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The apocrine sweat gland is a unique skin appendage in humans compared to
mouse and chicken models. The absence of apocrine sweat glands in chicken and
murine skin largely restrains further understanding of the complexity of human skin
biology and skin diseases, like hircismus. Sheep may serve as an additional system
for skin appendage investigation owing to the distributions and histological similarities
between the apocrine sweat glands of sheep trunk skin and human armpit skin.
To understand the molecular mechanisms underlying morphogenesis of apocrine
sweat glands in sheepskin, transcriptome analyses were conducted to reveal 1631
differentially expressed genes that were mainly enriched in three functional groups
(cellular component, molecular function and biological process), particularly in gland,
epithelial, hair follicle and skin development. There were 7 Gene Ontology (GO) terms
enriched in epithelial cell migration and morphogenesis of branching epithelium that
were potentially correlated with the wool follicle peg elongation. An additional 5 GO
terms were enriched in gland morphogenesis (20 genes), gland development (42 genes),
salivary gland morphogenesis and development (8 genes), branching involved in salivary
gland morphogenesis (6 genes) and mammary gland epithelial cell differentiation (4
genes). The enriched gland-related genes and two Kyoto Encyclopedia of Genes
and Genomes pathway genes (WNT and TGF-β) were potentially involved in the
induction of apocrine sweat glands. Genes named BMPR1A, BMP7, SMAD4, TGFB3,
WIF1, and WNT10B were selected to validate transcript expression by qRT-PCR.
Immunohistochemistry was performed to localize markers for hair follicle (SOX2), skin
fibroblast (PDGFRB), stem cells (SOX9) and BMP signaling (SMAD5) in sheepskin.
SOX2 and PDGFRB were absent in apocrine sweat glands. SOX9 and SMAD5 were
both observed in precursor cells of apocrine sweat glands and later in gland ducts.
These results combined with the upregulation of BMP signaling genes indicate that
apocrine sweat glands were originated from outer root sheath of primary wool follicle

Frontiers in Genetics | www.frontiersin.org 1 January 2019 | Volume 9 | Article 7397

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2018.00739
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2018.00739
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2018.00739&domain=pdf&date_stamp=2019-01-30
https://www.frontiersin.org/articles/10.3389/fgene.2018.00739/full
http://loop.frontiersin.org/people/626227/overview
http://loop.frontiersin.org/people/621746/overview
http://loop.frontiersin.org/people/490715/overview
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00739 January 28, 2019 Time: 18:36 # 2

Li et al. Apocrine Sweat Glands in Sheepskin

and positively regulated by BMP signaling. This report established the primary network
regulating early development of apocrine sweat glands in sheepskin and will facilitate the
further understanding of histology and pathology of apocrine sweat glands in human and
companion animal skin.

Keywords: sweat gland, wool follicle, skin, morphogenesis, WNT, TGF-β, transcriptome

INTRODUCTION

Human skin is the largest organ that covers the body surface and
balances heat and protects against assaults from the environment.
It contains different subtypes of appendages including hair
follicles, nails, sebaceous glands and sweat glands that display
diverse histological structures and regional localizations in
different body parts. The apocrine and eccrine sweat glands are
two types distributed across the human body. Though both sweat
glands have similar structures consisting of ductal and secretory
portions, they do have different functions and locations (Sato
et al., 1989). The eccrine sweat glands are generally found on
hairless body regions, especially on the palms and soles (Sato
et al., 1989), with slim ducts and small secretory portions that
secrete water and electrolytes directly to the surface of the
human body (Lobitz and Dobson, 1961; Yanagawa et al., 1986).
In contrast, the apocrine sweat glands are connected to the
upper part of hair follicles in hairy regions such as axilla and
perineum (Sato et al., 1989), with short and thick ducts and
large secretory coils that release viscous liquid (water, electrolytes,
protein, lipids, and steroids to the opening of hair follicles) (Sato
et al., 1989; Wilke et al., 2007). Under disease conditions with
hircismus, the secretions from apocrine sweat glands are turned
from originally odorless to odorous compounds by bacterial
enzymes on the skin’s surface (Shehadeh and Kligman, 1963;
Preti and Leyden, 2010). A functional allele (538G > A) in the
ATP-binding cassette C11 (ABCC11) gene was reported to highly
associate with human earwax type (wet or dry) and axillary
odor (Yoshiura et al., 2006; Toyoda et al., 2009, 2017; Martin
et al., 2010). The increased expression of ABCC11 in apocrine
sweat glands was detected more in the myoepithelial cells of the
secretory portions in individuals with GG genotype than those
of AA genotype (Toyoda et al., 2017). Though these reports
suggested an interesting correlation between the ABCC11 gene
and the axillary odor caused by apocrine sweat glands in human
skin, the actual mechanisms underlying it remain unknown.
More information related to apocrine sweat glands may assist the
diagnosis and even practical treatment of this skin disease.

The apocrine sweat gland marks a big difference in the skin
between humans and animal models (chicken and mouse) in that
murine and chicken skin are exclusively lacking in apocrine sweat
glands. Additionally, its absence in murine and chicken skin
restrains its related investigations. Sheepskin may represent an
additional system to gain basic information about apocrine sweat
glands. The histological structure of apocrine sweat glands in the
armpit skin are similar to those of sheep body skin (Sato et al.,
1989; Rogers, 2006). Hence, the general knowledge of sheepskin
would facilitate further understanding of human apocrine sweat
glands under normal and diseased conditions.

Previous studies regarding sweat glands mainly focused on
the eccrine sweat glands by detecting KRT gene expression
in human embryos (Hashimoto et al., 1965; Sun et al.,
1979; Moll and Moll, 1992) and elucidating the molecular
mechanisms of morphogenesis and development in mouse
models (Kunisada et al., 2009; Cui et al., 2014; Lu et al.,
2016). Several signaling pathways including wingless-related
integration site (WNT), ectodysplasin A receptor (EDAR), bone
morphogenetic proteins (BMP), sonic hedgehog (SHH), were
shown to regulate the initiation and maturation of eccrine
sweat glands (Kunisada et al., 2009; Cui et al., 2014; Lu et al.,
2016).

In Eda-null (tabby) mice, no eccrine sweat glands were
formed throughout the embryonic stage in mouse paw skin
(Kunisada et al., 2009). β-catenin conditional knockout mice
showed complete blockage of eccrine sweat gland formation
from E15.5 to birth before the unexpected death of the mice
(Cui et al., 2014). Wnt10a mutant mice developed normal
prenatal eccrine sweat gland germs but failed to form sweat ducts
postnatally (Xu et al., 2017). Hence, Wnt10a/β-catenin mainly
regulates the maturation of eccrine sweat glands in postnatal
life. The BMP pathway has been reported to play a positive role
in determining the glandular fate during the induction stage
of eccrine sweat gland. In Bmpr1a conditional knockout mice,
the eccrine sweat glands were converted to hair follicle-like
structures (Lu et al., 2016) and the density of eccrine sweat
glands was reduced in Bmp5 null mouse skin (Lu et al., 2016).
The cross-talk of BMP and SHH spatiotemporally determined
the subtypes of skin appendages, either hair follicles or eccrine
sweat glands. A high BMP signal in mesenchyme and a low
SHH signal in the epidermis engaged the glandular fate decision
just before the initiation of eccrine sweat gland development
(Lu et al., 2016). This mechanism was also observed in other
ectodermal glands (mammary and meibomian) and chicken
digestive epithelia formation (Roberts et al., 1998; Narita et al.,
2000; Mayer et al., 2008; Huang et al., 2009a). These findings
highly suggest that inhibiting BMP signaling favors hair follicle
cell fates, whereas active BMP signaling promotes glandular
cell fates. In addition, the eccrine sweat gland density was also
shown to be determined by the expression of homeodomain
transcription factor engrailed 1 (En1) in murine footpad skin
(Kamberov et al., 2015).

Though the eccrine sweat glands gained most of the
research interest, the understanding of the apocrine sweat glands
was relatively restricted to the physiological and pathological
descriptions of humans or companion animals, owing to the
absence of apocrine sweat glands in mouse and chicken skin
(Leyden et al., 1981; Kalaher et al., 1990; Morandi et al., 2005;
Baharak et al., 2012; Fujiwara-Igarashi et al., 2017). Until now,
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there is little in the literature related to the morphogenesis and
development of apocrine sweat glands.

Previously, sheepskin attracted researchers to decipher the
regulatory mechanisms of wool follicle and skin development
in embryonic stages and in postnatal seasonal wool growth. The
induction of primary wool follicles in coarse wool sheepskin
during early embryonic stages and the morphogenesis of
secondary wool follicles in merino sheepskin were investigated
by exploring the interaction network of long non-coding RNAs
(lncRNAs) and mRNAs, including a series of lncRNAs and
WNT, BMP, EDAR, and FGF signaling pathways (Yue et al.,
2016; Nie et al., 2018). The microRNA profiles identified
candidates (miRNA-143, miRNA-10a, let-7i) potentially
regulating the different wool follicle growth patterns with
small, medium or large waves in Hu sheepskin, and a
series of new microRNAs during the wool follicle seasonal
growth cycling in sheepskin (Liu et al., 2013, 2014; Lv et al.,
2016; Gao et al., 2017). These studies focused mainly on
the morphogenesis of primary and secondary wool follicles
and the regulation of wool fiber thickness. The existence
of apocrine sweat glands in sheepskin is a great advantage
for obtaining a deep understanding of the complexity
of skin biology. Our current study aimed to explore the
dynamic gene regulatory network and potential candidate
genes governing the apocrine sweat gland induction in skin
using sheepskin as a model system. This result will add
general knowledge regarding the histological and molecular
changes during the apocrine sweat gland morphogenesis and
contribute to the further understanding of apocrine sweat gland
development in skin of normal or diseased human or companion
animals.

MATERIALS AND METHODS

Experimental Animals
Coarse wool sheep (Tibetan carpet wool sheep) fetuses were
randomly collected from a local abattoir in Qinghai Province
of China as described previously (Nie et al., 2018). Briefly,
the discarded fetuses were rescued and immediately placed in
PBS. The dorsal skin was dissected and divided into two parts.
One part was fixed in 4% paraformaldehyde at 4◦C and the
other part was frozen in liquid nitrogen for RNA extraction.
The individuals (approximately 120 individuals) at unspecified
embryonic stages were randomly collected for the determination
of developmental stage by H&E (hematoxylin and eosin) staining.
All experiments on animals were approved by the Standing
Committee of Hubei People’s Congress and the ethics committee
of Huazhong Agricultural University.

H&E Staining
To identify the developmental stages of wool follicles and
apocrine sweat glands in embryonic sheepskin, a series of fixed
sheep dorsal skin samples were dehydrated with gradient alcohol,
processed in paraffin and cut into 5 µm sections, according to the
standard procedures. Then dorsal skin sections were processed
into dewaxing and H&E (hematoxylin and eosin) staining. The

stained skin sections were photographed and grouped into
different developmental stages based on the structures of wool
follicles and apocrine sweat glands as described in previous
reports (Rogers, 2006).

Transcriptome Sequencing and
Differentially Expressed Genes Analyses
Total RNA was extracted using TRIzol reagent from six
sheepskin samples and RNA integrity was assessed using the
RNA Nano 6000 Assay Kit with the Bioanalyzer 2100 system
(Agilent Technologies, CA, United States). The sequencing
library was constructed at Novogene (Beijing, China) using a
NEBNext R© UltraTM RNA Library Prep Kit for Illumina R© (NEB,
United States) following the manufacturer’s procedures. The
library quality was assessed on the Agilent Bioanalyzer 2100
system. After cluster generation, the libraries were sequenced on
an Illumina Hiseq platform (Hiseq X ten) with 150 bp paired-end
reads.

The original sequenced reads were evaluated for data quality
and then clean reads were mapped to the sheep reference genome
(version: Oarv3.1) by Hisat2. HTSeq v0.9.1 was used to count the
reads numbers mapped to each gene. The FPKM of each gene
was then calculated to estimate gene expression level (Trapnell
et al., 2010). After standardizing and testing the read counts,
the differentially expressed genes (DEGs) were obtained. For
biological replicates, genes with an adjusted P-value < 0.05 and |
log2 (Fold change) | > 1 were set as the threshold for differential
expression (Supplementary Table S1).

GO Term, KEGG Enrichment and PPI
Analyses of Differentially Expressed
Genes
Gene Ontology (GO) enrichment analyses of DEGs were
implemented by the GOseq R package. GO terms with corrected
P-values less than 0.05 were considered significantly enriched by
differential expressed genes (Supplementary Table S2). KOBAS
software was used to test the statistical enrichment of differential
expression genes in Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways (Supplementary Table S3). Protein–protein
interaction analyses of DEGs were based on the commonly used
STRING database, then Cytoscape software was used to realize
the visualization of the interaction network (Shannon et al.,
2003).

Quantitative Real-Time PCR (qRT-PCR)
Validation
Several differentially expressed mRNAs were selected and
confirmed by qRT-PCR with GAPDH used as an internal
reference. qRT-PCR was carried out with a Roche LightCyclerR
96 using iTaqTM Universal SYBRRGreen Supermix (Bio-Rad,
United States). The amplification procedures were held at 95◦C
for 5 min initially, followed by 45 cycles of 95◦C for 15 s
and 60◦C for 1 min. Quantification of mRNAs was performed
using the 2−11Ct method with average cycle thresholds.
The qRT-PCR data were generated from three independent
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samples per stage and statistically analyzed using Student’s t-test
(n ≥ 3).

Immunohistochemistry
Immunohistochemistry was applied to detect the expression
pattern of skin appendage markers. The skin was dehydrated
with ethanol, embedded in paraffin and sectioned at 5 to
6 µm thickness. The sections were dewaxed, processed to
antigen retrieval and incubated with primary antibodies (Sox2,
mouse, Santa Cruz,1:200; Sox9, mouse, Abcam, 1:200; pSmad5,
Rabbit, Abcam,1:800; Pdgfrb, Rabbit, Abcam, 1:400) at 4◦C
overnight. The secondary antibody from the immunological kit
(Proteintech, China) was incubated for 1 h at room temperature.
Visualization was performed by using DAB staining (1:50)
followed by hematoxylin counter-staining. Experiments were
repeated at least twice.

RESULTS

The Morphological Characterization of
Developing Wool Follicles and Apocrine
Sweat Glands in Coarse Wool Sheep
Back Skin
In this study, the Tibetan carpet wool sheep, a typical coarse wool
sheep, was chosen for detailed investigation of the early
development of apocrine sweat glands in skin. A series of sheep
back skin sections were used to determine the induction and
morphogenesis of apocrine sweat glands. The wool follicles
and apocrine sweat glands were observed to occur sequentially
based on histological H&E stain (Figures 1A–I). From the
homogeneous thin skin layers (Figure 1A) to the appearance of
skin appendages (Figure 1I), the obvious morphological changes
were the thickening of the dermal and epidermal layers and
the occurrence of wool follicle pegs, apocrine sweat glands and
sebaceous glands. The first appendage that appeared in skin
was the primary wool follicle that developed the placode and
associated dermal condensation (Figure 1B) from the thin skin
(Figure 1A), later sequentially grew downward to the dermis,
elongated and progressed to maturation (Figures 1C–I). The
first sign of apocrine sweat glands was observed as several cells
were tightly packed and located on lateral side of the epidermal
compartment of the primary wool follicle peg, indicating the
occurrence of the precursor/progenitor cells of apocrine sweat
glands (Figure 1C). As the cells proliferated and differentiated,
these small cell patches gradually developed a small germ and
later extended into the dermis to form the slim and long
gland duct (Figures 1E–I). The elongation of gland ducts was
directed at the angles that were closely parallel to wool follicle
pegs as detected in Figures 1G–I. At this stage, the dermal
condensates of primary wool follicles were encapsulated to
become dermal papilla, and the sweat gland duct cavity was
visible and surrounded by two layers of cells (Figure 1I). These
stained sections clearly stated the initiation, budding, elongation
and ductal cavity formation of apocrine sweat glands in prenatal
coarse wool sheepskin.

Differentially Expressed Genes Involved
in the Elongation of Wool Follicle Peg
and Induction of Apocrine Sweat Glands
in Coarse Wool Sheepskin
To understand the induction of apocrine sweat glands, two
particular stages that corresponded to the pre-gland (stage TF1b,
Figure 1B) and gland budding stage (stage TF2a, Figure 1E) to
form ductal portions (Rogers, 2006) were selected to perform
RNA sequencing. The morphological changes between two
selected stages were the epidermal and dermal thickening, follicle
germ elongation and apocrine sweat gland budding.

The sequencing data were processed for bioinformatics
analyses. The criteria set up to enrich DEGs was | log2 fold
change| > 1 and P < 0.05. A total of 1631 genes including 774
upregulated and 857 downregulated genes exhibited significant
expression changes in the stage TF2a vs. the stage TF1b target
group (Figure 2A). All the DEGs were compared with the
published gene lists enriched in different compartments of P5
mouse skin (Sennett et al., 2015). The overlapping genes between
these two data sets were picked up and presented in Table 1.
Since the mouse back skin contains no sweat glands, the listed
genes shared between mouse and sheep back skin were shown
to highly associate with skin and hair/wool follicle development
represented by 22 genes for the epidermis, 8 genes for dermal
fibroblasts, 12 genes for the outer root sheath, 3 genes for matrix,
19 genes for melanocyte, 34 genes for dermal papilla, 10 genes
for transit amplifying cells and 12 genes for hair follicle stem
cells (Table 1). These results suggest that the regulatory genes
for prenatal wool follicles and sheepskin were partially conserved
with those of postnatal murine hair follicles and skin.

Enriched GO Term and KEGG Pathway
Analyses of the Differentially Expressed
Genes
The 1631 DEGs were processed to GO term and KEGG
enrichment analyses. The most enriched GO terms were
biological process, cellular component and molecular function,
including organelle (represented by CST6, APOA1, and MKI67),
gene expression (represented by MST1) and structural molecule
activity (represented by TUBA4A) (Figure 2B). Further details
revealed that the GO terms were highly enriched in three
categories: hair follicle and skin development, gland development
and epithelial development. Two GO terms were highly
associated with hair follicle development (14 genes enriched) and
skin development (33 genes enriched) (Table 2). The enrichment
of 5 GO terms for epithelial differentiation, migration and
the branching process represented mammary gland epithelial
cell differentiation (4 genes enriched), epithelial cell migration
(27 genes enriched), morphogenesis of a branching epithelium
(24 genes enriched), morphogenesis of an epithelial fold
(8 genes enriched), morphogenesis of an epithelial bud (5
genes enriched), embryonic epithelial tube formation (23 genes
enriched) and branching morphogenesis of an epithelial tube (21
genes enriched) (Table 2). Most of the enriched genes showed
an upregulated expression trend. These terms highly suggest
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FIGURE 1 | Dynamic diagram of morphogenesis and development of wool follicles and apocrine sweat glands in embryonic coarse wool sheep. (A) The skin is
homogeneous with thin epidermal and dermal layers before the initiation of skin appendages; (B) The first skin appendage, the primary wool follicle, is initiated to
form epidermal placodes and associated dermal condensates as marked in a yellow dashed line; (C) The second skin appendage, the apocrine sweat gland is
inducted at the lateral side of primary wool follicle epidermal peg. At the same time, the secondary wool follicle is initiated in between the primary wool follicles. The
precursor/progenitor cells of apocrine sweat glands are marked with a red dashed line; (D) The precursor/progenitor cells of apocrine sweat glands exhibit early
signs of the branching point from the lateral side of the outer root sheath of primary wool follicles; (E) The germ or small ductal bud of apocrine sweat glands
protrudes and forms from the upper part of primary wool follicles. The primary and secondary wool follicles continue to grow downward into the dermis; (F–H) The
apocrine sweat gland and wool follicle gradually elongate and extend into the dermis. The apocrine sweat gland grows and extends from germ to be a slim duct-like
structure at the angle parallel to the primary wool follicle peg; (I) The primary wool follicle becomes mature with clear dermal papilla and matrix compared to the
previous stage (Figure H). The ductal portion of the apocrine sweat gland gradually extends and forms a slim tube-like structure with an emerging cavity as indicated
as asterisk. A–G Bar, 50 µm; H and I Bar, 100 µm.∗, apocrine sweat gland; N, dermal condensates or dermal papilla; ↑, secondary hair follicle; dashed line in
yellow, dermal papilla or dermal condensate; dashed line in red, apocrine sweat gland.

that during the two stages applied for RNA sequencing, the
epithelia displayed the prominent biological functions, either
for the elongation of the epidermal compartments of wool
follicle pegs or the morphogenesis of the apocrine sweat gland
ducts. Interestingly, a total of 5 GO terms were shown to

regulate the gland morphogenesis (20 genes enriched), gland
development (42 genes enriched), salivary gland morphogenesis
and development (8 genes enriched), branching involved in
salivary gland morphogenesis (6 genes enriched) and mammary
gland epithelial cell differentiation (4 genes enriched).
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TABLE 1 | The overlapped differentially expressed genes (DEGs) specific for
different compartments of skin are presented by comparing the dataset of sheep
prenatal skin with that of murine P5 dorsal skin.

Compartments
of skin

Number Genes

Epi 22 ANXA4 CST6 DEFB1 EMC9 IL20RA KLF3
KRTDAP LGALS3 LRP4 LY6D MGST2 MST1
NET1 PARP10 S100A11 SBSN STAP2 TGFBI
TSPO TST TUBA4A WNT16

ORS 12 DAPK1 FLRT2 FNDC1 GPC4 LAMA5 LGR5
LHX2 MPDZ MYH9 PLA2G7 SOX9 TIMP3

Mx 3 FABP5 TGM1 RASGEF1B

Mc 19 ARSA B2M COMMD4 DKK3 DTNBP1 ETS1
GLUL LBH LITAF NKD1 NPC2 PRDX3 RAB5B
SEMA6A STX7 TUBB3 VAT1 VPS26A ZHX2

DF 8 ADAMTS15 ADAMTS18 CD34 COL6A1
COL6A2 OLFML2B S100A4 TWIST2

DP 34 ABL1 BMP3 CDH11 CYR61 EPHX2 FGFR1
GABRE GEM HIF3A IZUMO4 LAMC3 LTBP1
LYNX1 MASP1 MRC2 NDNF NOL3 OSR1
PAPPA2 PEMT PRR16 PTCH1 RSPO3
SCUBE2 SMARCD3 SNAI2 SOSTDC1 SPON1
SSC5D TRPS1 UBA7 VCAN WIF1 ZIC4

TAC 10 ATG9B EFNB2 GLI3 KDM2B LEF1 PTCH2
RASGEF1B SLC40A1 TGM1 TLE3

HF-SC 12 ADAMTS17 APOE CRIM1 FOXI3 FOXO6 GPC4
KRT13 LRIG1 PTHLH RGS2 SOX9 TGFB3

DEGs: Differently expressed genes; HF: Hair follicle; Epi: Epidermis; ORS: Outer
Root Sheath; Mc: Melanocytes; Mx: Matrix; DF: Dermal Fibroblasts; DP: Total
dermal papilla cells; TAC: Transit amplifying cells; HF-SC: Bulge stem cell
precursors (Sennett et al., 2015).

The KEGG database was used to refine the potential signaling
pathways in our data. The top 20 of the 248 enriched KEGG
pathways were selected and presented in Figure 2C. Of those,
the WNT (19 genes enriched), TGF-β (14 genes enriched)
and Hippo (25 genes enriched) signaling pathways were the
most promising candidates and were highly correlated to the
morphological changes between the selected two developmental
stages (Table 3). In addition, the Hedgehog signaling pathway
(9 genes enriched), which ranked as 21 in pathway enrichment,
was another candidate regulating the morphological changes
during the stages selected (Table 3). This observation is highly
consistent with the enrichment of GO terms in positive regulation
of cellular and biological processes (Figure 2B). Additionally, the
enriched gland-related genes in 5 GO terms and 2 KEGG pathway
genes were the potential candidates involved in the induction of
apocrine sweat glands in coarse wool sheepskin.

Construction of Candidate Gene
Interaction Network Functioned in the
Elongation of Wool Follicle Pegs and the
Induction of Apocrine Sweat Glands in
Coarse Wool Sheepskin
Several DEGs were used to construct an mRNA–mRNA
interaction network (Figure 2D). The genes potentially regulating
hair and skin development, gland development, epithelial
development (Tables 1, 2) and 4 signaling pathway genes (Table 3)

were all applied for network construction (Figure 2D). The gene
ITGB1 established a small network to regulate the skin dermal
fibroblast (COL6A1 and COL6A2) and epidermal development
(FLNB, LAMC3, and LAMA5). The gene KDR, also named VEGF,
established the network for regulating epithelial migration and
branching. The TGF-β (BMP7, BMPR1A, SMAD1, and SMAD4),
WNT (CTNNB1 and LEF1) and SHH (SHH and GLI3) signaling
pathways that indicate important regulation of gland and epithelial
branching development established the complex networks in the
pathway itself and as well as crosstalk among different pathways.
For instance, CTNNB1 was shown to interact with SMAD1
and SHH has connection with BMP7, EGFR, FGFR1, and LEF1
(Figure 2D).

Validation of Potential Candidate Genes
Functioned in Wool Follicle Peg
Elongation and Apocrine Sweat Gland
Induction
A total of 6 genes were selected to evaluate the RNA sequencing
results by the qPCR technique. Of those, BMP7, BMPR1A,
SMAD4, WIF1, and TGFB3 showed increased expression in the
apocrine sweat gland budding stage, while WNT10B displayed
decreased expression. The expression tendency of these genes is
consistent with the RNA sequencing results (Figure 2E).

To further explore the enriched candidate genes in our
data that were potentially involved in apocrine sweat gland
morphogenesis, four antibodies against SOX2 (hair follicle
dermal papilla marker), SOX9 (hair follicle stem cell marker),
PDGFRB (platelet derived growth factor receptor beta, skin
dermal development related) and SMAD5 (BMP signaling) were
used to localize the protein expressions during the development
of apocrine sweat glands by immunohistochemistry. SOX2 was
detected specifically in the dermal condensates (DC) of primary
wool follicles in early stages and in the dermal papilla (DP) of
well-developed primary wool follicles in later stages (Figure 3).
The apocrine sweat gland was negative for SOX2 staining
(Figure 3). It is interesting that SOX2 was only expressed
in the DC or DP of primary wool follicles, but not in the
secondary wool follicles (Supplementary Figure S1). PDGFRB,
a cell surface tyrosine kinase receptor, was observed with strong
expression in dermal condensates in primary and secondary wool
follicles in early stages, but with weak expression in those of
well-developed wool follicles (Figure 4). The positive staining
was also detected in the dermis across the whole development,
with weak expression in early stages and strong expression in
the upper dermis, especially the area surrounding the wool
follicles and gland ducts after the dermal papilla started to form
(Figures 4D,E). The apocrine sweat glands have been shown
negative for PDGFRB staining during all the stages detected.
These results suggested that SOX2 and PDGFRB had no direct
effect on the induction of sweat gland buds in sheepskin.

The hair follicle bulge stem cell marker SOX9, was reported
to express in a population of outer root sheath cells (Nowak
et al., 2008; Rompolas and Greco, 2014; Purba et al., 2015). In
sheepskin, SOX9 was detected with occasional staining in the
basal layer of the epidermis and strong signals in the highly
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FIGURE 2 | The outcome of bioinformatics analyses of RNA sequencing data of sheepskin with qRT-PCR validation. (A) Volcano plot displaying the mRNA
transcripts enriched between stage TF2a and stage TF1b of the prenatal sheepskin. The DEGs were enriched to compare the budding stage (TF2a) with the
pre-gland stage (TF1b) of apocrine sweat glands in coarse wool sheepskin (n = 3) as shown in the volcano plot. There were 1631 differentially expressed transcripts,
including 774 upregulated (right, red) and 857 downregulated (left, green), between these two groups. The criteria set up for the enrichment are | log2 (fold change) |
> 1 and P value (P < 0.05); (B) The top 20 GO terms are presented in the enrichment analyses of differentially expressed mRNA transcripts between apocrine sweat
gland induction stages (TF2a vs. TF1b) in coarse wool sheepskin. A total of 786 terms were significantly enriched (P < 0.05) in the categories of biological process
(blue), molecular function (green), and cellular components (yellow red). (C) The top 20 KEGG pathways are displayed in the enrichment analyses of differentially
expressed mRNA transcripts in apocrine sweat gland stages (TF2a vs. TF1b) in coarse wool sheepskin. The top 20 out of 248 terms of differently expressed mRNA
transcripts were grouped and displayed (P < 0.05). Of those, three signaling pathways (WNT, TGF-β, and Hippo signaling pathways), focal adhesion and adherent
junctions were potentially involved in histological changes during the morphogenesis of apocrine sweat gland (TF2a vs. TF1b) in coarse wool sheepskin. (D) The
mRNA–mRNA interaction networks were constructed by using the potential candidate genes involved in the development of skin, wool follicles and glands. The
WNT, TGF-beta, and SHH signaling pathways were clearly grouped. Another two groups networked by KDR and ITGB1 were potentially involved in basement
membrane and cell proliferation. (E) A total of 6 DEGs were selected for quantitative real-time PCR (qRT-PCR) validation. The expression patterns of BMP1A, BMP7,
SMAD4, TGFB3, WIF1, and WNT10B are consistent with the tendency of mRNA sequencing results by using the 2-11Ct method and GAPDH as internal control.
Data are presented as mean ± SD (n ≥ 3). ∗P < 0.05, ∗∗P < 0.01 ∗∗∗P < 0.001 (Student’s t-test).

proliferated and differentiated epidermal compartments of wool
follicles during the early and later stages (Figure 5). Strong
SOX9 signals were also detected in the apocrine sweat glands,
from the precursor cell patches, to the budded and elongated
apocrine sweat gland ducts (Figures 5B–E). More details showed
that SOX9 was first detected with weak expression in the

cell aggregates that indicated the precursor/progenitor cells of
apocrine sweat glands (Figure 5B). Strong expression of SOX9
was then observed initially in budding sites, later in the germs and
the elongated ducts of the apocrine sweat glands (Figures 5C–E).

Immunohistochemistry of pSMAD5 showed broad expression
in sheepskin across the developmental stages. The epidermis
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TABLE 2 | The GO terms are specifically enriched in skin and hair follicle development, epithelial development and gland development.

Description Number Genes

Salivary gland morphogenesis and development 8 BMP7 DAG1 EGFR FGFR1 LAMA5 NRP1 SNAI2 TGFB3

Branching involved in salivary gland morphogenesis 6 BMP7 DAG1 FGFR1 LAMA5 NRP1 SNAI2

mammary gland epithelial cell differentiation 4 HIF1A, SMO, PTCH1, LBH

Gland development 42 ABL1 APOA1 ARHGAP35 ARID5B BMP7 BMPR1A CTNNB1 COBL DAG1 EGFR EZH2
FGFR1 GLI2 GLI3 HIF1A JUN LAMA5 LBH LEF1 LHX3 MKI67 MSN MST1 NRP1 PAX8
PSEN1 PTCH1 RARG RHBDD3 SMAD4 SMO SNAI2 SOCS2 SOSTDC1 SOX9 SP3
SULF2 TAF10 TGFB3 TGFBR2 WLS WNT5A

Gland morphogenesis 20 BMP7 DAG1 EGFR FBR2 FGFR1 GLI2 GLI3 LAMA5 MKI67 MSN MST1 NRP1 PTCH1
RARG SNAI2 SOSTDC1 SOX9 SULF2 TGFB3 WNT5A

Hair follicle development 14 APCDD1 CTNNB1 EGFR LAMA5 LGR4 LGR5 LHX2 LRP4 SMAD4 SMO SOSTDC1 SOX9
TNFRSF19 WNT5A

Skin development 33 ALOX12B APCDD1 ARRDC3 CLDN1 CTNNB1 CYP26B1 DACT2 EGFR ERRFI1 FLNB
FOSL2 FRAS1 H2AFY2 LAMA5 LGR4 LGR5 LHX2 LRP4 LTB PSEN1 PTCH2 PTGES3
ROCK1 SMAD4 SMO SOSTDC1 SOX9 TNFRSF19 TGM1 WDR48 WNT16 WNT5A
ZFP36L1

Embryonic epithelial tube formation 23 ABL1 ARHGAP35 ARID1A BMP7 COBL CTNNB1 HIF1A KDM2B LHX2 LUZP1 OSR1
PAX8 PRICKLE1 PTCH1 PTK7 RARG RGMA SEMA4C SOX9 TMED2 TWIST1 WNT5A
ZEB2

Epithelial cell migration 27 ADGRA2 APOA1 APOE ARSB EMP2 EFNB2 ETS1 EPHB4 CLASP1 FGFR1 HIF1A ITGB1
JUN KDR KLF4 LOXL2 MYH9 NRP1 PLCG1 RAB25 RHOB S100A2 SOX9 TGFBR2
THBS1 WNT5A ZEB2

Branching morphogenesis of an epithelial tube 21 ACVR1 BMP7 CTNNB1 DAG1 DLG5 EDNRA GLI GLI3 LAMA5 LEF1 LGR4 MMP14 NPNT
NRP1 PAX8 PTCH1 SMAD4 SMO SOX9 TGFBR2 WNT5A

Morphogenesis of a branching epithelium 24 ACVR1 BMP7 CTNNB1 DAG1 DLG5 EDNRA FGFR1 GLI2 GLI3 LAMA5 LEF1 LGR4
MMP14 NPNT NRP1 PAX8 PTCH1 RSPO3 SMAD4 SMO SNAI2 SOX9 TGFBR2 WNT5A

Morphogenesis of a branching structure 25 ACVR1 BMP7 CTNNB1 DAG1 DLG5 EDNRA FGFR1 GLI2 GLI3 LAMA5 LEF1 LGR4
MMP14 NPNT NRP1 PAX8 PRDM1 PTCH1 RSPO3 SMAD4 SMO SNAI2 SOX9 TGFBR2
WNT5A

Morphogenesis of an epithelial fold 8 BMP7 CTNNB1 EGFR GLI2 HIF1A LUZP1 SOSTDC1 WNT5A

Morphogenesis of an epithelial bud 5 BMP7 CTNNB1 GLI2 SOSTDC1 WNT5A

The bold black font represents the downregulated DEGs.

TABLE 3 | The DEGs enriched in three signaling pathways are potentially related
to sweat gland development.

Signaling
Pathway

Number Genes

WNT 19 CREBBP CTNNB1 EP300 GPC4 JUN LEF1
MAP3K7 NKD1 PRICKLE1 PSEN1 RAC3
RHOA RUVBL1 SMAD4 TP53 WIF1 WNT10B
WNT16 WNT5A

TGF-beta 14 ACVR1 ACVR2A BMP7 BMPR1A CREBBP
EP300 RHOA ROCK1 SMAD1 SMAD4 SP1
TGFB3 TGFBR2 THBS1

Hedgehog 9 GLI2 GLI3 PTCH1 PTCH2 SHH SMO WNT10B
WNT16 WNT5A

Hippo 25 ACTB ACTG1 BMP7 BMPR1A CCND1
CTNNA1 CTNNB1 FRMD6 GLI2 LEF1 PPP1CB
PPP1CC SMAD1 SMAD4 SNAI2 TGFB3
TGFBR2 WNT10B WNT16 WNT5A WWTR1
YWHAE YWHAG YWHAQ YWHAZ

The bold black font represents the downregulated DEGs.

and dermis in addition to the wool follicles and sweat glands
were all positive for pSMAD5 antibody staining (Figure 6).
Detailed inspection revealed that the strongest positive signals
of pSMAD5 were observed in the basal layer of the epidermis

and the epidermal compartments of wool follicles during all the
stages detected. During the apocrine sweat gland development,
pSMAD5 antibody was localized initially in the few pre-gland
precursor/progenitor cells with weak expression (Figures 6B,C),
and then in the budded gland loops and later in the elongated
gland ductal portions with strong expression (Figures 6D,E).

DISCUSSION

Chicken and mouse are the most widely used models to
study the mechanisms underlying skin and feather/hair follicle
morphogenesis, development, cycling and regeneration. Though
lots of genetically modified mouse/chicken models were created
to perform the functional study of individual or combined
genes or gene networks in skin and feather/hair research, there
are still lots of questions that remain unclear due to the
limitation of animal models themselves. Chicken skin consists
of only feather follicles with no sweat glands or sebaceous
glands (Figure 7). Hair follicles and sebaceous glands are the
two appendages that exist broadly in mouse dorsal skin, while
eccrine sweat glands as another appendage remain specifically
in mouse paw skin (Figure 7). This additional and regional
localization of eccrine sweat glands in footpad skin is a good
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FIGURE 3 | Hair follicle marker SOX2 is negative in apocrine sweat glands in prenatal sheepskin as detected by immunohistochemistry. SOX2 is specifically localized
in the dermal condensates/dermal papilla of primary wool follicles, not in those of secondary wool follicles and apocrine sweat glands. (A–E) The strong positive
signals of SOX2 antibody staining are restricted in the dermal condensates associated with the primary wool follicle placodes (A–D) in early stages and in the dermal
papilla in later stage (E). The secondary wool follicles and apocrine sweat glands are all negative for SOX2 immunohistochemistry. (F) The negative control is
displayed without applying the primary antibody in immunohistochemistry. A–D Bar, 50 µm. E and F Bar, 100 µm.

point to study the subtype appendage determination during
the early development of skin. The hair follicles in mouse
dorsal skin display three synchronized developmental waves
prenatally and cyclic growth pattern postnatally. Moreover,
numerous genetic modified mouse models were generated in
recent years, benefiting from the profoundly developed genome
editing technique. All the advantages contribute to making the
mouse model a broadly used system for deep understanding of
the skin biology.

Human skin is distinctive from other animals partially in that
the sweat glands exist across the skin and the subtypes of sweat
glands are either eccrine sweat glands on the non-hairy area
or apocrine sweat glands on the hairy area (Figure 7). Hence
the absence of apocrine sweat glands in mouse and chicken
skin restrains the further understanding of the complexity of
human skin biology and skin diseases, like armpit and body odor.
Sheep could serve as an additional system to further explore
the knowledge of apocrine sweat glands since sheepskin has
sweat glands that are similar to those located in human armpits
(Figure 7). Until now, there has been good understanding of
the development of eccrine sweat glands (Klaka et al., 2017;
Kurata et al., 2017), but not that of apocrine sweat glands. Our

study is the first report revealing the complex molecular network
regulating early development, especially the morphogenesis of
apocrine sweat glands using sheep as a model. Coarse wool
sheep develop primary and secondary wool follicles that are
similar to the generation of hair follicles in mouse dorsal
skin. The occurrence of apocrine sweat glands is potentially in
accompaniment with the generation of secondary wool follicles
as indicated in Figure 1C. The observation that the eccrine sweat
glands were initiated to form the first wave of pre-germ at E16.5
(the period of secondary follicles emergence) in the proximal
footpad and later at E17.5 in the distal footpad (Schlake, 2007; Cui
et al., 2014) implied that the two types of sweat glands shared the
similar induction time schedule during the early morphogenesis.

At the induction stage, a few cells packing together on the
lateral side of the half length of primary wool follicle germ
indicated the location of precursor/progenitor cells of apocrine
sweat glands approximately at embryonic day 75 (Figure 1C).
This unilateral pattern formation is different from the bilateral
pattern of sebaceous glands that develop after the apocrine
glands in sheepskin. It is also different from the de novo pattern
formation of eccrine sweat glands that develop from the crosstalk
of epidermal and dermal layers of the skin (Lu et al., 2016).
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FIGURE 4 | The localization of PDGFRB by immunohistochemistry is positive in dermal-originated cells and negative in apocrine sweat glands in the prenatal
sheepskin. (A) PDGFRB is highly expressed in the dermal condensates of primary wool follicles and occasionally in dermal fibroblast before apocrine sweat gland
induction; (B–D) PDGFRB is expressed in dermal condensates of primary and secondary wool follicles, and not in the precursor cells or the bud of apocrine sweat
glands; (E) Strong PDGFRB expression is detected in the upper dermis of the sheepskin, especially the location surrounding the wool follicles. PDGFRB is
surprisingly negative in the dermal papilla of the well-developed wool follicles and also negative in the apocrine sweat glands. (F) The negative control is displayed
without applying the primary antibody in immunohistochemistry. A–D Bar, 50 µm. E and F Bar, 100 µm.

These compact cell patches gradually grew outward from the
adjacent outer root sheaths of primary wool follicles to form
the short and later long ductal bud as indicated by the H&E
stain in our study (Figure 1). Then the bud extended closely
parallel to the primary wool follicle peg and developed the
secretory portions to become mature apocrine sweat glands in
later stages.

The two developmental stages applied in the RNA-sequencing
program represent the pre-gland phase (stage TF1b, Figure 1B)
and gland bud phase (stage TF2a, Figure 1E) of apocrine sweat
glands. At the selected gland budding stage, the primary wool
follicles grew downward to the dermis to develop follicle pegs
and at the same time secondary wool follicles started to generate
the placode and associated dermal condensates. Briefly, the
prominent structural changes between the two stages are the
thickened epidermis and dermis, elongated wool follicle pegs,
enlarged dermal condensates, initiated secondary wool follicle
placodes and emerged apocrine sweat gland germs. By analyses
of 1631 DEGs, a series of genes was enriched to function
in skin development (33 genes) and hair follicle development
(14 genes) (Table 2). These genes are potentially responsible
for the morphological changes for skin epidermal and dermal

thickening as well as wool follicle germ elongation. Most of the
genes showed the increased expression trends in line with the
positive regulation of cellular processes and biological processes
in enriched GO terms. Further analyses showed that our data
were highly comparable with those of genes regulating the hair
follicle development in P5 mouse skin. The overlapped genes
between these two groups covered regulatory genes responsible
for all the compartments of the skin and hair/wool follicles.
Genes regulating each compartment of wool/hair follicles were
analyzed and recorded in Table 1 and represented by TGFB1 and
WNT16 for epidermal development, ADAMTS15 and COL6A1
for the dermal fibroblast development, LAMA5 and SOX9 for
outer root sheath development, LRIG1 and SOX9 for hair follicle
stem cell development. These results indicate that the epidermal
part of wool follicles was rapidly growing during the two stages
we detected. The most promising result is the enrichment of 34
genes for wool follicle dermal papilla development represented
by the commonly used dermal condensate marker genes BMP3,
SOSTDC1, TRPS1 and WIF1. These analyses were consistent with
the enlarged dermal condensates associated with the primary
follicle pegs and the newly formed secondary wool follicles as
shown in Figure 1C.
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FIGURE 5 | SOX9 is localized in the wool follicle pegs and apocrine sweat glands (red dashed line). (A) SOX9 is expressed in the placodes of primary wool follicles
and occasionally in the basal layer; (B) As the primary wool follicles grow downward into the dermis, SOX9 is strongly expressed in the primary wool follicle pegs and
basal layer, and weakly in the precursor cells of the apocrine sweat glands; (C–D) SOX9 is expressed in the apocrine sweat gland budding point (C) and buds (D),
and also in wool follicle pegs. (E) SOX9 is strongly expressed in the ducts of apocrine sweat glands. It is also expressed in the elongated epidermal compartments of
wool follicles. (F) The negative control is displayed without applying the primary antibody in immunohistochemistry. A–D Bar, 50 µm. E and F Bar, 100 µm.

Though these two datasets do not originate from the same
developmental stages, they do share similar gene networks that
govern the skin and hair/wool follicle development between
mouse and sheep. It indicates that the pre-mature wool follicles
in the selected stages of sheepskin and mature hair follicles in P5
mouse skin were regulated by partially conserved candidate genes
with different dosages or locations. The overlapping marker genes
in Table 1 and the immunohistochemistry of selected candidates
in Figures 3–6 clearly stated this notion.

SOX2, a hair follicle maker, was specifically positive in the
dermal condensates/dermal papilla of the primary wool follicles
and surprisingly negative in the secondary wool follicles (Figure 3
and Supplementary Figure S1). This expression pattern is
partially different from those of the mice in that Sox2 was
detected in both primary and secondary hair follicles, not in
the third wave zigzag follicles in mouse dorsal skin (Graham
et al., 2003; Driskell et al., 2009). PDGFRB is one of the types
of PDGF receptors which can mediate the biological actions
of PDGF and is related to the development of many organs
(Claesson-Welsh et al., 1988; Gronwald et al., 1988; Mellgren
et al., 2008). Moreover, Pdgfrb was expressed in the dermis and
dermal condensates of E14.5 mouse skin (Rezza et al., 2015) and
disruption of Pdgfrb signaling impaired proliferation and dermal
fibroblast migration (Gao et al., 2005; Rajkumar et al., 2006).
In sheepskin, PDGFRB displayed focal expression in the dermal
papilla of the pre-mature wool follicles and the fibroblast in early
stages, and later in the upper part of the mesenchyme, especially

the area surrounding the wool follicles. The signals of SOX2 and
PDGFRB were both absent from the ductal buds of the apocrine
sweat glands, indicating these two genes were not important
for the early morphogenesis of apocrine sweat glands. And it
also suggests that the regulatory networks of dermal-originated
hair/wool follicle compartments were different from those of
apocrine sweat glands branched from the epidermal-originated
outer root sheaths of the wool follicles. Sox9 was reported
to mainly express in the outer root sheath and the bulge of
hair follicles (Nowak et al., 2008; Rompolas and Greco, 2014;
Purba et al., 2015). The detection of SOX9-positive signals in
epidermal compartments of the wool follicles, the inter-follicular
basal layers and the apocrine sweat gland ducts implied that
hair/wool follicles and apocrine sweat glands partially share
some key regulators, especially the molecules regulating the
outer root sheaths during the morphogenesis. The expression
of SOX9 was initially detected in the precursor cells (the
cell aggregates located on the lateral side of the wool follicle
peg) of the apocrine sweat gland and later in the branched
gland germs and straight gland ducts (Figure 5). The aggregate
precursor cells marked the initiation of apocrine sweat glands.
Then these few cells proliferate, differentiate and migrate
to the edge of the follicle peg and form the gland cavity
with the small opening to the upper part of the outer root
sheath.

The induction of apocrine sweat gland germs and the
elongated epidermal compartment of wool follicle pegs are highly

Frontiers in Genetics | www.frontiersin.org 11 January 2019 | Volume 9 | Article 73917

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00739 January 28, 2019 Time: 18:36 # 12

Li et al. Apocrine Sweat Glands in Sheepskin

FIGURE 6 | pSMAD5 is broadly expressed in the compartments of prenatal sheepskin. (A) pSMAD5 is expressed in the dermis, epidermis and primary wool follicle
placodes and associated dermal condensates. (B–E) pSMAD5 is expressed in the precursor cells, buds and ducts of apocrine sweat glands and is also expressed in
all skin compartments. (F) The negative control is displayed without applying the primary antibody in immunohistochemistry. A–D Bar, 50 µm. E and F Bar, 100 µm.

FIGURE 7 | Sheepskin is an additional system to study human apocrine sweat glands. A diagram is drawn up to compare the complexity of sweat glands in human
skin with those in the widely used animal models (mouse and chicken) and also in sheep used in current study. There are two types of sweat glands that exist in
human skin. Eccrine sweat glands are distributed in hairless skin regions, while apocrine sweat glands are exhibited in the armpit skin. Sheep dorsal skin contains
apocrine sweat glands that are similar with those of human armpit skin. Mouse dorsal skin has no sweat glands. Eccrine sweat glands exist exclusively in mouse
footpad skin. Chicken skin is completely absent of sweat glands.

correlated with the epithelial cell migration, differentiation,
and morphogenesis of epithelial branching or tube formation
(Table 2). The enrichment of 7 categories of genes involved
in epithelial branching or tube formation is consistent with
the observation that the wool follicle is tube-like in structure,
branching from the skin basal layer, and the apocrine sweat
glands protrude from the outer root sheath to form the branching
with two layers (basal layer and supra-basal layer) surrounding

the cavity of the gland (Figure 1I). These structures mostly
originate from the epithelia in line with the enrichment of
epithelial-related GO terms and candidate genes.

The most interesting point is the enrichment of 5 gland-related
GO terms in our data. A series of genes represented by BMP7,
FGFR1, GLI2, LAMA5, SOX9, and WNT5A enriched in gland
morphogenesis (18 genes increased and 2 genes decreased) and
gland development (34 genes increased and 8 genes decreased)
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were reported to be involved in general gland development,
including the salivary gland, mammary gland and prostate gland
development. Though the apocrine sweat gland in our study
is structurally different from those types of glands mentioned
above, they do partially share the regulatory genes functioned
in the early morphogenesis, especially the ductal formation.
A total of 8 genes (BMP7, DAG1, EGFR, FGFR1, LAMA5,
NRP1, SNAI2, and TGFB3) were grouped specifically for salivary
gland morphogenesis and development, while 6 genes (BMP7,
DAG1, FGFR1, LAMA5, NRP1, and SNAI2) were enriched for
branching involved in salivary gland morphogenesis. Recently, a
report suggested that conditional deletion of Nrp1 in mammary
epithelial cells delayed mammary development, particularly the
ductal extension (Liu et al., 2017). Lama5 and Dag1 were
broadly expressed in the basement membrane of skin and hair
follicles in mouse models to maintain skin integrity. Previous
reports showed that Lama5 played important roles in hair peg
elongation and skin homeostasis since conditional knockout mice
Lama5Ker5 showed delayed hair growth in early age, abnormal
follicle down-growth and decreased hair follicle density in adult
animals (Wegner et al., 2016). The fact that LAMA5 was highly
expressed in the basement membrane of straight ducts and
secretory portions of the human eccrine sweat glands (Kurata
et al., 2017) implied that the increased expression of LAMA5
in the apocrine sweat gland budding stage was responsible for
both the wool follicle peg elongation and the ductal formation
of the apocrine sweat glands. SNAI2 (Slug) was shown to
determine the mammary stem cells in line with Sox9 (Guo et al.,
2012). The upregulation of SNAI2 in our data indicates that
SNAI2 was involved in apocrine sweat gland induction. These
analyses further proved the notion that the molecular networks
controlling gland morphogenesis were partially shared among
diverse glands (salivary gland, mammary gland and apocrine
sweat gland) and functionally different from those of hair/wool
follicles development.

In addition to the GO terms mentioned above, we also
significantly enriched three signaling pathways (WNT, TGF-β,
and Hedgehog) that may be involved in apocrine sweat gland
morphogenesis and development. In our data, we accumulated
19 genes of the WNT signaling pathway. The WNT pathway was
indispensable for induction and development of hair follicles and
eccrine sweat glands (Chen et al., 2012; Cui et al., 2014). Among
these genes, Wnt5a was involved in the proper development of
bud outgrowth and branching point formation of the prostatic
gland (Huang et al., 2009b). The application of Wnt5a protein
in a tissue culture system also inhibited the ductal branching
and extension of mammary gland (Roarty and Serra, 2007).
During this process, Wnt5a was supposed to function as a
downstream effector of TGF-β signaling that showed similar
regulatory impact on mammary gland development (Roarty and
Serra, 2007). The upregulation of WNT5A in our data indicated
that WNT5A is involved in early development of apocrine sweat
gland. But whether or not WNT5A inhibits the formation of
apocrine sweat gland duct requires further study.BMP7,BMPRIA,
SMAD1, and SMAD4 were enriched in the TGF-β signaling
pathway. Smad1 was focally expressed in the dermis of eccrine
sweat gland germs during the induction stage (O’Shaughnessy

et al., 2004). Smad4 is a common partner interacting with
Smad1, Smad5, and Smad8 to mediate BMP signaling, and
with Smad2 and Smad3 to mediate TGF-β subfamily signaling
(ten Dijke and Hill, 2004). Smad4 conditional knockout mice
exhibited abnormal proliferation and differentiation, particularly
with increased cell proliferation in the outer root sheaths and
epidermis, mainly due to the blockage of TGF-β subfamily (Owens
et al., 2008). Several mouse models reported that upregulation of
BMP signals was important for eccrine sweat gland development.
The overexpression of Noggin (antagonist of BMP) in K14-
Noggin transgenic mice displayed increased hair follicle density
in body skin, and transformed eccrine sweat glands in footpads
into hair follicles (Plikus et al., 2004). The Bmpr1a conditional
knockout mice converted the eccrine glandular appendage fate
to form hair follicle-like structures in mouse footpad skin
(Lu et al., 2016). These mouse models related to the BMP
pathway highly suggest that upregulation of BMP signals favor
eccrine sweat gland development. Bmp7, a conserved secreted
molecule of BMP family, was detected in both epidermal and
dermal layers in mouse E13.5 skin, broadly expressed in the
epithelium of the salivary gland, the immature hair follicles
(inner and outer root sheaths, hair shaft and dermal papilla)
and the mesenchyme surrounding the hair follicles, and highly
enriched in mature hair follicles (dermal papilla and outer
root sheaths) (Zouvelou et al., 2009). The Bmp7 conditional
knockout mice showed abnormal hair follicles with enlarged
root sheaths. BMP7 also proved to regulate the branching of
lacrimal glands and prostate glands (Dean et al., 2004). The
increased expression of BMP7 in our data, combined with the
reported functional study of BMP7 in gland development and
the expression pattern of BMP7 in the outer root sheath of hair
follicles, strongly suggest that BMP7 was potentially involved in
the morphogenesis of apocrine sweat glands. In our study, the
localization of pSmad5 was observed at the branching point and
the germs of the apocrine sweat glands with strong expression
(Figure 6). This expression pattern of pSmad5 suggested that
BMP signaling was activated at the gland induction site as that
of the eccrine sweat gland. Hence, the enrichment of TGF-β,
particularly BMP-signaling genes BMP7, BMPRIA, SMAD1, and
SMAD4 in our sequencing analysis, combined with the mouse
models of the BMP pathway discussed above, highly suggest that
BMP signaling is a positive regulator of apocrine sweat gland
induction.

The competence of high-BMP and low-SHH signals in a short
developmental period established the initiation of eccrine sweat
glands instead of the hair follicles in mouse ventral foot pad skin
as discussed previously (Lu et al., 2016). Interestingly, the SHH
signaling pathway was enriched in our data as well, including
genes SHH, GLI2, and GLI3. The SHH signaling pathway was
shown to positively regulate the down-growth of hair follicle pegs
and negatively determine the induction of eccrine sweat glands
in a short developmental stage (Cui et al., 2011, 2014; Lu et al.,
2016). The increased expression of SHH signaling in our data was
potentially responsible for wool follicle elongation and gland duct
extension. It is also possible that SHH regulated the induction
of apocrine sweat glands at the earlier stage and at the restricted
branching point.
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The histological study in our current report clearly stated
that apocrine sweat glands in sheepskin were branched from
the outer root sheaths of the primary wool follicles. A total of
43 genes enriched in 5 categories of gland morphogenesis and
development in our data, implying that the regulatory network
for the morphogenesis of apocrine sweat glands in sheepskin was
partially conserved with the other glands, particularly mammary
glands, salivary glands and eccrine sweat glands, though the
originations of apocrine sweat glands and eccrine sweat glands
are different. Of those, the BMP and WNT signaling pathway
genes (BMP7, BMPR1A, SMAD1, SMAD4, and WNT5A) and
the 8 gland-related genes are the most promising candidates
potentially exhibiting positive regulation of apocrine sweat gland
induction. The negative regulators during this process are not
specified in our data. It may be that SHH pathway genes
(SHH, GLI1, and GLI2) functioned in the branching point
during the induction of apocrine sweat glands. Until now,
few studies have been conducted on apocrine sweat gland
development. Moreover, transcriptome studies of sheepskin have
also been widely reported, but little attention has been paid
to the development of apocrine sweat glands. Our report is
the first to reveal the complex molecular network interaction
in the induction stage of apocrine sweat glands in coarse wool
sheepskin and will contribute to the better understanding of the
histology, physiology and pathology of apocrine sweat glands and
associated diseases in humans and companion animals.
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Chinese Yunling black goats and African Nubian goats are divergent breeds showing

significant differences in body size, milk production, and environmental adaptation.

However, the genetic mechanisms underlying these phenotypic differences remain to be

elucidated. In this report, we provide a detailed portrait of allele-specific expression (ASE)

from 54 RNA-Seq analyses across six tissues from nine F1 hybrid offspring generated

by crossing the two breeds combined with 13 genomes of the two breeds. We identified

a total of 524 genes with ASE, which are involved in bone development, muscle cell

differentiation, and the regulation of lipid metabolic processes. We further found that 38

genes with ASE were also under directional selection by comparing 13 genomes of the

two breeds; these 38 genes play important roles in metabolism, immune responses, and

the adaptation to hot and humid environments. In conclusion, our study shows that the

exploration of genes with ASE in F1 hybrids provides an efficient way to understand the

genetic basis underlying the phenotypic differences of two diverse goat breeds.

Keywords: allele-specific expression (ASE), Chinese Yunling black goat, Nubian goat, whole genome sequencing,

RNA-seq

INTRODUCTION

A domestic species can present diverse phenotypic differences due to the adaptation to local
environments and artificial selection. Yet, it has been difficult to identify the causative genes that
contribute to these phenotypic differences. Some studies have relied on genomic selection signals
(Dong et al., 2012; Benjelloun et al., 2015). However, the identified selection signals generally
contain a high proportion of background noise. Comparative transcriptome analysis of breeds with
distinct traits is another frequently used approach (Hayano-Kanashiro et al., 2009; vonHeckel et al.,
2016). However, the resulting differentially expressed genes reflect both cis-acting and trans-acting
regulatory variations, thus presenting little power to characterize the genetic architecture and
identify causative genes. With the development of sequencing-based methods to study the
transcriptome, it is possible to make use of natural sequence variation to trace and quantify
allele-specific expression (ASE) in F1 hybrid individuals generated from crosses of two different
lines of interest (Crowley et al., 2015; Aguilar-Rangel et al., 2017). Characterization of ASE in F1
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material avoids the problem of comparing parents that may
differ dramatically in their growth and development by
evaluating both alleles within the same cellular environment,
directly revealing cis-acting genetic variation related to
transcript accumulation.

The black goats in Southwest China are characterized by a
tolerance to crude feed, a higher resistance to parasitic diseases,
and thinner muscle fibers (Miao et al., 2015). However, the
growth rate of these black goats is much slower than that of
commercialized breeds (Zhao et al., 2011) improved by European
countries. Nubian goats, a popular commercialized breed, exhibit
high feed efficiency and a fast growth rate but are susceptible to
parasites (Kholif et al., 2017; Rahmatalla et al., 2017), which are
common in the hot and humid environment of South China. In
the past decades, Nubian goats have been continuously imported
into China to improve the production performance of local
breeds (Yuan et al., 2017). Understanding the genetic basis
underlying the distinct phenotypes of these two breeds will be a
perquisite for new breed selection and customizing strategies for
cross breeding.

To understand the genetic mechanisms underlying the
phenotypic differences between these two breeds, an F1 hybrid
population was generated by crossing female Chinese Yunling
black goats and male Nubian goats, and the transcriptomes of the
F1 hybrids were analyzed in six tissues (liver, bone, muscle, fat,
skin, and mammary gland tissues) to detect ASE. Combined with
the selection signals identified in Chinese Yunling black goats
and Nubian goats, we provide further insights into the genomic
contributions underlying the phenotypic diversity between these
two goat breeds.

MATERIALS AND METHODS

Sample Collection
Six Chinese Yunling black ewes and four Nubian rams were
selected to produce nine F1 hybrids. Nine female F1 hybrids
(three from each cross) were slaughtered after being stunned
by high voltage electricity. Liver, bone, muscle, fat, skin, and
mammary gland tissues from all nine hybrids were rapidly
dissected, snap frozen in liquid nitrogen, and stored at −80◦C
until use. In addition, three of the individuals additionally
collected horns, hooves, and rumen for the calculation of reads
counts and genotype judgment. For each tissue sample, two
replicates were collected simultaneously. Blood samples were
collected from the parents (six Chinese Yunling black ewes and
four Nubian rams) and three female F1 hybrids.

DNA Extraction and DNA Sequencing
Genomic DNA was extracted from blood samples using a
Tiangen DNA isolation kit (Tiangen Biotech, Beijing, China).
At least 6 µg of genomic DNA from each sample was
used to construct a sequencing library following Illumina
instructions. Paired-end sequencing libraries with an insert size
of approximately 500 bp were sequenced using an Illumina HiSeq
2000 (Berry Genomics Company).

RNA Extraction and RNA-Sequencing
Total RNAwas extracted using TRIzol (Invitrogen, Carlsbad, CA,
USA) following the manufacturer protocols. RNA quality was
measured using an Agilent 2100 Bioanalyzer. All samples had
an RNA integrity Number (RIN) ≥7. Library construction and
sequencing were performed according to Illumina instructions.
mRNA was isolated from DNA-free total RNA using the
Dynabeads mRNA DIRECT Kit (Invitrogen) and fragmented.
First-strand cDNA was generated using Random Primer p(dN)6
and Superscript III, after which second-strand cDNA synthesis
and adaptor ligation were performed. cDNA fragments of 400–
500 bp were isolated. The library was sequenced using the
Illumina X-ten platform to generate 150 bp paired-end reads
(Berry Genomics Company).

Genomic Sequence Analysis
Before alignment, the raw data were processed to filter out
adaptors and low-quality reads. High-quality clean reads from
the DNA sequencing of parents were aligned to the goat reference
genome (Bickhart et al., 2017) using BWA software (Li and
Durbin, 2009). We then assigned SNPs to the two groups using
the Genome Analysis Toolkit (GATK, v3.2-2) (McKenna et al.,
2010) to discriminate the parents from both lines. Next, we
filtered low-quality sites using the parameter QUAL <30. All the
assigned variants were annotated using the package ANNOVAR
(Version: 2013-08-23) (Wang et al., 2010).

Analysis of Selective Sweeps
We performed a selective sweep analysis by calculating the
genetic differentiation (Fst) and heterozygosity (Hp) of each
150KB genomewindow and 75KB step length. Fst was calculated
using VCFtools (Kofler et al., 2011), and Hp was calculated as
described previously (Rubin et al., 2012). The Hp and Fst values
were converted to a standard normal distribution, denoted by
ZHp and ZFst. In addition, regions that exhibited low Hp and
high Fst values were screened as candidates. To understand
the biological functions of genes within candidate regions, GO
analysis was performed.

Transcriptome Mapping and Quantification
of Expression
Clean reads were mapped to the CHIR_3.0 reference genome
(Bickhart et al., 2017) using STAR with default options. Next, the
unmapped reads were remapped to the genome using Hisat2 (v
2.0.3) (Pertea et al., 2016). The assignment of reads to genes was
performed using StringTie (Pertea et al., 2016). The expression
levels of the protein-coding genes were quantified using the R
package “Ballgown” (Pertea et al., 2016).

ASE Analysis
Allele counts were retrieved using a homemade Python scripts
(Supplementary File 1: GetSnpCountFromBam.py) which
calculates allele counts at SNP positions. Heterozygous sites with
individual allele read depth <20 and total (both alleles) read
depth <50 were filtered out. A binomial test and Benjamini-
Hochberg FDR correction were performed. Cut-off criteria
of allele ratio >0.7 or <0.3 and FDR < 0.05 were used to
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identify significant allelic imbalances. Previously identified
imprinted genes obtained from an online database (http://
www.geneimprint.com/site/home) were excluded from our final
gene set.

Gene Ontology Analysis
GO pathway enrichment analyses were performed to identify
enriched functions in KOBAS3.0 (http://kobas.cbi.pku.edu.cn/
index.php). We converted the goat gene symbol IDs into human
homologous gene symbol IDs using Blastp before performing GO
pathway analyses, as the goat gene annotations in the KOBAS3.0
database were inadequate. We set the EASE value to 0.05 for the
enrichment analysis.

RESULTS

Genomic Variants of Chinese Yunling Black
Goats and Nubian Goats
Six Chinese Yunling black goats, four Nubian goats and three
F1 hybrids were selected for genome resequencing (Figure 1A).
The genome resequencing achieved an average depth of 15X
and a mapping rate of 99.54%. A total of 11.52 million SNPs
were found to differ between the parents of each breed, and
309,984 SNPs were expressed. Among the total discriminating
SNPs, 0.85% were detected in coding regions (Figure 1B;
Supplementary File 2). In addition, we detected 313 SNPs in
termination codons and 258 SNPs in splice sites. We found

that 24,701 genes were annotated genes with at least one
discriminating SNP.

Interestingly, we found 7,365 genes that contained more
than 100 SNPs, implying that these genes were highly
diverse and might be particularly susceptible to artificial
selection (Figure 1, Supplementary Figure 1A). The proportion
of substitution transitions (69.4%) was much higher than
that of transversions (30.7%) (Supplementary Figure 1B). The
transition:transversion ratio was 2.26:1, which is similar to that
found in other goat studies (Guan et al., 2016).

Genome-Wide Selective Sweep Analysis
F-statistic (Fst) scores were calculated to measure the signature of
selection between the Yunling black goats and Nubian goats. We
scanned the autosomes with a nonoverlapping 100 kb window
and calculated the Fst value for each window. We focused on
the regions with extremely high Z-transformed Fst values (Top
%1) in the genome-wide empirical distribution. In total, 250
putative selective sweep regions containing 521 candidate genes
were identified (Figure 2A; Supplementary File 3).

The region with the strongest differentiation signal
[ZFst = 7.85] between the two breeds was the 13.73–
13.95MB region of chromosome 12, which contained
LOC108637252/LOC108637248/LOC102180841/LOC102180583
(MRP4). The product of this region protects cells against
toxicity by acting as an ion efflux pump, in addition to
influencing dendritic cell migration (Li et al., 2017). We also
identified several genes showing differentiation, including

FIGURE 1 | (A) Experimental design and brief data summary. (B) Statistics regarding the location and mutation type of the whole-genome SNPs.
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CELF2, TDO2, ZFPM1, TAP1, LOC102177333 (CYP2D6), and
LOC102173339 (CYP8B1).

Heterozygosity (Hp) was also used to detect putative selective
sweeps. The distribution of the observed Hp values and the Z
transformations of Hp and ZHp are plotted in Figure 2. We
searched the regions with the lowest heterozygosity (top 1% based
on |ZHp| scores), which yielded a total of 275 putative selective
sweep regions containing 785 candidate genes in Nubian goats
(Figure 2B) and 270 putative selective sweep regions containing
854 candidate genes in Chinese Yunling black goats (Figure 2C
and Supplementary File 3).

We observed high ZHp values (ZHp = 6.40) across the
PCDHB (protocadherin B) gene family (Figure 2B) in Nubian
goats and for theUBR4 and EMC1 genes (ZHp= 6.28) in Chinese
Yunling black goats (Figure 2C).

Transcriptome Characterization of F1
Hybrids
To detect genes with ASE and infer the existence of cis-
regulatory variants, we combined the RNA-Seq data from
six tissues (liver, bone, muscle, fat, skin, and mammary
gland tissues) and the whole-genome sequencing results from

three female F1 hybrids (Figure 1A and Supplementary File 2).
The whole-genome resequencing data were used to exclude
possible base changes in RNA sequences resulting from
RNA editing.

The greatest number of ASE SNPs (2,685) were detected in the
mammary gland, while 1,556 were detected in muscle Table 1.
Most of the ASE SNPs were located in annotated genes (liver
79.6%, bone 81.7%, muscle 87.5%, fat 77.8%, mammary gland
80.9%, and skin 81.4%) (Table 1). The percentage of synonymous
regions was over 50% in the six tissues, and the ratio in muscle
was highest, reaching 64%(Table 2).

The genes we identified that had ASE may have included
imprinted genes. We therefore collected the imprinted genes
of human, mouse, cattle and sheep (Supplementary Table 1)
from a publicly available database (http://www.geneimprint.
com/site/home) and excluded these from our results. In this
way, we finally identified 524 genes with ASE in the six
tissues, ranging from 78 in muscle to 144 in liver (Table 3).
The greatest number of ASE genes comprised protein-coding
genes, whose proportion in the six tissues of all hybrids was
above 90%, followed by noncoding RNAs (Table 3). Using
an FPKM > 0.01 as a threshold, the average expression

FIGURE 2 | Overview of selective sweeps in the Nubian and Yunling black goat breeds based on ZFst and ZHp values. The labeled genes in bold characters

represent those genes with selective signals that overlap with ASE genes. (A) ZFst values between Nubian and Yunling black goat breeds. Bold names are the ASE

genes contained in the maximum Z-Fst in the 100 kb window. (B) ZHp value of Nubian goats. Bold names are the ASE genes contained in the minimum |ZHp| group

of Nubian goats in the 100 kb window. (C) ZHp value of Yunling Black goats. Bold names are the ASE genes contained in the minimum |ZHp| group of Yunling Black

goats in the 100 kb window.
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TABLE 1 | Annotation of SNPs with ASE from six tissues.

ASE SNP

annotation

Liver Bone Muscle Fat Mammary Skin

Total 2,341 2,004 1,556 2,349 2,685 2,362

SNPs in annotated

genes

1,864 1,637 1,361 1,827 2,173 1,923

Exon 885 1,073 1,103 1,347 1,353 1,493

Intron 978 562 257 477 817 429

Splice region 1 2 1 3 3 1

Intergenic 381 257 146 406 400 325

Upstream and

downstream

96 110 49 116 112 114

TABLE 2 | Mutation statistics of SNPs with ASE located on exons.

Liver Bone Muscle Fat Mammary Skin

Synonymous 230 291 323 362 384 397

Non-

synonymous

189 266 182 244 277 244

Stopgain 0 0 0 0 0 0

Stoploss 2 0 0 0 0 0

TABLE 3 | Encoding type for genes with ASE.

Protein

coding

Noncoding

RNA

Pseudogene Total

Liver 135 8 1 144

Bone 101 3 3 107

Muscle 74 4 0 78

Fat 92 2 3 97

Mammary 114 7 3 124

Skin 121 4 2 127

level of the ASE gene was significantly higher than the
average expression of the normal gene in the same tissue
(Supplementary Table 2).

Functional Annotation of ASE Genes
To explore the tissue specificity of the genes with ASE,
functional enrichment analyses were performed. In bone, 276
Gene Ontology (GO) terms were significantly enriched in 77
ASE genes (P < 0.05), most of which were associated with
hematopoietic or lymphoid organ development (Table 4 and
Supplementary File 3). There were 332GO terms enriched in 72
ASE genes in muscle (P < 0.05) (Supplementary File 4), which
were mainly involved in striated muscle cell development, the
actin cytoskeleton, muscle cell differentiation, actin-mediated
cell contraction, muscle fiber development, striated muscle
thin contraction, and muscle tissue development (Table 4). The
results revealed that 385 GO terms were significantly enriched
in 82 ASE genes in fat tissue (P < 0.05) (Supplementary File 4).
Interestingly, lipid-related processes (lipid localization, lipid
binding, and lipid metabolic processes) were significantly

TABLE 4 | GO analysis of the genes with ASE in difference tissues.

Tissue GO Term Gene number Corrected P-value

Bone Hematopoietic or lymphoid

organ development

8 1.88E-03

Hemopoiesis 7 5.91E-03

Muscle Striated muscle cell development 10 1.77E-11

Actin cytoskeleton 13 4.02E-10

Muscle cell differentiation 11 5.19E-09

Actin-mediated cell contraction 6 1.88E-06

Muscle fiber development 5 3.37E-06

Striated muscle contraction 6 1.68E-05

Muscle tissue development 6 7.06E-04

Fat Lipid localization 5 6.23E-03

Lipid binding 6 1.30E-02

Lipid metabolic process 8 2.84E-02

Skin Keratin filament 11 2.32E-13

Liver Small molecule metabolic

process

43 1.39E-23

Organic acid metabolic process 31 4.47E-21

Cellular metabolic process 78 1.18E-18

Carboxylic acid metabolic

process

26 7.63E-17

Oxoacid metabolic process 26 8.50E-17

Monocarboxylic acid metabolic

process

21 2.16E-15

Cofactor metabolic process 17 1.63E-13

Organonitrogen compound

metabolic process

33 2.65E-13

Cellular lipid metabolic process 22 1.74E-11

Coenzyme metabolic process 14 3.52E-11

enriched in 11 ASE genes, including ABCA6, LBP, SEC14L2,
SERINC2, ACACA, CD36, AADAC, C3, LGALS12, PLA2G16,
andMFGE8 (Table 4). The liver is an important metabolic organ,
for which 10 metabolic-related GO terms were found, including
the metabolic processes of small molecules, organic acids,
cellular functions, carboxylic acid, oxoacid, monocarboxylic
acid, cofactors, organonitrogen compounds, cellular lipids,
and coenzyme function (Table 4; Supplementary File 4). There
was only one significantly enriched GO term for bone and
skin, respectively, and none was significantly enriched for
mammary gland.

Among the six tissues, the ASE genes of the liver presented
the highest tissue specificity (77.8%), followed by those in the
skin (71.7%), bone (68.2%), muscle (67.9%), and mammary
tissue (52.4%). In contrast, fat exhibited a lower level of tissue
specificity (45.4%). Supplementary Table 3 shows the status of
the overlap of ASE genes in different tissues. For example,
HLA-A, HLA-B, HLA-DQA1, HLA-DQB1, and LOC106503915
were detected in all tissues Supplementary Table 3. The HLA
genes encoded major histocompatibility complex (MHC) class
I proteins in the context of specific cell surfaces (Valenzuela-
Ponce et al., 2018), involving HLA-A, HLA-B, HLADRB1, HLA-
DQA1, and HLA-DQB1 (Emerson et al., 2017). HLA played
a major role in the control of the immune response and its
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associations with a wide variety of immunological and infectious
disorders, such as type I diabetes, multiple sclerosis, rheumatoid
arthritis, Grave’s disease, ankylosing spondylitis, and systemic
lupus erythematosus (Spínola et al., 2016).

Potential Effects of ASE Genes
Under Selection
We also observed several ASE genes under selection. The range of
selected ASE genes in six tissues was 5 to 13. Among these genes,
we highlight the Ribosomal protein S8 (RPS8) gene. RPS8 was
detected in four tissues: skin, bone, mammary tissues and muscle
tissue. It also showed the lowest level of heterozygosity in the
selected region in Yunling black goats (|ZHp| = 3.46). RPS8 has
been used to develop a species-specific PCR-RFLP diagnostic tool
for ovine babesiosis and theileriosis, which are hemoprotozoal
diseases that cause economic losses among sheep and goats in
tropical and subtropical regions (Tian et al., 2013).

Another ASE gene, Multidrug resistance protein 4 (MRP4),
was specifically expressed in the bone, which contained 32
SNPs (29 exonic and three intronic SNPs). Based on the
results for MRP4, Nubian goats with the highest Fst value
[Z(Fst) = 7.08] and Hp value (|ZHp| = 3.33) were selected.
MRP4 has been identified as an important transporter for
signalingmolecules, including cyclic nucleotides and several lipid
mediators in platelets.MRP4 is known to play a critical role in the
elimination of numerous drugs, carcinogens, toxicants, and their
conjugated metabolites and is expressed at the basolateral surface
of hepatocytes, which can facilitate cellular efflux to sinusoidal
blood for entry into the systemic circulation (Li et al., 2017).

We further examined the ASE genes under selection. Thirty-
eight genes with ASE from the six tissues were identified as being
under directional selection, implying that they are involved in
biologically essential functions, and these genes were therefore
defined as core-ASE genes. The largest number of core-ASE genes
(13) was found in the liver, where four genes were associated with
metabolism (LOC102191011, LOC102177333, LOC102173339,
and LOC102191297), and another four were associated with
the immune system (TAP1, LOC102189753, LOC102171351, and
TDO2). In skin, there were four core-ASE genes, including
TNXB, which is related to the pathogenesis of systemic lupus
erythematosus and RPS8, which is involved in resistance to
hemoprotozoal diseases that cause economic losses among sheep
and goats in tropical and subtropical regions. A small number of
core-ASE genes were also found in bone (6) and the mammary
glands (3), as shown in (Figure 3). Notably, two core-ASE genes
(PODXL and RPS8) were present in at least two tissues, and in the
PODXL gene, the ASE phenomenon was detected in eight SNPs
as soon as the SNPs became heterozygotic in individuals, except
for SNP1 and SNP2 in sample 1 (Figure 4).

DISCUSSION

Studies in recent years have shown that ASE analysis is an efficient
tool for identifying causative genetic variations. However, few
studies have conducted ASE analysis in livestock, partially due to
the high costs of generating hybrids. In this study, we generated

F1 hybrids of two diverse breeds and then explored ASE genes
in these hybrids. We further combined genomic selection signals
and ASE analysis to gain insight into the genomic contributions
underlying phenotypic differences and local adaptability to
different environments. It should be noted that although we
did not have reciprocal cross for the identification of imprinted
genes, we excluded the candidates based on previously identified
imprinted genes as much as possible in other species (human,
mice, cattle and sheep).

Genetic diversity patterns and overall low heterozygosity
are commonly used statistical methods for detecting genomic
regions related to selection in domesticated animals. To detect
putative selective loci in the present study, we performed

FIGURE 3 | The 38 core-ASE genes and their functions. Red and light green

indicate the presence and absence, respectively, of genes with ASE (rows) in

the corresponding tissues (columns). The right bar indicates the biological

functions of the corresponding genes (Orange: immune responses; green:

metabolism; yellow: adaptation to hot and humid environments; purple:

functions associated with body measurements and weight; cyan: cell

regulation metabolism; black: hematopoiesis; dark green: undefined).

Frontiers in Genetics | www.frontiersin.org 6 March 2019 | Volume 10 | Article 14528

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Cao et al. ASE Analysis in Goat Hybrids

FIGURE 4 | The allelic expression of eight SNPs containing ASE sites within the third exon of PODXL gene. The allele count information for each base was shown for

the muscle tissues from four individuals (tracks 1–4). The colored bar indicates ASE sites with different colors representing the counts of corresponding alleles.

sequencing in six Chinese Yunling black goats (representative of
Chinese southern domestic black goats) and four Nubian goats
and calculated the corresponding Fst and Hp values. Top 1%
of the selection signals does not automatically mean positive
selection, but they could narrow down our list of candidate genes.
Thus, we identified a total of 521 genes showing population
differentiation that potentially contribute to the phenotypic and
adaptation traits of the goats. However, the genetic differentiation
between the two breeds may be due to breeding, evolutionary
and management history. Furthermore, the adaptation and
phenotypic differences of the goats may be mediated by a
complex network of genes that act in tandem, rather than by the
action of single candidate gene (Lv et al., 2014; Kim et al., 2015).
It is therefore difficult to directly draw conclusions regarding the
genetic mechanisms underlying the observed traits based only
on genomic selection signals. With only 3 F1, 6 Yunling and
4 Nubian WGS, it looks sample size (n = 13) was too small
to obtain reliable estimates. But our objective is to understand
the phenotypic difference among Yunling and Nubian breed
by tracing and quantifying allele-specific expression (ASE) in
F1 hybrid individuals. We are more concerned about the ASE
results since this part is based on RNA-seq data from multiple
tissues. The selection signal analysis indeed could have a large
number of false positive results. However, our reported selection
signals were only used to narrow down the candidate genes
from ASE analysis by choosing the overlapping genes. Therefore,
although the selection signals would contain large proportion
of false positives, it would not affect our interpretation of the
main results.

ASE is an important source of phenotypic diversity. The
phenotypic traits of F1 hybrids are determined by the
coordinated expression of alleles from both parents. In F1
hybrids, the two alleles from the parents will be exposed to the
same trans-acting factors; thus, allelic-specific expression can be
attributed only to differences in the cis-acting factors. When the
parents show high genetic divergence, we can easily distinguish
the origin of the two alleles based on their inherited SNPs from
their parents. In the characterization of ASE in F1 hybrids,
both alleles within the same cellular environment are evaluated,
directly revealing cis-acting genetic variation in transcript
accumulation (Springer and Stupar, 2007; Perumbakkam et al.,
2013; Aguilar-Rangel et al., 2017). To our knowledge, this is the

first ASE analysis of an F1 hybrid generated from a cross between
two different breeds of goats.

We set up an experimental cross designed to characterize the
divergence of gene regulation between Chinese Yunling black
and Nubian goats via RNA-Seq analysis in six tissues of nine F1
hybrids, to identify candidate genes underlying local adaptation.
Hundreds of ASE genes were found in different tissues, and
a small proportion of these genes (core-ASE) were further
shown to experience directional selection. These core-ASE genes
are related to many essential biological processes, including
metabolism (LOC102191011, LOC102177333, LOC102173339,
and LOC102191297) (Elens et al., 2012; Bertaggia et al.,
2017; Buermans Henk et al., 2017), immune responses (TAP1,
LOC102189753, LOC102171351, and TDO2) (Grassmann et al.,
2016; Hanalioglu et al., 2017; Kota et al., 2017), and the
adaptation to hot and humid environments (RPS8 and TNXB)
(Wei and Hemmings, 2003). The identification of these genes
will help to explain the phenotypic differences and genetic
mechanisms underlying the adaptation of the two representative
goat breeds examined in this study and will supply a theoretical
basis for crossbreeding and the improvement, breeding and the
selection of local goats.
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Meat quality is a complex trait that is influenced by genetic and environmental factors,
which includes mineral concentration. However, the association between mineral
concentration and meat quality, and the specific molecular pathways underlying this
association, are not well explored. We therefore analyzed gene expression as measured
with RNA-seq in Longissimus thoracis muscle of 194 Nelore steers for association
with three meat quality traits (intramuscular fat, meat pH, and tenderness) and the
concentration of 13 minerals (Ca, Cr, Co, Cu, Fe, K, Mg, Mn, Na, P, S, Se, and Zn).
We identified seven sets of co-expressed genes (modules) associated with at least
two traits, which indicates that common pathways influence these traits. From pathway
analysis of module hub genes, we further found an over-representation for energy and
protein metabolism (AMPK and mTOR signaling pathways) in addition to muscle growth,
and protein turnover pathways. Among the identified hub genes FASN, ELOV5, and
PDE3B are involved with lipid metabolism and were affected by previously identified
eQTLs associated to fat deposition. The reported hub genes and over-represented
pathways provide evidence of interplay among gene expression, mineral concentration,
and meat quality traits. Future studies investigating the effect of different levels of mineral
supplementation in the gene expression and meat quality traits could help us to elucidate
the regulatory mechanism by which the genes/pathways are affected.

Keywords: AMPK pathway, co-expression analysis, intramuscular fat, RNA sequencing, tenderness

Abbreviations: AMPK, AMP-activated protein kinase; CPM, Counts per million; ECM, Extra Cellular Matrix; IMF,
Intramuscular Fat Content; ME, Module eigengene; MM, Module Membership; QC, Quality Control; WBSF7, Warner-
Bratzler Shear Force after 7 days of meat aging; WGCNA, Weighted Gene Co-expression Network Analysis.
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INTRODUCTION

Meat is an important source of nutrients in the human diet.
Meat quality traits such as intramuscular fat content (IMF),
mineral concentration, and fatty acid profile influence consumer
purchase decision (Ahlberg et al., 2014; Mateescu, 2014) and
human health (Pighin et al., 2016). Mineral deficiency, mainly
iron and zinc (Ritchie and Roser, 2018), and protein deficiency
(Clugston and Smith, 2002), have been reported as worldwide
health hazards. In addition, IMF, meat pH, and muscle mineral
concentration also affect meat tenderness, flavor, and juiciness,
which are major sensory traits related to eat satisfaction (Engle
et al., 2000; Ahlberg et al., 2014; Pannier et al., 2014).

Brazil is one of the largest exporters of meat and meat
products, and the Brazilian cattle herd is mainly composed
of Nelore and its crosses (ABIEC, 2018). Despite being well
adapted to tropical climate, Nelore cattle has typically less
tender and marble meat when compared with European breeds
due to several genetic and environmental factors (Cesar et al.,
2015; Tizioto et al., 2015). Genome-wide association (GWAS) of
SNPs (Tizioto et al., 2013, 2015; Cesar et al., 2014) and copy-
number variations (CNVs) (Silva et al., 2016) in conjunction
with transcriptomic studies (Diniz et al., 2016; Silva-Vignato
et al., 2017; Geistlinger et al., 2018; Gonçalves et al., 2018),
have illustrated the genetic factors affecting complex traits in
Nelore. However, growing evidence suggested interplay among
gene expression, mineral concentration, and meat quality traits,
which are still unclear.

Multi-omic data integration has been useful to reveal
potential causal and regulatory mechanisms underlying
complex animal production, reproduction and welfare traits
[reviewed in Suravajhala et al. (2016)]. Integrating genomic,
transcriptomic, and phenotype data has contributed to an
improved understanding of complex traits by identifying
regulatory candidate genes and biological functions (Ponsuksili
et al., 2013; Cesar et al., 2018; Geistlinger et al., 2018; Gonçalves
et al., 2018). Based on that, Mateescu et al. (2017) carried out
a GWAS combined with gene network analysis for association
with the carcass, meat quality traits and mineral concentration.
Among the identified pathways, the authors pointed out calcium-
related processes, apoptosis, and TGF-beta signaling involved
with these traits.

Genome-wide association and differential gene expression
analyses have been fruitful in investigating the role of genes in
complex phenotypes. However, biological systems are a result
of complex interactions among genes and multiple regulatory
mechanisms, which are not explored in the above-mentioned
studies. To address the relationship between transcriptome and
traits, co-expression networks have been successfully employed.
This approach allows to identify and cluster highly connected
genes and associate them to the phenotypes, shedding light on
the common pathways underlying these traits as well as the
main regulators (Langfelder and Horvath, 2008). To date, there
is no information about this approach integrating meat quality
traits and mineral concentration in beef cattle. In addition, we
still have a lack of knowledge about the interplay among gene
expression, mineral concentration, and meat quality traits. Thus,

to explore regulatory pathways, putative gene regulators, and to
study their relationship with muscle and mineral metabolism
in Nelore skeletal muscle, we integrated gene expression, eQTL
variation, mineral concentration (macro and micro minerals),
and meat quality traits (intramuscular fat, shear force, and meat
pH) based on a network approach.

MATERIALS AND METHODS

Ethics Statement
The Institutional Animal Care and Use Committee (IACUC)
from the Empresa Brasileira de Pesquisa Agropecuária
(EMBRAPA – Pecuária Sudeste) approved all experimental
procedures involving the animals used in this study.

Animals and Phenotyping
A total of two hundred Nelore steers (produced at Embrapa
Pecuária Sudeste, São Carlos – Brazil) were used in this
study. The experimental design, production system, and animal
management were previously described (Tizioto et al., 2015;
Diniz et al., 2016). Briefly, animals were raised in the grazing
system until 21 months of age when they were taken to three
feedlots under similar nutritional and sanitary management. The
Nelore steers with an average age of 25 months were harvested
at commercial facilities after about 90 days of feeding and the
Longissimus thoracis (LT) muscle samples were collected.

The steaks (2.5 cm) harvested as a cross-section of the LT
muscle (11th and 13th ribs) collected at slaughter were used
to measure the beef quality traits as described (Tizioto et al.,
2013; Cesar et al., 2014). The traits evaluated were tenderness
(Warner-Bratzler shear force – WBSF7, kg) measured 7 days after
slaughter, meat pH measured 24 h after slaughter along with
intramuscular fat (IMF%) (Tizioto et al., 2013).

Tissue samples were used for total RNA extraction (Diniz
et al., 2016) and mineral measurement (Tizioto et al., 2014).
The concentration of macro minerals [calcium (Ca), magnesium
(Mg), phosphorus (P), potassium (K), sodium (Na), sulfur (S)]
and micro minerals [chromium (Cr), cobalt (Co), copper (Cu),
manganese (Mn), selenium (Se), iron (Fe), and zinc (Zn)] were
measured using inductively coupled plasma-optical emission
spectrometry (ICP OES; Vista Pro-CCD ICP OES1, radial view,
Varian, Mulgrave, Australia) as described by Tizioto et al. (2014).

Genome Expression Profile, Sequencing,
and Data Processing
The LT muscle samples were collected immediately after
slaughter, snap frozen in liquid nitrogen and kept at −80◦C
until RNA extraction. To extract RNA, approximately 100 mg
of frozen tissue was used, and total RNA was purified using
Trizol R© standard protocol (Life Technologies, Carlsbad, CA,
United States). The mRNA concentration and quality were
evaluated in the Bioanalyzer 2100 R© (Agilent, Santa Clara,
CA, United States).

The Illumina TruSeq R© RNA Sample Preparation Kit v2 Guide
(San Diego, CA, United States) protocol was used to generate
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cDNA libraries for each sample using 2 µg of total RNA
as input. Library preparation and sequencing were conducted
by ESALQ Genomics Center (Piracicaba, São Paulo, Brazil).
cDNA libraries were purified and validated using Agilent 2100
Bioanalyzer (Santa Clara, CA, United States). Paired-end (PE)
sequencing was performed on Illumina Hiseq 2500 R© (San Diego,
CA, United States) platform following the standard protocols.
The samples were multiplexed and run on multiple lanes to
obtain 2× 100 bp reads.

The PE reads were filtered using the Seqyclean package version
1.4.13 (1Zhbannikov et al., 2017), which removed all reads with
a mean quality under 24, length under 65 bp, as well as the
adapter sequences. Quality control (QC) of raw RNA-Seq reads
was carried out with FastQC version 0.11.2 (2Andrews, 2010) and
MultiQC version1.4 (3Ewels et al., 2016).

Read mapping and gene counting were carried out by STAR
aligner version 2.5.4b (Dobin et al., 2013) using a reference
genome (Bos taurus, ARS-UCD1.2) and gene annotation file
(release 106) obtained from NCBI (NCBI, 2018). One sample
with mapping rate lower than 70% was removed out for
further analyses.

The data editing was done using the Bioconductor package
edgeR version 3.20.9 (Robinson et al., 2010). Taking into account
that low expressed genes are less reliable and indistinguishable
from sampling noise (Tarazona et al., 2015), the read counts per
gene were normalized to counts per million (cpm function). The
genes with less than one cpm in more than 90% of the samples
were filtered out. Gene counts were normalized applying the
variance stabilizing transformation (VST) from DESeq2 version
1.18.1 (Anders and Huber, 2010).

Potential biases due to technical variation in gene expression
among samples were evaluated by applying a Principal
Component Analysis (PCA) and hierarchical clustering on
normalized data using NOISeq version 2.22.1 (Tarazona et al.,
2015). A linear model was fitted in order to adjust the gene
expression matrix for batch effect (flow cell). To this end,
the removeBatchEffect function from Limma (version 3.34.9) R
package (Ritchie et al., 2015) was used. Three samples were
identified as outliers. Thus, 12 known housekeeping genes were
selected based on the literature (ACTB, API5, EIF2B2, GAPDH,
GUSB, HMBS, PGK1, PPIA, RPL13A, VAPB, YWHAZ) to
evaluate their variability on the samples. The housekeeping genes
expression confirmed these samples as outliers, and therefore,
they were filtered out.

Network Gene Co-expression Analysis
A co-expression approach was applied using the WGCNA
R package version 1.63 (Langfelder and Horvath, 2008).
The method adopted for constructing the networks included
two steps: First, a similarity co-expression network was
calculated with Pearson’s correlation for all genes, followed by
transformation to a signed adjacency matrix (AM) by using the
soft thresholding power β, to which co-expression similarity is

1https://github.com/ibest/seqyclean
2https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
3http://multiqc.info/

raised. Based on the criteria of approximating scale-free topology,
we chose the power of β = 12 such that the resulting network
satisfies the scale-free topology (linear regression model fitting
index R2 = 0.80).

Outlier animals (n = 2) were identified based on hierarchical
clustering and filtered out (as they had a lower number of counts
compared to other samples) after WGCNA quality control, as
suggested by the WGCNA authors. Accordingly, 194 animals
and 11,996 genes were used to construct an undirected, signed
network. Topological overlap measure (TOM) was computed
from AM where TOM was converted to dissimilarity TOM. Based
on TOM dissimilarity, we used the dynamic tree cut v.1.63.1
(Langfelder et al., 2008) to identify the modules as the branches
of the resulting dendrogram. As parameters, the minimum size
per module was set to 50 genes with a high sensitivity to split
the clusters (deepSplit = 4). Genes with a similar expression
pattern across samples were grouped into the same module and
arbitrarily labeled by number.

Weighted Gene Co-expression Network Analysis was used for
summarizing the obtained modules by a concept of eigengene.
Eigengenes are the first principal component of the expression
matrix for each module and represent the weighted average of
expression profile for each module. Modules highly correlated
were merged based on the ME dissimilarity threshold of 0.2
leading to the final set of modules for constructing the network.

Trait Association Analysis and Module
Selection
After the phenotypic data were mean-centered and scaled, a
linear model was fitted to analyze the association between the
expression profiles of the MEs and the phenotypes (Li et al.,
2018). The model included the place of birth, the season of
production, and animal’s age, according to the equation:

yijkl = µ+ Ci + Gj + Ak + Tl + εijkl

Where:
yijkl: is the expression level of the eigengene in each module

(n = 23);
µ : is the intercept of ME;
Ci : is the fixed effect for the place of birth (three

levels = CPPSE, IMA, NOHO);
Gj: is the fixed effect for the season of production (three

levels = 2009, 2010, 2011);
Ak : is the covariate for the animal’s age, in days;
Tl : is the trait observation for each animal;
εijkl: is the random residual effect associated with

each observation.
Modules associated with at least two beef quality or mineral

traits (p ≤ 0.05) were selected for further analyses.

Pathway Over-Representation Analysis
Pathway analysis was performed using ClueGO version 2.5.1 to
identify gene KEGG pathways over-represented in the selected
modules (Bindea et al., 2009). Redundant terms were grouped
based on the kappa score = 0.4 (Bindea et al., 2009). The p-value
was calculated and corrected with a Bonferroni step down. Only
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pathways with a p-value (pV) p ≤ 0.05 were selected. These
analyses were carried out based on the B. taurus annotation, and
the network visualization was performed on Cytoscape version
3.6.1 (Shannon et al., 2003).

Hub Gene Selection
Highly connected genes (hub genes) are supposed to be the
main regulators in the network and have a pivotal biological
role concerning the associated trait (Langfelder and Horvath,
2007, 2008). Hub genes in the associated modules were
selected based on the module membership ≥ 0.8 (Langfelder
and Horvath, 2008). Among them, hub genes partaking
in over-represented biological pathways previously identified
were retained. Moreover, over-representation pathway analysis
including all hub genes was applied following the approach
previously described.

Integration of eQTL and Co-expression
Modules
A list of eQTLs from the same population and dataset (Cesar
et al., 2018) evaluated in this work was provided. The dataset
included 1,268 cis- and 10,334 trans-eQTLs based on the
association between 461,466 SNPs and the expression level
of 11,808 genes from 192 animals. Since the eQTLs have a
known effect on gene expression, the eQTLs that target the
hub genes (MM ≥ 0.8) in the selected modules were evaluated.
A Fisher’s exact test was applied to assess the module under/over-
representation (FDR = 0.05).

RESULTS

We applied a network-based approach to identify relevant
genes and pathways associated with meat quality and mineral
concentration in Nelore cattle (Figure 1). Based on the
transcriptomic profiles of skeletal muscle samples of 194 steers,
we constructed a signed weighted gene co-expression network
with WGCNA (Langfelder and Horvath, 2008). From co-
expressed modules and pathway analysis, we thereby identified
several hub genes significantly associated with meat quality traits
and mineral concentration.

Descriptive Statistics and Correlation
Estimates
We analyzed gene expression levels as measured with RNA-seq
for association with three meat quality traits (intramuscular fat,
meat pH, and tenderness) and the concentration of 13 minerals
(Ca, Cr, Co, Cu, Fe, K, Mg, Mn, Na, P, S, Se, and Zn) available
for a varying number of samples (ranging from 57 to 194,
Supplementary Table S1). The genetic variance and heritability
for the traits evaluated here, obtained from this population,
ranged from low to moderate as previously published (Tizioto
et al., 2013, 2015). A summary of descriptive statistics for each
trait is in Supplementary Table S1 and Figure 2.

We performed clustering analysis to identify similarities
between traits (Figure 3 – top). We identified four clusters

as follows: cluster 1 (WBSF7 and Cr), cluster 2 (Co, Cu,
Mn, and IMF), cluster 3 (Fe, Ca, S, Zn, Na, P, Mg, and
K), and cluster 4 (pH and Se). The pair-wise correlation
within all traits is provided in Supplementary Figure S1.
Significant and strong correlation ranged from 0.45 to 0.99
among minerals in the cluster 3 (p ≤ 0.05). We identified
positive correlation among IMF with some minerals (Ca = 0.25,
Cu = 0.23, Mn = 0.24, K = 0.17, Na = 0.3, S = 0.18, and
Zn = 0.23) (p ≤ 0.05). Meat pH was positively correlated
with Se (r = 0.29), whereas negatively associated with Fe
(−0.17), Mg (−0.22), P (−0.25), K (−0.21), Na (−0.26),
S (−0.17), and Zn (−0.22) (Supplementary Figure S1).
No significant correlation was observed between tenderness
(WBSF7), IMF, and meat pH.

Data Processing and Co-expression
Network Construction
On average, a total of 13 million of 100 bp paired-end reads
per sample were generated. Around 96.71% of unique reads
were mapped to the reference B. taurus genome (ARS-UCD1.2).
Taking into account that low expressed genes are less reliable and
indistinguishable from sampling noise (Tarazona et al., 2015), we
filtered out the genes with less than one cpm in more than 90% of
the samples. In addition, four samples were removed because they
had a mapping rate lower than 70% or showed high variability on
the housekeeping genes expression (see methods). Thus, we used
11,996 genes and 194 samples for the co-expression analysis.

Considering the WGCNA assumptions, the weighted network
starts from the level of thousands of genes, identifies modules of
co-expressed genes, summarizes the module expression profile as
the first principal component (ME), and relates the MEs with
the trait of interest (Langfelder and Horvath, 2008). The MM
value quantifies the degree of co-expression of a gene with other
genes within a module, thereby enabling the identification of
intramodular hub genes.

From clustering 11,996 genes with WGCNA, we obtained
23 modules labeled by number (Figure 3). The module
size ranged from 69 genes (M9) to 2,008 genes (M14)
(Figure 3 – bottom). The proportion of variance explained
by the eigengenes ranged from 0.18 (M20) to 0.53 (M5)
(Supplementary Table S2).

Trait Association and Pathway
Enrichment Analysis
We performed an association analysis to identify the relationship
between network and traits. This analysis measures the strength
of the effect and the direction of the association between the
module (eigengenes) and the trait. Thus, if the association is
positive, it means the trait increases with increasing “eigengene
expression” or vice-versa. We selected seven modules (M1,
M5, M6, M7, M8, M9, and M17), associated with at least
two traits (p ≤ 0.05) (Figure 3 – bottom) once we also want
to point out shared pathways among traits. We found the
highest number of significant associated modules between M5
(ten associations; negative with IMF, and the concentration
of Mn, Fe, Ca, S, Zn, Na, P, Mg, and K), followed by M8
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FIGURE 1 | Workflow. Green boxes represent the main analysis steps that were involved in data processing and co-expression analysis. Tools applied in each step
are shown in white boxes. Inputs and outputs are shown in blue and dashed red boxes, respectively. ∗A varying number of samples was analyzed for each trait
(Supplementary Table S1). ∗∗Data from an eQTL analysis carried out for the same population used in this study (Cesar et al., 2018).

(nine associations; positive with Cr, negative with IMF, and the
minerals of cluster 3, except Zn). The average expression profile
of M17 module showed association with three traits (positive
with WBSF7, Co, and Mn) along with M7 (negative with Na
and IMF, and positive with Cr concentration). For the modules
M1, M6, and M9, we found an association with two traits. We
identified a positive association among M6 and M9 with Cr
concentration while a negative association was observed between
M9 with IMF, and M6 with Fe concentration. M1 was positively
associated with the concentration of Cr and Co. The modules
with none or only one trait association were not included for
further analysis.

The module membership values for all the genes for
selected modules are given in Supplementary Table S3. We
carried out a pathway over-representation analysis on ClueGo
version 2.5.1 for the seven selected modules (Table 1 and
Supplementary Table S4) to identify meaningful metabolic
pathways involved with meat quality traits and mineral
concentration. We detected several pathways (p-Value ≤ 0.05,

group p-value corrected with Bonferroni step down) mainly
related to energy and protein metabolism, such as AMPK and
mTOR signaling pathways.

Hub Gene Selection, Pathway Analysis,
and Integration With eQTLs
Highly connected genes are likely to play an important role
both in the network’s topology and biological pathways. In
this way, we combined a pathway-based gene analysis for
each selected module (Supplementary Table S4) and gene
connectivity measure (MM ≥ 0.8) (Supplementary Table S3)
selecting 82 hub genes (Table 1, see methods). Further,
taking advantage of an eQTL study carried out in the same
population (Cesar et al., 2018), we screened whether the
genes in the modules were underlying eQTLs, and applied a
Fisher’s exact test to assess the module over-representation.
We identified 323 genes targeted by 760 unique eQTLs
(Table 1 and Supplementary Table S5) into the seven modules.
In addition, we identified 24 out of 323 genes with a
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FIGURE 2 | Box plot of mineral concentration (macro and micro) and meat quality traits. IMF% – Percentage of intramuscular fat content; WBSF7 – Warner-Bratzler
Shear Force after 7 days of meat aging; The data are in log10 scale.

MM ≥ 0.8, and six of them are part of the hub gene
list (Table 1). However, based on the Fisher’s exact test
(FDR = 0.05) no significant over-/under-representation was
detectable in these modules.

To gain further insights into their functions as well as to
integrate the pathways among the modules, we carried out a
KEGG pathway analysis. Considering a kappa score = 0.4 and
p-Value ≤ 0.05 (Figure 4 and Supplementary Table S6),
we clustered the identified pathways into eight groups.
The pathways related to energy metabolism were clustered
together and included AMPK, peroxisome proliferator-activated
receptors (PPAR), insulin, glucagon, and adipocytokine signaling
pathways. We also identified ubiquitin-mediated proteolysis
and biosynthesis of fatty acids pathways over-represented
in this network.

DISCUSSION

In this study, we analyzed genome-wide co-expression in skeletal
muscle for association with mineral concentration and meat
quality traits. Skeletal muscle metabolism is an integrated system
dependent on the efficient coordination of gene expression,
which are tightly regulated (Smith et al., 2013). We found
several co-expression modules associated with two or more
minerals, meat tenderness, and IMF, which indicates that
common pathways influence these traits. From pathway analysis
of module hub genes, we further found an over-representation
for energy and protein metabolism (AMPK and mTOR). These
pathways have been reported as the main drivers regulating

energy balance in muscle (Smith et al., 2013). AMPK and mTOR
are metabolically linked, nutritional and hormonal responsive,
with an intricated relationship with insulin, thyroid hormone
(TH), and TGF-beta signaling pathways (Xu et al., 2012), which
were reported here as well. In addition, these pathways have
been associated with muscle development, fat deposition, and
beef quality traits (Du et al., 2009). Pathways related with
muscle structure such as extracellular matrix, and focal adhesion,
identified here, have also been identified in cattle co-expression
networks (Reverter et al., 2006). The above-mentioned pathways
are not the only ones acting on muscle metabolism. However,
they showed an interaction with mineral concentration and meat
quality in our study.

Phenotype Correlation and
Co-expression Network Analysis
In agreement with previous reports, we found several minerals
positively correlated with IMF, but negatively correlated with
meat pH. For instance, Cu-supplemented Angus were found with
reduced back fat and reduced serum cholesterol level (Engle et al.,
2000). Pigs supplemented with Mn showed an increased marbling
and decreased pH consistent with the correlation identified here
(Constantino et al., 2014). Furthermore, Se supplementation
improved pork meat quality traits by increasing muscle pH
(Calvo et al., 2017). In addition, these studies reported a positive
effect against lipid oxidation. On the other hand, reduced levels
of IMF were associated with low Zn concentration in lambs
(Pannier et al., 2014).

Co-expression analysis resulted in 23 modules from which
we considered seven modules for further analysis based on their
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FIGURE 3 | Hierarchical clustering of phenotypic correlation between traits (top) and module-trait association analysis (bottom). Modules are labeled by number on
the y-axis with the number of contained genes in parenthesis. Each column represents a trait as indicated on the corresponding dendrogram branch. For
significantly associated modules (p ≤ 0.05), the coefficient from the linear model is given within the cell.

association with at least two traits. The genes in modules like M5,
M7, M8, and M9 were associated with IMF and several minerals
suggesting a certain extent of co-regulation. It’s well known that
minerals are essential in a wide range of biological processes.
Here, we provide evidences that mineral content and meat quality
traits are interrelated, as well as interplay with specific genes and
pathways (as discussed below).

Variation in eQTL loci can explain a substantial fraction
of variation observed on the gene expression level (Wang
and Michoel, 2016). It has been observed that variation in

eQTL loci is associated with concerted expression changes
of many genes in co-expression clusters, thereby also impact
the phenotype. Screening the detected co-expression modules,
we found 323 genes affected by at least one eQTL. Despite
132 eQTLs targeting more than one module, most of the
eQTLs were module-specific. However, no significant over-
/under-representation (Fisher’s exact test) was detectable in
these modules, suggesting that other regulatory mechanisms are
involved. Despite that, the expression level of six hub genes
was found affected by trans-eQTLs. These genes are involved
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TABLE 1 | Module characterization.

Modulea eQTLsb TGEc Hub genesd Enriched pathwayse

M1 (78) 13 8 (4) (10) RSAD2, LOC100139670, MX1, IFIH1, OAS1Y,
DDX58, EIF2AK2, IRF7, LOC512486, IFI16

• NOD-like receptor signaling
pathway

M5 (88) 45 15 (3) (9) PTPRC, CTSS, DOCK2, IL10RA, FERMT3, ITGB2,
LCP2, CORO1A, PTPRJ

• Phagosome
• Cell adhesion molecules

(CAMs)

M6 (190) 89 20 (6) (20) GNAI1, PLIN1, FABP4, PPP1R1B, PCK2, ADIPOQ,
PDE3B, TKT, MGST1, LIPE, ELOVL6, MRAS, ACACA,
GNG2, HACD2, FASN, FBP1, ELOVL5, PCK1, G6PD

• Adipocytokine signaling
pathway
• AMPK signaling pathway

M7 (704) 276 76 (2) (11) CAV1, COL4A2, GNAI2, SEPT9, TNFRSF1A,
YWHAB, COL4A1, TMSB4X, SPTAN1, MSN, PARVA

• Ras signaling pathway
• Focal adhesion

M8 (1,200) 414 129 (5) (10) COL1A2, DCN, FN1, COL1A1, FGFR1, COL3A1,
CD44, ITGB5, DSE, CTSK

• Glycosaminoglycan
degradation
Steroid biosynthesis

M9 (69) 16 9 (2) (1) JUND • TGF-beta signaling pathway
• Osteoclast differentiation

M17 (975) 126 66 (2) (21) ASH1L, BIRC6, MED13, HERC1, MED13L,
KMT2A, HUWE1, KMT2C, ATM, HERC2, KMT2D,
MED1, GNAQ, SMC1A, TPR, NSD1, UBR5,
ARHGAP5, KAT6A, PRDM2, ITCH

• Apoptosis
• mTOR signaling pathway

Total – 3304 979f 323 (24) 82

The table shows hub genes and eQTL information for each module found to be significantly associated with two or more traits in Figure 3. aSelected modules with the
number of contained genes in parenthesis. beQTLs – Number of eQTLs associated with genes in a module (Based on Cesar et al., 2018); cTGE – Number of module genes
associated with eQTLs. In the parenthesis are the number of genes with a MM ≥ 0.8; dSelected hub genes based on pathway analysis and MM; Hub genes associated
with eQTLs are in bold; ePathways from module over-representation analysis taking all genes into the module (Supplementary Table S4) Group p-Value ≤ 0.05; f760
unique eQTLs identified.

with lipid metabolism [fatty acid synthase (FASN), and ELOVL
fatty acid elongase 5 (ELOVL5), phosphodiesterase 3B (PDE3B)],
immune system [lymphocyte cytosolic protein 2 (LCP2), and
interleukin 10 receptor subunit alpha (IL10RA)], and actin
remodeling (dedicator of cytokinesis 2 – DOCK2).

Pathway Analysis
Over-representation pathway analysis in the selected
modules (Table 1 and Supplementary Table S4) yielded
glycosaminoglycan biosynthesis and degradation, lysosome,
and steroid biosynthesis in the M8 module. Phagosome, cell
adhesion molecular pathways, and NOD-like receptor signaling
pathway were found enriched in M1 and M5. For the M17,
enriched pathways included protein synthesis pathways such
as mTOR, PI3K-Akt, TH, and AMPK signaling. We also found
protein degradation pathways enriched in the M17 module
such as ubiquitin-mediated proteolysis. TGF-beta signaling
and osteoclast differentiation were enriched in the M9 module.
Energy metabolism pathways were found enriched in M6,
including glycolysis, fatty acid biosynthesis, AMPK, and insulin
signaling. Ras, PI3K-Akt signaling pathways, and protein
processing were found enriched in M7.

We also carried out cross-module enrichment analysis
considering all hub genes, which indicated that the AMPK
signaling pathway plays an important role for muscle mineral
metabolism and meat quality traits. The genes of the AMPK
pathway were also associated with IMF, Cr, and Fe. Furthermore,
the AMPK pathway was also found enriched in genes of M17
(associated with WBSF7, Co, and Mg) and M6 (associated with
Cr and Fe concentration).

Energy and Lipid Metabolism
AMP-activated protein kinase signaling is a major regulator
of the cellular energy status, protein metabolism, and muscle
metabolism (Je et al., 2006; Du et al., 2009; Mihaylova and
Shaw, 2011). We found carbohydrate and fatty acid metabolism
connected by the AMPK pathway (Figure 4). Hub gene ACACA
was thereby involved in pyruvate metabolism, glucagon and
insulin signaling pathways. Co-expressed in the M6 module,
ACACA and FASN encode rate-limiting enzymes for long-chain
fatty acid synthesis (Mihaylova and Shaw, 2011; Ropka-molik
et al., 2017). ACACA catalyzes malonyl-CoA from acetyl-CoA,
which is a substrate for the FASN enzyme in de novo fatty acid
synthesis (Menendez and Lupu, 2007; Du et al., 2009). These
genes, as well as fatty acid binding protein 4, adipocyte (FABP4),
are regulated by the thyroid hormone responsive gene (THRSP)
(Graugnard et al., 2009; Loor, 2010; Oh et al., 2014).

The co-expression of these genes, as well as the negative
association between Fe concentration and lipid metabolism, were
reported in our previous RNA-Seq work where FASN, THRSP,
and FABP4 were shown to be downregulated in animals with low
Fe concentration in muscle (Diniz et al., 2016). Hay et al. (2016)
reported a major role of Fe for lipid oxidative metabolism based
on the downregulation of peroxisome proliferator-activating
receptor gamma coactivator 1α (PPARG1A) measured by qRT-
PCR. TH is also essential for energy metabolism regulation,
and Fe deficiency was found to impair TH synthesis and its
regulatory function (Cunningham et al., 1998). Adipogenic genes
are responsive to PPARG and TH (Graugnard et al., 2009). Thus,
reduced adipogenesis has been associated with Fe deficiency
(Cunningham et al., 1998; Diniz et al., 2016; Hay et al., 2016).
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FIGURE 4 | Network clusters based on over-represented KEGG pathways of hub genes associated with mineral concentration and meat quality traits. Functionally
related groups partially overlap and are arbitrarily colored. The node size represents the pathway enrichment significance.

In addition to factors that increase the intracellular cyclic
AMP level (Omar et al., 2009), Cr increases AMPK activity and
positively affects the insulin sensitivity in skeletal muscle cells
(Hoffman et al., 2015). As part of the insulin pathway, we found
phosphoenolpyruvate carboxykinase 1 and 2 (PCK1, PCK2),
fructose-bisphosphatase 1 (FBP1), and phosphodiesterase 3B
(PDE3B), major regulators of glycolysis and gluconeogenesis
(Pilkis and Granner, 1992). The PDE3B enzyme is stimulated
by insulin and cAMP (Degerman et al., 2011) and affects the
activation of AMPK (Omar et al., 2009). AMPK activation
inhibits fatty acid synthesis and gluconeogenesis via repression
of ACACA and PCK, respectively (Hardie, 2011). Unlike Fe,
the concentration of Cr showed a positive correlation with

M6. These minerals may have an antagonistic relationship
(Staniek and Wójciak, 2018). However, the correlation
between Fe and Cr concentration was not significant in
this study most likely due to the limited sample size for
Cr concentration.

Supplementing goats with Cr decreased the expression level
of ACACA, FASN, and FABP4 (Sadeghi et al., 2015) as measured
by RT-PCR. Furthermore, increased Longissimus muscle area
and reduced fat thickness was associated with a downregulation
of ACACA expression in Cr-supplemented goats (Najafpanah
et al., 2014). It seems to follow that Cr supplementation
can improve meat quality by altering the direction of energy
accumulation from fat deposition toward muscle growth in goats
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(Najafpanah et al., 2014; Sadeghi et al., 2015). Cr-supplemented
Angus-cross steers were also found with increased Longissimus
muscle area and decreased IMF without affecting growth
performance (Kneeskern et al., 2016). Similar results were
reported for Cr-supplemented pigs which showed lower backfat
thickness and fat percentage (Pamei et al., 2014).

Muscle Development, Structure, and Proteolysis
As part of the TGF-beta signaling pathway, we identified the
transforming growth factor beta 3 (TGFB3), which is involved
in muscle proliferation, differentiation, and growth (Nishimura,
2015). However, muscle hypertrophy results from a balance of
protein turnover in which AMPK signaling negatively affects the
protein synthesis (Du et al., 2009). AMPK signaling also acts on
cytoskeletal dynamics (Mihaylova and Shaw, 2011). As pointed
out in Figure 4, common genes act on focal adhesion and ECM-
receptor interaction. For these pathways, we found members
of the collagen gene family (COL1A1, COL1A2, COL3A1,
COL4A1, and COL4A2), glycoproteins and proteoglycans such
as fibronectin 1 (FBN1) and decorin (DCN), respectively. These
molecules are structural components of the ECM and are thus
critical for muscle development (McCormick, 2009; Nishimura,
2015). These genes were also found associated with meat quality
traits such as tenderness and IMF (Ponsuksili et al., 2013; Cesar
et al., 2015; Nishimura, 2015). Except for COL4A1 and COL4A2,
all collagen genes reported above and which we found co-
expressed in M8 were associated with the concentration of Ca,
Cr, Fe, K, Mg, Na, P, S, and IMF. Tajima et al. (1981) reported that
hypocalcemic fibroblast cells showed an increased synthesis of
collagen. Fe concentration has also been associated with collagen
metabolism due to the iron-dependent enzymes involved in
collagen synthesis (Cammack et al., 1990).

We found ubiquitin-mediated proteolysis enriched across
modules as well as for genes in the M17 (Supplementary
Table S3), which was associated with WBSF7, Co, and Mn.
Proteolytic enzymes are important for protein turnover and
postmortem meat aging (Koohmaraie et al., 2002; Gonçalves
et al., 2018). Baculoviral IAP repeat containing 6 (BIRC6) is a
caspase inhibitor and apoptotic suppressor protein (Verhagen
et al., 2001). BIRC6 is part of the ubiquitin-mediated proteolysis
pathway and was positively associated with M17. By impairing
proteolysis, the up-regulation of BIRC6 likely increases shear
force (Liu et al., 2016). Genes from the E3 ubiquitin-protein
ligase family (HERC1, HERC2, HUWE1, ITCH, and UBR5) were
also identified in agreement with a recent report that found
ubiquitination and apoptosis to be potential regulators of meat
tenderness in Nelore cattle (Gonçalves et al., 2018).

CONCLUSION

We demonstrated transcriptional relationships among mineral
concentration and meat quality traits in the skeletal muscle
of Brazilian Nelore cattle. We identified 82 hub genes across
seven co-expression modules which seem to be critical for
this interplay. The AMPK and mTOR signaling pathways
were hereby found to link mineral and muscle metabolism

in Nelore cattle. Future studies investigating different levels
of mineral supplementation, the mineral interaction, and their
effect in the gene expression and meat quality traits could
help us to elucidate the regulatory mechanism by which the
genes/pathways are affected.
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TABLE S1 | Summary statistics of meat quality traits and mineral concentration
in Nelore cattle.

TABLE S2 | The proportion of variance explained by the module eigengene (MEs).

TABLE S3 | Gene list and module membership for each selected module.
Spreadsheet tabs are divided by module.

TABLE S4 | Summary of pathway analysis from ClueGo for genes clustered into
the selected modules. Spreadsheet tabs are divided by module.

TABLE S5 | Genes targeted by eQTLs for each selected module. Genes with
MM ≥ 0.8 are highlighted in bold. Spreadsheet tabs are divided by module.

TABLE S6 | Summary of pathway analysis from ClueGo for hub genes.
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Systems biology approaches are used as strategy to uncover tissue-specific
perturbations and regulatory genes related to complex phenotypes. We applied this
approach to study feed efficiency (FE) in beef cattle, an important trait both economically
and environmentally. Poly-A selected RNA of five tissues (adrenal gland, hypothalamus,
liver, skeletal muscle and pituitary) of eighteen young bulls, selected for high and low
FE, were sequenced (Illumina HiSeq 2500, 100 bp, pared-end). From the 17,354
expressed genes considering all tissues, 1,335 were prioritized by five selection
categories (differentially expressed, harboring SNPs associated with FE, tissue-specific,
secreted in plasma and key regulators) and used for network construction. NR2F6 and
TGFB1 were identified and validated by motif discovery as key regulators of hepatic
inflammatory response and muscle tissue development, respectively, two biological
processes demonstrated to be associated with FE. Moreover, we indicated potential
biomarkers of FE, which are related to hormonal control of metabolism and sexual
maturity. By using robust methodologies and validation strategies, we confirmed the
main biological processes related to FE in Bos indicus and indicated candidate genes
as regulators or biomarkers of superior animals.

Keywords: feed efficiency, residual feed intake, Nellore (Zebu), Bos indicus, inflammation, muscle development,
motif discovery, regulatory gene network

INTRODUCTION

Since the domestication of the first species, animal selection aims to meet human needs and
their changes over time. The current main selection goals in livestock production are increase of
productivity, reduction of the environmental impact and reduction of competition for grains for
human nutrition (Hayes et al., 2013). Thus, feed efficiency (FE) has become a relevant trait of study,
as animals considered of high feed efficiency are those presenting reduced feed intake and lower
production of methane and manure without compromising animal’s weight gain (Gerber et al.,
2013). However, the incorporation of FE as selection criteria in animal breeding programs is costly
and time consuming. Daily feed intake and weight gain for a large number of animals need to be
recorded for at least 70 days to obtain accurate estimates of FE (Archer et al., 1997).

In the past years, several studies have been carried out with the aim to identify molecular
markers associated with FE to enable a faster and cost-effective identification of superior animals
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(Rolf et al., 2011; Oliveira et al., 2014; Santana et al., 2014; Seabury
et al., 2017). However, for each population, different biological
processes seem to be identified (Rolf et al., 2011; Oliveira et al.,
2014; Santana et al., 2014; Seabury et al., 2017). Probably, that is
because FE is a multifactorial trait and many different biological
mechanisms seems to be involved in its regulation (Herd et al.,
2004; Herd and Arthur, 2009). It has been demonstrated that high
FE animals present increased mitochondrial function (Connor
et al., 2010; Lancaster et al., 2014), less oxygen consumption
(Gonano et al., 2014) and delayed puberty (Shaffer et al., 2011;
Randel and Welsh, 2013; Fontoura et al., 2016). On the other
hand, low FE animals have increased physical activity, ingestion
frequency and stress level (Kelly et al., 2010; Cafe et al., 2011;
Chen et al., 2014; Francisco et al., 2015), increased leptin and
cholesterol levels (Nkrumah et al., 2007; Alexandre et al., 2015;
Foote et al., 2016; Mota et al., 2017), higher subcutaneous and
visceral fat (Mader et al., 2009; Gomes et al., 2012; Santana
et al., 2012), higher energy wastage as heat (Archer et al.,
1999; Montanholi et al., 2009, 2010) and more hepatic lesions
associated with inflammatory response (Alexandre et al., 2015;
Paradis et al., 2015).

In the context of such a complex trait, we perform a multiple-
tissue transcriptomic analysis of high (HFE) and low (LFE)
feed efficient Nellore cattle across tissues related to endocrine
control of hunger/satiety, hydric and energy homeostasis, stress
and immune response, physical and sexual activity, as is the
case of hypothalamus-pituitary-adrenal axis and organs as liver
and skeletal muscle. Using gene co-expression across tissues and
conditions, we derived a regulatory network revealing NR2F6
and TGFB1 signaling as key regulators of hepatic inflammatory
response and muscle tissue development, respectively. Next, we
applied advanced motif discovery methods which (i) validate that
co-expressed genes are enriched for NR2F6 and TGFB1 signaling
effector molecule SMAD3 binding sites in their 10 kb upstream
regions and (ii) predict direct transcription factor (TF) – Target
gene (TG) interactions at the sequence level. These binding
interactions were experimentally validated with public TF ChIP-
seq from ENCODE (Encode Project Consortium, 2012; Sloan
et al., 2016). Regulatory activity in the tissues of interest was
also confirmed by performing an enrichment analysis on open
chromatin tracks and histone chromatin marks across cell types
and tissues in the human and cow genome. Moreover, we propose
a hormonal control of differences in metabolism and sexual
maturity between HFE and LFE animals, indicating potential
biomarkers for further validation such as adrenomedullin, FSH,
oxytocin, somatostatin and TSH.

RESULTS

Multi-Tissue Transcriptomic Data Reveal
Differences Between High and Low Feed
Efficient Animals
Feed efficiency is a complex trait characterized by multiple
distinct biological processes including metabolism, ingestion,
digestion, physical activity and thermoregulation (Herd et al.,

2004; Herd and Arthur, 2009). To study FE at transcriptional
level we performed RNAseq of five tissues (i.e., adrenal gland,
hypothalamus, liver, muscle and pituitary) from nine male
bovines of high feed efficiency [HFE, characterized by low
residual feed intake (RFI) (Koch et al., 1963)] and nine of low
FE (LFE, characterized by high RFI). In total, we analyzed 18
samples of liver, hypothalamus and pituitary; 17 of muscle and 15
of adrenal gland, yielding 13 million reads per sample on average
(Supplementary Table 1). Gene expression was estimated for
24,616 genes present in the reference genome (UMD 3.1) and
after quality control (refer to Section “Materials and Methods”),
17,354 genes were identified as being expressed in at least one of
the five tissues analyzed.

Differential expression (DE) analysis between HFE and LFE
animals resulted in 471 DE genes across tissues (P < 0.001,
Supplementary Image 1), namely, 111 in adrenal gland,
125 in hypothalamus, 91 in liver, 104 in muscle and 98 in
pituitary (Supplementary Tables 2A–E). Although no significant
functional enrichment was found for the 281 genes up-regulated
in HFE group, the 248 genes down-regulated presented a
significant enrichment of GO terms such as response to
hormone (Padj = 5.43 × 10−6), regulation of hormone levels
(Padj = 3.48 × 10−6), cell communication (Padj = 3.18 × 10−4),
regulation of signaling receptor activity (Padj = 3.20 × 10−4),
hormone metabolic process (Padj = 5.86 × 10−4), response
to corticosteroid (Padj = 6.28 × 10−4), regulation of
secretion (Padj = 7.2 × 10−4), response to lipopolysaccharide
(Padj = 7.9 × 10−4) and regulation of cell proliferation
(Padj = 1.86 × 10−3). Refer to Supplementary Image 2 to see
all enriched terms.

Overlap Between Gene Selection Criteria
Prioritizes Genes Associated With Feed
Efficiency
The genetic architecture behind complex traits involves a large
variety of genes with coordinated expression patterns, which can
be represented by gene regulatory networks as a blueprint to
study their relationships and to identify central regulatory genes
(Swami, 2009). Therefore, it is important to select relevant genes
and gene families according to the phenotype of interest to be
used for network analysis. We defined five categories of genes
(see Section “Materials and Methods” for further information) for
inclusion in co-expression analysis: (1) differentially expressed
(DE), (2) genes harboring SNPs previously associated with FE
(harboring SNP), (3) tissue specific (TS), (4) genes coding
proteins secreted in plasma by any of the five tissues analyzed
(secreted) and (5) key regulators.

As reported before, we have identified 471 DE genes
between HFE and LFE animals (Figure 1A and Supplementary
Table 3A). In addition, 267 genes were selected for harboring
SNPs previously associated with FE, as not only differences
in expression levels can influence the phenotype but also
polymorphism in the DNA sequence that can alter the translated
protein behavior (Supplementary Table 3B). Moreover,
396 were selected for being tissue specific (refer to Section
“Materials and Methods” for definition); 22 in adrenal gland,
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FIGURE 1 | Genes selected for co-expression network construction. (A) Heatmap of normalized mean expression (NME) of 471 differentially expressed (DE) genes
between high (HFE) and low (LFE) feed efficient animals in adrenal gland (ADR), hypothalamus (HYP), liver (LIV), muscle (MUS) and pituitary (PIT). Genes (rows) and
samples (columns) are organized by hierarchical clustering based on Euclidean distances. (B) NME heatmap of all 1,335 genes selected for network construction.
Genes (columns) and samples (rows) are organized by hierarchical clustering based on Euclidean distances. (C) Venn diagram of 1,335 genes selected for network
construction. The inclusion criteria for selecting genes were divided into five categories: differentially expressed genes (DE), tissue specific genes (TS), genes
harboring SNPs reported in literature as being associated with feed efficiency in beef cattle (SNP), genes encoding proteins secreted by at least one of the tissues in
plasma (SEC) and key regulators (REG). Numbers between brackets indicate the total number of genes in each category.

32 in hypothalamus, 215 in liver, 118 in muscle and 9 in
pituitary (Supplementary Table 3C). A total of 244 genes
coding proteins secreted in plasma were selected because
of their potential as biomarkers of FE (Supplementary
Table 3D). From those, 135 had liver as the tissue of maximum
expression and were functionally enriched for GO terms such
as complement activation (Padj = 1.82 × 10−19), regulation
of acute inflammatory response (Padj = 1.89 × 10−14),
innate immune response (Padj = 9.71 × 10−12), negative
regulation of endopeptidase activity (Padj = 2.35 × 10−10),
platelet degranulation (Padj = 1.08 × 10−10), regulation of
coagulation (Padj = 3.39 × 10−9), triglyceride homeostasis
(Padj = 1.23 × 10−6), cholesterol efflux (Padj = 1.03 × 10−5)
(Supplementary Image 3). Finally, from 1570 potential
regulators in publicly available Animal TFdb, 78 were identified
as key regulators of the genes selected by all the other categories,
i.e., 78 genes presented a coordinated expression level with many
of the genes in the network reflecting a tight control of expression
patterns across tissues (Supplementary Table 3E).

Considering all the inclusion criteria, 1,335 genes were
selected to be included in co-expression network analysis

(Figure 1B and Supplementary Table 4), some of them
selected in more than one category (Figure 1C). Regarding
DE genes, six of them were also reported before as harboring
SNPs associated with the phenotype (LUZP2, MAOB, SFRS5,
SLC24A2, SOCS3 and WIF1) (Bolormaa et al., 2011; Saatchi
et al., 2014; Ramayo-Caldas et al., 2018) and 13 of them were
key regulators (HOPX, PITX1, CRYM, PLCD1, ND6, CYTB,
ND1, MT-ND4L, ND5, ATP8, ND4, ENSBTAG00000046711 and
ENSBTAG00000048135). Many of the genes that are both DE
and regulators are involved in respiratory chain (ND6, CYTB,
ND1, MT-ND4L, ND5, ATP8 and ND4) and were all up-
regulated in HFE group.

Considering both DE and secreted genes, 18 were identified
(NOV, SPP1, CTGF, OXT, PTX3, VGF, CCL21, COL1A2,
PGF, SOD3, SERPINE1, PRL, PON1, SST, JCHAIN, PCOLCE,
IGFBP6 and SCG2). In addition, four genes were DE, secreted
and tissue specific, two from liver (CXCL3 and IGFBP1) and
two from pituitary (NPY and CYP17A1). Genes RARRES2
and PENK (proenkephalin) were DE, secreted and had
been previously reported as harboring SNP associated with
FE (RARRES2:AnimalQTLdb Release 35 – QTL:20671,
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rs133399845; PENK: Bolormaa et al. (2011)- rs136198266,
rs134428213, rs137492938, rs132881564). Other DE genes
worthy to highlight, due to their well-known role in metabolic
processes, are AMH (anti-mullerian hormone), TSHB (thyroid
stimulating hormone beta), FGF21 (Fibroblast growth
factor 21) and FST (follistatin), up-regulated in HFE group,
and PMCH (pro-melanin concentrating hormone), ADM
(adrenomedullin) and FSHB (follicle stimulating hormone beta),
up-regulated in LFE group.

Co-expression Network Reveals
Regulatory Genes and Biological
Processes Related to Feed Efficiency
The co-expression network (Figure 2) was composed of 1,317
significant genes and 91,932 connections, with a mean of 70
connections per gene (considering only genes with significant
expression correlation ≥ |0.90| ). Most of the connections (51%)
involved a DE gene and 23% of those were between two DE
genes. Tissue specific (TS) genes were involved in 49% of the
connections with 119 connections per gene on average, which
was higher than the overall network mean and reflects the close
relationship among genes involved in tissue specific functions.
Key regulators were the least represented category in the network
(only 78 genes) but accounted for 11% of the connections in the
network with the highest value of mean connections per gene,
131 connections, which is in accordance with their regulatory
role. Regarding the connections within tissues, when we ranked
all the genes in the network by the number of connections
and looked at the top 50 genes, 29 were from liver, 15 were
from muscle and 3, 2 and 1 were from pituitary, adrenal gland
and hypothalamus, respectively. These results indicate very well-
coordinated expression patterns in liver and muscle that could be
a reflection of the number of TS genes in those tissues and the
presence of central regulatory genes coordinating the expression
of many other genes.

In the network (Figure 2), genes were grouped together by
tissue which was mostly driven by TS genes. As mentioned
before, most of the secreted protein-coding genes were located
in the liver. Most of the key regulators were located peripherally
in relation to the clusters which could be reflecting their
regulatory nature independent of tissue specificity. Despite
that, some regulators draw attention because of their high
number of connections.

The top five most connected regulators were EPC1, NR2F6,
MED21, ENSBTAG00000031687 and CTBP1, varying from 317
to 284 connections. They were all first neighbors of each other
and were connected mainly to genes with higher expression in
liver and essentially enriched for acute inflammatory response
(Padj = 4.5 × 10−13, Supplementary Image 4). The next
most connected regulator is TGFB1 with 217 connections. It
is mainly connected to genes from muscle that are primarily
enriched for muscle organ development (Padj = 6.87× 10−5) and
striated muscle contraction (Padj = 1.39× 10−5, Supplementary
Image 5). Besides indicating main regulator genes, the gene co-
expression networks approach can be useful to access the role of
specific genes. For instance, gene FGF21, a hormone up-regulated

FIGURE 2 | Gene co-expression network constructed using PCIT algorithm
on 1,335 selected genes (see Section “Materials and Methods”). Only
significant correlations above | 0.9| and their respective genes were
considered, totaling to 1,317 genes and 91,932 connections. Nodes with
diamond shape correspond to genes coding for proteins secreted in plasma
and triangles correspond to key regulators; all the other genes are
represented by ellipses. Nodes with black borders are differentially expressed
between high and low feed efficiency groups. Colors are relative to the tissue
of maximum expression: blue represents liver, red represents muscle, yellow
represents pituitary, green represents hypothalamus and orange represents
adrenal gland. The size of the nodes is relative to the normalized mean
expression values in all samples.

in liver of HFE animals, is directly connected to genes enriched
for plasma lipoprotein particle remodeling, regulation of
lipoprotein oxidation and cholesterol efflux (Padj = 5.64 × 10−3,
Supplementary Image 6). Indeed, according to the literature,
this gene is associated with decrease in body weight, blood
triglycerides and LDL-cholesterol (Cheung and Deng, 2014).

Motif Discovery Confirms NR2F6 as a
Key Regulator of Liver Transcriptional
Changes Between High and Low Feed
Efficiency
By means of the power-law theory, co-expression networks
present many nodes with few connections and few central
nodes with many connections (de la Fuente, 2010), being the
last ones indicated as central regulatory genes responsible for
the transcriptional changes between the divergent phenotypes
analyzed. In our study, the most connected regulators were
indicated, together with their target genes, i.e., their first
neighbors in the network. Those genes are a mixture of direct
and indirect regulator targets. In order to validate the regulatory
role of the most connected regulators in the network and
identify their core direct targets, we performed motif discovery
in their co-expressed target genes. It is noteworthy that motif
discovery should confirm the presence of DNA motifs of a
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TF in the regulatory regions of co-expressed genes. From
the top five most connected regulators from our previous
co-expression analysis, only NR2F6 has the ability to bind
DNA. In contrast, the other four regulators act mainly as
cofactors (corepressor, i.e., CTBP1; coactivator, i.e., MED21; or
histones modifier, i.e., EPC1), that is co-binding through protein–
protein interactions.

The analysis of 313 co-expressed genes with NR2F6
(Figure 3A) yield the Nuclear Factor motif HNF4-NR2F2
(transfac_pro-M01031) as the second motif most enriched out
of 9732 PWMs (position weight matrices) with a Normalized
Enrichment Score (NES) of 7.98 (Figure 3B). In addition, a
total of 19 motifs associated with HNF4-NR2F2 were enriched
in the dataset, associating HNF4-NR2F2 to 168 direct target
genes (Figure 3C). Due to motif redundancy or highly similarity
between a plethora of TFs, these motifs can be associated with
multiple TFs from HNF4 (direct) to several nuclear factors such
as NR2F6 (motif similarity score FDR 1.414 × 10−5). However,
our co-expression analysis strongly indicates that NR2F6 is the
key TF, since it was the TF with the highest number of nodes
in the co-expression network (Figure 3C) and neither HNF4
nor NR2F2 were prioritized by any selection category to be
included in the network.

Each of the NR2F6 inferred direct target genes contain one
or more predicted enhancers, i.e., regions with high-scoring
motif binding sites for NR2F6 or TFs with highly similar motifs.
To validate the binding of these genomic regions by NR2F6
or TFs with highly similar motifs to NR2F6, we performed a
region enrichment analysis of our predicted NR2F6 binding
sequences against public TF ChiP-seq bound regions in human
cell lines from the ENCODE consortium (1394 TF binding site
tracks, Encode Project Consortium, 2012; Sloan et al., 2016).
This analysis confirms the experimental binding of TFs with
similar binding as NR2F6 in HepG2 cells. In particular, HNF4A
on human HepG2 (ENCFF001UGH, GSM803460, NES = 9.57),
HNF4G (ENCFF001UGI, GSM803404, NES = 7.83), RXRA
(ENCFF001UHJ, GSM803404, NES = 6.85), and NR2F2
(ENCFF001UGV, GSM1010810, NES = 4.45,) as the most
enriched tracks (Supplementary Data Sheet 1). Recent
NR2F6 ChIP-seq data on HepG2 (ENCODE experiment
ENCSR518WPL, GSE96210) also confirms an enrichment
for NR2F6, indicating predicted NR2F6 binding regions
are experimentally bound by NR2F6 in hepatocyte cell
lines (Figure 3D).

Next, to validate that the NR2F6 binding in those
regions is functional in liver we performed an enrichment
analysis for open-chromatin (tracks = 655) and histone
modifications (tracks = 2450) related to active regulatory
elements (Supplementary Table 5). This analysis yielded
DNA-seq on human hepatocytes (ENCFF001SOV, GSM816663,
NES = 4.10), and H3K29ac and H3K4me3 in adult liver
(Roadmap Epigenomics Consortium et al., 2015; GSM621630,
GSM537709, respectively) as the most enriched tracks,
respectively, strongly indicating that not only predicted
target enhancers are bound by NR2F6 in Hepatocyte cell lines,
but these regulatory regions are functionally active in hepatocytes
and human liver (Figure 3D).

Regarding the cow genome, a recent open-chromatin study
(Villar et al., 2015) has mapped active promoters and enhancers
by H3K4me3 and H3K27ac ChIP-seq in cow liver resulting
in 13,796 promoter and 45,786 enhancers. We performed an
enrichment analysis of predicted NR2F6 enhancers converted
to cow coordinates (n = 779, Supplementary Table 6, Array
Express Accession number E-MTAB-2633) resulting in 446
regions being identified as functional regulatory regions in cow
liver. This number is significantly higher compared to the only
43 regions expected to overlap by random (1000 permutation
tests) (Figure 3E).

Finally, in addition to NR2F6 motif, HNF1A motif was found
as a potential co-regulator in liver, in particular swissregulon-
HNF1A.p2 with a NES = 10.17 and in total 20 enriched motifs and
170 direct targets were associated to HNF1A (Figure 3B). HNF1
is a master regulator of liver gene expression (Tronche and Yaniv,
1992), thus making its finding justified.

Motif Discovery Validates TGFB1
Signaling Through SMAD3/MYOD1
Binding as Drivers of Transcriptional
Differences in Muscle of Divergent Feed
Efficient Cattle
The analysis of the 217 genes co-expressed with TGFB1
(Figure 4A) showed that most target genes motifs were enriched
for master regulators of muscle differentiation, namely, MEF2
(NES = 10.42), a MADS box Transcription factor with 148
target genes, and MYOD1 (NES = 5.09), a bHLH transcription
factor (CANNTG) with 136 direct target genes (Figure 4B
and Supplementary Data Sheet 2). To evaluate the precision
of our predicted MYOD1 (bHLH) target genes, we assessed
how many of these TF-TG relationships had been previously
experimentally reported. Based on MYOD1 ChIP-seq binding
in mouse myotubules, 86 genes had already been associated
with MYOD1 resulting in a 63% success rate (hypergeometric
test 1.72 × 10−22). SMAD3, the effector molecule of TGFB1
signaling, is known to recruit MYOD1 to drive transcriptional
changes during muscle differentiation (Mullen et al., 2011).
Thus, we evaluated whether predicted MYOD1 target genes were
enriched for known SMAD3 target genes resulting in 21 out of
135 MYOD1 predicted target genes presenting SMAD3 ChIP-seq
binding in myotubes, thus indicating that there is a statistically
significant association between MYOD1 target genes and SMAD3
target genes in myotubes (hypergeometric test 1.98 × 10−6)
(Figure 4C) (Mullen et al., 2011). By contrast, no significant
association was found between predicted MYOD1 target genes
in this study and SMAD3 target genes in other cell lines, such
as pro-B and ES cell (hypergeometric test 0.056 and 0.076,
respectively) (Mullen et al., 2011). That is in agreement with
the fact that the effect of TGFB1 signaling driven by SMAD3
DNA binding is tissue-specific (Liu et al., 2001). Our analysis
predicted 621 potential MYOD1 binding sites, of which 114 (18%,
Supplementary Tables 7, 8) and 152 (24.5%, Supplementary
Table 9) present a MYOD1 ChIP-seq signal in mouse C2C12
myotubes cells (Mullen et al., 2011) and in primary myotubes
(Cao et al., 2009), respectively.
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FIGURE 3 | Mapping of NR2F6 direct targets. (A) Heatmap of the 313 genes co-expressed with NR2F6 across all samples (derived from the co-expression
analysis), (B) i-Regulon motif discovery results on the genes shown in panel (A), (C) Predicted NR2F6 targetome. A red node indicates genes known to be targeted
by NR2F6 in human Hepatocytes. (D) Example of predicted NR2F6 target regions for SERPINA1 gene. The predicted enhancer overlaps the exact position for
NR2F6 and NR2F2 binding in HepG sites from the ENCODE dataset as well as histone chromatin marks related to active regulatory regions, namely H3K27ac, and
promoters, H3K4me3 in human primary tissue from RoadMap Epigenetics (E) The enhancer prediction in cow coordinates (bosTau6) overlaps a region marked with
H3K4me3 in cow liver (Villar et al., 2015).
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FIGURE 4 | Mapping the downstream network of TGFB1 signaling through SMAD3/MyoD1 DNA binding. (A) Heatmap of the 217 genes co-expressed with TGFB1
(derived from the co-expression analysis). (B) i-Regulon motif discovery results on the genes shown in panel (A), (C) Predicted MyoD targetome. A red node
indicates genes know to be targeted my MyoD1 in murine myotubes (Mullen et al., 2011). Blue nodes indicate genes to be targeted by SMAD3, the effector DNA
binding molecular of TGFB1 signaling, in murine myotubes (Mullen et al., 2011). (D) Example of predicted MyoD1 target regions for ACTA1 gene. The predicted
enhancer overlaps the exact position for SMAD3 and MyoD1 ChIP-seq binding in murine myotubes (Mullen et al., 2011). (E) The enhancer prediction in cow
coordinates (bosTau6) overlaps a promoter region marked with H3K4me3 in muscle tissue in cow (Zhao et al., 2015).
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Finally, we evaluate whether predicted MYOD1 binding
regions were regulatory regions active in muscle cells across
different species, namely human, mouse and cow. To tackle this
issue we performed an enrichment analysis across 2113 open-
chromatin ENCODE tracks (Encode Project Consortium, 2012;
Sloan et al., 2016). This analysis resulted in a clear enrichment
of our predicted MYOD1 binding regions with H3K27ac
(NES = 15.98) and H3K9ac (NES = 8.78) regions in the skeletal
muscle (Figure 4D). Both chromatin marks are associated with
active transcription, H3K27ac related to active enhancers and
H3K9ac related to active gene transcription (Shin et al., 2012),
thus validating most of our enhancer predictions that MYOD1 in
human is active in the skeletal muscles. In cow, we assessed the
overlap of predicted MYOD1 enhancers and promoter regions in
cow muscle experimentally detected with H3K4me3 (Zhao et al.,
2015). This resulted in 275 regions out of 653 (42%) overlap
when only 11 regions are expected to overlap by random 1000
permutation test) (Figure 4E, Supplementary Table 10).

Differential Co-expression
Although the general co-expression network provides important
insights about regulatory genes and their behavior, by creating
specific networks for HFE and LFE and comparing the
connectivity of the genes in each one, we can identify genes
that change their behavior depending on the situation, moving
from highly connected to lowly connected and vice-versa. We
were able to identify 87 differentially connected genes between
HFE and LFE (P < 0.05); 63 mainly expressed in liver, 19 in
muscle and 3, 1 and 1 in hypothalamus, adrenal gland and

pituitary, respectively (Supplementary Table 11). Those genes
were enriched for terms such as regulation of blood coagulation
(Padj = 3.14 × 10−10), fibrinolysis (Padj = 7.71 × 10−7),
platelet degranulation (Padj = 7.49 × 10−6), regulation of
peptidase activity (Padj = 6.16 × 10−4), antimicrobial humoral
response (Padj = 2.49 × 10−3), acute inflammatory response
(Padj = 2.18 × 10−4) and induction of bacterial agglutination
(Padj = 3.58 × 10−2) (Supplementary Image 7). It is important
to highlight that 20 of the differentially connected genes were
also differentially expressed (Table 1) and three of them, i.e., SST,
JCHAIN and IGFBP1, were secreted in plasma as well, which
make them very promising potential biomarkers.

DISCUSSION

Feed efficiency is a complex trait, regulated by several biological
processes. Thus, the identification of genomic regions associated
with this phenotype, as well as regulators genes and biomarkers
to select superior animals and to direct management decisions,
is still a great challenge. In this work, multi-tissue transcriptomic
data of high and low feed efficient Nellore bulls were analyzed
through robust co-expression network methodologies in order
to uncover some of the biology that governs these traits and put
forward candidate genes to be the focus of further research. In this
sense, the validation of target genes of main transcription factors
(key regulators) in the network by motif search proves the efficacy
of the methodology for network construction and prioritizes
some transcription factors as central regulators (Aerts et al., 2010;

TABLE 1 | Differentially connected and differentially expressed genes between high and low feed efficiency.

Gene name Number of connections Category∗ Tissue of maximum
expression

Tissue of differential
expression

Low feed efficiency High feed efficiency

SST 0 45 DE, SEC Hypothalamus Hypothalamus

SNORA73 41 108 DE Liver Liver

ENSBTAG00000047700 56 111 DE Liver Liver

ENSBTAG00000047121 62 111 DE Liver Liver

ENSBTAG00000047816 53 96 DE Liver Liver

ENSBTAG00000039928 50 89 DE Liver Liver

ANXA13 115 63 DE Liver Liver

FST 113 56 DE Liver Liver

PBLD 115 55 DE Liver Liver

ENSBTAG00000021368 95 0 DE Liver Liver

JCHAIN 52 113 DE, SEC Liver Liver

IGFBP1 55 0 DE, TS, SEC Liver Liver

SBK2 0 70 DE Muscle Muscle

ACTC1 54 0 DE Muscle Muscle

MYH1 0 47 DE, TS Muscle Muscle

HR 119 50 DE Pituitary Muscle

TAGLN 83 31 DE Adrenal Muscle, Pituitary

SFRP2 41 91 DE Hypothalamus Pituitary

FN1 119 69 DE Liver Pituitary

CAV1 98 50 DE Muscle Pituitary

∗Differentially expressed genes between high and low feed efficiency (DE), tissue specific genes (TS) and genes encoding proteins secreted in plasma (SEC).
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Naval-Sańchez et al., 2013; Potier et al., 2014). Moreover, the
addition of a category of genes coding proteins secreted in plasma
in the co-expression analysis highlights the genes with potential
to be explored as biomarkers of feed efficiency. We were able to
identify genes related to main biological processes associated with
feed efficiency and indicate key regulators.

Firstly, it is important to state that the 98 animals used
to select the HFE and LFE groups in this study have been
previously analyzed with regard to several phenotypic and
molecular measures (Alexandre et al., 2015; Mota et al., 2017;
Novais et al., 2019). It was observed that HFE and LFE
groups had similar body weight gain, carcass yield and loin
eye area but LFE animals had higher feed intake, greater fat
deposition, higher serum cholesterol levels, as well as hepatic
inflammatory response, indicated by transcriptome analysis of
liver biopsy and proved by the higher number of periportal
mononuclear infiltrate (histopathology) and increased serum
gamma-glutamyl-transferase (GGT, a biomarker of liver injury)
in this group (Alexandre et al., 2015). In the present study,
the simultaneous analysis of five distinct tissues revealed the
importance of hepatic tissue. Liver presented the most connected
genes in the network, the largest number of differentially
connected genes and the largest number of secreted genes, which,
although can be explained by its biological function, are enriched
mostly for terms related to lipid homeostasis and inflammatory
response. Moreover, the top five most connected regulators in the
network are co-expressed mainly with genes highly expressed in
liver and also enriched for inflammatory response.

The relationship between FE and genes or pathways related
to immune response and lipid metabolism is becoming more
evident, as recent studies also reported in beef cattle (Karisa
et al., 2014; Paradis et al., 2015; Weber et al., 2016; Zarek
et al., 2017; Mukiibi et al., 2018) and pigs (Gondret et al., 2017;
Ramayo-Caldas et al., 2018). In our previous work (Alexandre
et al., 2015), we proposed that increased liver lesions associated
with higher inflammatory response in the liver of LFE animals
could be due to increased lipogenesis and/or higher bacterial
infection in the liver. While further evidence is needed to test
these hypotheses, the enrichment of terms such as induction of
bacterial agglutination and response to lipopolysaccharide makes
bacterial infection a strong possibility. Indeed, pigs with low FE
were reported to have a increased risk of intestinal inflammation,
higher neutrophil infiltration biomarkers and increased serum
endotoxin (lipopolysaccharide and other bacterial products)
which could be related to increased bacterial infection or to
decreased capacity to neutralize endotoxins (Mani et al., 2013).
The authors hypothesized that differences in bacterial population
could partially explain the increase in circulating endotoxins,
which could also be true for cattle given that differences in
intestinal and ruminal bacterial population between high and low
FE animals have already been reported (Myer et al., 2015, 2016).
Furthermore, the literature reports lipopolysaccharides (LPS)
may cause up-regulation of adrenomedullin (ADM) hormone
(Shindo et al., 1998), an up-regulated gene in LFE individuals as
showed here. It was also demonstrated in rats that intravenous
infusion of LPS caused up-regulation of ADM in ileum, liver,
lung, aorta, skeletal muscle and blood vessels (Shoji et al., 1995)

whereas in our study, ADM presented differential expression in
muscle, but not in liver.

Against pathogen invasion, a tightly regulated adaptive
immune response must be triggered in order to allow T
lymphocytes to produce cytokines or chemokines and B cells
to differentiate and produce antibodies (Hermann-Kleiter and
Baier, 2014). This regulation is known to be strongly influenced
by the expression level and transcriptional activity of several
nuclear receptors, including the NR2F-family, which consists of
three orphan receptors: NR2F1, NR2F2 and NR2F6 (Hermann-
Kleiter and Baier, 2014). Those receptors present highly
conserved DNA and ligand binding domains among each other
and across species (Pereira et al., 2000), and all three are expressed
in adaptive and immune cells (Hermann-Kleiter and Baier, 2014).
In our study, NR2F6 appeared as the second most connected
regulator gene in the network while the other family members,
although present in our expression data, were not selected by
any of our inclusion criteria, thus indicating they might not
be so relevant in our conditions. Indeed, NR2F6 appears to be
a critical regulatory factor in the adaptive immune system by
directly repressing the transcription of key cytokine genes in
T effector cells (Hermann-Kleiter et al., 2008; Klepsch et al.,
2016). The role of NR2F6 as a key regulator of inflammatory
response in our network was validated at gene level by the
identification of the binding motif HNF4-NR2F2 (transfac_pro-
M01031) as one of the most enriched in NR2F6 target genes, due
to the high similarity between NR2F2 and NR2F6 binding sites.
Furthermore, using open chromatin data publicly available, we
provided experimental evidence of the binding of TFs with highly
similar binding motifs as NR2F6 in hepatocyte cells in humans
and in cattle, thus, indicating that predicted target enhancers are
functional in this tissue.

Another regulator prioritized in our analysis is TGFB1, the
sixth most connected gene in the co-expression network, and
a potential driver of transcriptional changes between high and
low FE cattle in muscle. This gene has been previously described
as a master regulator of FE in beef cattle, using genomics
and metabolomics data (Widmann et al., 2015). Moreover, our
motif discovery analysis showed that TGFB1 co-expressed genes
are mostly enriched for binding sites of master regulators of
muscle differentiation such as MEF2 and MYOD. Indeed, public
available data show many of TGFB1 target genes were associated
with MYOD (Mullen et al., 2011). As it is known, signaling
pathways are an effective mechanism for cells to respond
to environmental cues by regulating gene expression. TGFB1
signaling triggers the phosphorylation of SMAD2/3 transcription
factors, which co-bind with cell-type master regulators at the
nuclear level allowing/triggering/leading to cell-type specific
transcriptional changes (Schmierer and Hill, 2007; Mullen et al.,
2011). In skeletal muscle cells, myoblasts and myotubes, SMAD3
co-binds with MYOD1 (Mullen et al., 2011). The overlap
between MYOD1 and SMAD3 target genes demonstrate the
significant association between both genes in skeletal muscle,
in agreement with the tissue-specific TGFB1 signaling response
(Mullen et al., 2011). The overlap percentage between our
predicted binding sites and MYOD1 Chip-seq data (18 and
24.5%) confirms previous analyses in mice where they reported
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only 20% of experimental validated distal enhancers in mouse
myotubes with a bHLH (MyoD1) binding were actually bound by
MYOD1 ChIP-seq data (Blum et al., 2012). Thus, suggesting that
additional transcription-factors and/or histone modifications
have a key role in MYOD1 binding. The SMAD3/MYOD1 co-
bound regions for known target genes are also captured, such
as the promoter regions of ACTA1 and ANKRD1, both genes
involved in skeletal muscle differentiation. We also demonstrated
predicted MYOD1 binding regions are enriched for muscle
regulatory regions across species (human, mouse and cow).

Altogether, we showed that co-expressed genes with TGFB1
are enriched for SMAD3/MYOD1 binding sites, which we
validated at the gene and enhancer level by proving not only
MYOD1 and SMAD3 binding, but also their accessibility, in
human, mouse and cow. In pigs, increased feed efficiency is
associated with stimulation of muscle growth by TGFB1 signaling
pathway (Jing et al., 2015). Finally, although not directly co-
expressed with TGFB1, oxytocin (OXT) was DE in muscle and
despite the lack of knowledge about its role in this tissue, previous
work in cattle showed a massive increase of OXT expression in
the muscle of bovines chronically exposed to anabolic steroids
(De Jager et al., 2011). It is not known yet if oxytocin alone has
an anabolic activity, but in a context where muscle growth seems
to be associated with high FE animals, this hormone should be
the focus of further investigation.

From the 13 regulator genes that are DE between groups, six
are involved in respiratory chain and are up-regulated in HFE
group. Genes ND1, ND4, ND4L, ND5, ND6 and also ND2 (which
is DE but not identified as a regulator) are core subunits of
the mitochondrial membrane respiratory chain Complex I (CI)
which functions in the transfer of electrons from NADH to the
respiratory chain, while ATP8 is part of Complex V and produces
ATP from ADP in the presence of the proton gradient across
the membrane. Interestingly, greater quantities of mitochondrial
CI protein were associated with high FE cattle by Ramos and
Kerley (2013) whereas Davis et al. (2016) found higher CI-CII and
CI-CIII concentration ratios for the same group. Other studies
demonstrated that HFE animals consume less oxygen (Chaves
et al., 2015) and present lower plasma CO2 concentrations, which
suggests a decreased oxidation process (Gonano et al., 2014). In
general, the literature suggests mitochondrial ADP has greater
control of oxidative phosphorylation in high FE individuals
(Lancaster et al., 2014) and their increased mitochondrial
function may contribute to feed efficiency (Connor et al., 2010).
In pigs, differences in mitochondrial function were reported
when analyzing muscle (Vincent et al., 2015), blood (Liu et al.,
2016) and adipose tissue transcriptomes (Louveau et al., 2016).
Differences in metabolic rate associated with FE have long been
discussed (Herd and Arthur, 2009) and here the hypothesis is
corroborated by the up-regulation of TSHB in HFE animals,
which stimulates production of T3 and T4 in thyroid, thus
increasing metabolism. Metabolism is inhibited by SST, a down-
regulated hormone in this group which was also found to be
differentially connected between HFE and LFE.

Examining the DE genes, many hormones can be identified.
Hormones are signaling proteins that are transported by the
circulatory system to target distant organs in order to regulate

physiology. Regarding the relationship between FE and other
production traits of economic importance, FSHB, responsible for
spermatozoa production by activating Sertoli cells in the testicles
(Walker and Cheng, 2005), is up-regulated in LFE group and is
inhibited by follistatin (FST), a gene found to be down-regulated
in the same group. Moreover, in rats, it has been demonstrated
that FSH secretion is stimulated by somatostatin expression,
which is up-regulated in LFE animals (Kitaoka et al., 1989). In
this scenario, one could argue that selection for high FE delay
reproduction traits, something that could be related to the lower
fat deposition in this group, as previously observed (Gomes
et al., 2012; Santana et al., 2012; Alexandre et al., 2015). Indeed,
differences in body composition and in intermediary metabolism
can impact on reproductive traits (Shaffer et al., 2011) and it has
been observed before that feed efficient bulls present features of
delayed sexual maturity, i.e., decreased progressive motility of
the sperm and higher abundance of tail abnormalities (Fontoura
et al., 2016; Montanholi et al., 2016). Moreover, high FE heifers
presented lower fat deposition and later sexual maturity which
results in calving later in the calving season than their low FE
counterparts (Shaffer et al., 2011; Randel and Welsh, 2013). LFE
animals also exhibit down-regulation of AMH and the decrease
of this hormone in serum is an excellent marker of Sertoli cells
pubertal development (Rey et al., 1993).

Concerning the differences in lipid metabolism in divergent
FE phenotypes, FGF21, a hormone up-regulated in liver
of HFE animals, is associated in humans to decrease in
body weight, blood triglycerides and LDL-cholesterol, with
improvement in insulin sensitivity (Cheung and Deng, 2014).
It is an hepatokine released to the bloodstream and an
important regulator of lipid and glucose metabolism (Giralt
et al., 2015). When we performed an enrichment analysis
of co-expressed genes with FGF21, we indeed found terms
related to plasma lipoprotein particle remodeling, regulation
of lipoprotein oxidation and cholesterol efflux mostly due to
FGF21 co-expression with the apolipoproteins APOA4, APOC3
and APOM. In the same context, pro-melanin-concentrating
hormone (PMCH) encodes three neuropeptides: neuropeptide-
glycine-glutamic acid, neuropeptide-glutamic acid-isoleucine
and melanin-concentrating hormone (MCH), the last one being
the most extensively studied (Helgeson and Schmutz, 2008).
MCH up-regulation has been related to obesity and insulin
resistance, as well as increased appetite and reduced metabolism
in murine models (Ludwig et al., 2001; Ito et al., 2003). The
PMCH gene is up-regulated in LFE animals and harbors SNPs
found to be associated with higher carcass fat levels and marbling
score (Helgeson and Schmutz, 2008; Walter et al., 2014).

In this work, we were able to identify several biological
processes known to be related to feed efficiency, which together
with the validation of the main transcription factors of the
network, demonstrate the quality of the data and the robustness
of the analyses, giving us the confidence to identify candidate
genes as regulators or biomarkers of superior animals for this
trait. The regulatory genes NR2F6 and TGFB1 play central roles
in liver and muscle, respectively, by regulating genes related to
inflammatory response and muscle development and growth,
two main biological mechanisms associated to feed efficiency.
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Likewise, hormones and other proteins secreted in plasma as
oxytocin, adrenomedulin, TSH, somatostatin, follistatin and
AMH are interesting molecules to be explored as potential
biomarkers of feed efficiency.

MATERIALS AND METHODS

Phenotypic Data and Biological Sample
Collection
All animal protocols were approved by the Institutional Animal
Care and Use Committee of Faculty of Food Engineering and
Animal Sciences, University of São Paulo (FZEA-USP – protocol
number 14.1.636.74.1). All procedures to collect phenotypes and
biological samples were carried out at FZEA-USP, Pirassununga,
State of São Paulo, Brazil. Ninety-eight Nellore bulls (16 to
20 months old and 376 ± 29 kg BW) were evaluated in a
feeding trial comprised of 21 days of adaptation to feedlot
diet and place and a 70-day period of data collection. Total
mixed ration was offered ad libitum and daily dry matter
intake (DMI) was individually measured. Animals were weighed
at the beginning, at the end and every 2 weeks during the
experimental period. Feed efficiency was estimated by RFI
which is the residual of the linear regression that estimates
DMI based on average daily gain and mid-test metabolic body
weight (Koch et al., 1963). 40 animals selected either as high
feed efficiency (HFE) or low feed efficiency (LFE) groups were
slaughtered on 2 days with a 6-day interval. Adrenal gland
(longitudinal section), hypothalamus, liver (lateral portion of
the left lobe), skeletal muscle (medial portion of Longissimus
lumborum, close to 12th rib) and pituitary samples were
collected from each animal, rapidly frozen in liquid nitrogen and
stored at –80◦C. Further information about management and
phenotypic measures of the animals used in this study can be
found in Alexandre et al. (2015).

RNAseq Data Generation
Samples of nine animals from each feed efficiency group (high
and low) were selected for RNAseq using RFI measure. For
hypothalamus and pituitary, the nitrogen frozen tissue was
macerated with crucibles and pistils to ensure all portions of the
tissue were represented, and stored in aliquots at –80◦C. Then,
RNA was extracted using AllPrep DNA/RNA/Protein Mini kit
(QIAGEN, Crawley, United Kingdom). For liver, muscle and
adrenal gland, a cut was made in the frozen tissue and the
RNA was extracted using RNeasy Mini Kit (QIAGEN, Crawley,
United Kingdom). RNA quality and quantity were assessed using
automated capillary gel electrophoresis on a Bioanalyzer 2100
with RNA 6000 Nano Labchips according to the manufacturer’s
instructions (Agilent Technologies Ireland, Dublin, Ireland).
Samples that presented an RNA integrity number (RIN) of less
than 8.0 were discarded.

RNA libraries were constructed using the TruSeqTM Stranded
mRNA LT Sample Prep Protocol and sequenced on Illumina
HiSeq 2500 equipment in a HiSeq Flow Cell v4 using the HiSeq
SBS Kit V4 (2×100 pb). Liver, pituitary and hypothalamus
were sequenced on the same run, each one in a different lane.

Muscle and adrenal gland were sequenced in a second run, in
different lanes.

Gene Expression Estimation
The quality of the sequencing was evaluated using the software
FastQC Version 31. Sequence alignment against the bovine
reference genome (UMD3.1) was performed using STAR Version
2.2.1 (Dobin et al., 2013), according to the standard parameters
and including the annotation file (Ensembl release 89) and
secondary alignments, duplicated reads and reads failing vendor
quality checks were removed using Samtools Version 1.9 (Li
et al., 2009). Then, HTseq Version 0.6.0 (Anders et al., 2014) was
used to generate gene read counts and expression values were
estimated by fragments per kilobase of gene per million mapped
reads (FPKM). Genes with average value lower than 0.2 FPKM
across all samples and tissues were discarded.

Gene expression normalization was performed using the
following mixed effect model (Reverter et al., 2005):

Yijkl = µ+ Li + Gj + GTjk + GPjl + eijkl

where, the log2-transformed FPKM value for i-th library (86
levels), j-th gene (17,354 levels), k-th tissue (5 levels), l-th RFI
phenotype (2 levels), corresponding to Yijkl, was modeled as a
function of the fixed effect of library (Li) and the random effects
of gene (Gj), gene by tissue (GTjk) and gene by RFI phenotype
(GPjl). Random residual (eijkl) was assumed to be independent
and identically distributed. Variance component estimates and
solutions to the model were obtained using VCE6 (Groeneveld
et al., 2010). Normalized mean expression (NME) values for each
gene were defined as the linear combination of the solutions
for random effects.

The mixed model used to normalize the expression data
explained 96% of the variation in gene expression, of which
the largest proportion (0.30) was due to tissue-specificity.
Contrariwise, differences between HFE and LFE represented no
variation (0.27 × 10−11). For that reason, normalized mean
expression (NME) was only used to identify tissue specific genes
and the raw FPKM values were used for differential expression
and co-expression analysis.

Gene Selection for Network Construction
In order to select a set of relevant genes for network analysis, we
defined five categories based on the following inclusion criteria:

Differential Expression (DE)
The mean expression value of each gene, for each group (HFE
and LFE) and each tissue was calculated and then the expression
of LFE group was subtracted from the expression in HFE group.
Next, genes were ranked according to their mean expression in
all samples for each tissue and divided into five bins. Genes were
considered differentially expressed when the difference between
the expression in HFE and LFE groups were greater than 3.1 or
smaller than – 3.1 standard deviation from the mean in each bin,
corresponding to a t-test P < 0.001 (Weber et al., 2016).

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Harboring SNPs
Genes harboring SNPs associated with feed efficiency, mainly
indicated by GWAS, were identified using the PubMed database2

and the AnimalQTL database – Release 353 and only bovine data
were considered regardless of breed.

Tissue Specific (TS)
A gene was considered as tissue specific when the average NME
in that tissue was greater than one standard deviation from the
mean of all genes and the average NME in all the other four tissues
was smaller than zero.

Secreted
The human secretome database4 (Uhlén et al., 2005; Uhlen
et al., 2015) was used to select genes encoding proteins secreted
in plasma by any of the analyzed tissues (adrenal gland,
hypothalamus, liver, muscle and pituitary).

Key Regulators
In order to identify key regulatory genes to be included in the
co-expression network, a list of genes were obtained from the
Animal Transcription Factor Database 2.05 (Zhang et al., 2015)
and it was compared to a set of potential target genes in each
tissue, composed of the categories: TS, DE, harboring SNPs and
secreted. The analysis was based on regulatory impact factor
metrics (Reverter et al., 2010), which comprises a set of two
metrics designed to assign scores to regulator genes consistently
differentially co-expressed with target genes and to those with
the most altered ability to predict the abundance of target genes.
Those scores deviating± 1.96 standard deviation from the mean
(corresponding to P < 0.05) were considered significant. Genes
presenting mean expression value less than the mean of all genes
expressed were not considered in this analysis.

Some of the genes selected by the categories above were
represented by more than one Ensembl ID. Those duplications
were removed for further analysis, keeping only the expression
value of the most meaningful Ensembl ID. Additionally, genes
with mean expression across the samples equal to zero were also
removed from further analysis.

Co-expression Network Analysis
For gene network inference, genes selected using the five
categories described previously were used as nodes and
significant connections (edges) between them were identified
using the Partial Correlation and Information Theory (PCIT)
algorithm (Reverter and Chan, 2008), considering all animals and
all tissues. PCIT determinates the significance of the correlation
between two nodes after accounting for all the other nodes in the
network. Connections between gene nodes were accepted when
the partial correlation was greater than two standard deviations
from the mean (P < 0.01). The output of PCIT was visualized on
Cytoscape Version 3.6.1 (Shannon et al., 2003).

2www.ncbi.nlm.nih.gov/pubmed/
3www.animalgenome.org/cgi-bin/QTLdb/index
4www.proteinatlas.org/humanproteome/secretome
5http://bioinfo.life.hust.edu.cn/AnimalTFDB/#!/

Network Validation Through
Transcription Factor Biding Motifs
Analysis
Using the regulatory impact factor metric (RIF) we prioritized key
regulator genes from gene expression data and predicted target
genes based on co-expression network. In order to assess whether
those target genes were enriched for motifs associated with the
top most connected regulators in the network with a DNA
binding domain (transcription factors – TF), we performed motif
discovery analysis in the set of co-expressed target genes (first
neighbors of the TF) using the i-cistarget method (Herrmann
et al., 2012) and i-Regulon v1.3, a Cytoscape plug-in (Janky
et al., 2014). These tools use humans (hg19) as the reference
species, therefore only genes with human orthology are assessed.
Then, to validate the binding of the identified genomic regions
by the TFs, we performed a region enrichment analysis across
experimentally available TF bound regions from ChiP-seq in
cell lines from the ENCODE consortium (1,394 TF binding site
tracks, Encode Project Consortium, 2012; Sloan et al., 2016).
Briefly, the tools evaluate whether there is an over-representation
of motifs in the set of co-expressed genes and across evolution.
We examined 10 kb upstream of the gene transcription start site
and their conservation in 7 vertebrate species, including cow.
Thus, the tools provide over-represented motifs across evolution,
allowing us to predict regulatory interactions TF to target gene
in cow. In our analysis, we performed motif discovery using
i-Regulon v1.3 (Janky et al., 2014) and i-cistarget database 3
(Herrmann et al., 2012), that is using their 9713 motif collection.
Both methods result in highly similar enrichments. Whereas
i-Regulon is a user-friendly method to deliver a regulatory
network, i-cistarget also yields the genomic position of the TF
binding in the genome. Both i-Regulon and i-cistarget can be
used to validate the TF binding on predicted genomic regions
in the human genome. The tool contains a collection of TF
ChIP-seq data in cell lines mostly from the ENCODE consortium
(1,394 TF binding tracks), 2003 Histone modifications from
the ENCODE consortium and Epigenomics roadmap and 908
Histone modification and open-chromatin. The tool allows
to perform an enrichment of the different human tracks at
the region level.

Finally, we converted identified enhancer regions into cow
coordinates and searched for regions of open-chromatin using
data from publicly available studies in cow tissues. Namely, cow
liver promoters and enhancer from Villar et al. (2015) (Array
Express Accession number E-MTAB-2633) and skeletal muscle
cow promoters from Zhao et al. (2015) (GSE61936). For MYOD1
and SMAD3 binding in myotubes and pro-B cells, data from
Mullen et al. (2011) was used (GEO: GSE21621); and for MYOD1
binding in primary myotubes, data from Cao et al. (2010) (GEO:
GSE20059) was used.

Differential Connectivity
In order to explore differentially connected genes between HFE
and LFE, two networks were created, one for each condition,
using the same methodology described before. Then, the number
of connections of each gene in each condition was computed and
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scaled so that connectivity varied from 0 to 1, making it possible
to compare the same gene in the two networks. The connectivity
in LFE group was subtracted from the connectivity in HFE group
and results deviating ± 1.96 standard deviation from the mean
were considered significant (P < 0.05).

Functional Enrichment
Functional enrichment analysis was performed on the online
platform GOrilla (Gene Ontology enRIchment anaLysis and
visuaLizAtion tool6), using all genes that passed FPKM filter as
background, hypergeometric test and multiple test correction
(FDR – false discovery rate). The human database was used
to take advantage of a more comprehensive knowledgebase
regarding gene functions. GO terms were considered significant
when Padj < 0.05. For genes in co-expression networks,
visualized using Cytoscape (Shannon et al., 2003), the functional
enrichment was performed with BiNGO plug-in (Maere et al.,
2005) using the same background genes and statistical test.
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Given the central metabolic role of the liver, hepatic metabolites and transcripts reflect
the organismal physiological state. Biochemical-clinical plasma biomarkers, hepatic
metabolites, transcripts, and single nucleotide polymorphism (SNP) genotypes of
some 300 pigs were integrated by weighted correlation networks and genome-wide
association analyses. Network-based approaches of transcriptomic and metabolomics
data revealed linked of transcripts and metabolites of the pentose phosphate pathway
(PPP). This finding was evidenced by using a NADP/NADPH assay and HDAC4 and
G6PD transcript quantification with the latter coding for first limiting enzyme of this
pathway and by RNAi knockdown experiments of HDAC4. Other transcripts including
ARG2 and SLC22A7 showed link to amino acids and biomarkers. The amino acid
metabolites were linked with transcripts of immune or acute phase response signaling,
whereas the carbohydrate metabolites were highly enrich in cholesterol biosynthesis
transcripts. Genome-wide association analyses revealed 180 metabolic quantitative
trait loci (mQTL) (p < 10−4). Trans-4-hydroxy-L-proline (p = 6 × 10−9), being strongly
correlated with plasma creatinine (CREA), showed strongest association with SNPs
on chromosome 6 that had pleiotropic effects on PRODH2 expression as revealed
by multivariate analysis. Consideration of shared marker association with biomarkers,
metabolites, and transcripts revealed 144 SNPs associated with 44 metabolites and
69 transcripts that are correlated with each other, representing 176 mQTL and
expression quantitative trait loci (eQTL). This is the first work to report genetic variants
associated with liver metabolite and transcript levels as well as blood biochemical-
clinical parameters in a healthy porcine model. The identified associations provide links
between variation at the genome, transcriptome, and metabolome level molecules
with clinically relevant phenotypes. This approach has the potential to detect novel
biomarkers displaying individual variation and promoting predictive biology in medicine
and animal breeding.
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INTRODUCTION

Metabolites are substrates or products of metabolism. As one
of the main “omics-” technologies, metabolomics can bridge
the phenotype–genotype gap due to the close association of
metabolites to cellular biochemical processes (Cascante and
Marin, 2008). The metabolome represents the final “omics-”
level in the genotype–phenotype map and reflects changes
in phenotype and function, whereas the transcriptome and
proteome act as mediators of flow (Ryan and Robards, 2006).
High-performance metabolic profiling is a high-throughput
analysis suitable for routine measurement of endogenous
metabolites and metabolic signatures related to health issues
(Johnson et al., 2010). Recent advances in bio-analytical
technologies allow genome-wide association studies with
metabolomics (mGWAS) based on the assumption that the
biochemical function of a gene variant is reflected by varied
metabolite levels, which are substrates, products, or ligands of
that gene product (Adamski and Suhre, 2013).

Association of a single nucleotide polymorphism (SNP) with a
metabolic trait indicates that the metabolic phenotype is either
a cause or consequence of the metabolic state. Accordingly, it
allows generation of biological hypotheses about the role of that
metabolite for organismal phenotype (Kathiresan et al., 2009;
Franke et al., 2010). Several studies have reported metabolic
quantitative trait loci (mQTL) or mGWAS for serum metabolite
concentrations in humans (Gieger et al., 2008; Illig et al., 2010;
Nicholson et al., 2011). Genetic influences on blood metabolites
in healthy humans can be detected by combining genetic variants
and metabolic traits (Shin et al., 2014; Draisma et al., 2015).

The regulatory mechanisms between transcript and
metabolite levels are still not well understood. Thus, integrating
transcriptomics and metabolomics can elucidate the relationship
between genes and their transcripts, metabolites, and outcome
levels in cells, as reported in microbial, plant, and animal systems
(Hoefgen and Nikiforova, 2008; Yang et al., 2009; Yabushita
et al., 2013). Expression quantitative trait loci (eQTL) studies
are a powerful functional genomics tool, revealing genetic loci
that affect RNA transcription levels. eQTL studies facilitate
uncovering biological mechanisms that mediate gene regulation
and building complex molecular networks for metabolic,
biochemical-clinical, and hematological traits (Ponsuksili et al.,
2011, 2012, 2016). eQTL studies suggest the potential value of
complementary association studies with other molecular traits,
such as endocrine or metabolic phenotypes (Ponsuksili et al.,
2012; Ghazalpour et al., 2014).

Given the central role of the liver in metabolic and immune
functions, we hypothesized that variation of traits related
to metabolic state and performance are largely reflected by
metabolites and transcripts of hepatic metabolic pathways.
Herein, we characterized the genetic landscape of porcine
liver metabolites and we linked hepatic metabolite profiles
and transcriptomes as well as plasma biochemical-clinical traits
in pigs. Analyses of trait-correlated hepatic metabolites and
mQTL, together with our previous eQTL results, provide a
fine map of loci controlling metabolic profiles. Because pigs
are valuable models, this knowledge provides a rational basis

not only for understanding pig physiology, but also for human
medical research.

MATERIALS AND METHODS

Animals and Sample Collection
Pigs from a German Landrace herd were reared, performance
tested, sampled, and used for genome-wide association studies of
liver metabolites. Animal care and tissue collection procedures
were approved by the Animal Care Committee of the Leibniz
Institute for Farm Animal Biology and carried out in accordance
with the approved guidelines for safeguarding good scientific
practice at the institutions of the Leibniz Association. Measures
have been taken to minimize pain and discomfort in line with
the guidelines laid down in the Council Directive 86/609/EEC
of 24 November 1986. Veterinary inspection of live pigs
and their carcasses and organs after slaughter confirmed a
lack of any impairments, disease symptoms, or pathological
signs to avoid any bias of blood phenotypes. Liver and
blood samples were collected from pigs at an average age
of 170 days at the experimental slaughter facility of the
Leibniz Institute for Farm Animal Biology, between 8.00 and
10.00 in the morning.

Plasma Analyte Measurement
Plasma cortisol concentrations (total) were determined using
commercially available enzyme-linked immunosorbent assays
(DRG, Marburg, Germany), performed in duplicate according
to the manufacturer’s protocol. Biochemical-clinical parameters
of blood samples were determined using an automated
analyser device (Fuji DriChem 4000i, FujiFilm, Minato, Japan)
including albumin (ALB), ammonia nitrogen (NH3), blood urea
nitrogen (BUN), glucose (GLU), inorganic phosphorus (IP), and
creatinine (CREA).

Metabolic Profiling
A total of 350 individual porcine livers from the same
animals used for biochemical-clinical blood plasma analyses were
subjected to metabolite profiling. Liver was ground under liquid
nitrogen into a homogeneous mixture before being divided for
extraction using two-step extraction methods from Wu et al.
(2008). We homogenized 50 mg frozen liver powder in 4 mL/g
cold methanol and 0.85 mL/g cold water in homogenization
tubes containing ceramic beads. Three internal standards were
used, including 1 mM ribitol and 0.2 mM palmitic acid-
d31 for GC-MS, 250 µM camphorsulphonic acid for LC-MS.
Homogenates were transferred to 1.8-mL glass vials and mixed
with 2 mL/g chloroform. Samples were vortexed for 60 s,
left on ice for 10 min to partition, and centrifuged. Polar
and non-polar layers were removed and dried, although we
only concentrated on polar phase metabolites in this study.
We analyzed samples using non-targeted metabolic profiling
instrumentation combining two platforms, GC-MS and HPLC-
MS. Both methods represent relative metabolite amount per liver
sample (25 mg wet weight of liver per sample). After extraction,
samples were split for GC-MS and HPLC-MS analysis, frozen,
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and lyophilized. Details of GC-MS and HPLC-MS setups are done
according to manufacturer’s instructions. In brief, lyophilized
samples were derivatized and centrifuged. The supernatant was
transferred to a new vial before injection for GC-MS. Qualitative
and quantitative analyses were performed using ChromaTOF
software v4.50.8.0 (LECO Corporation, United States). HPLC-
MS analysis was performed using an Agilent 1100 series liquid
chromatographic system (micrOTOF, Bruker Daltonik GmbH,
Germany). For analysis, lyophilized liver extracts and blank
samples were dissolved in 100 µL water and centrifuged.
For chromatographic separation, 5 µL of each sample were
injected into a Synergi 2.5 µm Fusion RP column attached to a
guard column of the same material (Supplementary Methods,
Data Sheet 1). Metabolite identification was verified and analysis
using the software DataAnalysis v4.0 and QuantAnalysis v2.0
(Bruker Daltonik GmbH, Germany).

SNP Genotype and mRNA Expression
Profile Data
Single nucleotide polymorphism genotyping and mRNA hepatic
expression profiling was performed using samples of identical
animals as for biochemical-clinical blood plasma analyses and
liver metabolite profiling. In brief, genotyping was performed
using the PorcineSNP60 BeadChip (Illumina Inc., San Diego,
CA, United States) per the manufacturer’s SNP Infinium HD
assay protocol. Samples with call rates of <99%, markers with
low minor-allele frequency (<5%), and markers that strongly
deviated from Hardy–Weinberg equilibrium (p < 0.0001) were
excluded. The average call rate for all samples was 99.8% ± 0.2
after filtering.

Total RNA was isolated from liver and amplified using
an Ambion WT Expression kit (Affymetrix, Thermo Fisher
Scientific, Waltham, MA, United States). Subsequently, cDNA
was fragmented, labeled, and hybridized to the microarray
using Affymetrix standard protocols. Affymetrix Porcine
Snowball microarrays containing 47,880 probesets were used to
determine expression profiles. Affymetrix Expression Console
software was used for robust multichip average normalization
and gene detection by applying detection above background
algorithm. Expression data are available in the Gene Expression
Omnibus public repository (GEO accession number GSE83932:
GSM2221843-GSM2222139). Further filtering was done by
excluding transcripts with low signals and probes that were
present in <80% of samples. In total, 24,904 probes passed
quality filtering and were used for further analyses. Both mRNA
and SNPs were mapped to the porcine reference genome using
Sscrofa 10.2 (Ensembl downloaded from NCBI1).

Data Pre-processing and
Statistical Analysis
After quality control and filtering for metabolites of low
concentrations and samples with low concentrations of analytes
as well as outlier animals, 74 out of 90 metabolites from 343
individuals were further analyzed. Z-score for each metabolite

1http://www.ncbi.nlm.nih.gov

was calculated as: (relative metabolite level in the samples –
mean of metabolite level in the samples)/SD of metabolite levels
in the samples. Metabolite data were further pre-processed to
account for systemic effects. Mixed-model analyses of variance
using JMP Genomics (SAS Institute, Cary, NC, United States)
were used to adjust for fixed and random effects. The genetic
similarity matrix between individuals was first computed as
identity-by-descent of each pair for the k-matrix and considered
as a random effect. For control of population stratification,
top principal components (PCs) explaining >1% of variation
were considered as covariates. In total, 15 PCs were included
as covariates. Gender was used as a fixed effect, batches of
metabolite measurement were used as a random effect, and
carcass weight was considered as a covariate. Residuals were
retained for further analysis.

