 2008; Tivnan et al., 2011), miR-34c (Cole et al., 2008), miR-101 
(Buechner et al., 2011), miR-124a (Le et al., 2009), miR-125 (Laneve et al., 2007; Le et al., 2009), 
miR-145 (Zhang et al., 2014), miR-184 (Chen and Stallings, 2007; Foley et al., 2010; Tivnan et al., 
2010), miR-193b (Roth et al., 2018), miR-202 (Buechner et al., 2011), miR-203 (Zhao et al., 2015), 
miR-449 (Buechner et al., 2011), miR-542 (Bray et al., 2011), miR-584 (Xiang et al., 2015), miR-591 
(Shohet et al., 2011)

let-7 and mir-34 are regulators of 
the MYCN oncogene.

Osteosarcoma let-7d (Di Fiore et al., 2016), miR-1 (Novello et al., 2013), miR-34 (Yan et al., 2012; Wu et al., 2013b; 
Gang et al., 2017; Wen et al., 2017), miR-125b (Le et al., 2009; Xiao et al., 2019), miR-133b 
(Novello et al., 2013), miR-134 (Thayanithy et al., 2012), miR-138 (Zhu et al., 2016), miR-143 (Li 
et al., 2014c; Sun et al., 2018), miR-195 (Han et al., 2015), miR-223 (Dong et al., 2016), miR-363 
(Wang K. et al., 2018), miR-369 (Thayanithy et al., 2012), miR-382 (Thayanithy et al., 2012), miR-
451 (Yuan et al., 2015), miR-454 (Niu et al., 2015), miR-485 (Du et al., 2018), miR-544 (Thayanithy 
et al., 2012), miR-590 (Wang W.T. et al., 2018), miR-708 (Chen and Zhou, 2018), miR-2682 (Zhang 
et al., 2018b)

miR-34 suppresses tumor growth 
in osteosarcoma but may also 
contribute to drug resistance.

Retinoblastoma miR-101 (Lei et al., 2014), miR-124 (Liu S. et al., 2016), miR-143 (Wang et al., 2016) STAT3 is a target of miR-124.
Rhabdomyosarcoma miR-1 (Rao et al., 2010; Li et al., 2012), mir-22 (Bersani et al., 2016), miR-29 (Li et al., 2012), miR-

133a (Rao et al., 2010), miR-206 (Li et al., 2012; Missiaglia et al., 2010)
miR-1 appears to play a key role in 
differentiation of several sarcomas.

Wilms tumor let-7 (Urbach et al., 2014), miR-16 (Chen W. et al., 2018), miR-34a (Chen W. et al., 2018), mir-92a 
(Zhu et al., 2018b), miR-613 (Wang et al., 2017a)

miR-92a was shown to act as a 
tumor suppressor unlike what is 
observed in other pediatric solid 
tumors.

Hepatoblastoma miR-26 (Zhang et al., 2018d) miR-26 was shown to repress 
LIN28B in hepatoblastoma.

Ewing sarcoma let-7 (Hameiri-Grossman et al., 2015; Kawano et al., 2015), miR-16 (Kawano et al., 2015), miR-22 
(Parrish et al., 2015), miR-29b (Kawano et al., 2015), miR-30a (Franzetti et al., 2013), miR-30d (Ye 
et al., 2018), miR-31 (Karnuth et al., 2014), miR-34a (Nakatani et al., 2012; Ventura et al., 2016), 
miR-124 (Li et al., 2017), miR-125b (Li et al., 2014b), miR-143 (De Vito et al., 2012), miR-145 (Riggi 
et al., 2010; De Vito et al., 2012), miR-185 (Zhang et al., 2018c), miR-193b (Moore et al., 2017), 
miR-708 (Robin et al., 2012)

Several miRNAs such as let-7 and 
miR-145 are downregulated by 
EWS-FLI-1.
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miRNAs Regulate All Aspects of Tumorigenesis
Widespread dysregulation of miRNAs is observed in 
many pediatric solid tumors, and functional studies have 
demonstrated that many of these miRNAs can drive or repress 
oncogenic pathways responsible for cell proliferation, apoptosis, 
angiogenesis, metastasis, and drug resistance. Importantly, 
miRNAs such as let-7 and miR-34 play a vital role in pediatric 
solid tumors by regulating established oncogenic transcription 
factors such as the MYC and E2F families (Wei et al., 2008; 
Buechner et al., 2011). Other miRNAs, such as the miR-17~92 
cluster and miR-9, serve as downstream effectors for these 
transcription factors, although their exact role in tumorigenesis 
seems to depend on the overall transcriptional landscape 
(Schulte et al., 2008; Ma et al., 2010). In some cases, viewing 
miRNAs as oncogenes or tumor suppressors likely represents 
an oversimplification of their role in cancer, and a better 
understanding of their participation in oncogenic networks will 
be needed to clarify their exact contributions.

