About this Research Topic
The distinction between the different possible models is not straightforward, but it is crucial to obtain more accurate estimates of trends and corresponding uncertainties. Specific methodological approaches for trend assessment have been put forward, particularly in the statistical and econometric literature, but often remain out of reach for practical studies and environmental applications. On the other hand, environmental time series exhibit specific features and pose characteristic methodological challenges that are of interest for time series analysis and statistical applications.
This Research Topic aims to bridge the gap between methodological developments in trend estimation and time series analysis, and the specific environmental fields of application of trend assessment including climate, atmospheric, soil, hydrological and ecological studies. Methodological approaches to be covered include time series regression, long-term memory and scaling, nonlinear and quantile regression, and multivariate trend estimation. Multidisciplinary contributions combining trend assessment methodologies and environmental case studies and applications are particularly welcome.
Keywords: time series, trend assessment, regression, long-memory, modeling, climate change, environmental systems
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.