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Editorial on the Research Topic

Machine Learning in Biomolecular Simulations

Interest in machine learning is growing in all fields of science, industry, and business. This interest
was not primarily initiated by new theoretical findings. Interestingly, the theoretical basis of the
majority of machine learning techniques, such as artificial neural networks, decision trees, or kernel
methods, have been known for a relatively long time. Instead, there are other effects that triggered
the recent boom of machine learning.

First, machine learning needs data to learn on. Huge data sets from Internet, Internet of Things,
social networks, phones, wearable devices, and other sources are now available. Such datasets were
not available a decade ago. Second, the recent wave of machine learning benefits from hardware
advances, in particular from computing on graphical processing units and specialized hardware.

Biomolecular modeling and simulations are an ideal field for the application ofmachine learning
approaches in the spirit of the recent boom of machine learning. Biomolecular simulations produce
large amounts of data in the form of trajectories that can be used to train machine learning
algorithms. At the same time, vast amounts of genomic data were critical in allowing AlphaFold in
leading the field of de novo protein prediction in the most recent CASP protein prediction round.
Moreover, GPUs are routinely used in biomolecular simulations for more than a decade to offload
critical parts of calculation.

This Research Topic collects eight innovative works showcasing the application of machine
learning in biomolecular simulations and related fields. It demonstrates major machine learning
approaches such as artificial neural networks, random forests, and non-linear dimensionality
reduction methods. These techniques are applied in analysis of trajectories, acceleration of
biomolecular simulations, parametrization of force fields, and other tasks.

Helfrecht et al. present an alternative to classical definitions of structural motifs in proteins.
Classical definitions of secondary and super-secondary structures are based on intuitive criteria,
such as hydrogen bonds, dihedral angles, and others and have been widely used. However, they
experience problems with borderline and partially disordered structures. This article presents
an alternative based on machine learning, namely on Probabilistic Analysis of Molecular Motifs
algorithm previously developed in the group.

The article from Trapl et al. presents a program Anncolvar. This tool makes it possible to
approximate a collective variable using a simple neural network. The choice of optimal collective
variables is crucial to the convergence of enhanced algorithms based on them. Anncolvar is
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shown to be very useful for collective variables that cannot
be explicitly calculated on-the-fly or computationally expensive
collective variables.

Wang et al. used classical as well as by unsupervised and
supervised machine learning methods (principal component
analysis, random forest) to analyze protein dynamics. They
analyzed trajectories of an enzyme linked to antibiotic resistance
β-lactamase, simulated in multiple conformational states.

Intrinsically disordered proteins (IDPs) are a hot topic given
that about 10% of all proteins are disordered, and about 40%
of eukaryotic proteins have at least one long disordered loop. It
has been shown that proteins can have a function despite not
having a stable conformation. This brings a new challenge in
analysis of dynamics. Grazioli et al. use machine learning and
network models on simulation trajectories of amyloid beta in
its wild type and its medicinally relevant mutant. They show
that machine learning analysis can explain the difference between
protein variants. This was not possible by conventional trajectory
analysis methods.

There is a growing number of works indicating that molecular
mechanics potentials (force fields) developed for compactly
folded proteins may fail in modeling of unfolded proteins
and especially IDPs. This fact motivated Demerdash et al. to
optimize force field for IDPs on the basis of data from small-
angle X-ray/neutron scattering. This was done by iterative
rounds of molecular dynamics simulations and comparison
with experimental data. This approach was demonstrated on
three IDPs.

The article of Agajanian et al. drives us more into the
bioinformatics area. Recent applications of next-generation
sequencing makes it possible to identify the role of mutations
associated with cancer. The authors integrated multiple
machine learning approaches to classify mutations an
the basis of nucleotide sequence. The approach is further
illustrated on biomolecular simulations of cancer associated
protein kinases.

Tribello and Gasparotto use unsupervised machine learning
methods to analyse simulation trajectories. Trajectory of the
C-terminal fragment of the immunoglobulin binding domain
B1 of protein G of Streptococcus was used as a model
trajectory and analyzed by a range of mostly non-linear
dimensionality reduction methods, namely principal component
analysis, distance matching, Laplacian eigenmaps, Isomap, tSNE,
and sketchmap. These methods are illustrated together with
clustering methods. The article provides an overview of these
methods and their advantages and disadvantages are discussed.

Kinetics of drug unbinding is recently becoming equivalently
or even more important than binding thermodynamics in
drug design as a parameter distinguishing between good and
bad compounds. The article of Kokh et al. addresses this
problem by machine learning. There are several trajectories
of spontaneous drug binding available in literature. Drug
unbinding is several orders of magnitude slower and today
cannot be simulated without enhanced sampling. The authors
analyzed a series of trajectories from enhanced sampling method
Random Accelerated Molecular Dynamics, in particular its
variant designed for simulation of drug unbinding kinetics. The
approach has been tested on a series of heat shock protein 90
ligands differing by four orders of magnitude in their unbinding
rates. Excellent agreement with experiment was obtained for
most classes of compounds.

We believe that the papers included in this Research
Topic demonstrate the great potential of machine learning in
all fields pertaining biomolecular modeling and simulations,
including in improving the accuracy of the models, in the
analysis of molecular simulations and in providing effective
variables to enhance the sampling. With this Research Topic
Frontiers in Molecular Biosciences aspires to become a key
forum for publishing of approaches combining machine
learning with biomolecular simulations and further promote this
multidisciplinary field.
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Rationalizing the structure and structure–property relations for complex materials such as
polymers or biomolecules relies heavily on the identification of local atomic motifs, e.g.,
hydrogen bonds and secondary structure patterns, that are seen as building blocks of
more complex supramolecular and mesoscopic structures. Over the past few decades,
several automated procedures have been developed to identify these motifs in proteins
given the atomic structure. Being based on a very precise understanding of the specific
interactions, these heuristic criteria formulate the question in a way that implies the
answer, by defining a list of motifs based on those that are known to be naturally
occurring. This makes them less likely to identify unexpected phenomena, such as the
occurrence of recurrent motifs in disordered segments of proteins, and less suitable to be
applied to different polymers whose structure is not driven by hydrogen bonds, or even
to polypeptides when appearing in unusual, non-biological conditions. Here we discuss
how unsupervised machine learning schemes can be used to recognize patterns based
exclusively on the frequency with which different motifs occur, taking high-resolution
structures from the Protein Data Bank as benchmarks. We first discuss the application of
a density-based motif recognition scheme in combination with traditional representations
of protein structure (namely, interatomic distances and backbone dihedrals). Then, we
proceed one step further toward an entirely unbiased scheme by using as input a
structural representation based on the atomic density and by employing supervised
classification to objectively assess the role played by the representation in determining
the nature of atomic-scale patterns.

Keywords: atomistic and molecular simulation, machine learning, biomolecules, molecular motifs, hydrogen

bonds, secondary structure

1. INTRODUCTION

Macromolecules are characterized by their capability of folding and assembling into hierarchical
structures, which is a crucial element in their activity and stability. Understanding the structure of
a macromolecule is thus a key step in discerning its function. Proteins are the archetypal example
of complex molecular machines designed to perform unique and well-defined operations. Many
polypeptides exhibit distinct secondary and tertiary structures in their native state, which are
often used to explain their behavior. However, understanding and characterizing the structure of a
macromolecule, even in the case of small proteins, can be rather difficult.
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The structural description of a non-rigid molecule with many
degrees of freedom relies on the identification of motifs, which
can be used to classify their three-dimensional structure (e.g.,
an alpha-helix or beta-sheet in the case of a protein). The
most common motifs that characterize these kinds of structures
are intramolecular hydrogen bonds, such as those present in
polysaccharides, as well as distinct dihedral angle patterns that
are assumed by the backbone of a protein. Much work has
been dedicated to understanding and classifying hydrogen bonds,
ultimately producing several geometric criteria (e.g., distances
and angles between donors and acceptors) as well as energetic
criteria, to identify their presence or absence (Rahman and
Stillinger, 1971; Brown, 1976; Mezei and Beveridge, 1981; Baker
and Hubbard, 1984; Luzar and Chandler, 1993; McDonald
and Thornton, 1994; Luzar and Chandler, 1996; Xu et al.,
1997; Desiraju and Steiner, 2001; Arunan et al., 2011; Jeffrey
and Saenger, 2012). Likewise, tabulating the different backbone
dihedral angles exhibited by a macromolecule produces the so-
called Ramachandran plot (Ramachandran et al., 1963), which
finds widespread use in chemistry, biology, and biophysics
to aid in the identification of protein secondary structure
(Frishman and Argos, 1995).