Metabolite QTL (mQTL) analyses were conducted using the
R-package Matrix eQTL (Shabalin, 2012). Matrix eQTL tests for
association between each SNP and residual metabolite levels by
modeling the additive effects of genotypes in a least squares
model (Shabalin, 2012). It performs a separate test for each
metabolite–SNP pair and corrects for multiple comparisons by
calculating the false discovery rate (FDR).

Residuals of mRNA transcript abundances, after correction for
fixed effects (gender), random effects (genetic similarity matrix),
and covariates (17 top PCs explaining >1% variation; carcass
weight), were used to analyze eQTL by the same process used for
mQTL in our previous study (Ponsuksili et al., 2016). We defined
an eQTL as cis if an associated SNP was located within an area
<1 Mb from the probeset/gene.

Residuals of mRNA and metabolite levels were used for
pleiotropic association analyses to identify common regions.
Multivariate analysis of variance (MANOVA) between residuals
of metabolite and mRNA transcript levels and genetic marker
data was used to analyze pleiotropic associations.

Weighted Gene Co-expression Network
Analysis (WGCNA)
Residuals of mRNA and metabolite levels were also used
to construct co-expression/co-abundance networks using the
blockwise modules function of the weighted gene co-expression
network analysis (WGCNA) package in R (Langfelder and
Horvath, 2008; Ponsuksili et al., 2015). Module–trait associations
were estimated using the correlation between module eigengene
which is the first PC of module of transcripts and of
metabolites and plasma biomarkers. Correlations of metabolites
with biochemical-clinical traits and mRNA transcript levels
were estimated using Spearman coefficients and corrected
for multiple comparisons by calculating FDR. Networks of
genes and metabolites were visualized with Metscape 22

(Karnovsky et al., 2012).

NADP/NADPH Measurements
In order to validate the correlations found between transcripts
and metabolites of the pentose phosphate pathway (PPP),
NADPH concentration and NADP/NADPH ratio were

2http://cytoscape.org
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measured from liver tissues of a random subset of animals
(n = 27) using a NADP/NADPH assay kit (Abcam, Cambridge,
United Kingdom) according to manufacturer’s instructions.
Briefly, 50 mg of liver were washed and homogenized
with extraction buffer and then centrifuged to isolate the
NADPH/NADP+-containing supernatant. Supernatant was
filtered through a 10-kD spin column to remove enzymes that
may rapidly consume NADPH. An aliquot of supernatant was
heated at 60◦C for 30 min to decompose NADP+, cooled
on ice, and spun quickly to remove the precipitate. Another
aliquot of supernatant was not heated. Both aliquots were
reacted with NADP+ cycling buffer and enzyme mix for
5 min at room temperature to convert NADP+ to NADPH.
Solutions were then incubated with NADPH developer and
absorbance was measured at 450 nm after 1, 2, or 3 h. Amount
of NADPH (heated sample) and total NADP+ and NADPH
(unheated sample) were quantified from a NADPH standard
curve. In the same samples, expression levels of HDAC4
and G6PD, which is the first limiting enzyme of PPP, were
determined by qPCR validation. Three reference genes (RPL32,
RPS11, and ACTB) were used, and all measurements were
performed in duplicate.

Cell Culture and siRNA Transfection
Human HepG2 cells were cultured in DMEM containing
L-glutamine, 4.5 g/L D-glucose, and sodium pyruvate (Life
Technologies) supplemented with 10% FBS, 100 U/mL penicillin,
and 100 µg/mL streptomycin; the medium was refreshed every
2 days. Cell incubation was performed at 37◦C in a humidified
5% CO2 atmosphere. Synthetic siRNAs were pre-designed by
Qiagen. A total of four pre-designed siRNAs (Qiagen) per gene
were first tested. The most two effective siRNA for HDAC4
were used (Hs_HDAC4_3 FlexiTube siRNA and Hs_HDAC4_7
FlexiTube siRNA). The average values of negative non-silencing
control siRNA (AllStars Negative Control siRNA, Qiagen), mock,
and untreated were used as control. Transfection of siRNA was
carried out using the HiPerFect transfection reagent (Qiagen) at
150 nM final concentration. The complexes were added drop-
wise onto the cells, and the plates were then gently swirled to
ensure uniform distribution of the transfection complexes. Forty-
eight hours after siRNA transfection, cells were rinsed two times
with PBS. The transfected cells were harvested for monitoring
the effect of gene silencing. Three independent experiments
were conducted. We determined the level of knockdown of
HDAC4 and G6DP using quantitative PCR (qPCR) (Roche,
Germany) and normalized data using ß-actin as an internal
control. All statistical analyses were performed using two-tailed
Student’s t-tests.

RESULTS

The links between plasma biomarkers, hepatic metabolites,
transcripts, and genotypes obtained from some 300 animals
reared and performance tested under standardized conditions
were analyzed and integrated in this study. Therefore, networks
were obtained between metabolites and transcripts; both,

from single and weighted correlation network analysis
(WGCNA) of transcripts and metabolites (Langfelder and
Horvath, 2008; Ponsuksili et al., 2015). Genetic regulation
of metabolites (mQTL) was identified and integrated with a
genome wide association study of transcripts levels (eQTL)
(Ponsuksili et al., 2016). Pleiotropic effects of genetic regions
that concertedly regulate transcripts and metabolites were
considered. Finally, mQTL, eQTL, and phenotype of blood
biochemical-clinical were integrated. The experimental flow is
outlined in Figure 1.

Metabolite Profiling
In total, we examined 74 liver metabolites of 343 pigs
using mass spectrometry and found significant correlations
between metabolites (Figure 2). Most metabolites in the same
molecule class, such as amino acids or nucleotides, clustered
together. Metabolite set enrichment analysis of 74 metabolites
identified the highest enrichment for protein biosynthesis
(16/19), followed by gluconeogenesis (14/27) and glycolysis
(12/21) (Figure 3). Pathways which reached FDR < 5% are
listed in Supplementary Table S1 together with metabolites
within these pathways.

Biochemical-Clinical Traits and
Metabolites
Liver metabolites were used for correlation analysis with
approved plasma biochemical-clinical biomarkers (ALB; NH3;
BUN; GLU; IP; CREA; and cortisol levels). Three main classes of
metabolites with the same profile were identified using WGCNA
including carbohydrates, amino acids, and nucleotides. Plasma
GLU was found highly positively correlated with eigengene vector
of the carbohydrate module and negative correlated with amino
acid module (Figure 4A).

At a significance level of FDR < 5%, we identified 197
pairs of correlated hepatic metabolites and plasma biomarkers
(Supplementary Table S2). Correlations between metabolites
and biochemical-clinical traits ranged from 0.12 to 0.78.
Overall, there was divergent correlation of biochemical-clinical
biomarkers with carbohydrate- or amino acid-related metabolites
on the one hand and nucleotide metabolism on the other
hand. In particular, urea in liver was significantly correlated
with BUN in plasma (r = 0.78; p < 10−16), as was liver D-
glucose with plasma GLU (r = 0.45; p < 10−16). Significantly
negative correlations were found between plasma GLU and
cytidine monophosphate (CMP), inosine monophosphate (IMP),
and guanosine monophosphate (GMP) (r = 0.56–0.29; p< 10−8).
Plasma CREA was significantly negatively correlated with
many amino acids, including L-isoleucine, L-tyrosine, L-
leucine, L-threonine, L-valine, and L-asparagine (r = 0.13–
0.17; p < 10−3). In addition, liver 4-hydroxyl-L-proline was
significantly positively correlated with plasma CREA (r = 0.32;
p = 1 × 10−9). Interestingly, plasma cortisol was significantly
negatively correlated with liver D-glucose (r = 0.29; p = 1× 10−7)
and lactate (r = 0.28; p = 1 × 10−7) and positively correlated
with IMP (r = 0.35; p = 9.9 × 10−11) and CMP (r = 0.30;
p = 2.3× 10−8).
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FIGURE 1 | Outline of experimental flow and summary of main results.

Transcripts and Metabolites
Weighted gene co-expression network analysis was performed
using the transcriptome data from 24,904 liver transcripts.
Seven modules of co-expressed transcripts were highly correlated
with metabolite classes, as shown in Figure 4B. The co-
expressed transcripts in each module were assigned to three top
canonical pathways (Figure 4B). The amino acid module was
significantly positively correlated with immune or acute phase
response signaling, whereas the carbohydrate module was highly
enriched in cholesterol biosynthesis. We explored transcriptional
changes not only in terms of gene co-expression networks
but also at the level of individual genes. Pair-wise correlations
between the abundance of 24,904 liver transcripts and 74
metabolites in 297 individuals revealed 5643 metabolite–mRNA
pairs with correlation coefficients of r > |0.40|, corresponding
to p < 3.4 × 10−12 and FDR < 1.1 × 10−9. This covered
47 metabolites and 1099 annotated transcripts (1449 probesets).
Supplementary Table S3 shows the top 20 transcripts that
are correlated with the individual metabolites. A network-
based approach was used to demonstrate the top relationship
among transcripts and metabolites (Figure 5 and Supplementary
Table S3). The most dominant pathways in these top pairs
of metabolites and mRNA were related to PPP (D-ribose 5-
phosphate, amino-D-fructose 6-phoshate, D-sedoheptulose 7-
phosphate, D-erythrose 4-phosphate), purine (GMP, GDP, IMP),
and pyrimidine metabolism (UMP and CMP).

Highly negative correlation was found between
LOC100738008 (thyroid hormone-inducible hepatic protein,

THRSP) with IMP and CMP (r = −0.75 p < 10−16) followed
by HDAC4 with D-erythrose 4-phosphate (r = −0.69,
p < 10−16). Expression levels of HDAC4 were highly
positively correlated with CMP, IMP, and UMP. In contrast,
HDAC4 levels were strongly negatively correlated with
metabolites in carbohydrate metabolism, particularly PPP
metabolites, including D-fructose, D-glucose, glucose 6-
phosphate, D-erythrose 4-phosphate, fructose 6-phosphate,
fumaric acid, L-lactic acid, malate, D-ribose 5-phosphate,
D-sedoheptulose 7-phosphate, and succinic acid. In addition,
strong positive correlation was found between CMP and
NMRAL1 (r = 0.72; p < 10−16). Furthermore, transcript levels
of ARG2, followed by SLC22A7 (organic anion transporter),
XRCC6BP1, SLC38A1, and SLC7A2, were highly correlated with
most amino acids.

NADP/NADPH Measurements
Because PPP was dominantly linked with HDAC4, we measured
NADPH concentration and the ratio of NADP/NADPH, i.e., the
main products of PPP, as well as expression levels of HDAC4 and
G6PD, the key enzyme of PPP, in order to provide experimental
evidence of the link of transcripts and PPP activity. Using qPCR,
we found significant correlation between NADPH concentration
and expression levels of HDAC4 and G6PD. We confirmed
expression levels of HDAC4 obtained from the microarray by
qPCR (r = 0.93; p < 0.0001) while G6PD was not available on
the Affymetrix chip. Expression levels of HDAC4 were positively
correlated with NADP/NADPH (r = 0.78; p < 0.0001) and
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FIGURE 2 | Correlation heatmap for 74 metabolites measured in porcine liver. Within the heatmap, red shows a positive correlation and blue shows a negative
correlation.

negatively correlated with NADPH concentration (r = −0.71;
p < 0.0001). G6PD had a significant negative correlation
with HDAC4 (r = −0.44; p = 0.02) but positive correlation
with NADPH concentration (r = 0.61 and p = 0.0007) and
negative correlation with NADP/NADPH (r = −0.47; p = 0.012).
G6PD expression also was correlated with PPP metabolites,
including erythrose 4-phosphate, sedoheptulose 7-phosphate,
D-glucose 6-phosphate, and fructose 6-phosphate (r = 0.58–0.63;
p = 0.0012–0.0004).

HDAC4 Knockdown and G6PD
Expression
To further experimentally elucidate the link of HDAC4 and G6PD
expression, RNAi was used to knockdown HDAC4 expression
in vitro in the Human HepG2 cells line. Subsequently, relative
expression of G6PD was measured using qPCR. siRNA targeting
HDAC4 inhibited its expression to 70–80% relative to control
cells (p < 0.004). At the same time, G6PD showed increased
expression levels to 120–130% compare to control (p < 0.003)

leading to pronounced differential expression between HDAC4
and G6PD (p = 0.0002) (Figure 6).

Genome-Wide Association of
Metabolites (mQTL)
A genome-wide association study covering 48,909 SNP genotypes
and 74 metabolites revealed 180 significant mQTL that
corresponded to 30 metabolites and 173 SNPs at a threshold
of –log10 > 4 (Supplementary Table S4). Table 1 lists top 10
associations. Only hydroxy-L-proline reached the significance
threshold of FDR < 5% while other three metabolites
(citrate, cysteine, and beta-alanine) showed suggestive mQTL
at FDR ≤ 10%. Percent phenotypic variance explained by peak
markers for these four metabolites was 6.7–9.4%. Figure 7
shows associations of these four metabolites across different
pig chromosomes. The strongest association was for trans-4-
hydroxy-L-proline with SNPs at 39.9 Mb on chromosome 6
(p = 6 × 10−9) (Table 1 and Figure 7A). Markers at position
53 Mb of chromosome 18 showed significant association with
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FIGURE 3 | Enrichment analysis of 74 metabolites. Highest enrichment was found for protein biosynthesis (16/19) followed by gluconeogenesis (14/27) and
glycolysis (12/21).

beta-alanine (Figure 7B). For citric acid (Figure 7C) and cysteine
(Figure 7D), significant markers were mapped at various regions
in the genome.

mQTL, eQTL, and Transcript Correlated
Metabolites
Metabolic QTL regions contain numerous positional candidate
genes, depending upon the level of linkage disequilibrium. To
support and narrow down the number of candidate genes
in regions, we integrated our previous eQTL data from the
same pigs (Ponsuksili et al., 2016). Many SNPs associated with
metabolites were also associated with transcripts. In our previous
study, 6865 eQTLs were identified as cis, belonging to 1028
probesets (814 annotated transcripts) at FDR < 5% (p < 10−7).
Further, 687 SNPs that were associated with mRNA transcripts
(332 probesets) were associated with one of the 74 metabolites.

In addition, we considered only metabolites that significantly
correlated with mRNA transcripts at FDR < 5%. In total, 144
SNPs were associated with 44 metabolites and 69 metabolite-
correlated transcripts, representing 176 mQTL and eQTL
(Supplementary Table S5). Nineteen out of these 144 SNPs
on Sus scrofa chromosome (SSC) 6 associated with trans-
4-hydroxy-L-proline (p < 6.0 × 10−9–1.1 × 10−4). These
SNPs were simultaneously associated with transcript levels of
PRODH2 (p < 4.7 × 10−26–4.9 × 10−11). Moreover, trans-
4-hydroxy-L-proline was negatively correlated with PRODH2
(r =−0.40; p = 1.6× 10−12). Pleiotropic association analyses also
showed SNP-directed links between trans-4-hydroxy-L-proline
and PRODH2 with 91 SNPs on SSC 6 (FDR < 5%) (Figure 8A).

At 5% FDR, six SNPs at position 53.4–54.9 Mb on SSC
18 were associated with beta-alanine and transcript levels of
IGFBP-3 (Figure 8B). The correlation between beta-alanine and
transcript levels of IGFBP-3 was r = –0.17 and p = 2.8 × 10−3.
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FIGURE 4 | Correlation matrix of module eigengene values obtained for metabolites, transcripts, and plasma biomarkers. Weighted gene co-expression network
analysis (WGCNA) groups metabolites and transcripts into modules based on correlated abundances. Each of the modules was labeled with a unique color as an
identifier. (A) Three modules of metabolites including amino acids, carbohydrates, and nucleotides showing significant correlation with plasma biomarkers. (B) Seven
modules of co-expressed transcripts showing significant correlation with three modules of metabolites. Within each cell, upper values are correlation coefficients and
lower values are the corresponding p-values. Canonical pathways related to genes of these seven modules of co-expressed genes are given at the left side.

In other cases, SNPs located on SSC 7 position 20.5 Mb
associated with transcript levels of ALDH5A1 (p = 5.1 × 10−13)
were also associated with beta-alanine, although at FDR > 5%.
The correlation between ALDH5A1 and beta-alanine was
highly significant (r = –0.24; p = 2.7 × 10−5). The highest
correlation was found between transcripts levels of DPYS and
3-hydroxybutyrate (r = –0.45; p = 2.6 × 10−15). Three SNPs
located on SSC 4 position 35.6 Mb were associated with DPYS
(p = 6.6 × 10−11) and, at a lower significance level, with 3-
hydroxybutyrate (p = 1.9 × 10−3). As shown in Figure 7C,
significant markers associated with citrate mapped to various
regions in the genome. By combining eQTL, mQTL, and the
correlation of corresponding mRNAs and metabolites, we found
two interesting candidate genes in peak regions for citrate: STAB2
on SSC 5 position 84.3 Mb and MFHAS1 on SSC 15 position
63.7 Mb. Ten SNPs on SSC 15 position 63.7 Mb were associated

with bothMFHAS1 (p = 8.2× 10−12) and citrate (p = 3.4× 10−4).
Eight significant markers associated with STAB2 (p = 1.1× 10−7–
1.1 × 10−6) were also associated not only with citrate but also
with malate, succinate, pyruvate, and D-fructose (p = 8.9× 10−3–
4.4× 10−4). These metabolites, which mostly belong to the citric
acid cycle, were also negatively correlated with STAB2 (r = 0.21–
0.31; p = 2.4 × 10−4–5.3 × 10−8). Pleiotropic association
analyses of transcript levels of both STAB2 and MFHAS1 and
the metabolites of citrate, malate, succinate, pyruvate, and D-
fructose showed 47 markers located on SSC 5, with 15 reaching
a significance threshold of 5% FDR (Figure 8C). Another
interesting transcript wasRBBP9, which was negatively correlated
with ribose 5-phosphate (r = 0.16; p = 4.5× 10−3) and D-glucose
6-phosphate (r = 0.30; p = 2.9× 10−7). Transcript levels ofRBBP9
were associated with 6 SNPs that were also associated with both
ribose 5-phosphate and D-glucose 6-phosphate.
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FIGURE 5 | Correlation between mRNA transcript level and metabolites. The top metabolites with strong correlation to transcripts (r > ± 0.5, p < 10-16) are shown.
The red connections indicate positive correlation and blue color shows negative correlation. The level of correlation is demonstrated by the thickness of the line. The
metabolites are shown in green boxes and genes are in white boxes.

DISCUSSION

An improved understanding of non-genetic and genetic
regulation of metabolite levels facilitates their interpretation as
biomarkers for complex traits related to the metabolic status and
in terms of exogenous and endogenous impacts on phenotypes.
Moreover, identification of links between genetic polymorphisms
and transcript and metabolite levels contributes to the elucidation
of biomarkers that are the cause or consequence of changes in
metabolic pathways. However, interpretation of mQTL data is
demanding due to the fact that many metabolites are involved in

various pathways. Here, we investigated a set of metabolites—
mostly amino acids, carbohydrates, and nucleotides—in the
polar phase of liver extracts.

Correlation Between
Biochemical-Clinical Traits, Transcripts,
and Metabolites
To understand the relationship between gene expression,
metabolite levels, and biochemical-clinical traits using a
system genetics approach (Civelek and Lusis, 2014), we
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FIGURE 6 | Knockdown of HDAC4 by RNA interference reveals upregulation of G6PD. Two siRNAs siHDAC4_7 and siHADC4_3 were designed to target HDAC4
and transfected into human HepG2 cells in vitro. Relative mRNA expression was measured by qPCR 48 h after transfection. Expression was normalized to ß-actin
internal controls. Expression of G6PD was significantly increased relative to its expression in control cells and HDAC4 levels at 48 h post-transfection of siRNA. The
data represent means ± SD (n = 3).

integrated these data obtained from the same pigs by calculating
pair-wise correlations and WGCNA. We found significant
intra- and inter-class correlations between metabolites
especially amino acids and carbohydrate reflecting shared
biochemical pathways or regulatory interactions with immune
and cholesterol biosynthesis. The presence of significant
correlations between metabolites categorized and biological
function of co-expression transcripts presumably reflects
either multiple roles of metabolites or interactions between
metabolic pathways and immune system. Correlation of
metabolites with transcripts can be due to enzymes, receptors,
and signals of pathways encoded by corresponding genes or
regulatory factors affecting gene expression. We identified
many associations that show that the approach is suitable

TABLE 1 | Top 10 mQTL results.

Metabolite SNP_ID rs_number p-value SSC10_2 Base pair

Trans-4-
hydroxy-L-
proline

MARC0072609 6.04E-09 6 39960478

Citric acid DRGA0014885 9.31E-08 15 11247606

Cysteine ALGA0077013 rs80979261 6.46E-07 14 40660903

Beta_alanine ASGA0085673 rs81327629 1.17E-06 18 53448342

Ornithine ALGA0110895 rs81339246 2.50E-06 1

Fumaric acid ASGA0090623 rs81308979 5.20E-06 X 12973924

Malate ASGA0090623 rs81308979 6.21E-06 X 12973924

L-Lactic acid H3GA0017168 rs80890289 6.68E-06 5 99642466

6-Phospho-
gluconate

CASI0009941 rs330835858 6.91E-06 16 63944017

NADH ASGA0086564 rs81309680 7.96E-06 16

to identify biologically meaningful links between variation
at the genome, transcriptome, and metabolome level with
clinically relevant phenotypes. Thus, this approach has
the potential to detect novel biomarkers while considering
the contribution of exogenous and endogenous factors to
individual variation.

For example, D-erythrose 4-phosphate, fructose 6-phosphate,
D-ribose 5-phosphate, and D-sedoheptulose 7-phosphate,
which belong to PPP, were highly negatively correlated with
transcript levels of HDAC4. PPP is one of the fundamental
components of cellular carbohydrate metabolism and is
especially crucial for cancer cells (Kowalik et al., 2017). We
confirmed the association by measuring ratio of NADP/NADPH
and concentration of NADPH, for which PPP is the major
source, as well as expression of HDAC4 and G6PD. Here we
show an association of PPP and HDAC4 in healthy animals,
indicating a possible epigenetic-based link between the histone-
modifying HDAC4 and the PPP-driving G6PD. NMRAL1,
which encodes an NADPH sensor protein, is another transcript
negatively correlated with PPP metabolites and contributes to
regulation of the oxidative phase of PPP (Barcia-Vieitez and
Ramos-Martínez, 2014). In addition, knockdown of HDAC4
using RNAi was shown to be associated with increasing
G6PD expression.

The liver plays a central role in processes of glycogenesis,
glycogenolysis, and gluconeogenesis and thus glucose
homeostasis (Nordlie et al., 1999). Our results demonstrate
that plasma GLU is highly positively correlated with liver
D-glucose. This also matches the finding that transcript levels
of both HDAC4 and NMRAL1 are negatively correlated with
plasma GLU and liver D-glucose, with the latter two being
positively correlated.
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FIGURE 7 | Manhattan plots visualizing genome wide associations of SNPs and metabolites (mQTL). (A) Trans-4-hydroxy-L-proline, (B) beta-alanine, (C) citric acid,
and (D) cysteine. The dotted line depicts the genome-wide significance thresholds at negative log 10 > 4.

Many transcripts positively correlated with plasma
GLU and also correlated with liver metabolites like CMP
and IMP, including THRSP, SCD, and GPAM, most of
which are involved in lipid metabolism. Thyroid hormone
responsive protein (THRSP) is involved in lipogenic
processes and is associated with obesity (Ortega et al.,
2010) and differential intramuscular fat in cattle (Hudson
et al., 2015). Stearoyl-CoA desaturase (SCD) is a rate-
limiting enzyme in fatty acid biosynthesis and thus a
crucial control point of hepatic lipogenesis and lipid

oxidation. Glycerol-3-phosphate acyltransferase (GPAM)
encodes a mitochondrial enzyme that preferentially accepts
saturated fatty acids as substrates for glycerolipid synthesis.
Together, we show a link between liver metabolites and
transcripts involved in lipid metabolism and plasma
biochemical-clinical traits.

We found plasma cortisol levels were negatively correlated
with liver metabolites that are mostly involved in glucose
metabolism. Plasma cortisol levels also positively correlated
with liver metabolites like CMP, IMP, and GMP, which
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FIGURE 8 | Pleiotropic associations of metabolites and mRNAs. Manhattan plots of pleiotropic associations between metabolites and mRNA expression. The
pleiotropic association of these transcripts and metabolites (all traits) was significant (FDR ≤ 5%). (A) cis-eQTL of PRODH2 and mQTL for trans-4-hydroxy-L-proline
in close vicinity on chromosome 6, (B) cis-eQTL of IGFBP3 and mQTL for beta-alanine in close vicinity on chromosome 18, and (C) cis-eQTL of STAB2 on
chromosome 5 and MFHAS1 on chromosome 15 with mQTL for citrate, malate, pyruvate, succinate, and D-fructose. The x-axis indicates chromosome locations
and y-axis shows –log10 of the p-values of multivariate analysis of variance (MANOVA). The dashed line shows the levels of p-values which are significant at 5% FDR.

in turn correlated with transcripts involved in lipid
metabolism. This finding confirms our previous study,
where we demonstrated these linked biological functions
and molecular pathways using an integrative multi-omics
approach (Ponsuksili et al., 2012).

Administration of two nucleotides, CMP and UMP,
favors the entry of glucose in muscle and maintenance of
hepatic glycogen levels during exercise (Gella et al., 2008).
Interestingly, we found that cortisol-mediated homeostasis of
lipid and carbohydrate metabolism in liver was associated with
transcript levels of CREM. Abundance of CREM transcripts
negatively correlated with plasma GLU and liver metabolites
of carbohydrate metabolism (D-fructose, D-glucose, ribose
5-phosphate, erythrose 4-phosphate, sedoheptulose 7-phosphate,
and lactate) and, at the same time, positively correlated
with cortisol levels. CREM encodes a transcription factor
that binds to cAMP responsive elements to mediate signal
transduction during complex processes (Kirchhof et al., 2013;
Ella et al., 2014). Previous studies show that Crem knock-
out mice exhibit less anxious behaviors than wild-type mice
(Maldonado et al., 1999). CREM is involved in cancer (Passon

et al., 2012) and circadian regulation of cholesterol synthesis
in the liver (Acimovic et al., 2008). Together, our results link
hormone levels in plasma with metabolite and transcripts
levels in liver.

ARG2 encodes arginase, which is the enzyme of the final
step of the ornithine-urea cycle converting L-arginine to L-
ornithine and urea. In the present study, expression of ARG2 was
highly correlated with most amino acids, including L-isoleucine,
L-leucine, L-lysine, L-methionine, L-ornithine, L-proline, and L-
valine. These amino acids were also negatively correlated with
plasma CREA. Transcript levels of ARG2 also were negatively
correlated with plasma CREA and positively correlated with
plasma BUN. Arg2−/− mice have lower plasma CREA and
BUN levels after renal injury (Raup-Konsavage et al., 2017).
Our study shows that ARG2 plays a central role for most
amino acid metabolites in liver and is linked to biochemical
properties of blood.

Our study highlights the value of integrating data from
the same animals from various -omics levels, including
transcriptome, metabolome, and biochemical-clinical traits that
share biological pathways or functions. We found that epigenetic
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modifications mediated by HDAC4 may play a significant
role in PPP. Further, liver metabolites of the nucleotide
class linked transcripts involved in lipid metabolism and
cortisol. Finally, significant transcripts, such as ARG2, linked
most amino acids in liver and biochemical-clinical traits,
including CREA and BUN.

Comprehensive metabolite screens in the porcine model
have identified novel associations among transcript levels,
metabolites, and biochemical-clinical traits. Several studies
have addressed the genetic regulation of metabolites serving
as biomarkers for diseases (Illig et al., 2010; Wang et al., 2011;
McMahon et al., 2017; Zhang et al., 2017). However, most
studies have measured metabolites in blood serum or urine,
while few have focused on genetic regulation of metabolites
in other tissues, such as liver or fat (Ghazalpour et al., 2014;
Parks et al., 2015). In this study, we integrated genetic-regulated
liver metabolites, liver transcripts (mQTL and eQTL), and
plasma biochemical-clinical traits. We prioritized genes based
on cis-eQTL. For genome-wide significant loci associated
with trans-4-hydroxy-L-proline, we identified PRODH2 as
significantly associated with the same SNPs. In addition,
we demonstrated that these SNPs show pleiotropic effects
by simultaneously affecting trans-4-hydroxy-L-proline and
PRODH2 expression. Further, we identified PRODH2 as a
high-confidence candidate gene within a locus associated
with trans-4-hydroxy-L-proline, which in turn strongly
correlated with plasma CREA. Trans-4-hydroxy-L-proline
is metabolized by the liver and kidneys (Knight et al., 2009).
Proline dehydrogenase 2 (PRODH2) catalyzes the first enzymatic
step in the hydroxyproline catabolic pathway in liver and
kidney mitochondria. In addition, PRODH2 is reported
as a molecular target for treating primary hyperoxaluria
(Summitt et al., 2015). Mutations in PRODH2 cause human
hydroxyprolinemia, which hampers dehydrogenation of
hydroxyproline to delta1-pyroline-3-hydroxy-5-carboxylic acid
(Staufner et al., 2016).

In this study, we found a highly negative correlation between
DPYS and 3-hydroxybutyric acid and identified three SNPs
regulating both. Moreover, we found 3-hydroxybutyric acid
correlated with cortisol. DPYS encodes dihydropyrimidinase,
which is the second enzyme of the pyrimidine degradation
pathway. The facts that patients with dihydropyrimidinase
deficiency show mainly neurological and gastrointestinal
abnormalities (van Kuilenburg et al., 2010) and that
hydroxybutyric acid passes through the blood–brain barrier
into the central nervous system (Sleiman et al., 2016) provide
a possible link between DPYS and hydroxybutyric acid.
Our study provides further evidence for this relationship.
However, the link to cortisol as shown here is novel
and still unclear.

IGF-binding protein-3 (IGFBP-3) is the major carrier
protein for IGF-1 and plays a role in cancer, apoptosis, and
pathogenesis of ischemia reperfusion after liver injury (Lee
et al., 2014; Zhou et al., 2015; Wang et al., 2017). High
IGFBP-3 levels impact myogenesis and enhance muscle protein
degradation (Huang et al., 2016). Patients with non-alcoholic
steatohepatitis have increased levels of hepatic alanine (Kim

et al., 2017). In this study, we found for the first time a link
between genetic regulated alanine levels (mQTL) and IGFBP-
3 (cis-eQTL)x.

Genetically regulated metabolites belonging to the citrate
cycle (D-fructose, malate, succinate, pyruvate, and citrate)
share SNPs that also are associated with transcript levels
of STAB2 and MFHAS1 (cis-eQTL). The biological function
of both transcripts linked via common SNPs and to liver
metabolites is still unknown. Here, SNPs located on SSC
17 position 27.4 Mb were associated with transcript levels
of RBBP9 (cis-eQTL) and also with ribose 5-phosphate and
glucose 6-phosphate levels, both PPP metabolites. Glucokinase
phosphorylates glucose to glucose 6-phosphate in liver as a
substrate for several metabolic pathways, including PPP, which is
particularly important in rapidly dividing cells like cancer cells
for DNA replication. Further, previous studies have reported
retinoblastoma binding protein 9 (RBBP9) is a tumor-associated
protein in pancreatic neoplasia, affecting cell cycle control and
contributing to the TGF-β signaling pathway (Acimovic et al.,
2008; Vorobiev et al., 2012).

CONCLUSION

In summary, this study is the first to combine metabolomics,
transcriptomics, and genome-wide association studies in a
porcine model. Our results improve understanding of the
genetic regulation of metabolites which link to transcripts
and finally biochemical-clinical parameters. Further, high-
performance profiling of metabolites as intermediate
phenotypes is a potentially powerful approach to uncover
how genetic variation affects metabolic and health status.
Our results advance knowledge in areas of biomedical
and agricultural interest and identify potential correlates
of biomarkers, SNPs-metabolites, SNPs-transcripts, and
biochemical-clinical traits.
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Epigenetic changes are important for understanding complex trait variation and
inheritance in pigs that are also a valuable biomedical model for human health research.
Testis is the main organ for reproduction and boar taint in pigs; however, there have been
no studies to-date on adult pig testis epigenome. The main objective of this study was
to establish a genome-wide DNA methylation map of pig testis that would help identify
candidate epigenetic biomarkers and methylated genes for complex traits such as
male reproduction, fertility or boar taint. Reduced Representation Bisulfite Sequencing
(RRBS) was used to study methylation levels of cytosine in nine pig testis samples. The
results showed that genome-wide methylation status of nine samples overlapped greatly
and their variation among pigs were low. The methylation levels of promoter, exon,
intron, cytosine and guanine dinucleotide (CpG) islands and CpG island shores regions
were 0.15, 0.47, 0.55, 0.39, and 0.53, respectively. Cytosines binding to CpG islands
showed different methylation levels between exon and intron regions. All methylation
levels of CpG islands were lower than CpG island shores in different genic features.
The distribution of 12,738 differentially methylated cytosines (DMCs) within CpG islands,
CpG island shores and other regions was 36.86, 21.65, and 41.49%, respectively, and
was 0.33, 1.71, 5.95, and 92.01% in promoter, exon, intron and intergenic regions,
respectively. Methylation levels of DMCs in promoter, exon and intron regions were
significantly different between CpG islands and CpG island shores (P < 0.05). A total
of 898 genes with 2089 DMCs were enriched in 112 Gene Ontology (GO) terms.
Fifteen methylated genes from our study were associated with fertility or boar taint
traits. Our analysis revealed the methylation patterns in different genic features and CpG
island regions of testis in pigs, and summarized several candidate genes associated
with DMCs and the involved GO terms. These findings are helpful to understand the
relationship between DNA methylation and genic CpG islands, to provide candidate
epigenetic regions or biomarkers for pig production and welfare and for translational
epigenomic studies that use pigs as an animal model for human research.

Keywords: pig, testis, epigenome, DNA methylation, RRBS, DMC

Abbreviations: BGI, Beijing Genomics Institute; bp, base pair; cm, centimetre; CO2, Carbon dioxide; CpG, Cytosine
and guanine dinucleotide; CTCF, CCCTC-binding factor; DMC, Differentially methylated cytosine; DMR, Differentially
methylated region; FDR, False discovery rate; GO, Gene ontology; kb, kilo base pairs; kg, kilogram; Mb, mega base pair; mg,
milligram; ml, millilitre; NGS, Next generation sequencing; PCR, Polymerase chain reaction; RNA-Seq, RNA sequencing;
RRBS, Reduced representation bisulfite sequencing; SNP, Single nucleotide polymorphism; SSC, Sus scrofa chromosomes;
TSS, Transcription start site; WGBS, Whole genome bisulfite sequencing.
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INTRODUCTION

Pig is a valuable biomedical model of human obesity
and metabolic diseases due to the anatomic, biochemical,
pharmacological, pathological, and physiological similarities to
the human (Kogelman et al., 2013; Kogelman and Kadarmideen,
2016). The previous study showed that the key role of epigenetic
mechanisms in male gamete could widely affect human
reproduction (Stuppia et al., 2015). Testis is the reproductive
gland to produce sperm, so studying epigenetics of testis in
pigs could improve our understanding of epigenetic molecular
mechanisms related to male fertility and semen quality. Testis
epigenome is also essential for the study of inheritance of boar
taint in pigs – an unpleasant smell originating from cooking pork
meat from uncastrated male pigs that is inherited (Strathe et al.,
2013). Epigenetics is defined as changes in gene function that
are heritable and no change in DNA sequence (Wu and Morris,
2001). As a major epigenetic modification, DNA methylation has
been examined to be associated with growth (Jin et al., 2014),
immune response (Wang et al., 2017), and reproduction traits
(Bell et al., 2011) in pigs.

With high density of DNA methylation of cytosine and
guanine dinucleotides (CpGs), CpG islands play an important
role in gene regulation and transcriptional repression (Goldberg
et al., 2007). The genome around the CpG islands can be widely
affected by the methylation levels (Long et al., 2017). CpG
island shores are strongly related to a specific tissue and are
involved in modulating gene expression (Doi et al., 2009; Irizarry
et al., 2009b). Most variable regions in terms of methylation
such as methylation differences between tissues are CpG island
shores rather than CpG islands themselves (Irizarry et al., 2009a;
Hansen et al., 2011). DNA methylation in promoters is usually
restricted to genes in a long-term stabilization of repressed
states; therefore, promoter methylation can be a methylation
inhibitor of therapeutic targets to silence genes (Yang et al., 2014).
Most gene bodies are CpG-poor and extensively methylated, but
their methylation can be a potential therapeutic target. Since
DNA demethylation of the gene bodies could cause the down-
regulation, so DNA methylation inhibitors can down regulate
oncogenes and metabolic genes (Jones, 2012; Yang et al., 2014).

Reduced representation bisulfite sequencing (RRBS), based
on next generation sequencing (NGS) technology, has been
implemented to analyze patterns of DNA methylation by
reducing the portion of the genome digestion (Meissner et al.,
2005). Subsequently, reduced representation CpG sites are
sequenced after restriction enzyme MspI digestion in CpG
islands, promoters and enhancers (Smith et al., 2009). The RRBS
method primarily focuses on the enrichment of CpG-rich regions
rather than the non-CpG regions (Meissner et al., 2005). In
mammals, DNA methylation almost exclusively occurs at CG
dinucleotides with ratios of 70–80% throughout the genome
(Ehrlich et al., 1982; Law and Jacobsen, 2010). Therefore, the
information of CpG islands and gene-associated CpG sites can be
provided by RRBS method (Choi et al., 2015). Currently, RRBS
analysis of the pigs has been presented using intestinal tissue
(Gao et al., 2014), ovaries (Yuan et al., 2016), and neocortex, liver,
muscle and spleen (Choi et al., 2015).

Genome-wide DNA methylation patterns in porcine ovaries
and porcine prepubertal testis have been profiled (Yuan et al.,
2016; Chen et al., 2018), but to the best of our knowledge,
genome-wide NGS-based methylation studies on adult testis
epigenome in pigs have not been reported. The main objective
of this study was to develop a map of DNA methylome
for porcine testis using RRBS on nine testis samples of pigs
and then characterize their methylome using bioinformatics
methods. We characterized porcine adult testis epigenome
by reporting the methylation levels and patterns in genic
features and CpG islands for each testis sample. We identified
differentially methylated cytosine (DMC) in nine sample to
find DMC associated genes, and their involved Gene Ontology
(GO) terms and pathways in pigs. Finally, we compared our
results with other similar studies and provided a list of 15
candidate epigenetic biomarkers associated with male fertility
(e.g., infertility, litter size, number of stillborn, and so on), boar
taint (Skatole, Androstenone) and other complex traits linked
to testis of pigs.

MATERIALS AND METHODS

Pig Samples
Nine commercial purebred Landrace male pigs with similar
genetic background from nine different sire families were raised
by the same ad libitum feeding of same feed type in the same
farm/environment. All pigs were slaughtered at an age of around
22 weeks by carbon dioxide (CO2) submersion at a commercial
slaughterhouse (Danish Crown, Herning, Denmark), when they
reached the slaughter weight of 105 kg. Testis tissue samples were
retrieved by punch biopsy into the middle part of the testis with
an inner punch distance of 2 cm. Thus, all of the testis samples
were collected from the same part of the testis. Each sample
weighed approximately 150 mg. These pigs were not treated by
immunological castration or other castrating processes during
the feeding period, so they had intact testis with normal fertility
and viable sperms before or at slaughter.

Tissue samples were immediately immersed into the 1.5 ml
RNAlater (QIAGEN, Hilden, Germany). All samples were stored
at −20◦C. Restriction enzyme digestion, adaptor ligation, size
selection (40–220 bp fragments), bisulfite treatment, polymerase
chain reaction (PCR) amplification and library construction
were performed at BGI (Beijing Genomics Institute) Co., Ltd.,
Shenzhen, Guangdong, China. The nine samples were sequenced
by a paired-end 100 bp flow cell in an Illumina HiSeq 2500
machine (PE-100bp FC; Illumina, San Diego, CA, United States)
using RRBS method.

Quality Control, Read Alignment,
and Trimming
RRBS adapters and reads less than 20 bases long were trimmed by
Trimmomatic software (version 0.36) (Bolger et al., 2014). Then,
Bismark Bisulfite Mapper (version 0.19.0) (Krueger and Andrews,
2011) was applied to map clean reads to the porcine reference
genome (Sscrofa11.1/susScr11) downloaded from the UCSC
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website1, and the cytosine methylation status was determined
accordingly. Bismark Bisulfite Mapper includes three steps:
genome preparation, alignment using Bowtie 2 (version 2.3.3.1)
(Langmead and Salzberg, 2012) and methylation extractor.
Bismark methylation extractor outputs read coverage and
methylation percentage of detected methylated or unmethylated
reads at one genomic position. The numbers of methylated
and unmethylated CpG and non-CpG (CHG and CHH, H
representing A/C/T) sites were also calculated for each sample.
The read coverages lower than 10 counts were trimmed for
discarding the unqualified reads. If an experiment suffered from
PCR duplication bias, some clonal reads will impair accurate
determination of methylation. Thus, cytosines with a percentile
of read coverage higher than the 99.9th were also discarded
for each sample.

Genome-Wide DNA Methylation Levels
and Methylation Patterns
The relationships of genome-wide methylation levels with
densities of CpG islands, CpG island shores and genes were
calculated through regression and correlation analysis, and
counted by one mega base pairs (Mb) windows for each sample.
Similarities and differences of genome structure, CpG islands
and methylation level between genomic intervals were visualized
by R package RCircos (version 1.2.0) (Zhang et al., 2013).
Genic features were divided into promoter, exon and intron
regions along the porcine genome. Afterward, we localized CpG
islands and CpG island shores to these three genic features
and investigated methylation patterns of genic CpG islands.
Methylation patterns of CpG islands located at different genic
features were visualized by R package plot3D.

Differentially Methylated Cytosine (DMC)
and Annotation
Methylation levels of cytosines were analyzed by the R package
methylKit (version 1.4.0) (Akalin et al., 2012) based on
the Bismark coverage file. Genome-wide cytosine sites were
combined into one object to obtain the locations covered
in all nine samples. In this study, methylation level of nine
samples were considered as nine treatment levels in the logistic
regression model to calculate P-values, which were then adjusted
to Q-values using false discovery rate (FDR) to account for
multiple hypothesis testing (Storey and Tibshirani, 2003). Chi-
squared (χ2) test was used to determine the statistical significance
of methylation differences between samples. Finally, we matched
all DMCs into one file that included chromosomes, positions,
P-values, Q-values, associated genes and their genic features,
positions of CpG islands and CpG island shores and methylation
levels of nine samples.

In this study, we defined CpG islands as a region with at
least 200 bp, a GC fraction more than 0.5 and an observed-
to-expected ratio of CpG more than 0.6. CpG island shores
were then defined as regions of 2 kilo base pairs (kb) in length
adjacent to CpG islands (Gardiner-Garden and Frommer, 1987).

1http://hgdownload.cse.ucsc.edu/goldenPath/susScr11/bigZips/susScr11.fa.gz

The CpG and DMC annotation within gene components of
promoter, exon, intron and intergenic regions, and CpG islands,
CpG island shores and other regions was performed using R
package genomation (version 1.10.0) (Akalin et al., 2015). The
porcine RefSeq and CpG island database (Sscrofa11.1/susScr11)
for annotations were derived from the UCSC website2.

Gene Ontology (GO) Enrichment and
Pathway Analysis
GO enrichment and pathway analysis were analyzed in
DAVID (Database for Annotation, Visualization and Integrated
Discovery) Bioinformatics Resources 6.83. NCBI reference
sequences associated with DMCs were used in DAVID for the
species of Sus scrofa. Significant GO terms and pathways were
selected after filtering with P < 0.01. GO terms for the genes
associated with DMCs were visualized by R package GOplot
(version 1.0.2) (Walter et al., 2015).

RESULTS

Statistics of Alignment With Porcine
Reference Genome
In this study, bisulfite conversion efficiencies of these nine
samples ranged from 98 to 99%. The RRBS sequencing generated
approximately 59,328,166 read pairs per sample. On average,
58,604,646 read pairs survived the pre-processing step. The 49%
of the remaining read pairs was uniquely aligned to the porcine
reference genome. The reads pairs were located in 9,006,052
sites, which meant that the average depth of RRBS sequencing
reads and uniquely aligned reads were approximately equal to 13
and 6.5, respectively (Table 1). A total of 871,462,976 averaged
cytosines were analyzed from 28,944,768 uniquely aligned reads
pairs including methylated and unmethylated cytosines in
CpG/CHG/CHH contexts (Supplementary Table S1). It revealed
that a paired-end 100 bp read evenly contained 30 analyzed
cytosines. Additionally, a per-sample CpG methylation rate
ranged from 46 to 53%. The per-sample average percentages of
cytosine methylation rate in CHG and CHH sites were 0.89 and
0.63%, respectively (Table 1).

It was obvious that the number of CpG sites was different at
read coverage below 10, thus, the trimming criterion for read
coverage was set at 10 (Figure 1A). Figure 1B revealed that
the CpG site numbers of sample 1 and sample 9 were lower
than the average value, while sample 5 has more CpG sites after
trimming. Approximately, 9 million CpG sites were generated in
each sample with read coverage equal to 21 (Figure 1C). After
discarding coverage both lower than 10 and higher than 99.9th
percentile, the averaged read coverage increased from 21 to 34,
and the number of CpG sites reduced to a half (Figure 1C).
The details of read coverages and methylation rates in CpG
context of nine samples are listed in Supplementary Table S2. In
addition, the coverage distributions per cytosine of nine samples
after trimming are shown in Supplementary Figure S1. The

2http://genome.ucsc.edu/cgi-bin/hgTables
3https://david.ncifcrf.gov/
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TABLE 1 | Statistics of clean reads’ alignment with porcine reference genome (Sscrofa11.1/susScr11) and methylation rates in CpG, CHG, and CHH contexts.

Sample Clean read pair Uniquely aligned rate Number of
aligned site

Total number of
analyzed cytosine

Cytosine
methylation rate
in CpG context

Cytosine
methylation rate
in CHG context

Cytosine
methylation rate
in CHH context

1 16,505,578 46% 6,555,417 210,492,580 49% 0.91% 0.61%

2 93,817,089 51% 11,786,693 1,458,034,594 53% 0.99% 0.69%

3 38,026,074 47% 8,350,750 507,968,318 46% 0.84% 0.58%

4 75,769,839 51% 11,024,632 1,161,664,236 52% 0.87% 0.62%

5 57,267,890 51% 10,230,855 994,282,472 50% 0.68% 0.52%

6 68,607,455 46% 8,427,406 881,065,710 46% 0.89% 0.64%

7 85,068,927 49% 8,799,356 1,220,798,901 49% 0.92% 0.67%

8 75,438,276 51% 9,259,657 1,194,394,820 51% 0.92% 0.67%

9 16,940,690 47% 6,619,706 214,465,154 50% 0.95% 0.66%

Mean 58,604,646 49% 9,006,052 871,462,976 50% 0.89% 0.63%

SD 28,617,798 2.3% 1,798,552 456,951,421 2.4% 0.09% 0.05%

FIGURE 1 | Statistics of averaged coverage in CpG context. (A) Number of CpG sites at different coverage of original data. Note: Red line indicated the coverage at
10. (B) Number of CpG sites at different coverage of trimmed data. (C) Comparison of statistics of averaged coverage between original and trimmed data.

percent methylation distributions per cytosine of nine samples
after trimming were shown through histograms on the diagonal
of Supplementary Figure S2.

Genome-Wide DNA Methylation Status
The methylation levels against densities of CpG islands, CpG
island shores and genes are shown in Figure 2. The genome-wide
methylation status of nine samples showed the same trends and
they overlapped greatly, suggesting that the biological variation
between nine samples was low. Our analysis showed that the
global CpG methylation rate was similar among the nine samples
with Pearson’s correlation scores ranging from 0.95 to 0.98
(Supplementary Figure S2). The methylation levels varied across
the different chromosomes with higher methylation variation
in regions of low gene abundance, whereas lower methylation
variation in those of high gene abundance (Figure 2). The
regression coefficients of densities of genes, CpG islands and
CpG island shores on methylation level were −2.20 (P < 0.001),
59.04 (P < 0.001), and 73.65 (P < 0.001), respectively, on
average, over nine samples (Supplementary Figure S3 and

Supplementary Table S3). The correlations between methylation
levels and densities of genes, CpG islands and CpG island
shores were -0.12, 0.25, and 0.23, respectively (Supplementary
Table S3). These results suggested that genome hypomethylation
in CpG islands was beneficial for the promotion of gene
transcription, but their correlations were not so high.

Methylation Patterns of CpG Islands
Located at Different Genic Features
To investigate the interaction of methylation levels between genes
and CpG islands, we divided the porcine genome into three genic
features (promoters, exons, and introns) and then localized CpG
islands to these genic features. Methylation levels at different
genic features and CpG islands displayed variously, with lowest
values in the promoter regions. The methylation level were 0.15,
0.47, 0.55, 0.39, and 0.53 in the promoter, exon, intron, CpG
islands, and CpG island shores regions, respectively, on average,
over nine samples (Figure 3A). Comparisons of CpG islands
and CpG island shores at different genic features revealed that
the methylation levels of promoter regions were also the lowest.
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FIGURE 2 | Global methylation levels of nine samples was shown by lines of
in blue (track 1, 2, 3, 4, 5, 6 7, 8, and 9) from inside to outside. The
methylation levels and the densities of CpG islands by scatter plot in purple
color (track 10), and genes by histograms in red color (track 11) were counted
by 1 Mb windows. The labels of outside track represented the chromosomes
of the porcine genome.

Meanwhile, CpG island shores located in intron regions showed
slightly higher methylation levels than those located in exon
regions, while CpG islands showed significant higher methylation
levels (Figures 3B,C). Comparing with the methylation patterns
in three different genic features, methylation levels of CpG islands
were all lower than CpG island shores in the promoter, exon, and
intron regions (Figures 3D–F).

Differentially Methylated Cytosines
(DMC) and Annotations
A total of 1,244,043 CpG sites was covered in nine samples,
and the number of identified DMCs was 12,738 with the level
of Q < 0.01. Details of 12,738 DMCs with chromosomes,
positions, P-values, Q-values, associated genes, genetic features
and methylation levels are listed in Supplementary File S1.
Percentages of 1,244,043 CpG sites annotated within promoter,
exon, intron and intergenic regions were distributed as 5.33,
1.23, 3.80, and 89.64%, respectively. Additionally, the distribution
of 1,244,043 CpG sites annotation within CpG islands, CpG
island shores and other regions was 57.41, 14.71, and 27.88%,
respectively. However, the distributions were 0.33, 1.71, 5.95, and
92.01% within promoter, exon, intron, and intergenic regions,
respectively, when only considering the 12,738 DMCs. The
distributions of DMCs annotated within CpG islands, CpG
island shores and other regions were 36.86, 21.65, and 41.49%,
respectively (Figure 4). The percentages of DMCs associated
with CpG islands located in gene promoter, exon, intron,
and intergenic regions were 69.05, 53.67, 32.32, and 36.72%,
respectively. They were all higher than the DMCs associated

with CpG island shores with the values of 19.05, 13.76, 24.01,
and 21.66% in promoter, exon, intron, and intergenic regions,
respectively (Table 2).

Among 19 (n = 18 + 1) Sus scrofa chromosomes (SSC),
DMCs occupied SSC12 (12.1%) mostly, and nearly no DMCs
occupied SSC X and SSC Y with the percentages of 0.4 and
0.1%, respectively (Figure 5A). DMCs were located mostly in the
shorter genes and to lesser extent in the longer genes. Similarly,
most of DMCs were located in CpG islands with a short length
from 200 to 1000 bp (Figure 5B). Methylation levels of DMCs
in different genic features were different, with the lowest values
of CpG islands in the promoter regions. Student’s t-tests showed
that methylation levels of DMCs in promoter, exon and intron
regions were significantly different between CpG islands and
CpG island shores (P < 0.05), while those of intergenic regions
were extremely significant (P < 0.001) (Figure 5C). The averaged
methylation levels on different chromosomes and different
individuals were similar, with values close to 50% (Figure 5D).

Genes Associated With DMCs and Their
Gene Ontology (GO) Enrichment and
Pathway Analyses
We found that 976 DMCs were annotated within gene
components of 415 genes after matching 12,738 DMCs to the
porcine RefSeq database (Sscrofa11.1/susScr11) (Supplementary
File S1). Fifteen genes associated with DMCs found to be related
to fertility or boar taint traits were also reported by other studies
(Table 3). Genes ACACA, CYP21A2, CYP27A1, HSD17B2, LHB,
PARVG, and SERPINC1 were associated with boar taint, while
genes DICER1, PCK1, SS18, and TGFB3 were associated with pig
reproduction traits. In addition, the other five genes (CAPN10,
FTO, HSD17B2, IGF2, and SALL4) were found to be associated
with fertility traits in human, in which HSD17B2 also played a
role in boar taint (Table 3).

Hereafter, 898 genes (296 unique genes) associated with 2089
DMCs (704 unique DMCs) were enriched in 112 GO terms
(Supplementary File S2). The significant GO terms (P < 0.01)
are shown with the texts including 7 GO terms of biological
process, 5 GO terms of cellular component and 7 GO terms
of molecular function (Figure 6). Generally, as more genes
were enriched in the GO terms, the number of included DMCs
increased (Figure 6). Two GO terms (GO: 0005737 and GO:
0005634) in the cellular component contained the genes and
DMCs mostly, that were 80 and 78 enriched genes associated with
185 and 182 DMCs, respectively (Supplementary File S2). The
23 significant pathways (P < 0.01) are listed in Supplementary
Table S4. The most significant pathway was insulin signaling
pathway (P = 9.89 × 10−7) containing 16 genes namely PHKG2,
FASN, PHKG1, ACACA, IKBKB, FBP1, GYS1, PRKCZ, PRKAA2,
PRKAG1, PCK1, ACACB, PIK3R5, SREBF1, AKT2, and MAP2K1
(Supplementary Table S4).

DISCUSSION

Generally, the bisulfite conversion rates ranged from 90 to
100%, but some conversion rates varied between 99 and 100%
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FIGURE 3 | Methylation patterns in different genic features and CpG islands regions. (A) Methylation levels (in %) at different genic features, CpG islands and CpG
island shores. (B) Methylation levels (in %) of CpG islands at different genic features. (C) Methylation levels (in %) of CpG island shores at different genic features.
(D) Methylation levels (in %) of promoters in the CpG islands and CpG island shores. (E) Methylation levels (in %) of exons in the CpG islands and CpG island shores.
(F) Methylation levels (in %) of introns in the CpG islands and CpG island shores.

FIGURE 4 | CpGs and DMCs annotation by genes and CpG islands.

TABLE 2 | DMCs associated with CpG island regions located at different genic features.

Genic feature CpG island CpG island shore

Promoter Exon Intron Intergenic Promoter Exon Intron Intergenic

Number 29 117 245 4304 8 30 182 2538

Percentage 69.05% 53.67% 32.32% 36.72% 19.05% 13.76% 24.01% 21.66%
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FIGURE 5 | Methylation status of DMC in porcine chromosomes, genic features and CpG islands. (A) Number of DMC in different pig chromosome. (B) Number of
DMC in the different lengths of genes and CpG islands. (C) Comparison of methylation levels between CpG islands and CpG island shores at different genic feature
with Student’s t-tests. (D) Methylation levels of DMC in different pig chromosome.

depending on the commercial methods (Worm Ørntoft et al.,
2017). This study showed higher bisulfite conversion efficiencies
between 98 and 99%. A mapping efficiency of 38.3% was
previously reported in RRBS sequencing of lamb muscle with
fragment sizes of 50–150 bp, which increased to 61.4% with
fragment sizes of 150–250 bp (Doherty and Couldrey, 2014).
Similarly, our study revealed efficiency of 49% using 40–220 bp
sizes that were uniquely mapped to the porcine reference genome

(Table 1). It is consistent with 60% mapping rates using 110–
220 bp sizes in RRBS sequencing for porcine ovaries (Yuan
et al., 2016). We found that global CpG methylation levels
ranged from 45 to 53% (50% on average), which is similar with
other studies on pig methylation research using RRBS method
(Gao et al., 2014; Choi et al., 2015; Schachtschneider et al.,
2015), whereas non-CpG methylation levels (CHG and CHH
sites) were less than 1% (Table 1). This is reasonable because
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CpGs within poor-CpG regions are scarcely covered based on
restriction enzyme digestion by the RRBS method (Meissner
et al., 2005). Our results also showed 72% of CpG methylations
were mapped to CpG islands (57.41%) and to CpG island shores
(14.71%), that were higher than those of Choi’s study (Choi et al.,
2015). Whole genome bisulfite sequencing (WGBS) technology
can produce many reads in poorly assembled non-coding DNA
regions, resulting in lower mapping efficiency than RRBS method
(Doherty and Couldrey, 2014). However, RRBS data sets have
a somewhat lower average methylation level than WGBS data
sets, because large stretches of repeat regions in non-coding DNA
regions are generally highly methylated (Bird, 2002). Practically,
some CpG sites had low coverage (1∼ 10) or are not even
sequenced by the WGBS method, although all sites should be
theoretically covered (Sun et al., 2015). Thus, average read depths
of RRBS sequencing were higher than 10 in this study (Table 1
and Supplementary Table S1) and in other studies (Zhao et al.,
2016; Carmona et al., 2017). Overall, RRBS method remained a
better choice when considering sequencing cost, read coverage
and sufficient methylation information (Choi et al., 2015).

In many cell types of different species, percentages of
methylations would have a bimodal distribution, which denoted
that the majority of bases has either high or low methylation
to indicate a site specificity (Ehrlich et al., 1982). This bimodal
pattern was a possible function to keep the factor-mediated basal
transcription profile of the preimplantation embryo (Cedar and
Bergman, 2012). The CpG methylation percentage distribution
would be measured with two peaks at 0 and 100%, when a large
number of the CpG sites were sequenced in either unmethylated
or fully methylated status (Falckenhayn et al., 2013; Zhang et al.,
2017). Bimodal distribution is also an important metric to help
reveal whether the experiments suffer from PCR duplication
bias. If there is a high degree of clonal reads from PCR,
some reads will be asymmetrically amplified and read coverage
distribution will have a secondary peak correspondingly on the
right side. This situation will impair accurate determination of
percent methylation scores for those regions. Hence, this study
discarded cytosines with a percentile of read coverage higher than
99.9th, and then showed the reasonably bimodal distribution
(Supplementary Figure 2) in consistency with other results using
different tissues in pigs (Choi et al., 2015).

Not only did DNA methylation have a correlation with
gene transcription, but also the presence of methyl moieties
inhibited gene expression in vivo (Razin and Cedar, 1991). It
was suggested by our study that the regression coefficients and
correlation coefficients of genes and methylation levels were
both negative, ranging from −1.97 to −2.46 and from −0.10 to
−0.14, respectively (Supplementary Table S3). In practice, the
correlation coefficient between gene expression and methylation
level was approximately 0.3, negative (Bock, 2012). Methylated
genes might be associated with genomic region-specific DNA
methylation patterns (Raza et al., 2017), and therefore, this
study investigated promoter, exon and intron regions along the
porcine genome and localized CpG islands to these genic features.
The interactions of methylations between three genic features
and CpG islands suggested that methylation levels of promoter
regions were lowest in both CpG islands and CpG island shores

(Figure 3A). It was well known that DNA methylation in a
promoter was correlated with the transcription of a target gene
(Niesen et al., 2005). Methylation levels of CpG islands were
lower than CpG island shores in the promoter, exon and intron
regions in this study (Figures 3D–F). These results demonstrated
that CpG islands located in different genic features displayed
effects on the methylation patterns of the associated genes.
Irizarry et al. (Irizarry et al., 2009b) revealed a strong relation
between methylations in CpG island shores located within 2 kb
of an annotated transcription start site (TSS) and expression
of associated genes. Meanwhile, CpG islands located in exon
regions showed different methylation level with those located
in intron regions (Figures 3B,C), which suggested that exons
had an effect on the methylation patterns of CpG islands. Chen
et al. (2018) has profiled methylation patterns for porcine testis
at three prepubertal age points (i.e., 1, 2, and 3 months). They
found that the methylation levels of promoters and CpG islands
decreased as the pig gradually matured, while methylation levels
of gene body kept stable (Chen et al., 2018). It was suggested
that lower methylations in promoters could be a specific pattern
for testis tissue in adult pig, because spermatogenic cells tended
to be activated for the increasing gene expression requirement
at this stage. Additionally, Yuan et al. (2017) revealed that
CpG islands show lower methylation levels compared to their
CpG island shore regions in porcine hypothalamus-pituitary-
ovary axis. Methylation levels in introns, exons, and promoters
gradually decreased both in CpG islands and CpG island shores
(Yuan et al., 2017). The methylation patterns of hypothalamus-
pituitary-ovary axis were similar to our results except that exons
located in CpG island shores of this study showed slightly higher
methylations than those located in CpG islands (Figures 3B,C).

The percentages of DMCs annotation within exon, intron
and intergenic regions increased, whereas DMCs annotation
within promoter region decreased dramatically, when comparing
DMCs with CpGs annotation within genic features. Similarly,
the percentage of DMCs annotation within CpG island shores
increased, while DMCs annotation within CpG islands decreased
(Figure 4). As Maunakea et al. (2010) found that the methylated
CpG islands in 5′ promoter regions were less than 3%, DMCs
found in promoter regions were also less than 1% in this study
(Figure 4). The most common promoter type in the vertebrate
genome was annotated gene promoters with the CpG islands and
they occupied at above 70% (Saxonov et al., 2006). We found
that approximately 69% of DMCs associated with CpG islands
were located in promoter regions (Table 2). Liu et al. (Liu et al.,
2017) reported that the proportions of hypermethylated CpG
sites located in CpG islands, CpG shores and other locations were
25.49∼34.23%, 21.57∼40.75%, and 25.02∼52.94%, respectively,
during different stages of human embryonic stem cells. Genes
that contained differentially methylated regions (DMRs) in their
first intron were more than the genes that contained DMRs in
their promoter and their first exon (Anastasiadi et al., 2018),
which are the same trend as this study (Supplementary File S1).

In humans, more than 80% of sperm cells were mainly
composed in the testis (Bellve et al., 1977). The epigenetic
modifications of germ cells occurring in the meiotic and post-
meiotic phases of spermatogenesis are crucial for embryonic
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FIGURE 6 | Go term analysis of genes associated with DMCs. Note: Yellow line in the left panel meant the threshold of significant GO terms (P < 0.05).

development after fertilization (Marques et al., 2010). Due to
the failure of re-methylation in spermatogonia or alterations
to methylation maintenance in spermatocytes, sperm cells
or the mature sperm cells, the abnormal DNA methylation
patterns were observed in the infertile men (Cui et al., 2016).
Therefore, the methylation patterns in genic features and CpG
islands of pig testis were investigated to reveal significant
cytosines and associated genes for epigenetic molecular
mechanisms related to male fertility. Langenstroth-Röwer et al.
(2017) used the marmoset monkey as the human model for
testicular methylation study. They found that cytosines were
predominantly unmethylated at regulatory regions of H19, LIT1,
SNRPN, MEST, and OCT4 in the germ cells. Meanwhile, DNA
methylation pattern of H19, MEST, DDX-4, and MAGE-A4
did not change in germ cell fractions (Langenstroth-Röwer
et al., 2017). The genome-wide promoter methylation profiles
identified 367 testis and epididymis-specific hypomethylated
genes and 134 hypermethylated genes, many of them were
involved in the GO terms of male reproduction (Wu et al., 2013).
Compared with the fertile males, it was reported that a low
methylation or unmethylation pattern at the H19 was associated
with hypermethylation at the MEST and a reduced sperm quality
in the oligospermic patients (Niemitz and Feinberg, 2004).
DMRs located in the upstream of TSS of the H19 harbored
several CCCTC-binding factor (CTCF) binding sites (Takai,
2001). However, CTCF binding to the maternal unmethylated
DMR could prevent IGF2 from accessing the common enhancers,
and thus silencing its expression (Marques et al., 2010). Rajender
et al. (2011) summarized that genes MTHFR, PAX8, NTF3,
SFN, HRAS, JHM2DA, IGF2, H19, RASGRF1, GTL2, PLAG1,
D1RAS3, MEST, KCNQ1, LIT1, and SNRPN were associated
with male infertility. Our study also identified the DMCs located
in the intron regions of IGF2 (Table 3), which was involved in
GO terms of positive regulation of cell division (GO: 0051781),
extracellular space (GO: 0005615), and growth factor activity
(GO: 0008083) (Supplementary File S2).

Our study revealed the methylation patterns in different genic
features such as promotor, exon, intron and intergenic regions, as

well as CpG islands, CpG island shores regions. Furthermore, our
study reported many candidate genes harboring DMCs and the
involved GO terms of testis in pig. Until now, several studies have
concluded the important genes associated with male fertilities
using SNP array, RNA-Seq datasets for humans (Table 3),
however, epigenetic studies in pigs relating to male fertility are
rare. This study has reported for the first time, DNA methylome
(epigenomic) architecture in adult pig testis for study of male
fertility in pigs. These results will also be useful for the study of
boar taint in pigs associated with sensory meat quality, as boar
taint is inherited and shows complex gene regulation patterns
(Strathe et al., 2013; Drag et al., 2018). Since this study is based
on sequence-level resolution of transmittable epigenetic changes,
we believe it may also contribute to understanding and capturing
part of the genetic variation that are not captured by SNP arrays
(considered missing or “missing heritability”) in genome-wide
genomic prediction studies. As pig is a valuable biomedical model
of human, the findings of this study are also very helpful to
understand the relationship between DNA methylation and genic
CpG islands, and provide candidate epigenetic biomarkers for the
translational studies in human research.

CONCLUSION

This is the first study to report catalog of adult pig testis
epigenome by developing a genome-wide DNA methylation
map with the use of RRBS technology. We found that the
methylation rates were lowest in promoters (0.15) and highest
in introns (0.55). Cytosines binding to CpG islands showed
different methylation patterns between intron and exon regions.
Methylation levels of CpG islands were lower than CpG island
shores in different genic features. We detected 12,738 DMCs
in total. They distributions of DMCs within CpG islands,
CpG island shores and other regions were 36.86, 21.65, and
41.49%, respectively. The distributions of DMCs were 0.33,
1.71, 5.95, and 92.01% in promoter, exon, intron and intergenic
regions, respectively. Fifteen genes with DMCs were associated
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with human fertility (ACACA, CYP21A2, CYP27A1, HSD17B2,
LHB, PARVG, and SERPINC1), pig reproduction (DICER1,
PCK1, SS18, and TGFB3) and boar taint traits (CAPN10, FTO,
HSD17B2, IGF2, and SALL4). These findings on genome-wide
epigenetic signatures will be useful to understand testis-related
trait inheritance in pigs (e.g., male fertility, semen quality, boar
taint) for pig production and welfare. This study, based on
sequence-level resolution of epigenetic changes, also contributes
to understanding and capturing part of the genetic variation that
are considered missing (“missing heritability”) in genome-wide
genomic prediction studies. Since pigs are useful as an animal
model for human research, epigenetic architecture of pigs would
help in translational research.
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FIGURE S1 | Histograms of log10 of read coverage per CpG site.
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FIGURE S3 | Regression of densities of genes, CpG islands and CpG island
shores on methylation levels from one sample, all counted by 1 Mb windows.

TABLE S1 | Total number of aligned cytosine methylation in different contexts.

TABLE S2 | Statistics of coverage and methylation rates in CpG context.

TABLE S3 | Regression and correlation analysis of densities of genes, CpG islands
and CpG island shores on methylation levels, all counted by 1 Mb windows.

TABLE S4 | Significant pathways (P < 0.01).
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Postnatal development and maturation of pineal gland is a highly dynamic period
of tissue remodeling and phenotype maintenance, which is genetically controlled by
programmed gene expression regulations. However, limited molecular characterization,
particularly regarding long noncoding RNAs (lncRNA), is available for postnatal
pineal at a whole transcriptome level. The present study first characterized the
comprehensive pineal transcriptome profiles using strand-specific RNA-seq to illustrate
the dynamic mRNA/lncRNA expression at three developmental stages (infancy, puberty,
and adulthood). The results showed that 21,448 mRNAs and 8,166 novel lncRNAs
were expressed in pig postnatal pineal gland. Among these genes, 3,573 mRNAs
and 851 lncRNAs, including the 5-hydroxytryptamine receptors, exhibited significant
dynamic regulation along maturation process, while the expression of homeobox
genes didn’t show significant differences. Gene Ontology analysis revealed that the
differentially expressed genes (DEGs) were significantly enriched in ion transport and
synaptic transmission, highlighting the critical role of calcium signaling in postnatal
pineal development. Additionally, co-expression analysis revealed the DEGs could be
grouped into 12 clusters with distinct expression patterns. Many differential lncRNAs
were functionally enriched in co-expressed clusters of genes related to ion transport,
transcription regulation, DNA binding, and visual perception. Our study first provided
an overview of postnatal pineal transcriptome dynamics in pig and demonstrated that
dynamic lncRNA regulation of developmental transitions impact pineal physiology.

Keywords: pineal gland, pig, long noncoding RNA, postnatal development, transcriptome

Abbreviations: DAVID, database for annotation, visualization, and integrated discovery; DGE, differentially expressed gene;
GO, gene ontology; lincRNA, long intergenic noncoding RNAs; lncRNA, long noncoding RNAs; MCL, Markov clustering;
PCA, principal component analysis; RPKM, reads per kilobase per million reads; RT-qPCR, real-time quantitative PCR; TF,
transcription factor; Y, Yorkshire.
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INTRODUCTION

The mammalian pineal gland is a neuroendocrine transducer
whose main and most conserved function is converting
photoperiodic information into the nocturnal hormonal signal
of melatonin synthesis and secretion (Maronde and Stehle,
2007). Melatonin regulates a variety of circadian and circannual
physiological processes, such as the sleep-wake cycle, feeding,
and cognition rhythms (Leon et al., 2004; Acuna-Castroviejo
et al., 2007). Recent studies have revealed that melatonin also
regulates many general physiological functions, including lipid
and glucose metabolism, immune function, and carcinogenesis
(Carrillo-Vico et al., 2005; Jha et al., 2015; Trivedi et al., 2016).
Exploring pineal development will contribute to an improved
understanding of its functions and mechanisms of regulation.
The pineal gland develops as a tubular evagination from
the dorsal diencephalon between the habenular and posterior
commissures in the embryonic brain. The pineal gland displays
a phase of rapid cell proliferation during the prenatal periods.
However, cell proliferation activity terminates rapidly (Sapède
and Cau, 2013), and pinealoblasts differentiate into pinealocytes
during the two first postnatal weeks in rats (Calvo and Boya,
1983). After postnatal maturation, the parenchyma of the pineal
gland is composed primarily of pinealocytes and interstitial cells
(Moller and Baeres, 2002).

Pineal development is a complicated and dynamic process that
is precisely genetically controlled by the programmed expression
of gene cascades and TFs. Several TFs responsible for the
establishment and maintenance of the pineal phenotype have
been identified, such as the homeobox TFs PAX6, LHX9, and
OTX2 (Rath et al., 2013). However, gene abundance represents
only part of the complexity of the transcriptome, as it has
emerged that lncRNAs, which are a subgroup of transcripts that
are longer than 200 nucleotides (nt) yet have limited protein-
coding potential, have recently emerged as pivotal regulators
in governing various developmental processes (Batista and
Chang, 2013). For example, lncRNAs could regulate skeletal
muscle differentiation during myogenesis, such as MyoD and
H19 (Dey et al., 2014; Gong et al., 2015a). LncRNAs show
precisely spatiotemporal expression patterns and regulate specific
neuronal functions in brain (Briggs et al., 2015). Until now,
the expression dynamics of mRNAs and lncRNAs involved in
pineal gland have not been extensively explored. Describing the
transcriptome profiles of the pineal gland through development
may improve our understanding of the molecular pathways and
regulatory mechanisms that are responsible for postnatal pineal
development in mammals.

The pig (Sus scrofa) not only is an important agricultural
animal but also serves as an attractive model organism for
biomedical research, due to the similarity of its organ size,
anatomy and physiology, and developmental processes with
those of humans (Groenen et al., 2012; Prather, 2013; Niu
et al., 2017; Yan et al., 2018). Hence, we can understand the
developmental patterns of the pineal gland in mammals by using
the pig as a model. In this study, we characterized high-resolution
pineal transcriptome profiles in Y pigs using strand-specific total
RNA sequencing, which allowed us to comprehensively illustrate

the dynamic characteristics and functions of mRNAs/lncRNAs
across three postnatal developmental stages: infancy (30 days,
Y30), puberty (180 days, Y180), and adulthood (300 days,
Y300). These results establish a general overview of the
pineal transcriptome dynamics and pave the road for further
investigations of the underlying functions and regulatory
mechanisms of lncRNAs governing postnatal development of the
mammalian pineal gland.

MATERIALS AND METHODS

Sample Collection
Nine Y pigs with the same genetic background at postnatal
days 30, 180, and 300 (three replicates per stage) were obtained
from the Tianjin Ningheyuan Swine Breeding Farm (Tianjin,
China) and slaughtered during daytime, between 10:00 and 14:00
Beijing time. The pineal sample of each pig was collected and
immediately frozen in liquid nitrogen until RNA isolation. All
animal procedures were performed according to the protocols
of the Chinese Academy of Agricultural Sciences and the
Institutional Animal Care and Use Committee.

Transcriptome Library Preparation and
Sequencing
Total RNA from pineal glands was isolated using TRIzol reagent
(Invitrogen, Carlsbad, CA, United States) according to the
manufacturer’s directions. The purified RNA was treated with
DNase I (Qiagen, Beijing, China). The quantity and purity of the
RNA samples were assessed using an Agilent 2100 Bioanalyzer
(Agilent Technologies, CA, United States). Ribosomal RNA was
depleted using the Epicentre Ribo-zeroTM rRNA Removal Kit
(Epicentre, Madison, WI, United States). Next, strand-specific
RNA-seq libraries for paired-end sequencing were prepared using
the NEBNext R© UltraTM Directional RNA Library Prep Kit for
Illumina R© (NEB, United States) according to the manufacturer’s
instructions. Libraries were sequenced on an Illumina HiSeq
4000 platform to generate 150 bp paired-end reads (Novogene
Bioinformatics Technology Co. Ltd., Tianjin, China).

Transcriptome Assembly
The raw reads were firstly subjected to remove adaptor sequences
and low-quality reads using custom scripts. The processed clean
reads from each sample were then mapped to the reference
genome of Sus scrofa (v11.1) using TopHat2 (v2.1.0) (Trapnell
et al., 2009) with known gene annotation, parameters were
set for strand-specific mapping (library-type “fr-secondstrand”).
The reference genome sequence and gene annotation files were
downloaded from the Ensembl database (release 90)1. After
mapping, duplicate reads were removed using the rmdup tool in
the samtools package (Li et al., 2009) to limit the influence of PCR
artifacts. The remaining unique mapped reads of each sample
were assembled into transcripts independently using Cufflinks
(v1.3.0) (Trapnell et al., 2012) with the assistance of known
annotations. Finally, assembled transcripts from each sample

1http://asia.ensembl.org/index.html
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FIGURE 1 | Pipeline for the identification of novel lncRNAs.

were merged into a consensus transcriptome using Cuffmerge
(v1.0.0) (Trapnell et al., 2012).

Identification of lncRNAs
We identified novel lncRNAs in the pig pineal transcriptome using
similar methods to those reported in our previous studies (Tang
et al., 2017; Yang et al., 2017). A series of stringent filtering steps
were utilized (Figure 1) as follows: (i) Single-exon transcripts
and the transcripts less than 200 bp were removed to avoid
unreliable transcripts; (ii) We filtered transcripts overlapping
(>1 bp) with known gene models deposited in the Ensembl
database; (iii) Coding Potential Calculator (CPC, v0.9-r2) (Kong
et al., 2007) and Coding-Non-Coding Index (CNCI, v2) (Sun
et al., 2013) programs were used to evaluate the coding potential
of each transcript. Transcripts predicted to have coding potential
(score > 0) by any of these two programs were filtered out; (iv) The
transcripts whose corresponding translated protein sequences had
a known protein-coding domain in the Pfam database (version
30.0) were removed by PfamScan (v1.3) (Finn et al., 2014); and
(v) BLASTs (BLAST 2.2.26+) was used to remove transcripts
with similarity to known proteins in the UniRef90 database
(UniProt Consortium, 2015) with an E-value cutoff of 10−5.
Transcripts remaining after the stringent filtering described above
were considered putative lncRNAs.

Expression Analysis
The raw read counts for each gene (mRNA/lncRNA) were
calculated using HTSeq-count (Anders et al., 2015). For genes
with multiple transcripts of different lengths, the longest
transcript was selected to compute the gene expression level,
measured as RPKM. Genes with RPKM ≥ 0.1 in at least one
sample were defined as expressed genes. Highly expressed genes
were defined as genes with a maximum RPKM ≥ 50 across
the samples (Wang et al., 2014). The edgeR (exact test for
negative binomial distribution) Bioconductor package (Robinson
et al., 2009) in R software was used to identify DEGs between
developmental stages. Gene expression normalization among
samples to adjust for different sequencing depths across samples
was performed using edgeR (Robinson et al., 2009). After
estimating the dispersion of each gene, significantly DEGs were
identified using cutoffs of false discovery rate (FDR) ≤ 0.05
and | log2 FC| ≥ 1 according to the edgeR’s recommendation
(Robinson et al., 2009) and previous studies (Xue et al., 2013;
Vanlandewijck et al., 2018).

Co-expression Network Construction
Normalized, non-log transformed gene expression data (RPKM
values) of all the differentially expressed mRNAs/lncRNAs were
imported into Biolayout Express (3D) (Theocharidis et al., 2009).
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A pairwise gene-to-gene Pearson correlation matrix was
calculated as a measure of similarity between genes. Based on a
Pearson correlation coefficient cut-off threshold of r ≥ 0.90, a
weighted, undirected co-expression network of mRNA-lncRNA
interactions was generated. In this network, each node represents
one gene (mRNA or lncRNA) and the edge between two
nodes represents the Pearson correlation coefficients above the
selected threshold. The network was clustered into groups
of mRNAs/lncRNAs sharing similar expression patterns using
the MCL algorithm (Enright et al., 2002), which has been
demonstrated to be one of the most effective graph-based
clustering algorithms available. To control the size of the clusters,
the inflation coefficient was set to 2.4 and each cluster must
contain at least 30 genes. This network was checked manually
and clusters with no particular expression pattern were removed.
Clusters were named according to their relative size, the largest
cluster being designated Cluster 1.

Functional Enrichment Analysis
Gene ontology enrichment analysis were performed by the
DAVID website (v6.72) (Huang et al., 2008) with a background
set of human orthologues included in this study.

Real-Time Quantitative PCR (RT-qPCR)
The total RNA of each sample was reverse transcribed into cDNA
using a RevertAid First Strand cDNA Synthesis Kit (Thermo,
Waltham, MA, United States) according to the manufacturer’s
instructions. The RT-qPCR reaction solution was comprised of
10 µl of 2× SYBR Premix Ex Taq (Takara, Dalian, China), 0.4 µl
of each primer, 1 µl of cDNA, 0.4 µl of Dye II, and sterile water
to a volume 20 µl. The RT-qPCR cycling parameters were as
follows: 95◦C for 5 min, followed by 40 cycles at 95◦C for 5 s
and 60◦C for 1 min. Next, a dissociation program was carried
out at 95◦C for 15 s, 60◦C for 1 min, and 95◦C for 15 s. Each
reaction was performed in triplicate. The 2-11Ct method was
used to determine the gene expression level. The porcine GAPDH
gene was selected as an internal control. All primer sequences are
listed in Supplementary Table S1.

2http://david.abcc.ncifcrf.gov/

RESULTS

Overview of the Sus scrofa Pineal
Transcriptome Data
To identify changes in mRNA/lncRNA expression during
postnatal pineal gland development, we generated RNA-seq
libraries from the pineal glands of female Y pigs at infancy
(Y30), puberty (Y180), and adulthood (Y300). Three biological
replicates were evaluated per stage. Utilizing strand-specific RNA-
seq of total RNA, a total of 1.05 billion clean sequencing reads
(150 bp paired-end) were obtained after discarding low-quality
and adaptor reads, corresponding to an average of 116.4 million
sequence reads per sample. Of the clean reads, 79.9–90.0% could
be mapped to the pig reference genome (version 11.1) by the
Tophat2 pipeline (Trapnell et al., 2009) (Table 1). After removing
duplicate reads, the remaining uniquely mapped reads were used
for further lncRNA identification and gene expression analyses.

Identification and Characterization of
lncRNAs in the Pineal Transcriptome
After reconstructing the transcriptome using Cufflinks and
Cuffmerge (Trapnell et al., 2009), we identified putative lncRNAs
in the pineal transcriptome using a pipeline (Figure 1) similar to
those reported in our previous studies (Tang et al., 2017; Yang
et al., 2017). Eventually, a total of 8,166 multi-exonic lncRNA
transcripts corresponding to 4,456 genomic loci were obtained
(Supplementary Table S2). According to their genomic location,
most (6,505) were lincRNAs located in intergenic regions, while
1,129 were lncRNAs transcribed from the antisense strand of
the reference coding transcript, and the remaining 532 lncRNAs
overlapped with middle coding exon regions.

We next analyzed the features of these newly identified
lncRNAs, namely novel lncRNAs. As expected, the novel
lncRNAs contained fewer exons (3.1 exons on average) than
mRNAs (11.6 exons on average; P < 2.2e − 16) (Figure 2A).
The average transcript length of these lncRNAs (2235.2 nt)
was significantly shorter than that of mRNAs (3296.1 nt;
P < 2.2e − 16) (Figure 2B). Moreover, the expression levels of
the lncRNAs (average RPKM = 2.7) were also significantly lower
than those of the mRNAs (average RPKM = 10.9; P < 2.2e − 16)

TABLE 1 | Summary of sequencing metrics and read mapping for the RNA-seq of pig pineal glands.

Sample Stage Length Reads Mapped reads Mapped ratio

Read1 Read2 Read1 Read2

Y30_1 30 days 150 bp 54,049,538 × 2 47,598,866 43,352,218 88.1% 80.2%

Y30_2 30 days 150 bp 50,796,645 × 2 44,735,289 41,004,165 88.1% 80.7%

Y30_3 30 days 150 bp 58,589,821 × 2 51,633,312 46,824,908 88.1% 79.9%

Y180_1 180 days 150 bp 79,812,929 × 2 70,250,218 67,703,427 88.0% 84.8%

Y180_2 180 days 150 bp 55,857,541 × 2 49,638,178 45,750,849 88.9% 81.9%

Y180_3 180 days 150 bp 58,459,709 × 2 51,560,101 46,995,972 88.2% 80.4%

Y300_1 300 days 150 bp 58,236,109 × 2 51,208,023 46,802,188 87.9% 80.4%

Y300_2 300 days 150 bp 53,832,028 × 2 48,429,903 44,651,018 90.0% 82.9%

Y300_3 300 days 150 bp 54,051,461 × 2 48,432,224 43,497,472 89.6% 80.5%
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FIGURE 2 | Characterization of lncRNAs in pig pineal glands. (A) Comparison of exon number between lncRNAs and mRNAs. (B) Comparison of transcript length
between lncRNAs and mRNAs. (C) Comparison of expression level between lncRNAs and mRNAs. (D) The distribution of the distance from lincRNAs to their
nearest neighboring protein-coding genes. The average (red dashed line) distance is indicated. (E) GO biological processes analysis of the neighboring
protein-coding genes of the lincRNAs.

(Figure 2C). These results were consistent with the previous
lncRNAs reports in pigs and other mammals (Iyer et al., 2015;
Tang et al., 2017; Yang et al., 2017). Additionally, we found that
2,481 lincRNA were transcribed near (<10 kb) their protein-
coding neighbors. The average distance from lincRNAs to their
neighboring genes was 2.68 kb (Figure 2D). GO analysis revealed
that these neighboring genes were significantly enriched in
regulation of transcription and tube morphogenesis functions
(Figure 2E), indicating that these lincRNAs are preferentially
located in the vicinity of genes with specific functions that are
closely associated with postnatal pineal development.

Dynamic Expression of mRNAs and
lncRNAs in Pineal Gland
We next evaluated the expression of novel lncRNAs, known
lincRNAs, and mRNAs across postnatal pineal development
and found a high Pearson correlation within and across stages
(R > 0.95) (Figure 3A), indicating a high level of measurement
consistency among biological replicates. A PCA was performed
in order to understand the expression patterns of all mRNAs
and lncRNAs during postnatal pineal development. We found
that the PCA could clearly separate the three developmental
stages from each other; the first two principal components (PC1
and PC2) could explain 35.1 and 23.5% of the transcriptional
variation, respectively (Figure 3B). Clustering analysis revealed
that samples within stages were clustered together first, and then

Y30 and Y180 were grouped to form a larger cluster, and finally,
clustered with Y300 (Figure 3C). These findings demonstrated
a very high reproducibility within stages and distinct expression
patterns across postnatal pineal development.

We detected an average of 15,388 mRNAs (a total of 21,448
mRNAs, with a range of 15,227–15,611 mRNAs per sample)
and 2,740 lncRNAs (2,511–3,015 lncRNAs per sample) expressed
(RPKM ≥ 0.1) in pineal glands, which accounted for 68.9 and
57.0% of the total mRNAs and lncRNAs, respectively. The RPKM
values of most of the mRNAs were greater than 1, while the
majority of the lncRNAs were lowly expressed (RPKM ≤ 0.1).
Of these RNAs, 853 genes (842 mRNAs and 11 lncRNAs) were
highly expressed in pineal glands (RPKM ≥ 50 in at least one
sample). As expected, these genes were significantly enriched
in translation, oxidative phosphorylation, and ATP synthesis-
coupled electron transport functions (Figure 3D), all of which
are essential for protein synthesis and other basic requirements
for postnatal pineal development. Additionally, TTR, a pineal-
specific gene, was highly expressed in our samples, especially at
the Y30 stage (Figure 3E). Most of the homeobox TFs were lowly
expressed in postnatal pineal gland (Figure 3F).

Differentially Expressed mRNAs
and lncRNAs
We found a total of 4,424 genes (including 3,573 mRNAs and
851 lncRNAs) with a significant difference in expression (|log2
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FIGURE 3 | Dynamic expression profiles of mRNAs and lncRNAs during porcine postnatal pineal development. (A) Pearson correlation plot for the pineal
transcriptome of Y30, Y180, and Y300, with three replicates for each developmental stage. (B) Principal component analysis of the pineal samples across three
postnatal developmental stages based on both mRNA and lncRNA expression levels. Stages are illustrated by different shapes and colors. The x- and y-axes
represent the first and second PC, respectively, with the percent variance explained by each PC in parentheses. (C) Hierarchical clustering analysis of the nine pineal
samples across three developmental stages based on both mRNA and lncRNA expression levels. (D) Top enriched GO biological process terms of the highly
expressed genes in the pineal gland. (E) The expression of TTR gene in postnatal pineal gland. (F) Heatmap showing the expression of homeobox transcription
factors during postnatal pineal development.

fold change (FC)|≥1 and FDR≤0.05) between developmental
stages, including 2,417 Y180-Y30 (including 1,982 mRNAs
and 436 lncRNAs), 2,788 Y300-Y30 (including 2,264 mRNAs
and 524 lncRNAs), and 1,633 Y300-Y180 (including 1,187
mRNAs and 446 lncRNAs) DEGs (Figures 4A,B). Several
5-hydroxytryptamine (serotonin) receptors were included in
this list, including HTR2A, HTR2B, HTR2C, and HTR7. We
randomly verified 15 of the DEGs (10 mRNAs and 5 lncRNAs)
by RT-qPCR and found a high concordance between the RT-
qPCR and the RNA-seq data (Figure 4C), suggesting that the
differential expression analysis based on the RNA-seq data was
reliable. The highest number of DEGs was observed in the
Y300-Y30 comparison, which was correlated with the difference
in development time among the three stages. Most DEGs
were observed in at least two of the three comparisons, and
91 of them (56 mRNAs and 35 lncRNAs) were found in
all three comparisons (Figure 4D), including genes related
to phosphate metabolic (PPM1J, ND4, PRLR, and ND5) and
cell motility (CCK, FOXJ1, DCDC2, and DNAH2). We further
examined the enriched functions of the DEGs through GO
enrichment analysis. Compared with Y30, the up-regulated
genes in Y180 were significantly enriched in ion transport,
transmission of nerve impulse, cell-cell signaling, and synaptic
transmission functions, while the down-regulated genes were

associated with ion transport, oxidation-reduction, and cell
cycle categories (Figure 4E and Supplementary Table S3).
The up-regulated genes in Y300 when compared with Y30
were significantly enriched in sensory perception of light
stimulus, visual perception, transmission of nerve impulse, and
neurological system process functions, while the down-regulated
genes were enriched in ion transport and cell cycle functions
(Figure 4F and Supplementary Table S3). Compared with Y180,
the up-regulated genes in Y300 were significantly enriched in
mitochondrion organization, ribosome biogenesis, and negative
regulation of cell cycle process functions, while the down-
regulated genes were associated with transcription and RNA
metabolic and phosphate metabolic processes (Figure 4G and
Supplementary Table S3).

Inference of Pineal lncRNA Function
Using Co-expressed Network
To explore the potential functions and regulatory mechanisms
of lncRNAs during postnatal pineal development, we
constructed a co-expression interaction network of differentially
expressed mRNAs and lncRNAs. The network consisted of
605,831 interaction pairs. These genes were grouped into 12
co-expression clusters by MCL algorithm (Enright et al., 2002).
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FIGURE 4 | Differential expression analysis of mRNAs and lncRNAs during porcine postnatal pineal development. (A,B) Heatmap showing the differentially
expressed mRNAs (A) and lncRNAs (B) during porcine postnatal pineal development. (C) Experimental validation of RNA-seq data by RT-qPCR. Gene expression
differences between developmental stages were evaluated based on the RNA-Seq data using the edgeR package. Error bars are SEM, n = 3. ∗P < 0.05,
∗∗P < 0.01, ∗∗∗P < 0.001. (D) Venn diagram showing the number of differentially expressed mRNAs and lncRNAs between different development stages. (E–G) GO
biological process analysis of the up-regulated and down-regulated genes between Y180-Y30 (E), Y300-Y30 (F), and Y300-Y180 (G).

FIGURE 5 | mRNA-lncRNA co-expression network. All the differentially expressed mRNAs and lncRNAs were used to construct the co-expression network by
Biolayout Express (3D). The number of mRNAs/lncRNAs in each co-expression cluster and the most significantly enriched GO biological process of each cluster
were shown.
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The expression pattern of each cluster during postnatal pineal
development was shown in Supplementary Figure S1. Some of
these clusters contained mRNAs that are closely associated with
postnatal pineal development (Figure 5 and Supplementary
Table S4). Cluster 1 was the biggest one, which contained 1024
mRNAs and 171 lncRNAs, genes in this cluster were highly
expressed at Y30 stage, such as members of the solute carrier
family genes (SLC5A5, SLC13A5, and SLC39A12). Cluster 7 was
highly expressed at Y180 stage and contained 72 mRNAs and 31
lncRNAs. Interestingly, GO enrichment analyses suggested that
ion transport was the most significantly enriched term of genes in
these two clusters. The genes in both cluster 2 (518 mRNAs and
54 lncRNAs) and cluster 3 (248 mRNAs and 11 lncRNAs) were
abundantly expressed at Y300 stage. The genes in cluster 3 were
higher expressed at Y30 than at Y180 stage, while the genes in
cluster 2 were stably expressed at these two stages. Cluster 2 and
cluster 3 mainly functioned in regulation of membrane potential
and mitochondrion organization, respectively. Additionally,
cluster 4 (169 mRNAs and 29 lncRNAs) was enriched with
transcription and oxidative phosphorylation genes, including
the core subunits of mitochondrial membrane respiratory chain
NADH dehydrogenase (ND1, ND2, ND4, and ND5). The genes
in cluster 4 were higher expressed at Y180 stage than at Y30
and Y300 stages. Whereas the genes in cluster 5 exhibited an
inversed expression patterns with the genes in cluster 4. Negative
regulation of DNA binding was the most enriched biological
process for cluster 5, which contained 155 mRNAs and 10
lncRNAs, such as PTHLH, SMO, ID1, and XLOC_050558. Genes
in cluster 6 (94 mRNAs and 10 lncRNAs) were specifically
expressed at Y300 stage, which were closely associated with cell
cycle phase and mitosis, such as CCNB1, CDC20, and DLGAP5.
Remarkably, the expressions of genes in cluster 9 (67 mRNAs and
11 lncRNAs) and cluster 10 (58 mRNAs and 9 lncRNAs) were
continuously increased during postnatal pineal development, cell
adhesion and regulation of secretion was the most significantly
enriched biological processes in these two clusters, respectively.
The continuously decreased genes were grouped into cluster 8
(82 mRNAs, 15 lncRNAs) and mostly enriched in regulation
of transcription, such as PLAG1, ATF7IP, and CRTC3. Genes
in cluster 11 and cluster 12 were associated with response to
endogenous stimulus and visual perception, respectively. These
results suggested putative regulatory functions for a subset of
lncRNAs in postnatal pineal development.

DISCUSSION

In this study, we provided deep strand-specific RNA-seq of
total RNA from three representative postnatal developing
stages (infancy, puberty, and adulthood) of the porcine
pineal gland, which we used to study the expression profiles
of mRNAs/lncRNAs. We expect that this new resource
will contribute to the understanding of the importance of
transcription regulation in mammalian postnatal pineal gland
development and maturation.

Pineal gland is an neuroendocrine organ for the regulation
of the circadian clock system in all vertebrate species

(Macchi and Bruce, 2004). It’s well known that homeobox
genes are essential for normal pineal development and are key
regulators in the maintenance of the postnatal pineal phenotype
(Rath et al., 2013). We observed that most of the homeobox
genes were lowly expressed (RPKM < 1) in our study, HOPX
and LHX4 were the most abundantly expressed ones in pig
postnatal pineal gland, implying these two genes might play
important roles in pineal development, though their function in
pineal has not been reported. LHX9 and PAX6 are essential for
early development of the mammalian pineal gland (Rath et al.,
2013; Yamazaki et al., 2015), our study confirmed that these two
genes were lowly expressed in the postnatal pineal gland after
30 days. OTX2 displayed decreased expression in the postnatal
pineal gland of rat (Rath et al., 2006), and was barely expressed
in our samples. Additionally, the neurogenic differentiation
factor 1 (NEUROD1) gene, a member of the bHLH TF family, is
known to influence the fate of specific neuronal and endocrine
cells (Munoz et al., 2007), and we confirmed that it was highly
expressed in the postnatal pineal gland.

The expression of most DEGs changed constantly across
postnatal pineal development, reflecting a dynamic regulation
of gene expression. For example, the expression level of
the transthyretin (TTR) gene, the major thyroid hormone
transporter in the CNS, was much higher at Y30 than at
Y180 or Y300. TTR has also been reported to be differentially
expressed between midnight and midday in the pineal gland
(Acuna-Castroviejo et al., 2007). We observed that DEGs
were significantly associated with the ion transport, cell-cell
signaling, synaptic transmission, and developmental maturation.
Especially, 48 genes in calcium signaling pathway were
differentially expressed, such as CALB1 and CACNB2, which are
involved in a variety of calcium-dependent processes, including
cell motility, cell division, and hormone or neurotransmitter
release (Dolphin, 2007). It’s reported that melatonin could
modulate neural development through the regulation of calcium
signaling (Poloni et al., 2011). Additionally, 88 DEGs were
involved in transmission of nerve impulse, such as HTR2A,
HTR2C, and HTR7, which are 5-hydroxytryptamine (serotonin)
receptors. 5-hydroxytryptamine is a precursor for melatonin
production and is produced abundantly in the pineal gland of all
vertebrate animals (Sapède and Cau, 2013). These results provide
evidences that the critical roles of ion transport, especially
calcium signaling, in postnatal pineal development, which might
contribute to deeply understand the complexity of the pineal
architectures and functions.

With the rapid adoption of RNA-seq technologies, thousands
of lncRNA in the genome have been discovered in various
species, their functions in various biological processes have
been demonstrated (Geng et al., 2013; Gong et al., 2015b;
Volders et al., 2015; Liang et al., 2018). However, compared
with those of human and mouse, the lncRNA resources in pig
are relatively limited (Quek et al., 2015; Liang et al., 2018). In
this study, we identified a total of 8,166 novel lncRNAs, greatly
expanding the genomic information of non-coding RNAs in
pigs. These lncRNAs exhibited similar genomic characteristics
with those of lncRNAs described in previous studies of pigs
and other mammals (Iyer et al., 2015; Tang et al., 2017;
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Yang et al., 2017). 851 lncRNAs, including 35 known and 816
novel lncRNAs, were differentially expressed across postnatal
pineal development. Remarkably, 282 of them were transcribed
near their protein-coding neighbors. For instance, XLOC_199747
located upstream of neurotrophin 3 (NTF3). There was a
significantly positive correlation between the expressions of
these two genes (r = 0.81). These results suggested that these
differentially expressed lncRNAs might act on mRNAs involving
in postnatal development by cis regulation. Co-expression
analysis identified coordinated gene clusters that were shared in
a developmental-specific expression fashion, which is an effective
approach to uncover the function of lncRNAs (Pauli et al., 2012;
Anamaria et al., 2014). We found most clusters containing genes
with interesting functions. For example, GO enrichment analyses
suggested that the cluster 1 was mostly associated with ion-
transport, including many solute carrier family genes, which
play important roles in the adrenergic regulation of cAMP and
cGMP in pinealocytes (Sugden et al., 1986). Genes in cluster 2
were highly expressed at Y300 stages, which were closely related
to regulation of membrane potential and transmission of nerve
impulse, implying the critical roles of these mRNAs (such as
SCN1B and SYT4) and lncRNAs (such as XLOC_018250 and
XLOC_179558) in mature pineal gland. Cell cycle genes (such
as CCNB1, CCNB2, CCNB3, and CCNF), and 10 lncRNAs (such
as XLOC_280714 and XLOC_156756) were grouped into Cluster
6. The expression of these genes was decreased dramatically
during postnatal pineal development, which was in consistence
with the termination of pinealoblasts proliferation after birth
(Sapède and Cau, 2013). Another intriguing example is cluster
12, which includes 15 lncRNAs (such as XLOC_046348 and
XLOC_196944). The mRNAs in this cluster were enriched
in functional terms related to visual and sensory perception,
which have been shown to play essential roles in circadian
melatonin rhythm (Reiter, 1993). The dynamic changes observed
in the co-expression networks offer insights regarding to
the functions and regulation of lncRNAs during postnatal
pineal development.

CONCLUSION

Overall, our data cataloged the pineal transcriptional profiles and
basic gene expression features during postnatal development and
maturation in pig. Novel lncRNAs were identified, which provide
rich resources for understanding the molecular mechanisms and
regulatory network of postnatal pineal development in mammals.
The lncRNAs in the co-expression network may be considered as
promising targets for postnatal pineal development, maturation,

and phenotype maintenance, but their function still needs to be
further explored at the molecular, cellular, and individual levels.
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Blood values of calcium (Ca), inorganic phosphorus (IP), and alkaline phosphatase
activity (ALP) are valuable indicators for mineral status and bone mineralization. The
mineral homeostasis is maintained by absorption, retention, and excretion processes
employing a number of known and unknown sensing and regulating factors with
implications on immunity. Due to the high inter-individual variation of Ca and P levels
in the blood of pigs and to clarify molecular contributions to this variation, the
genetics of hematological traits related to the Ca and P balance were investigated in
a German Landrace population, integrating both single-locus and multi-locus genome-
wide association study (GWAS) approaches. Genomic heritability estimates suggest
a moderate genetic contribution to the variation of hematological Ca (N = 456), IP
(N = 1049), ALP (N = 439), and the Ca/P ratio (N = 455), with values ranging from
0.27 to 0.54. The genome-wide analysis of markers adds a number of genomic regions
to the list of quantitative trait loci, some of which overlap with previous results. Despite
the gaps in knowledge of genes involved in Ca and P metabolism, genes like THBS2,
SHH, PTPRT, PTGS1, and FRAS1 with reported connections to bone metabolism were
derived from the significantly associated genomic regions. Additionally, genomic regions
included TRAFD1 and genes coding for phosphate transporters (SLC17A1–SLC17A4),
which are linked to Ca and P homeostasis. The study calls for improved functional
annotation of the proposed candidate genes to derive features involved in maintaining
Ca and P balance. This gene information can be exploited to diagnose and predict
characteristics of micronutrient utilization, bone development, and a well-functioning
musculoskeletal system in pig husbandry and breeding.

Keywords: minerals, genetics, pigs, genome-wide association, genomic heritability, hematological traits

INTRODUCTION

In the body, the homeostasis of calcium (Ca) and phosphorus (P) is maintained to ensure
appropriate conditions for bone mineralization, energy utilization, nucleic acid synthesis, and
signal transduction of each individual cell and the entire organism. Molecular pathways involved in
these processes are regulated by numerous factors such as the parathyroid hormone (PTH), vitamin
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D, fibroblast growth factor 23 (FGF23), and the calcium sensing
receptor (CASR). The vitamin D system, for example, is able
to alter the transcription rates of thousands of target genes
via vitamin D responsive elements (VDRE) located in their
respective promoter region (Pike et al., 2010). In addition, other
transcription factors like MafB have been identified as involved
in the regulation of mineral homeostasis by orchestrating
intracellular signaling (Morito et al., 2018). However, especially
with regard to P homeostasis, particular mechanisms of sensing
and regulation as well as underlying molecules are still unclear
(Chande and Bergwitz, 2018).

In pigs of the same age, the Ca and P levels in the blood
differ considerably between different breeds or even within
breeds, suggesting a genetic contribution to the variability of
mineral concentrations (Rodehutscord, 2001; Hittmeier et al.,
2006; Just et al., 2018b). However, reliable heritability estimates
for the blood values of Ca and P for pigs are not yet
available. An initial understanding of the genetics of the
Ca and P homeostasis in pigs was demonstrated by Bovo
et al. (2016), who were able to identify quantitative trait
loci (QTL) for serum Ca on SSC8, 11, 12, and 13 and for
P on SSC2 and 7 in an Italian Large White population.
The proposed list of candidate genes emphasizes that the
drivers of Ca and P homeostasis are in fact partly unknown
and that several factors remain to be identified. Consistently,
a recent study on the genetic contribution of well-known
functional candidate genes on Ca and P homeostasis in pigs
showed only a small contribution of these major players
to the genetic variance (Just et al., 2018b). Further insights
into the role of genetics in the regulation of Ca and P
homeostasis can be derived from human studies on kidney
health and bone metabolism (reviewed by Lederer, 2014).
Specifically, a GWAS for humans with European ancestry
revealed several QTL regions containing functional candidate
genes such as FGF23, SLC34A1, and CAST, whereby the most
prominent SNPs are located in nearby regions representing
other genes (Kestenbaum et al., 2010). Notably, the highest
significant association of this particular study was identified
for ALPL, an alkaline phosphatase that hydrolyzes phosphate
compounds at alkaline pH and is involved in bone mineralization
(Kestenbaum et al., 2010).

The current GWAS used blood-derived proxies for the
Ca and P homeostasis including Ca, inorganic phosphorus
(IP), alkaline phosphatase activity (ALP), and the respective
Ca/IP ratio. Specifically, ALP represents the total activity of
all ALP isoforms in blood and is indicative of endogenous P
requirements. The hematological Ca and IP levels as well as
the calcium/phosphorus (Ca/P) ratio represent the variation
of the strictly regulated mineral balance. In addition, genomic
data from pigs were used to estimate genomic heritability and
genetic correlations for all analyzed traits. Their availability
would be an important prerequisite for assessing the potential
of breeding strategies that include (i) the efficient use of
Ca and P for bone formation and growth processes, (ii)
the prevention of ectopic mineralization of peripheral tissues
(hypercalcification), and (iii) the reduction of environmental
impacts of livestock farming.

MATERIALS AND METHODS

Pig Population and Phenotypes
Animal care and sampling were carried out in accordance
with the guidelines of the German Law of Animal Protection.
All protocols have been approved by the Animal Care
Committee of the Leibniz Institute for Farm Animal Biology
(FBN). Compliance with all relevant international, national,
and/or institutional guidelines for the care and use of
animals was ensured.

For this study, 1,053 commercial German Landrace
pigs have been raised on standard diets (Gesellschaft für
Ernährungsphysiologie, 2006) for fattening pigs. The purebred
pigs originated from nine different farms in the area of
Mecklenburg-Western Pomerania (Germany) and were fattened
either at the Institutes pig farm or in the performance test
station Jürgenstorf (Germany). Animals had an average age of
163.8 ± 15.5 days (mean ± SD; individual ages ranged from
127 to 222 days). The population consists of 73 males, 355
females, and 625 castrates, which were sired by 64 boars. Pigs had
ad libitum access to feed and water. Pigs were killed by electrical
stunning followed by exsanguination in the experimental
slaughterhouse of FBN Dummerstorf. At slaughter, liver samples
were collected for DNA extraction. Additionally, trunk blood was
sampled for serum and plasma preparation. For the first batch of
animals (N = 590), IP was measured using heparin plasma. Serum
samples were available for the second batch of pigs (N = 463) in
which levels of Ca, IP, and ALP were measured. Blood chemistry
analyses were performed using commercial available assays on a
Fuji Dri-Chem 4000i (FujiFilm, Minato, Japan). Phenotypes were
transformed to follow a normal distribution by Johnson SU using
JMP Genomics 7.0 (SAS Institute, Cary, NC, United States).

Genotyping and Data Preparation
Based on DNA obtained from liver samples, genotyping of the
1053 animals was performed using the 60k porcine SNP bead chip
(Illumina, San Diego, CA, United States). Data files were analyzed
using the GenomeStudio software (Illumina, version 2.0.3) for
clustering of genotypes and initial quality control (sample call
rate >95% and SNP call rate >95%). Afterward, missing values
in the genotype matrix were imputed with fastPHASE (Scheet
and Stephens, 2006). Settings for imputation included 10 runs
of the EM algorithm with 50 iterations each and the scanning
for genotype errors option was enabled. Genotype errors were
excluded by discarding autosomal SNPs with estimated error
rate above 10% (Scheet and Stephens, 2006). SNP sequences
of the bead chip were mapped to pig genome assembly 11.1
(accessed on July 13, 2017) using Bowtie2 (version 2.2.6). Markers
not mapping to autosomes in the current genome assembly
were dropped. Additional filtering of markers was applied at
the level of Hardy–Weinberg equilibrium (P > 1 × 10−6) and,
after excluding individuals with missing phenotypes for the
corresponding trait, for minor allele frequency (MAF <0.03). In
total, the number of markers was reduced from 61,565 to 47,946
(IP; 1049 pigs), 47,302 (Ca; 456 pigs), 47,298 (Ca/P; 455 pigs), and
47,258 (ALP; 439 pigs), respectively.
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Estimation of Genetic and Phenotypic
Parameters
Bayesian estimates of genomic heritability were obtained with
the help of trait-specific univariate models using the R package
BGLR version 1.0.5 (Pérez and de Los Campos, 2014). The
polygenic effect was included in the model employing the
genomic relationship matrix (VanRaden, 2008). Furthermore,
models included age of pigs as covariate and, additionally, batch
effect for IP. Genetic correlations between traits were analyzed
in a bivariate model using the MTM package version 1.0.01.
Due to the different total number of animals available for a
particular trait, the smallest common overlap in the marker
set was used in each trait combination. For both estimation of
genomic heritability and genetic correlation, analysis parameters
have been set to default values. The output from 200,000
iteration steps was used. Diagnosis of convergence was done
using the Gelman–Rubin function applied to additional Markov
chains; it is implemented in the coda R package version 0.19-
1. The potential scale reduction factor was <1.1, indicating
convergence (Gelman and Rubin, 1992). After the first 50,000
iterations were discarded as burn-in phase, the average genomic
heritability ± SD and correlation coefficient ± SD were
estimated from the remaining iterations. Moreover, phenotypic
correlations, expressed as Pearson coefficients, were calculated
for the traits transformed to follow a normal distribution as
described above.

Genome-Wide Association Study
Both single-locus and multi-locus genome-wide association
study (GWAS) approaches were used in this study to identify
genomic regions contributing to the genetic variance of blood
Ca, IP, and ALP levels and the Ca/P ratio. The single-locus
GWAS was performed using a mixed linear model implemented
in JMP Genomics 7.0 (SAS Institute). For all traits, the
sire was included as a random effect in the model, which
not only accounts for relatedness in the population but also
controls for environmental factors (farm effect). Additionally,
the age of pigs was used as a covariate in the model. The
analysis of IP further included batch as fixed effect. Due to
the linkage disequilibrium between markers, the analysis of
a single locus was not necessarily independent from other
loci, which was taken into account by using SimpleM to
estimate the number of independent tests (Gao et al., 2008).
SimpleM revealed a number of 19,773 independent tests for the
entire dataset. Accordingly, significance thresholds were set at
1/19,773 [−log10 (P-value) = 4.30] for suggestive significance
and 0.05/19,773 [−log10 (P-value) = 5.60] for genome-wide
significance (Lander and Kruglyak, 1995). To investigate model
fit, a quantile–quantile (QQ) plot based on the observed
P-values was plotted for each trait. Manhattan plot representation
of genome-wide results was created with the postGWAS R
package (version 1.11-2) (Hiersche et al., 2013). Data for specific
genomic regions were visualized using LocusZoom (version 1.3)
(Pruim et al., 2010).

1https://github.com/QuantGen/MTM

The multi-locus GWAS was based on a Bayesian variable
selection approach (Bayes B; Meuwissen et al., 2001)
implemented in the BGLR package (Pérez and de Los Campos,
2014). In agreement with single-locus GWAS, models included
age of pigs as covariate for all traits and batch effect for
the analysis of IP and sire. A total of 200,000 cycles of the
Gibbs sampler were performed after convergence diagnosis
(as described above), with the first 25% of the iterations
discarded as a burn-in phase. For the Bayes B algorithm,
the prior proportion of non-zero marker effects was set to
0.5% for the analysis of Ca and Ca/P, as previously described
(Reyer et al., 2015; Fernando et al., 2017). Based on genomic
heritability estimates, which were considerably higher for IP
and ALP, the prior proportion of non-zero marker effects was
increased to 1% for these traits. In total, 468.2 (IP), 199.0 (Ca),
192.0 (Ca/P), and 433.0 (ALP) markers were considered on
average in each cycle of the Gibbs sampler. Other parameters
were set to default values. Bayes factors (BFs) were calculated
based on the posterior probability of inclusion for each
marker and expressed as the quotient between posterior and
prior odds ratio (Karkkainen and Sillanpaa, 2012). Markers
with a BF > 10 were considered as having decisive evidence
according to Jeffreys (1998).

Data Integration and Candidate Genes
Based on the combination of results from single- and multi-
locus GWAS, genes were explored in the proximity of significant
markers (closest genes in each direction plus their overlapping
genes) using the R package postGWAS. To select genes linked
to SNPs, linkage disequilibrium (LD) between markers was
calculated based on the genotype matrix using the snp2gene
function (Hiersche et al., 2013). Those genes were revealed,
which were in LD with SNPs significantly associated with a
trait. Specifically, genes were considered where the maximum
LD between one of the gene-representing SNP and the
significantly associated SNP was above 0.6. A window of
1 Mb around the significantly associated SNP was examined.
In addition, the 95% confidence interval of a QTL region
was estimated using the likelihood approach proposed by Li
(2011). The names of genes that belong to these intervals
were extracted. Subsequently, all resulting gene names (from
proximity and LD analyses and CI intervals) were converted
into human orthologous gene identifiers using the biomaRt
R package (version 2.34.2). Gene lists were combined for all
traits and passed to the ClueGO (v2.5.1) Cytoscape (v3.6.1)
plugin for analysis of gene ontology (GO) (Bindea et al.,
2009). The following databases were included: GO cellular
component, GO molecular function, and REACTOME Pathways
(all accessed on June 6, 2018). ClueGO settings were as
follows: GO tree interval of 2–8, cutoff of more than or
equal to 4 genes and 3% associated genes, and kappa score
(κ) = 0.4. GO term enrichment was tested with a two-
sided hypergeometric test considering a Benjamini–Hochberg
adjusted P-value ≤0.05. In addition, the QTL regions revealed
from both GWAS approaches were manually screened for
positional (in proximity to highest significantly associated
SNPs) and functional (known function related to the trait of
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interest) candidate genes. Therefore, genomic information and
functional annotation of genes were retrieved from Ensembl2

and GeneCards – the human gene database3, respectively
(Stelzer et al., 2016).

RESULTS

All traits showed a considerable variation in the examined
population of German Landrace pigs (Table 1). Phenotypic
correlations between levels of Ca, IP, and ALP were all positive
and showed a low to moderate magnitude (Table 2). A high
negative phenotypic correlation coefficient was found between
IP and Ca/P, while the correlation between Ca and Ca/P was
moderate and positive. Almost no correlation was revealed
between ALP and Ca/P. Regarding the genetic correlation,
values were positive for Ca-IP, IP-ALP, and Ca-Ca/P, whereas
correlations for ALP-Ca/P and ALP-Ca were negative (Table 2).
The corresponding correlation coefficients showed a low to
moderate magnitude. However, high standard deviations of these
estimations indicate a high degree of uncertainty. According to
the phenotypic level, the highest negative genetic correlation
was observed between IP and Ca/P at −0.62. In general, all
traits showed a moderate genomic heritability (Table 2). The
highest genomic heritability estimates were obtained for ALP
(h2 = 0.54) and IP (h2 = 0.42). Estimates for Ca and Ca/P were
considerably lower at 0.27.

The most promising genomic regions associated with IP
were identified on SSC6 and 14 (Table 3). Specifically, the
QTL on SSC6 at 110 Mb was commonly indicated by the two
GWAS approaches. Genes closest to the highest significantly
associated marker, ASGA0090429 (P-value = 5.24, BF = 14.22),
are GATA Binding Protein 6 (GATA6) and RB Binding Protein

2http://www.ensembl.org
3www.genecards.org

TABLE 1 | Descriptive statistics of blood traits in German Landrace pigs.

Trait Acronym N Mean SD Min Max

Inorganic phosphorus
(mg/dl)

IP 1049 8.72 1.11 6.0 12.7

Calcium (mg/dl) Ca 456 10.00 0.78 6.8 11.9

Calcium/phosphorus
ratio

Ca/P 455 1.10 0.13 0.81 1.73

Alkaline phosphatase
(U/L)

ALP 439 118.95 31.93 32 250

TABLE 2 | Estimates of genetic (below the diagonal) and phenotypic (above the
diagonal) correlation coefficients and the genomic heritability (diagonal, bold) for
concentrations of IP, Ca, ALP, and Ca/P ratio.

Trait IP Ca ALP Ca/P

IP 0.42 ± 0.05 0.26 0.14 −0.75

Ca 0.23 ± 0.22 0.27 ± 0.07 0.11 0.40

ALP 0.06 ± 0.20 −0.16 ± 0.21 0.54 ± 0.08 −0.03

Ca/P −0.62 ± 0.13 0.29 ± 0.20 −0.21 ± 0.20 0.27 ± 0.07

8 (RBBP8) (Figure 1). ALGA0036329, obtained by multi-locus
analysis, showed the highest BF (BF = 27.3) and was also
located in this QTL region on SSC6. Single-locus analysis
revealed ALGA0077099 (rs80988848) as the highest significantly
associated SNP for IP (P-value = 6.24). It mapped to BICD Family
Like Cargo Adaptor 1 (BICDL1) at 40.12 Mb on SSC14, whereas
the indicated genomic region harbors several putative candidate
genes (Supplementary Figure 1). Additionally, the QTL region
located on SSC1 between 109.6 and 111.2 Mb was indicated
by five significantly associated SNPs, whereas MARC0015485
reached genome-wide significance (P-value = 5.89). The SNP
is located between Vacuolar Protein Sorting 13 Homolog C
(VPS13C) and RAR Related Orphan Receptor A (RORA).

For Ca, genomic regions were identified on SSC3, 6, 11, 13,
16, and 18 (Table 4). Exclusively, the QTL on SSC6 at 7 Mb
was identified by the two GWAS approaches, with the highest
significantly associated SNP, ALGA0104738 (P-value = 4.52,
BF = 10.48) located between Gigaxonin (GAN) and Beta-
Carotene Oxygenase 1 (BCO). Two additional regions on SSC6,
at 10.8 and 11.1 Mb, were indicated by multi-locus analysis
bordered by ENSSSCG00000039747 (metalloproteinase inhibitor
1-like) and Contactin Associated Protein Like 4 (CNTNAP4).
Three SNPs, which reached the suggestive significant level for
association with Ca, were highlighted on SSC13 and indicate
Family With Sequence Similarity 43 Member A (FAM43A)
and Xyloside Xylosyltransferase 1 (XXYLT1) as positional
candidate genes.

The highest significant association in single-locus analysis
for Ca/P was identified on SSC8 (Table 5 and Figure 1).
The corresponding SNP ALGA0118376 mapped in intron 6 of
Leucine Rich Repeat LGI Family Member 2 (LGI2). Moreover,
several significantly associated SNPs were identified on SSC14
at 33 Mb and between 84 and 87 Mb. Respective positional
candidate genes are ENSSSCG00000010344 and Glutamate
Ionotropic Receptor Delta Type Subunit 1 (GRID1) located
around 84.3 and 86.9 Mb. On SSC13, ASGA0056810 showed
highest contribution to the genetic variance in multi-locus
analysis (BF = 22.4) and mapped in an intronic region of Unc-
51 Like Kinase 4 (ULK4). The QTL on SSC17 is indicated
by two significantly associated SNP (P-value >4.3, BF > 3)
pointing to Protein Tyrosine Phosphatase, Receptor Type T
(PTPRT) as candidate.

SNPs with genome-wide significance in single-locus analysis
for ALP were identified on SSC7 at 17.4 and 21.4 Mb
(Table 6). Additionally, the region harboring the latter SNP
was also indicated by multi-locus analysis. Putative candidate
genes located nearby the lead SNPs were SRY-Box 4 (SOX4),
prolactin (PRL), POM121 Transmembrane Nucleoporin Like
2 (POM121L2), and Zinc Finger Protein 184 (ZNF184), while
the highest significantly associated SNP ALGA0039405 (P-
value = 6.75, BF = 17.74) mapped in an intronic region of the
Serine Protease 16 gene (PRSS16) (Supplementary Figure 2).
Interestingly, in between these QTL at approximately 20.4–
20.7 Mb, a cluster of P transporters (SLC17A1–SLC17A3) is
located. Further genomic regions with putative effect on ALP
were identified at 11.8 and 24.2 Mb also on SSC7. Furthermore,
QTL commonly identified by the two GWAS approaches were
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TABLE 3 | Genomic regions and corresponding lead SNPs identified by single- and multi-locus GWAS for levels of IP.

Lead SNP SSC1 SNP position 95% confidence interval (Mb)2 −log10 (P-value) Bayes factor MAF3 % Var4

M1GA0000151 1 887856 0.888 ± 0.003 4.44 4.27 0.246 1.6

ASGA0106092 1 109579245 109.579 ± 0.002 5.04 5.26 0.272 1.9

MARC0015485 1 110706305 110.707 ± 0.002 5.89 5.30 0.130 2.2

ASGA0103590 2 41032321 41.033 ± 0.001 4.38 8.96 0.414 1.6

ASGA0083196 3 21735144 21.734 ± 0.005 3.86 16.43 0.248 1.4

ASGA0026923 5 96278945 96.280 ± 0.002 3.28 12.22 0.265 1.2

ALGA0036329 6 109768450 109.768 ± 0.001 4.82 27.32 0.435 1.8

ASGA0090429 6 109873081 109.875 ± 0.005 5.24 14.22 0.491 2.0

ASGA0094586 6 114804166 114.802 ± 0.004 4.45 1.96 0.341 1.6

ALGA0054999 9 121587586 121.589 ± 0.003 4.39 3.65 0.111 1.6

SIRI0000950 14 11099200 11.100 ± 0.000 4.74 6.19 0.352 1.7

ALGA0077099 14 40117526 40.104 ± 0.026 6.24 4.61 0.489 2.4

M1GA0018562 14 40465628 40.807 ± 0.342 5.58 3.03 0.461 2.1

ALGA0088210 15 134132243 134.133 ± 0.001 4.89 7.26 0.406 1.8

1Sus scrofa chromosome; 2Calculated according to Li’s method (Li, 2011); 3Minor allele frequency; 4Explained proportion of the phenotypic variance by the lead SNP.

located on SSC1 (262.4 Mb), SSC5 (74.0 Mb), SSC8 (74.2 Mb),
and SSC9 (64.9 Mb). Corresponding positional candidate genes
for these QTL are shown in Figure 1. QQ plots for single-locus
analyses of all traits are shown in Supplementary Figure 3,
which indicate an inflation of P-values. While a similar inflation
was observed using a polygenic effect combined with a genomic
relationship matrix instead of a sire effect (results not shown), the
causal factors for this inflation remain unknown.

For data integration and analysis of GO, a list of genes was
derived from single- and multi-locus GWAS. Therefore, genes
located in the 95% confidence intervals of QTL regions and
genes that are in LD with significantly associated SNPs were
considered. A list of 191 candidate genes was obtained and used
for GO term analysis. In total, 61 GO terms reached statistical
significance (adjusted P-value ≤0.05) and clustered in 7 GO
groups (Figure 2). The largest group was mainly formed by genes
of the histone cluster family, which resulted in enriched GO terms
such as “chromatin organization,” “nucleosome,” and “protein–
DNA complex.” Genes located in QTL regions for traits related
to Ca–P balance were further enriched for GO terms such as
“cell–cell communication,” “phosphatidylinositol bisphosphate
binding,” and “smooth muscle contraction.” Interestingly, due to
the cluster of solute carriers located in the QTL region on SSC7,
“solute:sodium symporter activity” was also enriched.

DISCUSSION

Genomic Heritability of Phenotypes
Related to Ca and P Homeostasis
In human diagnostics, hematological parameters can be
determined easily and are a valuable tool for assessing the
patient’s state of health. Parameters related to the Ca and
P balance are used to indicate mineral status and bone
turnover and to contribute to the diagnosis of bone health,
vascular calcification, and kidney diseases (Kestenbaum
et al., 2010). Corresponding phenotypes are derived from

large cohorts and allow comprehensive studies to elucidate
the genetic contribution to the variation in these traits. In
terms of heritability, the estimates for serum Ca (0.33) and
IP (0.58) obtained from these human studies correspond
well in magnitude to the genetic contribution investigated in
this study for pigs (Hunter et al., 2002). For IP, the estimate
of heritability was almost twice as high as for serum Ca in
both species, which might indicate conserved mechanisms
to maintain Ca and P homeostasis within narrow ranges.
The serum ALP activity, which showed the highest genomic
heritability among the traits analyzed in this study, was also
attributed a high heritability in humans (Nielson et al., 2012).
Moreover, breed-specific differences in ALP were mentioned
for cattle (Cole et al., 2001). The total activity of ALP in serum
is indicative for concentrations of local ALP isoforms from
liver, muscle, bone, and bile duct. Its serum values point to
abnormalities of the corresponding tissues; e.g., with regard to
bones, it serves as early marker for increased bone turnover
(Hoffmann and Solter, 2008). The genomic heritability estimate
for the Ca/P ratio of the analyzed pigs was moderate and
in similar magnitude to genomic heritability for Ca. Ca/P is
proposed as an indicator of bone mobilization and reflects
the P status (Anderson et al., 2017). Indeed, Ca/P showed
high negative correlation with IP and moderate positive
correlation with Ca at the phenotypic and genotypic level.
This is very much in accordance with correlations between
IP and the serum Ca × P product in humans (Yokoyama,
2008). Ca and IP showed a moderate positive phenotypic and
genetic correlation in this study, albeit the estimated genetic
correlation is accompanied by some uncertainty as indicated
by the high standard deviations of these estimations. The
positive correlations reflect the organism’s efforts to maintain
both Ca and IP levels, as well as their ratio, at a certain level
(Feher, 2017). Moreover, the common genetics of both traits,
indicated by the moderate genetic correlation, is, to some
extent, expected considering the complex interplay between
both minerals and the numerous factors that affect their
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FIGURE 1 | Single-locus association analysis of hematological levels of IP (A), calcium (B), calcium/phosphorus ratio (C), and ALP (D). Orange and green lines
indicate suggestive significance and genome-wide significance, respectively. Genes located closest to the lead SNP of a 2-Mb genomic windows are indicated.
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TABLE 4 | Genomic regions and corresponding lead SNPs identified by single- and multi-locus GWAS for serum levels of Ca.

Lead SNP SSC1 SNP position 95% confidence interval (Mb)2 −log10 (P-value) Bayes factor MAF3 % Var4

MARC0088651 3 9431382 9.432 ± 0.001 4.38 5.82 0.074 3.6

ALGA0104738 6 6998594 7.000 ± 0.001 4.52 10.48 0.249 3.8

ASGA0094980 6 10776875 10.777 ± 0.001 3.99 12.97 0.107 3.3

ASGA0088451 6 11145506 11.188 ± 0.043 4.24 11.12 0.059 3.5

ALGA0107249 11 38134199 38.134 ± 0.001 3.65 11.17 0.209 3.0

MARC0004520 13 131771363 131.801 ± 0.030 4.87 6.63 0.242 4.1

ALGA0091318 16 65219767 65.219 ± 0.001 4.33 5.76 0.347 3.6

ASGA0078611 18 2557956 2.558 ± 0.000 4.35 1.20 0.102 3.6

1Sus scrofa chromosome; 2Calculated according to Li’s method (Li, 2011); 3Minor allele frequency; 4Explained proportion of the phenotypic variance by the lead SNP.

TABLE 5 | Genomic regions and corresponding lead SNPs identified by single- and multi-locus GWAS for the Ca/P ratio.

Lead SNP SSC1 SNP position 95% confidence interval (Mb)2 −log10 (P-value) Bayes factor MAF3 % Var4

ASGA0000047 1 477400 0.477 ± 0.002 3.88 10.59 0.424 3.2

M1GA0001253 1 180934106 180.936 ± 0.005 4.39 2.66 0.477 3.7

ALGA0030823 5 15372183 15.372 ± 0.001 4.45 11.77 0.320 3.7

ALGA0118376 8 18998044 18.999 ± 0.000 5.68 1.84 0.054 4.9

ASGA0041852 9 14569966 14.570 ± 0.000 4.50 1.37 0.277 3.8

ASGA0056810 13 25360591 25.361 ± 0.001 3.54 22.43 0.490 2.9

MARC0060323 14 33722981 33.724 ± 0.000 4.57 5.00 0.398 3.8

INRA0045347 14 84495128 84.496 ± 0.002 5.26 8.31 0.314 4.5

INRA0045383 14 86273463 86.898 ± 0.003 4.65 5.24 0.255 3.9

ALGA0113690 15 26316801 26.316 ± 0.002 5.05 7.25 0.281 4.3

MARC0009678 17 44751346 44.753 ± 0.002 4.59 4.43 0.163 3.8

1Sus scrofa chromosome; 2Calculated according to Li’s method (Li, 2011); 3Minor allele frequency; 4Explained proportion of the phenotypic variance by the lead SNP.

TABLE 6 | Genomic regions and corresponding lead SNPs identified by single- and multi-locus GWAS for serum ALP.

Lead SNP SSC1 SNP position 95% confidence interval (Mb)2 −log10 (P-value) Bayes factor MAF3 % Var4

ALGA0010101 1 262433517 262.434 ± 0.001 5.35 14.44 0.481 4.7

H3GA0004746 262469788 4.56 24.83 0.417 4.0

MARC0075394 3 65151368 65.152 ± 0.002 4.33 1.92 0.372 3.7

MARC0008087 5 73977137 73.980 ± 0.002 5.08 18.54 0.236 4.5

H3GA0018478 6 94536445 94.534 ± 0.004 4.32 5.42 0.165 3.7

ALGA0038660 7 11794308 11.795 ± 0.001 4.84 4.73 0.244 4.2

H3GA0020150 7 17440108 17.441 ± 0.003 5.85 2.31 0.087 5.2

ALGA0039405 7 21385114 21.376 ± 0.010 6.75 17.74 0.192 6.1

ASGA0032054 7 24178503 24.179 ± 0.000 4.77 2.92 0.491 4.2

ALGA0109925 8 7328296 7.329 ± 0.001 5.09 6.15 0.418 4.5

ASGA0039012 8 73863861 73.864 ± 0.002 5.12 4.45 0.437 4.5

ALGA0102419 8 74229267 74.230 ± 0.003 4.37 11.76 0.427 3.8

ASGA0090661 9 9326958 9.319 ± 0.008 4.32 2.22 0.245 3.7

DIAS0002588 9 45853528 45.854 ± 0.001 4.54 3.36 0.068 3.9

H3GA0027430 9 53561115 53.561 ± 0.001 5.52 6.27 0.462 4.9

ASGA0043611 9 64902900 64.920 ± 0.017 5.05 14.42 0.141 4.4

ASGA0101422 12 16899513 16.901 ± 0.004 4.34 2.40 0.134 3.7

SIRI0000547 13 17031957 17.032 ± 0.002 4.44 1.37 0.166 3.8

MARC0038389 16 10488789 10.490 ± 0.002 3.53 14.95 0.090 3.0

MARC0009297 17 60317999 60.315 ± 0.003 4.39 3.32 0.349 3.8

MARC0055314 18 45755314 45.756 ± 0.002 4.75 6.62 0.227 4.1

ALGA0119274 18 48412007 48.410 ± 0.003 4.51 2.66 0.030 3.9

1Sus scrofa chromosome; 2Calculated according to Li’s method (Li, 2011); 3Minor allele frequency; 4Explained proportion of the phenotypic variance by the lead SNP.
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FIGURE 2 | Network representing enriched GO terms and linked genes based on QTL for hematological traits related to the calcium and phosphorus homeostasis.

regulation such as PTH, FGF23, and vitamin D metabolites
(Shaker and Deftos, 2018).

Genomic Regions Associated With
Hematological Traits Related to the Ca
and P Balance
Existing genome-wide analyses in different species indicate
mainly positional candidate genes with not yet known function
in Ca and P homeostasis (Reiner et al., 2009; Kestenbaum

et al., 2010; Bovo et al., 2016; Van Goor et al., 2016). Notably,
taking into account the QTL intervals derived from a human
meta-analysis, at least some functional candidate genes such as
CASR, FGF23, ALPL, and SLC34A1 are included (Kestenbaum
et al., 2010). In pigs, even the targeted association analysis of
obvious candidate genes involved in Ca and P regulation could
not demonstrate significant contributions to the phenotypic
variability (Just et al., 2018b). Similarly, in the current GWAS,
none of the leading SNPs of the QTL point to positional
candidate genes that are hitherto known to be major players
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in the regulation of Ca and P homeostasis. Nevertheless, the
current study revealed several QTL regions for the analyzed
traits, which partly overlap with genomic regions from pig
QTL database. Specifically, porcine genome regions with a
contribution to the traits analyzed have been previously mapped
on different chromosomes (Supplementary Table 1; Reiner
et al., 2009; Yoo et al., 2012; Bovo et al., 2016; Just et al.,
2018b). Interestingly, despite the physiological relationship
within mineral homeostasis, only few overlapping genomic
regions between the individual traits have been identified.

Candidate Genes Associated With IP
Levels
Promising candidate genes for IP, due to their proximity and
linkage to leading SNPs, are BICDL1 and Ras-related protein
Rab-35 (RAB35) on SSC14 (Supplementary Figure 1). According
to current knowledge, both BICDL1 and RAB35 are involved in
the regulation of neurite outgrowth. Indeed, processes involved
in the extension of neurons are dependent on Ca entries
and phosphorylation events (Sutherland et al., 2014). However,
whether changes in these processes are detectable at blood
level is questionable. In addition, RAB35 is a key regulator of
intracellular membrane transport and involved in endocytosis.
The same QTL on SSC14 further contains the recently proposed
candidate gene TRAF-Type Zinc Finger Domain Containing 1
(TRAFD1) (Just et al., 2018b), but also harbors several other
genes demanding the dissection of this QTL to provide further
insights. Although the genomic region on SSC6 was the most
prominent in the multi-marker analysis for IP, the positional
candidate genes (GATA6 and RBBP8) lack any connection to
P homeostasis so far. The candidate gene on SSC1, THBS2, is
proposed due to its functions in mediating cell-to-cell interaction
and inhibiting angiogenesis, even though the association only
reached the suggestive significance level. With respect to Ca
and P homeostasis, mice lacking THBS2 showed altered bone
growth including increased bone density and cortical thickness
(Kyriakides et al., 1998).

Candidate Genes Associated With Ca
Levels
For Ca, which showed the lowest genomic heritability among
the traits analyzed, only few significantly associated genomic
regions were detected by the two GWAS methods. Interestingly,
genomic regions on SSC6 and SSC18 border QTL previously
identified by microsatellite analysis (Reiner et al., 2009). Based
on the positional overlap or proximity to leading SNPs, Cut
Like Homeobox 1 (Cux1; SSC3), GAN (SSC6), BCO1 (SSC6),
and Sonic Hedgehog (SHH; SSC18) were proposed as positional
candidate genes. Considering the currently known functional
involvement of these genes, BCO1 and SHH in particular have
relations to bone metabolism and health and might be screened
for genetic variations. Specifically, BCO1 represents a key enzyme
in the metabolism of vitamin A that also affects bone formation
and calcium metabolism (Frankel et al., 1986; Binkley and
Krueger, 2000). SHH is associated to the initiation of osteogenesis
through interactions with bone morphogenetic proteins (BMP)
(Yuasa et al., 2002).

Candidate Genes Associated With the
Ca/P Ratio
The highest significant association resulting from single- and
multi-locus analysis of Ca/P pointed to SSC8 and SSC13 with
LGI2 and ULK4 as positional candidate genes. Both genes
are reported to be widely expressed in different tissues (see
text footnote 3). So far, little is known about the function of
LGI2, apart from its association with epilepsies (Limviphuvadh
et al., 2010). ULK4 has several functions in the brain
including involvement in neuronal cell proliferation and cell-
cycle regulation, whereas functions outside the central nervous
system are largely unknown (Liu et al., 2017). Considering
current functional information, the GWAS results propose
Thioredoxin Related Transmembrane Protein 1 (TMX1) on SSC1
and Receptor-Type Tyrosine-Protein Phosphatase T (PTPRT)
on SSC17 as the most interesting positional and functional
candidate genes. TMX1 is highlighted for its role in the regulation
of Ca pumps at the contact surface between mitochondria
and endoplasmic reticulum, thus influencing Ca transfer and
mitochondria activity (Krols et al., 2016). Tyrosine-Protein
Phosphatases are known to play a central role in the formation
of bone, specifically in processes such as osteoclast production
and function and RANKL-mediated signaling (Hendriks et al.,
2013). So far, PTPRT was shown to cause obesity with altered
insulin resistance and lowered feed intake in a knock-out mouse
model, whereas in cattle, it was associated with meat quality traits
(Tizioto et al., 2013; Feng et al., 2014).

Candidate Genes Associated With ALP
Activity
Several genomic regions identified for ALP were located in
or near the QTL recorded in the QTL database. Specifically,
regions on SSC6 and SSC7 overlap with two of the main
findings of the study by Reiner et al. (2009). For the QTL on
SSC6, ALPL at 79.6 Mb was initially proposed as positional
candidate and highlighted for its functional role in bone
mineralization in humans (Nielson et al., 2012). The QTL
identified in the current study, however, pointed to a region
around 94.5 Mb where no known gene mapped. The region
on SSC7 harbors the highest significantly associated SNP
obtained from single-locus analyses. ALGA0039405 is located in
PRSS16, which acts in T-cell development and antigen-presenting
pathways and is associated with human diabetes susceptibility
(Guerder et al., 2018). Taking into account genes containing
at least suggestive significant markers, the list of positional
candidates in this QTL region further comprises phosphate
transporters (SLC17A1 and SLC17A4) and nucleosome-related
genes (HIST1H3E, HIST1H1D, and HMGN4). In particular, the
genetics of phosphate transporters are worth analyzing, as these
play an important role in the Ca and P balance, even though
corresponding polymorphisms have so far only been associated
with gout and cholesterol homeostasis (Dehghan et al., 2008;
Koyama et al., 2015). Other positional candidate genes mapped
in the QTL identified for SSC1 and SSC8. H3GA0004746 on
SSC1 revealed the highest BF for ALP and is an intron variant
of the Prostaglandin-Endoperoxide Synthase 1 (PTGS1). PTGS1
is involved in prostaglandin metabolism and angiogenesis.
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Moreover, prostaglandins are known to affect bone metabolism
(Blackwell et al., 2010). PTGS1 was recently proposed as a
candidate gene for ankylosing spondylitis, a disease accompanied
by bone overgrowth (Cortes et al., 2015). The QTL on SSC8 was
indicated by both single- and multi-locus GWAS and pointed
to Fraser Extracellular Matrix Complex Subunit 1 (FRAS1) as
positional candidate. Observations that patients with FRAS1
mutations could have more frequent skull ossification defects
(van Haelst et al., 2008) tie in with evidence of an involvement of
this gene in familial sclerosing bone dysplasia revealed by exome
sequencing (Gannagé-Yared et al., 2014).

Molecular Mechanisms Contributing to
the Ca and P Homeostasis
The final interpretation of the gene list derived from the
current GWAS suffers due to considerable gaps in the functional
annotation of proposed candidate genes. Although most putative
positional candidates showed indications of involvement in the
Ca and P balance and bone metabolism according to literature,
many of these genes are not yet assigned to corresponding GO
terms and thus not fully considered. Nevertheless, GO term
analysis revealed some obvious terms in connection with the
Ca and P balance. Phosphatidylinositol pathways, for example,
have previously been described as affected in the context of
altered dietary Ca and P intake in pigs (Just et al., 2018a).
Similarly, P transporters and the role of Ca in the contraction
of smooth muscles are molecular themes that can make a
significant contribution to the genetic variance of the traits
analyzed (Jiang and Stephens, 1994; Kestenbaum et al., 2010). The
large proportion of GO terms related to nucleosomes is mainly
driven by the porcine histone gene cluster on SSC7 and reflects
the already improved functional annotation available for these
genes. The other GO terms emphasized genes that are involved
in cellular signaling, cell communication, and posttranslational
modification and thus mainly represent intracellular actions
of Ca and P. It should be noted that the extracellular Ca
concentration is around 20,000 times higher compared to
intracellular levels (Clapham, 2007). However, there is evidence
that the sensing of intracellular levels might trigger pathways
that also affect the extracellular Ca concentration (Bronner, 2001;
Just et al., 2018a).

CONCLUSION

The current study elucidates the genetic parameters of Ca, IP,
Ca/P, and ALP and provides a list of positional and functional
candidate genes and QTL regions for further dissection. The
consideration of the results might prove beneficial in relation

to pig breeding for both a more efficient utilization of dietary
minerals and for an optimal development and maintenance of the
skeletal system.
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Previous research has demonstrated a positive relationship between dietary

Metabolisable Energy Intake (MEI) and increased maintenance energy costs associated

with the visceral tissues. Limitations in understanding this relationship include a lack of

access to samples to assess regulatory control of the putative response gastrointestinal

tissues to nutrients. This experiment was conducted with a single nutrient (starch

hydrolysate) infused (7 d) directly into the intestine to mimic typical changes in

post-ruminal starch delivery in dairy production settings. Duodenal epithelial samples

collected via biopsy were evaluated using next-generation sequencing technology

(RNA-Seq) to validate the use of this approach for the profiling and comparison of the

transcriptome of cattle intestinal epithelial tissues. Samples of intestinal epithelial tissue

were collected prior to and during the infusion of starch hydrolysate. Biopsies were

collected on day 0 before and day 1, day 3, and day 7 during the infusion. Additionally,

samples were collected on day 1 and day 7 after infusion was discontinued (Day 8 and

Day14 of the experiment). Evaluation of RNA-seq data revealed dynamic changes in

global gene expression during infusion. On day 7 of the infusion, 1490 genes were found

to be differentially expressed (DE) compared to the day 0 control samples with FDR p <

0.05, vs. 105 genes on day 1 and 246 genes on Day 3. However, on day 8, after infusion

was terminated for 24 h, only 428 genes were identified as differentially expressed

compared to day 0 and only 107 genes continued to be identified by Day 14. Thus, the

apparent differential expression of these genes is putatively a result of the single nutrient

infused. Further, performing function and pathway analysis of the identified DE genes

using IPA, we observe changes in digestive system development, and function pathways

are among the primary functions of the DE genes, as well as immune response elements.

Finally, primary transcription regulators such as PTH, JUN, WNT, and TNFRSF11B
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were identified as the activated upstream regulators for specific future focus. Using

a serial biopsy approach we are able to identify differentially expressed genes from

cow duodenal epithelial tissue in response to a short-term perturbation with infused

starch hydrolysate.

Keywords: ruminant, dairy, duodenal, RNA seq analysis, starch, dry period, biopsy

INTRODUCTION

Due to their central role in the absorption, processing,
and assimilation of nutrients combined with relatively high
metabolic activities, digestive tract tissues, and liver greatly
influence maintenance energy requirements (1). Feed costs
consistently represent >50% of production costs for dairy
(2), thus incremental gains in feed efficiency through diet
and ration management have a potentially large economic
impact on producers. A great deal of research interest has
been focused on these organs in ruminants. In fact, they have
been shown to be affected by changes in metabolizable energy
(ME) intake (1), protein intake (3, 4), nutrient restriction
and/or realimentation (1, 6), and energy density of the
diet (5, 6). Changes in mass associated with physiological
state, when dietary energy intake is maintained, have been
equivocal (7). Interestingly, it has been demonstrated (6) in
growing steers that growth of the small intestine, liver, and
forestomachs was the result of different processes following
realimentation (hyperplastic growth, hypertrophic growth,
and both, respectively). Small intestinal growth responses
generally appear to be due to increases in cell number
across a variety of dietary treatments, including nutrient
restriction (4, 6).

The response of the rumen and small intestine to increased
physiological demand for nutrients appears to be due largely
to increased mass because of cell proliferation (4). Use
of proliferation indices, including BrdU incorporation, Ki67
antigen staining, and tritiated thymidine incorporation assays,
do not appear to be sufficiently sensitive to allow for accurate
prediction of tissue proliferation status in the lactating dairy
cow (8). Given that transit time through the cell cycle in the
intestine is short (2–3 d); (9), a small change in transit time
through the cell cycle can elicit a large net effect on total tissue

TABLE 1 | Profiling of transcriptome and responses of the intestinal epithelium to starch hydrolysate direct infusiona.

Time point Total gen transcripts

detected

Number of degsb Up-regulated gene Down-regulated gene

D1 15,643 105 44 61

D3 15,646 245 159 86

D7 16,845 1,490 851 639

D8 16,839 428 270 158

D14 16,708 107 25 82

a In comparison to pre-infusion at 0 h, genes were identified to be impacted in the intestinal epithelium by partially hydrolysed starch infusion at a stringent cutoff of FDR < 0.01.
bDEGs: differentially expressed genes.

proliferation. The specific molecular mechanisms regulating this
increase in intestinal mass are not well studied in ruminants
largely due to a lack of repeated access to these tissues. Using
duodenally cannulated dairy cows we are now able to obtain serial
biopsies from the duodenum using gastrointestinal endoscopy
tools concomitantly with direct delivery of partially hydrolyzed
starch to mimic increased post-ruminal delivery of starch from a
ration. Using this approach we can procure samples to elucidate
the ontogeny of the transcriptomic responses to increased starch.

The transcriptome is the essential and functional part
of the genome (10). In this study, using transcriptomics
and bioinformatics, we have compiled an information rich
dataset and identified a large number of candidate genes
for future experimental focus. Moreover, for the first time,
we have identified specific transcriptomic regulators and
identified pathways altered by direct infusion of a single
nutrient (starch) using real-time transcriptomic profiles of the
duodenal epithelium.

MATERIALS AND METHODS

All animal procedures were conducted under the approval of the
Beltsville Location Institutional Animal Care and Use Committee
(Protocol #15-008).

Animals, Treatments, and Sampling
Six multiparous Holstein cows fitted with duodenal and ruminal
cannulae were sampled during the dry period. The cows were
fed standard diets ad libitum as a Total Mixed Ration (TMR;
50% corn silage and 50% concentrate at a dry matter basis) with
free access to fresh water. Ruminal cannulas purchased (10.2 cm
interior diameter; Bar Diamond, Inc., Parma, ID) and T-shaped
duodenal cannulas (i.d., 2.5 cm; Tygon tubing R-3603; Norton
Co., Akron, OH) were made by fusing with cyclohexanone.
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FIGURE 1 | RNA-seq MA Plots for mean six normalized samples show

differential expression of genes at five sampling time points.

Duodenal cannulas were placed approximately 15-cm distal to
the pylorus.

Prior to initiating infusions and sampling, cows were moved
to a tie stall barn for adaptation and acclimation for at
least 5 days prior to the infusion experiment. Infusion of
a partially hydrolyzed starch solution (to achieve 20% MEI
coming from infusate) was initiated immediately following
0 h sampling and thereafter continued for 168 h (7 days)
at a rate of 5.0 L/d of a corn starch solution prepared as
described by Bauer et al. (11) and stored (−20◦C) until
infused. After 168 h infusion, cows were maintained on the
standard ration without starch infusion for an additional 168 h.
Duodenal biopsies (20–30 mg/biopsy) were serially collected
at 0, 24, 72, and 168 h of infusion, and 24 and 168 h post
infusion through the duodenal cannula using sterile biopsy
forceps aided by a Pentax EC-383IL colonoscope (PENTAX
of America, New Jersey, 07645-1782 USA). Biopsies were
rinsed in saline and placed into RNAlater and handled per
manufacturer recommendations. Samples were stored frozen
(−80◦C) until sequencing.

FIGURE 2 | Venn diagram of diferentially expressed genes induced by partially

hydrolysed starch infusion at different sampling points. (A) Sample points of

D1, D3, D7, and D8; (B) Sample time points of D7, D8, and D14.
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RNA Sequencing and Bioinformatic
Analysis
RNA-sequencing: Samples were isolated using Qiagen RNeasy
Plus Mini Kit (Qiagen). The quality check was performed using
Tapestation RNAHSAssay (Agilent Technologies, CA, USA) and
quantified by Qubit RNA HS assay (ThermoFisher). Ribosomal
RNA depletion was performed with Ribo-zero Magnetic Gold
Kit (Catalog number MRZG12324, Illumina Inc., San Diego,
CA. Samples are randomly primed and fragmented based
on manufacturer’s recommendation (NEBNext R© UltraTM RNA
Library Prep Kit for Illumina R©). The first strand is synthesized
with the Protoscript II Reverse Transcriptase with a more
extended extension period (40min for 42◦C). All remaining
steps for library construction were used according to the
NEBNext R© UltraTM RNA Library Prep Kit for Illumina R©.
Illumina 8-nt dual-indices were used. Samples were pooled and
sequenced on a HiSeq with a read length configuration of
150 PE.

Bioinformatic Analysis: Raw data quality assessment
and preprocessing. During the library preparation and
sequencing, artificial/technical biases, as well as sample
contamination, could be introduced and affect the accuracy
of the downstream statistical analysis (Mapping statistics are
provided in Supplementary Table 1). We performed a thorough
quality assessment using FASTQC (version v0.11.3). Sequence

alignment: STAR (version 2.5.2b) (12), a splice aware aligner,
was used to perform the RNA-Seq alignment. The UMD3.1
and UMD3.1.90 from Ensembl were used as genome reference
and annotation reference, respectively during the alignment.
Then dupRader and Picard CollectRnaSeqMetrics (version
2.10.5) were used to evaluate duplicates level and overall
alignment performance.

Gene Expression Estimation and Differential Expression
Analysis: We used HT-Seq (version 0.6.0) (13) to calculate
the per gene expression count and DE-Seq (14) was used
to estimate the differentially expressed genes. Some quality
control assessments, as well as downstream exploratory analysis,
were primarily performed using R package including but not
limited to mixOmics, clusterProfiler, topGO, DOSE, pathview,
and org.Bt.eg.db.

Functional Annotation of Differentially Expressed Genes:
Ingenuity Pathways Analysis (IPA, Qiagen) was used to

further identify the molecular processes, molecular functions,
and genetic networks affected by starch infusion through

analysis of the identified differentially expressed genes. As
an integrated analysis software, IPA is a software application

that enables users to identify the biological mechanisms,
pathways, and functions most relevant to their experimental
datasets or genes of interest. The “core analysis” function
included in the IPA software was used to interpret the

TABLE 2 | Top GO terms in biological processes significantly impacted temporally by partially hydrolysed starch infusiona,b.

GO ID Description ion Gene ratio BgRatio P-value P-value adjusted q-value

D3

GO:0019221 Cytokine-mediated signaling pathway 8/58 76/5,527 9.7 × 10−7 0.0009 0.0008

GO:0071345 Cellular response to cytokine stimulus 9/58 106/5,527 1.21 × 10−6 0.0009 0.0008

GO:0034097 Response to cytokine 9/58 122/5,527 3.96 × 10−6 0.0020 0.0017

GO:0046627 Negative regulation of insulin receptor signaling pathway 3/58 7/5,527 3.73 × 10−5 0.0131 0.0107

GO:1901700 Response to oxygen-containing compound 11/58 257/5,527 5.76 × 10−5 0.0131 0.0107

D7

GO:0008150 Biological process 421/421 4,837/5,527 3.72 × 10−26
< 0.0001 < 0.0001

GO:0008152 Metabolic process 317/421 3,464/5,527 7.17 × 10−9
< 0.0001 < 0.0001

GO:0009987 Cellular process 360/421 4,158/5,527 6.23 × 10−8
< 0.0001 < 0.0001

GO:0044238 Primary metabolic process 256/421 2,843/5,527 3.64 × 10−5 0.0263 0.0258

GO:0071704 Organic substance metabolic process 263/421 2,970/5,527 1.03 × 10−4 0.0428 0.0420

D8

GO:0008150 Biological process 125/125 4,837/5,527 4.7 × 10−8
< 0.0001 < 0.0001

D14

GO:0065007 Biological regulation 24/27 2,624/5,527 7.79 × 10−6 0.0059 0.0049

GO:0050789 Regulation of biological process 23/27 2,445/5,527 1.33 × 10−5 0.0059 0.0049

GO:0050794 Regulation of cellular process 21/27 2,257/5,527 1.01 × 10−4 0.0302 0.0248

GO:0050896 Response to stimulus 18/27 1,832/5,527 3.64 × 10−4 0.0499 0.0411

GO:0007094 Mitotic spindle assembly checkpoint 2/27 8/5,527 6.32 × 10−4 0.0499 0.0411

aGO: gene ontology.
bAll the time points (day) are compared against D 0 (baseline control); 2. Gene Ratio = the number of all genes assigned to this GO term to the number of significantly regulated genes

that can be assigned to this GO term, BgRatio: ratio between the number of genes in the pathway and the total examined background of genes. P-value: for hypergeometric test;

P-value adjusted: P-value for hypergeometric test adjusted for Benjamini-Hochberg correction.
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differentially expressed data, which included identification of
probable biological processes, canonical pathways, upstream
transcriptional regulators, and gene networks responding to
the starch infusion. The temporally dynamic changes in
gene activities during starch infusion were also compared
using IPA.

RESULTS

RNA-seq Revealed Dynamic Changes in
Global Gene Expression of Cattle Intestinal
Epithelium During Infusion
From RNA sequencing reads of 30 intestinal epithelial samples
(6 animals with 5 sampling time points on Day 0 (D0), Day 1
(D1), Day 3 (D3), Day 7 (D7), and Day 14 (D14)), a total of varied
from 15,643 to 16,845 genes were detected from at least one of the
RNA sequenced samples, and highest number of genes (16,845)
was detected in D7 of starch hydrolysate sampling. Likewise,
total gene transcripts detected attained apeak on D7 (Table 1).
In comparison to pre-infusion at 0 h, a total of 1,795 DE genes
were identified at least once at the different sampling time points
at a stringent cutoff of FDR <0.01 as impacted in the biopsies
of intestinal epithelium in response to the starch infusion. The
apparent maximal effect of starch hydrolysate infusion was
observed on day 7 (Table 1; Figure 1) where 1,490 genes were
found to be differentially expressed (DEGs) with FDR p < 0.05,
compared to 105 genes on D1 and 246 genes on D3. After the

partially hydrolyzed starch infusion was terminated, on D8 (one-
day post infusion), only 428 genes were identified differentially
expressed compared to day 0 and only107 genes on D14 (7-
day post-infusion).While numerous genes are overlapping across
different time points among these impacted genes, 78 genes were
responsive only on D1, 148 genes were only on D3, and 1,380
genes were impacted only on D7. This occurred in such a way
that most of the impacted genes are only represented at one or
two sampling points. The overlapping and specific responding
genes at the different sampling points were illustrated in a Venn
diagram (Figure 2A).

Gene Ontology (GO) Enrichment Analysis
of Differentially Expressed Genes Impacted
by Starch Infusion
Gene ontology (GO) enrichment analysis of the differentially
expressed genes was performed to further clarify the putative
functions affected by starch infusion within each sampling
day compared to control samples from Day 0. Changes of
GO terms from enrichment analysis across sampling days
support the concept of a coordinated and dynamic response
temporal response to starch infusion by the duodenal epithelial
transcriptome. The top GO terms in the biological processes
significantly enriched in differentially expressed genes from each
sampling point are listed in Table 2. While there are 105 DEGs
for the D1 sampling, no enriched GO terms were identifiable.
By day 7 of starch infusion the most significantly enriched GO

TABLE 3 | Top enriched GO terms in molecular functions significantly impacted temporally by partially hydrolysed starch infusiona,b.

GO ID Description GeneRatio BgRatio P-value P-value adjusted q-value

D3

GO:0003674 Molecular function 54/54 4,363/5,527 2.65 × 10−6 0.0006 0.0005

GO:0005126 Cytokine receptor binding 6/54 83/5,527 1.38 × 10−4 0.0105 0.0094

GO:0042802 Identical protein binding 11/54 307/5,527 1.45 × 10−4 0.0105 0.0094

GO:0008009 Chemokine activity 3/54 17/5,527 5.44 × 10−4 0.0256 0.0229

GO:0005125 cytokine activity 5/54 75/5,527 7.58 × 10−4 0.0256 0.0230

D7

GO:0003674 Molecular function 382/382 4,363/5,527 1.44 × 10−41
< 0.0001 < 0.0001

GO:0005488 Binding 304/382 3,268/5,527 1.33 × 10−18
< 0.0001 < 0.0001

GO:0003824 Catalytic activity 198/382 1,872/5,527 5.37 × 10−14
< 0.0001 < 0.0001

GO:0043167 Ion binding 179/382 1,678/5,527 1.58 × 10−12
< 0.0001 < 0.0001

GO:0046872 Metalion binding 119/382 1,066/5,527 5.99 × 10−9
< 0.0001 < 0.0001

D8

GO:0003674 Molecular function 118/118 4,363/5,527 5.42 × 10−13
< 0.0001 < 0.0001

D14

GO:0004872 Receptor activity 7/24 224/5,527 3.14 × 10−5 0.0050 0.0041

GO:0060089 Molecular transducer activity 7/24 293/5,527 1.74 × 10−4 0.0107 0.0089

GO:0008329 Signaling pattern recognition receptor activity 2/24 132/4,887 2.68 × 10−4 0.0107 0.0089

GO:0038187 Pattern recognition receptor activity 2/24 132/4,887 2.68 × 10−4 0.0107 0.0089

GO:0038023 Signaling receptor activity 5/24 188/5,527 1.08 × 10−4 0.0344 0.02879

aGO: gene ontology.
bAll the time points (day) are compared against D0 (baseline control); 2. GeneRatio = the number of all genes assigned to this GO term to the number of significantly regulated genes

that can be assigned to this GO term, BgRatio: ratio between the number of genes in the pathway and the total examined background of genes. P-value: for hypergeometric test;

P-value adjusted: P-value for hypergeometric test adjusted for Benjamini-Hochberg correction.
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terms included: biological processes, metabolic processes, cellular
processes, primary metabolic processes, and organic substance
metabolic processes. The top GO terms enriched for DEGs at
each sampling point (D3, D7, D8, and D14) are presented in
Table 2. All of the genes present for each GO terms in the dataset
are listed in Supplementary Table 2. In addition to the biological
processes, GO terms in molecular activities categories were also
analyzed. Interestingly, most GO terms in molecular activity in
the 36 samples were related to the following molecular functions;
Cytokine receptor binding, catalytic activity; and molecular
binding (Table 3; Supplementary Table 3), as we found for
biological functions, on D1 there is no enriched GO term
detected for molecular functions.

Functional Annotation of Differentially
Expressed Genes Using IPA
To investigate further the biological functions affected by
the starch infusion, Ingenuity Pathways Analysis (IPA) was
utilized. Comparison analysis using IPA was performed to
elucidate the dynamics and the tendency of the biological and
molecular functions impacted by starch infusion through the
experimental infusion period. The top affected functions of the
identified DEGs at each sampling time point are presented
in two figures, Figures 3, 4. In Figure 3A, the top biological
functions impacted by starch infusion are presented in a heatmap
according to their activation z-scores. The predominant positive
biological functions impacted during the whole experimental
course were the growth of connective tissue, the growth of
epithelial tissue, and proliferation of epithelial cells. Consistently,
the primary physiological functions of the DEGs on D7 are
digestive system development and function related (Figure 3B).
In Figure 4, top molecular functions significantly impacted by
starch infusion are listed. The results were consistent with the GO
enrichment analysis.

In addition to the biological and molecular functions, IPA
analysis revealed canonical pathways putatively affected as
determined from the DEGs. Some essential canonical pathways
were induced by starch-infusion such as ERK/MARK presented
graphically in Figure 5. The heat map is used to visualize the
pathway scores (Activation z-score) and the expression of the
genes involved in the canonical pathways network. These heat
maps can also show changes in relative expression across the five
sampling time points (D1, D2, D7, D8, and D14) simultaneously.
Figure 5 presents the activation z-score of ERK/MARK singling
pathway with the expression of genes in ERK/MARK signaling
pathway network. The activation z-score for this pathway is at its
highest activation status on the D3, D7 which continues to D8 of
starch infusion.

Using IPA analysis, potential upstream regulators of the
DEGs in response to starch infusion were identified. Upstream
regulators of the DEGs in this data set are identified based
on known molecular actions from the literature and thus,
may be involved with regulation of the response observed in
the DEG identified. The top five upstream regulators at the
different sampling time points are listed in Table 4. There is
apparent overlap in the regulatory actions of these regulators

FIGURE 3 | (A) Heatmap—comparison of the top biological functions

impacted by partially hydrolysed starch infusion at the different samspling time

points with activation z-score. (B) Top physiological functions of DEGs on D7.

with the affected cellular functions as illustrated in Figure 6. On
D3, upregulated upstream regulators FOXM1 and AREG are
overlapped with upregulated genes of CCNF, MKI67, AURKB,
CCND1, IKBKB, STAT3, and ELF3 and the result would be effects
on cell cycle progression and cell survival activities. Similarly, on
D7, enhanced activities of upstream regulators PTH and CHUK
would be expected to result in activation of cell cycle progression
and development of epithelial tissue.

As mentioned above, during the starch infusion, the most
DEGs altered in duodenal epithelium were observed in the D7
samples. Functional network analysis identifies the biologically
relevant networks based on the DEGs in response to starch
infusion. The top biologically relevant network on D3 is
associated with lipid metabolism, molecular transport, small
molecule biochemistry (Figure 7A) and the top biologically

relevant network onD7 is associated with the biological functions
of carbohydrate metabolism, lipid metabolism, and molecular
transport (Figure 7B).
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FIGURE 4 | The top five molecular functions impacted by partially hydrolysed starch infusion at the different sampling points during the experiment.

DISCUSSION

The duodenal epithelium is a highly metabolically active
tissue due to the functions it performs (absorption, transport
and protection). In fact, total gastrointestinal tissues use a
disproportionate amount of the energy used by the animal (about
25% of total oxygen consumption) given its relative size (about
6% of body weight). Additionally understanding the extent to
which individual nutrients are used by gut tissues is important
to assess net nutrient needs of the animal (15). Ruminal and
abomasal starch hydrolysate infusions have been used previously
to study the metabolism (11) and gene expression of intestinal
epithelia (16–18). However, those studies were limited by the
availability of technology at the time, and only a few genes were
examined. In this report, coupling next generation sequencing

and transcriptomic profiling approaches with a serial biopsy
sampling scheme were used to investigate the changes in the
golobal transcriptome during an adaptation of intestinal epithelia
of dairy cattle to a single nutrient, starch hydrolysate, by direct
duodenal infusion.

The transcriptome is known to have distinct profiles unique
to cell type, developmental stages, and health status (10). RNA-
sequencing (RNA-seq) has been widely used as a highly reliable
tool for unbiased analysis of transcriptome changes within cells
and tissues (19). Using a direct biopsy technique aided by a
Pentax EC-383IL colonoscope, we were also able to serially collect
the duodenal epithelial samples throughout a single nutrient
infusion experimental protocol lasting 14 day. Next we assembled
the transcriptome and compared gene expression patterns and
thus, can assess if temporal impacts on the duodenal epithelial
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FIGURE 5 | A heatmap shows the expression of the genes in ERK/MARK

pathway induced by partially hydrolysed starch infusion.

transcriptome induced by starch hydrolysate infusion in dairy
cattle are detectable.

Notably, the transcriptomic response occurred in a pattern
where a majority of the DEG only represented at one or

TABLE 4 | Top upstream regulators and P-value of overlap predicted activation.

Upstream regulator Molecule type P-value of

overlap

D1

TNF Cytokine 3.90 × 10−09

Cg Complex 2.71 × 10−07

IFNG Cytokine 4.50 × 10−06

EGF Growth factor 9.76 × 10−06

CDX1 transcription regulator 3.58 × 10−05

D3

CFTR Ion channel 2.46 × 10−09

PPARA Ligand-dependent nuclear receptor 4.62 × 10−09

TLR4 Transmembrane receptor 1.39 × 10−08

MET Kinase 2.99 × 10−08

TNF Cytokine 9.90 × 10−08

D7

MIR17HG Other 1.39 × 10−06

INS Other 3.26 × 10−05

THRB Ligand-dependent nuclear receptor 8.61 × 10−05

EPAS1 Transcription regulator 1.76 × 10−04

IGFBP7 Transporter 2.17 × 10−04

D8

ERBB2 Kinase 1.22 × 10−11

AREG Growth factor 2.37 × 10−07

PPARA Ligand-dependent nuclear receptor 4.56 × 10−07

TGFB1 Growth factor 6.73 × 10−07

EP400 Other 3.26 × 10−06

D14

TNF Cytokine 1.54 × 10−08

TGFB1 Growth factor 1.85 × 10−06

STAT3 Transcription regulator 5.43 × 10−06

GLI2 Transcription regulator 6.17 × 10−06

TP73 Transcription regulator 8.09 × 10−06

two sampling points used, potentially indicating a coordinated
temporal pattern of changes by intestinal epithelial transcriptome
induced by starch hydrolysate. After 7 d of the infusion, 1,490
genes were identified as differentially expressed (with FDR p <

0.05), compared to only 105 genes on D1 and 246 genes on
D3. Moreover, after terminating the infusion for a day, (D8;
one day post infusion), a maked decrease in DEG (only 428
DEGs) was observed compared to D0 and by D14 (7 d post
termination fo infusion) only 107 genes were different from
D0. Thus, it appears that differential expression of genes during
infusion is putatively the result of the starch hydrolysate infusion.
Mechanistically we are not able to completely rule out that other
physical or environmental factors changed over time, however,
the experimental design minimized other factors by maintaining
cows on a consistent TMR throughout the experiment.

Regulation of gene expression within the intestinal
epithelium, as with other tissues, is complex and controlled
by various signaling pathways that regulate the balance between
proliferation and differentiation (9). We have previously
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FIGURE 6 | Regulator effects of FOXM1 and AREG on D3 (A) and PTH and CHUK on D7 (B).

identified in sheep nutrient use efficiency and body composition
experiments that when nutrient density is increased (increased
concentrate) by altering forage and concentration ratio in the
ration, there is an increase in intestinal epithelial cell mass
(5). Indeed, the DEG observed in the current experiment are
predictive of an increased cell proliferation in response to
the starch. Positively affected biological functions identified
as impacted during the infusions were growth of connective
tissue, the growth of epithelial tissue, and proliferation of
epithelial cells (Figure 3). Clearly, these biological functions are
consistent with the major molecular functions induced by starch
infusion, and given the nature of the treatment, appear to be
treatment specific.

Consistently, the genes in the ERK (extracellular-regulated
kinase)/MAPK (mitogen activated protein kinase) signaling
pathways are activated by the infusion protocol used. The
ERK/MAPK pathway is a crucial pathway that transduces cellular
information on meiosis/mitosis, growth, and differentiation
within a cell. The mitogen-activated protein kinases (MAPK)
signaling pathway is shared by four distinct cascades, including
the extracellular signal-related kinases (ERK1/2), Jun amino-
terminal kinases (JNK1/2/3), p38-MAPK, and ERK5 (20). ERK

is also translocated into the nucleus where it induces gene
transcription by interacting with transcriptional regulators like
ELK-1, STAT-1 and−3, ETS, and MYC. ERK activation of
p90RSK in the cytoplasm leads to its nuclear translocation where
it indirectly induces gene transcription through interaction with
transcriptional regulators, CREB, c-Fos, and SRF (21). This
all consistent with the potential for ERK/MAPK pathway to
have an important role in the epithelial response to increased
luminal starch.

Our data also identified a number of immune system markers
such as TNF and cytokines, which are differentially expressed
after infusion of a partially hydrolyzed starch solution. This could
be an indication that gut immune cells are impacted by the
influx of the starch directly or may play an important role in
absorption, metabolism, and transport of glucose by the epithelial
tissue. The GO term analysis likewise indicates the appearance
of an immune response as cytokine-mediated signaling pathway
is significantly perturbed by the treatment. The gastrointestinal
epithelium has a large number of immune cells integrated within
the tissue presumably to enhance defense against disease-causing
microbes. Recent reports have demonstrated the presence of
specific types of immune cells distributed throughout the
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FIGURE 7 | (A) The top biologically relevant network on D3 is associated with

lipid metabolism, molecular transport, small molecule biochemistry and (B) the

top biologically relevant network on D7 is associated with the biological

functions of carbohydrate metabolism, lipid metabolism, and molecular

transport.

intestinal epithelium as intraepithelial lymphocytes (22, 23).
They further demonstrated that in addition to their immune
functions, the cells have an integral role in the control of
metabolism through regulation of hormones released in response
to feed consumption. This interesting finding supports the
contention that immune cells may be involved in the control
of metabolism. Further evidence of a metabolic role of these
cells is not only their relative abundance in the sections of the
intestine where nutrient absorption occurs, but also that they
express genes associated with metabolism even in the absence of
infection (22).

By performing function and pathway analysis of DE
genes using IPA, we found, perhaps unsurprisingly, that
digestive system development and function are among the
primary functions of the DEGs identified. Furthermore,
primary transcription regulators such as PTH, JUN, WNT, and
TNFRSF11B were identified as the activated upstream regulators
(Figure 6). Previous research provided indications that WNT
signaling is important for proliferation of the intestinal

epithelium (24). The enhanced activities of upstream regulators
PTH and CHUK would be expected to result in activation of cell
cycle progression and development of epithelial tissue. These
results at the transcription level of integration demonstrate
the responsive nature of the intestinal epithelial tissue to a
single nutrient delivered on the luminal side with no other
changes in diet. As outlined earlier, changes in gastrointestinal,
and specifically epithelial, mass are known to be a response to
alteration in diet and ration delivery in productive ruminants.
The transciptiomic changes of these biopsied tissue are likely the
necessary response to maintain epithelial homeostasis in the face
of a changing nutrient supply.

Unsurprisingly given starch hydrolysate was the nutrient
infused, the top functional network identified is specifically
related to functions such as carbohydrate metabolism, lipid
metabolism, and molecular transport (Figure 7). Changes in
these functions as the top network reflect the temporal
transcriptomic response of duodenal epithelium to the starch
hydrolysate infusion. The networks also explored functional
interactions among DEGs.

In summary, transcriptomic profiling with next-generation
sequencing and bioinformatics were utilized to accelerate
our understanding of the multiple levels of regulation
ongoing in duodenal epithelial transcriptome induced by
starch infusion. Use of direct infusion of a single nutrient,
in combination with serial biopsy technique, has facilitated
real-time sample collection and thus the ability to assess the
temporal impacts on the duodenal epithelial transcriptome
induced by starch hydrolysate infusion. Moreover, direct
duodenal infusion of starch hydrolysate induces measurable
transcriptomic responses in epithelial tissue of cattle intestine
in short-term experiments that will ultimately facilitate a
better understanding of the regulation of this tissue level
response. Several important pathways and regulator mechaisms
have been identified for future experimental focus. The use
of transcriptomic profiling provides comprehensive gene
expression information for improving our understanding
of the molecular mechanisms involved in the intestinal
functions, as well as maintaining epithelial homeostasis of
cattle intestine.
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Fatty acid (FA) content affects the sensorial and nutritional value of meat and plays a 
significant role in biological processes such as adipogenesis and immune response. 
It  is well known that, in beef, the main FAs associated with these biological processes 
are oleic acid (C18:1 cis9, OA) and conjugated linoleic acid (CLA-c9t11), which may 
have beneficial effects on metabolic diseases such as type 2 diabetes and obesity. 
Here, we performed differential expression and co-expression analyses, weighted gene 
co-expression network analysis (WGCNA) and partial correlation with information theory 
(PCIT), to uncover the complex interactions between miRNAs and mRNAs expressed in 
skeletal muscle associated with FA content. miRNA and mRNA expression data were 
obtained from skeletal muscle of Nelore cattle that had extreme genomic breeding values 
for OA and CLA. Insulin and MAPK signaling pathways were identified by WGCNA as 
central pathways associated with both of these fatty acids. Co-expression network 
analysis identified bta-miR-33a/b, bta-miR-100, bta-miR-204, bta-miR-365-5p, bta-
miR-660, bta-miR-411a, bta-miR-136, bta-miR-30-5p, bta-miR-146b, bta-let-7a-5p, 
bta-let-7f, bta-let-7, bta-miR 339, bta-miR-10b, bta-miR 486, and the genes ACTA1 and 
ALDOA as potential regulators of fatty acid synthesis. This study provides evidence and 
insights into the molecular mechanisms and potential target genes involved in fatty acid 
content differences in Nelore beef cattle, revealing new candidate pathways of phenotype 
modulation that could positively benefit beef production and human consumption.

Keywords: Bos indicus, conjugated linoleic acid, integrative genomics, mRNA, miRNA, oleic acid

Abbreviations: CLA, conjugated linoleic acid; DH, differential hubbing; FA, fatty acid; GEBV, genomic estimated breeding value: 
IMF, intramuscular fat content: ME, module eigengene: MM, module membership: OA, oleic acid: PCIT, partial correlation with 
information theory: PIF, phenotypic impact factor: RIF1, regulatory impact factor 1: RIF2, regulatory impact factor 2: WGCNA, 
weighted gene co-expression network analysis: 

122

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00651
https://www.frontiersin.org/journals/genetics#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00651&domain=pdf&date_stamp=2019-07-11
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:luciana.regitano@embrapa.com
https://doi.org/10.3389/fgene.2019.00651
https://www.frontiersin.org/article/10.3389/fgene.2019.00651/full
https://www.frontiersin.org/article/10.3389/fgene.2019.00651/full
https://www.frontiersin.org/article/10.3389/fgene.2019.00651/full
https://www.frontiersin.org/article/10.3389/fgene.2019.00651/full
https://loop.frontiersin.org/people/679115
https://loop.frontiersin.org/people/23250
https://loop.frontiersin.org/people/567418
https://loop.frontiersin.org/people/641303
https://loop.frontiersin.org/people/630581
https://loop.frontiersin.org/people/549076
https://loop.frontiersin.org/people/227550
https://loop.frontiersin.org/people/36527
https://loop.frontiersin.org/people/37994
https://loop.frontiersin.org/people/108603


Co-Expression Networks for Fatty Acids Compositionde Oliveira et al.

2 July 2019 | Volume 10 | Article 651Frontiers in Genetics | www.frontiersin.org

INTRODUCTION

Fatty acid (FA) content is an important trait that can influence 
the sensorial and nutritional value of beef and plays a significant 
role in molecular and physiological processes. Despite that 
the consumption of beef fatty acids is being associated with 
metabolic diseases such as type 2 diabetes and obesity effects, 
such as altered blood lipid and lipoprotein content (Wood et al., 
2008), beef has beneficial effects on human health due to its high 
nutritional value, being also an important source of oleic acid 
(OA) (Laaksonen et  al., 2005a). Likewise, conjugated linoleic 
acids (CLAs) could have a range of nutritional benefits in the diet 
(Valsta et al., 2005).

Fatty acid biosynthesis biological processes are complex 
and dependent on several regulatory mechanisms, such as 
post-transcriptional regulation of gene expression (Nakamura 
and Nara, 2003). In this sense, miRNAs have been shown 
to block the translation of target mRNAs and thereby post-
transcriptionally regulate adipogenesis and several other 
biological processes involved in fatty acid metabolism in 
bovine (Guo et al., 2017).

Transcriptomic studies have shown that the expression of 
many miRNAs is species specific and tissue specific, indicating 
that miRNAs may have potential roles in organ and tissue 
development, metabolism, immune response (Lawless et al., 
2014), milk production traits, and fertility (Fatima and Morris, 
2013). In beef cattle, differences in the expression pattern of 
miRNAs have been identified in animals with different amounts 
of subcutaneous fat, which could indicate a potential regulatory 
role of these molecules in the development of adipose tissue 
(Jin et al., 2010) and fat metabolism (Romao et al., 2014). These 
studies have identified numerous miRNAs expressed in cattle, 
but the miRNA regulatory mechanisms that underlie these 
phenotypes are unclear.

A recent integrative analysis of miRNA–mRNA co-expression 
in this Nelore population revealed several genes and miRNAs as 
candidate regulators of intramuscular fat deposition. Glucose 
metabolism and inflammation processes were the main 
pathways found to influence intramuscular fat deposition in 
Nelore beef cattle (Oliveira et al., 2018). Furthermore, previous 
RNAseq studies including this population identified differences 
in the skeletal muscle transcriptome profile associated with 
extreme values of fatty acid content. Oleic acid and CLA-c9t11 
content had significant effects on the expression level of genes 
related to oxidative phosphorylation, cell growth, survival, and 
migration (Cesar et al., 2016). However, there are no studies 
about miRNA–mRNA co-expression related to fatty acid 
composition in bovines.

The integration of previous transcriptomic studies (Cesar 
et  al., 2016) with miRNA expression data information 
may help  provide a better understanding of the molecular 
mechanisms involved in the variation of FA content and 
deposition. Therefore, the goal of this study was to perform an 
integrative miRNA and mRNA expression analysis in skeletal 
muscle of beef cattle to unravel novel regulatory networks and 
signaling pathways involved in fatty acid biosynthesis and 
composition.

MATERIAL AND METHODS

Ethics Statement
Experimental procedures were carried out in accordance with 
the relevant guidelines provided by the Institutional Animal 
Care and Use Committee Guidelines of the Embrapa Pecuária 
Sudeste—Protocol CEUA 01/2013. The Ethical Committee of 
the Embrapa Pecuária Sudeste (São Carlos, São Paulo, Brazil) 
approved all experimental protocols (approval code CEUA 
01/2013) prior to the conduction of the study.

Phenotypic Data
Description of phenotypic data and genomic heritability for oleic 
acid (OA (C18:1 cis9) and conjugated linoleic acid (CLA-c9t11) 
content from Nelore steers were previously reported (Cesar et al., 
2014), with genomic heritability mean values of 0.16 ± 0.11 and 
0.04 ± 0.09, respectively.

Animals used in the RNAseq and miRNAseq analyses were 
selected for extreme values of OA and CLA based on the rank 
of their genomic estimated breeding values (GEBVs) in a larger 
population of 386 Nellore steers. The GEBVs were calculated 
by GenSel software using the Bayes B approach (Cesar et al., 
2014).  A total of 30 animals with extreme GEBVs for OA and 
CLA content were selected separately: the top 13 high (H-OA) 
and 15 low (L-OA) animals for OA content, and the top 15 high 
(H-CLA) and 15 low (L-CLA) animals for CLA content. The 
Nelore steers used in this study are exactly the same group of 
animals used in Cesar et al. (2016).

mRNA Expression Data
The processing and analysis of mRNA expression data from 
skeletal muscle from the same population of animals used in this 
study were previously described in Cesar et al. (2016), with the 
sample accession of mRNA expression data of PRJEB13188. In 
total, 16,710 genes were identified as expressed in skeletal muscle 
for OA, and 16,530 genes were expressed in skeletal muscle for 
CLA. These genes were used for co-expression analysis.

miRNA Expression Data
The processing and analysis of miRNA expression data from 
skeletal muscle and miRNA target predictions used in this 
study followed the same procedures previously described in De 
Oliveira et al. (2018). Therefore, we will give a brief description of 
the analyses carried out.

In brief, sequencing of miRNA cDNA libraries was conducted 
on a MiSeq (Illumina, San Diego, CA) with MiSeq Reagent Kit 
50 cycles in the Laboratory Multiuser ESALQ in Piracicaba/
SP/Brazil, according to the protocol described by Illumina. 
The FastQC tools (http://www.bioinformatics.babraham.ac.uk/ 
projects/fastqc) and FASTX (http://hannonlab.cshl.edu/fastx-
toolkit) were used to check the quality of reads, and reads 
were subjected to alignment to bovine genome reference UMD 
version 3.1 (Ensembl 84: Mar 2016) through the software 
miRDeep2 version 2.0.0.7 (Friedländer et al., 2008). The reads 
were then mapped to regions of the genome using the Bowtie 
tool (Langmead et al., 2009), built into miRDeep2 software.
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Differentially Expressed miRNAs
Differentially expressed (DE) miRNAs were identified for OA 
and CLA content phenotypes from a total of 30 small RNA 
libraries derived from skeletal muscle (N = 13 H-OA, N  =  15 
L-OA and N = 15 H-CLA, N = 15 L-CLA) using DESeq2 
software (Love et al., 2014). The Benjamini–Hochberg method 
(Benjamini and Hochberg, 1995) was used to control for the 
rate of false positive (FDR; 10%) due to the number of genes and 
miRNAs tested. We set an FDR threshold of 0.1 (i.e., 10% of false 
positives are expected) to correct for false positives, avoiding to 
lose information, as these are exploratory analyses that should 
indicate biological responses to be in the future verified.

miRNA Target Predictions and Functional 
Enrichment Analysis
The target genes of DE miRNAs from skeletal muscle were 
predicted with TargetScan (Agarwal et al., 2015) and miRanda 
(Betel et al., 2010) software. In order to predict the potential 
regulatory target transcripts, the target genes were filtered by 
skeletal muscle (Cesar et al., 2016) mRNA expression data 
previously analyzed on the same set of samples. Functional 
enrichment analysis of target genes was performed by 
WebGestalt (Wang et al., 2017) using Bos taurus and the 
overrepresentation enrichment analysis (ORA) as organism 
and method of interest.

miRNA and mRNA Co-Expression 
Approaches: Weighted Gene 
Co-Expression Network Analysis (WGCNA) 
and Partial Correlation With Information 
Theory (PCIT)
WGCNA
Co-expression networks were constructed by WGCNA 
(Langfelder and Horvath, 2008) v1.36 package in RStudio 
environment using miRNA (N = 13 H-OA, N = 15 L-OA and 
N = 15 H-CLA, N = 15 L-CLA) and mRNA (N = 13 H-OA, 
N = 15 L-OA and N = 15 H-CLA, N = 15 L-CLA) skeletal muscle 
expression data.

miRNA and mRNA networks were constructed separately 
for high (H) and low (L) fatty acid groups. miRNA network 
construction and module detection used the step-by-step signed 
network construction with a soft threshold of β = 6 (R2 > 0.90) and 
a minimum module size of 5. The same approach was adopted for 
mRNA signed network construction with a soft threshold β = 6 
(R2 > 0.91) and a minimum module size of 30. Five was chosen as 
the minimum module size for the miRNAs due to the smaller size 
of the miRNA transcriptome relative to the mRNA transcriptome 
(Langfelder and Horvath, 2008; Betel et al., 2010). The topological 
overlap distance calculated from the adjacency matrix is then 
clustered with the average linkage hierarchical clustering. The 
default minimum cluster merge height of 0.25 was retained.