LONG NON-CODING RNAS REGULATE 
ONCOGENIC PATHWAYS IN PEDIATRIC 
SOLID TUMORS

For a long time, it was believed that the human genome was 
mostly comprised of “junk” DNA, despite pervasive transcription 
of much of the genome outside of protein-coding genes and 
other known RNAs at the time (Prensner and Chinnaiyan, 2011). 
Originally thought of as transcriptional noise, lncRNAs have now 
emerged as functional regulators of nearly all essential cellular 
processes including growth, differentiation, cell state maintenance, 
apoptosis, splicing, and epigenetic regulation. The first lncRNA, 
H19, was discovered in 1990 where an RNA molecule was found 
spliced and polyadenylated in a manner typical of mRNAs; 
however, it lacked an open reading frame and was believed to 
function as an untranslated RNA molecule (Brannan et al., 1990).

Often, lncRNAs participate within protein complexes and 
can operate as scaffolds, guides, decoys, or allosteric regulators. 
Many lncRNAs function as epigenetic regulators by interacting 
with proteins involved in chromatin remodeling and DNA 
methylation. Frequently, these lncRNAs will be cis-acting and 
regulate the regions near their transcribed location; however, 
some are trans-acting. Other lncRNAs function as competing 
RNAs (ceRNAs), which contain miRNA binding sites in a similar 
manner to mRNAs in order to compete and reduce the activity 
of miRNAs.

Several studies have investigated lncRNA expression in pediatric 
tumors and have successfully identified unique expression profiles 
in different cancers and tumor subtypes (Mitra et al., 2012; Brunner 
et al., 2012; Dong et al., 2014; Sahu et al., 2018). For example, 
Dong et al. (2014) compared hepatoblastoma samples to normal 
liver tissue in patients and found 2,736 differentially expressed 
lncRNAs. A study by Pandey et al. (2014) found 24 lncRNAs that 
could distinguish low- and high-risk neuroblastoma tumors. In 
a more recent study, Sahu et al. (2018) identified 16 differentially 
expressed lncRNAs that could be used to predict event-free 

survival with greater accuracy than other commonly used clinical 
risk factors. Mechanistic studies into many of these lncRNAs have 
revealed that they frequently act as an additional layer of regulation 
within established oncogenic networks involving protein-coding 
genes and miRNAs. While the field of lncRNAs is still relatively 
young, many studies have emerged that suggest that lncRNAs are 
far more integrated into existing gene networks than what has 
previously been appreciated (Figure 1). In the following section, 
the roles of some of the better-characterized lncRNAs in pediatric 
solid tumors will be discussed.

Malat1 Is Induced by MYCN in 
Neuroblastoma and Competes With 
Many miRNAs
One of the earliest lncRNAs to be associated with disease was 
Malat1 (metastasis-associated lung adenocarcinoma transcript 
1), which was shown to associate with metastatic tumors in 
non–small cell lung cancer patients (Ji et al., 2003). Malat1 is 
abundantly expressed and highly conserved across species, 
unlike many other lncRNAs, and displays remarkably diverse 
functions in cellular processes including alternative splicing, 
nuclear organization, and epigenetic modulation. Studies have 
suggested an important role for Malat1 in brain development, 
as it is highly expressed in neurons and its depletion has been 
shown to affect synapse and dendrite development (Bernard 
et al., 2010; Chen et al., 2016). However, its importance has been 
questioned as other studies have found that Malat1-KO mice are 
viable with no discernable change in phenotype (Nakagawa et al., 
2012; Zhang et al., 2012).