There are several examples where this motif-based rationale
was successfully employed to identify the secondary structure
of proteins; the DSSP (Kabsch and Sander, 1983) and
STRIDE (Frishman and Argos, 1995) algorithms are two
notable examples. However, the identification of structural
motifs in proteins is often based on a combination of
human intuition and—sometimes generous—approximations,
and may not be unique or readily applicable to different
macromolecules. Moreover, the motif definitions are typically
based on assessments of specific structures or, in the case of the
hydrogen bond, focus solely on a single subset of the atomic
species that may be involved.

In this context, a statistical framework capable of
automatically identifying structural motifs that is free of
energy approximations and relies on system-agnostic definitions
would be advantageous. Having a purely data-driven definition
of various motifs would be particularly useful in the field of
bioinformatics, where they are used for structure prediction
or the development of scoring functions for processes like
protein-ligand docking. For example, Rosetta, one of the
most well-known energy functions, has been developed
to predict the structure of a protein given its amino acid
sequence and local structural features such as dihedral angles
(Simons et al., 1997, 1999).

Another example where purely data-driven definitions would
be advantageous is in secondary structure classification. While
several methods exist to classify protein secondary structure
(Kabsch and Sander, 1983; Frishman and Argos, 1995, 1996;
Jones, 1999; Cuff and Barton, 2000; Andersend et al., 2002;
Martin et al., 2005; Nagy and Oostenbrink, 2014; Haghighi et al.,
2016), these methods rely on amino acid sequences, hydrogen
bonding energies, geometrical criteria, or some combination
thereof. Machine learning techniques (Muggleton et al., 1992),
and neural networks in particular (Holley and Karplus, 1989;
Rost and Sander, 1993a,b; Jones, 1999; Cuff and Barton, 2000;

Akkaladevi et al., 2004;Wood andHirst, 2005; Rashid et al., 2016;
Zhang et al., 2018) have also been used to classify the secondary
structure of a protein based on a variety of features. Others
have developed schemes to classify conformational patterns and
secondary structure using dihedral angles alone (Hollingsworth
et al., 2012; Nagy and Oostenbrink, 2014), but there remains a
lack of a truly agnostic method for classifying (and predicting)
secondary structures.

In this work, we illustrate how it is possible to use machine
learning to obtain a statistical definition of atomic-scale motifs
based on a data-driven analysis. Given a descriptor of the
atomistic environments, we construct a probability density
representing its occurrence in a given dataset. Then, using the
Probabilistic Analysis of Molecular Motifs (PAMM) algorithm
(Gasparotto and Ceriotti, 2014; Gasparotto et al., 2018), which
casts the probability density into a Gaussian mixture model
(GMM), we find the most probable motifs in the distribution.
To create the density distribution we have used two different
approaches: one using classical geometric descriptors such as
interatomic distances and dihedral angles, and a more agnostic
scheme that uses the Smooth Overlap of Atomic Positions
(SOAP) framework (Bartók et al., 2013; Bartók and Csányi, 2015;
De et al., 2016) as the input representation. Themotif fingerprints
obtained in this way have a general definition and are transferable
between different systems. To illustrate this point, rather than
selecting proteins of a given family or with small variations in the
sequence, we have used entries from the Research Collaboratory
for Structural Bioinformatics Protein Data Bank (RCSB PDB)
(Berman et al., 2000). The motifs obtained from PAMM were
compared to a more “traditional” geometric definition of a
hydrogen bond and to DSSP- and STRIDE-assigned secondary
structures to assess their similarity. Furthermore, by comparing
the fidelity of the unsupervised classification given by PAMM
with that of a supervised scheme, we can assess whether
classification errors stem from an incomplete representation or
are a manifestation of the arbitrary nature of heuristic methods.

2. METHODS

The methods we used to represent structures and identify
molecular motifs have been already discussed elsewhere.We used
the PAMM scheme (Gasparotto and Ceriotti, 2014; Gasparotto
et al., 2018) to identify modes in the probability distribution of
atomic patterns. The PAMM algorithm takes as input a series
of vectors representing local environments (distances, angles or
more generic density-based representations such as SOAP feature
vectors Bartók et al., 2013; De et al., 2016), performs a kernel
density estimation on a sparse grid obtained by subsampling the
input data, and performs a density-based clustering to identify
local maxima in the estimate of the probability distribution.
Finally, each cluster is represented as a Gaussian mode, which
makes it possible to define probabilistic motifs identifiers (PMIs),
structural indicators taking a value between zero and one that
represent the degree of confidence by which a new local structure
can be assigned to each of the clusters. In what follows we
only summarize the aspects that are relevant to this specific
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application, explaining in detail the preparation of the structures
as well as how the pattern recognition has been performed
for each descriptor. All the structures used in the definition
of the structural motifs, regardless of the underlying descriptor
used, were obtained from the RCSB PDB database on January
31, 2018. Note that the PDB contains redundant entries, i.e.,
protein structures with very similar sequences. These redundant
structures were included in our analyses, and so the resulting
models are biased according to the redundancies of the PDB.

2.1. Hydrogen Bond Definitions
As a first benchmark of the application of automatic pattern
recognition schemes to (bio)polymers, we consider the case of the
hydrogen bond (HB). While there is no shortage of alternative
hydrogen-bond definitions based on structure, and PAMM has
already been applied to the identification of HBs in water and
ammonia (Gasparotto and Ceriotti, 2014; Gasparotto et al.,
2016), proteins offer a test case that is more chemically diverse
and one for which concrete definitions have been proposed.
The latter makes it possible to establish a comparison between
our automatic pattern recognition schemes and established
categorical descriptions.

2.1.1. Hydrogen Bond Data Selection
The downside of using experimentally determined structures as
the basis of our analysis is that the precision of the structural
determination—particularly for hydrogen atoms—is limited and
varies greatly between entries in the PDB. Given that hydrogen
positions are obviously central to the definition of a hydrogen
bond motif, only protein crystal structures obtained by X-
ray diffraction with a resolution better than 1.2 Å and that
included hydrogen atom positions were considered viable. Only
872 structures in the PDB met these requirements and could be
properly parsed. Given that each structure contains hundreds
of hydrogen bonds, this amount of data was sufficient for our
statistical analysis.

From each protein structure, we considered only N, O, and H
atoms with occupancy ≥ 0.95. Any oxygen and hydrogen atoms
belonging to water or other small molecules were excluded. Four
different hydrogen bond flavors were examined, depending on
the nature of donor and acceptor: (1) N−H···N; (2) N−H···O;
(3) O−H···O; (4) O−H···N.