An integrative analysis was performed, in which miRNA 
module eigengenes (MEs) and mRNA MEs for high and low 
fatty acid groups were correlated with one another by calculating 
the Pearson correlations. miRNA and mRNA modules with 
a negative correlation and a p-value  <  0.10 were selected for 

functional enrichment analysis. miRNA modules that were 
significantly correlated were then further explored to identify 
hub miRNAs. Hub miRNAs were selected based on the top five 
greatest module membership (MM) values.

In order to better understand the biological significance of the 
modules identified, the functional enrichment analysis of genes and 
miRNA target genes were performed by WebGestalt (Wang et al., 
2017) web tool. The functional enrichment analysis used the list of 
target genes from hub miRNAs selected from miRNA modules that 
were negatively correlated with mRNA modules. Co-expression 
networks among hub miRNAs and the GO terms of the target genes 
were constructed in Cytoscape v.3.3.0 (Cline et al., 2007).

PCIT: Differential Hubbing (DH), Regulatory Impact 
Factor (RIF), and Phenotypic Impact Factor (PIF) 
Metrics
The gene list used for PCIT analyses included all miRNAs and 
mRNAs detected in our study, but only those with a direct and 
partial correlation greater than 0.90 were used for the differential 
hubbing (DH) analyses. The DH was computed by the difference 
of significant connections of mRNA and miRNA between the 
high and low OA and CLA groups. Functional enrichment 
analysis was performed on the top five differential hubbing 
genes, or for miRNAs based on the list of predicted target genes, 
to determine if these specific genes/miRNAs have biological 
relevance to fatty acid composition.

The regulatory impact factor (RIF) and phenotypic impact 
factor (PIF) scores were calculated as described in Reverter et al. 
(2010) to predict which transcripts were potential regulators of 
gene expression differences between the high and low OA and CLA 
groups. Regulatory impact factor 1 (RIF1) ranks genes as potential 
regulators of networks based largely on changes in correlations 
between two different states, while regulatory impact factor 2 (RIF2) 
ranks genes with more emphasis on how expression level changes 
between two different states (Reverter et al., 2010). Phenotypic 
impact factor (PIF) values were used to identify and rank genes 
based on the magnitude of gene expression and the difference in 
the expression of that gene between two treatments (Reverter et al., 
2010). The RIF calculations presented here were modified from 
the original method, and the complete list of expressed mRNA 
or miRNA was tested as potential regulators, and only mRNAs or 
miRNAs with a significant partial correlation of 0.90 from PCIT 
were included in the RIF and PIF score estimates; as described in 
Cesar et al. (2016). PIF score estimates were ranked to select the top 
10 PIF regulators of all genes in the dataset.

RESULTS

Phenotypic and miRNA Expression Data
Genomic estimated breeding values (GEBVs) and the number of 
normalized mapped miRNA reads for Nelore steers genetically 
divergent for two FA content, oleic acid (C18:1 cis9) and 
conjugated linoleic acid (CLA-c9t11), are shown in Table 1. 
Sample sizes of extreme Nelore steers used for OA and CLA 
analyses were slightly different due to data availability. A Student’s 
t-test was previously performed by Cesar et al. (2016) to evaluate 
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the mean differences between the high and low FA groups, and 
significant differences (p-value  <  0.05) were observed for both 
OA and CLA content.

On average, 85% of miRNA reads for OA and CLA were 
mapped to the B. taurus UMD 3.1 genome assembly (Ensembl 
84: Mar 2016). In total, 404 OA and 386 CLA mature miRNAs 
were detected by miRDeep2 software (Supplementary Table 1).

Differentially Expressed miRNAs and 
Target Gene Identification
We identified 137 and 131 unique mature miRNA sequences with 
non-zero expression levels according to DESeq criteria for samples 
in OA (Supplementary Table 2) and CLA (Supplementary Table 3) 
groups, respectively, which were used in differential expression and 
co-expression analyses. The miRNAs bta-miR-126-5p and bta-
miR-2419-5p were upregulated in the L-OA and H-CLA groups, 
respectively (Table 2).

Among the 3,619 bta-miR-126-5p target genes 
(Supplementary Table 4) identified in the bovine genome, 162 
were previously identified as DE in this same population (Cesar 

et al., 2016). SCD (stearoyl-CoA desaturase), CDS2 (CDP-
diacylglycerol synthase 2), FAR2 (fatty acyl CoA reductase 2), 
and NAB1 (NGFI-A binding protein 1) were included in this 
list of DE genes, well known to be related to biological processes 
associated with fatty acid composition. Regarding the 365 bta-
miR-2419-5p target genes (Supplementary Table 4), 16 were 
also previously identified as DE (Cesar et al., 2016). Among 
these genes are included CAV3 (caveolin 3), JMJD1C (jumonji 
domain containing 1C), FOXO6 (forkhead box O6), and 
PRKAG2 (protein kinase AMP-activated non-catalytic subunit 
gamma 2). These bta-miR-126-5p DE target genes were also 
enriched for genes involved in biological processes associated 
with fatty acid composition.

miRNA and mRNA Co-Expression
Weighted Gene Co-Expression Network Analysis 
(WGCNA)
WGCNA was used to identify potential regulatory networks 
related to OA and CLA content in skeletal muscle. To this end, 
miRNA and mRNA expression data from animals with extreme 

TABLE 1 | Genomic estimated breeding values (GEBVs) and number of normalized mapped miRNA reads for Nelore steers with divergent fatty acid content groups. 

Groups1 GEBVs  miRNA mapped reads Groups2 GEBVs miRNA mapped 
reads

OA (C18:1 cis9)
H-OA1 2.11 970,350 L-OA1 −7.06 605,324
H-OA2 1.54 745,742 L-OA2 −4.98 1,308,497
H-OA3 3.20 1,009,408 L-OA3 −5.51 703,560
H-OA4 3.25 1,051,535 L-OA4 −2.41 525,015
H-OA5 2.16 1,052,657 L-OA5 −1.54 594,924
H-OA6 2.08 1,289,704 L-OA6 −2.95 563,260
H-OA7 1.58 610,678 L-OA7 −2.43 349,772
H-OA8 1.92 564,255 L-OA8 −7.03 557,486
H-OA9 4.14 555,136 L-OA9 −3.48 656,226
H-OA10 2.61 607,145 L-OA10 −2.67 685,506
H-OA11 3.89 1,035,882 L-OA11 −1.63 690,291
H-OA12 2.84 520,790 L-OA12 −8.07 748,090
H-OA13 1.76 584,448 L-OA13 −4.14 689,313
H-OA14 * * L-OA14 −7.36 602,604
H-OA15 * * L-OA15 −2.91 732,483
Mean 2.16 745,742 Mean −3.48 656,226
CLA (CLA-c9t11)
H-CLA1 0.008 439,844 L-CLA1 −0.008 457,706
H-CLA2 0.012 1,152,736 L-CLA2 −0.013 532,780
H-CLA3 0.008 938,908 L-CLA3 −0.017 988,632
H-CLA4 0.012 1308,497 L-CLA4 −0.011 521,652
H-CLA5 0.011 235,852 L-CLA5 −0.010 300,196
H-CLA6 0.016 874,538 L-CLA6 −0.009 1,264,789
H-CLA7 0.022 976,093 L-CLA7 −0.016 685,506
H-CLA8 0.025 1,039,805 L-CLA8 −0.013 702,016
H-CLA9 0.009 555,136 L-CLA9 −0.015 605,442
H-CLA10 0.009 918,555 L-CLA10 −0.013 677,737
H-CLA11 0.012 675,360 L-CLA11 −0.009 522,944
H-CLA12 0.012 772,395 L-CLA12 −0.010 658,923
H-CLA13 0.019 713,501 L-CLA13 −0.010 752,121
H-CLA14 0.019 500,697 L-CLA14 −0.018 1,306,312
H-CLA15 0.014 636,795 L-CLA15 −0.010 511,704
Mean 0.012 772,395 Mean −0.011 658,923

1Nelore samples of high (H) oleic acid (OA) and conjugated linoleic acid (CLA) groups.
2Nelore samples of low (L) oleic acid (OA) and conjugated linoleic acid (CLA) groups.
*Data not available.
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GEBVs of OA and CLA were evaluated separately. After quality 
control, a total of 137 miRNAs and 16,710 mRNAs were analyzed 
for OA network construction, while a total of 131 miRNAs and 
16,530 mRNAs were used for CLA network construction.

A total of 52 mRNA modules were identified in the H-OA 
group (Figure S1A), while in the L-OA group, 95 mRNA 
modules were identified (Figure S1B). Regarding miRNA, 
12 and 9 modules were identified, respectively, in the H-OA 
(Figure S2A) and L-OA (Figure S2B) groups. For CLA, 52 and 
28 mRNA modules in the H-CLA (Figure S3A) and L-CLA 
(Figure S3B) groups were identified, respectively. CLA miRNA 
network analysis identified six and five miRNA modules in the 
H-CLA (Figure S4A) and L-CLA (Figure S4B), respectively.

In order to investigate miRNA–mRNA interactions, mRNA 
module eigengenes (MEs), which represent the sum of gene 
expression profiles of each module, were correlated with 
miRNA MEs. The mRNA and miRNA modules with negative 

correlations and a nominal p-value  <  0.10 were selected for 
further investigation. The focus on negative correlation between 
mRNA and miRNA modules was based on the fact that the 
predominant and canonical effect of miRNAs on gene expression 
is through mRNA downregulation, which would equate to a 
negative miRNA–mRNA expression correlation (Guo et al., 
2010). In the H-OA group, four negative correlations between 
mRNA and miRNA MEs were identified, while in the L-OA 
group, eight negative correlations were observed (Table 3). In 
the H-CLA group, seven negative correlations between miRNA 
and mRNA MEs were observed, while in the L-CLA group, three 
negative correlations were observed (Table 3).

Hub miRNAs are the miRNAs with higher connectivity inside 
the module and are probably more informative (Filteau et al., 
2013). In order to find hub miRNAs involved in the co-expression 
networks, we selected the top five miRNAs representing the 
greatest module membership (MM) values from miRNA 

TABLE 2 | Differentially expressed miRNAs identified by miRDeep2 for Nelore steers with divergent fatty acid content groups and the number of predicted target genes.

miRNA log2FC1 padj2 High3 Low4 Predicted 
target genes5

OA (C18:1 cis9)
bta-miR-126-5p 0.4346 0.0987 3,334.235 4,682.251 3,619
CLA (CLA-c9t11)
bta-miR-2419-5p −1.18 0.0041 16,108.8 4,182.543 365

1log2 fold change.
2False discovery rate adjusted p-values by Benjamini–Hochberg (1995) methodology.
3,4Normalized miRNA mean counts of high and low fatty acid content groups.
5Number of predicted target genes by TargetsSan and miRanda software.

TABLE 3 | Signaling pathways of miRNA module eigengenes (MEs) negatively correlated with mRNA MEs for Nelore steers with divergent fatty acid content groups.

Group mRNA MEs Corr p-value1  miRNA MEs Signaling pathways2 p-value1

H-OA paletvioletred3 −0.7 0.01 Magenta Insulin resistance 6.23e−06
grey −0.6 0.04 Black MAPK signaling pathway 5.54e−07
lightsteelblue1 −0.8 0.00 Turquoise Insulin resistance 1.64e−04
bisque4 −0.7 0.00

L-OA coral1 −0.7 0.00 Turquoise AMPK signaling pathway 7.11e−07
mediumpurple2 −0.6 0.01
darkolivegreen −0.7 0.00 Pink Insulin signaling pathway 9.76e−08
orangered −0.5 0.04
lightcyan1 −0.5 0.05 Blue Proteoglycans in cancer 1.17e−04
mediumorchid −0.6 0.01
lightcyan1 −0.6 0.03 Yellow Wnt signaling pathway 1.84e−05
lightcyan1 −0.7 0.00 Green Insulin signaling pathway 2.89e−04

H-CLA cyan −0.6 0.03 Turquoise ns *
brown −0.6 0.02 Red Insulin resistance 7.9e−05
plum2 −0.6 0.03 Blue Insulin resistance 1.1e−05
turquoise −0.6 0.03
darkred −0.7 0.00 Brown ns *
steelblue −0.5 0.04
thistle1 −0.6 0.02 Black Insulin signaling pathway 2.73e−07

L-CLA purple −0.5 0.04 Blue Insulin signaling pathway 6.68e−06
white −0.5 0.04
orange −0.5 0.04 Red MAPK signaling pathway 1.71e−04

1Nominal p-value.
2Signaling pathways of target genes from hub miRNAs selected based on greatest module membership values.
*NS, non-significant.
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modules negatively correlated with mRNA modules. Table 3 
shows signaling pathways obtained from WebGestalt software 
based on enrichment of the genes from miRNA modules and the 
target genes for hub miRNAs.

In the H-OA group, genes from mRNA modules were not 
significantly enriched for any Gene Ontology terms, while 
miRNA target genes from magenta and turquoise modules were 
significantly enriched for insulin resistance (Supplementary 
Table 5). miRNA target genes from black module were enriched 
for the MAPK signaling pathway (Supplementary Table 5). In 
the L-OA group, genes from the dark olive green module were 
significantly enriched for fatty acid degradation processes, 
while miRNA target genes from turquoise, pink, and blue 
modules were enriched for AMPK, insulin signaling pathway, 
and proteoglycans in cancer, respectively (Supplementary 
Table 5).

In the H-CLA group, genes from the mRNA modules brown 
and plum were significantly enriched for insulin resistance and 
steroid biosynthesis, respectively, while miRNA target genes 
from red, blue, and black modules were enriched for insulin 
resistance and insulin signaling pathway (Supplementary 
Table  6). In the L-CLA group, miRNA target genes from blue 
and red modules were enriched for insulin and MAPK signaling 
pathway, respectively (Supplementary Table 6).

Figures 1 and 2 show co-expression networks for hub miRNAs 
enriched for signaling pathways related to FA composition in 
H-OA (Figure 1) and L-OA groups (Figure 2) and in H-CLA 
(Figure 3) and L-CLA (Figure 4) groups in Nelore cattle.

Partial Correlation With Information Theory (PCIT)
PCIT, regulatory impact factor (RIF), and phenotypic impact 
factor (PIF) were used to score genes as potential regulators of 
signaling pathways between high and low FA groups. Differential 
hubbing (DH) represents the number of significant partial 
correlations that a gene has between two phenotypic states 
(Hudson et al., 2009). DH values of all genes and miRNAs 
used in PCIT analysis are in Supplementary Table 7. Table 4 
shows the top five negative and positive extreme hubbing genes 
when comparing high and low OA and CLA groups. Functional 
enrichment analysis was performed on the top five DH genes 

to determine if they have biological relevance to fatty acid 
composition. The top 10 negatively and positively hubbed genes 
for OA and CLA content and their associated GO terms are 
shown in Supplemental Table 8.

The bta-mir-339a and FRAT1 are among the top negatively 
hubbed genes for OA, associated with glycogen synthase 
kinase-3 binding protein (IPR008014) and Wnt signaling 
pathway (bta04310). GAL3ST3 and ATP6V0E1 are among the 
top positively hubbed genes, associated with the glycolipid 
biosynthetic process (GO: 0009247) and generation of metabolites 
and energy, respectively. KAT5 is among the top negatively 
hubbed genes for CLA, associated with proteasome-mediated 
ubiquitin-dependent protein catabolic process (GO: 0043161), 
while TMEM115 is associated with protein glycosylation (GO: 
0006486). PSMG1 is among the top positively hubbed genes and 
associated with proteasome assembly (GO: 0043248).

For OA, a total of 14,900 transcripts had negative RIF1 
values, whereas 1,948 transcripts had positive values. For RIF2, 
16,684 transcripts had negative values, while 127 transcripts 
had positive values (Supplementary Table 9). For CLA, a total 
of 14,171 transcripts had negative RIF1 values, while 1,891 
transcripts had positive values. For RIF2, 108 transcripts had 
negative values, while 16,512 transcripts had positive values 
(Supplementary Table 10).

Table 5 shows the top five negative and positive genes 
identified by RIF1 and RIF2 score by contrasting H and L groups 
for OA content. The RIF1 analysis identified putative regulators 
for OA content GO terms associated with muscling, e.g., muscle 
contraction and actin filament organization (TPM1, TPM2, 
and MYL1), and with fatness, e.g., glycolytic process and ATP 
biosynthetic process (ALDOA). The RIF2 analysis identified 
bta-mir-10b as a negative putative regulator, as well as the genes 
ACTN2 and TNNT1, associated with skeletal muscle contraction 
GO terms. The same group of genes identified as positive RIF1 
regulators is among the top positive RIF2 regulators. Functional 
enrichment analysis was performed using DAVID software on 
the top five genes to determine their biological relevance on fatty 
acid composition (Supplementary Table 9).

Table 6 shows the top negative and positive RIF1 and 
RIF2 genes when high and low groups for CLA content were 

FIGURE 1 | Co-expression networks of H-OA group from Nelore cattle. Colored diamonds represent the top five hub miRNAs within each module, and colored 
rectangles represent the signaling pathways associated (p-value ≤ 0.10) with hub miRNA target genes.
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contrasted. RIF1 analysis identified putative negative regulators 
for CLA content genes related to regulation of gene expression 
(GNRH1) and muscling, e.g., actin filament organization 
(TRPV4). The genes ALDOA, CKM, and TPM were identified as 
positive RIF1 regulators and were also identified as negative RIF2 
regulators. RIF2 analysis identified positive putative regulator 
genes enriched for GO terms associated with muscling (MYH1, 
DES, and PDLIM3). Functional enrichment analysis on the top 
five genes is presented in Supplementary Table 10.

For OA and CLA, PIF analysis identified 13,480 and 15,531 
transcripts, respectively (adjusted p-value < 0.05), which could 
significantly impact fatty acid composition. Table 7 lists the top 
10 regulators ranked by PIF analysis for OA and CLA content. 
Functional enrichment analysis to determine the biological 
relevance on fatty acid composition of the top 10 genes is 
presented in Supplementary Table 11.

Interestingly, among the top 10 regulators identified by PIF 
analyses for OA and CLA content is the same group of genes 

FIGURE 2 | Co-expression networks of L-OA group from Nelore cattle. Colored diamonds represent the top five hub miRNAs within each module, and colored 
rectangles represent the signaling pathways associated (p-value ≤ 0.10) with hub miRNA target genes.

FIGURE 3 | Co-expression networks of H-CLA group from Nelore cattle. Colored diamonds represent the top five hub miRNAs within each module, and colored 
rectangles represent the signaling pathways associated (p-value ≤ 0.10) with hub miRNA target genes.
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(ACTA1, TTN, MYH1, ALDOA, CKM, and NEB) with Gene 
Ontology (GO) terms associated with muscling (ACTA1, MYH, 
and MYLPF) and fatness and fiber type (ALDOA).

DISCUSSION

The purpose of this study was to investigate the complex 
interactions between miRNAs and mRNAs in bovine skeletal 
muscle associated with variation in oleic acid (OA) and 
conjugated linoleic acid (CLA-c9t11) content. This was 
accomplished by performing differential miRNA expression 
analysis and two different gene co-expression approaches, 
weighted gene co-expression network analysis (WGCNA) and 
partial correlation with information theory (PCIT). Furthermore, 

we sought to identify the key drivers of gene expression networks. 
Analyses were focused on these two fatty acids due to their 
importance in many biological processes and beneficial effects on 
metabolic diseases and human health (Laaksonen et al., 2005b). 
Also, a significant number of differentially expressed genes in 
response to OA (1134) and CLA (872) content were identified 
in this same population previously (Cesar et al., 2016). OA is a 
monounsaturated fatty acid present in membrane phospholipids, 
triglycerides, and cholesterol and is associated with protection 
against heart disease (Laaksonen et al., 2005b), while CLA 
antidiabetic effects are mediated via anti-inflammatory processes 
in white adipose tissue (Moloney et al., 2007).

Integration of miRNA and mRNA co-expression from 
next-generation sequencing data from the same individuals 
revealed the possible regulatory roles of miRNAs on fatty acid 

FIGURE 4 | Co-expression networks of L-CLA group from Nelore cattle. Colored diamonds represent the top five hub miRNAs within each module, and colored 
rectangles represent the signaling pathways associated (p-value ≤ 0.10) with hub miRNA target genes.

TABLE 4 | Top negative and positive extreme hubbing genes groups for oleic acid (OA) and conjugated linoleic acid (CLA) content.

Ensembl gene ID Gene symbol Description DH* 

Negative hub genes OA 
ENSBTAG00000040485 THEG Theg spermatid protein −905
ENSBTAG00000031806 ZNF48 Zinc finger protein 48 −826
ENSBTAG00000007692 – – −799
ENSBTAG00000044830 bta-mir-339a bta-mir-339a −770
ENSBTAG00000007956 FRAT1 Frequently rearranged advanced T-cell lymphomas 1 −753
Positive hub genes OA
ENSBTAG00000015100 ATP6V0E1 ATPase H+ transporting V0 subunit e1 2946
ENSBTAG00000025221 TEX30 Testis expressed 30 2,925
ENSBTAG00000014337 EIF2S3 Eukaryotic translation initiation factor 2 subunit 3 2,911
ENSBTAG00000044066 C1orf101 Chromosome 1 open reading frame 2,903
ENSBTAG00000002772 GAL3ST3 Galactose-3-O-sulfotransferase 3 2,902
Negative hub genes CLA
ENSBTAG00000005578 KAT5 Lysine acetyltransferase 5 −2,126
ENSBTAG00000046307 CEBPD CCAAT enhancer binding protein delta −2,112
ENSBTAG00000003849 GNL2 G protein nucleolar 2 −2,060
ENSBTAG00000045822 – – −1,997
ENSBTAG00000002634 TMEM115 Transmembrane protein 115 −1,987
Positive hub genes CLA
ENSBTAG00000013600 PSMG1 Proteasome assembly chaperone 1,848
ENSBTAG00000015042 WDR55 WD repeat domain 1,809
ENSBTAG00000032684 TCTEX1D2 Tctex1 domain containing 2 1,794
ENSBTAG00000006321 RTCA RNA 3′-terminal phosphate 1,740
ENSBTAG00000045544 LOC107131189 Eukaryotic translation initiation factor 1,692

*DH, differential hubbing.
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TABLE 5 | Top negative and positive genes identified by regulatory impact factor 1 (RIF1) and regulatory impact factor 2 (RIF2) score for oleic acid (OA) content.

Ensembl gene ID Gene symbol Description RIF1 Z-score*

Top negative RIF1
ENSBTAG00000000020 TRPV3 Transient receptor potential 

cation channel subfamily V 
member 3

−0.046

ENSBTAG00000000030 RDM1 RAD52 motif containing 1 −0.046
ENSBTAG00000000102 GPR75 G protein-coupled receptor 75 −0.046
ENSBTAG00000000008 KCNJ1 Potassium voltage-gated 

channel subfamily J member 1
−0.046

ENSBTAG00000000168 – – −0.046
Top positive RIF1
ENSBTAG00000012927 ALDOA Aldolase, fructose-bisphosphate 

A
94.532

ENSBTAG00000011424 TPM2 Tropomyosin 2 (beta) 69.720
ENSBTAG00000013921 CKM Creatine kinase 27.167
ENSBTAG00000009707 MYL1 Myosin light chain 1 23.357
ENSBTAG00000005373 TPM1 Tropomyosin 1 (alpha) 22.028
Top negative RIF2
bta-miR-10b bta-mir-10b bta-mir-10b −1.377
ENSBTAG00000007782 MYOT Myotilin −0.238
ENSBTAG00000009696 ACTN2 Alpha-actinin-2 −0.074
ENSBTAG00000000678 CSDE1 Cold shock domain containing E1 −0.060
ENSBTAG00000006419 TNNT1 Troponin T −0.050
Top positive RIF2
ENSBTAG00000012927 ALDOA Aldolase, fructose-bisphosphate A 106.069
ENSBTAG00000011424 TPM2 Tropomyosin 2 (beta) 54.632
ENSBTAG00000013921 CKM Creatine kinase 28.422
ENSBTAG00000005373 TPM1 Tropomyosin 1 (alpha) 22.117
ENSBTAG00000009707 MYL1 Myosin light chain 1 16.740

*RIF1 and RF2 scores are presented as Z-score-normalized values.

TABLE 6 | Top negative and positive genes identified by regulatory impact factor 1 (RIF1) and regulatory impact factor 1 (RIF2) score for conjugated linoleic acid (CLA) 
content.

Ensembl gene ID Gene symbol Description RIF1 Z-score*

Top negative RIF1
ENSBTAG00000000164 GNRH1 Gonadotropin releasing hormone 1 −0.0633
ENSBTAG00000000582 LY6G6E Lymphocyte antigen 6 complex −0.0633
ENSBTAG00000000982 C22H3orf84 Chromosome 22 c3orf84 homolog −0.0633
ENSBTAG00000000031 TRPV4 Transient receptor potential cation 

channel subfamily V member 4
−0.0633

ENSBTAG00000000535 PCNX2 Pecanex homolog 2 −0.0633
Top positive RIF1
ENSBTAG00000026986 TTN Titin 25.8861
ENSBTAG00000006907 NEB Nebulin 29.2850
ENSBTAG00000011424 TPM2 Tropomyosin 2 (beta) 36.2570
ENSBTAG00000013921 CKM Creatine kinase 36.8083
ENSBTAG00000012927 ALDOA Aldolase, fructose-bisphosphate A 89.4190
Top negative RIF2
ENSBTAG00000012927 ALDOA Aldolase, fructose-bisphosphate A −108.25
ENSBTAG00000013921 CKM Creatine kinase −38.19
ENSBTAG00000011424 TPM2 Tropomyosin 2 (beta) −38.08
ENSBTAG00000005373 TPM1 Tropomyosin 1 (beta) −24.17
ENSBTAG00000046332 ACTA1 Actin alpha 1 −20.98
Top positive RIF2
ENSBTAG00000018204 MYH1 Myosin heavy chain 1 11.5144
ENSBTAG00000005353 DES Desmin 6.2929
ENSBTAG00000006907 NEB Nebulin 4.5481
ENSBTAG00000006823 CMYA5 Cardiomyopathy associated 5 1.9259
ENSBTAG00000017183 PDLIM3 PDZ and LIM domain 3 1.3030

*RIF1 and RIF2 scores are presented as Z-score-normalized values.
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composition. WGCNA allowed the identification of miRNA and 
mRNA modules that were negatively correlated with each other, 
which may indicate that FA composition is modulated by specific 
miRNA–mRNA interactions. However, only one mRNA module 
in the L-OA group and two mRNA modules in the H-CLA group 
presented functional enrichment for fatty acid degradation, 
insulin resistance, and steroid biosynthesis. Therefore, the 
subsequent analyses were focused on the identification of key 
miRNAs that may be involved in co-expression networks and 
thereby in the regulation of fatty acid composition.

From differential expression analysis, the SCD gene, identified 
as a putative target gene of bta-miR-126-5p, was found to be 
upregulated in the H-OA content group in a previous skeletal 
muscle RNAseq study (Cesar et al., 2016). SCD is as a key 
enzyme in de novo lipogenesis (Scaglia and Igal, 2005), and its 
upregulation has been associated with deposition of unsaturated 
FAs. Thus, the upregulated bta-miR-126-5 in the L-OA group 
observed herein may explain the reduced SCD mRNA levels 
observed before (Cesar et al., 2016). These results suggest that 
SCD expression level is related to OA content and may suggest 
a new role for bta-miR-126-5p in the regulation of SCD. It is 
relevant to note that only negative miRNA–mRNA correlations 
were considered herein. However, it is important to emphasize 
that this was an exploratory study and should be complemented 
by other in vitro and in vivo analyses to better discriminate the 
mechanisms of miRNA regulation of gene expression.

Functional enrichment analysis indicated a relationship 
between insulin, insulin resistance, adipocytokine signaling 

pathway, and non-alcoholic fatty liver disease for PRKAG2 gene, 
a target gene of bta-miR-2419-5p. The major effects of insulin 
on muscle and adipose tissue are related to carbohydrate, lipid, 
and protein metabolism (Dimitriadis et al., 2011). Insulin can 
decrease the rate of lipolysis, stimulate fatty acid synthesis, 
increase the uptake of triglycerides from blood into muscle and 
adipose tissue, and decrease the rate of fatty acid oxidation in 
muscle and liver (Dimitriadis et al., 2011). Metabolic diseases 
such as obesity and coronary disorders can be the consequence 
of insulin resistance, i.e., the inability of insulin to drive glucose 
into muscle and other tissues, which can be caused by excessive 
body fat deposition (Dimitriadis et al., 2011). Assuming that bta-
miR-2419-5p expression level regulates CLA content and that 
this miRNA can regulate PRKAG2 expression, it is possible that 
bta-miR-2419-5p can regulate insulin expression to ultimately 
respond to CLA content. The transcription factors (TFs) FOXO1, 
FOXO3, and FOXO4 are also targets of bta-miR-2419-5p. 
Therefore, they may also be regulated by CLA content. FOXO1 
expression has been previously associated with CLA content in 
this population (Cesar et al., 2016).

Co-expression network analysis integrating miRNA and 
mRNA expression data revealed two miRNA modules (magenta 
and turquoise) in the H-OA group whose potential target genes 
were significantly enriched for the GO term insulin resistance. 
As discussed previously, it is known that insulin resistance 
can be caused by excessive fat deposition (Ortega et al., 2013). 
The miRNA magenta module grouped both bta-miR-181a 
and bta-miR-33a/b. The bta-miR-181a is from the same family 

TABLE 7 | Top 10 regulators identified by phenotypic impact factor (PIF) analysis with FDR adjusted p-value for oleic acid (OA) and conjugated linoleic acid (CLA) 
content.

Ensembl gene ID Gene symbol Description PIF adj.p.Val

OA
bta-miR-10b bta-miR-10b bta-miR-10b 66,197 1.10e−01*
ENSBTAG00000046332 ACTA1 Actin, alpha 1, skeletal muscle 20,402 1.27e−005
ENSBTAG00000026986 TTN Titin 8,820 4.81e−007
ENSBTAG00000018204 MYH1 Myosin, heavy chain 1, skeletal 

muscle, adult
7,401 8.64e−008

ENSBTAG00000012927 ALDOA Aldolase, fructose-bisphosphate A 7,199 9.68e−006
ENSBTAG00000011424 – – 4,547 2.42e−005
ENSBTAG00000013921 CKM Creatine kinase, M-type 3,610 5.41e−006
bta-miR-486 bta-miR-486 bta-mir-486 3,506  4.27e−001*
ENSBTAG00000006907 NEB Nebulin 2,864 1.91e−007
ENSBTAG00000021218 MYLPF Myosin light chain, phosphorylatable, 

fast skeletal muscle 
2,111 6.31e−005

CLA
bta-miR-10b bta-miR-10b bta-miR-10b 92,224 9.53e−003
ENSBTAG00000046332 ACTA1 Actin, alpha 1, skeletal muscle 39,297 1.48e−009
ENSBTAG00000012927 ALDOA Aldolase, fructose-bisphosphate A 21,787 7.32e−004
ENSBTAG00000026986 TTN Titin 18,487 2.16e−007
ENSBTAG00000018204 MYH1 Myosin, heavy chain 1, skeletal 

muscle, adult
14,134 1.65e−011

ENSBTAG00000011424 – – 9,845 2.65e−004
ENSBTAG00000013921 CKM Creatine kinase, M-type 7,206 1.41e−006
ENSBTAG00000006907 NEB Nebulin 5,455 6.68e−007
ENSBTAG00000021218 MYLPF Myosin light chain, phosphorylatable, 

fast skeletal muscle 
4,229 1.27e−004

bta-mir-486 bta-mir-486 bta-mir-486 3,777 1.18e−003

*Non-significant adj p-values.
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as bta-miR-181b, which has been reported to regulate the 
biosynthesis of bovine milk by targeting ACSL1, an important 
enzyme of milk lipid synthesis (Lian et al., 2016). Furthermore, 
bta-miR-33a/b has been reported to contribute to the regulation 
of fatty acid metabolism and the insulin signaling pathway 
(Dávalos et al., 2011), which indicates that the insulin signaling 
pathway may be impacted in the H-OA group.

The miRNA turquoise module contained both bta-miR-146b 
and bta-miR-26b. In a recent integrative analysis of miRNA–
mRNA expression related to intramuscular fat (IMF) deposition 
in animals from this population, the bta-miR-146b was found to 
be downregulated in individuals with high IMF content, while 
the bta-miR-26b was identified by PCIT as a candidate regulatory 
gene that negatively regulates IMF deposition (Oliveira et al., 
2018). IMF represents the amount of fat accumulated between 
muscle fibers or within muscle cells, and it is a determinant factor 
that affects meat quality (Wood et al., 2008). Despite the fact that 
in the present study IMF deposition between high and low groups 
was not statistically different (Cesar et al., 2016), we could not 
ignore the fact that OA, CLA, and other FAs comprise IMF. It has 
been reported that as intramuscular lipid content accumulates, 
there is a concomitant elevation in the concentration of oleic acid 
(Smith et al., 2006). Other hub miRNAs such as bta-miR-196a 
and bta-miR-30f (from the same family of hubs bta-miR-30d and 
bta-miR-30a-5p) have been reported to have a higher expression 
level in cattle that have higher amounts of IMF (Guo et al., 2017). 
Therefore, taking together the results from these and previous 
studies, we can highlight the role of bta-miR-146b, bta-miR-26b, 
bta-miR-30d, and bta-miR-196a in regulating muscle fatty acid 
composition.

Lipid accumulation can activate the immune system and 
inflammatory pathways due to the secretion of proinflammatory 
molecules by adipocytes (Lau, 2005). The mitogen-activated 
protein kinase (MAPK) cascade, enriched from the miRNA 
black module, is highly conserved and involved in various 
cellular functions, including responses to proinflammatory 
stimuli (Soares-Silva et al., 2016). Networks and DE genes 
related to immune system and inflammatory response were 
previously associated with high amounts of IMF in this 
population (Cesar et al., 2015; Oliveira et al., 2018). Among 
the hub miRNAs from the black module was the bta-miR100, 
which was previously found to be downregulated in animals 
with high IMF (Oliveira et al., 2018).

In the L-OA group, the target genes of two miRNA modules 
(pink and green) were enriched for GO terms associated with 
the insulin signaling pathway. Insulin is a hormone with a direct 
effect on lipid metabolism (Dimitriadis et al., 2011), which could 
explain why modules present in the high and low fatty acid 
groups are associated with insulin-related terms. However, we can 
observe an overrepresentation of the insulin signaling pathway 
in the low fatty acid group, while in the high fatty acid group, 
we can observe an overrepresentation of the insulin resistance 
pathway. As discussed before, insulin resistance has been linked 
to excessive body fat deposition and obesity (Dimitriadis et al., 
2011), supporting our findings.

Hub miRNAs from the pink module (bta-miR-204 and bta-
miR-365-5p) and from the green module (bta-miR-660) have 

been previously associated with adipose tissue in cattle (Gu 
et al., 2007). Other hub miRNAs from the green module (bta-
miR-411a and bta-miR-136) were expressed at a higher level in 
Wagyu compared with Holstein cattle (Guo et al., 2017). Wagyu 
cattle accumulate large amounts of marbling and specifically 
monounsaturated fatty acids, of which oleic acid is primarily 
responsible for the soft fat (Smith et al., 2009). Taken together, 
these results may indicate a possible role of these miRNAs in 
post-transcriptional regulation of OA content.

Target genes of the miRNA turquoise module were enriched for 
GO terms associated with the AMPK signaling pathway. AMPK is 
a basic regulator of cellular and body energy metabolism and may 
enhance activity of mitochondrial proteins involved in oxidative 
metabolism (Thomson et al., 2008). Cesar et al. (2016) reported 
that several canonical pathways of oxidative phosphorylation 
were upregulated in animals with H-OA content. Therefore, the 
enrichment of target genes associated with the AMPK signaling 
pathway in L-OA might indicate a post-transcriptional regulation 
of this pathway resulting in downregulated oxidative metabolism 
in these animals, complementing the findings by Cesar et al. 
(2016). Still on the turquoise module, the hub bta-miR-146b, 
which is in the same miRNA family as bta-miR-146a, has been 
correlated with target genes that are functionally enriched for GO 
terms associated with fatty acid oxidation (Oliveira et al., 2018).

Target genes of the miRNA blue module were enriched for 
GO terms associated with proteoglycans in cancer pathways. 
Proteoglycans have been shown to be key macromolecules that 
contribute to biology of various types of cancer (Iozzo and 
Sanderson, 2011). Previous studies have reported an important 
contribution of OA intake to human health, with protective effects 
against cancer development (Schwartz et al., 2008). In this sense, 
genes related to cancer were found to be upregulated in animals 
with low CLA content (Cesar et al., 2016). These findings may be 
evidence of miRNA modulation of a carcinogenic pathway. In the 
miRNA blue module as well, a hub miRNA, bta-miR-21-5p, has 
been reported to be an important regulator of bovine mammary 
lipogenesis and metabolism (Li et al., 2015). As in meat, fatty 
acid composition can influence the nutritional quality of milk 
and milk fat (Soyeurt et al., 2008). From miRNA yellow module, 
target genes were enriched for Wnt signaling pathway. Wnt is a 
member of signal transduction pathways, which regulates crucial 
aspects of cell fate determination (Komiya and Habas, 2008). It 
has been reported that the knockdown of a key enzyme in fatty 
acid synthesis (FASN) could attenuate the Wnt signaling pathway 
via downregulation of specific genes (Wang et al., 2016).

Two miRNA modules (red and blue) identified in the H-CLA 
group were enriched for GO terms associated with insulin 
signaling pathway and insulin resistance. The hub bta-miR-
30b-5p from red module has been reported to regulate muscle 
cell differentiation (Zhang et al., 2016), while hub bta-miR-10b 
from blue module and bta-miR-146b from grey module have 
been reported to have a higher expression in mammary tissue 
(Wicik et al., 2016). Moreover, bta-miR-146b was associated with 
the GO terms of Wnt and inflammatory pathways. The canonical 
Wnt signaling pathway was also enriched in the L-OA group.

In the L-CLA group, target genes in the miRNA blue module 
were enriched for the insulin signaling pathway and target genes 
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of the miRNA red module for MAPK signaling pathway GO 
terms. Besides being involved with inflammatory processes, the 
MAPK signaling pathway is involved in the activation of PPARα 
(peroxisome proliferator-activated receptor) by adiponectin, 
stimulating fatty acid oxidation in muscle cells (Myeong et al., 
2006). Adiponectin is an adipocytokine secreted by adipocytes 
with its beneficial effects on insulin resistance and metabolic 
disorders (Myeong et al., 2006). Interestingly, hub miRNAs from 
the red module such as bta-let-7a-5p, bta-let-7f, and bta-let-7e 
have been associated with insulin-like growth factor receptor 
signaling pathway (Wicik et al., 2016).

To better understand the biological processes that influence 
muscle FA composition, PCIT analysis was conducted. In this 
analysis, we identified the potential regulators that could be 
involved in the gene expression changes in skeletal muscle due 
to OA and CLA content. Negative and positive regulators are 
defined based on the number of significant partial correlations 
that a gene has between two states (Reverter and Chan, 2008).

Differential hubbing (DH) analysis identified bta-mir-339a as 
one of the top five negative regulators, with more connections in 
the L-OA group. The target genes of bta-mir-339a were enriched 
for 10 significant pathways, including the MAPK signaling 
pathway, which was also identified by WGCNA. Furthermore, 
bta-mir 339 has been reported to be expressed at a higher level in 
bovine adipose tissue than in other tissues (Gu et al., 2007). DH 
analysis also identified the FRAT1 gene as a potential negative 
regulator, which is associated with the Wnt signaling pathway. 
As discussed previously, the Wnt signaling pathway would be 
affected by the knockdown of FASN, resulting in lower fatty 
acid synthesis, which complements our findings from WGCNA 
in the L-OA group. Among the top 10 positive differentially 
hubbed genes is the ATP6V0E gene, from the same family of 
ATP6V1D gene, which has been reported as a factor mediating 
hepatic steatosis (Nakadera et al., 2016), a metabolic syndrome 
frequently associated with obesity and diabetes. Furthermore, 
the GAL3ST3 gene has been associated with lipid biosynthetic 
processes (Suzuki et al., 2001).

For CLA content, DH analysis identified KAT5 as extreme 
negative and PSMG1 as extreme positive hubbed genes associated 
with GO terms for proteasome pathways. The proteasome is a 
large protein complex responsible for degradation of intracellular 
proteins (Tanaka, 2009), and proteasome dysfunction has been 
associated with oxidative stress and insulin sensitivity in human 
obesity (Díaz-Ruiz et al., 2015). Gonçalves et al. (2018) otherwise 
concluded that the proteasome pathway may be a potential 
regulator of beef tenderness in this population. The total lipid 
content of muscle has a recognized role in beef tenderness, and 
the concentration of fatty acids is positively correlated with the 
palatability of beef (Wood et al., 2008). The proteasome pathway 
was also previously associated with OA content in this population 
(Cesar et al., 2016), supporting our findings of genes related to 
proteasome pathways as potential regulators.

Bta-miR-10b was identified as a CLA candidate regulator by 
both RIF2 and PIF analyses, being also pointed as a hub miRNA 
by WGCNA. Although its target genes were not enriched for 
any pathways specifically related to fatty acid metabolism, this 
miRNA has been previously correlated with backfat thickness 

and adipose tissue in cattle (Gu et al., 2007; Jin et al., 2010). Bta-
mir-486, which was identified by PIF analysis as a top regulator 
for CLA content, has been associated with skeletal muscle growth 
(Jing et al., 2015) and was recently found to be downregulated in 
feed efficient animals of this same cattle population (De Oliveira 
et al., 2018).

ACTA1 is the gene with the highest PIF rank, which indicates 
that it may be the most important gene related to both OA and 
CLA variations in this population. ACTA1 expression is specific 
to muscle fibers, with an essential role in muscle contraction 
and cell morphology (Pollard and Cooper, 1986). ALDOA gene 
was the fourth and second major regulator identified by RIF and 
PIF analyses for OA and CLA content, respectively. This gene 
is involved in adipogenic differentiation, which is critical for 
intramuscular fat deposition and meat quality (Li et al., 2016). 
The same group of genes (TPM2, CKM, TPM1, and MYL1), 
including ALDOA, was identified as positive RIF1 and RIF2 
regulators for OA content, indicating the relevance of these 
genes in fatty acid metabolism. Moreover, Oliveira et al. (2018) 
also identified the ALDOA gene as a putative regulatory for 
the differences in IMF deposition, which, taken together, may 
indicate that ALDOA is an important gene regulator of fatty acid 
deposition and composition in Nelore cattle.

In this integrative analysis, insulin resistance, insulin, and 
MAPK signaling pathways were overrepresented in high and 
low fatty acid groups. These signaling pathways have been 
linked to adipocyte differentiation and lipogenesis in cattle (Guo 
et al., 2017). Based on the literature and our results, insulin and 
inflammatory processes are influencing OA and CLA composition 
in Nelore cattle. This study also indicates that hub miRNAs like 
bta-miR-33a/b, bta-miR-100, bta-miR-204, bta-miR-365-5p, 
bta-miR-660, bta-miR-411a, bta-miR-136, bta-miR-30-5p, bta-
miR-146b, bta-let-7a-5p bta-let-7f, and bta-let-7e are involved 
with these biological processes. Among the results pointed out 
by both RIF and PIF analyses, the bta-mir 339, bta-mir-10b, bta-
miR 486, and genes ACTA1 and ALDOA are the most relevant 
regulators for muscle fatty acid composition in Nelore cattle.

Fat and fatty acids, whether in adipose tissue or muscle, 
contribute to various aspects of meat quality and are central to the 
nutritional value of meat (Wood et al., 2008). Furthermore, they 
can have beneficial effects on human health. OA consumption 
is associated with low levels of low-density lipoprotein (LDL) 
or “bad cholesterol,” which in turn may reduce atherosclerosis 
risk and diabetes occurrence. Further, OA consumption could 
increase levels of high-density lipoprotein (HDL) in blood 
(Smith et al., 2009), whereas CLA consumption may contribute 
to reduced body fat, cardiovascular diseases, and cancer and can 
modulate inflammatory responses (Dilzer and Park, 2012).

CONCLUSIONS

In the present study, signaling pathways, miRNAs, and gene 
regulators related to fatty acid composition in Nelore cattle were 
identified by miRNA expression and gene co-expression network 
approaches. Although some of these potential regulators have 
been previously linked to fatty acid composition, the complex 
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miRNA–mRNA regulatory network has never been reported 
so far. This study improves our understanding of the molecular 
mechanisms controlling intramuscular muscle fat composition 
in bovines, revealing new candidate networks regulating OA and 
CLA phenotypes, which could positively benefit beef production.
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Zhenfang Wu 1,2 and Hao Zhang 1,2*
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University, Guangzhou, China, 2 Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, 
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Background: In western swine breeds, up to 30% of embryonic losses occur during 
early pregnancy, and the majority of embryonic losses happens during implantation. In 
this period, maternal recognition of pregnancy begins to occur and blastocysts undergo 
dramatic morphologic changes. As with other species, changes in the uterine environment 
plays an important role in the process of embryo implantation in pigs. Erhualian (ER) pigs, 
one of the Chinese Taihu swine breeds, are known to have the highest litter size in the 
world. Experiments demonstrated that the greater embryonic survival on gestation day 
(GD) 12 in Chinese Taihu pigs is one important factor that contributes to enhanced litter 
size. This is largely controlled by maternal genes. In this study, endometrial samples were 
collected from pregnant Landrace×Large Yorkshire (LL) sows (parity 3) and ER sows 
(parity 3) on GD12 and the expression profiles of microRNAs (miRNAs) in the endometrium 
were compared between ER and LL using miRNA-seq technology.

Results: A total of 288 miRNAs were identified in the pig endometrium, including 202 
previously known and 86 novel miRNAs. The Kyoto Encyclopedia of Genes and Genomes 
pathway analysis revealed that highly abundant miRNAs might affect endometrial 
remodeling. Comparison between LL and ER sows revealed that 96 known miRNAs 
were differentially expressed between the two groups (including 78 up-regulated and 18 
down-regulated miRNAs in ER compared to LL). Bioinformatics analysis showed that 
the target genes of some differentially expressed miRNAs were involved in pathways 
related to angiogenesis, proliferation, apoptosis, and tissue remodeling, which play 
critical roles in implantation by regulating endometrial structural changes and secretions 
of hormones, growth factors, and nutrients. Furthermore, the results demonstrated that 
insulin-like growth factor-1 protein expression was directly inhibited by miR-206. The 
lower expression of miR-206 in ER compared to LL might facilitate the angiogenesis of 
the endometrium during embryo implantation.
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INTRODUCTION

Litter size has a great impact on the profitability of swine 
production. Prenatal mortality is the major limitation for 
increasing the litter size in pigs. Up to 30% of conceptuses are 
spontaneously lost during early pregnancy, especially on gestation 
days (GD) 11 to 13 (Scofield et al., 1974; Pope and First, 1985; 
Zavy and Geisert, 1994; Wilson et al., 1999). In contrast to rodents 
and primates, pigs have an extended period of preimplantation. 
From GD4 to GD12, the developing conceptuses undergo speedy 
morphologic changes (from spherical to tubular to filamentous 
forms) and migrate freely in the uterine cavity. On GD15, 
filamentous conceptuses grow to 800 to 1,000 mm in length 
and begin to attach to luminal uterine epithelium (LE) (Geisert 
et al., 1982; Bazer and Johnson, 2014). Thus, during protracted 
preimplantation, the requirement for nutrients of conceptuses 
is mainly dependent on uterine secretions, including glucose, 
amino acids, ions, enzymes, growth factors, hormones, growth 
factors, and other substances termed as histotroph (Spencer 
et al., 2006).

Chinese Taihu pigs, including Erhualian (ER), Meishan, and 
Fengjing breeds, are highly prolific. ER pigs are known to have the 
biggest litter size record in the world (Zhang, 1986). Meishan pigs 
were exported to western countries in the early 1980s and have 
been studied for more than 30 years to explore the mechanism 
of prolificacy. Studies found that the greater embryonic survival 
on GD11 to GD12 in Chinese Taihu pig is the most important 
factor contributing to enhanced litter size, and this is controlled 
primarily by maternal genes (Haley et al., 1995). At this stage, 
substantial changes occur in the conceptus-uterine interface, 
including morphologic changes in the conceptus, the onset 
of synthesis of estradiol by the conceptus, and the appropriate 
physiologic adjustments of uterus (Bazer and Johnson, 2014). 
Examination of individual embryos in Meishan pigs found that 
embryo survival was 108.1% on GD11 and 93.3% on GD12; 
however, in Landrace×Large Yorkshire (LL) pigs, embryo 
survival was 89.1% on GD11 and 49.9% on GD12 (Ashworth 
et al., 1997). Other studies also demonstrated that, from GD11 
to GD12, the embryonic survival rate in Chinese Taihu pigs 
was significantly higher than in western pigs (Bazer et al., 1988; 
Christenson et al., 1993). Thus, it is worth further studying the 
molecular mechanisms underlying the differences in uterine 
environment changes between Chinese Taihu and western pigs.

microRNAs (miRNAs) are short (20–25 nt), endogenous, 
conserved, non-coding RNA molecules that play wide biological 
roles in transcription and translation (Carrington and Ambros, 
2003; Bartel, 2004). miRNAs typically interact with target mRNAs 
by base pairing and destabilize or degrade their complementary 

mRNA (Wu et al., 2006). They have been shown to participate in 
the regulation of various physiologic processes, including cellular 
proliferation, differentiation, apoptosis, angiogenesis, embryonic 
development, and reproduction control (Laurent, 2010; Nicoli 
et al., 2012; Rosenbluth et al., 2013). A large number of miRNAs 
have been shown to be associated with embryo implantation in 
humans and mice, such as the regulation of endometrial receptivity 
(Altmäe et al., 2013) and endometrial stromal cell differentiation 
(Qian et al., 2009), participating in human pregnancy and 
parturition (Montenegro et al., 2009). In pigs, Su et al. and Liu et al. 
reported that miRNAs play roles in porcine placental growth and 
functions (Su et al., 2010; Liu et al., 2015). In addition, Wessels 
et al. investigated the expression of miRNAs on both sides of 
the maternal-fetal interface in the model of implantation failure 
and spontaneous fetal loss in pigs and identified miRNAs that 
might contribute to fetal loss (Wessels et al., 2013). Thus, taken 
together, these results indicate the importance of miRNAs in pig 
reproduction. In this study, the expression profiles of miRNAs 
in the sow endometrium on GD12 were compared between 
ER and LL pigs using sequencing technology. Differentially 
expressed miRNAs (DEMs) were identified and miRNAs involved 
in reproduction were analyzed by bioinformatic analysis and 
experiments. Collectively, these results will help better understand 
the role of miRNAs in embryonic survival during implantation.

MATERIALS AND METHODS

Tissue Collection
All of the experiments involving animals were conducted 
according to animal ethics guidelines and approved by the Animal 
Care and Use Committee of South China Agricultural University 
(Guangzhou, China). LL and ER sows were obtained from the 
breeding pig farm of Guangdong Wen’s Foodstuffs Group Co., Ltd. 
(Yunfu, China). Three LL sows (parity 3) and three ER sows (parity 
3) were checked for estrus twice daily and artificially inseminated 
at the onset of estrus (day 0) and again 12 h later. After the sows 
were slaughtered at a local slaughterhouse on GD12, the uteri were 
removed rapidly and transported in an icebox to the laboratory. 
Pregnancy was confirmed by the presence of apparently normal 
filamentous conceptuses in uterine flushings. Endometrial samples 
were collected and stored at −80°C for RNA extraction.

RNA Extraction and Small RNA (sRNA) 
Sequencing
Total RNA was extracted from six endometrial samples using 
TRIzol (Invitrogen, Carlsbad, CA, USA) according to the 
manufacturer’s instruction. RNA purity was quantified using 
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NanoDrop ND2000 spectrophotometer at 260 and 280 nm 
(Thermo Fisher Scientific, Wilmington, MA, USA), and RNA 
integrity was verified using an Agilent 2100 Bioanalyzer (Agilent 
Technologies, Palo Alto, CA, USA). The OD260/OD280 ratios 
of all the samples were greater than 1.8, and the RIN values 
were greater than 8. Equal RNA quantities from the endometria 
of three pigs from the LL and ER groups were pooled. sRNA 
Illumina sequencing was conducted as follows: ~10 μg total RNA 
was size fractionated by Novex 15% TBE-Urea gel and RNA 
fragments between 18 and 30 bases in length were isolated. The 
purified sRNAs were then ligated with the 5′-adapter. To remove 
unligated adapters, the ligation products (36–50 bases in length) 
were gel purified on Novex 15% TBE-Urea gel. Subsequently, the 
RNA fragments with the adapter at the 5′-end were ligated with 
3′-adapters. After gel purification on Novex 10% TBE-Urea gel, 
RNA fragments with adapters at both ends (62–75 bases long) 
were reverse transcribed. Reverse transcription-polymerase chain 
reaction (RT-PCR) was used to create cDNA constructs based on 
the sRNA ligated with the 5′- and 3′-adapters. This protocol gel 
purifies the amplified cDNA construct in preparation for loading 
on the Illumina Cluster Station. The cDNAs were amplified using 
the appropriate PCR cycles to produce sequencing libraries. 
Sequencing was carried out at BGI-Shenzhen, China.

Sequence Analysis
First, raw data (raw reads) were processed by custom Perl and 
Python scripts, raw reads contain poly-A/T/G/C, poly-N, with 
5′-adapter contaminants, without 3′-adapter, or the insert tag, 
and low-quality reads were filtered to get clean data. Subsequently, 
clean reads ≥18 nt were chosen as sRNA tags and mapped to 
reference sequence by Bowtie (Langmead et al., 2009) without 
mismatch to analyze their expression and distribution on the 
reference. Third, miRBase (release 20.0) was used as reference, 
and srna-tools-cli and modified software mirdeep2 (Friedländer 
et al., 2011) were used to obtain the potential miRNA and draw 
the secondary structures. The available software mirdeep2 
(Friedländer et al., 2011) and miREvo (Wen et al., 2012) were 
integrated to predict novel miRNAs by exploring the secondary 
structure. At the same time, custom scripts were used to obtain 
the identified miRNA counts as well as base bias on the first 
position with certain length and on each position of all identified 
miRNAs, respectively.

Identification of DEMs
The procedures that determine the DEMs between LL and ER 
groups are shown below:

miRNA expression levels were estimated by transcript 
per million (TPM) with the following criteria (Wagner et al., 
2012): Normalization formula: Normalized expression = Actual 
miRNA count/Total count of clean reads*1,000,000. miRNAs 
with a normalized expression level of less than 1 in each of the 
two libraries and miRNAs with an estimated probability value of 
less than 0.95 were removed. The fold change in the expression 
level and the P value between two libraries were calculated 
from the normalized expression using the following formulas, 
respectively:

Fold change formula: Fold change = log2(ER/LL)
P-value formula:
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N1 and x represent the total count of clean reads and the 
normalized expression level of a given miRNA in an sRNA library 
of LL endometrial tissue sample, respectively. N2 and y represent 
the total count of clean reads and the normalized expression 
level of a given miRNA in an sRNA library of ER endometrial 
tissue sample, respectively (Audic and Claverie, 1997). Raw P 
values were converted to adjusted P values using the Benjamini–
Hochberg false discovery rate (Benjamini and Hochberg, 1995). 
The adjusted P < 0.05 and |log2(fold change)| > 1 were set as 
thresholds for significantly differential expression by default.

Target Gene Prediction and Functional 
Analysis of DEMs
The prediction of the target genes of miRNAs was performed 
by RNAhybrid and TargetScan. Overlapping target genes were 
selected for further analysis. To reveal the target genes’ potential 
biological functions and identify the main pathways targeted by 
the gene candidates, Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway analyses were performed 
as described previously (Zhang et al., 2013). Based on the GO 
and KEGG database, the hypergeometric test was preformed to 
identify significantly enriched GO terms (Q < 0.05) and classify 
the pathway category (Boyle et al., 2004). The network of pathways 
based on the GO and KEGG database was constituted by ClueGO, 
which is a plugin in Cytoscape (http://www.cytoscape.org/).

Validation of miRNA Expression via Stem-
Loop Quantitative RT-PCR (qRT-PCR)
The sRNA-seq results were validated using RNA samples from 
the LL (n = 3) and ER (n = 3) groups by the stem-loop qRT-
PCR method. A total of 16 miRNAs were selected for qRT-PCR 
validation. The mature miRNA and primer sequences are available 
in Supplementary Table S1. Briefly, for RT-PCR, the Revert Aid™ 
First Strand cDNA Synthesis Kit (Promega, Fitchburg, WI, USA) 
was adopted according to the manufacturer’s instructions. Then, 
RT-PCR was performed with SYBR® Premix Ex Taq™ (Toyobo) 
on ABI PRISM® 7500 Sequence Detection System. Porcine U6 
snRNA was used as an internal control and all reactions were 
run in triplicate. PCR profiles were one cycle at 95°C for 5 min 
followed by 40× (95°C for 15 s, 65°C for 15 s, and 72°C for 32 s). 
The relative expression levels were calculated using the 2−ΔΔCt 
method. Fold change (log2 ratio) was used to show the differential 
expression of miRNA in LL and ER.

Dual-Luciferase Reporter Assays
For luciferase reporter experiments, the pmirGLO dual-
luciferase reporter vector (Promega) housing the 3′-untranslated 
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region (UTR) of insulin-like growth factor-1 (IGF-1), which 
was XhoI and XbaI cloned to the 3′-end of the Renilla gene, was 
used to examine the effect of miR-206 on Renilla production. 
IGF-1 3′-UTR vector (pmirGLO-IGF1) containing the miR-206 
binding site (CATTCC) was constructed by RT-PCR using specific 
primers (forward primer 5′-CCGCTCGAGCAGGAAACAAGA 
ACTACAG-3′ and reverse primer 5′-GCTCTAGACAACAGCA 
ATCTACCAACT-3′). Meanwhile, IGF-1 3′-UTR-Mutant vector 
(pmirGLO-IGF1-Mutant) with a mutated miR-206 binding site 
(GTAAGG) was also constructed. The miR-206 mimics and its 
mutant mimics (miR-206_mut) were designed and synthesized 
by GenePharma Biotech Co. (Shanghai, China). In the dual-
luciferase assays, PK15 cells were cultured in DMEM complete 
medium (Hyclone, Logan, UT, USA) and then plated onto a 
96-well plate. The miR-206 mimics, mutant miR-206mimics, 
or negative control (NC) were co-transfected into cells with 
3′-UTR dual-luciferase vector using Lipofectamine 2000 
(Invitrogen, Shanghai, China). Cells were collected 24 h after 
transfection, and assayed with the Dual-Luciferase Reporter 
Assay System (Promega). Three replicates were performed for 
each transfection.

Lentivirus Preparation and Administration
The pri-miR-206 expression lentivirus vector (H1-MCS-CMV-
EGFP) and the NC lentivirus vector were purchased from 
GenePharma Biotech. Virus titration and infection efficiency 
were measured by the fluorescence method as lentiviral vectors 
expressed enhanced green fluorescent protein in infected cells. 
According to the results of a preliminary experiment, the titer 
of lenti-pri-miR-206 used for experiments was 1 × 107 TU/ml. 
The lentivirus vectors were transfected into porcine skeletal 
muscle satellite cells (SCs) with a titer of 1 × 107 TU/ml in the 
presence of polybrene (5 µg/ml). Cells were collected 72 h after 
transfection, and total RNA and protein were extracted for 
further experiments.

Western Blot Analysis
Protein lysates were generated using the mammalian protein 
extraction reagent RIPA (Beyotime, Shanghai, China). The 
concentration of extracted total protein from each sample was 
calculated using the BCA Protein Assay Kit (Thermo Pierce, 
Rockford, IL, USA). The equivalent protein for each sample was 
loaded into a 10%  sodium docedyl sulfate-polyacrylamide  gel 
electrophoresis and fractionated, and the denatured proteins 
were subsequently transferred from gel to a polyvinylidene 
fluoride membrane (Millipore, Billerica, MA, USA) by a Mini-
PROTEAN Tube Cell instrument (Bio-Rad, Hercules, CA, USA). 
The membranes were incubated with antibodies (IGF-1, ab9572, 
Abcam; glyceraldehyde 3-phosphate dehydrogenase, ab8245, 
Abcam) overnight at 4°C and then with horseradish peroxidase-
conjugated goat anti-rabbit secondary antibody for 1 h at room 
temperature. The enhanced chemiluminescence substrate 
(Beyotime) was used to visualize the band, and a picture was 
captured by an imaging system (UVP, Upland, CA, USA). 
Finally, the quantification analysis was performed by ImageJ 1.45 
software (NIH Image).

Statistical Analysis
Data from the results of qRT-PCR, dual-luciferase reporter 
assays, and Western blot analysis were analyzed using SPSS 
version 18.0 (SPSS, Inc., Chicago, IL, USA). Paired t tests and 
two-way analyses of variance were performed to analyze the 
relative expression of miRNAs, the luciferase activity, and the 
intensity of the protein band in Western blot analysis. P < 0.05 
was considered statistically significant.

RESULTS

Overview of the Squences Generated 
by Illumina Sequencing
sRNA libraries were generated from a total of six samples from 
ER and LL sows on GD12. After removing low-quality reads 
and adaptor sequences, a total of 9,104,438 and 12,881,211 
clean reads were obtained from ER and LL samples, respectively. 
The sRNA annotation is presented in Supplementary Table S2. 
The results of sRNA annotation showed that known miRNAs 
accounted for 48.64% and 56.96% of the total clean reads 
in ER and LL, respectively (Supplementary Table S2). The 
distribution of sequence lengths was similar between ER and 
LL libraries (Figure 1A). The number of 20 to 23 nt sequences 
was significantly greater than that of shorter or longer sequences, 
and almost half of the sequences in LL (47.03%) and 39.33% 
sequences in ER are 22 nt.

In total sRNA reads, 20,689,836 common sequences were 
obtained in LL and ER, accounting for 94.11% of the total 
sequence reads in the two libraries (Figure 1B). In unique sRNA 
reads, 63,548 common sequences were obtained in LL and 
ER, accounting for 7.69% of the total reads in the two libraries 
(Figure 1C), and 361,418 (43.71%) and 401,914 (48.61%) 
specific sequences were obtained from LL and ER, respectively 
(Figure 1C).

Sequence Variants and Editing of Bases in the Seed 
Region of miRNAs
Sequencing data analysis revealed that the majority of identified 
miRNAs showed length and sequence heterogeneity in the porcine 
endometrial tissue. The length variations occurred largely in the 
3′-end of miRNAs, mainly in the form of terminal reductions 
or additions of nucleotides. In ER, miR-128, miR-187, miR-18b, 
miR-190, miR-196a, miR-206, miR-215, miR-2476, miR-326, 
miR-338, miR-676, and miR-758 had variants only at the 3′-end, 
whereas, in LL, miR-105, miR-129b, miR-149, miR-153, miR-190, 
miR-208b, miR-216, miR-450a, miR-450c-5p, miR-499-5p, miR-
503, and miR-95 had variants only at the 3′-end. In addition, 11 
and 10 miRNAs in the ER and LL libraries, respectively, were 
mutated by only one nucleotide in the 5′-end, but they had several 
3′-end variants (Supplementary Tables S3 and S4). Similarly, 
previous studies also revealed the length variations of miRNAs in 
other porcine tissues (Li et al., 2010; Nielsen et al., 2010; Li et al., 
2011). Such variants might be from altered miRNA processing, 
prioritized degradation at miRNA ends, or post-transcriptional 
modifications, including RNA editing (Aravin and Tuschl, 2005). 
These end-sequence variations are interesting as they may allow 
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miRNA variants to play different roles by influencing the miRNA-
target mRNA hybrid duplex structure (Jazdzewski et al., 2009).
The nucleotides at positions 2 to 8 of a mature miRNA are known 
as the seed region. The seed region binds to a target site in the 
3′-UTR of the target mRNA by complementarities and is highly 
conserved. The target of an miRNA may alter due to change in the 
nucleotides in the seed region. Editing of bases in the seed region 
of miRNAs has been reported to occur frequently (Kawahara et al., 
2007; Liu et al., 2008). In the present analysis, miRNAs that might 
have seed editing can be distinguished by matching unannotated 
sRNA with porcine mature miRNAs from miRBase 20.0. Forty-
nine and 62 mature miRNAs in ER and LL had a single nucleotide 
substitution in the seed region, respectively (Supplementary 
Table S5). The observed occurrence for each possible substitution 
is summarized in Supplementary Table S5 for ER and LL samples, 
respectively. In ER, the most frequent substitutions were T-to-C 
(22.2%), A-to-G (20.7%), and G-to-A (13.6%), whereas, in LL, 
the most frequent substitutions were T-to-G (18.1%), T-to-A 
(15.0%), and G-to-T (14.5%; Figure 2). Although the most 
frequent substitutions were different between ER and LL libraries, 
C-to-A (0.4% in ER; 2.%) and C-to-G (0.4% in ER; 2.%) were 

the substitutions with the lowest frequency in both ER and LL 
libraries. In porcine adipose tissue samples, similar results were 
also reported (Li et al., 2011). Interestingly, abundant miRNAs 
(ssc-let-7a, ssc-mir-143, ssc-let-7f, ssc-mir-21, and ssc-mir-378) 
also had higher editing probability (Supplementary Table S5). 
This indicates that highly expressed miRNAs targeted more genes.

Expression Profiling of miRNAs
In the second part of the present analysis, the global expression 
profile of endometrial miRNAs on GD12 in LL and ER pigs 
was determined. A total of 288 miRNAs were identified in the 
pig endometrium, including 202 known miRNAs and 86 novel 
miRNAs (Supplementary Table S6). Among the known miRNAs, 
200 miRNAs were co-expressed in LL and ER and 2 miRNAs 
(ssc-miR-124a and ssc-miR-450c-3p) were specifically expressed 
in ER. Among the novel miRNAs, 38 miRNAs were co-expressed 
in LL and ER and 19 and 28 miRNAs were specifically expressed 
in LL and ER, respectively.

The 20 most highly expressed miRNAs in LL and ER libraries 
are listed in Table 1. Among them, 14 highly expressed miRNAs 

FIGURE 1 | Overview of the sequences generated by Illumina sequencing. (A) Sequence length distributions of the two libraries. The length distributions peaked at 
22 nt, which is expected for miRNAs’ length. (B) Number of total sRNA tags between the two libraries. (C) Number of unique sRNA tags between the two libraries.
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FIGURE 2 | Histogram displaying the single nucleotide substitution in the miRNA seed region sequence when aligning un-annotated sRNA tags with porcine mature 
miRNAs from miRBase 20.0.

TABLE 1 | Top 20 miRNAs in LL and ER.

miRNA-name Average TPM in LL Rank in LL miRNA-name Average TPM in ER Rank in ER

ssc-miR-143-3p 2208321 1 ssc-miR-143-3p 1266790 1
ssc-let-7a 1289290 2 ssc-let-7a 836090 2
ssc-miR-21 519081 3 ssc-miR-21 509408 3
ssc-let-7f 467190 4 ssc-let-7f 317357 4
ssc-miR-30a-5p 313695 5 ssc-miR-30a-5p 92442 9
ssc-miR-148a 290344 6 ssc-miR-148a 31042 18
ssc-miR-10a 242124 7 ssc-miR-10a 112910 8
ssc-miR-10b 240246 8 ssc-miR-10b 133656 6
ssc-let-7c 224940 9 ssc-let-7c 129079 7
ssc-miR-378 184397 10 ssc-miR-378 213166 5
ssc-miR-30d 138588 11 ssc-miR-30d 63006 10
ssc-miR-34c 102496 12 ssc-miR-34c 13563 31
ssc-miR-140* 88368 13 ssc-miR-140* 21112 22
ssc-miR-103 79372 14 ssc-miR-103 32711 17
ssc-let-7g 78468 15 ssc-let-7g 38160 16
ssc-miR-126 45626 16 ssc-miR-126 23587 21
ssc-miR-1 44500 17 ssc-miR-1 4031 57
ssc-miR-191 44154 18 ssc-miR-191 9654 36
ssc-miR-30e-5p 43404 19 ssc-miR-30e-5p 27545 20
ssc-miR-206 41179 20 ssc-miR-206 233 128
ssc-miR-26a 40215 22 ssc-miR-26a 47934 11
ssc-miR-101 34754 23 ssc-miR-101 41815 12
ssc-miR-196b-5p 30481 27 ssc-miR-196b-5p 27714 19
ssc-miR-199a* 21283 32 ssc-miR-199a* 39465 13
ssc-miR-199a-3p 21236 33 ssc-miR-199a-3p 39427 14
ssc-miR-199b* 21236 34 ssc-miR-199b* 39426 15

The list shows the top 20 abundant miRNAs in LL and ER, respectively.
The star is part of the miRNA name.
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were the same in LL and ER. Thus, the predicted target genes of 14 
common miRNAs were chosen for functional analysis. GO analysis 
(ClueGo network of GO terms) showed that they were mainly 
involved in the “cellular protein metabolic process,” “regulation of 
macromolecule biosynthetic process,” and “anatomical structure 
morphogenesis” (Supplementary Figure  S1). The KEGG 
pathway analysis (ClueGo network of pathways) indicated that 
the predicted target genes were mainly enriched in “Apoptosis,” 
“Autophagy,” “Ubiquitin-mediated proteolysis,” “Longevity-
regulating pathway,” “AMPK signaling pathway,” “Regulation of 
actin cytoskeleton,” “Focal adhesion,” “ECM-receptor interaction,” 
“Rap1 signaling pathway,” “FoxO signaling pathway,” “mTOR 
signaling pathway,” and “MAPK signaling pathway” (Figure 3).

Comparative Analysis of DEMs Between 
ER and LL
These DEMs between LL and ER libraries are listed in Supplementary 
Table S7, and in total, 96 known and 68 novel significantly DEMs 
were identified between LL and ER groups. Of the 96 differentially 
expressed known miRNAs, 78 were up-regulated and 18 were down-
regulated in ER compared to LL (Figure 4A). miR-206 ranked the 
top [fold change log2(ER/LL) = −6.96] among DEMs that were 
expressed in both LL and ER. Of the differentially expressed novel 
miRNAs, 43 were up-regulated and 25 were down-regulated in ER 
than in LL (Figure 4B).

Validation of Sequencing Results 
by qRT-PCR
The stem-loop qRT-PCR assay was used to specifically detect 
mature miRNAs. U6 snRNA was selected as the reference gene. 
Sixteen miRNAs were chosen for validation by qRT-PCR and 
the primers used are listed in Supplementary Table S1. The 
expression patterns for the 16 miRNAs were consistent with 
those in sequencing data (Figure 5).

Functional Annotation of DEMs in 
Endometrial Tissue Samples
To evaluate the biological functions of these DEMs, target genes 
of DEMs were predicted by RNAhybrid and TargetScan, and the 
KEGG pathway analysis of these target genes was performed. 
Thus, 275 significantly enriched signaling pathways were obtained, 
such as with “VEGF signaling pathway” (Angiogenesis-related 
pathway), “Toll-like receptor signaling pathway” (Immune-related 
pathway), “Regulation of actin cytoskeleton” (Tissue remodeling-
related pathway), and “MAPK signaling pathway, TGF-β signaling 
pathway and Apoptosis” (Proliferation and apoptosis) in the top 25 
signaling pathways (Figure 6). In addition, some other target genes 
were annotated to reproduction-associated pathways, including 
“Steroid hormone biosynthesis,” “Progesterone-mediated oocyte 
maturation,” “Steroid biosynthesis,” “GnRH signaling pathway,” 
and “p53 signaling pathway.”

FIGURE 3 | ClueGo network of pathways. Each node represents a pathway. The enrichment significance of pathway is reflected by the size of the nodes. Node 
color represents the class that they belong to. Mixed coloring means that the specific node belongs to multiple classes.
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miR-206 Directly Targeted 3′-UTR of IGF-1 
and Inhibited its Protein Expression
miR-206 was the top DEM, and it was expressed in both 
LL and ER pigs. To uncover the function of miR-206, the 
potential targets of miR-206 in the data bank (www.targetscan.
org; Figure 7A) was examined, and IGF-1 was identified as 
a prime target, with a highly conserved complementary 
miR-206-binding site in its 3′-UTR across mammals from 
humans to pandas (Figure 7B). As shown in Figure 7, the 
dual-luciferase reporter assay system showed a significant 
reduction of the Renilla/firefly luciferase ratio in the wild-
type miRNA mimic compared to the mutant-type group. 

However, miR-206 had no appreciable inhibitory effect on a 
mutated IGF-1 3′-UTR dual-luciferase construct (Figures 7C, 
D). These results demonstrate the specific inhibition of IGF-1 
expression by miR-206. miRNA regulates gene expression at 
the transcriptional level or at translational levels. To determine 
the regulation mechanism of miR-206, qRT-PCR and Western 
blot analysis were performed. Although no significant 
inhibition was detected at the IGF-1 mRNA level in porcine 
skeletal muscle SCs that were infected with pri-miR-206 
expression lentivirus (Figures 7E, F), the inhibitory effect 
of miR-206 on IGF-1 protein expression was determined by 
Western blot analysis (Figure 7G). Therefore, it was confirmed 

FIGURE 4 | Differential expression of porcine known (A) and novel (B) miRNAs between ER and LL. Each point in the figure represents the log2(ER/LL read count + 1) 
of an miRNA. Red points represent miRNAs with log2(ER/LL) > 1 and adjusted P < 0.05, blue points represent miRNAs with log2(ER/LL) < −1 and adjusted P < 0.05, 
and green points represent miRNAs with 1 > log2(ER/LL) > −1. The size of points shows the value of log2(ER/LL).

FIGURE 5 | Validation of deep sequencing results via real-time qRT-PCR.
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that miR-206 directly targeted 3′-UTR of IGF-1 and inhibited 
its protein expression but not its mRNA transcription.

DISCUSSION

The miRNA system is a huge regulatory network of 
cellular processes, with a single miRNA being able to post-
transcriptionally silence multiple mRNAs, while each mRNA 
can be targeted by numerous miRNAs (Friedman et al., 2008; 
Lu and Clark, 2012). In humans, more than 30% of the mRNAs 
are predicted to be miRNA targets (Griffiths-Jones et al., 2007). 
Recently, some miRNAs were found to be associated with 
endometrial receptivity, embryo development, and implantation 
(Ariel et al., 2011; Liu et al., 2016). In the present study, the 
sRNA profiles of endometrial tissues from ER and LL swine 
endometrium on GD12 using sequencing technology were 
compared to understand the miRNA-mediated regulation of 
embryo implantation. Our studies revealed the differential 
expression of 96 known miRNAs and 68 novel miRNAs in ER and 
LL endometrium, and the identification of miRNAs and target 
genes may be useful to develop new techniques and strategies for 
improving embryonic survival during implantation.

Highly Abundant miRNAs Might Affect 
Endometrial Remodeling
ssc-miR-143-3p, ssc-let-7a, and ssc-miR-21 were the top three 
miRNAs that were highly expressed in both LL and ER libraries. 
They were also found to be highly expressed in the endometrium 
of Meishan and Yorkshire pigs during early gestation in a 
recent published paper (Li et al., 2018). Mu et al. found that 
miR-143-3p inhibits proliferation and induced apoptosis in 
human hypertrophic scar fibroblast cells, and it also inhibited 
extracellular matrix production-associated protein expression 
(Mu et al., 2016). Several other studies also demonstrated that 
miR-143-3p suppressed proliferation and induced apoptosis in 
different carcinoma cells (He et al., 2016; Chen et al., 2017); thus, 
the highly expressed miR-143-3p in the porcine endometrium 
might also play a role in regulating the proliferation and apoptosis 
of endometrial cells. For let-7a, a functional investigation also 
revealed that it suppressed the proliferation of endometrial 
carcinoma (Liu et al., 2013b), and another study demonstrated 
that it markedly suppressed the proliferation, migration, and 
invasion of gastric cancer cells by down-regulating PKM2 (Tang 
et al., 2016). Furthermore, let-7a is involved in regulating the 
implantation process by the modulation of the expression of 
integrin-β3 and mucin 1 (Liu et al., 2012; Inyawilert et al., 2015).

FIGURE 6 | KEGG enrichment scatter plot of the targets of DEMs.
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FIGURE 7 | miR-206 targets the 3′-UTR of IGF-1. (A) Predicted binding site of miR-206 in the 3′-UTR of IGF-1. (B) Binding site of miR-206 is highly conserved 
among mammals. (C) IGF-1 3′-UTR was inserted into the pmirGLO dual-luciferase reporter vector at the 3′-end of the Renilla luciferase gene (hRluc). (D) IGF-1 
3′-UTR or IGF-1 3′-UTR-Mutant construct was co-transfected with miR-206, miR-206_mut, or NC, as indicated, into PK cells, and normalized Renilla luciferase 
activity was determined. (E) Expression of miR-206 in the porcine skeletal muscle SCs infected with pri-miR-206 expression lentivirus or NC lentivirus. (F) Expression 
of IGF-1 mRNA in SCs and SCs infected with pri-miR-206 expression lentivirus or NC lentivirus. (G) Expression of IGF-1 protein in SCs and SCs infected with pri-
miR-206 expression lentivirus or NC lentivirus. Results are mean ± SD (three independent replicates per group). *P < 0.05; **P < 0.01 (Student’s t test).
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In addition, miR-21 has been causally linked to cellular 
proliferation, apoptosis, and migration in a wide variety of cancers 
(Asangani et al., 2008; Frankel et al., 2008). Previous studies have 
suggested that miR-21 was involved in embryo implantation in 
mouse (Hu et al., 2008), and a recent study provided evidence 
that miR-21 expressed in extracellular vesicles is very important 
in preimplantation embryo development (Lv et al., 2018). The 
KEGG pathway analysis of common miRNAs indicated that the 
predicted target genes were enriched in 1) cell self-renewal and 
degradation, including “Apoptosis,” “Autophagy,” “Ubiquitin-
mediated proteolysis,” “Longevity-regulating pathway,” and “AMPK 
signaling pathway”; 2) cell motility, including “Regulation of actin 
cytoskeleton,” “Focal adhesion,” “ECM-receptor interaction,” 
and “Rap1 signaling pathway”; and 3) cell proliferation and 
differentiation, including “FoxO signaling pathway,” “mTOR 
signaling pathway,” and “MAPK signaling pathway,” Based 
on these results, it can be inferred that most highly abundant 
miRNAs in porcine endometrium mainly played important roles 
in regulating endometrial remodeling at the time of implantation.

Differentially Expressed Known miRNAs 
Related to Proliferation and Angiogenesis
Of the 96 differentially expressed known miRNAs, more than 80% 
were up-regulated in ER compared to LL sows; among them, ssc-
miR-29c was the top miRNA that was expressed in both breeds 
(Supplementary Table S7). A recent study demonstrated that 
miR-29c affects human endometrial cells by suppressing cell 
proliferation and invasion as well as promotes cell apoptosis by 
inhibiting c-Jun expression (Long et al., 2015). It was also shown 
previously that miR-29c inhibited cell proliferation and induced 
apoptosis in many types of carcinoma cells (Wang et  al., 2011; 
Liu et al., 2013a). Similarly, ssc-miR-214, which was among 
the top five miRNAs up-regulated in ER compared to LL sows 
(Supplementary Table S7), also played a role in promoting 
apoptosis and suppressing cell proliferation in several types of cells 
(Feng et al., 2011; Yang et al., 2013; Zhang et al., 2014). These results 
indicate that the markedly higher expression of miRNAs in ER 
than in LL (i.e., miR-29c and miR-214) could also play a key role 
in inhibiting endometrial cell proliferation and invasion, which 
could contribute to developing a more stable uterine environment. 
The results are also consistent with the authors’ previous findings, 
which also revealed that the endometrium of ER pigs had a lower 
growth-promoting ability (Zhang et al., 2013). Strong evidence has 
shown that increased prolificacy of Chinese Taihu pigs might be 
due to an increased embryonic survival resulting from the more 
stable uterine environment and increased uterine receptivity 
(Stroband et al., 1992; Youngs et al., 1993; Youngs et al., 1994).

Pathway analyses can provide a better understanding of the 
molecular functions and biological processes of target genes. 
Among the target genes of differentially expressed known miRNAs, 
some KEGG pathways that are important for reproduction were 
significantly enriched. Notably, the mitogen-activated protein 
kinase (MAPK) signaling pathway, the Toll-like receptor signaling 
pathway, the peroxisome proliferator-activated receptor (PPAR) 
signaling pathway, the vascular endothelial growth factor (VEGF) 

signaling pathway, and the transforming growth factor-β (TGF-
β) signaling pathway were in the top 25 signaling pathways. The 
MAPK signaling pathway is involved in the regulation of human 
endometrial cell proliferation (Park et al., 2017; Zhang et al., 2018). 
In another study, research data indicated that the activation of the 
MAPK signaling pathway can increase the proliferation of porcine 
uterine LE cells and may affect implantation in early pregnancy in 
pigs (Lim et al., 2018). In addition, the PPAR and TGF-β signaling 
pathways were also related to cell proliferation and had influence 
on implantation (Lim and Dey, 2000; Li et al., 2004; Chang 
et al., 2008; Tsang et al., 2013; Cheng et al., 2017; Song et al., 
2018). The Toll-like receptor signaling pathway is responsible for 
innate immune responses, and studies provide evidence that this 
pathway takes part in implantation by regulating trophoblast cells’ 
adhesion to endometrial cells (Montazeri et al., 2016). Studies 
provide evidence that the VEGF signaling pathway is known 
as the regulator of several endothelial cell functions, including 
mitogenesis, permeability, vascular tone, and the production of 
vasoactive molecules (Giles, 2001). Previous studies also indicated 
that it plays important roles in implantation and maintenance 
of pregnancy (Das et al., 1997; Halder et al., 2000; Möller et al., 
2001; Hannan et al., 2011). Collectively, these pathway analyses 
illustrate some of the possible roles of highly expressed miRNAs 
in reproduction.

IGF-1 can regulate endothelial cell migration and promote 
angiogenesis (Shigematsu et al., 1999). In the human endometrium, 
it was found that IGF-1 participates in the maintenance of an 
angiogenic phenotype by inducing VEGF expression (Bermont 
et al., 2000). Furthermore, a recent study reported that IGF-1 is 
a critical determinant of neonatal porcine uterine development 
(George et al., 2018). Our results demonstrated that IGF-1 protein 
expression was directly inhibited by miR-206, which were highly 
expressed in LL and lowly expressed in ER. This suggests that the 
low expression of miR-206 in ER might facilitate the angiogenesis 
of endometrium during peri-implantation, but further studies are 
required to verify this hypothesis.

CONCLUSIONS

In summary, Illumina sequencing was used to identify 288 distinct 
miRNAs, consisting of 202 previously reported and 86 novel 
miRNAs, from porcine endometrium in two different reproduction 
capacity breeds. In a comparison of ER to LL sows, 96 significantly 
differentially expressed known miRNAs (78 up-regulated and 18 
down-regulated) were identified. The target gene expression and 
pathway enrichment analyses indicated that these DEMs may 
influence embryonic implantation by regulating pathways related 
to proliferation, immunization, and angiogenesis. Our findings 
help gain a better understanding of the role of miRNAs in the 
regulation of embryonic implantation and embryonic survival 
in pigs. Future studies to identify target mRNAs regulated by 
abundant miRNAs in the endometrium using a single type of 
endometrial cell (i.e., luminal or glandular epitheliums) will be 
critical to uncover their exact biological functions.
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Background: Porcine respiratory and reproductive syndrome virus (PRRSV) is a single-
stranded RNA virus member that infects pigs and causes losses to the commercial industry 
reaching upward of a billion dollars annually in combined direct and indirect costs. The virus 
can be separated into etiologies that contain multiple heterologous low and highly pathogenic 
strains. Recently, the United States has begun to see an increase in heterologous type 2 
PRRSV strains of higher virulence (HP-PRRSV). The high pathogenicity of these strains can 
drastically alter host immune responses and the ability of the animal to maintain homeostasis. 
Because the loss of host homeostasis can denote underlying changes in gene and regulatory 
element expression profiles, the study aimed to examine the effect PRRSV infections has on 
miRNA and tRNA expression and the roles they play in host tolerance or susceptibility.

Results: Using transcriptomic analysis of whole blood taken from control and infected 
pigs at several time points (1, 3, 8 dpi), the analysis returned a total of 149 statistically 
significant (FDR ⫹ 0.15) miRNAs (n = 89) and tRNAs (n = 60) that were evaluated for 
possible pro- and anti-viral effects. The tRNA differential expression increased in both 
magnitude and count as dpi increased, with no statistically significant expression at 1 dpi, 
but increases at 3 and 8 dpi. The most abundant tRNA amino acid at 3 dpi was alanine, while 
glycine was the most abundant at 8 dpi. For the miRNAs, focus was put on upregulation 
that can inhibit gene expression. These results yielded candidates with potential anti- and 
pro-viral actions such as Ssc-miR-125b, which is predicted to limit PRRSV viral levels, and 
Ssc-miR-145-5p shown to cause alternative macrophage priming. The results also showed 
that both the tRNAs and miRNAs displayed expression patterns.

Conclusions: The results indicated that the HP-PRRSV infection affects host homeostasis 
through changes in miRNA and tRNA expression and their subsequent gene interactions 
that target and influence the function of host immune, metabolic, and structural pathways.

Keywords: miRNA—microRNA, tRNA, differential gene expression, porcine reproductive and respiratory syndrome 
virus, whole blood, pigs (Sus scrofa)
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INTRODUCTION

Porcine respiratory and reproductive syndrome virus (PRRSV) is 
a single-stranded RNA virus member of the Nidovirales order that 
infects pigs and causes losses to the commercial swine industry that 
reach upward of a billion dollars annually in combined (Holtkamp 
et al., 2013) direct and indirect costs. The virus can be separated 
into etiologies that contain multiple heterologous strains due to 
the high mutation and recombination rates observed within the 
virus, leading to the evolution of both low and highly pathogenic 
PRRSV strains. Within industry herds, the low pathogenic strains 
can cause persistent infections that can last the entirety of the pigs 
“commercial life,” while the highly pathogenic strains often cause 
acute illness and increased mortality. Although PRRSV infections 
can be found globally, a highly pathogenic Chinese type 2 PRRSV 
strain, not present in the United States, has ravaged much of Asia 
by presenting as an acute infection leading to high mortality in 
animals early in the commercial process. Additionally, recent 
studies have observed that the United States has begun to see 
an increase in heterologous type 2 PRRSV strains of increased 
virulence (van Geelen et al., 2018). The high pathogenicity of 
these strains can drastically alter host immune responses and the 
ability of the animal to maintain homeostasis. Because changes in 
the homeostasis of an individual can denote underlying changes 
in health and gene expression profiles, researchers have conducted 
studies to evaluate the host–virus interaction in the attempt to 
better understand the genetics involved in the host immune 
response to PRRSV (Shanmukhappa et al., 2007; Miller et al., 2012; 
Xiao et al., 2015; Miller et al., 2017).

The health of an animal, prior to and after illnesses, is, in many 
ways, a measure of the ability of that individual to maintain or return 
to a homeostatic state in which the interplay between immunologic 
and metabolic responses are in balance (Hotamisligil, 2006). In 
livestock, this balance is crucial to the health and growth of the 
animal. This change in internal balance of the host is most evident 
at the whole animal level, in which clinical signs of an illness can 
be represented by phenotypes such as fever, lameness, and changes 
in growth. However, these changes start at the genomic level where 
dysregulation can be represented as perturbations in the host ability 
to maintain proper communication between cellular receptors and 
signaling. This change in signaling cascades facilitates invasion 
of microbes, like PRRSV viral particles, into the host system as 
the miscommunication ameliorates pattern recognition receptor 
(PRR) evasion by the virus (Bowie and Unterholzner, 2008). The 
cell tropism of PRRSV, in general, is the monocyte-derived cells 
of the innate arm of immunity that become pulmonary alveolar 
macrophages in porcine lungs (Duan et al., 1997). During viral 
infections, host biological processes can become inundated from 
the activity of the viral life cycle, leading to enzymatic changes that 
alter host metabolic profiles. This in turn can lead to misfunction 
of macrophage activation signaling that indicates a dysregulated 
immunologic–metabolic axis (Hicks et al., 2013; Xiao et al., 2015; 
Langston et al., 2017).

It has been established that susceptibility to PRRSV infection and 
persistence involves a host genetic component (Dekkers et al., 2017), 
in which certain genes can behave in either a pro-viral or antiviral 
manner. Less understood are the actions of small noncoding 

regulatory and effector RNAs that influence host immunologic 
and metabolic functions to skew away from homeostasis during 
PRRSV infection. To begin to understand the effect of small 
noncoding RNAs (sncRNAs) on the host response to PRRSV, 
researchers have mostly examined the effects of miRNAs, centered 
around the canonical functions that miRNAs encompass through 
the inhibition of gene expression by transcriptional suppression of 
mRNA and the ability to be both pro- and antiviral (Bruscella et al., 
2017). In order to identify and classify other host sncRNA classes 
affected by PRRSV infection, Fleming and Miller (2018) examined 
the landscape of porcine whole blood sncRNA. The study revealed 
whole blood to be a rich landscape of multiple sncRNA, in which to 
examine the regulatory changes within the host. The current study 
follows up on the results of Fleming and Miller (2018) using the 
same dataset with updates to the methods from the previous study 
to allow for transcriptomic analysis. The current study examined the 
differential expression of both miRNAs and tRNAs and the effect 
their expression has on host homeostasis during highly pathogenic 
type 2 PRRSV infections by examining the biological pathways in 
which they belong. The purpose and potential impact of the current 
study are to give insight into the regulatory functions of sncRNAs 
involved in host cellular communication and homeostasis and into 
how they relate to how host immune responses, like pro- and anti-
inflammatory cytokine signaling, are tempered during infection 
with a highly pathogenic type 2 PRRSV strain.

METHODS

Animals and Sample Collection
PRRSV-free 3-week-old crossbreed pigs (Landrace × Yorkshire 
× Duroc) were purchased from a USDA-approved vendor 
(Wilson Farms, Wisconsin). Sample collection consisted of 
whole blood samples (~2.5 ml/pig) collected from twenty-
eight 9-week-old anesthetized pigs by jugular venipuncture. 
The piglets were inoculated with either a sham inoculation 
(prepared from MARC-145 cell culture used to propagate 
the virus) for the controls (N = 14) (2 ml/pig) or challenged 
(N = 14) with an infectious cDNA clone of a Chinese highly 
pathogenic (HP) PRRSV strain isolate rJXwn06 (104 TCID50/
ml, 2 ml/pig). Whole blood sample collection occurred over 
several time points consisting of 1, 3, and 8 days post infection 
(dpi) using PAXgene® tubes. Blood samples were stored at 
-20 C prior to total RNA isolation and NGS library creation. 
At the conclusion of the study, the pigs were euthanized in 
the following manner: the animal was physically restrained 
for the intravenous administration of a barbiturate (Fatal 
Plus, Vortech Pharmaceuticals, Dearborn, MI) following the 
manufacturer label dose (1 ml/4.54 kg). Only 24 samples were 
used due to four animals succumbing prior to 8 dpi.

RNA Isolation and Sequencing Library 
Preparation
Total RNA was extracted from 2.5-ml cryopreserved whole 
blood samples using the protocol from Fleming and Miller 
(2018) and a modified miRNA extraction kit protocol 

151

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
http://bioinformatics.psb.ugent.be/webtools/Venn/


Expression of Host miRNAs and tRNA GenesFleming and Miller

3 August 2019 | Volume 10 | Article 691Frontiers in Genetics | www.frontiersin.org

optimized according to Taxis et al. (2017) for the PAXgene® 
miRNA and MirVana miRNA isolation kit™ (Thermo Scientific, 
Wilmington, DE, USA). Optimization of these protocols was 
done to increase small RNA recovery for downstream library 
creation. All RNA was globin-depleted to account for high 
levels of globin transcripts using porcine-specific hemoglobin 
A and B (HBA and HBB) oligonucleotides based on the 
procedure from Choi et al. (2014). After extraction and globin 
reduction, the quality and concentration of the total RNA (N = 
24) was checked by NanoDrop using each sample. Prior to 
library creation, sample quality was checked using the Agilent 
Bioanalyzer 1000 that showed the total RNA quality ranged 
from a RIN # of 6.5–9.2, and 260/280-nm concentrations ratios 
were at or above 2 for all samples after globin reduction prior 
to library preparation. Following quality control checks, the 
globin-reduced total RNA samples were then used for library 
preparation for sncRNA sequence generation. Library creation 
was carried out on 24 samples using the manufacturer’s 
protocol for the NEBNext multiplex small RNA library prep 
kit® with a starting RNA amount of ~220 ng to ~1.1 µg. Step 
one of the protocol, the 3’ SR adaptor ligation, was modified 
from the manufacturer’s protocol to incubate the samples for 
18 h at 16°C to increase ligation efficiency of methylated RNAs. 
Next, the 5’ SR adaptor was ligated, and hybridization of the 
reverse transcription primer was performed. Samples were 
then barcoded using the NEBnext indexes (1–24) to allow for 
multiplexing prior to PCR amplification of cDNA. Samples 
were then put through a cleanup step using the Qiagen 
QIAquick PCR purification kit®, then checked for quality using 
the Agilent Bioanalyzer. Small RNA libraries were not size-
selected to allow for the capture of multiple sncRNAs between 
18–200 nt. Sequencing was carried out on the Illumina Hiseq 
3000™ at the Iowa State University genomic sequencing center 

in Ames, IA to produce a total of one 100-bp single-end read 
for each of the 24 samples.

Transcriptomic Analysis
The transcriptomic analysis was accomplished using in silico 
resources within the Galaxy web interface (Blankenberg et al., 2010; 
Afgan et al., 2016). Quality assessment and control were performed 
using FastQC and TrimGalore (Martin, 2011) to remove adaptors 
and barcodes from multiplexing. Reads with a quality score below 
38 and length less than 18 or longer than 72 nucleotides were 
discarded. A total of 24 sequences were generated for downstream 
analysis. The sequenced reads were mapped to the S.scrofa 10.2 
reference genome from Ensembl using the Hisat2 (Kim et al., 
2015) package with default settings. Annotation of gene counts was 
performed using FeatureCounts software package (Liao et al., 2014) 
coupled with an in-house-created sncRNA GTF file. The in-house 
GTF file was based on annotations from release 21 of miRbase, 
GtRNAdb using tRNAscan-SE 2.0, Ensembl 84 ncRNA database, 
and the RTH S.scrofa 10.2 ncRNA database. The differential 
gene expression was calculated using the DeSeq2 package with 
the dispersion model set as local with all other parameters set at 
their default values. The differential expression was based on the 
model ~Treatment HP-PRRSV, Control + Time1,3,8 + Treatment : Time. 
All reported results are based on the interaction of treatment and 
time and were considered statistically significant at FDR ≤ 0.15 
based on a Benjamini and Hochberg FDR adjustment. No cutoff 
was used for log2FC. Venn diagram analysis was conducted using 
the website http://bioinformatics.psb.ugent.be/webtools/Venn/ 
(2017). The 10.2 reference genome was used in lieu of the newer 
11.1 version due to a current lack of updates to the miRNAs and 
tRNAs examined within the study. Data has been deposited in a 
public repository under GEO accession: GSE121980.

FIGURE 1 | Plot of viral load over time. The graph shows that HP-PRRSV replication increased across the course of infection. The largest increase takes place 
between 1 and 3 dpi that tracks with large changes in miRNA expression.
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Pathway and Gene Ontology Analysis
Downstream analysis of miRNA gene and biological pathway 
targets was carried out using miRBase (Griffiths-Jones, 2006; 
Griffiths-Jones et al., 2006; Griffiths-Jones et al., 2008; Kozomara 
and Griffiths-Jones, 2011; Kozomara and Griffiths-Jones, 2014) 
and the DIANA-TOOLS web portal (Vlachos et al., 2015b). All 
porcine miRNAs used were mature sequences and were first 
divided into up- or downregulated groups and converted to their 
human homolog prior to pathway analysis using the MirPath 
v.3 tool (Vlachos et al., 2015b). Only human sncRNA homologs 
and pathways were used in the comparisons. All subsequent 
pathways and G.O. relate to human molecular functions and 
biological processes for the networks or genes being targeted. 
The number of genes targeted for each miRNA list was based 
on information from the TarBase miRNA database (Vlachos et al., 
2015a; Paraskevopoulou et al., 2016). The pathway and G.O. 
analysis used a statistical significance threshold of q ≤ 0.05 based 
on the Benjamini and Hochberg FDR adjustment for multiple 
gene set corrections.

Noncoding RNA Interaction Analysis
The noncoding RNA (ncRNA)–protein interaction analysis was 
based on conversion of tRNAs to their human homologs. Swine 
tRNAs were matched using BLASTN to find matching human 
sequences and gene names prior to using the RAIN module of the 
RTH database site to predict possible interactions of other ncRNAs 
and/or mRNAs (Junge et al., 2017). Predicted interactions were 
presented within STRING DB (Szklarczyk et al., 2015) using the 
evidence view and have a confidence score of 0.2 or higher with a 
maximum of 10 predicted interactors allowed.

RESULTS

Clinical Evaluation of Infection
Clinical evaluation of the infected animal was examined through 
an analysis of viral titers. The analysis showed that within the 
treated samples, viral titers were present at 1 dpi and increased 
at every time point indicating the success of the HP-PRRSV to 
replicate. The viral titers for the control samples were considered 
to be zero, as no replication was detectable (Figure 1).

miRNA and tRNA Differential Expression
The outcome of our study provided differentially expressed 
(DE) miRNA and tRNA totals for each dpi that were statistically 
significant at fdr of q ≤ 0.15 except the 1-dpi tRNA results. For the 
miRNAs, we observed 41 in total at 1 dpi, 14 in total at 3 dpi, and 
33 in total at 8 dpi. For the tRNAs, we observed no statistically 
significant differential expression for 1 dpi and a total of 20 and 40 
for 3 and 8 dpi, respectively.

Table 1A shows the list of statistically significant tRNAs from the 
interaction of treatment and time. The tRNA differential expression 

TABLE 1 | Ten most differentially expressed tRNAs and miRNAs by dpi. (A) tRNA. 
(B) miRNA.

(A) | Ten most differentially expressed tRNAs by dpi. 

DPI GeneID tRNA ID log2(FC)

1 NONE NONE NONE
DPI GeneID tRNA ID log2(FC)
3 trna1668 ValAAC 2.07
3 trna1634 LeuCAA 1.52
3 trna660 TrpCCA 1.47
3 trna201 CysGCA 1.40
3 trna202 LeuTAG 1.28
3 trna1647 AlaCGC −1.27
3 trna1245 ProTGG −1.37
3 trna1635 AlaAGC −1.58
3 trna1637 AlaCGC −1.75
3 trna1503 ProAGG −1.78
DPI GeneID tRNA ID log2(FC)
8 trna783 GlyGCC 2.37
8 trna630 GlyCCC 1.94
8 trna658 ProCGG 1.89
8 trna1245 ProTGG 1.86
8 trna1270 TyrGTA 1.84
8 trna1665 GlnCTG −1.57
8 trna1243 HisGTG −1.61
8 trna648 GlnCTG −1.66
8 trna453 LysCTT −1.76
8 trna552 AlaAGC −1.83

(B) | Ten most differentially expressed miRNAs by dpi.

DPI GeneID log2(FC)

1 ssc-miR-664-5p 1.21
1 ssc-miR-1306-5p 1.10
1 ssc-miR-145-5p 1.04
1 ssc-miR-296-5p 1.03
1 ssc-miR-18a 0.95
1 ssc-miR-192 −1.05
1 ssc-miR-144 −1.09
1 ssc-miR-148b-3p −1.28
1 ssc-miR-142-3p −1.38
1 ssc-miR-374b-5p −1.57
3 ssc-miR-142-3p 1.17
3 ssc-miR-7 1.08
3 ssc-miR-1839-5p 0.92
3 ssc-miR-21 0.80
3 ssc-miR-142-5p 0.79
3 ssc-miR-125b −0.76
3 ssc-miR-139-5p −1.01
3 ssc-miR-99a −1.18
3 ssc-miR-27b-3p −1.91
3 ssc-miR-7134-5p −2.23
8 ssc-miR-145-5p 1.50
8 ssc-miR-10b 1.28
8 ssc-miR-27b-3p 1.28
8 ssc-miR-9841-3p 1.28
8 ssc-miR-125b 1.23
8 ssc-miR-744 −1.17
8 ssc-let-7e −1.20
8 ssc-miR-1285 −1.33
8 ssc-miR-129a-5p −1.35
8 ssc-miR-296-3p −1.59

All miRNA and tRNA log2FC values were statistically significant based on a FDR of q ≤ 0.15.
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increased in both magnitude and count as dpi increased. The 
most abundant tRNA amino acid was alanine (n = 8) at 3 dpi with 
seven of the eight DE alanine tRNA genes being downregulated 
(Supplementary Table 1). The trna1668_ValAAC (log2FC = 2.07) 
was the most upregulated, and trna1503_ProAGG (log2FC = −1.78) 
was the most downregulated. From 3 dpi, trna1668_ValAAC is 
predicted to form interaction networks with Surfactant protein B 
(SFTPB), which has a homeostatic effect, as it can support alveolar 
functions by fostering stability within peripheral air spaces (Whitsett 
et al., 2010) and the gene Transient receptor potential cation channel, 
subfamily V, member 1 (TRPV1) that is involved in the intercession 
of inflammatory stressors such as pain (Wang et al., 2018). Also 
at 3 dpi was the trna202_LeuTAG (log2FC = 1.28), which forms 
predicted interactions with Toll-like receptors 2 and 4 (TLR2 and 
TLR4), involved in the monocytic cell ability to recognize antigens 
and signal pro-inflammatory cytokines and the gene beta-1,4-
N-acetyl-galactosaminyl transferase 2 (B4GALNT2), also known 
as B4GALT, which is a member of the Beta 4-glycosyltransferase 
gene family related to the gene beta-1, 4 Galactosyltransferase V 
(B4GALT5) that is shown to also be a target of the multiple miRNAs 
differentially expressed during this study (Jenuth, 2000; Junge et al., 
2017; The UniProt, 2017) (Figure 1).

For 8 dpi, glycine (n = 10) was the most abundant tRNA 
amino acid (Supplementary Table 1), with trna783_GlyGCC  

(log2FC = 2.37) being the highest upregulated tRNA and trna552_
AlaAGC (log2FC = −1.83) being the most downregulated (Table 
1A). The tRNA_GlyGCC is predicted to form interactions with 
the gene Leptin receptor overlapping transcript-like 1 (LEPROTL1), 
a growth hormone receptor highly expressed in porcine lung tissue 
(Jenuth, 2000; Demarchi et al., 2007); TCDD-inducible poly(ADP-
ribose) polymerase (TIPARP), a host defensive gene able to 
detect mitochondrial damage and bind viral RNA (Kozaki et al., 
2017); and RAB1A member RAS oncogene family (RAB1A), 
which is involved in the biological processes of autophagy, IL-8 
secretion, and post-translational protein modification (Jenuth, 
2000). The tRNA_GlyGCC is also predicted to interact with 
trna838_TrpCCA (log2FC = −1.05) (Supplementary Table 1), 
which is itself predicted to form interactions with the antiviral 
gene Myxovirus (influenza virus) resistance 1 (MX1) and Calpain 
small subunit 1 (CAPNS1), which is involved in the biological 
processes of autophagy, apoptosis, cell adhesion, and extracellular 
matrix degradation (Jenuth, 2000; Demarchi et al., 2007; The 
UniProt, 2017) (Figure 2). Table 1B shows a list of the top 10 most 
differentially expressed miRNAs from each dpi, some of which 
have been implicated as host immunomodulators during PRRSV 
infections as well as other viral and nonviral (Podolska et al., 2012; 
Maes et al., 2016; O’Leary et al., 2016; Rosenberger et al., 2017) 
affronts to the homeostatic state of the porcine host. The most 

FIGURE 2 | Predicted tRNA:gene interactions for 3 and 8 dpi. The predicted interactions at 3 dpi shows that tRNA_ValAAC could be linked to signaling for 
inflammation and pain through its connection to SFTPB and TRPV1, while tRNA_LeuTAG is possibly linked to viral recognition through TLR2 and TLR4 interactions 
(top). At 8 dpi, tRNA_GlyGCC is predicted to interact with tRNA_TrpCCA, which together are predicted to interact with multiple anti-viral and apoptotic genes such 
as TIPARP, MX1, and CAPNS1. Figure created using the RAIN software and adapted for inclusion.
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common differentially expressed miRNAs shared by all dpi were ssc-
miR-125b (upregulated at 1 and 8 dpi and downregulated at 3 dpi) 
and ssc-miR-361-3p (all upregulated) (Supplementary Table 1).

In relation to previous PRRSV studies of sncRNA, we saw a 
differential expression across multiple dpi for miRNAs such as ssc-
miR-142-3p (1 and 3 dpi), predicted to target the gene guanylate 
binding protein 5 (GBP5), which is shown to harbor a variant 
that confers some resistance to lowly pathogenic PRRSV strains 
(Koltes et al., 2015), and also ssc-miR-125b (3 and 8 dpi), an 

miRNA with anti-viral properties specific to PRRSV (Wang et al., 
2013). Our study also uncovered miRNA kinetics that occurred 
during the 8-day experiment that were novel to the interaction of 
HP-PRRSV and its host in vivo. In upregulated miRNAs such as 
ssc-miR-664-5p (1 dpi), which has previously shown to become 
upregulated in bacterially infected lung samples (Podolska et al., 
2012), ssc-miR-145-5p (8 dpi) has been revealed to be a potent 
inhibitor of inflammatory cytokines through its targeting of CD40, 
can prime macrophages in a M2-like manner, and is implicated 

TABLE 2 | Unique KEGG pathways targeted differentially expressed miRNAs.

DPI KEGG pathways targeted by upregulated miRNAs Key targets within pathways Classification

1 Focal adhesion (hsa04510) CAV2, AKT1, COL4A1, SHC3 Structural
1 Proteoglycans in cancer (hsa05205)-4 total pathways Hyaluronan(HA) = AKT1, SLC9A1; Chondroitin sulfate/

dermatan sulfate(CSPG/DSPG) = THBS1, MMP9, 
CD63, AKT1, EGFR; Keratan sulfate(KSPG) = SMAD2, 
MDM2, TP53, LUM; Heparan sulfate(HSPG) = MMP9, 
ITGAV, AKT1, EGFR, ITGA5, VEGFA

Structural

1 FoxO signaling pathway (hsa04068) EGFR, PTEN, AKT1, BCL6, ATM Immune/Metabolism
1 p53 signaling pathway (hsa04115) ATM, TP53, PTEN, Immune
1 Adherens junction (hsa04520) EGFR, MET, CTNNB1 Structural
1 Notch signaling pathway (hsa04330) ADAM17, Homeostatic
3 PI3K-Akt signaling pathway (hsa04151) AKT3, OSMR, PTEN, PIK3CD Immune/Metabolism
3 B cell receptor signaling pathway (hsa04662) BCL10, NFATC3, IKBKB, NFKBIA, NFKB1 Immune
3 ECM–receptor interaction (hsa04512) THBS1, TNC, ITGAV, CD44, CD47 Structural/ Immune
3 NF-kappa B signaling pathway (hsa04064) IRAK1, PTGS2, BCL10, XIAP, NFKB1, NFKB2, NFKBIA, 

IKBKB, TAB2
Immune

8 Fc gamma R-mediated phagocytosis (hsa04666) AKT1, INPPL1, DNM2, CFL2, MAPK1 Immune
8 MAPK signaling pathway (hsa04010) PDGFRB, AKT1, NFATC3, TP53, TAB2, MAP3K7, 

MAPK1
Immune

8 ECM–receptor interaction (hsa04512) TNC, THBS2, ITGB1, ITGAV, FN1, LAMC1 Structural/ Immune

DPI KEGG pathways targeted by downregulated miRNAs Key targets within pathways Classification

1 ECM–receptor interaction (hsa04512) THBS2, CD44, CD47, ITGAV Structural/ Immune
1 B cell receptor signaling pathway (hsa04662) CD81, VAV3, IFITM1, NFATC3, BCL10, MALT1, CHUK Immune
1 AMPK signaling pathway (hsa04152) PRKAG2, PFKFB3, MAP3K7, TSC1, MTOR, ULK1 Metabolism
1 NF-kappa B signaling pathway (hsa04064) TLR4, IL1B, VCAM1, PTGS2, BIRC2, NFKB1, ICAM, 

BCL2, TNFAIP3
Immune

1 Fc gamma R-mediated phagocytosis (hsa04666) VAV3, DOCK2, PTPRC, INPPL1, DNM2 Immune
1 VEGF signaling pathway (hsa04370) VEGFA, PTGS2, PTK2, Signaling
1 TNF signaling pathway (hsa04668) SOCS3, IL1B, IL6, TNFAIP3, BIRC2, VCAM1, PTGS2, 

MMP9, CSF1, CXCL10, ATF4, LIF
Immune

1 Apoptosis (hsa04210) TNFSF10, CAPN2, CASP3, IL1B, IL1R1 Homeostatic/
Metabolism

1 Influenza A (hsa05164) XPO1, RSAD2, TLR4, SOCS3, TBK1, IRF3 Immune
3 Focal adhesion (hsa04510) VEGFA, PTK2, PDPK1 Structural
3 Fc gamma R-mediated phagocytosis (hsa04666) ARF6, MARCKS, MAPK1, WASF2 Immune
3 AMPK signaling pathway (hsa04152) ADIPOR2, PRKAA1, FOXO3, HMGCR, PDPK1, TSC1 Metabolism
3 Glycosaminoglycan biosynthesis - keratan sulfate (hsa00533) B4GALT1 Structural
3 Mucin type O-Glycan biosynthesis (hsa00512) B4GALT5, GCNT1, C1GALT1C1 Metabolism
3 HIF-1 signaling pathway (hsa04066) HIF1A, CAMK2D Homeostatic
8 Glycosaminoglycan biosynthesis—keratan sulfate (hsa00533) B4GALT1 Structural
8 VEGF signaling pathway (hsa04370) VEGFA, KDR, AKT2, PTGS2 Signaling
8 Wnt signaling pathway (hsa04310) WNT9A, PLCB4, CTNNB1, Immune
8 Apoptosis (hsa04210) BCL2, AKT2, TNFSF10, IL1A, MYD88, FADD, IRAK1 Homeostatic/

Metabolism
8 PI3K-Akt signaling pathway (hsa04151) PTEN, AKT2, F2R, IL6R, IRS1, FOXO3 Immune/Metabolism
8 Glycosaminoglycan biosynthesis - heparan sulfate / heparin 

(hsa00534)
EXTL3, NDST2 Structural

8 HIF-1 signaling pathway (hsa04066) IL6R, STAT3, VHL, CUL2, LTBR, IL6, TLR4 Homeostatic

The upregulated miRNAs targeted genes within the pathways for inhibition. This inhibition affected mostly structural pathways at 1 dpi, immune functions at 3 dpi, and a 
combination of both at 8 dpi. The downregulated miRNAs targeted genes for activation within the pathways. The activated pathways were mostly involved in immune functions at 
1 and 8 dpi and structural integrity at 3 dpi. Key pathway targets based on miRNA targets within listed KEGG pathways. Analysis of statistical significance threshold set at an FDR 
of q ≤ 0.05 for all pathways listed.
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in reducing lung inflammation in humans suffering from COPD 
(Guo et al., 2016; O’Leary et al., 2016; Shinohara et al., 2017; Yuan 
et al., 2017). There was also ssc-miR-144 (1 dpi), which has been 
indicated as an inhibitor of the anti-viral response to influenza, 
another major viral respiratory disease that affects swine. There 
is also evidence that mature form of miR-144 also functions to 
suppress autophagy within host macrophages (Guo et al., 2017; 
Rosenberger et al., 2017). Likewise, discerned during this study 
were 2 miRNA groupings, the miR-30 and the miR-142 families 
of miRNAs that stood out across the dpi that appeared to be of 
importance. The miR-30 family of miRNAs appeared at least once 
on every dpi and was downregulated at all time points except 3 dpi, 
while the miR-142 family appeared downregulated at 1 and 2 
upregulated at 3 and 1 at 8 dpi (Table 1) (Supplementary Table 1).

Overall Common KEGG Pathways Analysis
The pathway and G.O. analysis were examined for results that 
were unique to either upregulated miRNAs or downregulated 
miRNAs (Table 2) or shared between the two (data not shown). 
The results for the 1-, 3-, and 8-dpi infected samples showed 
statistical significance (q ≤ 0.05) for multiple G.O. terms and 
KEGG pathways involved in the maintenance of the extracellular 
matrix and receptor interactions as well as various immune 
function-related pathways. Overall, the most prevalent shared 
pathway was the TGF-beta signaling pathway (hsa04350), a 
pro-inflammatory pathway, which was targeted on all dpi by 
the up- and downregulated miRNAs. The second most common 
pathway was the proteoglycans in cancer pathway (hsa05205). The 
proteoglycans in cancer pathway consisted of four total pathways: 
hyaluronan (HA), chondroitin sulfate/dermatan sulfate (CSPG/
DSPG), keratan sulfate (KSPG), and heparan sulfate (HSPG). This 
composite of proteoglycan pathways is involved in structural 
integrity, extracellular matrix, and receptor-ligand binding 
and appeared as one of the most statistically significant pathways 
for each dpi as either a common (3 and 8 dpi) or unique (1 dpi) 
pathway. Other pathways shared across multiple dpi by both up- 
and downregulated miRNAs included endocytosis (hsa04144), 
bacterial invasion of epithelial cells (hsa05100), adherens junction 
(hsa04520), and mTOR signaling pathway (hsa04150).

miRNA Pathway Target Prediction and 
G.O. Analysis
The pathways that were targeted by the upregulated vs. 
downregulated miRNAs (Table 2) allowed us to observe which 
functional and biological processes were possibly being altered by 
the inhibition or activation of genes involved in these processes 
within the host. At 1 dpi, the unique pathways targeted by the 
upregulated miRNAs were mostly key structural and signaling 
KEGG pathways that would appear to assist viral entry. This 
included pathways such as focal adhesion (hsa04510), proteoglycans 
in cancer pathway (hsa05205), and the notch signaling pathway 
(hsa04330). In regards to the downregulated miRNAs expressed 
at 1 dpi, the unique pathways included key immune-related 
KEGG pathways related to inflammatory immune functions 
during PRRSV infection. This included traditional innate immune 

response pathways such as the TNF signaling pathway (hsa04668), 
NF-kappa B signaling pathway (hsa04064), the AMPK signaling 
pathway (hsa04152) capable of sensing metabolic stressors to host 
homeostasis, and the multifunction ECM–receptor interaction 
(hsa04512) pathway (Jenuth, 2000; Kanehisa et al., 2016; Kanehisa 
et al., 2017; The UniProt, 2017).

At 3 dpi, a switching of expression profiles was observed. For 
the upregulated miRNAs, there was an increase in the number of 
immune-related KEGG pathways that were targets of inhibition 
observed at this time point. Pathways included in this group were: 
NF-kappa B signaling pathway (hsa04064) and ECM–receptor 
interaction (hsa04512) that were activated on the previous dpi, 
and the PI3K-Akt signaling pathway (hsa04151) involved in 
metabolism and apoptosis. The theme of the pathways unique 
to the downregulated miRNAs also appeared to switch at 3 dpi. 
For the downregulated miRNAs, emphasis switched from mostly 
immune regulated to a higher quantity of structural-related 
pathways with roles in viral entry of respiratory tissue types such 
as focal adhesion (hsa04510), Mucin type O-Glycan biosynthesis 
(hsa00512), and Glycosaminoglycan biosynthesis—keratan sulfate 
(hsa00533) (Jenuth, 2000; Souza-Fernandes et al., 2006; Kanehisa 
et al., 2016; Kanehisa et al., 2017; The UniProt, 2017). By 8 dpi, the 
pathways being targeted by the up- and downregulated miRNAs 
continued to display very kinetic profiles. The upregulated 
miRNAs now targeted pathways that involved both key structural- 
and immune-related functions, while the downregulated miRNAs 
targeted pathways continued to place emphasis again on host 
immune functions like apoptosis (hsa04210) and the Wnt signaling 
pathway (hsa04310) (Pecina-Slaus, 2010; Kanehisa et al., 2016; 
Villasenor et al., 2017) (Table 2).

Additionally, a gene ontology (G.O.) analysis was conducted 
for the upregulated miRNAs in order to facilitate a better 
understanding of what biological and molecular functions were 
being inhibited by the overexpression of the different miRNAs. 
A Venn diagram (not shown) was used to filter the G.O. terms 
and determine which were common or unique to each time 
point in an attempt to elucidate which biological functions of the 
host were the most attenuated by miRNA overexpression. The 
terms that were shared across all time points (n = 127) included 
a majority of host immune processes generally related to viral–
host interactions during infections. The shared list contained the 
G.O. terms negative regulation of type I interferon production 
(GO:0032480), extracellular matrix disassembly (GO:0022617), 
and virus receptor activity (GO:0001618).

At 1 dpi, the unique G.O. terms (n = 20) included antigen 
processing and presentation of peptide antigen via MHC class I 
(GO:0002474), ncRNA metabolic process (GO:0034660), negative 
regulation of transforming growth factor beta receptor signaling 
pathway (GO:0030512), and tRNA metabolic process. At 3 dpi, 
the counts of unique terms dropped considerably (n = 6) from 
1 dpi and highlighted terms related to sensing of biotic and abiotic 
stressors and inhibition by small RNA functions with the terms 
cytoplasmic stress granule (GO:0010494) and negative regulation 
of translation (GO:0017148). The unique G.O. terms associated 
with the miRNA upregulation at 8 dpi (n = 41) were the largest 
grouping of terms of all time points and encompassed multiple 
host immune and metabolic function-related terms. Some of 
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the key terms from 8 dpi included collagen catabolic process 
(GO:0030574), O-glycan processing (GO:0016266), and type I 
interferon signaling pathway (GO:0060337). The G.O. terms that 
were unique to the downregulated miRNAs at each dpi were also 
examined and showed groupings of terms that indicated targeting 
of various immune functions (not shown).

DISCUSSION

Interaction of Treatment and Dpi Reveals 
Pro-Viral and Anti-Viral Battle Over Host 
Pathways
Examination of the results indicated that the miRNAs and tRNAs 
displayed expression patterns that seem to suggest they behave 
in a manner that both promotes and fights HP-PRRSV infection. 
This battle for post-transcriptional control over the regulation of 
host gene expression during infection appeared to take place on 
several fronts. These fronts were highlighted by the differential 
expression of candidate miRNAs, tRNAs, and pathways related 
to several different host biological groupings. The groupings are 
best represented by the relationship of the pathways they contain, 
such as structural-related networks that consist of pathways that 
affect structural integrity and receptor binding. Additionally, 
there are the immune function-related pathways that spotlight 
the tug-of-war between host and pathogen. Lastly, there are 

the pathways that control metabolic activity, which collectively 
point out the perturbation the virus causes to host homeostasis. 
Even more striking is that these biological groupings are unique 
to either the overexpressed or under-expressed miRNAs and 
reinforced by the ncRNA:mRNA interactions predicted for some 
of the tRNA genes (Banerjee et al., 2013; Bai et al., 2015).

HP-PRRSV Infection Stimulated Differential 
Expression of Key Extracellular miRNAs
Analysis of the miRNA results yielded a group of candidates from 
each dpi that appeared to be linked to the immunosuppressive 
effects of the HP-PRRSV infection. Many of these were 
upregulated miRNAs listed as residing in the extracellular 
space of cells and may possibly highlight the usurping of host 
extracellular miRNAs by HP-PRRSV to facilitate viral entry/
replication. The upregulation was matched by downregulation 
of additional miRNAs, likely still under host control, which 
could help boost the activity and expression of immune-related 
pathways. The direction of expression for the miRNAs were closely 
tied to the dpi, as many were observed to be overexpressed at one 
time point, only to be under-expressed at another. Despite this, 
the results yielded candidate miRNA’s with potential anti- and 
pro-viral actions during HP-PRRSV infections of swine. From 
the upregulated miRNAs at 1, 3, and, 8 dpi were miRNAs Ssc-
miR-145-5p, Ssc-miR-142-3p, and Ssc-miR-125b, respectively. 

FIGURE 3 | Proteoglycans in cancer-predicted pathway. This figure highlights two of the four proteoglycans in cancer pathways, chondroitin sulfate/dermatan 
sulfate (CSPG/DSPG) and keratan sulfate (KSPG). These networks show that there are multiple genes (orange and yellow boxes) related to cytokine signaling 
and viral entry that are being targeted for inhibition that would cause host dysregulation and impair the ability to properly respond or maintain homeostasis during 
infection. Additionally, genes shown in previous HP-PRRSV transcriptome studies to be downregulated are shown to be targets of the upregulated miRNAs. DCN 
and LUM are DAMPs, which lead to downregulation of inflammatory DAMP signals and downstream TGF-Beta signaling, which is involved in anti-viral immunity. 
Figure 3 shows upregulated miRNAs only from all time points. Figure created using Mirpath V3 software and adapted for inclusion. Figure based on KEGG 
pathways. Figure legend refers to if gene in pathway has 1 (yellow) or >1 (orange) miRNAs targeting it.
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The miRNA Ssc-miR-125b (upregulated at 1 and 8 dpi only) 
along with Ssc-miR-361-3p (upregulated at all dpi) were the 
only miRNAs to appear statistically significant at each dpi. The 
miRNA Ssc-miR-145-5p has been shown to be an inhibitor 
of inflammatory cytokines signaling with the ability to cause 
alternative macrophage priming that accents anti-inflammatory 
signaling within the host (Guo et al., 2016; Yuan et al., 2017). This 
may be evidence of an early ability of PRRSV to suppress innate 
immune functions or signaling by overriding the M1 priming that 
would initiate host pro-inflammatory signaling. Also, of interest 
at 1 dpi was the downregulated Ssc-miR-144, which in its mature 
form can suppress proper macrophage functions and is also 
considered an inhibitor of the anti-viral response to influenza, 
another major porcine respiratory disease (Rosenberger et al., 
2017). The difference in the previously studied functions of Ssc-
miR-145-5p and Ssc-miR-144 show that at 1-dpi expression of 
the miRNAs is gauged in both pro- and anti-viral directions.

Upregulated at 3 dpi was the miRNA Ssc-miR-142-3p, which 
specifically when upregulated has been shown to impair the 
ability of monocyte-derived cells to properly present and process 
antigens to the adaptive arm of the immune system (Naqvi 
et  al., 2016). This gives insight into a possible mechanism that 
HP-PRRSV uses for stalling the host adaptive immune response. 
Also observed in the study were other differentially expressed 
members of the miR-142 family of miRNAs. Also upregulated 
at 3 dpi was the related Ssc-miR-142-5p, which is predicted to 
target porcine guanylate-binding protein 5 (GBP5) gene, which 
contains the WUR SNP, a low pathogenic PRRSV resistance 
variant (Koltes et al., 2015). The 3-dpi overexpression of these 
miRNAs may be evidence of possible mechanisms available to 
HP-PRRSV strains to stall host immune response and possibly 
cancel out any protection offered by the WUR variant through 
GBP5 silencing.

The upregulation of miRNAs at 1 and 3 dpi seemed to favor 
pro-viral activity within the host; however, by 8 dpi, miRNA 
upregulation was more anti-viral. This was observed in the host 
overexpression of Ssc-miR-125b, an extracellular miRNA that 
is computationally predicted to limit PRRS viral levels through 
suppressive targeting of host NF-kB signaling (Qureshi et al., 
2014). These phenomena may be related to the active role the 
miRNA plays in the regulation of monocytic cell inflammatory 
signaling (Duroux-Richard et al., 2016).

tRNA Differential Expression During 
HP-PRRSV Infection Indicates Change in 
Host Homeostasis Benefitting HP-PRRSV
The tRNA differential expression was not significant at 1 dpi 
but was statistically significant at 3 and 8 dpi after HP-PRRSV 
infection. Interestingly, the pattern of statistically significant 
tRNAs and their magnitudes of expression (Supplementary 
Table 1) appear to follow the trend seen in the viral load that 
increased with dpi (Figure 1). The changes in tRNA expression 
overtime are possibly the result of the virus modulating 
tRNA expression through hijacking host cellular resources. 
This change in host resources can then lead to changes in the 
metabolism of the host that eventually disrupts the proper 

activation of monocytic cells such as macrophages, allowing the 
virus to proceed unimpeded by the host cytokines (Langston 
et al., 2017) toward entry and proliferation. In a 2016 paper, 
Rappe et al. (2016) was able to observe that PRRS type 1 and 
2 virus nucleocapsids can contain an amino acid substitution 
that replaces a threonine with alanine causing the PRRS virus 
strain in that study to escape immune system protection. 
Therefore, it is possible that the virus is promoting differential 
expression of host alanine as a means of both hijacking needed 
nutrients and avoiding detection by innate immunity. There is 
also a possibility that the consistent downregulation of tRNA 
alanine genes at 3 and 8 dpi (Supplementary Table 1) is host 
initiated to hasten cellular degradation to limit host resources 
to the virus.

The trna1668_ValAAC was predicted to form interaction 
networks with SFTPB and TRPV1 (Figure 2), two genes involved 
in processing host signals for inflammation and pain that could 
also be linked to the changes in miRNA expression at 3 dpi that 
are shifting the host immune response. Additionally, at 3 dpi 
is the predicted interaction of the trna202_LeuTAG with the 
Beta 4-glycosyltransferase gene family that also contains genes 
involved in the functioning of chondroitin, a major proteoglycan 
pathway shown to be highly targeted by the miRNAs at each dpi. 
This can be seen in the results at 3 dpi where miRNAs ssc-miR-
27b-3p and ssc-miR-23a-3p targeting B4GALT5 (Zhang et al., 
2018) are being downregulated in the mucin type-o pathway in a 
possible attempt to bolster mucosal immunity in the host airway.

The prevalence of tRNA glycine genes at 8 dpi could be 
linked to the role glycine plays in the biochemical composition 
of collagen (Li and Wu, 2018), a tissue type composed of genes 
such as COL4A1 and COL5A2 shown in previous studies to be 
dysregulated during HP-PRRSV infections (Miller et al., 2017), 
and targeted by upregulated miRNAs in different pathways 
during our study (Table 2). Glycine is one of the key components 
in collagen, and collagen is a key component of the ECM, which 
our results showed to be compromised by multiple upregulated 
miRNAs (Table 1) (Supplementary Table 1). Additionally, 
glycine and its metabolites are needed by mammals like swine to 
support proper immune functions. However, the upregulation at 
8 dpi could be more closely related to glycine’s ability as an anti-
inflammatory molecule.

KEGG Pathways Analysis Indicates Coupled 
Viral Entry and Immunosuppressive Effect 
of HP-PRRSV
The pathways that were shared across all dpi such as the TGF-beta 
signaling pathway is a continuation of the suppression observed 
with the four proteoglycans in cancer pathways. The DE miRNAs 
within the TGF-beta signaling pathway likely perturbs multiple 
transcription and cofactors leading to immunosuppression, delayed 
apoptotic induction, and ECM dysregulation that is also shown 
to be affected. The first front of the battle between host and virus 
appears to take place at 1 dpi within inhibited structural pathways, 
concomitant with viral entry and proliferation, and activated 
immune response pathways that support pro-inflammatory 
signaling (Table 2). The other common pathway, the proteoglycans 

158

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121980


Expression of Host miRNAs and tRNA GenesFleming and Miller

10 August 2019 | Volume 10 | Article 691Frontiers in Genetics | www.frontiersin.org

in cancer pathway, was actually unique to 1 dpi (Figure 3) and 
revealed a class of miRNA-targeted structural genes that also 
functions as part of the innate immunity collectively referred to 
as damage-associated molecular pattern signals or DAMPs. Two 
DAMPs in particular, decorin (DCN) and lumican (LUM), have 
been shown to be heavily differentiated in HP-PRRSV infections 
(Miller et al., 2017) in a previous study and were targets of multiple 
upregulated miRNAs within our results. It is possible that miRNA 
overexpression reduces the ability of proteoglycan DAMPs like 
DCN and LUM to promote inflammatory cytokine signaling 
(Merline et al., 2011; Moreth et al., 2012), while also weakening 
the ECM to help promote viral invasion and proliferation.

The pathways targeted for miRNA-directed suppression at 1 dpi 
such as focal adhesion and the proteoglycans in cancer pathway 
could indicate early viral manipulation of host resources linked 
to documented viral entry strategies involving the binding of host 
glycoprotein molecules, which have many identities such as cell-
surface and transmembrane receptors that make up extracellular 
matrix proteins such as proteoglycans and integrins (Rabinovich 
et al., 2012; Cossart and Helenius, 2014). These pathways are crucial 
to the makeup of the extracellular matrix and may indicate why the 
ECM–receptor interaction (hsa04512) pathway is specifically targeted 
for activation by the downregulated miRNAs. In line with the viruses’ 
infection and proliferation at 1 dpi, the host was not only bolstering 
defense to viral entry with increased ECM–receptor activity but also 
innate immune responses for cytokine signaling possible through 
activity of the TNF signaling pathway (hsa04668) and the NF-kappa 
B signaling pathway (hsa04064). There is also some indication that 
the host metabolism is starting to become perturbed at 1 dpi due to 
activation of genes within the AMPK signaling pathway (hsa04152) 
that is involved in metabolic functions, especially in low energy states 
(Mihaylova and Shaw, 2011).

By 3 dpi, the unique up- and downregulated miRNAs had 
switched targeting roles with respect to the biological processes 
that appeared to be either inhibited or activated within the host. 
The upregulated miRNA was now inhibiting immune function 
pathways such as the ECM–receptor interaction pathway 
(hsa04512) and NF-kappa B signaling pathway (hsa04064) that 
were previously being activated. The switch from structural to 
immune pathway inhibition may serve as possible indicators of the 
dysregulation of monocytic cell immune functions experienced by 
infected macrophages to protect and prolong viral replication. Also 
supporting the idea that HP-PRRSV had switched to modulating 
host immune pathways to support survival was the observance 
of the PI3K-Akt signaling pathway (hsa04151) inhibition. This 
pathway is known to be involved in cell survival and can be usurped 
by viral pathogens to promote survival (Dunn and Connor, 2012); 
therefore, the host may be regulating miRNA expression against the 
pathway in an attempt to reduce usurpation by HP-PRRSV. Another 
suggestion is that the inhibition of the PI3K-Akt signaling pathway 
could be linked to the 1-dpi inhibition of the FoxO signaling 
pathway (hsa04068) and is a means for HP-PRRSV to lower the 
apoptotic functions for these pathways to promote self-survival 
against host immune functions. The unique pathways based on 
the downregulated miRNAs at 3 dpi had now begun to target more 

structural and metabolic pathways such as the Mucin type O-Glycan 
biosynthesis (hsa00512), AMPK signaling pathway (hsa04152), and 
the HIF-1 signaling pathway (hsa04066). It is uncertain whether this 
potential increase in structural and metabolic activity is anti- or pro-
viral in nature; however, it does show evidence that host homeostasis 
is being dysregulated. If it is anti-viral in nature, the pathway activity 
may be supporting repair of components such as the ECM after viral 
entry. However, if it is pro-viral, it might hint at AMPK and HIF-1 
signaling pathway involvement in metabolic processes that can 
detract from normal macrophage activation and may be connected 
to the 8 dpi upregulation of glycine tRNAs based on HIF1A’s role in 
glycolysis (Langston et al., 2017).

By 8 dpi, the affected unique pathways had flipped roles 
once again in regard to the biological clustering of inhibited and 
activated pathways. The 8-dpi inhibited pathways now incorporated 
a combination of structural and immunological pathways that 
included the ECM–receptor interaction pathway (hsa04512), Fc 
gamma R-mediated phagocytosis (hsa04666), and the MAPK 
signaling pathway (hsa04010). The 8-dpi pathway analysis also 
showed that the unique activated pathways also clustered around 
both immune and structural pathway indicating some importance 
of proteoglycans and pro-inflammatory cytokine signaling. It is 
also possible that the pathways targeted by the miRNA differential 
expression at 8 dpi is a reflection of the losing battle between host 
immunity and HP-PRRSV virulence related to impairment of 
normal macrophage functions due to PRRSV cell tropism.

CONCLUSIONS

Taken together, the pathway analyses suggest that the changes 
in host homeostasis were affected through the ability of 
HP-PRRSV to disturb host structural, immunologic, and 
metabolic pathways. These targeted pathways, along with the 
predicted tRNA:gene interactions, highlighted both inhibition 
and activation of pathways involved in viral entry, proliferation, 
and pro-inflammatory signaling that may underlie the ability of 
PRRSV to hinder homeostasis through sncRNA dysregulation. 
Small noncoding RNA (sncRNA) expression during HP-PRRSV 
infection can affect the differential expression of miRNAs and 
tRNAs and can exist as an evasion to canonical host immune 
responses when expressed in patterns exhibited across the 
experiment’s time points. Highly pathogenic PRRSV appeared to 
have the ability to induce differential expression of both miRNAs 
and tRNAs as part of its pathogenic course that perturbed 
structural, metabolic, and immunogenic pathways. The action 
of these sncRNAs created post-transcriptional changes to the 
overall ability of the host to maintain cellular homeostasis in the 
presence of the pathogen.
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Identification of Rumen Microbial 
Genes Involved in Pathways Linked 
to Appetite, Growth, and Feed 
Conversion Efficiency in Cattle
Joana Lima 1*, Marc D. Auffret 1, Robert D. Stewart 2, Richard J. Dewhurst 1, 
Carol-Anne Duthie 1, Timothy J. Snelling 3, Alan W. Walker 3, Tom C. Freeman 2†, 
Mick Watson 2 and Rainer Roehe 1*

1 Beef and Sheep Research Centre, Future Farming Systems Group, Scotland’s Rural College, Edinburgh, United Kingdom,  
2 Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom, 
3 The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom

The rumen microbiome is essential for the biological processes involved in the conversion 
of feed into nutrients that can be utilized by the host animal. In the present research, 
the influence of the rumen microbiome on feed conversion efficiency, growth rate, and 
appetite of beef cattle was investigated using metagenomic data. Our aim was to explore 
the associations between microbial genes and functional pathways, to shed light on the 
influence of bacterial enzyme expression on host phenotypes. Two groups of cattle were 
selected on the basis of their high and low feed conversion ratio. Microbial DNA was 
extracted from rumen samples, and the relative abundances of microbial genes were 
determined via shotgun metagenomic sequencing. Using partial least squares analyses, 
we identified sets of 20, 14, 17, and 18 microbial genes whose relative abundances 
explained 63, 65, 66, and 73% of the variation of feed conversion efficiency, average 
daily weight gain, residual feed intake, and daily feed intake, respectively. The microbial 
genes associated with each of these traits were mostly different, but highly correlated 
traits such as feed conversion ratio and growth rate showed some overlapping genes. 
Consistent with this result, distinct clusters of a coabundance network were enriched 
with microbial genes identified to be related with feed conversion ratio and growth rate or 
daily feed intake and residual feed intake. Microbial genes encoding for proteins related 
to cell wall biosynthesis, hemicellulose, and cellulose degradation and host–microbiome 
crosstalk (e.g., aguA, ptb, K01188, and murD) were associated with feed conversion 
ratio and/or average daily gain. Genes related to vitamin B12 biosynthesis, environmental 
information processing, and bacterial mobility (e.g., cobD, tolC, and fliN) were associated 
with residual feed intake and/or daily feed intake. This research highlights the association 
of the microbiome with feed conversion processes, influencing growth rate and appetite, 
and it emphasizes the opportunity to use relative abundances of microbial genes in the 
prediction of these performance traits, with potential implementation in animal breeding 
programs and dietary interventions.
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INTRODUCTION

The global population is expected to reach 9.8 billion by 2050 
(United Nations–Department of Economic and Social Affairs/
Population Division, 2017), resulting in an escalation of the 
global demand for food and of the need for economically and 
environmentally sustainable livestock production systems 
(Godfray et al., 2010; Gerber et al., 2013). A large portion of 
livestock production is based on ruminants. In 2017, the EU-28 
had a population of 88 million bovine animals, including cattle 
and water buffalo (Eurostat, 2018). Ruminants are particularly 
interesting due to their ability to convert human-indigestible plant 
biomass into high-quality products for human consumption such 
as meat and milk. Ruminants live in a symbiotic relationship with 
their rumen microbiota (comprising bacteria, protozoa, fungi, 
and archaea), which produce enzymes able to digest their food by 
breaking down complex polysaccharides of the plant biomass into 
volatile fatty acids (VFA), microbial proteins, and vitamins (Russell 
and Hespell, 1981; Bergman, 1990; Van Soest, 1994). Thus, the 
rumen microbiota fermentation profile has a significant influence 
on the feed conversion efficiency of the host (Russell, 2001; Li et al., 
2009; Hernandez-Sanabria et al., 2011; Jami et al., 2014; Sasson et 
al., 2017; Meale et al., 2018) and is accountable for up to 70% of the 
host’s daily energy requirements (Bergman, 1990).

In beef cattle production systems, expenses associated with 
feed account for up to 75% of the total production costs (Moran, 
2005a; Nielsen et al., 2013), which makes the improvement of 
feed conversion efficiency very economically compelling. There is 
consequently great interest in understanding the host–microbial 
symbiotic relationships responsible for the conversion of feed 
into energy, protein, and vitamins usable by the host animal, but 
the mechanisms and degree to which the rumen microbiome 
impacts on animal production, health, and efficiency remain 
undercharacterized (Brulc et al., 2009; Creevey et al., 2014). 
Although the rumen harbors a core microbiome (Jami and Mizrahi, 
2012; Henderson et al., 2015), in agreement with studies performed 
in the human gastrointestinal tract (Tap et al., 2009; Qin et al., 2010), 
the structure, and composition of the rumen microbiome varies 
within and between animals with differing performance traits. 
For example, in lactating dairy cattle, the increased methane yield 
during late lactation in comparison to early lactation within the same 
individual was found to be associated with significant changes in the 
ruminal microbial community structure (Lyons et al., 2018); Myer 
et al. (2015) showed different relative abundances of some microbial 
taxa and operational taxonomic units in animals with different 
average daily gain (ADG); Shabat et al. (2016) focused on residual 
feed intake (RFI) to demonstrate that highly efficient animals had 
a less diverse microbiota, being dominated by specific taxa and 
microbial genes which were involved in simpler metabolic pathway 
networks when compared to their less efficient counterparts. Other 
authors have reported that the rumen microbiome varies more 
between animals than within animals, proposing that the host 
itself and its physiological parameters have a significant influence 
on its own rumen microbiome (Li et al., 2009) and, therefore, on 
the efficiency of feed conversion into energy. In a mouse study, 
Benson et al. (2010) found that there is a well-defined portion of 
the gut microbiota that is subject to host genetic control, proposing 

it to be regarded as a host trait, rather than an environmental trait 
affecting the host. In agreement, in a beef cattle study, Roehe et al. 
(2016) confirmed the host genetic influence on the rumen bacterial 
composition using a genetic model based on sire progeny groups. 
The differences between sire progeny groups in methane emissions 
were in some cases larger than the differences found between diets 
differing largely in plant fiber content, suggesting a substantial host 
genetic influence on the microbial communities.

Selecting animals for breeding based on their ability to harvest 
energy from feed, together with nutritional interventions, could 
be the basis for an effective strategy to produce faster growing and 
more efficient animals (Gerber et al., 2013; Scollan et al., 2018). 
Given that the host has influence over the ruminal microbiome, 
which impacts the animals’ feed conversion efficiency, this 
selection may be further improved by the inclusion of rumen 
metagenomic information into predictive models, as previously 
suggested by Ross et al. (2013). Feed conversion efficiency is very 
often estimated by either feed conversion ratio (FCR) or RFI; 
the latter is independent of growth and maturity patterns and is 
expected to be more sensitive and precise in measurements of feed 
utilization (Arthur and Herd, 2008). The use of microbial genes as 
proxies for feed conversion efficiency traits may be much more 
cost effective, rapid, and less labor intensive than their recording 
(Ross et al., 2013; Roehe et al., 2016). Our earlier research was 
the first proposing that the inclusion of relative abundance of 
microbial genes as proxies for FCR may be favorable, allowing 
their use as selection criteria for breeding animals, by identifying 
49 microbial genes that explained 88.3% of the variation observed 
in FCR (Roehe et al., 2016). To our knowledge, no other studies 
have focused on the relationship between microbial gene 
abundances and RFI, daily feed intake (DFI), and ADG, which 
highlights the importance and novelty of the present work.

This study aimed at validating whether rumen microbial gene 
abundances are suitable proxies for feed conversion efficiency traits 
such as FCR; the analysis was further extended by focusing on RFI. 
Based on the previous evidence of strong interactions between 
the rumen microbiome and the host animal with consequences 
for feed conversion efficiency (Guan et al., 2008; Roehe et al., 
2016; Shabat et al., 2016), we hypothesized that microbial gene 
abundances are linked to the animals’ appetite and, consequently, 
to feed intake. A further aim of this research was to gain insight into 
the association of growth rate with the microbial gene abundances. 
Building on this, we aimed at better understanding the rumen 
microbial functional network associated with feed conversion 
efficiency and its component traits. This research will improve on 
the current knowledge about the impact of the rumen microbiome 
on appetite, growth, and efficiency of feed conversion processes.

MATERIALS AND METHODS

Ethics Statement
This study was conducted at the Beef and Sheep Research Centre, 
SRUC, UK. The study was carried out in accordance with the 
requirements of the UK Animals (Scientific Procedures) Act 
1986. The protocol was approved by the Animal Experiment 
Committee of SRUC. All standard biosecurity and institutional 
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safety procedures were applied during the animal experiment 
and the laboratory analysis.

Animals, Adaptation Period, and 
Measurement of Traits
Two experiments were carried out to determine the effect of 
nitrate or lipid additives within different basal diets on methane 
emissions from beef cattle. The first experiment was conducted in 
2013, and it consisted of a 2 × 2 × 3 factorial design including 84 
steers of two breed types (crossbreed Charolais, CHx and Luing); 
two basal diets, forage (FOR) and concentrate (CONC), which 
consisted respectively of ratios of 520:480 and 84:916 forage to 
concentrate (g/kg dry matter); and three treatments, nitrate and 
lipid feed additives, as well as the control. From these animals, 
24 animals were selected with extreme high and low FCR values 
within breed type and basal diet (two animals per feed additive 
and control). More details related to this experiment can be 
found in Duthie et al. (2015) and Troy et al. (2015). The second 
experiment was a 2 × 4 factorial design experiment, conducted 
in 2014, involving 80 animals. There were two breed types—40 
crossbred Limousin (LIMx) and 40 crossbred Aberdeen Angus 
(AAx)—which were subject to a balanced design consisting of 
four dietary treatments using one basal diet (550:450 forage to 
concentrate ratio g/kg dry matter, FOR) and testing the effects of 

feed additives nitrate, lipid, or their combination in comparison 
to the control on methane output. Full details of the experiment 
are presented in Duthie et al. (2017). From this experiment, 18 
animals were selected within each combination of breed type and 
diet: nine for the high FCR group and nine for the low FCR group. 
DFI was assessed by measuring dry matter intake (DMI, kg/day), 
which was recorded in both experiments using electronic feeding 
equipment (HOKO, Insentec, Marknesse, The Netherlands). Body 
weight (BW) was measured weekly using a calibrated weight scale 
(before fresh feed was offered). Growth was modeled by linear 
regression of BW against test date to obtain ADG, mid-test BW, 
and mid-test metabolic BW (MBW = BW0.75). FCR was calculated 
as average DMI (kg/day) divided by ADG. RFI was estimated 
as deviation of actual DMI (kg/day) from DMI predicted based 
on linear regression of actual DMI on ADG, mid-MBW, and fat 
depth at 12th/13th rib at the end of the 56-day test (Duthie et al., 
2015; Troy et al., 2015; Duthie et al., 2017).

A flowchart summarizing the methods for generation of data 
and subsequent statistical analyses is presented in Figure 1.

Sampling of Rumen Digesta and Whole 
Metagenomic Sequencing
As described in Duthie et al. (2015) and Auffret et al. (2017), 
animals from both experiments were slaughtered in a commercial 

FIGURE 1 | Flowchart summarizing methods for generation of data and their statistical analyses: This flowchart summarizes how the data were generated and 
which statistical analyses were used to identify the associations between gene abundances and performance traits of animals to understand the rumen microbial 
functional pathways associated with these traits. KEGG, Kyoto Encyclopedia of Genes and Genomes; FCR, feed conversion ratio; ADG, average daily gain; RFI, 
residual feed intake; DFI, daily feed intake; PLS, partial least squares; LDA, linear discriminant analysis.
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abattoir where two samples of rumen digesta (~50 ml) were 
collected immediately after the rumen was opened to be drained. 
The slaughter house sample collection process results in well-
mixed samples of rumen contents. DNA was extracted from 
the rumen samples of 42 animals following the methodology 
described in Rooke et al. (2014). Illumina TruSeq libraries were 
prepared from genomic DNA and sequenced on Illumina HiSeq 
systems 4000 by Edinburgh Genomics (Edinburgh, UK). Paired-
end reads (2 × 150 bp) were generated, resulting in between 8 
and 15 GB per sample (between 40 and 73 million paired reads). 
The raw data can be downloaded from the European Nucleotide 
Archive under accession PRJEB21624.

Identification of the Rumen Microbial 
Gene Abundances
Bioinformatics analysis for identification of rumen microbial 
genes was carried out as previously described by Wallace et al. 
(2015). Briefly, to measure the abundance of known functional 
microbial genes in the rumen samples, reads from whole 
metagenome sequencing were aligned to the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) database (Kanehisa and Goto, 
2000) using Novoalign (www.novocraft.com). Parameters were 
adjusted such that all hits were reported that were equal in 
quality to the best hit for each read and allowing up to a 10% 
mismatch across the fragment. The KEGG Orthologue groups 
(KO) of all hits that were equal to the best hit were examined. 
If we were unable to resolve the read to a single KO, the read 
was ignored; otherwise, the read was assigned to the unique KO. 
Read counts were summed and normalized to the total number of 
hits. This mapping of the whole metagenomic data to the KEGG 
database resulted in a dataset comprising of 4,966 KEGG genes. 
Microbial genes were removed from the dataset when they were 
absent from three or more animals and when the mean relative 
abundance was lower than 0.001%, leaving 1,692 microbial genes 
for further analyses.

Statistical Analysis
For each of the 1,692 microbial genes, a linear model was fitted, 
including as fixed effects a combined class variable of breed, diet, 
and year of experiment (six levels) and the FCR groups (high 
FCR, FCR-H and low FCR, FCR-L) using the lm() function in 
R version 3.4.2. The microbial genes which resulted in P ≥ 0.1 
for the differences in FCR groups were not considered in the 
partial least squares analyses (PLS, SAS version 9.3 for Windows, 
SAS Institute Inc., Cary, NC, USA) to avoid excessive noise of 
microbial genes uncorrelated to the traits of interest. In the linear 
model, FCR groups were replaced successively by ADG, RFI, and 
DFI as covariables to identify only potentially relevant microbial 
genes of these traits for further PLS analyses. In addition, genes 
with unknown function were removed from these datasets.

Microbial genes whose relative abundances were significantly 
associated to each trait in the linear models were analyzed 
using a sequential PLS-based methodology. First, PLS models 
were calculated in which the number of latent variables was 
determined by “leave-one-out” cross-validation, and genes with 
lower variable importance in projection (VIP) were removed. 

Second, the sets of genes created in the first step were evaluated 
by PLS models using three latent variables to determine the 
smaller set of genes leading to higher explained variation of both 
independent and dependent variables.

Each set of microbial genes identified in the PLS analyses as 
best predicting the trait was then used in a linear discriminant 
analysis (LDA), performed in R version 3.5.1 (2018-07-02) 
package MASS_7.3-51.4. In these analyses, the categories were 
for FCR those described previously as FCR-H and FCR-L; for 
all other traits, animals were classified as high or low, depending 
on their observations being higher or lower than the median 
(balanced for trial, breed, and diet).

The microbial genes identified to be significantly associated 
with each trait were submitted to an extensive review about 
their functionality based on databases such as KEGG (Kanehisa 
Laboratories, 2018), BioCyc (Karp et al., 2017), and UniProt 
(Bateman, 2019) and information from the literature.

Networks
The coabundances between microbial genes were investigated 
in a stepwise network analysis using the Graphia Professional 
software (Kajeka Ltd, Edinburgh; Freeman et al., 2007), in which 
nodes represent microbial genes and edges represent a correlation 
value above a defined value of r. In the first step, the correlation 
threshold of r = 0.45 was selected such that all microbial genes 
(n = 1,692) were included in the network. The microbial genes 
identified by PLS to be associated with a trait of interest were 
then located in the network. Clustering was performed using 
the Markov clustering method (MCL) available in Graphia 
Professional using the default settings (inflation, preinflation, and 
scheme values of 6). All clusters that held at least one microbial 
gene previously identified in the PLS analysis to be associated 
with a trait of interest were identified. These were incorporated 
into a new network generated at correlation threshold of r = 0.80 
containing 1,135 microbial genes. MCL was then performed 
on this network, with inflation and preinflation values of 2 and 
scheme value of 6, reflecting the clustering structure suggested 
in the network itself. Analyses of enrichment of genes identified 
in the PLS as associated to each trait were performed on the 
clusters, and significance was assessed at P < 0.05.

RESULTS

Performance Traits Related With Feed 
Conversion Efficiency
The average FCR values observed for animals selected into FCR-H 
(inefficient) and FCR-L (efficient) groups differed significantly 
by 2.3 kg DFI/kg ADG (Figure 2). When comparing these two 
groups for other traits, the FCR-H group had significantly higher 
values of RFI (0.8 kg) and significantly lower ADG (0.39 kg); in 
the case of DFI, no significant difference was observed between 
the FCR groups.

ADG and FCR had a strong significant negative correlation of 
0.80, suggesting that high growth rate is associated with efficient 
animals, using less feed per kilogram of weight gain. FCR and 
RFI were significantly positively correlated, but at a low level of 
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0.32. DFI was significantly correlated with RFI and ADG at high 
and moderate levels of 0.77 and 0.53, respectively.

Rumen Microbial Genes Associated With 
Feed Conversion Efficiency Traits
The PLS analyses identified sets of 20 and 14 microbial genes whose 
relative abundances explained 63.4 and 65.4% of the variation 
in FCR and ADG, respectively, and sets of 17 and 18 microbial 
genes whose relative abundances explained 65.6 and 72.9% of the 
variation in RFI and DFI, respectively, including the combined fixed 
effect of diet, breed, and year of experiment (Table 1). Without this 
combined fixed effect, the variances explained by microbial genes 
in FCR and ADG decreased to 54.2 and 61.4%, while in RFI and 

DFI, they decreased to 50.8 and 67.7%, respectively. A discriminant 
analysis between groups of high- and low-performing animals, 
using the set of microbial genes identified in the PLS analysis to 
best predict each trait, resulted in prediction accuracies of 90, 79, 
86, and 86% for FCR, ADG, RFI, and DFI (Figure 3).

The Venn diagram presented in Figure 4 illustrates the 
overlap between the sets of genes identified for the prediction 
of each of the four traits. For the prediction of FCR and ADG, 
six microbial genes were simultaneously selected: UDP-N-
acetylmuramoylalanine-D-glutamate ligase, glycine cleavage 
system H protein, translation initiation factor IF-1, N utilization 
substance protein A, DNA-binding protein HU-beta, and 
diphthamide synthase subunit dph2 (murD, gcvH, infA, nusA, 
hupB, and dph2, respectively). Three microbial genes were 

FIGURE 2 | Distribution of variation and range of performance traits: (A) feed conversion ratio, (B) average daily gain, (C) residual feed intake, and (D) daily feed 
intake within feed conversion ratio groups (high and low). The boxplots show the variation and range of each trait within each feed conversion ratio group. FCR, feed 
conversion ratio; AAx, crossbred Aberdeen Angus; CHx, crossbred Charolais; LIMx, crossbred Limousin.
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simultaneously selected for the prediction of traits RFI and 
DFI: glucose-1-phosphate cytidylyltransferase, CDP-glucose 
4,6-dehydratase, and energy-converting hydrogenase B subunit 
D (rfbF, rfbG, and ehbD, respectively). The microbial genes 
identified for the prediction of more than one trait are highlighted 
in the shaded rows in Tables 2–5, in which a more detailed 
information about their function and importance for prediction 
is provided.

Based on the relative abundance of 1,135 microbial genes 
across rumen samples, a coabundance network was developed 
(Figure 5), and clusters were identified. The clustering pattern 
evidences the microbial genes that are more closely connected 
to microbial genes previously identified in the PLS analyses. 
The network cluster to which each microbial gene belongs to 
is presented in Tables 2–5. Cluster 2 was significantly enriched 
for microbial genes predicting DFI and RFI&DFI (RFI and/or 
DFI). Cluster 4 was enriched for microbial genes predicting 
RFI and RFI&DFI. Microbial genes simultaneously predicting 
FCR and ADG were enriched in clusters 20 and 21, while those 
predicting FCR&ADG (FCR and/or ADG) were enriched in 
clusters 21 and 25. ADG-predicting microbial genes were 
enriched in clusters 21 and 25, whereas FCR-predicting genes 
were only enriched in cluster 25. Other genes previously 
identified in the PLS analysis were scattered across the graph.

Most microbial genes identified exclusively for the prediction 
of FCR are related to carbohydrate metabolism and transport: 

fructuronate reductase, galactokinase, alpha-glucuronidase, beta-
glucuronidase, beta-glucosidase, phosphate butyryltransferase 
P, UDP-N-acetylglucosamine acyltransferase, gluconate 
5-dehydrogenase, and lactate permease (respectively uxuB, galK, 
aguA, uidA, K01188, ptb, lpxA, idnO, and lctP) were proportionally 
more abundant in efficient animals (lower FCR, Supplementary 
Figure S1A). The microbial gene lactoylglutathione lyase (glo1) 
is also associated with carbohydrate metabolism and identified 
for predicting FCR, but it had higher relative abundance in less 
efficient animals (higher FCR). Microbial genes galK and xylE 
(i.e., MFS transporter, SP family, xylose:H+ symporter) were 
both located in cluster 5, but this cluster was not significantly 
enriched for microbial genes associated to FCR. On the other 
hand, cluster 25 was enriched due to the presence of microbial 
genes uxuB and lpxA.

Microbial genes associated with amino acid metabolism 
and transport pathways were identified for the prediction of 
ADG and found to be relatively more abundant in animals with 
higher ADG (see Supplementary Figure S1B), e.g., aspartate-
semialdehyde dehydrogenase and phenylacetate-CoA ligase (asd 
and paak, respectively). Some housekeeping genes were also 
identified for this set, including large subunit ribosomal protein 
L17 and L36, F-type H+-transporting ATPase subunit delta 
and FKBP-type peptidyl-prolyl cis-trans isomerase slyD (rplQ 
and rpmJ, atpH, and slyD). Genes rplQ, atpH, and slyD were 
relatively more abundant in animals with higher ADG, and rpmJ 
was relatively more abundant in animals with lower ADG. The 
microbial gene N-acetylmuramoyl-L-alanine amidase (amiABC) 
was identified for prediction of ADG, being negatively correlated 
with the trait.

All microbial genes simultaneously identified for predicting 
FCR and ADG showed a negative correlation to FCR and a 
positive correlation to ADG. These included housekeeping genes 
(infA, hupB, and dph2), a gene related to carbohydrate metabolism 
(gcvH), murD, which was associated with peptidoglycan 
metabolism and D-glutamine and D-glutamate metabolism, and 
nusA, associated with transcription regulation. Cluster 21 was 
enriched in ADG- and FCR&ADG-predicting microbial genes 
due to the presence of atpH, rplQ (ADG), and infA (FCR&ADG).

Five microbial genes identified for the prediction of RFI were 
associated with environmental sensing, bacterial chemotaxis, 
and motility: sensor kinase cheA, response regulator cheY, methyl 
accepting chemotaxis protein, flagellar motor switch protein 
fliN/fliY, and flagellar hook protein flgE (cheA, cheY, mcp, fliN, 
and flgE, respectively) were found to be relatively more abundant 
in more efficient animals, i.e., lower RFI. Other microbial 
genes associated with RFI are involved in the biosynthesis of 
cofactors and vitamins, particularly vitamin B12 production, 
for example, cobalt transport protein, threonine-phosphate 
decarboxylase, and precorrin-6Y C5,15-methyltransferase 
(decarboxylating), which correspond respectively to cbiN, cobD, 
and cobL (Supplementary Figure S1C). Finally, three genes 
that encode proteins related to carbohydrate transport and 
metabolism were relatively more abundant in more efficient 
animals (i.e., lower RFI): the simple sugar transport system 
permease protein, oxaloacetate decarboxylase, alpha subunit, 
and aldehyde:ferredoxin oxidoreductase (respectively ABC.

TABLE 1 | Percentage of variation in each trait explained by the microbial 
genes identified in the partial least squares (PLS). 

Percent variation accounted for by partial least 
squares factors

Model effects Dependent variables

Trait No. 
factors

Current Total Current Total

FCR 1 41.59 41.59 35.46 35.46
2 6.35 47.94 21.19 56.65

3 7.57 55.51 6.72 63.37

ADG 1 39.42 39.42 49.26 49.26
2 9.60 49.02 11.47 60.73

3 7.97 56.99 4.67 65.40

RFI 1 24.04 24.04 44.32 44.32
2 13.95 37.99 16.80 61.12

3 16.72 54.71 4.52 65.63

DFI 1 28.98 28.98 44.94 44.94
2 21.25 50.23 19.94 64.88

3 7.86 58.09 8.05 72.93

The number of factors refers to the number of latent variables in which the total 
number of microbial genes (independent variables) were projected in the PLS 
procedure, and each factor accounts for a portion of the total explained variation. 
The “Model Effects” columns refer to the percent variability of the independent 
variables matrix that relates to the respective percent variability presented in the 
“Dependent Variables” columns. The “Current” columns present values for each 
extracted factor individually, and the “Total” columns present the subtotal variation. 
The cells colored in gray contain the values of percent variation explained by the 
three latent variables for each trait. FCR, feed conversion ratio; ADG, average daily 
gain; RFI, residual feed intake; DFI, daily feed intake.
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SS.P, oadA, and aor). Cluster 4 was significantly enriched in 
microbial genes associated with RFI due to the presence of 
microbial genes cobD, cobL, mcp, and oadA, and serine-type 
D-Ala-D-Ala carboxypeptidase (penicillin-binding protein 5/6), 
inner membrane protein, and Cd2+/Zn2+-exporting ATPase 
(respectively, dacC, ybrG, and zntA).

The set of microbial genes identified for prediction of DFI 
included four microbial genes, proportionally more abundant in 
animals with higher DFI, which encoded proteins associated with 
environmental sensing, i.e., nitrogen regulatory protein P-II 1, outer 
membrane channel protein TolC, and preprotein translocase subunit 
YajC (glnB, tolC, and yajC, respectively). Nitrate reductase 1, alpha 
subunit (narG) was related to denitrification, releasing nitrite, and 
it was found to be relatively more abundant in animals with lower 
DFI (Supplementary Figure S1D). DNA-directed RNA polymerase 
subunit beta (rpoB, proportional higher abundance in animals 
with lower DFI), ribosomal large subunit pseudouridine synthase 
B, exodeoxyribonuclease VII small subunit, ribonuclease III, N 
utilization substance protein B, and integration host factor subunit 
alpha (respectively rluB, xseB, rnc, nusB, and ihfA, proportionally 
more abundant in animals with higher DFI) are housekeeping 
genes identified in this work for the prediction of DFI. Cluster 2 was 
significantly enriched with microbial genes associated with DFI due 
to the presence of glnB, infA, mrdA, nusB, rdgB, rluB, tolC, and xseB.

RFI- and DFI-predicting genes include glucose-1-phosphate 
cytidylyltransferase, CDP-glucose 4,6-dehydratase (respectively 
rfbF and rfbG, related to amino sugar and nucleotide sugar 
metabolism), and energy-converting hydrogenase B subunit D 
(ehbD, housekeeping). These three genes were proportionally 
more abundant in less efficient animals (higher RFI associated 
with increased DFI).

DISCUSSION

Rumen Microbial Gene Abundances 
Associated With Efficiency Traits
Our research indicates that there is a substantial link between 
rumen microbial gene abundances and appetite (measured as feed 
intake), growth rate, and feed conversion efficiency (Figure 6). 
The relative abundances of 20 and 17 microbial genes accounted 
for substantial variation (>60%) in FCR and RFI, respectively. 
The discriminant analyses of high- and low-performing animals 
indicated that accurate classification (>85% correct assignment 
of FCR and RFI categories) could be achieved using the 
microbial genes identified in the PLS for the prediction of the 
traits. Roehe et al. (2016) also found an association of microbial 
gene abundances with FCR, but their results were based on a 
smaller number of animals selected for their extreme values in 

FIGURE 3 | Linear discriminant analysis density plots: Microbial genes identified in the PLS analyses to be significantly associated with the trait were used in a linear 
discriminant analysis of high- and low-performing animals. The density plots represent the predicted categories for each trait. The accuracy value represents the 
percentage of animals that were correctly assigned to their category. FCR, feed conversion ratio; ADG, average daily gain; RFI, residual feed intake; DFI, daily feed 
intake; LD1, linear discriminant 1.
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methane emissions. In the present study, animals were selected 
based on their extreme FCR values, yielding a statistically more 
powerful estimate of this trait. Whereas FCR is calculated as a 
ratio between DFI and ADG and is therefore highly affected by 
growth rate and body composition, RFI is independent of these 
traits (Berry and Crowley, 2013). The low phenotypic correlation 
(r = 0.32) between FCR and RFI suggests that these traits capture 
substantially distinct characteristics.

For ADG and DFI, the relative abundances of 14 and 18 
microbial genes, respectively, also explained substantial variation 
(>65%), and the discriminant analyses of high- and low-
performing animals resulted in high prediction accuracies of 79 
and 86%, respectively. These component traits were moderately 
correlated, agreeing with the report by Berry and Crowley (2013) 
of a large independent variation of feed intake and weight gain.

The animals’ appetite, feeding behaviour, and gastrointestinal 
motility (among other traits) are thought to be regulated by 
several mechanisms, including a communication between the 
rumen microbiome and the brain, through the gut–liver–brain 
axis (vagus nerve). This communication has been proposed to 
be mediated by multiple mechanisms, such as insulin/glucagon 
homeostasis, oxidation of acetyl coenzyme A, and release of 
VFA by the rumen microbiota (like propionate, associated 
with hypophagic behavior in ruminants, or butyrate and 

acetate, associated with motility of the gastrointestinal tract 
in monogastric animals; Sakata and Tamate, 1979; Cherbut, 
2003; Oba and Allen, 2003; Arora et al., 2011; Maldini and 
Allen, 2018). Given the predictability of performance traits 
using relative abundances of rumen microbial genes observed 
in the present research (particularly that of DFI) and the high 
impact of the rumen microbiome on feed intake regulation 
(as discussed in the literature), we hypothesize that rumen 
microbial genes are closely involved in the metabolic pathways 
that regulate feed intake.

Differential Microbial Gene Sets Predicting 
Distinct Trait Complexes
The coabundance microbial gene network (Figure 5) identified 
two separate trait complexes. While microbial genes identified 
for the prediction of FCR were grouped with ADG-predicting 
genes, microbial genes identified for the prediction of RFI were 
grouped with DFI-predicting genes, as revealed by differential 
enrichment in separate clusters (Supplementary Figure S2). 
For example, beta-glucosidase is encoded by microbial genes 
bglX and K01188, which were associated to different traits (DFI 
and FCR, respectively). This type of differential clustering was 
previously observed for microbial genes associated with methane 

FIGURE 4 | Overlap analysis of identified microbial genes: The image illustrates the number of microbial genes identified in the partial least squares analysis as  
fitted for prediction of each animal performance trait exclusively, and the number of microbial genes simultaneously predicted for multiple traits: six microbial genes 
were simultaneously identified for prediction of FCR (feed conversion ratio) and ADG (average daily gain), and three for both RFI (residual feed intake) and  
DFI (daily feed intake).
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emissions and FCR by Roehe et al. (2016). The trait complexes 
associated with feed conversion efficiency were further 
evidenced when analyzing the overlapping genes identified for 
the prediction of each trait (Figure 4 and shaded rows in Tables 
2–5), i.e., six microbial genes were identified for the prediction 
of both FCR and ADG and three genes for the prediction of both 
RFI and DFI. In agreement, strong correlations were observed 

for each pair of traits, as shown previously in the literature with 
the literature (Arthur and Herd, 2008; Herd et al., 2014). These 
results suggest that different microbial genes can be used to 
predict each trait. Furthermore, microbial genes overlapping for 
the prediction of more than one trait might be useful for the 
interpretation of biological processes explaining the correlation 
between phenotypes.

TABLE 2 | Summary of microbial genes identified for the prediction of FCR. 

KEGG 
id

Description Gene name 
abbreviation

Pathways Mean 
abundance

PLS 
estimate

VIP Cluster

K03783 Purine-nucleoside 
phosphorylase

punA 2Metabolic pathways; biosynthesis of secondary 
metabolites; purine metabolism; pyrimidine 
metabolism; nicotinate and nicotinamide 
metabolism

0.0107 −0.2755 1.22 1

K08138 MFS transporter, SP family, 
xylose:H+ symporter

xylE 3Carbohydrate transport and metabolism, amino 
acid transport and metabolism, Inorganic ion 
transport and metabolism

0.0404 0.1135 1.09 05

K00046 Gluconate 5-dehydrogenase idnO 4L-idonate degradation 0.0845 0.0166 1.08 11
K00040 Fructuronate reductase uxuB 2Metabolic pathways; pentose and glucuronate 

interconversions
0.0847 0.0503 1.01 25

K01759 Lactoylglutathione lyase glo1 2Pyruvate metabolism 0.0021 0.1547 1.01 09
K00849 Galactokinase galK 2Metabolic pathways; galactose metabolism; 

amino sugar and nucleotide sugar metabolism
0.0631 0.0675 1.00 05

K01195 Beta-glucuronidase uidA 2Metabolic pathways; biosynthesis of secondary 
metabolites; pentose and glucuronate 
interconversions; glycosaminoglycan degradation; 
porphyrin and chlorophyll metabolism; flavone 
and flavonol biosynthesis; drug metabolism—
other enzymes; lysosome

0.0127 −0.1174 0.99 07

K14220 tRNA Asn tRNA-Asn 2Aminoacyl-tRNA biosynthesis 0.0155 0.0139 0.96 NC
K00677 UDP-N-acetylglucosamine 

acyltransferase
lpxA 2Metabolic pathways; lipopolysaccharide 

biosynthesis; cationic antimicrobial peptide 
(CAMP) resistance

0.0403 −0.0186 0.91 25

K01188 Beta-glucosidase beta-
glucosidase

2Metabolic pathways; biosynthesis of secondary 
metabolites; cyanoamino acid metabolism; 
starch and sucrose metabolism; phenylpropanoid 
biosynthesis

0.0398 −0.0210 0.90 1

K07214 Enterochelin esterase and 
related enzymes

fes 3Inorganic ion transport and metabolism 0.0475 −0.1511 0.90 1

K03303 Lactate permease lctP 5Lactate transmembrane transporter activity 0.0195 −0.0271 0.88 28
K00634 Phosphate butyryltransferase ptb 2Metabolic pathways; butanoate metabolism 0.0075 −0.0079 0.85 1

K01235 Alpha-glucuronidase aguA 3Carbohydrate transport and metabolism 0.0104 −0.0626 0.80 NC

K07561 diphthamide synthase subunit 
DPH2

dph2 3Translation, ribosomal structure and biogenesis 0.0030 −0.3881 1.86 01

K01925 UDP-N-
acetylmuramoylalanine–D-
glutamate ligase

murD 2Metabolic pathways; D-Glutamine and 
D-glutamate metabolism; peptidoglycan 
biosynthesis

0.0620 −0.0857 0.99 1

K02437 Glycine cleavage system H 
protein

gcvH 2Metabolic pathways; biosynthesis of secondary 
metabolites; biosynthesis of antibiotics; glycine, 
serine and threonine metabolism; glyoxylate and 
dicarboxylate metabolism; carbon metabolism

0.0069 −0.0167 0.93 1

K03530 DNA-binding protein HU-beta hupB 3DNA binding protein: replication, recombination, 
and repair

0.0331 −0.0892 0.89 19

K02600 N utilization substance protein 
A

nusA 3Transcription 0.1126 −0.0655 0.89 1

K02518 Translation initiation factor IF-1 infA 3Translation, ribosomal structure and biogenesis 0.0346 0.0170 0.88 21

Each column respectively presents information about: 1) KEGG identifier, 2) description of the gene (from KEGG), 3) gene name abbreviation, 4) metabolic pathways in which 
this gene participates, 5) mean relative abundance of the microbial gene in 42 animals, 6) the partial least squares (PLS) estimate of the regression coefficient using three latent 
variables, 7) the variable importance in projection (VIP) calculated during the PLS analysis using three latent variables, and 8) the cluster in which the microbial gene was allocated 
in the final network. 1Microbial genes excluded from the final network due to the 0.80 minimum correlation threshold. NC, Microbial genes not clustered in the final network. 
Information retrieved from: 2KEGG database, 3NCBI database, 4BioCyc database, and 5UniProt database. The genes in this table explained 63.4% of the variation in FCR (feed 
conversion ratio). Rows colored in gray correspond to genes simultaneously identified for both FCR and ADG (average daily gain) prediction.
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Metabolic Pathways of Microbial Genes 
Associated With Efficiency Traits
Our results indicate that most proteins encoded by microbial 
genes identified for the prediction of FCR were generally involved 
in carbohydrates metabolism and transport. For example, aguA 
and K01188 are involved in biomass conversion, through the 
degradation of hemicelluloses and lignocelluloses and lactate 
biosynthesis (Cairns and Esen, 2010; Lee et al., 2012; Michlmayr 
and Kneifel, 2014; Li, 2015). Microbial genes xylE, aguA, and 
uidA are involved in xylan degradation, the main component of 
hemicellulose (Lee et al., 2012; Fliegerova et al., 2015). Xylose 
needs to be taken up by a transporter (putatively associated 

with xylE) before it is metabolized, and it has been recognized 
as a rate-controlling step in bacterial metabolism (Chaillou and 
Pouwels, 1999). Furthermore, microbial genes such as uidA 
[previously identified by Roehe et al. (2016)], directly involved in 
carbohydrate metabolism pathways like pentose and glucuronate 
interconversions and galactose metabolism, are coupled with 
NAD or NADP oxidoreduction, important for regulating the flux 
of carbon and energy sources in microorganisms (Spaans et al., 
2015). In addition, punA (i.e., purine-nucleoside phosphorylase) 
is involved in the metabolism of nucleotides, nicotinate and 
nicotinamide (vitamin B3), which also contain NAD and NADP, 
and is therefore important in carbohydrate, protein, and lipid 

TABLE 3 | Summary of microbial genes identified for the prediction of ADG. 

KEGG 
id

Description Gene name 
abbreviation

Pathways Mean 
abundance

PLS 
estimate

VIP Cluster

K01448 N-acetylmuramoyl-L-
alanine amidase

amiABC 2Cationic antimicrobial peptide (CAMP) resistance 0.0236 −0.1937 1.22 06

K00133 Aspartate-semialdehyde 
dehydrogenase

asd 2Metabolic pathways; microbial metabolism in 
diverse environments; biosynthesis of secondary 
metabolites; biosynthesis of antibiotics; glycine, 
serine and threonine metabolism; monobactam 
biosynthesis; cysteine and methionine metabolism; 
lysine biosynthesis; 2-oxocarboxylic acid metabolism; 
biosynthesis of amino acids

0.1197 −0.0684 1.20 NC

K01912 Phenylacetate-CoA 
ligase

paaK 2Microbial metabolism in diverse environments; 
phenylalanine metabolism; biofilm formation—Vibrio 
cholerae

0.1543 −0.0980 1.16 16

K02919 Large subunit ribosomal 
protein L36

rpmJ 2Ribosome 0.0261 −0.1884 1.04 NC

K02879 Large subunit ribosomal 
protein L17

rplQ 2Ribosome 0.0773 0.0746 1.00 21

K02113 F-type H+-transporting 
ATPase subunit delta

atpH 2Metabolic pathways; oxidative phosphorylation; 
photosynthesis

0.0292 −0.0486 1.00 21

K00283 Glycine dehydrogenase 
subunit 2

gcvPB 2Metabolic pathways; biosynthesis of secondary 
metabolites; biosynthesis of antibiotics; glycine, 
serine and threonine metabolism; glyoxylate and 
dicarboxylate metabolism; carbon metabolism

0.0284 0.0502 0.99 25

K03775 FKBP-type peptidyl-
prolyl cis-trans 
isomerase SlyD

slyD 5Posttranslational modification, protein turnover, 
chaperones

0.0139 0.0672 0.93 22

K07561 Diphthamide synthase 
subunit DPH2

dph2 5Translation, ribosomal structure, and biogenesis 0.0030 0.2310 1.20 01

K01925 UDP-N-
acetylmuramoylalanine–
D-glutamate ligase

murD 2Metabolic pathways; D-glutamine and D-glutamate 
metabolism; peptidoglycan biosynthesis

0.0620 0.1155 1.15 1

K02437 Glycine cleavage system 
H protein

gcvH 2Metabolic pathways; biosynthesis of secondary 
metabolites; biosynthesis of antibiotics; glycine, 
serine and threonine metabolism; glyoxylate and 
dicarboxylate metabolism; carbon metabolism

0.0069 0.1209 1.08 1

K03530 DNA-binding protein 
HU-beta

hupB 5DNA binding protein: replication, recombination, and 
repair

0.0331 0.1062 1.07 19

K02600 N utilization substance 
protein A

nusA 5Transcription 0.1126 0.0726 1.02 1

K02518 Translation initiation 
factor IF-1

infA 5Translation, ribosomal structure, and biogenesis 0.0346 0.0646 0.98 21

Each column respectively presents information about: 1) KEGG identifier, 2) description of the gene (from KEGG), 3) gene name abbreviation, 4) metabolic pathways in which 
this gene participates, 5) mean relative abundance of the microbial gene in 42 animals, 6) the partial least squares (PLS) estimate of the regression coefficient using three latent 
variables, 7) the variable importance in projection (VIP) calculated during the PLS analysis using three latent variables, and 8) the cluster in which the microbial gene was allocated 
in the final network. 1Microbial genes excluded from the final network due to the 0.80 minimum correlation threshold. NC, Microbial genes not clustered in the final network. 
Information retrieved from: 2KEGG database, 3NCBI database, 4BioCyc database, and 5UniProt database. The genes in this table explained 65.4% of the variation in ADG 
(average daily gain). Rows colored in gray correspond to genes simultaneously identified for both FCR (feed conversion ratio) and ADG prediction.
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metabolism reactions. Positive effects of vitamin B3 have been 
previously observed in healthy rumen microbiomes in beef and 
dairy cattle (Aschemann et al., 2012; Luo et al., 2017). Microbial 
genes uidA and punA were more abundant in efficient animals.

Proteins encoded by lctP, K01188, and ptb, involved in lactate 
transport and cellulose and butyrate metabolism, respectively, 
could be involved in host–microbiome crosstalk mechanisms 
in cattle due to their participation in metabolic pathways that 
involve the release of H+, such as lactate metabolism, potentially 
reducing microbial fiber-degrading activity and consequently 
slowing digestion and rumen emptying rate, causing a decrease in 
appetite (Moran, 2005b). Furthermore, beta-glucosidase is widely 
present in lactic acid bacteria and is thought to interact with the 
human host (Michlmayr and Kneifel, 2014). Butyrate has been 
shown in rats to directly activate the intestinal gluconeogenesis 
genes in enterocytes via an increase in cationic antimicrobial 
peptides (cAMP, De Vadder et al., 2014). In contrast, glo1 (more 
abundant in FCR-H) is involved in methylglyoxal degradation, 

which is a highly toxic substance that decreases bacterial cell 
viability, and is produced by bacteria when there is carbohydrate 
excess and nitrogen limitation (Russell, 1993). Therefore, glo1 is 
a strong candidate biomarker of rumen microbiome difference in 
less efficient animals (i.e., FCR-H).

The microbial gene with highest impact in prediction of ADG 
was amiABC, which is mainly involved in the peptidoglycan 
turnover through cleavage of glyosidic bonds and release of 
amino acids and cAMP resistance (Uehara and Park, 2008; 
Uehara et al., 2010). Some bacteria (mostly pathogenic) have 
evolved mechanisms of resistance, such as decreased affinity to 
cAMPs (Anaya-López et al., 2013), and the higher abundance of 
amiABC in animals with lower ADG may be indicative of higher 
abundance of pathogens, which can cause inflammatory response 
in the rumen potentially reducing nutrient use and absorption 
(Reynolds et al., 2017). Brown et al. (2003) demonstrated that 
acetate and propionate are agonists of the human receptors 
GPR43 and GPR41, and Hong et al. (2005) proposed that acetate 

TABLE 4 | Summary of microbial genes identified for the prediction of RFI. 