In addition to lung cancer, Malat1 is known to contribute 
to metastasis in other common types of cancer including 
hepatocellular carcinoma and bladder cancer, with evidence 
that it acts through induction of the epithelial-to-mesenchymal 
transition (Ying et al., 2012; Li G. et al., 2014; Yang et al., 2017). The 
role of Malat1 in several pediatric cancers has also been explored 
in recent studies. In neuroblastoma, Tee et al. (2014) recently 
identified a regulatory network involving N-Myc, Malat1, and the 
histone demethylase JMJD1A. They found that N-Myc upregulated 
JMJD1A via direct binding of its promoter region and that JMJD1A 
could demethylate histone H3K9 near the promoter region of 
Malat1, leading to its upregulation. MYCN-mediated upregulation 
of Malat1 provides one mechanism in which its amplification can 
lead to increased metastasis in neuroblastoma patients. Another 
study by Bi et al. (2017) also demonstrated that Malat1 regulated 
Axl expression, a transmembrane receptor tyrosine kinase, which is 
known to activate pathways involved in cell proliferation, survival, 
and migration. In osteosarcoma, Dong et al. (2015) demonstrated 
that Malat1 was highly expressed and could activate the PI3K/Akt 
pathway to promote proliferation and invasion.

Malat1 is known to interact with many miRNAs implicated in 
cancer. In osteosarcoma, several studies have shown Malat1 can 
function as a ceRNA for different miRNAs (Wang et al., 2017b; 
Liu K. et al., 2017b; Sun and Qin, 2018). miR-140-5p is a tumor 
suppressor that downregulates HDAC4, a histone deacetylase that 
contributes to tumorigenesis, and competitive binding by Malat1 
with miR-140-5p was shown to increase HDAC4 activity (Sun 
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and Qin, 2018). Malat1 was also shown to compete with miR-
144-3p binding to ROCK1/ROCK2, promoting proliferation and 
metastasis (Wang et al., 2017b). In a similar manner, Liu K. et al. 
(2017) found that Malat1 could regulate cell growth through 
high-mobility group protein B1 (HMGB1) via ceRNA activity 
with miR-142-3p and miR-129-5p. Finally, in retinoblastoma, 
Malat1 downregulated miR-124 activity, leading to activation of 
the transcription factor SLUG, which is also targeted by miR-124 
(Liu S. et al., 2017). SLUG has a known role in the epithelial-
to-mesenchymal transition by suppressing E-cadherin via the 
Wnt/B-catenin pathway (Prasad et al., 2009). 

In addition to interactions with miRNAs, Malat1 has also 
been shown to be processed directly by the Drosha–DGCR8 
microprocessor complex through binding sites in the 5’ end of the 
transcript (MacIas et al., 2012). lncRNAs such as Malat1 cooperate 
with the miRNA pathway and a number of transcription factors 
and epigenetic factors to form a complex network responsible 
for regulating tumorigenesis. The capacity for Malat1 to drive 
proliferation and metastasis in pediatric solid tumors suggests 
that dysregulation of any of these regulatory components can be 
sufficient for the development of cancer and highlights the value 
of further research into the relatively new field of lncRNAs.

H19: lncRNA Dysregulation via Loss 
of Imprinting may Contribute to 
Tumorigenesis
H19 is a paternally imprinted gene that is typically expressed 
exclusively from the maternal allele. Early reports suggested 
that H19 functioned as a tumor suppressor capable of inhibiting 
cell growth (Hao et al., 1993; Zhang et al., 1993; Casola et  al., 
1997; Fukuzawa et al., 1999). Studies in childhood solid 
tumors such as hepatoblastoma, Wilms tumor, and embryonic 
rhabdomyosarcoma supported this idea, as all three cancers often 
exhibited reduced H19 expression and had frequently lost the 
maternal 11p15 chromosomal region housing this gene (Fukuzawa 
et al., 1999). Other studies, in osteosarcoma and retinoblastoma, 
suggested an oncogenic role for H19, as its upregulation and 
loss of imprinting were commonly seen (Chan et al., 2014; Li 
L. et al., 2018). This observation was also seen in many other 
cancers including breast cancer (Lottin et al., 2002). Recently, the 
Hedgehog signaling pathway, a regulator of differentiation known 
to participate in cancer development and metastasis, was shown 
to induce H19 expression (Chan et al., 2014). 