2.1.2. Geometry Descriptors
For the determination of hydrogen bonding motifs, we examined
all triplets of atoms, where one (O or N) is considered as the
putative donor, one (O or N) is considered as the putative
acceptor, and one is the H atom taking part in the bond.
We considered separately the cases in which O and N act as
either the donor or the acceptor, i.e., N−H···N, N−H···O,
O−H···O, O−H···N. We did not use any additional criterion
to identify which atoms could be part of a hydrogen bond, which
means that the analysis considers as putative hydrogen bonds
also triplets in which the three atoms are chemically bound or
adjacent to one another in the backbone or in a side chain.
Most of the traditional definitions of hydrogen bonds would
implicitly discard these configurations and not consider them

altogether. While it would be straightforward to eliminate such
configurations as a preliminary step to our analysis, we retained
them to serve as a demonstration of the robustness of using
PAMM for identifying distinct structural patterns.

Even in protein structures obtained from high-resolution X-
ray diffraction, hydrogen positions are often “refined.” In other
words, each hydrogen atom is often fixed at a predetermined
distance from the atom to which it is covalently bound (Watkin,
2008; Cooper et al., 2010). To ensure that this artificial feature
would not further bias the clustering, only the donor–acceptor
and acceptor–hydrogen distances were chosen as geometrical
descriptors for each hydrogen bond. Ignoring the donor–
hydrogen distance does not limit the resolving power of a PAMM
analysis, but makes it impossible to automatically eliminate some
configurations with a very large donor–hydrogen distance. For
this reason, before proceeding with the clustering, we further
filtered the hydrogen bonds using the same geometric criteria
that has been used in earlier studies of hydrogen bonding in
water (Gasparotto and Ceriotti, 2014; Gasparotto et al., 2016),
which relies on all of the donor–acceptor, donor–hydrogen, and
acceptor–hydrogen distances (dDA, dDH , and dAH , respectively).
Those triplets in which the sum of dDH and dAH was greater
than 4.5 Å were discarded in addition to those in which dDH was
greater than dAH . The latter refinement reduces redundancies
when examining different hydrogen bond flavors, as a given
triplet with dDH > dAH in N−H···O is equivalent to that same
triplet with dDH < dAH in O−H···N; the donor and acceptor
labels have just been interchanged. With these conditions,
we identified several hundred thousand potential N−H···N
and N−H···O triplets and 40–60 thousand O−H···O and
O−H···N triplets that we retained for further analysis.

2.1.3. Clustering Parameters
To reduce the computational cost of the procedure while
sampling all relevant values of the dDA and dAH distances
we selected a sparse grid of 2000 configurations on which
we computed a kernel density estimation of the probability
distribution of different motifs. An approximately uniform
distribution of grid points is achieved using a well-established
farthest-point sampling (FPS) scheme (Ceriotti et al., 2013).
The kernel bandwidth and local scale factors were determined
automatically as discussed in Gasparotto et al. (2018). The
automatically determined bandwidth was scaled by a factor of
0.3 to account for the strong multi-modality of the distribution,
while we found the automatic choice of quick-shift distance to be
appropriate. Clusters with weights less than 10−5 in the resulting
mixture model were discarded, as they were sparsely populated
and did not meaningfully contribute to the overall probability
distribution and could be considered outliers.

2.1.4. Probabalistic Motif Indentifiers (PMIs)
For each hydrogen bond flavor, the PMI f (x) at a point x =

(dAH , dDA) is calculated as in Gasparotto and Ceriotti (2014) and
Gasparotto et al. (2018),

f (x) =
pHBG(x|µHB,6HB)

P(x)+ ζ
, (1)
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where pHB is the weight of the Gaussian G with mean µHB

and covariance 6HB describing the hydrogen bond, ζ is the
background parameter, set to 10−5 for our purposes, and P(x) is
the total probability density of the GMM,

P(x) =

N
∑

k

pkG(x|µk,6k), (2)

where N is the total number of clusters in the model.
The PMI for a distance–angle geometry-based definition of

the hydrogen bond is:

f (x) =











1, dDA < 3.5 Å, dAH < 2.5 Å, dDH < 1.5

Å, 6 ADH < 30.0◦

0, else

(3)

As another example, the DSSP (Kabsch and Sander, 1983)
definition of an N−H···O hydrogen bond, which is based on the
distances d between the atoms participating in the C−−O bond of
one residue and the N−H bond of another residue, can also be
used to construct a PMI.

To construct the DSSP-based PMI, we computed the required
DSSP distances for all {N, H, C, O} quadruplets in each protein
for which all four atoms have occupancy ≥ 0.95, and map
the quadruplet to (dAH , dDA) space simply by taking dAH as
the oxygen–hydrogen distance and dDA as the nitrogen–oxygen
distance. Then for each x = (dAH , dDA), we computed the joint
probability distribution

PHB(x) = P(x,EDSSP < −0.5 kcal/mol), (4)

where EDSSP is the DSSP electrostatic energy as defined in
Kabsch and Sander (1983). The DSSP-based PMI can then be
constructed following Equations 1, 2 by replacingG(x|µHB,6HB)
with the joint probability density PHB(x) and by defining the total
probability density as

P(x) = pHBPHB(x)+ (1− pHB)P(x,E ≥ −0.5 kcal/mol). (5)

where the weight pHB is the fraction of C−− O, N−H pairs that
have E < −0.5 kcal/mol. It should be noted that the DSSP PMI is
based on only a subset of the data used to define the PAMMPMIs
and contains approximately 550,000 N−H···O triplets. As stated
in 2.1.1 in the Methods, we discarded atoms from the analysis
that had an occupation less than 0.95 in order to train PAMM on
unambiguous atomic geometries. This, combined with the fact
that the DSSP definition requires the positions of C atoms, means
that the DSSP PMI was built considering only (C−− O, N−H)
pairs in the protein backbone for which each of the C, O, N, and
H atoms had an occupation< 0.95, narrowing the dataset.

In order to compare different HB definitions and to quantify
how often they disagree in identifying a local motif in x =

(dAH , dDA) space as an HB, we introduce the quantity

δAB =
1

λ

∫

Ptotal(x)fA(x)fB(x)dx
∫

Ptotal(x)
[

fA(x)+ fB(x)− fA(x)fB(x)
]

dx
, (6)

which is the probability that the PMIs A and B both identify
point x as an HB relative to the probability that either one or the
other identify an HB. Ptotal(x) is the total probability distribution
of observing (dAH , dDA) in the PDB dataset across all hydrogen
bond flavors. The normalization factor λ is included to account
for the fact that the PMIs f are posterior probabilities rather
than true probability distributions. Thus, λ is chosen such that
Equation 6 is equal to one when fA(x) = fB(x):

λ =

√

∫

Ptotal(x)f
2
A(x)dx

∫

Ptotal(x)
[

2fA(x)− f 2A(x)
]

dx
·

∫

Ptotal(x)f
2
B (x)dx

∫

Ptotal(x)
[

2fB(x)− f 2B (x)
]

dx

(7)

2.2. Dihedral Angles for Secondary
Structure Recognition
Secondary-structure patterns play a central role in rationalizing
the structure and behavior of proteins. Well-established
definitions exist based on the identification of HBs along the
protein backbone, such as STRIDE (Frishman and Argos, 1995)
and DSSP (Kabsch and Sander, 1983). There is, however, a
need for definitions of secondary structure that are based on
continuous structural coordinates, for instance, to bias atomistic
simulations or to perform structure searches (Pietropaolo et al.,
2008; Pietrucci and Laio, 2009). As an example of how one can
use PAMM to provide a definition of secondary structure motifs
that is based on a simple, local representation of the backbone,
we used the Ramachandran dihedrals (Ramachandran et al.,
1963), whose strong correlation to secondary structure has been
long appreciated (Hollingsworth et al., 2012; Wood and Hirst,
2005; Kountouris and Hirst, 2009).

2.2.1. Dihedral Angle Data Selection
Because the calculation of dihedral angles is not sensitive to
hydrogen atomic positions, the PAMM analysis of dihedral
angles included all experimental protein crystal structures from
the RCSB PDB (as of January 31, 2018) obtained from X-ray
diffraction with a resolution better than 1.5 Å, totaling 12,708
structures and 4,275,677 residues from which dihedral angles
could be extracted. Note again that no measures were taken to
discard redundant structures from the PAMM analysis, hence the
resulting mixture model is biased according to the redundancies
of the PDB.