KEGG 
id

Description Gene name 
abbreviation

Pathways Mean 
abundance

PLS 
estimate

VIP Cluster

K03406 Methyl-accepting chemotaxis protein mcp 2Two-component system; bacterial 
chemotaxis

0.0225 −0.0510 1.26 1

K03413 Two-component system, 
chemotaxis family, response 
regulator CheY

cheY 2Two-component system; bacterial 
chemotaxis

0.0018 0.0478 1.16 1

K01534 Cd2+/Zn2+-exporting ATPase zntA 5Cation-transporting ATPase activity; metal 
ion binding; nucleotide binding

0.0211 −0.0653 1.16 04

K07258 serine-type D-Ala-D-Ala 
carboxypeptidase (penicillin-binding 
protein 5/6)

dacC 2Metabolic pathways; Peptidoglycan 
biosynthesis

0.0049 −0.0375 1.14 1

K07301 Cation:H+ antiporter yrbG 3Inorganic ion transport and metabolism 0.0096 −0.0145 1.09 04
K04720 Threonine-phosphate decarboxylase cobD 2Porphyrin and chlorophyll metabolism 0.0034 −0.0501 1.06 04
K03407 Two-component system, chemotaxis 

family, sensor kinase CheA
cheA 2Two-component system; bacterial 

chemotaxis
0.0048 −0.0236 1.04 1

K00595 Precorrin-6Y C5,15-
methyltransferase (decarboxylating)

cobL 2Metabolic pathways; porphyrin and 
chlorophyll metabolism

0.0078 0.0223 1.02 04

K01571 Oxaloacetate decarboxylase, alpha 
subunit

oadA 2Metabolic pathways; pyruvate metabolism 0.0165 −0.0501 0.96 04

K02057 Simple sugar transport system 
permease protein

ABC.SS.P 3Carbohydrate transport and metabolism 0.0023 −0.1375 0.96 20

K02390 Flagellar hook protein FlgE flgE 2Flagellar assembly 0.0015 −0.0376 0.87 1

K02417 Flagellar motor switch protein FliN/
FliY

fliN 2Bacterial chemotaxis; flagellar assembly 0.0018 −0.1120 0.77 1

K03738 Aldehyde:ferredoxin oxidoreductase aor 2Metabolic pathways; Microbial metabolism 
in diverse environments; Pentose phosphate 
pathway; Carbon metabolism

0.0144 −0.0657 0.68 NC

K02009 Cobalt transport protein cbiN 2ABC transporters 0.0074 −0.1126 0.67 01

K01709 CDP-glucose 4,6-dehydratase rfbG 2Metabolic pathways; amino sugar and 
nucleotide sugar metabolism

0.0041 0.2549 1.46 1

K00978 Glucose-1-phosphate 
cytidylyltransferase

rfbF 2Metabolic pathways; amino sugar and 
nucleotide sugar metabolism; starch and 
sucrose metabolism

0.0042 0.2056 1.23 1

K14113 Energy-converting hydrogenase B 
subunit D

ehbD – 0.0010 0.1703 1.00 NC

Each column respectively presents information about: 1) KEGG identifier, 2) description of the gene (from KEGG), 3) gene name abbreviation, 4) metabolic pathways in which 
this gene participates, 5) mean relative abundance of the microbial gene in 42 animals, 6) the partial least squares (PLS) estimate of the regression coefficient using three latent 
variables, 7) the variable importance in projection (VIP) calculated during the PLS analysis using three latent variables, and 8) the cluster in which the microbial gene was allocated 
in the final network. 1Microbial genes excluded from the final network due to the 0.80 minimum correlation threshold. NC, Microbial genes not clustered in the final network. 
Information retrieved from: 2KEGG database, 3NCBI database, 4BioCyc database, and 5UniProt database. The genes in this table explained 65.6% of the variation in RFI (residual 
feed intake). Rows colored in grey correspond to genes simultaneously identified for both RFI and DFI (daily feed intake) prediction.
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and propionate induce lipid accumulation and inhibition of 
lipolysis through the GPR43 receptor in mice. These genes are 
also part of the bovine genome, where they mediate an inhibitory 
effect of acetate, propionate, and butyrate on cAMP signaling 
(Wang et al., 2009). This could indicate that, in less efficient 
animals (lower ADG), the lower amount of acetate, propionate, 
and butyrate may lead to decreased inhibition of lipolysis by the 
host, which potentially results in lower ADG. Alternatively, the 
lower amount of VFAs in these animals may lead to decreased 
inhibition of cAMP signaling and increased release of cAMPs by 
the host to the rumen. The cAMPs act primarily on organisms 
without effective resistance mechanisms, consequently 
increasing the relative abundance of cAMP-resisting organisms 

and of the microbial genes encoding for the resistance. Two other 
microbial genes identified in the present research are part of the 
cAMP resistance pathway—lpxA and tolC (associated with FCR 
and DFI, respectively). Although all three genes (amiABC, lpxA, 
and tolC) are part of the same pathway, they present opposite 
tendencies—while lpxA and tolC are proportionally highly 
abundant in animals with higher ADG and lower FCR, amiABC 
is relatively highly abundant in animals with lower ADG and 
higher FCR. The gene lpxA is related to lipid A integration in 
the cell wall, as a preventive measure against the hosts’ immune 
system, and tolC is involved in the efflux of antibiotics (Raetz 
et al., 2007; Zgurskaya et al., 2011). This could be indicative of 
the different cAMP resistance mechanisms evolved by bacterial 

TABLE 5 | Summary of microbial genes identified for the prediction of DFI. 

KEGG 
id

Description Gene name 
abbreviation

Pathways Mean 
abundance

PLS 
estimate

VIP Cluster

K00370 Nitrate reductase 1, alpha 
subunit

narG 2Microbial metabolism in diverse environments; 
nitrogen metabolism; two-component system

0.0022 −0.2272 1.22 1

K01858 Myo-inositol-1-phosphate 
synthase

INO1 2Metabolic pathways; biosynthesis of antibiotics; 
streptomycin biosynthesis; inositol phosphate 
metabolism

0.0542 −0.0459 1.14 1

K03685 Ribonuclease III rnc 2Ribosome biogenesis in eukaryotes; proteoglycans 
in cancer

0.0288 −0.0097 1.13 1

K00613 Glycine amidinotransferase GATM 2Metabolic pathways; glycine, serine and threonine 
metabolism; arginine and proline metabolism

0.0019 −0.1417 1.09 1

K02428 XTP/dITP 
diphosphohydrolase

rdgB 2Metabolic pathways; purine metabolism 0.0147 −0.0216 0.94 02

K03602 Exodeoxyribonuclease VII 
small subunit

xseB 2Mismatch repair 0.0035 0.0803 0.94 02

K03210 Preprotein translocase 
subunit YajC

yajC 2Bacterial secretion system; quorum sensing; 
protein export

0.0069 0.1317 0.93 1

K12340 Outer membrane channel 
protein TolC

tolC 2Beta-lactam resistance; cationic antimicrobial 
peptide (CAMP) resistance; two-component 
system; bacterial secretion system; plant−pathogen 
interaction; pertussis

0.0157 0.0068 0.92 02

K03043 DNA-directed RNA 
polymerase subunit beta

rpoB 2Metabolic pathways; purine metabolism; pyrimidine 
metabolism; RNA polymerase

1.2470 −0.0995 0.91 NC

K04751 Nitrogen regulatory protein 
P-II 1

glnB 2Two-component system 0.0151 0.0613 0.91 02

K03625 N utilization substance 
protein B

nusB 3Transcription termination 0.0135 0.0766 0.91 02

K06178 Ribosomal large subunit 
pseudouridine synthase B

rluB 3Translation, ribosomal structure, and biogenesis 0.0693 −0.0038 0.85 02

K05349 Beta-glucosidase bglX 2Metabolic pathways; biosynthesis of secondary 
metabolites; cyanoamino acid metabolism; 
starch and sucrose metabolism; phenylpropanoid 
biosynthesis

0.2272 0.0063 0.84 1

K05515 Penicillin-binding protein 2 mrdA 2Peptidoglycan biosynthesis; beta-lactam resistance 0.0295 0.0214 0.82 02
K04764 Integration host factor 

subunit alpha
ihfA 3DNA binding: replication, recombination, and repair 0.0041 0.0306 0.80 02

K01709 CDP-glucose 
4,6-dehydratase

rfbG 2Metabolic pathways; amino sugar and nucleotide 
sugar metabolism

0.0041 0.2412 1.53 1

K00978 Glucose-1-phosphate 
cytidylyltransferase

rfbF 2Metabolic pathways; amino sugar and nucleotide 
sugar metabolism; starch and sucrose metabolism

0.0042 0.2634 1.43 1

K14113 Energy-converting 
hydrogenase B subunit D

ehbD – 0.0010 0.1594 1.16 NC

Each column respectively presents information about: 1) KEGG identifier, 2) description of the gene (from KEGG), 3) gene name abbreviation, 4) metabolic pathways in which 
this gene participates, 5) mean relative abundance of the microbial gene in 42 animals, 6) the partial least squares (PLS) estimate of the regression coefficient using three latent 
variables, 7) the variable importance in projection (VIP) calculated during the PLS analysis using three latent variables, and 8) the cluster in which the microbial gene was allocated 
in the final network. 1Microbial genes excluded from the final network due to the 0.80 minimum correlation threshold. NC, Microbial genes not clustered in the final network. 
Information retrieved from: 2KEGG database, 3NCBI database, 4BioCyc database, and 5UniProt database. The genes in this table explained 72.9% of the variation in DFI (daily 
feed intake). Rows colored in gray correspond to genes simultaneously identified for both RFI (residual feed intake) and DFI prediction.
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FIGURE 5 | Correlation network analysis of metagenomic data: Each node represents a vector of relative abundances of each microbial gene in all 42 animals, and 
the edges represent a correlation between the microbial genes. A minimum correlation threshold of 0.80 was applied to the network. Different colors illustrate different 
clusters, which were calculated using MCL method (inflation: 2; preinflation: 2; scheme: 6). Clusters identified by numbers were found to be significantly (P < 0.05) 
enriched for microbial genes identified for the traits whose abbreviations are between brackets (FCR, feed conversion ratio; ADG, average daily gain; RFI, residual 
feed intake; DFI, daily feed intake; FCR&ADG, set including microbial genes identified for prediction of either FCR and/or ADG; RFI&DFI, set including microbial genes 
identified for prediction of RFI and/or DFI; FCR+ADG, set including microbial genes simultaneously identified for prediction of both traits FCR and ADG).

FIGURE 6 | Summary of microbial genes identified for the prediction of each trait: Traits are located in the four central boxes: FCR, feed conversion ratio; ADG, 
average daily gain; RFI, residual feed intake; DFI, daily feed intake. Solid lines represent positive correlations, and dotted lines represent negative correlations. 
Microbial genes are listed in the outside boxes, organized by general function, and each general function is represented by a different color.
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organisms, which include modification of the cell external 
surface, efflux pumps, and biosynthesis and crosslinking of cell 
envelope components (Nizet, 2006).

The set of microbial genes associated with ADG included 
mostly housekeeping genes and genes related to amino acid 
metabolism and transport. Artegoitia et al. (2017) found a 
link between ruminal aromatic amino acids synthesis such as 
phenylalanine and high ADG in beef steers. For example, paak 
[previously mentioned by Kamke et al. (2016) related to sheep 
with high production of methane] and asd encode proteins 
that respectively catalyze phenylalanine and phenylacetate 
(related to aspartate degradation and biosynthesis of amino 
acids including threonine), with release of H+. In the current 
research, both of these genes were positively correlated to 
ADG, which is supported by the positive correlations between 
ADG and dry matter intake (DMI), between DMI and methane 
emissions, and between methane emissions and body weight 
measurements (weaning weight, yearling weight, and final 
weight), previously observed in cattle (Koots et al., 1994; Arthur 
et al., 2001; Herd et al., 2014).

Some housekeeping genes were simultaneously identified 
for the prediction of FCR and ADG, such as protein translation 
from diphthamide (dph2) or peptidoglycan biosynthesis (murD), 
both more abundant in efficient animals (higher ADG and lower 
FCR). The importance of diphthamide biosynthesis in archaea 
is not yet fully known (Narrowe et al., 2018). Microbial gene 
murD is related to the glutamate–glutamine cycle, an important 
appetite regulator in humans (Delgado, 2013), but in the present 
research, it was not associated to DFI.

Proteins encoded by microbial genes associated with RFI are 
mostly related to chemotaxis (cheA and cheY), detoxification 
(Cd2+/Zn2+-exporting ATPase, zntA), and vitamin B12 
production (cbiN, cobD, and cobL). The negative correlation of 
microbial genes involved in chemotaxis and motility with RFI 
may suggest an increased microbial metabolism in efficient 
animals, derived from their ability to sense chemical gradients 
in their surrounding environment and to react accordingly, i.e., 
moving closer to nutrients (Rajagopala et al., 2007). Microbial 
gene zntA was also more abundant in efficient animals and 
plays a role in the homeostasis of transition metals (Cd2+, Zn2+), 
participating in functional pathways ranging from cellular 
respiration to gene expression (Fraústro da Silva and Williams, 
2001). Finally, higher relative abundance of microbial genes 
involved in vitamin B12 production (cbiN, cobD, and cobL) was 
observed in more efficient animals. This essential cofactor needs 
to be taken up directly from the diet or to be made available for 
animal absorption by the rumen microbial organisms because it 
is not produced by eukaryotes (Warren et al., 2002). Furthermore, 
vitamin B12 has been previously associated with increased cobalt 
content on high-fiber diets and increased VFA, such as acetate 
(Beaudet et  al., 2017), which may affect the animals’ appetite 
(Frost et al., 2014), in line with our observation of higher relative 
abundance of these genes in more efficient animals, i.e., animals 
with lower feed intake than expected.

The four most important microbial genes identified for 
the prediction of DFI included the three microbial genes also 
identified for prediction of RFI (rfbG, rfbF, and ehbD) and 

narG. Microbial genes rfbG and rfbF (VIP > 1.4) are part of the 
rfc region (Morona et al., 1994) and are related to nucleotide sugar 
metabolism, which is necessary for the production of microbial 
lipopolysaccharide (LPS). LPS is a major virulence factor of Gram-
negative bacteria, particularly due to the O-antigen, paramount for 
host colonization and niche adaptation by bacterial organisms, due 
to its part in the protection from host immune response (Reeves, 
1995; Samuel and Reeves, 2003; Geue et al., 2017). Both genes rfbG 
and rfbF showed a positive correlation to RFI and DFI, supporting 
our hypothesis that the use of energy to stimulate the innate immune 
system against pathogens increases DFI and reduces feed conversion 
efficiency as determined by RFI (Neal et al., 1991; Jing et al., 2014; 
Vigors et al., 2016). Other microbial genes positively correlated to 
DFI were found to be involved in resistance mechanisms, such as 
the penicillin-binding protein 2-encoding gene (mrdA), which 
belongs to the peptidoglycan and beta-lactam resistance metabolic 
pathways. These proteins are transpeptidases or carbopeptidases 
involved in peptidoglycan metabolism and have an important role 
against beta-lactam resistance (Zapun et al., 2008). The microbial 
gene myo-inositol-1-phosphate synthase (INO1) is related to 
antibiotic biosynthesis, including streptomycin. Microbial gene 
ehbD is a subunit of the energy-converting hydrogenase B, found 
in methanogens such as Methanococcus maripaludis. This microbial 
gene is important due to its role in autotrophic CO2 assimilation (Porat 
et al., 2006), having implications for microbial growth. Furthermore, 
narG, part of the narGHIJ operon, essential for some microorganisms 
to gather energy under anaerobic conditions by the reduction in 
nitrate to nitrite in a denitrification process (Blasco et al., 1990; 
Latham et al., 2016), was proportionally more abundant in animals  
with low DFI.

The microbial gene nusB (associated with DFI) is part of a set 
of nus genes, which also includes nusA (identified for prediction 
of FCR and ADG). Genes in the nus complex are involved in 
transcription termination and antitermination processes, such 
as Rho-dependent transcriptional termination (Torres et  al., 
2004), which is the regulatory mechanism involved in the 
efficient transcription of the tryptophan operon (Farnham et al., 
1982; Kuroki et al., 1982; Prasch et al., 2009). The nus-complex 
microbial genes were found to be relatively more abundant in 
efficient animals. This association may be due to the influence 
of the nus genes, which extends from the ribosomal operons 
to the tryptophan operon and constitutes a good example of 
how termination and antitermination processes can control 
gene expression, occurring during RNA transcription, and 
potentially positively impacting bacterial growth and rumen  
fermentation processes.

Although microbial genes amiABC, tolC, glo1, rfbF, rfbG, and 
lpxA were identified in the present research for the prediction 
of different traits, all are associated with bacterial defense 
mechanisms either from other bacteria or from the host. The 
majority of these genes had higher abundance in less efficient 
animals. This suggests that the presence of either bacterial 
pathogens in the rumen or antibiotics produced as host immune 
responses might represent a significant energy sink, impairing 
feed conversion efficiency.

Further improvement of prediction of feed conversion traits 
using metagenomic information may be achieved through 
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the integration of protein, enzyme, and pathway data from the 
Hungate collection (Seshadri et al., 2018) and the large rumen 
metagenomic reference dataset (Stewart et al., 2018).

CONCLUSIONS

The results presented here suggest that relative abundances of 
rumen microbial genes may be highly informative predictors of 
feed conversion efficiency, growth rate, and feed intake, which are 
labor intensive, time consuming, and expensive traits to record. 
Most microbial genes identified for the prediction of traits in this 
research were trait specific. Microbial genes related to cellulose and 
hemicellulose degradation, vitamin B12 synthesis, and amino acids 
metabolism were associated to enhanced feed conversion efficiency 
(FCR or RFI), while those involved in nucleotide sugars metabolism, 
pathogen LPS synthesis, cAMP resistance, and degradation of 
toxic compounds were associated with inefficient feed conversion. 
Furthermore, we identified specific microbial genes encoding 
proteins related to the crosstalk between the microbiome and the host 
cells, such as murD and amiABC, and associated to gene expression 
regulatory mechanisms, such as nusA and nusB. Thus, our results 
provide a deeper understanding of the potential influence of the 
rumen microbiome on the feed conversion efficiency of its host, 
highlighting specific enzymes involved in metabolic pathways that 
reflect the complex functional networks impacting the conversion 
of feed into animal products such as meat.
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Milk fat is the most important energy substance in milk and contributes to its quality and 
health benefits. However, the genetic mechanisms underlying milk fat synthesis are not fully 
understood. The development of RNA sequencing and tandem mass tag technologies 
has facilitated the identification of eukaryotic genes associated with complex traits. In 
this study, we used these methods to obtain liver transcriptomic and proteomic profiles 
of Chinese Holstein cows (n = 6). Comparative analyses of cows with extremely high vs. 
low milk fat percentage phenotypes yielded 321 differentially expressed genes (DEGs) 
and 76 differentially expressed proteins (DEPs). Functional annotation of these DEGs and 
DEPs revealed 26 genes that were predicted to influence lipid metabolism through insulin, 
phosphatidylinositol 3-kinase/Akt, mitogen-activated protein kinase, 5′ AMP-activated 
protein kinase, mammalian target of rapamycin, and peroxisome proliferator-activated 
receptor signaling pathways; these genes are considered as the most promising candidate 
regulators of milk fat synthesis. The findings of this study enhance the understanding of 
the genetic basis and molecular mechanisms of milk fat synthesis, which could lead to the 
development of cow breeds that produce milk with higher nutritional value.

Keywords: milk fat, transcriptomic, proteomic, Chinese Holstein, liver

INTRODUCTION

Milk products are an important part of our daily diet. There are a multitude of different milk 
products that vary in terms of composition, including fatty acid and protein content. Milk contains 
approximately 3–5% fat, which is the most important energy-rich substance it contains. The 
nutritional value of milk fat depends on the composition of fatty acids (FAs), which are classified 
according to hydrocarbon chain length as short-chain (C4–C10), medium-chain (C11–C17), and 
long-chain (LC, ≥C18) FAs, and according to the degree of saturation of the hydrocarbon chains 
as saturated (S)FAs, monounsaturated FAs, and polyunsaturated (PU)FAs. High concentrations 
of SFAs such as myristic acid (C14:0), lauric acid (C12:0), and palmitic acid (C16:0) increase low-
density lipoprotein (LDL) concentration in the blood, which has been linked to cardiovascular 
and cerebrovascular diseases (Mensink et al., 2003). Meanwhile, PUFAs such as conjugated and 
unconjugated linoleic acid (C18:2) play a beneficial role in reducing blood lipids, suppressing the 
immune response, promoting bone formation, and stimulating lipid metabolism (Belury, 2002). 
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The ratio of PUFA to SFA is an important indicator of diet 
quality. The main proteins in milk are αs1-casein (CN), αs2-CN, 
β-CN, κ-CN, α-lactalbumin, and β-lactoglobulin, which are 
known to contribute to lipid synthesis and metabolism in 
humans (Mcgregor and Poppitt, 2013). The liver is a complex 
digestive gland in ruminant animals, including dairy cattle, and 
plays an important role in the metabolism of carbohydrates, fats, 
proteins, vitamins, hormones, and other substances. Nutrients 
absorbed from the digestive tract pass through the liver, enter 
the circulatory system, and finally arrive in the mammary 
glands of dairy cattle. The liver thus plays a critical role during 
lactation in cattle (Dorland et al., 2009; Graber et  al., 2010; 
Schlegel et al., 2012).

There are few reports on the breeding of transgenic dairy 
cows, and cows that produce low-fat, high-protein milk have 
not been developed to date. The main constraint is the difficulty 
in obtaining animals that are true-breeding for this particular 
trait owing to the lack of information on related genes. The 29 
autosomes of cows harbor most of the genes controlling milk 
traits and production (e.g., fat and protein content), including 
diacylglycerol O-acyltransferase (DGAT)1 p.Lys232Ala and 
stearoyl-coenzyme (Co)A desaturase1 p.Ala293Val (Mele et al., 
2007; Schennink et al., 2008; Conte et al., 2010), and many 
important or suggestive genomic regions have been identified 
(Schennink et al., 2009b; Stoop et al., 2009).

The development of RNA sequencing (RNA-seq) and tandem 
mass tag (TMT) technologies has enabled the identification 
of eukaryotic genes associated with complex traits through 
analysis of transcriptomic and proteomic profiles with low bias, 
broad dynamic range, low rate of false positive signals, and 
high reproducibility. The TMT method employs a set of amine-
reactive isobaric tags to derivatize peptides at the N terminus 
and at lysine side chains, thereby facilitating simultaneous 
protein identification and quantification via mass spectrometry 
(MS) analysis of peptide fragments. Both RNA-seq and TMT 
have been widely used to screen for functional genes associated 
with milk composition in cattle and other domestic animals. 
In the present study, we compared the liver transcriptome and 
proteome profiles of Chinese Holstein cows with extremely high 
and low phenotypic values for milk fat and identified genes and 
proteins involved in milk production.

MATERIALS AND METHODS

Sample Collection
Based on milk production in their previous lactation, six Chinese 
Holstein cows—of which three were in their second and three in 
their third lactation—were selected from the Beijing Sanyuan 
Lvhe Dairy Farm and divided into high milk fat percentage (HP) 
and low milk fat percentage (LP) groups, each with three cows.  
The average milk fat percentage in this population was 3.7% 
(2.3–3.9%). Based on Dairy Herd Improvement system (DHI) 
data, we defined a high milk fat percentage group as those cows 
with 3.7% milk fat, and the low milk fat percentage group was 
composed of cows with 3.2% milk fat. The phenotype information 

of six Chinese Holstein cattle are showed in Table S1. The cows 
were kept in free stall housing, fed a total mixed ration (TMR, 
containing 16.1% crude protein, 22.9% acid detergent fiber), 
and had access to water ad libitum. Cows were milked three 
times daily in the milking parlor. The age differences among 
the cows in the second lactation were less than 45 days. Among 
the six cows, there were two pairs of half sibs consisting of one 
HP and one LP cow; the other two cows—one HP and one LP 
cow—were non‐sibs. The cows were killed by electroshock, bled, 
skinned, and dismembered in the same slaughterhouse. Liver 
tissue samples (approximately 0.5–1.0 g) from each individual 
were removed within 30 min after slaughter. Five pieces of 
liver tissue samples per cow were carefully collected for RNA 
isolation, placed into a clean RNAse-free Eppendorf tube, and 
stored in liquid nitrogen. All sample collection procedures were 
carried out in strict accordance with the protocol approved by 
the Animal Welfare Committee of China Agricultural University 
(Permit Number: DK996).

RNA Isolation, Library Preparation, 
and Sequencing
Total RNA was extracted from the bovine liver tissue using 
the Trizol method (Invitrogen, Carlsbad, CA) according to the 
manufacturer’s instructions. RNA degradation and contamination 
was monitored on 1% agarose gels. RNA concentration was 
measured using a NanoDrop 2000 spectrophotometer (Thermo 
Fisher Scientific, Waltham, MA, USA). RNA integrity was 
assessed using the RNA Nano 6000 Assay Kit of the Agilent 
Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, 
CA, USA). The six purified RNA samples had an RIN  ≥ 7.0, and 
a total of 1 μg RNA per sample was used as input material for 
RNA sample preparation. Sequencing libraries were generated 
using the NEBNext Ultra RNA Library Prep Kit for Illumina 
(New England Biolabs, Ipswich, MA, USA) according to the 
manufacturer’s recommendations, and index codes were added 
to attribute sequences to each sample. Briefly, mRNA was 
purified from total RNA using poly-T oligo-attached magnetic 
beads. Fragmentation was carried out using divalent cations 
under elevated temperature in NEBNext First Strand Synthesis 
Reaction Buffer (5×). First strand cDNA was synthesized using 
random hexamer primer and Moloney murine leukemia virus 
reverse transcriptase; second strand cDNA synthesis was then 
performed using DNA polymerase I and RNase H. Remaining 
overhangs were converted into blunt ends through exonuclease/
polymerase activities. After adenylation of 3′ ends of DNA 
fragments, NEBNext Adaptor with a hairpin loop structure was 
ligated to prepare the fragments for hybridization. In order to 
select cDNA fragments with a length of approximately 240 
bp, the library fragments were purified with the AMPure XP 
system (Beckman Coulter, Beverly, MA, USA). A 3-μl volume of 
USER Enzyme (New England Biolabs) was incubated with size-
selected, adaptor-ligated cDNA at 37°C for 15 min followed by 
5 min at 95°C. PCR was performed with Phusion High-Fidelity 
DNA polymerase, universal PCR primers, and index (X) primer. 
PCR products were purified (AMPure XP system), and library 
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quality was assessed with the Agilent Bioanalyzer 2100. Index-
coded samples were clustered on a cBot Cluster Generation 
System using TruSeq PE Cluster Kit v.4-cBot-HS (Illumina, San 
Diego, CA, USA) according to the manufacturer’s instructions. 
After cluster generation, cDNA libraries were sequenced on an 
Illumina platform, and paired-end reads were generated.

Mapping and Annotation of Sequencing 
Reads
Raw data (raw reads) in fastq format were first processed with 
in-house Perl scripts. In this step, clean data (reads) were obtained 
by removing those containing adapter and poly-N sequences and 
low-quality reads. At the same time, Q20, Q30, GC content, and 
sequence duplication level of the clean data were calculated. All 
downstream analyses were based on high-quality clean data; 
these reads were mapped to the reference genome sequence 
(UMD3.1.80). Only reads with a perfect match or one mismatch 
were further analyzed and annotated based on the reference 
genome. HISAT2 (https://ccb.jhu.edu/software/hisat2/index.shtml) 
was used for mapping to the reference genome.

Quantification and Differential Gene 
Analysis by RNA-seq
Fragments per kilobase of exon per 106 mapped fragments 
(FPKM) values obtained using Cufflink v.2.1.1 software (http://
cole-trapnell-lab.github.io/cufflinks/) were used as values for 
normalized gene expression. Differential expression analyses of 
HP vs. LP were performed using DESeq2 (Love et al., 2014), which 
provides statistical tools for identifying differential expression in 
digital gene expression data using a model based on the negative 
binomial distribution. The resultant p values were adjusted using 
Hochberg method for controlling the false discovery rate (FDR). 
q value < 0.01 and | log2 [fold change (FC)]| ≥ 1 were set as 
thresholds for significantly different expression.

Protein Isolation, Enzymolysis, and TMT 
Labeling
The 500 μl SDT buffer was added to the 50 mg samples, which 
were transferred to 2-ml tubes containing quartz sand (with 
1/4-inch ceramic beads included for tissue samples). The 
lysate was homogenized twice for 60 s each (24 × 2, 6.0 m/s) 
with a homogenizer (MP Biomedicals, Solon, OH, USA). 
The homogenate was boiled for 3 min and then sonicated for 
2 min. After centrifugation at 20,000 × g for 20 min at 4°C, the 
concentration of proteins in the filtrate was quantified with a BCA 
Protein Assay Kit (Bio-Rad, Hercules, CA, USA). DTT and UA 
buffer (8 M Urea, 150 mM Tris-HCl, pH 8.0) were added to 300 μg 
of the supernatant and the resulting mix was passed through 
a 10 KD filter. The protein samples were centrifuged with UA 
buffer, IAA (50mM IAA in UA), and NH4HCO3 buffer and then 
treated overnight with trypsin at a trypsin-to-protein ratio of 
1:100. The peptide mixture (100 μg) of each sample was labeled 
using 10PLEX TMT reagent according to the manufacturer’s 
instructions (Thermo Fisher Scientific).

The peptide mixture was loaded onto a reversed-phase trap 
column (Thermo Scientific Acclaim PepMap100, 100 μm × 2 cm, 
nanoViper C18) connected to a C18 reversed-phase analytical 
column (length = 10 cm, inner diameter = 75-μm, 3-μm resin; 
Thermo Fisher Scientific) in buffer A (0.1% formic acid) and 
separated for 1.5 h with a linear gradient of buffer B (98% 
acetonitrile and 0.1% formic acid) at a flow rate of 300 nL/min 
controlled by IntelliFlow technology (4%–7% buffer B for 2 min, 
7%–20% buffer B for 65 min, 20%–35% buffer B for 12 min, 35%–
90% buffer B for 2 min, and holding in 90% buffer B for 9 min).

Liquid Chromatography Tandem MS  
(LC-MS/MS) Analysis
LC-MS/MS analysis was performed on a Q-exactive Plus Orbitrap 
mass spectrometer (Thermo Fisher Scientific) coupled to an Easy 
nLC chromatograph (Proxeon Biosystems, now Thermo Fisher 
Scientific) for 90 min. The instrument was operated in positive 
ion mode. MS data were acquired using a data-dependent top 
10 method to dynamically select the most abundant precursor 
ions from the survey scan (300–1,800 m/z) for higher-energy 
collisional dissociation (HCD) fragmentation. The automatic gain 
control target was set to 1e6, with a maximum injection time of 
50 ms. The duration of dynamic exclusion was 40.0 s. Survey scans 
were acquired at a resolution of 70,000 at m/z 200, and resolution 
for HCD spectra was set to 35,000 at m/z 200 (TMT 10PLEX), 
with an isolation window of 1.6 Th. Normalized collision energy 
was 35 eV, and the underfill ratio—which specifies the minimum 
percentage of the target value likely to be reached at maximum 
fill time—was defined as 0.1%. The instrument was run with the 
peptide recognition mode enabled.

Database Search and Protein 
Identification and Quantification
For peptide identification and quantification, MS/MS data were 
searched against the “Uniprot-Bos taurus_32310_20180905.fasta” 
file using Maxquant version 1.6.0.16. The following parameters 
were used: trypsin as enzyme specificity; maximum two missed 
cleavages permitted; fixed modification: carbamidomethylation 
of cysteine residues; variable modifications: oxidation of 
methionine residues and N-terminal acetylation; first search 
peptide tolerance of 20 ppm; main search peptide tolerance 
of 4.5 ppm. Protein quantification was based on the razor and 
unique peptides. Fold decrease/increase >1.2 and p < 0.05 were 
set as the threshold for identifying differentially expressed 
proteins (DEPs).

Gene Ontology (GO) Enrichment Analysis 
and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) Pathway Enrichment 
Analysis
GO enrichment analysis of differentially expressed genes 
(DEGs) was performed with the GOseq R packages based on 
a Wallenius non-central hyper-geometric distribution (Young 
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et al., 2010), which can adjust for gene length bias. The KEGG 
database (Kanehisa et al., 2007) is used to analyze high-
level functions of a biological system based on molecular-
level information, especially large-scale molecular datasets 
generated by genome sequencing and other high-throughput 
approaches (http://www.genome.jp/kegg/). We used KOBAS 
software (Mao et al., 2005) to assess the enrichment of DEGs 
in KEGG pathways.

Protein–Protein Interactions (PPIs) and 
Mapping of Quantitative Trait Loci (QTL)
The sequences of DEGs were searched against the genome of a 
related species using blastx; we searched the STRING database 
(http://string-db.org/) to determine the predicted PPIs of these 
DEGs. The PPIs were visualized using Cytoscape (Shannon et al., 
2003). We also integrated the DEGs and QTL for milk fat traits 
from the QTLdb database (http://www.animalgenome.org/cgi-
bin/QTLdb/BT/index) into our analysis.

Verification of RNA-seq and TMT Data
RT-qPCR primers were designed to span the exon-exon boundaries 
of eight genes selected by RNA-seq; RT-PCR analysis was performed 
using a SYBR® Premix Ex Taq™ II (Tli RNaseH Plus), ROX plus 
(RR82LR, TaKaRa) on a ABI7500 Real-Time PCR Detection 
System (Applied Biosystems), according to the manufacturer’s 
instructions.

The protein expression levels obtained using TMT analysis 
were confirmed by quantifying the expression levels of five selected 
proteins by a parallel reaction monitoring (PRM) analysis carried 
out at the Beijing Bangfei Bioscience Co., Ltd. (Beijing, China). 
PRM is a targeted method of quantification performed using 
high-resolution hybrid mass spectrometers such as quadrupole-
Orbitrap (q-OT). Signature peptides for the target proteins were 
defined according to the TMT data, and only unique peptide 
sequences were selected for the PRM analysis. Each protein 
sample (50 μg) was separated using a nanoliter flow HPLC liquid 
phase system Easy nLC 1200 (Thermo Fisher). Samples were 
loaded by an autosampler into a mass spectrometer pre-column 
C18 trap column (C18, 3 μm, 100 μm × 20 mm) and separated by 
an analytical column C18 column (C18, 3 μm, 75 μm × 150 mm). 
After peptide separation, targeted PRM mass spectrometry was 
performed using a Q-Exactive Plus mass spectrometer (Thermo 
Scientific). The result of mass spectrum was analyzed using the 
software Skyline 4.1.

RESULTS

Overview of RNA Transcriptomic Profiles 
of Cow Liver Tissue
A total of 197,358,565 paired-end reads were obtained by 
RNA-seq. The quality value of Q30 for sequencing was no less 
than 96.40% for each sample. An average of 91.55% (range: 
93.87%–95.31%) of reads were mapped to the bovine genome 
(Ensembl UMD3.1) using HISAT2. Of these, approximately 
91.42% (range: 90.75%–92.10%) were uniquely mapped and 

3.29% (range: 3.07%–3.84%) were multi-mapped reads (Table S2). 
Additionally, of the total mapped reads, roughly 70% in each 
group corresponded to exons (Figure S1).

Analysis of DEGs
The expression levels of known and novel genes were calculated as 
FPKM using DESeq2 (Love et al., 2014), which provides statistical 
approaches for identifying differentially expressed known and 
novel genes based on a negative binomial distribution model. 
A total of 23,098 genes were expressed in liver tissue. Pairwise 
comparisons according to stringent criteria—i.e., | log2 (FC) | > 
2 and q < 0.01—were carried out to identify DEGs (Figure 1). A 
total of 321 genes were differentially expressed between HP and 
LP groups, including 117 that were up-regulated and 204 that were 
down-regulated (Table S3 and Figure 1, q value < 0.01). The results 
of cluster analysis of DEGs are depicted in a heatmap (Figure S2).

Functional Analysis of DEGs
We used GOseqR packages and the KEGG database to determine 
the function of the identified DEGs. The top three functions related 
to metabolism were “cell adhesive protein binding involved in 
bundle of His cell-Purkinje myocyte communication,” “polyamine 
oxidase activity,” and “serine and oxidoreductase activity, acting on 
the CH-NH group of donors, oxygen as acceptor” (KS ≤ 1.0E−30) 
(Table S4). We identified a metabolic network comprising 22 
DEGs involved in insulin production (mitogen-activated protein 
kinase [MAPK]9, cyclic AMP response element-binding protein 
[CREB]1, protein phosphatase 1 regulatory subunit [PPP1R]3C, 
nuclear factor κB inhibitor α [NFKBIA], peroxisome proliferator-
activated receptor γ, coactivator 1α [PPARGC1A], and forkhead 
box [FOX]O1); insulin resistance (MAPK9, CREB1, PPP1R3C, 
NFKBIA, PPARGC1A, and FOXO1); phosphatidylinositol 3-kinase 
(PI3K)/Akt signaling (DNA damage-inducible transcript [DDIT]4, 
CREB1, G protein subunit γ [GNG]7, platelet-derived growth 
factor subunit [PDGF]A, ephrin A1, protein kinase [PKN]2, breast 
cancer type 1 susceptibility gene, and tyrosine 3-monooxygenase/
tryptophan 5-monooxygenase activation protein η); MAPK signaling 
(FBJ murine osteosarcoma viral oncogene homolog[FOS], MAPK9, 
growth arrest and DNA damage-inducible α [GADD]45A, dual 
specificity phosphatase [DUSP]1, platelet-derived growth factor 
subunit A [PDGFA], MAP4K3, GADD45B, and DUSP8); prolactin 
production (FOS, suppressor of cytokine signaling [SOCS]1, MAPK9, 
CREB1, and SOCS2); 5′ AMP-activated protein kinase (AMPK) 
signaling (hepatocyte nuclear factor 4α [HNF]4A, PPARGC1A, 
and FOXO1); mammalian target of rapamycin (mTOR) signaling 
(DNA damage inducible transcript [DDIT]4 and disheveled 
segment polarity protein 2); and PPAR signaling (PPARδ [PPARD]) 
(Table S5 and Figure 2). The FOXO and CREB families have key 
features for the integration of insulin production and insulin 
resistance signaling with glucose and lipid metabolism (Lee and 
Dong, 2017). The PI3K/AKT signaling pathway played a key role 
in regulating lipid metabolism in lactating goats (Li et al., 2018). 
The results of a previous GWAS study showed that the MAPK 
signaling pathway was overrepresented for milk protein and fat 
content (Cecchinato et al., 2019). Prolactin production, AMPK, 
and PPAR signaling pathways are well known for regulating milk 
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fat synthesis (Schennink et al., 2009a; Liu et al., 2016; Gao et al., 
2017). These networks play critical roles in the regulation of milk 
fat synthesis (Anderson et al., 2007; Bionaz and Loor, 2011). On 
the basis of their biological function and PPI analysis, 16 of the 22 
genes were considered as important for lipid metabolism in the 
liver (Table 1).

Protein Identification and Quantification 
by TMT
A total of 112,916 spectra were obtained in the 10PLEX LC-MS/
MS analysis. After pooling samples from the two groups, 31,327 
unique peptides were identified, including 4,356 proteins that 
were originally identified with the Q-exactive Plus Orbitrap mass 
spectrometer (Figure S3a). To eliminate false positives, we 
controlled FDR to 1% at both the peptide and protein levels 
using the MaxQuant reversed sequence database. The number 
of proteins identified at various molecular weight ranges were 

as follows: 0–50 kDa, 2,349; 50–100 kDa, 1,215; 100–150 kDa, 
350; 150–200 kDa, 100; 200–300 kDa, 86; and 300–3850 kDa, 
36. Collectively, these 4,136 proteins accounted for 94.95% of 
those identified (Figure  S3b). In addition, most proteins had 
high peptide coverage; 85.61% and 14.39% had <50% and >50% 
sequence coverage, respectively (Figure  S3c). Among the 
identified proteins, 48.39% were represented by fewer than 
five peptides (Figure S3d), indicating good sequence coverage. 
Information on the identification of proteins is shown in 
Supplementary Tables S6, S7.

Analysis of DEPs
Based on the selection criteria (fold decrease/increase >1.2 and 
p < 0.05), we identified 76 DEPs in the HP vs. LP comparisons, 
including 25 up-regulated and 51 down-regulated DEPs (Table S7 
and Figure 3). Clusters of all DEPs were visualized by a heatmap 
(Figure S4).

FIGURE 1 | Volcano plot displaying differential expressed genes in bovine liver tissues with transcriptomic analyses within two different comparison groups. The 
y axis corresponds to the mean expression value of log10 (q value), and the x axis displays the log2 fold change value. The blue dots represent the significantly 
differential expressed transcripts; the red dots represent the transcripts whose expression levels did not reach statistical significance.
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Functional Analysis of DEPs
To assess the biological significance of these DEPs in hepatic 
tissue of Holstein cows with different milk fat compositions, the 
DEPs were further classified based on GO and KEGG functional 
annotations. For the “cellular component” aspect, the classification 
analysis revealed that most of the DEPs were related to mitochondria 
(33.90%), with four related to the endoplasmic reticulum (chloride 
channel CLIC-like protein [CLCC]1, heat shock 70 kDa protein 
[HSPA]13, transmembrane protein [TMEM]33, and solute carrier 
family 27 member 2 [SLC27A2]). For “biological process,” the GO 

terms were mainly associated with “oxidation-reduction process” 
(methionine-R-sulfoxide reductase [MSR]B1, ATP binding cassette 
subfamily D member 3 [ABCD3], aldehyde dehydrogenase 7 family 
member A1 [ALDH7A1], AUH protein [AUH], SLC27A2, electron 
transfer flavoprotein subunit alpha [ETFA], ENSBTAG00000000229, 
proline dehydrogenase 1 [PRODH], NAD-dependent protein 
deacetylase [SIRT3], succinate dehydrogenase cytochrome b560 
subunit [SDHC], retinol dehydrogenase [RDH]13, hydroxysteroid 
(17-beta) dehydrogenase [HSD17B]13, succinate–CoA ligase [ADP/
GDP-forming] subunit alpha [SUCLG1], NADH dehydrogenase 

FIGURE 2 | The metabolic network comprising candidate genes in protein–protein interactions (PPI) network and pathways with transcriptomic analyses. The round 
nodes indicate genes, red indicates up-regulation, and green indicates down-regulation. The rectangular node represents the KEGG pathway/biological process, 
and the significant p value is represented by yellow-blue gradient; yellow indicates a small p value, while blue indicates a large p value.

TABLE 1 | Expression changes of the candidate genes in bovine liver tissue with transcriptomic analyses.

Symbol Chromosome Gene name HP counts LP counts Log2 fold change Q-value

SOCS1 25 Suppressor of cytokine signaling 1 163 2775 −3.0090 1.11E-11
SLCO4A1 13 Solute carrier organic anion transporter family member 4A1 2616 21071 −2.7070 7.91E-18
DDIT4 28 DNA damage inducible transcript 4 1204 11321 −2.6543 1.14E-11
MTHFR 16 Methylenetetrahydrofolate reductase 6728 36841 −2.1832 6.73E-11
GADD45A 3 Growth arrest and DNA damage inducible alpha 2506 14092 −2.0076 1.01E-05
PPARGC1A 6 PPARG coactivator 1 alpha 1103 4745 −1.7676 5.69E-05
PDGFA 25 Platelet derived growth factor subunit A 55 158 −1.3385 6.25E-04
SOCS2 5 Suppressor of cytokine signaling 2 596 1650 −1.3137 4.15E-04
FOXO1 12 Forkhead box O1 1708 4036 −1.2051 7.46E-06
SLC22A1 9 Solute carrier family 22 member 1 18901 47883 −1.1927 7.20E-03
MAPK9 7 Mitogen-activated protein kinase 9 1898 788 1.1277 1.63E-04
HNF4A 13 Hepatocyte nuclear factor 4 alpha 11382 4804 1.1560 6.41E-05
CREB1 2 cAMP responsive element binding protein 1 667 175 1.6049 5.35E-05
SYBU 14 Syntabulin 2034 560 1.6236 7.72E-06
HNF4G 14 Hepatocyte nuclear factor 4 gamma 2881 642 1.8243 3.28E-06
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[ubiquinone] 1 [NDUF]B3, and NDUFA2), “monocarboxylic acid 
catabolic process” (alanine–glyoxylate aminotransferase [AGXT]2, 
ABCD3, AUH, SLC27A2, and ETFA), “fatty acid beta-oxidation” 
(ABCD3, AUH, SLC27A2, and ETFA), “carboxylic acid catabolic 
process” (ABCD3, AUH, SLC27A2, ETFA, PRODH, and AGXT2), 
“fatty acid catabolic process” (ABCD3, AUH, SLC27A2, and ETFA), 
and “very long-chain fatty acid catabolic process” (ABCD3 and 
SLC27A2). Functional associations among these GO terms were 
visualized using the STRING database (Table S8 and Figure 4). We 
also found potentially relevant GO terms in “molecular function,” 
including “fatty acid transporter activity” (ABCD3 and SLC27A2); 
“long-chain fatty acid binding” (S100 calcium-binding protein [S100]
A9 and S100A8); and “oxidoreductase activity” (MSRB1, ALDH7A1, 
ETFA, ENSBTAG00000000229, PRODH, SDHC, NDUFA2, RDH13, 
and HSD17B13).

KEGG pathway analysis of the significantly altered proteins 
revealed 13 enriched canonical pathways (p < 0.05) (Table S9); the 
top three related to metabolism were “oxidative phosphorylation,”  

“citrate cycle and glycine,” and “serine and threonine metabolism” 
(p = 3.11E−04, 2.45E−03, and 4.76E−03, respectively). The major 
functional associations within these pathways were visualized 
using the STRING database. Notably, five genes encoding 
enriched DEPs were related to insulin resistance (SLC27A2 and 
phosphoenolpyruvate carboxykinase [PCK]1), insulin secretion 
(phosphoinositide phospholipase C-β2 [PLCB2]), insulin signaling 
(PCK1), PI3K/Akt signaling (PCK1), AMPK signaling (PCK1), and 
PPAR signaling (cytochrome P450 family 4 subfamily A member 
[CYP4A]11, SLC27A2, carnitine palmitoyltransferase [CPT]2, and 
PCK1). The details of the five candidate genes with proteomic 
profiles are shown in Table 2.

Validation of DEGs and DEPs
To validate the accuracy of the DEGs detected by RNA-seq 
analysis, we used real-time reverse transcription-quantitative 
polymerase chain reaction (RT-qPCR) to evaluate the expression 

FIGURE 3 | Volcano plot displaying differential expressed proteins in bovine liver tissues with proteomic analyses within two different comparison groups. The y axis 
corresponds to the mean expression value of log10 (p value), and the x axis displays the log2 fold change value. The blue dots represent the significantly differential 
expressed transcripts; the red dots represent the transcripts whose expression levels did not reach statistical significance.
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levels of eight DEGs: PPARGC1A, DDIT4, suppressor of SOCS1, 
solute carrier family 22 member 1 [SLC22A1], HNF4A, PDGFA, 
syntabulin [SYBU], and MAPK9. The expression levels of these 
genes in each group are shown in Figure S6. The eight genes selected 
were differentially expressed among the HP vs LP comparison 
group, and the RNA-seq data were concordant with those obtained 
by RT-qPCR (Figure S6).

The PRM assay was used to confirm the identity of several DEPs 
identified in the TMT analysis. Parallel reaction monitoring (PRM) 
technology uses a quadruple mass analyzer to selectively detect target 
proteins and target peptides. This technology has higher specificity 
and sensitivity than selected reaction monitoring (SRM) technology. 
As this assay requires the signature peptide of the target protein to 
be unique, we only selected proteins with a unique signature peptide 

sequence for the PRM analysis. Five DEPs (up-regulated:carnitine 
CPT2; down-regulated: Cytochrome [cyt b, RDH13, CYP4A11, and 
SLC27A2) were selected for the PRM analysis (Figure S7).

Integrated Analysis of DEGs and DEPs 
From TMT and RNA-Seq Data
The Pearson correlation coefficient for the log2 function of HP 
vs. LP was 0.31, indicating that mRNA and protein levels were 
only partially correlated overall. Only SLC22A1 and Heat shock 
protein family A member 13 [HSPA13] were identified as both 
DEGs and DEPs. On the basis of these results, we propose that 
post-transcriptional regulatory activity contributes to milk fat 
lipid anabolism.

FIGURE 4 | The metabolic network comprising candidate genes in PPI network and GO terms with transcriptomic analyses. Round nodes indicate genes, red 
indicates up-regulation, and green indicates down-regulation. The rectangular node represents the KEGG pathway/biological process, and the significant p value is 
represented by yellow-blue gradient; yellow indicates a small p value, while blue indicates a large p value.

TABLE 2 | Expression changes of the candidate genes in bovine liver tissue with proteomic analyses.

Symbol Protein ID Gene name Chromosome Sequence 
length

Log2 fold 
change

P-value

SLC27A2 F1MQP2 Solute carrier family 27 (fatty acid transporter), member 2 10 620 −0.3590 0.0047 
PCK1 F1N1Z7 phosphoenolpyruvate carboxykinase 1 13 622 −0.4296 0.0406 
CPT2 F1N1M7 carnitine palmitoyltransferase 2 3 658 −0.8542 0.0253 
SIRT3 G5E521 sirtuin 3 11 333 −0.3330 0.0315 
CYP4A11 F1ME58 cytochrome P450, family 4, subfamily A, polypeptide 11 3 514 −0.2852 0.0396 
PLCB2 E1B7M6 Phospholipase C beta 2 10 1171 0.3344 0.0270 
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Integrated Analysis of DEGs, DEPs, and 
Animal QTLdb
We integrated DEGs and QTL for milk production traits from the 
QTLdb database that were detected either by QTL mapping studies 
or genome‐wide association studies (GWAS) by comparing their 
chromosome positions in order to gain further insight into the 
association between DEGs and milk fat traits. For QTL detected 
by QTL mapping studies, only those with a confidence interval less 
than 1 Mb were considered as a QTL region; for those identified by 
GWAS, the 200 kb up-/downstream of significant single nucleotide 
polymorphisms (SNPs) were defined as a QTL region. Among 
the DEGs and DEPs, 199 genes regions were located within or 
overlapped with QTL regions (Figure S5).

DISCUSSION

FAs in milk originate from two sources: some are synthesized de 
novo by mammary epithelial cells (MECs), including nearly all 
short (C4–C8) and middle chain (C10–C14) FAs and half of C16 
FAs; the remaining C16 FAs and LCFAs (>C16) are obtained by 
MECs directly from the blood.

After rumen fermentation, digestive tract absorption, 
liver metabolism, and so on, compounds such as acetic acid, 
β-hydroxybutyric acid (BHBA), free (F) FAs, etc. from the 
absorption and conversion of dietary nutrients are used in 
the mammary gland to synthesize milk fat. The metabolism, 
transformation, and utilization of these precursors in the body 
directly affect milk fat content. In addition, acetic acid, BHBA, 
and FFAs act as signaling molecules to modulate lipid synthesis 
through a feedback mechanism in the liver and adipose tissue.

The lactation process of dairy cows has periodicity and can 
be divided into early non-lactating period, late non-lactating 
period, early lactation period, peak lactation period, middle 
lactation period, and late lactation period. The peak lactation 
period occurs 6–8 weeks after delivery. After the peak period 
to  30–35 weeks after delivery, it is the middle of lactation, 
and the milk yield in the medium term is slightly lower than 
that in the early stage; however, the milk components are 
relatively stable.

In this study, we identified genes associated with milk fat 
and milk FA production by examining the transcriptome 
and proteome profiles of liver tissue samples from Chinese 
Holstein cows with extremely high or low milk fat percentage. A 
comparative analysis revealed 321 DEGs and 76 DEPs; 8 DEGs of 
PPARGC1A, DDIT4, SOCS1, SLC22A1, HNF4A, PDGFA, SYBU, 
and MAPK9 and 5 DEPs of CPT2, cytb, RDH13, CYP4A11, and 
SLC27A2 were verified by RT-qPCR and PRM, respectively, 
and the results were consistent with the previous experiments, 
confirming the reliability of this multi-omics study. Some of 
the genes with known roles in milk production such as DGAT1 
(Grisart et al., 2004), growth hormone receptor[GHR] (Blott et al., 
2003), and stearoyl-CoA desaturase[SCD] (Kinsella, 1972) did 
not differ between the two groups. It is likely that factors whose 
expression differed significantly between HP and LP cows have 
been fixed through long-term genetic selection. In particular, 
SLC22A1 and HSPA13 were identified as both DEGs and DEPs. 

A functional enrichment analysis identified for the first time 22 
DEGs (SLC22A1, MAPK9, PPARGC1A, FOXO1, SOCS1, SOCS2, 
CREB1, HNF4A, HNF4G, GADD45A, DUSP1, PDGF, SYBU, 
DDIT4, BMP and activin membrane bound inhibitor [BAMBI], 
methylenetetrahydrofolate reductase [MTHFR], SLC27A2, PCK1, 
CPT2, SIRT3, CYP4A11, and PLCB2) as candidate genes that 
regulate milk fat synthesis, transport, and metabolism.

DEGs for Milk Fat Traits
MAPK9 encodes a member of the MAPK family. These proteins 
act as an integration point for multiple biochemical signals and 
are involved in a variety of cellular processes, including cell 
proliferation and differentiation, transcriptional regulation, 
and development. A previous study indicated that MAPK9 is 
implicated in the response to intramammary challenge and 
negative energy balance in cows (Moyes et al., 2010). MAPK9 
is important in the proposed network of milk fat synthesis that 
includes encompassing MAPK [c-Jun N-terminal kinase (JNK)] 
and insulin signaling and insulin resistance (Liang et al., 2017). 
It is likely that the high expression of MAPK9 is involved in 
integrating insulin production, insulin resistance, and MAPK 
and prolactin production signaling to increase lipid synthesis in 
the liver. FOXO1 belongs to the forkhead family of transcription 
factors that are characterized by a distinct forkhead domain. The 
FOXO1/Akt pathway plays a critical role in gluconeogenesis in 
the liver (Yang et al., 2018). A previous transcriptome analysis 
of the liver suggested that FOXO1 influences milk fat synthesis 
(Jacometo et al., 2016). In addition, the low expression levels of 
FOXO1 suggested it may activate insulin production and insulin 
resistance signaling to enhance glucose and lipid metabolism 
in the liver. Suppressor of cytokine signaling (SOCS) family 
genes such as SOCS1 and SOCS2 encode signal transducer and 
activator of transcription (STAT)-induced STAT inhibitor proteins, 
which are cytokine-inducible negative regulators of cytokine 
signaling. A previous study reported several SNPs near the 
SOCS1, SOCS3, SOCS5, and SOCS7 genes that were significantly 
associated with protein yield (Arun et al., 2015), suggesting that 
SOCS1 and SOCS2 interact with other genes to influence milk 
production and composition. CREB1 protein is phosphorylated 
by several protein kinases and induces gene transcription in 
response to hormonal stimulation via the cAMP pathway, leading 
to the regulation of lipid metabolism (Ikoma-Seki et al., 2015; 
Mucunguzi et al., 2017). HNF4G encodes HNF4γ, a nuclear 
transcription factor that binds DNA as a homodimer to control the 
expression of HNF1α, a transcription factor that regulates hepatic 
gene expression. HNF4G may also play a role in intramuscular 
fat deposition in beef cattle (Ramayo-Caldas et al., 2014), while 
the paralog HNF4A negatively regulates cholesterol metabolism 
and bile acid synthesis in the liver (Shirpoor et al., 2018). In the 
present study, the expression abundance of HNF4G and HNF4A 
in HP (2,881 and 11,382 reads) was threefold and twofold higher 
than LP groups (642 and 4,804 reads), respectively, revealing 
its high expression and importance in high milk fat percentage 
groups. GADD45A is up-regulated under stressful growth arrest 
conditions and by treatment with DNA-damaging agents. The 
protein encoded by this gene activates p38/JNK signaling via 
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MEKK4/MTK1 kinase, which is known to regulate fat deposition 
in pork (Cho et al., 2015). In the present study, the expression of 
DUSP1was fivefold higher in the LP group (13,073 reads) than 
in the HP group (2,380 reads), suggesting that high expression 
levels of DUSP1 modulate lipid metabolism and synthesis 
(Nukitrangsan et al., 2011). PDGF belongs to the same protein 
family as vascular endothelial growth factors, which play an 
essential role in the regulation of embryonic development; cell 
proliferation, migration, and survival; and chemotaxis. PDGF 
is also involved in the synthesis of monounsaturated FAs in 
cells (De Brachene et al., 2017). SYBU encodes a microtubule-
associated protein that mediates anterograde transport of vesicles 
to neuronal processes. SYBU is phosphorylated by exchange 
protein directly activated by cAMP (Epac)2 agonist 8-pCPT-
2′-O-Me-cAMP (Ying et al., 2012). The findings of the present 
study suggest that a high expression level of SYBU is an effector 
of Epac2 that contributes to cAMP-induced insulin secretion 
as well as milk production and composition. DDIT4 regulates 
cell growth, proliferation, and survival by suppressing the 
activity of mTOR complex 1, which is involved in the response 
to changes in cellular energy level and stress. DDIT4 has been 
proposed to be a negative regulator of cell proliferation and cell 
growth in goat, thereby affecting the synthesis of milk fat (Crisà 
et al., 2016). BAMBI stimulates adipogenesis by suppressing 
carboxypeptidase A4—a negative regulator of adipogenesis 
that modulates local and systemic insulin sensitivity—through 
interactions with genes known to regulate milk production and 
composition (He et al., 2016). MTHFR catalyzes the conversion 
of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate 
(nicotinamide adenine dinucleotide phosphate), a co-substrate 
for homocysteine remethylation to methionine. MTHFR gene 
deficiency may enhance liver injury by altering methylation 
capacity, inflammation, and lipid metabolism (Leclerc et al., 2018).

DEPs for Milk Fat Traits
FAs entering the liver are mainly derived from FFAs produced 
by body fat mobilization. Triglyceride (TG) in adipose tissue is 
hydrolyzed into FFAs and glycerol by hormone-sensitive lipase 
and released into the blood. FFAs form a complex with albumin 
that is absorbed and utilized by the liver; FA transport protein 
(FATP)2 encoded by SLC27A2 is a transmembrane protein 
transporter involved in this uptake. FATP2 has very long-chain 
acyl-CoA synthetase activity and converts free (F) LCFAs into 
fatty acyl-CoA esters. Interestingly, FATP2 expression was 
1.28-fold higher in LP compared to HP cows. This may be 
related to lipid accumulation in the liver, which reduces milk 
fat precursor production in the liver. FATP2 overexpression in 
the liver is related to hepatic steatosis (Krammer et al., 2011), 
which reflects increased accumulation of lipids (mainly TG) in 
hepatocytes. Although FATP2 promotes the uptake of LCFAs, 
the esterification rate of LCFAs in the liver is higher than its 
decomposition rate and the rate of very (V)LDL transport to 
remove TGs, which thus accumulates as the lipid concentration 
in the cytoplasm decreases. Indeed, high SLC27A2 transcript 
levels in blood cells are associated with lower TG levels (Sanchez 

et al., 2012). However, platelet glycoprotein 4 [CD36]—
another LCFA transporter—showed a tendency (albeit non-
significant) towards overexpression in HP, suggesting that 
LCFA uptake occurs via distinct mechanisms. PCK1 catalyzes 
the irreversible formation of phosphoenolpyruvate from 
oxaloacetate in gluconeogenesis. In non-ruminant animals, 
PCK1 expression is induced by starvation and decreases during 
feeding. It is repressed by insulin and induced by glucagon 
and glucocorticoids (Hanson and Reshef, 1997). However, in 
ruminants its expression is not related to feed restriction but is 
induced by increased feed intake and monensin feeding, leading 
to increased ruminal propionate production (Greenfield et al., 
2000; Velez and Donkin, 2005; Karcher et al., 2007). PCK1 
promoter activity is linearly induced by propionate in bovine 
(Zhang et al., 2016). In the present study, the PCK1 protein 
level was higher in the LP than in the HP group, indicating a 
higher rate of gluconeogenesis in the liver. Increased utilization 
of hepatic lactolipid synthesis precursors such as propionic 
acid to generate glucose enhances hepatic FA oxidation to CO2, 
reflecting a redistribution of lactolipid precursors in the liver. 
PCK1 is also involved in glyceroneogenesis, which catalyzes the 
production of glycerol-3-phosphate for FA esterification (Beale 
et al., 2007; Hosseini et al., 2015). Thus, the up-regulation of 
PCK1 in LP may be associated with TG accumulation in the 
liver. The increased level of acyl-CoA oxidase1—an enzyme 
involved in FA β-oxidation that stimulates ATP production to 
support gluconeogenesis and prevent lipid esterification and 
accumulation in the liver (Aoyama et al., 1994)—in LP suggests 
that lipid balance is regulated via modulation of glucose 
metabolism. Feeding strategies that increase rumen propionate 
production and thus induce PCK1 expression are often used to 
meet increased glucose requirements and reduce the effects of 
fatty liver during early lactation in cows (Zhang et al., 2016). 
Consistent with our findings, cows with high liver fat content 
showed elevated expression of hepatic gluconeogenesis genes 
(Hammon et al., 2009), suggesting a higher gluconeogenic 
capacity in the liver. PPARγ is a known pro-adipogenic 
factor. We found here that the family with sequence similarity 
(FAM)120A—also known as bovine constitutive coactivator of 
PPARγ-like protein 1—was highly expressed in the LP group. 
PPAR signaling promotes the expression of the FA oxidation-
related genes CYP4A11 and CPT2, which is consistent with our 
results. We speculate that liver FA oxidation capacity is higher 
in the LP than in the HP group, leading to a reduction in milk 
fat synthesis precursors. β-Oxidation is the main pathway of 
FA catabolism. CPT2 converts acylcarnitine translocated to 
the mitochondrial matrix into acyl-CoA and free carnitine 
and is a rate-limiting enzyme for the transport of LCFAs into 
mitochondria for β-oxidation (Isackson et al., 2013). Silent 
mating type information regulation 2 homolog (Sirt3) regulates 
FA β-oxidation in the liver via AMPK and sterol regulatory 
element-binding protein1, promoting FA utilization and thereby 
preventing fat heterotopia (Kong et al., 2016). CPT2 and Sirt3 
proteins were highly expressed in the LP group, indicating 
enhanced FA β-oxidation. In addition to β-oxidation, microsomal 
ω-oxidation mediated by cytochrome P450 enzymes played a 
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key role in lipid synthesis and lipid accumulation (Hardwick, 
2008). Through preferential hydroxylation of FA chain terminal 
methyl groups, CYP4A/4F subfamily members eliminate 
potentially toxic, excess non-esterified FFAs that could disrupt 
mitochondrial function and inhibit ATP synthesis (Sanders 
et al., 2006; Weinberg, 2006; Hsu et al., 2007). Thus, the increase 
in CPY4A11 protein expression in the LP group indicates that the 
ability of liver cells to oxidize non-esterified FAs was enhanced. 
ω-Oxidation is increased in non-alcoholic fatty liver disease 
(Kohjima et al., 2007). In the LP group, increased FA oxidation 
may induce lipid accumulation in the liver and suppress the 
synthesis of milk fat, although the specific mechanisms remain 
to be determined. 20-Hydroxyeicosatetraenoic acid (20-HETE)  
is a product of arachidonic acid that is hydroxylated by CYP4A11 
catalysis, which can stimulate the production of superoxide 
and inflammatory cytokines, inhibit endogenous nitric oxide 
synthase, and promote oxidative stress (Lasker et al., 2000; Singh 
et al., 2007; Cheng et al., 2008; Ishizuka et al., 2008). 20-HETE 
metabolites can enhance the hypertrophy of mature inflamed 
adipocytes in populations of mesenchymal stem cells undergoing 
adipogenic differentiation through pro-adipogenic effects (Kim 
et al., 2013). 20-HETE and its metabolites also activate PPARγ 
(Ashley et al., 2002; Fang et al., 2007) to induce adipogenesis. 
The up-regulation of FAM120A protein in the LP group suggests 
that 20-HETE plays a role in regulating the metabolism of 
lipid precursors in the liver, with the elevation in the CYP4A11 
protein level reflecting activation of downstream signaling. The 
activation of PLCB2 is thought to play an important role in 
the regulation of glucose-induced insulin secretion (Zawalich 
et al., 1997). The observed up-regulation of PLCB2 in the HP 
group may be responsible for the down-regulation of PCK1 and 
CYP4A11, which are inhibited by increased insulin secretion in 
the liver (Lobato et al., 1985; Gainer et al., 2005).

Integrated Analysis of DEGs and DEPs
Only SLC22A1 and HSPA13 were identified in DEGs and 
DEPs, and their trends were consistent: SLC22A1 was 
significantly down-regulated in the HP group, while HSPA13 
was significantly up-regulated in the HP group, both at the 
transcriptional and proteomic levels. SLC22A1 is one of 
three similar cation transporter genes located in a cluster on 
chromosome 9. Polyspecific organic cation transporters in the 
liver, kidney, intestine, and other organs are critical for the 
elimination of endogenous small organic cations. The encoded 
protein contains 12 putative transmembrane domains and is a 
plasma integral membrane protein. A previous study showed 
that loss of OCT1 (SLC22A1) caused an increase in the ratio of 
AMP to ATP, activated the energy sensor AMP-activated kinase 
(AMPK), and substantially reduced triglyceride (TG) levels in 
livers from healthy mice (Ligong et al., 2014). An important 
paralog of this gene is SLC22A7, which is involved in milk fat 
synthesis in the liver (Liang et al., 2017). HSPA13, A member 
of the HSP 70 family, is mainly involved in stress-induced 
protective responses (Yan et al., 2015). Migdalska et al. (2012) 
found in the a mouse partial monosomy model for human 

chromosome 21q11.2-q21.1 that down-regulated expression 
of HSPA13 resulted in severe liver fatty changes and thickened 
subcutaneous fat when mice were fed a high-fat diet (HFD), 
then suspected that this gene may regulate fat deposition. This 
is consistent with our study finding that the expression level 
of HSPA13 in LP group was significantly lower than that in 
HP group, both at the transcription level and protein level. In 
addition, HSPA13 is localized in microsomes (Kampinga et 
al., 2009) and may be one of the upstream factors for further 
inducing ω-oxidation in LP group, but its role in CPY4A11, 
FAM120A, and other ω-oxidation-related proteins in this study 
needs to be further studied. We found that 53 genes were found 
in DEGs and non-significantly different proteins, and 81 genes 
were found in non-significantly different genes and DEPs, which 
indicated the imbalance between proteomic and transcriptome 
data. There are two possible reasons: First, post-translational 
modifications (PTMs) play a vital role in the structure, activity 
and function of protein, and the activity of protein suggests that 
it is not the level of its expression that determines its function. 
Second, the currently multi-omics technologies still need to be 
improved, which not only requires more accurate quantitative 
technologies but also needs to detect the PTM level of proteins, 
which is the focus of our next research.

CONCLUSIONS

In this study, we identified genes and proteins involved in the 
regulation of milk composition and production in Chinese 
Holstein cows. Through RNA-seq and TMT analyses of liver 
tissue we generated transcriptomic and proteomic profiles that 
revealed the regulatory relationships between DEGs and DEPs 
as well as several key candidate regulatory molecules (SLC22A1, 
MAPK9, PPARGC1A, FOXO1, SOCS1, SOCS2, CREB1, HNF4A, 
HNF4G, GADD45A, DUSP1, PDGF, SYBU, DDIT4, BAMBI, 
MTHFR, SLC27A2, PCK1, CPT2, SIRT3, CYP4A11, and PLCB2) 
and pathways (insulin, insulin resistance, PI3K/Akt, MAPK, 
prolactin, mTOR, and PPAR) associated with milk fat synthesis. 
These results can serve as a basis for breeding Holstein cows 
that produce milk with abundant essential fats, proteins, and 
other nutrients.
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The pig (Sus scrofa) is not only an important livestock animal but also widely used as 
a biomedical model. However, the understanding of the molecular characteristics of 
organs and of the developmental skeletal muscle of the pig is severely limited. Here, 
we performed a comprehensive transcriptome profiling of mRNAs and miRNAs across 
nine tissues and three skeletal muscle developmental stages in the Guizhou miniature 
pig. The reproductive organs (ovary and testis) had greater transcriptome complexity 
and activity than other tissues, and the highest transcriptome similarity was between 
skeletal muscle and heart (R = 0.79). We identified 1,819 mRNAs and 96 miRNAs to be 
tissue-specific in nine organs. Testis had the largest number of tissue-specific mRNAs 
(992) and miRNAs (40). Only 15 genes and two miRNAs were specifically expressed 
in skeletal muscle and fat, respectively. During postnatal skeletal muscle development, 
the mRNAs associated with focal adhesion, Notch signaling, protein digestion, and 
absorption pathways were up-regulated from D0 to D30 and then down-regulated 
from D30 and D240, while genes with opposing expression patterns were significantly 
enriched in the oxidative phosphorylation and proteasome pathways. The miRNAs mainly 
regulated genes associated with insulin, Wnt, fatty acid biosynthesis, Notch, MAPK, TGF-
beta, insulin secretion, ECM–receptor interaction, focal adhesion, and calcium signaling 
pathways. We also identified 37 new miRNA–mRNA interaction pairs involved in skeletal 
muscle development. Overall, our data not only provide a rich resource for understanding 
pig organ physiology and development but also aid the study of the molecular functions 
of mRNA and miRNA in mammals.
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INTRODUCTION

Intensive transcriptome sequencing is increasingly being used 
to study the mechanisms of organ physiology and development, 
with a goal of understanding the genetic expressions of tissue-
specific diseases (Lage et al., 2008; Koh et al., 2014). Since the 
expressions, and thus the functions, of many genes vary between 
tissue types, the study of tissue-specific genetic expression 
describes those transcriptional variations and provides insights 
into the underlying genetic mechanisms in each specific tissue 
type. Thus, obviously the construction of comprehensive 
tissue-specific transcriptome profiles for both humans and 
model organisms is of great importance. Indeed, tissue-specific 
expression of both protein-coding and non-coding RNAs in both 
humans and mice has been well studied (Roux et al., 2012; Szabo 
et al., 2015; Zeng et al., 2016; Iwakiri et al., 2017) and the results 
have been used to elucidate organ physiologies and diseases. For 
example, the identification of tissue-specific genes was used to 
build a tissue-specific gene database for human cancers (Kim 
et  al., 2018). However, while many studies have accumulated 
both mouse and human tissue-specific transcriptome data 
(Zhang et  al., 2015a), RNA-seq transcriptome analyses across 
tissues and developmental stages of other mammals are still 
relatively scarce.

Wild Sus scrofa (pig) was domesticated approximately 9,000 
years ago and has become one of humankind’s most important 
livestock animals (Giuffra et al., 2000). Because of its similarity 
with humans in body size, lifespan, anatomy, and other distinct 
physiological characteristics, the pig has become a model in 
many disciplines of biomedical research, such as pharmacology, 
obesity, oncology, cardiology, and many more (Groenen et al., 
2012). While pig mRNA and miRNA profiles have been obtained 
for several tissues, such as adipose, liver, skeletal muscle (Hou 
et al., 2012; Tang et al., 2015), and testis (Zhang et al., 2015b), 
those analyses focused mainly on a single organ or developmental 
stage. Systematic studies of miRNA and mRNA spatiotemporal 
expression patterns and their interactions in multiple organs 
and developmental stages are still needed to further understand 
their physiological functions and development, which would 
aid both biomedical research and pig husbandry. Interactions 
between miRNAs and their target mRNAs play important roles 
in regulating various biological processes (Bai et al., 2015), so 
identification of those interactions provides insights into the 
different mechanisms at work in each tissue type (Neville et al., 
2011; Wang et al., 2012b).

In this study, we used high-throughput transcriptome 
sequencing to comprehensively explore S. scrofa mRNA and 
miRNA profiles in nine different tissues and three developmental 
stages of skeletal muscles. First, we systematically analyzed 
expression characteristics of protein coding genes (PCGs) 
and miRNAs in nine tissues, identifying the tissue-specific 
and  -associated PCGs/miRNAs and then exploring the 
interactions of miRNAs with their target mRNAs in nine organs. 
Finally, we detected a set of miRNA–mRNA interaction pairs 
potentially associated with postnatal skeletal muscle development. 
Overall, this study provides a comprehensive profile of mRNAs 
and miRNAs in multiple organs and developmental stages in 

the pig and provides meaningful insights into tissue-specific 
metabolic regulation at the RNA level.

MATERIALS AND METHODS

Animals and Organ Collection
In this study, we collected nine tissues (fat, heart, kidney, liver, 
lung, skeletal muscle, ovary, spleen, and testis) from the Guizhou 
miniature pig, one of the most primitive pig breeds in China 
and a source of high quality meat, at 240 days of age and two 
additional skeletal muscle samples at postnatal 0 and 30 days. 
These samples were collected from three biological individuals at 
each postnatal date (0, 30, and 240 days). All samples were rapidly 
isolated and immediately frozen in liquid nitrogen. All animal 
procedures were performed according to protocols approved 
by the Biological Studies Animal Care and Use Committee in 
Beijing Province, China.

Isolation of Total RNA and Construction of 
RNA-seq Libraries
We extracted total RNA from various tissues at least three 
times, mixing RNA samples from each tissue type into one 
group per type, and small RNA library for each tissue group 
was produced. Polyacrylamide electrophoresis gel was used 
to purify the fragments of 18–30 nt, and then these fragments 
were ligated to adaptors on both 5′ and 3′ ends. After reverse-
transcription amplification, the PCR products in length of 90-bp 
were isolated from 4 % agarose gels, and then sequenced on the 
Illumina HiSeq 2500 platform. The RNA-seq data for mRNA 
were deposited in the Gene Expression Omnibus (accession 
codes GSE73763) as our previous reports (Tang et al., 2017; 
Liang et al., 2017), and the reliability of transcriptome data has 
was verified by qRT-PCR in the study by Tang et al. (2017).

RNA-seq Data Analysis
First, using custom scripts, we trimmed adapters from all RNA 
sequencing data and then mapped the processed reads from 
each sample to the S. scrofa reference genome (v10.2) using 
TopHat2 (Kim et al., 2013) (v2.0.12) with fr-frststrand and the 
following parameters: mate-inner-dist 20, mate-std-dev 50, 
microexon-search segment-length 25, and segment-mismatches 2. 
Alignment results from each sample were then processed 
using Cufflinks (v2.2.1) with known annotations for transcript 
assembly (fr-firststrand and min-frags-per-transfrag 3) and 
then the consensus transcriptome was merged. Finally, we used 
HTseq-count (v0.6.1) required strand-specific counting (Anders 
et al., 2015) to quantify genes and transcripts. We then calculated 
the reads per kilobase million (RPKM), counted on read pairs in 
cases of paired ends, for the PCGs.

miRNA-seq Data Analysis
Raw sequencing reads were obtained after removing reads 
without a 3′ primer or insert tag, reads with polyA or 5′ primer 
contaminants, and reads shorter than 18 nt or longer than 32 bp. 
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Then, the clean reads that could be annotated and aligned to 
rRNAs, snoRNAs, and tRNAs in the Rfam database (http://rfam.
xfam.org) (Nawrocki et al., 2015) were discarded. We mapped 
the remaining reads to the S. scrofa reference genome (v10.2) 
using miRDeep2(v2.0.0.8) software (Friedlander et  al., 2012). 
The sequences of known mature miRNAs and their precursors 
were downloaded from miRBase (http://www.mirbase.org) 
(Kozomara and Griffiths-Jones, 2014), and the expression level of 
each miRNA was normalized using the transcripts per kilobase 
million (TPM) method.

Gene Expression Analyses
In our analyses, all PCG-miRNAs that had an RPKM or TPM 
greater than 0.1 in at least one sample were considered to be 
expressed. In addition, Pearson correlation coefficients were 
calculated to examine the similarities and correlations of mRNA 
expression in different samples. In our analyses, universally 
expressed genes are tissue-conserved expressed genes whose 
RPKM values are greater than 10 in every tissue. For miRNAs, 
two criteria were used to define universally expressed miRNAs 
across different tissues: 1) the TPM value in every tissue was 
more than 1, and 2) the coefficient of variation across all tissues 
was less than 0.5.

The tissue-associated genes for any given tissue were identified 
according to a previous study with the Z-score cutoff ≥ 1.5 and 
RPKM ≥ 1 (Li et al., 2014). We identified tissue-specific genes 
as having RPKM or TPM ≥ 10, with expression levels in a given 
tissue being greater than 10-fold higher than the mean expression 
value of any other tissues.

Co-Expression Network Analysis
We used RNA libraries of nine different tissue types, with all 
samples collected at postnatal day 240, for network construction. 
Based on the mRNA expression matrix, we constructed a 
weighted co-expression network using BioLayout Express (3D) 
with a Pearson correlation threshold cutoff ≥ 0.90 and a Markov 
clustering algorithm of 2.2.

miRNA–mRNA Interaction Analyses
miRNA–host gene co-expression pairs were identified based 
on the following pipeline: 1) the miRNA coordinate overlapped 
100% of the protein-coding gene; 2) the host gene and the 
miRNA are transcribed from the same strand of DNA; 3) the 
miRNA does not have extra copies in other parts of the genome, 
since the transcription of each copy of the miRNA gene could 
be regulated by different mechanisms that would confound the 
results of our analyses; 4) the intragenic miRNAs and the host 
genes must be expressed in at least five tissues (TPM or RPKM ≥ 
0.1); and 5) significant correlations were identified as p < 0.05 
and r > 0.6 (Kaminski et al., 2013; Lin et al., 2016).

mRNA and miRNA pairs were subjected to Pearson correlation 
analysis and those pairs with r < −0.5 were chosen for further 
investigation. Then, we used the RNAhybrid (v2.1.2) (Kruger 
and Rehmsmeier, 2006) and TargetScan algorithms (Riffo-
Campos et al., 2016) to detect whether the 3′-untranslated region 

(3′UTR) of the mRNA in each pair matched the seed region of 
the corresponding miRNA. The pairs that satisfied those two 
conditions were used in both KEGG pathway analysis and Gene 
Ontology (GO) enrichment analysis to further investigate the 
biological processes and functions associated with those negative 
correlations. These analyses were based on human annotation 
using the Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) web server (http://david.abcc.ncifcrf.gov/) 
with the EASE value set to 0.05 (Huang et al., 2007; Huang Da 
et al., 2009).

Differential Expression Analysis
We used R (v3.2.0) DESeq2 package (Love et al., 2014) for 
differential expression analyses of PCGs and miRNAs in skeletal 
muscle at three developmental (D) stages (D0, D30, and D240 
postnatal days). Analysis was performed between muscle_D0 
and muscle_D30 and between muscle_D30 and muscle_D240. In 
this study, significant differentially expressed genes (DEGs) met 
the criteria log2-FC ≥ 1 and FDR < 0.05, where FC is fold change 
and FDR is false discovery rate, and those acceptable DEGs were 
further examined with GO and KEGG analyses, as above.

Vector Construction, Cell Culture, and 
Dual Luciferase Reporter Assay
Two miRNA–mRNA interaction pairs (ACTN4/ssc-miR-133a-3p 
and Prox1/ssc-miR-338) were randomly selected to verify the 
expression profiles of miRNA and its target mRNA. Through the 
PCR method, the 3′UTR fragments (3′UTR-wt) flanking miRNA 
binding sites of these two genes were amplified and then cloned 
into pmirGLO Dual-Luciferase Vector through the Homologous 
Recombination Kit (Qingke, China). The mutant types of these 
two genes with the 3′UTR region (3′UTR-edt) were made by the 
Homologous Recombination Kit (Qingke, China) and confirmed 
by sequencing. Primer sequences are listed in Table 1.

The HEK293 cells were cultured at 37°C with Dulbecco’s 
modified Eagle’s medium (Sigma), 10% FBS (Gibco), 1% 
penicillin/streptomycin (Gibco), and 5% CO2. The miR-and 
-133b mimics (double-stranded RNA oligonucleotides) and 
negative control duplexes were synthesized by GenePharma. 
The pmirGLO-3′UTR-wt, pmirGLO-3′UTR-mt and miRNA 
(mimic/negative control) were co-transfected into HEK293 
cells. The co-transfection assays were performed in 12-well 
plates with Lipofectamine 2000 reagent (Invitrogen) according 
to the  manufacturer’s instructions and harvested after 24 h. 
Finally, the dual-luciferase assay system (Promega) was used to 
examine the activity of renilla and firefly luciferase.

RESULTS

Overview of mRNA and miRNA Profiling
To systematically investigate genome-wide expression profiles of 
S. scrofa PCGs and miRNAs, we first performed RNA-seq and 
small RNA-seq on nine tissues, as well as on skeletal muscle tissue 
from three developmental stages of Guizhou miniature pigs. A 
total of 824,887,548 reads were obtained for RNA-seq analysis, 
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as we described in our previous study (Liang et al., 2017). We 
then measured the expression abundance of PCGs in each 
tissue (Figure 1A), detecting 18,576 expressed PCGs (RPKM > 
0.1) representing 85.97% of annotated PCGs in the porcine 
reference genome, and 46.14% of these PCGs were constitutively 
expressed through all selected tissues. The numbers of expressed 
PCGs ranged from 10,845 to 15,552 in the nine different tissues 
(Table  2). The smallest numbers of expressed PCGs were in 
skeletal muscle and the largest numbers were in the reproductive 
tissues (ovary and testis). Also, the distribution of genes with 
high RPKM (>10) values was larger in the reproductive tissues 
than in the other tissues (Figure 1B). These findings indicated 
that transcriptome complexity and activity in the reproductive 
system were higher than those in other tissues. We next 
examined the similarities and correlations between tissues based 
on global expression profiling. Clustering analysis suggested that 
the highest transcriptome similarity was shown between skeletal 

muscle and heart (Pearson correlation, R = 0.79), whereas the 
testis and liver showed the lowest expression correlation (Pearson 
correlation, R = 0.41) (Figure 1C).

Small RNA analysis revealed 131,789,681 high-quality clean 
reads, accounting for 93.64% of the total reads. Analysis of the 
size distribution of all reads showed that the major class of reads 
peaked at 22–23 nt within most of the libraries. However, in liver 
and testis, the majority of clean reads were at 28–30 nt, followed 
by 22 nt, thus implying that Piwi-interacting RNAs were enriched 
in those two tissues. For all 11 libraries, 99,812,523 (75.75%) of 
the clean reads were mapped to the porcine reference genome. 
The composition of each RNA library (Figure 1D) shows our 
findings that 319 known and 442 novel miRNAs (TPM > 0.1) 
were expressed in all the tissues we investigated. The number 
of expressed miRNAs in these libraries ranged from 475 to 
594, including 206 to 292 novel miRNAs and 269 to 302 known 
miRNAs, respectively (Table 3). The miRNAs with high RPKM 

TABLE 1 | Primer sequences.

Name Primer sequences (5′–3′) Application

ACTN4 3′UTR F: TCTAGTTGTTTAAACGAGCTCGCCTCTTGCTCCCGTAAT
R: CAGGTCGACTCTAGACTCGAGGGAGCAAAACCATCCACTA

Amplification and vector construct

PROX1 3′UTR F: TCTAGTTGTTTAAACGAGCTCGTAGTCGCAGTCCCCTTT
R: CAGGTCGACTCTAGACTCGAGTAAACTAAAGGCGGAAGG

Amplification and vector construct

ACTN4 3′UTR MT F: TCTAGTTGTTTAAACGAGCTCTATGTTCTGAAATCGTAGTT
R: CAGGTCGACTCTAGACTCGAGCCCTCCCTTGCGAACAC

Mutation vector construct

PROX1 3′UTR MT F: TCTAGTTGTTTAAACGAGCTCTGGGTCTCTGAAAGTT
R: CAGGTCGACTCTAGACTCGAGCCCCAGAAGGGTGGTTTATC

Mutation vector construct

FIGURE 1 | The transcriptome profile of multiple tissues in pigs. (A) Genome-wide mean expression value profile. (B) Genome-wide RPKM distribution of mRNA. 
(C) Hierarchical clustering generated using Pearson correlation coefficients of log2-transformed RPKM (mRNA) values. (D) Composition of the RNA library in each 
tissue. (E) Genome-wide RPKM distribution of miRNA.
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(>10) values had a larger distribution in testis than in other 
tissues (Figure 1E).

Universally and Specifically Expressed 
mRNAs and miRNAs Across Tissues
Focusing on universally expressed mRNAs and miRNAs, we 
found that 209 mRNAs (Table S1), representing tissue-conserved 
expressed genes whose RPKM values were greater than 10 in 
all tissues, were abundantly and stably expressed. This dataset 
included some well-known housekeeping genes such as GAPDH, 
ACTB, RPS18, B2M, RPL4, RPL37, and RPL38. According to 
GO analysis, these genes were significantly enriched in the areas 
of translation, peptide biosynthetic, and amide biosynthetic 
(Table  S2), indicating that they have important roles in 
maintaining essential basal cellular functions. Additionally, we 
identified 43 universally expressed miRNAs (Table S3). One of 
those miRNAs, miR-16, is most likely an important biomarker 
for several diseases including lung cancer, rheumatoid arthritis, 
and sepsis (Wang et al., 2012a; Sromek et al., 2017; Dunaeva 
et al., 2018) in humans; is abundantly expressed in all tissues; and 
has been used as a control in several systems, including animal 
models. These miRNAs may serve as candidate reference to 
normalize miRNA expression across tissues.

In order to capture the functional differences in gene 
expression between tissues, we next analyzed tissue-specific 
mRNA and miRNA. As in a previous study (Li et al., 2017), the 

genes whose abundance in one tissue was more than fourfold 
the mean expression value of that in other tissues were defined 
as tissue-specific genes. While for some genes the expression 
levels were very low, we defined the tissue-specific mRNAs 
and miRNAs as the genes whose abundance in one tissue was 
more than 10-fold the mean expression value in other tissues, 
with RPKM or TPM ≥10. Finally, we identified 1,819 tissue-
specific PCGs, with the number ranging from 15 to 992 for 
a given tissue (Table S4). Testis had the largest number of 
tissue-specific genes (54.5%, 992/1819), compared with other 
tissues. In contrast, only 15 genes were specifically expressed 
in skeletal muscle. We found that the expression of GAPDH 
was significantly higher in skeletal muscle than in other tissues, 
a result consistent with a previous mouse study (Fortes et al., 
2016). Meanwhile, we identified 96 tissue-specific miRNAs 
(including 48 novel and 48 known miRNAs). The number of 
miRNAs ranged from 2 to 40 for a given tissue. The largest 
numbers of tissue-specific miRNAs were found in testis and 
only two tissue-specific miRNAs were found in fat (Table 4). 
The well-known myomiRs (miRNA-1, miR-133a/b, and miR-
206) were specifically expressed in skeletal muscle. In testis, the 
top two tissue-specific miRNAs, miR-34c and miR-202-5p, were 
shown to possess an important influence in spermatogenesis 
regulation (Dabaja et al., 2015; Wang et al., 2018b). For fat, only 
one known miRNA (miR-224), which was reported to have an 
important role in adipogenesis development, was specifically 
expressed (Peng et al., 2013).

Tissue-Associated mRNAs Capture the 
Structure and Functional Features of 
Different Tissues
A weighted and undirected co-expression network analysis 
was performed to understand interactions between PCGs, 
and it generated 229 distinct clusters containing 13,894 nodes 
(Figure 2A). Cluster names were based on the tissues in which 
the genes were expressed the most. The three largest clusters 
(including 4,997 nodes) were groups of highly expressed genes 
in ovary and testis. These results indicated that the majority of 
PCGs showed a tissue-restricted expression pattern. Thus, we 
tried to capture the basic characteristics of gene expression for 
each tissue by using ‘‘tissue-associated genes,” genes that were 
highly expressed in one tissue relative to other tissues (see 

TABLE 2 | Numbers of expressed genes in different tissues.

RPKM1 RPKM10 RPKM100 RPKM1000 Total

Fat 6,015 6,367 843 56 13,281
Heart 5,278 6,032 1,008 89 12,407
Kidney 5,023 7,541 1,436 73 14,073
Liver 6,282 4,867 763 77 11,989
Lung 4,988 8,559 1,474 54 15,075
Muscle_0 4,766 5,746 1,151 124 11,787
Muscle_240 5,297 4,627 820 101 10,845
Muscle_30 5,976 4,752 574 62 11,364
Ovary 3,928 7,792 3,171 260 15,151
Spleen 5,193 6,928 936 55 13,112
Testis 4,722 7,339 3,277 214 15,552

TABLE 3 | Numbers of miRNA identified in different tissues.

Tissue Novel Known Total

Heart 229 283 512
Liver 260 283 543
Spleen 292 302 594
Lung 275 293 568
Kidney 258 290 548
Fat 286 299 585
Muscle_0 216 293 509
Muscle_30 282 294 576
Muscle_240 206 269 475
Ovarium 248 292 540
Testis 222 283 505
Total 439 319 758
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TABLE 4 | Tissue-specific miRNA in different tissues.

Tissue Known miRNAs Novel miRNAs

Heart ssc-miR-208b, ssc-miR-490, ssc-miR-499-3p, ssc-
miR-499-5p, ssc-miR-7136-5p

novel_14_8571, novel_7_25708

Liver ssc-miR-122, ssc-miR-192, ssc-miR-194b-5p, ssc-
miR-365-3p, ssc-miR-885-3p, ssc-miR-885-5p

novel_13_6504, novel_14_8741, novel_9_28064

Spleen ssc-miR-142-5p, ssc-miR-145-5p, ssc-miR-150, ssc-
miR-20b, ssc-miR-342, ssc-miR-7138-5p

novel_10_3375, novel_2_14974, novel_GL896302.1_32316

Lung ssc-miR-138,ssc-miR-205,ssc-miR-92b-3p novel_5_19972, novel_5_19974
Kidney ssc-miR-10a-3p, ssc-miR-10a-5p, ssc-miR-196b-5p, 

ssc-miR-204, ssc-miR-429
novel_1_778, novel_6_20939

Fat ssc-miR-224 novel_5_18915
Skeletal muscle ssc-miR-1, ssc-miR-133a-3p, ssc-miR-133a-5p, ssc-

miR-133b, ssc-miR-206
novel_17_12538, novel_2_14142, novel_2_15377, novel_3_17211, novel_X_29629

Ovarium ssc-miR-132, ssc-miR-135, ssc-miR-212, 
ssc-miR-7857-3p

novel_8_26925, novel_9_28118

Testis ssc-miR-137, ssc-miR-153, ssc-miR-182, ssc-miR-
202-3p, ssc-miR-202-5p, ssc-miR-216, ssc-miR-217, 
ssc-miR-221-3p, ssc-miR-222, ssc-miR-34c, ssc-miR-
708-3p, ssc-miR-708-5p

novel_11_3521, novel_13_5908, novel_14_7685, novel_15_10051, novel_16_11835, 
novel_16_11837, novel_2_14220, novel_2_14976, novel_3_16101, novel_4_17487, 
novel_5_18832, novel_5_20192, novel_5_20217, novel_5_20223, novel_9_28635, 
novel_9_28958, novel_9_29013, novel_GL893854.2_31046, novel_X_29642, 
novel_X_29643, novel_X_30198, novel_X_30204, novel_X_30206, novel_X_30208, 
novel_X_30210, novel_X_30214, novel_X_30215, novel_X_30218

FIGURE 2 | The expression characteristic of tissue-associate genes. (A) Co-expression network of the protein coding genes. (B) Heatmap of tissue-associated 
mRNA in different pig tissues. (C) Heatmap of tissue-associated miRNA in different pig tissues. (D) GO biological process analysis of tissue-associated mRNA.
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Materials and Methods). The number of associated PCGs and 
miRNAs (Tables S5, S6) for a given tissue ranged from 287 
to 5,606 and from 28 to 132, respectively, suggesting that the 
tissues with higher transcriptional activities, such as testis, had 
more associated genes (Figures 2B, C). GO analysis, based on 
tissue-associated PCGs, revealed physiological features for each 
organ (Figure 2D). For example, GO terms for muscle tissue 
development were significantly enriched in skeletal muscle 
and heart, while the genes associated with spermatogenesis, 
lipid metabolism, and immune response were enriched in 
testis, adipose, and spleen, respectively. Also, we observed 
common GO terms shared in different tissues. For instance, 
the GO term related to the cell cycle and metabolic processes 
was obviously enriched in both ovary and testis, confirming 
that the reproductive tissues were highly proliferative. The 
GO terms for small-molecule catabolic and other metabolic 
processes were markedly enriched in liver and kidney. The genes 
associated with stimulus response and signal transduction were 
significantly enriched in lung and spleen. In summary, GO 
terms of tissue-associated genes agreed with the physiologies of 
the corresponding organs (Table S7).

Differentially Expressed mRNA and miRNA 
During Skeletal Muscle Development
To understand postnatal skeletal muscle development, we assessed 
the differentially expressed PCGs and miRNAs in skeletal muscle 
across three developmental stages at 0, 30, and 240 days after 
birth (D0, D30, and D240, respectively). Between D0 and D30, 
we detected 1,515 DEGs (Table S8), including 911 up-regulated 
and 604 down-regulated genes, respectively (Figure 3A). GO 
analysis (Table S9) suggested that the up-regulated genes were 
involved mainly in vasculature development, the intracellular 
signaling cascade, blood vessel development, and enzyme 
linked receptor protein signaling pathway (Figure 4A), and the 
down-regulated genes were associated mainly with translation, 
ribonucleoprotein complex biogenesis, and RNA and ncRNA 
processing (Figure 4B). Between D30 and D240, we identified 
1,011 DEGs (Table S10) including 338 up-regulated and 673 
down-regulated genes (Figure 3B). According to GO analysis 
(Table S9), up-regulated genes were involved mainly in protein 
catabolic process, modification-dependent macromolecules, and 
modification-dependent protein catabolic process (Figure 4C). 
The down-regulated genes were involved mainly in cell 

FIGURE 3 | Differentially expressed genes during skeletal muscle development. (A) D0 vs. D30 mRNA. (B) D30 vs. D240 mRNA. (C) D0 vs. D30 miRNA. (D) D30 
vs. D240 miRNA.
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adhesion, biological adhesion, and skeletal systems development 
(Figure  4D). These findings indicated that proliferative cell 
activity decreased, while cellular metabolic ability increased with 
age during postnatal skeletal muscle development and growth.

Subsequently, we focused on a series of dynamic expression 
patterns exhibited during skeletal muscle development. Venn 
diagram (Figure 5) analysis for DEGs demonstrated that the 
greatest overlap (276 genes) occurred between both up-regulated 
genes in group D0 versus D30 and down-regulated genes in 
group D30 versus D240 (Table S11). The largest cluster of 
overlapping genes were significantly associated with vasculature, 
the cardiovascular and circulatory systems, and blood vessel 
development, and obviously gathered in the focal adhesion, Notch 
signaling, and protein digestion and absorption pathways (Tables 
S12, S13). The second largest overlap cluster contained 94 genes 

and were present between the down-regulated genes in group D0 
versus D30 and the up-regulated genes in group D30 versus D240 
(Table S11). These overlapping genes functioned in the ATP 
metabolic process, purine ribonucleoside triphosphate metabolic 
process, and ribonucleoside triphosphate metabolic process and 
were significantly enriched in KEGG pathways for oxidative 
phosphorylation, proteasome, and Parkinson’s disease (Tables 
S12, S13). However, there were only eight genes up-regulated and 
seven genes down-regulated throughout D0 to D240 (Table S11).

These miRNAs also played an important role in skeletal muscle 
development. In this study, we identified 70 and 85 differentially 
expressed miRNAs in groups D0 versus D30 and D30 versus 
D240, respectively (Tables S14, S15). Between D0 and D30, 
56 miRNAs were up-regulated and 14 were down-regulated 
(Figure 3C). Functional analysis suggested that the genes targeted 

FIGURE 4 | GO analysis of differentially expressed genes during skeletal muscle development. (A) D0 vs. D30 up-regulated genes. (B) D0 vs. D30 down-regulated 
genes. (C) D30 vs. D240 up-regulated genes. (D) D30 vs. D240 down-regulated genes.
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by down-regulated miRNAs were significantly enriched in the 
insulin, Wnt, and Notch signaling pathways and in fatty acid 
biosynthesis, while the target genes for up-regulated miRNAs 
associated mainly with the MAPK and TGF-beta signaling, 
insulin secretion, and ECM–receptor interaction pathways. In 
groups D30 versus D240, we detected 21 up-regulated and 64 
down-regulated miRNAs, respectively (Figure 3D). The targets 
for the up-regulated miRNAs were significantly involved in the 
MAPK, focal adhesion, and insulin signaling pathways, while the 
targets for the down-regulated miRNAs were enriched mainly in 
the MAPK, TGF-beta, Notch, calcium, Wnt, insulin secretion, 
and focal adhesion pathways.

miRNA–mRNA Interaction Network 
Associated With Skeletal Muscle 
Development
miRNAs can affect gene expression by inhibiting protein 
translation or by causing mRNA degradation (Tang et al., 
2015). When we evaluated the expression relationships between 
miRNA and mRNA using Pearson correlations, we detected 
253,057 miRNA–mRNA interactions that were negatively 
correlated (r < −0.5) and 2,194 pairs (1,605 mRNAs and 263 
miRNAs) with binding sites for miRNAs at mRNA 3′UTRs. 
GO enrichment analysis suggested that these miRNA–mRNA 
interactions associated mainly with protein catabolic processes, 
muscle cell differentiation, and muscle organ development. 
KEGG analysis revealed that the interactions were significantly 
enriched in pathways for the citrate cycle, axon guidance, purine 
and pyruvate metabolisms, as well as the gonadotropin-releasing 
hormone, MAPK, adipocytokine, and insulin signaling pathways. 

In addition, there were 79 miRNA–mRNA interaction pairs that 
demonstrated functions in muscle cell differentiation and muscle 
organ development (Table S16). Of them, 37 miRNA–mRNA 
pairs showed significant negative expression correlations (r < 
−0.5) through all three skeletal muscle development stages (Table 5). 
Many mRNA genes have been reported as regulators of either 
muscle differentiation or development, including MyoD1 (Blum 
et al., 2012), CSRP2 (Herrmann et al., 2006), MBNL1 (Chen 
et al., 2016), FHOD1 (Staus et al., 2011), MET (Park et al., 2015), 
SOD1 (Sakellariou et al., 2018), RCAN1 (Emrani et al., 2015), 
SGCA (Fougerousse et al., 1998), SRF (Ding et al., 2017), MEF2A 
(Yuan et al., 2014), MTM1(Bachmann et al., 2017), LBX1 (Chao 
et al., 2011), MEF2D (Runfola et al., 2015), IGFBP5 (Zhang 
et al., 2017), PDGFA (Tallquist et al., 2000), AMOT (Wang et al., 
2018a), PDPK1 (Mora et al., 2003), SIRT2 (Arora and Dey, 2014), 
SIX4 (Chakroun et al., 2015), NOS1 (Villmow et al., 2015), MYL1 
(Burguiere et al., 2011), ACTA1 (Hu et al., 2015), PROX1 (Kivela 
et al., 2016), and QKI (Wu et al., 2017). These interaction pairs 
included 7 known and 27 novel miRNAs, of which the miRNAs 
ssc-miR-744 (Yang et al., 2015), ssc-miR-497 (Sato et al., 2014), 
ssc-miR-338 (Mcdaneld et al., 2009), ssc-miR-423-3p (Siengdee 
et al., 2015), and ssc-miR-133a-3p (Wang et al., 2018c) were 
reported to have important roles in myogenesis.

Dual Luciferase Reporter Assay Validated 
the Interaction Between miRNAs and Their 
Target Genes
We randomly selected two miRNA–mRNA pairs (ACTN4/ssc-
miR-133a-3p and Prox1/ssc-miR-338), which showed significant 

FIGURE 5 | Co-expression pattern analysis for genes during skeletal muscle development.
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negative expression correlations (r < −0.5) through all three 
skeletal muscle developmental stages, to verify whether the 
interaction between them were really exit. The dual luciferase 
reporter assay successfully validated the interaction between 
miRNA and their target genes. As shown in Figure 6, by 
binding to the 3′UTR region, all of the two miRNAs could 
markedly decrease the luciferase activity of the wild-type target 
genes (3′UTR-wt), while for the mutant type (3′UTR-mt), this 
repression was relieved. These results further confirmed the 
interaction between miRNA–mRNA pairs, which we discovered 
in the skeletal muscle development.

DISCUSSION

Transcriptome profiling is a good way to understand 
physiological functions and developmental regulations of 
organ tissues in plants and animals (Mcloughlin et al., 2014; 
Santos et al., 2014). The pig is not only an important livestock 
animal but also an important model organism in biomedical 
research. Therefore, a comprehensive atlas of gene expression 
for S. scrofa tissues and developmental stages is essential for both 
breeding and biomedical research (Yang et al., 2016). Here, we 
used RNA-seq to profile mRNAs and miRNAs found in nine 
different organ tissues and in three developmental stages of the 
Guizhou miniature pig, a breed widely used as a model organism 
in biomedical research. In all, the 18,576 PCGs we detected 
represent 85.97% of the annotated PCGs in the porcine reference 
genome. The numbers of PCGs ranged from 10,845 to 15,552 in 

different tissues and developmental stages, respectively, but only 
46.14% of PCGs were constitutively expressed in all nine tissues. 
This indicates that PCG expressions are greatly temporally and 
spatially specific. Interestingly, the reproductive organs (ovary 
and testis) harbored the most complex transcriptomes, a finding 
consistent with those in humans and rats in which the testis and 
ovary also expressed the most genes (Yu et al., 2014).

We further analyzed the tissue-associated, tissue-specific, 
and universally expressed mRNA and miRNA across different 
tissues and showed that tissue-specific and -associated mRNAs 
and miRNAs are needed to maintain specific functions in a 
given tissue type. In this study, the numbers of tissue-specific 
and tissue-associated PCGs ranged from 15 to 992 and from 287 
to 5,606, respectively. High variances reflected the differences in 
cell homogeneity and activity between different tissues. Tissues 
with higher transcriptional activities, such as testis and ovary, 
contained more associated and specific genes than other tissue 
types. The complex transcript of the Guizhou miniature pig testis 
was similar to that of other pig varieties. For instance, during the 
testis development of the Shaziling pig (a Chinese indigenous 
breed), 8,343 DEGs were identified and more than 50,000 
miRNA–mRNA interaction sites were predicted (Ran et al., 
2015). Additionally, many of these tissue-associated and tissue-
specific genes are well correlated with physiological functions of 
each organ. For example, the testis-associated gene PAK2 (p21-
activated kinase 2) was reported to play a crucial regulatory 
role in porcine spermatogenesis apoptosis and when the PAK2 
gene was knocked down by related siRNA, the mitotic activity 
for Sertoli cells was significantly repressed (Ran et al., 2018b). 

TABLE 5 | The expression correlation of miRNA and their target mRNA during three muscle development stages.

mRNA miRNA R value mRNA miRNA R value

MYOD1 novel_6_20992 −0.5390881 MTSS1 novel_9_27936 −0.5860598
HBEGF novel_6_20992 −0.7102848 SMARCD3 novel_10_2856 −0.5633121
ACHE novel_X_29788 −0.7475892 RHOQ novel_10_2856 −0.8857205
SRF novel_X_29788 −0.9981668 CAPZA2 novel_4_17324 −0.9810114
CALR novel_15_11149 −0.7613538 LIMK1 novel_9_27762 −0.9571368
GYLTL1B novel_15_11149 −0.8369125 FHOD1 novel_9_27796 −0.6414053
METTL21A novel_15_11149 −0.8442253 MEF2A novel_6_22335 −0.8056134
WASL novel_15_11149 −0.8928107 MTM1 novel_2_14454 −0.6334166
WASF3 novel_15_11149 −0.8967293 MTM1 novel_2_15515 −0.9702249
RASA1 novel_15_11149 −0.9028681 GPHN novel_15_11290 −0.7468672
CSRP2 novel_15_11149 −0.9587139 LBX1 novel_16_11622 −0.9452654
EZR novel_15_11149 −0.9827896 MEF2D novel_13_6599 −0.9327755
PPP3CB novel_4_18615 −0.6112719 IGFBP5 novel_4_18039 −0.9461923
MBNL1 novel_4_18615 −0.7985375 PDGFA novel_13_7087 −0.9090636
FHOD1 novel_12_5322 −0.6604956 PDGFA novel_5_19528 −0.8911486
ACADM novel_12_5365 −0.9987412 AMOT novel_3_15819 −0.577509
MET novel_GL896243.1_30542 −0.6683036 SPTAN1 novel_2_15576 −0.8980043
SOD1 novel_GL896243.1_30542 −0.9586679 MTSS1 novel_12_5119 −0.7397887
RCAN1 novel_12_5576 −0.9999364 PDPK1 novel_17_12538 −0.9859897
SGCA novel_1_1367 −0.9808128 WIPF1 novel_14_8940 −0.8267719
SRF novel_1_1367 −0.8138354 CDC42BPB novel_17_12654 −0.9731097
SIRT2 novel_X_29783 −0.8866714 SIX4 ssc-miR-744 −0.8646932
RXRG ssc-miR-296-3p −0.9848669 PROX1 ssc-miR-338 −0.9395592
NOS1 ssc-miR-296-3p −0.963125 QKI ssc-miR-423-3p −0.9453357
MYL1 ssc-miR-497 −0.7053538 ACTN4 ssc-miR-133a-3p −0.6850723
ACTA1 ssc-miR-1307 −0.7243173
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Interestingly, while PAK2 is one target gene of miR-26a, another 
miR-26a target gene, ULK2, was also a testis-associated gene in 
our study. ULK2, when knocked down, will inhibit swine Sertoli 
cell autophagy (Ran et al., 2018a). Meanwhile the testis-specific 
genes identified in this study such as SPEM1, TNP1, PRM1, 
DAZL (Hashemi et al., 2018), and CABYR (Shen et al., 2019) 
were also published as specific expression in human or mouse. 
As we know, tissue-specific functions are a result of specific 
expression and regulation of genes across an organism’s lifespan. 
The transcriptome’s degree of correlation suggests both similar 
and different biological functions between tissues. These data 
aid in the understanding of organ physiologies and molecular 
functions of genes in mammals.

Skeletal muscle is an important organ for maintaining 
movement and energy metabolism in animals (Liu et al., 2018), 
and pig skeletal muscle is a protein resource for humans (Tang et al., 
2017; Yang et al., 2017). Thus, a systematic study of skeletal 
muscle development is essential to improving animal breeding as 
well as aiding biomedical research. Many studies have suggested 

that the PCGs, miRNAs, and the interactions between them are 
most important for cellular regulatory processes (Hou et al., 2016). 
Nielsen et al. (2010) analyzed the miRNA in pig longissimus 
dorsi by using deep sequencing, and they found that highly 
expressed miRNAs were involved in skeletal muscle development 
and regeneration (Nielsen et al., 2010). However, the understanding 
of skeletal muscle development based on a comprehensive profiling 
of mRNAs and miRNAs had been largely unclear. To fill that void, 
we carried out RNA-seq and small RNA-seq analysis on pig skeletal 
muscle at 0, 30, and 240 days after birth. In the D0 versus D30 and 
D30 versus D240 groups, 1,515 and 1,011 mRNAs, respectively, were 
differentially expressed. Functional analysis suggested the presence 
of significant differences in physiological characteristics at different 
developmental stages. Between D0 and D30, for example, genes 
functionally associated with translation, ribonucleoprotein complex 
biogenesis, and RNA and ncRNA processing were down-regulated, 
and in the D30 versus D240 groups, down-regulating genes were 
obviously involved in cell and biological adhesion and in skeletal 
system development.In the D0 versus D30 and D30 versus D240 

FIGURE 6 | Dual luciferase reporter assay. (A) The secondary structure for miRNA and target gene 3′UTR. (B) Schematic of the wild-type and mutation-type 3′UTR 
vector with miRNA binding sites. Red is the mutation sites, and blue is the wild-type binding sites. (C) luciferase assays were performed.
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groups, we detected 70 and 85 differentially expressed miRNAs, 
respectively. The miRNAs regulated biological processes by binding 
mRNAs at the 3′UTR. In the current study, 2194 negatively correlated 
(r < −0.5) miRNA–mRNA interaction pairs with binding sites for 
miRNAs at mRNA 3′UTRs were predicted. Of those pairs, 37 new 
miRNA–mRNA interaction pairs were associated with muscle cell 
differentiation and muscle organ development and were negatively 
correlated (r < −0.5) in the D0, D30, and D240 groups. Most of the 
predicted target mRNA in these pairs were reported to function in 
muscle. For instance, SRF and MBNL1 (serum response factor and 
muscleblind-like splicing regulator 1) genes are reported to regulate 
muscle atrophy in mice (Collard et al., 2014), AMOT (the angiomotin 
gene) may influence human aortic smooth muscle cell migration 
(Wang et al., 2018a), and QKI (the protein quaking gene) regulates 
smooth muscle cell differentiation (Wu et al., 2017). Notable miRNAs 
that we found include ssc-miR-744, which is reported to significantly 
up-regulate in muscles after ischemia–reperfusion injury (Yang et al., 
2015); ssc-miR-195, which induces postnatal quiescence of skeletal 
muscle stem cells (Sato et al., 2014); and ssc-miR-423-3p and ssc-miR-
133a-3p, which each showed high correlations with mouse skeletal 
muscle C2C12 myoblast differentiation (Siengdee et al., 2015; Wang 
et al., 2018c). By targeting PCGs, miRNAs play important roles in 
regulating the complex processes of muscle development. Analysis of 
miRNA and mRNA expression profiles together was an effective way 
to minimize false-positive rates in miRNA–mRNA interaction pair 
predictions. In order to discover more miRNA–mRNA interaction 
pairs, we first analyzed the transcriptomes of both miRNA and 
mRNA in nine different tissues and then validated the miRNA–
mRNA interaction pairs associated with muscle development in three 
different muscle development stages. For further verification, we also 
randomly selected two miRNA–mRNA interaction pairs to verify the 
expression profiles of each miRNA and its target mRNA by using a 
dual luciferase reporter assay. The results showed that, by binding to 
the 3′UTR region, miRNA could markedly decrease the luciferase 
activity of the target genes. Hence, the miRNA–mRNA interaction 
pairs predicted in this study most likely participate in the regulation 
of muscle development. The genes in these two pairs were ACTN4, a 
transcriptional regulator of myocyte enhancer factor that is associated 
with skeletal muscle differentiation (An et al., 2014), and Prox1, an 
essential gene for satellite cell differentiation and muscle fiber-type 
regulation (Kivela et al., 2016). They were paired, respectively, with 
important muscle-associated miRNAs ssc-miR-133a-3p (Wang et 
al., 2018c) and ssc-miR-338 (Mcdaneld et al., 2009). Although most 
of these miRNA–mRNA pairs have been reported to participate in 
muscle development, the actual interactions between them were still 
unclear and thus in need of further validation. The data from our 

study provide a rich resource for determining key interactions of 
miRNA–mRNA in muscle development.
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Pervasive allelic variation at both gene and single nucleotide level (SNV) between individuals 
is commonly associated with complex traits in humans and animals. Allele-specific 
expression (ASE) analysis, using RNA-Seq, can provide a detailed annotation of allelic 
imbalance and infer the existence of cis-acting transcriptional regulation. However, variant 
detection in RNA-Seq data is compromised by biased mapping of reads to the reference 
DNA sequence. In this manuscript, we describe an unbiased standardized computational 
pipeline for allele-specific expression analysis using RNA-Seq data, which we have 
adapted and developed using tools available under open license. The analysis pipeline 
we present is designed to minimize reference bias while providing accurate profiling of 
allele-specific expression across tissues and cell types. Using this methodology, we were 
able to profile pervasive allelic imbalance across tissues and cell types, at both the gene 
and SNV level, in Texel×Scottish Blackface sheep, using the sheep gene expression 
atlas data set. ASE profiles were pervasive in each sheep and across all tissue types 
investigated. However, ASE profiles shared across tissues were limited, and instead, they 
tended to be highly tissue-specific. These tissue-specific ASE profiles may underlie the 
expression of economically important traits and could be utilized as weighted SNVs, for 
example, to improve the accuracy of genomic selection in breeding programs for sheep. 
An additional benefit of the pipeline is that it does not require parental genotypes and can 
therefore be applied to other RNA-Seq data sets for livestock, including those available 
on the Functional Annotation of Animal Genomes (FAANG) data portal. This study is the 
first global characterization of moderate to extreme ASE in tissues and cell types from 
sheep. We have applied a robust methodology for ASE profiling to provide both a novel 
analysis of the multi-dimensional sheep gene expression atlas data set and a foundation 
for identifying the regulatory and expressed elements of the genome that are driving 
complex traits in livestock.
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INTRODUCTION

Allele-specific expression (ASE) is the imbalance of allelic 
expression between parental (diploid) copies at the same locus 
(Barlow and Bartolomei, 2014). It is most commonly associated 
with cis-acting regulatory variation that may mediate parent-of-
origin, sex- or tissue-specific transcription of one allele relative to 
the other (Renfree et al., 2009; Hasin-Brumshtein et al., 2014). In 
a single individual, where there are informative sequence variants 
(i.e., heterozygote loci) that distinguish the products of two 
alleles, ASE can be detected by RNA sequencing (Chamberlain 
et al., 2015; GTEx Consortium et al., 2017; Cao et al., 2019; 
Guillocheau et al., 2019). The ratio of allelic read counts obtained 
from RNA-Seq data sets can be used as a reliable proxy for ASE 
[i.e., ASEratio = CountsAllele1/(CountsAllele1 + CountsAllele2)] 
(Edsgärd et al., 2016).

Large and complex RNA-Seq data sets give rise to unique 
and interesting computational challenges, in particular the 
elimination of reference mapping bias in ASE analysis of 
diploid genomes. RNA-Seq data are commonly mapped 
against reference genomes which are typically “flat,” with each 
position represented only by the reference (most abundant) 
allele. As such, reads containing heterozygous loci are 
more likely to be erroneously mapped (Degner et al., 2009; 
Stevenson et al., 2013; Hodgkinson et al., 2016). This can 
lead to high false-positive ASE locus discovery rates (Degner 
et al., 2009). Although development of de novo transcript 
assemblers (Zerbino and Birney, 2008), usage of personalized 
reference genomes (Rozowsky et al., 2011; Smith et al., 2013), 
variant-aware aligners (Xin et al., 2013; Hach et al., 2014), and 
mapping-free quantification e.g., Kallisto (Bray et al., 2016) 
have resolved some of these issues, reference allele mapping 
bias remains a considerable challenge in ASE studies. In 
the absence of “trios” of animals or reference population 
phased haplotype information, which are rare for livestock, 
correction of mapping bias via synthetic reads with either 
N masking or alternative mapping bias correction at the 
heterozygote sites, has proven a robust alternative for ASE 
discovery (Degner et  al., 2009; Mayba et al., 2014; van de 
Geijn et al., 2015; Miao et  al., 2018). In 2015, Van de Geijn 
et al. benchmarked the WASP software mapping correction 
strategy against N-masked reads and personal genome 
mapping. WASP showed consistent correct mapping of reads 
with multiple alleles and lower false discovery rates (FDR) 
in comparison to the other two methods (van de Geijn et al., 
2015). The analysis pipeline we present in this manuscript is 
based on WASP’s methodology and is designed to minimize 
reference bias while providing accurate profiling of allele-
specific expression in large and complex RNA-Seq data sets.

We have developed an ASE analysis pipeline using the 
combination of software available under open license, WASP 
(reference mapping bias removal) (van de Geijn et al., 2015), 
GATK (ASEReadCounter) (McKenna et al., 2010; Van der 
Auwera et al., 2013), and GeneiASE (Liptak-Stouffer aggregative 
ASE gene model) (Edsgärd et al., 2016). The GeneiASE model 
is capable of testing ASE at the gene level using two approaches: 
i) static ASE, which measures allelic imbalance within a gene 

(i.e., when ASE variants are located within the boundaries of the 
gene); and ii) individual condition-dependent ASE (ICD), which 
measures inducible ASE in a gene under an environmental pressure 
between two timepoints (i.e., in stimulated or unstimulated 
immune cells).

In addition to ASE at the gene level, we can also measure 
significant ASE at the single-nucleotide level (SNV). ASE has been 
shown to be enriched within expression quantitative trait loci 
(eQTL) regions (Montgomery et al., 2010); therefore, identifying 
ASE variants can be useful for understanding the transcriptomic 
control of complex traits in livestock. Complex trait mapping of 
ASE loci has been associated with phenotypes, such as resistance to 
Marek’s disease in chicken (Meydan et al., 2011) and pigmentation 
patterns in sheep (García-Gámez et al., 2011).

Understanding ASE is also important because cross-breeding 
now underlies most livestock production systems. Knowledge 
of ASE may provide insights into the molecular basis of the 
complex phenomenon of hybrid vigor, as emphasized by recent 
studies on two Chinese goat breeds and their F1 hybrids (Cao 
et al., 2019) and in F1 crosses of two highly inbred chicken lines 
(Zhuo et al., 2017). In this study, we measure ASE in crossbred 
sheep. Sheep are an economically important livestock species in 
many countries across the globe and particularly in emerging 
economies. The identification of prevalent ASE in populations 
or breeds, especially in economically relevant phenotypes and 
tissues could be used to improve genomic prediction in sheep 
breeding programs, such as those that have been established in 
Australia and New Zealand (Daetwyler et al., 2010).

Using the methodology we describe, for mapping bias 
correction and robust positive ASE discovery, we were able to 
profile pervasive allelic imbalance across tissues and cell types, 
at both the gene and SNV level, in Texel×Scottish Blackface 
sheep. We analyzed a subset of total RNA-Seq libraries from liver, 
spleen, ileum, thymus, and bone marrow-derived macrophages 
(BMDM) (±) lipopolysaccharide (LPS) from six individual adult 
crossbred sheep to produce a detailed picture of allelic imbalance 
in immune-related tissues and cell types. We chose to focus this 
analysis on immune-related tissues in part because of the depth 
of available sequence in those tissues, and in part because they 
contain abundant immune cell populations. The diversity of 
cell populations is reflected in the transcriptional complexity 
of immune tissues and cell types in the sheep gene expression 
atlas data set (Clark et al., 2017; Bush et al., 2019). As such, this 
subset of tissues gave us a transcriptionally rich data set in which 
to measure ASE. We also included BMDMs stimulated and 
unstimulated with LPS to mimic infection with Gram-negative 
bacteria to test whether ASE changed in response to stimulation 
with LPS in these cells. By measuring ASE in these tissues and 
cell types from sheep we were able to: i) provide insight into 
how pervasive ASE is across tissues at the gene and SNV level, 
ii) generate tissue-specific ASE profiles, iii) investigate sex-
specific patterns of ASE, and iv) determine the extent to which 
ASE changes in response to stimulation with LPS in an immune 
cell type. This novel analysis of the multi-dimensional sheep 
gene expression atlas data set provides a foundation for further 
analysis of the regulatory and expressed elements of the genome 
that are driving complex traits in sheep.
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METHODS

Sample Preparation and RNA Extraction
Data from three male and three female Texel×Scottish 
Blackface (T×BF) sheep from the sheep gene expression atlas 
project (Clark et al., 2017) were used in this study. The data set 
including: one cell type (BMDMs (±) LPS treatment) and four 
tissues (thymus, spleen, liver and ileum). Tissue collection, 
storage, and RNA extraction are described in Clark et al. (2017). 
BMDMs were cultured in vitro for 7 days in the presence of 
macrophage colony-stimulating factor (CSF1 (104 U/ml)) and 
unstimulated (0 h −LPS) and stimulated (7 h +100 ng/ml LPS) 
samples of BMDMs were obtained as previously described 
(Clark et al., 2017). A total of two samples (one thymus and one 
spleen) did not pass the RNA quality control (RNA integrity 
number (Mueller et al., 2004); RINe >7) and were not included 
in the sheep gene expression atlas. Library preparation was 
performed by Edinburgh Genomics (Edinburgh Genomics, 
Edinburgh, UK). All total RNA Illumina TruSeq libraries (125 
bp paired end) were sequenced at a depth of > 100 million reads 
per sample.

Reference Mapping Bias Removal
BAM files from RNA-Seq data were previously produced by 
mapping fastq files to the Oar v3.1 top level DNA fasta track, 
using HISAT2 (default mismatch penalty MX = 6 MN = 2) as 
previously described (Clark et al., 2017). Detailed settings and 
parameters for all the tools used to generate the BAM files can 
be found at FAANG (2018). These BAM files were used to locate 
reads with heterozygote loci using WASP’s find_intersecting.
py script (van de Geijn et al., 2015). The intersection of reads 
and heterozygote loci in all samples were based on the Ensembl 
v92 variant call format (VCF) track (Ensembl v92: ovis_aries_
incl_consequences.vcf.gz). Briefly, the Ensembl VCF file was 
filtered for bi-allelic variants within exonic regions, 5k up or 
downstream of exonic regions (5′ or 3′ UTRs) and intronic 
regions of all transcripts within the Oar3.1 sheep assembly 
(exclusion of indels and intergenic variants). These variants 
were used in WASP’s find_intersecting.py script to extract 
reads mapped to coordinates containing variants for each gene. 
As a result, reads aligned to exonic, 5′ or 3′ UTRs and intronic 
regions were separated into reads intersecting heterozygote loci 
and reads that did not intersect heterozygote loci. Synthetic 
copies of reads intersecting heterozygote loci were created with 
the alternate allele flipped to the remaining options of A, T, C, 
or G [up to 6 loci/read(2n) max 64 combinations of synthetic 
reads] using parameters defined in WASP (van de Geijn et al., 
2015). This was followed by remapping of the synthetic reads 
using HISAT2 (default mismatch penalty MX = 6 MN = 2) 
(Li and Durbin, 2009; Kim et al., 2015) and eliminating the 
original reads (and their synthetic copies) which mapped to 
a different coordinate in any of its synthetic copies (WASP’s 
filter_reads.py) (van de Geijn et al., 2015). After merging the 
retained reads with that did not intersect heterozygote loci, 
a final BAM file was produced for ASE read counting step 
(WASP’s remove_dup.py).

Allelic Read Counts and Depth Filtration
Allele-specific read counting was carried out using the 
ASEReadCounter module of GATK v3.8 with parameters 
-mmq 50 and -mbq 25 (McKenna et al., 2010). Multiple pre-
processing steps were performed prior to GeneiASE input as 
instructed by Edsgärd et al. (2016), which included preparing 
per chromosome indices, merging the variant set with 
corresponding gene coordinates, and bi-allelic expression 
filtering. Loci with < 10 reads mapped were excluded, as were 
loci with < 3 reads, or < 1% of the total reads, mapped to both 
the reference and alternative allele. This form of filtration will 
eliminate loci exhibiting mono-allelic expression (MAE) as 
previously described (Degner et al., 2009; Stevenson et al., 2013; 
Mayba et al., 2014). Producing evidence of MAE using total 
RNA-Seq data sets produced by Illumina short read sequences 
without parent of origin genotypes or imprinting information 
has been a controversial issue (DeVeale et al., 2012). Our 
data set did not include the trios of animals or personalized 
genomes that would be necessary to resolve MAE. As such, 
we decided to exclude MAE altogether for our analysis using 
stringent bi-allelic filtration criteria. Similar bi-allelic filtration 
criteria have been previously used routinely in ASE studies 
(Mayba et al., 2014; Chen et al., 2016a; Edsgärd et  al., 2016; 
GTEx Consortium et al., 2017; Raghupathy et al., 2018; Cao 
et al., 2019; Guillocheau et al., 2019; Gutierrez-Arcelus et al., 
2019). The workflow of the analysis pipeline for ASE analysis is 
detailed in Figure 1.

Experimental Design for Defining Allele-
Specific Expression
ASE was defined according to the following three categories:

i) Static ASE: which is inherent allelic imbalance (AI) in 
each gene calculated by ASE at all heterozygote loci 
(i.e., ASE = Counts RefAllele/(Counts RefAllele + Counts 
AltAllele)) within the boundaries of the gene. The effect 
size of ASE at gene level was produced by aggregation 
of the ASE effect size at SNVs within the gene 
boundaries (the Liptak-Stouffer method, applied by 
the GeneiASE aggregative model). A null distribution 
of ASE effect size for genes in each transcriptome was 
produced by random sub-sampling (n = 1 × 105) from 
a pool of genes having min 2 and max 100 loci within 
their boundaries. The ASE effect size of each gene 
(aggregated using Liptak-Stouffer) was then tested 
against the null distribution of the same SNV number, 
via a modified bi-nomial test (2×1 table). Distribution 
of p values was examined for uniformity prior to FDR 
correction (Supplementary Figures S1, S2, and S3) 
(Benjamini and Hochberg, 1995; Pounds and Cheng, 
2006; Barton et al., 2013).

ii) Individual condition-dependent ASE (ICD-ASE): in 
which the same ASE effect size was calculated for each 
gene in the treated versus the untreated timepoints of 
the same sample (i.e., BMDM ± LPS). The log2ratio 
(ASEtreated/ASEuntreated) was used in a beta-binomial test 
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(2×2 table) similar to the static mode. The details of this 
aggregative model have been previously described in 
the GeneiASE publication (Edsgärd et al., 2016).

iii) Condition-dependent ASE at SNV level: in which a 
contingency table was produced for read counts (ref 
and alt) for every SNV, present both in treated and 
untreated conditions (BMDM ± LPS) (2×2 table) and 
a Fisher’s exact test performed followed by p value 
multiple testing correction (Benjamini and Hochberg, 
1995). The p values from loci showing ASE and shared 
by the six adult sheep (ID and coordinate) were unified, 
using the Stouffer method (Dewey, 2016; Dewey, 2019) 
and presented as FDR for each locus.

Static ASE was calculated in both tissues and BMDMs (each 
timepoint was considered separately for BMDMs). Condition-
dependent ASE analysis was carried out only in BMDMs ± LPS 
both at gene (ICD-ASE) and SNV (Fisher’s exact) level to study 
LPS-inducible ASE.

Statistical Analysis and 
Thresholds Applied
The extraction, transformation and loading of the all data sets 
and subsequent statistical analysis was carried out in R version 
3.4 or higher unless stated otherwise (R Core Team, 2017). 
System query language join statements (Wickham et al., 2019) 
were used to compare lists of ASE genes or SNVs between 
samples. Raw p values resulting from all three types of ASE 

analysis were corrected for multiple testing via Benjamini-
Hochberg FDR calculations (Benjamini and Hochberg, 1995). 
The passing threshold of significance in all analyses was 
considered to be FDR < 0.1 (10%) except for the Fisher’s exact 
test association study. Genes showing ASE in multiple tissues 
were considered those for which four or more of the six sheep 
had significant ASE.

RESULTS

Estimation of Heterozygous Sites Across 
All Individuals
To determine the level of heterozygosity present in the 
RNA-Seq data we first assessed the number of bi-allelic 
heterozygote sites per individual for each of the six sheep 
(range = 5,673,703–6,438,497) detailed in Figure 2. Individual 
variation was observed in the SNVs per gene in each sheep 
(Figures 2A, C). However, there was no significant difference 
in the total number of bi-allelic SNVs captured in the RNA-
Seq data across all six individuals or between the male and 
female sheep included in the study (Figure 2B). The bi-allelic 
SNVs captured in the RNA-Seq data set were annotated using 
the Ensembl v.92 (Zerbino et al., 2018) reference VCF track. 
The distribution of SNVs per gene in the Ensembl track is 
tail-inflated in comparison to the RNA-Seq data Figure 2A. 
This issue could be due to erroneous assignment of SNVs in 
hypervariable and repetitive regions, multi-allelic SNVs or 

FIGURE 1 | A flowchart of the allele-specific expression analysis pipeline applied to the sheep gene expression atlas data set and optimized for WASP and 
GeneiASE programs. The remapping was carried out using HISAT2 (Kim et al., 2015) in combination with SAMtools (Li et al., 2009). The Genome Analysis Toolkit v 
3.8 was used for the ASE read counting section.

213

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Unbiased Ovine Allele-Specific ExpressionSalavati et al.

5 September 2019 | Volume 10 | Article 863Frontiers in Genetics | www.frontiersin.org

simply that there are variants in the Ensembl track that are 
not expressed (transcribed). The distribution of SNVs for each 
individual is shown in Figure 2C.

Reference Mapping Bias Elimination and 
Quality Control
We used the WASP ref bias removal script to successfully minimize 
ref allele mapping bias in the RNA-Seq samples. The mapping bias 
was assessed by global distribution of the allelic ratio, i.e., refcounts/
altcounts + refcounts in each RNA-Seq sample, as shown in Figure 3 
(WASP metrics are included in Supplementary Figures S10, S11, 
and S12). The ASE discovery rate at the SNV level, on average, 
constituted 5.8% of the heterozygote loci that passed the minimum 
filtration criteria in each individual (0.1% of the total expressed). 
This portion of the transcriptomic variants belonged to an average 
of 103 genes in each tissue transcriptome (approx. 1%) or 300 in 
each individual (Supplementary Figures S5 and S6). As shown in 
Supplementary Figure S6, expression level varies across tissues 
but does not affect the distribution of ASE SNVs.

Genes Exhibiting Tissue-Specific and 
Pervasive ASE Signatures
We used the static mode of GeneiASE to investigate pervasive 
and tissue-specific ASE profiles across all of the available 
samples. Static ASE represents inherent allelic imbalance 
(AI) in each gene calculated by ASE at all heterozygote 
loci. The number of genes showing significant static ASE in 
immune-related tissues across the six sheep are summarized 
in Table  1. On average, approximately 0.5% of the genes in 
each tissue-specific transcriptome showed significant ASE 
(approx. 1% of the filtered set of genes). Pervasive ASE genes 
were investigated by applying the minimum 67% shared rule 
(i.e., an ASE gene was considered “shared” when it exhibited 
ASE in a minimum of four of six sheep). A list of ASE genes 
with significant allelic imbalance (AI) in all tissues, when 
the effect size was averaged across six sheep, was compiled 
(Figure 4A) (Static ASE measured by GeneiASE’s Liptak-
Stouffer method). Six genes exhibited pervasive ASE across 
tissues (i.e., they were shared across all four tissues). In 
the order of allelic imbalance effect size they were NAA50 

FIGURE 2 | Distribution of biallelic SNVs expressed per gene in each of the six T×BF sheep. The total number of SNVs was averaged across thymus, liver, ileum, 
and spleen for every animal. Over 5×107 SNVs were gathered using Ensembl v.92 VCF track. The total number of SNVs per genes is averaged across four tissue 
RNA-Seq in each animal (~5.9 × 106). (A) Histogram of SNVs per gene counts in the reference track (Ensembl in grey) and six sheep in red (females) and blue 
(males) overlaid. (B). The overall numbers of genes and SNVs detected in each animal (averaged over four tissues). (C) Individual histograms from section A with 
females in red and males in blue.
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(N(alpha)-acetyltransferase 50, NatE catalytic subunit) 
with highest ASE effect size in spleen, UBB (ubiquitin   B) 
in thymus, HBP1 (HMG-box transcription factor 1), 

and ENSOARG00000016510 both in spleen, C1orf105 
(chromosome 1 open reading frame 105) in ileum and MTIF2 
(mitochondrial translational initiation factor 2) in thymus.

FIGURE 3 | The histogram of a global reference allelic ratio at every locus in the tissues. The distribution of ref allelic ratio showed a balanced profile without any 
0 or 1 inflation which is observed in the presence of reference mapping bias. The allelic ratio above 0.51 is shown in blue and below 0.49 in red while balanced 
bi-allelic expression (0.49–0.51) is colored in gray. Ref.dp, read counts for reference allele; Alt.dp, read counts for alternate allele. The y axis is square root scaled. 
As discussed in the text SNP that display MAE are not present in any of the samples analyzed, indicating there was no inflation in either 0 or 1 allelic ratio.

TABLE 1 | Total number of genes with significant static ASE in proportion to genes containing informative SNVs (filtered). Total expressed: Average number of genes 
being expressed in all 4 tissues. Total filtered: Average number of genes (containing heterozygote loci) passing read bi-allelic filtration criteria in 4 tissues. Tissue break-
down has been presented as count (%ASE/filtered).

Sheep Thymus Spleen Liver Ileum Total filtered Total expressed 

Female 1 - 136 (1.31%) 153 (1.47%) 92 (0.88%) 10,379 21,150
Female 2 136 (1.28%) 70 (0.66%) 116 (1.09%) 70 (0.66%) 10,572 21,420
Female 3 151 (1.22%) 75 (0.60%) 105 (0.85%) 140 (1.13%) 12,326 21,689
 Avg. 143 (1.25%) 94 (0.85%) 125 (1.13%) 101 (0.89%) 11,092 21,419
Male 1 95 (0.92%) - 157 (1.52%) 86 (0.83%) 10,282 21,361
Male 2 125 (0.99%) 54 (0.43%) 86 (0.68%) 80 (0.63%) 12,514 21,822
Male 3 106 (1.01%) 71 (0.67%) 110 (1.04%) 82 (0.78%) 10,480 21,545
 Avg. 109 (0.97%) 62 (0.55%) 118 (1.08%) 83 (0.74%) 11,092 21,576
Total avg. 126 (1.13%) 78 (0.70%) 121 (1.09%) 92 (0.82%) 11,092 21,497
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Sets of genes with tissue-specific ASE profiles were also 
captured (Figures 4B–E). Thymus had the highest number of 
tissue-specific ASE genes (n = 15) followed by liver (n = 12), spleen 
(n = 5), and ileum (n = 4) (Figures 4B–E). Among the thymus gene 
set was CD244, which included 30 heterozygote loci with allelic 
imbalance, one of which was rs406633825. This missense allele 
(Chr1:110308273 C > A; pVal123Phe MAF = 0.3, SIFT score = 0 
deleterious) has previously been reported in the Texel population 
characterized by the International Sheep Genome Consortium 
(ISGC) (Kijas et al., 2012). The CD244 protein molecule, a non-
MHC (major histocompatibility complex)-mediated marker 
expressed by NK cells and multiple subsets of CD8+ T cells is 
known for both pro-inflammatory and inhibitory effects on 
lymphocytes (McNerney et al., 2005; Georgoudaki et al., 2015). 
CD244 exons 2 to 5 are highly conserved in vertebrates and in 
mouse a trypanosome infection model indicated differential 
expression was correlated with multiple-copy number variants 
nearby (Goodhead et al., 2010).The liver-specific ASE profile 
included genes involved in amino acid metabolism, cytochrome 
oxidase pathways and fibrinogen: FGA (fibrinogen alpha 
chain), ENSOARG00000003175 (taurochenodeoxycholic 
6 alpha-hydroxylase-like), ENSOARG00000001568 (novel 
gene, complement C4-A-like), CYP3A24 (cytochrome P450 
CYP3A24), and CA3 (carbonic anhydrase 3). Allelic imbalance 

in spleen was present in CACYBP (calcyclin binding protein), 
DAPK2 (death-associated protein kinase 2), and a novel gene 
GIMAP8-like (ENSOARG00000001131). The ASE in GIMAP8 
has been previously reported in cattle with a strong paternal 
parent-of-origin expression pattern (Chamberlain et al., 2015). 
The proteins derived from the GIMAP/IAN gene family, are 
involved in survival, selection, and homeostasis of lymphocytes 
(Nitta and Takahama, 2007).

Two genes of functional interest showed evidence of strong 
tissue-specific ASE in the spleen: SNAP23 and MYLK. SNAP23 
protein is a key molecule in vesicle transport machinery of the 
cell and has been reported to be expressed in sheep spleen. 
SNAP23 or Synaptosome-Associated Protein 23 is part of the 
protein complex involved in class 1 MHC-mediated antigen 
processing and presentation and in neutrophil degranulation 
(Fabregat et al., 2018). SNAP23 gene is also vital to lymphocyte 
development (both B and T) in vitro (Wong et al., 1997; Kaul 
et al., 2015). The myosin light chain kinase (MYLK) expression 
in the splenic trabeculae’s smooth muscle has been demonstrated 
previously (Jiang et al., 2014; Clark et al., 2017). Overall, 199 
heterozygote bi-allelic loci were present within the MYLK gene. 
The variant rs400678033 (Chr1:186347056G > A;.pAla1014Val), 
a missense SNV in exon 17 of 33 exons in MYLK, showed 
consistent allelic imbalance in all spleen samples.

FIGURE 4 | Genes exhibiting static ASE shared across tissues from all six sheep. The x axis represents the mean allelic imbalance (averaged static ASE across 
sheep in each tissue). (A) Genes shared by four tissues with significant (false discovery rate [FDR], < 0.1) static ASE. (B) ASE genes private to Ileum. (C) Private to 
liver. (D) Private to spleen. (E) Private to thymus
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In summary, analysis of ASE across immune-related tissues 
revealed there were a small number of ASE genes that were 
shared across tissues. ASE signatures instead tended to be tissue-
specific, within the sub-set of tissues investigated in this study.

Individual-Specific ASE Signatures
To investigate whether ASE profiles were either shared across all 
six sheep or private to individual sheep, we used intersectionality 
(Figure 5). Each tissue was investigated separately. A number of 
private (to each individual) ASE genes were detected for each 
tissue, ranging from: 31–123 in ileum (Figure 5A), 24–80 in liver 
(Figure 5B), 21–83 in spleen (Figure 5C), and 31–66 in thymus 
(Figure 5D). Some of the shared sets of ASE genes in these tissues 
were specific to either male or female sheep, these sex-specific ASE 
signatures are described in Figure 5. In ileum, no sex-specific set 
was observed (Figure 5A). In contrast to ileum, the ASE profile 
for liver included a single gene with female only membership, 
ENSOARG00000017409 (novel gene; 93% orthology with bovine 
dicarbonyl and l-xylulose reductase [DCXR]) (Figure 5B). In the 
spleen, all female sheep shared significant ASE in PMS1 (PMS1 
homolog 1, mismatch repair system component), ANKRD10 
(ankyrin repeat domain 10) and ENSOARG00000006103 which 
was not present in any of the spleen profiles of male sheep 
(Figure 5C). In the thymus, there were two sex-specific sets: 16 
genes showing ASE only in females and five genes only in males. 
The female-specific thymus gene set included: ARPP21 (cAMP 
regulated phosphoprotein 21), CDKL3 (cyclin-dependent kinase-
like 3), CEP19 (centrosomal protein 19), ENSOARG00000000710 
(novel gene), ENSOARG00000001163 (novel gene), 
ENSOARG00000008981 (novel gene; t-lymphocyte surface 
antigen Ly-9-like), ENSOARG00000006215, ENA000000008981, 
ENSOARG00000009129, ENSOARG00000011375 (blood 
vessel epicardial substance [BVES]), ENSOARG00000015755, 
ENSOARG00000020354 (novel gene; 53% orthology with 
bovine monoacylglycerol acyltransferase [MOGAT1]), 
ENSOARG00000025005, ENSOARG00000026030 (novel gene), 
GPM6A (glycoprotein M6A), RAG1 (recombination activating 
1), STX8 (syntaxin 8). The male-specific thymus set was 
comprised of ENSOARG00000007267 (novel gene; t-cell surface 
glycoprotein CD1a-like), ENSOARG00000016841 (novel gene; 
98% orthology with bovine ATP synthase membrane subunit G 
[ATP5MG]), ENSOARG00000007603, SNX25 (sorting nexin 25) 
and LDHA (L-lactate dehydrogenase A chain) Figure 5D.

In summary, very few ASE genes were shared across all sheep, 
and the majority of ASE profiles were private to each sheep. Sex-
specific ASE signatures were also detected, but due to the small 
sample size (n = 3) in both cases, these should be interpreted 
with caution.

ASE in Stimulated and Unstimulated 
BMDMs (0 h vs 7 h +LPS)
We examined inducible ASE after 7 h of exposure to LPS in 
BMDMs using the ICD mode of GeneiASE (Edsgärd et al., 2016). 
A comparison of LPS-inducible ICD-ASE genes and the genes 
with background static ASE at 0 and 7 h timepoints, was also 

performed. We first assessed whether differences between 0 and 
7 h could be observed using analysis of static ASE. Individual-
specific ASE profiles and a limited number of shared ASE genes 
were also observed in BMDMs. The total number of genes with 
static ASE in the BMDMs is shown in Table 2.

Shared static ASE across both timepoints and independent of 
LPS induction was only observed in five genes. These genes have 
a macrophage associated function and include ITGB2 (Yee and 
Hamerman, 2013), SAA3 (ENSOARG00000009963) (Larson et al., 
2003; Deguchi et al., 2013), CD200R1 (ENSOARG00000019357) 
(Ocaña-Guzman et al., 2018), DCTN5 (ENSOARG00000017281) 
(Habermann et al., 2001), and MTIF2 (also seen in the tissue 
analysis above) (Overman et al., 2003).

The ICD-ASE in BMDMs ± LPS captured fewer ASE genes with 
significant LPS-inducible ASE between the two timepoints than 
the static analysis of ASE. Moreover, there were large differences in 
the number of LPS-inducible ASE genes in each individual sheep, 
indicating significant individual-specific variation in response 
to LPS stimulation. BMDM cultured from female 2 showed no 
LPS-inducible response in comparison to male 3 which was a 
hyper responder with significant inducible ICD-ASE in 28 genes 
(including 634 informative SNVs total). A detailed breakdown of 
SNVs, aggregated within each gene, with significant ICD ASE has 
been summarized in Figure 6.

In summary, the ICD-ASE mode of GeneiASE’s model was not 
capable of capturing a complete picture of differential ASE in the 
BMDM experiment. Static ASE was present in both timepoints; 
however, there were no inducible ASE genes that were shared 
across all six sheep. The highly diverse ASE profile of BMDMs 
was very individual-specific, similar to patterns observed in 
tissues (Supplementary Table S1). These individual-specific 
differences could be due to individual variation in the innate 
immune response or experimental variation introduced during 
primary cell culture or stimulation with LPS.

Condition-Dependent ASE at the SNV 
Level in BMDMs
To further investigate allelic imbalance at the SNV level without 
the aggregative gene model of GeneiASE, Fisher’s exact test 
was used. The filtered read counts for bi-allelic SNVs shared 
by all six sheep BMDMs were selected (n = 646 sites). Allelic 
read counts of each SNV were tested using Fisher’s exact test 
between 0 h and 7 h (2 × 2 table). Overall, the six sheep shared 
646 SNVs with identical allelic genotypes in both timepoints 
of the BMDM RNA-Seq data set. These SNVs were tested for 
association with LPS treatment and only four SNVs showed a 
strong association (FDR < 1 × 10−8) and 12 SNVs had an FDR 
between 1 × 10−2 and 1 × 10−8 (Figure 7). The highest F-statistic 
was at rs430667535 Chr17 Pos:50485358T > C, a synonymous 
variant in ubiquitin C (UBC), a polyubiquitin precursor, and 
also an intronic variant T > C or A > G in pro-apoptotic BRI3 
binding protein (BRI3BP). This variant was shown to have 
a minor allele frequency (MAF) of 0.25 in Texel sheep based 
on the ISCG annotation [ISGC – Ensembl v.92] (Kijas et al., 
2012). The next highest peak was observed on Chr21 under 
SNVs within SAA3 gene boundaries (ENSOARG00000009963) 
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FIGURE 5 | Intersectionality analysis of genes expressing significant ASE across all six sheep. In each tissue from left to right, the set count of genes (dots 
connected by lines) illustrates the number of sheep sharing the gene. The private sets of genes are located at the far right of each graph (single dots with no line). 
The intersections are colored in to illustrate the size of the set of shared genes (red [common to all six sheep], green [shared by five or four sheep], yellow [only 
in females] and purple [only in males]). Detailed lists of genes with ASE shared by at least four sheep are presented above each graph for (A) ileum, (B) liver, (C) 
spleen, and (D) thymus. Two sex-specific sets of genes are highlighted: 16 genes showing ASE only in females (in yellow) and five genes only in males (in purple).
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at the following coordinates: highest FDR peak was observed 
at SNV rs412192652 (Pos:25826978A  > G missense variant 
[Asn145Asp], FDR = 2.3 × 10−15) surrounded by rs403064928 
(Pos:25826884C > A missense variant [Asp113Glu] in exon 4 
of SAA3 FDR = 3.6 × 10−7), rs426609498 (Pos:25826845A  > 
G synonymous, FDR = 5.5 × 10−7) and rs405439099 
(Pos:25826990G > C 3’UTR variant, MAF 0.4 in Texel sheep, 
FDR = 4.1 × 10−5). This region contains a strong LD block 
previously reported by the ISGC COMPOSITE population 
(Ensembl v.92) (Supplementary Figure S4), e.g., rs412192652 
and rs405439099 pairwise D’ statistics = 1. Two further peaks 
on Chr3 were observed for rs159926581 (Pos:214731375T  > 
C synonymous, FDR = 3.3 × 10−9) in ribosomal protein L3 
(ENSOARG00000016495) and rs159822214 (Pos:112164732G > 
A 3’UTR variant, FDR = 9.5 × 10−3) in oxysterol binding protein 
like 8 (OSBPL8). The last inducible ASE associated signal was 
on Chr16 rs420037698 (Pos:6887423G > A, FDR = 6.9 × 10−9) 
in ENSOARG00000004700, a known synonymous variant in the 
Texel population (MAF = 0.55). The SNVs and corresponding 
genes from Fisher’s exact test are summarized in Table 3.

The LPS-inducible ASE analysis, of SNVs, using Fisher’s exact 
test revealed a different picture not captured by the gene level 
analysis with the GeneiASE model that aggregates SNVs within 
each gene (Figure 6 vs Figure 7). The aggregative gene model 
did not capture any shared ASE genes in the ICD-ASE mode. 
Although the six sheep shared 646 SNVs and showed highly 
significant association with stimulation with the LPS (Fisher’s 
exact method), the aggregation of ASE effect size from SNV to 
gene level (ICD-ASE mode) only detected individual-specific sets 
of ASE genes in each sheep. This contradicted the results from 
Fisher’s exact test which detected four highly significant LPS-
inducible shared regions (FDR < 0.01, 16 SNVs) on chromosomes 
3, 16, 17, and 21. For example, the allelic imbalance in the SAA3 
genomic coordinates on chromosome 21 was not detectable in 
the ICD-ASE model but it was captured by the Fisher’s exact test 
in all individuals (Figure 7B chromosome 21).

Fisher’s exact analysis at SNV level revealed ASE in response to 
LPS in variants within CLDN1, ANXA3, BRI3BP, SAA3, and MSR1 
(Table 3). The anti-inflammatory macrophage marker CLDN1 (Van 
den Bossche et al., 2012) and acute-phase inflammation resolution 
marker ANXA3 (Yamanegi et al., 2018) have been previously 
reported with distinct macrophage functions. The macrophage 
scavenger receptor 1 (MSR1) has also been shown to be involved in 
lipid uptake and migration ability of macrophages (Shi et al., 2019). 
Three noncoding RNAs (RF00221 [snoRD43], RF00593 [snoU83B], 
and RF01151 [snoU82P] were among genes corresponding to ASE 
inducible SNVs. These three snoRNAs all overlap with the genomic 
coordinates of ribosomal protein L3 (ENSOARG00000016495/
RPL3). The RF00377 [snoU6-53] was also among the ASE-positive 
targets which overlaps the protein-coding gene CDS2 (CDP-
diacylglycerol synthase 2). Using total RNA-Seq (ribosomal RNA 

TABLE 2 | Total number of genes with significant static ASE in BMDMs ± LPS.

Sheep BMDM 0 h −LPS BMDM 7 h +LPS

Female 1 237 252
Female 2 192 233
Female 3 227 263
Female avg. 219 249
Male 1 205 193
Male 2 300 260
Male 3 260 261
Male avg. 255 238

FIGURE 6 | Intersection analysis of SNVs under genes with significant ICD-ASE in the BMDMs ± LPS. From left to right, the set number of genes (dots connected 
by lines) has been illustrated in order according to the number of sheep sharing the SNV. The private sets of SNVs are located at the far right of each graph (single 
dots with no line).
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depleted), which includes multiple RNA populations, to generate 
short read illumina data makes it difficult to pinpoint the origin of 
the ASE signal to a specific RNA population.

In summary, ASE profiles in BMDMs were highly individual-
specific at both gene and SNV level. Moreover, Fisher’s exact SNV 
level analysis discovered shared ASE SNVs where the aggregative 
gene model of ICD-ASE mode did not, indicating for condition-
dependent ASE analysis Fisher’s exact test is more accurate and 
robust at SNV level.

DISCUSSION

This study is the first to investigate global allele-specific 
expression across tissues from sheep using RNA-Seq data. We 
focused our analysis on immune-related tissues and cell types 
from six adult crossbred sheep (T×BF) from the sheep gene 
expression atlas. ASE profiles were highly individual-specific 
in the six sheep analyzed in this study. We were able to identify 
tissue-specific sets of ASE genes, as well as LPS-inducible sets in 

FIGURE 7 | Scatter plot of the adjusted p values from Fisher’s exact test (unified using Stouffer unification) in BMDMs comparing expression from different alleles 
at 0 vs 7 h at SNV level (LPS-inducible ASE). (A) The graph shows 646 loci exhibiting LPS-inducible allelic imbalance shared across all six sheep. (B) Four loci on 
chromosomes 3, 16, 17, and 21 with false discovery rate (FDR) < 1 × 10−8. FDR < 1 × 10−2 red line (n = 16 SNVs) and FDR < 1 × 10−8 blue line (n = 4 SNVs).

TABLE 3 | The variant IDs of LPS-inducible ASE SNVs (Fisher’s exact) and their respective genes. Data were obtained using Ensembl BioMart query builder. Highly 
significant SNVs are highlighted in bold [false discovery rate (FDR), < 1×10-8].

ID CHR POSITION GENE ID GENE NAME

rs418350332 1 195297663 ENSOARG00000020472 CLDN1
rs159822214 3 112164732 ENSOARG00000014876 OSBPL8
rs159926581 3 214731375 ENSOARG00000016495 –
rs159926581 3 214731375 ENSOARG00000022372 RF00221
rs159926581 3 214731375 ENSOARG00000024737 RF00593
rs159926581 3 214731375 ENSOARG00000025124 RF01151
rs159926581 3 214731375 ENSOARG00000025150 RF00593
rs193634916 4 53430934 ENSOARG00000001754 MDFIC
rs418697910 4 53430968 ENSOARG00000001754 MDFIC
rs162298949 6 92979793 ENSOARG00000018710 ANXA3
rs162298949 6 92979793 ENSOARG00000018710 ANXA3
rs160665956 9 76759747 ENSOARG00000001261 SPAG1
rs424104956 13 46654781 ENSOARG00000017292 CDS2
rs424104956 13 46654781 ENSOARG00000017292 CDS2
rs424104956 13 46654781 ENSOARG00000022618 RF00377
rs420037698 16 6887423 ENSOARG00000004700 –
rs430667535 17 50485358 ENSOARG00000017707 BRI3BP
rs430667535 17 50485358 ENSOARG00000018177 UBC
rs403064928 21 25826884 ENSOARG00000009963 SAA3
rs405439099 21 25826990 ENSOARG00000009963 SAA3
rs412192652 21 25826978 ENSOARG00000009963 SAA3
rs161531178 26 19663270 ENSOARG00000009626 MSR1
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the BMDM experiment. Tissue-specific signatures of ASE have 
been previously reported in similar studies in mouse (Castel 
et al., 2015; Castel et al., 2016), goat (Cao et al., 2019) and cattle 
(Chamberlain et al., 2015).

Several steps were taken in the cattle study (Chamberlain 
et al., 2015) to mitigate the ref allele bias, assign parental origin 
using whole genome sequences and include MAE variants. The 
SNV filtration was based on the (Hayes and Daetwyler, 2019) 
1000 bull genomes project to confirm the heterozygote sites. In 
our pipeline, the Ensembl VCF track was used for that purpose. 
Chamberlain et al. (2015) use a 0.9 allele frequency cutoff (based 
on read counts) to define and include MAE, and as such have a 1 
and 0 inflated allelic ratios. In our pipeline, no allelic ratio cutoff 
is introduced for inclusion as it is difficult to distinguish between 
sequencing error and MAE. The minimum read (bi-allelic 
expression) filtration criteria was applied to exclude highly 
sequenced loci (Either count/Total >1%) or sequencing errors 
presenting as rare alleles (min either allele count ≥ 3) which 
consequentially excludes actual MAE as well as spurious allelic 
counts. Chamberlain et al. tested 5317 genes (14,495 SNVs) in 
spleen and detected 382 ASE genes (with min > 1 SNV per gene, 
similar to this study). Although direct comparison would not 
be appropriate (because we have excluded MAE variants in our 
analysis), our analysis of sheep spleen revealed ASE in 86 genes 
(averaged in five sheep) from 8272 filtered genes (averaged in 
five sheep). Similarly, in the thymus, the cattle study showed 182 
ASE genes from 986 informative genes (9781 SNVs), whereas 
from 7961 filtered genes in sheep thymus, 134 ASE genes were 
captured. The differences in the numbers of genes exhibiting 
ASE between the two studies are likely to be a consequence of 
the filtration criteria applied, the exclusion of MAE, and species-
specific differences between sheep and cow. Results from a more 
recent study in goat (Cao et al., 2019) more closely reflect our 
findings. They apply similar filtration criteria to our workflow 
and discovered 144 ASE genes in liver in comparison to 123 in 
our sheep liver sets (averaged across six sheep). Other recent 
studies, including those focusing on production relevant tissues, 
such as muscle (Guillocheau et al., 2019), have also applied 
similar stringency in filtration criteria. The filtering criteria we 
have used for this analysis is stringent and focused on detecting 
variants of moderate to extreme effects. Further analysis of the 
data set reducing these criteria might discover additional variants 
exhibiting ASE across individuals and tissues, but it would also 
increase the potential risk of false-positive discovery.

For this analysis, we have adapted an ASE analysis workflow 
with a primary focus on mapping bias removal prior to allele-
specific analysis of the transcriptome. The collection of scripts for 
WASP, used for this analysis, or modified versions of them have 
been utilized by others for mapping bias removal in reference-
guided genomic data sets, e.g., RNA-Seq (Mozaffari et al., 2018; 
Zhou et al., 2018), Chip-Seq (Pelikan et al., 2018), and for 
methylomic and epigenetic analysis (Richard Albert et al., 2018).

The ASE analysis pipeline we have adapted for sheep for this 
study is also adaptable to other species and tissue types with 
available RNA-Seq data sets. It could be applied, for example, to 
profile allele-specific expression in the RNA-Seq data sets from 
livestock species listed on the FAANG data portal (Andersson 

et al., 2015; Harrison et al., 2018). We used the Ensembl VCF 
track to capture information at heterozygote loci; however, 
the individual VCF file from each sheep could also be used in 
ASE analysis. The latter strategy might enable the capture of 
rare variants not included in the publicly available VCF tracks 
but would also raise the issue of normalization/standardization 
between VCF call sets. The usage of either of these methods 
will be limited to the number of loci shared by coordinate and 
bi-allelic genotype (i.e., pervasive ASE discovery). Other studies 
have compared variants at the RNA and DNA level from the 
same individual and then removed the DNA variants not present 
in the RNA-Seq data from the analysis (Guillocheau et al., 2019). 
We believe that the strength of the pipeline we present is that it 
does not require parental genotypes and can therefore be applied 
to other RNA-Seq data sets for livestock where this information 
is not available.

In our analysis we have not considered either parent-of-origin 
or breed-of-origin-specific effects in this analysis. For parent-
of-origin or breed-of-origin assignment of these ASE profiles, 
DNA level genotypes from the parents of the six sheep from the 
gene expression atlas (i.e., Texel sire and Scottish Blackface dam) 
would be required, and these are unfortunately not available. 
In this study, ASE expression profiles also might be affected by 
the direction of the cross (i.e., Texel sire × Scottish Blackface 
dam). To fully characterize parent-of-origin or breed-of-origin, 
reciprocal cross experiments would be required. Reciprocal cross 
studies in mouse (Huang et al., 2017), chicken (Zhuo et al., 2017), 
and crossbred cattle (Chen et al., 2016b) have shed light on the 
complexity of such pervasive ASE markers and parent-of-origin 
effects. Though potentially very interesting, these experiments 
are lengthy and costly to perform in sheep. Particularly, in this 
case, because the reciprocal cross (Scottish Blackface dam × Texel 
sire) is rarely used in the UK sheep industry and as a consequence 
has limited relevance to production.

Our approach also excludes mono-allelic expression. The 
minimum filtration criteria utilized in our workflow along with 
the reference mapping bias removal step ensures an unbiased 
ASE discovery in the transcriptome by excluding the ambiguity 
surrounding MAE variants. This form of analysis is based on the 
principle that absence of evidence (reads) for either allele of a 
heterozygote site does not directly amount to evidence of their 
absence, i.e., MAE. The pattern of ASE (ratio of Alt/Ref+Alt) is 
dependent on the bi-allelic expression of loci within the genomic 
coordinates of the gene or genomic element of interest. For an 
ASE effect to be captured by the GeneiASE model, the following 
criteria must be met: (i) biallelic expression of the locus; (ii) min 
depth criteria for each allele (min 3 reads, total 10 reads at that 
site and > 1% of total reads containing that allele); (iii) the allelic 
imbalance or departure from bi-allelic balanced expression being 
inducible by an environmental trigger (i.e., LPS in ICD ASE 
experiment with BMDM data). These stringent criteria secure 
robust transcriptome-wide ASE discovery while maximizing the 
usage of read counts from short read RNA-Seq data sets without 
considering mono-allelic sites. MAE patterns are impossible 
to differentiate from sequencing error or random nonsense-
mediated decay in total RNA-Seq, unless arbitrary cutoffs are 
introduced, such as ratio of allelic read counts > 0.9 (Chamberlain 
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et al., 2015) or > 0.7 (Cao et al., 2019). We decided to exclude 
MAE from this study using read count bi-allelic expression 
filtration because it is difficult to distinguish between sequencing 
error and MAE. We do appreciate that this form of filtration 
might lead to a reduced number of ASE genes discoveries overall 
and will exclude potentially imprinted loci altogether.

The tissues utilized for ASE analysis in this study (thymus, 
spleen, liver, and ileum) are highly influential on performance 
of the immune system. ASE profiles shared across tissues and 
cell types were limited and instead they tended to be highly 
specific. We identified tissue-specific ASE in several genes in 
the thymus, for example, those that are involved in the T cell–
mediated immune response, including CD47 and CD244. These 
tissue-specific and cell-type–specific ASE profiles may underlie 
the expression of economically important traits, such as disease 
resistance. Assessment of the connection between economically 
relevant phenotypes and tissue-specific ASE profiles could be 
useful for the improvement of genomics enabled sheep breeding 
programs, particularly those using specialized sire and dam 
lines (Georges et al., 2018). Loci exhibiting ASE have been 
associated with production traits including milk-fat percentage 
(Hayes et al., 2010; Suárez-Vega et al., 2017), trypanotolerance 
in small ruminants (Kadarmideen et al., 2011; Álvarez et al., 
2016), mastitis in goat (Ilie et al., 2018), Johne’s disease in cattle 
(Mallikarjunappa et al., 2018), and Marek’s disease in chicken 
(Maceachern et al., 2011; Meydan et al., 2011; Cheng et al., 
2015). Although there is no general consensus currently on 
the correlation of allelic expression haplotypes and phenotypes 
under selection in sheep, this form of ASE analysis could pave 
the way for functional validation at population level (e.g., breed 
or haplotype-specific aseQTL studies in a larger population of 
sheep). Examples of population level aseQTL, eQTL, and sQTL 
(QTLs associated with RNA splicing) already exist for cattle 
(Wang et al., 2018; Xiang et al., 2018). Knowledge of favorable 
ASE in critical genes involved in traits of interest could be used 
as a performance indicator or included as weighted SNVs in 
genomic prediction algorithms to enhance livestock breeding 
programs (Georges et al., 2018). Currently, the UK sheep 
industry is on the cusp of applying genomic prediction, but 
suitable genomics enabled breeding programs for sheep already 
exist in New Zealand and Australia (Daetwyler et al., 2010).

CONCLUSIONS

In this study, we characterize extreme to moderate allele-specific 
expression, at the gene and SNV level, in immune-related tissues 
and cells from six adult sheep (T×BF) from the sheep gene 
expression atlas data set. Reference mapping bias removal was an 
integral component of the analysis pipeline applied in this study. 
The correction of reference bias prior to obtaining the allelic read 
counts is a critical step toward true ASE discovery. The workflow 
developed as part of this manuscript provides an RNA-Seq-only–
dependent tool, without the need for individual DNA sequences. 
We note that the stringent filtering process applied would remove 
loci where the allelic imbalance was less extreme but might still 
be of biological significance.

This study is a novel analysis of an existing large-scale complex 
RNA-Seq data set from sheep. Using the pipeline, we have adapted 
for this analysis, we were able to identify ASE profiles that were 
pervasive in each sheep and specific to the tissues and cell types 
investigated. These tissue and cell type-specific ASE profiles 
may underlie the expression of economically important traits 
and could be used to identify variants that could be weighted 
in genomic prediction algorithms for the improvement of sheep 
breeding programs. In summary, we have adapted a robust 
methodology for ASE profiling, using the sheep gene expression 
atlas data set, and provided a foundation for identifying the 
regulatory and expressed elements of the genome that are driving 
complex traits in livestock.
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Genetic Parameters for Yolk 
Cholesterol and Transcriptional 
Evidence Indicate a Role of 
Lipoprotein Lipase in the Cholesterol 
Metabolism of the Chinese 
Wenchang Chicken
Xingyong Chen 1,2, Wenjun Zhu 1, Yeye Du 1, Xue Liu 1 and Zhaoyu Geng 1,2*

1 College of Animal Science and Technology, Anhui Agricultural University, Hefei, China, 2 Anhui Province Key Laboratory of 
Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, China

The yolk cholesterol has been reported to affect egg quality and breeding performance 
in chickens. However, the genetic parameters and molecular mechanisms regulating 
yolk cholesterol remain largely unknown. Here, we used the Wenchang chicken, a 
Chinese indigenous breed with a complete pedigree, as an experimental model, and we 
examined 24 sire families (24 males and 240 females) and their 362 daughters. First, egg 
quality and yolk cholesterol content were determined in 40-week-old chickens of two 
consecutive generations, and the heritability of these parameters was analyzed using 
the half-sib correlation method. Among first-generation individuals, the egg weight, egg 
shape index, shell strength, shell thickness, yolk weight, egg white height, Haugh unit, 
and cholesterol content were 45.36 ± 4.44 g, 0.81 ± 0.12, 3.07 ± 0.92 kg/cm2, 0.340 ± 
0.032 mm, 15.57 ± 1.64 g, 3.36 ± 1.15 mm, 58.70 ± 12.33, and 274.3 ± 36.73 mg/egg, 
respectively. When these indexes were compared to those of the following generation, 
no statistically significant difference was detected. Although yolk cholesterol content 
was not associated with egg quality in females, an increase in yolk cholesterol content 
was correlated with increased yolk weight and albumin height in sire families (p < 0.05). 
Moreover, the heritability estimates for the yolk cholesterol content were 0.328 and 0.530 
in female and sire families, respectively. Therefore, the yolk cholesterol content was more 
strongly associated with the sire family. Next, chickens with low and high yolk cholesterol 
contents were selected for follicular membrane collection. Total RNA was extracted from 
these samples and used as a template for transcriptional sequencing. In total, 375 down- 
and 578 upregulated genes were identified by comparing the RNA sequencing data 
of chickens with high and low yolk cholesterol contents. Furthermore, Gene Ontology 
term and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses 
indicated the involvement of energy metabolism and immune-related pathways in yolk 
cholesterol deposition. Several genes participating in the regulation of the yolk cholesterol 
content were located on the sex chromosome Z, among which lipoprotein lipase (LPL) 
was associated with the peroxisome proliferator-activated receptor signaling pathway 
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and the Gene Ontology term cellular component. Collectively, our data suggested that 
the ovarian steroidogenesis pathway and the downregulation of LPL played critical roles 
in the regulation of yolk cholesterol content.

Keywords: heritability, lipoprotein lipase, Wenchang chicken, yolk cholesterol, egg quality

InTRODUCTIOn

On the day of hatch, most of the yolk sac has been absorbed 
by the bird, which provides sufficient nutrition for the first 
days (0–3 days) posthatch (Yair and Uni, 2011). Moreover, it is 
widely accepted that both growth and breeding performance of 
birds depend largely on their early health (Yadgary et al., 2010). 
Therefore, egg yolk quality plays an essential role in maintaining 
early health and later breeding performance. The main 
components of the egg yolk are triglyceride, cholesterol, lecithin, 
vitamins, and minerals (Ding et al., 2017). Previous studies have 
suggested that cholesterol intake from eggs can affect human 
health, causing dyslipidemia, hyperlipidemia, atherosclerosis, 
or cardiovascular diseases (Andersen et al., 2013; Omole and 
Ighodaro, 2013). Nevertheless, yolk cholesterol is essential for 
egg production and embryo development. Indeed, in hens that 
had decreased or insufficient cholesterol synthesis to maintain 
embryonic development, egg production was reduced or stopped 
(Janjira, 2017). Furthermore, cholesterol homeostasis is essential 
and correlates with egg hatchability. While hatchability was 
increased when the yolk cholesterol content reached a certain 
level, it was decreased when cholesterol levels increased further 
and exceeded a certain threshold (Dikmen and Sahan, 2007).

Yolk cholesterol is mainly derived from de novo synthesis, 
and only a small portion is supplemented by feeding, which 
indicates that yolk cholesterol might be affected by both genetic 
and nutritional factors (Griffin, 1992; Klkin et al., 1997). Previous 
studies have reported that the yolk cholesterol concentration 
varied among breeds ranging from 10 to 100 mmol/L with a 
normal distribution and was positively correlated with embryo 
mortality during hatching (Panda et al., 2003; Yang et al., 2013). 
These observations support the notion that genetic factors 
might regulate yolk cholesterol. Moreover, cholesterol is found 
at relatively low levels in feeding, which further suggests that 
yolk cholesterol is mainly affected by the genetic makeup of the 
bird (Sreenivas et al., 2013). Accordingly, if the heritability of 
yolk cholesterol is high, then individual selection could be used. 
However, if the heritability of yolk cholesterol is moderate or low, 
then sire selection should be preferred.

In mice, oocyte-derived bone morphogenetic protein 15 
(BMP15) and growth differentiation factor 9 (GDF9) have 
been shown to promote cholesterol biosynthesis in cumulus 
cells as a compensation mechanism for cholesterol production 
deficiencies in the oocyte (Su et al., 2008). Furthermore, the 
cyp19a1, cyp17a1, tesc, apoc1, and star genes have been reported 
to play roles in the regulation of steroidogenesis during oocyte 
maturation in both trout and Xenopus (Gohin et al., 2010). 
Moreover, feeding hens with a diet supplemented in alfalfa 

saponin extract has been shown to decrease the yolk cholesterol 
content. This decrease in yolk cholesterol was associated with 
increased expression levels of cholesterol 7 alpha-hydroxylase 
and apolipoprotein H in the liver and decreased expression 
levels of very low-density lipoprotein (VLDL) receptor, 
apolipoprotein B, apovitellenin-1, and vitellogenin in the oocyte 
(Zhou et al., 2014). Nevertheless, little remains known about 
the molecular mechanisms underlying the regulation of yolk 
cholesterol in chicken.

In this study, we used as an experimental model a group 
of Wenchang chickens, an indigenous Chinese breed with 
a detailed pedigree. Egg quality was determined in two 
consecutive generations, and genetic parameters were evaluated 
in individuals and sire families. Moreover, follicular membrane 
was collected from hens with either low or high yolk cholesterol 
content, and transcriptional sequencing was used to screen for 
candidate genes and signal pathways involved in the regulation 
of cholesterol synthesis.

MaTERIaLs anD METhODs

Birds Management
All birds used in this study were Wenchang chickens, a Chinese 
indigenous breed with a complete pedigree. A total of 24 sire 
families (24 males and 240 females) and 362 daughters (equality 
distributed among the sire families with pure breeding) were 
raised with one bird per cage and maintained on a 16 L/8 D (16 
h light and 8 h dark) photoperiod during egg laying. At 40 weeks 
of age, eggs and follicular tissues were collected for quality and 
yolk cholesterol analysis. Hens were artificially inseminated, 
and all birds were kept at 15–20°C during the egg-laying period. 
Egg quality and cholesterol content were determined in two 
successive generations.

All experimental procedures were performed following 
guidelines developed by the China Council on Animal Care 
and Protocols and were approved by the Animal Care and Use 
Committee of Anhui Agricultural University, China (permission 
no. SYDW-P2017062801).

Egg Quality and Yolk Cholesterol analysis
Three eggs were collected from each bird within five consecutive 
days, and egg quality was assessed within 24 h after collection. A 
digital scale (accuracy: 0.01 g) was used to measure the weight 
of each egg. An electronic digital caliper was used to measure 
the longitudinal diameter (LE) and the transverse diameter (WE) 
of each egg, and the egg shape index was defined as the WE/LE 
ratio. Shell strength was measured using an eggshell force gauge 
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(model II, Robotmation, Tokyo, Japan). Then, the egg was broken 
onto a flat surface, and the height of the inner thick albumen 
(egg white) was measured using an egg analyzer (model EA-01, 
ORKA Food Technology, Ramat HaSharon, Israel). The yolk was 
separated from the albumen, weighed, and stored at -20°C for 
cholesterol determination. The shell thickness was measured 
using a digital Vernier caliper (model NFN380, Fujihira Industry, 
Tokyo, Japan).

After weighing the yolk, ~0.1 g of yolk was transferred to a 1.5-
ml tube. Nine times by weight of anhydrous ethanol were added 
to the yolk, and the mixture was mechanically homogenized 
for 30 s at 50 Hz in an ice water bath. Next, all samples were 
centrifuged for 10 min at 2,500 rpm, and 25 µl of the supernatant 
was transferred into a well of a 96-well plate. After adding 250 μl 
of working solution (50 mmol/L Good’s buffer, 5 mmol/L phenol, 
0.3 mmol/L 4-AAP, ≥50 KU/L cholesteryl esterase, ≥25 KU/L 
cholesterol oxidase, and ≥1.3 KU/L peroxidase) to each well, the 
solution was mixed and incubated for 10 min. The optical density 
(OD) was measured at wavelength of 510 nm, and the cholesterol 
content was calculated using the following formula: cholesterol 
content (mg) = (sample OD - blank OD)/(corrected OD - blank 
OD) × dilution factor × yolk weight × 386.6535/1,000.

Follicular Tissue Collection, Total Rna 
Extraction, and cDna Library Construction
After yolk cholesterol been determined, birds with the lowest 
(L group) and highest (H group) yolk cholesterol content were 
selected for follicular tissue collection. For each group, three hens 
at 41 weeks of age were killed ~22 h after ovulation, and then, 
the ovaries were collected rapidly and kept on ice. Three largest 
(25–30 mm) yellow preovulatory follicles were isolated from 
each ovary. The yolk was squeezed out, and the granulosa layer 
was collected, divided into two parts, and immediately stored in 
liquid nitrogen for RNA isolation.

Total RNA was isolated from individual samples using the 
OMEGA total RNA extraction kit (Omega Bio-Tek, Norcross, 
GA, USA) according to the manufacturer’s recommendations. 
RNA integrity number and quality were analyzed using an 
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, 
CA, US). Then, qualified total RNA was further purified using 
an RNase-Free DNase Set (Qiagen, Hilden, Germany). Purified 
total RNA was used for the construction of a complementary 
DNA (cDNA) library and subsequent sequencing (NEB Next 
Ultra Directional RNA Library Prep Kit for Illumina; New 
England Biolabs, Ipswich, MA, USA). The remaining RNA 
from each sample was reverse transcribed and stored at -80°C 
for RNA sequencing (RNA-Seq) results validation via real-time 
quantitative PCR (RT-qPCR).

Rna-seq
Following messenger RNA purification using Agencourt 
AMPure XP beads (Beckman, Brea, CA, USA), the first 
and second cDNA strands were synthesized using the 
SuperScriptII Reverse Transcriptase (Invitrogen, Carlsbad, 
CA, USA) according to the manufacturer’s recommendations. 

Next, double-stranded cDNA was end repaired, adenylated, 
and ligated to NEBNext Adaptors (New England Biolabs) 
according to the manufacturer’s recommendations. The cDNA 
fragments of 150–200 bp were selected using the Agencourt 
AMPure XP system (Beckman), and PCR was performed using 
the Phusion High-Fidelity DNA polymerase (New England 
Biolabs), universal PCR primers, and an Index (X) primer. 
Clustering of the index-coded samples was performed on a 
cBot Cluster Generation System using the TruSeq PE Cluster 
Kit v3-cBot-HS (Illumina, San Diego, CA, USA) according 
to the manufacturer’s recommendations. After clustering, 
the libraries were sequenced using a paired-end 2 × 125 bp 
lane on an Illumina HiSeq 4000 platform (Shanghai Personal 
Biotechnology, Shanghai, China).

Filtering of Raw Data and Mapping 
of high-Quality Reads to the Chicken 
Reference Genome
Six libraries from each group (n = 3) were sequenced. First, raw 
reads in FASTQ format were filtered to generate clean reads by 
removing reads containing adapters or ambiguous nucleotides 
and reads of low quality, as described by Wang et al. (2017a). 
Then, the filtered reads were mapped to the chicken reference 
genome (Gallus_gallus-5.0) using the spliced mapping algorithm 
of Tophat (version 2.0.9) with no more than two mismatches. 
Basic mapping statistics, mapped reads distribution across 
the chicken genome, and annotated genes were determined to 
evaluate the randomness of the distribution.

Calculation of Gene Expression Level
Gene expression level was calculated using the Cufflinks suite 
(version 2.1.1) on Tophat output. In brief, the specific gene 
location was obtained using gene annotation, and the number 
of reads covering this location was counted. Then, the gene 
expression level was normalized using the following formula: 
fragments per kilobase million (FPKM) = transcription reads/
(transcription length × total mapped reads in the run) × 109.

Differentially Expressed Genes analysis
The normalized FPKM values were used as gene expression levels 
for the analysis of differentially expressed genes (DEGs) using the 
Cuffdiff program of the Cufflinks suite (v2.1.1). The differences 
in gene expression were evaluated using the fold change (≥2.0) 
and Fisher’s exact test (false discovery rate ≤ 0.05).

Functional annotation of DEGs
For the analysis of Gene Ontology (GO) term enrichment, 
the DEGs were first annotated with GO terms, and the 
number of DEGs for each GO term was calculated. Then, the 
hypergeometric test was used to identify GO terms that were 
significantly enriched in DEGs when compared to the chicken 
reference genome. The enrichment was calculated using the 
following formula: enrichment = (m/n)/(M/N), where N is 
the total number of genes annotated with a GO term, n is 
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the number of DEGs in N, M is the total number of genes 
annotated with a specific GO term, and m is the number of 
DEGs in M. The p values were then adjusted by applying the 
Bonferroni correction, and a p value of 0.05 was set as the 
threshold for adjusted p values (false discovery rate). A similar 
method was used for the analysis of the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichment, except 
genes were assigned to KEGG pathways instead of being 
annotated with GO terms.

RT-qPCR Verification of the Rna-seq Data
RT-qPCR was performed to validate the RNA-Seq results, 
using the TB Green Premix Ex Taq  (Takara, Shiga, Japan) 
with SYBR Green Dye and the same RNA samples that were 
used for RNA-Seq. Seven genes were selected for RT-qPCR 
verification. The primers used for these genes are listed in 
Table 1. The reactions were performed in a total volume of 
20  μl according to the manufacturer’s recommendations, 
using an ABI PRISM 7500 sequence detection system (Applied 
Biosystems, Madrid, Spain) and the following conditions: 
5 min at 94°C (1 cycle); 30 s at 94°C, 30 s at annealing 
temperature (according to the primers listed in Table 1), and 
30 s at 60°C (35 cycles); and melting curve from 55 to 94°C. 
Glyceraldehyde 3-phosphate dehydrogenase was selected as 
the endogenous reference gene, and genes from the L group 
were set as the criterion. The expression levels were calculated 
using the 2-∆∆CT method.

statistical analysis
All statistical analyses were performed using the SAS 9.3 software 
(SAS, Cary, NC, USA). Heritability was analyzed using the half-
sib correlation method and evaluated using the VARCOMP 
procedure with the restricted maximum likelihood option. 
Differences in egg quality among individuals and sire families 

were compared using the ANOVA procedure. Differences in egg 
quality between the two consecutive generations were compared 
using the independent t test procedure. The univariate procedure 
was used to test the normal distribution of the yolk cholesterol 
content. The general linear model procedure least squares 
linear model was used to analyze the phenotypic correlation 
between yolk cholesterol content and egg quality among female 
individuals and sire families. All data were expressed as mean 
values ± standard deviation (SD).

REsULTs

Egg Quality and Its Correlation With Yolk 
Cholesterol Content
Among first-generation female individuals, the egg weight, egg 
shape index, shell strength, shell thickness, yolk weight, egg 
white height, Haugh unit, and cholesterol content were 45.36 
g, 0.81, 3.07 kg/cm2, 0.340 mm, 15.57 g, 3.36 mm, 58.70, and 
45.86 mmol/L, respectively. Among second-generation female 
individuals, the egg weight, egg shape index, shell strength, 
shell thickness, yolk weight, egg white height, Haugh unit, and 
cholesterol content were 45.16 g, 0.80, 2.97 kg/cm2, 0.338 mm, 
15.57 g, 3.32 mm, 58.42, and 45.25 mmol/L, respectively (Table 2). 
Accordingly, none of the indexes assessed differed significantly 
between the two generations.

Phenotypic correlation analyses (Table 3) suggested that 
a higher egg weight was associated with an increase in yolk 
weight, shell strength, shell thickness, and egg white height (p 
< 0.05), and a decrease in the egg shape index (p < 0.05). While 
higher yolk cholesterol was not associated with changes in 
egg quality among female individuals, higher yolk cholesterol 
was, however, associated with an increase in yolk weight, 
egg white height, and yolk color in sire families (p < 0.05) of 
Wenchang chicken.

TaBLE 1 | Primers used for RT-qPCR verification of the RNA-Seq data.

no. Gene symbol Ensembl accession no. Primer sequence (5′–3′) annealing temperature (°C)

1 CCL19 ENSGALG00000028256 GAAGCTTTAGGGGGAGCCAATCCTCTAAGACCTCTCCGGG 57
2 OSMR ENSGALG00000003747 TAACTAAAGCAGCGGAGTGCTTTCCCGGGGAGGGTTATCA 55
3 ALOX5 ENSGALG00000005857 CAAACACACGGGAAACCACCCCACCGTCACATCGTAGGAG 57
4 FABP3 ENSGALG00000037050 CCTGGAAGCTGGTGGATACGCCGTGGTCTCATCGAACTCC 59
5 ApoA1 ENSGALG00000007114 GGACCGCATTCGGGATATGGACTTGGCGGAGAACTGGTC 57
6 CYP19A ENSGALG00000013294 ATGGGGATTGGAAGTGCCTGTCATGAAGAAAGGGCGGACC 57
7 LPL ENSGALG00000015425 CCCACTGAAACTTTTTCGCCGCTGTCCAGGAACCAGGTAGC 57

TaBLE 2 | Egg quality among first- and second-generation female individuals and sire families.

source Generation Egg weight 
(g)

Egg shape 
index

shell 
strength  
(kg/cm2)

shell 
thickness 

(mm)

Yolk weight 
(g)

Egg white 
height (mm)

haugh unit Cholesterol 
(mg/egg)

Females 1 45.36 ± 4.44 0.81 ± 0.12 3.07 ± 0.92 0.340 ± 0.032 15.57 ± 1.64 3.36 ± 1.15 58.70 ± 12.33 274.3 ± 36.73
2 45.16 ± 4.02 0.80 ± 0.08 2.97 ± 0.84 0.338 ± 0.031 15.57 ± 1.57 3.32 ± 0.86 58.42 ± 8.90 265.2 ± 22.88

Sire families 1 44.81 ± 2.89 0.82 ± 0.06 3.07 ± 0.51 0.337 ± 1.72 15.52 ± 0.77 3.36 ± 0.26 58.86 ± 3.08 285.2 ± 128.1
2 43.88 ± 1.87 0.78 ± 0.02 3.83 ± 0.403 0.373 ± 0.016 13.72 ± 0.61 4.68 ± 0.301 60.20 ± 3.52 282.7 ± 53.5
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heritability Evaluation
Among female individuals, the heritability estimates for egg 
weight, egg shape index, shell strength, shell thickness, yolk 
weight, and cholesterol content were 0.432, 0.024, 0.030, 
0.374, 0.146, and 0.328, respectively (Table 4). Among 
sire families, the heritability estimates for egg weight, egg 
shape index, shell strength, shell thickness, yolk weight, and 
cholesterol content were 0.354, 0.070, 0.206, 0.516, 0.176, and 
0.530, respectively (Table 4). Accordingly, the evaluation of 
egg weight, shell thickness, and cholesterol content resulted 
in high heritability estimates for each parameter, while 
the evaluation of yolk weight and egg shape index resulted 
in medium and low heritability estimates, respectively. 
Furthermore, the evaluation of shell strength, shell thickness, 
and cholesterol content in sire families resulted in higher 
heritability estimates for each parameter.