Understanding the exact function of H19 has proved difficult; 
however, it was known to sit downstream of the insulin growth 
factor 2 (IGF2) gene, a growth factor known to play a role in 
tumorigenesis. Early reports suggested interactions between 
IGF2 and H19, as loss of imprinting of either gene caused biallelic 
expression of the other gene (Ulaner et al., 2003). Ulaner et al. 
(2003) proposed a model for H19 and IGF2 involving a CCTF-
binding site seated between the two genes, which could facilitate 
the blocking of IGF2 or transcription of H19 depending on its 
methylation status. However, this model suggested that H19 may 
simply serve as a marker for epigenetic disruptions and left open 
the question of what H19’s actual function is.

More recent studies have demonstrated a role for H19 in 
epigenetic regulation. H19 binds to several epigenetic regulators 
including S-adenosylhomocysteine hydrolase (SAHH), methyl-
CpG–binding domain protein 1 (MBD1), and enhancer of zeste 
homolog 2 (EZH2) (Raveh et al., 2015; Zhou et al., 2015). H19 
was found to inhibit SAHH, which led to downregulation of 
DNMT3B-mediated methylation. MBD1 binds methylated DNA 
and recruits other proteins to mediate transcriptional repression 
or histone methylation, and H19 was shown to recruit this 
protein to several genes including IGF2 (Monnier et al., 2013). 
Finally, EZH2 is a histone methyltransferase that forms part of 
the Polycomb repressive complex 2 (PRC2) (Sauliere et al., 2006; 
Zhou et al., 2015).

H19 also plays a role in maintaining cells in an undifferentiated 
state by associating with the KH-type splicing regulatory protein 
(KSRP). When multipotent mesenchymal cells were induced, 
H19 was found to dissociate with KSRP to promote several of its 
functions including the decay of unstable mRNAs and increasing 
the expression of specific miRNAs involved in proliferation and 
differentiation though association with Drosha and Dicer. 

H19’s role in cancer has been emphasized by studies 
highlighting its relationship to the tumor suppressor p53. The 
H19 locus reciprocally regulates p53, as p53 suppresses H19 
transcription and H19 can inactivate p53 by directly interacting 
with it (Yang et  al., 2012). Notably, H19 also encodes for a 
miRNA in its first exon, miR-675, which suppresses p53 and 
several other targets including Rb, Igf1r, and several SMAD and 
cadherin genes. In the absence of functional p53, H19 was shown 
to promote tumor proliferation and survival under hypoxic 
conditions. Later studies in colorectal cancer showed that H19 
could induce EMT by acting as a ceRNA (Liang et al., 2015). 
ceRNA function has recently been shown in a retinoblastoma 
study, targeting the mir-17~92 cluster (Zhang A. et al., 2018a). 
In this study, they found that H19 contained seven functional 
binding sites for mir-17~92 and was able to sponge mir-17~92 
activity. This led to a de-repression of genes such as p21 and 
STAT3 targets BCL2, BCL2L1, and BIRC5.

In a review by Raveh et al. (2015) it was proposed that H19 
may behave differently in a manner that was dependent on 
the developmental stage of the cell, which could explain the 
evidence suggesting both oncogenic and tumor-suppressive 
roles. Here, the authors found that H19 functioned as a 
promoter of differentiation during the embryonic period and 
that absence of H19 at this stage could leave cells vulnerable to 
forming cancer, thereby seemingly acting as a tumor suppressor. 
However, in adult cells, where it is not normally expressed, H19 
could function as an oncogene by promoting tumor survival 
and metastasis (Matouk et al., 2015).

TUG1 Regulates Transcription  
Factors Through Competition  
With miRNAs in Osteosarcoma
Recent studies have investigated the role of lncRNA TUG1 as a 
prognostic factor and ceRNA in osteosarcoma. Ma et al. (2016) 
identified a correlation between upregulation of TUG1 and poor 
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prognosis and metastasis, which was also evident in plasma, 
and suggested a potential use as a biomarker for patients with 
osteosarcoma. TUG1 is known to act through ceRNA activity 
against a number of miRNAs including miR-9, miR-132, miR-
144, miR-153, miR-212, and miR-335 (Xie et al., 2016; Cao 
et  al., 2017; Wang et al., 2017a; Li G. et al., 2018; Li H. et al., 
2018). These miRNAs are known to regulate pathways involved 
in proliferation, cell cycle control, migration, and apoptosis. 
For example, TUG1 was shown to mediate de-repression of 
the transcription factor POU class 2 homeobox1 (POU2F1) via 
downregulation of mir-9 (Figure 1E) (Xie et al., 2016). POU2F1 
itself participates in various cellular processes including growth, 
metabolism, stem cell identity, and metastasis (Vázquez-Arreguín 
and Tantin, 2016). In another example by Cao et al. (2017) they 
found that TUG1 also regulates migration and the epithelial-to-
mesenchymal transition via ceRNA action on miRNA-144-3p. 
miR-144-3p is a regulator of EZH2, and upregulation of EZH2 
induced cell migration through the Wnt/β-catenin pathway (Cao 
et al., 2017). Studies have also demonstrated direct interactions 
between TUG1 and the Polycomb repressor complex; however, 
to our knowledge, this has not been investigated in pediatric 
solid tumors (Yang et al., 2011).