2.2.2. Clustering and Secondary Structure

Classification
Using PAMM, a GMM of the backbone dihedral angles (φ
and ψ) calculated with BioPython (Cock et al., 2009) was
constructed. We performed a kernel density estimation on 4000
FPS grid points. In this case, we used a bandwidth scaling
factor of 0.15, and a scaling of the quick-shift threshold of
0.20, compared to the values determined automatically based
on the heuristics discussed in Gasparotto et al. (2018). We
found that the automatic parameters were smoothing excessively
the distribution, resulting in a loss of resolving power. We
determined the optimal parameters by monitoring the number
of clusters and their robustness as assessed by a bootstrapping
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analysis. We also constructed PAMM GMMs based on higher
dimensional feature spaces based on chains of φ and ψ angles
in consecutive residues. Here we again used 4000 grid points but
selected a bandwidth scaling factor of 0.30 and set the quick-shift
scaling to 0.80. Similar to the case of theHB, we discarded clusters
with weights< 10−5.

2.2.3. Comparison of Secondary-Structure Definitions
Given that each point x = (φ,ψ) corresponding to a single
amino acid residue is associated with a secondary structure
classification y from DSSP/STRIDE and a cluster assignment
A with probability p(A)(x) from PAMM, a joint probability
distribution P(A, y) can be constructed by summing the cluster
probabilities over all points xy with secondary structure y,

P(A, y) =
1

N

∑

xy

p(A)(xy), (8)

where N is the total number of residues considered. P(A, y)
characterizes completely the relationship between the two
definitions. Based on the joint probability we can compute
the marginals P(A) and P(y) and the conditional probabilities
P(A | y) and P(y | A), which provide equivalent information
and make it easy to identify the correspondence—if any—
between the PAMM-based PMI and the conventional definitions.
For reference, the DSSP and STRIDE secondary structure
classifications are as follows: B, isolated β-bridge; E, extended
strand; G, 310-helix; H, α-helix; I, π-helix; T, turn; S, bend (DSSP
only); C, loop, irregular element, or none of the above (“coil”).
We use an “X” to signify an amino acid residue for which no
secondary structure was assigned.

One can summarize the ability of the automatic definition to
reproduce the classification given by STRIDE or DSSP by viewing
the joint probability P(A, y) in the framework of the Q3 (or
Q8) accuracy score (Rost and Sander, 1993a). Given a particular
clustering arrangement, one or more clusters can be selected that
individually correspond to strands (B, E), helices (G, H, I) or coils
(C, S, T) by assigning each cluster A the secondary structure that
maximizes P(y | A).

Thus, for sets of clusters E,H, C corresponding to strands,
helices, and coils, the Q3 score is the sum QE+QH+QC, where

QE =
∑

i∈E

(

P(i,B)+ P(i,E)
)

(9a)

QH =
∑

j∈H

(

P(j,G)+ P(j,H)+ P(j, I)
)

(9b)

QC =
∑

k∈C

(

P(k,C)+ P(k, S)+ P(k,T)
)

, (9c)

and the secondary structure assignments B, E, G, H, I, C, S, and T
are those determined by DSSP or STRIDE.

2.3. Smooth Overlap of Atomic Positions
Representation
The analysis protocols that we have discussed above identify the
presence of significant motifs based exclusively on how often a

given local atomistic environment occurs in a reference dataset.
While this procedure makes it possible to rely on simple and
rather generic descriptors of local structure, it still requires a
dose of chemical intuition, i.e., it is necessary to know the basis
of hydrogen bonding and that dihedral angles can be used to
identify the secondary structure of a protein. To fulfill our goal
of creating a completely agnostic framework, one would need to
use a more abstract, generally applicable measure of the atomistic
environment that does not require any chemical intuition. To this
end, we have employed SOAP, a method that can represent each
chemical environment in a complete way and that can be applied
seamlessly to any system, from biomolecules to materials.

2.3.1. Brief Introduction to SOAP
Before explaining the clustering procedure and parameters used
with SOAP, we briefly introduce the representation. This is
not meant to be a complete introduction, and we redirect the
interested reader to more detailed papers previously published
on the topic (Bartók et al., 2013; Bartók and Csányi, 2015;
De et al., 2016). The SOAP vector is a recently introduced,
atom-centered, density-based representation that has been used
in many applications, from solids to molecular systems. It has
been proven useful in describing and predicting many atomic
and molecular properties such as structure and energy (De
et al., 2016). The SOAP framework represents the atomic density
around an atom j as a sum of Gaussians centered on each
surrounding atom of species α. The sum can be cast into a
smooth, local probability amplitudeψα

Xj
(r) by employing a cutoff

function fc that determines the extent of the local environment:

〈

αr
∣

∣Xj

〉

≡ ψα
Xj
(r) =

∑

i∈α

fc(rij)g(r− rij). (10)

The main parameters determining the behavior of the SOAP
features are the cutoff distance—which defines the range of
structural correlations that are deemed to be relevant—and
the width of the Gaussian functions—which determines the
sensitivity to atomic displacements.

In the original formulation of SOAP (Bartók et al., 2013),
the atom density is expressed by expanding the environmental
density in a basis of orthogonal radial basis functions Rn(r) and
spherical harmonics Y l

m(r̂),

〈

αnlm
∣

∣Xj

〉

=

∫

drRn(r)Y
l
m(r̂)

〈

αr
∣

∣Xj

〉

. (11)

This amplitude is invariant to translations in addition to
permutations of atoms within each species α, but it is not
invariant to rotations. Rotation invariance can be achieved by
integrating the overlap between two atomic environmentsX over
all relative rotations R̂, yielding the kernel,

K(ν)(Xj,Xk) =

∫

dR̂
〈

Xj

∣

∣R |Xk〉
ν . (12)

For ν = 2, the kernel is equivalent to the scalar product
between the power spectra of environments j and k,

K(2)(Xj,Xk) =
∑

αnα′n′l

〈

Xj

∣

∣αnα′n′l
〉 〈

αnα′n′l
∣

∣Xk

〉

. (13)
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The power spectrum vectors
〈

αnα′n′l
∣

∣Xk

〉

can be used
as an explicit, general, and complete representation of
chemical environments.

2.3.2. SOAP Data Selection
Although SOAP is a powerful descriptor, the high dimensionality
of the SOAP vectors

〈

αnα′n′l
∣

∣Xk

〉

makes PAMM pattern
recognition based on these descriptors computationally
intractable for large datasets. Therefore, we first performed a
Principal Component Analysis (PCA) of the SOAP vectors with

the aim of reducing the dimension of the input space for PAMM
while maintaining the most discriminating SOAP features of the
individual proteins. To accelerate the process, we used an FPS
subset of SOAP components to reduce the input space for the
PCA while maintaining its span. In particular, we selected 100
random structures from the same set used in the dihedral angle
clustering and computed the SOAP vectors for all of the Cα
atoms in the selected structures, taking into consideration all C,
N, and O atoms within a cutoff radius of 6.0 Å as part of the local
environment, which is large enough to incorporate information
on several neighboring residues. From this collection of SOAP
vectors, we selected 200 SOAP components via FPS, using the
squared Euclidean distance between the SOAP vectors as the
measure of separation (Imbalzano et al., 2018).

The SOAP vectors centered around all Cα atoms were
then computed for all structures just as they were for the
random subset, but only the FPS-selected components were
kept and used to build the PCA representation; all other
components of the SOAP vector were discarded. The full
parameters used to generate the SOAP vectors are given in the
Supplemental Material.