Rna-seq Data and Transcriptome 
assembly Results
The sequenced libraries generated an average of 42,290,686 ± 
870,109 raw reads per library. After filtering using the Q20 
standard, the average number of clean reads per library was 
41,785,132 ± 943,074 with a clean read ratio of 98.80 ± 0.34%. 
Among the filtered clean reads, an average of 35,157,925 ± 
900,332 reads per library was mapped to the chicken reference 
genome with a mapping ratio of 84.14 ± 0.97%. Finally, an 
average of 28,863,072 ± 981,091 reads per library was mapped 
to genes with a mapping ratio of 85.39 ± 2.25%. The clean 
reads mapped mostly to gene exons with a ratio of 97.56 ± 
0.34%, and according to the sequencing results, an average of 
15,613 genes was mapped (Supplementary Table 1).

Identification of Candidate Genes Involved 
in Cholesterol Metabolism
GO Term Analysis of the DEGs
The data from two groups, chickens with the highest and lowest 
levels of yolk cholesterol, were compared to identify genes 
with differing reads per kilobase per million values. Compared 
to chickens with the lowest level of yolk cholesterol, a total of 
375 and 578 genes were down- and upregulated, respectively, in 
chickens with the highest level of yolk cholesterol (Figure 1 and 
Supplementary Table 2).

All the DEGs were subjected to GO term and KEGG pathway 
enrichment analyses. In total, 559 genes were assigned to 2,251 
biological processes, 316 cellular components, and 434 molecular 
functions (Supplementary Table 3). Out of these, 42 biological 
processes, 13 cellular components, and 5 molecular functions 
were significantly enriched (p < 0.05) (Figure 2).

Among the various biological processes assigned, positive 
regulation of response to stimulus (GO:0048584) is the largest 
category with a total of 749 genes included, and ~13.36% (72 
out of 539) of the candidate genes were annotated with this 
term. Furthermore, two categories of GO terms associated with 
biological processes were highly represented: GO terms related 
to cell–cell adhesion (9 GO terms) and the immune response 
(25 GO terms). Out of these, the GO terms immune system 
process (GO:0002376) and immune response (GO:0006955) 
were significantly enriched (Supplementary Table 3 and 
Supplementary Figure 1). Moreover, the MYO1G, B2M, CCL19, 
and CD79B highly enriched genes were annotated with more 
than three biological process categories related to the immune 
response, while the LCK, VAV3, and CCLi8 highly enriched 
genes were annotated with the cell adhesion biological process 
category (Supplementary Table 3).

TaBLE 3 | Correlation between the level of cholesterol in egg yolk and egg quality indexes.

source Trait Egg weight Yolk weight Egg shape 
index

shell 
thickness

shell strength Egg white 
height

haugh unit

Females Cholesterol 0.573 0.978 0.412 0.152 0.432 0.155 0.142
Egg weight <0.001 <0.001 <0.001 0.607 0.520 0.101
Yolk weight <0.001 <0.001 0.082 0.042 0.238

Sire families Cholesterol 0.375 <0.001 0.118 <0.001 0.387 <0.001 0.341
Egg weight <0.001 <0.001 <0.001 0.006 0.010 0.653
Yolk weight <0.001 <0.001 0.747 0.405 0.572

TaBLE 4 | Paternal half-sib family structure and heritability estimates.

Trait Egg weight (g) Egg shape index shell strength 
(kg/cm2)

shell thickness 
(mm)

Yolk weight 
(g)

Egg white height 
(mm)

haugh unit Cholesterol 
(mg/egg)

Sires 24 24 24 24 24 24 24 24
K 7.27 7.27 7.27 7.27 7.27 7.27 7.27 7.27
Progeny 362 362 362 362 362 362 362 362

Heritability
Females 0.432 0.024 0.030 0.374 0.146 / / 0.328
Sire families 0.354 0.070 0.206 0.516 0.176 / / 0.530

K = (N - Σni2/N)/(S - 1), N = total number of progeny, ni = number of progeny for sire i, and S = number of sires.
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Regarding cellular component categories, membrane 
(GO:0016020) and membrane part (GO:0044425) were the two 
most represented GO terms with 4,104 and 3,114 genes included, 
respectively. Out of 559 candidate genes, 284 and 228 were assigned 
to the membrane and membrane part categories, respectively. 
Furthermore, genes annotated with the GO term condensin 
complex (GO:0000796) were highly enriched (Supplementary 
Figure 2), and remarkably, all the genes annotated with this GO 
term were downregulated. Considering the role of transport or 
secretion through the follicle membrane in cholesterol formation, 
membrane functions are of particular interest. Among the 13 
significantly enriched GO terms for cellular components, 9 
are related to the membrane, and 17 enriched genes, including 
B2M, ALOX5, LCP1, and LPL, were annotated with more than 3 
membrane-related GO terms.

Lastly, five molecular function categories were enriched 
(Supplementary Table 3), and notably, all the genes annotated 
with the GO term nonmembrane spanning protein tyrosine 
kinase activity (GO:0004715) were upregulated. Furthermore, the 
CCL4, CCL5, and CCL19 highly enriched genes were annotated 
with the signal transport GO term and were all upregulated 
(Supplementary Figure 3).

KEGG Pathway Analysis of the DEGs
In total, 27 KEGG pathways were significantly enriched (p < 0.05). 
They involved 151 genes, 123, and 28 of which were up- and 
downregulated, respectively. Among the significantly enriched 
pathways, three were related to signaling interactions and cell 
transport, and each one of these three pathways involved more than 
20 DEGs (Figure 3 and Supplementary Table 4). Furthermore, 
the highly enriched KEGG pathways were mainly associated 
with signal transduction, lipid metabolism, and the endocrine 
system (Figure  3). Notably, hematopoietic cell lineage was the 
most significantly enriched KEGG pathway for the DEGs highly 
expressed in follicles with the highest level of cholesterol. Moreover, 
the arachidonic acid metabolism, mineral absorption, PI3K-Akt 
signaling, ovarian steroidogenesis, and peroxisome proliferator-
activated receptors (PPARs) signaling KEGG pathways were 
involved in the development of follicles with different cholesterol 
contents. Six genes were involved in ovarian steroidogenesis, 
among which CYP2J, prostaglandin-endoperoxide synthase 2 
(PTGS2), ALOX5, and ADCY7 were upregulated, while CYP19A1 
and phospholipase A2 group IVF (PLA2G4F) were downregulated. 
Interestingly, ALOX5 was also annotated with two GO terms 
(extracellular space and membrane).

FIGURE 1 | Heatmap analysis of key genes involved in yolk cholesterol deposition. Each row represents a single gene, and each column corresponds to a 
sequenced sample. The level of expression of each gene is color coded with green and red representing low and high expression levels, respectively.
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Expression of DEGs Involved in the 
Development of Follicles With Different 
Cholesterol Contents
We found that many DEGs were involved in the development of 
follicles with different cholesterol contents, including B2M, ALOX5, 
LCP1, LPL, FABP3, APOA1, FLRT2, GPRC5B, GOLM1, GLDN, 
and others. Within this list, 23 genes were mapped to the sex 
chromosome Z, including LPL, CCL19, OSMR, GOLM1, and SYK.

Next, the highly enriched DEGs were mapped to the chicken 
protein–protein interaction networks of the STRING database 
(https://string-db.org). The Cytoscape software was then 
used to produce a protein–protein interaction plot (Figure 
4). Lipoprotein lipase (LPL) was significantly downregulated 
in follicular cells with the highest level of cholesterol and had 
strong protein–protein interactions, as reflected by high STRING 
combined scores (the combined score is based on the evidence 
in the STRING database and reflects the level of confidence of a 
protein–protein interaction). Meanwhile, PTGS2 was upregulated 
and exhibited strong protein–protein interactions (i.e., high 
STRING combined scores).

We selected seven DEGs (both up- or downregulated in 
chicken follicular cells with the highest level of cholesterol) 
and compared the messenger RNA quantification from the 
transcriptional sequencing results with the expression level 
assessed by RT-qPCR. Globally, we found a good correlation 
for the expression trend of the selected genes, as measured by 
RNA-Seq and RT-qPCR (Figure 5). However, the expression of 
ALOX5 and OSMR exhibited no difference between the H and L 
groups when measured by RT-qPCR. Furthermore, the detected 
expression level of CCL19 was relatively low, while the expression 
level of LPL and CYP19A was significantly higher in follicular 
cells from the L group than in that from the H group.

DIsCUssIOn

In agreement with a previous report by Baumgartner et al. (2008), 
this study did not find evidence of a significant association between 
the yolk cholesterol content and various indexes of egg quality. 
Accordingly, these observations suggested that the yolk cholesterol 
content could not be regarded as a standard index for egg quality. 

FIGURE 2 | Gene Ontology (GO) term enrichment analysis of candidate genes. The scatter plot presents the results of the GO term enrichment analysis for the 
candidate genes. The y-axis shows the GO terms significantly enriched (p < 0.05), and the x-axis shows the log 10 p values. The size of the bubble corresponding 
to a specific GO term indicates the number of candidate genes annotated with this term.
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Furthermore, Ledur et al. (2000) reported that egg quality differed 
among individuals and increased with age, which suggested that 
layer performance might be improved by performing selection at 
an older age. Moreover, the male line is expected to improve egg 
production at the end of the cycle (Bulut et al., 2013; Goraga et al., 
2013). Therefore, it has been proposed that cholesterol synthesis 
might be affected by the sire family and could be regulated by 
genes located on chromosome Z (Ledur et al., 2000). Our analyses 
suggested that the egg weight, shell strength, shell thickness, and egg 
shape index were correlated with the yolk weight. Indeed, a heavier 
egg yolk might require more surrounding egg white and shell, which 
would result in higher egg weight. While the weight of the egg yolk 
depended on follicular development, the cholesterol content of 
the egg yolk was positively correlated with the egg weight, which 

suggested that cholesterol and egg yolk were the most important 
factors affecting egg weight (Baumgartner et al., 2008). In general, 
a relatively high cholesterol content has been associated with good 
health conditions in birds, whereas higher nutrient content in the 
egg yolk has been associated with a higher egg weight (Zhang, 2016).

In this study, the heritability estimate for the egg weight in 
Wenchang chickens was 0.432 in females and 0.354 in sire families. 
Overall, these estimates are in agreement with a previous study by 
Rath et al. (2015), which reported a heritability estimate of 0.443 
for the egg weight in white leghorns chickens. Furthermore, in this 
study, shell thickness was positively correlated with shell weight, 
and the estimated heritability of shell strength (0.030 in females 
and 0.206 in sire families) was consistent with previous reports 
(Rath et al., 2015; Alwell et al., 2018). For the moderate heritability 

FIGURE 3 | Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially expressed genes. The x-axis shows the enrichment score, 
the size of a bubble indicates the log value of the number of genes enriched in a pathway, and the color shade represents the p value determined using Fisher’s 
exact test.
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of shell strength in sire family, it might be more appropriate for 
sire selection to achieve a quick progress in breeding. In contrast, 
the egg shape index and yolk weight had relatively low heritability 
estimates, which might be due to the high phenotypic variance, 
and further suggested that these two traits could not be selected 
using phenotypic values. Lastly, the heritability estimate for yolk 
cholesterol content was higher in sire families than in females, which 
further indicated that yolk cholesterol content was controlled by 
genes located on the chromosome Z and could be selected through 
the male line (Ledur et al., 2000).

Ovarian follicle development requires markedly increased 
DNA and protein synthesis in the granulosa cells of the follicle 
membrane (Seol et al., 2006; Bonnet et al., 2011). During the 
rapid growth of chicken follicles, DNA and protein synthesis is 
stimulated and regulated by a variety of steroid hormones (Diaz, 
2011) and the expression of genes involved in this progress. For 
example, the biological function of the phospholipase A2 (PLA2) 
subfamily of enzymes is to catalyze the hydrolysis of the sn-2 
position of membrane glycerophospholipids, which leads to the 
production of free fatty acids and lysophospholipids (Duncan 
et al., 2008). Furthermore, several reports have involved PLA2 
in the induction of cell apoptosis. In chickens with the highest 
yolk cholesterol content, the downregulation of PLA2G4 in 

the ovarian steroidogenesis pathway suggested that increased 
phospholipids synthesis was required for cholesterol deposition 
(Diouf et al., 2006; Aljakna et  al., 2012). Moreover, PTGS2 has 
been reported to be induced or upregulated by the luteinizing 
hormone surge during ovulation in rodent and fish (Yerushalmi 
et al., 2014; Tang et al., 2017). Therefore, the upregulation of 
PTGS2 in follicles might also suggest that ovulation occurs more 
frequently in chickens producing eggs with a higher cholesterol 
content. Indeed, the increased level of PTGS2, together with the 
action of arachidonate-5-lipoxygenase (ALOX5), would further 
promote the release of arachidonic acid (Kurusu et al., 2009), and 
the subsequent conversion of arachidonic acid by downstream 
metabolic enzymes of the CYP2J subfamily could impact the 
ovulatory mechanisms (Newman et al., 2004).

The expression of LPL in the ovarian follicles of domestic 
chicken was first identified by Benson et al. (1975). LPL is an 
essential enzyme of VLDL metabolism and exhibits high levels 
of expression in rapidly growing ovarian follicles, which provides 
follicular tissues with the enzyme required to hydrolyze VLDL into 
fatty acids and monoglycerides (Gupta et al., 2017). In the present 
study, LPL was expressed at a relatively low level in the ovarian 
follicles with the highest cholesterol content. Therefore, we would 
like to propose that low levels of LPL play a role in the retention 

FIGURE 4 | Protein–protein interaction network analysis of selected differentially expressed genes. Proteins highlighted in red and green were significantly 
down- and upregulated, respectively, while proteins highlighted in yellow showed no significant difference. In the network, each line represents the strength of the 
relationship between two proteins. Strong interactions are indicated by high STRING combined scores and wide lines, while weak interactions are indicated by low 
STRING combined scores and narrow lines.
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of high VLDL levels, which in turn leads to an increase in the 
amount of VLDL-cholesterol and triglyceride-rich lipoproteins in 
ovarian follicles. Furthermore, VLDL has been demonstrated to 
be a source of neutral lipids in the oocytes of anguillid eels and 
cutthroat trouts (Damsteegt et al., 2015; Lubzens et al., 2017). 
Moreover, the downregulation of LPL has been involved in the 

PPAR signaling pathway. As part of the PPAR signaling pathway, 
ApoA1 and FABP3 play roles in lipid metabolism (Wang et al., 
2017b), while PEPCK plays a role in gluconeogenesis (Glorian 
et al., 2001). ApoA1, FABP3, and PEPCK are also all upregulated 
in response to retinoid X receptor alpha. Unlike mammalians 
where females have XX and males XY sex chromosomes, birds 

FIGURE 5 | Validation of the RNA-Seq results via real-time quantitative PCR RT-qPCR analyses. (a) Diagram showing the reads per kilobase per million value of 
each gene in both low (L) and high (H) cholesterol content groups. (B) Diagram showing the expression level quantified by RT-qPCR of the indicated genes in both L 
and H groups.
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have the ZW system where females have ZW and males ZZ sex 
chromosomes. In male chickens, it has been shown that the 
two copies of chromosome Z are not affected by global dosage 
compensation mechanisms, and therefore, genes located on 
chromosome Z usually exhibit higher levels of expression in males 
than in females (Toups et al., 2011). The LPL gene is assigned to 
chromosome Z and usually exhibits a low level of expression in 
birds (Han, 2005), which might explain the negative correlation 
with the yolk cholesterol content in sire families.

In mammals, pregnancy will improve the innate and 
adaptive immunity during gestation to increase pregnancy 
outcomes (Kraus et al., 2012). Similar to mammals’ pregnancy, 
follicles formation and ovulation in chickens may also need 
improved immunity to guarantee a higher egg quality. During 
the rapid growth phase of ovarian follicles, the components 
of the follicle matrix expand rapidly, which acts as intrinsic 
mechanical stress during the accumulation of yolk precursors 
(Kraus et al., 2012; Richards et al., 2008). We speculated 
that, in the follicles with the highest cholesterol content, this 
phenomenon was responsible for the increased expression of 
genes related to the immune response and signaling pathways, 
including hematopoietic cell lineage, toll-like receptor 
signaling pathway, and others.

Energy and substrate sources are also required for ovarian 
folliculogenesis (Seol et al., 2006). Interestingly, genes related 
to the arachidonic acid metabolism, which contributes to 
energy intake, were significantly enriched in ovarian follicles 
with a high cholesterol content (Lee et al., 2005). Our data 
suggested that VLDL absorption as a yolk precursor in ovarian 
follicles with the highest cholesterol content was mediated 
through the downregulation of LPL expression. This contrast 
with the situation in mammals, where phospholipase A2 
group IVA (PLA2G4A) expression is upregulated in granulosa 
cells at ovulation (Diouf et al., 2006), and the yolk exhibits 
a higher content of arachidonic acid through the down- 
and upregulation of PLA2G4F and PTGS2, respectively. 
Furthermore, in cows, the upregulation of PLA2G4A has been 
associated with a down- and upregulation of CYP19A1 and 
PTGS2, respectively (Sirois, 1994). These differences might 
indicate that a high cholesterol content requires arachidonic 
acid degradation and PLA2 downregulation to maintain high 
levels of phospholipids while keeping the same expression 
trend for CYP19A1 and PTGS2.

COnCLUsIOns

The yolk cholesterol content was most affected by the sire family 
with a heritability estimate of 0.530. Furthermore, the ovarian 
steroidogenesis pathway appeared to affect the yolk cholesterol 
content, with the downregulation of the LPL gene located on 
chromosome Z playing key roles. In contrast to mammals, a high 
yolk cholesterol content appeared to require the downregulation 
of PLA2G4A in chickens, which might also affect ovulation. 
Nevertheless, further studies with LPL  overexpression or 
knockdown are required to confirm its role in the functional 
regulation of the yolk cholesterol content in birds.

DaTa aVaILaBILITY sTaTEMEnT

The data used in this manuscript can be found according to 
the link below: https://www.ncbi.nlm.nih.gov//bioproject/
PRJNA532290.

EThICs sTaTEMEnT

All experimental procedures were performed following 
guidelines developed by the China Council on Animal Care 
and Protocols and were approved by the Animal Care and Use 
Committee of Anhui Agricultural University, China (permission 
No. SYDW-P2017062801).

aUThOR COnTRIBUTIOns

XC designed the study, analyzed and interpreted the data, 
and wrote the paper. WZ conducted egg quality measurement 
and follicle membrane collection. YD conducted qPCR 
experiments. XL extracted RNA from follicle membrane. ZG 
designed the study.

FUnDInG

Support for this project was provided in part by the Major 
Scientific and Technological Special Project in Anhui Province 
(18030701174), the Open Fund of Anhui Province Key 
Laboratory of Local Livestock and Poultry, Genetical Resource 
Conservation and Breeding (AKLGRCB2017001), and the 
Key project of natural fund of Anhui Provincial Education 
Department (KJ2018A951).

aCKnOWLEDGMEnTs

We thank Ms. Boni G. Funmilayo, from Anhui Province Key 
Laboratory of Local Livestock and Poultry Genetic Resource 
Conservation and Bio-breeding, for correcting the grammar 
of the manuscript. We also thank Anhui Huadong Mountain 
Fresh Agricultural Development Co., Ltd for providing all the 
experimental materials.

sUPPLEMEnTaRY MaTERIaL

The Supplementary Material for this article can be found online at: 
https://www.frontiersin.org/articles/10.3389/fgene.2019.00902/
full#supplementary-material 

sUPPLEMEnTaRY FIGURE 1 | Directed acyclic graph (DAG)display of GO 
highly enriched biological process results with candidate targeted genes. The 
enrichment of GO terms is color coded from low (light yellow) to high (red). 

sUPPLEMEnTaRY FIGURE 2 | Directed acyclic graph (DAG) display of GO 
highly enriched cellular component results with candidate targeted genes. The 
enrichment of GO terms is color coded from low (light yellow) to high (red). 

sUPPLEMEnTaRY FIGURE 3 | Directed acyclic graph (DAG) display of GO 
highly enriched molecular function results with candidate targeted genes. The 
enrichment of GO terms is color coded from low (light yellow) to high (red).

Frontiers in Genetics | www.frontiersin.org October 2019 | Volume 10 | Article 902236

https://www.ncbi.nlm.nih.gov//bioproject/PRJNA532290
https://www.ncbi.nlm.nih.gov//bioproject/PRJNA532290
https://www.frontiersin.org/articles/10.3389/fgene.2019.00902/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2019.00902/full#supplementary-material
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


LPL Response to Yolk CholesterolChen et al.

12

REFEREnCEs

Aljakna, A., Choi, S., Savage, H., Blair, R. H., Gu, T., Svenson, K. L., et al. 
(2012). Pla2g12b and Hpn are genes identified by mouse ENU mutagenesis 
that affect HDL cholesterol. PLoS One 7, e43139. doi: 10.1371/journal.
pone.0043139

Alwell, J. S., Abdur-Rahman, A., and Chukwujindu, N. S. (2018). Heritability 
estimates of egg weight and egg shell weight in Ikenne, Nigeria. Intl. J. Sci. 
World 6, 38–42. doi: 10.14419/ijsw.v6i1.8677

Andersen, C. J., Blesso, C. N., Lee, J., Barona, J., Shah, D., Thomas, M. J., et al. 
(2013). Egg consumption modulates HDL lipid composition and increases the 
cholesterol-accepting capacity of serum in metabokic syndrome. Lipids 48, 
557–567. doi: 10.1007/s11745-013-3780-8

Baumgartner, J., Koncekova, Z., Benkova, J., Peskovicova, D., Simenovova, J., 
and Csuka, J. (2008). Changes in egg quality traits associated with long-term 
selection for lower yolk cholesterol content in Japanese quail. Czech J. Anim. 
Sci. 53, 119–127. doi: 10.17221/2715-CJAS

Benson, J. D., Bensadoun, A., and Cohen, D. (1975). Lipoprotein lipase of ovarian 
follicles in the domestic chicken (Gallus domesticus). Proc. Soc. Exp. Biol. Med. 
148, 347–350. doi: 10.3181/00379727-148-38537

Bonnet, A., Bevilacqua, C., Benne, F., Bodin, L., Cotinot, C., Liaubet, L., et al. 
(2011). Transcriptome profiling of sheep granulose cells and oocytes during 
early follicular development obtained by Laser Capture Microdissection. BMC 
Genomics 12, 417. doi: 10.1186/1471-2164-12-417

Bulut, Z., Kurar, E., Ozsensoy, Y., Nizamlioglu, M., Garip, M., Yilmaz, A., et al. 
(2013). Determination of chromosomal regions affecting body weight and egg 
production in Denizli × White Leghorn F2 populations. Eurasian J. Vet. Sci. 
29, 30–38.

Damsteegt, E. L., Falahatimarvast, A., Mccormick, S. P., and Lokman, P. M. (2015). 
Triacylglyceride physiology in the short-finned eel, Angulla australis—changes 
throughout early oogenesis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, 
R935–R944. doi: 10.1152/ajpregu.00436.2014

Diaz, F. J. (2011). Early avian follicular development is characterized by changes in 
transcripts involved in steroidogenesis, paracrine signaling and transcription. 
Mol. Reprod. Dev. 78, 212–223. doi: 10.1002/mrd.21288

Dikmen, B. Y., and Sahan, U. (2007). Correlations between breeder age, cholesterol 
content, blood cholesterol level and hatchability of broiler breeders. Br. Poult. 
Sci. 48, 98–103. doi: 10.1080/00071660601161412

Ding, X., Yu, Y., Su, Z., and Zhang, K. (2017). Effects of essential oils on 
performance, egg quality, nutrient digestibility and yolk fatty acid profile in 
laying hens. Anim. Nutr. 3, 127–131. doi: 10.1016/j.aninu.2017.03.005

Diouf, M. N., Sayasith, K., Lefebvre, R., Silversides, D. W., Sirois, J., and Lussier, 
J. G. (2006). Expression of phospholipase A2 group IVA (PLA2G4A) 
is upregulated by human chorionic gonadotropin in bovine granulose 
cells of ovulatory follicles. Biol. Reprod. 74, 1096–1103. doi: 10.1095/
biolreprod.105.048579

Duncan, R. E., Sarkadi-Nagy, E., Jaworski, K., Ahmadian, M., and Sul, H. S. 
(2008). Identification and functional characterization of adipose-specific 
phospholipase A2 (AdPLA). J. Biol. Chem. 283, 25428–25436. doi: 10.1074/jbc.
M804146200

Glorian, M., Duplus, E., Beale, E. G., Scott, D. K., Granner, D. K., and Forest, C. 
(2001). A single element in the phosphoenolpyruvate carboxykinase gene 
mediates thiazolidinedione action specifically in adipocytes. Biochimie 83, 
933–943. doi: 10.1016/S0300-9084(01)01343-8

Gohin, M., Bobe, J., and Chesnel, F. (2010). Comparative transcriptomic analysis 
of follicle-enclosed oocyte maturational and developmental competence 
acquisition in two non-mammalian vertebrates. BMC Genomics 11, 18. doi: 
10.1186/1471-2164-11-18

Goraga, Z. S., Nassar, M. K., and Brockmann, G. A. (2013). Quantitative 
trait loci segregating in crosses between New Hampshire and White 
Leghorn chicken lines: I. Egg production traits. Anim. Genet. 44, 62–68. doi: 
10.1111/j.1365-2052.2012.02365.x

Griffin, H. D. (1992). Manipulation of egg yolk cholesterol: a physiologist’s view. 
Worlds Poult. Sci. J. 48, 101–112. doi: 10.1079/WPS19920010

Gupta, A., Tiwari, M., Prasad, S., and Chaube, S. K. (2017). Role of cyclic 
nucleotide phosphodiesterases during meiotic resumption from diplotene 
arrest in mammalian oocytes. J. Cell. Biochem. 118, 446–452. doi: 10.1002/
jcb.25748

Han, D. (2005). Molecular approaches to understanding variation in reproductive 
phenotype of female zebra finches (Taeniopygia guttata). Beijing (BJ): Peking 
University. 

Janjira, S. (2017). Preliminary study: egg production performance, egg quality 
and blood plasma cholesterol concentration in laying hens fed dietary dried 
fermented ginger and/or fermented corncob powder. Food Sci. Nutr. 3, 1–5. 
doi: 10.24966/FSN-1076/100016

Klkin, R. G., Yan, Z., Buhman, K. K., Story, J. A., Turek, J. J., Anderson, M., 
et al. (1997). Reduction of egg yolk cholesterol content through inhibition of 
hepatic cholesterol biosynthesis and alteration of plasma VLDL composition 
in laying hens: comparative effects of atorvastatin, lovastatin, and simvastatin. 
Atherosclerosis 134, 123. doi: 10.1016/S0021-9150(97)88669-8

Kraus, T. A., Engel, S. M., Sperling, R. S., Kellerman, L., Lo, Y., Wallenstein, S., 
et al. (2012). Characterizing the pregnancy immune phenotype: results of the 
viral immunity and pregnancy (VIP) study. J. Clin. Immunol. 32, 300–311. doi: 
10.1007/s10875-011-9627-2

Kurusu, S., Jinno, M., Ehara, H., Yonezawa, T., and Kawaminami, M. (2009). Inhibition 
of ovulation by a lipoxygenase inhibitor involves reduced cyclooxygenase-2 
expression and prostaglandin E2 production in gonadotropin-primed immature 
rats. Reproduction 137, 59–66. doi: 10.1530/REP-08-0257

Ledur, M. C., Fairfull, R. W., Mcmillan, I., and Asseltine, L. (2000). Genetic effects 
of aging on egg production traits in the first laying cycle of white Leghorn 
strains and strain crosses. Poultry Sci. 79, 296–304. doi: 10.1093/ps/79.3.296

Lee, Y., Kim, H., Kim, M., and Chun, S. (2005). Control mechanisms of ovulation 
by pituitary adenylate cyclase-activating polypeptide. Korean J. Fertil. Steril. 32, 
101–112.

Lubzens, E., Bobe, J., Young, G., and Sullivan, C. V. (2017). Maternal investment 
in fish oocytes and eggs: The molecular cargo and its contributions to 
fertility and early development. Aquaculture 472, 107–143. doi: 10.1016/j.
aquaculture.2016.10.029

Newman, J. W., Stok, J. E., Vidal, J. D., Corbin, C. J., Huang, Q., Hammock, B. D., 
et al. (2004). Cytochrome p450-dependent lipid metabolism in preovulatory 
follicles. Endocrinology 145, 5097–5105. doi: 10.1210/en.2004-0710

Omole, J. O., and Ighodaro, O. M. (2013). Comparative studies of the effects of egg 
yolk, oats, apple, and wheat bran on serum lipid profile of Wistar rats. ISRN 
Nutr. 2013, 730479. doi: 10.5402/2013/730479

Panda, A. K., Reddy, M. R., Rama Rao, S. V., and Praharaj, N. K. (2003). Production 
performance, serum/yolk cholesterol and immune competence of White 
Leghorn layers as influenced by dietary supplementation with probiotic. Trop. 
Anim. Health Prod. 35, 85–94. doi: 10.1023/A:1022036023325

Rath, K. P., Prasanna, K. M., Bandi, K. M., and Nrusingha, C. B. (2015). Evaluation 
of different egg quality traits and interpretation of their mode of inheritance 
in white leghorn. Vet. World 8, 449–452. doi: 10.14202/vetworld.2015.449-452

Richards, J. S., Liu, Z., and Shimada, M. (2008). Immune-like mechanisms 
in ovulation. Trends Endocrinol. Metabol. 19, 191–196. doi: 10.1016/j.
tem.2008.03.001

Seol, H. S., Sato, K., Murakami, H., Toyomizu, M., and Akiba, Y. (2006). 
Changes in gene expression involved in energy utilization during chicken 
follicle development. Anim. Reprod. Sci. 95, 283–294. doi: 10.1016/j.
anireprosci.2005.09.016

Sirois, J. (1994). Induction of prostaglandin endoperoxide synthase-2 by human 
chorionic gonadotropin in bovine preovulatory follicles in vivo. Endocrinology 
135, 841–848. doi: 10.1210/endo.135.3.8070377

Sreenivas, D., Prakash, G. M., Mahender, M., and Chatterjee, R. N. (2013). Genetic 
analysis of egg quality traits in White Leghorn chicken. Vet. World 6, 263–266. 
doi: 10.5455/vetworld.2013.263-266

Su, Y., Sugiura, K., Wigglesworth, K., O’Brien, M. J., Affourtit, J. P., Pangas, S. A., 
et al. (2008). Oocyte regulation of metabolic cooperativity between mouse 
cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis 
in cumulus cells. Development 135, 111–121. doi: 10.1242/dev.009068

Tang, H., Liu, Y., Li, J., Li, G., Chen, Y., Yin, Y., et al. (2017). LH signaling induced 
ptgs2a expression is required for ovulation in zebrafish. Mol. Cell. Endocrinol. 
447, 125–133. doi: 10.1016/j.mce.2017.02.042

Toups, M. A., Pease, J. B., and Hahn, M. W. (2011). No excess gene movement is 
detected off the avian or lepidopteran Z chromosome. Genome Biol. Evol. 3, 
1381–1390. doi: 10.1093/gbe/evr109

Wang, Z., Meng, G., Bai, Y., Liu, R., Du, Y., and Su, L. (2017a). Comparative 
transcriptome analysis provides clues to molecular mechanisms underlying 

Frontiers in Genetics | www.frontiersin.org October 2019 | Volume 10 | Article 902237

https://doi.org/10.1371/journal.pone.0043139
https://doi.org/10.1371/journal.pone.0043139
https://doi.org/10.14419/ijsw.v6i1.8677
https://doi.org/10.1007/s11745-013-3780-8
https://doi.org/10.17221/2715-CJAS
https://doi.org/10.3181/00379727-148-38537
https://doi.org/10.1186/1471-2164-12-417
https://doi.org/10.1152/ajpregu.00436.2014
https://doi.org/10.1002/mrd.21288
https://doi.org/10.1080/00071660601161412
https://doi.org/10.1016/j.aninu.2017.03.005
https://doi.org/10.1095/biolreprod.105.048579
https://doi.org/10.1095/biolreprod.105.048579
https://doi.org/10.1074/jbc.M804146200
https://doi.org/10.1074/jbc.M804146200
https://doi.org/10.1016/S0300-9084(01)01343-8
https://doi.org/10.1186/1471-2164-11-18
https://doi.org/10.1111/j.1365-2052.2012.02365.x
https://doi.org/10.1079/WPS19920010
https://doi.org/10.1002/jcb.25748
https://doi.org/10.1002/jcb.25748
https://doi.org/10.24966/FSN-1076/100016
https://doi.org/10.1016/S0021-9150(97)88669-8
https://doi.org/10.1007/s10875-011-9627-2
https://doi.org/10.1530/REP-08-0257
https://doi.org/10.1093/ps/79.3.296
https://doi.org/10.1016/j.aquaculture.2016.10.029
https://doi.org/10.1016/j.aquaculture.2016.10.029
https://doi.org/10.1210/en.2004-0710
https://doi.org/10.5402/2013/730479
https://doi.org/10.1023/A:1022036023325
https://doi.org/10.14202/vetworld.2015.449-452
https://doi.org/10.1016/j.tem.2008.03.001
https://doi.org/10.1016/j.tem.2008.03.001
https://doi.org/10.1016/j.anireprosci.2005.09.016
https://doi.org/10.1016/j.anireprosci.2005.09.016
https://doi.org/10.1210/endo.135.3.8070377
https://doi.org/10.5455/vetworld.2013.263-266
https://doi.org/10.1242/dev.009068
https://doi.org/10.1016/j.mce.2017.02.042
https://doi.org/10.1093/gbe/evr109
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


LPL Response to Yolk CholesterolChen et al.

13

blue-green eggshell color in the Jinding duck (Anas platyrhynchos). BMC 
Genomics 18, 725. doi: 10.1186/s12864-017-4135-2

Wang, Z., Shang, P., Li, Q., Wang, L., Chamba, Y., Zhang, B., et al. (2017b). iTRAQ-
based proteomic analysis reveals key proteins affecting muscle growth and lipid 
deposition in pigs. Sci. Rep. 7, 46717. doi: 10.1038/srep46717

Yadgary, L., Cahaner, A., Kedar, O., and Uni, Z. (2010). Yolk sac nutrient 
composition and fat uptake in late-term embryos in eggs from young and old 
broiler breeder hens. Poultry Sci. 89, 2441–2452. doi: 10.3382/ps.2010-00681

Yair, R., and Uni, Z. (2011). Content and uptake of minerals in the yolk of broiler 
embryos during incubation and effect of nutrient enrichment. Poultry Sci. 90, 
1523–1531. doi: 10.3382/ps.2010-01283

Yang, P., Tian, Y., Sun, G., Jiang, R., Han, R., and Kang, X. (2013). Deposition rule 
of yolk cholesterol in two different breeds of laying hens. Genet. Mol. Res. 12, 
5786–5792. doi: 10.4238/2013.November.22.5

Yerushalmi, G. M., Salmondivon, M., Yung, Y., Maman, E., Kedem, A., Ophir, L., 
et al. (2014). Characterization of the human cumulus cell transcriptome during 
final follicular maturation and ovulation. Mol. Hum. Reprod. 20, 719–735. doi: 
10.1093/molehr/gau031

Zhang, Y. (2016). Studies on chicken hatchability and its relation with egg yolk 
metabolites. Niedersachsen (NI): Georg-August-University Göttingen. 

Zhou, L., Shi, Y., Guo, R., Liang, M., Zhu, X., and Wang, C. (2014). Digital gene 
expression profiling analysis of the cholesterol-lowering effects of alfalfa 
saponin extract on laying hens. PLoS One 9, e98578. doi: 10.1371/journal.
pone.0098578

Conflict of Interest: The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be construed as a 
potential conflict of interest.

Copyright © 2019 Chen, Zhu, Du, Liu and Geng. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction in other forums is permitted, 
provided the original author(s) and the copyright owner(s) are credited and 
that the original publication in this journal is cited, in accordance with accepted 
academic practice. No use, distribution or reproduction is permitted which does 
not comply with these terms.

Frontiers in Genetics | www.frontiersin.org October 2019 | Volume 10 | Article 902238

https://doi.org/10.1186/s12864-017-4135-2
https://doi.org/10.1038/srep46717
https://doi.org/10.3382/ps.2010-00681
https://doi.org/10.3382/ps.2010-01283
https://doi.org/10.4238/2013.November.22.5
https://doi.org/10.1093/molehr/gau031
https://doi.org/10.1371/journal.pone.0098578
https://doi.org/10.1371/journal.pone.0098578
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


1 October 2019 | Volume 10 | Article 993

ORIGINAL RESEARCH

doi: 10.3389/fgene.2019.00993
published: 11 October 2019

Frontiers in Genetics | www.frontiersin.org

Cardiac and Skeletal Muscle 
Transcriptome Response to Heat 
Stress in Kenyan Chicken Ecotypes 
Adapted to Low and High Altitudes 
Reveal Differences in Thermal 
Tolerance and Stress Response
Krishnamoorthy Srikanth 1, Himansu Kumar 1, Woncheoul Park 1, Mijeong Byun 1, 
Dajeong Lim 1, Steve Kemp 2, Marinus F. W. te Pas 3, Jun-Mo Kim 4 and Jong-Eun Park 1*

1 Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, South Korea, 2 Animal 
Biosciences, International Livestock Research Institute (ILRI), Nairobi, Kenya, 3 Wageningen UR Livestock Research, Animal 
Breeding and Genomics, Wageningen, Netherlands, 4 Department of Animal Science and Technology, Chung-Ang University, 
Anseong, South Korea

Heat stress (HS) negatively affects chicken performance. Agricultural expansion will happen 
in regions that experience high ambient temperatures, where fast-growing commercial 
chickens are vulnerable. Indigenous chickens of such regions, due to generations of 
exposure to environmental challenges, might have higher thermal tolerance. In this study, 
two indigenous chicken ecotypes, from the hot and humid Mombasa (lowland) and the 
colder Naivasha (highland) regions, were used to investigate the effects of acute (5 h, 35°C) 
and chronic (3 days of 35°C for 8 h/day) HS on the cardiac and skeletal muscle, through 
RNA sequencing. The rectal temperature gain and the number of differentially expressed 
genes (DEGs) [False Discovery Rate (FDR) < 0.05] were two times higher in the acute stage 
than in the chronic stage in both ecotypes, suggesting that cyclic exposure to HS can lead 
to adaptation. A tissue- and stage-specific difference in response to HS was observed, with 
peroxisome proliferator-activated-receptor (PPAR) signaling and mitogen-activate protein 
kinase (MAPK) signaling pathways, enriched in heart and skeletal muscle, respectively, and 
the p53 pathway enriched only in the acute stage in both tissues. The acute and chronic 
stage DEGs were integrated by a region-specific gene coexpression network (GCN), and 
genes with the highest number of connections (hub genes) were identified. The hub genes 
in the lowland network were CCNB2, Crb2, CHST9, SESN1, and NR4A3, while COMMD4, 
TTC32, H1F0, ACYP1, and RPS28 were the hub genes in the highland network. Pathway 
analysis of genes in the GCN showed that p53 and PPAR signaling pathways were 
enriched in both low and highland networks, while MAPK signaling and protein processing 
in endoplasmic reticulum were enriched only in the gene network of highland chickens. 
This shows that to dissipate the accumulated heat, to reduce heat induced apoptosis, and 
to promote DNA damage repair, the ecotypes activated or suppressed different genes, 
indicating the differences in thermal tolerance and HS response mechanisms between the 
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INTRODUCTION

Chicken is a cheap source of high-quality protein and provides 
significant food and income security for rural communities 
(Mekonnen et al., 2010). Specialized trait selection, under controlled 
environments, has made commercial broiler chickens sensitive 
to environmental extremes (Mcmichael et al., 2007; Ciscar et al., 
2011; Kantanen et al., 2015). This creates significant hindrance 
for the expansion of poultry industry into regions that experience 
environmental conditions such as heat stress (HS) (Canario et al., 
2013; Lawrence and Wall, 2014; Rothschild and Plastow, 2014). 
Being homeothermic, chickens are able to maintain a constant 
body temperature across a wide range of temperature (Deeb and 
Cahaner, 1999); however, increasing ambient temperature due to 
global warming and climate change will have a major impact on 
the animal’s physiology and performance, resulting in significant 
economic losses to livestock industries (Renaudeau et al., 2012; 
Wang et al., 2017). HS is classified as the state at which the ambient 
temperature exceeds the tolerable range, making it difficult for 
the birds to maintain its homeostatic body temperature (Lara 
and Rostagno, 2013). It leads to reduction in meat quality, low 
growth rate, reductions in body weight, reduced egg weight and 
shell thickness, and also high mortality in commercial layers and 
boilers (Muiruri and Harrison, 1991; Wolfenson et al., 2001). They 
also cause significant immunosuppression due to reduced humoral 
immunity, rendering the birds susceptible to diseases (Padgett and 
Glaser, 2003; Wang et al., 2017; Monson et al., 2018). The birds’ 
response to HS depends on its genetics (Felver-Gant et al., 2012). 
While commercial fast-growing broilers are particularly more 
sensitive to HS (Yunis and Cahaner, 1999), indigenous chicken 
(IC) breeds that are native to tropical areas are documented to have 
higher HS tolerance relative to other breeds (Soleimani and Zulkifli, 
2010), suggesting that genetic resistance to HS can be acquired as 
a consequence of adaptation and can be inherited (Lu et al., 2007).

Future agricultural expansion, to support increasing global 
population, will mainly happen in regions with climatic 
conditions that are less suitable for commercial livestock, which 
lack the genetic potential to adapt to environmental extremes 
(Lara and Rostagno, 2013; Porto-Neto et al., 2014; Rothschild 
and Plastow, 2014). In the villages of developing countries like 
Kenya, IC production provides not only food security but also 
income security due to their low production cost and their ability 
to survive on scavenging and their resilience to environmental 
parasite challenge (Magothe et al., 2012). It was reported that 70% 
out of a total of 31.8 million domesticated chickens in Kenya were 
IC (Moraa et al., 2015). Kenya has seven different agroecological 
zones, including, arid, semi-arid, tropical, and temperate regions 
(Silvestri et al., 2012). Twelve ecotypes of chickens are found across 
these agroecological zones (Kingori et al., 2010; Moraa et al., 2015). 

The chickens show high genetic diversity and are well adapted to 
their local environment (Nyaga, 2007). The chickens are raised 
extensively under free range systems (Sonaiya, 1990), which 
exposes them to the negative influence of extreme weather changes. 
Native chicken ecotypes that have survived extreme environmental 
conditions over multiple generations would have developed 
tolerance at the genomic level (Chen et al., 2014; Lawrence and 
Wall, 2014; Porto-Neto et al., 2014; Fleming et al., 2017). Therefore, 
to mitigate impacts of HS through genetic approaches, it is prudent 
to examine chickens that have evolved in such environments 
(Fleming et al., 2017). Kenyan IC presents an opportunity to 
understand the genetic response to HS of hot temperature–adapted 
chickens. Previous studies on HS adapted and nonadapted chickens 
revealed the biological mechanisms regulated by HS and identified 
differential immune response between lowland- and highland-
adapted chickens exposed to tropical conditions (Park et al., 2019; 
Te Pas et al., 2019). In this study, we exposed chickens collected 
from local farmers in Mombasa, which is located at an elevation 
of approximately 50 m (lowland) in the Kenyan coast with an 
average temperature between 22°C and 35°C (Njarui et al., 2016), 
and from Naivasha, located at an elevation of approximately 1800 m 
(highland) with an average temperature of 8°C to 26°C (Ouko et al., 
2017), to a short-term HS treatment (acute) and a repeated longer-
term HS treatment (chronic) and analyzed the transcriptome 
response of skeletal and cardiac tissues using RNA sequencing. 
Exposure of chicken embryo to elevated temperature induces an 
adaptive response to HS at later stages in their life (Janke et al., 2004; 
Loyau et al., 2014; Loyau et al., 2015; Loyau et al., 2016; Fleming 
et al., 2017). It was hypothesized that chickens that were hatched 
at relatively higher temperature in the lowlands would respond to 
HS differently than the highland chickens that were hatched and 
raised at a lower temperature. Comparative transcriptome analysis 
by measuring global gene expression changes between the two will 
identify important genes and pathways that are critical for response 
to HS. We performed pairwise differential gene expression 
analysis between control and treatment groups at each time point 
and identified functional difference in response to HS between 
the tissues of the two chicken types. We then performed gene 
coexpression network (GCN) analysis by integrating the different 
differentially expressed gene (DEG) datasets generated from 
lowland and highland chickens to understand the overall response 
of the two ecotypes to HS.

MATERIALS AND METHODS

Experimental Design
The study involved two groups of chickens; one was collected 
from the lowland (low altitude) region and another from 

ecotypes. This study provides information on the HS response of chickens, adapted to two 
different agro climatic environments, extending our understanding of the mechanisms of HS 
response and the effect of adaptation in counteracting HS.

Keywords: heat stress, hub genes, PPAR signaling, MAPK signaling, p53 signaling, RNA-Seq
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the highland (high altitude) regions of Kenya. The lowland 
chickens were collected from local farmers in Mombasa 
(4°1′0″S, 39°35′24″E) (average temperature between 22°C and 
35°C), while the highland chickens were obtained from KALRO 
(Kenyan Agricultural and Livestock Research Organization) 
in Naivasha (average temperature between 8°C and 26°C). A 
schematic of the experimental design is given in Figure 1. A total 
of 32 (n = 16 from each region), 5-month-old female chickens 
were used in this study. The HS experiments were conducted at 
the KOPIA (Korea Project for International Agriculture) Kenya 
center at Nairobi. The birds had ad libitum access to feed and 
water. After acclimating the birds to the local environment in the 
experimental cage for 3 days, the experiments were performed. 
The experiments were performed in a specially designed cage 
fitted with a temperature controller (Supplementary Figure 1). 
The HS group (n = 16) was exposed to high temperatures of 35°C 
for 8 h per day (9:00–17:00 h) and remained at 28°C to 30°C at all 
other times. The control group (n = 16) was maintained at 24°C 
during the entire experimental period. The short-term HS group 
(acute group) (n = 16, four per region, including the controls) 
were euthanized after 5 h of increased temperature exposure, and 
cardiac and skeletal muscle tissues were collected. The long-term 
HS group (C) (n = 16, four per ecotype, including the controls) 
were euthanized at the end of 3 days of cyclic HS, and cardiac and 
skeletal muscle tissues were collected. Rectal temperatures were 
measured at the beginning and end of the treatment period using 
a temperature probe. A total of 64 samples were collected; they 
were stored in RNAlater (Ambion, Texas, USA) and transported 

to the National Institute of Animal Science (South Korea) and 
stored at −80°C until further use.

RNA-Seq Analysis
Total RNA was isolated from 32 skeletal muscles and 32 cardiac 
muscles with RNeasy mini kit (Qiagen, USA) following the 
manufacturer’s protocol. The purity and concentration of 
the isolated RNA were measured with NanoDrop ND-1000 
UV-vis Spectrophotometer (NanoDrop Technologies Inc., 
Wilmington, DE, USA). The integrity of the RNA was measured 
on Bioanalyzer 2100 system using RNA Nano 6000 Assay kit 
(Agilent Technologies, CA, USA), and only samples with a 
RIN (RNA integrity number) value greater than 8 were used 
for sequencing. cDNA libraries were generated using Illumina 
TruSeq® RNA sample preparation v2 kit (Illumina, San Diego, 
CA, USA) following processes previously described (Srikanth 
et al., 2017b). Quality of the individual libraries was accessed 
on Bioanalyzer 2100 system using DNA Nano 1000 Assay 
kit. Paired-end (PE) sequencing was performed on Illumina® 
HiSeq 2000 on four lanes (21, 12, 7, and 24 samples on lanes 1, 
4, 5, and 6, respectively) of a single chip, blocking by treatment, 
tissue, and region. The sequencing was carried out by Macrogen 
(Seoul, South Korea). The raw reads are freely available at the 
NCBI (National Center for Biotechnology Information) SRA 
(Sequence Read Archive) database under accession number 
PRJNA557270. The quality of the raw reads was accessed 
using FastQC (version 0.11.5) (Andrews, 2010). Reads shorter 

FIGURE 1 | Schematic experimental design. 
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than 80 base pairs (bp), low-quality bases, and adapters were 
removed using TRIMMOMATIC (version 0.36) (Bolger et al., 
2014). All 100-bp reads were individually aligned to the chicken 
reference genome (Gallus gallus 5.0, release 94, Ensembl) 
using HISAT2 (version 2.0.5) (Kim et al., 2016) following 
methods previously described (Park et al., 2019). The DEGs 
were identified using CUFFLINKS (version 2.2.1) (Trapnell 
et al., 2012). The -G/–GTF flags was used to quantitate against 
reference transcript annotations. The expression of individual 
genes were measured as fragments per kilobase of exon per 
million, and DEGs (FDR < 0.05) were identified with CUFFDIFF. 
Eight DEG gene sets were generated (highland: control-acute, 
control-HS, HS-acute, HS-chronic; lowland: control-acute, 
control-HS, HS-acute, HS-chronic). Functional annotation and 
overrepresentative analyses were carried out using the web-
based gene ontology (GO) clustering tool DAVID (Huang et al., 
2008). The genes were annotated under the Biological Process, 
Molecular Function, and KEGG pathway terms. Significant 
terms (FDR <0.05 for KEGG and FDR <0.05 for GO terms) 
were plotted with ggplot2 package in R (version 3.4.1) (Team, 
2013). The Venn diagrams were generated with a web-based 
tool (http://bioinformatics.psb.ugent.be/webtools/Venn/).

GCN Analysis and KEGG 
Pathway Mapping
GCN was constructed using the partial correlation coefficient with 
information theory (PCIT) algorithm (Reverter and Chan, 2008). 
We constructed two networks (a lowland-specific network and a 
highland-specific network), using DEGs (differentially expressed), 
in at least one of the four gene sets that were generated from the 
lowland or highland chicken groups. Only genes that had a partial 
correlation |r| of ≥0.99 were included for network construction. 
The networks were visualized in CYTOSCAPE (version 3.4.1) 
(Shannon et al., 2003), analyzed with the NetworkAnalyzer 
plugin, and sorted according to degrees of connections. The genes 
in the network were then mapped to Kyoto Encylopedia of Genes 
and Genomes (KEGG) pathways (Ogata et al., 1999; Kanehisa and 
Goto, 2000) using the ClueGO plugin (Bindea et al., 2009).

Quantitative Reverse Transcriptase–
Polymerase Chain Reaction Analysis
One microgram of each of the isolated RNA was reverse 
transcribed into cDNA with Oligo(dT) using SuperScript III™ 

first-strand system for reverse transcriptase–polymerase chain 
reaction (RT-PCR) (Invitrogen, CA, USA) in a final volume 
of 20 μl using the manufacturer’s protocol. The resulting 
cDNAs were diluted 1:2, prior to their use for quantitative RT 
(qRT)–PCR analysis. The PCR reactions were carried out at a 
final volume of 10 μl containing 5 μl of Universal Master Mix 
containing dNTPs. MgCl2, reaction buffer and AmpliTaq Gold 
DNA polymerase, 90 nM of primers (forward and reverse) and 
250 nM of fluorescence-labeled TaqMan probe, and finally 2 μl 
of the cDNA. Amplifications were carried out on an ABI PRISM 
7900HT Sequence Detection Systems (Applied Biosystems, 
CA, USA) with initial denaturing for 10 min at 95°C, followed 
by 40 cycles of 95°C for 15 s and 60°C for 1 min. All samples 

were amplified in triplicates. The data were analyzed with the 
SEQUENCE DETECTOR software (Applied Biosystems). All 
reagents used in the qRT-PCR analysis were procured from Life 
Technologies (Carlsbad, CA, USA). The absolute fold change was 
calculated after normalization with the chicken glyceraldehyde-
3-phosphate dehydrogenase gene (GAPDH), using the 2-∆∆CT 
method (Schmittgen and Livak, 2008). All the primers used in 
the analyses are listed in Table 1.

RESULTS

All the chickens (n = 32) procured from the lowland Mombasa 
region and the highland Naivasha region were brought to the 
KOPIA center in Nairobi. After acclimating the birds to the 
local environment and the cage, the lowland and highland birds 
were randomly separated into four groups each (n = 4/group), 
comprising the acute stage groups: ALL (acute and lowland) and 
AHL (acute and highland); and the chronic stage groups; CLL 
(chronic and lowland) and CHL (chronic and highland). Each of 
these stages comprised a treatment group and a control groups 
(Figure 1).

Effect of HS on Rectal Temperature
Figure 2A shows the changes in the rectal temperatures of 
the animals before the start and at the end of the experiment. 
The maximum increases in rectal temperatures were in the 
AHL and the ALL HS groups. On an average, the rectal 
temperatures of AHL and ALL birds increased by 1.8°C and 
1.6°C, respectively. Only minor changes in temperature were 
noted in the control groups.

Transcriptome Alignment and 
Mapping Statistics
We constructed 64 cDNA libraries from the cardiac and skeletal 
muscle tissues of the lowland and highland Kenyan chicken 
groups from the two experimental time points (acute and 
chronic). There were 1.33 billion (647 million in cardiac and 
650 million in skeletal muscle), 100-bp PE reads corresponding 

TABLE 1 | List of primers used for qRT-PCR validation of RNA-Seq results.

Gene Primer sequencing (5′ –> 3′)

HSPH1 F –> TGAATTGGAAACTCAGGACCAGATG
R –> CCTCACTGTTCTCTTGCTGGTTATT

SRGN F –> GGCCGTGGTTCCAGCT
R –> GCTCCTGGTACGTCTTCATCAG

ATRAID F –> GTTGGACCTCAGCAACTGTTC
R –> CGTCAGGTCCAGCACGAC

MT4 F –> CGGAGCTGCCGCAAGA
R –> CCTTGGCACAGTTGTTGCA

PDK4 F –> TGACTGGTCGCATCCCAAGTAAG
R –> GGAAGAATTTGCCTGTTTGGAGG

OTUD1 F –> GCTGTGTCCCTCTCCAAGATG
R –> CACGCTTCTGTCCGTCTGT

GAPDH F –> GGAAGAATTTGCCTGTTTGGAGG
R –> TCGTCAAGCTTGTTTCCTGGTATGA
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FIGURE 2 | Rectal temperature gain during HS treatment and sample relationship inferred from principal components analysis. (A) Box plot showing gain in rectal 
temperature due to HS treatment. AHL, acute highland; CHL, chronic highland; ALL, acute lowland; CLL, chronic lowland. (B) Principal components analysis 
showing that the maximum variation is due to differences between the ecotypes. Only a small percentage of the variation is due to the HS effect.
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to an average of 1.65 Gb of sequence data per sample that were 
generated. After trimming for adapters and low-quality reads, 
1.29 billion reads corresponding to 97.56% of total sequenced 
reads were used for downstream analysis. The reads were mapped 
to the chicken genome at an average alignment rate of 91.1% and 
85.12% for cardiac and skeletal muscle tissues, respectively. A 
summary of the mapping statistics is given in Supplementary 
File 3. Principal components analysis showed that the maximum 
variation is due to difference between the ecotypes, and only 
a small percentage of the variation is due to HS effect (Figure 
2B). A list of all the DEGs identified in this study is given in 
Supplementary File 1.

Effects of Acute HS on the Cardiac and 
Skeletal Muscle Transcriptome of the 
Highland and Lowland Chickens
Acute HS resulted in 351 and 322 genes in the skeletal muscle 
and 384 and 184 DEG in the cardiac tissues to be significantly 
differentially expressed (FDR <0.05) in the lowland and the 
highland, respectively (Figure 3A). Between the two ecotypes, 48 
and 30 DEGs overlapped between the cardiac and skeletal muscle 

tissues, respectively (Figure 3B). Ten DEGs were commonly 
differentially expressed between the two tissues in the lowland 
chickens; eight DEGs differed between the two tissues in the 
highland chickens (Figure 3B). Only two DEGs were found in 
all four contrasts. These were heat shock protein (HSP) family A 
(Hsp70) member 8 (HSPA8) and HSP family B (small) member 7 
(HSPB7). GO enrichment analysis (Figure 4A) of the up-regulated 
DEGs showed that at the acute stage in the cardiac tissue of lowland 
chicken, the most significant terms (Q  <0.05) enriched were 
“signal transduction,” “immune response “activation of MAPKK 
activity,” “fatty acid binding,” “response to unfolded protein,” and 
“apoptosis,” while in the highland chickens “signal transduction,” 
“serine-type endopeptidase activity,” “inflammatory response,” 
“immune response,” and “apoptosis” were the most significantly 
enriched terms. In the skeletal muscle of lowland chickens, the 
GO terms enriched were “response to heat,” “protein folding,” 
“apoptosis,” “oxido-reductase activity,” “activation of MAPKK 
activity,” and “positive regulation of ERK1 and ERK2 cascade,” 
while in the highland chickens, “signal transduction,” “protein 
folding,” “apoptosis,” “oxido-reductase activity,” “activation of 
MAPKK activity,” and “immune response.” Among the down-
regulated DEGs (Figure 4C) “protein kinase inhibitor activity,” 

FIGURE 3 | Genes differentially expressed relative to control group under different contrast. (A) Number of genes that were up-regulated or down-regulated after 
HS treatment. (B) Venn diagram showing common and unique genes differentially expressed during the acute stage treatment. (C) Venn diagram showing common 
and unique genes differentially expressed during the chronic stage treatment. M and H, skeletal muscle and cardiac muscle, respectively; AHL, acute highland; CHL, 
chronic highland; ALL, acute lowland; CLL, chronic lowland.
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“positive regulation of cell proliferation,” “negative regulation of 
apoptotic process,” lipid storage,” and “cell differentiation” were 
significantly down-regulated in cardiac tissues of acute stage 
lowland chickens, while “positive regulation of cell proliferation,” 
“negative regulation of apoptotic process,” “cellular response to 
tumor necrosis factor,” and “ATP binding” were down-regulated 
in the highland chicken. In the skeletal muscle, “insulin receptor 
signaling” and “calcium transport” were the most significantly 
enriched terms in the acute stage in the lowland chickens, while 
“ATP binding,” “nervous system development,” and “positive 
regulation of cell proliferation” were significantly enriched in the 
highland chickens. The enrichment analysis showed that several 
biological processes were regulated in more than one situation.

KEGG pathway enrichment analysis of up-regulated DEGs 
(Figure 4B) showed that in the cardiac muscles of the lowland 
chickens the most enriched pathways (FDR <0.05) were “Jak-
STAT signaling pathway,” “PPAR signaling pathway,” “purine 
metabolism,” “neuroactive ligand–receptor interaction,” and “p53 
signaling,” while in the skeletal muscle tissue “cell cycle,” “MAPK 
signaling pathway,” “pathways in cancer,” “antigen processing and 
presentation,” and “p53 signaling pathway” were enriched. In the 
cardiac tissues of highland chickens, “PPAR signaling pathway,” 
“cell adhesion molecules,” and “p53 signaling pathway” and in the 
skeletal muscle “MAPK signaling,” “oxidative phosphorylation,” 

“PPAR signaling pathway,” “ribosome,” and “purine metabolism” 
were enriched. Among the down-regulated DEGs (Figure 4D) 
in the cardiac tissue of lowland chickens, “metabolic pathways” 
and “focal adhesion” were significantly down-regulated, while 
“estrogen signaling pathway,” “HTLV-I infection,” and “FoxO 
signaling pathway” were down-regulated in skeletal muscle. 
In the cardiac muscle of highland chickens, “transcriptional 
misregulation in cancer” and “TGF-beta signaling pathway” 
were significantly down-regulated, while “metabolic pathways” 
was down-regulated in the skeletal muscle.

Effects of Chronic HS on the Cardiac and 
Skeletal Muscle Transcriptome of the 
Highland and Lowland Chickens
Under chronic HS, 142 and 172 DEGs were found in the 
skeletal and cardiac tissues of the lowland chickens, while 
180 and 170 DEGs were found in the skeletal and cardiac 
tissues of the highland chickens (Figure 3A). Between the two 
chicken ecotypes, 33 DEGs were common between the cardiac 
and 36 DEGs were common between the skeletal muscle 
tissues (Figure 3C). Eight DEGs were common between the 
two tissues in the lowland chicken; 14 DEGs were common 
between the two tissues in the highland chicken (Figure 3C). 

FIGURE 4 | GO and KEGG pathway enrichment analysis (A) Dot plot shows the up-regulated GO terms (FDR <0.05) of biological processes and molecular 
functions identified using DAVID to be enriched under the different contrasts. (B) Dot plot shows the up-regulated KEGG pathways (FDR <0.1) enriched for different 
contrasts. The size of the dot is based on gene count enriched in the pathway, and the color of the dot shows the pathway enrichment significance. (C) Dot 
plot shows the down-regulated GO terms (FDR <0.05) of biological processes and molecular functions identified using DAVID to be enriched under the different 
contrasts. (D) Dot plot shows the down-regulated KEGG pathways (FDR <0.1) enriched for different contrasts. The size of the dot is based on gene count enriched 
in the pathway, and the color of the dot shows the pathway enrichment significance.
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Only two DEGs were common in all the four contrasts; these 
were the HSP family A (HSP70) member 8 (HSPA8) and 
fatty acid–binding protein 4 (FABP4) (Figure 3C), these two 
genes were previously found be differentially expressed in the 
hypothalamus of a meat-type chicken (Sun et al., 2015a). GO 
enrichment analysis of the up-regulated DEGs (Figure 4A) 
showed that in the lowland chickens “signal transduction,” 
“acute-phase response,” “immune response,” “inflammatory 
response,” and “serine-type endopeptidase activity” were 
enriched in the cardiac tissue, while “apoptosis,” “response 
to heat,” “positive regulation of ERK1 and ERK2 cascade,” 
and “immune response” were enriched in skeletal muscle. 
In the highland chicken, “regulation of gene expression,” 
“protein folding,” “inflammatory response,” and activation 
of MAPKK activity” were enriched in the cardiac tissues, 
while “inflammatory response,” “protein folding,” and “signal 
transduction” were enriched in skeletal muscle tissues. Among 
the down-regulated DEGs (Figure 4C), “regulation of cell 
cycle,” “positive regulation of cell proliferation,” “nucleic 
acid binding,” “lipid storage,” and “cell differentiation” were 
enriched in the cardiac muscle of lowland chickens, while 
“calcium transport” was enriched in the skeletal muscle. In the 
highland chicken, “negative regulation of apoptotic process,” 
“cell differentiation,” and “nucleic acid binding” were enriched 
in the cardiac muscle, while “ATP binding,” “positive regulation 
of I-kappaB kinase/NF-kappa signaling,” and “protein kinase 
inhibitor” were enriched in the skeletal muscle.

KEGG pathway enrichment analysis of up-regulated DEGs 
(Figure 4B) showed that in lowland chickens “PI3K-Akt 
signaling,” “pathways in cancer,” “Jak-STAT signaling,” and “Toll-
like receptor signaling pathway” were enriched in the cardiac 
tissue, and “MAPK signaling pathway,” “antigen processing and 
presentation,” and “cell adhesion molecules” were enriched in 
the skeletal muscle. In the highland chickens, “PPAR signaling 
pathway,” “purine metabolism,” and “cAMP signaling” pathways 
were enriched in the cardiac and “MAPK signaling pathway,” 
“ECM–receptor interaction,” and “cell adhesion molecules” 
pathways were enriched in the skeletal muscle. “Cell cycle,” 
“regulation of lipolysis in adipocytes,” and “estrogen signaling” 
pathways were down-regulated (Figure 4D) in the cardiac 
muscle, while “metabolic pathway” was down-regulated 
in the skeletal muscle in lowland chicken. In the highland 
chicken, “estrogen signaling pathway,” “HTVL-I infection,” and 
“transcriptional misregulation in cancer” were down-regulated 
(Figure 4D) in cardiac muscle, while “pathways in cancer,” 
“fatty acid metabolism,” and “metabolic” pathways were down-
regulated in the skeletal muscle.

Integration of Cardiac and Skeletal Muscle 
DEGs to Understand the Overall Response 
of the Highland and Lowland Chickens 
to HS
We integrated the DEGs identified in the acute and chronic 
stages in the cardiac and skeletal muscle tissues of the highland 
(Figure 5A) and lowland (Figure 5C) chickens through a GCN 
constructed based on PCIT (Reverter and Chan, 2008). The 

highland GCN comprised of 75 nodes (genes) and 244 edges 
(connections) (Figure 5A). KEGG pathway enrichment analysis 
of the genes in the network showed that four pathways comprising 
28 of the 77 genes in the networks were enriched; these included 
“PPAR signaling pathway,” “protein processing in endoplasmic 
reticulum,” “MAPK signaling pathway,” and “p53 signaling 
pathway’ (Figure 5B). The lowland gene network comprised 77 
nodes (genes) and 270 edges (connections) (Figure 5C). Three 
KEGG pathways comprising 25 of the 75 genes in the network 
were found to be enriched; these included “p53 signaling,” 
“steroid biosynthesis,” and “PPAR signaling” pathways (Figure 
5D). The networks were sorted according to degree (number of 
edges incident to the node [genes]). A list of all the genes in 
the network and their degree is given in Supplementary File 2. 
Genes with the maximum connections (degrees) in the lowland 
network included cyclin-B2 (CCNB2), crumbs homolog 2 
(Crb2), carbohydrate sulfotransferease 9 (CHST9), sestrin-1 
(SESN1), and nuclear receptor subfamily 4 group A member 3 
(NR4A3), while in the highland coexpression network COMM 
domain containing 4 (COMMD4), tetratricopeptide repeat 
domain containing protein 32 (TTC32), H1 histone family 
member 0 (H1F0), acylphosphatase 1 (ACYP1), and ribosomal 
protein S28 (RPS28) had the highest degree. Comparison of the 
two networks revealed that 30 genes were shared between the 
two networks (Supplementary File 2); among these were genes 
involved in PPAR signaling pathway (PLIN1, SCD, FABP4, 
FABP1, and DBI), p53 signaling pathway (CDK1, TP53I3, 
GADD45B, SESN1, GTSE1), and MAP Kinase signaling pathway 
(DUSP5 and DUSP8).

Validation of RNA-Seq Results
Out of 30 genes that overlapped between the two coexpression 
networks, six genes were randomly chosen for validation by 
qRT-PCR analysis. Figure 6 shows the PCR quantification of 
the OTUD1, HSPH1, PDK4, ATRAID, SRGN, and MT4 genes. 
The results broadly showed a similar expression profile between 
the RNA-Seq and qRT-PCR. A correlation of 0.86 was observed 
between the RNA-Seq and qRT-PCR log2 fold-change results 
(Figure 6).

DISCUSSION

High ambient temperatures affect the production and 
reproduction rates in animals (Srikanth et al., 2017a). Studies 
have highlighted the deleterious effect of HS on physiological 
(Altan et al., 2003; Mujahid et al., 2007), biochemical (Xie 
et  al., 2015), and immune capacity of chickens (Park et al., 
2019; Te Pas et al., 2019) (Altan et al., 2003; Mujahid et al., 
2006; Mujahid et al., 2007; Huang et al., 2015; Xie et al., 2015; 
Park et al., 2019; Te Pas et al., 2019). Fast-growing, commercial 
chickens, artificially selected and raised under controlled 
environment, are very sensitive to HS and might not have the 
genetic potential to develop thermal tolerance, limiting their 
potential for rearing in developing countries (Coble et al., 2014; 
Lan et al., 2016; Fleming et al., 2017). Native breeds and village 
ecotypes that have been under environmental challenges such 
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FIGURE 5 | Gene coexpression network (GCN) and pathway enrichment analysis integrated for the skeletal and cardiac muscle DEGs. (A) Degree sorted 
network of DEGs in at least one contrast in the highland chickens. The nodes are genes, and the edges are based on correlation coefficients. Only genes 
with a partial correlation | r | of ≥0.99 were included in network. Node color denotes the tissue type in which the gene expression was the highest, while 
node border denotes the stage at which the gene expression was the highest. (B) KEGG pathway networks in which all the genes in the highland GCN 
network were enriched. (C) Degree sorted network of DEG in at least one contrast in the lowland chickens. The nodes are genes, and the edges are based 
on correlation coefficients. Only genes with a partial correlation | r | of ≥0.99 were included in network. Node color denotes the tissue type in which the gene 
expression was the highest, while node border denotes the stage at which the gene expression was the highest. (D) KEGG pathway networks in which all 
the genes in the lowland GCN network were enriched.
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as high ambient temperature over multiple generations might 
have developed thermal tolerance due to adaptation to local 
conditions (Clarke, 2003; Chen et al., 2009; Seebacher, 2009; 
Nardone et al., 2010; Lawrence and Wall, 2014; Porto-Neto 
et al., 2014); examining such native breeds will provide us with 
genetic information needed to mitigate the impact of HS. In 
this study, we explored the transcriptomic response of Kenyan 
chicken ecotypes collected from two different environmental 
regions. The cardiac muscle was chosen due to its central role 
in heat dissipation through blood circulation (Zhang et al., 
2017), and skeletal muscle was chosen due to its susceptibility 
to HS-induced oxidative damage and damages to membrane 
integrity (Sandercock et al., 2001; Mujahid et al., 2006), which 
affects meat quality.

Difference in HS Response Between Acute 
and Chronic Stages
Considerably higher changes in rectal temperature were noted 
in the acute group birds, suggesting difficulties in maintaining 
the core body temperature in response to sudden increase in 
temperature, compared to the chronic group birds, which were 

able to regulate their body temperature better at the end of the 
experimental period. This may be due to acclimation for cyclic 
HS. The highest change in rectal temperature was observed in 
the highland chickens of the acute group. These chickens were 
less adapted to HS as compared to lowland chickens. Therefore, 
it may be assumed that the response of highland chickens to 
HS is less robust than the response of lowland chickens. While 
response to acute HS is under homeostatic regulation (reflex-
responsive regulation), the response to chronic HS is under 
homeorhetic regulation, i.e., metabolic regulation through 
endocrinal hormones (Collier et al., 2018). Studies have shown 
that in chickens acute HS, i.e., shock due to sudden change in 
ambient temperature, is more stressful (Lan et al., 2016) than 
cyclic HS (Coble et al., 2014). In the lowland chicken, in both 
cardiac and skeletal muscles, the acute group had 2.2 to 2.5 times 
more DEGs than the chronic group; however, in the highland 
chickens, while there were 1.7 times more DEGs in the acute stage 
of skeletal muscle tissues, a similar number of DEGs were found 
at both stages in the cardiac tissue (Figure 3A). This suggests a 
difference in heat sensitivity in the cardiac tissues between the 
lowland and highland chickens. The overall increased number 
of DEGs in the lowland chickens and the comparatively lesser 

FIGURE 6 | Validation of RNA sequencing results with qRT-PCR analysis. The real-time PCR analyses of HSPH1, OTUD1, PDK4, ATRAID, SRGN, and MT4 were 
performed on all the samples that were used in the RNA-Seq analysis. GADPH, which showed constant expression in all samples, was used as a normalization 
gene. Log2 fold changes identified in the RNA-Seq analysis were plotted as bar, and the fold changes through qRT-PCR were plotted as line graph. A scatter plot of 
RNA-Seq Log2 fold change and the qRT-PCR fold change were plotted, and the correlation (r2) between the two methods was identified.
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change in rectal temperature (Figure 2) suggest a considerably 
stronger response to HS than the highland chickens. This 
difference may denote the difference in acclimatization (rate) 
between highland and lowland chickens due to a difference in 
adaptation to HS.

Between the different contrasts in the acute and chronic 
stages, very few genes overlapped. Overall only two genes 
in cardiac (HSPA8 and HSPB7) and two genes in skeletal 
muscle (HSPA8 and FABP4) overlapped. Thus, we conclude 
that acclimatization leads to a complete change in response 
to HS. The HSPA8 gene (up-regulated in all contrast) is a 
member of the HSP70 family of molecular chaperones and is 
known to play an important role in directing correct folding 
of newly synthesized proteins and in the destruction of non-
reversibly denatured proteins (Hartl, 1996; Iwamoto et al., 
2005). HSPA8 has been found to be up-regulated under HS 
in chickens (Sun et al., 2015b; Wang et al., 2015) and could 
serve as a good biomarker. HSPB7 is a member of the small 
HSP (sHSP) family, whose expression is restricted to skeletal 
and cardiac muscles (Bonomini et al., 2018). HSPB7 functions 
in protecting cells from protein aggregation (Vos et al., 2010) 
and is required for maintaining muscle integrity (Juo et al., 
2016). HS causes aggregation of denatured proteins (Srikanth 
et al., 2017a). HSPB7 was found to be significantly up-regulated 
in lowland chicken’s cardiac (acute and chronic) and skeletal 
muscle (acute), while the effect was opposite (down-regulated) 
in the highland chickens. This could indicate that the lowland 
chickens might be able to counteract the effects of HS-induced 
protein aggregation better than the highland chickens. We also 
observed stage-specific difference in HS response (Figure 4B). 
The p53 pathway, which is essential for DNA damage repair, 
initiation of cell cycle arrest, and cell apoptosis (Rappold et al., 
2001; Harris and Levine, 2005), was enriched in both cardiac 
and skeletal muscles in the acute stage, suggesting that acute HS 
might have an inhibiting effect on cell cycle; similar observation 
was noted in liver of heat-stressed broilers (Jastrebski et al., 
2017). The PPAR signaling pathway, which is required for 
energy metabolism (Wang, 2010) and regulating the oxidative 
stress–induced inflammatory response (Kim et al., 2017), was 
found to be enriched under chronic HS in three of the four 
contrasts (Figure 4B). Prolonged exposure to heat can cause 
considerable oxidative stress damage in chickens (Azad et al., 
2010; Akbarian et al., 2016). The enrichment of PPAR signaling 
in the chronic HS group could be indicative of HS-induced 
reactive oxygen species (ROS) accumulation and oxidative 
stress. While this may relate to the inflammatory response, it 
may also just indicate differences between tissues.

Difference in HS Response Between 
Cardiac and Skeletal Muscle
The overlapping of very few genes between cardiac and 
skeletal muscle within and between the two ecotypes (lowland 
and highland) (Figures 3B, C) shows that not only is there a 
difference in HS response between the tissues, but there is 
also an ecotype-specific difference in HS response, suggesting 
differences in HS adaptation. This was indicated by the 

enrichment of the PPAR signaling pathway in the cardiac and 
the MAPK signaling pathway in the skeletal muscle. While 
PPAR signaling pathway regulates energy metabolism and 
regulation of the oxidative stress response (Wang, 2010; Kim 
et al., 2017), the MAPK signaling is required for activating 
programmed cell death (Pearson et al., 2001). The activation 
of members of the PPAR signaling pathway in cardiac muscle 
might be due to the requirement of considerable energy for 
pumping blood to dissipate the accumulated heat or to alleviate 
oxidative stress, while the enrichment of MAPK signaling genes 
could be indicative of cellular damage in the skeletal muscle and 
the triggering of apoptosis.

Difference in HS Response Between 
Lowland and Highland Chicken
The DEGs generated under different contrasts were integrated 
into lowland and highland gene correlation networks (GCNs) 
to study their overall response to HS. The GCNs were then 
sorted for number of edges, denoting connections between 
nodes (genes), to identify hub genes in each ecotype. The top 
5 hub genes in the lowland GCN all function in regulating cell 
cycle, cell signaling, cell division, or in DNA repair mechanism. 
Cyclin B2 (CCNB2), which is an important regulator of cell 
mitosis (Brandeis et al., 1998), was significantly up-regulated 
in lowland skeletal muscle at the chronic stage. CCNB2 
was previously found to be significantly down-regulated in 
the fast-growing ROSS 708 broilers compared to the slow-
growing Illinois broiler under HS and was suggested to be 
indicative of the reduction in cell cycle activity in the Ross 
broilers (Zhang et al., 2017). The Crb2, a BRCT protein, is a 
cell cycle checkpoint mediator that is essential for cellular 
response to DNA damage and repair (Kilkenny et al., 2008). 
Crb2 was found to be significantly up-regulated in the 
skeletal muscle at acute and chronic stages. Carbohydrate 
N-acetylgalactosamine-4-O-sulfotransferase 9 (CHST9), a 
member of the N-acetylgalactosamine-4-O-sulfotransferase 
family that catalyzes the transfer of sulfate to position 4 of 
nonreducing terminal GalNAc residues, is implicated in cellular 
signaling events (Xia et al., 2000; Baenziger, 2003; Zhao et al., 
2010). The expression of CHST9 was found to be up-regulated 
in the acute stage in skeletal muscle. SESN1, which was found 
to be critical for prolonging the life span of Caenorhabditis 
elegans by preventing muscle degeneration, is required for ROS 
clearance and plays a key role in defense against HS (Yang et al., 
2013). The expression of SESN1 was found to be up-regulated 
in the skeletal muscle in the acute stage. The NR4A3 is a nuclear 
orphan receptor and a member of the Nur77 family. The NR4A3 
activates several genes that are critical for regulating cell cycle, 
inflammation, and DNA repair (Wenzl et al., 2015). NR4A3 
expression was found to up-regulated in the skeletal muscle of 
lowland chicken. The differential expression of these key hub 
genes, which had significant expression correlation with 91 
other genes in the network (degrees), suggests that the lowland 
chickens were affected by HS, and they responded robustly 
by activating, cell cycle checkpoints, cell cycle arrestors, ROS 
clearance, and DNA damage and repair mechanisms.

249

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Transcriptome Response to Heat StressSrikanth et al.

12 October 2019 | Volume 10 | Article 993Frontiers in Genetics | www.frontiersin.org

The top hub genes in the highland coexpression network (Figure 
5A), identified by the degrees of connections, were COMMD4, 
TTC32, H1F0, and ACYP1. COMM (Copper metabolism gene 
MURR1) domain containing 4 (COMMD4) is an inhibitor of 
TNF (tumor necrosis factor)–induced NF-κB (nuclear factor κB) 
(Burstein et al., 2005). Activated NF-κB regulates the expression 
of several genes that controls cell proliferation, apoptosis, and 
inflammation (Liu et al., 2016). The expression of COMMD4 was 
found to be significantly down-regulated in the cardiac (acute 
and chronic stages) and skeletal muscle (acute stage) of highland 
chickens, possibly indicating the activation of NF-κB transcription 
regulatory factor. TTC32 was found to be up-regulated in the 
cardiac and skeletal muscle tissues at chronic and acute stages, 
respectively. The function of TTC32 is unknown; however, a 
number of TPR (tetratricopeptide repeat domain) interact with 
HSP family HSP70, HSP70, and HSP90 and are required for 
regulation of protein folding and transport (Ballinger et al., 1999), 
and HSP90AA1, a member of the HSP90 family, was significantly 
up-regulated in the skeletal muscle in the acute stage. H1F0 is 
involved in apoptotic DNA fragmentation (Wang et al., 2018) 
and contributes to labeling DNA damage (Keck et al., 2018). The 
expression of H1F0 was found to be up-regulated at both stages 
in the skeletal muscle and at the chronic stage in cardiac tissue in 
the highland chickens. The expression of ACYP1, an isoform of 
ACYP, which can induce apoptosis and is involved in ion transport 
(Degl’innocenti et al., 2004; Degl’innocenti et al., 2019), was found 
to be significantly elevated in the cardiac (chronic) and skeletal 
muscle (acute), while the expression of ACYP2 (another isoform 
of ACYP) was found to be elevated in the cardiac (Acute) and 
skeletal muscle (Chronic). This might indicate the activation of 
apoptosis due to DNA or cellular damage.

Pathway enrichment analysis of the genes in the GCNs 
(Figures 5B, D) showed that the p53 signaling and PPAR 
signaling pathways were enriched in both the lowland and 
highland networks. While p53 signaling pathway plays a pivotal 
role in cell death and cell survival by activating genes that induce 
cell cycle regulation, DNA repair, and cell death (Vogelstein et al., 
2000; Zhang et al., 2010), PPAR signaling is critical for energy 
homeostasis (Wang, 2010), and considerable energy is spent 
in maintaining body temperature and dissipating heat, under 
hyperthermic condition. Moreover, there is a transcriptional 
dependence on PPAR for heat shock response (Vallanat et al., 
2010). The steroid biosynthetic pathway was enriched only in the 
lowland network (Cook et al., 2015). Genes in this pathway can 
modulate the activities of RORγ (retinoic acid–related orphan 
receptors), which can regulate apoptosis (Kurebayashi et al., 
2000). The MAPK signaling pathway and protein processing in 
endoplasmic reticulum (PP-ER) pathway were enriched only 
in the highland network (Figure 5B). HS is proteotoxic, and 
denatured proteins can become cytotoxic by forming aggregates 
(Srikanth et al., 2017a). Cell responds to this by activating the 
PP-ER pathway (Harding et al., 1999), which increases the 
protein-folding capacity in the endoplasmic reticulum and also 
activates apoptosis (programmed cell death) (Welihinda et al., 
1999). Heat shock is known to activate several members of the 
MAPK family, which constitutes serine/threonine kinases that 
play a crucial role in transmitting signals required for cell growth, 

differentiation, and apoptosis (Pearson et al., 2001; Gorostizaga 
et al., 2005). The enrichment of multiple apoptosis activation 
pathways and hub genes that are proapoptotic factors in the 
highland network suggests that considerable cellular damage has 
taken place in the highland chickens

CONCLUSION

This study examined the transcriptome response to HS of two 
IC ecotypes from the lowlands and highlands of Kenya. Rectal 
temperature measurements and RNA-Seq analysis revealed that 
comparing the responses of acute HS and chronic HS indicated 
acclimatization of both lowland and highland chickens in such a 
short period. Furthermore, the response to HS is tissue and stage 
specific. The GCN analysis showed that the hub genes identified 
in the lowland chickens were cell cycle arrestors and DNA repair 
genes, while the highland hub genes were apoptotic and oxidative 
stress–responsive genes. These results lead us to conclude that, 
although both the ecotypes experienced HS, the lowland chickens 
responded more robustly than the highland chickens and might 
have a higher tolerance to HS than the highland chickens. This 
better acclimatization may be due to previous adaptation to 
higher temperatures in the lowland environment. This study 
extends our understanding of the HS response of chickens, and 
the genes and pathways identified could serve as a foundation for 
improving thermal tolerance in chickens.
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A Corrigendum on

Cardiac and Skeletal Muscle Transcriptome Response to Heat Stress in Kenyan Chicken

Ecotypes Adapted to Low and High Altitudes Reveal Differences in Thermal Tolerance and

Stress Response

by Srikanth, K., Kumar, H., Park, W., Byun, M., Lim, D., Kemp, S., et al. (2019). Front. Genet. 10:993.
doi: 10.3389/fgene.2019.00993

In the original article, there was a mistake in Supplementary Table 1 and Supplementary Table

2. The expression values given for PDK4 in Supplementary Table 1, ALL_M, CLL_M, AHL_M,
CHL_M contrasts were −3.90808, 2.10011, −4.12057, and −4.12057 the correct values are
−4.1009, 2.07292,−4.63904, and 3.05659 same value should appear at the “Max_expression_level”
column in HL_node_table in Supplementary Table 2.

Similarly the expression values of MT4 given in Supplementary Table 1 for ALL_H,
CLL_H, AHL_H, and CHL_H are −1.20147, 1.485881, −1.19557, and 1.0025, the correct
values are −3.1675, −1.82983, −1.35669, and −1.84142. To reflect this change, columns
“Max_expression_level,” “Max_Tissue,” and “Up/Down” on Supplementary Table 2,
“LL_node_table” tab is corrected.

The authors apologize for this error and state that this does not change the scientific conclusions
of the article in any way. The original article has been updated.

Copyright © 2020 Srikanth, Kumar, Park, Byun, Lim, Kemp, te Pas, Kim and Park. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this
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Identification of lncRNAs by RNA 
Sequencing Analysis During in Vivo 
Pre-Implantation Developmental 
Transformation in the Goat
Ying-hui Ling 1,2†*, Qi Zheng 1,2†, Yun-sheng Li 1,2†, Meng-hua Sui 1,2, Hao Wu 1,2, 
Yun-hai Zhang 1,2*, Ming-xing Chu 3, Yue-hui Ma 3, Fu-gui Fang 1,2 and Li-na Xu 1,4

1 College of Animal Science and Technology, Anhui Agricultural University, Hefei, China, 2 Local Animal Genetic Resources 
Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China, 3 Key Laboratory of Farm Animal Genetic 
Resources and Germplasm Innovation of Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China, 
4 Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China

Pre-implantation development is a dynamic, complex and precisely regulated process that is critical 
for mammalian development. There is currently no description of the role of the long noncoding 
RNAs (lncRNAs) during the pre-implantation stages in the goat. The in vivo transcriptomes of 
oocytes (n = 3) and pre-implantation stages (n=19) at seven developmental stages in the goat 
were analyzed by RNA sequencing (RNA-Seq). The major zygotic gene activation (ZGA) event 
was found to occur between the 8- and 16-cell stages in the pre-implantation stages. We 
identified 5,160 differentially expressed lncRNAs (DELs) in developmental stage comparisons 
and functional analyses of the major and minor ZGAs. Fourteen lncRNA modules were 
found corresponding to specific pre-implantation developmental stages by weighted gene 
co-expression network analysis (WGCNA). A comprehensive analysis of the lncRNAs at each 
developmental transition of high correlation modules was done. We also identified lncRNA-
mRNA networks and hub-lncRNAs for the high correlation modules at each stage. The extensive 
association of lncRNA target genes with other embryonic genes suggests an important regulatory 
role for lncRNAs in embryonic development. These data will facilitate further exploration of the 
role of lncRNAs in the  developmental transformation  in the pre- implantation  stage.

Keywords: RNA-seq, Goat, long noncoding RNAs, pre-implantation development, zygotic gene activation

INTRODUCTION

Pre-implantation development comprises complex and dynamic regulatory processes involving specific 
and stable gene expression patterns that maintain the viability of the embryo. During different embryonic 
stages, highly complex tissues are composed of different cell types that are formed by cell fate and cell 
differentiation (Lokken and Ralston, 2016; Bissiere et al., 2018). Analysis of the spatiotemporal patterns 
of gene expression in goat pre-implantation stages is therefore essential for clarifying early developmental 
processes in this species. The key stage in the transition from germ cells to embryonic development is 
zygotic gene activation (ZGA), which induces developmental blocks of embryonic development (Lee 
et al., 2014). The timing of mammalian ZGA process is species-specific; it occurs from the point of oocyte 
maturation until mRNA transcriptional activity in the embryo. The initiation of major ZGA events have 
been reported to be the 2-cell stage in mouse (Xue et al., 2013), 4-cell stage in pig (Cao et al., 2014), and 

Frontiers in Genetics | www.frontiersin.org October 2019 | Volume 10 | Article 1040

ORIGINAl ReSeARCh

doi: 10.3389/fgene.2019.01040
published: 25 October 2019

255

https://creativecommons.org/licenses/by/4.0/
mailto:lingyinghui@ahau.edu.cn
mailto:zhangyunhai01@126.com
https://doi.org/10.3389/fgene.2019.01040
https://www.frontiersin.org/article/10.3389/fgene.2019.01040/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01040/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01040/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01040/full
https://loop.frontiersin.org/people/604624
https://loop.frontiersin.org/people/739281
https://loop.frontiersin.org/people/789797
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics#editorial-board
http://10.3389/fgene.2019.01040
https://www.frontiersin.org/journals/genetics#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.01040&domain=pdf&date_stamp=2019-10-25


LncRNA During in Vivo Pre-ImplantationLing et al.

2

4-cell to 8-cell stage in human (Xue et al., 2013; Yan et al., 2013). 
Previous studies had reported that ZGA-related genes begin to be 
expressed in the 8-cell to 16-cell stage of goats (Ma et al., 2014; Deng 
et al., 2018). Recent study of the developmental block of cultured of 
goat in vitro suggested that cell development stops at the 8-cell stage, 
and further verification by RNA-seq has indicated that it occurs 
between the 4- and 8-cell stage (Deng et al., 2018).

Encoded protein sequences represent less than 2% of the 
mammalian genome whereas a much larger fraction of this 
genome is transcribed into what is known as noncoding RNAs 
(ncRNAs) (Agliano et al., 2019). Many ncRNAs are expressed in 
pre-implantation stages and play an important role in fertilization 
and appropriate embryonic development (Hamazaki et al., 2015; 
Yuan et al., 2016; Vallot et al., 2017). Long ncRNAs (lncRNAs) are 
among the largest ncRNAs in vertebrates and are broadly defined 
as noncoding transcripts of greater than 200 nucleotides (Sun and 
Kraus, 2013; Agliano et al., 2019). For example, Trincr1 binds to 
TRIM71 to inhibit FGF/ERK signaling in embryonic stem cells to 
coordinate cell fate specifications (Li et al., 2019). Most of the studies 
on the expression of lncRNAs in pre-implantation stages have been 
focused on humans (Kurian et al., 2015), mice (Karlic et al., 2017), 
and pigs (Zhong et al., 2018). In comparable functional studies of 
oocyte and pre-implantation cells lncRNAs in the goat are limited.

The domestic goat (Capra hircus) is one of the most important 
commercially farmed animals that produces a variety of products, 
including meat, milk, and skins (Guan et al., 2016). Moreover, 
various established reproductive biotechnologies have made 
the goat a significant species used in agriculture and transgenic 
breeding research (Baguisi et al., 1999; Bao et al., 2016). The 
emergence of low input high throughput sequencing technologies 
has enabled the transcriptome to be determined from oocytes and 
pre-implantation cells at different stages of development in the goat.

In our current study, the transcriptomes of seven pre-implantation 
developmental stages of goat, including in vivo metaphase II mature 
oocytes and the 2-cell, 4-cell, 8-cell, 16-cell, morula and blastocyst 
stages, were sequenced using low input high throughput RNA-seq. 
This analysis identified the timing of goat ZGA and identified the 
differential expression of lncRNAs in oocytes and pre-implantation 
stages, and thereby revealed the role of the lncRNAs in ZGA 
event. Further, we constructed a WGCNA network to identify the 
lncRNAs and lncRNA-mRNA networks that are highly correlated at 
each stage, and to identify the hub-lncRNAs in all pre-implantation 
stages. This compilation-specific network analysis has given us a 
more comprehensive understanding of the functional transition of 
lncRNAs at specific stages of pre-implantation in the goat.

MATeRIAlS AND MeThODS

Goat Pre-Implantation Stages Material
Female Anhui white goats (AWGs) were farm-raised by the Boda 
Company (Baogong Town, Feidong County, Hefei, China) under 

a unified field management system. All experimental animals 
were estrus-synchronized by treatment with EAZI-Breed CIDR 
(CIDR, Hamilton, New Zealand) for 12 days and superovulated 
prior to CIDR removal. The estrus test was performed 12h after 
stopping CIDR, and artificial insemination was performed 
on the female AWGs that were estrus at the same time. After 
36–48, 56–60, 87–92, 97–100, and 109–112 h of mating, oocytes 
and 2-cell, 4-cell, 8-cell, and 16-cell cells were flushed from the 
oviduct. Morulae and blastocysts were obtained from the uterus 
after 152–156 and 212–218 h, respectively. A total of 21 samples 
were obtained in these seven stages, and each stage of the sample 
had three replicates. Oocytes and pre-implantation cells were 
washed several times in 1% DBPS solution. Five obtained oocytes 
and pre-implantation cells at each stage were pooled and snap 
frozen in liquid nitrogen.

RNA Isolation, library Preparation, and 
Sequencing
RNA isolation, library construction and sequencing were 
done by Novogene Co. Ltd. (Beijing, China). Total RNA from 
individual oocytes and pre-implantation cells was isolated 
using TRIzol reagent (Invitrogen, Carlsbad, CA); and RNA was 
co-precipitated with linear acrylamide (Ambion, Texas, USA). 
RNA integrity was evaluated on 1% agarose gel. RNA purity 
was checked using a NanoPhotometer (Implen, CA, USA). RNA 
concentrations were measured using a Qubit® RNA Assay Kit 
and Qubit® 2.0 Flurometer (Life Technologies, CA, USA). We 
then used 3 ng of RNA as the base material for cDNA sample 
preparation, and purified cDNA was obtained and detected on 
an Agilent Bioanalyzer 2100 system (Agilent technologies, CA, 
USA). The clustering of the index-coded samples was performed 
on a cBot Cluster Generation System using TruSeq PE Cluster 
Kit v3-cBot-HS (Illumia, CA, USA) in accordance with the 
manufacturer’s instructions. After cluster generation, the libraries 
were sequenced on an Illumina Hiseq 2500 platform and 150 bp 
paired-end reads were generated (Table S1).

Data Analysis
Raw data (raw reads) in a fastq format were first processed 
through in-house perl scripts (ng-qc). All the linker sequences 
in the raw data would be removed, ng-qc parameter: -L 20 -p  
0.5 (-L, lowest quality value, -p parameter of low-quality 
reads.-L20 –p 0.5 was the low-quality base ratio allowed by the 
specified reads; the default was 0.5. This means that the number 
of bases of quality value ≤ -L parameter (Baguisi et al., 1999)/
reads length ≥ 0.5 represented low quality reads). In addition, 
entering the adapter sequence in the ng-qc software would be 
removed by sequence matching. Clean data (clean reads) were 
obtained by removing reads from the raw data that contained 
adapters, reads with undetermined base content greater than 
10%, and low-quality reads (Table S1). Moreover, clean reads 
satisfied the conditions of Q20 > 90% and Q30 > 85%. This 
meant that reads with a base error rate of less than 0.01 account 
for more than 90% of all reads, and reads with an error rate 
of less than 0.001 account for more than 85% of all reads. The 
Capra hircus reference genome and gene model annotation files 

Abbreviations: ZGA, zygotic gene activation; DEL, differentially expressed 
lncRNA; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
WGCNA, Weighted gene co-expression network analysis; TOM, topological 
overlap matrix.
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for this study can be accessed at (The Capra hircus reference 
gene model annotation file; The Capra hircus reference genome 
model annotation file). An index of the reference genome 
was built using Bowtie v2.0.6 (Langmead and Salzberg, 2012) 
and paired-end clean reads were aligned to this using TopHat 
v2.0.9, both with default parameters (Trapnell et al., 2009). 
The mapped reads of each sample were assembled using both 
Scripture (beta2) (Trapnell et al., 2010) and Cufflinks (v2.1.1) 
(Guttman et al., 2010) via a reference-based approach. Scripture 
used a statistical segmentation model to distinguish expressed 
loci from experimental noise and spliced reads to assemble 
expressed segments. It reported all statistically expressed 
isoforms in a given locus. Cufflinks uses a probabilistic model 
to simultaneously assemble and quantify the expression level of 
a minimal set of isoforms that provides a maximum likelihood 
explanation of the expression data in a given locus. Scripture 
was run with default parameters, Cufflinks was run with ‘min-
frags-per-transfrag = 0’ and ‘–library-type’; other parameters 
were set as default.

Based on the splicing results, the structural characteristics 
of lncRNA and the functional characteristics of non-encoded 
proteins, a 5-step screening was performed, and the lncRNAs 
obtained were used as the final candidate lncRNA set for 
subsequent analysis. First, the transcripts spliced   from all samples 
were combined using cuffcompare to screen for transcripts of 
unknown molecular orientation. Second, we chose transcripts 
with transcript length ≥ 200 bp and exon number ≥ 2. Then, 
we calculated the read coverage of each transcript by cufflinks 
and selected a transcript with a coverage of ≥ 3 reads in at least 
one sample. Next, the transcript obtained in the previous step 
was first compared with the known lncRNA by cuffcompare to 
obtain the same transcript as the known lncRNA. This part of 
the transcript was directly included in the final lncRNA set and 
no further screening was performed. Finally, the transcripts of 
the candidate lincRNA, intronic lncRNA, and anti-sense lncRNA 
type were screened by comparison with known mRNAs and 
using the class_code information in the cuffcompare analysis 
results (Table S2) (Cuffcompare program of Cufflinks).

Then, transcripts with coding potential were filtered by 
Coding-Non-Coding-Index (CNCI) (v2) (Sun et al., 2013), 
Coding Potential Calculator (CPC) (0.9-r2) (Kong et al., 
2007), and Pfam-scan (PFAM) (v1.3) (31), and the noncoding 
transcripts were selected as our candidate lncRNAs. The CNCI 
parameters include –f input transcriptome sequence file, –o data 
output path, –p 1 (number of cpu) and -m ve (specified mode, ve 
is vertebrate). The index in the CNCI prediction result would be 
labeled as coding or noncoding (Sun et al., 2013). CPC (0.9-r2), 
used with default parameters, searched sequences with known 
protein sequence databases to elucidate both coding and non-
coding transcripts (Kong et al., 2007). In addition, we translated 
each transcript in all three possible frames and used PFAM 
(v1.3) to identify the presence of any known protein family 
domain recorded in the Pfam database (release 27; used Pfam B). 
A transcript with a PFAM hit will be excluded in the following 
steps. Pfam searches use default parameters of -E 0.001 -domE 
0.001 and -cpu 2 (CPU set to 2) (Bateman et al., 2004; Punta 
et al., 2012).

Quantification of Gene expression and 
Differential expression Analysis
Cuffdiff (v2.1.1) was used to calculate the FPKM (fragments 
per kilo-base of exon per million fragments mapped) of both 
the lncRNAs and coding genes in each sample (Trapnell et al., 
2010). Gene FPKMs were computed by summing those for the 
transcripts in each gene. Principal Component Analysis (PCA) 
was conducted using R and heat map/cluster analysis using 
the Morpheus free online platform (Morpheus). The applied 
statistical procedures used a negative binomial distribution 
model in Cuffdiff to determine differentially expressed transcripts 
(Trapnell et al., 2010). For biological replicates, transcripts or 
genes with a P-adj < 0.05 were assigned as differentially expressed.

Target Gene Prediction and Functional 
Analysis
The interaction of lncRNA with a nearby target gene was called 
cis- action. We searched for coding genes 10 kb upstream and 
downstream of each lncRNA. Candidate target genes for trans-
acting lncRNAs were predicted based on co-expression. The 
Pearson correlation coefficient method was used to analyze 
correlations between mRNAs and lncRNAs. mRNAs with 
absolute correlation value greater than 0.95 were considered to 
be target genes for lncRNAs. LncRNA-mRNA networks were 
constructed using Cytospace (Cytoscpace software). Gene 
Ontology (GO) is a classification system for internationally 
standardized gene functions that provides a controlled vocabulary 
to comprehensively describe the properties of genes and their 
products. GO enrichment analysis of differentially expressed 
genes or lncRNA target genes was performed using the GO-seq 
R package, in which gene length bias was corrected (Young et al., 
2010). GO terms with P-value < 0.05 were considered to indicate 
significant enrichment of those respective differential genes. 
Bubble charts were constructed using the OmicShare platform 
for data analysis (Omicshare tools).

Weighted Gene Co-expression Network 
Analysis (WGCNA)
Differentially expressed lncRNAs with an FPKM > 0.01 between 
all pre-implantation cells development stages were selected, and 
the lncRNA co-expression network was then constructed using 
R package WGCNA (Langfelder and Horvath, 2008). A signed 
weighted correlation network was generated by first creating a 
matrix of Pearson correlation coefficients between all pairs of 
genes across the measured samples. An adjacency matrix was 
then transformed into a topological overlap matrix (TOM) 
to minimize the effects of noise and spurious associations. To 
define modules as branches, we employed the Dynamic Tree Cut 
algorithm with default parameters to cut the hierarchal clustering 
tree (Langfelder et al., 2008).

Quantitative RT-PCR
QRT-PCR was performed using GoTaq qPCR Master Mix 
(Promega, Madison, WI) and Real-time Thermal Cycler 5100 
(Thermo, Shanghai, China). The primer pairs used in the PCR 
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amplifications were synthesized by the Beijing Genomics 
Institute and are listed in Table S3. The GAPDH housekeeping 
gene was amplified as a control (Li et al., 2019). The target 
sequence levels were normalized to the reference sequence 
and calculated as 2−ΔΔCt. Statistical analysis of the normalized 
data was then conducted using SPSS version 19.0 for Windows 
(SPSS Statistics). Data are presented as means ± SEM. Data were 
considered statistically significant at P-value < 0.05.

ReSUlTS

Transcriptome Reconstruction From RNA-
Seq Data
We collected 21 samples from Anhui white goats after 
superovulation treatment and then performed RNA-seq analysis 
(Figure 1A). The cells were obtained from seven crucial stages 
i.e. metaphase II oocytes and 2-cell, 4-cell, 8-cell, 16-cell, morula 
and blastocyst stage (Figure 1B). An Illumina HiSeq 2500 

sequencer was used and 290.8 GB of clean sequencing data were 
generated from the 21 samples, with an average of 92.1 million 
total mapped reads per stage (Table S1).

Dynamic Patterns of Protein-Coding 
Transcript Profiles
A total of 29,608 protein-coding transcripts were identified 
during the seven goat pre-implantation stages (Table S4). 
Principal component analysis was used to capture the expression 
of transcripts from the oocyte to blastocyst development stages. 
Oocytes and pre-implantation cells at the same stage were found 
to cluster with each other, except that one 4-cell stage was clustered 
in the 2-cell stage, and one morula was clustered in the 16-cell 
stage (Figure 2A). The greatest changes in gene expression were 
observed in the 8- and 16-cell stages, possibly due to maternal-
zygote transitions during this period. Hierarchical clustering also 
yielded similar intra- and inter-phase expression patterns (Figure 
2B). All of the stages of goat development were divided into two 

FIGURe 1 | Comprehensive catalog of the lncRNAs in goat oocytes and embryos at different stages. (A) Schematic of the experimental design method for the 
identification of expressed protein-coding transcripts and IncRNAs. Scale bar, 100 μm. (B) Microscopy imaging of mature goat oocytes and embryos at the 
metaphase II oocyte, 2-cell, 4-cell, 8-cell, 16-cell, morula and late blastocyst stages.
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processes: from the oocyte to 8-cell stage and from the 16-cell 
to blastocyst stage. Two other minor ZGAs were found to occur 
between the oocyte and the 2-, 4-, and 8-cell stages, and between 
the morula and the blastocyst stage (Figure 2A, B). Moreover, 
10,197 differentially expressed mRNAs were identified, and the 
largest change was also observed between 8-cell and 16-cell in two 
consecutive comparison groups (Figure 2C). Functional analysis 
of these differentially expressed mRNAs was enriched in 110 
GO terms, including “metabolic,” “binding,” and “biosynthetic 
processes,” as well as “enzymatic activity,” such as “cell part,” 
“cellular macromolecule metabolic process,” “cellular biosynthetic 
process,” “ribonucleotide binding,” “phosphoprotein phosphatase 
activity” and other terms. This stratification indicated that goat 
ZGA occurs between the 8- and 16-cell stages (Figure 2D).

Genomic Structural Features of Goat 
lncRNAs
CNCI, CPC, and PFAM were used to remove potential encoded 
transcripts after a highly stringent filtering pipeline was applied 
(Figure S1A). A final total of 99,621 putative lncRNAs were 
retained (Figure S1B). Most of these lncRNAs (97.8%) were found 

to be distributed on all chromosomes except for the Y chromosome 
(Table S5). We further found that goat chromosomes 1, 2, 7 and 10 
produce more lncRNAs (> 4500) than any of the others (Figure 3A). 
The identified lncRNAs were mainly divided into three categories: 
lincRNA, antisense lncRNA, and intronic lncRNA. Among them, 
intronic lncRNA was the most abundant, accounting for 65.3%, 
followed by lincRNA (24.9%) (Figure 3B). We speculated from 
this that these 4 chromosomes make the major contribution to 
the role of the lncRNAs in oocytes and pre-implantation cells 
growth. Combining multiple structural features to maximize our 
understanding of lncRNA and mRNA functions is important. The 
lncRNAs have an average length of 724.75 bp, which is shorter 
than the average protein-coding transcript length of 2872.80 bp in 
goat (Figure 3C). In addition, the lncRNAs in our current dataset 
were shorter than the protein-coding genes in terms of the ORF 
length (mean 93.78 bp vs. 520.22 bp, respectively) (Figure 3D).

Dynamic expression of Differentially 
expressed lncRNAs
We examined the differential expression of lncRNAs 
(P-adj < 0.05) between all stages of goat pre-implantation 

FIGURe 2 | mRNA expression patterns during pre-implantation development in the goat. (A) Principal component analysis (PCA) of mRNAs in 21 goat pre-
implantation development samples at 7 different stages. The same color represents the same stage. The arrows indicate the direction of development between 
successive muscle stages. (B) Hierarchical clustering heat map of mRNAs by sample. Red, relatively high expression; blue, relatively low expression. (C) Number of 
differentially expressed mRNA showing up- (red) or down- (blue) regulation during development. Yellow, total number of differentially expressed mRNAs between any 
two stages. (D) Top 20 enriched GO terms for the differentially expressed mRNA between the 8- and 16-cell stage.
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development. We identified 5160 differentially expressed 
lncRNAs (DELs) in these seven stages (Figure 4A, Table S6). 
In an unbiased hieratical clustering of these DELs, the 16-cell 
stage produced the largest differences from the other stages, 
which also confirmed the time of the major ZGA occurrence 
(Figures  4A,  B). Interestingly, the gene expression profiles 
between the 2-, 4-, and 8-cell in the goat were similar. Differing 
from the protein-encoding transcripts, the clustering of DELs 
revealed that oocytes were separated from the first two cleavage 
events (2, 4, 8-cell stages) and the 16-cell stage was separated 
from the morula (Figure 4B). Hence, we mainly focused on 
the DELs between the 8- and 16-cell stages and between the 
oocytes and 2-cell stage.

In the major ZGA event in the goat pre-implantation stage, 
905 DELs were found to be generated between the 8- and 
16- cell stages, of which 780 were up-regulated and 125 were 
down-regulated. These DELs were enriched (P-adj < 0.05)  
in 24 GO terms, such as “G-protein coupled receptor 
activity,” “G-protein coupled receptor signaling pathway,” 
“transmembrane signaling receptor activity,” and others 
(Figure 4C, Table S7). The minor ZGA from the oocyte to the 
2-cell stage produced 148 DELs, 34 of which were up-regulated 
and 114 were down-regulated. Functional analysis of these 
two transformation stages included the “G-protein coupled 
receptor signaling pathway,” “signaling receptor activity,” “cell 
surface receptor signaling pathway,” and others (Figure 4D, 
Table S8). Overall, these RNA-seq data provided an in vivo 
overview of the role of lncRNAs in ZGA waves in the goat  
pre-implantation stages.

WGCNA Revealing the Role of the Dels 
in the Developmental Transformation 
leading to Pre-Implantation in the Goat
There has been no prior study describing the expression 
profiling of lncRNAs during goat oocyte and pre-implantation 
development. In addition, little functional research on these 
lncRNAs has been reported. To investigate the potential role of 
DELs in pre-implantation development, WGCNA was performed 
on 4761 DELs that had been filtered (FPKM > 0.01 during at least 
one developmental stage) and correlation analysis was conducted 
on the obtained modules (Table S9). This analysis revealed that 
goat DELs prior to implantation can be divided into 15 modules 
(denoted in the figure using different colors), 14 of which were 
highly correlated (correlation > 0.6, P-value < 0.05) with a specific 
developmental stage (Figure 5A, Figure S2). Interestingly, each 
preimplantation period had corresponding high expression 
modules. Moreover, six lncRNAs were randomly identified from 
stage-specific modules by qRT-PCR analysis (Figure 5B).

To explore DEL functions in the goat pre-implantation 
period, GO terminology enrichment analysis was performed 
for the different aforementioned modules. Interestingly, our 
analyses of the functions in these modules revealed a sequential 
progression of stage-specific core genetic networks (Table S10). 
Initially, the functional enrichment of oocyte modules (blue and 
salmon) included “transposase activity,” “transposition,” “DNA-
mediated, fat cell differentiation,” and others (Figure 6A). The 
functional processes migrated from “protein insertion into 
membrane,” “DNA topoisomerase II activity,” and others at 
the 2-cell (gray) stage, to “cell projection assembly,” “cellular 

FIGURe 3 | Chromosome distribution and characteristics of lncRNAs in goat pre-implantation development. (A) Distribution of all identified lncRNAs in goat 
chromosomes. (B) Classification of lncRNAs. (C–D) Transcript length and open reading frame (ORF) length distribution of transcripts for all lncRNAs and mRNAs in 
goat skeletal muscle. Orange, lncRNA; blue, mRNA.
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developmental process,” and others in the 4-cell (pink) stage, 
and then to “translation release factor activity,” “translation 
termination factor activity,” and others at the 8-cell (black) 
stage (Figures 6B–F). Functional analysis of the 16-cell stage 
goat modules (tan, purple, turquoise, and yellow), which occurs 
after the major ZGA, revealed the enrichment of 317 GO 
terms, including “dephosphorylation,” “Ras GTPase binding,” 
“small GTPase binding,” and others (Figure 6E). The two other 
distinct major stages included “phosphoric ester hydrolase 
activity,” “stem cell factor receptor binding,” and others in the 
morula stage, and “protein serine/threonine kinase activity,” 
“protein binding involved in protein folding” and others at the 
blastocyst stage (Figure 6G). Our current data thus provide 
the first comprehensive lncRNAs analysis of oocytes and pre-
implantation stages in the goat.

To further identify lncRNAs that may play important 
regulatory roles in these core genetic networks, we screened 
the lncRNAs with the top five of “degree” as hub-lncRNAs 

based on the lncRNA-mRNA networks (Figure 6, Figure S3). 
Interestingly, most of the lncRNAs were aggregated at the 
16-cell stage, which occurs after the major ZGA and produces 
49919 lncRNA-mRNA pairs. Moreover, target genes for hub-
lncRNAs have been identified as important participants in 
mammalian pre-implantation development (Pasternak et al., 
2016; Daldello et al., 2019). For example, BTG anti-proliferation 
factor 4 (BTG4) was targeted by hub-lncRNAs in goat oocyte 
high correlation modules, including XLOC_1684819, 
XLOC_2068075, and XLOC_601889 (Table S11). Cyclin B2 
(CCNB2) was also targeted by XLOC_1684819 in the oocyte 
stage (Table S11). Moreover, the top 5 hub-lncRNAs in the 
6-cell stage goat all target activating transcription factor 
1(ATF1), which has proved to be one of the key regulators 
of the ZGA (Table S11). These results indicate that the hub-
lncRNAs we identified in our current WGCNA may have a 
critical regulatory role in the pre-implantation developmental 
stage of the goat.

FIGURe 4 | LncRNA expression patterns during pre-implantation development in the goat. (A) Number of differentially expressed lncRNAs (DELs) showing up- (red) 
or down- (blue) regulation during development. Yellow, total number of DELs between any two stages. (B) Hierarchical clustering heat map of DELs by samples. 
Red, relatively high expression; blue, relatively low expression. (C–D) Top 20 enriched GO terms for the DELs between the 8- and 16-cell stage, and between the 
oocyte and 2-cell stage, respectively. Green, relatively high expression; red, relatively low expression.
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DISCUSSION

The major ZGA event is the first important step in the successful 
initiation of mammalian pre-implantation as it results in the 
formation of implantable cells. This process is highly dynamic 
and complex, and an appropriate ZGA is essential for the normal 
development of the embryo (Wong et al., 2010). However, the 
timing of ZGA occurrences varied from species to species (Cao 
et al., 2014; Boroviak et al., 2018). Notably, no comprehensive 
lncRNA datasets have been available previously for goat pre-
implantation stages. In our present study, RNA-Seq was used to 
analyze the transcriptome and lncRNA profiles during goat pre-
implantation. The major ZGA in goat development was found in 
our present experiments to occur in the 8- to 16- cell stages. This 
was in contrast to the recent findings by Deng et al. (2018), which 

reported that the 8-cell stage goat stopped developing in in vitro 
developmental block cultures and showed that ZGA occurred 
in the 4- and 8-cell stages in vitro. However, other studies had 
shown that the timing of ZGA onset in pre-implantation cells 
was different between in vitro and in vivo (Misirlioglu et al., 2006; 
Graf et al., 2014).

We additionally explored the role of the DELs (n = 5,160) in 
the pre-implantation process in the goat. The functions of these 
molecules were identified in major and minor ZGA events that 
occur in the 8- to 16-cell stage and from the oocyte to 2-cell stage, 
respectively. The lncRNAs involved in both ZGAs were found to 
be enriched in “G-protein coupled receptor activity,” “G-protein 
coupled receptor signaling pathway,” and other functions related 
to membrane transduction and biological regulation. It is well 
known that G-protein coupled receptors play a key role in cell 

FIGURe 5 | LncRNA expression modules determined by WGCNA (A) Hierarchical clustering heat map of DELs (with an FPKM > 0.01 in at least one sample during 
the seven stages). (B) qPCR (bar chart, blue) and RNA-seq expression (line chart, orange) validation of the indicated lncRNAs.
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self-renewal, differentiation, and signal transduction (Kobayashi 
et al., 2010; Rutz and Klein, 2015). Our current findings thus 
revealed that the lncRNAs regulate the cell membrane and its 
receptors during the ZGA to transduce extracellular physical 
and chemical signals, and thus play a role in the physiological 
activities of this process.

We further explored high-correlation lncRNAs at each goat 
stage and identified each stage of hub-lncRNA according to 
the lncRNA-mRNA network. The functions of the lncRNAs in 
these modules migrated from “transposase activity” in oocytes, 
to “protein insertion into membrane” during the 2-cell stage, to 
“cell projection assembly” at the 4- cell stage and “translation 
release factor activity” at the 8-cell stage, to”dephosphorylation” 
at the 16-cell stage, to “phosphoric ester hydrolase activity” in 
the morulae, and finally to “protein serine/threonine kinase 
activity” in the blastocyst. The transformation of the target gene 
enrichment function at each stage reveals the previously little-
known developmental planning role of lncRNAs in goat pre-
implantation cells. Furthermore, based on the lncRNA-mRNA 
networks in the modules and their high correlation with specific 
development stages, we screened for hub-lncRNAs that are 
potential key regulators of each pre-implantation stage during 
goat pre-implantation development. For example, BTG4, targeted 
by XLOC_1684819, XLOC_2068075, and XLOC_601889 
lncRNAs, is a meiotic cell cycle-coupled maternal-zygotic-
transition licensing factor in oocytes (Pasternak et al., 2016). 
BTG4-null female mice produce morphologically normal oocytes 
but are infertile due to early developmental arrest (Yu et al., 2016).  

CCNB2, targeted by XLOC_1684819, was also required for 
progression through meiosis in the oocyte stage (Daldello et al., 
2019). Additionally, top 5 hub-lncRNAs in the 16-cell stage goat 
all target ATF1, which might prove to be one of the key regulators 
of the major ZGA. The presence of activated ATF1 within the 
mouse nucleus at the time of ZGA indicates that this transcription 
factor is a priority target and a key regulator of this event (Jin and 
O'Neill, 2014; Orozco-Lucero et al., 2017). The DELs that highly 
correlate with each stage of pre-implantation transformation 
provides a guide for future studies of the lncRNAs that function in 
goat pre-implantation development. In addition, the identification 
of hub-lncRNAs in in vivo pre-implantation cells provides a 
valuable resource for further study of the molecular mechanisms 
underlying pre-implantation development.

CONClUSION

The in vivo transcriptome of metaphase II oocytes, 2-, 4-, 8-, 
and 16-cell stage cells, and the morula and blastocyst in the goat 
were analyzed by RNA-Seq. The expression profile of the protein-
coding genes indicates that the main ZGA occurs between the 
8- and 16-cell stages. The expression profile of the DELs was 
also verified and these molecules play an important role in the 
transport and transduction of various substances during the 
ZGA. In addition, we described the functional continuity of 
the core genetic network specific for goat pre-implantation 
developmental stages and identify five hub-lncRNAs in each 

FIGURe 6 | Functional prediction of the high correlation modules involved in pre-implantation development in the goat (A–G) Bar plots showing the top 5 GO 
enrichment terms in the high correlation modules of each developmental stage in the goat. The length of the bars indicates the significance (-log10 transferred 
P-value). (h) Identified top5 degree hub-lncRNAs corresponding to the development stage.
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stage. The role of lncRNA in goat oocytes and pre-implantation 
development had not been fully elucidated, and our current 
findings provided valuable resources for future research.
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Gene Expression and Fatty Acid 
Profiling in Longissimus thoracis 
Muscle, Subcutaneous Fat, and 
Liver of Light Lambs in Response to 
Concentrate or Alfalfa Grazing
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A better understanding of gene expression and metabolic pathways in response to a feeding 
system is critical for identifying key physiological processes and genes associated with 
polyunsaturated fatty acid (PUFA) content in lamb meat. The main objective of this study 
was to investigate transcriptional changes in L. thoracis (LT) muscle, liver, and subcutaneous 
fat (SF) of lambs that grazed alfalfa (ALF) and concentrate-fed (CON) slaughtered at 23 kg 
and using the Affymetrix Ovine Gene 1.1 ST whole-genome array. The study also evaluated 
the relationship between meat traits in LT muscle, including color, pigments and lipid 
oxidation during 7 days of display, α-tocopherol content, intramuscular fat (IMF) content 
and the fatty acid (FA) profile. Lambs that grazed on alfalfa had a greater α-tocopherol 
concentration in plasma than CON lambs (P < 0.05). The treatment did not affect the IMF 
content, meat color or pigments (P > 0.05). Grazing increased the α-tocopherol content  
(P < 0.001) and decreased lipid oxidation on day 7 of display (P < 0.05) in LT muscle. The 
ALF group contained a greater amount of conjugated linoleic acid (CLA), C18:3 n−3, C20:5 
n−3, C22:5 n−3, and C22:6 n−3 than did the CON group (P < 0.05). We identified 41, 96 and 
four genes differentially expressed in LT muscle, liver, and subcutaneous fat, respectively. The 
most enriched biological processes in LT muscle were skeletal muscle tissue development, 
being the genes related to catabolic and lipid processes downregulated, except for CPT1B, 
which was upregulated in the ALF lambs. Animals grazing alfalfa had lower expression of 
desaturase enzymes in the liver (FADS1 and FADS2), which regulate unsaturation of fatty 
acids and are directly involved in the metabolism of n−3 PUFA series. The results found in the 
current study showed that ingesting diets richer in n−3 PUFA might have negative effects on 
the de novo synthesis of n−3 PUFA by downregulating the FADS1 and FADS2 expression. 
However, feeding diets poorer in n−3 PUFA can promote fatty acid desaturation, which 
makes these two genes attractive candidates for altering the content of PUFAs in meat.

Keywords: concentrate, alfalfa, microarray, ovine, muscle, subcutaneous fat, liver, meat quality
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inTRODUCTiOn

Public health policies recommend an increase in the intake of 
the n−3 polyunsaturated fatty acid (PUFA) series due to the 
positive impact these molecules have on human health. In 
addition, a decrease in the consumption of trans-fatty acids 
and saturated fatty acids (SFAs) is recommended because they 
have been associated with increased cholesterol levels (Takeuchi 
and Sugano, 2017; Zhu et al., 2019). Other fatty acids, such as 
conjugated linoleic acids (CLAs), have also received increasing 
attention because of their possible beneficial effects on human 
health (Lehnen et al., 2015; Lee et al., 2018).

Currently, increasing feed efficiency and producing lean meat 
without reducing the nutritional value of the meat are major 
challenges of the meat industry. The nutritional value of meat can 
be influenced by dietary and genetic effects (Scollan et al., 2014). 
Grass feeding improves eicosapentaenoic acid (20:5n−3, EPA), 
docosapentaenoic acid (DPA, 22:5n−3), and docosahexaenoic 
acid (22:6n−3, DHA) contents in muscle (Fisher et al., 2000; 
Dervishi et al., 2010; Dervishi et al., 2011) as forage increases 
the content of alpha-linolenic acid (18:3n−3), the precursor for 
DHA and EPA production (Kitessa et al., 2010). Diet has been 
shown to have a major impact on the intramuscular FA profile 
of the muscle of light lambs (Dervishi et al., 2010; González-
Calvo et  al., 2015a); grazing increases the PUFA content of the 
n−3 series and conjugated fatty acids (CLAs) when compared 
to that with concentrate feeding. In semitendinosus muscle, 
genes related to adipogenesis are upregulated in concentrate-
fed lambs, whereas CPT1B gene expression, related to the 
β-oxidation process, is upregulated in grazing lambs (Dervishi 
et al., 2011). However, the expression of genes implicated in lipid 
metabolism is not similar in the longissimus muscle of grazing 
and concentrate-fed lambs (González-Calvo et al., 2015a). These 
results demonstrate that the diet/feeding system has a differential 
effect on gene expression in different animal tissues. It has also 
been demonstrated that fiber type composition in skeletal muscle 
(the relative amounts of fast versus slow twitch fibers) affected 
the gene expression profiles among different muscle under 
the same environment (Terry et al., 2018). Therefore, a better 
understanding of the genes and metabolic pathways in response 
to the feeding system is critical for identifying key physiological 
processes and genes associated with lipid metabolism, especially 
for the n−3 PUFA series. A deeper understanding of the gene 
regulation of n−3 levels in lamb meat may help in designing new 
strategies for the production of healthier meat and satisfying 
consumers’ demand.

The combination of technologies such as fatty acids and 
gene profiling provides a powerful tool for discovering gene 
expression changes associated with meat quality traits and for 
discovering genes contributing to fatty acid content variation in 
meat. The main objective of this study was to investigate the fatty 
acid profile and transcriptional changes in the LT muscle, liver, 
and subcutaneous fat (SF) of lambs grazing on alfalfa pasture and 
receiving concentrate using the Affymetrix Ovine Gene 1.1 ST 
whole-genome array. Furthermore, we aimed to identify novel 
genes that may play important roles in the metabolism of PUFAs 
that may be associated with meat quality traits.

MATERiAL AnD METhODS

Ethics Statement
All experimental procedures, including the care of animals and 
euthanasia, were performed in accordance with the guidelines 
of the European Union and Spanish regulations for the use and 
care of animals in research and were approved by the Animal 
Welfare Committee of the Centro de Investigación y Tecnología 
Agroalimentaria (CITA) (protocol number 2009-01_MJT). In 
all cases, euthanasia was performed by penetrating captive bolt 
followed by immediate exsanguination.

Animals and Sample Collection
Fourteen pairs of ewe-single reared male lambs of the Rasa 
Aragonesa breed grazed continuously during lactation in alfalfa 
pastures. The lambs had ad libitum access to a concentrate 
during lactation. Seven pairs of ewe-lambs were not weaned 
but remained grazing alfalfa with their mothers from birth until 
the slaughter of the lambs (23 ± 0.4 kg) (ALF group). The other 
seven lambs were weaned (48 ± 0.9 days of age) and then fed 
a basal concentrate for 24 (± 2.6) days until slaughter at 23 kg 
(CON group). These lambs were the same as those described in 
González-Calvo et al. (2017), and were reared alongside the ALF 
group. Lambs belonging to ALF treatment received dams’ milk, 
fresh alfalfa (grazing) and commercial concentrate, the same 
that was offered to CON treatment during the experimental 
period. The average concentrate intake of the CON and ALF 
groups during the experimental period was 24.3 and 7.4 kg 
per lamb, respectively. The weaning weight of CON treatment 
animals was 11.6 ± 1.91 kg BW and the weight of the alfalfa 
lambs at the same moment of the weaning of CON treatment 
was 12.8 ± 1.35 kg BW. The ingredients, chemical composition 
and FA composition of the feedstuffs are shown in Table 1. The 
experimental procedures, composition of diets, management 
of the animals and sample details for each group are described 
in detail in Ripoll et al. (2013). Blood samples were obtained 
weekly in test tubes containing heparin from the jugular vein. 
Samples were centrifuged at 3,500 rpm for 20 min, and plasma 
was stored at −80°C until α-tocopherol and triacylglycerols 
(TG), cholesterol, low density lipoprotein-cholesterol (LDL-
cholesterol) and high density lipoprotein-cholesterol (HDL-
cholesterol) analyses.

All the lambs were slaughtered when they reached 22–24 kg of 
slaughter weight (SW) according to the specifications of Ternasco 
de Aragón Protected Geographical Indication (Regulation (EC) 
No. 1107/96) that stipulates that lambs must be younger than 
90 days old with a SW between 22 and 24 kg. The lambs were 
slaughtered using EU laws in the same commercial abattoir, and 
the carcasses were hung by the Achilles tendon and chilled for 24 
h at 4°C in total darkness. The slaughter age, slaughter weight, 
and growth rate of the two management strategies are presented 
in Supplementary Table 1.

Just after slaughter, a sample of the LT muscle from the 12th 
thoracic vertebra, a sample of SF between the atlas and axis 
cervical vertebrae and a sample of the liver were excised, frozen 
in liquid nitrogen and stored at −80°C until RNA isolation.
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Chemical Analyses
Intramuscular Fat (IMF)
The intramuscular fat content was quantified using the Ankom 
procedure (AOAC, 2000) with an Ankom extractor (model 
XT10, Ankom Technology, New York, USA).

Fatty Acid Determination
Both muscle and feed fatty acids were determined as described 
in González-Calvo et al. (2015a). Feed samples were Soxhlet 
extracted (Sukhija and Palmquist, 1988), and muscle samples 
were determined according to Bligh and Dyer (1959) with the 
modifications described in González-Calvo et al. (2015a). The 
individual FA contents were expressed as weight percentages 
(g/100 g of FAME). The total amount of SFA, monounsaturated 
FA (MUFA), PUFA, n−6 PUFA and n−3 PUFA contents and their 
associated ratios (PUFA : SFA and n−6:n−3) were determined.

Analysis of α-Tocopherol, TG, LDL-Cholesterol, HDL-
Cholesterol, and Cholesterol in Plasma
Alpha-tocopherol in plasma was determined by liquid 
extraction in duplicate as described in González-Calvo et 
al. (2015b). Triacylglycerols, cholesterol, LDL-cholesterol 
and HDL-cholesterol were determined using an automatic 
analyzer (Gernonstar, RAL, Barcelona, España). The reagent 

manufacturer was RAL (Técnica para el Laboratorio, S.A. Sant 
Joan Despí, Barcelona, Spain). The mean intra-assay coefficients 
of variation were 0.99–1.57%, 0.76–1.22%, 0.63–0.67%, and 
0.8–1.06% for TG, cholesterol, LDL-cholesterol and HDL-
cholesterol, respectively. The interassay coefficients of variation 
were 3.15–7.77%, 4.36–6.91%, 1.29–1.45% and 2.71–4.60% for 
the same metabolites.

Analysis of α-Tocopherol Concentration, TBARS and 
Metmyoglobin Formation in Muscle
After it was chilled, a piece of the LT muscle between the 4th and 
the 6th lumbar vertebrae was vacuum-packed and kept at −20°C 
in darkness until the α-tocopherol analysis. The α-tocopherol 
concentration was determined by liquid extraction as described 
in González-Calvo et al. (2015b). A portion of the loin between 
the 7th and the 13th thoracic vertebrae was used to measure 
the color (metmyoglobin content, MMb) and lipid oxidation 
analysis (thiobarbituric acid-reactive substance, TBARS), and 
were quantified at 7 days after being maintained in darkness 
at 4°C. The LT muscle color and LT intramuscular fat TBARS 
analysis were measured as described in González-Calvo et al. 
(2015b). Briefly, the relative content of metmyoglobin (MMb) 
was estimated by the K/S572/525 ratio (Hunt, 1980). This ratio 
decreases when the MMb content increases. The TBARS analysis 
was performed using the procedure reported by Pfalzgraf et 
al. (1995). The TBARS values are expressed as milligrams of 
malonaldehyde (MDA) kg−1 of muscle.

RnA isolation and Assessment of RnA 
integrity
Total RNA was extracted from approximately 500 mg of LT 
muscle, SF, and liver using RNeasy Tissue mini kits (QIAGEN, 
Madrid, Spain) following the manufacturer’s protocol. Prior to 
microarray analysis, RNA integrity and quality were assessed by 
an RNA 6000 Nano LabChip on an Agilent 2100 Bioanalyzer and 
quantified using a nanophotometric spectrophotometer (Implen, 
Madrid, Spain). All RNA integrity number (RIN) values were 
above 8.

Microarray hybridization and Data 
Processing
RNA samples (n = 14, seven samples from each treatment) were 
analyzed using the Ovine Gene 1.1 ST Array Strip (Affymetrix, 
High Wycombe, UK). Microarray hybridization and scanning 
were performed at the Functional Genomics Core Facility 
(Institute for Research in Biomedicine, IRB Barcelona, Spain) 
following the recommendations of the manufacturer. Scanned 
images (DAT files) were transformed into intensities (CEL 
files) by Affymetrix GeneChip Operating Software (GCOS). 
The overall array intensity was normalized between arrays to 
correct for systematic bias in the data and to remove the impact 
of nonbiological influences on biological data. The imported 
data were analyzed at the gene level, with exons summarized 
to genes, using the mean expression of all the exons of a gene. 
Normalization was carried out with the Robust Multi-Array 
Average (RMA) algorithm using quantile normalization, median 

TABLE 1 | Ingredients and chemical composition of the feedstuffs used in the 
experiment. 

item Treatment1

ALF COn

ingredients (%)
Barley 40.87
Corn 14.95
Wheat 20.08
Soyabean meal 19.78
Salt 0.39
Carbonate 1.64
Mineral–vitamin mixture 1.20
Fat 1
Chemical composition2

 g DM/kg as fed 24.6 88.6
 CP, g/kg DM 154 175
 CF, g/kg DM 38
 NDF, g/kg DM 326 180
 ADF, g/kg DM 204 45
 α-tocopherol, mg/kg DM DM 154 273

FA composition (g/100 g FA)4

 C16:0 17.7 24.35
 C18:0 3.02 2.91
 C18:1 c9 4.52 25.63
 C18:2 n−6 22.28 38.86
 C18:3 n−3 37.93 3.14
 C20:0 4.46 0.33
 C22:0 3.03 0

1CON: commercial concentrate; ALF: unweaned lambs grazing alfalfa plus 
commercial concentrate.
2DM, dry matter; CP, crude protein; CF, crude fat; NDF, neutral detergent fibre; 
ADF, acid detergent fibre.
3As mg dl-α-tocopheryl acetate/kg DM.
4Fatty acid composition expressed as the percentage of total fatty acid methyl 
esters.
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polish probe summarization, and log2 probe transformation. The 
datasets supporting the results and discussed in this publication 
have been deposited in the NCBI Gene Expression Omnibus 
repository (Barrett et al., 2012) and are accessible through GEO 
Series accession numbers GSE63774 (LT muscle and SF) and 
GSE125661 (liver). The datasets for LT muscle and SF in CON 
group were previously presented in González-Calvo et al. (2017).

Validation of Microarray Data by Real-
Time Quantitative PCR Analysis (RT-qPCR)
One microgram of RNA from each sample was treated with DNAse 
(Invitrogen, Carlsbad, CA, USA), and single-stranded cDNA was 
synthesized using the SuperScript®III Reverse Transcriptase kit 
(Invitrogen, Carlsbad, CA, USA), following the manufacturer’s 
recommendations. Specific exon-spanning primers for genes were 
generated and confirmed for specificity using BLAST (National 
Center for Biotechnology Information: http://www.ncbi.nlm.nih.
gov/BLAST/). Before performing the real-time PCRs, a conventional 
PCR was performed for all genes to test the primers and to verify 
the amplified products. The PCR products were sequenced 
to confirm gene identity using an ABI Prism 3700 (Applied 
Biosystems, Madrid, Spain) with standard protocols. Homology 
searches were performed with BLAST to verify the identity of 
the amplified fragments. The real-time PCR was carried out in a 
10 μl PCR total reaction mixture containing SYBR Green Master 
Mix: SYBR Premix Ex Taq II (Tli RNase H Plus, Takara, Sumalsa, 
Zaragoza, Spain). Reactions were run in triplicate on an ABI Prism 
7500 platform (Applied Biosystem, Madrid, Spain) following the 
manufacturer’s cycling parameters. Standard curves for each gene 
were generated to calculate the amplification efficiency through a 
4-fold serial dilution of cDNA pooled from LT muscle, liver and SF. 
The efficiency (E) of PCR amplification for each gene was calculated 
using the standard curve method (E = 10(−1/slope)). Two “connector 
samples” were replicated in all plates to remove technical variation 
from this source of variability. The annealing temperatures, primer 
concentrations, and primer sequences for GOIs (Genes of interest: 
CPT1B, MYOD1, MSTN, ABCC4, IGF1R and PLA2G16 for LT 
muscle; METTL1 for SF; and FADS1, FADS2, ACACA, SCD, SQLE, 
IER3, SLC19A1 and THRSP for liver tissue) and reference genes 
(GUSB and YWHAZ for LT muscle and SF; and RPL37, GUSB and 
RPL19 for liver) are described in Supplementary Table 2. These 
reference genes for LT muscle and SF were chosen because they were 
the most stable in these tissues in previous studies (González-Calvo 
et al., 2014). Five candidate reference genes (B2M, YWHAZ, RPL37, 
RPL19, and GUSB) were tested for liver tissue. Determinations of 
the gene expression stability of liver genes included in this study 
were calculated using NormFinder to select the best reference genes 
(Andersen et al., 2004).

Statistical Analysis
Statistical Analysis of the Performance, 
Concentrations of TG, LDL-Cholesterol, HDL-
Cholesterol, and Cholesterol in Plasma, and Meat 
Quality Characteristics in LT Muscle
Statistical analysis of the performance, the plasma metabolites 
and lipid oxidation of LT muscle (TBARS) was performed using 

the SAS statistical package v. 9.3 (SAS Institute, Cary NC, USA). 
The concentration of analytes in plasma, lipid oxidation levels 
and meat color and pigments were analyzed using mixed models 
for repeated measurements based on Kenward-Roger’s adjusted 
degrees of freedom solution for repeated measures including the 
management strategy (CON and ALF), the week/time of display 
and its interaction as fixed effects and the lamb as the random effect. 
A first-order autoregressive structure with heterogeneous variances 
for each date was used to model heterogeneous residual error.

The weight gain, age, weight at slaughter and IMF in LT 
muscle were analyzed using a general lineal model (GLM) with 
the treatment as a fixed factor. The content of α-tocopherol and 
the fatty acid profile of LT muscle were analyzed with a GLM with 
the treatment as a fixed factor and the slaughter age (SA) as a 
covariate. The results were expressed as least square means (LSM) 
± the standard error (SE) values, and the differences were tested 
at a level of significance of 0.05 with the t statistic. The Tukey post 
hoc test was used to evaluate differences between treatments.

Microarray Gene Expression Statistical Analysis
Identiἀcation of Differentially Expressed Genes by 
Microarray Analysis in LT Muscle and SF
Normalized data were further analyzed using Babelomics (http://
babelomics.bioinfo.cipf.es/graph.html) and MetaboAnalyst software 
(Xia et al., 2009). Genes showing a statistically significant value of the 
Limma test (P < 0.01) were screened out as differentially expressed 
between treatments. Significant genes were annotated based on 
similarity scores in blastn comparisons of Affymetrix transcript 
cluster sequences against ovine sequences in GenBank. A second 
method, significance analysis of microarray (SAM), was used to 
identify and reconfirm differentially expressed genes in ALF–CON 
comparisons. Details of the protocol are described in González-
Calvo et al. (2017).

Multivariate Analysis of Gene Expression and Hierarchical 
Clustering Analysis (HCA)
Multivariate and cluster analysis was performed using 
MetaboAnalyst according to Xia et al. (2009). Principal 
components analysis (PCA) was used to cluster the samples 
based on the selected gene expression profile for each tissue. 
Hierarchical clustering analysis for gene expression was 
performed using all genes and only the significant genes for each 
tissue. Details are described in González-Calvo et al. (2017).

Statistical Analysis of Gene Expression Validated by 
RT-qPCR
The corresponding mRNA levels were measured and analyzed 
by their quantification cycle (Cq). The statistical methodology 
to analyze differences in the expression rate was carried out 
following the method proposed by Steibel et al. (2009). The 
mixed model fitted was as follows:

 y TG P b b A erigkm gi k m m m rigkm= + + + + +1 2(IMF) (SA)  

where yrigkm is the Cq value (transformed data taking into account 
E < 2) obtained from the thermocycler software for the gth gene 
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(GOIs and reference genes) from the rth well (reactions were run 
in triplicate) in the kth plate corresponding to the mth animal and 
to the ith treatment (CON and ALF); TGgi is the fixed interaction 
among the ith treatment and the gth gene (T is the effect of the ith 
treatment, and G is the effect of the gth gene); Pk is the fixed effect 
of the kth plate; IMFm and SAm are the effects of intramuscular fat 
(only used in LT muscle tissue gene expression) and the slaughter 
age of the mth animal, respectively, included as covariates; Am is 
the random effect of the mth animal from where samples were 
collected (Am~(0,σ2

A)); and erigkm is the random residual. Gene-
specific residual variance (heterogeneous residual) was fitted to 
the gene by treatment effect (erigkm~N(0, σ2

egi).
To test differences (diffGOI) in the expression rate of the target 

genes between treatments and to obtain fold change (FC) values 
from the estimated TG differences, the approach suggested in 
Steibel et al. (2009) was used. The significance of the diffGOI estimates 
was determined with the t statistic. Additionally, asymmetric 95% 
confidence intervals (upper and lower) were calculated for each FC 
value using the standard error (SE) of diffGOI.

Functional Annotation Analyses
The Database for Annotation, Visualization and Integrated 
Discovery (DAVID) v6.7b (Huang et al., 2008) was used to 
determine pathways and processes of major biological significance 
and importance through the Functional Annotation Cluster (FAC) 
tool based on the Gene Ontology (GO) annotation function. 
DAVID FAC analysis was performed with the gene lists obtained 
after SAM analysis. Medium stringency EASE score parameters 
were selected to indicate confident enrichment scores of functional 
significance and importance of the given pathways and processes 
investigated. An enrichment score of 1.3 was employed as the 
threshold for cluster significance. The ClueGO plug-in (Bindea 
et al. 2009) and Cytoscape program (Shannon et al., 2003) were 
used to group genes according to the similarity of the biological 
processes in which they are involved. The relationships between 
the n−3 PUFA series in muscle and gene expression in liver were 
visualized using the Metscape plugin (Karnovsky et al., 2012) in 
Cytoscape (Shanon et al., 2003). Thirty significant genes (out of 
96) and nine (out of 13) significant compounds were mapped to 
KEGG IDs. The file containing the list of genes and metabolites, 
their fold change and P-values was loaded in Metscape to generate 
a compound-gene network.

RESULTS

Lambs Performance and α-Tocopherol, 
TG, LDL-Cholesterol, hDL-Cholesterol and 
Cholesterol Concentrations in Plasma
No differences were found in the slaughter weight and age (SA) 
or average daily gain (ADG) from birth to slaughter between 
treatments (Supplementary Table 1). Type III tests of the fixed 
effects (treatment and day) on blood parameters are shown in 
Supplementary Table 3.

The concentrations of α-tocopherol, cholesterol, LDL-
cholesterol and HDL-cholesterol in plasma were affected by 

the interaction between the treatment and the day (P < 0.05 
to < 0.01). Meanwhile, the concentration of TG in plasma was 
affected only by the treatment (P < 0.01).

Grazing animals (ALF group) had a greater concentration of 
α-tocopherol (P < 0.0001) and similar cholesterol (P = 0.056) 
contents throughout the experimental period when compared to 
those in the CON group (Figures 1A, B). The HDL-cholesterol 
content was similar between treatments except on day 8 after 
weaning, and the ALF group had a greater content when 
compared to that in the CON group (0.58 ± 0.03 mmol/l vs. 0.34 
± 0.03 mmol/l; P < 0.05). Similarly, ALF lambs presented a greater 
concentration of TG on days 8 and 28 postweaning (0.58 ± 0.03 
vs. 0.67 ± 0.05 and 0.25 ± 0.03 vs. 0.3073 ± 0.07 mmol/l; P < 0.05). 
The LDL-cholesterol content was greater in the ALF group only 
on day 0 (equivalent to the day of weaning in the CON group) 
when compared to that in the CON group (0.48 ± 0.05 vs. 0.18 ± 
0.05 mmol/l; P < 0.05) (Figure 1).

Meat Characteristics in Longissimus 
thoracis Muscle
Intramuscular fat content, meat color and pigments were not 
different between treatments (Supplementary Table 4; P > 0.05); 
however, ALF lambs had a greater content of α-tocopherol in 
LT muscle when compared with that in the CON group (2.38 ± 
0.17 vs. 0.48 ± 0.17; P < 0.05) (Supplementary Table 3). Lipid 
oxidation was affected by the interaction between the treatment 
and the day of display (P < 0.01). Lipid oxidation was similar 
in the first days of display (P > 0.05), but ALF lambs had lower 
oxidation than did CON lambs on day 7 of display (P < 0.05).

Regarding the fatty acid profile, LT muscle from the ALF 
group had a greater content of capric (C10:0) and arachidic 
(C20:0) acids (Table 2; P < 0.05) and tended to have a greater 
content of margaric acid (C17:0) and stearic acid (C18:0) (0.1 <  
P  > 0.05). However, the total SFA content was not different 
between treatments (P > 0.05; Table 2).

The treatment did not affect palmitoleic acid (C16:1; P > 0.05), 
vaccenic acid (C18:1 n−7; P > 0.05) and eicosenoic acid (C20:1 
n−9; P > 0.05) content but did affect the content of oleic acid 
(C18:1 n−9; P < 0.05) and total MUFAs, which was greater in 
CON than in ALF lambs (P < 0.05; Table 2). Regarding individual 
PUFA contents, the linoleic acid (C18:2 n−6), linolenic acid 
(C18:3 n−3), EPA (C20:5 n−3), docosapentaenoic acid (C22:5 
n−3), and DHA (C22:6 n−3) contents were greater in the ALF 
group than in the CON group (P < 0.05). In addition, the LT 
muscle of ALF lambs had a greater n−3 PUFA content and a 
lower n−6:n−3 ratio (P < 0.001) when compared with those in 
CON lambs but did not affect the total PUFA content (P = 0.07).

Microarray Gene Expression Results
Identification and Classification of Differentially 
Expressed Genes in LT Muscle, Liver, and SF
Forty-one, four and 96 genes were differentially expressed 
in LT muscle, SF, and liver, respectively, after SAM analysis 
(Supplementary Figure 1). In LT muscle, 41 genes were 
differentially expressed with an FDR = 0.002 (Table 3), of which 
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32 were downregulated and nine genes were upregulated. In the 
liver, 96 genes were differentially expressed (Supplementary 
Table 5), among which four genes were upregulated and 92 genes 
were downregulated with ALF treatment (FDR = 0.002). The top 
20 significant genes in the liver are shown in Table 4.

Regarding SF, when ALF treatment was compared with CON, 
only four genes were differentially expressed with an FDR = 0.051, 
and all of them were upregulated in the ALF group (Table 5).

Treatment-Dependent Multivariate Analysis Results 
of Gene Expression in Longissimus thoracis Muscle, 
Liver and Subcutaneous Fat
Principal component (PC) analysis of the complete set showed 
that the first two PCs covered 81.1% of the observed variance 
of the sample set in LT muscle (Figure 2A). The clusters 
corresponding to gene expression profiles from ALF and CON 
groups were clearly separated from each other. Very similar 

FiGURE 1 | Concentration of (A) α-tocopherol, (B) cholesterol, (C) HDL-cholesterol, (D) LDL-cholesterol and (E) TG during the entire experimental period compared 
with those in the CON group.
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results were obtained in the liver (Figure 2B), but in SF, this 
separation was less clear (Figure 2C).

Hierarchical Clustering Analysis (HCA) in 
Longissimus Thoracis Muscle and Liver
Hierarchical clustering analysis for gene expression was 
performed using all genes and only the significant genes for each 
tissue. Because only four genes were significant in SF, the results 
of cluster analysis are not included. The results of HCA using 
only the significant genes for LT muscle and liver are presented in 
Figure 3. The expression profile of these genes was able to cluster 
and correctly classify the samples within their corresponding 
group. The heatmap shows the presence of two different clusters 
in both tissues. These two clusters clearly distinguished the 
ALF group from the CON group, as both groups showed very 
different gene expression patterns. For example, in LT muscle, 
the genes BOLA, HSF2, CHP1, DNAJB11, CDC5L, TP53INP2, 
CPT1B, C8ORF4, and NMT1 were upregulated in the ALF group. 
Furthermore, a second cluster including the rest of the genes 
was found to be downregulated in the ALF group (Figure 3A). 

 In the liver, the genes BHMT, LOC105614373 and SLC19A1 
were upregulated in the ALF group, and a second cluster, 
including the remaining genes, was downregulated in the ALF 
group (Figure 3B).

Functional Clustering Annotation
Longissimus thoracis Muscle
To gain insight into the biological processes that are regulated 
differentially between dietary treatments, we performed 
enrichment analyses using DAVID and ClueGo. The results of 
DAVID functional annotation clustering (FAC) revealed that 
the most enriched functional clusters were associated with “lipid 
and catabolic processes” (CPT1B, PLA2G16, SPSB1, LRTOMT, 
PLCD4, FBXO9, CNBP and CYP27A1) and 14 genes related to 
“muscle development” (ALDH2, ANK3, CPT1B, FZD7, HSF2, 
IGF1R, LRTOMT, MSTN, MYLK2, MYOD1, MYOZ1, NMT1, 
PRDM1 and RSC1) (Supplementary Table 5). All these genes 
were downregulated in the ALF group except CPT1B, HSF2 and 
NMT1, although the confident enrichment scores were less than 
1.3 in both cases. The biological roles of downregulated genes 

TABLE 2 | Effect of the treatment on the content of α-tocopherol and fatty acid (FA) composition of LT muscle in Rasa Aragonesa lambs.

Compounds1 Treatment2 P-value

COn ALF Feeding Slaughter 
Age

α-tocopherol, mg/kg muscle 0.48 ± 0.17 2.38 ± 0.17 0.0001 0.38
C8:0 0.02 ± 0.008 0.04 ± 0.008 0.15 0.07
C10:0 0.17 ± 0.016 0.25 ± 0.016 0.0047 0.13
C12:0 0.42 ± 0.051 0.53 ± 0.051 0.16 0.43
C14:0 4.47 ± 0.318 5.17 ± 0.318 0.16 0.78
C16:0 24.97 ± 0.715 24.1 ± 0.715 0.42 0.41
C16:1 2.06 ± 0.127 1.83 ± 0.127 0.24 0.32
C17:0 0.96 ± 0.069 1.15 ± 0.069 0.08 0.48
C17:1 0.81 ± 0.047 0.82 ± 0.047 0.90 0.35
C18:0 11.76 ± 0.364 12.87 ± 0.364 0.06 0.01
C18:1 n−9 41.48 ± 0.947 36.65 ± 0.947 0.005 0.29
C18:1 n−7 1.01 ± 0.135 1.21 ± 0.135 0.33 0.47
C18:2 n−6tt 0.14 ± 0.047 0.53 ± 0.047 0.0001 0.24
C18:2 n−6ct 6.6 ± 0.517 6.65 ± 0.517 0.95 0.58
C18:3 n−6 0.07 ± 0.005 0.07 ± 0.005 0.90 0.27
C18:3 n−3 0.37 ± 0.24 2.24 ± 0.24 0.0002 0.93
C20:0 0.08 ± 0.01 0.13 ± 0.01 0.004 0.34
CLA 0.59 ± 0.065 0.85 ± 0.065 0.02 0.62
C20:1 n−9 0.11 ± 0.008 0.09 ± 0.008 0.21 0.08
C22:0 0.16 ± 0.021 0.19 ± 0.021 0.36 0.92
C20:4 n−6 2.67 ± 0.37 2.01 ± 0.37 0.24 0.47
C20:3 n−3 0.001 ± 0.009 0.02 ± 0.009 0.24 0.76
C20:5 n−3 0.13 ± 0.12 0.9 ± 0.12 0.001 0.92
C24:0 0.24 ± 0.056 0.15 ± 0.056 0.31 0.78
C22:5 n−3 0.51 ± 0.114 1.05 ± 0.114 0.008 0.80
C22:6 n−3 0.21 ± 0.072 0.51 ± 0.072 0.02 0.56
Saturated FA (SFA) 43.25 ± 0.924 44.58 ± 0.924 0.35 0.10
Monounsaturated FA 45.46 ± 0.939 40.6 ± 0.939 0.005 0.25
Polyunsaturated FA (PUFA) 11.29 ± 1.187 14.82 ± 1.187 0.07 0.67
PUFA n−6 9.48 ± 0.855 9.25 ± 0.855 0.86 0.57
PUFA n−3 1.22 ± 0.521 4.72 ± 0.521 0.0008 0.93
n−6:n−3 7.67 ± 0.697 2.84 ± 0.697 0.0006 0.16
PUFA : SFA 0.26 ± 0.032 0.34 ± 0.032 0.14 0.54

1Fatty acid composition it is expressed as weight percentages total fatty acid methyl esters (g/100 g of FAME).
2CON, weaned lambs fed commercial concentrates; ALF, unweaned grazing alfalfa lambs.
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in LT muscle were also visualized with ClueGO (Figure  4). 
The size of the nodes reflects the statistical significance of the 
term. The most enriched biological process was that of “skeletal 

muscle tissue development” with four genes, MSTN, MYLK2, 
MYOD1 and BCL9L.

Liver
The results of DAVID revealed two major gene clusters associated 
with “sterol biosynthesis” (EBP, MVD, HMGCR, CYP51A1, 
HMGCS1, NR0B2, C14ORF1, FDFT1, SQLE, DHCR7, SC5DL, 
DHCR24, and NSDHL), “lipid biosynthetic process” (ACACA, 
CYP51A1, FADS1, FADS2, SCD and SC5DL), and “cholesterol 

TABLE 3 | Differentially expressed genes in Longissimus thoracis muscle and 
fold-change in ALF–CON1 contrast.

Gene 
symbol

Gene name q 
value2

FC3

ABCC4 ATP-binding cassette, sub-family C 
(CFTR/MRP), member 4

0.001 −1.42

MYOD1 Myogenic differentiation 1 0.001 −2.77
NEK7 NIMA (never in mitosis gene a)-related 

kinase 7
0.001 −1.28

CDC5L CDC5 cell division cycle 5-like 0.001 1.15
ANGEL1 Angel homolog 1 0.001 −1.18
BOLA3 Similar to bolA-like 3; bolA homolog 3 0.001 1.20
C8orf4 Chromosome 8 open reading frame 4 0.001 3.30
CHP1 Chromo domain-containing protein 1 0.001 1.26
CNBP CCHC-type zinc finger, nucleic acid 

binding protein
0.001 −1.22

CPT1B Choline kinase beta; carnitine 
palmitoyltransferase 1B (muscle)

0.001 1.47

DNAJB11 DnaJ (Hsp40) homolog, subfamily B, 
member 11

0.001 1.34

FZD7 Frizzled homolog 7 0.001 −1.33
HSF2 Heat shock transcription factor 2 0.001 1.47
IGF1R Insulin-like growth factor 1 receptor 0.001 −1.19
LRTOMT Leucine rich transmembrane and 

0-methyltransferase domain containing
0.001 −1.23

MACROD1 MACRO domain containing 1 0.001 −1.17
MYLK2 Myosin light chain kinase 2 0.001 −1.39
NMT1 N-myristoyltransferase 1 0.001 1.11
PLA2G16 Phospholipase A2, group XVI 0.001 −1.36
PLEKHH3 Pleckstrin homology domain containing, 

family H member 3
0.001 −1.60

PRDM1 PR domain containing 1, with ZNF domain 0.001 −1.52
R3HCC1 R3H domain and coiled-coil containing 1 0.001 −1.18
RSC1A1 Regulatory solute carrier protein, family 1, 

member 1
0.001 −1.25

SPSB1 splA/ryanodine receptor domain and 
SOCS box containing 1

0.001 −1.39

TP53INP2 Tumor protein p53 inducible nuclear protein 2 0.001 1.66
ANK3 Ankyrin 3, node of Ranvier (ankyrin G) 0.001 −1.25
BCL9L B-cell CLL/lymphoma 9-like 0.001 −1.33
DNPEP Aspartyl aminopeptidase 0.001 −1.24
TCEA3 Transcription elongation factor A (SII), 3 0.001 −1.27
SLC7A8 Solute carrier family 7, member 8 0.001 −1.98
YPEL2 Yippee-like 2 (Drosophila) 0.001 −1.31
SLC8A3 Solute carrier family 8 (sodium/calcium) 

exchanger), member 3
0.001 −1.91

PLCD4 Phospholipase C, delta 4 0.001 −1.38
CMBL Carboxymethylenebutenolidase homolog 0.001 −1.44
MYOZ1 Myozenin 1 0.001 −1.13
MLF2 Myeloid leukemia factor 2 0.001 −1.17
SF3A1 Splicing factor 3a, subunit 1, 120 kDa 0.001 −1.17
ALDH2 Aldehyde dehydrogenase 2 family 

(mitochondrial)
0.001 −1.21

CYP27A1 Cytochrome P450, family 27, subfamily 
A, polypeptide 1

0.002 −1.26

FBXO9 F-box protein 9 0.002 −1.18
MSTN Myostatin 0.002 −2.43

1CON, weaned lambs fed commercial concentrates; ALF, unweaned grazing 
alfalfa lambs.
2q value: significance level.
3FC, fold-change.

TABLE 4 | Top 20 differentially expressed genes in the liver and fold-change in 
ALF–CON1 contrast.

Gene symbol Gene name q 
value2

FC3

ACACA acetyl-CoA carboxylase alpha 0.001 −1.99
ACSS2 acyl-CoA synthetase short-chain 

family member 2
0.0007 −2.51

CSAD cysteine sulfinic acid decarboxylase 0.0007 −3.69
FADS1 fatty acid desaturase 1 0.001 −1.81
FADS2 fatty acid desaturase 2 0.0006 −1.84
GLEAN_10000268 GLEAN_10000268 0.001 −1.91
GUCA2B guanylate cyclase activator 2B 

(uroguanylin)
0.001 −2.11

HMGCS1 3-hydroxy-3-methylglutaryl-CoA 
synthase 1 (soluble)

0.001 −2.21

IFI6 interferon, alpha-inducible protein 6 0.001 −2.27
KCTD14 potassium channel tetramerisation 

domain containing 14
0.0006 −1.82

LOC100125623 period 3 0.001 −2.09
LOC105614373 cytochrome P450 2B11-like 0.0006 1.57
MID1IP1 MID1 interacting protein 1 0.001 −2.49
MTHFD1L monofunctional C1-tetrahydrofolate 

synthase, mitochondrial-like
0.0006 −1.63

OSGIN1 oxidative stress induced growth 
inhibitor 1

0.001 −2.15

PPP1R3B protein phosphatase 1, regulatory 
subunit 3B

0.001 −2.3

SCD stearoyl-CoA desaturase 
(delta-9-desaturase)

0.001 −4.44

SLC19A1 solute carrier family 19 (folate 
transporter), member 1

0.0007 1.4

THRSP thyroid hormone responsive 0.0006 −6.86
ZNF564 zinc finger protein 564 0.001 −2.52

1CON: weaned lambs fed commercial concentrates; ALF: unweaned grazing 
alfalfa lambs.
2q value: significance level.
3FC, fold-change.

TABLE 5 | Significant differentially expressed genes in subcutaneous fat and fold 
change in ALF–CON1 contrast.

Gene symbol Gene name q value2 FC3

CLDN12 claudin 12 0.01 1.26
LOC101121796 cytochrome P450 2B19-like 0.047 1.70
METTL1 methyltransferase like 1 0.047 1.33
GPN2 GPN-loop GTPase 2 0.047 1.31

1CON, weaned lambs fed commercial concentrates; ALF, unweaned grazing 
alfalfa lambs.
2q value: significance level.
3FC, fold-change.
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metabolic process” (EBP, MVD, HMGCR, CYP51A1, SQLE, 
DHCR7, HMGCS1, NR0B2, DHCR24, FDFT1, and NSDHL) 
(Supplementary Table 6). Similar results were obtained with 
ClueGo, where the most enriched biological processes were “fatty 
acid biosynthetic process,” “sterol metabolic process,” “cofactor 
metabolic processes” and “coenzyme metabolic processes” (Figure 
5). These genes were all downregulated in ALF treatment.

Subcutaneous Fat
Only 4 genes were significant in SF, and no cluster was found 
with DAVID FAC.

Validation of Microarray Results Using qPCR
The gene set selected to validate the microarray results by qPCR 
included the following 15 genes: CPT1B, MYOD1, MSTN, 

ABCC4, IGF1R and PLA2G16 for LT muscle; FADS1, FADS2, 
ACACA, SCD, SQLE, IER3, SLC19A1 and THRSP for liver; 
and METTL1 for SF. The genes were selected because they 
were significantly differentially expressed between groups. The 
expression of these genes using microarray technology and 
qPCR is shown in Table 6. The housekeeping genes GUSB and 
YWHAZ were used to normalize the results for LT muscle and 
SF. In the liver, five candidate reference genes were tested, and 
the most stable genes exhibiting the lowest expression stability 
value (M) were RPL37 (M = 0.182), GUSB (M = 0.226), and 
RPL19 (M = 0.296). The three reference genes were more stable 
than the GOIs. The magnitude of the fold change obtained by 
microarray and qPCR was slightly different in some instances, 
but the qPCR results demonstrated a similar trend compared 
with the microarray results of these genes (Table 6).

FiGURE 2 | Principal components analysis (PCA) based on gene expression profile data for the (A) LT muscle (B) liver, and (C) subcutaneous fat. Principal 
components analysis scores plots discriminating between the LT muscle of lambs fed concentrate CON (+) and Alfalfa (triangle).
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DiSCUSSiOn

In this study, we investigated the fatty acid profile and gene 
expression using a microarray in the LT muscle, liver and SF 
of lambs fed concentrate or alfalfa. As expected, ALF animals 
contained greater CLAs and a greater proportion of n−3 PUFAs 
in muscle, such as linolenic acid (C18:3 n−3), EPA (C20:5 n−3), 
docosapentaenoic acid (C22:5 n−3), and DHA (C22:6 n−3), 

when compared with levels in the CON group. Many studies have 
reported the impact of grazing on the fatty acid profile in meat 
lambs, particularly the fatty acids of the n−3 series (Fisher et al., 
2000; Dervishi et al., 2010; Vasta et al., 2012). Zhang et al. (2017) 
suggested that specific compounds in the diet can be transferred to 
the meat. In our experiment, the fatty acid composition, especially 
that of the n−3 series, and α-tocopherol are probably a reflection of 
diet composition. Suckling lambs are functionally non-ruminants, 

FiGURE 3 | Hierarchical clustering analysis of significant gene expression in the (A) LT muscle and (B) liver of CON lambs (1) and ALF lambs (2). Cells are colored 
based on the measured signal intensity. Dark brown represents high gene expression levels, blue indicates low signal intensity, and gray cells represent the 
intermediate level.

FiGURE 4 | The biological role of up- (green) and downregulated (red) genes in the LT muscle of ALF animals visualized with ClueGO. The size of the nodes reflects 
the statistical significance of the term.
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and their meat FA profile should reflect the FA profile of the suckled 
milk (Napolitano et al., 2002; Valvo et al., 2005). Thus, grazing dams 
is an advisable alternative to increase PUFAs in the suckling lamb 
meat because fresh pasture has a high concentration of linolenic 
acid (C18:3n−3), which increases the contents of vaccenic acid 
(C18:1t-11), conjugated linoleic acid isomers (CLA), and n−3 

PUFA in milk compared with diets comprising concentrate or 
preserved forage (Nudda et al., 2005; Joy et al., 2012). The high 
value of C18:3n−3 in ALF lamb meat could be due to the C18:3n−3 
provided by pasture that, as they are not yet fully weaned, is not 
bio-hydrogenated by rumen microbiota. Moreover, the relatively 
low effectiveness of milk in affecting meat fatty acid composition, 
could explain the slightly difference between CON and ALF in CLA 
and VA. Therefore, lambs that were allowed to graze resulted in a 
meat fatty acid profile that is richer in fatty acids of the n−3 series, 
mainly due to the dam’s milk that were grazing continuously during 
lactation in alfalfa pastures. According to Álvarez-Rodriguez et 
al. (2018) dietary alfalfa but not milk supply improved CLA, and 
n−3 PUFAs contents in lamb meat. The FA composition of ALF 
lambs was more related to ewe’s milk than to fresh forage (Dervishi 
et al., 2010). Previous studies have shown that grazing increases the 
PUFA content in milk, particularly linolenic acid (C18:3n−3), while 
concentrates modify rumen retention time of the feed, increase 
linoleic acid (C18:2n−6) intake, and alter biohydrogenation 
pathways toward lower n−3 PUFA and CLA contents, leading to 
lower contents of these compounds in the milk (Elgersma, 2015). 
In addition, these animals had greater α-tocopherol in muscle 
and plasma. Vitamin E is a powerful fat-soluble antioxidant that 
plays important roles in scavenging free radicals and neurologic 
function (Wang and Quinn, 2000; Traber and Atkinson, 2007). In 
this study, we found that lipid oxidation was lower in ALF lambs 
on day 7 of display when compared with the levels in CON lambs. 
These results are in concordance with previous studies in which we 
reported that the addition of vitamin E to the diet increased the 

FiGURE 5 | The biological role of up- (green) and downregulated (red) genes in ALF animals visualized with ClueGO in the liver. The size of the nodes reflects the 
statistical significance of the term.

TABLE 6 | Real-time PCR confirmation of the microarray results. Gene 
expression changes in LT muscle, liver and subcutaneous fat in ALF vs CON 
comparison, and the fold change (FC) obtained with microarray and qPCR data.

Genes Microarray qPCR

LT muscle
CPT1B 1.47** 1.15
MYOD1 −2.77** −2.03*
MSTN −2.43** −5.73**
ABCC4 −1.42** −1.89†
IGF1R −1.19** −1.79
PLA2G16 −1.36** −2.27**
Subcutaneous fat
METTL1 1.33* 1.55
Liver
FADS1 −1.81** −1.65
FADS2 −1.82** −2.31*
ACACA −1.99** −1.52
SCD −4.43** −3.78*
SQLE −1.42** −1.89†
IER3 −1.95** −1.45
SLC19A1 1.41** 1.21
THRSP -6.86** −6.13**

*P < 0.05, ** P < 0.01 and †0.05 < P < 0.10.
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α-tocopherol muscle content and drastically diminished the lipid 
oxidation of meat (Kasapidou et al., 2012; González-Calvo et al., 
2015b; Ponnampalam et al., 2017).

Moreover, we investigated how the feeding system impacted 
gene expression in LT muscle, liver and SF in both treatment 
groups. Indeed, we found that both groups differed in their gene 
expression profile, mainly in LT muscle and liver, with the greatest 
impact in liver. It has been reported that dietary intervention can 
lead to major changes in gene expression in muscle and liver 
(Dervishi et al., 2011; Cui et al, 2018). In the ALF group, the most 
enriched biological processes in LT muscle were skeletal muscle 
tissue development (MYOD1, MYLK2 and MSTN) (Figure 4 
and Supplementary Table 5). These genes were downregulated 
in the ALF group, with MYOD1 and MSTN being the most 
downregulated genes (the lowest FC). The yield of saleable meat 
and meat quality, and therefore the profitability for livestock 
operations, are greatly influenced by growth during the postnatal 
period. Therefore, the identification of genes that play a role in 
muscle growth in sheep is an important step for improving sheep 
meat production by selection. In this regard, in livestock species, 
MYOD1 and MSTN are considered candidate genes for meat 
quality and carcass traits (Ibeagha-Awemu et al., 2008; Bhuiyan 
et al., 2009). MYOD1 regulates muscle cell differentiation, growth, 
and development and is also involved in muscle regeneration 
(Kitzmann et al., 1998). For example, polymorphisms of 
MYOD1 have been associated with weight, several muscle fiber 
characteristics, the loin eye area and lightness in yak populations, 
pork and cattle (Chu et al., 2012; Lee et al., 2012; Du et al., 
2013). In addition, low MYOD1 expression levels were related 
to low Warner–Bratzler shear force measured in the longissimus 
dorsi muscle of beef (Tizioto et al., 2014) and thus with greater 
tenderness. In sheep, a positive correlation between MYOD1 
expression and cold carcass yield was found (Lôbo et al., 2012). 
The authors proposed that animals with a higher expression of 
MYOD1 were more efficient during postnatal growth and had a 
greater longissimus dorsi weight and a better cold and hot carcass 
yield. In our study, we did not observe differences in slaughter 
weight or average daily gain between the ALF and CON groups. 
These discrepancies may be due to different slaughter ages among 
both studies. We sacrificed our animals at 67–72 days, and other 
studies compared heavy lambs (at an average of 200 days) fed 
either concentrate or limited grazing (Lôbo et al., 2012), whereas 
in the present study, grazing lambs had free access to forage, 
concentrate, and dam’s milk. Despite the different results, further 
investigation into the role of MYOD1 in sheep carcass and meat 
quality traits in sheep is necessary for effective marker assisted 
selection. Another gene that was downregulated in the ALF group 
was MSTN. Myostatin is an extracellular cytokine that is mostly 
expressed in skeletal muscles and is known to play a crucial role 
in the negative regulation of muscle mass (Elkina et al., 2011). 
This effect is due to an increase in both muscle fiber number 
(hyperplasia) and mass (hypertrophy). For instance, Ji et al. (1998) 
demonstrated that myostatin expression in skeletal muscle peaks 
prenatally and that greater expression during the prenatal period 
is associated with low birth weight in pigs. Mutations in the 
myostatin gene with functional inactivation in beef cattle increase 

the muscle mass in the double-muscled phenotype and lead to 
smaller adipocytes and fewer fat islands in muscle (Cassar-Malek 
et al., 2007). In addition, in different cattle breeds, mutations in 
MSTN have been associated with significant reductions in the 
shear force and a decrease in total collagen content (Ngapo et al., 
2002; Lines et al., 2009). Moreover, mutations in MSTN in sheep 
were associated with muscling and reduced intramuscular fat 
(Kijas et al., 2007) and an increased percentage of fast glycolytic 
myofibers (Laville et al., 2004). In our experiment, the ALF group 
showed downregulated MYOD1 and MSTN genes, which may be 
beneficial for increasing meat tenderness and cold carcass yield 
in heavier animals. However, the simultaneous downregulation 
of the MYOD1 and MSTN genes in ALF group might determine 
an opposite effect about animal’s performance, thus justifying the 
lack in different performance between two groups.

The results of the functional analysis showed that genes 
related to catabolic and lipid processes in LT muscle were 
downregulated (PLA2G16, SPSB1, LRTOMT, PLCD4, FBXO9, 
CNBP and CYP27A1), except for CPT1B, which was upregulated 
in the ALF group (Supplementary Table 5). Carnitine palmitoyl 
transferase I (M-CPT 1), codified by the CPT1B gene, is part of 
the mitochondrial transport system and is a key enzyme in the 
control of long-chain fatty acid oxidation (Bartelds et al., 2004). 
These results are in agreement with those previously obtained by 
Dervishi et al. (2011, 2012) in which grazing systems promoted 
higher levels of CPT1B gene expression in the semitendinosus 
muscle and mammary gland. As reported by Dervishi et al. 
(2010), concentrate feeding promotes the upregulation of genes 
related to adipogenesis, whereas the grazing system promotes 
higher levels of genes implicated in fatty acid oxidation.

The impact of feeding system was more pronounced on liver 
gene expression, where 96 genes were significantly changed 
compared to that in LT muscle (41 genes) and SF (4 genes). The 
major sites of fatty acid synthesis are adipose tissue and the liver. 
However, the results for gene expression in these three different 
tissues suggest that in young lambs, the major site of lipid 
metabolism is the liver rather than subcutaneous fat.

We attempted to link the significant fatty acids in muscle 
and metabolites in plasma with the results of gene expression 
to obtain a better understanding of the underlying metabolic 
processes associated with different feeding systems. The 
relationship between n−3 FAs in muscle and gene expression in 
liver mapped 30 significant genes (out of 92) and 9 significant 
compounds (out of 13) to KEGG IDs. A compound-gene 
network was generated (Figure 6 and Supplementary Figure 2). 
In addition, this approach helped us to identify genes related to 
enriched biological processes and certain desired outcomes, for 
example, n−3 PUFA series that are desirable regarding human 
health (Simopoulos, 2008; Cabo et al., 2012; Liu and Ma, 2014). 
Indeed, the animals grazing alfalfa had a greater content of fatty 
acids of the n−3 series such as linolenic acid (C18:3 n−3), EPA 
(C20:5 n−3), docosapentaenoic acid (C22:5 n−3), and DHA 
(C22:6 n−3) in LT muscle and lower expression of FADS1 and 
FADS2 in liver (Figure 6). It is worth mentioning that FADS1 
and FADS2 in the “fatty acid biosynthetic process” cluster are 
key genes in the metabolism of n−3 PUFA series. The proteins 
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encoded by these genes (FADS1 and FADS2) are members of the 
fatty acid desaturase (FADS) gene family. Desaturase enzymes 
regulate the unsaturation of fatty acids through the introduction 
of double bonds between defined carbons of the fatty acyl chain 
(Nakamura and Nara, 2004). In addition, these animals were 
characterized by a decrease in the expression of genes related 
to cholesterol metabolism (DHCR7, SC5DL, EBP, NSDHL, 
MTHFD1L, and CYP51A1; Supplementary Figure 2).

Nutrition is an important strategy to alter gene expression and 
the fatty acid profile of meat. It has been widely reported that grazing 
animals have a greater content of the n−3 PUFA series in the serum, 
liver and muscle and a lower n−6:n−3 ratio, in agreement with the 
present study. Interestingly, we also found that the expression of 
two genes related to n−3 PUFA metabolism was downregulated in 
the livers of ALF animals. Fatty acid desaturase 1 (FADS1) and 2 
(FADS2) genes encode delta-5 and delta-6 desaturases, respectively, 
which are rate-limiting enzymes in the synthesis of polyunsaturated 
omega-3 and omega-6 FAs. Dietary FAs have been shown to regulate 
desaturase activity (Nakamura and Nara, 2004). Gene expression of 
both FADS1 and FADS2 is reduced by PUFAs in several hepatic 
models (Reardon et al., 2013; Cho et al., 1999a; Cho et al., 1999b). 
Furthermore, FADS1 and FADS2 gene expression was reduced by 
EPA and AA in 3T3‐L1 adipocytes (Ralston et al., 2015). In our 
study we found that ALF lambs have greater amount of EPA in 
their muscle mainly because of their diet. ALF lambs ingested diets 
rich in PUFAs (fresh alfalfa, and mainly dams’ milk), which in turn 
might have down-regulated FADS1 and FADS2 gene expression 
in liver. In support to our speculation da Costa et al. (2014) found 
that high levels of n−3 PUFA in cattle liver down-regulated the 
expression of the genes FADS1 and FADS2.

The results found in the current study showed that ingesting 
diets richer in n−3 PUFA might have negative effects on the de 
novo synthesis of n−3 PUFA by the FADS1 and FADS2 enzymes. 
However, feeding diets poorer in n−3 PUFA can promote fatty acid 
desaturation, which makes these two genes attractive candidates for 
altering the content of PUFAs in meat, by looking for polymorphisms 
that may affect the functionality and efficiency of these enzymes and 

alter the fatty acid profile in lamb meat. Functional SNPs can provide 
an additional resource as a potential genetic markers in breeding 
programs. In this respect, in humans, numerous studies have 
consistently replicated the associations between polymorphisms in 
the FADS1 and FADS2 genes and the PUFA concentration (Corella 
and Ordovas, 2012). In porcine, a polymorphism in exon 3 of the 
pig FADS2 has been associated with C20:4 and intramuscular fat 
(IMF) content (Renaville et al., 2013; Gol et al., 2018). In dairy cows, 
Ibeagha-Awemu et al. (2014) demonstrated positive associations 
between three SNPs within FADS1 and FADS2 with three milk 
PUFAs. Meanwhile, contradictory results have been reported in 
sheep. For example, a SNP in FADS2 was significantly associated 
with intramuscular levels of EPA (C20:5n−3) and DHA (C22:6n−3) 
(Malau-Aduli et al., 2011), but in a different report, no SNP within 
the FADS1 and FADS2 gene regions was associated with lamb 
muscle n−3 levels (Knight et al., 2012). Our study further points 
to the importance of nutritional modulation of FADS1 and FADS2 
gene expression and the fatty acid profile in sheep.

COnCLUSiOn

Grazing lambs presented a higher content of CLA and n−3 PUFA 
series and showed a lower n−6/n−3 ratio, which is favorable with 
regard to current human health. The feeding system is the main 
factor affecting the fatty acid composition and gene expression 
in LT muscle and liver. The gene expression results in the three 
different tissues suggest that the major site of lipid metabolism is 
the liver rather than subcutaneous fat in young lambs of the Rasa 
Aragonesa breed. Gene expression of FADS1 and FADS2 plays an 
important role in the synthesis of n−3 PUFA series, which in turn 
makes these two genes attractive candidates to alter the content 
of PUFAs in meat. More studies will be necessary to elucidate the 
effects of the feeding system on FADS1 and FADS2 expression in 
other tissues of interest or to search for mutations or functional 
SNPs that may be used in the future as a tool to improve the fatty 
acid profile in lamb meat.

FiGURE 6 | The network of metabolites and genes involved in omega-3 fatty acid metabolism in ALF lambs. Significant metabolites with experimental data are 
shown in green squares, and significant genes with experimental data are shown in purple circles with green borders. The size of the nodes represents the direction 
of the change. A small purple circle with a green border indicates downregulated genes, and large green square nodes point to upregulated compounds.
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Goats (Capra hircus) are an economically important livestock species providing meat and 
milk across the globe. They are of particular importance in tropical agri-systems contributing 
to sustainable agriculture, alleviation of poverty, social cohesion, and utilisation of marginal 
grazing. There are excellent genetic and genomic resources available for goats, including 
a highly contiguous reference genome (ARS1). However, gene expression information 
is limited in comparison to other ruminants. To support functional annotation of the 
genome and comparative transcriptomics, we created a mini-atlas of gene expression 
for the domestic goat. RNA-Seq analysis of 17 transcriptionally rich tissues and 3 cell-
types detected the majority (90%) of predicted protein-coding transcripts and assigned 
informative gene names to more than 1000 previously unannotated protein-coding genes 
in the current reference genome for goat (ARS1). Using network-based cluster analysis, 
we grouped genes according to their expression patterns and assigned those groups 
of coexpressed genes to specific cell populations or pathways. We describe clusters of 
genes expressed in the gastro-intestinal tract and provide the expression profiles across 
tissues of a subset of genes associated with functional traits. Comparative analysis of the 
goat atlas with the larger sheep gene expression atlas dataset revealed transcriptional 
similarities between macrophage associated signatures in the sheep and goats sampled 
in this study. The goat transcriptomic resource complements the large gene expression 
dataset we have generated for sheep and contributes to the available genomic resources 
for interpretation of the relationship between genotype and phenotype in small ruminants.

Keywords: goat, transcriptomics, RNA-Seq, gene expression, FAANG, allele-specific expression, immunity, 
comparative transcriptomics

INTRODUCTION
Goats (Capra hircus) are an important source of meat and milk globally. They are an essential part 
of sustainable agriculture in low- and middle-income countries, representing a key route out of 
poverty particularly for women. Genomics-enabled breeding programmes for goats are currently 
implemented in the UK and France with breeding objectives including functional traits such as 
reproductive performance and disease resistance (Larroque et al., 2016; Pulina et al., 2018). The 
International Goat Genomics Consortium (IGGC) (http://www.goatgenome.org) has provided 
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extensive genetic tools and resources for goats including a 52K 
SNP chip (Tosser-Klopp et al., 2014), a functional SNP panel 
for parentage assessment and breed assignment (Talenti et al., 
2018) and large-scale genotyping datasets characterising global 
genetic diversity (Stella et al., 2018). In 2017, a highly contiguous 
reference genome for goat (ARS1) was released (Bickhart et 
al., 2017; Worley, 2017). Advances in genome sequencing 
technology, particularly the development of long-read and 
single-molecule sequencing, meant that the ARS1 assembly was 
a considerable improvement in quality and contiguity from the 
previous whole genome shotgun assembly (CHIR_2.0) (Dong 
et al., 2013). In 2018, the ARS1 assembly was released on the 
Ensembl genome portal (Zerbino et al., 2018) (https://www.
ensembl.org/Capra_hircus/Info/Index) greatly facilitating the 
utility of the new assembly and providing a robust set of gene 
models for goat.

RNA-Sequencing (RNA-Seq) has transformed the analysis 
of gene expression from the single-gene to the whole 
genome allowing visualisation of the entire transcriptome 
and defining how we view the transcriptional control of 
complex traits in livestock [reviewed in (Wickramasinghe 
et al., 2014)]. Using RNA-Seq, we generated a large-scale 
high-resolution atlas of gene expression for sheep (Clark et 
al., 2017). This dataset included RNA-Seq libraries from all 
organ systems and multiple developmental stages, providing 
a model transcriptome for ruminants. Analysis of the sheep 
gene expression atlas dataset indicated we could capture 
approximately 85% of the transcriptome by sampling twenty 
'core' tissues and cell types (Clark et al., 2017). Given the close 
relationship between sheep and goats, there seemed little 
purpose in replicating a resource on the same scale. Our aim 
with the goat mini-atlas project, which we present here, was to 
produce a smaller, cost-effective, atlas of gene expression for 
the domestic goat based on transcriptionally rich tissues from 
all the major organ systems.

In the goat genome, there are still many predicted protein-
coding and noncoding genes for which the gene model is 
either incorrect or incomplete, or where there is no informative 
functional annotation. For example, in the current goat reference 
genome, ARS1 (Ensembl release 97), 33% of the protein-coding 
genes are identified only with an Ensembl placeholder ID. Many 
of these unannotated genes are likely to have important functions. 
Using RNA-Seq data, we can annotate them and assign function 
(Krupp et al., 2012). With datasets of a sufficient size, genes form 
coexpression clusters, which can either be ubiquitous, associated 
with a cellular process or be cell-/tissue specific. This information 
can then be used to associate a function with genes coexpressed 
in the same cluster, a method of functional annotation known 
as the “guilt by association principle” (Oliver, 2000). Using this 
principle with the sheep gene expression atlas dataset, we were 
able to annotate thousands of previously unannotated transcripts 
in the sheep genome (Clark et al., 2017). By applying this rationale 
to the goat mini-atlas dataset we were able to do the same for the 
goat genome.