Other Long Non-Coding RNAs in Pediatric 
Solid Tumors
In addition to those mentioned above, there are a number of 
other lncRNAs that have been identified as potential oncogenes 
or tumor suppressors involved in the pathogenesis of pediatric 
solid tumors (see Table 2) (Chen et al., 2017; Pandey et al., 2015).

For example, in osteosarcoma, lncRNAs HOTAIR, SNHG16, 
SNHG12, THOR, PACER, MFI2, and HOTTIP have all been 
shown to promote tumor or cell growth (Li et al., 2016; Qian 
et al., 2016; Ruan et al., 2016; Yin et al., 2016; Chen W. et al., 2018;  
Su et al., 2019; Wang et al., 2019). HOTAIR is known to play a 
role in chromatin regulation by acting as a scaffold for PRC2 
and lysine-specific histone demethylase 1 (LSD1), and can also 
act as a ceRNA for miR-217 (Gupta et al., 2010; Tsai et al., 2010; 
Wang et al., 2019). SNHG16 has been shown to act as a ceRNA 
for several miRNAs including miR-205 and miR-340 (Zhu  C. 
et al., 2018; Su et al., 2019). Additionally, several lncRNAs 
are downregulated in osteosarcoma with potential tumor-
suppressive activity such as loc285194, MEG3, and TUSC7 (Pasic 
et al., 2010; Cong et al., 2016; Shi et al., 2018). loc285194 has been 
identified as a transcriptional target of p53 and can downregulate 
miR-211 (Liu Q. et al., 2013). In another study, increased p53 

TABLE 2 | lncRNAs that play a role in pediatric solid tumors. OS, osteosarcoma; RB, retinoblastoma; NB, neuroblastoma; WT, Wilms tumor; HB, hepatoblastoma; 
RMS, rhabdomyosarcoma; ES, Ewing sarcoma.

Long Non-coding RNA Cancer Cellular Functions References

Malat1 OS, RB, NB Upregulates—proliferation, survival, migration, 
invasion.

(Tee et al., 2014; Dong et al., 2015; Bi et al., 2017; 
Liu K. et al., 2017; Liu S. et al., 2017; Wang K. et al., 
2017; Sun and Qin, 2018)

H19 OS, RB, WT, HB, RMS Upregulates—proliferation, survival. Regulates 
cell fate/differentiation.

(Zhang et al., 1993; Casola et al., 1997; Fukuzawa 
et al., 1999; Chan et al., 2014; Matouk et al., 2015; 
Raveh et al., 2015; Li L. et al., 2018)

TUG1 OS Upregulates—proliferation, survival, migration. (Ma et al., 2016; Xie et al., 2016; Cao et al., 2017; 
Wang S. et al., 2017; Li G. et al., 2018; Li H. et al., 
2018)

HOTAIR OS, RB Upregulates—proliferation, survival, migration, 
invasion.

(Yang G. et al., 2018; Wang et al., 2019)

HOTTIP OS Upregulates—proliferation, resistance. (Li et al., 2016)
SNHG12 OS Upregulates—proliferation, migration. (Ruan et al., 2016)
SNHG16 OS Upregulates—proliferation, survival, migration, 

invasion.
(Su et al., 2019; Zhu et al., 2018a)

THOR OS, RB Upregulates—proliferation, migration. (Chen K.S. et al., 2018; Shang, 2018)
PACER OS Upregulates—proliferation, invasion. (Qian et al., 2016)
MFI2 OS Upregulates—proliferation, survival, migration, 

invasion.
(Yin et al., 2016)

loc285194 OS Downregulates—proliferation. (Pasic et al., 2010)
TUSC7 OS Downregulates—proliferation. (Cong et al., 2016)
MEG3 OS, RB Downregulates—proliferation, survival, 

invasion.
(Gao et al., 2017; Shi et al., 2018)