2.3.3. Clustering and Classification
The first 2, 6 and 10 PCA components of the reduced SOAP
vectors were clustered by PAMM using 4000 grid points and
a quick shift parameter of 1.0. The Kernel Density Estimation
bandwidth scaling factor was chosen to be 0.20, 0.50, and 0.80
for the 2, 6, and 10 PCA component representations respectively.
Clusters with weights< 10−5 were discarded.

2.3.4. Probability Distribution
Because each individual reduced SOAP vector is based on an
expansion around the Cα atoms, each vector corresponds to a
single residue and therefore can be associated with a DSSP- or
STRIDE-assigned secondary structure. The joint and conditional
probability distributions for the reduced SOAP vectors clustered
by PAMM were computed in the same manner as those for the
dihedral angles, as were the Q3 and Q8 scores relative to DSSP
and STRIDE.

2.4. Supervised Classification
Given that the SOAP representation can be tuned to encompass
environments of different sizes and provide a complete
description of the correlation between atomic positions, it gives
us an opportunity to verify whether any discrepancy between the
PAMMclassification and the reference heuristics is due to the fact
that the truncated representations that we use are incomplete, or

due to the fact that the reference heuristics are not reflected in
the probability distribution of motifs in the PDB. We can assess
the completeness of the representations by training a supervised
model to recognize DSSP or STRIDE motifs; that is, we can
associate the SOAP description of the atomic environment Xi of
each Cα atom with the label yi assigned to it by DSSP or STRIDE.
To perform this classification task we used a support vector
machine (SVM) (Cortes and Vapnik, 1995) as implemented in
the scikit-learn Python package (Pedregosa et al., 2011) to
performmulticlass classification of a PCA of SOAP environments
Xi according the labels yi. For comparison, SVMs using backbone
dihedral angles were also constructed. The SVMs employed a
“one vs. one” classification scheme (Knerr et al., 1990) with a
Gaussian kernel with width γ = 1/Nf , where Nf is the number
of features, and regularization parameter C = 1.0. Furthermore,
the SOAP PCA and dihedral angle data were scaled to have
zero mean and unit variance before building the SVM. Of the
approximately 4.3 million residues present in our dataset, we
selected 200,000 residues at random (excluding those that were
not assigned a secondary structure by DSSP or STRIDE) to train
and evaluate the SVM. Of these 200,000 residues, 50,000 were
randomly selected to serve as the training set, and the remaining
150,000 served as the test set. The asymptotic (large train set size)
classification accuracy of the supervised model indicates the limit
that can be achieved with a given environment representation.
Learning curves of the Q3 and Q8 scores for the SVM are
provided in the Supplemental Material.

3. RESULTS AND DISCUSSION

3.1. Hydrogen Bonds
Let us start by discussing the definition of HBs based on
a traditional distance–angle criterion. Figure 1 shows the
probability distribution of (dAH , dDA) computed by accumulating
simultaneously all four kinds of HBs. The PMI associated with
the conventional definition of the hydrogen bond is highlighted.
This definition encompasses a large peak in P(x) that indeed
corresponds to hydrogen-bonded configurations, but it also
includes several additional peaks. By inspection, we found that
these additional modes of the distribution are associated with
motifs in which the putative donor and acceptor atoms are part
of the same amino acid residue or where the H atom is not
chemically bound to the donor. In practice, these geometries
would be discarded a priori because most codes for analyzing
biomolecular data take covalent bonding information into
account. Figure 1, however, underscores the complex heuristics
that are necessary to apply well-established definitions of atomic-
scale motifs, and serves as a warning of the risks one could incur
when blindly following these prescriptions in a different context
than the usual forcefield simulations in which the chemical
connectivity is fixed.

Similar considerations apply to the DSSP definition, whose
corresponding PMI is shown in Figure 2. The DSSP definition
follows more closely the main HB peak of the distribution, as one
would expect given that it is heavily fine-tuned for one specific
flavor of bond, N−H···O, between peptide groups. At the same
time, DSSP also requires further heuristics to discard spurious
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FIGURE 1 | Histogram of the acceptor–hydrogen and donor–acceptor
distances across all hydrogen bond flavors, plotted with log-spaced contours.
The maximum at (dAH ≈ 2.1Å, dDA ≈ 2.8Å) corresponds to the typical
H-bond range. Other maxima are associated with other structural features,
such as covalently bound groups on the side chains, geometries in which the
two electronegative atoms are in the same residue, or configurations in which
the hydrogen atom is not bound to the donor. The orange-shaded area
corresponds to the distance-angle PMI as defined in Equation 3.

FIGURE 2 | Density plot of the PMI constructed using the DSSP hydrogen
bond definition with ζ = 10−5. The PMI is plotted on top of a histogram of the
distance features for N− H···O hydrogen bonds (discarding non-backbone
groups, and any triplet for which it is not possible to define a DSSP H-bond
energy, e.g., due to partial occupations), with log-spaced contours. DSSP
identifies very clearly the H-bond peak, but also picks up spurious correlations
corresponding to immediately adjacent residues [peak at
(dAH ≈ 3.0,dDA ≈ 2.25)].

correlations corresponding to N−H and C−−O in immediately
adjacent residues, where (dAH ≈ 3.0, dDA ≈ 2.25).

Contrast these figures with the top row of Figure 3, which
shows the PAMM PMIs for each cluster in the GMMs,
computed separately for the four hydrogen bond flavors. The
four distributions differ substantially from each other, and
from the overall P(x), while exhibiting multiple modes that are
correctly identified by PAMM and assigned different cluster

indices. Some of these modes correspond to correlations between
covalently bound atoms, while others correspond to longer-
range intermolecular correlations. For each flavor, the cluster that
corresponds to the hydrogen bond is that with its center (mode)
nearest to (dAH = 1.82 Å, dDA = 2.74 Å) (Gasparotto and
Ceriotti, 2014). The corresponding PMIs, which are plotted in
the bottom row of Figure 3, identify with great precision the
region in the probability distribution that corresponds to the HB,
and eliminate automatically the spurious configurations due to
adjacent residues or covalently bound groups without the need
for additional heuristics.

Figure 3 also shows that different kinds of hydrogen bonds
correspond to noticeably different portions of (dAH , dDA) pattern
space (a figure comparing different definitions is shown in the
Supplemental Material). This means that a substantial fraction
of molecular patterns would be misclassified if one tried to
transfer the definition between different kinds of HB. As shown
in Table 1, the probability that two definitions yield the same
classification, as measured by Equation 6, can be as low at
50%. The agreement between the data-driven PMIs and the
conventional distance–angle definition is even poorer, as shown
in Table 2 and in Figure S2 in the Supplemental Material. It
should be stressed, however, that this is largely due to the
inclusion of correlations that are usually discarded by additional
heuristics: if one computes the PMI similarity using a probability
distribution Ptotal(x) that discards atoms in the same or nearby
residues, the probability increases substantially, particularly for
N−H···N andN−H···O, as these are the flavors are responsible
for the majority of spurious hydrogen bond geometries (e.g.,
intra-arginine or intra-histidine N−H···N triplets and backbone
N−H···O triplets with donor and acceptor atoms in directly
adjacent residues). The increase in PMI similarity is generally
less pronounced when comparing two different hydrogen bond
flavors because these PMIs are derived from a PAMM GMM,
which automatically recognizes the spurious geometries as
separate motifs. This example, although simple, demonstrates
how one can use data-analytic techniques to extract definitions
of molecular motifs based on experimental structural data. It
also serves as a reminder of how heuristic definitions can
lack transferability, and how their apparent simplicity is often
contingent on a considerable amount of prior knowledge and the
enforcement of additional conditions.