The goat mini-atlas dataset that we present here was used 
by Ensembl to create the initial gene build for ARS1 (Ensembl 
release 92). A high-quality functional annotation of existing 

reference genomes can help considerably in our understanding 
of the transcriptional control of functional traits to improve 
the genetic and genomic resources available, inform genomics 
enabled breeding programmes, and contribute to further 
improvements in productivity. The entire dataset is available 
in a number of formats to support the livestock genomics 
research community and represents an important contribution 
to the Functional Annotation of Animal Genomes (FAANG) 
project (Andersson et al., 2015; FAANG, 2017; Harrison et al., 
2018).

This study is the first global analysis of gene expression in 
goats. Using the goat mini-atlas dataset, we describe large 
clusters of genes associated with the gastrointestinal tract and 
macrophages. Species specific differences in response to disease, 
or other traits, are likely to be reflected in gene expression 
profiles. Sheep and goats are both small ruminant mammals and 
are similar in their physiology. They also share susceptibility to 
a wide range of viral, bacterial, parasitic, and prion pathogens, 
including multiple potential zoonoses (Sherman, 2011), but 
there have been few comparisons of relative susceptibility or 
pathology between the species to the same pathogen nor the 
nature of innate immunity. To reveal transcriptional similarities 
and differences between sheep and goats, we have performed a 
comparative analysis of gene expression by comparing the goat 
mini-atlas dataset with a comparable subset of data from the 
sheep gene expression atlas (Clark et al., 2017). We also use the 
goat mini-atlas dataset to examine the expression of candidate 
genes associated with functional traits in goats and link these 
with allele-specific expression (ASE) profiles across tissues, 
using a robust methodology for ASE profiling (Salavati et al., 
2019). The goat mini-atlas dataset and the analysis we present 
here provide a foundation for identifying the regulatory and 
expressed elements of the genome that are driving functional 
traits in goats.

METhODS

Animals
Tissue and cell samples were collected from six male and 
one female neonatal crossbred dairy goats at six days old. The 
experimental design was based on sample availability at the time 
of the study. The goats were sourced from one farm and samples 
were collected at a local abattoir within 1 h of euthanasia.

Tissue Collection
The tissue samples were excised postmortem within 1 h of 
death, cut into 0.5cm diameter segments, and transferred 
into RNAlater (Thermo Fisher Scientific, Waltham, USA) and 
stored at 4°C for short-term storage. Within one week, the 
tissue samples were removed from the RNAlater, transferred 
to 1.5ml screw cap cryovials, and stored at -80°C until RNA 
isolation. Alveolar macrophages (AMs) were isolated from 
two male goats by broncho-alveolar lavage of the excised lungs 
using the method described for sheep in (Clark et al., 2017), 
except using 20% heat-inactivated goat serum (G6767, Sigma 
Aldrich), and stored in TRIzol (15596018; Thermo Fisher 
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Scientific) at -80°C for RNA extraction. Similarly, bone marrow 
cells (BMCs) were isolated from 10 ribs from 3 male goats and 
frozen down for subsequent differentiation and stimulation 
with lipopolysaccharide (LPS) using the method described in 
(Clark et al., 2017; Young et al., 2018). Bone marrow derived 
macrophages (BMDMs) were obtained by culturing BMCs 
for 10 days in complete medium: RPMI 1640, Glutamax 
supplement (35050–61; Invitrogen), 20% heat inactivated 
goat serum (G6767; Sigma Aldrich), penicillin/streptomycin 
(15140, Invitrogen), and in the presence of recombinant human 
CSF-1 (rhCSF-1: 104 U/ml; a gift of Chiron, Emeryville, CA) 
on T75 polystyrene tissue culture treated plates (156499; 
Thermo Fisher Scientific) at a density of 2.0x106cells/ml. 
On day 11, BMDMs were transferred to 6-well cell culture 
treated multidishes (140675; Thermo Fisher Scientific). The 
following day, they were stimulated with LPS from Salmonella 
enterica serotype minnesota Re 595 (L9764; Sigma-Aldrich) 
at a final concentration of 100 ng/ml, then transferred into 
TRIzol (15596018; Thermo Fisher Scientific) at 0, 7h post LPS 
treatment, and stored at -80°C for RNA extraction.

Details of all the samples collected are included in Table 1.

RNA Extraction
RNA was extracted from tissues and cells as described in 
(Clark et al., 2017). For each RNA extraction from tissues, 
approximately 60mg of tissue was processed. Tissue samples 
were homogenised on a Precellys Tissue Homogeniser (Bertin 
Instruments; Montigny-le-Bretonneux, France) at 5000 rpm 
for 20 s with CK14 (432–3751; VWR, Radnor, USA) tissue 
homogenising ceramic beads in 1ml of TRIzol (15596018; 
Thermo Fisher Scientific). Cell samples were collected atthe 
point of isolation into TRIzol (15596018; Thermo Fisher 

Scientific), stored at -80°C, thawed, and then mixed by pipetting 
to homogenise. To allow sufficient time for complete dissociation 
of the nucleoprotein complex, homogenised (cell/tissue) 
samples were incubated at room temperature for 5 min. After 
5 min, 200μl BCP (1-bromo-3-chloropropane) (B9673; Sigma 
Aldrich) was added and the sample was shaken vigorously for 
15 s and incubated at room temperature for a further 3 min. 
The homogenised sample was then centrifuged for 15 min at 
12,000 x g, at 4°C for 3 min, to separate the upper clear aqueous 
layer. This clear upper layer was then column purified to remove 
DNA and trace phenol using a RNeasy Mini Kit (74106; Qiagen 
Hilden, Germany) following the manufacturer’s instructions 
(RNeasy Mini Kit Protocol: Purification of Total RNA from 
Animal Tissues, from step 5 onwards). An on-column DNase 
treatment was performed using the Qiagen RNase-Free DNase 
Set (79254; Qiagen Hilden, Germany). The sample was eluted 
in 30ul of RNase free water and stored at -80°C prior to QC 
and library preparation. To ensure RNA integrity (RINe) was 
of RINe > 7 samples were run on an Agilent 2200 TapeStation 
System (Agilent Genomics, Santa Clara, USA). RINe and other 
quality control metrics for the RNA samples are included in 
Supplementary Table S1.

RNA-Sequencing
RNA-Seq libraries were sequenced on the Illumina HiSeq 4000 
sequencing platform (Illumina, San Diego, USA) and generated 
by Edinburgh Genomics (Edinburgh Genomics, Edinburgh, 
UK). Strand-specific paired-end reads with a fragment length 
of 75bp were generated for each sample using the standard 
Illumina TruSeq mRNA library preparation protocol (poly-A 
selected) (Ilumina; Part: 15031047 Revision E). Libraries were 
sequenced at a depth of either >30 million reads per sample 
for the tissues and AMs, or >50 million reads per sample for 
the BMDMs.

Data Processing
The RNA-Seq data processing methodology and pipelines are 
described in detail in (Clark et al., 2017). Briefly, for each tissue, a 
set of expression estimates, as transcripts per million (TPM), were 
obtained. These estimates were obtained using the alignment-free 
(technically, “pseudo-aligning”) transcript quantification tool 
Kallisto (Bray et al., 2016), the accuracy of which is dependent on 
a high quality reference transcriptome (index). We used a “two-
pass” approach to generate this index in order to ensure we used 
an accurate set of gene expression estimates.

To generate the index, we initially ran Kallisto on all 
samples using as its index the ARS1 reference transcriptome 
available from Ensembl (ftp://ftp.ensembl.org/pub/
release-95/fasta/capra_hircus/cdna/Capra_hircus.ARS1.
cdna.all.fa.gz). The resulting data was then parsed to revise 
this index. This was for two reasons: i) so that we included 
in the second index, those transcripts that were missing but 
should have been present (i.e. due to incompleteness in the 
reference annotation), and ii) to remove transcripts that 
were present but should not have been (i.e., where a spurious 
model was present in the reference annotation). For i), we 

TABlE 1 | Details of samples included in the goat mini-atlas.

Tissue/cell type Organ system No. of 
replicates

Sex

Adrenal gland Endocrine 4 male
Alveolar macrophage Immune 2 male
BMDM - lPS (0 h) Immune 3 male
BMDM + lPS (7 h) Immune 3 male
Cerebellum Nervous system 2 male
Colon large GI tract 4 male
Fallopian tube Reproductive system 1 female
Frontal lobe cortex Nervous system 2 male
Ileum and Peyer’s 
patches

GI tract 2 male

Kidney cortex Endocrine 4 male
liver Endocrine 4 male
Ovary Reproductive system 1 female
Rumen Gastrointestinal tract 2 male
Skeletal muscle - 
longissimus dorsi

Musculo-skeletal 3 male

Skin Integumentary 4 male
Spleen Immune 3 male
Testes Reproductive system 4 male
Thymus Immune 4 male
Uterine horn Reproductive system 1 female
Uterus Reproductive system 1 female
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obtained the subset of reads that Kallisto could not (pseudo)
align, assembled those de novo into putative transcripts, then 
retained each transcript only if it could be robustly annotated. 
We considered annotation robust when a transcript encoded 
a protein similar to one of known function and had coding 
potential. For ii), we identified those transcripts in the 
reference transcriptome for which no evidence of expression 
could be found in any of the samples from the goat mini-atlas 
and discarded them. This revised index was used for a second 
“pass” with Kallisto to generate expression level estimates with 
higher-confidence.

We complemented the Kallisto alignment-free method with 
a reference-guided alignment-based approach to RNA-Seq 
processing, using the HISAT aligner (Kim et al., 2015) and 
StringTie assembler (Pertea et al., 2015). This approach was 
highly accurate when mapping to the (ARS1) annotation on NCBI 
(ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/
GCF_001704415.1_ARS1/GCF_001704415.1_ARS1_rna.
fna.gz), precisely reconstructing almost all exon (96%) and 
transcript (76%) models (Supplementary Table S2). We used 
the HISAT/StringTie output to validate the set of transcripts 
used to generate the Kallisto index. HISAT/StringTie, unlike 
Kallisto and other alignment-free methods, can be used to 
identify novel transcript models, particularly for ncRNAs, 
which we have described separately in (Bush et al., 2018b). 
Details of all novel transcript models detected are included in 
Supplementary Table S3.

Data Validation
To identify any spurious samples which could have been 
generated during sample collection, RNA extraction, or library 
preparation, we generated a sample-to-sample correlation of the 
gene expression estimates from Kallisto, in Graphia Professional 
(Kajeka Ltd, Edinburgh, UK).

Network Cluster Analysis
Network cluster analysis of the goat gene mini-atlas dataset was 
performed using Graphia Professional (Kajeka Ltd, Edinburgh, 
UK) (Livigni et al., 2018). Briefly, by calculating a Pearson 
correlation matrix for both gene-to-gene and sample-to-sample 
comparisons, and filtering to remove relationships where r < 
0.83, we were able to determine similarities between individual 
gene expression profiles. A network graph was constructed 
by connecting the nodes (transcripts) with edges (where the 
correlation exceeded the threshold value). Network graphs were 
interpreted by applying a Markov Cluster algorithm (MCL) at an 
inflation value/cluster granularity of 2.2 (Freeman et al., 2007). 
The granularity of the network graph was manually curated in 
order to reach a biologically relevant number of interaction nodes 
and cluster numbers. This approach was iteratively applied to 
several correlation coefficient thresholds for comparison prior to 
clustering, as previously described in Freeman et al., 2007, Clark 
et al., 2017. A suitable correlation threshold of 0.83 was chosen 
and the local structure of the graph was then examined visually. 
Transcripts with related functions clustered together forming sets 
of tightly interlinked nodes. The principle of “guilt by association” 

was then applied, to infer the function of unannotated genes from 
genes within the same cluster (Oliver, 2000). Clusters 1 to 30 
were assigned a functional “class” based on whether transcripts 
within a cluster shared a similar biological function according to 
GO term enrichment using the Bioconductor package “topGO” 
(Alexa and Rahnenfuhrer, 2010).

Comparative Analysis of Gene Expression 
in Macrophages in Sheep and Goats
To compare transcriptional differences in the immune response 
between the two species, we focused our analysis on the 
macrophage populations (AMs and BMDMs). For this analysis, 
we used a subset of data from our sheep gene expression atlas for 
AMs and BMDMs (+/- LPS) from three male sheep (Clark et al., 
2017) (Supplementary Dataset S1).

For AMs, we compared the gene level expression estimates 
from the two male goats and the three male sheep using edgeR 
v3.20.9 (Robinson et al., 2010). Only genes with the same gene 
name in both species, expressed at a raw read count of more than 
10, FDR < 10%, an FDR adjusted p-value of <0.05, and Log2FC 
of > = 2, in both goat and sheep, were included in the analysis.

Differential expression analysis using edgeR (Robinson et al., 
2010) was also performed for sheep and goat BMDMs (+/-) LPS 
separately, using the filtration criteria described above for AMs, 
to compile a list of genes for each species that were up or down 
regulated in response to LPS. These lists were then compared 
using the R package dplyr (Wickham et al., 2018) with system 
query language syntax. Each list was merged based on GENE_ID 
using the inner_join function to only return the observations 
that overlapped between goat and sheep (i.e., genes which had 
corresponding annotations in both species).

A dissimilarity index (Dis_Index) was then calculated by 
taking the absolute difference (ABS) of the Log2 fold change 
(Log2FC) between sheep and goat using the formula: 

 ABS Log2FC -Log2FCSheep Goat( )  

A high Dis_Index indicated that a gene was differently 
regulated in goat and sheep.

Allele-Specific Expression
To measure allele-specific expression (ASE), across tissues and 
cell-types from the goat mini-atlas, we used the method described 
in (Salavati et al., 2019). Briefly, BAM files from the RNA-Seq 
data were mapped to the ARS1 top level DNA fasta track from 
Ensembl v96, using HISAT2 as described in (Clark et al., 2017). 
Any reference mapping bias was removed using WASP v0.3.1 
(van de Geijn et al., 2015) and the resultant BAM files processed 
using the Genome Analysis Tool Kit (GATK) to produce 
individual VCF files. The ASEreadCounter tool in GATK v3.8 
was used to obtain raw counts of the allelic expression profile 
in the dataset. These raw counts were then tested for imbalance 
(using a modified negative-beta bionomial test at gene level) at 
all heterozygote loci (i.e., ASE = Counts RefAllele/(Counts RefAllele+ 
Counts AltAllele) within the boundaries of the gene using the R 
package GeneiASE (Edsgärd et al., 2016).
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RESUlTS AND DISCUSSION

Scope of the Goat Mini-Atlas Dataset, 
Sequencing Depth, and Coverage
The goat mini-atlas dataset includes 54 mRNA-Seq (poly-A 
selected) 75bp paired-end libraries. Details of the libraries 
generated including the age and sex of the animals, the tissues 
and cell types sampled, and the number of biological replicates 
per sample are summarised in Table 1. Gene level expression 
estimates, for the goat mini-atlas, are provided as unaveraged 
(Supplementary Dataset S2) and averaged across biological 
replicates (Supplementary Dataset S3) files.

Approximately, 8.7x108 paired end sequence reads were 
generated in total. Following data processing with Kallisto 
(Bray et al., 2016), a total of 18,528 unique protein coding 
genes had detectable expression (TPM > 1), representing 90% 
of the reference transcriptome (Bickhart et al., 2017). From the 
set of 17 tissues and 3 cell types we sampled, we were able to 
detect approximately 90% of protein coding genes providing 
proof of concept that the mini-atlas approach is useful for 
global analysis of transcription. The average percentage of 
transcripts detected per tissue or cell type was 66%, ranging 
from 54% in alveolar macrophages, which had the lowest 
to 72% in testes, which had the highest. The percentage of 
protein coding genes detected per tissue is included in Table 2. 
Although we included uterine horn as well as uterus and both 
stimulated and unstimulated BMDMs, our analysis suggests 
that including only one tissue/cell of a similar type would be 
the most economical approach to generating a mini-atlas of 
gene expression for functional annotation.

Approximately, 2,815 (13%) of the total 21,343 protein coding 
genes in the goat reference transcriptome had no detectable 
expression in the goat mini-atlas dataset. These transcripts are 
likely to be either tissue specific to tissues and cell-types that were 
not sampled here (including lung, heart, pancreas, and various 
endocrine organs), rare, or not detected at the depth of coverage 
used. The large majority of these transcripts were detected in the 
much larger sheep atlas, and their likely expression profile can 
be inferred from the sheep. In addition, for the goat mini-atlas 
unlike the sheep gene expression atlas, we only included neonatal 
animals so transcripts that were highly developmental stage-
specific in their expression pattern would also not be detected. A 
list of all undetected genes is included in Supplementary Table 
S4 and undetected transcripts in Supplementary Table S5.

Gene Annotation
The proportion of transcripts per biotype (lncRNA, protein 
coding, pseudogene, etc), with detectable expression (TPM >1) in 
the goat mini-atlas relative to the ARS1 reference transcriptome, 
on Ensembl is summarised at the gene level in Supplementary 
Table S6 and at the transcript level in Supplementary Table 
S7. Of the 21,343 protein coding genes in the ARS1 reference 
transcriptome, 7036 (33%) had no informative gene name. 
Whilst the Ensembl annotation will often identify homologues 
of a goat gene model, the automated annotation genebuild 
pipeline used to assign gene names and symbols is conservative. 
Using the annotation pipeline we described in (Clark et al., 
2017), we were able to use the goat mini-atlas dataset to assign 
an informative gene name to 1114 previously unannotated 
protein coding genes in ARS1. These genes were annotated by 
reference to the NCBI nonredundant (nr) peptide database 
v94 (Pruitt et al., 2007). A shortlist containing a conservative 
set of gene annotations to HGNC (HUGO Gene Nomenclature 
Committee) gene symbols is included in Supplementary Table 
S8. Supplementary Table S9 contains the full list of genes 
annotated using the goat mini-atlas dataset and our annotation 
pipeline. Many unannotated genes can be associated with a gene 
description, but not necessarily an HGNC symbol; these are also 
listed in Supplementary Table S10.

Network Cluster Analysis
Network cluster analysis of the goat gene expression atlas was 
performed using Graphia Professional (Kajeka Ltd, Edinburgh UK), 
a network visualisation tool (Livigni et al., 2018). The goat mini-atlas 
unaveraged TPM estimates (Supplementary Dataset S2) were used 
for network cluster analysis. We first generated a sample-to-sample 
graph (r = 0.75, MCL = 2.2) Supplementary Figure S1, which 
verified that the correlation between biological replicates was high 
and that none of the samples were spurious. We then generated a 
gene-to-gene network graph (Figure 1), with a Pearson correlation 
coefficient of r = 0.83, that comprised 16,172 nodes (genes) 
connected by 1,574,259 edges. The choice of Pearson correlation 
threshold is optimised within the Graphia program to maximise the 
number of nodes (genes) included whilst minimising the number 
of edges (Freeman et al., 2007). By applying the MCL (Markov 
Clustering) algorithm at an inflation value (which determines cluster 

TABlE 2 | The percentage of protein coding genes detected per tissue in the 
goat mini-atlas dataset.

Tissue Average no. of 
protein-coding genes 

expressed (TPM > 1) in 
this tissue

% of protein-coding 
genes expressed 
(TPM > 1) in this 

tissue

Adrenal gland 14585 68.34
Alveolar macrophage 11533 54.04
BMDM - lPS (0 h) 13253 62.1
BMDM + lPS (7 h) 13042 61.11
Cerebellum 14959 70.09
Colon large 14736 69.04
Fallopian tube 14390 67.42
Frontal lobe cortex 14757 69.14
Ileum and Peyer’s 
patches

15268 71.54

Kidney cortex 15223 71.33
liver 13497 63.24
Ovary 14251 66.77
Rumen 13642 63.92
Skeletal muscle - 
longissimus dorsi

12276 57.52

Skin 14892 69.77
Spleen 14659 68.68
Testes 15359 71.96
Thymus 14484 67.86
Uterine horn 14298 66.99
Uterus 14298 66.99
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granularity) of 2.2, the gene network graph separated into 75 distinct 
coexpression clusters, with the largest cluster (cluster 1) comprising 
of 1795 genes. Genes found in the top 30 largest clusters are listed 
in Supplementary Table S11. Clusters 1 to 20 (numbered in order 
of size, largest to smallest) were annotated manually and assigned a 
functional “class” (Table 3). These functional classes were assigned 
based on GO term enrichment (Alexa and Rahnenfuhrer, 2010) for 
molecular function and biological process (Supplementary Table 
S12). Assignment of functional class was further validated by visual 
inspection of expression pattern and comparison with functional 
groupings of genes observed in the sheep gene expression atlas 
(Clark et al., 2017).

The largest of the clusters (Cluster 1) contained 1,795 genes 
that were almost exclusively expressed in the central nervous 
system (cortex, cerebellum) reflecting the high transcriptional 
activity and complexity in the brain. Significant GO terms 
for cluster 1 included cognition (p = 4.6x10-17) and synaptic 
transmission (p = 2.5x10-30). Other tissue-specific clusters, e.g., 4 
(liver), 6 (testes), 7 (skin/rumen), 14 (adrenal), and 17 (kidney), 
were similarly enriched for genes associated with known tissue-
specific functions. In each case, the likely function of unannotated 
protein-coding genes within these clusters could be inferred by 
association with genes of known function that share the same 
cell or tissue specific expression pattern. Cluster 9 showed a 
high level of tissue specificity and included genes associated 
with skeletal muscle function and development including MSTN 

which encodes a protein that negatively regulates skeletal muscle 
cell proliferation and differentiation (Wang et al., 2012). Several 
myosin light and heavy chain genes (e.g., MYH1 and MYL1) 
and transcription factors that are specific to muscle including 
(MYOG and MYOD1) were also found in cluster 9. GO terms for 
muscle were enriched in cluster 9, e.g., muscle fiber development 
(p = 3.8x10-13) and structural constituent of muscle (p = 1.8x10-11).  
Genes expressed in muscle are of particular biological and 
commercial interest for livestock production and represent 
potential targets for gene editing (Yu et al., 2016). Cluster 8 was 
also highly tissue specific and included genes expressed in the 
fallopian tube with enriched GO terms for cilium movement  
(p = 1.4x10-15) and cilium organization (p = 2.3x10-15). A motile 
cilia cluster was identified in the fallopian tube in the sheep gene 
expression atlas (Clark et al., 2017) and a similar cluster was 
enriched in chicken in the trachea (Bush et al., 2018a). The goat 
mini-atlas also included several clusters that were enriched for 
immune tissues and cell types and we have based our analysis in 
part upon the premise that the greatest differences between small 
ruminant species likely involve the immune system.

Gene Expression in the Neonatal 
Gastrointestinal Tract
Three regions of the gastrointestinal (GI) tract were sampled; 
the ileum, colon, and rumen. These regions formed distinct 

FIGURE 1 | Gene-to-gene network graph of the goat mini-atlas dataset. Each node represents a gene and each edge represents correlations between individual 
measurements above the set threshold. The graph comprised 16,172 nodes (genes) and 1,574,259 edges (Pearson correlations ≥ 0.83), Markov Cluster algorithm 
(MCL) inflation = 2.2, and Pearson Product Correlation Co-efficient = 0.83. (> indicates decreasing expression profile).
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clusters in the network graph. The genes comprising these 
clusters were highly correlated with the physiology of the tissues. 
Goats are ruminant mammals and, at one-week of age (when 
tissues were collected), the rumen is vestigial. Even at this early 
stage of development, the typical epithelial signature of the 
rumen (Xiang et al., 2016a; Xiang et al., 2016b) was observed. 
Genes coexpressed in the rumen (clusters 7 and 13 – Table 3) 
were typical of a developing rumen epithelial signature (Bush 
et al., 2019) and were associated with GO terms for epidermis 
development (p = 0.00016), keratinocyte differentiation (p = 
1.5x10-14), and skin morphogenesis (p = 8.2x10-6). Large colon 
(cluster 12) included several genes associated with GO terms 
for microvillus organization (p = 1x106) and microvillus (p = 
6.3x106) including MYO7B which is found in the brush border 
cells of epithelial microvilli in the large intestine. The microvilli 
function as the primary surface of nutrient absorption in the 
gastrointestinal tract, and as such numerous phospholipid-
transporting ATPases and solute carrier genes were found in the 
large colon cluster.

Throughout the GI tract, there was a strong immune 
signature, similar to that observed in neonatal and adult sheep 
(Bush et al., 2019), which was greatest in clusters 10 and 19 
(Table 3) where expression was high in the ileum and Peyer’s 
patches, thymus, and spleen. Cluster 10 had a more general 
immune related profile with higher expression in the spleen and 
significant GO terms associated with cytokine receptor activity 
(p = 1.3x10-8) and T-cell receptor complex (p = 0.00895). 
Several genes involved in the immune and inflammatory 
response were found in cluster 10 including CD74, IL10, and 
TLR10. The expression pattern for cluster 19 was associated 
with B-cells including GO terms for B-cell proliferation (p = 
1.4x10-7), positive regulation of B-cell activation (p = 4.9x10-6), 
and cytokine activity (p = 0.0051). Genes associated with 
the B-cell receptor complex CD22, CD79B, CD180, and CR2, 

and interleukins IL21R and IL26 were expressed in cluster 19 
(Treanor, 2012). This reflects the fact that we sampled the Peyer’s 
patch with the ileum, which is a primary lymphoid organ of 
B-cell development in ruminants (Masahiro et al., 2006).

Each of the GI tract clusters included genes associated with 
more than one cell type/cellular process. This complexity is a 
consequence of gene expression patterns from the lamina 
propria, one of the three layers of the mucosa. The lamina propria 
lies beneath the epithelium along the majority of the GI tract 
and comprises numerous different cell types from endothelial, 
immune and connective tissues (Ikemizu et al., 1994). This 
gene expression pattern, which is also observed in sheep (Clark 
et al., 2017; Bush et al., 2019) and pigs (Freeman et al., 2012), 
highlights the complex multidimensional physiology of the 
ruminant GI tract.

Macrophage-Associated Signatures
A strong immune response is vitally important to neonatal 
mammals. Macrophages constitute a major component of the 
innate immune system acting as the first line of defense against 
invading pathogens and coordinating the immune response 
by triggering antimicrobial responses and other mediators 
of the inflammatory response (Hume, 2015). Several clusters 
in the goat mini-atlas exhibited a macrophage-associated 
signature. Cluster 11 (Table 3) contained several macrophage 
marker genes, including CD68 which is expressed in AMs and 
BMDMs. The cluster includes the macrophage growth factor, 
CSF1, indicating that as in sheep (Clark et al., 2017), pigs 
(Freeman et al., 2012), and humans (Schroder et al., 2012) but 
in contrast to mice, according to the results of this study goat 
macrophages are autocrine for their own growth factor. GO 
terms associated with cluster 11 included phagocytosis (p = 
3.5x10-10), inflammatory response (p = 1.4x10-8), and cytokine 

TABlE 3 | Annotation of the 20 largest network clusters in the goat mini-atlas dataset (> indicates decreasing expression profile).

Cluster 
ID

Number of 
genes

Profile description Class Enriched GO terms

1 1795 Cortex > cerebellum Brain cognition, neurotransmitter transport, synaptic transmission
2 1395 Thymus > Spleen > Ileum Cell-Cycle DNA-dependent DNA replication, DNA repair
3 795 General House Keeping mRNA processing, regulation of RNA splicing
4 505 Liver Oxidative-Phosphorylation oxidation-reduction process, fatty acid oxidation
5 494 General House Keeping RNA binding, nucleolus
6 481 Testes Male Reproduction male meiosis, spermatogenesis
7 449 Skin > Rumen Epithelial skin morphogenesis, keratinocyte differentiation
8 374 Fallopian Tube Motile Cilia motile cilium, ciliary basal body
9 351 Skeletal muscle Muscle muscle fibre development, motor activity
10 337 Spleen > Ileum Immune immune response, B-cell activation, cytokine activity
11 290 Macrophages Immune response to lipopolysaccharide, phagocytic vesicle
12 241 Colon Large Gastrointestinal tract microvillus, actin filament bundle
13 226 Rumen > Skin Gastrointestinal/Epithelial epidermis development, chloride channel activity
14 219 Adrenal Gland Endocrine oxidation-reduction process, sterol metabolic process
15 211 BMDMs Fibroblasts collagen binding, positive regulation of fibroblast proliferation
16 134 General Ribosomal ribosomal large subunit biogenesis, ribosome
17 133 Kidney Cortex Mesoendonephric 

organogenesis
sodium ion homeostasis, skeletal system morphogenesis

18 119 Ovary Oogenesis growth factor activity, nucleosome disassembly
19 113 Ileum > Spleen > Thymus Immune B-cell proliferation, cytokine activity
20 108 Uterus, Uterine Horn Organogenesis tissue remodelling, bone morphogenesis
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receptor activity (p = 0.00031). Many of the genes that were 
up-regulated in AMs in cluster 11, including C-type lectins 
CLEC4A and CLEC5A, have been shown to be down regulated 
in sheep (Clark et al., 2017; Bush et al., 2019), pigs (Freeman 
et al., 2012), and humans (Baillie et al., 2017) in the wall 
of the intestine. This highlights functional transcriptional 
differences in macrophage populations. AMs respond 
to microbial challenge as the first line of defense against 
inhaled pathogens. In contrast, macrophages in the intestinal 
mucosa down-regulate their response to microorganisms as 
a continuous inflammatory response to commensal microbes 
would be undesirable.

Cluster 11 (Table 3) also included numerous proinflammatory 
cytokines and chemokines which were up-regulated following 
challenge with lipopolysaccharide (LPS). Response to LPS was 
also reflected in several significant GO terms associated with 
this cluster including, cellular response to lipopolysaccharide 
(p = 5.8x10-10), and cellular response to cytokine stimulus (p = 
9.5x10-8). C-type lectin CLEC4E, which is known to be involved 
in the inflammatory response (Baillie et al., 2017), interleukin 
genes such as IL1B and IL27, and ADGRE1 were all highly 
inducible by LPS in BMDMs. ADGRE1 (EMR1,F4/80) is a 
monocyte-macrophage marker involved in pattern recognition 
which exhibits interspecies variation both in expression level and 
response to LPS stimulation (Waddell et al., 2018). Based upon 
RNA-Seq data, ruminant genomes were found to encode a much 
larger form of ADGRE1 than monogastric species, with complete 
duplication of the extracellular domain [44].

Comparative Analysis of Macrophage-
Associated Transcriptional Responses  
in Sheep and Goats
Transcriptional differences are linked to species-specific 
variation in response to disease, and have been widely 
documented in livestock (Bishop and Woolliams, 2014). For 
instance, ruminants differ in their response to a wide range of 
economically important pathogens. Variation in the expression 
of NRAMP1 (SLC11A1) is involved in the response of sheep and 
goat to Johne’s disease (Cecchi et al., 2017). Similarly, resistance to 
Haemonchus contortus infections in sheep and goats is associated 
with a stronger Th2-type transcriptional immune response 
(Gill et al., 2000; Alba-Hurtado and Munoz-Guzman, 2013). 
To determine whether goats and sheep differ significantly in 
immune transcriptional signatures, we performed a comparative 
analysis of the macrophage samples from the goat mini-atlas and 
those included in our gene expression atlas for sheep (Clark et al., 
2017). One caveat to this analysis that should be noted is that 
the sheep and goat samples were unfortunately not age-matched 
and as such differences in gene expression could be an effect of 
developmental stage rather than species-specific differences. 
However, as macrophage samples from both species were kept 
in culture prior to collection and analysis, we would expect the 
effect of developmental stage to be minimal.

We performed differential analysis of genes expressed in 
goat and sheep AMs (Supplementary Table S13). The top 25 
genes up- and down-regulated in goat relative to sheep based 
on log2FC are shown in Figure 2. Several genes involved in 

FIGURE 2 | Differentially expressed genes (FDR < 10%) between goat and sheep alveolar macrophages. The top 25 up-regulated in goat relative to sheep (red) and 
the top 25 down-regulated in goat relative to sheep (blue) are shown.
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the inflammatory and immune response including interleukins 
IL33 and IL1B and C-type lectin CLEC5A were up-regulated in 
goat AMs relative to sheep. In contrast, those that were down 
regulated in goat relative to sheep did not have an immune 
function but were associated with more general physiological 
processes. This may reflect species-specific differences but could 
also indicate that the immune response in AMs is age-dependent, 
i.e., neonatal animals exhibit a primed immune response while 
a more subdued response is exhibited by adult sheep whose 
adaptive immunity has reached full development.

Using differential expression analysis (Robinson et al., 2010), 
we also compared the gene expression estimates for sheep and goat 
BMDMs (+/-) LPS to compile a list of genes for each species that 
were up or down regulated in response to LPS (Supplementary 
Table S14A goat and Supplementary Table S14B sheep). These 
lists were then merged using the methodology described above 
(see Methods section) to highlight genes that differed in their 
response to LPS between the two species. In total, 188 genes 
exhibited significant differences between goats and sheep (FDR < 
10%, Log2FC> = 2) in response to LPS (Supplementary Table 
S15). The genes which showed the highest level of dissimilarity 
in response to LPS between goats and sheep (Dis_Index> = 2) are 
illustrated in Figure 3. Several immune genes were upregulated 
in both goat and sheep BMDMs in response to LPS stimulation 
but differed in their level of induction between the two species 
(top right quadrant Figure 3). IL33, IL36B, PTX3, CCL20, CSF3, 
and CSF2 for example, exhibited higher levels of induction in 
sheep BMDMs relative to goat, and vice versa for ICAM1, IL23A, 

IFIT2, TNFSF10, and TNFRSF9. Several genes were upregulated 
in sheep but downregulated in goat BMDMs (e.g., KIT) (top left 
quadrant Figure 3), and upregulated in goat, but downregulated 
in sheep (e.g., IGFBP4) (bottom right quadrant Figure 3).

Overall, the transcriptional patterns in BMDMs stimulated 
with LPS were broadly similar between the two species. Although, 
further experiments using qPCR to measure the expression of 
candidate genes in age-matched animals would be required to 
validate the observed expression patterns. With this caveat in 
mind, some interesting differences in individual genes were 
observed that could contribute to species-specific responses to 
infection. For instance, IL33 and IL23A both exhibited a higher 
level of induction in sheep BMDMs after stimulation with LPS 
relative to goat (Figure 3). In humans, IL33 has a protective 
role in inflammatory bowel disease by inducing a Th2 immune 
response (Lopetuso et al., 2013). An enhanced Th2 response, 
which accelerates parasite expulsion, has been associated with 
H. contortus resistance in sheep (Alba-Hurtado and Munoz-
Guzman, 2013). Conversely, higher expression of IL23A is 
associated with susceptibility to Teladorsagia circumcincta 
infection (Gossner et al., 2012). Little is known about the 
function of IL33 and IL23A in goats. They are members of the 
interleukin-1 family which play a central role in the regulation 
of immune and inflammatory response to infection (Dinarello, 
2018). Given the similarities in their expression patterns, it is 
reasonable to assume that these genes are regulated in a similar 
manner to sheep and involved in similar biological pathways. 
As such, they would be suitable candidate genes to investigate 

FIGURE 3 | Comparative analysis of differentially expressed genes (FDR < 10%, Log2FC> = 2) in goat and sheep bone marrow derived macrophage (BMDM). 
The genes which showed the highest level of dissimilarity in response to lipopolysaccharide (LPS) between goats and sheep (Dis_Index> = 2) are shown. Top right 
quadrant: genes that were up-regulated in both goat and sheep but differed in their level of induction between the two species. Top left quadrant: genes that were 
up-regulated in sheep but down-regulated in goat. Bottom right quadrant: genes up-regulated in goat, but down-regulated in sheep.
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further to determine if they underlie species-specific variation in 
susceptibility to pathogens (Bishop and Stear, 2003; Bishop and 
Morris, 2007).

Expression Patterns of Genes Associated 
With Functional Traits in Goats
The goat mini-atlas dataset is a valuable resource that can be 
used by the livestock genomics community to examine the 
expression patterns of genes of interest that are relevant to 
ruminant physiology, immunity, welfare, production, and 
adaptation/resilience particularly in tropical agri-systems. The 
mini-atlas provides a resource of tissue-specific expression 

profiles for each gene that could be used to help determine which 
tissues to prioritise, for an expression QTL study, for example. 
Several genes, associated with functional traits in goats, have 
been identified using genome wide association studies (GWAS). 
Insulin-like growth factor 2 (IGF2), for example, is associated 
with growth rate in goats (Burren et al., 2016), and was highly 
expressed in tissues with a metabolic function including, kidney 
cortex, liver, and adrenal gland (Figure 4A). As expected, 
expression of myostatin (MSTN), which encodes a negative 
regulator of skeletal muscle mass, was highest in skeletal muscle 
in comparison with the other tissues (Figure 4B). MSTN is a 
target for gene-editing in goats to promote muscle growth (e.g., 
Yu et al., 2016). Expression of genes associated with fecundity 

FIGURE 4 | Expression levels (transcripts per million) of genes involved in functional traits in goats to illustrate tissue and cell type or ubiquitous expression patterns 
in the mini atlas dataset. (A) IGF2 is associated with growth rate; (B) MSTN is associated with muscle characteristics; (C) GDF9 is associated with ovulation rate; 
(D) BMPR1 is associated with fecundity; (E) MMP9 is associated with resistance to mastitis; (F) DGAT1 is associated with fat content in goat milk.
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and litter size in goats, including GDF9 and BMPR1B (Feng et al., 
2011; Shokrollahi and Morammazi, 2018), were highest in the 
ovary (Figures 4C, D). The ovary included here is from a neonatal 
goat and these results correlate with similar observations in sheep 
where genes essential for ovarian follicular growth and involved 
in ovulation rate regulation and fecundity were highly expressed 
in foetal ovary at 100 days gestation (Clark et al., 2017).

Some genes, particularly those involved in the immune 
response, had high tissue or cell type specific expression. 
Matrix metalloproteinase-9 (MMP9), which is involved in the 
inflammatory response and linked to mastitis regulation in 
goats (Li et al., 2016) was very highly expressed in macrophages, 
particularly AMs, in comparison with other tissues (Figure 4E). 
Other genes that are important for goat functional traits were fairly 
ubiquitously expressed. The expression level of Diacylglycerol 
O-Acyltransferase 1 (DGAT1) which is associated with milk fat 
content in dairy goats (Martin et al., 2017) did not vary hugely 
across the tissues sampled (Figure 4F), although there was 
slightly higher expression in some tissues (e.g., colon and liver) 
relative to immune tissues (e.g., thymus and spleen). DGAT1 
encodes a key metabolic enzyme that catalyses the last, and rate-
limiting step of triglyceride synthesis, the transformation from a 
diacylglycerol to a triacylglycerol (Bell and Coleman, 1980). This 
is an important cellular process undertaken by the majority of 
cells, explaining its ubiquitous expression pattern. Two exonic 
mutations in the DGAT1 gene in dairy goats have been associated 
with a notable decrease in milk fat content (Martin et al., 2017). 
Understanding how these, and other variants for functional traits, 
are expressed can help us to determine how their effect on gene 
expression and regulation influences the observed phenotypes in 
goat breeding programmes.

Allele-Specific Expression
Using mapping bias correction for robust positive ASE discovery 
(Salavati et al., 2019), we were able to profile moderate to 
extreme allelic imbalance across tissues and cell types, at the 
gene level, in goats. The raw ASE values for every tissue/cell type 
are included in Supplementary Dataset S4. We first calculated 
the distribution of heterozygote sites per gene, as a measure of 
homogeneity of input sites, and found there was no significant 
difference between the eight individual goats included in the 
study (Supplementary Figure S2).

Several genes exhibited pervasive allelic imbalance (i.e., 
where the same imbalance in expression is shared across several 
tissues/cell types) (Figure 5). For example, allelic imbalance was 
observed in the mitochondrial ribosomal protein MRPL17 in 16 
tissues/cell types (except skeletal muscle and rumen). SERPINH1, 
a member of the serpin superfamily, was the only gene in which 
an imbalance in expression was detected in all tissues/cell types. 
Allelic imbalance was observed in COL4A1 in 11 tissues, and 
was highest in the rumen and skin samples. COL4A1 has been 
shown to be involved in the growth and development of the 
rumen papillae in cattle (Nishihara et al., 2018) and sheep (Bush 
et al., 2019). The highest levels of allelic imbalance in individual 
genes were observed in ribosomal protein RPL10A in ileum and 
SPARC in liver (Figure 5).

The ASE profiles were highly tissue- or cell type-specific, with 
strong correlations between samples from the same organ system 
(Figure 6). For example, ASE profiles in female reproductive 
system (ovary, fallopian tube, uterine horn, uterus), GI tract 
(colon and ileum), and brain (cerebellum and frontal lobe cortex) 
tissues were highly correlated. The two tissues showing the largest 
proportion of shared allele-specific expression were the ovary 
and liver (Figure 6). This might reflect transcriptional activity 
in these tissues in neonatal goats during oogenesis (ovary) and 
haematopoiesis (liver). Future work could determine if these 
ASE patterns were observed at other stages of development, or 
whether they are time-dependant.

The next step of this analysis would be to analyse ASE at the 
variant (SNV) level. This would allow us to identify variants 
driving ASE and determine whether they were located within 
important genes for functional traits. These variants could then 
be weighted in genomic prediction algorithms for genomic 
selection, for example. The sequencing depth used for the goat 
mini-atlas is, however, insufficient for statistically robust analysis 
at the SNV level. Nevertheless, it does provide a foundation 
for further analysis of ASE relevant to functional traits using a 
suitable dataset, ideally from a larger number of individuals (e.g., 
for aseQTL analysis (Wang et al., 2018)) and at a greater depth.

CONClUSIONS
We have created a mini-atlas of gene expression for the domestic 
goat. This expression dataset complements the genetic and 
genomic resources already available for goat (Tosser-Klopp 
et al., 2014; Stella et al., 2018; Talenti et al., 2018), and provides 
a set of functional information to annotate the current reference 
genome (Bickhart et al., 2017; Worley, 2017). We were able to 
detect the majority (90%) of the transcriptome from a subset of 
17 transcriptionally rich tissues and 3 cell-types representing all 
the major organ systems, providing proof of concept that this 
mini-atlas approach is useful for studying gene expression and for 
functional annotation. Using the mini-atlas dataset, we annotated 
15% of the unannotated genes in ARS1. Our dataset was also used 
by the Ensembl team to create a new gene build for the goat ARS1 
reference genome (https://www.ensembl.org/Capra_hircus/Info/
Index). One limitation of the mini-atlas is that it included only one 
biological replicate from a female goat because tissue from female 
dairy goats is difficult to source. Similarly, the samples used to 
generate the mini-atlas were all collected from neonatal animals 
and logistical constraints related to sample collection meant 
we could not sample immune cells from blood. Future studies 
could build on the mini-atlas, by including additional biological 
replicates from females, tissues from multiple developmental 
stages, and additional types of immune cell (e.g., monocytes, 
T-cells, and B-cells) to capture further transcriptional complexity.

We have also provided transcriptional profiling of macrophages 
in goats and a comparative analysis with sheep, which indicated in 
the cell types and animals investigated in this study transcriptional 
patterns in the two species were similar. This provides a foundation 
for further analysis in more tissues and cell types in age-matched 
animals, and in disease challenge experiments for example. 
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FIGURE 5 | Genes exhibiting the largest mean allelic imbalance (i.e., allele-specific expression averaged across all heterozygote sites within each gene) across 17 
tissues and one cell type from the goat mini-atlas dataset visualised as a heatmap (red indicating the highest level of mean allelic imbalance and green the least).
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Prior to this study, little was known about the transcription in 
goat macrophages. While more information is available on goat 
monocyte derived macrophages (Adeyemo et al., 1997; Taka et 
al., 2013; Walia et al., 2015), there was previously relatively little 
knowledge available on the characteristics of goat BMDMs. In 
addition, few reagents are available for immunological studies in 
goat, with most studies relying on cross-reactivity with sheep and 
cattle antibodies (Entrican, 2002; Hope et al., 2012). Recently, a 
characterisation of goat antibody loci has been published using the 
new reference genome ARS1 (Schwartz et al., 2018), demonstrating 
the usefulness of a highly contiguous reference genome with 
high quality functional annotation for the development of new 
resources for livestock species. The goat mini-gene expression atlas 
complements the large gene expression dataset we have generated 
for sheep and contributes to the genomic resources we are 
developing for interpretation of the relationship between genotype 
and phenotype in small ruminants.

DATA AVAIlABIlITY STATEMENT
We have made the files containing the expression estimates for 
the goat mini-atlas (Supplementary Dataset S2 (unaveraged) and 
Supplementary Dataset S3 (averaged)) available for download 
through the University of Edinburgh DataShare portal (https://
doi.org/10.7488/ds/2591). Sample metadata for all the tissue and 
cell samples collected has been deposited in the EBI BioSamples 
database under project identifier GSB-2131 (https://www.ebi.
ac.uk/biosamples/samples/SAMEG330351) according to FAANG 
metadata and data sharing standards. The raw fastq files for the 
RNA-Seq libraries are deposited in the European Nucleotide 
Archive (https://www.ebi.ac.uk/ena) under the accession number 
PRJEB23196. The data submission to the ENA includes experimental 
metadata prepared according to the FAANG Consortium metadata 
and data sharing standards. The BAM files are also available as 
analysis files under accession number PRJEB23196 (“BAM file 1” 

FIGURE 6 | Correlation of allele-specific expression (ASE) profiles shared across tissues/cell types from the goat mini-atlas dataset. Each section represents the 
genes showing significant allelic imbalance within the tissue. The chords represent the correlation coefficient (CC < 0.85) of ASE profiles shared between the 
samples (i.e., the proportion of genes showing co-imbalance).
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are mapped to the NCBI version of ARS1 and “BAM file 2” to the 
Ensembl version). The data from sheep included in this analysis has 
been published previously and is available via (Clark et al., 2017) 
and under ENA accession number PRJEB19199. Details of all the 
samples for both goat and sheep are available via the FAANG data 
portal (http://data.faang.org/home). All experimental protocols 
are available on the FAANG consortium website at http://www.ftp.
faang.ebi.ac.uk/ftp/protocols. 
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Matings Reveals Regulatory Variation 
Impacting the Transcriptome 
of Immune Cells in Commercial 
Chickens
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Amanda MacCallum 1, Rakhi Harne 1, Jenny O’Dell 1, Stephen J. Bush 4 and David A. Hume 2*
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Medicine, University of Oxford, Oxford, United Kingdom

There is increasing recognition that the underlying genetic variation contributing to 
complex traits influences transcriptional regulation and can be detected at a population 
level as expression quantitative trait loci. At the level of an individual, allelic variation in 
transcriptional regulation of individual genes can be detected by measuring allele-specific 
expression in RNAseq data. We reasoned that extreme variants in gene expression 
could be identified by analysis of inbred progeny with shared grandparents. Commercial 
chickens have been intensively selected for production traits. Selection is associated with 
large blocks of linkage disequilibrium with considerable potential for co-selection of closely 
linked “hitch-hiker alleles” affecting traits unrelated to the feature being selected, such as 
immune function, with potential impact on the productivity and welfare of the animals. To 
test this hypothesis that there is extreme allelic variation in immune-associated genes we 
sequenced a founder population of commercial broiler and layer birds. These birds clearly 
segregated genetically based upon breed type. Each genome contained numerous 
candidate null mutations, protein-coding variants predicted to be deleterious and extensive 
non-coding polymorphism. We mated selected broiler-layer pairs then generated cohorts 
of F2 birds by sibling mating of the F1 generation. Despite the predicted prevalence of 
deleterious coding variation in the genomic sequence of the founders, clear detrimental 
impacts of inbreeding on survival and post-hatch development were detected in only one 
F2 sibship of 15. There was no effect on circulating leukocyte populations in hatchlings. 
In selected F2 sibships we performed RNAseq analysis of the spleen and isolated 
bone marrow-derived macrophages (with and without lipopolysaccharide stimulation). 
The results confirm the predicted emergence of very large differences in expression of 
individual genes and sets of genes. Network analysis of the results identified clusters of 
co-expressed genes that vary between individuals and suggested the existence of trans-
acting variation in the expression in macrophages of the interferon response factor family 
that distinguishes the parental broiler and layer birds and influences the global response 
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to lipopolysaccharide. This study shows that the impact of inbreeding on immune cell 
gene expression can be substantial at the transcriptional level, and potentially opens a 
route to accelerate selection using specific alleles known to be associated with desirable 
expression levels.

Keywords: chicken, genome, inbreeding, allele-specific, transcriptome, macrophage

InTRODUCTIOn
A large proportion of causal genetic variation implicated in 
complex traits in humans is associated with regulatory variants 
that impact on the level of gene expression (Zhu et al., 2016). 
Gene expression is itself a complex trait, controlled by both cis-
acting and trans-acting (epistatic) variants and interactions with 
environment (GTEx project, 2017). Gene expression can therefore 
provide an intermediate phenotype in analysis of complex traits, 
an approach that has been termed genetical genomics [(Johnsson 
et al., 2018) and references therein]. At a population level, 
expression quantitative trait loci (eQTL) studies of individual 
cells or tissues can reveal associations between single nucleotide 
variants (SNVs) and the amount of each mRNA transcribed from 
the genome (GTEx project, 2017). At the level of an individual, 
provided there are expressed SNVs, RNA sequencing enables the 
identification of regulatory variation within a locus, based upon 
the relative expression of the two alleles (so-called allele-specific 
expression, ASE) (Pastinen, 2010).

Modern western broiler and layer chickens have been 
divergently selected for meat and egg production respectively, 
increasingly using genomic selection with dense genotyping chips 
(Kranis et al., 2013; Gheyas et al., 2015). This intense selection 
has generated selective sweeps around regions associated with 
production traits, for example genes linked to appetite, growth, 
metabolic regulation and carcase traits in broilers and egg-
production in layers (Qanbari et al., 2019). Analysis of linkage 
disequilibrium in commercial broiler, white egg and brown 
egg layers revealed highly divergent patterns between selected 
populations, significant inbreeding coefficients and, on average, 
much larger average LD blocks than in human populations 
(Pengelly et al., 2016). The selection for production traits could 
potentially impact inadvertently (through co-selection) or directly 
on the immune system which makes an important contribution 
to fitness in production animals. In the current study we take 
a novel approach to identifying the potential immunological 
consequences of trait selection in commercial chickens.

Macrophages are an essential component of the innate immune 
system. In mammals, the proliferation and differentiation of 
macrophages depends upon signaling through the macrophage 
colony-stimulating factor receptor (CSF1R) via two ligands, 
CSF1 and interleukin 34 (IL34). This system is functionally 
conserved in birds (Garceau et al., 2010). Recombinant CSF1 
can be used to generate pure populations of macrophages in vitro 
from bone marrow progenitors (Garceau et al., 2010). We used 
this system to demonstrate that genes on the Z chromosome in 
birds are generally not fully dosage compensated in male (ZZ) 
versus female (ZW) birds. We showed also that the presence 

of the interferon genes on the Z chromosome impacts on the 
relative response of male and female macrophages to bacterial 
lipopolysaccharide (LPS) (Garcia-Morales et al., 2015). To 
analyze chicken macrophage biology in vivo we have produced 
CSF1R reporter transgenic lines on a conventional layer genetic 
background (Balic et al., 2014; Garceau et al., 2015).

There is a strong signature of selection over the CSF1R locus 
in commercial broilers (Stainton et al., 2017). Analysis of the 
genomic sequence data for commercial birds (Gheyas et al., 
2015) revealed high prevalence non-synonymous protein-coding 
variants in CSF1R that are unique to either broilers or layers 
(Hume et al., 2019). In support of the possibility that this variation 
is functionally significant, mutations in either Csf1r or Csf1 in 
both mice and rats produce severe post-natal growth retardation 
(Dai et al., 2002; Pridans et al., 2018). Such variation could 
obviously also impact on innate immune function. Chicken meat 
and egg production at scale generally involves housing in well-
controlled environments and infection control with vaccines and/
or prophylactic antibiotics. These production systems may mask 
the impact of selection on immune-related traits. Increasingly, 
the efficacy of vaccines is challenged by pathogen evolution and 
antibiotic use is now largely prohibited. There has therefore been 
a renewed interest in breeding for disease resistance and in the 
identification of markers of disease severity and prognosis. One 
novel strategy for improving disease resistance is based upon 
selective breeding of birds that display high levels of inducible 
pro-inflammatory cytokines (IL6 or the CXCL chemokines) in 
response to bacterial stimuli (Swaggerty et al., 2008; Swaggerty 
et  al., 2016; Swaggerty et al., 2017; Swaggerty et al., 2019).

Most potential regulatory and protein-coding variants of 
large effect in commercial birds are masked because of the 
breeding pyramid approach used. Independent pedigree lines are 
intensively selected for specific traits and then crossed to maximize 
heterozygosity in the production animals which may contain 
genetic contributions from as many as eight heavily-selected 
founder lines. One presumption in such breeding pyramids is that 
maximal heterozygosity conceals potentially deleterious alleles; 
leading to hybrid vigor or heterosis. The reciprocal of heterosis 
is the well-documented phenomenon of inbreeding depression 
(Charlesworth and Willis, 2009; Chen, 2013). The molecular 
basis for both phenomena has been studied more extensively in 
plants than in animals. At least some of the variation underlying 
heterosis is regulatory and can be detected at the level of mRNA 
expression of individual genes, where the level of expression in an 
F1 hybrid commonly lies at the midpoint of expression of parental 
lines. RNAseq analysis has been used to address this prediction in a 
defined cross of two inbred chicken lines, in which gene expression 
was compared in the brain and liver of the parents and embryonic 
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F1 birds. This approach provided strong evidence of frequent allelic 
imbalance in embryonic brain and liver. In the large majority of 
cases the combined expression of individual transcripts from the 
two parental alleles in the F1 animals was essentially additive (Zhuo 
et al., 2017; Zhuo et al., 2019). A small subset of transcripts showed 
evidence of dominance or over-dominance in expression level; 
these were identified as candidate trans-regulators contributing 
to heterosis. The key conclusion from these studies is that the cis-
acting regulation in the parent lines was demonstrable and heritable 
in the F1 progeny (as allele-specific expression).

The identification of functional allelic variants based upon 
RNAseq depends upon the presence of informative expressed 
SNVs in each individual. An alternative approach that is 
practical in birds, which are multiparous, is to brother-sister 
mate F1 progeny from a defined parental cross to generate an 
F2 population in which the grandparental allelic variants at each 
locus will be homozygous in a subset of birds. Based upon the 
results from the inbred cross (Zhuo et al., 2017; Zhuo et al., 2019) 
such a breeding strategy should expose high and low expression 
alleles that are masked in heterozygotes. Because of their 
genetic divergence, broiler-layer intercrosses have been used 
extensively in QTL mapping of production traits [e.g. (Campos 
et al., 2009; Hocking et al., 2012; Podisi et al., 2013)]. Aside from 
their regulated expression of genes encoding immunological 
functions, macrophages also express a very large proportion of 
the entire transcriptome at detectable levels (Bush et al., 2018). 
Given their complex transcriptome and the regulatory functions 
of macrophages in growth and development, it is conceivable 
genetic variants that control expression of genes involved in 
the production traits that distinguish broilers and layers also 
regulate their expression in macrophages or other cells of the 
immune system. Therefore, to explore these concepts, we have 
generated a series of families of F2 individuals from sibling 
matings derived from a cross between commercial broilers and 
our CSF1R-mApple transgenic line (Balic et al., 2014) which is 
maintained on an outbred layer background and which expresses 
the mApple reporter in cells of macrophage lineage. Our 
analysis of expression variance in immune cells in these inbred 
birds supports the existence of strong allele-specific expression 
variants in the parental commercial birds.

MATeRIAlS AnD MeThODS

ethical Approval
All animal work including breeding and care was conducted 
in accordance with guidelines of the Roslin Institute and the 
University of Edinburgh and carried out under the regulations of 
the Animals (Scientific Procedures) Act 1986 under Home Office 
project license PPL 60/4420. Approval was obtained from the 
Protocols and Ethics Committees of the Roslin Institute and the 
University of Edinburgh.

Animals
Commercial Ross 308 broilers as founders were obtained as 
hatchlings from PD Hook (Hatcheries) Ltd, Cote, Brampton, 

Oxfordshire, UK. Founders from the CSF1R-mApple reporter 
transgenic layer line on an ISA-Brown genetic background (Balic 
et al., 2014) were produced in The Roslin Institute. All birds were 
bred and housed in approved facilities within the National Avian 
Research Facility at The Roslin Institute.

Cell Culture and mRnA Isolation
Bone marrow cells from the femurs of adult or hatchling 
birds were harvested and cultured for 7 days in recombinant 
chicken CSF1 to generate a population of bone marrow-derived 
macrophages (BMDM) as described previously (Garceau 
et al., 2015; Garcia-Morales et al., 2015; Bush et al., 2018). The 
macrophages were detached from the plates and re-seeded in 6 
well plates with CSF1, with or without 100 ng/ml of LPS, for 24h 
prior to harvest and purification of mRNA (Garcia-Morales et al., 
2015). Spleens were obtained immediately after euthanasia, snap 
frozen in entirety and stored in RNA-later at −80°C until used for 
RNA extraction.

genetic Analysis
Whole genome sequencing of DNA from the set of founder broiler 
and transgenic layer lines was performed by Edinburgh Genomics, 
University of Edinburgh, UK, using the Illumina HiSeqX platform. 
Sample specific libraries were created from genomic DNA using 
Illumina SeqLab specific TruSeq Nano High Throughput library 
preparation kits in conjunction with the Hamilton MicroLab STAR 
and Clarity LIMS X Edition. The gDNA samples were normalized 
to the concentration and volume required for the Illumina TruSeq 
Nano library preparation kits, then sheared to a 450 bp mean 
insert size. The inserts were ligated with blunt ended, A-tailed, 
size selected, TruSeq adapters and enriched using eight cycles 
of PCR amplification. The libraries were normalized, denatured, 
and pooled in eights for clustering and sequencing. The number 
of paired reads varied from 177,300,445 to 365,616,593, with an 
average of 265 million paired reads per sample equating to >30× 
coverage. The read length varied from 35 bases to 150 bases, with 
modal read length being 150 bases. Sequence quality was checked 
with FASTQC (v0.11.8) package. Poor quality bases from the ends 
of reads were trimmed with Trimmomatic v3.5 software. Reads 
were trimmed with criteria:

• Remove leading low quality (Phred <20) or N bases 
(LEADING:20).

• Scan the read with a 10-base wide sliding window, cutting 
when the average quality per base within a window 
drops below 20 (SLIDINGWINDOW:10:20).

• After the above operations, drop reads less than 50 bp 
long (MINLEN:50).

The trimming step retained 54% to 85% of the reads and the 
trimmed read lengths varied between 50 to 150 bp, with the vast 
majority of reads between 140–150 bp long. This resulted in 
overall coverage ranging from 30× to 70×.

Sequence reads from each sample were mapped against 
chicken reference genome (Galgal5.0) using BWA (v 0.7.8) 
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with BWA_MEM algorithm. The resultant bam files were 
further processed to mark duplicate reads using Picard tools 
(v2.1.1) followed by indel realignment using GATK (v 3.7.0). 
In order to make sure that no contamination or mislabeling 
occurred during the sample/data processing steps, we 
checked the realigned bam files for the presence and absence 
of HIV1 (GAGAGAGATGGGTGCGAGAG) and HIV2 
(GCTGTGCGGTGGTCTTACTT) primer sequences that flank 
the MacApple transgene. As expected, these primer sequences 
were present only in the transgenic layer birds while absent in 
the non-transgenic broiler samples.

Variant calling was initially performed with SAMtools mpileup 
(v 1.1) in conjunction with bcftools with minimum base and 
mapping qualities set as 20. The variants were annotated against 
the genomic features annotated by NCBI using package snpEff (v 
4.2). Nonsynonymous SNPs were further predicted for their effects 
on protein sequence changes using the SIFT algorithm in Variant 
Effect Predictor (VEP). All the variants were also checked for 
their overlap with evolutionary constraint elements detected from 
multiple alignments of 49 bird species (https://pag.confex.com/
pag/xxiv/webprogram/Paper21473.html) using bedtools (v 2.22.1).

For the selection of F1 breeding pairs, the genotyping of 
variants within selected genes (IL10, CSF1R, IL12B, IL34) used 
a custom KASP™ (competitive allele-specific PCR) analysis 
(Biosearch Technologies, Teddington, UK). SNPs from these 
genes were chosen based on contrasting genotypes and allele 
frequency in broiler and layers, and annotation results to include 
potentially functional variants.

gene expression Analysis
Library preparation for RNA sequencing (RNAseq) was also 
performed by Edinburgh Genomics using the Illumina TruSeq 
mRNA (poly-A selected) library preparation protocol. mRNA 
was sequenced at a depth of >40 million strand-specific 75 bp 
paired end reads per sample, using an Illumina HiSeq 4000. 
Expression was quantified using the high speed quantification 
tool Kallisto v0.43.1 (Bray et al., 2016) following procedures 
detailed previously (Bush et al., 2017; Bush et al., 2018). Kallisto 
quantifies expression at the transcript level by building an index 
of k-mers from a set of reference transcripts and then mapping 
the RNA-seq reads to it, matching k-mers generated from the 
reads with the k-mers present in the index. Transcript-level 
estimates (transcripts per million, TPM) are then summarised 
to the gene level. The current analysis used the revised chicken 
reference transcriptome defined previously (Bush et al., 2018).

network Analysis
Network analysis was performed using Graphia (Kajeka Ltd, 
Edinburgh, UK). This software builds a correlation matrix based 
on gene expression patterns, either for sample-to-sample or 
gene-to-gene comparisons. A network graph was constructed for 
all relationships above a threshold Pearson correlation coefficient 
(as detailed in Results), connecting nodes (genes) by edges 
(correlations between nodes above the threshold). Clustering 
of nodes within the network was performed for the gene-to-
gene analysis using the Markov clustering (MCL) algorithm at 

an inflation value of 1.7 to decrease granularity resulting from 
the similarity of samples all from the same cell type. Functional 
annotation of clusters of genes used DAVID 6.8 (https://david.
ncifcrf.gov/home.jsp).

Analysis of gene expression in a  
low Fitness Family
The expression level of genes in the BMDM samples was averaged 
over all samples in one family (Family H; N = 6) in which there 
was poor hatch rate and low body weight and all other samples 
(N = 22 untreated and N = 25 LPS treated). All genes where the 
value of at least one of these averages was greater than 1 were 
included in the analysis. The ratio of the average in Family H to 
the average in other samples was calculated. Gene symbols for all 
samples with a ratio of >1.5 or less than 0.67 (i.e. with at least a 
1.5-fold difference) were identified. To identify possible pathways 
involved in the low fitness, the gene sets were analyzed using 
the gene ontology analysis software DAVID (see above). and 
separately in GATHER (https://changlab.uth.tmc.edu/gather/). 
The analysis was performed for control samples and samples 
treated with LPS separately.

ReSUlTS AnD DISCUSSIOn

genomic Sequencing
We completed whole genome sequencing of a total of 10 Ross 
308 commercial broilers (five of each sex) and 10 CSF1R-mApple 
transgenic layer birds (five of each sex). Figure 1A outlines 
the analysis and annotation pipeline. Initial variant discovery 
(with minimum base and mapping quality at 20) indicated 
a transitions to transversions ratio relative to the reference 
genome slightly over 2:1 for all samples, which is within normal 
range. The commercial broiler sequences have a slightly higher 
level of heterozygosity and much higher numbers of singletons 
than layers as expected given their derivation from multiple 
pedigree lines. Figure 1B shows a principal component analysis 
(PCA) of these birds based upon a 13.4 M filtered SNV panel 
derived from the variant call files for the set of birds sequenced 
(filtration criteria: min. variant quality 30, min. genotype quality 
15, and max. rate of missing genotype 20%). The first principal 
component clearly separates the broilers from the transgenic 
layers, whilst the second identifies genetic diversity in the layer 
population. For reasons that will become evident in subsequent 
analysis described below, we also generated a PCA based solely 
upon SNVs detected within loci encoding the members of the 
interferon-responsive factor (IRF) family, which may produce 
potential trans-acting transcriptional regulators of inducible 
gene expression in macrophages. Figure 1C shows that the first 
principal component again separates broilers and layers but the 
second highlights extensive diversity in both populations.

The main purpose of the whole genome analysis was to 
identify candidate null protein-coding variants in each of the 
founder birds and also to determine whether there are prevalent 
broiler and layer-enriched polymorphic haplotypes in our 
founders that could be deliberately driven to homozygosity by 
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brother-sister mating. A comparative study of a similar-sized 
cohort of broiler and layer lines (14 of each) from Brazilian breeds 
(Boschiero et al., 2018) identified >500 stop gain and >7000 
coding variants. Consistent with the genetic diversity identified 
in this earlier study, the analysis identified a total of 14.1M SNVs 
in our limited population. The vast majority were non-coding 
and heterozygous. Within this large set, we identified those 
predicted to affect exonic sequences, and identified either HIGH 
impact (i.e. stop gained/lost, start lost, and splice acceptor/donor 
variants) or nonsynonymous deleterious variants (based on SIFT 
analysis). We identified 979 SNVs predicted to be HIGH impact 
and a further 10,872 predicted nonsynonymous coding variants 
that were annotated as deleterious by SIFT. Often one SNV was 
associated with more than one predicted impact so it was difficult 
to place it in a unique group. Amongst the high impact categories 
that likely produce a complete loss-of-function there were 20 
splice_acceptor_variants; 26 splice_donor_variants; 282 start_
lost (7 in splice_regions); 628 stop_gained (15 in splice regions); 
and 142 loss-of-stop codon variants and 1 combined loss-of-
start/loss-of-stop. These numbers are approximately consistent 

with reports of the prevalence of null mutations in chickens 
based upon much larger cohorts of disparate commercial bird 
populations (Rubin et al., 2010; Qanbari et al., 2019). Those 
published studies indicate that few loss-of-function variants are 
associated with selective sweeps and therefore that such variants 
are not commonly the direct subject of breeding selection. 
Indeed, overall amino acid altering mutations were significantly 
less prevalent in domestic chickens than in their wild red 
jungle fowl ancestors (Rubin et al., 2010; Qanbari et al., 2019). 
Nevertheless, there remains very substantial coding sequence 
polymorphism and potential null mutations in the founder birds 
that could affect immune and other functions.

Based upon the genome sequencing, we were also able to 
identify prominent SNVs associated with specific genes of 
interest that might generate global differences in monocyte-
macrophage numbers and/or activation state. Table 1 
summarizes the extensive variation that we identified in the 
CSF1R, IL34 and IL10 loci. In addition to CSF1R and IL34 
(which could control macrophage differentiation) we focused on 
IL10 because of our recent data indicating substantial variance 

FIgURe 1 | Analysis of genomic sequences of founder layer and broiler birds. Genomic DNA sequences obtained from the 27 commercial broiler and transgenic 
layer birds used as founders in the inbreeding experiments were analyzed as shown in Panel (A). Panel (B) shows a PCA based upon a 13.4M filtered SNV panel 
derived from the variant call files for the set of birds sequenced. Note the first principle component (PC) separates the layers (left) and the broilers (right). The second 
PC identifies substantial variation within the two populations with the greatest variation in the layers. Panel (C) shows a PCA based solely upon SNVs identified 
within the members of the IRF gene family (See Table S6). Note that PC1 again separates broilers and layers, whereas PC2 identifies substantial variation within 
breed type.
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in IL10 production amongst commercial broilers responding to 
Eimeria parasite challenge (Boulton et al., 2018a; Boulton et al., 
2018b) and evidence that endogenous IL10 exerts a feedback 
regulatory effect of macrophages responding to LPS (Wu et al., 
2016). As discussed above, the focus on CSF1R and its two 
ligands was based on their possible roles in growth and selection 
in broilers. The CSF1 locus was poorly annotated on the chicken 
genome at the time breeding decisions were made but it is now 
clear that this locus lies within 2Mb of IL10 on chromosome 
26. Subsequent analysis on a large population of commercial 
broilers revealed significant LD between IL10 and CSF1 and 
also very limited heterozygosity at the CSF1 locus itself (Psifidi 
A, unpublished). From amongst the candidate SNVs detected 
in CSF1R and IL34 we did not identify protein-coding variants 
with predicted large effect, but we did identify SNV markers that 
were strongly-enriched in either the broiler or layer parents and 
might potentially be linked to expression variants. In the case of 
IL34, at position 1780913 on Chr 11, neither broilers, nor layers 
had the reference allele identified in Red Jungle Fowl, and the 
two were almost fixed for different alternative alleles (C > T 
and C > G respectively). Accordingly, these variants were used 
as markers for inbreeding. Within the IL10 locus we identified 
a non-synonymous coding variant (p.Cys4Gly) that was more 
prevalent in the broiler parents.

Each of the founder birds also carried multiple candidate 
mutations of large effect. Table 2 summarizes selected examples 
of high-confidence protein-coding variants in immune-related 
genes that in most cases were detected in more than one founder 

as a heterozygote but were not detected as homozygotes. Amongst 
these candidates, TNFRSF10B and IL12B were considered 
possible regulators that might generate an immune-related 
phenotype if homozygous for loss-of-function alleles. TNFRSF10 
encodes a protein variously known as TRAIL receptor 2, DR5, 
and Killer. It is involved in triggering of apoptosis. In humans, 
there are several TNFRSF10 genes, but in mice, there is a single 
TNFRSF10B gene and null mutation leads to alterations in 
radiation-induced cell death (Finnberg et al., 2005). The chicken 
genome (Galgal5) also has a single TNFRSF10B gene.

Assuming simple Mendelian inheritance and random mating, 
around 1/16 birds in the F2 generation will be homozygous for 
any one of the null mutations present in a heterozygous state in 
either of its grandparents. In addition to the variants we selected 
deliberately each F2 bird is likely to be homozygous for a unique 
subset of the null alleles present in the founder lines. Where 
the grandparents are homozygous for breed-enriched coding 
and non-coding allelic variants, all F1 matings are between 
heterozygotes and 25% of the F2 progeny should be homozygous 
for any variant if there is no impact on viability.

Primary Phenotype of F2 Birds
In total, we generated 15 families of F2 progeny from brother-sister 
matings of F1 birds selected by genotyping for heterozygosity for 
alleles of interest derived from their founder parents. These birds 
were also selected to be positive for the CSF1R-mApple transgene 
so that the majority of their offspring could be assessed for 
transgene expression as a marker. For logistical reasons analysis 

TABle 2 | Sequence variants affecting genes expressed in immune cells with predicted HIGH effect on protein coding regions.

gene Chr Pos Ref Alt qual type hom alt het hom ref

TAPBPL 1 76880284 G T 999 Splicing 0 9 10
HHLA2 1 87500359 CAGAG CAGAGAAGAG 197 INDEL frameshift 0 1 18
IL18RAP 1 1.34E+08 TTTTTTTTTTTTTTG T 426 INDEL frameshift 0 9 10
IL8L1 4 51270553 T A 458 Exonic 0 2 17
TNFSF10 9 19373730 CCTCTC CCTC 153 INDEL frameshift 0 9 10
TNFRSF10B 22 1281321 C T 214 Stop gain 0 1 18
IL12B 13 8133187 G A 999 Exonic 0 5 14
IRF1 13 16983217 GATCCTGTGCTGTGCT G,GGTGCTGTGCT 960 INDEL frameshift 0 2 9
HMHA1 28 2956121 C CCA 201 INDEL frameshift 0 2 16
CD69 1 5876 CCAGACAGA CCAGA 115 INDEL frameshift 0 3 16
CD69 1 5915 GC G 41 INDEL frameshift 0 3 16
TGFB1 32 27061 CTGGGG C 416 INDEL 0 2 17
TGFB1 32 28627 CT C 77 INDEL frameshift 0 7 8
TGFB1 32 28810 CAGCAG C,CCAG 999 INDEL frameshift 0 14 1

TABle 1 | DNA sequence variants in the vicinity of candidate genes of interest detected in 27 founder broiler and layer birds.

gene Coordinates in gal5 no. of Variants no. of Indels no. of variants with 
quality >30

no. hIgh MODeRATe 
effect variants

no. of variants overlapped 
with constrained elements

CSF1R Chr 13: 13275507 to 13292566 457 40 453 2 38
CSF1 Chr 26: 1276201 to 1282875 99 21 85 4 0
IL10 Chr 26: 2562275 to 2564509 39 3 38 3 5
IL34 Chr 11: 1776702 to 1781094 98 14 95 1 4

High impact variants include stop gain/loss and splice donor and acceptors. Moderate impact variants includes nonsynonymous SNVs. Constrained elements are 
evolutionary conserved regions of the chicken genome detected by comparative analysis of 48 bird genomes using GERP++ package (https://pag.confex.com/pag/
xxiv/webprogram/Paper21473.html)
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of F2 phenotypes was carried out exclusively in the immediate 
48h post-hatch period. All of the F2 birds were weighed at hatch. 
Figure 2 shows box and whisker plots for the distribution of 
body weights in each F2 family. As expected given the nature of 
the founder lines, one of which (the broilers) has been selected 
for rapid body weight gain, there was substantial variation in 
body weight amongst individual F2 birds even at hatch. In some 
families there were significant outliers but in only one family, 
family H, was there a significant reduction in average body weight 
compared to all other families. In that family, three birds died at 
or just before hatching with substantial abnormalities including 
exposed brain, blood in thoracic cavity, muscles and liver, 
underdeveloped cartilage, and abnormal yolk sac and yolk. The 
overall hatch rate was also substantially reduced (not shown). For 
any individual family, 1/4 progeny will be homozygotes for any 
loss-of-function mutations present in both F1 parents and the 
number of birds assessed in these families is sufficient to identify 
outliers or fail-to-hatch numbers. Accordingly, the data indicate 
that few of the loss-of-function mutations identified in WGS lead 
to compromised development when bred to homozygosity.

Monocyte Count
As a preliminary screen for the possible impact of CSF1, IL34, 
or CSF1R variants we screened all of the F2 progeny by flow 
cytometry for the number of blood monocytes (co-expressing 
the surface marker KUL01) and the prevalence of cells expressing 
the CSF1R-mApple reporter gene. The latter percentage is higher 
because the reporter gene is also expressed in heterophils, albeit at 
a 10-fold lower level than in monocytes (Balic et al., 2014). When 

the data from all F2 hatchlings was merged the two parameters 
were consistent between birds, with no clear outliers, independent 
of sex (Figure 3A) and did not change when measured on day 
1 or day 2 post-hatch (Figure 3B). With the available sample 
sizes, we did not detect a significant effect of homozygosity for 
the parental CSF1R or IL34 allelic variants. Marginal impacts 
of heterozygous variation in TNFRSF10B and homozygosity for 
IL10 variation were insignificant when corrected for the number 
of comparisons. Overall, this analysis did not provide evidence 
for variants of large effect in the selected genes that distinguish 
between broilers and layers and which impact upon the blood 
heterophil or monocyte count in chickens.

Analysis of Variation of gene expression 
in Spleen of F2 Birds
To screen for variants that influence gene expression in immune 
cells, we first performed RNAseq on whole spleens from 18 
hatchlings derived from F2 families A (1; IL34), C (6; IL12B), G 
(2; IL10), L (2; IL34), M (3; IL34), Q (3; IL10), R (1; IL10) that 
segregated the variant alleles for IL34, IL12B, and IL10. We chose 
hatchlings to avoid variation that might arise from exposure 
to infectious agents. Spleen is a mixture of myeloid, lymphoid 
and other hematopoietic cell populations, each of which has a 
gene expression signature that can be detected within the total 
mRNA pool. We profiled males and females from multiple 
families and individual birds were specifically genotyped for 
the allelic variants at the IL34, IL12B, and IL10 loci to assess 
whether these variants were associated with any specific pattern 
of gene expression. SNVs in IL12B and IL10 have been associated 
with immune-response traits in a large pedigree derived from 
a white egg/brown egg layer cross (Biscarini et al., 2010) and 
we considered the possibility that pleiotropic impacts of such 
genetic variation might manifest in changes in the spleen. In 
the case of IL34, we reasoned that variation might be associated 
with monocyte-macrophage number, and hence the relative 
abundance of macrophage-specific transcripts. For the purpose 
of the analysis, we removed transcripts that had a maximum 
expression <10 TPM (see Methods). The complete data set from 
this analysis is provided in Table S1.

One consideration in any gene expression analysis in 
chicken is the difference between males and females. Females 
are the heterogametic sex and have only one copy of genes on 
the Z chromosome. As mentioned above, dosage compensation 
is incomplete in males (the homogametic sex) with two 
copies of these genes (Garcia-Morales et al., 2015; Zimmer et 
al., 2016). In Table S1, the Z chromosome-specific genes are 
considered in a separate worksheet. Around 500 transcripts 
from Z chromosome genes were detected above the expression 
threshold in macrophages. As reported based upon a smaller set 
of samples from late-stage embryos, (Zimmer et al., 2016) the 
large majority of genes on the Z chromosome were expressed 
more highly in male than in female spleen, although the median 
ratio was around 1.5-fold rather than twofold suggesting 
incomplete compensation. Numerous known immune-
associated genes (e.g. CCL19, IL7R, JAK2, CD274, TNFAIP8), 
transcription factor genes (MEF2C, NFIL3) and metabolic 

FIgURe 2 | Post hatch body weight in F2 progeny of F1 sibling matings. 
The figure shows the range of body weights of hatchling birds in each of 
15 families derived from sibling mating of the progeny of an F1 broiler-layer 
cross. Dots identify outliers.
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enzyme genes (ACO1, HMGCR) on the Z chromosome that 
were expressed at high levels in spleen appeared to be largely 
dosage compensated (expression ratio not significantly different 
from 1). We considered also the possibility that immune-related 
genes on the Z chromosome might be especially subject to 
evolutionary selection by virtue of being haploid in females but 
there was no evidence of variant alleles on the Z chromosome 
producing more than 2-fold differences in gene expression 
between F2 individuals. Almost all transcripts varied between 
individuals across a 2-3 fold range without obvious outliers. 
The single exception is the antimicrobial gene, avidin, where 
the level ranged from 5 to 121 TPM.

We next considered the autosomal gene set for spleen. As 
noted above, these families were created in part based upon 
the genotype of variants at the IL34, IL12B and IL10 loci. Of 
these genes, IL12B and IL10 were not expressed above the 
detection threshold in spleen. IL34 was expressed, but the level 
of expression was not correlated with homozygosity for either 
of the parental SNV alleles. To examine the variability in gene 
expression, we considered the range of values for individual birds 
and presented that range as a ratio of maximum to minimum 
(max/min, giving a fold difference value) (Table S1). The max/
min ratios for commonly-used reference genes, ACTB, HPRT and 
GAPDH, were each around 1.35. The median ratio for the entire 
data set was 1.6. Of the transcripts for which the max/min ratio 
was >5, most were known W chromosome-specific transcripts 
(and others were correlated and likely W chromosome-
associated, see below), and the large majority of the remainder 
had no informative annotation or were annotated specifically 
as endogenous retroviruses. Recent studies have indicated 
considerable divergence in endogenous retrovirus insertions in 
individual birds and provide evidence for their expression in 
spleen and induction in response to infection (Lee et al., 2017; 
Qiu et al., 2018; Pettersson and Jern 2019). It is unclear whether 

the extreme individual variation in expression of these putative 
retroviral transcripts is functionally important.

To explore whether any of the sets of apparently divergent 
transcripts were co-regulated, we used the network analysis 
tool Graphia to generate a sample-to-sample correlation matrix 
based on expression across the 17 spleen samples, correlated at 
r ≥ 0.97. This tool has been used previously in the generation 
of a chicken transcriptional atlas (Bush et al., 2018). There was 
no association between the samples based on sex of the bird or 
genotype for any of the genes of interest. We then generated a 
gene-to-gene correlation matrix. The resulting network graph 
at a correlation threshold of 0.8 contained 10,273 nodes (genes) 
connected by 171,821 edges (connections between nodes of r ≥ 
0.8). The network was clustered using the MCL algorithm with 
an inflation value of 1.7. The resulting network graph and the 
annotated clusters are summarized in Table S2. In principle, such 
an analysis might reveal trans-acting variation. For example, 
over-expression of a growth factor or a transcription factor and 
its downstream targets would be correlated with each other and 
cluster together. In the case of the three cytokines of interest, 
there were no clusters that correlated with homozygosity for any 
of the allelic variants derived from the grandparents. IL34 was 
expressed and varied over a 2.3-fold range but was not correlated 
with any other transcripts including the receptor gene CSF1R.

The clustering revealed a subset of clusters that could be 
ascribed a biological function, which provides an internal 
control indicating the power of the approach. Cluster 2 contains 
the large majority of cell-cycle related genes (including key 
transcription factors E2F and FOXM1) identified previously in 
the chicken transcriptional atlas (Bush et al., 2018). As might 
be expected, they are highly-expressed in hatchling spleen; the 
narrow range of average of gene expression values across samples 
reflects relatively small differences in proliferative cell numbers 
between the animals. Cluster 4 is made up almost entirely of Z 

FIgURe 3 | Variation in blood leukocyte populations in F2 progeny of F1 sibling mating. Blood from the entire cohort of hatchling birds was analyzed for total CSF1R-
mApple reporter gene expression (which measures the myeloid compartment including heterophils) or for blood monocytes (KUL01/mApple+). For logistical reasons 
these analyses were performed on Day 1 or Day 2 of hatch. Bars show the mean +/- SD. The Figure demonstrates that the variance between birds was small, there 
was no effect of the sex or day of sampling. (A) Blood leukocytes in males and females. (B) Blood leukocytes on Day 1 and Day 2 after hatch.

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1032306

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Regulatory Variation in the Chicken Immune TranscriptomeFreem et al.

9

chromosome-associated transcripts, with the average expression 
around 1.6-fold higher in males than females as discussed above. 
The small number of transcripts within this cluster that are not 
Z chromosome-associated are mainly poorly-annotated; only 
11 have a current non-Z chromosome assignment. The tight 
restriction of this cluster to Z chromosome-associated genes 
indicates that the lack of dosage compensation of genes on the 
Z chromosome has no downstream impact on expression of 
transcripts on the autosomes. The reciprocal cluster, Cluster 11, 
contains W chromosome-specific transcripts that are female-
specific in their expression. This cluster also contains multiple 
candidate protein-coding transcripts that have not been assigned, 
and only 7 that are currently assigned to an autosome. Cluster 
6 is clearly enriched for known markers of lymphocytes (e.g. 
CD3E, CD4, CD8A) and lymphocyte-associated transcription 
factors (LEF1, STAT4, TCF7) and presumably reflects subtle 
variation in relative lymphocyte content of the spleens. 
Clusters 10 and 13 contain known epithelial (e.g. KRT14) and 
liver (e.g. ALB) associated transcripts respectively, probably 
reflecting minor contaminants in tissue harvesting. Surprisingly, 
although macrophages are clearly a major component of the 
cell populations of the spleen, there was no obvious cluster of 
macrophage-expressed genes. Macrophage marker genes such 
as CSF1R varied only across a 1.6-fold range but did not cluster 
with each other. This finding is consistent with the analysis of 
monocyte numbers above indicating that there is very little inter-
individual variation.

Cluster 22 was the only cluster that was both highly-expressed 
and extremely-variable amongst the samples. It contains several 
heterophil-specific transcripts encoding granule proteins 
(CATHL1, CATHL2, LYSG, MIM1, S100A9), the cytoplasmic 
protease inhibitor SERPINB10 (Rychlik et al., 2014) and the IL8 
receptor, CXCR1. CATHL2 is very highly-expressed and anti-
CATHL2 antibody has been used a marker for heterophils in 
hatchling spleen (Cuperus et al., 2016). We conclude that the 
coordinated variation in this cluster reflects profound variation 
in heterophil number amongst the different samples. There was 
no evidence within the cluster of a candidate regulator expressed 
in spleen that might explain the variation. No candidate regulator 
was evident even if the correlation threshold was lowered. Genes 
encoding the CXCR1 ligand (IL8) and the G-CSF receptor 
(CSF3R) did vary around 5-fold between samples but were not 
correlated with each other or with their binding partners. As 
noted below, we did observe a massive variation in regulated 
expression of the growth factor gene CSF3 in macrophages 
which would provide a clear mechanistic explanation for variable 
heterophil numbers in the spleen. There is published evidence 
that the heterophil:lymphocyte ratio varies between birds and is 
highly heritable (Campo and Davila, 2002). It also varies greatly 
amongst chicken breeds (Bilkova et al., 2017) and avian species 
(Minias, 2019). We did not observe any corresponding changes 
in circulating myeloid cells in these birds (Figure 3) so this 
phenomenon appears specific to the spleen.

Several transcripts varied substantially and idiosyncratically 
but did not form part of larger co-expressed clusters. Of particular 
interest are the Class II MHC genes BLB1 and BLB2, which are 
polymorphic in birds and strongly-linked to disease resistance 

(Parker and Kaufman, 2017). Both transcripts were highly-
expressed and varied more than fivefold between individuals. 
Despite their chromosomal proximity, their expression levels 
were not correlated with each other. BLB1 did not form part of 
a co-expression cluster. It is normally expressed in intestine but 
variable expression in spleen has been reportedly associated with 
particular MHC haplotypes (Parker and Kaufman, 2017). BLB2 
clustered with only two other transcripts (Cluster 690): CD1B, 
one of two CD1 genes in the chicken MHC (Salomonsen et al., 
2005) and LOC101747454. The latter is also described as BLB2 
in the NCBI database (https://www.ncbi.nlm.nih.gov/gene), 
but apparently expressed more highly than the gene annotated 
as BLB2. There are additional genes closely-related to BLB2 
around 400kb distal on chromosome 16 (Parker and Kaufman, 
2017) that might produce some ambiguity in mapping. By 
contrast to the class II MHC transcripts, other MHC-associated 
transcripts (the BLB2-like DMB2 transcript which is commonly 
co-expressed with BLB2 (Parker and Kaufman, 2017), the class 1 
MHC transcript BF1 and the antigen processing transporter gene 
TAP2) varied less than 2-fold between individuals.

Candidate Spleen null expression Variants
As noted above, most transcripts with extreme ranges of 
expression lacked informative annotation and may be expressed 
retroviruses or other non-coding RNA elements. There were 
few protein-coding transcripts that were absent or minimal in 
only a subset of birds. The relative absence of such variation 
supports the conclusion that stop-gain mutations in the founder 
birds are either false-positives or are not sufficiently severe to 
drive nonsense-mediated mRNA decay. Individual profiles of 
transcripts affected by candidate null expression alleles are shown 
in Figure S1 and discussed below.

The gene encoding the classical Th2 T cell lymphokine, IL4, 
was heterogeneously expressed and the profile of variation 
suggested the existence of a null allele. In three birds, IL4 mRNA 
was barely detected, and expression in the remaining birds fell 
into two groups consistent with 1x and 2x functional alleles. 
There is little functional data on IL4 in birds, although a recent 
study reported an anti-IL4 antibody and demonstrated that IL4 
can drive alternative functional states in chicken macrophages 
(Chaudhari et al., 2018). Genetic variation in the region of the 
IL4 gene has been associated with feather pecking behavior in 
layers (Biscarini et al., 2010)

The small MAF-related transcription factor gene, MAFF, also 
shows a spread of expression that is suggestive of Mendelian 
segregation of a null expression allele. Multiple members of 
the Maf transcription factor family are expressed during chick 
embryogenesis with partly over-lapping distributions (Lecoin 
et al., 2004). In the chicken expression atlas (Bush et al., 2018) 
MAFF is most highly expressed in macrophages. As discussed 
below, similarly diverse expression was detected in bone marrow-
derived macrophage data.

One other example of extreme variation in splenic expression 
with regulatory potential is GNAS, encoding a stimulating subunit 
of G protein coupled receptors, which is a complex imprinted 
locus in humans. Paternally-inherited mutations in this gene in 
humans lead to a progressive heterotopic ossification (Bastepe, 
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2018). Enforced expression of a dominant negative form of 
GNAS in chicken somites led to rapid ectopic bone and cartilage 
formation (Cairns et al., 2013). Genetic variation in the GNAS 
region is associated with body weight, muscle meat quality and 
bone strength QTL in broilers (see Animal QTLdb). The impact 
of GNAS mutation in humans is suggestive of possible roles of 
GNAS in so-called wooden-breast, a pathology prevalent in high 
breast-yield broilers (Chen et al., 2019). One other transcript 
that is highly variable and might conceivably be associated with 
selection for a production phenotype encodes Islet2 (ISL2) which 
in mice regulates the generation and migration of specific motor 
neurons (Thaler et al., 2004).

Finally, phosphoserine phosphatase (PSPH) which varied >50 
fold between individuals encodes a well-known mediator of 
L-serine biosynthesis in a variety of tissues. In laying birds, 
PSPHmRNA and protein levels were reportedly increased in the 
glandular and luminal epithelial cells in the developing oviduct of 
chicks treated with exogenous estrogen (Lee et al., 2015).

Analysis of Variation in gene expression 
in Bone Marrow-Derived Macrophages 
Derived From Adult Birds of Parental 
Broiler and layer lines
The advantage of using BMDM for the current purpose is three-
fold. Firstly, by contrast to spleen, they are a relatively pure cell 
population, which increases the sensitivity of detection and should 
reduce the likelihood of detecting changes in cell populations as 
opposed to allelic regulation of gene expression in RNAseq data. 
Secondly, the prolonged in vitro culture under defined conditions 
reduces the potential impact of environmental variation so 
that differences are more likely due to genetic variation. And 
finally, these cells respond to stimulation with the TLR4 agonist, 
lipopolysaccharide (LPS) with a profound change in gene 
expression. We can therefore monitor the impact of genotype on 
inducible genes. In a previous study, we were able to identify the 
differential expression of Z chromosome-associated transcripts 
in male versus female BMDM, and we inferred that macrophages 
from female birds have a novel mechanism to compensate for the 
presence of the inducible interferon genes on the Z chromosome 
(Garcia-Morales et al., 2015).

The previous study (Garcia-Morales et al., 2015) used gene 
expression microarrays to quantify mRNA levels and was 
limited by the available annotation at the time. We first sought 
to repeat the earlier study and to compare males and females 
and commercial layers and broilers. The analysis of outbred 
commercial birds from the parental lines provides a control for 
the greater expression diversity that we anticipate in F2 birds from 
deliberate inbreeding. BMDM from three adult female and three 
adult male broilers and three adult layer females were cultivated 
with or without LPS for 24h. The primary data are provided in 
Table S3. The prolonged incubation was chosen to avoid temporal 
differences in the rate of response and specifically to focus on late-
response genes that require stimulation by autocrine interferon 
signaling. One disadvantage is that the dataset does not capture 
the acute pro-inflammatory and anti-inflammatory transcripts 
that are induced transiently by LPS. This transiently-induced 

set includes the negative feedback regulator IL10. We showed 
previously that autocrine IL10 inhibits LPS-inducible cytokine 
production in BMDM (Wu et al., 2016). IL10 was only detected 
at low levels in the 24 hour-stimulated BMDM (<10 TPM) where 
the receptor gene, IL10RA, was highly-expressed and further 
induced by LPS.

The expression of known macrophage-specific genes (Bush 
et al., 2018) including CSF1R and the transcription factor SPI1 
was high and invariant among all the samples, supporting the 
consistency and relative purity of these macrophage populations. 
Amongst the averaged data for the 8461 transcripts that were 
expressed >10 TPM in at least 1 BMDM sample, 872 were 
induced >2-fold and 697 were repressed >2-fold by LPS. The most 
highly-inducible genes included LPS-responsive transcription 
factor genes BATF3, HIF1A, IRF1, IRF8 and feedback regulators 
including CISH, SOCS3 and TNFAIP3. Chicken BMDM, like 
BMDM from rodents, take up arginine and produce large 
amounts of nitric oxide in response to LPS (Wu et al., 2016). 
Accordingly, NOS2 and GCH1 (which is required to generate the 
NOS2 co-factor tetrahydrobiopterin) and the citrulline-arginine 
recycling enzymes, ASL2 and ASS1, were each induced by LPS 
in all cultures. Unlike rodent BMDM, which induce the cationic 
arginine transporter SLC7A2 in response to LPS (Young et al., 
2018) chicken BMDM induced a distinct arginine transporter, 
SLC7A3. One other important difference between chicken and 
rodent BMDM is the expression of IRG1, now annotated as 
aconitate decarboxylase (ACOD1). In mammalian macrophages, 
ACOD1 was profoundly-induced by LPS. Inducible ACOD1 has 
been attributed roles in metabolic reprogramming in stimulated 
macrophages, subverting the TCA cycle by diverting iso-citrate 
and catalyzing the generation of cis-itaconate, which has a 
proposed anti-inflammatory feedback function (Mills et  al., 
2018). In the chicken BMDM, ACOD1 was already highly-
expressed in the unstimulated state albeit induced further by 
LPS. Interestingly, ACOD1 polymorphism has been linked to 
resistance to the macrophage-tropic pathogen Marek’s disease 
virus (Smith et al., 2011). One transcript of particular interest 
is IGF1, encoding a major regulator of somatic growth which is 
associated with a signature of selection in broilers (Qanbari et al., 
2019). In mammals, IGF1 is highly-expressed in macrophages 
and regulated by CSF1 (Gow et al., 2010) but the expression in 
chicken BMDM was below the detection limit.

The LPS-repressed genes include cell cycle-associated 
transcripts, such as BUB1, FOXM1 and MKI67 (which encodes 
the commonly-used proliferation marker KI67), reflecting the 
known ability of LPS to inhibit cell proliferation in this culture 
system. Associated with this growth inhibition, as in mammalian 
macrophages (Yue et al., 1993), LPS stimulation down-regulated 
expression of CSF1R. LPS treatment repressed other transcripts 
encoding multiple cell surface receptors and secreted effectors to 
a much greater extent than CSF1R. High-expression transcripts 
reduced >10-fold included membrane receptors TREM2 (and 
related TREMB1 and TREMB2), GPR34, ITGB5, MARCO, 
TLR2A, TLR2B, TLR7, and ENSGALG00000028304 (encoding the 
macrophage mannose receptor/KULO1 antigen (Hu et al., 2019).

Differences in regulation between males and females are 
considered further below, and in these commercial birds, we 
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sampled only three male broilers. The expression of transcripts 
on the Z chromosome is shown on a separate sheet in Table S3. 
It is nevertheless striking that of 380 Z chromosome-encoded 
transcripts detected in BMDM with expression levels of >10 
TPM, <10% were up or down-regulated by LPS.

Table S3 also shows the range of expression for the control 
and LPS-stimulated samples. There was considerably greater 
variation than observed in the spleen RNAseq data. 615 
transcripts varied across >5-fold range in the unstimulated data 
and 1110 by >5-fold across the LPS-stimulated samples. To 
explore this variation further and seek evidence of co-regulated 
genes we again used Graphia. Figure 4 shows a sample-to-sample 
network graph (r ≥ 0.97) for these data. This shows that there 
was no segregation of the broilers from layers, suggesting that 
there is no consistent strain-specific gene expression pattern. 
Consistent with the evidence of profound LPS-induced changes 
in gene expression, the main axis of separation is driven by LPS 
stimulation which was analyzed in more detail in the F2 progeny.

Table S3 also summarizes the fold changes comparing the 
broilers and layers in the control and LPS-stimulated states. 
Consistent with the network analysis, there are few annotated 
transcripts, and even fewer highly-expressed transcripts, that 
distinguish the expression profiles based upon breed. The 
most broiler-enriched transcripts of interest are S100A8, CCL5 
and ETS2, whilst the layers had higher expression of CMPK2, 
SLC40A1, APOA1, IFIT5, STAT1 and MMP9.

Analysis of gene expression in BMDM 
generated From Progeny of F1  
Brother-Sister Matings
To continue to address the hypothesis that sibling-mating would 
expose homozygosity for high and low expression alleles and 
amplify the variation seen in the commercial broiler and layer 
lines, we isolated bone marrow from a total of 32 hatchlings 
from different families, grew BMDM, treated them with or 
without LPS as above for 24h, isolated mRNA and profiled gene 
expression by RNAseq. As with spleen, we chose hatchlings to 
avoid possible confounding influences of pathogen exposure 
including routine immunization with live vaccines. We also 
hoped to validate a method that would enable early and rapid 
screening of the progeny of defined matings that might form the 
basis of breeding decisions. A sample-to-sample analysis of the 
complete dataset was performed using Graphia and four samples 
from stimulated and unstimulated states were identified as major 
outliers and were removed. To enable pairwise-comparisons of 
stimulated and unstimulated states, we further removed those 
samples for which there was not a pair, leaving a total of 28 F2 
birds from 6 separate families for analysis (+/- LPS). This is a 
proof-of-concept experiment and it was beyond our resources 
to survey the full genetic diversity within the founders. To 
maximize the likelihood of detecting multiple F2 birds with the 
same expression variant inherited from a grandparent mating 
we included 16 birds from 4 F1 brother-sister matings from the 
same grandparent cross. They are in effect double-cousins. We 
also included six birds from family H (which exhibited poor hatch 
rate, low weight at hatch and poor survival (Figure 2) to explore 

FIgURe 4 | Network analysis of the response of BMDM generated from 
adult broiler and layer chickens to LPS. RNAseq gene expression data from 
BMDM cultured with or without LPS for 24h was analyzed using the network 
visualization tool Graphia. The panels show the sample-to-sample matrix with 
a Pearson correlation threshold of 0.97. In the three panels birds are identified 
based upon breed, sex or treatment as indicated. Note that the samples 
segregate solely based upon LPS stimulation. The sets of LPS-regulated 
transcripts that contribute to this separation are summarized in Table S3.
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possible detection of deleterious variants in this sibship, and a 
smaller number of birds from other grandparental matings to 
include broiler-layer specific variant CSF1R alleles.

Initial analysis of the expression data revealed variable 
detection of multiple genes associated with mesenchymal 
lineages including numerous collagen genes. These transcripts 
were not detected in the BMDM from adult commercial birds 
in Table S3. Neonatal calvarial cultures are routinely used 
to generate osteoblasts in mice. Such cultures contain large 
numbers of macrophages even without addition of growth 
factors (Chang et al., 2008). The FANTOM consortium recently 
published an analysis of transcriptional regulation of chicken 
promoter during development, including a sample annotated as 
bone marrow-derived mesenchymal stem cells which is actually 
a hatchling calvarial bone marrow culture (Lizio et al., 2017). This 
sample exhibited abundant expression of known macrophage-
specific genes including CSF1R alongside multiple collagens. 
Accordingly, we concluded that the hatchling bone marrow 
(unlike adult) probably contains mesenchymal stem cells which 
proliferated and differentiated alongside the macrophages in our 
culture system. In mouse calvarial cultures the macrophages and 
osteoblasts interact with each other to control calcification, an 
interaction that is paralleled in vivo (Chang et al., 2008). The 
culture system therefore unexpectedly enabled us to examine 
possible mesenchyme-associated gene expression variants 
that are quite likely relevant to the phenotypic diversity in the 
broiler-layer cross, but such an analysis required deconvolution 
of the data.

We first considered the sets of control and LPS-stimulated 
samples separately (Table S4) and calculated the ratio of 
maximum/minimum expression. The extent of variation 
amongst protein-coding transcripts was massively greater than 
in the spleen or adult broiler and layer BMDM data in Table S3. 
To identify possible null (absolute loss of expression) variation, 
we identified the set of transcripts for which the maximum was 
>20 and minimum <1. Table S4 includes a Venn diagram for the 
control and LPS-stimulated states. Of a total of 962 transcripts 
that met the criterion for extreme variation between individuals, 
365 (39%) overlapped between the two sets (control, + LPS) 
and 432 (45%) were specific for the LPS-stimulated state. The 
set of variable expression transcripts that is independent of LPS 
stimulation is clearly enriched for mesenchyme-associated genes 
including 10 separate collagen genes. Some of these transcripts 
(e.g. COL1A1, COL1A2) appear in the LPS-stimulated list only 
because they are marginally above the detection limit (>1 TPM) 
in the lowest-expressing sample. Nevertheless, the analysis 
validates some of the conclusions from the spleen data suggesting 
the existence of effective null expression alleles for GNAS, IL4 
and MAFF. Furthermore, CSF3, which was profoundly LPS-
inducible in the large majority of birds, was barely detected in 
others. Such variation could contribute to extreme variation in 
heterophils in the spleen (Table S2).

The expression of CSF1R mRNA in the F2 hatchling birds 
was around 30% lower than in the BMDM cultures from adult 
commercial birds (221 versus 321 average TPM), but down-
regulated to a similar value (145 versus 132 average TPM) in the 
LPS stimulated cultures. The level of CSF1R mRNA varied over 

a much greater range (47-347 TPM) in the F2 BMDM cultures 
compared to the commercial birds.

We next deconvoluted the data by network analysis using 
Graphia. We anticipated that transcripts associated specifically 
with gene expression in the separate mesenchyme and 
macrophage populations would form separate clusters and their 
relative levels would provide a surrogate for the relative purity 
of each cell culture. Network graphs for this dataset are shown 
in Figure 5. The sample-to-sample profile (Figure 5A) is color-
coded for family (left), sex (middle) or treatment (right). The 
samples did not separate based upon sex and there was also 
no obvious segregation based upon family or the parent allelic 
variants selected for analysis. By contrast to the BMDM data 
from the commercial birds there was also no separation based 
on LPS stimulation. The average profiles of the largest clusters 
derived from the gene-to-gene analysis (r ≥ 0.85) are shown in 
Figure 5B. Key genes and functional annotation terms for the 
larger clusters are summarized in Table 3 and the full gene lists 
in each cluster are provided in Table S5.

Mesenchyme-Related gene expression in 
F2 Bone Marrow Cultures
Cluster 1 which contains 1396 genes, includes major bone-
associated collagens (COL1A1, COL1A2) and extracellular matrix 
proteins alongside multiple cell cycle-associated transcripts, 
and is enriched for GO terms associated with mesenchyme and 
extracellular matrix. This cluster of genes most likely reflects 
the presence of varying numbers of proliferating mesenchymal 
cells. There are around 180 transcripts with no current 
informative annotation which can be inferred to be related to 
mesenchyme differentiation. The expression of mesenchyme-
associated transcripts was not regulated by addition of LPS in 
any of the birds. Given that one grandparent was a broiler, we 
suggest that differential growth of mesenchymal cells in culture 
is related to selection for growth and muscle/bone/fat related 
production traits. If there is a genetic basis for the variable 
growth of mesenchymal cells in this culture system, it is likely 
to involve regulated expression of growth factors or growth 
factor responsiveness. Transcripts encoding members of each of 
the many families of growth factors implicated in mesenchymal 
stem cell (MSC) growth and differentiation (e.g. BMP4, BMP6, 
CTGF, FGF13, INHBA, NOTCH2, PDGFB, TGFB3, VEGFA, 
and WNT5B) were each highly-expressed and varied greatly 
between individual birds (Table S5). Most were not contained 
within cluster 1, but the cluster does contain transcripts encoding 
multiple growth factor receptors (e.g. ACVR1, ACVR2A, DDR2, 
EPHA3, EGFR, PDGFRB, SMO, TGFBR2) and an equally 
plausible mechanism is regulated expression of these receptors. 
Cluster 1 also contains TGFB3 and THBS1 (thrombospondin 
1) both of which control MSC proliferation in humans (Belotti 
et al., 2016). Genes within this cluster are candidates for causal 
association with broiler production traits. Consistent with that 
view, ASPH lies within a QTL interval associated with muscle 
development on chromosome 2 (Godoy et al., 2015) and THBS2 
has been identified as a candidate gene within a QTL for fatness 
in chicken (Moreira et al., 2015).
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FIgURe 5 | Network analysis of the response of BMDM generated from F2 inbred hatchling chickens to LPS. RNAseq gene expression data from BMDM cultured 
with or without LPS for 24h was analyzed using the network visualization tool Graphia. (Panel A) shows the sample-to-sample matrix at a Pearson correlation 
threshold of 0.97. Note that there is no clear separation based upon family or sex, and less segregation based upon LPS treatment than in the parental comparison 
(Figure 4). (Panel B) shows the gene-to-gene matrix generated at Pearson r ≥ 0.85 with clusters of co-regulated transcripts colored. This analysis reveals a clear 
segregation of clusters that are increased, decreased or unchanged by LPS. The average profiles of selected clusters discussed in the text are shown in the 
surrounding histograms. The color code at the bottom of each column indicates LPS versus control in pairs from the same birds, sex, or family (colors as in Panel A). 
The transcripts contained within each Cluster are shown in Table S4 and Table S5.
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Cluster 2 is a distinct mesenchyme cluster that varies to a 
much greater extent between birds than cluster 1, and in the 
majority of birds the average expression of transcripts within the 
cluster was down-regulated by LPS. The GO enrichment indicates 
an association with extracellular matrix and secreted proteins, 
including collagens associated specifically with hypertrophic 
chondrocytes (e.g. COL9A1, COL10A1 and COL11A1), four FGF 
receptor family members, and many other transcripts associated 
with hypertrophic chondrocytes in mammals. Cluster 2 also 
contains many known transcriptional regulators of chondrocyte 
development in mammals [reviewed in (Liu et  al., 2017)] 
including IRX5 and IRX6, MEF2A, B and C, PAX3, RUNX2, SIX2 
and SIX3, SMAD1, SOX5, SOX8 and SOX9. The coordinated 
regulation of these factors suggests that the basic biology of 
chondrocyte differentiation is conserved in birds, but also that 
the individual birds/culture differ greatly in their support of this 
pathway. There is at least one obvious candidate regulator in this 

cluster. Chondromodulin (CNMD) is required for the maturation 
of chondrocytes and expression of Col10a1 in mice (Yukata et al., 
2008) and was amongst the most divergent transcripts in the F2 
cultures (Table S5). We suggest that genes within clusters 1 and 
2 are likely candidates underlying growth and composition traits 
in broilers.

Variable expression of lPS-Regulated 
genes in BMDM From F2 Inbred Birds
LPS signals to macrophages through the receptor TLR4. The 
response of macrophages to LPS involves two distinct adaptor 
proteins, MYD88/TIRAP and TRIF/TRAM and downstream 
target genes can be classified based upon their dependence 
on these two effector pathways. The TRIF/TRAM pathway 
links to induction of type 1 interferon (IFN) and an autocrine 
stimulatory cascade. Until recently it was claimed that LPS-
stimulated chicken macrophages do not produce endogenous 

TABle 3 | Functional annotation of clusters derived from untreated and LPS treated F2 BMDM.

Cluster number 
(number of nodes)

expression pattern Representative genes enhanced terms (P value)

001 (1396) Unchanged by LPS ACTA2, ADAMTSs, ASPH, COL1A1, COL1A2, FBN1, 
FN1, MFAPs, TGFB3, TGFBR2/3, THBS1, THBS2

Protein processing in endoplasmic reticulum (5.5E-10); 
Poly(A) RNA binding (3.2E-8); Extracellular matrix (1.6E-
6); Endoplasmic reticulum (8.7E-6); ER-Golgi transport 
(7.5E-5); Focal adhesion (1.5E-4)

002 (485) Unchanged by LPS COL9A1, COL10A1, COL11A1, FGFRs, FOXO6, IRX5/6, 
MEF2A/B/C, PAX3, RUNX2, SIX2/3, SMAD1, SOX5/8/9

Extracellular matrix (0.003); Secreted (0.007); 
Glycoprotein (0.012); Signal (0.038)

003 (389) Up with LPS ATF3, BHLHE40, CD274, CEBPB, FOSL2, GGCL1, 
GVIN1, IFIT5, IFIH1, IRF1, IRF8, IRF9, OASL, SOCS1

Zinc finger, RING/FYVE/PHD-type (0.02); Influenza A 
(0.01)

004 (259) Unchanged with LPS CPSF2, DDX6, LEO1, PAPD5, PAPOLA, PARN, PRPF38B, 
PRPF39, PRPF40A, PRPF6, SMU1, TOP2B, TOP3B, 
TOPBP1

Spliceosome (2.4E-9); Cytoplasmic mRNA processing 
body (0.0004)

005 (168) Down with LPS C3AR1, CD14, FAAH, MAOA, PEX16, PSEN2, 
TNFAIP8L1, TUBB1

Transmembrane helix (0.1); Aldolase-type TIM barrel 
(0.07)

006 (167) Unchanged by LPS BUB1, BUB1B, BUB3, centromere protein genes, kinesin 
genes, kinetochore complex components

Cell cycle (4.9E-14); Mitosis (9.8E-13); Cell division 
(2.3E-11); Centromere (8.3E-11)

007 (160) Unchanged by LPS RPL and RPS genes, translation initiation and elongation 
genes

Structural constituent of ribosome (3.6E-81); Ribosome 
(4.7E-79); Translation (1.2E-68); Protein biosynthesis 
(1.8E-7)

008 (137) Up with LPS BACH1, IRF6, KLF8, MAFK, REL, TLR15 No significant enrichment
009 (100) Down with LPS IGF2, KLF3, KLF13, MAF1, TAF12 No significant enhancement
010 (76) Unchanged by LPS AAR2, CNOT10, EXOC1, GABPA, POLR1A RNA recognition motif (0.002)
011 (71) Unchanged by LPS but one 

animal very high
ACTG2, CDH11, COL7A1, ENPP2/3, FGF7, NPY, 
PDGFRA, VAV2

Calcium ion binding (0.2)

012 (65) No trend with LPS All unannotated ENSGALG
013 (59) Up with LPS CCL4, BATF6, FLT1, IL13RA1, IL1B, NFKB1, NFKB2, 

NFKBIA, TRAF2, TRAF3, ZC3H12A
Toll-like receptor signaling pathway (0.0005); Cytosolic 
DNA sensing pathway (0.001); RIG-I-like receptor 
signaling pathway (0.001); Inflammatory response (0.01)

014 (57) Up with LPS CCNE1, FMR1, SMCHD1, TRAF6, USP16 Cell cycle (0.1)
015 (57) Down with LPS Mostly unannotated ENSGALG and LOC genes No significant enhancement
016 (52) Down with LPS ATP6AP1, ATP6AP2, ATP6V0D1, CASP9 No significant enrichment
017 (52) Unchanged with LPS ACTR1A, COG5, E4F1, EIF2AK4, INSIG2 No significant enrichment
018 (52) Variable response to LPS All unannotated ENSGALG
019 (51) Variable response to LPS ACOD1 (IRG1), IRF2, MAP2K3, TAOK1, TBK1, USP15 Protein ubiquitination involved in ubiquitin-dependent 

protein catabolic process (0.01)
020 (45) Unchanged with LPS CCT genes, HSP genes Positive regulation of protein localization to Cajal body 

(1.5E-10); Chaperonin TCP-1, conserved site (4.7E-
10); Positive regulation of establishment of protein 
localization to telomere (2.7E-10); Chaperone (2.1E-9)

021 (45) Down with LPS in most CSF1R, IL2RG, IL6R, TLR4 No significant enrichment

Benjamini Hochberg corrected P values are presented. First 21 clusters only as number of genes becomes too low for meaningful analysis in smaller clusters. This analysis 
used DAVID (https://david.ncifcrf.gov/home.jsp) to determine enrichment for annotation terms.
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IFN. However, a recent study (Ahmed-Hassan et al., 2018) 
reported the release of type 1 IFN activity from LPS-stimulated 
macrophages and provided evidence of autocrine signaling. They 
were not able to detect the induction of IFNB mRNA. TLR4 
is highly polymorphic at the protein-coding level in chicken 
(Swiderska et al., 2018). Our F2 dataset contains one bird (B628) 
in which TLR4 mRNA was exceptionally low in both control and 
LPS-stimulated states. TLR4 is part of a small cluster (cluster 
21) that also includes CSF1R but does not include any other 
macrophage-specific genes. Neither CD14 (encoding the TLR4 
co-receptor), nor MYD88 or TIRAP varied substantially between 
birds. Accordingly, we conclude that this bird was specifically 
deficient in TLR4 expression.

The candidate targets of the TRIF/TRAM pathway are 
regulated by transcription factors of the IRF family. Cluster 
3 contains the largest set of transcripts that was up-regulated 
by LPS. It is much smaller than the equivalent in commercial 
birds because of tighter correlations generated by the larger 
dataset, and because the level of induction varied substantially 
between individuals. The likely driver of the variation 
between birds is differential regulation of the LPS-inducible 
transcription factors, IRF1, IRF8 and IRF9 as well as ATF3, 
BHLHE40, CEBPB and FOSL2. In human monocytes, eQTL 
analysis of the LPS-inducible gene expression response 
revealed trans-acting variants impacting upon the regulation 
of the suite of genes regulated by inducible autocrine IFN 
signals (Fairfax et al., 2014). IRF1 and IRF8 are obligatory 
intermediates in induction of many LPS-inducible genes 
in mouse macrophages ((Roy et al., 2015) and references 
therein) and in chickens IRF1 is a key mediator of type 1 IFN 
antiviral signaling (Liu et al., 2018). Cluster 3 contains many 
known IFN-inducible effector genes amongst which the most 
highly-expressed/inducible and hypervariable include CD274  
(encoding the check point inhibitor PD-L1), GVIN1, GGCL1, 
IFIT5, IFIH1, OASL and the feedback inhibitor SOCS1. We can 
infer that the other transcripts in this cluster, including those 
that are poorly annotated, form part of the IFN effector system. 
IRF1 mRNA was induced in all but one of the birds, but the 
stimulated level of expression varied 250-fold amongst birds. 
The induction of IRF1 in mouse and human macrophages is 
triggered by transient expression and autocrine signaling by 
IFNB1, acting through the type 1 interferon receptors, IFNAR1 
and IFNAR2 (Sheikh et al., 2014). Both IFN receptor genes 
were robustly expressed in all the BMDM preparations with 
relatively little variation. However, birds lack IRF3, the key 
upstream regulator of IFNB1 induction in mammals, and some 
evidence places IRF1 upstream of IFNB1 induction in chickens 
(Liu et al., 2018).

There are several other clusters containing IFN-associated 
genes that are distinct from cluster 3. Cluster 8 contains IRF6 
alongside other inducible candidate transcriptional regulators, 
BACH1, KLF8, MAFK and REL. One notable gene within this 
cluster is TLR15, a member of the TLR1 family that is unique 
to birds and reptiles and implicated in response to fungal/yeast 
pathogens (Boyd et al., 2012). Most transcripts in cluster 19 were 
expressed constitutively and induced further by LPS. This cluster 
includes IRF2, transcripts encoding signaling molecules (TAOK1, 

TBK1, MAP2K3) and the feedback inhibitor USP15. Cluster 19 
contains the profoundly-inducible IRG1 gene (now annotated as 
ACOD1) discussed above. The transcriptional regulator IRF7 is 
in a much smaller cluster, cluster 35, along with the genes for 
both IL23A and IL12B, which form the functional dimer of the 
proinflammatory cytokine IL23, and the chemokine CCL20.

The IFN genes in chickens are on the Z chromosome and 
remain poorly annotated (Goossens et al., 2013) and in any 
case, the pulse of endogenous IFNB1 that occurs in stimulated 
mammalian macrophages is transient (Liu et al., 2018) and 
would not have been captured in this time course. Our data 
highlight that autocrine IFN induction occurred in the 
response of chicken BMDM to LPS, but we cannot determine 
definitively whether the >100-fold variation in IFN target 
gene expression we observed is in part due to variation in IFN 
induction. One hint can be gained from the fact that the F2 
birds are a mixture of males and females. The individual male 
and female samples are highlighted in Table S4 and the male/
female ratio in gene expression is calculated. IRF1 and many 
of the known target genes were each expressed significantly 
more highly in the LPS-stimulated cultures of the male birds, 
suggesting that there is a correlation between their expression 
and variation in IFN production. In mice IRF1 and IRF8 are 
regulated independently and cooperate in induction of subsets 
of interferon target genes in macrophages (Langlais et al., 
2016). The cluster analysis indicated that IRF2, IRF6, and IRF7 
vary independently of IRF1, each controlling a subset of IFN 
target genes. We suggest that there are regulatory variants 
strongly impacting the IFN pathway at multiple levels. As 
shown in Figure 1C, the broiler and layer founder birds can 
be distinguished based upon SNPs associated with the IRF 
loci alone, suggesting that selective breeding has also selected 
variation at each of these key regulators. Table S6 lists all of 
the variants detected in the founder birds at each of the IRF 
loci. They include 15 SNPs within the 1kb promoter region of 
IRF1 and 24 within the 1kb promoter region of IRF7. There are 
also several non-synonymous coding variants in IRF7 that are 
enriched in the broilers but are not predicted to be deleterious.

MYD88/TIRAP1 activation is connected through IRAK1/4, 
TRAF6 and the kinase TAK1 to activation of the transcription 
factor NFKB. Most NFKB target genes in macrophages 
are induced transiently and subsequently repressed by the 
combined actions of numerous feedback repressors (Baillie 
et al., 2017). Cluster 13 is the largest cluster that contains LPS-
inducible transcripts likely induced by the MYD88/TIRAP-
dependent pathway and includes the pro-inflammatory 
cytokine gene IL1B and the chemokine gene CCL4. This cluster 
contains transcripts encoding a number of known feedback 
regulators of the response including BATF3, NFKIA, and 
ZC3H12A. As evident from the averaged profile, the level of 
induced expression of this cluster of genes is much less variable 
between individuals. It is also not significantly different 
between the males and females. Hence, there is clearly separate 
regulation of the two gene sets lying downstream of MYD88/
TIRAP and TRIF/TRAM.

The reciprocal to the LPS-inducible gene sets is the clusters 
of genes that are repressed by LPS. These clusters are not highly 
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variable between individuals. The GO term enrichments are 
summarized in Table 3. Cluster 6 is very significantly enriched 
for known cell cycle-related transcripts and cluster 7 for 
components of the ribosome and translation apparatus, both 
likely reflecting inhibitory effects of LPS on cell proliferation in 
macrophages, and possibly also in the mesenchyme component 
of the culture.

Although the macrophage content of the cultures likely 
varies inversely with the mesenchymal content, we do not 
detect a macrophage-specific cluster. CSF1R forms part of 
small cluster (cluster 21) alongside TLR4 that is, as expected, 
also down-regulated by LPS, whilst the core macrophage-
specific transcription factor gene, SPI1 does not correlate 
with any target genes (Cluster 80). We interpret this to indicate 
that there is considerable cis-acting variation in the large 
majority of macrophage-specific genes so that correlations 
with other macrophage-expressed transcripts fall below the 
threshold chosen.

Analysis of the low Fitness F2  
Family (Family h)
As mentioned above, one family showed consistently low 
weight at hatch (Figure 2). This family also had a low hatch 
rate and three individuals died at or just before hatch with 
abnormalities in the brain, cartilage and muscle seen at 
autopsy. We compared gene expression in BMDM from this 
family to that in all other F2 birds, before and after exposure 
to LPS, to determine whether this family showed altered 
expression patterns. In the untreated samples, DAVID 
analysis showed that genes that were lower in Family H 
included those with GO terms relating to signal transduction, 
skeletal system development, collagen, extracellular matrix, 
chondrocyte differentiation. GATHER analysis confirmed 
the association with skeletal and cartilage development and 
cell signaling. Since expression of connective tissue genes 
reflects in part contamination of BMDM with mesenchymal 
cells (as discussed in detail above), these results may suggest 
a deficiency in connective tissue formation or the interaction 
of these cells with macrophages. For genes that were higher 
in Family H, DAVID found slight enrichment for GO terms 
associated with receptors, while GATHER detected GO terms 
associated with response to stimulus, defense response and 
immune cell activation.

After LPS stimulation of BMDM, there was enrichment 
for immunoglobulin and extracellular matrix GO terms and 
GATHER found an association with cell signaling, metabolism 
and ion transport in the genes that were lower in Family H 
than the other samples. Among genes that were higher in 
Family H after LPS stimulation there was enrichment for 
terms related to the response to LPS and apoptosis (DAVID 
analysis). GATHER also found association with terms for cell 
death/apoptosis as well as terms relating to bone formation. 
The results are presented in Table S7.

These results suggest that the poor hatch rate, low hatch 
weight and early mortality in Family H was related to a 
failure of normal development due to low expression of key 

morphological genes which may indicate a deficiency of 
mesenchymal cells in the bone marrow. There may have been 
concomitant infection with perturbed expression of genes of 
the immune system. The Family H BMDMs may have had a 
greater response to LPS since GO terms associated with the 
response were higher in these cells.

Candidate null expression Alleles
The set of candidate genes showing extremes of expression 
(including candidate nulls) in Table S4 clearly reflects in 
part the variable contribution of mesenchyme lineage cells 
to the cultures. However, there are a number of genes that 
were highly-expressed, or selectively-induced in an entirely 
gene-specific manner. Selected examples are shown in 
Figure S2, which illustrates that each has a different pattern 
of variation between individuals. ENSGAL00000028304 was 
recently shown to encode a macrophage mannose receptor 
(MRC1L-B, now annotated as MMR1L4), recognized by 
antibody KUL01 (Staines et al., 2014). KUL01 is a widely-used 
monocyte-macrophage marker. There are multiple members 
of this family encoded by the chicken genome, but MRC1L4 
is the only one expressed in BMDM. It forms part of a small 
cluster (cluster 48) that also includes TLR2A. Pentraxin 3 
(PTX3) in mammals is required for effective host defense 
against influenza infection (Reading et al., 2008). In chickens 
PTX3 is as an acute phase marker of bacterial infection that 
was undetectable in spleen (consistent with our data) but 
induced rapidly by infection (Burkhardt et al., 2019). PTX3 
was highly-expressed in control BMDM and regulated only 
marginally by LPS. The expression varied over 3 orders of 
magnitude between individuals and was not correlated with 
any other gene.

Previous studies of induction of pro-inflammatory 
cytokines in heterophils of birds selected for resistance to 
Salmonella revealed a positive correlation between resistance 
and induction of IL6 and IL8 (Swaggerty et al., 2004). The 
induced levels of these two genes also varied greatly between 
birds in our study and were not correlated with each other. 
There have, to our knowledge, been no published studies of 
CSF3 regulation in chickens. CSF3 was massively induced 
by LPS and clustered with putative IRF1/8/9 target genes 
in cluster 3. The extent of variation, with several birds 
showing almost undetectable expression, indicates that there 
are either cis-acting variants or that CSF3 is regulated by 
multiple transcription factors within cluster 3. Regardless of 
mechanism, CSF3 variation likely underlies variation in the 
heterophil response to infection.

We noted in the discussion of splenic gene expression that 
the class II MHC gene, BLB2 showed evidence of variation 
between individuals. Chicken BMDM are strongly Class II 
MHC-positive but BLB2 expression varied between birds. 
BLB2 expression varied in parallel with CD74, which encodes 
the class II-associated invariant chain. Since these are on 
different chromosomes, there is likely to be an upstream 
trans-acting regulator. The obvious candidate, CIITA, was not 
detected in our annotation. Two other genes of interest were 
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IL4 and IL34. In keeping with the findings from the spleen 
discussed above, IL4 was detected in a subset of preparations, 
unaffected by LPS, and undetectable in others. IL34 was barely 
detectable in BMDM. CSF1, encoding the macrophage growth 
factor, was expressed constitutively and induced by LPS, but 
was also very variable amongst samples.

COnClUSIOn
The main purpose of this study was to demonstrate that allelic 
imbalance in gene expression and/or coding variants of large 
effect in an outbred commercial chicken population could be 
uncovered by brother-sister mating of F1 progeny to generate an 
array of F2 individuals, and to survey the impact of homozygosity 
for the possible set of variants. It was not our intention to 
document such variants extensively. The founder birds were 
chosen deliberately to be as outbred as possible and as different 
from each other as possible.

Despite the high prevalence of candidate null mutations 
in the grandparental broilers and layers, we found little 
evidence of adverse impacts of sibling mating on growth and 
development. It is likely that the highly-selective breeding of 
commercial birds has largely purged variants that impact on 
hatch-rate and fertility. Extensive inbreeding in pedigree dogs 
is not strongly-associated with health-related traits (Jansson 
and Laikre, 2014). Similarly, a large-scale survey of Irish 
cattle genotypes revealed relatively few examples of severely 
deleterious recessive alleles affecting survival or production 
traits (Jenko et al., 2019). A growing literature in humans, 
based upon analysis of populations where consanguineous 
marriage is common, shows that the large majority of the 
thousands of homozygous null mutations detected in such 
populations have no overt phenotype (Erzurumluoglu et  al., 
2016). However, if the gene function is known, more subtle 
phenotypes can be detected (Saleheen et al., 2017).

Like the direct measurement of gene products and their 
functions, analysis of mRNA levels provides an intermediate 
phenotype to assess the impact of homozygosity. The variation 
we observed in the hatchling spleen supported the hypothesis 
that there are allelic variants in parental broiler and layer lines 
that strongly impact on gene expression in immune cells. This 
also indicated a major difference in heterophil accumulation 
in the spleen evident from the correlated expression of known 
marker genes. In the analysis of BMDM, by comparison to 
the set of parental outbred commercial broiler and layer 
lines, the F2 birds exhibited considerably greater variation in 
both basal and LPS-inducible gene expression. In particular, 
we highlighted a set of interferon-inducible genes that was 
co-regulated and varied in expression across a 100-1000-
fold range. We infer that this variation is associated with the 
extensive polymorphism in IRF family members (Figure 1B) 
that distinguishes broilers and layers. The approach we have 
demonstrated has some potential for use in selective breeding 
since it does not require mature birds or disease challenge. It 
is entirely plausible that the generation of homozygosity for 
low expression alleles that we have identified contributes to 

the phenomenon of inbreeding depression (Charlesworth and 
Willis, 2009).

If there is, as we suspect, genetic variation that impacts 
on IFN production encoded by the Z chromosome, the 
analysis of BMDM from female hatchlings could be applied 
as progeny testing to select high and low responder lines, 
assaying only for the LPS-inducible target genes in Cluster 3 
from the analysis of BMDM. The culture system could also 
be used to assess candidate genes and the impact of putative 
cis-acting variation. For example, in the Sal1 locus affecting 
Salmonella resistance in birds, two candidate genes have been 
identified, AKT1 and SIVA1 (Psifidi et al., 2018). SIVA1 was 
not detectably expressed in BMDM. Several other genomic 
regions underlying QTL for Salmonella resistance in this 
and previous studies [e.g. (Thanh-Son et al., 2012)], contain 
genes that were hypervariable amongst F2 progeny (e.g. IRF1 
and IRF6) in the dataset analyzed here. In principle, using 
the founder DNA and mRNA sequences we could infer the 
existence of allelic homozygosity for each of the transcripts 
detected in the spleen and BMDM RNAseq datasets but the 
size of the population analyzed here was not sufficient to 
separate cis-acting from trans-acting variation or to attribute 
causation. It remains to be seen whether the variation in bone 
marrow-derived mesenchyme proliferation that we uncovered 
inter alia might also provide an opportunity to accelerate 
phenotypic selection for production traits.
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Conjoint Analysis of SMRT- and 
Illumina-Based RNA-Sequencing 
Data of Fenneropenaeus chinensis 
Provides Insight Into Sex-Biased 
Expression Genes Involved in Sexual 
Dimorphism
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1 Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow 
Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China, 2 Function Laboratory for Marine 
Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 
Qingdao, China

Fenneropenaeus chinensis (F. chinensis) is one of the most commercially important 
cultured shrimps in China. The adult F. chinensis exhibit sexual dimorphism in growth 
and body color. In this research, we profiled the whole transcriptome of F. chinensis by 
using single molecule real-time-based full-length transcriptome sequencing. We further 
performed Illumina-based short reads RNA-seq on muscle and gonad of two sexes to 
detect the sex-biased expression genes. In muscle, we observed significantly more female-
biased transcripts. With the differentially expressed transcripts (DETs) in muscle, some 
pathways related to the energy metabolism were enriched, which may be responsible for 
the difference of growth. We also digged out a pathway named porphyrin and chlorophyll 
metabolism. It was speculated to relevant to the difference of body color between the 
two sexes of shrimp. Interestingly, almost all DETs in these pathways were female-biased 
expression in muscle, which could explain the phenomenon of better growth performance 
and darker body color in female. In gonad, several pathways involved in reproduction 
were enriched. For instance, some female-biased DETs participated in the arachidonic 
acid metabolism, which was reported crucial in female reproduction. In conclusion, our 
studies identified abundant sex-biased expression transcripts and important pathways 
involved in sexual dimorphism by using the RNA-seq method. It provided a basis for 
future researches on the sexual dimorphism of F. chinensis.

Keywords: shrimp, full-length transcriptome, growth, body color, reproduction
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INTRODUCTION
Fenneropenaeus chinensis (F. chinensis), which belongs to the 
family Penaeidae of Crustacea, is one of the most commercially 
important cultured shrimps in China. It mainly distributes in the 
Yellow Sea and Bohai Sea of China and west and south coast of 
the Korean Peninsula (Wang et al., 2017). Due to the delicious 
taste and rich nutrition, the F. chinensis is becoming more and 
more popular in consumers.

There are many species exhibit pronounced sexual 
dimorphism in nature. They usually show different colors, 
shapes, or body weight in different sexes, like chicken, peacock, 
guppy, and so on. The extensive sexual dimorphism in nature 
accord with the Darwin’s conjecture that sexual selection is a 
force distinct from natural selection (Lande, 1980; Tipton, 1999). 
Sexual dimorphism is an extreme form of phenotypic plasticity. 
Studies on sexual dimorphism are significative for the wide intra-
specific variations (Mank, 2017). In the process of cultivation, the 
color of adult female shrimps of F. chinensis tend to blue, while 
the males tend to yellow. The adult females were observed bigger 
in body size and heavier in body weight than males. Body weight 
is an important economical trait in production. Locate the 
genes related to growth will accelerate the process of molecular 
breeding for F. chinensis.

Gene expression plays an important role in generating the 
phenotypic diversity since there was limited genetic divergence 
in genome of organism. Most of sexual dimorphism are caused 
by the differential expression of genes between different sexes, 
which is known as sex-biased gene expression (Ellegren and 
Parsch, 2007; Grath and Parsch, 2016). Sex-biased genes 
could be classified as either male-biased or female-biased 
expression depending on which sex expresses higher (Grath and 
Parsch, 2016).

In recent years, short reads RNA sequencing (RNA-seq) 
technique has become an important tool in biological studies. 
It is powerful for uncovering the relationship between genotype 
and phenotype (Qian et al., 2014; Wang et al., 2018). However, 
the short reads, mostly 100~300 bp, bring many challenges to 
the transcriptome assemble. For instance, it is difficult to identify 
the alternative splicing with short reads; the repetitive sequence 
also could cause confusion in the assemble. Recently, the third-
generation sequencing technology has sharply increased the 
length of sequencing reads (Grabherr et al., 2011). The PacBio 
platform even could sequence the whole molecule of mRNA 
(Rhoads and Au, 2015). Due to the much longer reads length, 
the complex sequence such as repetitive regions could be 
displayed within a single read. It could achieve the full-length 
(FL) sequence of transcripts and identify full coding sequences 
and multiple encoded isoforms (Weirather et al., 2017).

The FL transcriptome sequencing technology has prompt 
the overall annotation of the transcriptome and the subsequent 
studies in many species, such as fission yeast (Kuang et al., 2017), 
zebrafish (Nudelman et al., 2018), and mouse (Tardaguila et al., 
2018). Especially for the non-reference genome organisms, the FL 
transcriptome sequencing made it possible to fully characterize 
the novel transcript (Grabherr et al., 2011). For example, it 
provides insight into the adaptive divergent function in extreme 

metabolism of the ruby-throated hummingbird, a non-reference 
species (Workman et al., 2018). In aquaculture, this technology 
has been applied to some analysis of important characters. FL 
transcriptome sequencing on pacific abalone characterized the 
transcriptome information for female and male individuals, 
and identified some sex-specific isoforms (Kim et al., 2017). For 
Pacific white shrimp Litopenaeus vannamei, a species belongs to 
the same genus of Penaeus with F. chinensis, transcript expression 
profiles survey provided insight into the immune mechanism of 
shrimps (Zhang et al., 2019).

Due to the abundant of repetitive sequence and high 
heterozygosity (Gao and Kong, 2005; Wang et al., 2008), the 
genome of F. chinensis has not been completely sequenced yet. To 
make a reference in this research, we used a fast growth cultured 
breed of F. chinensis, “Huanghai No. 1,” which was raised by 
continuous selection of several generations, to profile the whole 
transcriptome of F. chinensis. We further performed short reads 
RNA-seq on muscle and gonad of two sexes of shrimps to detect 
the sex-biased expression genes.

RESUlTS

Expression Profiles Delineated by the Full-
length Transcriptome Sequencing
We obtained 24.81 Gb single molecule real-time (SMRT) 
clean data in total. Circular consensus (CCS) sequences 
were extracted from the original sequence according to the 
condition of full passes> = 1 and the sequence accuracy > 0.90. 
A total of 473,469 CCS reads were extracted (Table 1). Among 
them 382,500 were full length reads non-chimeric (FLNC). 
The FLNC sequences were clustered and we obtained 17,470 
consensus isoforms with mean length of 2,191 (Supplementary 
Figure S1). After polished, 17,279 high-quality consensus 
isoforms and 190 low-quality consensus isoforms were 
obtained. The low-quality consensus isoforms were corrected 
with the Illumina RNA-seq data, and merged with the high-
quality FL consensus isoforms. Isoforms with high identity 
(>0.99) were removed redundancy. Finally, we obtained 
10,795 high-quality non-redundant FL transcripts with mean 
length of 2,315 bp. The completeness of the non-redundant 
FL transcripts were assessed by BUSCO (Simao et al., 2015), 
and result showed that the percent of the complete transcripts 
identified in our project was more than 65% (Supplementary 
Figure S2). These 10,795 non-redundant FL transcripts were 
regarded as reference transcriptome in the following analysis.

The precursor of mRNA (pre-mRNA) has a variety of splicing 
types. Different exons are selected to produce different mature 
mRNAs, which was called alternative splicing (AS). The FL 
sequences were pairwise compared, and 162 AS events were 
detected (Supplementary Table S1). Simple sequence repeats 
(SSR) are short (1~6 bp) tandemly repeated DNA sequences. It is 
also known as microsatellites. In this study, we totally identified 
10,941 SSR (Supplementary Table S2). Most of the them were 
mono-nucleotide repeats (Supplementary Figure S3). There 
were 10,238 coding sequences (CDS) predicted in all and 
8,231 of them possessed complete open reading frames (ORF) 
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(Supplementary Table S3). Four approaches (CPC/CNCI/
CPAT/Pfam) were used to predicted long non-coding RNA 
(lncRNA), and 823 lncRNA were identified by all four methods 
consistently (Supplementary Figure S4). The function of 9,177 
high quality FL transcripts were annotated by conjoint analysis 
of a series of annotation databases (Supplementary Table S4).

Illumina-Based Ribonucleic Acid 
Sequencing Data Displayed the 
Expression Pattern of Each Transcript
Twelve samples, including three muscles and three gonads of 
both male and female shrimps were sequenced. We obtained a 
total of 88.99 Gb clean data (Supplementary Table S5). After 
mapping with the high-quality non-redundant FL transcripts, 
expression level of each transcript was quantified. The principal 
component analysis (PCA) showed that the tissue is the most 
effected factor for the gene expression, meanwhile the factor of 
sex played a greater role in gonad than in muscle (Figure 1).

The median of fragments per kilobase of transcript per 
million fragments mapped (FPKM) distribution of expressed 
transcripts was observed higher in gonad than muscle (Figure 1). 
There were 131 male-biased and 689 female-biased transcripts 
in muscle (Figure 1 and Supplementary Table S6), while in 
gonad the number of male-biased transcripts was 473 and 
female-biased transcripts was 518 (Figure 1 and Supplementary 
Table S7). This result indicated that in muscle, significantly more 
transcripts expressed higher in female than male.

For the 162 AS events, we checked their expression in the two 
tissues. However, no significantly differential expression between 
different sexes was detected.

Sex-Biased Expression Transcripts in 
Muscle Provide Some Clues for Study of 
Sexual Dimorphism
The body color of adult female shrimps of F. chinensis tend to 
blue, while the males tend to yellow (Figure 2). The adult females 
showed significantly more excellent performance in body length 
and body weight than males (Figures 2B, C). Since the two sexes 
shared identical genomes except for several potential sex-linked 
regions (Xie et al., 2008), sexual dimorphism could stem from 
gene expression differences between sexes.

The DETs were annotated with Gene Ontology database 
(Supplementary Figures S5 and S6), and pathway annotation 
analysis helps to further interpret transcript functions 
(Supplementary Figure S7). In muscle, we observed many 
DETs participated in pathways related to the genetic information 
processing, like DNA replication, mismatch repair, nucleotide 
excision repair, aminoacyl-transfer RNA biosynthesis, Homologous 
recombination, ribosome biogenesis in eukaryotes and protein 
processing in endoplasmic reticulum (Figure 3). Besides, abundant 
of DETs involved in the metabolism of substances and energy, 
like N-glycan biosynthesis, beta-alanine metabolism, histidine 
metabolism, fatty acid elongation, biosynthesis of unsaturated 
fatty acids, purine metabolism, and pyrimidine metabolism. We 
also observed some DETs were enriched into the pathway of 
porphyrin and chlorophyll metabolism, which may be relevant to 
the body color of the shrimps. Furthermore, a pathway related to 
reproduction named progesterone-mediated oocyte maturation 
was digged out with our result.

We have exacted the expression information of the DETs in 
these pathways, and found that nearly all these transcripts were 
female-biased expression (Figure 4 and Supplementary Table S8).

Ribonucleic Acid Sequencing of Gonad 
Identified Important Transcripts Action 
on Reproduction of Fenneropenaeus 
chinensis
The DETs in gonad mostly participated in cellular processes, 
like focal adhesion, signaling pathways regulating pluripotency 
of stem cells, and lysosome (Figure 3). There were also some 
substance metabolism process pathways, like arachidonic 
acid metabolism, glutathione metabolism, inositol phosphate 
metabolism, folate biosynthesis, glycolysis/gluconeogenesis, and 
other glycan degradation. Some signal transduction pathways 
were screened out, such as MAPK signaling pathway-fly, PI3K-
Akt signaling pathway, Ras signaling pathway, cyclic adenosine 
3,5-monophosphate (cAMP) signaling pathway, and extracellular 
matrix-receptor interaction. Furthermore, a pathway named 
circadian rhythm was enriched by several DETs.

Interestingly, for the pathways of Fc gamma R-mediated 
phagocytosis, Ras signaling pathway, cAMP signaling pathway, 
and choline metabolism in cancer, they shared one same DET 
(transcript/14,675), and only this DET enriched in these 
pathways. This transcript expressed in males far beyond females 
(Figure 5 and Supplementary Table S9), which action on lipid 
transport and metabolism. In gonad, DETs in most of pathways 
were female-biased or male-biased expression irregularly, while 
in the pathway of arachidonic acid metabolism, all the six DETs 
were female-biased (Figure 5).

DISCUSSION
In this study, we obtained 10,795 high-quality FL transcripts, 
which was relatively less than the similar work on L. vannamei 
(Zhang et al., 2019). Besides the species difference, it could be 
attribute to the strict parameters setting in the process of FL 

TABlE 1 | Summary of full-length transcriptome sequencing production.

Type Count

Circular consensus (CCS) reads 473,469
Full length reads non-chimeric (FLNC) 382,500
FL consensus isoforms 17,470
High-quality FL transcripts 17,279
Non-redundancy high-quality FL transcripts 10,795
Alternative splicing 162
Simple sequence repeats (SSR) 10,941
coding sequences (CDS) 8,231
lncRNA 823
Annotation 9,177
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transcript cluster. In order to obtain high-quality consensus 
isoforms, there is possibility that multi-copy sequences of a 
same transcript were divided into different clusters, which 
inevitably resulting in redundant sequences. At the same time, 
degradation of the 5’ end during the sequencing also could 
result in different copies of a same transcript being divided into 
different clusters. Considering about that, we clustered the FL 
transcripts with a strict condition. Completeness assessment of 
the FL transcriptome (Supplementary Figure S2) proved the 
reliability of our result.

The median of the FPKM distribution of expressed transcripts 
in gonad was higher than in muscle. This reflected a higher 
expression abundance of transcripts in gonad to a certain extent. 
It also could attribute to limited genes expressing in gonad. 
Moreover, since the FPKM value was to normalize the expression 
level by eliminating the effect of the sequencing depth and gene 
length, more longer transcript expressed in muscle could cause 
this result in FPKM distribute (Wagner et al., 2012).

Some aspects of sexual dimorphism result from genes located 
on the sex chromosomes (Rice, 1984). For F. chinensis, the sex 

FIGURE 1 | Expression profile reflected by the short reads RNA sequencing data. (A) Principal component analysis of the 12 samples. Each point represents 
one sample, with shape indicating sex, and color indicating tissue. (B) Boxplot of the fragments per kilobase of transcript per million fragments mapped (FPKM) 
distribution of each sample. The abscissa represents different samples. The first letter of the sample name represents sex (the “F” means female, and “M” means 
male). The second letter of the sample name represents tissue (the “G” means gonad, and “M” means muscle). The number of the sample name represents the 
different individuals in the same group. The ordinate represents the logarithm of the sample expression FPKM. The graph measures the expression level of each 
sample from the perspective of the overall dispersion of expression quantity. The last two charts were expression volcano plot of differentially expressed transcripts 
(DETs) in muscle (C) and gonad (D). Each point presents a transcript. The abscissa represents the logarithm of the expression fold change of male relative to female. 
A larger absolute value indicating a larger expression difference between the male and female. The ordinate represents the negative logarithm of the statistical 
significance of the expression difference. The larger value indicating the more significant expression difference between male and female, and the better reliability of 
the screened DETs. The red dots represent up-regulated DETs, the green dots represent down-regulated DETs, and the black dots represent non-DETs.
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determination and differentiation mechanism have yet to be 
elucidated. It remains unclear whether the ZW sex determination 
system (Xie et al., 2008) or some more complicated mechanism 
instead of simple XY or ZW system (Li et al., 2003) existing in the 
sex determination of F. chinensis (Li et al., 2012). However, many 
organisms lacking of sex chromosomes entirely also performed 
pronounced dimorphisms, and even though some species possess 
sex chromosomes, a majority of dimorphism controlled by genes 
presenting in both sexes (Bachtrog et  al., 2014). Expression 
is one way that genes can be deployed differently. Genes show 
differential expression between male and female are referred to 
as sex-biased genes (Mank, 2017). The magnitude of sex-biased 
expression amplifies along with development, and reach the 

most manifest in adults (Mank et  al., 2010; Perry et al., 2014). 
Therefore, we collected samples at 5-months old in this study, 
when they approaching the mating stage, expecting to capture 
more sex-biased expression genes.

The F. chinensis is an annual shrimp. Female shrimps migrate 
to warmer sea area to overwinter after mating, and swim back to 
original coast for oviposition. In the meantime, selective pressure 
forced on females. The female shrimps should store enough 
energy for the migration and preparation for oviposition, which 
could result in the bigger body size.

There were significantly more transcripts showed female-biased 
expression in muscle, which was speculated attributing to the 
better growth performance of females. With the DETs in muscle, 

FIGURE 2 | Differences in body color and body size of the two sexes shrimps. (A) Body color. (B) Body length and (C) body weights at 6-months-old. Thirty female 
and thirty male full-sib shrimps which farmed at a same pond were measured. The line on bar represents standard deviation. “**” indicates significant differences 
between the two sexes with one-way analysis of variance (P < 0.01).

FIGURE 3 | Pathway enrichment of differentially expressed transcripts in muscle (A) and gonad (B). Each circle represents a Kyoto Encyclopedia of Genes and 
Genomes pathway. The vertical axis displays the pathway name and the horizontal axis represents the enrichment factor, which indicating the ratio of the proportion 
of transcripts annotated into a certain pathway in differentially expressed transcripts (DETs) to the proportion of transcripts annotated into that pathway in all 
transcripts. A higher enrichment factor represents a more significant enrichment level of DETs in this pathway. The color of the circle represents q-value, which is the 
P value after correction of multiple hypothesis test. The smaller q-value indicates more reliable enrichment of DET in this pathway. The size of the circle indicates the 
number of transcripts enriched in the pathway.
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some potential pathways relating to the sexual dimorphism of F. 
chinensis were unearthed. There were several pathways involved in 
metabolism of substances and energy. The N-glycan biosynthesis, 
beta-alanine metabolism, and histidine metabolism participate 

in protein synthesis. The fatty acid elongation and biosynthesis 
of unsaturated fatty acids related to fat synthesis. The purine 
metabolism takes part in the energy supply of organisms (Nisr and 
Affourtit, 2016). The metabolism of substances and energy was 

FIGURE 4 | The expression level of the differentially expressed transcripts (DETs) of muscle in five pathways. Each bar represents one sample. Different colors 
indicate different sexes. The abscissa represents the transcript ID. The ordinate represents the logarithm of the (FPKM+1). Since the DETs in pathways of fatty acid 
elongation and biosynthesis of unsaturated fatty acids were same, we combined the two pathways in one plot.

FIGURE 5 | The expression level of some differentially expressed transcripts (DETs) in gonad. (A) Expression level of the DET (transcript/14,675) shared by pathways 
of Fc gamma R-mediated phagocytosis, Ras signaling pathway, cyclic adenosine 3,5-monophosphate signaling pathway, and choline metabolism in cancer. 
(B) Expression level of DETs in the pathway of arachidonic acid metabolism. Each bar represents one sample. Different colors indicate different sexes. The abscissa 
represents the transcript ID. The ordinate represents the logarithm of the (FPKM+1).
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considered relevant to the growth rate (Krieger, 1978; Vahl, 1984). 
Since most of transcripts in these pathways were female-biased, 
it supported the conjecture that these DETs were responsible for 
the fast growth of females. The fast growth always accompanied 
by frequent cell division and gene expression (Dayton and White, 
2008), which reflected in the enrichment of DETs in the pathways 
of genetic information processing.

There was scarcely any research study the body color of F. 
chinensis. In this research, we caught a pathway possibly related to 
the pigmentation, named porphyrin and chlorophyll metabolism. 
Porphyrins and their derivatives are widely found in important 
organelles related to energy transfer in organisms (Milne et al., 2015; 
Galvan et al., 2016). The porphyrins show different colors when they 
coordinate with different metal ions. It is mainly found in heme (iron 
porphyrin) and hemocyanin (copper porphyrin) in animals, vitamin 
B12 (cobalt porphyrin), and chlorophyll (magnesium porphyrin) 
in plants. Interestingly, the content of a porphyrin derivative, 
protoporphyrin IX, was reported responsible for the brown color 
depth of eggshell in chicken (With, 1974). Considering about that, 
we proposed three hypotheses about the color difference between 
the two sexes: I. The hemocyanin content effect the body color; II. 
Other porphyrin derivatives deposited in the muscle or epidermis of 
female resulting in the deeper color; III. Other substances have no 
connection with porphyrin play roles. However, we cannot make it 
clear based on the current research. Further verification experiments 
are required to answer this question.

Although the muscle is not the reproductive tissue, there 
still some reproduction-related genes expressed. The pathway of 
progesterone-mediated maturation was digged out by the DETs 
in muscle. We sampled the shrimps at 5-months-old, when they 
approaching sexual maturity, and about to ready for the mating a 
month later. It is a key stage of reproduction for F. chinensis. The 
four DETs in this pathway were all female-biased, indicating an 
active oocyte development in female.

Unlike the muscle, DETs in gonad were irregularly female- or 
male-biased expression in most of pathways. Exceptionally, all 
the six DETs in the pathway of arachidonic acid metabolism were 
female-biased. The arachidonic acid (AA) is one of the initiators 
in prostaglandin biosynthesis (Khanapure et al., 2007), and 
prostaglandin could regulate reproductive function of female 
(Villars et al., 1985; Norberg et al., 2017). The AA was reported 
being largely incorporated into ovarian lipids exceeding other 
fatty acids (Johnson et al., 2017). It is the fatty acid precursor 
of an important signal molecule for crustacean reproduction 
(Kangpanich et al., 2016). Our result revealed that the AA was 
critical for the reproduction of females of F. chinensis at the pre-
breeding stage. An appropriate feed proportion with adequate AA 
at this stage may be benefit for the reproduction of F. chinensis.

There was a transcript (transcript/14,675) expressed in 
male far beyond female, and participated in several important 
signaling pathways. This transcript was predicted to encode 
phospholipase D alpha 1-like, which could function on lipid 
transport and metabolism. The phospholipase D has been 
reported to play important roles on reproduction of males in 
other species (Vinggaard and Hansen, 1993; Lee et al., 2011; 
Zhang et al., 2018). This result provides a clue for research on the 
function of this protein in reproduction of male shrimps.

A pathway named circadian rhythm was enriched. We have 
known the existence of endogenous rhythms in crustacean to 
cope with the effect of tide, light, salinity, and so on (Naylor, 
1985). The F. chinensis mate at a fixed time of each year, and 
then migrate to the south warmer area to overwinter (Kong 
et al., 2010). This series of behaviors were closely linked with 
circadian rhythm. The two DETs in this pathway was predicted 
to be transcribed from gene vrille, which was reported to drive 
rhythmic behavior in Drosophila (Gunawardhana and Hardin, 
2017). We speculated that the gene vrille also played important 
role in rhythm behavior of F. chinensis.

In conclusion, our study profiled the transcriptome of 
F.  chinensis. We further identified the DETs between two 
sexes which potentially responsible for the sex dimorphism in 
F. chinensis, such as growth, body color, and some reproductive-
related functions. However, further researches were needed to 
verify the current preliminary result. Our results provided a 
basis for understanding the underlying molecular mechanism of 
sexual dimorphism in F. chinensis.

MATERIAlS AND METhODS

Sample Collection and handling
We picked two male and two female shrimps of “Huanghai No. 
1” randomly at 5-months-old. Muscle, gonad, hepatopancreas, 
intestine, ganglion, heart, and sputum were collected and 
frozen in liquid nitrogen. Total RNA was extracted using 
TRIzol (Invitrogen, USA) with the standard protocols from 
the manufacturer. The RNA quality was assessed by NanoDrop 
2000 spectrophotometer (Thermo Fisher Scientific Inc.) and 
agarose gel electrophoresis (AGE). Twenty-eight RNA samples 
(4 individuals × 7 tissues) were mixed into one pool with equal 
amount of nucleic acids. The mixed pool was applied to single-
molecule FL transcriptome sequencing.

Another 15 female and 15 male shrimps were chosen for 
Illumina-based RNA-seq. We collected their gonad (female: 
ovary, male: testis) and muscle. Total RNA was extracted as stated 
above. Each five RNA samples of same sex and same tissue were 
mixed into one pool. The three pools of each sex were treated as 
biological duplicates.

To measure the body weight and body length of F. chinensis, 
we picked 30 female and 30 male full-sib shrimps of “Huanghai 
No. 1” randomly at 6-months-old, which were farmed at a same 
pond. The shrimps were measured with living body. Body length 
refers to the length from the base of the eyestalk to the end of the 
tail, when the shrimp measured as straight as possible.

library Construction and Sequencing
We constructed FL transcriptome sequencing library of 1–6 
kb complementary (cDNA) for the mixed pool sample. The 
library was sequenced on one SMRT Cell of Pacific Biosciences 
(PacBio) platform. Briefly, SMARTer™ PCR cDNA Synthesis Kit 
(Pacific Biosciences, Menlo Park, CA, USA) was used to generate 
first- and second-strand cDNA from mRNA. After a round of 
polymerase chain reaction (PCR) amplification and end repair, 
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SMRTbell™ hairpin adapters were ligated. By exonuclease 
digestion, we obtained a 1–6 kb cDNA library.

Twelve libraries of two tissues and two sexes (three duplicates) 
were constructed following the protocol of the Gene Expression 
Sample Prep Kit (Illumina, San Diego, CA, USA). The libraries 
were sequenced by Illumina NovaSeq S4 platform with paired-
end (PE) 150 nt.

PacBio long Read Processing
Raw reads were processed into error corrected reads of insert 
(ROIs) using Iso-Seq pipeline (Pacific Biosciences, Menlo 
Park, CA, USA) (Rhoads and Au, 2015) with minFullPass = 1 
and minPredictedAccuracy = 0.90. FL, non-chimeric (FLNC) 
transcripts were determined by searching for the polyA tail 
signal and the 5’ and 3’ cDNA primers in ROIs. We used ICE 
(iterative clustering for error correction) to obtain FL consensus 
isoforms and they were further polished. Then the high-quality 
FL consensus isoforms were classified with the criteria post-
correction accuracy above 99%. The low-quality FL consensus 
transcripts were corrected by our Illumina short reads RNA-seq 
data using the proovread software (Hackl et al., 2014), and merged 
with the high-quality FL consensus transcripts. Then the merged 
high-quality FL transcripts were removed redundancy using 
cd-hit (Li and Godzik, 2006) (identity > 0.99). Gene function was 
annotated by BLAST (Altschul et al., 1997) (version 2.2.26) based 
on the following databases: NR (NCBI non-redundant protein 
sequences) (Pruitt et al., 2007); Pfam (protein family) (Finn et al., 
2014); KOG/COG/eggNOG (clusters of orthologous groups of 
proteins) (Tatusov et al., 2000; Koonin et al., 2004; Jensen et al., 
2008); Swiss-Prot (a manually annotated and reviewed protein 
sequence database) (The UniProt, Consortium, 2017); KEGG 
(Kyoto Encyclopedia of Genes and Genomes) (Kanehisa et al., 
2004); GO (Gene Ontology) (Ashburner et al., 2000).

The structure analysis of the transcriptome was as follows:

Alternative Splice
We used Iso-Seq™ data directly to run all-vs.-all BLAST with high 
identity settings, BLAST alignments that met all criteria were 
considered products of candidate AS events: there should be two 
HSPs (high-scoring segment pair) larger than 1,000 bp in the 
alignment; the two HSPs have same forward/reverse direction, 
within the same alignment; one sequence should be continuous, 
or with a small “overlap” size (smaller than 5 bp), the other one 
should be distinct to show an “AS gap”; the continuous sequence 
should pretty much completely align to the distinct sequence; the 
AS Gap should larger than 100 bp and at least 100 bp away from 
the 3’/5’ end.

Simple Sequence Repeat Detection
Simple sequence repeats (SSRs) of the transcriptome were 
identified using MISA (http://pgrc.ipk-gatersleben.de/misa/).

Coding Sequence Detection
Candidate coding regions within transcript sequences were 
identified by TransDecoder (https://github.com/TransDecoder/
TransDecoder/releases) (version 5.5.0). We used the following 

criteria: 1) a minimum length open reading frame (ORF) is 
found in a transcript sequence; 2) a log-likelihood score similar 
to what is computed by the GeneID software (http://genome.crg.
es/software/geneid/) is > 0; 3) the above coding score is greatest 
when the ORF is scored in the 1st reading frame as compared to 
scores in the other five reading frames; 4) if a candidate ORF is 
found fully encapsulated by the coordinates of another candidate 
ORF, the longer one is reported. However, a single transcript 
can report multiple ORFs (allowing for operons, chimeras, etc); 
5) optional the putative peptide has a match to a Pfam domain 
above the noise cutoff score.

Long Non-Coding Ribonucleic Acid Analysis
Four computational approaches include coding potential calculator 
(CPC) (Kong et al., 2007), Coding-Non-Coding Index (CNCI) (Sun 
et al., 2013), Coding Potential Assessment Tool (CPAT) (Wang et 
al., 2013), and Pfam database (Finn et al., 2014) were combined to 
sort non-protein coding RNA candidates from putative protein-
coding RNAs in the transcripts. Putative protein-coding RNAs were 
filtered out using a minimum length and exon number threshold. 
Transcripts with length more than 200 nt and possess more than 
two exons were selected as lncRNA candidates and further screened 
using CPC/CNCI/CPAT/Pfam that have the power to distinguish 
the protein-coding genes from the non-coding genes.

Illumine-Based Ribonucleic Acid 
Sequencing Data Processing
Raw reads of FASTQ format were firstly processed through 
in-house Perl scripts. Briefly, clean reads were obtained by 
removing reads containing adapter or ploy-N and low-quality 
reads from raw data. At the same time, Q20, Q30, GC-content, and 
sequence duplication level of the clean data were calculated. All the 
downstream analyses were based on clean data with high quality.

The clean reads of each RNA-seq library were aligned to the 
FL reference transcriptome to obtain unique mapped reads by 
using the tool of STAR (Dobin et al., 2013) (version 2.5.0b) 
with default parameters. Only reads with a perfect match or 
one mismatch were further analyzed and annotated based on 
the reference transcriptome. The read counts were adjusted 
by edgeR program package (Robinson et al., 2010) (version 
3.22.0). Expression level of each transcript for each tissue was 
calculated and normalized into FPKM values by RSEM software 
(Li and Dewey, 2011) (version 1.2.19). The resulting FDR 
(false discovery rate) was adjusted using the PPDE (posterior 
probability of being DE) method in EBSeq package (Leng 
et al., 2013) (version 1.24.0). We set the conditions of FDR < 
0.05 and |log2(foldchange)|≥1 as the threshold for significantly 
differential expression.

Functional Enrichment Analysis of DETs
GO enrichment analysis of the DETs was implemented by the R 
packages of GOseq (Young et al., 2010) (version 1.34.1) based on 
the Wallenius non-central hyper-geometric distribution, which 
can adjust for gene length bias in differential expression genes 
(DEGs). All of the transcripts of F. chinensis annotated in this 
study were used as the background data.
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KEGG (Kanehisa et al., 2017) is a database resource for 
understanding high-level functions and utilities of the biological 
system (http://www.genome.jp/kegg/). We used KOBAS software 
(Mao et al., 2005) (version 3.0.0) to test the statistical enrichment 
of DETs in KEGG pathways.
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Genome-Wide Differential Expression 
Profiling of Ovarian circRNAs 
Associated With Litter Size in Pigs
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Circular RNAs (circRNAs) have been emerging as an important regulator in mammalian 
reproduction via acting as miRNA sponges. However, the circRNAs in porcine ovaries 
related with litter size remains largely unknown. In this study, porcine ovaries with smaller 
or larger litter size (LLS) were subjected to high-throughput RNA sequencing. In total, 
38,722 circRNAs were identified, of which 1,291 circRNAs were commonly expressed 
in all samples. There were 56 circRNAs significantly down-regulated and 54 circRNAs 
up-regulated in LLS pig (|log2 (fold change) | > 1, FDR < 0.05). Bioinformatics predicted 
that most of circRNAs harbored miRNA binding sites, and the expression patterns of 
circRNAs and their putative binding miRNAs were validated by qPCR. Moreover, the 
expression of circ-TCP11/miR-183 was significantly reversely correlated and their direct 
interaction was confirmed by dual-luciferase assay. Our study indicates that circRNAs 
may play potential effects on modulating porcine litter size.

Keywords: circRNA, ovary, litter size, pig, miRNA

INTRODUCTION
Increasing litter size has been a global goal for pig breeders and producers, and larger litter size 
plus shorter farrowing intervals are desperately expected to expand piglets per sow per year, which 
is the predominant force to boost economic success of sow husbandry (Zak et al., 2017; Kemp 
et al., 2018). Ovary is an important reproductive organ in females and goes through a series of 
biological processes during each estrous cycle. Sow prolificacy is tightly modulated by the complex 
transcriptional network involving coding and non-coding genes in ovaries (Zhang et al., 2015; 
Huang et al., 2016; Tang et al., 2018).

Covalently closed circular RNAs (circRNAs) are emerging as a novel class of modulators for 
gene expression (Li et al., 2018). Now, accumulating work has shed light on the critical roles of 
circRNAs in gonadal development and reproduction performance in many species (Quan and Li 
2018). Next-generation sequencing has revealed that endogenous circRNAs are generally expressed 
in various kinds of porcine tissues in a spatio-temporally specific manner, including ovaries (Liang 
et al., 2017). Recent studies revealed that human ovary-derived circRNAs are involved in ovarian 
aging (Cai et al., 2018), thus we investigated whether circRNAs’ profile differs in sows with different 
litter sizes.
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In this study, a total of six ovaries were selected from 
multiparous sows with intact prolificacy records, and high-
throughput sequencing technology coupled with bioinformatic 
tools were employed to uncover litter-size-related circRNAs, 
providing potential candidate loci that may be informative for 
future pig breeding programs.

MATERIALS AND METhODS

Ethics Statement and Sample Collection
This study was approved by the Animal Care and Use Committee 
in Northwest A&F University (No. 2018-019). The ovaries in our 
study were collected from sows 4 days after the fourth delivery 
picked from a commercial sow piggery in Hanshiwei Food Ltd., 
Co. (Dahua, Guangxi, China), which is negative for PRRSV 
(porcine reproductive and respiratory syndrome virus) and PCV 
(porcine circovirus). For RNA-seq, three ovaries were sampled 
from each group small and large litter size (8.48 ± 0.53 piglets/
litter in small litter size and 16.19 ± 0.43 piglets/litter in large 
litter size). In RT-qPCR assay, more ovaries were sampled (8.78 ± 
1.75 piglets/litter vs. 14.83 ± 1.61 piglets/litter, n = 12). All sows 
were slaughtered in a standard slaughterhouse in Xinyouxian 
Livestock Ltd., Co., (Xining, Guangxi, China), and the left ovaries 
were quickly taken and frozen in liquid nitrogen.

RNA-Seq Assay
The frozen ovary tissues were homogenized in TRIzol™ reagent 
(Invitrogen, Carlsbad, CA, USA), and each sample was quantified 
using ND-1000 Nanodrop (Thermo Fisher, Wilmington, DE, 
USA). RNA integrity number (RIN) was analyzed with Agilent 
2200 (Agilent, Palo Alto, CA, USA), and RNAs with RIN >7.0 
were used for RNA-seq analysis.

The total RNA samples (3 μg) were treated with Epicenter 
Ribo-Zero rRNA removal kit (Illumina, San Diego, CA, USA) 
to remove ribosomal RNA (rRNA) before cDNA library 
construction, and then ribosome depleted RNAs were fragmented 
into 150–200 nt by incubation with divalent cations at 94°C for 
8 min. The cleaved RNA fragments were reverse-transcribed into 
first- and second-strand cDNA according to the description of 

TruSeq RNA LT/HT sample preparation kit (Illumina, USA). 
Briefly, the cDNA was treated with End-It DNA End Repair Kit 
to repair the ends, then modified with Klenow to add an A at the 
3′ end, and finally ligated to indexed adapters. The ligated cDNA 
products were purified and treated with uracil DNA glycosylase 
to remove the second-strand cDNA. Purified first-strand cDNA 
was enriched by 13–16 cycles of PCR amplification. The final 
cDNA libraries were evaluated by Bioanalyzer 2200 (Agilent, 
Santa Clara, CA) and subjected to sequencing by HiSeq 2000 
(Illumina, USA).

miRNA libraries were constructed by Ion Total RNA-Seq Kit 
v2.0 (Life Technologies), and the sizes were selected by PAGE gel 
and processed for miRNA sequencing.

Bioinformatic Analysis
Raw sequencing data were tested by performing FAST-QC 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) 
and evaluation metrics including quality scores, distribution 
of nucleotides, GC content, k-mer frequency, and others. Low-
quality bases and N bases were trimmed from the reads by 
NGSQCToolkit (v2.3.3), and high-quality clean reads were 
obtained for subsequent analysis. Clean reads were mapped to 
the reference genome (Sscrofa 11.1 assembly, http://genome.
ucsc.edu) using Hisat2 software.

CIRI was used to identify circRNAs. The alignment results 
(SAM format) were scanned to search paired chiastic clipping 
and paired-end mapping signals, as well as GT-AG splicing 
signals. All the sequences with junction sites were realigned to 
reference genome using dynamic programming algorithm to 
ensure the reliability of the putative circRNAs. The total number 
of reads spanning back-spliced junctions was used as an absolute 
measure of circRNA abundance.

DEseq2 was used to explore the differentially expressed mRNA 
among different groups, and the criteria were set as |log2 (fold 
change) | > 1, FDR < 0.05. EdgeRSeq was used to explore the 
differentially expressed circRNA and miRNA between groups, with 
cutoff of |log2 (fold change) | > 1, FDR < 0.05. Gene ontology (GO) 
function (http://www.geneontology.org/) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG, http://www.genome.jp/kegg) 
pathway of genes of target were annotated.

TABLE 1 | Sequences of primers used in this study.

Primer li
st

Sequence (5′→3′) Product length (bp)

circ-ERBIN F: TTCGACATCCCCAGACATCC R: CAGACATCCGAGACGGAGAA 218
circ-SNTB2 F: CAACAATGGAGACCCGTCCT R: TCCTTGGTGCTGTTCTGGTG 267
circ-TCP1 F: GGGACCTTAAACGCATTGCTA R: GGTCCAGTTTTTCAGGGTCTGT 147
circ-KMT2A F: AGGAGAACGCAGGCACTTTG R: GGAGGAGGTTCACTGTTGCT 261
circ-LOC397451 F: GCTTGCATTGAAAACGGGTCTC R: TCCATTACAGGCAGGACAGTG 261
circ-NUP98 F: AGCACAGGGACCAGTCTTTTC R: AGGCTTCCAGTATTGTTGCTG 248
circ-SENP2 F: GGGGAAGAGCAAAGTCATGGA R: TCCGTGTGCCATTACAAGCA 294
circ-CCDC85A F: CTGCTAGACTTGACCAGCGTT R: CAAATGTGGGCCAATGGTGAT 180
circ-CCAR1 F: CCAACATCAGCAGCCCTTGT R: TGCTGCAATCCGAGTATCCC 218
ACTB F: GGACTTCGAGCAGGAGATGG R: AGGAAGGAGGGCTGGAAGAG 134
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CeRNA Network Construction
The potential miRNA–circRNA interactions were predicted by 
miRanda (http://miranda.org.uk/) and RNAhybrid2 (http://bibiserv.
techfak.uni-bielefeld.de/rnahybrid). The correlation between the 
expression levels of circRNA and miRNA was calculated with SPSS 
Pearson correlation assay.

RT-qPCR Verification
Total RNA was purified using TRIzol™ reagent (Invitrogen). 
An aliquot of 2 μg total RNA was taken from each sample and 
reverse transcripted by random primers (TakaRa, Otsu, Japan). 
For miRNA analysis, specific reverse transcription primers 
and procedures were used. Real-time PCR reaction (95°C 30 s, 
then 95°C 5 s, 60°C 30 s for 40 cycles, following 70°C 10 min 
for elongation) was performed in triplicate using the One-
step SYBY PrimeScript RT-PCR kit (TakaRa) on a Bio-Rad 
iQ5™ system (Bio-Rad, Berkeley, CA, USA). The expressions 
of circRNA and miRNA were normalized to that of ACTB and 
U6 small RNA, respectively. The primer sequences for qPCR are 
shown in Table 1.

Dual Luciferase Assay
A ~400 bp fragment of circRNA containing the putative 
miRNA binding site was synthesized by General Biosystems 
(Chuzhou, Anhui, China) and inserted into psiCHECK™-2 
vector (Promega, Madison, WI, USA) to construct psi-circRNA 
plasmids. Then the psi-circRNA constructs were co-transfected 
with their corresponding miRNAs (RiboBio, Guangzhou, 
China) into 293T cells using Lipofectin™ 2000 (Thermo Fisher 
Scientific, Waltham, MA, USA), and the luciferase activity was 
detected by Dual-Luciferase® Reporter Assay System (Promega) 
24 h post transfection.

Statistical Analysis
Data were processed with SPSS 19.0 software, and results 
were presented as mean ± SEM. Significant differences were 
assessed by unpaired Student’s t-test and p < 0.05 was defined as 
statistical significance.

RESULTS

Overview of CircRNAs in Porcine Ovary
Three ovaries in each group (small litter size vs. large litter 
size) were subjected to RNA sequencing, and a total of 38,722 
circRNAs were predicted, which were widely distributed across 
all chromosomes (Figures 1A, B). However, only 1,291 circRNAs 
were expressed in all samples (Figure 1C).

Differential CircRNA Expression Profiles 
in Pigs Differing Litter Size
In our study, 110 circRNAs [56 down-regulated and 54 
up-regulated in larger litter size (LLS)] (Figure 2 A, B) and 20 
miRNAs [11 down-regulated and 9 up-regulated in smaller litter 
size (SLS)] were identified by RNA-seq (Figure 2 C, D).

Given the high variability between samples in RNA-seq, the 
sample pool was expanded to 12 per group, and a total of 24 ovaries 
were used when confirming the differentially expressed circRNAs 
and miRNAs revealed above using RT-PCR. Based on the 
expanded sample size, RT-PCR assay uncovered that circ-ERBN, 

FIGURE 1 | Distribution of predicted circRNAs in our study. (A) The distribution 
of annotated mRNAs on the genome. (B) The distribution of commenly-
expressed circRNAs on the genome. (C) The exon numbers of commenly-
expressed circRNAs in our study.
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circ-SNTB2, circ-TCP1, and circ-KMT2A were significantly higher 
expressed in porcine ovaries with SLS, while circ-CCDC85A and 
circ-CCAR1 were significantly higher expressed in porcine ovaries 
with LLS (Figure 3).

Regarding the differentially expressed miRNAs, the levels 
of  miR-183 and miR-7857-3p were significantly lower in 
the SLS group while miR-497-5p were significantly lower 
expressed in pigs with LLS, which were consistent with high- 
throughput sequencing(Figure 4).

Identification of CircRNA–MiRNA Axis
Among the differentially expressed circRNAs and miRNAs 
detected above, RNAhybrid analysis revealed that miR-183 
was predicted to interact with circ-TCP1, miR-497 with circ-
CCDC85A. Besides, the expression of miR-183 was reversely 
correlated with circ-TCP1, and a similar tendency was 
observed between miR-497 and circ-CCDC85A. Meanwhile, 
dual-luciferase reporter assay has shown that miR-183 could 
directly bind to circ-TCP1, while the direct interaction 
between miR-497 and circ-CCDC85A was not detected in 
this assay (Figure 5).

Function Analysis of miR-183
TargetScan and MiRDB were used to predict the potential 
targets of miR-183, and the common genes presented by these 
two strategies were subjected to KEGG and GO analysis. KEGG 
showed that miR-183 might modulate DNA-templated and RNA 
PolII-mediated transcription (Figure 6A). GO enrichment assay 
indicated that miR-183 might be tightly related with PI3K-Akt 
signaling activity (Figure 6B).

DISCUSSION

The aim of the current study was to identify potential circRNAs 
related with swine fertility. Even RNA-seq only screened out a total 
of 1,291 exon-derived circRNAs that expressed in each ovary in our 
study; there were still several circRNAs that differentially expressed 
in ovaries with small and large litter size. To overcome the deficiency 
of great individual variation, the expressions of circRNAs of interest 
were further validated by RT-qPCR on larger-scale samples. Of 
note, significantly more circ-TCP1 was detected in porcine ovaries 
with SLS, and we focus on circ-TCP1 in the subsequent study.

FIGURE 2 | Differentially expressed circRNAs and miRNAs between SLS and LLS pigs. (A) The volcano plot of differentially-expressed circRNAs in LLS and SLS 
ovaries. (B) The numbers of down- and up-regulated circRNAs in LLS ovaries compared with SLS. (C) The volcano plot of differentially-expressed miRNAs in LLS 
and SLS ovaries. (D) The numbers of down- and up-regulated miRNAs in LLS ovaries compared with SLS.
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One of the well-documented pathways of circRNAs is to 
competitively bind to functional miRNAs, known as competing 
endogenous RNAs (ceRNAs) (Li et al., 2018). Here, circ-TCP1, 
derived from exons 7 and 8 of porcine TCP1 (T-complex 
protein 1 subunit alpha) gene, was significantly lower expressed 
in ovaries with LLS. TCP1 gene encodes a molecular chaperone 
that is a member of the chaperonin containing TCP1 complex 
(CCT), also known as the TCP1 ring complex (TRiC), which 
folds various proteins, including actin and tubulin (Sternlicht 
et al., 1993). Currently, there are no reports about the role of 
TCP1 in ovary. However, CCT6A, the zeta subunit of CCT, was 
shown to be expressed in chicken granulosa cells, indicating 
an important role in folic growth (Wei et al., 2013). Here, circ-
TCP1 was predicted to absorb miR-183 by online RNAhybrid 
software. Moreover, miR-183 presented a significantly reverse 
profile with circ-TCP1, and the interaction between circ-TCP1 
and miR-183 was further confirmed by luciferase activity assay. 
Collectively, our data indicated that the circ-TCP1–miR-183 

axis might be involved in the biological processes related with 
litter size.

MiR-183 belongs to the highly conserved miR-183-96-
182 cluster, which have been shown to be associated with 
female fertility (Zhang et al., 2019a). Members of miR-183-
96-182 cluster are known to target the 3′-UTR of FOXO1, 
an important transcription factor for follicle-stimulating 
hormone responsive genes in ovarian granulosa cells of rodents 
(Herndon et al., 2016). FOXO1 and miR-183-96-182 cluster 
have been also shown to be associated with bovine ovarian 
follicle development (Zielak-Steciwko and Evans 2016). MiR-
183 is highly expressed in ovarian cancer cells (Wang et al., 
2014; Chen et al., 2016) and down-regulation of miR-183 
markedly represses cell proliferation and promotes apoptosis 
via targeting SMAD family member 4 (Smad4) (Zhou et al., 
2019). In our study, KEGG and GO assay suggested that miR-
183 might be associated with gene transcription, especially 
related with PI3K-Akt signaling. Genome-wide analysis 

FIGURE 3 | Validation of differentially expressed circRNAs by qPCR. The expression of circ-ERBIN (A), circ-SNTB2 (B), circ-TCP1 (C), circ-KMT2A (D), circ-
LOC397451 (E), circ-NUP98 (F), circ-SENP2 (G), circ-CCDC85A (h) and circ-CCAR1 (I) in SLS and LLS ovaries. *presents p < 0.05.
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FIGURE 5 | Validation of the interaction between the differentially expressed miRNAs and circRNAs. (A) The putative binding site of miR-183 on circ-TCP1 
predicted by RNAhybrid. (B) The correlation of the expression levels between miR-183 and circ-TCP1 in ovaries. (C) The relative luciferase activity of reporter 
constructs containing wild-type or mutant miR-183-binding sites from circ-TCP1 following cotransfection with control or miR-183 mimics. (D) The putative 
binding site of miR-497 on circ-CCDC85A predicted by RNAhybrid. (E) The correlation of the expression levels between miR-497 and circ-CCDC85A in ovaries. 
(F) The relative luciferase activity of reporter constructs containing wild-type or mutant miR-497-binding sites from circ-CCDC85A following cotransfection with 
control or miR-497 mimics. *presents p < 0.05.

FIGURE 4 | Validation of differentially expressed miRNAs by qPCR. The expression of miR-2336 (A), miR-183 (B), miR-7857 (C) and miR-497-5p (D) in SLS 
and LLS ovaries. *presents p < 0.05.

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1010335

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Ovarian circRNAs and Litter Size in PigsXu et al.

7

revealed that genes related with PI3K-Akt activity were changed 
during different follicular stages in the ovaries of Duroc pigs 
(Liu et al., 2018), and PI3K-Akt activity was significantly 
inhibited when cell growth of porcine ovarian granulosa was 
impaired by extracellular stimuli (Wang et al., 2019; Zhang 
et al., 2019b). Altered PI3K-Akt signaling was also reported 
to contribute to impeded 17β-estradiol secretion in ovary 
cells (Wu et al., 2017). However, the molecular mechanism of 

miR-183-PI3K-Akt axis in ovary and their effects on litter size 
requires further investigation.

CONCLUSION
In our study, genome-wide identification of exon-derived circRNAs in 
porcine ovaries was performed by RNA-seq, and many of which were 

FIGURE 6 | Functional analysis of miR-183. (A) The KEGG pathway analysis of miR-183 target genes. (B) The GO enrichment analysis of miR-183 target genes.
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differently expressed in ovaries with variant litter sizes. Furthermore, 
most exonic circRNAs harbored miRNA binding sites, and circ-
TCP1-miR-183 axis might be associated with swine litter size.

DATA AVAILABILITY STATEMENT
The data generated in this study has been uploaded to NCBI and 
can be found under accession number: GSE136592

EThICS STATEMENT
This study was approved by Animal Care and Use Committee in 
Northwest A&F University.

AUThOR CONTRIBUTIONS
GX conducted the study and drafted the 
manuscript.  HZ  and XL assisted t in ovaries sampling 
and data analysis. JH,  GY gave  critical comments about 
experiment  design  and  manuscript drafting. SS supervised 
the experiment.

FUNDING
This work was supported by the National Key Technology R 
and D Program of China (2015BAD03B01-10).

REFERENCES
Cai, H., Li, Y., Li, H., Niringiyumukiza, J. D., Zhang, M., et al. (2018). 

Identification and characterization of human ovary-derived circular RNAs 
and their potential roles in ovarian aging. Aging 10, 2511–2534. doi: 10.18632/
aging.101565

Chen, H., Zhang, L., Zhang, L., Du, J., Wang, H., et al. (2016). MicroRNA-183 
correlates cancer prognosis, regulates cancer proliferation and bufalin 
sensitivity in epithelial ovarian caner. Am. J. Transl. Res. 8, 1748–1755.