EWSAT1 OS, ES Upregulates—proliferation, metastasis. (Howarth et al., 2014; Sun et al., 2016)
XIST RB Upregulates—proliferation, survival. (Hu et al., 2018)
DANCR RB Upregulates—proliferation, migration, invasion. (Wang J. X. et al., 2018)
HOXA11-AS RB Upregulates—proliferation, survival. (Han et al., 2019)
PANDAR RB Upregulates—survival. (Sheng et al., 2018)
lncUSMYcN NB Upregulates—proliferation. (Liu et al., 2014; Liu S. et al., 2016)
NBAT-1 NB Downregulates—proliferation, invasion. 

Regulates cell fate/differentiation.
(Pandey et al., 2014)

CASC15-S NB Downregulates—proliferation, migration. (Russell et al., 2015)
LINC00473 WT Upregulates—proliferation, survival. (Zhu et al., 2018b)
CRNDE HB Upregulates—proliferation, angiogenesis. (Dong et al., 2017)
LINC01314 HB Downregulates—proliferation, migration. (Lv et al., 2018)
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expression and a decrease in cell proliferation and invasion 
were observed when MEG3 was overexpressed (Shi et al., 2018). 
Furthermore, MEG3 was found to be downregulated by another 
lncRNA, EWSAT1, which had previously been shown to enhance 
cell proliferation and metastasis in both osteosarcoma and Ewing 
sarcoma (Howarth et al., 2014; Sun et al., 2016).

In retinoblastoma, HOTAIR, THOR, and MEG3 appear to 
have a similar influence as seen in osteosarcoma, where they also 
acted as oncogenes (HOTAIR and THOR) or tumor suppressors 
(MEG3) (Gao et al., 2017; Shang, 2018; Yang G. et al., 2018). In 
the study examining HOTAIR in retinoblastoma, HOTAIR was 
shown to be engaged in a reciprocal regulatory loop with miR-
613 and promoted cell proliferation and activation of the EMT, 
potentially through upregulation of N-cadherin, vimentin, and 
α‐SMA (Yang G. et al., 2018). Several lncRNAs have also been 
found acting as oncogenic ceRNAs including XIST, DANCR, 
and HOXA11-AS (Hu et al., 2018; Wang J. X. et al., 2018; Han 
et al., 2019). Finally, PANDAR is upregulated in retinoblastoma 
and may regulate cell proliferation and apoptosis via the Bcl-2/
caspase-3 pathway (Sheng et al., 2018).

A number of studies have also suggested an important role 
for lncRNAs in neuroblastoma. For example, lncUSMYcN is 
an lncRNA that is frequently co-amplified alongside MYCN 
(Liu P. Y. et  al., 2016). Liu et al. found that in neuroblastoma, 
lncUSMycN could upregulate MYCN through transcriptional 
activation of NCYM (a.k.a. MYCNOS), which codes for a protein 
that stabilizes MYCN (Suenaga et al., 2014). NCYM RNA has also 
been suggested to bind to the RNA-binding protein NonO, which 
is also known to upregulate MYCN expression (Liu et al., 2014; 
Liu P. Y. et al., 2016). Neuroblastoma associated transcript-1 
(NBAT-1) is an epigenetic regulator that interacts with EZH2, 
and functions as a tumor suppressor due to its important role in 
neuronal differentiation (Pandey et al., 2014). Loss of NBAT-1 
expression was found to increase cell proliferation and invasion 
(Pandey et al., 2014). Finally, an isoform of lncRNA CASC15, 
CASC15-S, was also implicated as a key element in neuronal 
differentiation, and low expression was associated with a poor 
outcome in patients (Russell et al., 2015).

In Wilms tumor, a study by Zhu et al. identified LINC00473 
as an oncogenic lncRNA that is upregulated in unfavorable 
tumors (Zhu et al., 2018b). LINC00473 was shown to promote 
tumor growth and metastasis by acting as a ceRNA for the tumor 
suppressor miR-195 (Zhu et al., 2018b).