3.2. Dihedral Angles and Protein
Secondary Structure
As another example of using simple geometric descriptors
to find and evaluate atomic-scale motifs, we used PAMM to
automatically detect dihedral angle motifs in proteins. Backbone
dihedrals are central to our understanding of protein structure
(consider, for example, the widespread use of the Ramachandran
plot), and provide a rather unbiased description of a polymer
chain that could be easily applied to other classes of polymers,
whose structure is determined by different kinds of interactions.

The PMIs for each of the Gaussians in a PAMM GMM
of the dihedral angles φ and ψ are shown in Figure 4. The
PAMM dihedral angle clustering agrees well with those obtained
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FIGURE 3 | The top panels represent all the clusters identified by PAMM. Clusters are numbered in an arbitrary order, and the colors reflect the cluster that is
dominant in each region, as determined by its corresponding PMI [as defined in Equation (1), computed with ζ = 10−5]. Bottom panels highlights the PMI of the
cluster associated with the hydrogen bond.

TABLE 1 | Probabilities that two PMIs corresponding to different hydrogen bond
flavors agree that a point is a hydrogen bond (Equation 6).

PMI A PMI B δAB δ
(i)
AB

δ
(i+1)
AB

N− H···N N− H···O 0.92 0.93 0.94

N− H···N O− H···O 0.57 0.63 0.74

N− H···N O− H···N 0.60 0.59 0.60

O− H···O N− H···O 0.55 0.61 0.71

O− H···O O− H···N 0.60 0.68 0.85

N− H···O O− H···N 0.57 0.57 0.58

The superscripts (i) and (i + 1) correspond to probabilities δAB where Ptotal (x) excludes
donor–hydrogen–acceptor triplets in which the donor and acceptor atoms are in the same
residue (i), or additionally in adjacent residues (i + 1).

TABLE 2 | Probabilities that the hydrogen bond PMI and the distance–angle
definition agree that a point is a hydrogen bond (Equation 6).

Bond type δAB δ
(i)
AB

δ
(i+1)
AB

N− H···N 0.56 0.65 0.89

N− H···O 0.60 0.71 0.93

O− H···O 0.63 0.65 0.68

O− H···N 0.33 0.39 0.53

The superscripts (i) and (i + 1) correspond to probabilities δAB where Ptotal (x) excludes
donor–hydrogen–acceptor triplets in which the donor and acceptor atoms are in the same
residue (i), or additionally in directly adjacent residues (i + 1).

by Hollingsworth et al. (2012) and Nagy and Oostenbrink
(Nagy and Oostenbrink, 2014), who have previously developed
classification schemes based solely on dihedral angles. However,

FIGURE 4 | PAMM clustering of all calculated dihedral angles with ζ = 0.
Cluster numbers are placed at the mode of the cluster, and each cluster has
been colored differently. The isocontours of the total distribution are equally
spaced on a logarithmic scale.

we observe like Hollingsworth et al. that dihedral angle patterns
do not necessarily correspond to established secondary structure
definitions, which is made clear upon comparison of Figure 5,
which shows 100,000 randomly selected dihedral angle pairs
colored according to their DSSP and STRIDE secondary structure
assignments, and the clusters presented in Figure 4. As we
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FIGURE 5 | Collection of 100,000 randomly selected (φ,ψ ) pairs, separated
according to the DSSP secondary structure classification of each pair. Solid
contours correspond to the distribution of the secondary structure of interest;
dashed contours correspond to the total distribution of all φ,ψ angles.
Contours are equally spaced on a logarithmic scale.

will discuss further down, failure of dihedral angles to match
established secondary-structure classifications is not due to an
intrinsic lack of resolving power, but to the fact that dihedrals
emphasize different kinds of structural correlations, so that
secondary structure motifs are not associated with separate
modes in feature space.

In order to quantify the correspondence between the PAMM
cluster assignment and the secondary structure assignment,
the joint and conditional probability distributions as outlined
in section 2.2.3 were computed. Figure 6 gives the joint and
conditional probability distributions of the PAMM cluster
assignment and the DSSP secondary structure assignment. (The
probability distributions using the STRIDE secondary structure
assignment are very similar to those using the DSSP assignment,
and can be found in the Supplemental Material.)

Figure 6 Shows that there is a strong correlation between the
most populated PAMM clusters (labeled by A ∈ {1, . . . , 11}) and
DSSP motifs (labeled by y ∈ {B, C, E, G, H, I, S, T, X}),
with A = 1, y = E and A = 3, y = H being by large the most
probable mutual assignments. The joint probability distribution,
however, is not easy to interpret because of the widely varying
populations of the different clusters. For this reason, the figure
also shows the conditional probabilities, which normalize the
joint assignments based on the DSSP [P

(

A | y
)

] and PAMM
[P

(

y | A
)

] marginals. This analysis shows that the PAMM
Cluster 1 encompasses most of the strand-like motifs (B, E)
and Cluster 3 encompasses most of the helices (G, H, I). The
distribution conditional on DSSP assignments is also insightful,

showing that a large fraction of E and H motifs are assigned
to PAMM Clusters 1 and 3, while the distribution conditional
on PAMM cluster shows that disordered motifs are more evenly
spread across all of the clusters. This comparison suggests that
conventional heuristics are consistent with the actual distribution
of structures in well-characterized proteins when it comes to
well-defined sheet and helical motifs. On the other hand—
at least when seen through the lens of the Ramachandran
angles—DSSP bends, turns and coils are not clearly identifiable
with separate peaks in the observed probability distribution.
There are nevertheless clusters that are associated with clear
peaks, and that are not associated with helices or strands.
This suggests that “disordered” sections of proteins exhibit
substantial order on the scale of the conformation of individual
residues, and that looking at the statistics and correlations of
these local motifs might be a better approach to characterize
disordered polypeptides than trying to fit them within the
existing categories.

One can further contextualize the probability distributions
with the framework of the Q3 or Q8 score. Assigning Cluster
1 (see Figure 4) to the “strand” classification, Cluster 3 to the
“helix” classification, and associating all other clusters with the
“coil” designation yields a Q3 score of 0.70 relative to DSSP and
0.72 relative to STRIDE.

The rather low value of the Q3 score is comparable to the
reported match scores of DISICL (Nagy and Oostenbrink, 2014)
(with our PAMM PMI-based method performing better relative
to DSSP but more poorly relative to STRIDE), which is also
based solely on backbone dihedral angles. However, the Q3
score of our cluster-based secondary structure assignments is
substantially lower than other methods that rely on dihedral
angles in addition to amino acid sequences (Wood and Hirst,
2005; Kountouris and Hirst, 2009), or Cα distances (Martin et al.,
2005). In this context, the underperformance of our method
in classifying secondary structure could be given two different
justifications. One is that the traditional secondary structure
motifs are based on rather arbitrary thresholds, that recognize
configurations as separate modes even when there are no clearly
distinct maxima in the distribution of atomic configurations,
regardless of the (reasonable) choice of input representation.
Another is that our specific choice of representation, i.e., pairs
of backbone dihedrals, is insufficient to distinguish between
different motifs because of its excessive locality. The latter
hypothesis is supported by the large overlap of different DSSP
motifs in dihedral space (Figure 5), and can be tested by using
different representations of the atomic motifs as the input to a
PAMM analysis.

As a means of including more non-local information into
the model while relying on a representation based purely
on dihedrals, we also performed a PAMM clustering on the
dihedral angles of consecutive residues, comparing the cluster
assignment to the DSSP and STRIDE secondary structure
classifications of the middle residue in the sequence. Just as in
the two-dimensional case, in six dimensions (three consecutive
residues) and ten dimensions (five consecutive residues) the
helices and strands are localized to one or two clusters, while the
other secondary structures are distributed across several clusters
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FIGURE 6 | Joint and conditional probabilities for the secondary structures obtained from DSSP and the clustering of dihedral angles from PAMM, where A is the
cluster assignment and y the secondary structure classification.