Herndon, M. K., Law, N. C., Donaubauer, E. M., Kyriss, B., and Hunzicker-
Dunn, M. (2016). Forkhead box O member FOXO1 regulates the majority of 
follicle-stimulating hormone responsive genes in ovarian granulosa cells. Mol. 
Cell. Endocrinol. 434, 116–126. doi: 10.1016/j.mce.2016.06.020

Huang, L., Yin, Z. J., Feng, Y. F., Zhang, X. D., Wu, T., et al. (2016). Identification 
and differential expression of microRNAs in the ovaries of pigs (Sus scrofa) 
with high and low litter sizes. Animal Genet. 47, 543–551. doi: 10.1111/
age.12452

Kemp, B., Da Silva, C. L. A., and Soede, N. M. (2018). Recent advances in pig 
reproduction: Focus on impact of genetic selection for female fertility. Reprod. 
Domestic Animals 53, 28–36. doi: 10.1111/rda.13264

Li, X., Yang, L., and Chen, L.-L. (2018). The biogenesis, functions, and challenges 
of circular RNAs. Mol. Cell 71, 428–442. doi: 10.1016/j.molcel.2018.06.034

Liang, G., Yang, Y., Niu, G., Tang, Z., and Li, K. (2017). Genome-wide profiling of 
Sus scrofa circular RNAs across nine organs and three developmental stages. 
DNA Res. 24, 523–535. doi: 10.1093/dnares/dsx022

Liu, Y., Li, M., Bo, X., Li, T., Ma, L., et al. (2018). Systematic analysis of long 
non-coding RNAs and mRNAs in the ovaries of Duroc pigs during different 
follicular stages using RNA sequencing. Int. J. Mol. Sci. 19, E1722. doi: 10.3390/
ijms19061722

Quan, G., and Li, J. (2018). Circular RNAs: biogenesis, expression and their 
potential roles in reproduction. J. Ovarian Res. 11, 9–9. doi: 10.1186/
s13048-018-0381-4

Sternlicht, H., Farr, G. W., Sternlicht, M. L., Driscoll, J. K., Willison, K., et al. (1993). 
The t-complex polypeptide 1 complex is a chaperonin for tubulin and actin in 
vivo. Proc. Natl Acad. Sci. U. S. A. 90, 9422–9426. doi: 10.1073/pnas.90.20.9422

Tang, L.-T., Ran, X.-Q., Mao, N., Zhang, F.-P., Niu, X., et al. (2018). Analysis 
of alternative splicing events by RNA sequencing in the ovaries of Xiang 
pig at estrous and diestrous. Theriogenology 119, 60–68. doi: 10.1016/j.
theriogenology.2018.06.022

Wang, L., Zhu, M.-J., Ren, A.-M., Wu, H.-F., Han, W.-M., et al. (2014). A ten-
microRNA signature identified from a genome-wide microRNA expression 

profiling in human epithelial ovarian cancer. PloS One 9, e96472–e96472. doi: 
10.1371/journal.pone.0096472

Wang, W., Luo, S., Ma, J., Shen, W., and Yin, S. (2019). Cytotoxicity and DNA 
damage caused from Diazinon exposure by inhibiting the PI3K-AKT pathway 
in porcine ovarian granulosa cells. J. Agric. Food Chem. 67, 19–31. doi: 10.1021/
acs.jafc.8b05194

Wei, Q., Zhu, G., Cui, X., Kang, L., Cao, D., et al. (2013). Expression of CCT6A 
mRNA in chicken granulosa cells is regulated by progesterone. Gen. Comp. 
Endocrinol. 189, 15–23. doi: 10.1016/j.ygcen.2013.04.019

Wu, C., Yan, D., Lu, D., Han, T., and Zhao, B. (2017). Alteration of the PI3K/Akt 
signaling pathway by swainsonine affects 17β-Estradiol secretion in ovary cells. 
Theriogenology 103, 123–129. doi: 10.1016/j.theriogenology.2017.07.033

Zak, L. J., Gaustad, A. H., Bolarin, A., Broekhuijse, M. L. W. J., Walling, G. A., et al. 
(2017). Genetic control of complex traits, with a focus on reproduction in pigs. 
Mol. Reprod. Dev. 84, 1004–1011. doi: 10.1002/mrd.22875

Zhang, J., Xu, Y., Liu, H., and Pan, Z. (2019a). MicroRNAs in ovarian follicular 
atresia and granulosa cell apoptosis. Reprod. Biol. Endocrinol.: RB&E 17, 9–9. 
doi: 10.1186/s12958-018-0450-y

Zhang, T., Sun, X., Li, L., Ma, J., Zhang, R., et al. (2019b). Ochratoxin A exposure 
impairs porcine granulosa cell growth via the PI3K/AKT signaling pathway. 
J. Agric. Food Chem. 67, 2679–2690. doi: 10.1021/acs.jafc.8b06361

Zhang, X., Huang, L., Wu, T., Feng, Y., Ding, Y., et al. (2015). Transcriptomic 
analysis of ovaries from pigs with high and low litter size. PLoS One 10, 
e0139514. doi: 10.1371/journal.pone.0139514

Zhou, J., Zhang, C., Zhou, B., and Jiang, D. (2019). miR-183 modulated cell 
proliferation and apoptosis in ovarian cancer through the TGF-β/Smad4 
signaling pathway. Int. J. Mol. Med. 43, 1734–1746. doi: 10.3892/ijmm.2019.4082

Zielak-Steciwko, A. E., and Evans, A. C. O. (2016). Genomic portrait of ovarian 
follicle growth regulation in cattle. Reprod. Biol. 16, 197–202. doi: 10.1016/j.
repbio.2016.07.003

Conflict of Interest: The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be construed as a 
potential conflict of interest.

Copyright © 2019 Xu, Zhang, Li, Hu, Yang and Sun. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License (CC 
BY). The use, distribution or reproduction in other forums is permitted, provided 
the original author(s) and the copyright owner(s) are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. No 
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1010337

https://doi.org/10.18632/aging.101565
https://doi.org/10.18632/aging.101565
https://doi.org/10.1016/j.mce.2016.06.020
https://doi.org/10.1111/age.12452
https://doi.org/10.1111/age.12452
https://doi.org/10.1111/rda.13264
https://doi.org/10.1016/j.molcel.2018.06.034
https://doi.org/10.1093/dnares/dsx022
https://doi.org/10.3390/ijms19061722
https://doi.org/10.3390/ijms19061722
https://doi.org/10.1186/s13048-018-0381-4
https://doi.org/10.1186/s13048-018-0381-4
https://doi.org/10.1073/pnas.90.20.9422
https://doi.org/10.1016/j.theriogenology.2018.06.022
https://doi.org/10.1016/j.theriogenology.2018.06.022
https://doi.org/10.1371/journal.pone.0096472
https://doi.org/10.1021/acs.jafc.8b05194
https://doi.org/10.1021/acs.jafc.8b05194
https://doi.org/10.1016/j.ygcen.2013.04.019
https://doi.org/10.1016/j.theriogenology.2017.07.033
https://doi.org/10.1002/mrd.22875
https://doi.org/10.1186/s12958-018-0450-y
https://doi.org/10.1021/acs.jafc.8b06361
https://doi.org/10.1371/journal.pone.0139514
https://doi.org/10.3892/ijmm.2019.4082
https://doi.org/10.1016/j.repbio.2016.07.003
https://doi.org/10.1016/j.repbio.2016.07.003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


1

Edited by: 
David E. MacHugh, 

University College Dublin, Ireland

Reviewed by: 
James Reecy, 

Iowa State University, 
United States  

Kieran G. Meade, 
The Irish Agriculture and Food 
Development Authority, Ireland

*Correspondence: 
 Christa Kühn  

kuehn@fbn-dummerstorf.de

Specialty section: 
This article was submitted to 

 Livestock Genomics, 
 a section of the journal 

 Frontiers in Genetics

Received: 25 June 2019
Accepted: 17 October 2019

Published: 22 November 2019

Citation: 
Nolte W, Weikard R, Brunner RM, 

Albrecht E, Hammon HM, 
Reverter A and Kühn C (2019) 

Biological Network Approach for 
the Identification of Regulatory Long 
Non-Coding RNAs Associated With 

Metabolic Efficiency in Cattle. 
 Front. Genet. 10:1130. 

 doi: 10.3389/fgene.2019.01130

Biological Network Approach for the 
Identification of Regulatory Long 
Non-Coding RNAs Associated With 
Metabolic Efficiency in Cattle
Wietje Nolte 1, Rosemarie Weikard 1, Ronald M. Brunner 1, Elke Albrecht 2, 
Harald M. Hammon 3, Antonio Reverter 4 and Christa Kühn 1,5*
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QLD, Australia, 5 Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany

Background: Genomic regions associated with divergent livestock feed efficiency have 
been found predominantly outside protein coding sequences. Long non-coding RNAs 
(lncRNA) can modulate chromatin accessibility, gene expression and act as important 
metabolic regulators in mammals. By integrating phenotypic, transcriptomic, and 
metabolomic data with quantitative trait locus data in prioritizing co-expression network 
analyses, we aimed to identify and functionally characterize lncRNAs with a potential key 
regulatory role in metabolic efficiency in cattle.

Materials and Methods: Crossbred animals (n = 48) of a Charolais x Holstein F2-population 
were allocated to groups of high or low metabolic efficiency based on residual feed intake in 
bulls, energy corrected milk in cows and intramuscular fat content in both genders. Tissue 
samples from jejunum, liver, skeletal muscle and rumen were subjected to global transcriptomic 
analysis via stranded total RNA sequencing (RNAseq) and blood plasma samples were used 
for profiling of 640 metabolites. To identify lncRNAs within the indicated tissues, a project-
specific transcriptome annotation was established. Subsequently, novel transcripts were 
categorized for potential lncRNA status, yielding a total of 7,646 predicted lncRNA transcripts 
belonging to 3,287 loci. A regulatory impact factor approach highlighted 92, 55, 35, and 
73 lncRNAs in jejunum, liver, muscle, and rumen, respectively. Their ensuing high regulatory 
impact factor scores indicated a potential regulatory key function in a gene set comprising loci 
displaying differential expression, tissue specificity and loci overlapping with quantitative trait 
locus regions for residual feed intake or milk production. These were subjected to a partial 
correlation and information theory analysis with the prioritized gene set.

Results and Conclusions: Independent, significant and group-specific correlations 
(|r| > 0.8) were used to build a network for the high and the low metabolic efficiency group 
resulting in 1,522 and 1,732 nodes, respectively. Eight lncRNAs displayed a particularly 
high connectivity (>100 nodes). Metabolites and genes from the partial correlation and 
information theory networks, which each correlated significantly with the respective 
lncRNA, were included in an enrichment analysis indicating distinct affected pathways 

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1130

ORIgINAL REsEARCh

doi: 10.3389/fgene.2019.01130
published: 22 November 2019

338

https://creativecommons.org/licenses/by/4.0/
mailto:kuehn@fbn-dummerstorf.de
https://doi.org/10.3389/fgene.2019.01130
https://www.frontiersin.org/article/10.3389/fgene.2019.01130/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01130/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01130/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01130/full
https://loop.frontiersin.org/people/465765
https://loop.frontiersin.org/people/32585
https://loop.frontiersin.org/people/765771
https://loop.frontiersin.org/people/505186/overview
https://loop.frontiersin.org/people/40110
https://loop.frontiersin.org/people/98800/overview
https://loop.frontiersin.org/people/741339
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.01130
https://www.frontiersin.org/journals/genetics#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.01130&domain=pdf&date_stamp=2019-11-22


LncRNAs Regulating Bovine Metabolic EfficiencyNolte et al.

2

INTRODUCTION
In recent years the focus of livestock production and farming 
has shifted in developed countries towards a stronger emphasis 
on resource efficiency and sustainability (Thornton, 2010). In 
cattle, energy metabolism, nutrient conversion and efficient use 
of primary resources are of increasing economic and ecological 
importance to breeders and consumers. Genomic selection 
and the use of biomarkers greatly facilitate the improvement of 
complex phenotypes, e.g. feed efficiency, which remain cost- and 
time-consuming to measure (Kenny et al., 2018).

Some pivotal gene mutations are known in major livestock 
production traits, e.g. a meta-analysis on stature in cattle identified 
PLAG1 as a major regulator and pointed towards putative causal 
mutations (Bouwman et al., 2018). In pigs, the scavenger receptor 
cysteine-rich domain 5 in gene CD163, when not being translated, 
led to resistance to porcine reproductive and respiratory syndrome 
virus 1 infection (Burkard et al., 2018). Pigs that did not express 
the receptor protein were susceptible to the infection. For the 
region between LCORL and NCAPG, which has been associated 
with growth or feed efficiency in a number of species (cattle, horse, 
human), multiple mappings have narrowed down the region of 
interest but the causal mutation remains unknown (Widmann 
et al., 2015; Bouwman et al., 2018). A large part of the variation 
in traits like feed efficiency, growth and carcass traits remains still 
unexplained (Hardie et al., 2017; Medeiros de Oliveira Silva et al., 
2017; Seabury et al., 2017) and genome-wide association studies 
repeatedly pointed towards quantitative trait loci (QTL) outside 
protein-coding genes (Ibeagha-Awemu et al., 2016; Seabury et al., 
2017; Higgins et al., 2018).

Due to their gene expression regulatory potential, long non-
coding RNAs (lncRNAs) have emerged as potential key regulators 
for diverse biological processes, such as X-chromosomal 
inactivation and dosage compensation (Brown et al., 1992; 
Clemson et al., 1996), vernalization/ flowering in plants (Csorba 
et al., 2014), as well as human cancer biology as reviewed by 
Serviss et al. (2014).

Recently, lncRNAs have been suggested as therapeutic 
targets for diabetes and other metabolic diseases because of 
their involvement in lipid metabolism, adipogenesis and fat 
deposition (Chen et al., 2018a; Liu et al., 2018; Zeng et al., 2018). 
In mammals, lncRNAs were further identified as key regulators 
of energy metabolism and lipogenesis (Yang et al., 2016). In 
adipocytes, these genomic elements also play an integral part 
in the insulin-signaling pathway (Degirmenci et al., 2019). A 
central regulatory role of lncRNAs was furthermore observed 
in skeletal muscle in myogenesis and muscle cell differentiation: 

SYISL has been shown to regulate myoblast proliferation and 
fusion and acts in an inhibitory way in myogenic differentiation 
(Jin et al., 2018), Irm enhances myogenic differentiation 
during myogenesis through the binding to MEF2D (Sui et  al., 
2019), and lnc-mg overexpression has directly been linked 
to muscle hypertrophy in mice, whereas a knock-out led to 
dystrophy (Zhu et al., 2017). It is likely that lncRNAs contribute 
significantly to economically important production traits and 
divergent phenotypes in livestock as well. Since they show 
little sequence conservation across species and their expression 
appears to be mainly species specific and spatiotemporal 
(Ulitsky et al., 2011; Ulitsky and Bartel, 2013), knowledge 
transfer remains a challenging issue. The identification and 
functional characterization of lncRNAs needs to be performed 
for each species, and this fits into one of the major goals of the 
consortium for the Functional Annotation of Animal Genomes 
(FAANG, https://www.animalgenome.org/community/FAANG/)
that strives to identify and annotate functionally relevant elements 
in livestock genomes.

Another key feature of lncRNAs is their low expression level 
compared to protein-coding genes (Derrien et al., 2012), which 
makes their detection challenging. From transcription factors 
it is known, that little changes in abundance can however have 
tremendous consequences if these have high regulatory potential 
in terms of gene expression (Vaquerizas et al., 2009) and we 
postulated an analogous phenomenon for lncRNAs. For instance, 
the knockout of the lowly expressed lncRNA ßlinc in mice impaired 
the correct formation of pancreatic islets and severely changed the 
glucose homeostasis in adult animals (Arnes et al., 2016). A low and 
tightly regulated gene expression has implications for differential 
expression (DE) analyses, because little changes in expression are 
often not recognized as significant due to lack of power in standard 
experimental designs. Therefore, other approaches are necessary 
when aiming to identify and functionally annotate key regulatory 
lncRNAs. A tested and proven method in the screening for critical 
transcription factors from gene expression data, which are typically 
low in abundance but have high regulatory power as reviewed by 
Vaquerizas et al. (2009), is network co-expression analysis that 
incorporates the regulatory impact factor (RIF) metrics and a 
partial correlation and information theory (PCIT) (Reverter et al., 
2010; Perez-Montarelo et al., 2012). This approach has previously 
also led to the identification of regulatory elements associated 
with puberty (Canovas et al., 2014; Nguyen et al., 2018) and feed 
efficiency in cattle (Alexandre et al., 2019). We assumed that this 
rational network approach could also be used as a hypothetical 
generation tool for the systematic detection of lncRNAs with 
important regulatory potential.

for the eight lncRNAs. LncRNAs associated with metabolic efficiency were classified to 
be functionally involved in hepatic amino acid metabolism and protein synthesis and in 
calcium signaling and neuronal nitric oxide synthase signaling in skeletal muscle cells.

Keywords: Bos taurus, metabolic efficiency, co-expression network analysis, long non-coding RNA, Functional 
Annotation of Animal genomes
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In this study, we took advantage of a unique F2 cross-population 
of meat and dairy cattle breeds (Charolais x Holstein) (Kühn 
et al., 2002) that has been deeply phenotyped and genotyped.

Earlier studies have shown that in this cross population a gene 
variant of the NCAPG gene is associated with fetal and pubertal 
growth (Eberlein et al., 2009; Weikard et al., 2010). By integrating 
quantitative metabolite data with genotype information, this 
NCAPG genotype was found to be associated with plasma 
arginine levels (Weikard et al., 2010). A systems biology 
approach, which combined metabolome data, growth-associated 
phenotypic and genetic information, revealed a functional gene 
interaction network characterizing the intensive growth phase 
at the beginning of the pubertal growth interval (Widmann 
et al., 2013). Potential interaction partners of the NCAPG gene 
were predicted and the functional role of the NCAPG gene as 
a growth regulator linked to the arginine NO metabolism was 
concluded. A combined phenotype–metabolome–genome 
analysis was also used to identify genetic switches of associated 
molecular signaling pathways linked to variance in efficiency of 
feed conversion (Widmann et al., 2015).

This current study on the regulatory role of lncRNAs for 
metabolic efficiency was aimed to contribute to a more detailed 
elucidation of the molecular background of this complex 
physiological trait and help to characterize divergent metabolic 
types with respect to nutrient partitioning. Therefore, phenotypic 
information, transcriptomic data from four metabolically relevant 
tissues and QTL information were used to establish a prioritized 
gene set that was submitted to the combinational RIF metrics and 
subsequently to the PCIT algorithm for co-expression network 
creation. The integration of metabolomic profiles through 
correlation with transcriptomic data added valuable information 
for the interpretation of biological functions.

MATERIALs AND METhODs

Design of the study
For this study, we made use of 48 animals (24 bulls, 24 cows) of a 
F2-population [SEGFAM (Kühn et al., 2002)] from a Charolais × 
Holstein cross. The cross population was bred at the Leibniz 
Institute for Farm Animal Biology in Dummerstorf (Germany) 
and kept under standardized housing and feeding conditions as 
previously described (Eberlein et al., 2009; Weikard et al., 2010; 
Widmann et al., 2011). Males were slaughtered at 18 months 
of age and females were slaughtered after their second parity 

at 30 days postpartum. Based on residual feed intake (RFI) in 
bulls and energy corrected milk yield (ECMw) in cows as well as 
intramuscular fat content (IMF) of M. longissimus dorsi in both 
genders, animals were assigned to either of the two groups: high 
or low metabolic efficiency (Table 1). In this study we defined 
high metabolic efficiency in cattle as the preference to accrete or 
secrete protein while receiving the same diet as their inefficient 
conspecifics, which were characterized by a clear tendency to 
accrete fat instead of protein. In European production systems, 
those animals are most sustainable and economically efficient 
producers, which build up protein mass (muscle) with little fat 
content or, in case of females, secrete high amounts of milk.

Cows were categorized as highly efficient if their milk yield 
within the 7 days prior to slaughter was above 140 kg energy 
correct milk (ECMw) and the carcass fat content (CFC) was less 
than the average CFC of all cows plus one standard deviation. In 
contrast, cows were classified as lowly efficient if their milk yield 
within the last week was between 14 and 40 kg ECMw and the 
CFC was above the average CFC of all cows minus one standard 
deviation. For all cows, the calving interval had to be less than 
540 days, the maximum age was 1,510 days and they had to be 
free of pathological findings with metabolic implications noted 
after slaughter. Cows that were categorized as highly efficient 
(high ECMw) on average had a lower CFC (mean 17.1%, SD 
2.7%) and lowly efficient cows (low ECMw) had a higher CFC 
(mean 25.9%, SD 3.6%) than the mean of the population (21.8%, 
SD 5.3%, n = 242). In addition, highly efficient cows had a lower 
IMF (mean 4.16%, SD 1.60%) and the lowly efficient cows had 
a higher IMF (mean 6.46%, SD 2.53%) than the mean of the 
population (5.21%, SD 2.21%, n = 242).

The individual milk volume yield per cow was measured on 
a daily basis and the milk composition was determined once 
per week. The trait included in cow selection for this study 
corresponded to the weekly ECM determined for the 7 days 
before slaughter (ECMw). The formula presented by Kirchgeßner 
(1997) was modified accordingly for the one week interval (F% = 
milk fat percentage, P% = milk protein percentage):

 
ECM F P MY dw = + + × −0 37 0 21 0 95

3 1
7.   % .   % .

.  

cows, the ECMw was used as a substitute feature for feed efficiency, 
because the facilities did not allow for RFI measurement in cows 
during the time of the experiment.

TABLE 1 | Sample characteristics.

Metabolic 
efficiency 
group

Number of 
animals

sex RFI1 in last month 
of life (bulls)

ECM2
w (cows) IMF3 (both sexes) CFC4 (both sexes)

µ5 (sD6) µ (sD) µ (sD) µ (sD)

high 25 12 males 13 females -21.30 (4.44) 190.87 (22.02) 3.46 (1.30) 15.93 (3.16)
Low 23 12 males 11 females 20.83 (4.41) 30.97 (9.18) 5.51 (2.34) 22.93 (4.88)

1RFI, residual feed intake; 2ECMw, energy corrected milk 7 days before slaughter; 3IMF, intramuscular fat content (given in percent, measured in M. longissimus dorsi); 
4CFC, carcass fat content; 5µ, mean; 6SD, standard deviation.
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For bulls, the decisive factor for animal selection was RFI 
calculated for the last month prior to slaughter. The RFI equals 
the animals' energy intake while considering the average daily 
gain and metabolic mid-weight (average body weight of months 
of life 17 to 18 raised to the power of 0.75) (Archer et al., 1997).

Bulls with a low RFI (at least 1 standard deviation below 
average) were assigned to the high metabolic efficiency group 
and bulls with a high RFI (at least one standard deviation above 
average) were assigned to the low metabolic efficiency group. 
In their last month of life, all bulls had to have a positive daily 
weight gain and no less than the population average minus one 
standard deviation. Bulls that were categorized as highly efficient 
(negative RFI) on average had a lower CFC (mean 14.2%, SD 
3.0%) and lowly efficient bulls (positive RFI) had a higher CFC 
(mean 20.2%, SD 4.4%) than the population mean (mean 16.5%, 
SD 4.0%, n = 246). Analogously to cows, highly efficient bulls had 
a lower IMF (mean 1.71%, SD 1.00%) and the lowly efficient bulls 
had a higher IMF (mean 4.64%, SD 1.84%) than the population 
mean (mean 3.67%, SD 1.76%, n = 246).

Plasma Metabolic Profiles
Blood samples were collected from all individuals (n = 
48) at slaughter. Plasma samples were sent to Metabolon 
Inc. (Durham/NC, USA) for the establishment of holistic 
metabolite profiles that included 640 biochemical compounds 
and molecules. Metabolites with more than five animals with 
missing data were excluded. After this filtering step, 490 
metabolites remained and missing values were imputed with 
the minimum measurement, assuming that missing values were 
due to concentrations below the detection limit. Values were 
then scaled without centering for each metabolite in R (Core 
Team 2018) with the scale-function.

All experimental procedures were carried out according 
to the German animal care guidelines and were approved and 
supervised by the relevant authorities of the State Mecklenburg-
Vorpommern, Germany (State Office for Agriculture, Food 
Safety and Fishery; LALLF M-V/TSD/7221.3-2.1-010/03).

sampling, RNA Isolation, Library 
Preparation, and sequencing
Tissue samples were collected from jejunum mucosa, liver (Lobus 
caudatus), skeletal muscle (M. longissimus dorsi), and rumen 
(Saccus ventralis, papillary base) directly after slaughtering and 
dissection, shock frozen in liquid nitrogen and subsequently 
stored at -80°C.

For RNA extraction from muscle and rumen, frozen samples 
(100 mg) were treated with 1 ml TRIzol reagent (Invitrogen, 
Darmstadt, Germany) and subjected to the Precellys-24 
homogenizer (5,500 rpm, 2 × 15 s, lysing kit containing 1.4 mm 
ceramic beads). For RNA extraction from liver and jejunum, 
frozen tissue samples were grinded in liquid nitrogen and 30 
mg were used for further purification steps. No TRIzol was used 
for liver and jejunum samples. All samples were then subjected 
to an on-column-purification step with the NucleoSpin RNA II 
kit (Macherey & Nagel, Düren, Germany) including a DNase 
digestion to remove genomic DNA. In addition, the RNA was 

tested for remaining traces of DNA contamination and, in case of 
remaining DNA residues, further cleansed according to Weikard 
et al. (2012).

The RNA concentration and integrity were measured 
with a Qubit Fluorometer (Invitrogen, Germany) and a 2100 
Bioanalyzer Instrument (Agilent Technologies, Germany). 
Stranded, ribodepleted and indexed libraries were prepared from 
1 µg total RNA using the TruSeq Stranded Total RNA Ribo-Zero 
H/M/R Gold Kit (Illumina, San Diego, USA) and subjected to 
paired-end sequencing (2 × 100 bp) in a multiplexed design on a 
HiSeq 2500 Sequencing System (Illumina).

Alignment and Assembly
After quality control of raw sequencing reads with FastQC 
(Andrew, 2010), adapter and quality trimming were performed 
with Cutadapt v. 1.16 (Martin, 2011) and Quality Trim v. 1.6.0 
(Robinson, 2015), respectively. In Quality Trim the start of 
sequences was also trimmed (option -s) and the maximum 
number of N bases was set to 3, while the minimum base quality 
was set to 15. Reads were then mapped in a guided alignment 
with HISAT2 v.2.1.0 (Kim et al., 2015) to the bovine reference 
genome UMD.3.1 [Ensembl annotation release 92 (Frankish 
et al., 2017)]. After sorting and indexing of BAM files with 
samtools v.1.6 (Li et al., 2009), samples were individually 
assembled with Stringtie v.1.3.4d (Pertea et al., 2015) based 
on the reference genome and annotation used for alignment. 
Using the individually assembled samples (n = 204) from all 
four tissues and the bovine reference genome, we built a new 
merged annotation in Stringtie across tissues, while specifying 
for minimal transcript coverage across samples of 15 read 
alignments per exonic base. In addition to the 192 samples (48 
animals, four tissues) included in the subsequent steps for DE 
and network analyses, we also took benefit from rumen, liver 
and muscle samples of further four individuals from the same 
experimental herd. These samples were subjected to exactly the 
same processing steps as the 192. The new merged annotation 
was used for fragment counting with featureCounts (subread 
v.1.6.1) (Liao et al., 2014), while allowing for fractional counting 
and specifying for reverse strandedness.

Long Non-Coding RNA Prediction and 
Fragment Counting
LncRNAs were identified in-situ with FEELnc (Wucher et  al., 
2017), a bioinformatics tool for lncRNA prediction and 
annotation, using the merged transcript annotation and the 
bovine reference genome and annotation UMD3.1 release 
92. FEELnc excludes transcripts annotated as protein coding 
and subsequently keeps transcripts with a minimum length of 
200 nt and at least two exons and only monoexonic transcripts 
with antisense localization. Other monoexonic transcripts were 
excluded to reduce the number of false positives, which might 
arise from the mapping of repetitive sequences (Wucher et al., 
2017), DNA contamination (Haerty and Ponting, 2015) and 
in general transcriptional noise (Kern et al., 2018). For those 
transcripts matching the requirements, the coding potential of 
remaining transcripts was determined in shuffling mode.
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Fragment Count Normalization
For further pipeline steps, except for the DE analysis, fragments per 
kilobase million (FPKM) were calculated from the featureCounts 
derived fragment counts. Genes were filtered for a minimal 
average expression value of 0.2 FPKM in at least one of the four 
tissues and ribosomal and spliceosomal RNA genes were excluded 
(Metazoan signal recognition particle RNA, U6 spliceosomal 
RNA, small nucleolar RNA U6-53). For further analyses of FPKM 
values performed in this study, a log2-scale of the data was used 
(for log transformation a pseudo-count of 0.001 was added).

Prioritized gene List
Gene co-expression networks are a useful tool when trying to 
deduce the potential biological function of genes, novel loci and 
non-coding elements (van Dam et al., 2017), assuming the guilt-
by-association principle. In order to create meaningful networks 
that have a targeted focus on our phenotype (metabolic efficiency), 
we created a set of prioritized genes where genes had to belong 
to at least one of these four categories: differentially expressed 
(DE) genes in at least one of the four investigated tissues, tissue-
specific (TS) genes, genes harboring a QTL for milk production 
or RFI (QTL) according to the literature, and predicted lncRNAs. 
Small nucleolar RNAs (snoRNAs), ribosomal RNAs, spliceosomal 
RNAs, and Y-RNAs were excluded from the set.

Differential Expression Analysis
A DE analysis for the high and low metabolic efficiency group was 
performed within tissues and across sexes in R with the package 
DEseq2 (Love et al., 2014). Fragment counts from featureCounts 
were used as input and normalization was performed within 
DEseq2. To exclude very lowly expressed transcripts within a 
tissue, the minimal fragment count threshold was set to at least 
10 fragments for 10 out of 48 individuals. Ribosomal genes were 
excluded from the analysis and year of slaughter and sex were 
used as factors in the model. The significance threshold was set 
to q < 0.05 [Benjamini–Hochberg (BH) test].

Tissue Enriched Genes
The expression (log2-transformed FPKM) of a gene was defined as 
enriched in a particular tissue, if the abundance in the other three 
tissues was less than half the average across all tissues and above the 
average plus one standard deviation in the tissue at hand. Throughout 
the further course of this study, we refer to these genes as TS.

Genes Harboring a Quantitative Trait Locus
We extracted QTL for milk production traits (MY) and RFI in 
cattle from the Animal QTL database (Park et al., 2018) and then 
screened our dataset in Ensembl Biomart (http://asia.ensembl.
org/biomart/martview, accession date 28 March 2019) for genes 
that overlapped with these QTL regions. A physical overlap 
of the QTL and the gene is needed for a gene hit, while close 
neighborhood is not sufficient.

Regulatory Impact Factor Analysis
The RIF (Reverter et al., 2010) analysis makes use of two 
alternative metrics (RIF1 and RIF2) that attribute scores to 

potential key regulators. The strength of the score depends on 
the change in correlation between the regulator and its target in 
two groups or treatments, the level of DE of the target gene, and 
the general expression level of the target gene. We conducted RIF 
analyses within tissues and across metabolic efficiency groups to 
assess the regulatory capacity of lncRNAs in a set of prioritized 
genes (lncRNA, DE, TS, QTL harboring). Therefore, RIF metrics 
were calculated within each tissue for a prioritized gene set 
(including log2(FPKM) data) that comprised genes which were 
DE or TS in that tissue, harbored a QTL or were characterized 
as a lncRNA. Naturally, some of the QTL-genes might have zero 
expression in one or more of the tissues. To prevent erroneously 
high RIF scores stemming from low variation in gene expression, 
an additional filter for expression level was applied (on top of 
minimal average expression of 0.2 FPKM in at least one tissue). 
Only genes with abundance above tissue average were kept for 
the RIF analysis.

A high RIF1 score was assigned to lncRNAs that were 
consistently co-expressed with abundant target genes in both 
metabolic efficiency groups. A high RIF2 score was attributed 
to lncRNAs that displayed the most altered ability to predict 
the abundance of target genes between groups, meaning that a 
lncRNA exhibited strong correlation to a target on one condition 
but none or a reverse correlation in the other. RIF scores were 
standardized with a z-score. Key regulators (lncRNA) were 
considered of significant importance and were included in further 
analyses if they had an absolute RIF1 or RIF2 z-score of ≥1.96, 
meaning that these lncRNAs and their scores were outside the 
95% confidence interval, corresponding to a significance level of 
p = 0.05 in a t-test.

Partial Correlation and Information Theory
The PCIT (Reverter and Chan, 2008) tests for significant pairwise 
correlations between two elements while accounting for all 
possible three-way combinations in the dataset that include 
either of the pair elements. Importantly, the PCIT recognizes 
independent, significant correlations regardless of the strength of 
correlation. Within the high and low metabolic efficiency groups, 
the PCIT approach across all tissues was used to investigate for 
independent correlations of lncRNAs that had significant RIF 
scores with DE genes, TS genes, and QTL harboring genes.

Results were filtered for significant correlations (minimal 
correlation strength |r| > 0.8) between a lncRNA and another 
gene that were exclusive for the high or low metabolic efficiency 
group, meaning that the correlation was significant in one group 
but not in the other. The visualization was realized in Cytoscape 
3.6.1 (Shannon et al., 2003).

Characterization of Key Regulatory Long 
Non-Coding RNAs
Blast Search Against New Bovine Assembly
Highly connected lncRNAs with more than 100 directly linked 
nodes (genes) were selected from each network for further 
scrutiny. Since the prediction of lncRNAs was based on a merged 
annotation, which was reference guided by UMD3.1, Ensembl 
release 92, we wanted to investigate the sequence homology 
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and annotation status of key lncRNAs in the new bovine 
assembly ARS1.2 annotated in Ensembl release 95. The lncRNA 
sequences were blasted online with the blastn suite using the 
MegaBlast algorithm, specifying for high sequence similarity 
and otherwise default parameters (Altschul et al., 1990) (https://
blast.ncbi.nlm.nih.gov/Blast.cgi, accessed Mai 2019) against 
the new bovine assembly (ARS-UCD1.2, https://www.ncbi.
nlm.nih.gov/assembly/GCA_002263795.2; GenBank accession 
NKLS00000000.2; https://www.ensembl.org/Bos_taurus/Info/
Index). We considered blast hits to indicate high homology if the 
sequence identity was at least 98% in a region covering at least 
200 nucleotides.

Pathway Enrichment Analysis
To assess the possible biological function of high connectivity 
lncRNAs, we performed a pathway enrichment analysis based on 
genes identified as correlated (|r| > 0.8) in the PCIT analyses and 
also including blood plasma metabolites that were significantly 
(p ≤ 0.05) correlated with the high connectivity lncRNAs. To 
this end, a pairwise Pearson correlation analysis between blood-
plasma metabolites and lncRNA expression in the tissue, where 
the lncRNA was most abundant, was performed in R with the 
function rcorr of the Hmisc package (Harrell and Frank, 2019). 
The list of significantly correlated metabolites (p ≤ 0.05) and 
genes (adjacent network nodes with |r| > 0.8) were analysed 
using the Ingenuity Pathway Analysis (IPA: QIAGEN Inc., 
https://www.qiagenbioinformatics.com/products/ingenuity-
pathway-analysis) (Kramer et al., 2014). The workflow from 
group formation and tissue sampling up to the functional 
characterization of key lncRNAs is visualized for better 
comprehensibility and clarity in Figure 1.

REsULTs

RNA Preparation, sequencing, Alignment, 
and Mapping
The average RNA integrity (RIN) across the four tissues was 
8.22 ± 0.81 (Table 2). After quality trimming the average RNA 
sequencing depth was at 48 million read pairs per sample. A total 
of 9 out of 192 samples reached less than a 40 million read pair 
coverage. The alignment of reads with HISAT2 to the bovine 
reference genome UMD.3.1 (Ensembl release 92) resulted 
in an average alignment rate of 92.98 ± 9.50%. Compared 
with the other tissues, rumen scored a distinctly lower rate 
(78.00  ± 7.75%). The average mapping rate across all samples 
to the customized annotation, which contained 30,072 loci, was 
81.89%. The tissue specific average mapping rate was lowest in 
rumen, of comparable dimension in jejunum and muscle, and 
highest in liver.

Long Non-Coding RNA Prediction
Based on the merged annotation, FEELnc predicted 26,740 
mRNAs and 7,646 lncRNA transcripts (3,287 loci), out of 
which 544 were without potential positional interaction 
partner gene within the default window size of 10,000 to 
100,000 nucleotides. Those 7,102 lncRNA transcripts with 

an assigned potential positional interaction partner were 
generated by 3,051 loci (Table 3, Supplementary Table 1). 
FEELnc distinguishes between intergenic and genic lncRNA 
with different subtypes (see Wucher et al. (2017) for a graphical 
explanation). LncRNAs are also classified according to their 
position to neighboring protein coding genes (interaction 
partner gene). For intergenic lncRNAs, the best partner gene is 
closest in terms of distance in base pairs and for genic lncRNAs 
the best partner gene directly overlaps with it, preferably at an 
exon. All predicted 7,646 lncRNA transcripts were considered 
for further computational analyses.

The total of 3,287 lncRNA loci are equally distributed in 
terms of strandedness (50.6% on the plus strand, 49.41% on the 
minus strand), and in a locus-based approach (considering the 
transcript with highest exon number for each locus) the median 
number of exons per transcript was 3 (average number of exons 
per transcript: 4.9 ± 8.2). The total exon length geometric mean 
of the lncRNA loci amounted to 2,201.0 bp.

Prioritized gene List for Co-Expression 
Analysis
After filtering the 30,072 genes in the merged annotation for 
minimal expression (average FPKM across all samples >0.2 in 
at least one tissue) and exclusion of ribosomal and spliceosomal 
RNA genes, the dataset contained 22,625 genes out of which 
2,886 were lncRNAs, meaning that 401 lncRNAs were removed 
from RIF and subsequent PCIT co-expression analysis due to 
very low abundance.

Differential Expression Analysis
The DE analysis yielded a total of 2,154 unique significantly  
(q  < 0.05) DE genes between the high and low metabolic 
efficiency group with 496 DE genes in jejunum, 1,286 DE genes 
in liver, 479 DE genes in muscle, and no significant differences 
in rumen (Figure 2A). Generally, we observed little overlap of 
differentially expressed loci between tissues. Out of these unique 
2,154 DE genes, 238 were predicted to be lncRNAs corresponding 
to 11.05%. We observed 40 DE lncRNAs in jejunum, 173 DE 
lncRNAs in liver, 40 DE lncRNAs in muscle, and none in rumen 
(Figure 2B).

Tissue Enriched Genes
We found a total of 930 genes to be tissue-specifically expressed 
out of the 22,625 genes, which had passed the initial minimal 
expression threshold (average expression > 0.2 FPKM in at least 
on tissue). Out of those 930 genes, 279 were TS in jejunum, 283 
in liver, 204 in muscle, and 164 in rumen. Thereof, 21.9% were 
lncRNAs with 42 in jejunum, 65 in liver, 48 in muscle, and 49 
in rumen.

Quantitative Trait Locus Harboring Genes
The database AnimalQTL listed 278 QTL for RFI and 1,881 
QTL for milk production traits, which were distributed across 
1,615 genes out of which 1,064 passed the minimal expression 
threshold (average expression > 0.2 FPKM in at least one tissue) 
in our dataset.
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FIgURE 1 | Workflow for the identification and functional characterization of key lncRNAs with regulatory potential in two contrasting biological conditions. The 
phenotypes under investigation were high and low metabolic efficiency in a Charolais x Holstein cross-population. lncRNA, long non-coding RNA; FPKM, fragments 
per kilobase transcript length per million reads; TS, tissue specific; DE, differentially expressed; QTL, quantitative trait locus; RFI, residual feed intake; MY, milk 
production; RIF, regulatory impact factor; PCIT, partial correlation and information theory.

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1130344

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


LncRNAs Regulating Bovine Metabolic EfficiencyNolte et al.

8

Regulatory Impact Factor to select 
Long Non-Coding RNAs With a Potential 
Regulatory Effect on Metabolic Efficiency
The input prioritized gene lists filtered for expression level for the 
tissue specific RIF analysis contained 2,097 loci for jejunum (880 
lncRNAs), 1,890 loci for liver (614 lncRNAs), 961 loci for muscle 
(363 lncRNAs), and 1,458 loci for rumen (755 lncRNAs). RIF 
scores were then calculated for the lncRNAs in these gene sets.

With a significance threshold of a RIF1 or RIF2 score ≥ 
1.96, the tissue specific RIF analyses identified 92 potential key 
lncRNAs in jejunum, 55 in liver, 35 in muscle, and 73 in rumen. 
In total 240 unique lncRNAs had a RIF score ≥ 1.96 in at least one 
tissue and were considered for subsequent PCIT analysis.

Partial Correlation and Information Theory 
Approach to Identify Long Non-Coding 
RNA-Associated Co-Expression Networks
For the within-tissue RIF analysis, the sets of DE genes, TS 
genes, QTL harboring genes and lncRNAs had been filtered for 
a seizable expression level (abundance above average expression 
in the respective tissue) to facilitate a reliable calculation of 
correlation. For the PCIT analysis, a similar filter for minimal 
expression was applied: abundance above average expression 
across all samples in at least one tissue when combining DE genes 
and TS genes from all tissues with the QTL genes and lncRNAs 
with significant RIF scores. A total of 295 of the 4,049 prioritized 
loci were excluded due to not meeting this expression limit. The 
set of prioritized genes that was used for the final PCIT network 
analysis contained 3,754 unique genes in total. Thereof, 1,990 
were DE genes, 895 QTL containing genes, 926 TS genes, and 
583 lncRNAs, though some genes belonged to several categories 
(Figure 3, Supplementary Table 2).

The PCIT analysis was performed across tissues and results 
were filtered for significant correlations with a correlation 
strength |r| ≥ 0.8, between a lncRNA with significant RIF score 
and all genes from the prioritized gene list already used for 
RIF calculation. Furthermore, correlations had to be exclusive 
to either the high or low metabolic efficiency group. The high 
and low network contained 1,522 and 1,732 nodes (genes) 
respectively (Supplementary Figure 1, Supplementary Figure 2,  
Supplementary Table 3). Six and two lncRNAs showed a 
high connectivity (>100 nodes) exclusively in one of the two 
networks, which represent high and low metabolic efficiency, 

respectively. Thus, these eight lncRNAs stand out as potential 
regulatory keys for lncRNAs with respect to metabolic 
efficiency.

Characterization of Key Regulatory Long 
Non-Coding RNAs in the Networks
Blast Against New Bovine Assembly
The eight lncRNAs characterized by high connectivity for high 
and low metabolic efficiency in the PCIT analysis were blasted 
against the new bovine assembly and annotation [ARS-UCD.1.2, 
National Center for Biotechnology Information (NCBI) release 
106] (Table 4). If lncRNAs completely overlapped with annotated 
genes, the respective lncRNA was located on the opposite strand 
to the annotated gene (e.g. MSTRG.4926 overlapped with CDH17 
on the opposite strand). None of the eight lncRNA loci had yet 
been annotated as non-coding in the NCBI or the Ensembl 
genome annotation (ARS-UCD1.2, release 95).

Pathway Enrichment Analysis
The Pearson correlation analysis between blood plasma 
metabolites and lncRNA expression, which was calculated 
prior to the pathway enrichment analysis, showed that the eight 
key lncRNAs were significantly (p < 0.05) correlated to very 
different numbers of metabolites. Correlations ranged from one 
(MSTRG.18433) to 117 (MSTRG.4740) metabolites, out of which 
an average of 75% was successfully mapped in the IPA database 
and used in the subsequent enrichment analyses (Supplementary 
Table 4). The correlation strength ranged from -0.53 to + 0.48 
with an average of |0.35|.

Pathway enrichment analysis for each of the eight key 
lncRNAs with their respective correlated metabolites and genes 
showed that calcium signaling was the most strongly enriched 
canonical pathway for half of the key lncRNAs (MSTRG.9051, 
MSTRG.10337, MSTRG.18433, and MSTRG.19312). The other 
high ranking canonical pathway hits, i.e. hits with the lowest 
p-value, were tRNA charging, leukocyte extravasation signaling, 
caveolar-mediated endocytosis signaling, and T cell receptor 
signaling (data not shown).

Within the eight lncRNAs with a high connectivity in the 
PCIT analysis, three loci showed distinct pattern in the pathway 
enrichment analysis suggesting divergent molecular functions. 
Inspection of the results showed that the enriched canonical 
pathways for MSTRG.4740, which was differentially expressed in 

TABLE 2 | Overall and tissue-specific RNA sequencing, alignment, and mapping statistics.

RIN1 sequencing depth [read 
pairs]

Alignment to UMD.3.1 [%] Mapping to project-
specific annotation [%]

µ2 sD3 µ sD µ sD µ sD

All 8.22 0.81 48,041,209 5,601,638 92.98 9.50 81.89 8.67
Jejunum 8.73 0.44 48,954,376 3,993,201 96.91 0.31 84.99 2.20
Liver 8.00 0.62 50,093,826 5,869,833 98.43 0.20 91.36 1.21
Muscle 7.55 0.85 47,117,156 5,815,843 98.59 0.13 82.42 1.79
Rumen 8.41 0.86 45,999,477 5,587,407 78.00 7.75 69.05 4.67

1RIN, RNA integrity number, 2µ, mean, 3SD, standard deviation.
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liver (Figure 4, Table 3, Supplementary Table 5), were related 
to amino acid biosynthesis and metabolism, as well as protein 
synthesis (Table 5). MSTRG.17681 (Figure 5, Supplementary 
Table 5) which was also differentially expressed in liver, 
seemed to act very locally in the coatomer subunit of the coat 
protein I (COPI) in the caveosome. MSTRG.10337, (Figure 6, 
Supplementary Table 5) apparently acts specifically in muscle 
where it was related to several signaling pathways, most strongly 
to calcium, protein kinase A, neuronal nitric oxide synthase 
(nNOS), and RhoA signaling (Table 5).

DIsCUssION
A major goal of this study was the identification of lncRNAs 
that hold a potential key regulatory role in metabolic efficiency, TA
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FIgURE 2 | Venn diagrams of (A) all loci (B) exclusively lncRNAs with differential 
expression (DE) between high and low metabolic efficiency in cattle. DE analysis 
was performed within the tissues jejunum, liver, muscle, and rumen. No loci 
were significantly [q-value (Benjamini–Hochberg) < 0.05] DE in rumen.
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which was roughly defined as the animal's ability to direct 
the energy adsorbed into protein synthesis and use it for 
muscle mass accumulation or milk secretion. We integrated 
phenotypic, metabolomics and transcriptomics data from a 
cattle F2-population (Charolais × Holstein) in a co-expression 
network approach to mine for lncRNAs with a regulatory role 

in metabolic processes. By contrasting animals of high and low 
metabolic efficiency and by including RNAseq data from four 
key metabolic tissues in a combined analysis, we identified highly 
connected hub lncRNAs. Finally, we subjected metabolites and 
genes, whose plasma levels or transcript abundance significantly 
correlated with expression levels of the specific, highly connected 
lncRNA, to the integrative approach for metabolomics and 
transcriptomics data as offered by the cross-platform IPA 
(Kramer et al., 2014).

Establishment of a Pipeline Based on 
Regulatory Impact Factor and Partial 
Correlation and Information Theory to 
Establish Co-Expression Networks for 
Long Non-Coding RNAs and genes to 
Predict Their Role in Metabolic Efficiency
Weighted gene co-expression network analysis (WGCNA) 
(Langfelder and Horvath, 2008) is a frequently applied method 
to identify co-expression pattern at whole transcriptome level. 
Recently, Sun et al. (2019) applied this method for mining 
regulatory signatures of divergent feed efficiency in beef cattle 
investigating a multi-tissue transcriptome data set. WGCNA 
has also been used to find hub lncRNAs in a transcriptomic 
landscape in multiple studies in humans as well as animals (Miao 
et al., 2016; Tang et al., 2017; Li et al., 2018; Weikard et al., 2018; 
Wang et al., 2019). To mine for the functional role of lncRNAs 
of interest via WGCNA, one might select lncRNAs that are 
strongly correlated with coding neighbor genes (Li et al., 2018) or 
lncRNAs that were differentially expressed between conditions 
or phenotypes (Weikard et al., 2018; Wang et al., 2019). 

 

FIgURE 3 | Venn diagram of 3,754 loci selected for co-expression network 
construction. Loci belonging to at least one of these four categories were 
considered: differential expression (DE) in at least one tissue, tissue specific 
(TS) expression, harboring a QTL for residual feed intake and or milk 
production (QTL) and key regulatory long non-coding (lnc) RNAs [significant 
(p < 0.05) regulatory impact factor score].

TABLE 4 | BLAST results for eight high connectivity long non-coding RNAs (>100 nodes) in partial correlation and information theory networks with connections 
exclusive for high or low metabolic efficiency.

lncRNA BLAsT against bovine reference genome (ARs-UCD1.2, release 106)

Identifier Network 
(connectivity 
in nodes)

Annotated gene with highest sequence 
homology

Identity [%] Query cover 
[%]

E-Value Position of 
lncRNA relative to 
homologous gene 
in ARs-UCD1.2

MSTRG.4740 Low (147) mRNA-transient receptor potential cation 
channel subfamily A member 1 (TRPA1)

100.00 100.00 9.00E-116 Intronic, anti-sense

ADP-ribosylation factor 4 (ARF4) 98.57 91.00 3.00E-100 Exonic, sense
MSTRG.4926 High (144) Cadherin-17 precursor (CDH17) 100.00 100.00 0.00E+00 Anti-sense
MSTRG.9051 High (170) Nucleoside diphosphate kinase A 1 

isoform X1 (NME1)
99.72 100.00 0.00E+00 Sense, genic

MSTRG.10337 Low (239) Desmin (DES) 99.93 100.00 0.00E+00 Exonic, anti-sense
MSTRG.17681 High (120) 39,201 bp at 5' side: alpha-aminoadipic 

semialdehyde synthase, mitochondrial 
precursor 88559 bp at 3' side: fez family 
zinc finger protein 1

98.40 99.00 0.00E+00 Sense, genic

Chromobox protein homolog 3 isoform X1 
(CBX3)

99.00 89.00 0.00E+00 Sense, genic

MSTRG.18433 High (268) 364 bp at 5' side: ADP-ribosylation factor 
3; 37831 bp at 3' side: peptidyl-prolyl cis-
trans isomerase FKBP11 precursor

99.96 100.00 0.00E+00 Sense, intergenic

MSTRG.19098 High (184) C-type lectin domain family 2 member D11 100.00 100.00 0.00E+00 Anti-sense, genic
MSTRG.19312 High (212) ER lumen protein-retaining receptor 3 

(KDELR3)
100.00 99.00 0.00E+00 Anti-sense, genic
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The connectivity within a network and the differential wiring 
between two networks can also serve as a selection criterion 
(Pellegrina et al., 2017). In our study we present an alternative 
approach for the selection of lncRNAs of interest, the RIF 
(Reverter et al., 2010), which has already successfully been 
applied to transcription factors (TF). In combination with a 
PCIT (Reverter and Chan, 2008), key regulatory TFs during 
puberty could be identified in cattle (Cánovas et al., 2014), as well 
as critical TFs in porcine muscle (Perez-Montarelo et al., 2012). 
This approach seemed to be particularly applicable for lncRNAs 

with regard to the expression level as they generally exhibit lower 
transcript abundance compared with mRNAs (Derrien et al., 
2012), as do TFs compared with other coding genes (reviewed 
by Vaquerizas et al., 2009). We indeed found that only 10% of 
the unique lncRNAs with a significant RIF-score (n = 240) were 
also differentially expressed, including three of the eight key hub 
lncRNAs. LncRNAs were significantly underrepresented in the 
list of DE loci across all tissues (Χ2 test, p = 1.2E-06): while they 
accounted for 14.85% of all loci in the DE analyses, only 11.05% 
of the DE loci were classified as lncRNAs. In contrast, the other 

FIgURE 4 | Co-expression network for the novel long non-coding (lnc) RNA MSTRG.4740 with key regulatory potential for metabolic efficiency in cattle and 
significantly (p < 0.05) correlated genes with a minimal correlation coefficient of |r| > 0.8. Correlations are exclusive for animals with low metabolic efficiency.
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loci accounted for 85.25% of all loci in the DE analyses, but had 
a share of 88.95% in the total of 2,154 differentially expressed 
unique loci.

In a recent publication, van Dam et al. (2017) reviewed and 
highlighted the usefulness of gene co-expression networks for 
the functional classification of genes and novel loci, such as non-
coding elements without any known function. Correspondingly 
Oliveira et al. (2018) successfully applied a co-expression network 
concept to identify genes and miRNAs regulating IMF in Nellore 
steers. Besides the preselection of lncRNAs for co-expression 
networks, it might be advisable to make a knowledge-based 
preselection also for other genes to be included instead of 
simply using all expressed genes. The combination of RNA-Seq 

results with GWAS hits (gene regions associated with QTL for 
milk performance traits or RFI) is an acknowledged procedure 
to integrate multiple layers of knowledge into a prioritized gene 
set for co-expression network analysis (Schaefer et al., 2018). 
In our PCIT analysis, we prioritized genes that appeared to be 
functionally important from the RNA-Seq analysis [DE loci 
(2,154) or TS loci (930)] and published GWAS data and selected 
those for our prioritized gene set to create a stronger focus 
on bovine metabolic efficiency, accepting however that still 
unknown, yet important elements might be overlooked. When 
preparing the prioritized gene set, we noted that the key role of 
liver in metabolic processes was clearly reflected by the by far 
highest number of DE loci (1,286) between the two metabolic 

TABLE 5 | Top 10 enriched pathways derived from genes and metabolites significantly correlated with key long non-coding RNAs associated with metabolic efficiency

ID Ingenuity Canonical Pathways log(p) Ratio Molecules

MSTRG.4740 tRNA Charging 5.56E00 8.54E-02 L-valine, L-phenylalanine, L-tryptophan, glycine, 
L-arginine, L-tyrosine, L-lysine

EIF2 Signaling 4.13E00 3.83E-02 MYC, RPS7, RPL27A, RPL35, RPL23A, RPL37, 
RPL26, EIF3E, RPL31

Glucose and Glucose-1-phosphate 
Degradation

3.18E00 1.3E-01 D-glucose, PGM3, phosphate

Tyrosine Biosynthesis IV 2.94E00 2.86E-01 L-phenylalanine, L-tyrosine
Acetyl-CoA Biosynthesis III (from Citrate) 2.82E00 2.5E-01 phosphate, citric acid
Glycine Degradation (Creatine 
Biosynthesis)

2.71E00 2.22E-01 glycine, L-arginine

Phenylalanine Degradation IV 
(Mammalian, via Side Chain)

2.68E00 8.82E-02 L-phenylalanine, phenylpyruvic acid, glycine

Glutathione Biosynthesis 2.53E00 1.82E-01 phosphate, glycine
Thymine Degradation 2.53E00 1.82E-01 5, 6-dihydrothymine, beta-ureidoisobutyric acid

MSTRG.10337 Calcium Signaling 1.63E01 9.35E-02 TNNT1, CHRNA1, CACNB1, CACNG1, 
CACNA1S, MYL2, TNNI2, TNNT3,T NNC2, 
TNNC1, MYL1, ATP2A1, CAMK2A, CASQ1, 
RYR1, TNNI1, CASQ2, MYL3, ACTA1, CAMK2B

Protein Kinase A Signaling 7.45E00 3.88E-02 TNNI2, MYL2, MYLPF, MYLK2, PPP1R3A, TTN, 
MYL1, EPM2A, CAMK2A, PLCB1, RYR1, TNNI1, 
EYA1, MYL3, CAMK2B, PHKG1

nNOS Signaling in Skeletal Muscle Cells 6.1E00 1.3E-01 CACNG1, CACNB1, CACNA1S, CHRNA1, RYR1, 
L-arginine

Cellular Effects of Sildenafil (Viagra) 6.09E00 6.25E-02 CACNA1S, CACNG1, MYL2, MYLPF, PLCB1, 
L-arginine, MYL1, MYL3, ACTA1

RhoA Signaling 4.55E00 5.6E-02 MYL2, MYLPF, MYLK2, TTN, MYL1, MYL3, 
ACTA1

Apelin Cardiomyocyte Signaling Pathway 3.7E00 5.00E-02 MYL2, MYLPF, PLCB1, MYL3, MYL1, ATP2A1
Actin Cytoskeleton Signaling 3.55E00 3.36E-02 MYL2, MYLPF, ACTN3, MYLK2, TTN, ACTA1, 

MYL3, MYL1
Regulation of Actin-based Motility by Rho 3.24E00 5.21E-02 MYL2, MYLPF, MYL3, ACTA1, MYL1
ILK Signaling 3.19E00 3.38E-02 PARVB, MYL2, TNFRSF1A, ACTN3, MYL1, 

MYL3, ACTA1
Thrombin Signaling 2.93E00 3.06E-02 CAMK2A, MYL2, MYLPF, PLCB1, MYL1, MYL3, 

CAMK2B
MSTRG.17681 Caveolar-mediated Endocytosis Signaling 3.56E00 5.48E-02 ARCN1, COPA, COPE, COPB2

Fatty Acid α-oxidation 2.29E00 8.00E-02 ALDH3A2, ALDH9A1
Death Receptor Signaling 2.15E00 3.3E-02 PARP10, PARP4, HTRA2
Histamine Degradation 2.05E00 6.06E-02 ALDH3A2, ALDH9A1
Oxidative Ethanol Degradation III 2.05E00 6.06E-02 ALDH3A2, ALDH9A1
G Protein Signaling Mediated by Tubby 2.03E00 5.88E-02 GNG2, GNAQ
Tryptophan Degradation X (Mammalian, 
via Tryptamine)

2.00E00 5.71E-02 ALDH3A2, ALDH9A1

Putrescine Degradation III 2.00E00 5.71E-02 ALDH3A2, ALDH9A1
Ethanol Degradation IV 1.98E00 5.56E-02 ALDH3A2, ALDH9A1
NER Pathway 1.96E00 2.8E-02 HIST2H4B, XAB2, RAD23B
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efficiency groups, which was 2.6 fold higher than in jejunum or 
rumen. For DE loci in the prioritized gene set that was used for 
the PCIT, we noted that these predominantly (65%) had their 
highest expression in a different tissue than where they were 
differently expressed. This underlines that tissue specificity or 
tissue of highest abundance and DE of loci are indeed different, 
non-redundant features and that it is recommendable to follow a 
TS perspective in the beginning of the analysis.

One way to deduce a biological function of lncRNAs is to take 
a close look at coding genes in their immediate vicinity. This idea 
has also been implemented in the bioinformatics tool FEELnc 
for lncRNA prediction and annotation (Wucher et al.,  2017), 

where the potential partner gene is generally assumed to be the 
closest annotated gene. However, this exclusively focusses on 
in-cis interaction with a narrow frame of impact. However, it has 
been reported that some lncRNAs execute in-trans regulatory 
tasks by binding directly to distant DNA sites or via RNA-
protein interactions (Long et al., 2017) or a direct effect on RNA 
polymerase II activity (Kornienko et al., 2013).

Another way to infer functionality of unknown genomic 
elements subsequent to the network construction is to submit 
correlated coding genes to an enrichment analysis (Chen et al., 
2018b), thereby assuming the guilt-by-association principle. 
Following this approach, we took genes from the prioritized 

FIgURE 5 | Co-expression network for the novel long non-coding (lnc) RNA MSTRG.17681 with key regulatory potential for metabolic efficiency in cattle and 
significantly (p < 0.05) correlated genes with a minimal correlation coefficient of |r| > 0.8. Correlations are exclusive for animals with high metabolic efficiency.
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gene set that were correlated with high connectivity lncRNAs 
of interest. LncRNA partner genes predicted by FEELnc could 
also be part of the prioritized gene set if they fell into one of the 
categories (DE, tissue-specificity, QTL-harboring). This was the 
case for 473 out of 2,741 unique predicted lncRNA interaction 
partner genes. Thus, 12.6% of the genes that were used as PCIT 
input (3,754) were very close to or overlapped with a lncRNA.

In addition, we aimed to add a supplementary layer of 
information to the pathway enrichment analysis and thereby to 

create further biological depth by using the option to integrate 
gene expression and metabolic profiles. In a single step this 
approach facilitates to predict a link between transcriptome 
activity, the direct functional readout of metabolic activity or 
physiological status and the functional analysis of lncRNAs. 
MSTRG.4740, e.g., correlated with plasma levels of 117 
metabolites—valuable information that would otherwise be 
missing from the enrichment analysis. To our knowledge, we 
here present the first study that integrates metabolomics and 

FIgURE 6 | Co-expression network for the novel long non-coding (lnc) RNA MSTRG.10337 with key regulatory potential for metabolic efficiency in cattle and 
significantly (p < 0.05) correlated genes with a minimal correlation coefficient of |r| > 0.8. Correlations are exclusive for animals with low metabolic efficiency.
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transcriptomic data in an enrichment analysis to predict the 
functional role of lncRNAs.

Across-Tissue Candidate Long Non-
Coding RNAs for Metabolic Efficiency
LncRNAs were defined as hubs when they were connected 
to at least 100 other nodes in the high or low efficiency PCIT 
network. Three of the identified eight hub lncRNAs were 
exemplarily chosen for a more detailed description of their 
biological functionality predicted with IPA. These lncRNAs—
namely MSTRG.4740, MSTRG.10337, and MSTRG.17681—
were hubs in gene groups that showed enrichment for transfer 
RNA (tRNA) charging (p = 2.78E-06) and EIF2 signaling (p = 
7.34E-05), calcium signaling (p = 4.98E-17) and nNOS signaling 
in skeletal muscle cells (p = 7.88E-07), and calveolar-mediated 
endocytosis signaling (p = 2.77E-04) and fatty acid oxidation 
(p = 5.13E-03), respectively.

For MSTRG.4740 an encompassing look at the enriched 
pathways clearly pointed towards amino acid metabolism 
and protein synthesis. This lncRNA was DE in liver (adjusted 
p-value (BH) = 9.13E-03, log2FC = 1.70) but displayed highest 
abundance (average FPKM) in jejunum (10.68) and rumen 
(8.41) and lowest in muscle (1.66) compared to liver (6.23). The 
DE status in liver suggested biological relevance there. However, 
the RIF analysis attributed a significant score to MSTRG.4740 
in jejunum. The strongest enrichment was for tRNA charging 
(p = 2.78E-06), which describes the attachment of amino acids 
to a tRNA before incorporation into a growing polypeptide. 
According to IPA, the enrichment of this pathway was due to 
the correlation of MSTRG.4740 expression level with the blood 
plasma content of six essential or semi-essential amino acids 
(L-valine, L-phenylalanine, L-tryptophan, L-arginine, L-tyrosine, 
L-lysine). No non-essential amino acid showed a significant 
correlation with this lncRNA. The significantly correlated amino 
acids play integral roles as regulators of metabolism and key body 
functions, but cannot or only partially be synthesized by bovine 
animals themselves. Plasma concentration of essential amino 
acids depends on uptake from the diet, the balance between 
protein synthesis and degradation in peripheral tissues as well as 
on the efficiency of transport processes. The enrichment of the 
tRNA Charging pathway was not backed up by other components 
in addition to the indicated amino acids (e.g., charged tRNAs 
themselves). Thus, we restrict our conclusion and suggest that 
the lncRNA has a close relationship with (semi-) essential amino 
acid levels, but rather not to tRNA Charging per se. Widmann 
et al. (2015) reported no significant correlation between plasma 
amino acids and RFI at the onset of puberty in bulls in the same 
resource population. However, in the current study we employed 
adult animals.

Endogenous metabolism and also supply of amino acid have 
been demonstrated to limit growth or lactation in pigs, cattle and 
fish as reviewed by Hou et al. (2016). Furthermore, Doelman et al.  
(2015) showed that an abomasal infusion with essential amino 
acids leads to increased protein levels of eIF2α and eIF2Bε in the 
mammary gland in dairy cows. The authors proclaimed a direct 
link between the eIF2 factor, which is essential for eukaryotic 

translation initiation and milk protein yield. Interestingly, we 
found eIF2Bε to be DE [q-value (BH) = 0.022, log2FC = 0.204] 
in liver and to be one of the genes underlying the significant 
enrichment of the EIF2 Signaling pathway (p = 7.34E-05), 
which is tightly linked to protein synthesis. Genes encoding 
for ribosomal proteins of 40S (RPS7) or 60S subunits (e.g. 
RPL26, RPL31) were significantly correlated with MSTRG.4740, 
as well as the before mentioned eIF2Bε. EIF2 signaling and 
subsequently EIF3E are required for the correct initiation of 
mRNA translation (Kimball 1999; Walsh and Mohr, 2014).

Considering the presented correlations of MSTRG.4740 with 
other genes and plasma metabolites, this hub lncRNA seems to be 
an excellent example of a potential new key regulator in metabolic 
efficiency through the modulation of translational processes.

In contrast to MSTRG.4740 that seems to act on the broader 
forefront of translation, MSTRG.17681 appears to have a rather 
narrow and more targeted function. The first hit in pathway 
enrichment was calveolar-mediated endocytosis signaling 
(p = 2.77E-04). Four genes (COPA, COPE, COPB2, ARCN1) 
belonging to this pathway were highly correlated (|r| > 0.8) with 
this hub lncRNA. We observed significant DE in the liver of 
divergently efficient animals for MSTRG.17681 (q-value (BH) = 
0.0050, log2FC = 0.766) as well as the respective quartet of genes. 
COPA, COPE and COPB2 are transporters and ARCN1 encodes 
the coatomer subunit of the coat protein I (COPI) complex 
(Tunnacliffe et al., 1996). All genes are allocated to a subunit 
in the cellular calveolar-mediated endocytosis signaling: the 
COPI vesicle, which plays a role in intracellular lipid transport 
(Popoff et al., 2011) and regulates lipid homeostasis (Beller et al., 
2008). COPI-vesicle biogenesis is ARF1-dependent (Beck et al., 
2009), which we found to be DE in liver and to be positively 
correlated with MSTRG.17681. The Arf1 GTPase-activating 
protein 3 (ArfGAP3) that subsequently allows the vesicle to fuse 
with a target membrane (Beck et al., 2009), was also correlated to 
MSTRG.17681 and DE in liver.

Considering that COPI-vesicles assist in lipid transport, it 
seems fitting that we found significant correlations between 
MSTRG.17681 expression and plasma levels of two saturated 
fatty acids: caprylate (p = 0.013, r = 0.357) and heptanoate (p = 
0.047, r = 0.289). Caprylic acid supplementation in the diet of 
weaned piglets was observed to lead to a significant increase body 
weight gain (Marounek et al., 2004). MSTRG.17681 most likely 
acts predominantly in jejunum, liver, and rumen, where average 
expression was much higher (31.83, 25.26, and 18.74 FPKM, 
respectively) compared with the expression in skeletal muscle (3.36 
FPKM). We infer that MSTRG.17681 is a key regulator in COPI-
vesicle functioning and thereby presumably affects lipid levels.

MSTRG.10337 was the third key hub lncRNA with a distinct 
prediction of biological function. In the network specific 
for animals of low metabolic efficiency, MSTRG.10337 was 
co-expressed with 39 genes that were DE in liver, 4 of which were 
also DE in muscle. Interestingly, the hub lncRNA MSTRG.10337 
correlated with RORA (RAR related orphan receptor A), which 
was DE in liver. RORA is a transcriptional regulator of genes 
related to lipid metabolism, e.g. APOA1, APOA5, APOC3, and 
PRAPRG (Vu-Dac et al., 1997; Raspe et al., 2001; Sundvold and 
Lien, 2001; Lind et al., 2005). Although not meeting the threshold 
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for entering the PCIT network with respect to correlation to 
MSTRG.10337, we found APOA1 to be DE in the liver, providing 
consistency in gene expression and biological interplay with 
regard to RORA. Previously, Krappmann et al. (2012) has attested 
an association of a RORC (RAR Related Orphan Receptor C) 
variant with milk yield, as well as milk fat and protein percentage 
in our SEGFAM resource population. Furthermore, Zhang et al. 
(2017) linked both nuclear receptors RORA and RORC to hepatic 
lipid and fatty acid metabolism as well as circadian rhythm 
pathways in a liver-specific depletion experiment in mice.

The most enriched pathways related to MSTRG.10337 are 
Calcium signaling (p = 4.98E-17) Protein Kinase A (PKA) 
signaling (p = 3.51E-08), and nNOS signaling in skeletal muscle 
cells (p = 7.88E-07). These data confirmed findings from an 
alternative previous network analysis in our resource population, 
where GWAS results for RFI and metabolomics profiles were 
merged for bulls in puberty. Widmann et al. (2015) also has 
identified Protein Kinase A (PKA) signaling and Nitric Oxide 
signaling to be significantly enriched pathways in IPA analyses.

Calcium signaling, Protein Kinase A (PKA) signaling and 
nNOS signaling in skeletal muscle cells are in biological interplay. 
Protein kinases are in charge of nNOS phosphorylation on 
different serine residues and catalyze the hydroxylation of 
L-arginine (Fleming, 2008). In turn, L-arginine plasma levels were 
negatively correlated with expression levels of MSTRG.10337 
(p=0.038, r=-0.323) in our study. This would fit an inhibitory role 
of MSTRG.10337 in metabolic efficiency, because of unfavorable 
effects of arginine depletion in the diet on milk protein synthesis 
in dairy cows (Tian et al., 2017). The inhibitory effect is underlined 
by numerous negative correlations of MSTRG.10337 to genes with 
DE in liver (e.g. LGR4, FIG4, ESD), muscle (e.g. PON2, IDH1, 
NUP54) and jejunum (e.g. LINGO1, MPDU1, UFC1), as well as 
QTL harboring genes (e.g. GAPDH, MAFA, MYBPC1), although 
the exact mode of operation is unclear. The supplementation of 
arginine has been reported to reduce body fat deposition, improve 
muscle gain and improve insulin sensitivity and the metabolic 
profile (Wu et al., 2009), and its availability in the organism is 
therefore particularly interesting for beef production. In chicken, 
L-arginine supplementation enhanced lean muscle growth (Castro 
et al., 2018). However, protein anabolic effects in muscle via 
dietary arginine supplementation are controversially discussed in 
other species (Tang et al., 2011). In addition to Calcium and PKA 
signaling, a third highly enriched pathway for MSTRG.10337 
was nNOS signaling. In terms of gene expression, nNOS is not 
restricted to neuronal cells but is commonly expressed in skeletal 
muscle and certain vascular smooth muscle cells as well (Fleming 
2008), where it is important for tissue integrity and contractile 
performance (Percival, 2011). After Ca2+-activation, nNOS 
enzymes produce NO, which affects the autoregulation of blood 
flow, myocyte differentiation and glucose homeostasis in skeletal 
muscle cells (Stamler and Meissner, 2001). In a previous study we 
already suspected a relationship between NO signaling, arginine 
and growth in cattle (Widmann et al., 2013).

We assume that MSTRG.10337 influences the onset of nNOS 
activation, because of its correlation to calcium voltage-gated 
channel genes and RYR1 (ryanodine receptor 1) that encodes a 
calcium release channel protein (Loy et al., 2011). Co-expression 

with a large number of muscle specific genes (e.g. CACNG1, 
MYLK2, TNNT1, MYL2) or genes that are DE in muscle 
(CAMK2B) related this hub lncRNA to PKA and nNOS signaling. 
It might thereby influence phosphorylation, degradation and 
availability of L-arginine in the muscle cells, but simultaneously 
perform some regulatory tasks in hepatic lipid metabolism.

CONCLUsIONs
In this study, we were able to identify novel lncRNAs with potential 
key regulatory function in metabolic efficiency in cattle. Although 
usually low expression levels of lncRNAs entail difficulties in DE and 
co-expression analyses, the careful setting of expression thresholds, 
the use of a-priori knowledge in gene prioritization and the integrated 
use of RIF metrics and PCIT based co-expression networks have 
proven to be a valid method for the identification of regulatory hub 
lncRNAs. The enrichment analysis based on metabolites and gene 
expression data provided valuable insight into the putative biological 
functions of yet uncharacterized lncRNAs.

We focused on phenotypic differences and looked at 
mechanisms or correlations that were exclusive to either metabolic 
efficiency group. Still, other correlations between lncRNAs and 
mRNAs might exist simultaneously in both groups, and we 
propose to take a group transcending approach in a follow-up 
study. For future work, we suggest to proceed within tissues to 
get a clearer picture of gene-gene interactions within a tissue, 
also because we noted that a multi-tissue approach presents its 
challenges when interpreting pathway enrichment results. The hub 
lncRNAs, which we identified, can be considered as candidates for 
further validation studies, in vitro or in vivo. Kashi et al. (2016) 
neatly described modern methods to determine where and how 
lncRNAs act in the cell or organism, such as chromatin isolation 
by RNA purification (ChIRP) sequencing (Chu et al., 2011).

In conclusion, our study demonstrates that the method we 
presented is suitable for the identification for key regulatory lncRNAs 
in a complex phenotype. By carefully adjusting different elements of 
the procedure, e.g. the tissue under consideration or the choice of 
priority categories for genes to include in the network analysis, this 
pipeline allows us to answer targeted biological questions.
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Expression Quantitative Trait 
Loci in Equine Skeletal Muscle 
Reveals Heritable Variation in 
Metabolism and the Training 
Responsive Transcriptome
Gabriella Farries 1, Kenneth Bryan 1, Charlotte L. McGivney 2, Paul A. McGettigan 1, 
Katie F. Gough 1, John A. Browne 1, David E. MacHugh 1,3, Lisa Michelle Katz 2  
and Emmeline W. Hill 1,4*
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Medicine, University College Dublin, Dublin, Ireland, 3 UCD Conway Institute of Biomolecular and Biomedical Research, 
University College Dublin, Dublin, Ireland, 4 Research and Development, Plusvital Ltd., Dublin, Ireland

While over ten thousand genetic loci have been associated with phenotypic traits 
and inherited diseases in genome-wide association studies, in most cases only a 
relatively small proportion of the trait heritability is explained and biological mechanisms 
underpinning these traits have not been clearly identified. Expression quantitative trait loci 
(eQTL) are subsets of genomic loci shown experimentally to influence gene expression. 
Since gene expression is one of the primary determinants of phenotype, the identification 
of eQTL may reveal biologically relevant loci and provide functional links between genomic 
variants, gene expression and ultimately phenotype. Skeletal muscle (gluteus medius) 
gene expression was quantified by RNA-seq for 111 Thoroughbreds (47 male, 64 female) 
in race training at a single training establishment sampled at two time-points: at rest 
(n = 92) and four hours after high-intensity exercise (n = 77); n = 60 were sampled at 
both time points. Genotypes were generated from the Illumina Equine SNP70 BeadChip. 
Applying a False Discovery Rate (FDR) corrected P-value threshold (PFDR < 0.05), 
association tests identified 3,583 cis-eQTL associated with expression of 1,456 genes 
at rest; 4,992 cis-eQTL associated with the expression of 1,922 genes post-exercise; 
1,703 trans-eQTL associated with 563 genes at rest; and 1,219 trans-eQTL associated 
with 425 genes post-exercise. The gene with the highest cis-eQTL association at both 
time-points was the endosome-associated-trafficking regulator 1 gene (ENTR1; Rest: 
PFDR = 3.81 × 10-27, Post-exercise: PFDR = 1.66 × 10-24), which has a potential role in 
the transcriptional regulation of the solute carrier family 2 member 1 glucose transporter 
protein (SLC2A1). Functional analysis of genes with significant eQTL revealed significant 
enrichment for cofactor metabolic processes. These results suggest heritable variation 
in genomic elements such as regulatory sequences (e.g. gene promoters, enhancers, 
silencers), microRNA and transcription factor genes, which are associated with metabolic 
function and may have roles in determining end-point muscle and athletic performance 
phenotypes in Thoroughbred horses. The incorporation of the eQTL identified with 
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inTRODUcTiOn
In the 6,000 years since horses were first domesticated on the 
Eurasian steppe, there has been strong artificial selection for 
various athletic traits (Levine, 1999). Selection for athleticism 
is perhaps most clearly manifested in the Thoroughbred, which 
has undergone over 300 years of intense selection for speed and 
racing performance (Willett, 1975; Todd et al., 2018). As a result 
the Thoroughbred has a highly developed musculature, with a 
skeletal muscle mass ~10% greater than other horse breeds (~55% 
compared to ~42%) (Gunn, 1987), accompanied by decreased 
body fat (Kearns et al., 2002), superior glycogen storage capacity 
(Votion et al., 2012), increased mitochondrial volume (compared 
to other mammals) (Kayar et al., 1989) and a high degree of 
plasticity in skeletal muscle fibre composition (Rivero, 2004).

The response of equine skeletal muscle to training has been well 
studied (Snow et al., 1985; Snow, 1994). These responses in general 
increase the oxidative capacity of the muscle, such as fibre type 
switching from fast-twitch glycolytic fibres to slow-twitch, high-
oxidative fibres (Snow, 1994; Serrano et al., 2000), an increase in 
oxidative phosphorylation (Snow et al., 1985; Votion et al., 2012) 
and increased mitochondrial volume (Tyler et al., 1998). Training 
also elicits an increase in skeletal muscle mass (Rivero et al., 1996), 
mediated through hyperplastic growth as opposed to marked 
hypertrophy (Rivero et al., 1996; Rivero et al., 2002).

The transcriptional response to exercise and training in skeletal 
muscle has been studied in the Thoroughbred (McGivney et al., 
2009; Eivers et al., 2010; McGivney et al., 2010; Eivers et al., 2012; 
Bryan et al., 2017). Initially, reverse transcription quantitative real-
time polymerase chain reaction (RT-qPCR) was used to quantify 
expression of 18 candidate genes in response to a standardised 
exercise test on a high-speed treadmill (Eivers et al., 2010). 
Significant differential expression of creatine kinase M-type 
(CKM), cytochrome c oxidase subunit 4I1 (COX4I1), cytochrome 
c subunit 4I2 (COX4I2), pyruvate dehydrogenase kinase 4 
(PDK4), PPARG coactivator 1 alpha (PPARG1A) and solute 
carrier family 24 member 4 (SLC2A4) four hours post-exercise 
was detected. PPARG1A is a transcription factor downstream 
of hypoxia-inducible factor (HIF), activation of PPARG1A via 
HIF in response to exercise induces downstream adaptations 
in oxidative phosphorylation (Arany, 2008). The differentially 
expressed genes were downstream targets of HIF or related to 
oxidative phosphorylation or muscle substrate use (Kraniou 
et al., 2006) The availability of a dedicated equine microarray 
allowed gene expression to be measured across 9,333 expressed 
sequence tags (ESTs). This technology was then used to examine 
the changes in gene expression induced by exercise, without a 
priori knowledge of the genes involved (McGivney et al., 2009). 

Analysis of the differentially expressed genes showed a functional 
enrichment of genes involved in insulin signalling, focal adhesion, 
hypertrophic and apoptotic pathways. Digital gene expression was 
used to investigate the transcriptional response to a ten-month 
training protocol (McGivney et al., 2010), identifying functional 
enrichment of genes relevant to aerobic metabolism. More recently, 
RNA sequencing (RNA-seq) was used to investigate the response 
to both exercise and training, and a network biology approach 
was employed to identify relevant functional modules that 
highlighted the role of autophagy (Bryan et al., 2017) While these 
studies provide insight to the genes involved in the transcriptional 
response to exercise, they do not reveal whether there is variation 
in the transcriptional response among individuals and how this 
may influence skeletal muscle function.

Expression quantitative trait loci (eQTL) are genomic variants, 
typically single nucleotide polymorphism (SNPs), that are 
associated with variation in RNA transcript abundance. Jansen 
and Nap (2001) introduced the concept of ‘genetical genomics’ 
where genomic loci were associated with cellular intermediates, 
such as transcript abundance, to catalogue functional relevance 
for non-coding variants. These measurements at a cellular level 
then act as endophenotypes, which are heritable, intermediate 
phenotypes This was a particularly important development 
because the clear majority (>85%) of QTLs detected in genome-
wide association studies (GWAS) are located in non-coding 
regions (Hindorff et al., 2009; Brown et al., 2013).

Cis-eQTL are genetic variants that alter gene expression 
in an allele-specific manner and are typically located in gene 
regulatory regions (Wittkopp, 2005; Westra and Franke, 2014). 
Identification of true cis-eQTL requires aligning reads to their 
chromosome of origin; consequently, many studies have by 
convention defined any eQTLs within 1 Mb of the transcription 
start site (TSS) of the gene they act on as cis. Conversely, trans-
eQTL act in a less direct manner, altering the expression of a 
secondary genome product—for example, a transcription factor 
or a microRNA—that regulates expression of a distant gene 
elsewhere in the genome (Wittkopp, 2005).

The study of eQTL in skeletal muscle to-date has been 
largely to investigate functional variants in the pathogenesis of 
type II diabetes (T2D) in humans (Mason et al., 2011; Keildson 
et  al., 2014b; Sajuthi et al., 2016). While GWAS for T2D have 
identified loci associated with disease risk, these studies have not 
provided information on the function of these variants or the 
mechanism by which they contribute to disease. Keildson et al. 
(2014b) performed an eQTL investigation using skeletal muscle 
biopsies from 104 human subjects and identified an association 
between the rs4547172 SNP and muscle phosphofructokinase 
gene (PFKM) expression. Furthermore, the study found that 

genome and transcriptome-wide association may reveal useful biological links between 
genetic variants and their impact on traits of interest, such as elite racing performance 
and adaptation to training.

Keywords: expression quantitative trait loci, gene expression, Rna sequencing, horse, exercise, aerobic 
metabolism
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increased expression of PFKM was associated with increased 
resting plasma insulin (an endophenotype) and T2D (an end-
point phenotype). This example shows that an eQTL approach 
can identify functional links between genomic variants, gene 
expression, endophenotypes, and ultimately, disease.

Variation in human gene expression has been found to be 
highly heritable (Monks et al., 2004; Stranger et al., 2007; Wright 
et al., 2014). Given the influence of gene expression on phenotype, 
detection of heritable variation in skeletal muscle gene expression 
may provide insight into genomic loci contributing to variation 
in exercise and performance related phenotypes.

In this study, we hypothesised that there is heritable variation 
in the Thoroughbred skeletal muscle transcriptional response 
to exercise and training, and that this variation may have 
implications for athletic performance.

METHODS

Ethics Statement
University College Dublin Animal Research Ethics Committee 
approval (AREC-P-12-55-Hill), a licence from the Department of 
Health (B100/3525), and informed owner consent were obtained.

cohort
Skeletal muscle biopsy samples (gluteus medius) were collected 
from 111 horses (47 male, 64 female) born between 2011 and 
2012. All horses were based at a single training yard, under the 
supervision of a single trainer and under similar management 
and feeding regimes. The 111 horses used for the study were 
produced from 19 different sires and 94 different dams.

Biopsies were collected at two time points: untrained at rest 
(UR) and untrained four hours post-exercise (UE). Of the 111 
horses, 60 were sampled at both time points. In total 92 UR 
samples and 77 UE samples were collected. The horses were 
defined as untrained because they had completed ≤ four sprint 
exercise bouts (e.g., work days) prior to sampling. The number 
of prior work days and days of submaximal prior training prior 
to sampling were recorded. Horses were defined as untrained in 
order to integrate results with those of Bryan et al. (2017), where 
the untrained cohort had performed only 1−2 work days prior to 
sampling, and the trained cohort had completed a mean of 15.1 
work days prior to sampling (SD = 9.1).

Exercise Test
The exercise stimulus was an intense sprint bout of exercise 
(work day) undertaken as part of normal training. The training 
regime for horses is submaximal training at canter six times per 
week, with work days being introduced and replacing one to two 
submaximal bouts per week. On a work day horses were initially 
walked on an automated horse walker for 30–60 min, followed by 
5–10 min of walking in hand. Under saddle there was an initial 
warm-up period of 300 m walk and 700 m of trot and slow canter 
down the incline of the track. The work day was performed 
on a 1,500 m all-weather woodchip gallop track, with the final 
800 m straight set on a 2.7% incline. The sprint portion of the 

exercise bout consisted of the horses galloping at high intensity 
for 800-1,000 m up the incline of the gallop. In a larger cohort 
of horses (n = 294) from the same training establishment, the 
work day was characterised using concurrent global positioning 
system (GPS) and heart rate monitoring (Farries et al., 2019). 
From 2,900 GPS recordings the mean peak speed was 16.36 m/s 
(range: 14.23−17.63 m/s). Of these 2,900 recordings 1,056 had 
simultaneous heart rate recordings, with a mean peak heart rate 
of 219 beats per minute (range: 182−237).

For 34/77 UE horses, whole blood was collected at rest and 
five minutes post-exercise into fluoride oxalate tubes. Samples 
were centrifuged, and plasma lactate concentrations measured 
on-site using a YSI2300 STAT PLUS auto analyser (YSI UK Ltd, 
Hampshire, UK). These measurements were used to validate the 
intensity of the exercise test performed.

Biopsy Sampling
Percutaneous needle muscle biopsies (approximately 300 mg) 
were obtained from the ventral compartment of the middle 
gluteal muscle using the method described by Valette et al. 
(1999). All UR samples were collected between 7:30 am and 11:30 
am. UE samples were taken four hours after completion of the 
exercise test, as this has previously been shown to be a timepoint 
where the greatest change in gene expression in response to 
acute exercise was observed (McGivney et al., 2009; Eivers et al., 
2010). Muscle samples were stored in RNAlater (Thermo Fisher, 
Massachusetts, USA) for 24 hours at 4°C then stored at −20°C 
prior to RNA extraction.

Rna Extraction and Quality control
Total RNA was extracted from approximately 70 mg tissue using 
a protocol combining TRIzol reagent (Thermo Fisher), DNase 
I treatment (Qiagen, Hilden, Germany) and an RNeasy Mini-
Kit (Qiagen). RNA was quantified using a Nano Drop ND1000 
spectrophotometer V 3.5.27 (Thermo Fisher). RNA quality was 
assessed using the RNA integrity number (RIN) on an Agilent 
Bioanalyser with the RNA 6000 Nano LabChip kit6 (Agilent, 
Cork, Ireland).

Rna Sequencing
Indexed, strand-specific Illumina sequencing libraries were 
prepared using the TruSeq Stranded mRNA Library Preparation 
Kit LT (Illumina, San Diego, CA, USA). Libraries were pooled with 
18–20 indexed libraries per pool and sequenced on an Illumina 
HiSeq 2500 using a Rapid Run flow cell and reagents to generate 100 
bp paired-end reads. Each pool was sequenced across both lanes of 
the flow cell (dual lane loading). Demultiplexed sequence data was 
then converted to FASTQ format. Sequencing was performed by the 
Research Technology Support Facility, Michigan State University.

Rna-Seq Data Workflow
Quality control of the sequence reads was performed using 
FastQC [version: 0.11.5] (Andrews, 2010). STAR aligner 
[version: 2.5.2b] (Dobin et al., 2013) was used to map reads to 
the Equine reference genome EquCab2 (Ensembl release 62). 
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After mapping, featureCounts [version: 1.5.0] was used to assign 
reads to genes (Liao et al., 2014). Data for each sample from each 
sequencing lane was then merged where concordance was >99% 
between lanes. Count data was parsed using a custom script, then 
small non-coding RNA were filtered using BiomaRt (Durinck 
et al., 2009). Assessment of the count data and multidimensional 
scaling were performed using edgeR (Robinson et al., 2010). 
Results of the multidimensional scaling were visualised using 
ggplot2 (Wickham, 2009). Count data was quantile normalised 
using preprocessCore [version: 1.40.0] (Bolstad, 2017) within the 
R environment [version: 3.5.1] (R Core Team, 2017), and the log2 
of quantile-normalised count data calculated.

genotyping
Genomic DNA was extracted from whole blood using the Maxwell 
16 automated DNA purification system (Promega, Madison, WI, 
USA). Horses were genotyped on the Illumina Equine SNP70 
BeadChip (Illumina). A genetic versus phenotypic sex check was 
performed. SNPs with a genotyping rate of <95%, and individuals 
with a genotyping rate <95% were excluded. SNPs with a minor 
allele frequency (MAF) < 0.10 were removed. Using these 
quality-controlled SNPs, identity by state (IBS) distances between 
individuals were calculated using the ‘genome’ function in PLINK 
[version 1.09] (Chang et al., 2015). The remaining 43,988 SNPs 
were then pruned based on pairwise linkage disequilibrium (LD) 
using a sliding window with an LD threshold of r2 > 0.7, a window 
size of 50, and a step of 5 in PLINK. A set of 15,995 SNPs were 
used for the eQTL analysis. Pruning was undertaken due to the 
large spanning of LD within the Thoroughbred, with previous 
work validating the use of <15,000 SNPs to capture the majority 
of genetic variation (Corbin et al., 2014; Schaefer et al., 2017).

eQTL analysis
eQTL were determined using a linear model within matrixEQTL 
[version: 2.1.1] (Shabalin, 2012); including sex and age at 
sampling (days) as covariates. As samples had been included 
in two separate sample pools which were sequenced separately, 
the sequencing batch for each sample was also included as 
a covariate. Tests of association were corrected using the 
Benjamini-Hochberg procedure (Benjamini and Hochberg, 
1995) and eQTL with a corrected P-value (PFDR) < 0.05 were 
catalogued for UR and UE samples separately. eQTL located 
within 1 Mb of the transcription start site (TSS) of the gene they 
were associated were designated as cis, and those located >1Mb 
from the TSS were designated trans, in keeping with human 
eQTL studies (Lonsdale et al., 2013). Significant results were 
then compared against genes previously identified in the skeletal 
muscle transcriptional response to acute, high-intensity exercise 
(a work day; 3,241 genes) and transcriptional response to a six-
month period of training (3,405 genes) (Bryan et al., 2017).

Functional Enrichment analysis
Genes with significant eQTL were investigated for enrichment 
of biological processes using gene ontology (GO) categories 
(Ashburner et al., 2000) with the clusterProfiler package [version: 

3.10.1] (Yu et al., 2012) within the R environment. Equine Ensembl 
IDs were mapped to annotated human orthologs, retrieved from the 
BioMart database (Kasprzyk, 2011) and GO enrichment performed 
using the annotation from the human genome annotation package 
org.Hs.eg.db [version: 2.12.0] (Carlson, 2019). The background 
gene set was the complement of genes expressed in skeletal muscle 
identified in this study (13,384 genes; 12,707 mapped to human 
orthologs). A threshold for significant enrichment was set at <0.05 
after adjustment using the Benjamini-Hochberg procedure (PFDR) 
(Benjamini and Hochberg, 1995). The number of genes assigned 
to each Biological Process (Gene count) and proportion of genes 
associated with that cluster out of all the genes expressed (Gene 
ratio) were also reported. Results were visualised using the 
clusterProfiler package (Yu et al., 2012).

RESULTS

cohort
UR horses had a mean age of 611.7 days (range: 513–787 days), 
UE horses had a mean age of 757.5 days (range: 617–1,283 days). 
Dates of commencing preparatory training were available for 
90 of the UR horses; 21 of the UR horses were sampled prior to 
breaking, 69 were sampled after breaking with a mean of 41.5 
days after commencing preparatory training (range: 5-154 days) 
(Table 1). UE horses were sampled on average 156.6 days after 
commencing preparatory training (range: 31–307). UR horses 
had an average of 41.5 days submaximal training (range: 5–154) 
and UE had on average 48.6 (range: 19–152) (Table 1). UR horses 
had completed a mean of 0.3 work days (range: 0–4), UE horses 
completed a mean of 0.5 WDs prior to sampling (range: 0–3) 
(Table 2). A subset of 34 of the UE horses had a mean peak post-
exercise plasma lactate concentration of 28.2 mmol/L, and a mean 
resting plasma concentration of 0.4 mmol/L. All RNA samples 
used for RNA-seq had a RIN greater than 7.0, the UR cohort had 
a mean RIN of 8.0 (range: 7.2−9.3) and the UE cohort had a mean 
RIN of 8.1 (range: 7.0−9.3). Multi-dimensional scaling was used 
to visually inspect the count data, showing separation of untrained 
resting and untrained post-exercise samples (Figure S1).

Analysis of the genetic relatedness of the cohort showed the 
mean IBS distance between individuals was 0.69 and ranged from 
0.64−0.85 (SD = 0.03). Of the 19 sires represented in the cohort, 
the top six sires in terms of number of progent represented had 
39, 23, 14, 10, 6, and 4 progeny. There were two sires with two 
progeny and the remaining ten sires had one offspring each. There 
were 12 full siblings in the cohort and 34 half-siblings by dam.

eQTL Discovery
Using the full complement of 13,384 genes, 3,582 cis-eQTL and 
1,703 trans-eQTL were detected in UR samples (PFDR < 0.05). The 
3,582 cis-eQTL were associated with expression of 1,456 genes. 
The gene with the strongest cis-eQTL (BIEC2-707785) in UR 
horses was the endosome associated trafficking regulator 1 gene 
(ENTR1; PFDR = 3.81 × 10-27) (Figure S2, Table 3). GO enrichment 
analysis of the cis regulated genes in UR samples showed that the 
most significantly enriched Biological Process was ‘GO:0006805 
xenobiotic metabolic process ‘ (PFDR = 3.02 × 10-7, Gene Ratio = 
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33/1,614). ‘GO:0051186 cofactor metabolic process’ (PFDR = 1.42 × 
10-4) was also significantly enriched and had the largest Gene Ratio 
(105/1,614) (Figure 1, Table S1).

In the UR cohort 1,219 trans-eQTL were associated with 
425 genes. The majority 70.39% (858) were located on the same 

chromosome as the associated gene, and 29.61% (361) were 
associated with genes located on different chromosomes. The 
most significant trans-eQTL was BIEC2-526896 on ECA20 and 
expression of the DEAH-box helicase 16 gene (DHX16) also 
located on ECA20 1.49 Mb downstream from BIEC2-526896 
(PFDR = 3.50 × 10-17) (Table 4). Functional analysis of the trans 
eGenes showed enrichment of ‘interferon-gamma-mediated 
signalling’ (PFDR = 6.06 × 10-4, Gene Ratio = 13/340) (Figure 2, 
Table S2). The functional categories with the highest Gene 
Ratios were ‘cofactor metabolic process’ (PFDR = 0.01, Gene 
Ratio = 29/340) and ‘monocarboxylic acid metabolic process’ 
(PFDR = 0.02, Gene Ratio = 29/340) (Figure 2, Table S2).

In the UE cohort 4,992 cis-eQTL were associated with the 
expression of 1,922 genes. The most significant cis-eQTL was 
BIEC2-707785 on ECA25 and ENTR1 (PFDR = 1.66 × 10-24) 
(Figure S3), as was the case in the UR cohort (Table 3). The 
strongest trans-eQTL association was between BIEC2-165011 

TaBLE 1 | Description of prior training completed by horses in the untrained resting and untrained post-exercise cohorts.

Preparatory training Submaximal training

Untrained 
resting

No. horses sampled before entering 
preparatory training

21 No. horses sampled before entering submaximal 
training

52

No. horses sampled after entering preparatory 
training

69 No. horses sampled after entering submaximal 
training

16

Days preparatory training prior to sampling Mean: 31.82 
SD: 40.78
Range: 5-154

Days submaximal training prior to sampling Mean: 11.44 
SD: 26.16
Range: 19-152

Untrained 
post-exercise

No. horses sampled before entering 
preparatory training

0 No. horses sampled before entering submaximal 
training

0

No. horses sampled after entering preparatory 
training

74 No. horses sampled after entering submaximal 
training

76

Days preparatory training prior to sampling Mean: 156.61 
SD: 63.91
Range: 31-307

Days submaximal training prior to sampling Mean: 124.59 
SD: 77.61
Range: 7-302

TaBLE 2 | Number of prior high-intensity sprint bouts (work days, WDs) 
completed prior to sampling for horses within untrained resting and untrained 
post-exercise cohorts.

Untrained resting Untrained post-exercise

Prior WDs no. horses Prior WDs no. horses

0 78 0 47
1 7 1 24
2 5 2 4
3 2 3 1
4 1 4 0

TaBLE 3 | Top 10 genes by strongest cis-eQTL association.

SnP Ensembl gene iD gene SnP 
chr

SnP Pos PFDR gene 
chr

TSS gene End Strand Distance 
from TSS

Untrained resting
BIEC2-707785 ENSECAG00000010463 ENTR1 25 37504251 3.81E-27 25 37555303 37560097 1 -51052
BIEC2-1078267 ENSECAG00000012661 NA 8 1998191 1.46E-24 8 1610405 1612946 -1 387786
BIEC2-1078267 ENSECAG00000021215 NA 8 1998191 3.61E-24 8 2897771 2900415 -1 -899580
BIEC2-1078267 ENSECAG00000020446 NA 8 1998191 5.51E-23 8 2440998 2443623 -1 -442807
BIEC2-1078267 ENSECAG00000019976 NA 8 1998191 3.23E-22 8 2341391 2343774 -1 -343200
BIEC2-737866 ENSECAG00000024388 BPIFC 28 30492661 3.20E-21 28 30663308 30696619 -1 -170647
BIEC2-1078267 ENSECAG00000014546 NA 8 1998191 5.14E-21 8 1868952 1871600 -1 129239
BIEC2-235541 ENSECAG00000019034 NMRAL1 13 38538682 2.28E-18 13 38492654 38500913 1 46028
BIEC2-312869 ENSECAG00000021118 NA 15 28568686 5.02E-18 15 29280622 29284093 -1 -711936
BIEC2-163619 ENSECAG00000003428 NA 11 58806041 8.51E-18 11 57863227 57863916 -1 942814
Untrained post-exercise
BIEC2-707785 ENSECAG00000010463 ENTR1 25 37504251 1.66E-24 25 37555303 37560097 1 -51052
BIEC2-737866 ENSECAG00000024388 BPIFC 28 30492661 2.41E-21 28 30663308 30696619 -1 -170647
BIEC2-240006 ENSECAG00000017792 PARN 13 30544927 2.41E-21 13 30444515 30591937 1 100412
BIEC2-1078267 ENSECAG00000012661 NA 8 1998191 4.18E-18 8 1610405 1612946 -1 387786
BIEC2-741205 ENSECAG00000021492 ADSL 28 36754782 6.53E-18 28 37011649 37027102 1 -256867
BIEC2-328876 ENSECAG00000020459 SEC13 16 6720019 7.95E-18 16 6667915 6693504 1 52104
TBIEC2-918150 ENSECAG00000000861 CHCHD3 4 87261712 7.95E-18 4 86938001 87207374 -1 323711
BIEC2-166011 ENSECAG00000016949 NA 11 49589952 7.95E-18 11 49427265 49438385 1 162687
BIEC2-898764 ENSECAG00000013187 LPGAT1 5 26823295 3.92E-17 5 26734686 26804173 1 88609
BIEC2-62887 ENSECAG00000016304 CASC4 1 144947609 4.14E-17 1 1.45E+08 144833523 -1 220296
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on ECA11 and transcript ENSECAG00000016949 (PFDR = 1.12 × 
10-13) (Table 4). Similar to UR samples, the majority (75.45%; 
544) of trans-eQTL were located on the same chromosome and 
24.55% (177) were on different chromosomes.

Analysis of the cis regulated genes in UE samples showed 
that similar to the UR cohort, the most significantly enriched 
Biological Process was ‘cofactor metabolic process’ (PFDR = 6.40 × 
10-7, Gene Ratio = 112/1,579) (Figure 3, Table S3). Comparable 
results were obtained for enrichment of Biological Processes 
among putative trans regulated genes, with ‘cofactor metabolic 
process’ the most significantly enriched (Figure 4; PFDR = 5.06 × 
10-7, Gene Ratio = 33/235).

genetic Regulation of Exercise  
Relevant genes
The total set of genes with expression changes associated with 
eQTLs (i.e. eGenes) were queried against genes that we have 
reported from the same dataset to be differentially expressed 

post-exercise in a sample of 39 Thoroughbreds (Bryan et al., 
2017). Of the 3,582 UR cis-eQTL, 913 were associated with 
genes differentially expressed in response to exercise. The most 
significant association was between BIEC2-285235 and the 
CCR4-NOT transcription complex subunit 11 gene (CNOT11; 
PFDR = 3.00 × 10-15) (Table 5). Of the 1,703 UR trans-eQTL, 144 
were associated with exercise relevant genes. The most significant 
trans-eQTL was between BIEC2-1061469 and the TAL bHLH 
transcription factor 2 gene (TAL2; PFDR = 3.03 × 10-10) (Table 6).

Within the UE cohort 4,992 cis-eQTL were identified, 1,132 
of which were associated with genes differentially expressed 
post-exercise. The strongest association was between BIEC2-
240006 and the polyA-specific ribonuclease gene (PARN; PFDR = 
2.41 × 10-21) (Table 5). Of the UR trans-eQTL, 121 eQTL were 
associated with eGenes in the transcriptional exercise response. 
The strongest trans-eQTL in the UE cohort was BIEC2-1053404, 
associated with expression of the peroxiredoxin 2 gene (PRDX2; 
PFDR = 1.51 × 10-8) (Table 6).

FigURE 1 | Gene ontology enrichment of biological processes for genes under cis regulation in the untrained resting cohort.
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TaBLE 4 | top ten genes by strongest trans-eQTL association.

SnP Ensembl gene iD gene SnP 
chr

SnP Pos PFDR gene 
chr

TSS gene End Strand Distance 
from TSS

Untrained resting
BIEC2-526896 ENSECAG00000008537 DHX16 20 28206968 3.50E-17 20 29693915 29708818 -1 -1486947
BIEC2-218753 ENSECAG00000015585 TBL2 13 9657509 8.69E-14 13 11241845 11246395 -1 -1584336
BIEC2-526896 ENSECAG00000015782 NA 20 28206968 5.20E-13 20 29364710 29368260 1 -1157742
BIEC2-526896 ENSECAG00000015505 NA 20 28206968 3.57E-12 20 30173637 30178981 -1 -1966669
BIEC2-554291 ENSECAG00000019318 NA 20 29116874 3.57E-12 20 32450503 32452484 -1 -3333629
BIEC2-991035 ENSECAG00000012956 DCPS 7 31604226 9.10E-12 7 35117723 35153555 1 -3513497
BIEC2-526896 ENSECAG00000021750 NA 20 28206968 2.27E-11 20 31193941 31197235 -1 -2986973
BIEC2-526791 ENSECAG00000009368 NA 20 27782384 2.27E-11 20 29049395 29052907 1 -1267011
BIEC2-554291 ENSECAG00000021750 NA 20 29116874 4.38E-11 20 31193941 31197235 -1 -2077067
BIEC2-31048 ENSECAG00000024546 NA 1 73056328 5.71E-11 1 70638960 70656636 -1 2417368
Untrained post-exercise
UKUL2765 ENSECAG00000010213 MCCC2 14 93893549 1.12E-13 14 92304084 92460487 -1 1589465
BIEC2-3702 ENSECAG00000004989 NA 1 9825107 4.38E-12 1 96257111 96258450 1 -86432004
BIEC2-991035 ENSECAG00000012956 DCPS 7 31604226 2.03E-11 7 35117723 35153555 1 -3513497
BIEC2-526896 ENSECAG00000015505 NA 20 28206968 6.37E-11 20 30173637 30178981 -1 -1966669
BIEC2-210079 ENSECAG00000012497 LIMK1 13 10604233 6.76E-11 13 11610902 11634978 1 -1006669
BIEC2-554291 ENSECAG00000019318 NA 20 29116874 2.91E-10 20 32450503 32452484 -1 -3333629
BIEC2-526896 ENSECAG00000015782 NA 20 28206968 4.06E-10 20 29364710 29368260 1 -1157742
BIEC2-554291 ENSECAG00000015505 NA 20 29116874 8.06E-10 20 30173637 30178981 -1 -1056763
BIEC2-63245 ENSECAG00000016304 CASC4 1 1.48E+08 1.04E-09 1 1.45E+08 1.45E+08 -1 3045045
BIEC2-3702 ENSECAG00000009972 LHPP 1 9825107 2.16E-09 1 8372229 8511110 -1 1452878

FigURE 2 | Gene ontology enrichment of biological processes for genes under trans regulation in the untrained resting cohort.

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1215363

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Equine Muscle Transcriptional VariationFarries et al.

8

genetic Regulation of Training Relevant 
genes
Using 3,405 genes that were differentially expressed in response 
to training in a sample of 39 Thoroughbreds (Bryan et al, 2017), 
we examined our results based on eQTL associated with genes 
within this transcriptional response. Within the UR cohort, 609 
of the 3,582 cis-eQTL were associated with training response 
genes. The strongest association was between BIEC2-1061469 
and the spindle and expression of the kinetochore associated 
complex subunit 1 gene (SKA1; PFDR = 9.80 × 10-18) (Table 7). 
Of the 1,703 UR trans-eQTL, 145 were associated with training 
response genes. The most significant association was between 
BIEC2-658237 and TAL2 (PFDR = 3.03 × 10-10) (Table 8).

Within the UE cohort 766 of the 4,992 cis-eQTL were 
associated with training response genes. The most significant cis-
eQTL association was between UKUL3712 and the interleukin 
33 gene (IL33; PFDR = 8.07 × 10-16) (Table 7). Of the 1,219 UE 

trans-eQTL 90 were associated with genes relevant to training. 
As with the exercise relevant genes, the strongest UE trans-eQTL 
was between BIEC2-1053404 and PRDX2 (PFDR = 1.51 × 10-8) 
(Table 8).

DiScUSSiOn
Using a systems genetics approach we have integrated RNA-seq 
and genome-wide SNP data for a large cohort of Thoroughbred 
horses in active race training that were maintained in a single 
environment. This strategy has allowed us to detect significant 
cis and trans eQTL in equine skeletal muscle that are likely to 
be relevant to an exercise phenotype, adaptation to training, an 
important and valuable trait in the racing Thoroughbred. A total 
of 4,992 cis-eQTL associated with the expression of 1,922 distinct 
genes were identified in the UR cohort; and 4,886 cis-eQTL 
associated with the expression of 1,875 genes were identified in 

FigURE 3 | Gene ontology enrichment of biological processes for genes under cis regulation in the post-exercise cohort.
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FigURE 4 | Gene ontology enrichment of biological processes for genes under trans regulation in the post-exercise cohort.

TaBLE 5 | top ten cis-eQTL identified in genes differentially expressed in response to exercise.

SnP Ensembl gene iD gene Log2Fc: 
Exercise1

SnP 
chr

SnP Pos PFDR gene 
chr

TSS gene End Strand Distance 
from TSS

Untrained resting
BIEC2-285235 ENSECAG00000011967 CNOT11 0.34 15 8238549 3.00E-15 15 8266315 8276804 -1 -27766
BIEC2-240006 ENSECAG00000017792 PARN 0.37 13 30544927 4.42E-15 13 30444515 30591937 1 100412
BIEC2-209001 ENSECAG00000019190 IFT22 -0.36 13 9212034 5.33E-15 13 9228359 9233728 -1 -16325
BIEC2-1035081 ENSECAG00000008723 NA 0.47 7 14212942 5.82E-14 7 14574017 14585790 -1 -361075
BIEC2-830969 ENSECAG00000012898 PNLDC1 0.55 31 1778298 3.95E-13 31 2140239 2157442 1 -361941
BIEC2-872079 ENSECAG00000024368 IPO9 -0.62 30 28911273 1.23E-12 30 28818157 28849624 1 93116
BIEC2-988215 ENSECAG00000018541 C2CD2L -0.59 7 26800468 4.48E-12 7 26815981 26823699 1 -15513
BIEC2-911228 ENSECAG00000024971 GSTM4 -0.45 5 57817054 4.38E-11 5 58455048 58459646 -1 -637994
BIEC2-609981 ENSECAG00000011021 NDUFAF5 0.41 22 9904659 7.88E-11 22 10479889 10512792 -1 -575230
TBIEC2-57788 ENSECAG00000013327 SLC24A1 0.82 1 1.27E+08 9.47E-11 1 126764822 1.27E+08 -1 -3157
Untrained post-exercise
BIEC2-240006 ENSECAG00000017792 PARN 0.37 13 30544927 2.41E-21 13 30444515 30591937 1 100412
BIEC2-209001 ENSECAG00000019190 IFT22 -0.36 13 9212034 5.64E-13 13 9228359 9233728 -1 -16325
BIEC2-1082617 ENSECAG00000008479 SDR16C5 -0.43 9 27686807 3.39E-12 9 27293107 27307849 1 393700
BIEC2-1035081 ENSECAG00000008723 NA 0.47 7 14212942 6.06E-12 7 14574017 14585790 -1 -361075
TBIEC2-513760 ENSECAG00000000973 NA -1.82 2 73037320 1.15E-11 2 72462318 72935365 1 575002
BIEC2-770455 ENSECAG00000011697 TMCC3 0.57 28 19829349 2.82E-11 28 19803131 19811873 -1 26218
BIEC2-14401 ENSECAG00000010786 PGAM1 0.48 1 32009184 6.25E-11 1 31823570 31825848 -1 185614
BIEC2-412279 ENSECAG00000023566 DHRS9 1.18 18 48009567 1.04E-10 18 48741376 48752360 1 -731809
BIEC2-1029754 ENSECAG00000019879 ISCU 0.50 8 11582493 2.78E-10 8 12361828 12395086 -1 -779335
BIEC2-909217 ENSECAG00000009353 AGMO -0.47 4 48124305 3.15E-10 4 47940706 48126316 -1 183599

1Log2 fold-change (log2FC) of expression in response to exercise in Bryan et al., 2017.
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the UE cohort. Fewer trans-eQTL were detected (UR: 1,703; UE: 
1,219), which is consistent with previous studies, and likely due 
to the greater statistical power required to identify trans-eQTL 
(Westra and Franke, 2014).

The gene with the most significant association with a cis-eQTL 
in the UR and UE cohorts was ENTR1 (Table 3, UR: PFDR = 3.81 × 
10-27, UE: PFDR = 1.66 × 10-24). The ENTR1 protein is involved in 
cellular transport of cargo proteins from the endosome to the 

TaBLE 6 | top ten trans-eQTL identified in genes differentially expressed in response to exercise.

SnP Ensembl gene iD gene Log2Fc: 
Exercise1

SnP 
chr

SnP Pos PFDR gene 
chr

TSS gene End Strand Distance 
from TSS

Untrained resting
BIEC2-658237 ENSECAG00000004995 TAL2 -1.67 25 9914109 3.03E-10 25 11725340 11725720 1 -1811231
BIEC2-53419 ENSECAG00000013327 SLC24A1 0.82 1 124846027 3.72E-08 1 126764822 126790389 -1 -1918795
BIEC2-58303 ENSECAG00000013327 SLC24A1 0.82 1 128180460 2.14E-06 1 126764822 126790389 -1 1415638
BIEC2-913863 ENSECAG00000024971 GSTM4 -0.45 5 63531114 5.08E-06 5 58455048 58459646 -1 5076066
BIEC2-959879 ENSECAG00000024971 GSTM4 -0.45 5 61035410 3.24E-05 5 58455048 58459646 -1 2580362
BIEC2-496328 ENSECAG00000014441 ZNF330 0.56 2 89041634 3.72E-05 2 90360628 90375365 -1 -1318994
BIEC2-311700 ENSECAG00000017760 ELK3 0.44 15 53973327 5.26E-05 28 21110553 21148433 1 NA
BIEC2-907346 ENSECAG00000018012 SELENBP1 -0.56 5 44309385 6.82E-05 5 45898879 45906904 1 -1589494
BIEC2-59128 ENSECAG00000013327 SLC24A1 0.82 1 129427658 1.09E-04 1 126764822 126790389 -1 2662836
BIEC2-60026 ENSECAG00000013327 SLC24A1 0.82 1 130739790 1.59E-04 1 126764822 126790389 -1 3974968
Untrained post-exercise
BIEC2-1053404 ENSECAG00000011541 PRDX2 0.53 7 51698577 1.51E-08 7 45573319 45575352 1 6125258
BIEC2-996678 ENSECAG00000011541 PRDX2 0.53 7 41340513 2.58E-08 7 45573319 45575352 1 -4232806
BIEC2-658237 ENSECAG00000004995 TAL2 -1.67 25 9914109 9.79E-08 25 11725340 11725720 1 -1811231
BIEC2-1028898 ENSECAG00000019879 ISCU 0.50 8 10602506 1.29E-06 8 12361828 12395086 -1 -1759322
BIEC2-1028319 ENSECAG00000019879 ISCU 0.50 8 10149470 9.98E-06 8 12361828 12395086 -1 -2212358
BIEC2-1051774 ENSECAG00000023096 TPGS2 0.41 8 51698367 2.02E-05 8 56940922 56994571 -1 -5242555
BIEC2-420441 ENSECAG00000009547 WDR12 0.57 18 76611180 4.93E-05 18 77655352 77674750 -1 -1044172
TBIEC2-1144261 ENSECAG00000008479 SDR16C5 -0.43 9 30312051 4.94E-05 9 27293107 27307849 1 3018944
TBIEC2-1149509 ENSECAG00000008479 SDR16C5 -0.43 9 40285361 6.34E-05 9 27293107 27307849 1 12992254
BIEC2-1052388 ENSECAG00000023096 TPGS2 0.41 8 53636613 1.07E-04 8 56940922 56994571 -1 -3304309

1Log2 fold-change (log2FC) of expression in response to exercise in Bryan et al., 2017.

TaBLE 7 | top cis-eQTL identified in genes differentially expressed in response to training.

SnP Ensembl gene iD gene Log2Fc: 
Training1

SnP 
chr

SnP Pos PFDR gene 
chr

TSS gene 
End

Strand Distance 
from TSS

Untrained 
resting
BIEC2-1061469 ENSECAG00000023484 SKA1 0.41 8 69117228 9.80E-18 8 68814638 68828326 1 302590
BIEC2-1061072 ENSECAG00000023484 SKA1 0.41 8 68498709 3.57E-17 8 68814638 68828326 1 -315929
TBIEC2-1028240 ENSECAG00000022151 MATK 0.58 7 2020098 5.03E-13 7 2272120 2277087 -1 -252022
BIEC2-974177 ENSECAG00000022151 MATK 0.58 7 1546395 1.12E-12 7 2272120 2277087 -1 -725725
BIEC2-872079 ENSECAG00000024368 IPO9 -0.66 30 28911273 1.23E-12 30 28818157 28849624 1 93116
BIEC2-988215 ENSECAG00000018541 C2CD2L -0.43 7 26800468 4.48E-12 7 26815981 26823699 1 -15513
BIEC2-472999 ENSECAG00000021368 FGGY 0.37 2 732213 7.94E-12 2 549904 834638 -1 182309
BIEC2-472598 ENSECAG00000015014 ACADL 0.44 2 248866 1.08E-11 2 124580 165039 -1 124286
BIEC2-609981 ENSECAG00000011021 NDUFAF5 0.43 22 9904659 7.88E-11 22 10479889 10512792 -1 -575230
TBIEC2-57788 ENSECAG00000013327 SLC24A1 0.74 1 1.27E+08 9.47E-11 1 1.27E+08 1.27E+08 -1 -3157
Untrained 
post-exercise
UKUL3712 ENSECAG00000010475 IL33 0.74 23 27442828 8.07E-16 23 27442768 27454175 1 60
BIEC2-974177 ENSECAG00000022151 MATK 0.58 7 1546395 1.96E-14 7 2272120 2277087 -1 -725725
TBIEC2-1028240 ENSECAG00000022151 MATK 0.58 7 2020098 7.95E-14 7 2272120 2277087 -1 -252022
BIEC2-1082617 ENSECAG00000008479 SDR16C5 -0.33 9 27686807 3.39E-12 9 27293107 27307849 1 393700
BIEC2-472598 ENSECAG00000015014 ACADL 0.44 2 248866 8.29E-12 2 124580 165039 -1 124286
TBIEC2-513760 ENSECAG00000000973 NA -0.85 2 73037320 1.15E-11 2 72462318 72935365 1 575002
BIEC2-360074 ENSECAG00000014129 TMEM42 0.34 16 42029863 2.23E-10 16 41642464 41643652 -1 387399
BIEC2-472999 ENSECAG00000021368 FGGY 0.37 2 732213 2.74E-10 2 549904 834638 -1 182309
BIEC2-1029754 ENSECAG00000019879 ISCU 0.44 8 11582493 2.78E-10 8 12361828 12395086 -1 -779335
BIEC2-136659 ENSECAG00000023268 CALHM5 0.54 10 64788579 3.77E-10 10 65017017 65021618 1 -228438

1Log2 fold-change (log2FC) of expression in response to training in Bryan et al., 2017.
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Golgi apparatus or for degradation in the lysosome (McGough 
et al., 2014) and has been suggested to play a role in cytokinesis 
(Hagemann et al., 2013). In a study where ENTR1 protein 
expression was blocked by RNA interference, there was a decrease 
in solute carrier family 2 member 1 glucose transporter protein 
(SLC2A1; previously known as GLUT1) (McGough et al., 2014). 
When examining whether this was due to increased SLC2A1 
degradation, there was no evidence of increased transport of 
SLC2A1 to the lysosome. It was hypothesised that the decrease 
in SLC2A1 was mediated through regulation of transcription 
by ENTR1. SLC2A1 is responsible for approximately 30−40% 
of the glucose uptake in skeletal muscle, with the remainder 
transported through GLUT4 (Zisman et al., 2000; Rudich et al., 
2003). As opposed to GLUT4 which is primarily expressed 
in skeletal muscle, SLC2A1 is widely expressed and is highly 
expressed on erythrocyte membranes (Krook et al., 2004). The 
control of SLC2A1 by ENTR1 in the context of the equine athlete 
is intriguing to speculate since SLC2A1 is expressed within equine 
lamellar tissue, and its expression is increased in hyperinsulinemia, 
therefore may play a role in the pathophysiology of equine 
laminitis (Campolo et al., 2016). SLC2A1 is also differentially 
expressed in response to hypoxia, this has also been shown in 
equine chondrocytes in vitro after exposure to cobalt chloride (to 
mimic hypoxia) and in chondrocytes from osteoarthritis cases  
(Peansukmanee et al., 2009).

The most significant trans association in the UR cohort 
was between BIEC2-526896 and expression of the DEAH-box 
helicase 16 gene (DHX16) (Table 4). DHX16 is an RNA helicase 
and is involved in regulation of translation and pre-mRNA 
splicing (Gencheva et al., 2010; Putiri and Pelegri, 2011). The 
gene located closest to BIEC2-526896 is the olfactory receptor 
family 12 subfamily D member 3 gene (OR12D3) with the TSS 

located 96.5 kb from the SNP. However, the zinc finger protein 
311 gene (ZNF311) also relatively close to BIEC2-526896 (792.5 
kb)(Consortium, 2017). ZNF311 has previously been associated 
with telomere length in heterozygous ataxia-talengiectasia 
mutated (ATM) gene patients (Renault et al., 2017). As a 
member of the a krueppel c2h2-type zinc-finger protein family 
it is likely a transcription factor and has been associated with 
Biological Processes such as ‘regulation of transcription, DNA 
templated’ and ‘regulation of transcription by RNA polymerase 
II’(Consortium, 2017). The trans association between BIEC2-
526896 and DHX16 expression may therefore be mediated via 
the gene regulatory function of ZNF311.

The most significant trans-eQTL in the UE cohort was 
UKUL2765 and expression of the methylcrotonoyl-CoA 
carboxylase 2 gene (MCCC2) (Table 4). MCCC2 encodes a 
subunit of 3-methylcrotonyl-CoA carboxylase (MCC), an 
enzyme which catabolises leucine (Stadler et al., 2005). Mutations 
within MCCC2 have been found to result in MCC deficiency, 
which has varying implications for patients from no symptoms 
at all to death in early infancy (Fonseca et al., 2016). To date 
studies have yet to discern mutations which result in more or less 
severe disease phenotypes (Gallardo et al., 2001; Stadler et al., 
2006). In terms of muscle physiology, MCCC2 has been shown 
to be highly expressed in skeletal muscle of the red seabream 
fish (Pagrus major), which is likely due to high levels of protein 
metabolism within skeletal muscle (Abe et al., 2004). The TSS of 
the jumonji domain containing 4 gene (JMJD4) is located 71 bp 
from UKUL2765. The JMJD4 protein catalyses the hydroxylation 
of translation termination factor eRF1 lysine 63, which in turn 
enables the correct termination of translation and maintenance 
of translational fidelity (Feng et al., 2014). It is possible that the 
variation proximal to JMJD4 is influencing expression of JMJD4, 

TaBLE 8 | top trans-eQTL identified in genes differentially expressed in response to training.

SnP Ensembl gene iD gene Log2Fc: 
Training1

SnP 
chr

SnP Pos PFDR gene 
chr

TSS gene End Strand Distance 
from TSS

Untrained resting
BIEC2-658237 ENSECAG00000004995 TAL2 -1.63 25 9914109 3.03E-10 25 11725340 11725720 1 -1811231
BIEC2-1118794 ENSECAG00000023484 SKA1 0.41 8 67640813 4.93E-10 8 68814638 68828326 1 -1173825
BIEC2-53419 ENSECAG00000013327 SLC24A1 0.74 1 124846027 3.72E-08 1 126764822 126790389 -1 -1918795
BIEC2-58303 ENSECAG00000013327 SLC24A1 0.74 1 128180460 2.14E-06 1 126764822 126790389 -1 1415638
BIEC2-59128 ENSECAG00000013327 SLC24A1 0.74 1 129427658 1.09E-04 1 126764822 126790389 -1 2662836
BIEC2-196080 ENSECAG00000017776 PITPNM1 0.38 12 25661692 1.28E-04 12 27228025 27239903 -1 -1566333
BIEC2-542299 ENSECAG00000021368 FGGY 0.37 20 7321704 1.34E-04 2 549904 834638 -1 NA
BIEC2-60026 ENSECAG00000013327 SLC24A1 0.74 1 130739790 1.59E-04 1 126764822 126790389 -1 3974968
BIEC2-580450 ENSECAG00000011021 NDUFAF5 0.43 22 9444819 2.10E-04 22 10479889 10512792 -1 -1035070
BIEC2-328903 ENSECAG00000020701 CAV3 -0.37 16 6817902 2.43E-04 16 8001463 8011813 -1 -1183561
Untrained post-exercise
BIEC2-1053404 ENSECAG00000011541 PRDX2 0.59 7 51698577 1.51E-08 7 45573319 45575352 1 6125258
BIEC2-996678 ENSECAG00000011541 PRDX2 0.59 7 41340513 2.58E-08 7 45573319 45575352 1 -4232806
BIEC2-658237 ENSECAG00000004995 TAL2 -1.63 25 9914109 9.79E-08 25 11725340 11725720 1 -1811231
BIEC2-1028898 ENSECAG00000019879 ISCU 0.45 8 10602506 1.29E-06 8 12361828 12395086 -1 -1759322
BIEC2-344350 ENSECAG00000014129 TMEM42 0.34 16 43032493 4.09E-06 16 41642464 41643652 -1 1390029
BIEC2-1028319 ENSECAG00000019879 ISCU 0.45 8 10149470 9.98E-06 8 12361828 12395086 -1 -2212358
BIEC2-130408 ENSECAG00000023268 CALHM5 0.54 10 67512852 2.28E-05 10 65017017 65021618 1 2495835
TBIEC2-1144261 ENSECAG00000008479 SDR16C5 -0.33 9 30312051 4.94E-05 9 27293107 27307849 1 3018944
BIEC2-809036 ENSECAG00000005431 CLRN2 0.67 3 107506494 6.34E-05 3 106028106 106037626 -1 1478388
TBIEC2-1149509 ENSECAG00000008479 SDR16C5 -0.33 9 40285361 6.34E-05 9 27293107 27307849 1 12992254

1Log2 fold-change (log2FC) of expression in response to training in Bryan et al., 2017.
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in turn altering expression of MCCC2. However, from the data 
available only one significant cis-eQTL for JMJD4 was detected 
in the UR cohort and this was BIEC2-277622 located 257.8 kb 
downstream of the TSS (PFDR = 6.58 × 10-5). Therefore it is not clear 
if UKUL2765 is tagging variation influencing JMJD4 expression 
and mediating its influence on MCCC2 through JMJD4.

Examination of eGenes previously shown to be involved 
in the skeletal muscle transcriptional response to exercise 
and training demonstrated that TAL2 exhibited the most 
significant trans-eQTL in the UR cohort (BIEC2-658237; 
Table 6) and that this trans-eQTL was also highly significant 
in the UE cohort (PFDR = 9.80 × 10-8; Table 4). TAL2 encodes 
a basic-helix-loop-helix transcription factor (Xia et al., 1991; 
Langlands et al., 1997). Deletion of TAL2 in mice has been 
shown to cause severe disruption of the development of the 
central nervous system, with new-born mice dying shortly 
post-partum (Bucher et al., 2000). TAL2 has been shown to 
be vital for the development of gamma-aminobutyric acid 
(GABA, inhibitory neurotransmitter) signalling neurons 
in the developing midbrain, showing highly regulated and 
coordinated expression (Achim et al., 2013). When expression 
of TAL2 was inhibited, neurons more closely resembled an 
excitatory glutamatergic phenotype (Achim et al., 2013). 
In terms of application in racing performance, GABA has 
previously been used as a calming agent in Thoroughbred 
racehorses, although it was banned from use in 2012. The GABA 
type A receptor associated protein like 1 gene (GABARAPL1) 
was also identified as a key regulator in the skeletal muscle 
transcriptional response to exercise (Bryan et al., 2017). In 
addition, we have previously reported functional enrichment 
of pathways related to neurodegenerative disorders in the 
transcriptional response to exercise (Bryan et al., 2017). Given 
the role of TAL2 in GABAergic neuronal fate, this suggests a 
potential role for TAL2 in the coordination of the response to 
exercise. These results suggest that the role of genes associated 
with neuronal differentiation and disease in the context of 
muscle and exercise warrants further investigation.

To identify common biological functions within genes identified 
under cis or trans regulation, enrichment analysis of Biological 
Processes among the gene sets was performed. Among the cis 
eGenes detected in both the UR and UE cohort, as well as trans 
eGenes in the UR cohort there was significant enrichment of 
cofactor metabolic processes (GO:0051186, Tables S1, S3, and 
S4). Cofactor metabolic process is defined as chemical reactions 
and pathways requiring the activity of an inorganic cofactor, such 
as an ion, or an organic coenzyme for the activity of an enzyme 
or other functional protein. Genes within this cluster were related 
to metabolism and substrate utilisation, including vitamin and 
mineral binding and synthesis such as: selenium (selenium binding 
protein 1 gene, SELENBP1; and selenoprotein T gene, SELENOT), 
molybdenum (molybdenum cofactor sulfurase gene, MOCOS) and 
thiamine (thiamine triphosphatase gene, THTPA). Consequently, 
variation in the expression of genes associated with nutrient binding 
may lead to variation in the ability of horses to utilise such nutrients. 
In this regard, abundance of selenoprotein gene transcripts has 
been used to identify dietary requirements for selenium in rats 
and turkeys (Barnes et al., 2009; Taylor and Sunde, 2017). Given 

the inter-animal variation in expression observed for genes relevant 
to substrate binding, it may be possible to use this information to 
evaluate nutrient requirements for individual horses, or whether 
expression of these genes can be modulated through diet.

Many of these genes have also been shown to have functions 
relevant to exercise, and variation within the expression of these 
genes may underpin variation in athletic performance. For 
example, the selenium binding protein 1 gene (SELENBP1) is 
significantly downregulated in response to exercise (log2FC = 
−0.56; PFDR = 3.71 × 10-11) (Bryan et al., 2017). In both normal and 
cancerous human cells SELENBP1 has been shown to be highly 
variable in expression (Yang and Sytkowski, 1998). Functionally, the 
SELENBP1 protein has been shown to be involved in many cellular 
processes including detoxification (Ishii et al., 1996), cytoskeletal 
outgrowth (Miyaguchi, 2004) and regulation of reduction and 
oxidation within the cell (Jamba et al., 1997). SELENBP1 was found 
be differentially expressed in blood in response to administration of 
human recombinant erythropoietin in human endurance athletes 
(Durussel et al., 2016; Wang et al., 2017), suggesting a potential 
role in haematopoiesis and its regulation. In the UE cohort; the 
DDB1 and CUL4 associated factor 12 (DCAF12) and guanosine 
monophosphate reductase (GMPR) genes both exhibited significant 
cis-eQTL (DCAF12: PFDR = 0.02; GMPR: PFDR = 4.17 × 10-3). These 
genes, in addition to SELENBP1, were also shown by Wang et al. 
(2017) to be differentially expressed in blood in response to 
human recombinant erythropoietin. Variation in the expression 
of these genes may therefore potentially underpin variation in 
haematological phenotypes in horses, which may in turn influence 
traits relevant to aerobic capacity. It is also noteworthy that selenium 
deficiency has been associated with significant myopathy (White 
muscle disease) (Lofstedt, 1997; Delesalle et al., 2017) and reduced 
exercise tolerance in horses (Brady et al., 1978; Avellini et al., 1999). 
In addition, selenoproteins have been shown to be involved in several 
metabolic pathways and the response to oxidative stress in muscle 
(Rederstorff et al., 2006). These findings suggest an important role 
for selenium, and its associated biochemical machinery, in the 
correct functioning of skeletal muscle and muscle metabolism. This 
highlights the importance of selenium in the context of exercise and 
provides a potential role for variation in expression of genes relevant 
to selenium metabolism in determining metabolic function within 
the muscle.

The cofactor metabolic process cluster also contained genes 
relevant to mitochondrial function and oxidative phosphorylation. 
These included genes within the coenzyme Q synthesis pathway: 
coenzyme Q3 hydroxylase (COQ3), coenzyme Q7 (COQ7) and 
coenzyme Q8A (COQ8A). The coenzyme Q complex is a critical 
component of the electron transport chain during oxidative 
phosphorylation, moving electrons from complexes I and II 
to complex III (Lenaz, 1985; Turunen et al., 2004; Stefely and 
Pagliarini, 2017). COQ7 and COQ8A are required for coenzyme 
Q biosynthesis (Mollet et al., 2008; Stefely et al., 2016). Human 
patients with COQ8A mutations suffered seizures and other 
neurological symptoms and showed reduced coenzyme Q within 
skeletal muscle (Jacobsen et al.; Mollet et al., 2008). An eQTL 
for COQ8A in skeletal muscle has already been identified in 
horses, with a 227 bp SINE insertion in the promotor region of 
MSTN (g.66495326_66495327ins227) on ECA18 associated with 
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increased expression of COQ8A (previously known as ADCK3) 
in Thoroughbreds (Rooney et al., 2017). However it should be 
noted that this increase in COQ8A expression did not appear to 
accompany an COQ8A protein abundance, with no difference 
in COQ8A protein abundance across genotypes (Rooney et al., 
2017). This may be due to COQ8A having a regulatory role in 
coenzyme Q biosynthesis (Acosta et al., 2016). Electron transport 
chain complex activity assays, as well as assays using the exogenous 
application of ubiquinone, suggested a difference in the abundance 
of coenzyme Q across genotypes at this locus (Rooney et al., 2017). 
Suggesting variation at this SINE insertion is associated with 
COQ8A expression as well as coenzyme Q abundance. Therefore 
eQTL in the current study associated with COQ8A (Figure S4), and  
indeed other genes within the coenzyme Q biosynthetic pathway, 
may result in variation in synthesis of the coenzyme Q complex 
and have downstream implications for mitochondrial function.

We have for the first time systematically catalogued eQTL in 
equine skeletal muscle, both at rest and post-exercise. Previous 
investigations of eQTL in skeletal muscle have focussed primarily on 
human T2D (Sharma et al., 2011; Keildson et al., 2014a; Sajuthi et al., 
2016; Langefeld et al., 2018) and meat quality traits in production 
animals (Ponsuksili et  al., 2015; Gonzalez-Prendes et al., 2017; 
Pampouille et al., 2018; Gonzalez-Prendes et al., 2019; Velez-Irizarry 
et al., 2019). Our investigation of eQTL in the context of skeletal 
muscle and exercise present some of the only work to-date in this 
area (Kelly et al., 2014). Our work utilised linear models to detect 
associations between SNPs and gene expression as quantified by 
RNA-seq. It should be noted at this point that there are potential 
biases introduced in terms of the high number of related individuals 
within the cohort, future work could utilise more sophisticated 
techniques such as allele specific expression, where transcripts are 
mapped back to the maternal and paternal chromosomes and the 
expression of the maternal and paternal transcripts can be compared 
(Chamberlain et al., 2015). This would be particularly useful in our 
cohort given the high number of offspring by a small number of 
sires. Within the cohort there is also some variation in the amount 
of training prior to sampling, this was kept to a minimum by our 
sampling criteria. However, extending the study to incorporate 
trained horses and utilise variation in prior training by modelling 
the transcriptional training response could provide information on 
regulation of the training responsive transcriptome.

Our current results provide novel information concerning 
the regulation of gene expression in horses and can provide 
a framework for interpreting future GWAS of athletic and 
performance traits in Thoroughbreds. In terms of future 
applications of these results, the identification of quantitative trait 
transcripts (QTT) for athletic traits characterised in our cohort 
could be used to detect associations between a SNP, variation in 
expression of a QTT and a trait of interest. Thus giving a fuller 
picture of genetic variation contributing to traits of interest. An 
example may be detecting loci and QTT involved in the response 
to exercise and training, which has previously been shown to 
be highly heritable in humans (Timmons et al., 2010; Bouchard 
et al., 2011). The use of systems genetics approaches that integrate 
differential gene expression with genome variation represent 
an excellent strategy for dissecting the genetic architecture of 
complex anatomical and physiological traits.
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FigURE S1 | Principal component analysis of quantile-normalised log counts of 
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FigURE S2 | Boxplot of ENTR1 expression (log2 quantile-normalised counts) 
across BIEC2-707785 genotypes in untrained resting samples.

FigURE S3 | Boxplot of ENTR1 expression (log2 quantile-normalised counts) 
across BIEC2-707785 genotypes in untrained post-exercise samples.

FigURE S4 | Boxplot of COQ8A expression (log2 quantile-normalised counts) 

across BIEC2-417075 genotypes in untrained post-exercise samples.
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Integrated Analysis of Methylome
and Transcriptome Changes Reveals
the Underlying Regulatory Signatures
Driving Curly Wool Transformation in
Chinese Zhongwei Goats
Ping Xiao1,2, Tao Zhong2, Zhanfa Liu3, Yangyang Ding1, Weijun Guan1, Xiaohong He1,
Yabin Pu1, Lin Jiang1, Yuehui Ma1* and Qianjun Zhao1*

1 Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of
Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China, 2 Farm Animal Genetic Resources Exploration and
Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University,
Chengdu, China, 3 The Ningxia Hui Autonomous Region Breeding Ground of Zhongwei Goat, Department of Agriculture and Rural
Areas of Ningxia Hui Autonomous Region, Wuzhong, China

TheZhongwei goat is kept primarily for its beautiful white, curly pelt that appearswhen the kid is
approximately 1 month old; however, this representative phenotype often changes to a less
curly phenotype during postnatal development in a process that may be mediated by multiple
molecular signals. DNAmethylation plays important roles inmammalian cellular processes and
is essential for the initiation of hair follicle (HF) development. Here, we sought to investigate the
effects of genome-wide DNA methylation by combining expression profiles of the underlying
curly fleece dynamics. Genome-wide DNA methylation maps and transcriptomes of skin
tissues collected from 45- to 108-day-old goats were used for whole-genome bisulfite
sequencing (WGBS) and RNA sequencing, respectively. Between the two developmental
stages, 1,250 of 3,379 differentially methylated regions (DMRs) were annotated in differentially
methylated genes (DMGs), and these regions were mainly related to intercellular
communication and the cytoskeleton. Integrated analysis of the methylome and
transcriptome data led to the identification of 14 overlapping genes that encode crucial
factors for wool fiber development through epigenetic mechanisms. Furthermore, a functional
study using human hair inner root sheath cells (HHIRSCs) revealed that, one of the overlapping
genes, platelet-derived growth factor C (PDGFC) had a significant effect on the messenger
RNA expression of several key HF-related genes that promote cell migration and proliferation.
Our study presents an unprecedented analysis that was used to explore the enigma of fleece
morphological changes by combining methylome maps and transcriptional expression, and
these data revealed stage-specific epigenetic changes that potentially affect fiber
development. Furthermore, our functional study highlights a possible role for the overlapping
gene PDGFC in HF cell growth, which may be a predictable biomarker for fur goat selection.

Keywords: Zhongwei goat, deoxyribonucleic acid methylation, curly pelts, epigenetics, transcriptomics
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INTRODUCTION

Animal hair fibers and fur are essential raw materials for the
textile industry, and people have been taming and improving
some fur- and wool-producing animals, such as sheep, goats, and
rabbits. Unlike cashmere goats, Chinese Zhongwei goats have a
reputation for their pelts, which have white, lustrous staples and
attractive curls when they are obtained at approximately 35 days
of age, with fibers on the skins of kids comprising 86%
heterotypic fibers and 14% true wool by weight (Gong, 1994).
Nevertheless, these natural and exquisite patterns are becoming
less economically valuable as the curly form of the wool
disappears within 2 months of the kid’s life, and the exact
reasons for its disappearance remain elusive.

A few studies have found that genetic polymorphisms in
candidate genes can account for various hair traits in different
species (Adhikari et al., 2016; Demars et al., 2017; Morgenthaler
et al., 2017). Some critical signaling pathways, including the
wingless-related integration site (WNT), ectodysplasin A
receptor (EDAR), and bone morphogenetic proteins (BMP)
pathways, are regarded as regulatory hubs during fiber
development (Lu et al., 2016; Telerman et al., 2017). Mammals,
and in particular, sheep and goats have obvious periodic fiber
growth with seasonal changes, and the regulatory mechanisms of
these changes have been explored in transcriptome studies (Yang
et al., 2017; Li et al., 2018). Subsequently, some genetic factors,
such as those of the TCHH, KRT gene families, and the
metallothionein 3 isoforms, which are related to curly wool,
have been de t e rmined by RNA-seq ana ly s i s and
immunohistochemical analyses of the fiber proteins
(Sriwiriyanont et al., 2011; Yu et al., 2011; Kang et al., 2013).
These findings may thus underpin this dynamic morphogenesis.

The epigenome, which contains a great deal of modifiable
genetic information, is the source of many determining factors in
regulatory mechanisms. Increased DNAmethylation and histone
modification status may enhance pathological immune
responses and suppress hair follicle (HF) development in
anagen (Zhao et al., 2012). Diverse whole genome methylation
profiles have been found to characterize the two periods (anagen
and telogen) of HF growth, suggesting that increased transcript
expression levels are connected with compromised DNA
methylation (Bock et al., 2012). Highly expressed DNA
methyltransferase 1 (DNMT1) can prevent the epithelial
progenitor cells in the HF bulb from overproliferating to drive
differentiation, thus maintaining a normal HF structure (Sen
et al., 2010). Because of the tight connection between individual
development (including skin development, regeneration, and HF
cycling) and DNA methylation (Gudjonsson and Krueger 2012;
Botchkarev et al., 2013; Plikus et al., 2015), it is necessary to
concentrate the genome-wide methylation profile of dynamic
hair morphogenesis.

In the present study, we assessed DNA methylation profiles
by whole genome bisulfite sequencing (WGBS) and
transcriptional expression by RNA sequencing analysis (RNA-
seq) of shoulder skin samples from 45-day-old kids with curly
wool and from the same kids exhibiting non-curling wool at 108
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days. Integrated analysis (WGBS and RNA-seq) selected
differentially expressed-methylated gene (DEGs-DMGs)
candidates, which tend to be the key factors in curly wool
development through epigenetic patterns. Eventually, the
promoting effect of the platelet-derived growth factor C
(PDGFC) gene on HF cell growth was validated through a
functional study in vitro. This study confirms the importance
of an integrated analysis that combines DNA methylation and
gene expression for determining curly hair traits and provides
comprehensive resources for studying HF development
in humans.
MATERIALS AND METHODS

Animals and Sample Preparation
Three Chinese Zhongwei goats bred at the breeding base of
Zhongwei goats (located in the Ningxia Hui Autonomous
Region, China) were randomly selected for this study. The
goats had no kinship relevant to their use as samples, and they
were raised under the same conditions to minimize external
factors. When they were 45 and 108 days old, we cleaned their
hair and disinfected the target in the scapular region, from which
skin samples were collected using sterilized scalpel blades. Some
samples were immediately stored in RNAlater (Thermo Fisher
Scientific, USA) for storage at −80°C until further processing,
and some samples were rapidly stored in a 4% paraformaldehyde
fixation solution to prepare paraffin sections. All the resulting
wounds were treated with Yunnan Baiyao powder (Yunnan
Baiyao Group Co., Ltd., China) to stop the bleeding. All of the
animal experimental procedures were performed in accordance
with the guidelines for the care and use of experimental animals
established by the Ministry of Agriculture of the People’s
Republic of China and approved by Institute of Animal
Science, Chinese Academy of Agricultural Sciences.

Ribonucleic Acid Isolation and Sequencing
Samples taken at 45 days and 108 days, representing curly haired
(D45) and wavy haired (D108) individuals, respectively, were
stored separately in RNAlater. Total RNA was extracted from
these six samples by RNeasy Mini Kit (Qiagen, Germany)
according to the manufacturer’s protocol. The RNA quantity
and quality were assessed using an Agilent 2100 Bioanalyzer
(Agilent Technologies, CA, USA), and the RNA Integrity
Number value of these samples was determined to be greater
than 7.5, which was important to ensure RNA integrity. The
RNA library construction, quality control, and sequencing were
conducted using an Illumina Nova seq platform at the Berry
NGS Company (Beijing, China), through which approximately
55 million paired-end reads (2 × 150 bp) were produced for each
of samples. Before the downstream analysis, filtration of
sequencing reads was conducted to remove the reads
containing joints and to eliminate the low-quality reads. The
remaining clean data were matched to the reference genome at
CHIR_1.0 (September 10, 2015, ftp://ftp.ncbi.nlm.nih.gov/
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genomes/all/GCA/000/317/765/GCA_000317765.1_CHIR_1.0/)
using the new version of HISAT2 (v2.1.0) (Kim et al., 2015). The
average alignment rate for the RNA-seq was 83.53% (82.63–
84.70%, median = 83.45%) (Supplementary Table S1), and then,
the transcripts were assembled, quantified and merged with
StringTie (v1.3.4). The output files were prepared for use in
the differential expression analysis. RNA-seq data were deposited
in to a NCBI B ioPro j ec t s ec t ion under acces s ion
number PRJNA524985.

Differential Expression Analysis
Output files containing the expression levels of the exons,
introns, and transcript of each sample were processed with the
Ballgown R package (v2.14.1) (Frazee et al., 2015). A parametric
F-test using “stattest” function in Ballgown module was used to
compare transcript abundance, and the covariate “curly (samples
in 45 days)/wave (samples in 108 days)” was corrected for the
calculated p value. The differential expressed transcripts (DETs)
were annotated to gene names to identify and list the DEGs,
which were screened based on the following criteria: p value ≤
0.05 and absolute fold change value > 1.5. The heatmap of DEG
hierarchical clustering was performed using the R package
pheatmap (v1.0.10).

Differentially Expressed Genes Profile
Analysis
We selected eight DEGs randomly and validated their
expressions by using quantitative (qPCR) on an ABI 7500
(Applied Biosystems, USA) in a 20-ml reaction containing 2 ml
of the complementary DNA template (generated by the reverse
transcription kit, Takara), 10 ml of 2 × SYBR Green Master Mix
(RR420A, Takara), and 0.8 ml of each primer (10 mmol/ml), with
glyceraldehyde 3-phosphate dehydrogenase as the endogenous
control. The primers used for qPCR were designed with Primer
Premier 5 (v5.00, http://www.premierbiosoft.com) and are listed
in Supplementary Table S2. The transcription factor binding
site analysis was performed by uploading our DEG list into the
Innate DB database (v5.3) (Breuer et al., 2013), where the data
were subjected to the hypergeometric algorithm and with
Benjamini-Hochberg correlation method (p value ≤ 0.05). A
transcript splicing analysis of the DEGs was carried out by
combining the extracted splice-sites information from the
genome annotation results and our RNA-seq data, and we
compared the alternative splicing events of each gene in two
periods. Differential alternative splicing events, including
skipped exon (SE), alternative 5’ splice site (A5SS), alternative
3’ splice site (A3SS), mutually exclusive exon (MXE), and
retained intron (RI) events were detected using rMATS (v
4.0.1) (Shen et al., 2014), and the events were considered as
significantly different based on the following filtering criteria: |
Inc level difference | ≥ 5% and false discovery rate (FDR) < 0.01.
To explore the potential relationships among expressed DEGs, a
weighted correlation network analysis (WGCNA) was
performed using the WGCNA R package (v 1.68) (Langfelder
and Horvath, 2008) with 326 DEGs used as input data. We
retained the genes ranked in the top 90% of the variance size
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between two groups, and retained 242 DEGs to generate
correlation networks. The soft threshold value was set as 8. The
correlation between eigenvectors of each module and the curl-
wavy status was calculated, and those with |coefficient value| > 0.8
and p value < 0.05 were considered to significant.

Whole Genome Bisulfite Sequencing
Genomic DNA (from three samples taken at 45 days, three samples
taken at 108 days) were isolated from scapular skin tissues using
Wizard Genomic DNA purification kit (Promega, Madison, USA)
following the manufacturer’s instructions. Constructed DNA
libraries were sequenced at the Berry NGS Company (Beijing,
China) using an Illumina Nova seq 6000 platform (Illumina, San
Diego, CA, USA), and the subsequent raw reads were filtered to
remove contaminated reads in three steps: 1) removing any read
that contained a 3’ adapter oligonucleotide sequence, 2) removing
any read for which the percentage of Ns (unknown bases) was >
10%, and 3) removing any low quality reads (Phred score ≤ 5,
percentage of low quality bases ≥ 50%). Then, an average of
600,000,000 paired-end 150-bp reads was acquired for the six
samples. Next, lambda sequences were included in the clean reads
to evaluate the C-T conversion rate. The sample information for
methylation sequencing data were submitted to the NCBI
BioProject section under accession number PRJNA555706.

Deoxyribonucleic Acid Methylation
Data Analysis
The quality controlled clean reads were converted into bisulfite-
treated status reads (C-to-T and G-to-A transformed) before
being aligned with the corresponding bisulfite-converted goat
reference genome, CHIR_1.0 (Dong et al., 2013), using Bismark
(v 0.7.12) (Krueger and Andrews, 2011). After the reads were
processed as BAM files by using SAMtools (v 1.9) (Li et al., 2009),
Picard software (v 1.96) was used to remove duplicate reads, and
the data on methylation status per cytosine site were extracted
based on the Bismark instruction manual. Methylation can be
identified by determining the methylation level of a specific
cytosine site according to the following formula: averaged
methylation level = counts of methylated reads/counts of total
reads × 100%. We then used the scriptlet “bismark_
methylation_extractor” in Bismark to analyze the methylation
status throughout the whole genomic DNA and the methylation
distribution in various genomic regions (including upstream,
downstream, gene, exonic, intronic, and intergenic regions). We
identified the differentially methylated regions (DMRs, with a
500 bp window) based on the sliding window approach
combined with a logistic regression method using methylKit
software (v 1.10.0) to compare the methylation status of specific
regions in the two groups (Akalin et al., 2012). The following
screening criteria were used for obtaining the DMRs: 1) the
average methylation difference between two pairwise groups was >
0.25; 2) the FDR value of methylation difference was <0.05; and
3) all DMRs were in uniquely mapped regions. The obtained
DMRs were annotated to different genomic regions, where they
could be considered DMGs because they had overlapping
methylated cytosine (mC) sites in functional gene regions.
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Polymerase Chain Reaction Validation of
the Bisulfite Sequencing
A total of 500 ng of genomic DNA previously extracted from
each sample at the same time points (three samples) were mixed
together and treated with bisulfite with an EZ DNAMethylation-
Gold Kit (Zymo Research). The information on the primers used
for bisulfite sequencing PCR is listed in Supplementary Table
S3. Bisulfite-treated products were amplified by High Fidelity
Taq DNA polymerase (Thermo Fisher Scientific) according to
the manufacturer’s instructions. The PCR products purified by
DNA Gel Extraction Kit (Qiagen) were ligated to a T-vector
plasmid (TransGen Biotech), and the plasmids were transformed
into Escherichia coli DH5a competent cells (Takara). We
selected 10 single amplified clones for each group after they
had incubated on a solid medium. Sequencing detection for the
single clones was conducted by Sangon Biotech (Shanghai).
Sequence data were analyzed by the online DNA methylation
analysis platform at the BISMA website (http://services.ibc.uni-
stuttgart.de/BDPC/BISMA/).

Gene Functional Enrichment Analysis
We used the g:Profiler web server (v 0.6.7) (Reimand et al., 2016)
to conduct the Gene Ontology (GO) enrichment analysis of the
DEGs and DMGs. All genes with average expression FPKM
(fragments per kilobase of transcript per million fragments
mapped) > 1 from all the samples were used as the
background gene set for this analysis, and GO terms in which
the P value ≤ 0.05, as corrected by the g:SCS threshold method (a
significance criterion in g:Profiler), were considered significant.
An analysis of Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment for the DEGs and DMGs was
conducted through the online software KOBAS (v3.0) (Wu et al.,
2006) to detect the related signaling pathway of each candidate
gene set (BH-corrected P value < 0.05).

Protein Interaction Network of Integrated
Genes
We used the STRING database (v10.5) (Szklarczyk et al., 2017) to
construct and screen for a protein–protein interaction (PPI)
network that contained differentially methylated and expressed
genes (D45 versus D108). We only retained edges of the network
that meet the following parameters: confidence score >0.8 and
combined score > 0.8. Cytoscape (v3.6.0) (http://www.cytoscape.
org/) was used to visualize interactions for the gene-gene pair
input, including their combined score and the expression and
methylation trends.

Cell Culture and Downstream Validation
Since the functional effects on fiber shape are changed, we used
human hair inner root sheath cells (HHIRSCs) for further
validation. We obtained HHIRSCs from ScienCell research
laboratories (Carlsbad, CA, USA). The cells were incubated in
mesenchymal cell medium (ScienCell Research Laboratories),
which contained 1% mesenchymal stem cell growth supplement
(MSCGS) (ScienCell Research Laboratories), 5% fetal bovine
serum (FBS) (ScienCell Research Laboratories), 100 U/ml
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penicillin (ScienCell Research Laboratories), and 100 mg/ml
streptomycin (ScienCell Research Laboratories) in a
humidified, 37°C, 5% CO2 atmosphere, and the culture vessels
were prepared with poly-L-lysine (2 mg/cm2) 1 day seeding to
promote cell adherence. The cells were passaged through 4, but
less than 5, population doublings to ensure their mesenchymal
cell morphology and for use in other transfection experiments.
After reviewing previous studies, we selected SMAD3 and
PDGFC as candidate genes because they are potentially
epigenetically regulated and act on HFs or on epidermal cell
development during initial follicle formation. We conducted our
pre-experiment using mouse fibroblasts (NIH/3T3 cells) to
determine whether the overexpression of the selected genes
had effects on the key signatures involved in the development
of HFs (data not shown). We then chose PDGFC as the candidate
to use in our further validation experiments with the human
inner root sheath cells (HHIRSCs) since only PDGFC had a
significant effect on the signatures of HFs development. The full-
length coding DNA Sequence (CDS) of Homo sapiens PDGFC
was ligated to pIRES2-EGFP to construct the overexpression
plasmid, while the negative control (pIRES2-EGFP-NC) was
constructed without target genes. To insert the targeted gene
into HHIRSC cells effectively, we used a Lipofectamine® 3000
Transfection Kit (Invitrogen, Carlsbad, CA) following the
manufacturer’s instructions. Three small interfering RNA
(siRNA) sequences (RiboBio, Guangzhou, China) were used to
knock down the expression of PDGFC in the HHIRSCs: si-h-
PDGFC_001, CCAACCTGAGTAGTAAATT; si-h-PDGFC_002,
GGAACAGA ACGGAGTACAA; and si-h-PDGFC_003,
GGAAGACCTTATTCGATAT. The siRNA transfection was
conducted using a specific siRNA transfection kit and
riboFECT™ CP reagent (RiboBio, Guangzhou, China).

All the processed cells were collected from six-well plates after
48 h of incubation for the RNA extraction using the TRIzol
method. The qPCR of the related genes was performed according
to methods described above, and the primer information is listed
in Supplementary Table S2.

For evaluating the cell motility after we conducted different
treatments, we performed a monolayer wound healing assay
when cells were approaching 100% confluence, a wound was
made by scratching the monolayer with a pipette tip, and then,
the cells were incubated in the same condition as described. After
12 h, we compared the gaps with respect to the wound line
among the different groups using program ImageJ software (v
1.52a) (NIH, Bethesda, MD, USA) and calculated the migration
rate by the following equation: migration rate% = [1 − (wound
gap at 12 h/wound gap at T0)] × 100%, where T0 represents the
initial evaluation time, which was recorded immediately after the
scratch was made.

Cell proliferation at four time points after the respective cell
treatment (12, 18, 24, and 36 h) was evaluated using a Cell
Counting Kit (CCK)-8 assay. HHIRSCs were seeded into 96-well
plates at the same density (5×103 cells per well) before
transfection, and each condition was replicated in four wells
independently. After adding 10 ml of CCK-8 solution (Dojindo,
Kumamoto, Japan) to each well for a 2 h incubation at 37°C, the
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absorbance values at 450 nm were measured using a
multifunctional spectrophotometer (Tecan Infinite 200 PRO,
Tecan Group LTD, Austria).
RESULTS

To investigate the underlying mechanisms of wool fiber
development in the two postnatal stages (45 and 108 days),
representing curly and wavy fleece, respectively, we sampled
scapular skin tissues from three unrelated Chinese Zhongwei
goats at these two time point (Figure 1). Furthermore, we
detected the HF structure at these two time points, and we
found that the HF taken at 108 days had a more compact
arrangement than that examined at 45 days (Figures 1A, B).
We isolated DNA and RNA for further analysis by RNA-Seq and
WGBS. After quality control and data refining, we obtained
22,034 gene transcripts and approximately 300 million
methylation sites, which were included in our subsequent
downstream analysis.

The Messenger Ribonucleic Acid
Transcriptome Reveals Distinct Signatures
in Dynamic Skin Development
The transcriptomic profiles obtained using RNA-seq were based
on 41–42 and 38–50 million clean read pairs from the D45 and
D108 samples, respectively and were uniquely mapped onto the
Capra hircus CHIR_1.0 genome. All samples had at least 90.77%
Frontiers in Genetics | www.frontiersin.org 5377
reads equal to or exceeding Q30 (Supplementary Table S1).
These transcripts of the six samples showed a similar expression
trend, with an average log2 (FPKM+1) value of approximately 2,
suggesting the reliability of the general expression profiles
(Figure 2A). For all the expression profiles, we found 326
DEGs , inc lud ing 186 upregu la ted genes and 140
downregulated genes. We then verified the differential
expression levels obtained from RNA-seq using qPCR, and the
eight DEGs that were selected randomly followed the same trend
as that of the sequencing data (Figure 2B). A hierarchical
clustered map revealed that the expression of these 326 DEGs
coincided with the same development period (Figure 2C).

We further explored whether the developmental process of
HF affected alternative splicing events. We determined the
distribution of the splicing events among the two groups and
found no significant differences (Supplementary Figure S1),
while the DEGs had a higher number of SE events (938, FDR <
0.01, Inc level difference > 5%) that were significantly different
between the two groups (Figure 3A). A transcription factor (TF)
enrichment analysis was performed to investigate the regulatory
networks among these DEGs connected by coreactive TFs. For
example, transcription factor GLI family zinc finger 1 (GLI1) and
interferon regulatory factor 2 (IRF2) were significantly enriched
in the promoters of upregulated and downregulated genes,
respectively (Figure 3B).

To better understand the functions of these DEGs, a GO
enrichment analysis was performed. The top five GO terms were
cytoplasmic part (GO: 0044444), cytoplasm (GO: 0005737),
FIGURE 1 | The dynamics of fleece shape. (A) The fur of the Zhongwei goat at 45 days old and transverse/longitudinal sections of single hair follicle. (B) The fur of
Zhongwei goat at 108 days old and transverse/longitudinal sections of a single hair follicle. Asterisk symbol highlights the gap between the hair shaft and inner root
sheath at 45 days; the bar in all images of HE stained sections is 50 mm.
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FIGURE 2 | The transcriptional profile of two groups during early hair growth. (A) Averaged RNA expression level among six individuals. (B) Validation of selected
differently expressed genes (DEGs) through real-time quantitative PCR. The value is presented as the logarithmic form of the fold change (FC) between two groups.
P values were calculated using Student’s t tests (*P < 0.05). (C) Clustered heatmap representation of DEG expression. Clustering was performed according to
Pearson’s correlation values. The black and gray bars outlined in the picture represent the DEGs that are involved in epidermal growth factor receptor tyrosine kinase
inhibitor resistance and transforming growth factor beta signaling pathways, respectively.
FIGURE 3 | The transcriptional process is changed during wool fiber development. (A) Count of the differential splicing events between D45 and D108 transcripts
(P < 0.05). SE, skipped exon; RI, retained intron; MXE, mutually exclusive exons; A5SS, alternative 5’ splice site; A3SS, alternative 3’ splice site. There are 938
significantly different skipped exon events between the two stages, which was much greater than other events. (B) Transcription factor binding sites enriched among
differentially expressed genes in D45 and D108. Only the transcription factors of upregulated or downregulated genes that had a P value < 0.01 were retained. All P
values were corrected using the Benjamini–Hochberg method (BH-corrected P value < 0.05).
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cytosol (GO: 0005829), skin development (GO: 0043588), and
cornification (GO: 0070268) (Supplementary Table S4), which
highlight the central roles of the cell conformation and
kerat in izat ion in the DEGs during hair s tructure
transformation. In the KEGG pathway enrichment, the antigen
processing and presentation (chx04612), systemic lupus
erythematosus (chx05322), epidermal growth factor receptor
(EGFR) tyrosine kinase inhibitor resistance (chx01521), fatty
acid elongation (chx00062), asthma (chx05310), inflammatory
bowel disease (chx05321), leishmaniasis (chx05140),
selenocompound metabolism (chx00450), transforming growth
factor beta (TGF)-beta signaling pathway (chx04350), and FoxO
signaling pathway (chx04068) were considered significantly
enriched pathways (Table 1).

Based on the WGCNA, we derived associated DEG
expression coherence sets. There were 242 DEGs remaining
after the expression comparison, blue (|coefficient of
correlation| = 1, p-value = 2×10−5) and turquoise (|coefficient
of correlation| = 0.82, p-value = 5×10−2) modules were correlated
with curly wave status. The results indicated 91 and 151 genes
were in the blue and turquoise modules, respectively
(Supplementary Figure S2). We considered that a weight of
gene-gene edges greater than 0.4 indicated a stable correlation,
Frontiers in Genetics | www.frontiersin.org 7379
which led to the blue module having 255 edges and the turquoise
module having 174 edges. A KEGG pathway enrichment analysis
was also performed to determine the gain-the-function
assessment of the DEGs in the two modules. Both modules
were significantly enriched in EGFR tyrosine kinase inhibitor
resistance and the PI3K-Akt signaling pathway (data not shown).

The Deoxyribonucleic Acid Methylation
Profile Potentially Affects the Dynamic
Transformation of Wool Fibers
Bisulfite sequencing enabled the acquisition of the genome-wide
DNA methylation landscapes at single-base resolution of the
postnatal D45 and D108 skin samples from Zhongwei goats. We
obtained 360–459 million uniquely mapped reads among all the
samples to ensure concordant coverage. The average ratio of
uniquely mapped reads was 73.38% (71.30–74.65%, median =
73.66%), and the sequencing depths were all greater than 16
(Table 2).

The methylation level was calculated with the average of
321,036,397 and 322,677,466 methylated cytosines (mCs) in the
45- and 108-day stages, respectively. Among these detected
cytosine sites, CpG (CG sites), as one in a nucleotide context,
made up the highest proportion (84.71–85.34%), while
TABLE 1 | Kyoto Encyclopedia of Genes and Genomes pathway enrichment of differentially methylated genes and differently expressed genes.

KEGG pathway of DMGs (IDs) Number of
DMGs involved

P value Overlapped
genes

KEGG pathway of DEGs (IDs) Number of DEGs
involved

P value

Glutamatergic synapse (chx04724) 21 8.98054E-07 Antigen processing and
presentation (chx04612)

6 0.001234391

Adherens junction (chx04520) 15 2.05829E-05 Systemic lupus erythematosus
(chx05322)

7 0.004038687

Inflammatory mediator regulation of TRP
channel (chx04750)

17 5.60775E-05 EGFR tyrosine kinase inhibitor
resistance (chx01521)

5 0.007151845

Axon guidance (chx04360) 23 8.68786E-05 Fatty acid elongation (chx00062) 3 0.008275261
Long-term depression (chx04730) 12 9.18081E-05 SMAD3,

PDGFC
Asthma (chx05310) 3 0.01251151

Oxytocin signaling pathway (chx04921) 21 9.7458E-05 Inflammatory bowel disease
(chx05321)

4 0.016331757

Arrhythmogenic right ventricular
cardiomyopathy (chx05412)

13 0.000158767 Leishmaniasis (chx05140) 4 0.023108939

Aldosterone synthesis and secretion
(chx04925)

14 0.000169753 Selenocompound metabolism
(chx00450)

2 0.026689839

Rap1 signaling pathway (chx04015) 23 0.000689252 TGF-beta signaling pathway
(chx04350)

4 0.029163353

Gap junction (chx04540) 12 0.002506112 FoxO signaling pathway
(chx04068)

5 0.037441899
January
 2020 | Volume 10
Overlapped genes, the genes that are enriched in significant pathways as both DMGs and DEGs.
TABLE 2 | Summary of the whole-genome bisulfite sequencing dataset.

Sample Clean reads Unique mapped reads Unique mapped ratio (%) Average depth Conversion rate (%) %≥Q30

D4501 603,524,580 442,523,036 73.32 19.86 98.84 91.97; 88.77
D4502 598,727,366 442,986,932 73.99 18.93 98.78 91.96; 87.98
D4503 601,082,668 445,831,838 74.17 20.62 98.87 91.96; 88.79
D10801 505,312,936 360,303,746 71.30 16.63 98.73 92.01; 88.50
D10802 604,767,486 440,587,260 72.85 20.00 98.86 91.83; 89.14
D10803 614,904,624 459,049,754 74.65 23.03 98.91 91.77; 88.92
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chlorhexidine gluconate (CHG) accounted for the smallest
(3.47–3.58%) (Figure 4A). In addition to the broadest
methylation distribution, these CpG sites had the highest
average methylation level (72.26–72.69%), compared with the
dramatically low methylation statuses found for the CHG (where
H can be A, T or C) and CHH sites (0.56–0.59%) (Figure 4B).
Although there was no obvious difference in methylation level
between the two stages, we observed that, in distinct genomic
features (downstream and upstream of the genes, exons, genes,
intergenic regions, and introns), the regions upstream of the
genes were weakly methylated at both CpG (< 50%) and non-
CpG (< 0.6%) sites in all the samples, while exonic regions were
the most methylated sites (CpG > 75% and non-CpG> 0.7%)
(Figure 4C).

To identify the DMRs, we first computed the methylation
status by analyzing the 500 bp-long sliding windows using the
output of a methylKit (Akalin et al., 2012). A total of 3,379 DMRs
were identified, including 1,651 hypermethylated DMRs and
2,128 hypomethylated DMRs in the 45-day sample
(Supplement Table S5). A Manhattan plot was generated to
show the DMR distribution along 30 chromosomes as −log10 (P-
values) for all sliding windows (Figure 5A). The number of
DMRs was reduced along with the number of chromosomes, but
the DMR distribution was not affected, and a high density of
DMRs was detected on chromosomes 13, 17, and 19. There were
1,471 DMRs annotated by gene name based on CHIR 1.0
assembly identification (Dong et al., 2013). We obtained 1,250
Frontiers in Genetics | www.frontiersin.org 8380
DMGs after merging data of the DMRs in the same gene, which
contained 108 DMRs that were located in gene promoter regions
[we considered areas upstream of the transcriptional start site
(TSS) within 2,000 bp and downstream of the TSS within 200 bp
as promoter regions]. Among all these DMGs, 635 were
hypermethylated DMRs and 836 were hypomethylated DMRs,
and 1,155 DMGs were annotated within intronic regions (Figure
5B). To examine the stability of the obtained DMRs, we
randomly selected four DMRs that had region annotations
(two intergenic, one exonic, and one upstream) of gene
positions to validate the DNA methylation level. Bisulfite
sequencing PCR (BSP) was used to detect the DNA methylated
sites, although there was no significant difference in methylation
between the samples taken at different time points, they
presented similar trends in terms of methylation changes
compared to those ident ified by the WGBS data
(Supplementary Figure S3).

To explore the potential relationship of GO terms with these
DMGs, a GO enrichment analysis was conducted by dividing
these DMGs into hypermethylated and hypomethylated groups
(Supplementary Figure S4). We identified the top 10 terms in
three areas (cellular component, CC; biological process, BP;
molecular function, MF), with specific descriptions, such as cell
junction (GO: 0030054), cytoskeletal protein binding (GO:
0008092), cell development (GO: 0048468), cytoskeletal protein
binding (GO: 0008092), and channel activity (GO: 0015267). For
the KEGG pathway enrichment analysis performed on KOBAS
FIGURE 4 | DNA methylation profiles of skin samples in shift stages in the wool shape of Zhongwei goats. (A) The proportion of methylated cytosines (mCs)
(mCpG, mCHH, and mCHG) in the D45 and D108 tissue samples. (B) The average methylation level (%) of cytosine sites [CpG, CHH, and chlorhexidine gluconate
(CHG)] in six individual samples. (C) The methylation level (%) of three mCs in different genomic regions or elements. The vertical axis on the left represents the
methylation levels of CpG in two stages, and the values on the right axis represents methylation levels of CHG and CHH.
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v.3.0, we regarded adherens junction (chx04520) and gap
junction (chx04540) as vital discoveries that illustrated the
altered intercellular communication due to changes in
epigenetic modification (Table 1).

An Integrated Analysis of the Differently
Expressed Genes and Differentially
Methylated Genes Was Used to Identify
Candidate Genes That Control
Hair Morphogenesis
To gain deeper insight into the RNA expression and DNA
methylation differences linked to hair shaft development, we
identified 14 overlapping genes among the 1,250 DMGs and 326
DEGS (Figure 6A). In these 14 overlapping genes, 9 annotated
genes had differential methylation in the intronic regions, 4 genes
were differentially methylated in intergenic areas (SMAD3,
CCDC91, MAP2, and SIK3), and only 1, LGMN, had a DMR
in the 3’UTR. We used 1,250 DMGs and their DNAmethylation
and gene expression data to explore their potential correlation.
We found that 31 DMGs had a negative relationship (red and
purple dots in Figure 6B), while 29 DMGs were positively
regulated (lime green and blue dots in Figure 6B), and the
DNA methylation status of 7 overlapping genes were associated
with negatively regulated expression (THADA, NOD1, MAP2,
BLMH, LGMN, SMAD3, and SIK3). Moreover, we conducted
Frontiers in Genetics | www.frontiersin.org 9381
KEGG pathway enrichment to uncover the signaling pathway of
DEGs and DMGs, and two genes, SMAD3 and PDGFC, were
involved in both of the most significantly enriched pathways of
the DEGs and DMGs (Table 1). Then, we introduced a protein
interactional network into these 14 overlapping genes to explore
the mutual effects on the proteomics of hair developmental
processes. Overall, four genes were found to apply to the
scoring criterion that we set to ensure a strong association
(confidence score >0.8 and combined score > 0.8) (Figure 6C).
Two clusters are shown in this network analysis, which has had
three integrated genes (PDGFC, SMAD3, and NOD1) in one
network, and DICER1 consists of an independent cluster with
other imputed associated genes. The pathway analysis of the
interactive network was performed, and 14 significant pathways
were found, and we noticed some canonical signaling pathways,
such as the TGF-beta signaling pathway, Hippo signaling
pathway and FoxO signaling pathway (Supplementary
Table S6).

PDGFC Is Associated With the Inner Root
Sheath Cell Mesenchymal Phenotype
and Enhances Hair Follicle Formation
To explore the role of PDGFC in the dynamic nature of HFs, cell
culture, and overexpression, siRNA transfection was conducted
using HHIRSCs. A wound healing assay showed that the
FIGURE 5 | Distribution of differentially methylated regions (DMRs) in different categories. (A) Manhattan plot of DMRs in a chromosomal landscape. Dots above the
dotted line presented DMRs with –log10 (p) > 20. The heatmap below the dots represents the density (counts) of the DMR distribution within chromosomes. The
blue and red dots indicate the status of hypomethylation and hypermethylation in the D45 regions, respectively. (B) The filtration of differentially methylated genes and
the number of DMRs in different genomic regions.
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HHIRSCs containing enhanced green fluorescent protein
(EGFP)-PDGFC vectors had significantly stronger migration
ability than the control group cells (EGFP) (Figure 7A).
Correspondingly, cells with a specific RNA interference
sequence of PDGFC exhibited relatively smaller migration
areas compared with those of the group transfected with
random small fragment sequences (Figure 7A). The cell
proliferation rate was measured using CCK-8 assays, and
groups with lower PDGFC expression (EGFP and si-PDGFC)
showed a slower proliferation ratio at four selected time points
compared with the case groups (Figure 7B). Furthermore, key
genes associated with HF activation and development, for
example, GJA1 and JAK1, were upregulated and downregulated
after PDGFC overexpressing gene transfection (Figure 7C).
Notably, the mesenchymal marker Vimentin was upregulated
in HHIRSC to maintain the morphologic characteristics of IRS.
Not surprisingly, the suppression of PDGFC presented an
opposite result versus the overexpression group (Figure 7C).
DISCUSSION

While previous studies have determined the effects of selected
aspects, such as the genome-wide locus, DNA methylation,
Frontiers in Genetics | www.frontiersin.org 10382
transcriptional signatures, and morphology, on the
morphogenesis of curly fibers (Hynd et al., 2009; Cheng et al.,
2010; Sriwiriyanont et al., 2011; Espada et al., 2014; Fan et al.,
2015; Sennett et al., 2015; Gao et al., 2016; Glover et al., 2017; Li
et al., 2018; Petridis et al., 2018), a comprehensive study
conducting the interplay of genome-wide DNA methylation
and transcription synchronously using skin tissues from the
same biological replicates in different growth stages had thus
far been lacking. The functional regulation of DNA methylation
on gene expression has now been established as an effective
prospective way to understand the ways that drastic methylation
changes relate to hair phenotypic variation (Guo et al., 2014).

Overall, we observed 326 DEGs, some involved in EGFR
tyrosine kinase inhibitor resistance, and the TGF-beta signaling
pathway had been highlighted as valuable candidates for
regulating HF development, based on previous studies (Figure
2C) (Cheng et al., 2010; Rognoni et al., 2014; Glover et al., 2017;
Tripurani et al., 2018). Evidence from the transcription factor
(TF) binding site analysis of the DEGs revealed the several TFs
combine with the promoters of selected genes. For example,
interferon regulatory factor 2 (IRF2) and signal transducer and
activator of transcription 5A (STAT5A) are reported TFs that
serve as mediators to regulate transcriptional processes in HF
growth and skin disease (Nishio et al., 2001; Legrand et al., 2016).
FIGURE 6 | Integrated analysis was used to identify genes with coupled differential DNA methylation and RNA transcription. (A) Venn diagram representing
methylation-modified differently expressed genes during wool transformation. (B) Quadrant plot showing differentially methylated genes and expression levels of the
corresponding genes. The vertical dotted lines indicate a threshold of the P value below 0.05, and parallel dotted lines show a threshold of the P value below 10−4.
(C) The protein-protein interaction (PPI) network among overlapping genes. Four genes identified from our analysis are included because both the confidence score
and combined score were greater than 0.8. Circles filled with blue and green indicate downregulated and upregulated genes in D45, respectively. Circles with yellow
and red margins indicate hypomethylation and hypermethylation in D45, respectively. Smaller gray circles with green margins denote genes attributed to the interaction.
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GO terms associated with the DEGs were acquired, and the genes
related to epidermal cell development were included in the five
most significant terms, which intriguingly, included genes related
to skin development (GO: 0043588, TGM5, KRT23, PTCH2,
S100A7, GRHL3, KRT84, MYSM1, KRT80, ACER1, KRT72,
KRT2, LIPM, DSG4, SPRR4, KRTAP15-1, NF1, KRT40, and
KRTAP3-1) and cornification (GO: 0070268, TGM5, KRT23,
KRT84, KRT80, KRT72, KRT2, LIPM, DSG4, and KRT40)
(Supplementary Table S4), which had been closely associated
with the formation of curly HFs or hair shafts in previous studies
(Westgate et al., 2017). EGFR tyrosine kinase inhibitor resistance
and the PI3K-Akt signaling pathway were enriched in the
WGCNA modules calculated, which have associations with
wavy hair coat and curly whiskers in mice (Cheng et al., 2010)
and the hair cycle in many species (Kobielak et al., 2007; Feutz
et al., 2008; Nie et al., 2018), respectively.

In the present study, we discovered that exonic regions
showed relatively higher methylation levels compared with
other regions in all nucleotide contexts (CpG, CHG, and CHH
sites) (Figure 4C). Additionally, altered methylation profiles may
induce changes to the mediation of alternative splicing through
methyl-binding domain proteins (MBDs), which can regulate
splicing factors indirectly (Gelfman et al., 2013). Therefore, it is
reasonable to conclude that DNAmethylation may regulate early
HF development by mediating RNA expression and expanding
the coding capacity of genes; however, this hypothesis still needs
to be supported through further exploration. Among the 3,379
significant DMRs, 1,250 DMR-related genes were identified, the
Frontiers in Genetics | www.frontiersin.org 11383
majority of which annotated at intronic regions (Figure 5B). The
GO functional analysis in our study demonstrated that these
DMGs were mainly enriched in the classifications of cell
structure (e.g., cell projection and plasma membrane) and cell
communication (e.g., cytoskeletal protein binding, channel
activity and ion channel activity) (Supplementary Figure S4).
Cell junctions (GO: 0030054) and cytoskeletal protein binding
(GO: 0008092) have been reported to regulate cortex cell
movement and reshaping in certain areas of the HF (Morioka
et al., 2006; Harland and Plowman, 2018). These results were in
agreement with previous reports and verified the importance of
intercellular communication during cell reshaping of the HF
bulb (Runswick et al., 2001; Arita et al., 2004).

To characterize the correlation between gene methylation and
expression levels, we further focused on identifying differentially
methylated (DMR-associated) and DEGs through DNA
methylation profile and RNA-seq data. This integrated analysis
led to the identification of 14 overlapping genes (MFSD6,
SMAD3, DICER1, THADA, ABCC11, BLMH, LGMN, NOD1,
NME7, CCDC91, MAP2, ATP13A5, SIK3, and PDGFC) (Figure
6A). Based on the KEGG pathway analysis of the DEGs and
DMGs, we found that PDGFC and SMAD3 were involved in the
signaling pathways identified, which include roles in gap
junction, EGFR tyrosine kinase inhibitor resistance, TGF-beta
signaling and adherens junction, that are essential for
proliferation, differentiation, and communication of HF cells
during movement (Young et al., 2003; Arita et al., 2004; Plasari
et al., 2010; Oshimori and Fuchs, 2012; Gay et al., 2015; Flores
FIGURE 7 | The PDGFC gene affects human hair inner root sheath cell (HHIRSC) migration and proliferation by regulating hair follicle-related gene expression.
(A) A wound healing assay was conducted after the transient transfection of PDGFC vectors or si-PDGFC. Wound closure was monitored after 12 h, and the
calculation of the wound closure area is explained in the methods. The mean ± standard deviation (n = 3), *P < 0.05 (two-sided t-test). (B) The cell proliferation rate
was evaluated at four time points using the Cell Counting Kit-8 assay after the corresponding cell treatments. The mean ± standard deviation (n = 3), *P < 0.05,
(two-sided t-test). (C) Results from the quantitation of gene expression related to hair development by quantitative PCR in HHIRSCs at 48 h after transfection with
control (scrambled) or the PDGFC vector or si-PDGFC. N = 3; *P < 0.05, **P <0.01 (two-sided t-test).
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et al., 2018). According to the PPI network, regulated correlation
between overlapping genes was detected, with 4 of 14
overlapping genes retained in the network. Among them,
SMAD family members, including SMAD2, SMAD3, SMAD4,
and SMAD7, have a strong relationship to protein regulation and
have been reported and validated to function in the initiation of
HF cycling through conventional signaling pathways (Alimperti
et al., 2012; Oshimori and Fuchs, 2012; Wang et al., 2017). The
overlapping gene NOD1, a gene implicated in the immune
response that is known to obstruct bacterial invasion and
initiate inflammation, as well as exert inhibitory effects on
tumor cell viability and proliferation (Velloso et al., 2018).

For validation of the downstream effects, we found that higher
PDGFC expression promoted cell migration and proliferation, a
finding that is consistent with the conclusion that tight HF inner
root sheath structure surrounding the HF cortical cells can
promote hair growth (Langbein et al., 2003; Basmanav FB et al.,
2016). The overexpression/suppression of PDGFC in HHIRSC
also altered the RNA expression of four key factors (TCHH, JAK1,
VIMENTIN, and GJA1) that are involved in related HF-regulating
pathways. The mesenchymal marker VIMENTIN was upregulated
in PDGFC-overexpressing HHIRSCs, a finding that supports the
result from the cell proliferation assay showing increasing
proliferation rates (Figures 7B, C). As a factor in EGFR tyrosine
kinase inhibitor resistance signaling, JAK1 is a molecule known to
perturb skin hemostasis-related pathways and induce epidermal
inflammation and downstream genes associated with clinical skin
diseases (Jin et al., 2014; Jabbari et al., 2015; Yasuda et al., 2016).
GJA1 encodes the gap junction protein connexin 43 (Cx43) in
nearly every tissue in the body, and high expression leads to
increased connexin density, which has been observed in the
proximal bulb of the IRS (Flores et al., 2018). Intriguingly, we
did not find a significant expression change in the expression level
of TCHH, which is a key gene that interacts with IRS keratins that
contributes to the “hardening” process that molds hair fiber shape.
We hypothesized that the low differentiation level of the HHIRSCs
in our study resulted in the lack of keratin production, thus
affecting the initiation of TCHH expression, as TCHH only
appears where a hardened keratin structure is needed (O’Keefe
et al., 1993). These results highlight the potential role of PDGFC in
interacting with key regulators of HF development and in
initiating epidermal cell proliferation to complete HF structure.

As our DNA methylomes and transcript profiles are derived
only from shoulder skin showing significant trends in fur
structure, other parts of the skin tissues should be further
assessed by taking measurements at more time points and by
excluding possible interfering factors during the developmental
stage. In addition, the effect of PDGFC targeted to the HF
formation signatures on the hair shape transition in vivo,
together with our data, may explain these dynamic fiber
changes more convincingly.
CONCLUSIONS

This study determined the role ofmethylation dynamics in the curly
fleece transition of the Chinese Zhongwei goat. The profile of DNA
Frontiers in Genetics | www.frontiersin.org 12384
methylation and gene expressionwas affected among the kids during
postnatal development, suggesting that epigenetic processes
contribute to the developmental transitions largely driven by
regulating related biological factors. We identified 1,250 DMGs
that mainly function in adherens junction and gap junctions and 14
of these DMGswere differentially expressed. Importantly, among 14
overlapping genes, the PDGFC genewas implicated in this study as a
potentially importantmolecule in hair formation, and the validation
of the supposition in vitro demonstrates that PDGFC plays a
significant role in regulating HHIRSC proliferation and migration.
The data presented here highlights the importance of epigenetic
mechanisms in molding hair shape in Zhongwei fur goats, making
their fleece dynamics a promising model for the determination of
hair shape and curliness in humans.
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1 Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China, 2 Poultry Breeding Engineering Technology
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Skeletal muscle development and growth are closely associated with efficiency of poultry
meat production and its quality. We performed whole transcriptome profiling based on
RNA sequencing of breast muscle tissue obtained from Shouguang chickens at
embryonic days (E) 12 and 17 to post-hatching days (D) 1, 14, 56, and 98. A total of
9,447 differentially expressed genes (DEGs) were filtered (Q < 0.01, fold change > 2). Time
series expression profile clustering analysis identified five significantly different expression
profiles that were divided into three clusters. DEGs from cluster I with downregulated
pattern were significantly enriched in cell proliferation processes such as cell cycle, mitotic
nuclear division, and DNA replication. DEGs from cluster II with upregulated pattern were
significantly enriched in metabolic processes such as glycolysis/gluconeogenesis, insulin
signaling pathway, calcium signaling pathway, and biosynthesis of amino acids. DEGs
from cluster III, with a pattern that increased from E17 to D1 and then decreased from D1
to D14, mainly contributed to lipid metabolism. Therefore, this study may help us explain
the mechanisms underlying the phenotype that myofiber hyperplasia occurs
predominantly during embryogenesis and hypertrophy occurs mainly after birth at the
transcriptional level. Moreover, lipid metabolism may contribute to the early muscle
development and growth. These findings add to our knowledge of muscle
development in chickens.