A study by Dong et al. identified 1757 upregulated and 
979 downregulated lncRNAs comparing hepatoblastoma and 
normal tissues, suggesting that lncRNAs play a key role in this 
disease as well (Dong et al., 2014). The lncRNAs Colorectal 
Neoplasia Differentially Expressed (CRNDE) and LINC01314 
have been investigated in more detail in hepatoblastoma 
(Dong et al., 2017; Lv et al., 2018). CRNDE is known to be 
frequently upregulated in hepatoblastoma, and knockdown 
of CRNDE activated the mTOR pathway and inhibited tumor 
growth and angiogenesis with a corresponding decrease in 
VEGFA and Ang-2 levels (Dong et al., 2017). LINC01314 was 
identified as a tumor suppressor, reducing proliferation and 
migration via downregulation of cell cycle proteins MCM7 
and cyclin D1 (Lv et al., 2018).

CONCLUDING REMARKS

It is now clear that both miRNAs and lncRNAs form integral 
parts of the biological networks known to be impaired in 
pediatric solid tumors. miRNAs such as let-7 and mir-34 are key 
regulators of many pediatric oncogenes including MYC, MYCN, 
RAS, and MET (Johnson et al., 2005; Wei et al., 2008; Buechner 
et al., 2011; Yan et al., 2012). Additionally, ncRNAs such as the 
miR-17~92 cluster, mir-9, and Malat1 also serve as downstream 
effectors of MYC and MYCN (Schulte et al., 2008; Ma et al., 2010; 
Tee et al., 2014). Many more ncRNAs participate in these and 
other pathways to form a highly complex regulatory network 
essential for maintaining an optimal cell state (See Tables 1 
and 2). ncRNA dysregulation offers an alternative mechanism 
to genetic mutations and DNA methylation whereby cell 
development and differentiation can be disturbed. Despite the 
relatively rare occurrence of mutations in pediatric solid tumors, 
copy number variations are common and often occur at regions 
of the genome that harbor ncRNAs with tumor-suppressive 
roles (Wei et al., 2008; Powers et al., 2016). Gene expression is 
often imprecise; however, miRNAs provide a layer of robustness, 
which helps ensure that biological networks respond appropriately 
to signals and remain functional despite an ever-increasing cellular 
disorder (Ebert and Sharp, 2012). lncRNAs, too, play a vital 
role in maintaining order by forming RNA–protein complexes 
and serving as ceRNA antagonists against miRNA-mediated 
repression, although much more work is needed in this field 
to fully comprehend their range of biological roles. Functional 
studies have revealed that dysregulation of ncRNAs is capable of 
driving progenitor cells towards oncogenesis. For example, this has 
been shown in retinoblastoma, where overexpression of the mir-
17~92 cluster could drive tumor formation in RB/p107-deficient 
mice (Conkrite et al., 2011).

While genome-wide association studies have revealed that 
miRNA processing is frequently disrupted in Wilms tumor, 
this has not been shown to the same extent in other pediatric 
solid tumors. However, genetic mutations of protein-coding 
genes are only one way in which disruptions of miRNA 
processing can be revealed. Most miRNA studies ignore the 
fact that a high proportion of expressed miRNAs are isoforms 
(isomiRs). isomiRs originating from the same miRNA gene can 
possess a great deal of functional variability, with differences in 
target acquisition or turnover rate that can have a significant 
impact on overall gene regulation. Studies focusing on isomiR 
expression will provide an additional layer of resolution to our 
understanding of miRNA dysregulation.

Recent developments in single-cell technology have revealed 
heterogeneity in gene expression profiles among individual 
cells in many cancers such as glioblastoma and neuroblastoma 
(Patel et al., 2014; Boeva et al., 2017). Such studies suggest 
that many tumors comprise different cellular subtypes with 
unique phenotypes such as growth rate, drug resistance, and 
metastatic potential, which demand a new way of approaching 
cancer treatments. miRNA expression in pediatric solid tumors 
may also be heterogenous; however, limitations in single-cell 
technologies have left this avenue relatively unexplored, and 
further developments are needed. 

163

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Non-Coding RNAs in Pediatric Solid TumorsSmith et al.

12 September 2019 | Volume 10 | Article 798Frontiers in Genetics | www.frontiersin.org

So far, ncRNA research has played a key role in advancing 
our understanding of the mechanisms behind pediatric 
solid tumor development. Evidence supports an active role 
for ncRNAs in cancer that extends beyond mere passengers. 
However, continued research is needed to fully comprehend 
the molecular events leading to the development of cancer 
and unlock new possibilities for drug targets and biomarkers, 
which will ultimately lead to a better outcome for patients 
afflicted by these diseases. 
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