FIGURE 7 | Sketch-map representations of 100,000 randomly selected points in the six-dimensional φ,ψ space. Each point is colored according to its PAMM cluster
assignment and middle residue DSSP secondary structure assignment. The lack of clear grouping observed among secondary structures suggests that secondary
structure cannot be assigned based on dihedral angles alone. The points that are colored by their PAMM cluster are also sized based on the cluster weight; points
belonging to a cluster with higher weight are larger.

(The probability distributions for the six- and ten-dimensional
clusterings are given in the Supplemental Material). As a
consequence, the Q3 score is largely the same among the
two-, six-, and ten-dimensional representations (see Table 3).
Moreover, we observe that the Q3 score can be sensitive to the
choice of clustering parameters; relatively small changes to the
parameters can change the resulting GMM such that the Q3 score
increases or decreases by≈ 0.05–0.10. For example, reducing the
quick shift parameter from 0.90 to 0.80 in the ten-dimensional
case roughly doubles the number of clusters and the Q3 score

increases from approximately 0.68 to 0.73 for both DSSP
and STRIDE.

The sensitivity of the classification to the parameters of the
method is a general issue with unsupervised schemes, for which
it is difficult to define a quantitative measure of the quality of the
classification, based on which the performance of the algorithm
can be automatically optimized. One possible solution would be
to couple the unsupervised classification to a supervised learning
task, as we discuss below. Another possibility involves the direct
inspection of the cluster structure, which requires, in the case
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of high-dimensional data, the application of another class of
unsupervised learning algorithms that is aimed at obtaining a
simplified low-dimensional representation. To this end, we have
applied in Figure 7 the Sketch-map dimensionality reduction
method (Ceriotti et al., 2011; Tribello et al., 2012; Ceriotti et al.,
2013) to the six-dimensional dihedral data.

The guiding principle of Sketch-map is to project high-
dimensional data into a lower dimension such that points
that are close to one another in the high-dimensional space
are also close to one another in reduced dimension, and
similarly for points that are far apart. Each point in the Sketch-
map projection of the six-dimensional φ, ψ space is colored
by its PAMM cluster assignment and its DSSP secondary
structure assignment (Figure 7; the Sketch-map projection
colored by STRIDE secondary structure assignment is given
in the Supplemental Material). The Sketch-map projection
corroborates our earlier observations that, with the exception
of the helices and strands, any given secondary structure is
distributed widely across the high-dimensional space. However,
one can observe that there is considerably less overlap between
regions associated with different DSSP motifs, and it appears that
the failure of recognizing these regions as separate clusters is
more a consequence of the scattered distribution of points rather
than a lack of resolving power.

3.3. SOAP Environments
While it appears that established secondary structure definitions
are not associated with well-separated modes in the PDB
data, we cannot exclude that this is due to an incomplete
description, and that a structure representation encoding more
information than the sequence of backbone dihedrals would
show greater correspondence between data-driven motifs and
established structural definitions. For this reason, we turn to a
radically different approach to represent local motifs. We use a
SOAP-based representation (whose details are discussed above

and in the SI) of the protein backbone for comparison with
established secondary structure definitions. A PAMM GMM
based on reduced SOAP vectors forms the basis for a truly
agnostic method for identifying structural motifs and classifying
secondary structure in proteins, as the only required information
is the positions of the atoms in the protein backbone. The joint
and conditional probability distributions of the clusterized SOAP
vectors and DSSP secondary structure assignment are given in
Figure 8 (the probability distributions relative to the STRIDE
assignment can be found in the Supplemental Material).

Compared to the dihedral angle probability distributions, the
distributions based on a clustering of the SOAP vectors are more
diffuse. Instead of the helices and strands being confined to
one or two clusters as with the dihedral angles, in the SOAP
clustering the helices and strands are divided among several
clusters. However, from the perspective of the Q3 score, the
SOAP representation performs as well as the dihedral angle
representations, with scores in the range of 0.70–0.74 for two-,
six- and ten-dimensional representations based on the principal
components of the SOAP vectors.

3.4. Supervised Classification
The fact that increasing the complexity of the environment
descriptors does not improve the match between PAMM PMIs
and conventional secondary structure motifs suggests that the
discrepancy is not due to lack of descriptive power, but to
the fact that conventional motifs are not reflected in the
environment distributions observed in the PDB. To substantiate
this observation, we also use the dihedral angle and SOAP
PCA representations to train an SVM to perform multiclass
classification for the purpose of predicting secondary structures.
The Q3 and Q8 scores resulting from SVMs built on the reduced
SOAP representation and the dihedral angle representation at
various dimensionalities are given in Table 3 and are seen
to improve systematically when the dimensionality of the

FIGURE 8 | Joint and conditional probabilities for the PAMM clustering of the first two principal components of the reduced SOAP vectors describing each residue of
the protein backbone, where A is the PAMM cluster assignment and y is the DSSP secondary structure classification.
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TABLE 3 | Q3 and Q8 scores relative to DSSP for PAMM PMI and SVM
predictions of secondary structure based on a PCA of SOAP vectors and dihedral
angles at various dimensionalities.

PAMM PMI SVM

Representation Q3 Q8 Q3 Q8

φ,ψ (2D) 0.71 0.61 0.78 0.67

φ,ψ (6D) 0.74 0.63 0.87 0.80

φ,ψ (10D) 0.73 0.61 0.88 0.82

SOAP PCA (2D) 0.73 0.58 0.75 0.61

SOAP PCA (6D) 0.72 0.58 0.84 0.73

SOAP PCA (10D) 0.71 0.55 0.90 0.79

SOAP PCA (100D) — — 0.95 0.89

The reported SVM scores are an average over five separate constructions of the SVM,
each time using a new random subset of 200,000 residues, with 50,000 of these serving
as the training set.

representation is increased—contrary to what observed with a
PAMM analysis.

The improving Q3 and Q8 scores for the dihedral angles and
reduced SOAP representations in the SVM coupled with the lack
of obvious improvement in the cluster-based Q scores confirms
that the limiting factor in the association between motifs is
intrinsic to unsupervised learning. The reference heuristics—the
DSSP and STRIDE secondary structure definitions—are simply
not well-represented in the probability distribution of the data in
the feature space that we use.

This simple example highlights both the difference in
unsupervised and supervised learning methods while
also emphasizing the importance of the choice of feature
representation. A supervised learning scheme is well-suited to
adapt an existing motif definition to a different representation
of atomic environments, and—in the limit of a sufficiently large
train set—serves as proof of whether the chosen representation
is sufficiently complete to achieve an accurate classification. An
unsupervised clustering model, on the other hand, is useful
for finding new patterns in feature space. Provided that the
representation is complete, it also can serve as validation for
established pattern recognition heuristics, showing whether
the presence of well separate motifs is robust to the choice of
structural representation.

By comparing chains of dihedrals and backbone SOAP
principal components, we have shown that the two
representations possess a similar resolving power for a given size,
and yield SOAP motifs that compare roughly in the same way to
the DSSP/STRIDE classifications of secondary structure. While
dihedral angles are certainly simpler and more straightforward to
incorporate into existing analysis schemes, the general-purpose
nature of SOAP makes the latter more suitable to be extended
to different classes of supramolecular structures, and provides
a somewhat less biased starting point for subsequent machine
learning analyses.

4. CONCLUSIONS

In this work we have applied data-driven analysis techniques to
experimental atomistic structure data of polypeptides extracted

from the Protein Data Bank. Our objective has been to
demonstrate that a generally applicable analysis protocol,
that relies on little specific information for the system at
hand can be used to re-discover some of the fundamental
atomic-scale motifs that underlie the formation of complex
supramolecular structures—specifically the hydrogen bond and
secondary structure patterns. For this purpose, we used PAMM,
a density-based algorithm that recognizes and associates local
maxima in atomic feature space with particularly stable,
frequently occurring configurations to highlight some of the
shortcomings of more traditional definitions. For instance, we
showed how conventional bond–angle criteria to recognize
hydrogen bonds rely on multiple additional heuristics to avoid
incorrectly classifying other recurring motifs that are associated
to covalently bound groups. Furthermore, we quantified the
substantial differences between various hydrogen-bond “flavors,”
underscoring the advantages of an adaptive, automatic definition.