Keywords: breast muscle, chickens, development, differential gene expression, RNA sequencing
Abbreviations: ACADL, acyl-CoA dehydrogenase, long chain; ACADS, acyl-CoA dehydrogenase, C-2 to C-3 short chain;
ACAT1, acetyl-CoA acetyltransferase 1; AUH, AU RNA binding methylglutaconyl-CoA hydratase; CCNA2, cyclin A2;
CCNB2, cyclin B2; CDK1, cyclin-dependent kinase 1; ECHS1, enoyl-CoA hydratase, short chain 1; FBP2, fructose-
bisphosphatase 2; HADHA, hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (trifunctional
protein), alpha subunit; PGK2, phosphoglycerate kinase 2; PHKG1, phosphorylase kinase catalytic subunit gamma 1; PKLR,
pyruvate kinase, liver and RBC; PPP1R3C, protein phosphatase 1 regulatory subunit 3C; TPI1, triosephosphate isomerase 1.
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INTRODUCTION

In chicken production, skeletal muscle development is closely
associated with the amount of meat production and its quality,
ultimately affecting the economic benefits. Therefore, elucidating
the molecular mechanisms underlying chicken skeletal muscle
development is of vital interest. The muscle mass is determined
by cell numbers and unit cell size. Hyperplasia refers to the
increases in cell number or muscle fiber number that occur
mainly in the embryonic period, as the number of muscle fibers
is fixed by the day of hatching. However, hypertrophy refers to
the increase in cell size that occurs mainly after birth (Ylihärsilä
et al., 2007; Liu et al., 2017b; Ouyang et al., 2017). Therefore,
there may be distinct molecular processes that occur in chicken
muscle development between the embryonic and post-
hatching periods.

Over the past few years, there has been much progress in
exploring the molecular mechanisms underlying muscle growth
and development in chickens, but most of the studies focused on
the embryonic or post-hatching period. Davis et al. (2015)
characterized the transcriptome of Ross 708 chicken breast
muscle at specified time points from 6 to 21 days after
hatching. Li et al. (2019) explored the messenger RNA
(mRNA) and microRNA (miRNA) profiles of Gushi chicken
muscle tissues in the late postnatal stage (6, 14, 22, and 30 weeks).
Our previous study examined the protein expression profiles in
the breast muscle of Beijing-You chickens at ages 1, 56, 98, and
140 days using isobaric tags for relative and absolute
quantification (Liu et al., 2016). Li et al. (2017) and Ouyang
et al. (2017) explored the transcriptome and protein expression
profiles in leg muscle tissues of Xinghua chicken at embryonic
days (E) 11 and E16 and post-hatching day (D) 1, respectively.
However, few studies have paid attention to the whole muscle
development from embryonic to post-hatching periods in
chickens. Only Liu et al. (2017b) investigated the proteomes of
breast muscle in Cobb and Beijing-You chickens at E12, E17, D1,
and D14.

Shouguang chickens that have been breed in China for 2,000
years are a dual-purpose breed with large bodies (Gao et al.,
2008), which may be excellent material for studying muscle
development. Therefore, we chose the critical breast muscle
developmental stages in the embryonic to post-hatching
periods (E12 and E17 and D1, D14, D56, and D98) of
Shouguang chickens for quantitative analysis of the gene
expression profile of breast muscle, which may help us explore
the development-related genes expression signatures in breast
muscle and its distinction between embryonic and post-
hatching periods.
METHODS

Animals
Shouguang chicken eggs were obtained from the experimental
farm of the Poultry Institute (PS), Shandong Academy of
Agricultural Sciences (SAAS, Jinan, China). All eggs were
Frontiers in Genetics | www.frontiersin.org 2388
incubated with the normal procedure and chicks were reared
in cages using standard conditions of temperature, humidity, and
ventilation at the farm of the PS, SAAS. The same diet was fed to
all chickens and a three-phase feeding system was used: starter
ration (days 1–28) with 21.0% crude protein and 12.12 MJ/kg;
second phase (days 28–56) with 19.0% crude protein and 12.54
MJ/kg; and final phase (after day 56) with 16.0% crude protein
and 12.96 MJ/kg. Feed and water were provided ad libitum
during the experiment. Breast muscles were used at E12, E17, D1,
D14, D56, and D98. All fresh breast muscle tissue samples were
collected, frozen in liquid nitrogen, and stored at −80°C until
RNA extraction. The sex of chicken embryos was identified by
polymerase chain reaction (PCR) of the CHD1 gene (Fridolfsson
and Ellegren, 1999). Chickens with two bands of 600 and 450 bp
were born as female, and those with one band of 600 bp were
born as male.

RNA Extraction, cRNA Library
Construction, and Sequencing
Total RNA was extracted using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA). Three female chickens at each stage
(except E17) were used for further experiments. Total RNA
quantity and purity were analyzed using a Bioanalyer 2100
(Agilent, Santa Clara, CA, USA) with RNA integrity number
>7.0. Approximately 10 mg total RNA was used to deplete rRNA
using the Epicentre Ribo-Zero Gold Kit (Illumina, San Diego,
CA, USA). Following purification, the poly(A)− or poly(A)+
RNA fraction was fragmented into small pieces using divalent
cations under elevated temperature. The cleaved RNA fragments
were reverse-transcribed to create the final complementary DNA
(cDNA) library in accordance with the protocol for the RNA
sequencing (RNA-Seq) sample preparation kit (Illumina). The
average insect size for the paired-end libraries was 300 ± 50 bp.
We performed paired-end sequencing on an Illumina Hiseq 4000
at LC-Bio, China.

RNA-Seq Reads Mapping and
DEG Analysis
We aligned reads to the genome of Gallus_gallus 5.0
(GCA_000002315.3) using HISAT package (Kim et al., 2015),
which initially removed reads based on quality information
accompanying each read and then mapped the reads to the
reference genome. The mapped reads of each sample were
assembled using StringTie (Pertea et al. , 2015). All
transcriptomes from samples were merged to reconstruct a
comprehensive transcriptome using perl scripts. After the final
transcriptome was generated, StringTie and edgeR (Robinson
et al., 2010) were used to estimate the expression levels of all
transcripts. StringTie was used to perform expression level for
mRNAs by calculating fragments per kilobase of transcript per
million fragments mapped (FPKM). Differentially expressed
genes (DEGs) were selected with log2 (fold change) > 1 or log2
(fold change) less than −1 with statistical significance (Q < 0.01)
by R package. The raw sequence data reported in this paper have
been deposited in the Genome Sequence Archive in BIG Data
Center, Beijing Institute of Genomics (BIG), Chinese Academy
January 2020 | Volume 10 | Article 1308
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of Sciences, and is publicly accessible at http://bigd.big.ac.cn/gsa
(accession no. CRA001773).

Time Series Expression Profile Clustering
The non-parametric clustering algorithm of STEM (Short Time-
Series Expression Miner, version 1.3.11) (Ernst and Bar-Joseph,
2006) was used to cluster and visualize the expression patterns of
DEGs. Expression profiles of DEGs were clustered based on their
log2 (FPKM values) and their correlation coefficients. The
maximum unit change in model profiles between time points
was adjusted to 2 and the maximum number of model profiles to
50. The statistical significance of the number of DEGs to each
profile versus the expected number was computed using the
algorithm proposed by Ernst and Bar-Joseph (2006).

Functional Annotation
Functional analysis of DEGs was performed using the DAVID
(Database for Annotation, Visualization and Integrated
Discovery) tool (http://david.abcc.ncifcrf.gov/) (Dennis et al.,
2003). The Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis was performed using KOBAS version 3.0 (Xie
et al., 2011). GeneOntology (GO) terms and KEGGpathways with
P < 0.05 were considered significantly enriched groups of genes
possibly contributing to muscle development.
qRT-PCR Confirmation
To confirm our differential expression results, we conducted
quantitative reverse transcription PCR (qRT-PCR) for six selected
genes (MYOG,MYH11, TNNI2, TNNT3, TNNC2, and TPM2). The
total RNA was used for first-strand cDNA synthesis using a
commercial kit (TaKaRa, Dalian, China). cDNA was subsequently
used for qRT-PCR analyses with an ABI 7500 Detection System
(Applied Biosystems, Foster City, CA, USA) and primers designed
using Primer Premier version 5.0 (PREMIER Biosoft, Palo Alto, CA,
USA), as listed in Table S1. mRNA abundance of candidate genes
was determined using the KAPA SYBR® FAST qPCR Master Mix
(2×) Universal Cocktail (KAPA Biosystems, Boston, MA, USA).
Frontiers in Genetics | www.frontiersin.org 3389
qRT-PCR was performed following the instructions of ABI 7500
with default parameters. The 2−DDCt method (Livak and Schmittgen,
2001) was used to calculate the relative mRNA abundance. The beta
actin gene (ACTB) was used as the housekeeping gene. Three
independent replications were used for each assay and data were
presented as means ± SD.
RESULTS

Overall Assessment for Sequencing Data
Mapping Statistics
To identify mRNA expressed in breast muscle tissue
development of chickens, we constructed 17 cDNA libraries
(E12_1, E12_2, E12_3, E17_1, E17_2, D1_1, D1_2, D1_3,
D14_1, D14_2, D14_3, D56_1, D56_2, D56_3, D98_1, D98_2,
and D98_3) from breast muscle samples at six developmental
stages. As shown in Table 1, 68,431,306–103,358,850 raw reads
were generated in the 17 libraries, and 65,384,366–100,882,250
clean reads were obtained after discarding adaptor sequences and
low-quality reads. We mapped clean reads to chicken reference
genome Gallus_gallus 5.0 and found that 84.41–90.10% of the
clean reads in the libraries were mapped to the chicken reference
genome (Table 1).

Differential Expression Analysis of Genes
In pairwise comparisons between the libraries of breast muscle at
the six developmental stages, a total of 9,447 genes were
differentially expressed (Q < 0.01, fold change > 2) (Figure 1
and Table S2). There were 2,502, 4,582, 4,394, 3,689, and 4,607
DEGs in E17, D1, D14, D56, and D98 compared to E12.
Comparing successive ages within each region, 2,502, 2,429,
1,839, 262, and 144 DEGs were found in E17 versus E12, D1
versus E17, D14 versus D1, D56 versus D14, and D98 versus
D56, respectively. The numbers of DEGs were greatest in E17
versus E12 and lowest in D98 versus D56, which indicated that
regional differences in gene expression were greatest during the
earlier stages of embryo development.
TABLE 1 | Overview of raw data output and quality assessment.

Sample Raw reads Clean reads Mapped reads Mapped rate (%)

E12_1 75,233,696 72,137,830 63,804,708 88.45
E12_2 71,868,594 68,692,864 60,781,832 88.48
E12_3 73,728,758 70,509,198 61,614,305 87.38
E17_1 76,625,816 73,423,116 65,037,045 88.58
E17_3 68,431,306 65,384,366 56,147,755 85.87
D1_1 75,819,908 71,918,030 61,870,757 86.03
D1_2 87,249,520 80,288,708 71,793,909 89.42
D1_3 75,927,124 71,486,238 60,974,309 85.30
D14_1 88,752,924 86,540,700 77,973,761 90.10
D14_2 81,110,076 79,280,896 69,851,415 88.11
D14_3 88,685,236 86,822,844 74,453,649 85.75
D56_1 86,677,672 84,671,272 74,896,179 88.46
D56_2 88,218,208 86,364,222 75,789,517 87.76
D56_3 96,7881,00 94,729,644 82,666,195 87.27
D98_1 96,819,270 94,753,276 83,684,517 88.32
D98_2 103,358,850 100,882,250 86,849,158 86.09
D98_3 89,320,116 87,415,674 73,785,643 84.41
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STEM Analysis of DEG Profiles
As our data were collected at different time points, STEM was
used to cluster and visualize possible changes in the profiles of
9,447 DEGs at six time points of breast muscle development.
Within the 50 model profiles, five expression profiles containing
5,269 genes were statistically significant (P < 0.05; Figure 2A and
Table S3). Of these, profiles 8 and 12 with downregulated
patterns contained 3,233 and 693 DEGs, respectively (Figure
2B and Table S3), while profiles 39 and 49 with upregulated
patterns contained 380 and 156 DEGs, respectively (Figure 2C
and Table S3). Profile 25 with 717 genes as the third pattern
showed an increase from E17 to D1 and reached a peak at D1,
then decreased from D1 to D14 and remained stable from D14 to
D98 (Figure 2D and Table S3). Thus, the expression pattern of
DEGs can be divided into three clusters: cluster I (profiles 8 and
12, total of 3,926 DEGs) with downregulated pattern; cluster II
(profiles 39 and 49, total of 536 DEGs) with upregulated pattern;
and cluster III (profile 25, total of 717 DEGs). The results provide
new information related to further characterization of novel
molecules associated with skeletal muscle development
in chickens.
Frontiers in Genetics | www.frontiersin.org 4390
GO Enrichment Analysis
To explore the biological function of DEGs, GO enrichment
analysis was performed based on cluster analysis. The genes in
cluster I (profiles 8 and 12) were significantly enriched in 138 GO
terms (68 under biological process, 38 under cellular component,
and 32 under molecular function) (Table S4). Within the
biological process category, the most abundant GO terms
consisted of DNA replication, cell division, ATP-dependent
chromatin remodeling, mitotic nuclear division, and DNA
repair (Figure 3A). The genes in cluster II (profiles 39 and 49)
were significantly enriched in 34 GO terms (16 under biological
process, six under cellular component, and 12 under molecular
function) (Table S5). Within the biological process category, the
most abundant GO terms consisted of carbohydrate metabolic
process, xanthine catabolic process, gluconeogenesis, and
positive regulation of interferon-g production (Figure 3B).
Skeletal muscle contraction was also included in this category
(Figure 3B). We also analyzed the biological function of genes in
cluster III (profile 25). Eighteen GO terms (10 under biological
process, three under cellular component, and five under
molecular function) were significantly enriched (Table S6).
January 2020 | Volume 10 | Article 130
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Within the biological process category, the most abundant GO
terms consisted of fatty acid beta-oxidation using acyl-CoA
dehydrogenase, fatty acid beta-oxidation, positive regulation of
focal adhesion assembly, lipid homeostasis, and regulation of
stress fiber assembly (Figure 3C).

KEGG Enrichment Analysis
We used KEGG pathway analysis to explore the signaling
pathways of DEGs involved in cluster I (profiles 8 and 12),
Frontiers in Genetics | www.frontiersin.org 5391
cluster II (profiles 39 and 49), and cluster III (profile 25). For
cluster I, the DEGs were significantly enriched in 13 pathways
(Figure 4A and Table S7), and half of these pathways are
involved in cell division, such as cell cycle, DNA replication,
nucleotide excision repair, mismatch repair, oocyte meiosis, and
spliceosome. As for cluster II, the DEGs were significantly
enriched in 16 pathways (Figure 4B and Table S8), and it was
interesting that all of these pathways were directly or indirectly
involved in the main metabolic processes of the organism, such
FIGURE 2 | STEM analysis of DEG profiles. (A) Each box corresponds to a type expression profile and only colored profiles are significantly different. The upper-left
and upper-right numbers in each box indicate the order of profiles and P values, respectively. (B) Profile 8 (up) and profile 12 (down) with downregulated patterns.
(C) Profile 39 (up) and profile 49 (down) with upregulated patterns. (D) Profile 25.
January 2020 | Volume 10 | Article 1308
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FIGURE 3 | Top 5 significantly enriched biological process terms of genes in cluster I (A), cluster II (B), and cluster III (C).
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FIGURE 4 | Bubble plot of significantly enriched pathways for cluster I (profiles 8 and 12) with downregulated pattern (A), cluster II (profiles 39 and 49) with
upregulated pattern (B), and cluster III (profile 25) (C). Bubble color and size correspond to the P value and gene number enriched in the pathway. The rich factor
indicates the ratio of the number of DEGs mapped to a certain pathway to the total number of genes mapped to this pathway.
Frontiers in Genetics | www.frontiersin.org January 2020 | Volume 10 | Article 13087393
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as glycolysis/gluconeogenesis, purine metabolism, starch and
sucrose metabolism, vitamin B6 metabolism metabolic
pathways, pentose phosphate pathway, biosynthesis of amino
acids nicotinate, and insulin signaling pathway. In cluster III, the
Frontiers in Genetics | www.frontiersin.org 8394
DEGs were significantly enriched in 18 pathways (Figure 4C and
Table S9), and most of these pathways were associated with
metabolism. Among these metabolic pathways, the most
enriched pathways were those related to lipid metabolism, such
FIGURE 5 | Validation of six DEGs by qRT-PCR. The r value represents Pearson’s correlation coefficient between two methods.
January 2020 | Volume 10 | Article 1308
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as fatty acid degradation, propanoate metabolism, butanoate
metabolism, fatty acid elongation, synthesis and degradation of
ketone bodies, and fatty acid metabolism.
Validation of DEGs by qRT-PCR
The qRT-PCR assays were conducted to validate six selected
DEGs from RNA-Seq: MYOG, MYH11, TNNI2, TNNT3,
TNNC2, and TPM2. Relative expression changes of qRT-PCR
data were highly (r = 0.83–0.99) correlated with RNA-Seq data
(Figure 5), suggesting the reliability of the RNA-Seq approach.
DISCUSSION

Skeletal muscle growth and development includes a series of
closely regulated changes in gene expression level from embryo
to adult, and uncovering the gene expression patterns
underneath chicken skeletal muscle development contributes to
meat production. Previous transcriptome analysis of chicken
muscle only concentrated on the embryonic period or adult
stage, and few studies have systematically examined the
transcriptome of chicken skeletal muscle development from the
embryonic period to the growing period. To investigate the
mechanisms of skeletal muscle development systematically, we
used RNA-Seq to generate extensive cDNA libraries for six
developmental stages of chickens from E12 to D98. As shown
in Figure 1 and Table S2, a total of 9,447 DEGs were identified in
pairwise comparisons between the libraries of breast muscle at
the six developmental stages, and the regional differences in gene
expression were greatest during the earlier stages of embryo
development (E17 versus E12) than the late postnatal stage (D98
versus D56). Previous studies have demonstrated the increase in
cell number or muscle fiber number which occurs mainly in
embryonic periods as the numbers of muscle fibers were fixed by
the day of hatching and then impacted on the postnatal accretion
of muscle mass (Smith, 1963; Sporer et al., 2011). Thus,
embryonic periods are the critical periods for muscle
development and more genes are active in these periods. Six
selected DEGs involved in muscle development were validated
using qRT-PCR, and the results were consistent with those from
RNA-Seq, suggesting reliability of the identified DEGs through
RNA-Seq (Figure 5).

Since muscle development was accompanied by the
differential expression of related genes in different growth
periods and our data were also collected at different time
points, we used STEM software, which is widely used to study
dynamic biological processes (Guo et al., 2016; Ma et al., 2018;
Zhan et al., 2018), to investigate the dynamic genetic changes
during breast muscle development. We experimented with
various numbers of profiles and found that five profiles
(combining with three clusters) best captured the expression
patterns of DEGs (Figure 2 and Table S3). The genes in a cluster
have similar temporal expression patterns and may be involved
in the same biological process. Therefore, we performed GO and
Frontiers in Genetics | www.frontiersin.org 9395
KEGG analyses to explore the function of the DEGs with similar
temporal expression patterns.

For cluster I with downregulated pattern (Figure 2B and
Table S3), 3,926 genes were significantly clustered, which was
more than 40% of the total DEGs. These genes were more highly
expressed in the early periods of muscle development than the
late stages of growth, which further confirmed that the early
development might play key roles in muscle growth. GO
functional annotation and KEGG analysis both showed that
the downregulated genes were significantly enriched in cell
proliferation, including DNA replication, cell cycle, cell
division, mitotic nuclear division, and DNA repair (Figures 3A
and 4A), which was similar to previous research on goat muscle
development from gestation to birth which showed that genes
with downregulated patterns were also involved in cell
proliferation processes (Zhan et al., 2018). Therefore, these
results further support the hypothesis that the total number of
skeletal myofibers is defined by hyperplasia during
embryogenesis. Among these downregulated genes, CCNA2,
CCNB2, and CDK1, which encode the cyclins and their
cognate cyclin-dependent protein kinases, were not only
significantly enriched in the biological process of cell division
but also significantly enriched in cell cycle pathway (Tables S4
and S7). Cyclin A2 possesses a unique role in its two-point
control of the cell cycle, first by interacting with CDK2 in
controlling the G1/S transition into DNA synthesis and then
by interacting with CDKs 1 and 2 to control the G2/M entry into
mitosis (Li et al., 1998). Previous study has been demonstrated
that constitutive expression of cyclin A2 in a transgenic mouse
yields robust postnatal cardiomyocyte mitosis and hyperplasia
(Chaudhry et al., 2004). Cyclin B2 was also demonstrated to have
a regulatory role in chicken breast muscle development (Li et al.,
2019). Moreover, CDK1 and CDK2 play integral roles in
reducing MyoD activity during myoblast proliferation by
phosphorylating MyoD (Kitzmann et al., 1999). These results
suggest that the genes with a downregulated pattern of
expression play regulatory roles in chicken breast muscle
development through the processes involved in the early stages
of cell proliferation, and genes related to cyclins and their
cognate cyclin-dependent protein kinases may be critical
factors in regulating cell proliferation.

For cluster II with an upregulated pattern of expression
(Figure 2C and Table S3), the functional annotation and
pathway analysis both showed that these genes were
significantly enriched in metabolism such as carbohydrate
metabolism, glycolysis/gluconeogenesis, calcium signaling
pathway, insulin signaling pathway, and biosynthesis of amino
acids (Figures 3B and 4B). A previous study of goat muscle
development also found that genes with upregulated patterns of
expression were related to metabolic pathways, such as
biosynthesis of amino acids, glycolysis/gluconeogenesis, and
the TCA cycle (Zhan et al., 2018). Among these genes,
PHKG1, PPP1R3C, and FBP2 were significantly enriched not
only in glycogen biosynthetic process and gluconeogenesis but
also in insulin signaling pathway and calcium signaling pathway
(Tables S5 and S8). PHKG1, as a key factor in insulin signaling
January 2020 | Volume 10 | Article 1308
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and calcium signaling pathways, encodes the catalytic subunit of
phosphorylase kinase, which functions in the cascade activation
of glycogen breakdown in muscle tissue (Ma et al., 2014).
Fructose-1,6-bisphosphatase encoded by FBP2 catalyzes the
hydrolysis of fructose-1,6-bisphosphate to fructose-6-phosphate
and inorganic phosphate, which plays a regulatory role in the
synthesis of glycogen/glucose. Previous findings point to FBP2 as
an important link between calcium-induced muscle contractive
and metabolic (glycolytic) activity, mitochondrial function, and
cell survival (Pirog et al., 2014). PPP1R3C was also called protein
targeting to glycogen (PTG) and regulated glycogen metabolism
(Ji et al., 2019). Moreover, glycolytic process and biosynthesis of
amino acids pathway were both significantly enriched in PKLR,
PGK2, and TPI1 (Tables S5 and S8); thus, these genes may be
important regulatory switches for protein and energy conversion
and ultimately influence muscle development. A number of
studies have demonstrated that muscle mass increased by
hypertrophy (increased cellular protein content) after hatching
and was controlled by synthesis of muscle proteins or their
degradation (Braun and Gautel, 2011). Protein and energy
metabolism are tightly coupled, and the energy from glycolysis/
gluconeogenesis is needed for protein turnover during skeletal
muscle development (Duan et al., 2016; Liu et al., 2016).
Therefore, these results show that genes involved in
metabolism may be critical for postnatal myofiber growth,
muscle hypertrophy, and muscle regeneration, and the protein
synthesis and energy metabolism of skeletal muscle regulated by
insulin signaling pathway and calcium signaling pathway may be
important for coordinating muscle development.

Cluster III (profile 25) showed an increase from E17 to D1
and reached a peak at D1, then decreased from D1 to D14 and
remained stable fromD14 to D98 (Figure 2D and Table S3). The
functional annotation showed that processes and pathways
involved in lipid metabolism were significantly enriched, such
as fatty acid b-oxidation, lipid homeostasis, fatty acid
degradation, and propanoate metabolism (Figures 3C and 4C).
Previous studies have demonstrated that lipids stored in the
adipocytes during embryonic life are transferred to the muscle
fibers and used for growth and energy requirements at the early
stage, while muscle again stores lipids in later life (Chartrin et al.,
2007; Liu et al., 2016). Interestingly, ACADL, ACAT1, HADHA,
ACADS, ECHS1, and AUH, which are significantly enriched in
fatty acid beta-oxidation, were active during embryonic life in the
present study (Table S6), which further demonstrated that the
lipids were the important energy source for muscle development
and growth at the early stage. Moreover, some of these genes
were also the key regulatory molecules for intramuscular fat
(IMF) deposition. For example, ACADL and HADHA have been
identified as candidate biomarkers for IMF deposition in Cobb
and Beijing-You chickens (Liu et al., 2017a), and it was
interesting that their expression patterns in Shouguang
chickens were similar to Cobb and Beijing-You chickens.
Moreover, ACAT1 expression was significantly lower in muscle
of AA chickens with low IMF content than in Beijing-You
chickens with abundant IMF (Liu et al., 2018), suggesting that
Frontiers in Genetics | www.frontiersin.org 10396
ACAT1 may contribute to IMF deposition. These results suggest
that genes involved in lipid metabolism, and especially those
related to fatty acid beta-oxidation, play important roles in early
muscle development and deposition of IMF.
CONCLUSION

In the present study, we systematically identified DEGs and
investigated their temporal expression profiles during chicken
breast muscle development from E12 to D98. A total of 9,447
DEGs were identified in chicken breast muscle and showed three
significantly different expression patterns. Functional
enrichment analysis suggests that genes with downregulated
patterns contribute to cell proliferation processes, while genes
with upregulated patterns are mainly involved in metabolism.
Genes related to lipid metabolism change dramatically around
the time of birth, which may play important roles in early muscle
development and deposition of IMF. In summary, our study will
facilitate understanding of the mechanisms underlying the
phenotype that myofiber hyperplasia occurs predominantly
during embryogenesis and hypertrophy occurs mainly after
birth at the transcriptional level. These findings elucidate the
regulatory mechanisms involved in chicken breast
muscle development.
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Early studies have provided a wealth of information on the functions of microRNAs
(miRNAs). However, less is known regarding their functions in the hypothalamus involved
in sheep reproduction. To explore the potential roles of hypothalamic messenger RNAs
(mRNAs) and miRNAs in sheep without FecB mutation, in total, 172 and 235 differentially
expressed genes (DEGs) and 42 and 79 differentially expressed miRNAs (DE miRNAs)
were identified in polytocous sheep in the follicular phase versus monotocous sheep in the
follicular phase (PF vs. MF) and polytocous sheep in the luteal phase versus monotocous
sheep in the luteal phase (PL vs. ML), respectively, using RNA sequencing. We also
identified several key mRNAs (e.g., POMC, GNRH1, PRL, GH, TRH, and TTR) and
mRNA–miRNAs pairs (e.g., TRH co-regulated by oar-miR-379-5p, oar-miR-30b, oar-
miR-152, oar-miR-495-3p, oar-miR-143, oar-miR-106b, oar-miR-218a, oar-miR-148a,
and PRL regulated by oar-miR-432) through functional enrichment analysis, and the
identified mRNAs and miRNAs may function, conceivably, by influencing gonadotropin-
releasing hormone (GnRH) activities and nerve cell survival associated with reproductive
hormone release via direct and indirect ways. This study represents an integral analysis
between mRNAs and miRNAs in sheep hypothalamus and provides a valuable resource
for elucidating sheep prolificacy.

Keywords: hypothalamus, mRNAs, miRNAs, GnRH, reproduction, sheep
INTRODUCTION

Reproduction, one of the major factors significantly affecting the sheep industry, is a complicated
but important physiological process. The success of reproduction is mainly dependent on the release
of hormones, including gonadotropin-releasing hormone (GnRH) released from the hypothalamus,
follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which are both secreted from
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the pituitary (Cao et al., 2018a). Following the release of
hormones, a series of events associated with reproduction, such
as ovulation and fertilization, could occur.

It is well known that reproductive traits, such as litter size,
are controlled by minor polygene. Researchers have found
several major fecundity genes which considerably influence
sheep prolificacy, such as bone morphogenetic protein receptor
IB (BMPRIB), bone morphogenetic protein 15 (BMP15) (Chu
et al., 2007), and growth differentiation factor 9 (GDF9) (Chu
et al., 2011). FecB is a mutation in BMPRIB occurring in base 746
from A to G. This base change further results in changes in
protein function due to a key amino acid transition from
glutamine to arginine (Fogarty, 2009). Sheep with one copy of
the FecB mutation can experience significant increase in litter
size, by 0.67, while this increase is about 1.5 when there are two
mutated copies (Liu et al., 2014). Moreover, this mutation was
also detected in diverse sheep species, such as Booroola Merino
sheep (Mulsant et al., 2001) (Australia), Garole sheep (Polley
et al., 2010) (India), Hu sheep (Davis et al., 2006) (China), and
Small Tail Han sheep (STH sheep; China) (Davis et al., 2006).
STH sheep, an indigenous species in China, has attracted much
attention for its excellent traits (Liu et al., 2016; Chao et al.,
2017), especially the higher prolificacy (Davis et al., 2006).
Furthermore, STH sheep can be divided into three genotypes
based on the effects of FecB mutation, better known as FecB BB
(with two-copy FecB mutations), FecB B+ (with one-copy FecB
mutation), and FecB++ (with no FecB mutation). Usually,
compared to sheep with the other two genotypes, STH sheep
with FecB++ show a monotocous phenomenon. However, the
fact is that there are STH sheep with FecB++ and which show a
polytocous phenomenon (Davis et al., 2006), and how this
mechanism was established remains largely unclear.

With advances in sequencing, the application of RNA
sequencing (RNA-seq) in animals, including sheep (Jiang et al.,
2014; Zhang et al., 2019a; Zhang et al., 2019b), mice (Beck et al.,
2018), and cattle (Correia et al., 2018), enables integral analysis of
the expression profiling of mRNA and miRNAs. Therefore,
RNA-seq has been widely used to understand some complex
traits. Regarding the generation of miRNA, precursor miRNA is
transcribed mainly by RNA polymerase II, then processed into
mature miRNA (Gebert and Macrae, 2019). Significantly,
miRNAs play pivotal roles in life processes, such as muscle
growth (Cao et al., 2018c), fleece and hair development (Liu
et al., 2018), and neural development (Schratt et al., 2006).
Additionally, reproduction is an extremely complex process,
and the use of RNA-seq may contribute to enhancing our
understanding of sheep fecundity. By comparing the mRNA
and miRNA expression patterns in European mouflon and
sheep, a research (Yang et al., 2018) found several key mRNAs,
such as INHBA, SPP1, and ZP2, and miRNAs, such as miR-
374a and miR-9-5p, which may be responsible for the success
of female sheep reproduction. Pokharel et al. (2018) detected
and characterized some key miRNAs and mRNAs in sheep
ovary which may be responsible for sheep prolificacy. Thereby,
the identification and functional analysis of mRNAs and
miRNAs and characterization of their mutual interaction
Frontiers in Genetics | www.frontiersin.org 2400
through sequencing technology may provide new insights
into the prolific mechanism in STH sheep with the FecB++

genotype, which has so far been difficult to elucidate using
standard approaches.

Therefore, in the present study, we applied transcriptomics
analysis in PF vs. MF and PL vs. ML to identify DEGs and DE
miRNAs and analyze their potential functions, expecting to
elucidate the potential prolific mechanism in sheep with the
FecB++ genotype and act as a reference for other female mammals.

MATERIAL AND METHODS

Preparation of Animals
First, the TaqMan probe (Liu et al., 2017) was applied to
genotype the sheep population (n = 890). Then, 12 sheep with
no significant differences in sheep age, weight, height, body
length, chest circumference, and tube circumference were
selected from 142 STH sheep with the FecB++ genotype and
grouped into the polytocous group (n = 6, litter size ≥2) and
monotocous group (n = 6, litter size = 1) according to their litter
size records. Additionally, all the sheep were bred under the same
conditions, with free access to water and feed, in a sheep farm of
the Tianjin Institute of Animal Sciences.

All selected sheep were processed by estrus synchronization
with Controlled Internal Drug Releasing Device (CIDR;
progesterone 300 mg; Zoetis Australia Pty. Ltd., NSW,
Australia) for 12 days. The six sheep, comprising three
polytocous sheep and three monotocous sheep, were
slaughtered within 45–48 h after CIDR removal (follicular
phase), the remaining six sheep were slaughtered on day 9
after CIDR removal (luteal phase). Finally, the selected sheep
were divided into four groups, including polytocous sheep in the
follicular phase (PF), polytocous sheep in the luteal phase (PL),
monotocous sheep in the follicular phase (MF), and monotocous
sheep in the luteal phase (ML), on the basis of their littering
record and estrous cycle.

Preparation of Tissues, RNA Extraction,
and Sequencing
Hypothalamic tissues were collected from 12 killed sheep and
immediately stored at −80°C until being used. Then, total RNA
was isolated using TRIzol Reagent (Invitrogen, Carlsbad, CA,
USA) under the manufacturer’s instructions, and the quality and
integrity of isolated RNA were assessed by an Agilent 2100
Bioanalyzer (Agilent Technologies , CA, USA) and
electrophoresis. The high-quality RNA of 3 mg of each sample
was used to build the mRNA library using a NEBNext Ultra
Directional RNA Library Prep Kit for Illumina (NEB, Ipswich,
USA), which has been described in our previous work (Zhang
et al., 2019b). All the sequencing works were conducted in
Annoroad Gene Technology Co., Ltd. (Beijing, China).

The fragments with lengths of 18–30 nt, which were obtained
from total RNA through the gel separation technique, were used
as templates to synthesize the first strand of complementary
DNA (cDNA). The second strand of cDNA was also synthesized
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in the presence of deoxynucleoside triphosphates (dNTPs),
ribonuclease H, and DNA polymerase I. Then the obtained
double-stranded cDNA was processed with end-repair, the
addition of base A and sequencing adaptors, and uracil-N-
glycosylase (UNG) enzyme digestion. Finally, polymerase chain
reaction was conducted to build the miRNA library.

In addition, a paired-end sequencing approach for mRNAs
and miRNAs was conducted using an Illumina HiSeq 2500.

Quality Control, Mapping and Assembly
Raw reads were filtered using in-house software of fqtools_plus-
v2.0.0 according to strict criteria, including removing reads with
adaptor contaminants, low-quality reads, and reads with N bases
accounting for more than 5%. Then, HiSAT2 (Kim et al., 2015)
was used to map the cleaned reads to the reference genome
(Oarv3.1), and both the sheep reference genome and genome
annotation file were downloaded from ENSEMBL (http://www.
ensembl.org/index.html). Subsequently, StringTie 1.3.2d (Pertea
et al., 2015) was used to assemble transcripts of mRNAs.

Several criteria were also implemented to generate clean
miRNA reads, including removing reads without a 3′ adapter,
reads without insert fragment, reads with lengths beyond the
normal range, raw reads containing too much A/T, and some
low-quality reads using in-house scripts. Furthermore, the
cleaned data of miRNA were matched against the sheep
reference genome (Oarv3.1) by Bowtie v1.1.2 (Langmead
et al., 2009).

Differential Expression and Functional
Enrichment Analysis of mRNAs
To validate the expression level of mRNAs, the fragments per
kilobase per million mapped reads (FPKM) values (Trapnell
et al., 2010) were calculated to represent the gene expression
level, and DESeq 2-1.4.5 (Wang et al., 2010) was also used to
detect the DEGs between two comparisons based on FPKM
values. Additionally, a gene with fold change >1.5 and p < 0.05
was considered as a DEG in PF vs. MF and PL vs. ML. In
addition, we also performed Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis. We first downloaded the Uniprot database, where
each sequence contains the GO annotation and KEGG
annotation species (sheep) of the sequence as well as gene and
protein names. All genes of sheep to be analyzed were compared
with the Uniprot database by blast (NCBI-blast 2.2.28) to find
the best alignment result for each sequence, and corresponding
to GO and KEGG annotation results. Then, we also downloaded
the corresponding relationship between the entry name and
number provided on the websites of GO and KEGG, as well as
the classification hierarchy file, and summarize the GO and
KEGG classification of the genes we obtained. Lastly, a
particular GO term or KEGG pathway with a hypergeometric
p value < 0.05 was thought to indicate significant enrichment.

Differential Expression Analysis and
Prediction of Target Genes of miRNAs
The miRDeep v2.0.0.8 (Friedländer et al., 2012) was applied to
identify the known and novel miRNAs by mapping clean reads
Frontiers in Genetics | www.frontiersin.org 3401
and hairpins to mature miRNAs recorded in the miRbase
database (Griffiths-Jones, 2006). In addition, transcripts per
million (TPM) were calculated to represent miRNA expression
levels on the basis of the reads number. DESeq2-1.4.5 (Wang
et al., 2010) was also applied to identify DE miRNAs in PF vs. MF
and PL vs. ML, and the threshold of fold change >1.5, p < 0.05
was considered to indicate differential expression. Furthermore,
miRanda v3.3a (Enright et al., 2004) was used to predict the
target genes of miRNAs.

Integral miRNA–mRNA Networks Analysis
To precisely identify key DE miRNAs and DEGs associated with
reproduction, a network containing DE miRNAs and DE
mRNAs, on the basis of miRNA functions (Gebert and Macrae,
2019), was built using Cytoscape_v3.5.0 (Shannon et al., 2003), and
only mRNAs exhibiting negative relationship with miRNAs were
included in miRNA–mRNA interaction networks.

Data Validation
In order to validate the accuracy of sequencing data, four
DEGs, including CRH, FOXG1, TTR, and POMC, and four DE
miRNAs, including oar-miR-433-3p, oar-miR-495-3p, oar-
miRNA-16b, and oar-miR-143, were selected for data
validation. First, the primers of DEGs and DE miRNAs
were synthesized by Beijing Tianyi Huiyuan Biotechnology
Co., Ltd. (Beijing, China) (Supplementary Table 1) for
subsequent reverse transcription, which was performed using
PrimeScript™ RT reagent kit (TaKaRa) for mRNAs and
miRcute Plus miRNAs First-Strand cDNA Kit (TIANGEN,
Beijing, China) for miRNA. Furthermore, quantitative PCR
(qPCR) was conducted with the SYBR Green qPCR Mix
(TaKaRa, Dalian, China) for mRNAs and miRcute Plus
miRNA qPCR Kit (TIANGEN, Beijing, China) for miRNAs
using a RocheLight Cycler®480 II system (Roche Applied
Science, Mannheim, Germany). In addition, b-actin (for
mRNA) and U6 small nuclear RNA (snRNA; for miRNA)
were utilized as reference gene/miRNA to calculate the relative
expression level with the method of 2-DDct (Livak and
Schmittgen, 2001). The qPCR for mRNAs was conducted in
the following procedure: initial denaturation at 95°C for 5
minutes, followed by 40 cycles of denaturation at 95°C for 5 s,
then annealing at 60°C for 30 s. While the qPCR for miRNA
was conducted in the following procedure: initial denaturation
at 95°C for 15 minutes, followed by 40 cycles of denaturation
at 94°C for 20 s, then annealing at 60°C for 34 s. All the qPCR
results were presented as the mean ± SD.
RESULTS

mRNA and miRNA Profiling
To fully characterize the globally hypothalamic mRNA and
miRNA expression differences between sheep with the same
genotype but different litter sizes, RNA-seq was used to detect
their expression profile in the hypothalamus. In total, RNA-seq
for mRNA generated approximately 1,519 million raw reads
and 1,460 million clean reads (Supplementary Table 2) after
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data filtering. Overall, 21,221 mRNAs were identified
(Supplementary Table 3) after mapping to sheep genome, and
our results also suggested that many mRNAs were located in the
intergenic region (nearly 45%), followed by the intron (about
35%) and exon (more than 20%) regions (Figure 1A and
Supplementary Table 4).

Regarding the expression level of mRNAs, our results showed
that the FPKM of those genes obtained from RNA-seq at <50
constituted nearly 90%, and the high-expression genes, i.e.,
t ho s e w i th FPKM >500 , con s t i t u t ed abou t 0 . 5%
(Supplementary Table 3), which suggested that the data
obtained from the hypothalamus via RNA-seq were relatively
reasonable. Furthermore, the chromosome distribution of
mRNAs indicated that chromosome 3 contains 9.79% of the
genes identified from the hypothalamus, followed by
chromosome 1 (9.55%) and chromosome 2 (7.22%) (Figure
1B and Supplementary Table 5). Additionally, the number of
Frontiers in Genetics | www.frontiersin.org 4402
DEGs identified fromPF vs.MF (Figure 2A and Supplementary
Table 6) and PL vs.ML (Figure 2B and Supplementary Table 6)
were 172 and 235, respectively. Among these DEGs, 79 and 90
were upregulated, while 93 and 145 were downregulated in PF
vs. MF and PL vs. ML, respectively. In addition, the expression
density of DEGs displayed obviously different expression
patterns between PF and MF, and between PL and ML
(Figures 2C, D).

Regarding miRNAs, RNA-seq generated approximately 315
million raw reads and 267 million clean reads (Supplementary
Table 7) with lengths ranging from 18 to 30 nt (Figure 3A) after
removing low-quality reads. Overall, 623 miRNAs were detected
(Supplementary Table 8). In addition, the chromosome
distribution of identified miRNAs was also determined. As
Figure 3B shows, the chromosome distribution of miRNAs
from 1 to X varies (Supplementary Table 9), and most of the
identified miRNAs were located at chromosome 3 (nearly 40%),
FIGURE 1 | Mapping region and chromosome distribution of identified mRNAs. (A) Mapping region of identified genes at the reference genome in polytocous sheep
in the follicular phase (PF) (a), polytocous sheep in the luteal phase (PL) (b), monotocous sheep in the follicular phase (MF) (c), and monotocous sheep in the luteal
phase (ML) (d). (B) Chromosome distribution of identified genes from the hypothalami in the PF, MF, PL, and ML.
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followed by chromosome 9 (nearly 15%) and chromosome 18
(nearly 9%). Interestingly, chromosome 3 also contains the most
mRNAs (Figure 3B). Also, a diversity of non-coding RNAs
(ncRNAs), including transfer RNAs (tRNAs), snRNAs, miRNAs,
etc., were also identified (Figure 3C and Supplementary Table
10), and the known miRNAs account only for a small part of all
the identified ncRNAs. In addition, the target genes of miRNAs
in PF vs. MF and PL vs. ML were predicted to be 1,611 and 2,120,
respectively (Supplementary Table 11).

Additionally, the DE miRNAs identified from PF vs. MF and
PL vs. ML were 42 and 79, respectively. Of these DE miRNAs, 20
Frontiers in Genetics | www.frontiersin.org 5403
and 23 were upregulated, while 22 and 56 were downregulated,
respectively (Figure 4A and Supplementary Table 12). In
addition, the expression density of DEGs displayed obviously
different expression patterns between PF and MF, and between
PL and ML (Figures 4B, C).

GO and KEGG Enrichment Analysis of
DEGs
To better understand the potential functions of the DEGs, GO
term and KEGG pathway analyses were performed. In GO
analysis, the most enriched term in PF vs. MF was the MHC
FIGURE 2 | Differentially expressed genes (DEGs) analysis. (A) Volcano plot of identified genes in PF vs. MF, where red and green represent up- or downregulation,
respectively, same below. (B) Volcano plot of identified genes in PL vs. ML. (C) Heat maps showing the expression intensity of 794 DEGs in the follicular phase,
including PF and MF. (D) Heat maps showing the expression intensity of 1,044 DEGs in the luteal phase, including PL and ML.
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protein complex (GO:0042611). Other GO terms related to the
MHC protein were also enriched, such as MHC class II protein
complex binding (GO:0023026) and MHC protein complex
binding (GO:0023023), indicating the crucial role of the MHC
protein in the hypothalamic functions (Figure 5A and
Supplementary Table 13). Regarding PL vs. ML, the top 2
enr iched terms were the immune sys tem process
(GO:0002376) and immune response (GO:0006955). In
addition, some GO terms associated with chemokine receptors,
including CXCR3 chemokine receptor binding(GO:0048248)
and chemokine receptor binding (GO:0042379), were also
highly enriched, suggesting the important roles of the immune
Frontiers in Genetics | www.frontiersin.org 6404
system and chemokine receptors in the hypothalamus at the
luteal phase (Figure 5A and Supplementary Table 13).

KEGG analysis in PF vs. MF (Figure 5B and Supplementary
Table 14) showed that the most enriched pathway was type I
diabetes mellitus (map04940). In addition, other metabolic
pathways, such as alpha-linolenic acid metabolism (map00592)
and arachidonic acid metabolism(map00590), were also
enriched. Regarding PL vs. ML, the top enriched pathways
were cytokine–cytokine receptor interaction (map04060). A
pathway named the Jak-STAT signaling pathway (map04630),
which has been found to participate in the reproductive process
(Ko et al., 2018), was also enriched.
FIGURE 3 | Characterization of microRNA (miRNA) profiling and the percentage of detected miRNAs from ncRNAs. (A) Length distribution of clean reads from
identified miRNA fragments. (B) The chromosome distribution of identified miRNAs from hypothalami. (C) Categories of identified non-coding RNAs (ncRNAs) via
sequencing in PF (a), PL (b), MF (c), and ML (d).
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Analysis of Integrated miRNA–mRNA
Co-Expression Network
To fully understand the potential reproductive roles of miRNAs,
we built interactome networks using DE miRNAs and their
targets (DEGs). In total, 42 DE miRNAs (novel miRNAs) in
PF vs. MF were predicted to target 1,611 genes (Supplementary
Table 15). The number of overlapped genes, which means the
target genes were also DEGs, was 8 (Figure 6A and
Supplementary Table 16). An mRNA–miRNA co-expression
network was then constructed, where 5 DEGs were targeted by 3
novel miRNAs (Figure 6B). Regarding PL vs. ML, 38 known and
41 novel DE miRNAs were predicted to target 1,747 and 1,659
genes (Supplementary Table 15), and the numbers of
overlapped genes were 179 and 9, respectively (Figures 6C, D
and Supplementary Table 16). The main upregulated miRNA–
mRNA co-expression network suggested that 55 DEGs were
targeted by 11 DE miRNAs containing the top 10 upregulated
known miRNAs and one novel miRNA (Figure 6E). The main
Frontiers in Genetics | www.frontiersin.org 7405
downregulated miRNA–mRNA co-expression network
suggested that 33 DEGs were targeted by 11 DE miRNAs
containing the top 10 downregulated known miRNAs and one
novel miRNA (Figure 6F).

Data Validation
>In order to assess the accuracy of sequencing, qPCR was applied
to verify the RNA-seq data. The results indicated that
both mRNAs and miRNAs in sheep hypothalamus displayed
expression patterns similar to the sequencing results (Figure 7),
demonstrating the reliability of the data generated from
RNA-seq.
DISCUSSION

In this study, we initially identified 172 and 235 DEGs, and 42
and 79 DE miRNAs in two comparisons (PF vs. MF and PL vs.
FIGURE 4 | Differentially expressed (DE) microRNA (miRNA) analysis. (A) DE miRNAs in PF vs. MF and PL vs. ML. Heat maps showing the expression intensity of
42 and 79 DE miRNAs in the follicular phase including PF and MF (B) and the luteal phase including PL and ML (C), the names of miRNAs were also labeled.
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ML) through RNA-seq. Of these DE miRNAs, miRNA family
members including the let-7 and oar-miRNA-200 family
exhibited differential expression levels. Furthermore, one study
detecting 48 DE miRNAs from sheep ovary, including the let-7
and oar-miRNA-200 family members, suggested that those
identified miRNAs were differentially expressed in seasonal
and non-seasonal sheep breeds (Zhai et al., 2018). Therefore,
Frontiers in Genetics | www.frontiersin.org 8406
some miRNAs, such as let-7 and oar-miRNA-200 family
members may not be only species-specific but also phase- or
fecundity-specific in sheep. In addition, some miRNAs,
including miRNA-138 and miRNA-212, were detected in rat
hypothalamus (Amar et al., 2012), which differed significantly
from miRNAs identified in sheep hypothalamus (both miRNA-
138 and miRNA-212 in our results failed to be detected). Besides,
FIGURE 5 | Functional enrichment analysis of DEGs. (A) Top enriched GO terms at the biological process, molecular function, and cellular component level in PF vs.
MF and PL vs. ML, in addition, the gray represents no enrichment, same below. (B) Top enriched KEGG pathways in PF vs. MF and PL vs. ML.
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several miRNAs, such as miRNA-200 family members, were
conserved in the hypothalamus of mice (Choi et al., 2008; Crépin
et al., 2014), rat (Sangiaoalvarellos et al., 2014), and zebrafish
(Garaffo et al., 2015), as well as sheep (our results). In summary,
we confirmed that several miRNAs are conserved in many
animals, but there were also miRNAs that showed a species-
specific distribution in the hypothalamus, which means those
differences may be responsible for the differences between sheep
and rats, and even other non-mammals.
Frontiers in Genetics | www.frontiersin.org 9407
Functional Analysis of DEGs in PF vs. MF
In the functional enrichment analysis of DEGs in PF vs. MF,
several key genes, including prolactin (PRL), proopiomelanocortin
(POMC), and gonadotropin releasing hormone 1 (GNRH1), were
found to participate in the reproductive process. Some researchers
have proven that PRL andE2 could respond rapidly to stimulation in
the arcuate nucleus (ARC) of rat hypothalamic slices (Nishihara and
Kimura, 1989). Araujo-Lopes et al. (2014) revealed that PRL could
regulate the activities of GnRH through modulating kisspeptin
FIGURE 6 | Overview of mRNA–miRNA networks. (A) Overlapped genes in PF vs. MF between DEGs and miRNA-targeted genes. (B) Hypothalamus network in PF
vs. MF of four miRNAs containing three upregulated miRNAs and one downregulated miRNA and five target genes, where large and small ellipses represent miRNAs
and DEGs, respectively, in addition, red and green represent up- or downregulation, respectively; same below. (C) Overlapped genes in PL vs. ML between DEGs
and predicted target genes negatively modulated by known miRNAs. (D) Overlapped genes in PL vs. ML between DEGs and novel miRNA-targeted genes. (E) Main
hypothalamic upregulated network in PL vs. ML containing the top 10 upregulated miRNAs and one novel miRNA and 55 target genes. (F) Main hypothalamic
downregulated network in PL vs. ML containing the top 10 downregulated miRNAs and one novel miRNA and 33 target genes.
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neurons in theARCoffemale rats and inhibit LH secretion, causing a
series of alterations in the estrous cycle. Our results indicated that the
expressionofPRL inPFwasmore than three times that ofPRL inMF.
Therefore, coupled with the inhibitory role of PRL on LH, we
speculate that PRL may affect LH or FSH activities by influencing
the pulsatile GnRH wave in the hypothalamus.

POMC neurons, as a key upstream factor affecting hypothalamic
hormone release, were found to be sensitive to metabolic hormones
Frontiers in Genetics | www.frontiersin.org 10408
such as leptin (Wilson and Enriori, 2015) and enhance kisspeptin
neuron activities in rodents, resulting in increased GnRH secretion
(Muroi and Ishii, 2016). Leptin can act in the hypothalamus directly,
eliciting the release of GnRH (Guzmán et al., 2019), and promoting
the expression of POMC (Perello et al., 2007). Although the
stimulatory effects of POMC on kisspeptin have been known for
a long time, how this signaling is established remains poorly
understood (Saedi et al., 2018). Significantly, our results indicated
FIGURE 7 | Data validation of mRNAs (A) and miRNAs (B) by qPCR in PF, PL, MF and ML, meanwhile ** represents p < 0.01, while * represents p < 0.05. FOXG1:
Forkhead box L1, CRH: corticotropin-releasing hormone, TTR: transthyretin, POMC proopiomelanocortin.
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that the expression of POMC in PF was relatively lower than in MF,
while GNRH1, which has been reported to play a key role in
determining sheep litter size (An et al., 2013), displayed a reverse
expression pattern between PF andMF. Therefore, we hypothesized
that a negative regulatory relationship between POMC and GNRH1
may exist in sheep hypothalamus.

Functional Analysis of DEGs in PL vs. ML
In functional enrichment analysis of DEGs in PL vs. ML, some
pathways including the Jak-STAT signaling pathway (PRL, GH,
CRLF2, ENSOARG00000007618, ENSOARG00000016231, and
IL2RB) were highly enriched. The current study argued that the
Jak-STAT signaling pathway in mice was involved in GnRH
activities (Ko et al., 2018). PRL, as mentioned above, plays an
important role in GnRH activities (Araujo-Lopes et al., 2014).
The expression of PRL was detected not only in the follicular
phase but also in the luteal phase, and interestingly, there was a
reverse expression pattern of PRL between PF vs. MF and PL vs.
ML, suggesting its crucial roles in reproduction. The effects of
leptin on GnRH release have been revealed (Guzmán et al.,
2019), and the infusion of leptin into the arcuate nucleus in rats
could cause PRL release (Watanobe, 2010), which suggested that
PRL can be a downstream factor activated by leptin to function in
GnRH activities. In addition, the overexpression of growth
hormone (GH) could disrupt the state of reproduction, mainly
through mediating leptin activities (Chen et al., 2018).
Additionally, estrogen could play an inhibitory role on GH in
vivo (Leung et al., 2003). Collectively, considering the effects of
PRL and GH on leptin, we speculated that GH, leptin, and PRL
may coordinate to inhibit GnRH release.

The Regulatory Network of miRNA–mRNA
After Transcription in PF vs. MF
To better understand the functions of miRNAs, a negative
interactome containing 5 mRNAs and 4 miRNAs in PF vs. MF
was built. Cyclin-dependent kinase 3 (CDK3), targeted by
Novel_237, was reported that the downregulation of activities of
CDK3-related kinase could promote cell apoptosis in the rat (Braun
et al., 1998). Immediate early response 3 (IER3), targeted by
Novel_327, was also involved in enhancing (Zhou et al., 2017) or
mediating (Jin et al., 2015) cell apoptosis. Polycystic kidney and
hepatic disease gene 1 (PKHD1), targeted by Novel_401, has been
discovered to induce cell apoptosis, after being downregulated
through the PI3K and NF-kB pathways (Sun et al., 2011).
Furthermore, our sequencing data indicated that CDK3 and IER3
were downregulated while PKHD1 was upregulated in PF vs. MF.
All in all, we hypothesized that more nerve cell apoptosis occurred
in MF than PF, which may further influence hormone activities
associated with reproduction and may lead to the final observed
litter size differences.

The Regulatory Network of miRNA–mRNA
After Transcription in PL vs. ML
The regulatory network of miRNA–mRNA after transcription in
PL vs. ML was divided into two main negative networks: the
main upregulated and the main downregulated network. In the
main upregulated network, thyrotropin-releasing hormone
Frontiers in Genetics | www.frontiersin.org 11409
(TRH), co-regulated by oar-miR-379-5p, oar-miR-30b, oar-
miR-152, oar-miR-495-3p, oar-miR-143, oar-miR-106b, oar-
miR-218a, and oar-miR-148a, has been reported to function in
GnRH release (see below). Triclosan in mice was found to reduce
the production of TRH and thyroid-stimulating hormone (TSH),
and this decreased effect could further cause hyperprolactinemia.
Hyperprolactinemia was suggested to cause a suppressive effect
on kisspeptin expression, resulting in deficits in reproductive and
endocrine function (Cao et al., 2018b). In addition, TRH can not
only stimulate PRL release but also inhibit LH release, and this
inhibitory effects may occur through prohibiting the release of
GnRH (Araujo-Lopes et al., 2014). Collectively, TRH in the
hypothalamus may be responsible, at least in part, for the
suppression of GnRH activities.

In the main downregulated network of miRNAs, transthyretin
(TTR) was reversely regulated by oar-miR-432. The expression level
of TTR’s in rats could be enhanced by progesterone via
progesterone receptors both in vitro and in vivo (Quintela et al.,
2011), and a similar upregulated effect of TTR caused by
progesterone in mouse uterus was also observed (Diao et al.,
2010). Furthermore, TTR could drive the nuclear translocation of
insulin-like growth factor 1 receptor (IGF-1R) (Vieira et al., 2015),
which could lead to functional changes in insulin-like growth factor
1 (IGF1). Interestingly, the stimulatory effect of IGF1 on GnRH
release has been discovered (Hiney et al., 2009). Therefore, we
speculated that the negative feedback effects of progesterone on
GnRH release may be mediated by TTR, which reduces the binding
probability between IGF1 and its receptor, further resulting in a
suppression of GnRH activities.

All results indicated that several key DEGs and DE miRNAs in
the hypothalamus directly or indirectly participate in hormone
activities associated with reproduction, and further studies
involving gene/miRNA knockout or overexpression could help us
to understand their real functions in female reproductive traits.
CONCLUSION

As far as we know, this study provides the first integral mRNA–
miRNA interactome in sheep without FecB mutation from the
perspective of the hypothalamus. We identified several DEGs (e.g.,
POMC, GNRH1, PRL, TRH, and TTR) and mRNA–miRNA pairs
(e.g., TRH coagulated by oar-miR-379-5p, oar-miR-30b, oar-miR-
152, oar-miR-495-3p, oar-miR-143, oar-miR-106b, oar-miR-218a
and oar-miR-148a and PRL regulated by oar-miR-432) from the
RNA-seq data obtained from sheep hypothalamus, which may
function through influencing the activities of GnRH. Our results
provide novel insights into the prolificacy mechanism of sheep,
whichmay facilitate the discovery of novel major genes and a deeper
understanding of female sheep reproduction.
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The “large p small n” problem has posed a significant challenge in the analysis and
interpretation of genome-wide association studies (GWAS). The use of prior information to
rank genomic regions and perform SNP selection could increase the power of GWAS. In
this study, we propose the use of gene expression data from RNA-Seq of multiple tissues
as prior information to assign weights to SNP, select SNP based on a weight threshold,
and utilize weighted hypothesis testing to conduct a GWAS. RNA-Seq libraries from
hypothalamus, duodenum, ileum, and jejunum tissue of 30 pigs with divergent feed
efficiency phenotypes were sequenced, and a three-way gene x individual x tissue
clustering analysis was performed, using constrained tensor decomposition, to obtain a
total of 10 gene expression modules. Loading values from each gene module were used
to assign weights to 49,691 commercial SNP markers, and SNP were selected using a
weight threshold, resulting in 10 SNP sets ranging in size from 101 to 955 markers.
Weighted GWAS for feed intake in 4,200 pigs was performed separately for each of the 10
SNP sets. A total of 36 unique significant SNP associations were identified across the ten
gene modules (SNP sets). For comparison, a standard unweighted GWAS using all
49,691 SNP was performed, and only 2 SNP were significant. None of the SNP from the
unweighted analysis resided in known QTL related to swine feed efficiency (feed intake,
average daily gain, and feed conversion ratio) compared to 29 (80.6%) in the weighted
analyses, with 9 SNP residing in feed intake QTL. These results suggest that the heritability
of feed intake is driven by many SNP that individually do not attain genome-wide
significance in GWAS. Hence, the proposed procedure for prioritizing SNP based on
gene expression data across multiple tissues provides a promising approach for
improving the power of GWAS.

Keywords: constrained tensor decomposition, gene expression, clustering, feed efficiency, swine, GWAS,
weighted SNP
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INTRODUCTION

The “large p small n” problem has posed a significant challenge
in the analysis and interpretation of genome-wide association
studies (GWAS; Diao and Vidyashankar, 2013). The problem
refers to the scenario in statistical inference where the dimension
of independent variables, p, is larger than the sample size, n.
Typically in GWAS, the number of observations, n, is in the
hundreds or thousands and the number of markers, p, is in the
hundreds of thousands. Statistical procedures such as shrinkage
estimation and variable selection are often employed to ensure
the existence solutions in large-p-small-n regressions in GWAS
(Fernando et al., 2017).

The most commonly used approach to GWAS is single-SNP
analysis, where linear or logistic regression is performed
separately for each SNP followed by multiple-testing
correction. This standard single-step adjustment disregards
prior knowledge of potentially noteworthy regions, and, as a
result, tests of significance for SNP in such regions may be overly
down-weighted due to the other relatively inconsequential SNP.
Hence, using prior information to rank genomic regions and
perform SNP selection could increase the power of GWAS.

Recent advances in statistical methodology have made it
possible to incorporate prior information through weighted
hypothesis testing (Genovese et al., 2006). Roeder et al. (2006)
introduced a method which uses linkage analysis information to
up- or down-weight SNP according to their prior likelihood of
association with a trait of interest, and the resulting weighted P-
values are used in the false discovery rate (FDR) procedure. A
similar approach using expression quantitative trait loci (eQTL)
information to weight SNP was proposed by Li et al. (2013).

Transcriptome sequencing (RNA-Seq) is a widely used
technology for genome-wide transcript quantification, used to
analyze gene expression patterns, and provide insight into the
mechanisms underlying complex traits in livestock species.
Genome-wide gene expression data from thousands of studies
have been accumulating and made available through public
repositories such as the Gene Expression Omnibus (GEO;
Edgar et al., 2002). Recently, GWAS results have been
interpreted by interrogating significant SNP for associations
with gene expression data in livestock (Ballester et al., 2017;
Fang et al., 2017; Kommadath et al., 2017; Cai et al., 2018; Deng
et al., 2019). These studies have integrated GWAS and gene
expression data post-GWAS. In this study, we propose the use of
gene expression data from RNA-Seq of multiple tissues
(hypothalamus, duodenum, ileum, and jejunum) as prior
information to assign weights to SNP, select SNP based on a
weight threshold, and utilize weighted hypothesis testing to
conduct a GWAS for swine feed efficiency.
MATERIAL AND METHODS

The U.S. Meat Animal Research Center (USMARC) Animal
Care and Use committee reviewed and approved the use of
animals in this study.
Frontiers in Genetics | www.frontiersin.org 2414
Population
Feed intake and body weight gain were measured on cohorts of
growing pigs reared at USMARC. All pigs were sired by either
Landrace or Yorkshire boars sourced from 5 different genetic
suppliers and produced out of Landrace-Yorkshire cross sows.
Two different genetic suppliers are represented in each group of
pigs. Pigs entered the barn at approximately 95 days of age at the
beginning of the feeding trial and had ad libitum access to a
standard corn/soybean meal-based diet that met or exceeded
NRC requirements (NRC, 2012). Pigs in each cohort (196 per
cohort) were assigned to one of 14 same-sex pens (14 pigs per
pen) containing a single Feed Intake Recording System (FIRE)
feeder (Osborne Industries, Inc., Osborne KS). After a 1-week
adjustment period, daily feed intakes for each pig were recorded
via the FIRE feeders and pigs were weighed at the beginning (d0)
and end (d 42) of the feeding trial. Twenty-two cohorts of pigs
had individual feeding events recorded.

Different numbers of animals from the population were used
in different stages of the study. Feed intake data was collected on
a total of 4,200 animals across the 22 cohorts. Four of these 22
cohorts (n = 784 animals) were used to select 30 animals with
extreme feed efficiency phenotypes for RNA-Seq. Lastly, GWAS
was performed using data from the 2,813 animals that were both
genotyped and phenotyped. Detailed descriptions of each stage
of the study are provided in subsequent sections.

Sampling for RNA-Seq
Feed efficiency phenotypes were determined for each pig in four
cohorts (n = 784 animals) by dividing average daily body weight
gain (ADG) by average daily feed intake (ADFI) to determine the
gain to feed ratio (Gain : Feed). From each cohort of pigs, a
selection criterion was applied to select animals for further study
that included ADGwithin ± 0.30 SD of the mean and the greatest
and least ADFI (n = 7 or 8 per cohort). The descriptive statistics
are presented in Table 1.

Tissue Collection, RNA Isolation,
and Sequencing
Tissue collection and RNA extraction were performed using the
same procedures in each contemporary group. Sample collection
time frame was consistent across cohorts. Pigs identified as high
and low feed efficiency were euthanized with barbiturates in
accordance with the American Veterinary Medical Association
guidelines (AVMA, 2013). The head was removed, and the
hypothalamus was collected and stored at -80°C as previously
described (Thorson et al., 2017). One 3-cm segment of mid-
jejunum and one 3-cm segment of mid-ileum were collected
from pigs as previously described (Oliver et al., 2002). In
addition, a 3-cm segment of duodenum was collected
approximately 5-cm caudal of the cranial duodenal flexure.

Total RNA was isolated from the tissue samples using the
RNeasy Mini Plus kit and QiaShredder columns (Qiagen,
Valenci, CA, USA). Briefly, 800 ul of RLT buffer with b-
mercaptoethanol were added to 50–100 mg of tissue samples
and homogenized for 40 sec using an Omni Prep 6-station
homogenizer (Omni International, Kennesaw, GA, USA). The
January 2020 | Volume 10 | Article 1339

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Keel et al. Gene Module Weighted Genetic Association
homogenate was centrifuged in a QiaShredder column on full
speed for 3 min. Genomic DNA was removed from the total
RNA with the Qiagen RNeasy Plus mini-kit, according to the
manufacturer's protocol, and the total RNA was eluted in 50 ul of
RNase free water. Total RNA was quantified with a NanoDrop
One spectrophotometer (Thermo Scientific, Wilmington, DE).
The average 260/280 ratio was 2.05, with a range of 1.94–2.09. An
Agilent Bioanalyzer RNA 6000 nano kit (Santa Clara, CA, USA)
was used to determine the RNA integrity number (RIN). Only
samples with a RIN of 8.0 and higher were used for the RNA
sequencing. The average RIN was 9.1, with a range of 8.1–9.9.

Samples were prepared for RNA sequencing with the Illumina
TruSeq Stranded mRNA High Throughput Sample kit and
protocol (Illumina Inc., San Diego, CA, USA). The libraries
were quantified with qRT-PCR using the NEBNext Library
Quant Kit (New England Biolabs, Inc., Beverly, MA, USA) on
a CFX384 thermal cycler (Bio-Rad, Hercules, CA, USA), and the
quality of the library was determined with an Agilent Bioanalyzer
DNA 1000 kit (Santa Clara, CA, USA). The libraries were diluted
with Tris-HCL 10 mM, pH 8.5 with 0.1% Tween 20 to 4nM
samples (Teknova, Hollister, CA. USA). All libraries were paired-
end sequenced with 150 cycle high output sequencing kits for the
Illumina NextSeq instrument. Bases of the paired-end reads for
all sequenced libraries were identified with the Illumina
BaseCaller, and FASTQ files were produced for downstream
analysis of the sequence data. Sequence data is available for
download from the National Center for Biotechnology
Information (NCBI) Sequence Read Archive (SRA) BioProjects
PRJNA528599 (hypothalamus), PRJNA528884 (duodenum),
PRJNA529214 (ileum), and PRJNA529662 (jejunum).

Sequence Data Processing
Read alignment of the RNA-Seq reads was carried out as follows.
First, quality of the raw paired-end sequence reads in individual
FASTQ files was assessed using FastQC (Version 0.11.5; www.
bioinformatics.babraham.ac.uk/projects/fastqc), and reads were
trimmed to remove adapter sequences and low-quality bases
using the Trimmomatic software (Version 0.35; Bolger et al.,
2014). The remaining reads were mapped to the Sscrofa 11.1
genome assembly using Hisat2 (Version 2.1.1; Kim et al., 2015)
with its default parameters. The StringTie software (Pertea et al.,
2015) was then used to calculate raw read counts for each of the
29,651 annotated genes in the NCBI Sscrofa 11.1 reference
annotation (Release 106).

Filtering of lowly expressed genes and normalization of read
counts was performed using a protocol that considers the multi-
tissue structure of the data. First, raw read counts were normalized
using the median of ratios normalization scheme from the DESeq2
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software package (Love et al., 2014), where read counts are divided
by sample-specific size factors determined by median ratio of gene
counts relative to the geometric mean per gene. A normalized gene
expression matrix was constructed for each tissue, and the
arithmetic mean of expression values across samples within each
tissue was computed. Genes with mean normalized expression <
100 in all 6 tissues were removed from further analysis.

Three-Way Clustering Via Constrained
Tensor Decomposition to Detect Gene
Expression Modules
Three-way clustering of multi-tissue, multi-individual gene
expression data was performed using an adaption of the
method described by Wang et al. (2017). Gene expression
measurements for the four tissues were organized into a 3-way
array, or order-3 tensor, with gene, individual, and tissue modes.
That is, the input to the algorithm was an order-3 tensor given
by, W = ⟦wijk ⟧∈RnG�nI�nT , where wijk, denotes the normalized
gene expression value for gene i in individual j in tissue k, nG the
number of genes, nI the number of individuals, and nT the
number of tissues. The tensor W was then decomposed into a
sum R of rank-1 components,

W =oR
r=1lrGr ⊗ Ir ⊗Tr + e, (1)

where l1 ≥ l1 ≥ … ≥ lR ≥0 are singular values in decreasing
order, and Gr, Ir, and Tr are norm-1 singular vectors that indicate
the relative contribution of each gene, individual, and tissue to
the r-th component, respectively, and e = [Eik] is a noise tensor
with each entry Eik i.i.d. N(0,s2).

Complete details of the algorithm used for tensor
decomposition can be found in Wang et al. (2017). Briefly, the
successive rank-1 approximation to Ω is determined by
iteratively solving the following minimization problem:

minimize
lr ,  Gr ,Ir ,Tr

‖W −  lrGr ⊗ Ir ⊗Tr ‖F , (2)

subject to Gr ‖2 =   ‖ Ir ‖2 =   ‖Tr ‖2 = 1,

where ‖·‖F is defined entry-wise as WF =  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
onG

i=1onI
i=1onT

i=1w
2
ijk

q
.

At each iteration, we imposed one of two conditions, either
Tr ≥ 0 or Tr ≤ 0, by thresholding values in to 0. The appropriate
sign of was selected to maximize Tr. This constraint on eases the
interpretation of the interaction at the tissue level. Non-zero
tissue loading values indicate that the module is “active” in the
TABLE 1 | Descriptive data of efficient and inefficient pigs (n = 30).1,2

ADFI3, kg/d Initial Weight, kg Ending Weight, kg ADG4, kg/d Gain : Feed

Efficient (Low Intake) 2.08 ± 0.11 47.7 ± 2.8 88.8 ± 2.8 0.991 ± 0.04 0.458 ± 0.025
Inefficient (High Intake) 2.80 ± 0.11 51.1 ± 3.0 93.6 ± 3.2 1.025 ± 0.05 0.367 ± 0.16
J
anuary 2020 | Volume 10
1Animals selected included those with ADG within ± 0.30 SD of the mean and the greatest (inefficient) and least (efficient) ADFI.
2Data means ± SEM.
3Average daily feed intake.
4Average daily gain.
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tissue. Without constraining values in to a single sign, it is
possible (in fact likely) that contains two expression modules,
one for the tissues with positive loading values and one for the
tissues with negative loading values. Consequently, gene and
individual loadings become less informative since they cannot be
explicitly assigned to either the positive or negative loading
module. Note that the constraint on used in this work is
slightly different that of Wang et al. (2017), where they
imposed strict non-negativity on Tr.

Genes with large values in Gr exhibit strong relationships with
individuals and tissues in the r-th component, while these
relationships are stronger in the individuals with larger Ir-
values and tissues with larger (in absolute value) Tr-values. The
loading vectors Gr, Ir, and Tr will be referred to as eigen-genes,
eigen-individuals, and eigen-tissues, respectively, throughout the
remainder of the manuscript.

Gene Ontology Enrichment Analysis
Enrichment analysis of gene ontology GO terms was performed
using the PANTHER classification system (Version 14.1; Mi
et al., 2016). PANTHER's implementation of the binomial test of
overrepresentation with the default Ensembl Sus scrofa GO
annotation as background was utilized. Data from PANTHER
was considered statistically significant at FDR-corrected P ≤ 0.05.

Characterization of Gene Expression
Modules
GO enrichment analysis was performed on the top genes within
each expression module, where the top genes in module r were
defined as genes having a loading value in Gr greater than a
specified cutoff value, c, which controls the significance level. A
permutation-based approach was used to determine c with an
arbitrarily selected significance level of a = 0.005. One hundred
null tensors were generated by randomly and independently
permuting gene expression values for every individual-tissue
pair. That is,

Wnull G,  individual j,  tissue kð Þ≝W PG,  individual j,  tissue kð Þ,

where G denotes the original set of gene expression values and
PG denotes the permutated gene expression values. Each null
tensor was decomposed, and their eigen-genes were used to
represent the null distribution of gene expression values within
each module. The cutoff value for module r, cr, was the 99.5-
percentile of the empirical distribution of Gnull

r .

Proportion of Variance in Individual
Loadings
Sources of variation in individual loadings were analyzed by
fitting the following linear model:

Ij = b1 + b2ADFIj + b3CGj + b4Genderj + ej, (3)

where ADFI denotes average daily feed intake, CG denotes
contemporary group, I = (I1,…, InI )

T , and ej~N(0, s2) for all
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j = 1, 2,…, nI. After the model was fit, the proportion of variance
explained by each covariate (ADFI, contemporary group, and
gender) was calculated using ANOVA.

Tensor Projection for Identifying ADFI-
Associated Genes
Using the notation from above, let W ∈  RnG�nI�nT denote the
expression tensor and fTr ∈ RnTg be the set of eigen-tissues
from the tensor decomposition. Let W(·, ·, Tr) be the tensor
projection of W through the eigen-tissue Tr = (Tr,1, : : :,Tr,nT )

T ,
i.e.,

W ·, ·,Trð Þ =onT
k=1Tr,k W ·, ·, kð Þ : (4)

Then, the following linear model was used for each gene
tested,

W test gene,   ·,Trð Þ
=   b11 +   b2ADFI +   b3CG + b4Gender + e,     (5)

where ej ~ N(0, s2I). The ADFI-effect was assessed by testing
H0 : b2 = 0 against Ha : b2 ≠ 0.

Phenotypic Data Collection for Genetic
Association Analysis
Twenty-two cohorts of 196 pigs had individual feeding events
recorded in a building fitted with Osbourne FIRE Feeders. The
animals and facilities were previously described in Section 2.1.
Records were removed for animals with incomplete data due to
one of the following reasons: animal removed from the study due
to health, failure of the electronic ID eartag, or failure of the FIRE
Feeder for a majority of the test. As a result, 4,200 animals
remained in the study. Aberrant feeding events were removed if
they did not conform to a logical length of meal time (1 sec < meal
time < 3,600 sec), amount of feed consumed (20 g < feed consumed
< 3 kg), and consumption rate (rate < 2 kg/min). Once aberrant
feeding events were removed, feeding parameters were computed
for each pen and day of test to determine if a feeder was not
operating properly. Statistics used to remove a pen x day included
number of aberrant feeding events recorded, amount of feed
distributed, and total number of events for each day. After all
suspicious records were removed, the amount of feed consumed by
each pig for each day of test was calculated, resulting in a total of
164,660 records of the 184,800 possible daily intake records.

Data were analyzed with WOMBAT (Version 17-07-2017;
Meyer, 2007) fitting a random regression mixed model. Fixed
effects fitted were gender (barrow or gilt) and a combined group-
pen effect. Day on test was fit as the independent variable using a
cubic Legendre polynomial, and animal was fitted as a random
effect. A cubic Legendre polynomial was selected as it
dramatically improved the log likelihood of the model over a
quadratic Legendre regression and only marginal improvements
were seen when evaluating higher order polynomials. Random
regression coefficients were projected to individual daily intake
for each of the days on test, to fill the missing intake records and
January 2020 | Volume 10 | Article 1339
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adjust for fixed effects. Daily projections were summed to obtain
adjusted test intake for each individual.

Genotypic Data Collection for Genetic
Association Analysis
Tail samples were collected on all pigs and stored at −20°C.
Genomic DNA was extracted using the WIZARD genomic DNA
purification kit according to the manufacturer's protocol
(Promega Corp., Madison, WI, USA). Genotyping was
conducted using three platforms: the NeoGen Porcine GGPHD
chip (GeneSeek, Lincoln, USA), Illumina Porcine SNP60 v2 chip
(Illumina, Inc., San Diego, USA), and NeoGen GGP-Porcine
chip (GeneSeek, Lincoln, USA).

Genetic Association Analysis
Ancestors of the pigs having intake records were identified from
USMARC pedigree records to create a 7,009 animal pedigree.
Phenotyped pigs and their ancestors genotyped with a SNP assay,
Illumina Porcine SNP60 v1 or v2 (Illumina, Inc., San Diego,
USA), Illlumina Porcine SNP50 (Illumina, Inc., San Diego,
USA), NeoGen GGP-Porcine chip (GeneSeek, Lincoln, USA),
and NeoGen Porcine GGPHD chip (GeneSeek, Lincoln, USA)
were identified. The SNP were ordered according to the
Sscrofa11.1 genome assembly and available pedigree was used
to impute genotypes to 49,695 SNP from at least one assay for the
4,632 genotyped animals (2,813 phenotyped, 1,819 ancestors)
using findhap (VanRaden et al., 2013).

Following VanRaden (2008), weighted genomic relationship
matrices (G), were constructed as

G =
M* 0

M*

2Sm
i=1pi 1 − pið Þ , (6)

where m is the number of SNP, pi the frequency of the B allele for
the ith SNP, and M* a centered genotype matrix (M) weighted by
a diagonal matrix of weighting factors (D)

M� = MD : (7)

Genomic relationship matrices were constructed for equally
weighted SNP (D = m x m identity matrix) as well as for gene-
centric weightings. Weights for SNP within gene boundaries
were calculated as −log10(P), where P denotes the P-value
obtained from testing the ADFI-effect in Equation (5) in the
gene module of interest. If a SNP did not reside in a gene, it was
assigned a weight of zero.

For a given weight threshold, t, three G for each of the 10 sets
of gene weightings were evaluated: (1) a weighted analysis with
all SNP where all SNP had non-zero weightings (min = 0.00001),
(2) an unweighted analysis using only SNP with weight > t, and
(3) a weighted analysis using only SNP with weight > t. Arbitrary
thresholds of t = 2 and t = 5 were evaluated.

The average information restricted maximum likelihood
(AIREML) algorithm implemented in WOMBAT was used to
estimate heritability (h2) of test intake attributable to pedigree
relationships and each weighted genomic relationship matrix.
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Phenotypic variance should remain constant; all estimates of
phenotypic variance from these data using different unweighted
G were similar. Weighted G resulted in additive variance
estimates much greater than phenotypic variance from
unweighted G, and residual variances were similar to estimates
using unweighted G. Assuming the residual variance estimate is
appropriate for variation not explained by weighted G and
phenotypic variance equal to that estimated with unweighted
G, the amount of variation explained by weighted G should be
the difference between phenotypic variance from unweighted G
and residual variance from weighted G, and corrected heritability
that difference divided by phenotypic variance. That is,

h2w =  
Var Puð Þ − Var Ewð Þ

Var Puð Þ

where Pu denotes the phenotypic variance from unweighted G,
and Ew denotes the residual variance from weighted G.

After convergence, effects of individual SNP were estimated
for each genomic relationship matrix. Following Wang et al.
(2012),

â = M* 0
M*M* 0h i−1 bug , (8)

where â is a vector of SNP effect estimates and ûg the vector of
animal effects predicted for each genotyped animal. Z-scores were
computed standardizing â to a mean of zero and variance of one:

Zi =  
ai −   �a
SD âð Þ

where a and SD(â) denote the mean and standard deviation of
â, respectively.
RESULTS

Sequencing, Read Mapping, and Gene
Expression
RNA-Seq libraries from hypothalamus, duodenum, ileum, and
jejunum tissue of 30 pigs with divergent feed efficiency
phenotypes were sequenced, generating over 7.4 billion 75-bp
paired-end reads, with an average of 61.8 million reads per
library (Table 2). After adapter removal and read trimming,
the resulting high-quality reads were mapped to the Sscrofa 11.1
genome assembly (NCBI accession AEMK00000000.2) with an
average 98.6% read mapping rate per library. Sequencing
statistics for individual libraries are given in Table S1.

Normalized gene expression values were computed for the
29,651 annotated genes in the porcine genome, and lowly
expressed genes across the six tissues were removed, resulting
in a set of 19,365 genes to be used in downstream analyses.
Table 3 shows the number of genes expressed in each of the
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tissues, where a gene is considered expressed if normalized
expression ≥ 100 in at least fifteen (half) of the libraries in the
tissue. An average of 13,351 genes were expressed per tissue.

Expression Modules Across Individuals
and Tissues
A three-way gene x individual x tissue clustering analysis was
performed, using constrained tensor decomposition, to obtain a
total of 10 gene expression modules.

Module I – Shared, Global Expression
In the first gene expression module, the eigen-tissue and eigen-
individual loading distributions are essentially flat (Figure 1I).
Hence this module captures baseline, global gene expression
common to all samples in all tissues. Enrichment analysis
showed that many GO terms related to basic eukaryotic cell
activities were enriched in the set of 1,307 top genes, including
ion binding, protein binding, nucleotide binding, and transport
(Table S2).

Module II – Hypothalamus
The second gene expression module clearly separated the
hypothalamus from the intestinal tissues (Figure 1II). In the
eigen-individual, more of the proportional variance in loading
values was explained by ADFI than contemporary group or
gender (6.8% compared to 1.15% and 0.96%, respectively; Table
4). The top 130 genes were enriched for functions related to
nucleotide binding, protein binding, ion binding, hydrolase
activity, and glutamate transporter activity.

Module III – Proximal Small Intestine
The third component captures expression specific to tissues in the
proximal small intestine, the duodenum and jejunum. The eigen-
tissue is primarily driven by the duodenum (Figure 1III). A
moderate amount of variation among individuals was explained
by both gender (8.13%) and ADFI (5.58%), while the variance
explained by contemporary group was negligible (~ 0%). A total of
88 genes passed the thresholding to be considered a top gene in
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the module. These genes were primarily enriched for binding GO
terms, including G protein-coupled receptor binding, sulfur
compound binding, carbohydrate derivative binding, bile acid
binding, cytoskeletal protein binding, ubiquitin protein ligase
binding, nucleotide binding, and metal ion binding. Nearly 83%
(73/88) of the top genes were also identified as top genes in the
hypothalamus expression module (Module II).

Module IV – Distal Small Intestine (positive loadings)
The fourth gene expression module was comprised of the distal
small intestinal tissues, the jejunum and ileum, with the ileum
being the main driver (larger loading value; Figure 1IV).
Although contemporary group explained the largest amount of
proportional variance (10.53%), a moderate amount of variation,
6.05%, was explained by ADFI. Top genes in the module
were enriched for functions related to peptide transport,
lipid transport, chemokine receptor binding, hydrolase activity,
bile acid binding, peptidase inhibition, and ion binding. Only one
of the top genes, COX1, overlapped with the top genes from
Module II, while 15 genes from Module III's top set
were overlapped.

Module V – Jejunum
Expression in the jejunum tissue was captured in the fifth
component (Figure 1V). Contemporary group was the only
covariate to account for more than 1% of the variation among
individuals. GO analysis of the 121 top genes identified that
translation regulation, RNA binding, fatty acid binding, and
rRNA binding were significantly enriched.

Module VI – Jejunum and Hypothalamus (negative
loadings)
The sixth module included the hypothalamus and the jejunum in
the eigen-gene, with the jejunum tissue having a much stronger
effect (Figure 1VI). Again, contemporary group was the main
covariate explaining individual loading value variation, as it
explained approximately 6% of the variation and ADFI and
gender each explained less than 1%. No GO terms were
significantly enriched in the set of top genes.

Module VII – Small Intestine
Expression in all three parts of the small intestine, the
duodenum, jejunum, and ileum, was captured in the seventh
module. The duodenum was the most significant driver, while
the jejunum and ileum had very similar loading values (Figure
1VII). Once again, variation in loading values in the eigen-
individual was predominantly explained by contemporary group.
TABLE 2 | Summary of sequencing statistics by tissue.

Tissue Total number reads Mean number reads per library Mean read mapping % per library

Hypothalamus 2,014,157,388 67,138,579.6 96.91%
Duodenum 1,653,423,084 55,114,102.8 98.25%
Jejunum 1,809,768,258 60,325,608.6 99.59%
Ileum 1,942,804,030 64,760,134.3 99.47%

All 7,420,152,760 61,834,606.3 98.55%
Janu
TABLE 3 | Summary of expressed genes by tissue.

Tissue Total number of genes expressed1

Hypothalamus 14,205
Duodenum 12,824
Jejunum 12,734
Ileum 13,640
1Genes defined as expressed if normalized expression ≥ 100 in at least 15 libraries.
ary 2020 | Volume 10 | Article 1339

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Keel et al. Gene Module Weighted Genetic Association
FIGURE 1 | Tissue loading values for Modules I–X from the tensor decomposition.
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The GO term CMP-N-acetylneuraminate monooxygenase
activity was significantly enriched in the top genes.

Module VIII – ileum
Ileum gene expression was highlighted in the eighth component
(Figure 1VIII). Variation between individual loading values was
not well-explained by any of the covariates in the model, ADFI
(1.97%), contemporary group (1.47%), and gender (2.11%). No
GO terms were significantly enriched in the set of top genes.
Additionally, no top genes were overlapped with those from
Module IV, which was also driven by gene expression in
the ileum.

Module IX – distal small intestine (negative loadings)
The fourth gene expression module was comprised of the distal
small intestinal tissues, the jejunum and ileum (Figure 1IX). It
should be noted that this module corresponds to negative
loading values for the tissues, while the results in Module IV
corresponded to positive loading values. Similar to Module IV,
ileum was the main driver of expression in the module, and
contemporary group explained the largest amount of variation
between individual loadings. However, none of the top genes
were found to be top genes in Module IV, and no GO terms were
significantly enriched.

Module X – jejunum and hypothalamus (positive
loadings)
The sixth module included the hypothalamus and the jejunum in
the eigen-gene, with the jejunum tissue having a much stronger
Frontiers in Genetics | www.frontiersin.org 8420
effect (Figure 1X). This module corresponds to positive loading
values in the eigen-tissue, while Module VI gave the results
for negative loading values. A larger amount of variation
among individuals was explained by covariates in the model
than that from Module IV, contemporary group explained
21.22% and ADFI explained 5.05%. The GO term CMP-N-
acetylneuraminate monooxygenase activity was significantly
enriched in the top genes. There was no overlap between the
set of top genes and the top genes from Module IV.

Genetic Association Analysis
For each of the gene modules, three genetic association analyses
were conducted: (1) a weighted analysis with all SNP, (2) an
unweighted analysis using only SNP with weight > 5, and (3) a
weighted analysis using only SNP with weight > 5. Removal of
low weight SNP resulted in SNP sets ranging in size from 101 to
944 markers (Table 5). Results from these analyses are shown in
Tables 5 and 6. Utilization of all 49,691 SNP with pedigree and
genomic relationships resulted in heritabilities of 0.366 and
0.269, respectively. In general, applying SNP weights derived
from each of the gene models resulted in heritabilities that
remained close to those derived from the unweighted pedigree
and genomic models (Table 7).

The removal of SNP with weight < 5 and leaving SNP
unweighted in the model decreased performance in all 10
modules (Table 5), i.e., heritabilities were below those of the
pedigree and unweighted models. Removal of SNP with weight
< 5 and utilizing the SNP weights in the model increased
performance from the unweighted case in all ten modules, but
TABLE 4 | Proportional variance in individual loading values explained by average daily feed intake (ADFI), contemporary group, and gender in each of the modules
obtained from the tensor decomposition.

Module ADFI Cont. Group Gender

I 2.02% 3.46% 3.28%
II 6.80% 1.15% 0.96%
III 5.58% 0.00% 8.13%
IV 6.05% 10.53% 0.01%
V 0.00% 10.98% 0.67%
VI 0.36% 6.08% 0.14%
VII 0.00% 18.01% 0.42%
VIII 1.97% 1.47% 2.11%
IX 2.98% 10.09% 0.00%
X 5.05% 21.22% 0.26%
January 2020 | Volume 10 | Arti
TABLE 5 | Heritability estimates for feed efficiency from unweighted genome-wide association studies (GWAS) utilizing SNP with weight > 5.

Data Set Heritability (h2) Standard Error (SE) # SNP h2/# SNP

Module I 0.069 0.016 183 3.77E-04
Module II 0.062 0.015 204 3.03E-04
Module III 0.061 0.016 145 4.21E-04
Module IV 0.088 0.018 944 9.32E-05
Module V 0.088 0.018 536 1.64E-04
Module VI 0.040 0.012 192 2.08E-04
Module VII 0.045 0.013 101 4.46E-04
Module VIII 0.081 0.017 528 1.53E-04
Module IX 0.081 0.017 624 1.30E-04
Module X 0.015 0.014 296 5.07E-05
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overall heritability was still lower than that obtained from using
all SNP (Table 6).

Output from the association analyses for feed intake is shown
in Table S3. A total of 36 unique significant SNP associations
were identified across the ten gene modules, while 2 only SNP
were significant in the standard analysis using all 49,691 SNP
with no SNP weights. Neither of the 2 SNP identified in the
unweighted analysis were identified in the weighted analyses.
The number of significant SNP identified in each module's
analysis ranged from 0 to 22, with Modules I, II, VI, VII, and
X having only no significant SNP and Module III having 22
significant SNP. For the weighted analyses, significant SNP were
identified on chromosomes SSC 2, 4, 5, 7, 8, 9, 13, 14, 15, 18, and
X, with SSC 9 and SSC 8 having the largest numbers of significant
SNP, 12 and 6, respectively.
DISCUSSION

The most widely used approach to GWAS has been to assign
equal prior probability of association to all sequence variants
tested. Recent findings suggest that incorporating prior
information can increase the power for identifying
associations. Such prior information can be obtained from
Frontiers in Genetics | www.frontiersin.org 9421
several different sources, including but not limited to linkage
analysis (Roeder et al., 2006), gene expression (Li et al., 2013;
Gamazon et al., 2015; Gusev et al., 2016; Xu et al., 2017), and
functional annotation of variants (Sveinbjornsson et al., 2016). In
this work, we present a methodology that exploits multi-tissue
transcriptional data from a small set of individuals with extreme
phenotypes to assign SNP weights for a GWAS on an expanded
set of phenotyped individuals. It has been shown that any set of
nonnegative weights can guarantee substantial power gain if the
weights are informative and little power loss if the weights are
uninformative (Genovese et al., 2006). Hence, the weighting
procedure is robust to the informativeness of the weights.

We applied our method to identify genetic markers associated
with feed intake in swine. The gut-brain axis is comprised of
bidirectional communication between the central and enteric
nervous systems, linking cognitive centers of the brain with
peripheral intestinal functions. The gut-brain axis modulates
short-term satiety and hunger responses to regulate the delivery
of nutrients and transit of nutrients through the gastrointestinal
tract (Hussain and Bloom, 2012). RNA-Seq was performed on
tissues involved in the gut-brain axis, including hypothalamus,
duodenum, ileum, and jejunum, originating from pigs with
extreme feed intake phenotypes. A tensor decomposition
method, which performs three-way clustering across genes,
TABLE 6 | Heritability estimates for feed efficiency from weighted genome-wide association studies (GWAS) utilizing SNP with weight > 5.

Data Set1 Heritability (h2)2 Standard Error (SE) # SNP h2/# SNP

Module I 0.106 0.049 183 5.81E-04
Module II 0.099 0.050 204 4.86E-04
Module III 0.094 0.053 145 6.52E-04
Module IV 0.137 0.0374 944 1.45E-04
Module V 0.156 0.026 536 2.91E-04
Module VI 0.073 0.072 192 3.82E-04
Module VII 0.081 0.066 101 7.98E-04
Module VIII 0.131 0.036 528 2.49E-04
Module IX 0.128 0.040 624 2.04E-04
Module X 0.089 0.061 296 3.00E-04
January 2020 | Volume 10 | A
1SNP weights derived from indicated gene module.
2Heritability estimates were corrected using the difference between the phenotypic variance estimated with the unweighted G and residual variance estimated with each weighted G.
TABLE 7 | Heritability estimates for feed efficiency from weighted genome-wide association studies (GWAS) utilizing all SNP.

Data Set1 Heritability (h2)2 Standard Error (SE) # SNP h2/# SNP

Pedigree (Unweighted) 0.366 0.045 49,691 7.37E-06
Genomic (Unweighted) 0.269 0.031 49,691 5.42E-06
Module I 0.270 0.035 49,691 5.44E-06
Module II 0.271 0.037 49,691 5.46E-06
Module III 0.269 0.028 49,691 5.41E-06
Module IV 0.273 0.040 49,691 5.49E-06
Module V 0.272 0.038 49,691 5.46E-06
Module VI 0.270 0.034 49,691 5.43E-06
Module VII 0.269 0.026 49,691 5.40E-06
Module VIII 0.272 0.039 49,691 5.49E-06
Module IX 0.273 0.039 49,691 5.49E-06
Module X 0.270 0.035 49,691 5.44E-06
1SNP weights derived from indicated gene module.
2Heritability estimates were corrected using the difference between the phenotypic variance estimated with the unweighted G and residual variance estimated with each weighted G.
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tissues, and individuals, was used to identify gene expression
modules that were either common to all tissues and individuals
or exclusive to particular tissue/individual combinations.

The top ten gene modules from the tensor decomposition were
considered. Note that since the clustering algorithm generates
expression modules via successive rank-1 approximations, if
more expression modules were desired the algorithm could
simply be applied to the residual tensor. Module I captured
baseline, global gene expression common to all samples in all
tissues, indicated by the flat distributions of the eigen-tissue and
eigen-individual loading values. Other gene modules captured
expression specific portions of the gut-brain axis, including the
hypothalamus, the proximal and distal small intestine, the entire
small intestine, and the individual components of the
small intestine.

A tensor projection model was used to identify ADFI-
associated genes within each of the ten modules. The P-values
obtained from testing the ADFI-effect were used to weight SNP
in order to conduct a weighted GWAS. P-values were chosen
over regression coefficients for weighting in order to rank SNP
according to the significance of their respective genomic regions
rather than simply an effect size. Results from both the weighted
and unweighted analyses are shown in Tables 7–9. Preliminary
analyses using weighted SNP revealed what appeared to be
inflated estimates of heritability. There was substantially less
change in residual variance estimates, indicating that inflated
heritability was not a result of explaining substantially more
Frontiers in Genetics | www.frontiersin.org 10422
phenotypic variation with the weighted G, but an artifact of
weighted G resulting in inflated additive and phenotypic
variance estimates. Phenotypic variance should remain
constant, so heritability estimates were corrected using the
difference between the phenotypic variance estimated with the
unweighted G and residual variance estimated with each
weighted G.

There was a common pattern to the change in heritability
estimates as the SNP prioritization changed. When using all 50K
unweighted SNP, the heritability increased from 0.269 using
genomic relationships to 0.366 using pedigree. In all ten
modules, the use of weighted SNP restricted to those with
weight > 2 resulted in a heritability slightly lower, but
comparable to that from the usual unweighted, genomic
model. Randomization of SNP weights (Table S4) resulted in
nearly the same overall and average per SNP heritabilities,
suggesting that the weighting threshold may be suboptimal.

To investigate if a more stringent SNP weight threshold could
increase model performance, SNP with weight < 5 were removed
from the analysis. This resulted in an average 21-fold drop in the
number of SNP included in each analysis (Table 5). Although
overall heritability estimates were lower than those obtained
using SNP with weight > 2, the heritability per SNP increased.
Additionally, in most modules, both overall and per SNP
heritabilities were higher than those obtained when the SNP
weights were randomized. The numbers of SNP (101 < p < 944)
in these analyses were smaller than the number of animals (n =
TABLE 8 | Heritability estimates for feed efficiency from unweighted genome-wide association studies (GWAS) utilizing SNP with weight > 2.

Data Set Heritability (h2) Standard Error (SE) # SNP h2/# SNP

Module I 0.209 0.028 5,915 3.53E-05
Module II 0.182 0.026 5,259 3.35E-05
Module III 0.139 0.022 1,992 6.98E-05
Module IV 0.221 0.027 7,290 3.03E-05
Module V 0.184 0.025 4,442 4.14E-05
Module VI 0.175 0.025 4,311 4.06E-05
Module VII 0.148 0.022 1,951 7.59E-05
Module VIII 0.229 0.028 9,283 2.47E-05
Module IX 0.225 0.028 7,932 2.84E-05
Module X 0.183 0.025 4,250 4.31E-05
January 2020 | Volume 10 | A
TABLE 9 | Heritability estimates for feed efficiency from weighted genome-wide association studies (GWAS) utilizing SNP with weight > 2.

Data Set1 Heritability (h2)2 Standard Error (SE) # SNP h2/# SNP

Module I 0.217 0.036 5,915 3.66E-05
Module II 0.205 0.035 5,259 3.90E-05
Module III 0.166 0.043 1,992 8.31E-05
Module IV 0.255 0.026 7,290 3.50E-05
Module V 0.222 0.028 4,442 5.00E-05
Module VI 0.200 0.037 4,311 4.65E-05
Module VII 0.174 0.041 1,951 8.93E-05
Module VIII 0.250 0.030 9,283 2.69E-05
Module IX 0.238 0.031 7,932 3.00E-05
Module X 0.208 0.034 4,250 4.90E-05
1SNP weights derived from indicated gene module.
2Heritability estimates were corrected using the difference between the phenotypic variance estimated with the unweighted G and residual variance estimated with each weighted G.
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4,200), eliminating the ‘p greater than n' problem. Hence,
applying a more stringent threshold results in a more
informative set of SNP. Note the weight threshold values of 2
and 5 were chosen arbitrarily. Additional investigation will be
needed to determine the optimal weight threshold for SNP
inclusion, but this was outside the scope of this study.

Across the ten gene modules (weight > 5), 36 unique SNP
were identified as having significant effects, while only 2 SNP
were significant in the unweighted analysis utilizing all 50K SNP.
Neither SNP from the unweighted analysis resided in known
QTL related to swine feed efficiency (feed intake, average daily
gain, and feed conversion ratio) compared to 29 (80.6%) in the
weighted analyses, with 9 SNP being located in feed intake QTL
(Table S4). Additionally, many of the genes harboring significant
SNP have been identified in previous studies as candidate genes
related to feed efficiency in several species (Table S5). In
particular, the genes ROBO2 (2 SNP), PLA2G4A (4 SNP), and
MEGF10 (1 SNP) were previously identified as candidate genes
for residual feed intake and feed conversion ratio in swine (Ding
et al., 2018; Horodyska et al., 2019). Hence, the results from this
study suggest that a considerable proportion of heritability of
feed intake is driven by many SNP that individually do not attain
genome-wide significance in GWAS and therefore support a
highly polygenic architecture for feed intake.

Our integrated methodology, at present, is obviously partial
to genotyped SNP within genes. Because most available
biological resources are biased toward genes, SNP pertaining to
known genes likely have more relevant prior information.
Consequently, the resulting weights may be more effective for
associated SNP residing in or close to known genes. Therefore,
results derived from our method can still be informative
regardless of their intrinsic bias. Future work will focus on
extending the scope of the tensor decomposition step to
leverage data from other genomic sources, including but not
limited to expression of non-coding RNA, miRNA expression,
transcription factors, methylation targets, and miRNA binding.
Additionally the method will be extended to prioritize variants
from whole genome sequencing for assay development based on
functional effects.
Frontiers in Genetics | www.frontiersin.org 11423
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1 Animal Genomics Laboratory, UCD School of Agriculture and Food Science, College Dublin, Dublin, Ireland, 2 The Roslin
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3 Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland, 4 UCD School of Veterinary Medicine,
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Bovine tuberculosis is caused by infection withMycobacterium bovis, which can also cause
disease in a range of other mammals, including humans. Alveolar macrophages are the key
immune effector cells that first encounter M. bovis and how the macrophage epigenome
responds to mycobacterial pathogens is currently not well understood. Here, we have used
chromatin immunoprecipitation sequencing (ChIP-seq), RNA-seq and miRNA-seq to
examine the effect of M. bovis infection on the bovine alveolar macrophage (bAM)
epigenome. We show that H3K4me3 is more prevalent, at a genome-wide level, in
chromatin from M. bovis-infected bAM compared to control non-infected bAM; this was
particularly evident at the transcriptional start sites of genes that determine programmed
macrophage responses to mycobacterial infection (e.g. M1/M2 macrophage polarisation).
This pattern was also supported by the distribution of RNA Polymerase II (Pol II) ChIP-seq
results, which highlighted significantly increased transcriptional activity at genes
demarcated by permissive chromatin. Identification of these genes enabled integration of
high-density genome-wide association study (GWAS) data, which revealed genomic
regions associated with resilience to infection with M. bovis in cattle. Through integration
of these data, we show that bAM transcriptional reprogramming occurs through differential
distribution of H3K4me3 and Pol II at key immune genes. Furthermore, this subset of genes
can be used to prioritise genomic variants from a relevant GWAS data set.

Keywords: ChIP-seq, chromatin, integrative genomics, macrophage, microRNA-seq, Mycobacterium bovis,
RNA-seq, tuberculosis
Abbreviations: bAM: bovine alveolar macrophage/s; bTB: bovine tuberculosis; ChIP: chromatin immunoprecipitation; FDR:
false discovery rate; GWAS: genome-wide association study; H3K27me3: histone H3 lysine 27 tri-methylation; H3K4me3:
histone H3 lysine 4 tri-methylation; hpi: hours post infection; log2FC: log2 fold change; Pol II: RNA Polymerase II; SNP: single-
nucleotide polymorphism; TB: tuberculosis.
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INTRODUCTION

Bovine tuberculosis (bTB) is a chronic infectious disease of
livestock, particularly domestic cattle (Bos taurus, Bos indicus
and Bos taurus/indicus hybrids), which causes more than $3
billion in losses to global agriculture annually (Steele, 1995;
Waters et al., 2012). The aetiological agent of bTB is
Mycobacterium bovis, a pathogen with a genome sequence that
is 99.95% identical to M. tuberculosis, the primary cause of
human tuberculosis (TB) (Garnier et al., 2003). In certain
agroecological milieus M. bovis can also cause zoonotic TB
with serious implications for human health (Thoen et al., 2016;
Olea-Popelka et al., 2017; Vayr et al., 2018).

Previous studies have shown that the pathogenesis of bTB
disease in animals is similar to TB disease in humans and many
of the features of M. tuberculosis infection are also characteristic of
M. bovis infection in cattle (Waters et al., 2014; Buddle et al., 2016;
Williams and Orme, 2016). Transmission is via inhalation of
contaminated aerosol droplets and the primary site of infection is
the lungs where the bacilli are phagocytosed by alveolar
macrophages, which normally can contain or destroy intracellular
bacilli (Weiss and Schaible, 2015; Kaufmann and Dorhoi, 2016).
Disease-causing mycobacteria, however, can persist and replicate
within alveolar macrophages via a bewildering range of evolved
mechanisms that subvert and interfere with host immune responses
(de Chastellier, 2009; Cambier et al., 2014; Schorey and Schlesinger,
2016; Awuh and Flo, 2017). These mechanisms include recruitment
of cell surface receptors on the host macrophage; blocking of
macrophage phagosome–lysosome fusion; detoxification of
reactive oxygen and nitrogen intermediates (ROI and RNI);
harnessing of intracellular nutrient supply and metabolism;
inhibition of apoptosis and autophagy; suppression of antigen
presentation; modulation of macrophage signalling pathways;
cytosolic escape from the phagosome; and induction of necrosis,
which leads to immunopathology and shedding of the pathogen
from the host (Ehrt and Schnappinger, 2009; Hussain Bhat and
Mukhopadhyay, 2015; Queval et al., 2017; BoseDasgupta and
Pieters, 2018; Chaurasiya, 2018; Stutz et al., 2018).

Considering the dramatic perturbation of the macrophage by
intracellular mycobacteria, we and others have demonstrated
that bovine and human alveolar macrophage transcriptomes are
extensively reprogrammed in response to infection withM. bovis
and M. tuberculosis (Nalpas et al., 2015; Vegh et al., 2015;
Lavalett et al., 2017; Jensen et al., 2018; Malone et al., 2018;
Papp et al., 2018). These studies have also revealed that
differentially expressed gene sets and dysregulated cellular
networks and pathways are functionally associated with many
of the macrophage processes described above that can control or
eliminate intracellular microbes.

For many intracellular pathogens, it is now also evident that
the infection process involves alteration of epigenetic marks and
chromatin remodelling that may profoundly alter host cell gene
expression (Hamon and Cossart, 2008; Bierne et al., 2012;
Rolando et al., 2015; Niller and Minarovits, 2016). For
example, distinct DNA methylation changes are detectable in
macrophages infected with the intracellular protozoan
Leishmania donovani, which causes visceral leishmaniasis
Frontiers in Genetics | www.frontiersin.org 2426
(Marr et al., 2014). Recent studies using cells with a
macrophage phenotype generated from the THP-1 human
monocyte cell line have provided evidence that infection with
M. tuberculosis induces alterations to DNA methylation patterns
at specific inflammatory genes (Zheng et al., 2016) and across the
genome in a non-canonical fashion (Sharma et al., 2016).

With regards to host cell histones and in the context of
mycobacterial infections, Yaseen et al. (2015) have shown that
the Rv1988 protein, secreted by virulent mycobacteria, localises
to the chromatin upon infection and mediates repression of host
cell genes through methylation of histone H3 at a non-canonical
arginine residue. In addition, chromatin immunoprecipitation
sequencing (ChIP-seq) analysis of H3K4 monomethylation (a
marker of poised or active enhancers) showed that regulatory
sequence motifs embedded in subtypes of Alu SINE transposable
elements are key components of the epigenetic machinery
modulating human macrophage gene expression during
M. tuberculosis infection (Bouttier et al., 2016).

In light of the profound macrophage reprogramming induced
by mycobacterial infection, and previous work demonstrating a
role for host cell chromatin modifications, we have used ChIP-
seq and RNA sequencing (RNA-seq) to examine gene expression
changes that reflect host–pathogen interaction in bovine alveolar
macrophages (bAM) infected withM. bovis. The results obtained
support an important role for dynamic chromatin remodelling in
the macrophage response to mycobacterial infection, particularly
with respect to M1/M2 polarisation. Genes identified from ChIP-
seq and RNA-seq results were also integrated with genome-wide
association study (GWAS) data to prioritise genomic regions and
single-nucleotide polymorphisms (SNPs) associated with bTB
resilience. Finally, the suitability of bAM for ChIP-seq assays and
the results obtained demonstrate that these cells represent an
excellent model system for unravelling the epigenetic and
transcriptional circuitry perturbed during mycobacterial
infection of vertebrate macrophages.
MATERIALS AND METHODS

Preparation and Infection of bAM
bAM and M. bovis 2122 were prepared as described previously
(Magee et al., 2014) withminor adjustments. Macrophages (2 × 106)
were seeded in 60 mm tissue culture plates and challenged with M.
bovis at amultiplicity of infection (MOI) of 10:1 (2 × 107 bacteria per
plate) for 24 h; parallel non-infected controls were
prepared simultaneously.

Preparation of Nucleic Acids
for Sequencing
Sheared fixed chromatin was prepared exactly as described in the
truChIP™ Chromatin Shearing Kit (Covaris) using 2 × 106

macrophage cells per AFA tube. Briefly, cells were washed in
cold PBS and 2.0 ml of Fixing Buffer A was added to each plate,
to which 200 µl of freshly prepared 11.1% formaldehyde solution
was added. After 10 min on a gentle rocker the crosslinking was
halted by the addition of 120 µl of Quenching Solution E; cells
February 2020 | Volume 10 | Article 1386
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were washed with cold PBS, released from the plate using a cell
scraper and resuspended in 300 µl Lysis Buffer B for 10 min with
gentle agitation at 4°C to release the nuclei. The nuclei were
pelleted and washed once in Wash Buffer C and three times in
Shearing Buffer D3 prior to being resuspended in a final volume
of 130 µl of Shearing Buffer D3. The nuclei were transferred to a
micro AFA tube and sonicated for 8 min each using the Covaris
E220e as per the manufacturer’s instructions. Chromatin
immunoprecipitation of sonicated DNA samples was carried
out using the Chromatin Immunoprecipitation (ChIP) Assay Kit
(Merck KGaA) and anti-H3K4me3 (05-745R) (Merck KGaA),
Pol II (H-224) (Santa Cruz Biotechnology, Inc.) or anti-
H3K27me3 (07-449) (Merck KGaA) as previously described
(Vernimmen et al., 2011). RNA was extracted from infected
(n = 4) and control (n = 4) bAM samples using the RNeasy Plus
Mini Kit (Qiagen) as previously described (O'Doherty et al.,
2012). All eight samples exhibited excellent RNA quality metrics
(RIN >9).

Sequencing
Illumina TruSeq Stranded mRNA and TruSeq Small RNA kits
were used for mRNA-seq and small RNA-seq library
preparations and the NEB Next Ultra ChIPseq Library Prep kit
(New England Biolabs) was used for ChIP-seq library
preparations. Pooled libraries were sequenced by Edinburgh
Genomics (http://genomics.ed.ac.uk) as follows: paired-end
reads (2 × 75 bp) were obtained for mRNA and ChIP DNA
libraries using the HiSeq 4000 sequencing platform and single-
end read (50 bp) were obtained for small RNA libraries using the
HiSeq 2500 high output version 4 platform.

ChIP-seq Bioinformatics Analysis
Computational analyses for all bioinformatic processes were
performed on a 72-CPU computer server with Linux Ubuntu
(version 16.04.4 LTS). An average of 54 M paired end 75 bp reads
were obtained for each histone mark. At each step of data
processing, read quality was assessed via FastQC (version
0.11.5) (Andrews, 2016). Any samples that indicated adapter
contamination were trimmed via Cutadapt (version 1.15)
(Martin, 2011). Correlation plots generated with EaSeq
(version 1.05) (Lerdrup et al., 2016) of genome-wide
H3K4me3, H3K27me3 and Pol II sequencing reads from
infected and non-infected bAM showed high correlation
between samples (Pearson’s correlation coefficient: 0.93–0.97)
for all three ChIP-seq targets (Supplementary Figure 1). After
data quality control and filtering, ~760 million paired end reads
were aligned to the UMD 3.1 bovine genome assembly using
Bowtie2 (version 2.3.0) (Langmead and Salzberg, 2012). The
mean alignment rate for the histone marks was 96.23%. The
resulting SAM files were converted and indexed into BAM files
via Samtools (version 1.3.1) (Li et al., 2009). After alignment,
samples were combined and sorted into 14 files, based on the
animal (A1 or A2), the histone mark (K4/K27/Pol II) and
treatment (control or infected), i.e. A1-CTRL-K4. Peaks were
called by using alignment files to determine where the reads have
aligned to specific regions of the genome, and then comparing
that alignment to the input samples as a normalisation step.
Frontiers in Genetics | www.frontiersin.org 3427
The peak calling was carried out via MACS2 (version
2.1.1.20160309) (Feng et al., 2011). The H3K4me3 mark was
called in sharp peak mode and H3K27me3 and Pol II were
called in broad peak mode, as per the user guide. Peak tracks
were generated in MACS2 and visualised with the Integrative
Genome Viewer (version 2.3) (Thorvaldsdottir et al., 2013). Union
peaks were generated by combining and merging overlapping
peaks in all samples for each histone mark. Differential peak
calling was called via MACS2 using the bdgdiff function. Peak
images were generated by visually assessing all three marks in
tandem across the entire bovine genome with the Integrative
Genomics Viewer (IGV). The significance of peaks was
determined by sorting peaks for each mark in each treatment by
P value and then fold enrichment with a cut-off of 2.0 and a P value
threshold of 0.05 (Wilbanks and Facciotti, 2010). Peaks from each
animal in each condition for eachmark were cross-referenced with
the IGV images and differential peak caller to determine a
difference in fold enrichment for each observed peak difference
between conditions. This required comparing peak start and end
sites, chromosomes, P and q values for each summit, summit
locations and normalised fold enrichment of a peak against the
input sample (see Supplementary Information File 1 for peak
sets). Any peaks that exhibited a difference of 4 or greater fold
enrichment, a P value of less than 0.05, a false discovery rate (FDR)
less than 0.05 and that were also identified by the differential peak
caller were selected for further analysis [see Supplementary
Information File 1 for peaks at transcription start sites (TSSs)
that met some but not all of the above criteria]. Peaks that were
then classified to be different between conditions in all three data
sets were examined to determine their proximity to TSS.
Differential peaks were also called using the R package DiffBind
(version 2.80) (Stark and Brown, 2011). DiffBind includes
functions to support the processing of peak sets, including
overlapping and merging peak sets, counting sequencing reads
overlapping intervals in peak sets and identifying statistically
significantly differentially bound sites based on evidence of
binding affinity (measured by differences in read densities; see
Supplementary Information File 1). For H3K27me3 DiffBind
differential peak calling, the initial MACS2 peak list, consisting of
64,264 total peaks (see Supplementary Information File 1), was
merged and reduced to a smaller group of larger, broader peaks to
reduce noise and false positive discovery (Figure 2B).

RNA-Seq Bioinformatics Analysis
An average of 44 M paired end 75 bp reads were obtained for
each of the eight samples (four control, four infected). Adapter
sequence contamination and paired-end reads of poor quality
were removed from the raw data. At each step, read quality was
assessed with FastQC (version 0.11.5). Any samples that
indicated adapter contamination were trimmed via Cutadapt
(version 1.15). After quality control and filtering, ~250 million
reads were mapped to the bovine genome, with 72% total read
mapping, overall. The raw reads were aligned to the UMD 3.1.1
bovine transcriptome using Salmon (version 0.8.1) (Patro et al.,
2017). Aligned reads were also counted in Salmon and the
resulting quantification files were annotated at gene level via
tximport (version 3.7) (Soneson et al., 2015). The annotated gene
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counts were then normalised and differential expression analysis
performed with DESeq2 (version 1.20.0) (Love et al., 2014),
correcting for multiple testing using the Benjamini–Hochberg
method (Benjamini and Hochberg, 1995). Genes identified from
ChIP-seq as exhibiting differential histone modifications were
cross-referenced with the RNA-seq data set to determine
significant log2FC between M. bovis-infected and control non-
infected. Additionally, this RNA-seq data was cross-referenced
with RNA-seq data from a previous study that investigated bAM
infected with M. bovis (Nalpas et al., 2015).

MicroRNA-Seq Bioinformatics Analysis
A mean of 26 M paired-end 50 bp reads were obtained for each of
the eight samples (four control, four infected). At each step of data
processing, read quality was assessed via FastQC (version 0.11.5).
Any samples that exhibited adapter contamination were trimmed
via Cutadapt (version 1.15) and all reads smaller than 17 bp were
removed from the analysis. After quality control and filtering, ~100
million reads were mapped to the bovine genome, with 79% total
reads mapping, overall. Raw reads were mapped to UMD3.1 using
Bowtie (version 1.2.2). miRNA detection, identification and
quantification were carried out with mirdeep2 (version 0.0.91).
Isoform analysis was also performed using mirdeep2. Differential
expression analysis was performed using DESeq2, correcting for
multiple testing with the Benjamini–Hochberg method. Any
miRNAs that were significantly differentially expressed (FDR <
0.10) were selected for further analysis. To determine if significantly
differentially expressed miRNAs target genes selected in the ChIP-
seq analysis, miRmap (Vejnar and Zdobnov, 2012) was used to
predict the likelihood that a specific miRNA targets one or more of
the genes based on three criteria: delta G binding, probability exact
and phylogenetic conservation of seed site, which is then combined
into a single scoring metric (miRmap score). Any predicted gene
targets with miRmap score ≥0.70 were included in the analysis (see
Supplementary Information File 3).

Pathway Analysis
Pathway analysis was carried out on any gene that had a
differential peak between control and infected samples.
Pathway analysis and gene ontology (GO) summarisation was
carried out using DAVID (version 6.8), Ingenuity Pathway
Analysis—IPA (version 1.1, winter 2018 release) and
PANTHER (version 13.1) (Kramer et al., 2014; Mi et al., 2017).
KEGG pathways were selected by choosing pathways that had
the highest number of genes identified in the ChIP-seq data and
had an FDR < 0.05.

Integration of GWAS Data
GWAS data for genetic susceptibility to M. bovis infection
previously generated by Richardson et al. (2016) were analysed
to determine if subsets of SNPs selected according to their distance
to H3K4me3 and Pol II active loci were enriched for significant
GWAS hits. The nominal P values used in this study were
generated using single SNP regression analysis in a mixed
animal model as described previously (Richardson et al., 2016).
In summary, high-density genotypes (n = 597,144) of dairy bulls
(n = 841) used for artificial insemination were associated with
Frontiers in Genetics | www.frontiersin.org 4428
deregressed estimated breeding values for bTB susceptibility that
had been calculated from epidemiological information on 105,914
daughters and provided by the Irish Cattle Breeding Federation
(ICBF). In this study, the significance of the distribution of SNP
nominal P values (from Richardson et al., 2016) within and up to
100 kb up- and downstream to genes identified as having
differential H3K4me3 and Pol II activity on bTB susceptibility
was estimated in R using q value (FDRTOOL) and permutation
analysis (custom scripts). A total of 1,000 samplings (with
replacement) from the HD GWAS P value data set (n =
597,144) representing the size of each of selected SNP subsets
were generated. The q values for each SNP P value subset and all
its permuted equivalents were calculated using the FDRTOOL
library in R. The subsequent significance level (Pperm) assigned to
each of the SNP subsets was equivalent to the proportion of
permutations in which at least the same number of q values < 0.05
as the SNP subset were obtained, i.e. by chance.
RESULTS

M. bovis Infection Induces Trimethylation
of H3K4 at Key Immune Function Related
Loci in Bovine Alveolar Macrophages
Previous studies have shown that bAM undergo extensive gene
expression reprogramming following infection of M. bovis
(Nalpas et al., 2015; Malone et al., 2018), with almost one half
of the detectable transcriptome exhibiting significant differential
expression within bovine macrophages 24 h after infection
(Nalpas et al., 2015). Changes of this magnitude are
comparable to those observed in previous experiments that
have examined the chromatin remodelling that accompanies
mycobacterial infection of macrophages, where trimethylation
of lysine 4 of Histone H3 (H3K4me3) was shown to correlate
with active transcription (Bouttier et al., 2016; Arts et al., 2018).

We used ChIP-seq to examine histone modification changes
that occur after M. bovis infection of bAM from sex- and aged-
matched Holstein-Friesian cattle. The aim was to determine
genome-wide changes in the distribution of H3K4me3 and
H3K27me3, and Pol II occupancy at the response genes (Sims
et al., 2003). Differential peaks between conditions were called,
compared and visualised with IGV to determine where
differences in H3K4me3, H3K27me3 and Pol II occupancy
occur between control and infected bAM (Figure 1). ChIP-seq
peaks are defined as areas of the genome enriched by read counts
after alignment to the reference genome.

Peak differences for H3K4me3 occurred at multiple locations
across the genome and were estimated by the fold enrichment of a
peak normalised against input control DNA that had not
undergone antibody enrichment. Differential peaks in each
condition were defined by several criteria: 1) the fold
enrichment of each peak had to be larger than 10 in at least one
condition (Landt et al., 2012); 2) the identified peaks had a P-value
cut off of 0.05; 3) the peaks being compared in each condition were
no more than 500 bp up- and downstream of each other; 4) the
peaks were classified as different using log-likelihood ratios and
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affinity scores with MACS2 and diffBind, respectively; and 5)
visual inspection of the tracks of the peaks confirmed the
computationally determined differences in each condition.

Peaks that occurred in a sample indicate that H3K4me3 and
Pol II are highly correlated with condition (Figure 2A); this
demonstrates that the differences in H3 modifications are a result
of infection rather than genomic differences between animals.
Figure 2B further illustrates this, with the overlap in enriched
peaks for H3K4me3 and Pol II being greater between condition
than animal, i.e. the common number of H3K4me3 peaks
between animal 1 control and animal 1 infected is 316 and the
common number of H3K4me3 peaks between animal 1 infected
and animal 2 infected is 798. Figures 2C, D illustrate that the
distribution of the peaks, or sites with increased binding affinity,
is differentially distributed between control and infected for both
Frontiers in Genetics | www.frontiersin.org 5429
H3K4me3 and Pol II. Binding site affinity for H3K27me3 showed
no significant differences between the control and infected
groups for any genes. Analysis of genome-wide H3K4me3
revealed significant peak differences between control and
infected samples at multiple sites in the genome under these
criteria, with some of these differences occurring at the
transcriptional start site of 233 genes. (Figures 2A–D and
Supplementary Figure 4). Supplementary Figure 1
demonstrates that the differences in H3K4me3 and Pol II
peaks are minor, with cells from both conditions sharing most
peaks and differing by only 1.8–2.95% in peaks across the
genome. Principal component analysis (PCA) of the H3K4me3
mark and Pol II data indicated that these H3K4me3 and Pol II
peak differences are strongly associated withM. bovis infection of
bAM (Supplementary Figure 3).
FIGURE 1 | Track visualization of M. bovis induced H3K4me3 and Pol II occupancy with relative change in expression at three immune response associated genes.
Examples of signal tracks illustrating peaks of H3K27me3 (top two tracks), H3K4me3 (middle two tracks) and Pol II (bottom two tracks) in infected (red) and non-
infected (blue) bovine alveolar macrophages, with the bovine reference genome on the bottom of each panel reading left to right. Accompanying each track image is
the expression of the corresponding gene, with normalised counts of infected cells in red and control in blue. The ARG2 gene exhibited an increase in H3K4me3 at
24 hpi as evidenced by the larger red H3K4me3 and red Pol II peaks. The IFITM2 gene also exhibited larger H3K4me3 and Pol II peaks in infected samples;
however, in contrast to this, SIRT3, which is located ~20 kb upstream from IFITM2 gene, had no significant change in either peak. TMEM173 (aka STING) exhibits
an opposite pattern to most genes identified as having differential H3K4me3, where a larger peak is observed in control samples rather than infected.
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Changes in H3K4me3 Are Accompanied
by Immune Related Transcriptional
Reprogramming
Previous studies have shown that increased H3K4me3 is
frequently accompanied by an increase in Pol II occupancy
and elevated expression of proximal genes (Clouaire et al.,
2012; Barski et al., 2017). In the present study, we observed
that H3K4me3 is accompanied by an increase in Pol II
Frontiers in Genetics | www.frontiersin.org 6430
occupancy (Figure 1 and Supplementary Figure 4). For a
small number of genes (24 out of 233) where the H3K4me3
peak was larger in the control than the infected samples, Pol II
occupancy was greater in control bAM for 20 genes (83.3%) and
greater in infected bAM for 3 genes (12.5%). Conversely, where
the H3K4me3 peak was larger in the infected bAM, Pol II
occupancy was greater in the infected samples for 127 genes
(60.4%) and greater in the control bAM for 14 genes (6.6%). The
FIGURE 2 | M. bovis induced histone modifications occur genome wide at key immune loci. (A) Correlation heatmaps of differential peaks for H3K4me3,
H3K27me3 and Pol II. Every peak location that is not consistent between each animal in each condition (i.e. a peak only occurs in the control group) is compared to
determine if these inconsistent peaks are correlated with the animal or the condition. The differential peaks in H3K4me3 and Pol II correlate highly with condition,
whereas there were no significant global differences in the distribution of H3K27me3. (B) Venn diagrams of differential peaks for H3K4me3, H3K27me3 and Pol II.
Each condition shares most peaks. Where differences occur at TSS of genes, these genes are frequently associated with immune function. (C) Volcano plots of
differential peaks for H3K4me3 and Pol II. The y-axis shows significance as FDR and the x-axis indicates increase in affinity for control (left) and infected (right).
Significant sites are denoted in blue. (D) Boxplots of differential peaks for H3K4me3 and Pol II. Infected bAM are shown in red and control bAM are shown in blue.
The left two boxes of each plot show distribution of reads over all differentially bound sites in the infected and control groups. The middle two boxes of each plot
show the distribution of reads in differentially bound sites that increase in affinity in the control group. The far-right boxes in each plot show the distribution of reads in
differentially bound sites that increase in affinity in the infected group.
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remaining 60 genes (25%) did not exhibit H3K4me-associated
Pol II occupancy in either control or infected samples. Figure 3A
illustrates this trend, showing that Pol II occupancy normally
accompanies H3K4me3.
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To establish if H3K4me3 mark patterns were correlated with
changes in gene expression, control non-infected bAM and bAM
infectedM. bovis AF2122/97 from four animals 24 hpi (including
the two animals used for ChIP-seq) were used to generate eight
FIGURE 3 | H3K4me3 is accompanied by functional changes in Pol II occupancy, gene expression and gene regulation. (A) Scatter plots of H3K4me3 against Pol II
occupancy and gene expression. The first plot is the difference of peaks for H3K4me3 between conditions. The values on the y-axis correspond to the difference in
fold enrichment (DFE) of each peak at each gene between the control and infected groups. A positive value (x) means that the peak was x-fold enriched in the
infected cells (red dots) compared to the control cells. Negative values correspond to the peaks being larger in the control (blue dots), indicating a decrease or total
depletion of the peak in the infected cells. The x-axis represents the log2FC for each of the 232 genes, with each gene as a single data point. The second plot also
has H3K4me3 on the y-axis but with peak differences in Pol II on the x-axis, with negative and positive values corresponding to greater occupancy in the control and
infected samples, respectively. The final plot shows log2FC relative to Pol II occupancy. (B) Plots of normalised miRNA-seq counts. Each plot represents the
normalised counts of a miRNA that was detected as exhibiting differential expression. Bta-miR-101 interacts with ARG2, bta-miR-296-3p with TMEM173 (aka
STING), bta-miR-874 with BCL2A1 and bta-miR-2346 with STAT1. Red bars indicate infected and blue represent control samples. (C) Correlation and Venn diagram
for both RNA-seq studies. The x-axis of the scatter plot represents the log2FC for each of the 232 genes from this study and the y-axis represents the log2FC for
each of the 232 genes from the previous study (Nalpas et al., 2015). The Venn diagram shows the global overlap of differentially expressed genes from both studies
with an FDR cut-off < 0.1. (D) 3-D plots for all three data sets. A combination of all three scatter plots from Figure 3A. Data points are genes. Blue genes are those
that exhibited greater H3K4me3 in control bAM; red exhibited greater H3K4me3 in infected bAM.
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RNA-seq libraries. RNA-seq analysis revealed 7,757 differentially
expressed genes (log2FC > 0: 3,723 genes; log2FC < 0: 4,034
genes; FDR < 0.1). Of the 233 genes identified in the ChIP-seq
analysis, 232 (99.6%) were differentially expressed under these
criteria (see Supplementary Information File 2). Of the genes
that exhibited H3K4me3 peaks that were larger in the infected
bAM, 21 (10%) were downregulated and 189 (90%) were
upregulated. Of the genes that exhibited larger H3K4me3
peaks in the control group, 22 (91.6%) were downregulated
and 2 (8.4%) were upregulated (Figure 3A). This pattern of
directional gene expression correlating with H3K4me3 for the
control and infected samples is consistent with the literature
(Clouaire et al., 2012; Barski et al., 2017).

Existing published RNA-seq data generated by our group
using M. bovis-infected (n = 10) and control non-infected bAM
(n = 10) at 24 hpi (Nalpas et al., 2015) were also examined in
light of the results from the present study. For the 232 genes
identified here, a Pearson correlation coefficient of 0.85 was
observed for two data sets (Figure 3C), thus demonstrating
that gene expression differences between M. bovis-infected and
control non-infected bAM are consistent across experiments,
even where samples sizes are markedly different.

Transcriptional Reprogramming Is
Coupled With Differential microRNA
Expression
We have previously demonstrated that differential expression of
immunoregulatory microRNAs (miRNAs) is evident in bAM
infected with M. bovis compared to non-infected control bAM
(Vegh et al., 2013; Vegh et al., 2015). To investigate the
expression of miRNA in bAM used for the ChIP-seq analyses,
miRNA was extracted and sequenced from the samples used for
the RNA-seq analysis. Twenty-three differentially expressed
miRNAs were detected at 24 hpi (log2FC > 0: 13; log2FC < 0:
10; FDR < 0.10). Of the 232 genes identified in the ChIP-seq/
RNA-seq analysis, 93 are potential targets for the 23 differentially
expressed miRNAs (Supplementary Information File 3).
Further examination revealed that multiple immune genes,
such as BCL2A1 (bta-mir-874), ARG2 (bta-mir-101),
TMEM173 (aka STING) (bta-mir-296-3p) and STAT1 (bta-
mir-2346), are potential regulatory targets for these miRNAs
(Figure 3B). This observation therefore supports the hypothesis
that miRNAs function in parallel with chromatin modifications
to modulate gene expression in response to infection byM. bovis.

Integration of ChIP-Seq and RNA-Seq
Data
The H3K4me3, Pol II, H3K27me3 ChIP-seq data and the RNA-
seq data were subsequently integrated to evaluate the relationship
between histone modifications and gene expression changes.
Three-dimensional plots were generated to visualise the global
differences between H3K4me3, Pol II and gene expression in
infected and non-infected bAM (Figure 3D). These plots show
that reduction of H3K4me3 in infected cells is associated with a
decrease in gene expression and an absence of Pol II occupancy.
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Genome-wide H3K27me3 was also investigated to determine
whether methylation of this residue was altered in response toM.
bovis infection and if it was related to gene expression. No
significant differences for H3K27me3 between control and
infected bAM were detected, indicating that repression of gene
expression through H3K27me3 does not play a role in the bAM
response toM. bovis at 24 hpi. However, Supplementary Figure 2
indicates that the presence of a H3K27me3 peak in both control
and infected cells at the TSS of a H3K4me3 enriched gene
correlated well with a lower or complete lack of Pol II occupancy.

Pathway Analysis Reveals H3K4me3
Marks Are Enriched for Key
Immunological Genes
To identify biological pathways associated with genes identified
through the ChIP-seq analyses, we integrated the ChIP-seq, RNA-
seq and miRNA-seq data, which generated a panel of 93 genes that
overlapped across each of the three data sets. Pathway analyses
were carried out using three software tools: Ingenuity Pathway
Analysis (IPA), Panther and DAVID (Thomas et al., 2003; Huang
da et al., 2009; Kramer et al., 2014). IPA revealed an association
with respiratory illness and the innate immune response
(Supplementary File 2). Panther was used to examine the GO
categories of the 232 genes (Figure 4A); this revealed enrichment
for metabolic processes, response to stimuli and cellular processes,
indicating that increased H3K4me3 in response to M. bovis
infection occurs at TSS of genes associated with the immune
response and at genes encoding key components of internal
macrophage cellular regulation. GO unifies genes based on their
gene and gene product attributes, which represents a useful
method of identifying the families of gene functions for a given
enriched gene set such as the one summarised in Figure 4A (The
Gene Ontology Consortium, 2019).

The final part of the pathway analysis was performed using
DAVID (Huang da et al., 2009). DAVID uses a list of background
genes and query genes (in this case the 232 common genes across
data sets) and identifies enriched groups of genes with shared
biological functions. The DAVID analysis demonstrated that the
232 genes are involved in several signalling pathways, including
the PI3K/AKT/mTOR, JAK-STAT and RIG-I-like signalling
pathways (Figure 4B and the top 10 pathways are detailed in
Supplementary Information File 3).

GWAS Integration Prioritises Bovine
SNPs Associated With Resilience
to M. bovis Infection
Previous work used high-density SNP (597,144 SNPs) data from
841 Holstein-Friesian bulls for a GWAS to detect SNPs
associated with susceptibility/resistance to M. bovis infection
(Richardson et al., 2016). Using a permutation-based approach
to generate null SNP distributions, we leveraged these data to
show that genomic regions within 100 kb up- and downstream of
each of the 232 genes exhibiting differential H3K4me3 ChIP-seq
peaks are significantly enriched for additional SNPs associated
with resilience to M. bovis infection.
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In total, 12,056 SNPs within the GWAS data set were located
within 100 kb of the 232 H3K4me3 genes. Of these SNPs, up to 26
were found to be significantly associated with bTB susceptibility,
depending on the distance interval of each gene. Interestingly, 22
Frontiers in Genetics | www.frontiersin.org 9433
SNPs found within 25 kb of 11 genes were found to be most
significant at P and q values < 0.05, with declining significance of
association as the region extended beyond 25 kb (Figures 4C, 4D
and Supplementary File 3). Significant SNPs were detected in
FIGURE 4 | Gene ontology enrichment and pathway analysis. (A) Gene ontology pie charts generated through PANTHER pathway analysis; 232 genes cluster by gene
ontology under three main categories: Biological process, Cellular component and Molecular function. (B) KEGG pathway images containing genes identified from the
ChIP-seq and RNA-seq analysis. Gene symbols coloured in yellow were identified in the ChIP-seq and RNA-seq analysis. Gene symbols coloured in red were also
targeted by one or more differentially expressed miRNAs. Up or down red arrows indicate greater H3K4me3 in infected or control, respectively. Up or down yellow arrows
indicate log2FC increase or decrease of the associated gene, respectively. (C) Line graph showing different genomic ranges from genes that are enriched for significant
SNPs from GWAS data for bTB resilience. The bars represent the number of SNPs that occupy each range from each ChIP-seq enriched gene, with more SNPs
correlating with a greater distance. The blue plotted line represents the negative log10 probability that the significant SNPs found at each distance at 0.05 FDR q value are
significant by chance, with SNPs at 25 kb exhibiting the lowest probability. The null SNP P value distribution for each data point was generated from 1,000 permutations
of random SNPs corresponding to the number of SNPs observed in a particular genomic range. (D) Genes enriched for SNPs significantly associated with resilience to
M. bovis infection. SNP IDs and functional information obtained from the GeneCards® database (Stelzer et al., 2016) are also shown.
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proximity to the following genes: SAMSN1, CTSL, TNFAIP3,
CLMP, ABTB2, RNFT1, MIC1, MIC2, EDN1 and ARID5B, all of
which had significant differential enrichment of H3K4me3.
DISCUSSION

H3K4me3 Mark Occurs at Key
Immune Genes
Our study has generated new information regarding host–
pathogen interaction during the initial stages of M. bovis
infection. We demonstrate that chromatin is remodelled
through differential H3K4me3 and that Pol II occupancy is
altered at key immune genes in M. bovis-infected bAM. This
chromatin remodelling correlates with changes in the expression
of genes that are pivotal for the innate immune response to
mycobacteria (Nalpas et al., 2015; Alcaraz-Lopez et al., 2017;
Malone et al., 2018). Our work supports the hypothesis that
chromatin modifications of the host macrophage genome play an
essential role during intracellular infections by mycobacterial
pathogens (Cheng et al., 2014; LaMere et al., 2016).

The top pathways identified were the JAK-STAT signalling
pathway, the PI3K/AKT/mTOR signalling pathway and the RIG-I-
like receptor signalling pathway. In mammals, the JAK-STAT
pathway is the principal signalling pathway that modulates
expression of a wide array of cytokines and growth factors,
involved in cell proliferation and apoptosis (Rawlings et al., 2004).
The JAK-STAT signalling pathway and its regulators are also
associated with coordinating an effective host response to
mycobacterial infection (Manca et al., 2005; Cliff et al., 2015). Two
JAK-STAT associated stimulating factors and a ligand receptor that
exhibited increased H3K4me3 marks in infected samples were
encoded by the OSM, CSF3 and CNTFR genes, respectively
(Marino and Roguin, 2008; Pastuschek et al., 2015). OSM has
previously been shown to be upregulated in cells infected with
either M. bovis or M. tuberculosis (O'Kane et al., 2008; Nalpas
et al., 2015; Polena et al., 2016). Our work shows that this
increased expression in response to mycobacteria is facilitated by
H3K4me3-mediated chromatin accessibility. The protein encoded by
CSF3 has also been implicated as an immunostimulator in the
response to mycobacterial infection due to its role in granulocyte
andmyeloid haematopoiesis (Martins et al., 2010). CNTFR encodes a
ligand receptor that stimulates the JAK-STAT pathway and shows
increased expression in other studies of mycobacterial infection
(Nalpas et al., 2015; Malone et al., 2018). Following stimulation of
JAK through ligand receptor binding, STAT1 expression is increased.
STAT1, a signal transducer and transcription activator that mediates
cellular responses to interferons, cytokines and growth factors, is a
pivotal JAK-STAT component and a core component in the response
to mycobacterial infection (Tsumura et al., 2012). Here, the TSS of
STAT1 was associated with an increased deposition of H3K4me3.
Interestingly, upregulation of STAT1 was associated with a
downregulation of bta-miR-2346, predicted to be a negative
regulator of STAT1 (see Supplementary Information File 3).
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Overall, these results show that major components of the JAK-
STAT pathway undergo chromatin remodelling mediated via
H3K4me3, thereby facilitating activation and propagation of the
JAK-STAT pathway through chromatin accessibility.

Key genes encoding components of the PI3K/AKT/mTOR
pathway, such as IRF7, RAC1 and PIK3AP1, were also identified
as having increased H3K4me3 inM. bovis infected macrophages.
PI3K/AKT/mTOR signalling contributes to a variety of processes
that are critical in mediating aspects of cell growth and survival
(Yu and Cui, 2016). Phosphatidylinositol-3 kinases (PI3Ks) and
the mammalian target of rapamycin (mTOR) are integral to
coordinating innate immune defences (Weichhart and Saemann,
2008). The PI3K/AKT/mTOR pathway is an important regulator
of type I interferon production via activation of the interferon-
regulatory factor 7, IRF7. RAC1 is a key activator of the PI3K/
AKT/mTOR pathway and, in its active state, binds to a range of
effector proteins to regulate cellular responses such as secretory
processes, phagocytosis of apoptotic cells and epithelial cell
polarisation (Yip et al., 2007). In addition, in silico analysis of
our differentially expressed miRNAs predicted that several
miRNAs, such as bta-miR-1343-3p, bta-miR-2411-3p and bta-
miR-1296, regulate RAC1. PIK3AP1 expression was also
increased, in line with previous mycobacterial infection studies
(Nalpas et al., 2015; Malone et al., 2018). Hence, as observed with
the JAK-STAT pathway, H3K4me3 at these key PI3K/AKT/
mTOR pathway genes acts to regulate the innate response to
mycobacterial infection. In addition, the RIG-I-like receptor
signalling pathway was also highlighted by the ChIP-seq,
RNA-seq and miRNA-seq integrative analyses. Genes encoding
multiple components of this pathway, such as TRIM25, ISG15,
IRF7 and IKBKE, were enriched for H3K4me3 and Pol II
occupancy in M. bovis-infected bAM. The RIG-I-like receptor
signalling pathway activates transcription factors that regulate
production of type I interferons (Loo and Gale, 2011) and our
results demonstrate that activation of this pathway in M. bovis-
infected bAM is driven, to a large extent, by reconfiguration of
the host chromatin.

H3K4me3 enriched loci are also flanked by genomic
polymorphisms associated with resilience to M. bovis infection.
Integration of our data with GWAS data from 841 bulls that have
robust phenotypes for bTB susceptibility/resistance revealed 22
statistically significant SNPs within 25 kb of 11 H3K4me3
enriched genes. Statistical significance was determined if the
newly permuted q values of every SNP found in proximity to
each of the H3K4me3 enriched genes is unique to the observed
set, when compared to 1,000 random sets of SNPs from the same
GWAS (i.e. if significant q values of the same value or less occur
with the same or greater frequency in randomised SNP sets, the
observed SNPs are not deemed to be statistically significant).
Most of these genes are involved in host immunity, with CTSL,
TNFAIP3 and RNFT1 directly implicated in the human response
toM. tuberculosis infection (Nepal et al., 2006; Silver et al., 2009;
Meenu et al., 2016). The reprioritisation of genomic regions and
array-based SNPs using integrative genomics approaches will be
relevant for genomic prediction and genome-enabled breeding
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and may facilitate fine-mapping efforts and the identification of
targets for genome editing of cattle resilient to bTB.

H3K4me3 Deposition at Host Macrophage
Genes and Immunological Evasion by
M. bovis
The present study has revealed elevated H3K4me3 deposition
and Pol II occupancy at key immune genes that are involved in
the innate response to mycobacterial infection. In addition, we
also identified several immune genes that had differential
H3K4me3 and expression, where the expression change may
be detrimental to the ability the host macrophage to clear
infection. An example of this is ARG2, which exhibited
increased H3K4me3 deposition, Pol II occupancy and
expression (Log2FC = 3.415, Padj = 7.52 ×10-16) in infected
cells. However, it is also interesting to note that the integrated
expression output of ARG2 may also be determined by the bta-
miR-101 miRNA, a potential silencer of ARG2 expression, which
was observed to be upregulated in infected cells. Elevated levels
of arginase 2, the protein product of the ARG2 gene, have
previously been shown to shift macrophages to an M2
phenotype (Lewis et al., 2011; Hardbower et al., 2016), which
is anti-inflammatory and exhibits decreased responsiveness to
IFN-g and decreased bactericidal activity (Huang et al., 2015).
Hence, it may be hypothesised that M. bovis infection triggers
H3K4me3 deposition at the TSS of ARG2 to drive an M2
phenotype and generate a more favourable niche for the
establishment of infection. Like ARG2, increased expression of
BCL2A1 in M. bovis-infected bAM may also facilitate
development of a replicative milieu for intracellular
mycobacteria. Increased expression of BCL2A1 is associated
with decreased macrophage apoptosis (Vogler, 2012), which
would otherwise restrict replication of intracellular pathogens.

In comparison to control non-infected bAM, the TMEM173
(aka STING) gene exhibited substantially decreased expression in
M. bovis-infected bAM (Log2FC = −3.225, Padj = 8.64 ×10-11).
TMEM173 encodes transmembrane protein 173, which drives
interferon production and as such is a major regulator of the
innate immune response to viral and bacterial infections,
including M. bovis and M. tuberculosis (Manzanillo et al., 2012;
McNab et al., 2015; Malone et al., 2018). Downregulation of
TMEM173 indicates that M. bovis can actively reduce or block
methylation of H3K4 at this gene in infected macrophages,
thereby enhancing intracellular survival of the pathogen. In
this regard, we have recently shown that infection of bAM
with M. tuberculosis, which is attenuated in cattle, causes
increased TMEM173 expression compared to infection with M.
bovis (Malone et al., 2018).

The molecular mechanisms that pathogens employ to
manipulate the host genome to subvert or evade the immune
response are yet to be fully elucidated. Hijacking the host’s own
mechanisms for chromatin modulation is one potential
explanation that has garnered attention in recent years
(Hamon and Cossart, 2008; Rolando et al., 2015). These
modulations of the host chromatin in bAM may be mediated
Frontiers in Genetics | www.frontiersin.org 11435
through M. bovis-derived signals transmitted through bacterial
metabolites, RNA-signalling or secreted peptides (Silmon de
Monerri and Kim, 2014; Sharma et al., 2015; Yaseen et al.,
2015; Woo and Alenghat, 2017).
CONCLUSIONS

Elucidation of the mechanisms used by pathogens to establish
infection, and ultimately cause disease, requires an intimate
knowledge o f hos t–pa thogen in te r ac t ions . Us ing
transcriptomics and epigenomics, we have identified altered
expression of major host immune genes following infection of
primary bovine macrophages withM. bovis.We have shown that
reprogramming of the alveolar macrophage transcriptome
occurs mainly through increased deposition of H3K4me3 at
key immune function genes, with additional gene expression
modulation via miRNA differential expression. This modulation
of gene expression drives a shift of the macrophage phenotype
towards the more replication-permissive M2 macrophage
phenotype. We have also identified that alveolar macrophages
infected with M. bovis exhibit differentially expressed genes (in
regions with modified chromatin) that are enriched for
significant SNPs from GWAS data for bTB resilience. Finally,
our results support the emerging concept that pathogens can
hijack host chromatin, through manipulation of H3K4me3, to
subvert host immunity and to establish infection.
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1 College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering &
Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China
Agricultural University, Guangzhou, China, 2 College of Animal Science, Zhejiang University, Hangzhou, China

Heat stress negatively influences milk production and disrupts normal physiological
activity of lactating sows, but the precious mechanisms by which hyperthermia
adversely affects milk synthesis in sows still remain for further study. Circular RNAs are
a novel class of non-coding RNAs with regulatory functions in various physiological and
pathological processes. The expression profiles and functions of circRNAs of sows in
lactogenesis remain largely unknown. In the present study, long-term heat stress (HS)
resulted in a greater concentration of serum HSP70, LDH, and IgG, as well as decreased
levels of COR, SOD, and PRL. HS reduced the total solids, fat, and lactose of sow milk,
and HS significantly depressed CSNas1, CSNas2, and CSNk biosynthesis.
Transcriptome sequencing of lactating porcine mammary glands identified 42
upregulated and 25 downregulated transcripts in HS vs. control. Functional annotation
of these differentially-expressed transcripts revealed four heat-induced genes involved in
lactation. Moreover, 29 upregulated and 21 downregulated circRNA candidates were
found in response to HS. Forty-two positively correlated circRNA-mRNA expression
patterns were constructed between the four lactogenic genes and differentially expressed
circRNAs. Five circRNA-miRNA-mRNA post-transcriptional networks were identified
involving genes in the HS response of lactating sows. In this study we establish a
valuable resource for circRNA biology in sow lactation. Analysis of a circRNA-miRNA-
mRNA network further uncovered a novel layer of post-transcriptional regulation that
could be used to improve sow milk production.

Keywords: heat stress, lactating sow, circRNA, ceRNA, casein
INTRODUCTION

In seasonal climates, high ambient temperature is the primary environmental stress impacting
domestic animal performance, including growth, reproduction, and lactation (Das et al., 2016). In
general, high-yielding animals are especially susceptible to thermal stress since they generate
considerably more metabolic heat (Kadzere et al., 2002). In response to heat stress (HS), dairy
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animals experience a sustained reduction in appetite and
nutrient uptake (Bohmanova et al., 2007) and a subsequent
reallocation of energy for heat acclimation (Renaudeau et al.,
2012), thereby resulting in decreased milk yield and milk quality,
which negatively affects the efficiency and profitability of animal
farms worldwide (Hill and Wall, 2015).

In modern swine husbandry, lactating sows have been heavily
selected for increased productivity (fertility, disease resistance,
feed conversion efficiency, and so on) during the last two
decades, and are especially at risk of HS (Renaudeau, 2005), as
they have a thermal neutral zone between 16 and 22°C (Messias
de Bragança et al., 1998). It is noteworthy that high temperatures
above 25° are sustained for half a year in the south of China; thus,
local sows are often exposed to hot conditions. Under thermal
stress, individuals normally increase respiration rates and reduce
feed intake (Quiniou and Noblet, 1999), in an effort to generate a
negative energy balance to promote metabolic heat loss to
counter HS (Renaudeau et al., 2001; Renaudeau et al., 2012).
In addition, HS also influences milk production in lactating sows,
perhaps through an indirect effect associated with reduction in
feed intake (Ribeiro et al., 2018); however, previous reports of
Messias de Bragança et al. (1998) and Silanikove et al. (2009)
suggested that there may be a direct effect of ambient
temperature on mammary gland metabolism in connection
with low milk yield. Thus, identifying key differences in the
mammary gland of lactating sows in response to high ambient
temperatures has the potential to improve the productivity of
sows in adverse environments (Collier et al., 2006). The ability to
use powerful genomic tools to evaluate genetic differences
associated with thermal tolerance can provide important
information on the underlying mechanisms of HS on lactation,
and will permit the selection of sows for resistance to HS.

Circular RNAs (circRNAs) are a recently identified genetic
element that are abundantly expressed, highly conserved
between different animal species (Hanan et al., 2017), and are
involved in the foundation of mammary gland growth and
development (Zhang et al., 2015; Zhu et al., 2016), milk
synthesis (Zhang C. et al., 2016), and secretion and
transportation (Wang et al., 2019). HS greatly impacts
circRNA biogenesis, and heat-induced circRNAs perform
substantial regulatory functions through circRNA-mediated
competing endogenous RNA (ceRNA) networks (Pan et al.,
2018). Although patterns of circRNA expression and function
have been revealed among various developmental stages and
physiological conditions (Lai et al., 2018; Patop and Kadener,
2018), little is known about how HS affects circRNAs in lactation.
In this study, we focused on circRNAs involved in the HS
response of lactating sows, and we explored potential
mechanisms underlying circRNA regulation in mammary tissue.
MATERIALS AND METHODS

Study Design and Sample Collection
A total of 60 healthy purebred Landrace sows (2–3 parity and
without genetic relationships) were separated into two balanced
Frontiers in Genetics | www.frontiersin.org 2440
cohorts of 30 animals each, and HS tests were conducted at a
local thoroughbred farm during December 2016 and during
August 2017 (WENS Shuitai Breeding Pig Farm, Guangdong,
China). All sows were fed the same commercial formula diet and
raised under the same management conditions. In the
experimental stage, the ambient temperatures and relative
humidity were measured at 14:00pm in everyday. In details,
one cohort of 30 sows was selected in the winter months with a
moderate average temperature, designated as the non-heat stress
(NS) population; other cohort of 30 animals was selected in the
summer months with a higher average temperature, designated
as the HS population. Within each cohort, the number of piglets
born alive was recorded, and litter birth weights of piglets were
obtained within 24 hours after farrowing. Piglets were not offered
creep feed, and sow milk was the only feed available to the piglets
during lactation. On day 21, weaning survival and the weights of
living piglets per litter were recorded and used to calculate
average daily weight gain. Blood samples (10 ml) were
collected at 10:00am from fasted sows using jugular
venipuncture at weaning, and ELISA kits (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China) were used to
determine serum LDH, IgG, SOD, HSP70, COR, and PRL
concentrations. Sow milk samples (approximate 20 ml) were
obtained on d 3, 15, and 20 of lactation from the last two pairs of
sow nipples at 10:30–11:30am in each animal, and oxytocin was
used to stimulate let-down. Three milk samples from each
animal was pooled equally to evaluate the effect of
environmental temperature on milk composition. In each
environmental group, six animals that balanced for weaned
backfat thickness and weight were chosen and humanely
slaughtered at 21 day postpartum, and suckled mammary
glands were split down the mid-line and tissues were excised
from the center portion of four glands from the fourth and fifth
pairs of nipples. Connective tissue and fat were removed.
Mammary tissues were cut into small pieces and snap-frozen
in liquid nitrogen prior to subsequent processing. In general, the
collected mammary tissues contain primarily secretory epithelial
cells, with a small amount of myoepithelial cells, endothelial cells,
adipocytes, fibroblasts, and immune cells (Kensinger et al., 1986).
All procedures were conducted under protocols approved by the
Institutional Animal Care and Use Committee of South China
Agricultural University, China.

RNA Preparation and Sequencing
Total RNA was extracted from mammary tissue and purified
using Trizol reagent (Invitrogen, Carlsbad, CA), according to the
manufacturer's instructions. Each RNA sample was treated with
DNase I (Takara, Dalian, China) for 15minutes at 37°C to remove
residual genomic DNA. RNA quantity and purity were analyzed
using a Bioanalyzer 2100 (Agilent, Palo Alto, CA), and RNA
samples with Integrity Number (RIN) value ≥ 7.5 were used for
further analysis. In each experimental condition, we randomly
selected two RNA samples and pooled 5 mg of RNA from each
sample. In total, six RNA pools were depleted of ribosomal
RNA using an Ribo-Zero™ rRNA Removal Kit (Illumina,
San Diego, USA), and the left poly-A−/+ RNA fractions were
February 2020 | Volume 10 | Article 1347
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then reverse-transcribed to create the final cDNA using a mRNA-
Seq sample preparation kit (Illumina, San Diego, CA). Finally, we
performed paired-end sequencing on an Illumina Hiseq 4000 (LC
Bio, Hangzhou, China) to yield 2 × 150 nucleotide reads,
following the manufacturer's recommended protocol.

Bioinformatics Analysis
Raw sequences quality was verified using FastQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/), and the reads
that contained adaptor contamination, low quality, and
undetermined bases were removed by Cutadapt (Martin,
2011). Filtered data from each library was aligned to the
Sscrofa11.1 reference genome downloaded from Ensembl
genome website (ftp://ftp.ensembl.org/pub/release-94/fasta/sus_
scrofa/dna/) with TopHat v2.1.1 (Kim et al., 2013), and
transcript assembly and abundance estimation were performed
using Cufflinks v2.2.1 (Trapnell et al., 2012). Each assembly was
then merged using Cuffmerge to create a single transcriptome
annotation with known porcine genes in gtf format (ftp://ftp.
ensembl.org/pub/release-94/gtf/sus_scrofa) for subsequent
protein-coding gene analysis. To predict circRNA candidates,
five different algorithms including CIRCexplorer2 (Zhang X.
et al., 2016), circRNA_Finder (Fu and Liu, 2014), CIRI (Gao
et al., 2015), find_circ (Memczak et al., 2013), and MapSplice
(Wang et al., 2010) were performed on each RNAseq library.
Only circRNA candidates identified by all five approaches were
considered for further evaluation. Following the above primary
analysis, expression levels of all coding genes in each library were
estimated from the TopHat alignments as fragments per kilobase
of exon per million mapped reads (FPKM), and Cuffdiff,
included in the Cufflinks package, was used to compare
expression levels between NS and HS with a false discovery
rate (FDR) value < 0.05. The abundance of circRNA candidates
was calculated with back-spliced junction read count (Zhang
et al., 2014). Then, the edgeR software package (Robinson et al.,
2010) was used to examine the differential expression (DE) of
circRNA candidates with P value < 0.05 and fold change ≥ 2.
Finally, Biological Processes GO terms and KEGG pathway
analysis of the DE genes were performed using DAVID gene
functional classification (https://david.ncifcrf.gov/).

CeRNA Network Construction
Putative interactions between the DE circRNAs and lactation-
related coding genes that responded to HS in our paper were
evaluated by competing to bind with shared miRNAs. Porcine
maturemiRNAspublished inmiRBase (http://www.mirbase.org/)
were prepared for further analysis. In details, the construction of
ceRNA networks included three steps: (1) the correlations
between DE circRNAs and lactation-related genes were
calculated by the Pearson test, and only nodes in positive
circRNA-gene interactions were retained; (2) the circRNA-
miRNA and mRNA-miRNA interactions were predicted by
miRanda algorithm (Betel et al., 2010) with with energies
of ≤ −20.0 kcal/mol and no mismatch in the seed region
(positions 2–8 in the 5′ end); (3) potential circRNA-miRNA-
gene interactions were established and visualized using Cytoscape
V3.4 (http://cytoscape.org/).
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Validation of Sequencing Data by
Reverse transcription quantitative real-
time polymerase chain reaction (RT-qPCR)
Total RNA from the NS and HS samples were isolated with
Trizol reagent (Invitrogen, Carlsbad, CA), and cDNA synthesis
was conducted using PrimeScript RT reagent Kit (Takara,
Dalian, China) with random hexamers. Quantitative PCR was
used to analyze the expression changes of the chosen transcripts
with SYBR Premix Ex Taq II (Takara). All primers are listed in
Table S1, and final expression data were calculated using the
2−DCt method using porcine GAPDH as a reference gene.

Sequencing Data Submission
All sequencing raw datasets have been deposited into the National
Center for Biotechnology Information (NCBI) Sequence Read
Archive (SRA) database (https://www.ncbi.nlm.nih.gov/sra/)
with the BioProject accession number PRJNA578241.

Statistical Analysis
The statistical analysis was performed using by SPSS 17.0
Statistics Software (Chicago, IL, USA). The results of ELISA
and RT-qPCR analysis between two groups were compared with
independent t-test; the correlation analyses of DE circRNAs with
lactation-related coding genes were tested by function cor (x, y,
use = “p”), and illustrated with function labeledHeatmap
(Matrix, xLabels, yLabels) in R package WGCNA (http://127.0.
0.1:11153/library/stats/html/cor.html).
RESULTS

Sow and Litter Performance
This study was performed during December 2016 and during
August 2017. During the winter experimental stage, ambient
temperatures and relative humidity averaged 14.3 ± 0.81°C and
65.0% ± 0.69%, while the corresponding values for the hot season
were 32.7 ± 1.40°C and 76.1% ± 0.38%, respectively. The effects of
ambient temperature on the serum stress-associated variables of
lactating sows are presented in Figure S1. Blood heat shock
protein 70 (HSP70), lactate dehydrogenase (LDH), and
immunoglobulin G (IgG) levels were significantly higher in the
HS cohort compared with the NS group (P < 0.05). In contrast,
serum superoxide dismutase (SOD) and prolactin (PRL)
concentrations were lower in the HS population (P < 0.05). The
high temperature group had significantly lower serum cortisol
(COR) concentration than the NS group (P < 0.05). In addition,
there was no effect of thermal stress on the number of piglets born
alive, litter birth weights, or piglets alive per litter at weaning (P >
0.05, Table 1). In contrast, litter weights at weaning were
significantly higher in the NS cohort than the HS cohort (P <
0.05). And a reduced average daily weight gain of piglets (193.9 ±
2.19 vs. 218.0 ± 1.89 g, respectively, for the HS and NS cohorts)
was associated with the environment with a high temperature.
Thermal stress also altered the milk composition of lactating
sows. In particular, sow milk had less butterfat, and lactose when
sows lactated in the hot environment (P < 0.05), and milk in the
February 2020 | Volume 10 | Article 1347
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HS group had a downward trend for total milk solids and milk
protein levels (Figure 1). HS individuals tended to have much
lower casein alpha s1 (CSNas1) and s2 (CSNas2) distributions
(P < 0.01), while casein beta (CSNb) and casein kappa (CSNk)
concentrations decreased from 343.59 ± 6.42 mg/ml and 7.47 ±
0.16 mg/ml in the HS group to 259.14 ± 7.96 mg/ml and 6.35 ± 0.12
mg/ml in the NS group (P < 0.01), respectively. Under HS, we
found no overall differences in whey acidic protein (WAP)
concentrations between the NS and HS groups (P = 0.067),
although there was a slightly decreasing trend in the HS group
(Table 2).
Frontiers in Genetics | www.frontiersin.org 4442
RNA Sequencing and Transcript Analysis
Six cDNA libraries were constructed from porcine mammary
tissues exposed to thermal stress or to suitable temperatures.
Each RNA-seq library generated approximately 94.52 ± 2.83
million raw reads of 110 nt in length, representing about 3.70 ±
0.11 fold coverage of the porcine genome. After quality control
trimming, a total of 88.08 ± 2.65 million valid reads were
obtained, accounting for 93.19% ± 0.23% of the raw reads in
each library. We aligned all valid reads onto the porcine
Sscrofa11.1 reference genome and found that over 80.55% ±
1.63% of the reads could be mapped successfully to the genome,
including 76.13% ± 1.63% of the mapped reads with proper pair
alignment in the six libraries (Table S2A). In addition, most valid
reads were mapped to exons (77.51% ± 2.64%), 17.27% ± 2.02%
were mapped to introns, and the rest to intergenic regions
(5.22% ± 0.62%), indicating confidence in the quality of library
construction and sequencing analysis.

Transcript assemblies from porcine mammary tissue with
Cufflinks revealed a total of 133,145 isoforms across six samples,
including approximately 37.33% identified candidates that
completely matched Ensembl transcript regions (Table S2B).
A comparison of known Ensembl transcripts revealed that
36,271 isoforms were expressed across all tissues; NS-specific
units accounted for 82.08% of known Ensembl isoforms, while
81.37% of the known isoforms existed in the HS libraries (Table
S2C). Raw Ensembl gene expression levels were quantified by the
FPKM algorithm, and the 10 most prevalent functional isoforms
accounted for 7.97% ± 0.62% of the total raw reads. In addition,
seven gene candidates of PAEP, CSN1S1, CSN3, CSN2, JCHAIN,
COX1, and NUPR1 were shared in the top 10 expressed genes in
each sequencing library. These highly expressed isoforms are
well-known as having key functions in the lactation process,
consistent with the physiological roles of genes expected to be
found in mammary gland tissues.
Identification of circRNA
Several tools have been developed for identification of circRNAs
based on back-spliced reads produced from high-throughput
RNA sequencing datasets (Hansen et al., 2015). Due to the
rearranged exon ordering, these back-spliced events usually
cannot be mapped onto the reference genomes (Zhang et al.,
2014). In the present study, we identified 17.07 ± 0.25 (19.75% ±
0.80% of the valid reads) and 17.07 ± 3.19 (19.16% ± 3.55%)
million unmapped reads in the NS and HS libraries, respectively.
Among them, we found a total of 948.00 ± 23.98 thousand back-
spliced junction events (1.09% ± 0.04% of the valid reads) in the
rRNA-depleted libraries of NS animals, as well as 892.49 ± 80.27
thousand candidates in the HS libraries. We then compared five
different circRNA predicting algorithms and found a total of
31,031 unique circRNAs identified across six libraries. Of these,
19,642 were found by a single algorithm, accounting for 63.29%
of all the circRNAs identified (Figure 2), indicating that the
circRNA landscape differs quite dramatically depending on the
algorithm used. In particular, find_circ and MapSplice exhibited
the highest and lowest level of sensitivity; this is in part reflected
in the total number of circRNAs predicted, where find_circ and
FIGURE 1 | Effect of thermal stress on milk composition of lactating sows. a
and b denote values that differ significantly at P < 0.05, and A and B denote
values that differ significantly at P < 0.01 (N = 30).
TABLE 2 | Effect of thermal stress on lactoprotein distribution of lactating sows.

Variables Summer (N = 30) Winter (N = 30)

CSNas1, mg/ml 592.03 ± 23.31B 693.63 ± 16.35A

CSNas2, mg/ml 282.31 ± 15.00B 409.85 ± 9.27A

CSNb, mg/ml 259.14 ± 7.96B 343.59 ± 6.42A

CSNk, mg/ml 6.35 ± 0.12b 7.47 ± 0.16a

WAP, ng/ml 447.87 ± 14.67 484.14 ± 13.65
CSNas1, casein alpha s1; CSNas2, casein alpha s2; CSN2, casein beta; CSN3, casein
kappa; WAP, whey acidic protein. a and b denote values that differ significantly at P < 0.05,
and A and B denote values that differ significantly at P < 0.01.
TABLE 1 | Production traits of tested sows and piglets between summer and
winter.

Variables Summer (N = 30) Winter (N = 30)

Number born alive 10.8 ± 0.13 10.9 ± 0.09
Weaning survival 10.4 ± 0.13 10.5 ± 0.11
Litter birth weight, kg 14.9 ± 0.18 15.2 ± 0.17
Weight of weaning litter, kg 61.3 ± 0.73B 67.2 ± 1.59A

Average daily gain, g 193.9 ± 2.19B 218.0 ± 1.89A
A and B denote values that differ significantly at P < 0.01.
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MapSplice output the highest and lowest number of circRNA
species (27,439 and 2,399, respectively) compared to
CIRCexplorer2, circRNA_finder, and CIRI methods (7,865,
10,451, and 6,841 species, respectively; Table S3). To limit the
level of false positive circRNAs, only circRNA candidates
identified by all five approaches were considered for further
evaluation. Of the 31,031 predicted circRNAs, only a modest
overlap of 1,728 circRNAs (5.57%) was observed among the five
prediction pipelines. These 1,728 circularization events were
found to be produced from 1,157 hosting isoform loci,
including 571 transcripts that generated more than one
circRNA. For instance, we found that the porcine genes
SEC24A and SLC5A10 had nine and eight predicted circRNAs,
respectively, and there were seven circularization events
predicted from the BAZ2B, PIAS1, and CCAR1 genes
(Table S4A).

Differential Expression and Functional
Analysis
To identify dissimilarities between the tested individuals,
principal component analysis (PCA) of the globally expressed
transcript with the FPKM levels was performed (Figure 3). This
analysis indicated that the differences in expression between the
NS and HS groups were greater than the differences between
pools from each particular group. Therefore, we employed the
Cuffdiff algorithm to analyze differences in mammary gland gene
expression between the NS and HS groups to identify candidate
transcripts that are responsive to thermal stress. In our dataset
there were over 40,000 unique Ensembl transcripts sequenced,
most of which had a very small FPKM value in total across all
libraries. In order to filter out false-positive results, we only kept
confident transcripts that were expressed in at least three
libraries, and finally 9,789 tags were identified in our study
(Table S5A). Among these, we detected a total of 67
differentially expressed (DE) transcript events by a limited cut-
off of FDR < 0.05, representing 63 protein-coding genes, with 42
transcripts increased and 25 transcripts decreased in the HS
groups compared to the NS group (Table S5A). Analysis of gene
Frontiers in Genetics | www.frontiersin.org 5443
ontology (GO) enrichment for DE genes, using identified porcine
genes as background in the current experiment, revealed that
these genes were significantly enriched in lactation-related
functions or stress-inducible biological processes, including
“lactation”, “defense response”, “inflammatory response”,
“response to stimulus”, and “regulation of immune system
process” (Table S5B). These 67 DE genes are significantly
involved in only one KEGG signaling pathways, termed as toll-
like receptor signaling pathway. Although the role of these genes
needs to be validated experimentally, the GO and KEGG
pathway analyses collectively illustrate some possible avenues
to improve HS resistance of lactating sows. In addition, we also
clustered differential porcine circRNA expression counts
between NS and HS libraries, as determined by the
CIRCexplorer2 algorithm, and normalized with trimmed mean
of M-values (TMM) (Robinson et al., 2010). In total, only 50 out
of 1,728 identified circRNAs were DE, including 29 up-regulated
candidates and 21 down-regulated candidates in the NS samples
compared with the HS samples (Table S4B).

Functional Interactions Between circRNA
and mRNA
To identify possible correlations between circRNA and mRNA
expression, we first used the Pearson test and found a total of
1,423 significant interactions between DE circRNAs and DE
genes in our study (Table S6). In Table S6 we identified 464
sponge modulators participating in 100 miRNA-mediated
regulatory interactions, including 45 circRNAs and 36 unique
mRNAs. In addition, the Pearson analysis also revealed 84
significant interactions between DE circRNAs and four
lactation-related coding genes (CSN1S1, CSN1S2, CSN3,
WAP) that were annotated by GO analyses, and these
interactions included 42 positive significant interactions and 42
negative interactions (Table S6). We observed that the highest
expressed circRNA, circCSN1S1_2, was significantly and
FIGURE 2 | Common circRNA candidates identified by all five approaches.
FIGURE 3 | Principal component analysis of assembled transcripts in six
libraries. PC, principal component; NS, non-heat stress; HS, heat stress.
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positively associated with the expression of the CSN1S1, CSN1S2,
CSN3, and WAP genes; interestingly, these gene products
represent the main components of lactoprotein. Recent reports
also showed that diverse RNA species can communicate with and
co-regulate each other by competing to bind with shared
miRNAs, acting as competing endogenous RNAs (ceRNAs)
(Tay et al., 2014). We constructed circRNA-miRNA-mRNA
networks by pairing the shared miRNA recognition sequences.
In total, we generated a network that contained eight nodes and
five connections formed between four circRNAs, three miRNAs,
and CSN1S1 gene, including five circRNA-miRNA interactions
and three mRNA-miRNA interactions (Table S7). Of these, the
circCSN1S1_2-miR-204 (miR-670)-CSN1S1 ceRNA axis was
established, corresponding well with the ceRNA hypothesis.

RT-qPCR Analysis
Based on ceRNA networks involved in mammopoiesis and
lactogenesis under HS that we constructed, we identified a total of
10 interaction core genes (Figure S2). We validated expression of
these core genes by RT-qPCR, including eight lactation-related
coding genes, one heat-response gene, and circCSN1S1_2, which
had the highest expression levels in our study. Divergent and
convergent primers were designed for circRNA candidates
according to the method described in previous study (Sun et al.,
2017). All tested candidate genes showed consistent expression
patterns between RT-qPCR and sequencing analysis, suggesting
that our estimation of abundance was accurate. Briefly, the
expression of coding genes for lactoprotein were significantly
lower in HS sows (P < 0.05), except for CSN3, which decreased in
HS sows, but the change was not significant. Usually, HSP family
member proteins have important roles as molecular chaperones
that help prevent apoptosis under various stress conditions,
including HS (Sakatani et al., 2012). In agreement with the
sequencing analysis, HSP90AA1 showed a strong induction in
response to HS, and it had high expression levels in the HS group.
In addition, expression of circCSN1S1_2 was significantly lower in
HS sows, demonstrating the validity of our post-transcriptional
ceRNA regulatory model.
DISCUSSION

In general, HS is caused by a combination of environmental
temperature, relative humidity, solar radiation, air movement
and precipitation, and the majority of studies on HS in livestock
have focused mainly on temperature and relative humidity
(Bohmanova et al., 2007). In our experiment, the average
temperatures and humidity levels during the HS challenge
were 32.7 ± 0.40°C and 76.1 ± 0.38%, respectively; thus, the
lactating sows in our test might be under HS (Bergsma and
Hermesch, 2012). We observed greater concentrations of LDH
and HSP70, and a decrease of COR levels in sows under HS
conditions, compared with those in an NS climate; these values
are generally considered as indicators of stress in pigs (Yu et al.,
2010; Belhadj Slimen et al., 2016). Enhanced levels of serum LDH
is a biomarker of liver damage in hyperthermic animals (Ozaki
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et al., 1995). Cao et al. (2011) reported that chronic HS induces
significant increases LDH levels in rat plasma; this report was
similar to what we observed in lactating sows. HSPs are
molecular chaperones that differ in regards to their biological
functions and molecular weights (Feder and Hofmann, 1999).
Among the various HSP classes, HSP70 levels are associated with
the acquisition of thermotolerance (Bedulina et al., 2013). In
farm animals, HS significantly increases serum HSP70
concentrations in beef cattle (Gaughan et al., 2013), dairy cow
(Min et al., 2015), buffalo (Manjari et al., 2015), sheep (Romero
et al., 2013), goat (Dangi et al., 2015), and broiler chicken (Gu
et al., 2012); these reports are in excellent agreement with the
experimental results in our study. In addition, Wang et al. (2015)
reported that acute heat exposure significantly elevated levels of
COR in rats, and porcine serum COR levels rapidly increased
when individuals were subjected to 40°C for 5 hours (Yu et al.,
2010). In contrast, summer temperature-induced HS
dramatically repressed COR concentrations in the present
study. This finding may be due to the different effects between
short-term acute HS and chronic HS. Generally, short-term heat
exposure increases plasma COR levels, while long-term exposure
decreases them (Du Preez, 2000). Christison and Johnson (1972),
and Wiersma and Stott (1974) noted a similar trend in dairy
cattle exposed to hot summer conditions. HS has been suggested
to be responsible for inducing oxidative stress and immune
responses in livestock animals during the summer (Das et al.,
2016). In the present study, serum SOD and IgG levels were
higher in the HS group than in the NS group, suggesting that the
antioxidative and immune function of sows increases to adapt to
the adverse environment. Recently, elevated concentrations of
SOD and IgG were also reported to be sensitive to ambient
temperature in broiler chickens (Azad et al., 2010), lactating
buffaloes, and cows (Lallawmkimi et al., 2013; Yatoo et al., 2014).
PRL is vital for lactogenesis (Akersr et al., 1981), and
concentrations of plasma PRL decrease in dairy cows during
thermal stress (Tao et al., 2011). In agreement with previous
studies, our data demonstrated a significant reduction in porcine
PRL levels due to elevated ambient temperature.

In our study, no significant effects of HS were observed on the
number of live piglets born per litter, nor on litter birth weight;
similar findings were reported by Lucy and Safranski (2017), who
demonstrated no clear influences of gestational HS on the
number of piglets born live per litter. The seasonal influences
of our study and that have been reported previously on piglet
traits at birth are mainly caused by a delayed response to ambient
temperature, i.e. sows were mated and conceived during the cool
season and subsequently farrowed in the hot season; it is
established that the primary effects of temperature on litter
traits in piglets primarily occur during the first 4 weeks of
gestation (Tummaruk et al., 2004). The HS sows weaned
piglets that were approximately 0.5 kg lighter in our study than
the NS sows. This represented an about 8.47% decrease in
weaning weight, and is in accordance with the results of
Williams et al. (2013). In addition, piglets were more
susceptible to heat-induced reductions in piglet weight gain
during early lactation, in concordance with a study by Spencer
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et al. (2003), who reported a 17% decrease in piglet weaning
weight when lactation period lasted 14 days. We observed a
downward trend of high temperature on total milk solids, which
were reduced by approximately 8.77%, including specific losses
in milk fat and lactose content by about 14.69% and 10.45%,
respectively. Generally, milk composition varies considerably
throughout the seasons, as showed in multiple farm animals
included Holstein cows (Shwartz et al., 2009; Bernabucci et al.,
2015), dairy goats (Chornobai et al., 1999), and mares
(Markiewicz-Kęszycka et al., 2015). In dairy cows, lower milk
fat (Bernabucci et al., 2015) and lactose (Shwartz et al., 2009)
values are recorded during the summer months, in
correspondence with an increase in Temperature Humidity
Index. A similar trend of variation in milk composition was
also reported for goat milk, and high air temperature in the
summer was significantly negatively correlated with goat milk
physico-chemical characteristics (Chornobai et al., 1999). In
particular, the milk characteristics most highly affected by air
temperature were fat and lactose contents, with correlation
coefficients of −0.90 and −0.77, respectively. In contrast, mare
milk collected in summer had a significantly higher fat content
than in autumn, but the average concentration of lactose was
similar for milk collected in summer and in autumn, and showed
no specific significant seasonal variations (Markiewicz-Kęszycka
et al., 2015). These large discrepancies observed in lactating
mares may be due to differences in experimental animals (sows
and cows vs. mares) or differences in climate conditions (32.7 ±
0.40°C vs. 23.15 ± 1.61°C in the summer). In agreement with a
study comparing lactating sows exposed to high ambient
temperature (Renaudeau and Noblet, 2001), our results showed
no significant effects of elevated ambient temperature on milk
protein, but HS during summer significantly decreased CSNas1,
CSNas2, and CSNk concentrations in milk. These results
confirmed those obtained by Bernabucci et al. (2015) carried
out in dairy cows, in which it was reported that the concentration
of CSNa during summer months was 22.6% lower than in the
winter, and was 16% lower than in the spring. CSNk levels were
also 9.7% lower during summer than in the winter. Our study
agrees with previous studies, and indicates that there is a
significant seasonal effect on CSN fractions in domestic
livestock milk.

Generally, heat-stressed lactating sows reduce their feed
intake, leading to loss of milk production, which can negatively
affect piglet growth and development during lactation (Ribeiro
et al., 2018). However, Rhoads et al. (2009) and Wheelock et al.
(2010) have recently demonstrated that reduced nutrient intake
only accounts for about 35%–50% of the HS-induced decrease in
milk synthesis. A large portion of the thermal effects on animal
lactation may be a consequence of energy intake-independent
changes (Wheelock et al., 2010), resulting from genetic
regulation of nutrient partitioning during HS (Collier et al.,
2008). In the current study, we therefore used RNA-Seq to find
the underlying molecular mechanisms of milk synthesis under
HS in lactating sows. Sequencing revealed a total of 19,032
unique Ensembl genes in lactating porcine mammary tissues,
while genes encoding caseins, whey proteins, and enzymes
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involved in lactogenesis pathways showed higher expression
than other genes with RPKM values. Similar results were
obtained in cows (Wickramasinghe et al., 2012), goats (Shi
et al., 2015; Crisà et al., 2016), and humans (Lemay et al.,
2013). A total of 16,892 genes were expressed in bovine milk
somatic cells during early lactation, as well as 19,094 in peak
lactation and 18,070 in late lactation, and LGB (b-lactoglobulin),
CSN2 (b-casein), CSN1S1 (a-S1-casein), LALBA (a-
lactalbumin), CSN3 (k-casein), and CSN1S2 (casein-a-S2) were
identified as having the highest expression in milk, based on
RPKM values (Wickramasinghe et al., 2012). Approximately
16,024 ovine NCBI unigenes were found to be expressed in
mammary glands (Shi et al., 2015), and CSN2, CSN3, CSN1S1,
CSN1S2, LALBA, and LGB were the most abundant in the
mammary gland transcriptome (Shi et al., 2015; Crisà et al.,
2016). In human mammary cells, Lemay et al. (2013) reported
14,629, 14,529, and 13,745 unique genes expressed in colostral,
transitional, and mature stages of lactation, and b-casein and a-
lactalbumin transcripts made up 45% of the total mRNA
expression during lactation. Of the top genes identified in our
study, CSN1S2 had the highest expression among the CSN
family, followed by CSN2, CSN1S1, and CSN3, which were in
discordance with the composition of caseins identified by
ELISA analysis. We found that porcine casein-a-S1
constituted up to 51.94% of the caseins in our study. One
possibility for this discrepancy was that the abundant caseins
are broken into bio-active peptides, and therefore their
concentrations are not accurately reflected in the analysis of
major milk component proteins. The expression of bio-active
peptides formed by cleavage of caseins are higher toward the
beginning of lactation (Silva and Malcata, 2005). Another
possible explanation is that even though there was high
expression of the genes encoding caseins, the protein
synthesis may not be efficient in sows that were in negative
energy balance, or that were limited in dietary intake of essential
amino acids (Wickramasinghe et al., 2012).

In order to further reveal the mechanism of response of
lactating sows to HS, we focused on identification of differently
expressed genes in response to high ambient temperature.
Functional annotation analysis identified that four of these DE
genes have principal roles in lactogenesis, including four down-
regulated genes (CSN1S1, CSN1S2, CSN3, and WAP) in the heat
stressed individuals. The CSN1S1, CSN1S2, CSN3, and WAP
proteins are the main components of lactoprotein that is usually
reduced in response to HS in dairy animals (Bernabucci et al.,
2015), and the gene expression analysis was in accordance with
the results of the ELISA assay.

Recently, a class of non-coding RNAs, called circRNAs, has
been identified across the animal kingdoms (Memczak et al.,
2013). These circRNAs usually act as ceRNAs to regulate other
coding genes by sharing specific miRNA binding sites (Salmena
et al., 2011). Multiple types of circRNA-mediated ceRNA
interactions have been linked to various physiological or
pathological states, including members of the miRNA-2284
family that are sponged by circCSN1S1 to regulate bovine
casein translation (Zhang et al., 2015). Therefore, in the
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present study we carried out a circRNAome analysis of porcine
mammary tissues between NS and HS groups. We identified 50
candidate circRNAs out of 1,728 identified circRNAs that were
DE between the NS and HS groups. Based on the ceRNA
hypothesis, 42 positively correlated circRNA-mRNA
interactions were constructed between the four lactogenic
genes and the DE circRNAs using the Pearson algorithm. Of
these interaction pairs, analysis by the miRanda application
(Enright et al. , 2003) revealed four circRNA-mRNA
interactions that were predicted to share the same miRNA
regulatory elements. In particular, the circCSN1S1_2 binds
competitively with miR-204 to increase expression of its
hosting gene, CSN1S1. A similar ceRNA network was strongly
suggested between circFoxo3 and Foxo3mRNA in tumor growth
and angiogenesis (Yang et al., 2016). Yang et al. reported that
circFoxo3 shared identical sequences with the Foxo3 gene to bind
miR-22, miR-136, miR-138, miR-149, miR-433, miR-762, miR-
3614-5p, and miR-3622b-5p. These observations indicated that
the expression of circRNAs might be related to the expression of
their parental genes. Taken together, several circRNA-miRNA-
mRNA axes were shown to be likely involved in porcine
lactogenesis under HS, and these findings provide novel
perspectives on circRNA-associated ceRNA networks for future
research in sow lactation.
CONCLUSION

We found that constant elevated ambient temperature and HS
has negative consequences on piglet growth and performances
due to decreased milk production and characteristics of lactating
sows. Thermal stress altered genome-wide profiles of circRNAs
dramatically in lactating porcine mammary tissue, and these
heat-induced circRNAs might participate in mammopoiesis and
lactogenesis by post-transcriptional regulation of ceRNA
networks. Our results provide novel rationale to investigate
circRNA functions in the lactating sow response to HS, and
additional research is necessary to quantify and understand
these effects.
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