The case of secondary structure patterns gave us the
opportunity to compare the use of conventional representations
of local atomic structure (backbone dihedrals) with an even
more generally applicable strategy based on the principal
components of the SOAP power spectrum. Despite being
very different in spirit, the two representations yield very
similar results; there is a good match between PAMM-
based patterns and traditional heuristics for what concerns
helices and strands, but rather poor agreement for other,
less common motifs. By comparing representations of
different complexity, and the outcome of both supervised
and unsupervised classification schemes, we have shown that the
conventional secondary structure recognition methods reflect
only in part the intrinsic distribution of data of protein structures
in the PDB.

While conventional secondary structure motifs have the
advantage of being linked to structure–property relations and
important design principles and have survived the test of
time, data-driven definitions such as PAMM-based PMIs can
be more easily adapted to specific simulations or, as in
the present case, experimental data sets. Their robustness is
highlighted by clustering outcomes that are rather insensitive
to the choice of the structure representation. The possibility
of using generic representations, such as the list of backbone
dihedrals, or even more abstract feature vectors such as
the SOAP power spectrum, makes a PAMM analysis well-
suited for application to different classes of supramolecular
and self-assembly problems, where less prior knowledge is
available to define heuristic criteria. Finally, given that PMIs
are smooth, differentiable functions that depend exclusively
on atom coordinates, they show great promise for use in
combination with automatic collective variable determination
and in accelerated sampling schemes to probe structural
transitions and rare events.
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The state of a molecular system can be described in terms of collective variables. These

low-dimensional descriptors of molecular structure can be used to monitor the state

of the simulation, to calculate free energy profiles or to accelerate rare events by a

bias potential or a bias force. Frequent calculation of some complex collective variables

may slow down the simulation or analysis of trajectories. Moreover, many collective

variables cannot be explicitly calculated for newly sampled structures. In order to address

this problem, we developed a new package called anncolvar. This package makes it

possible to build and train an artificial neural network model that approximates a collective

variable. It can be used to generate an input for the open-source enhanced sampling

simulation PLUMED package, so the collective variable can be monitored and biased

by methods available in this program. The computational efficiency and the accuracy

of anncolvar are demonstrated on selected molecular systems (cyclooctane derivative,

Trp-cage miniprotein) and selected collective variables (Isomap, molecular surface area).

Keywords: metadynamics, neural networks, molecular dynamics simulation, collective variables, free energy

simulations

INTRODUCTION

Molecular dynamics simulation makes it possible to simulate any molecular process at the atomic
level. In principle, structural and thermodynamical properties of a protein can be predicted by
simulation of its folding and unfolding. Similarly, structure and stability of a protein-ligand
complex can be predicted by simulation of binding and unbinding. Unfortunately, many molecular
processes either cannot be simulated or their simulation is far from routine due to enormous
computational costs of the molecular dynamics simulation method.

Several enhanced sampling methods have been developed in order to address this problem
(Spiwok et al., 2015a). Some of these methods, such as umbrella sampling (Torrie and Valleau,
1977) or metadynamics (Laio and Parrinello, 2002), use a bias potential or a bias force to destabilize
frequently sampled states and to enhance sampling of poorly sampled states. Tempering methods
enhance sampling by means of elevated temperature (Abrams and Bussi, 2014). There are methods
combining tempering and biasing as well as methods based on completely different principles.
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Biased simulations usually require one or more preselected
degrees of freedom on which the bias force or potential is
applied. These degrees of freedom are referred to as collective
variables (CVs). There are two technical prerequisites for CVs
to be applicable in biased simulations. Firstly, a CV must be a
function of atomic coordinates of the molecular system, i.e., it
must be possible to calculate the value of a CV at every step
of the simulation solely from atomic coordinates. Secondly, it
must be possible to convert the force acting on the CV into
forces acting on individual atoms, i.e., it must be possible to
calculate the first derivative of the CV with respect to atomic
Cartesian coordinates. Beside these technical prerequisites, in
order to efficiently enhance sampling it is necessary to cover all
slow motions in the molecular systems by few CVs.

There are many promising CVs that do not fulfill these
requirements and therefore cannot be directly used in biased
simulations. These include, for example, the results of non-
linear dimensionality reduction methods (Das et al., 2006).
There are examples of other CVs that fulfill these requirements;
however, their calculation is computationally expensive. In order
to make biased simulation with these CVs possible, we and
others introduced approximations tailored for biased simulations
(Branduardi et al., 2007; Spiwok and Králová, 2011; Spiwok et al.,
2015b; Pazúriková et al., 2017).

Recent development of neural network algorithms allows
the usage of artificial neural networks for the purpose of CV
approximation. The advantage of neural networks is the fact
that many of them are trained by the backpropagation algorithm
(Goodfellow et al., 2016), which requires easy calculation of the
derivatives of the output with respect to the input. This is exactly
what is needed to convert forces acting on a CV into forces acting
on atoms. Application of neural network models may also benefit
from the current development of neural networks, which has lead
to a number of new toolkits and programs.

Multiple recent studies have tested machine learning
approaches to design collective variables for biased simulation
to study thermodynamics and kinetics of molecular transitions
(Galvelis and Sugita, 2017; Chen and Ferguson, 2018; Guo et al.,
2018; Mardt et al., 2018; Pérez et al., 2018; Seo et al., 2018; Sultan
and Pande, 2018; Wehmeyer and Noé, 2018). In this work we
describe a new tool anncolvar for approximation of an arbitrary
CV. Its function is outlined in Figure 1. This tool requires a set
of structures, either a simulation trajectory or any other set of
structures. For the sake of simplicity we will call this set a training
trajectory. It must be accompanied with precomputed values of
CVs. These data are used to train a simple neural network to
approximate the value of CVs for other out-of-sample structures.
It generates an input to a popular enhanced sampling program
PLUMED (Bonomi et al., 2009; Tribello et al., 2014). The CV
approximated by anncolvar can be calculated a posteriori for
any 3D structure or trajectory. Furthermore, it can be used in
metadynamics or other enhanced sampling methods available in
PLUMED. This approach was tested on conformational changes
of a cyclooctane derivative and Trp-cage mini-protein folding.
Isomap (Tenenbaum et al., 2000) low-dimensional embeddings
used as CVs in the metadynamics simulation of the former
system represent CVs that cannot be calculated explicitly from

Cartesian coordinates. Solvent-accessible surface area (SASA)
used as a CV in simulations of the later system represents a CV
that can be calculated explicitly from Cartesian coordinates, but
such calculation is slow.

The program can be accessed for free at https://github.com/
spiwokv/anncolvar or via PyPI.

METHODS

Use of Anncolvar
The program anncolvar is written in Python and uses packages
mdtraj (McGibbon et al., 2015), numpy (Oliphant, 2006) and
keras (Cholet, 2018)1. The machine learning package keras runs
on top of one of three machine learning backends, namely
TensorFlow, Theano or CNTK. Before installation of anncolvar
it is necessary to install one of these backends. The package
anncolvar was tested with TensorFlow on a laptop, personal
computer and HPC cluster, with Theano on HPC cluster and
with all three backends in continuous integration environment
Travis-CI. Installation of other libraries may be required in order
to enable use of GPU acceleration on GPU-equipped computers.
Additionally, one needs to install Python (Python 2.7 and Python
3.6 were tested) and package management library PyPI.

Once the backend is installed, anncolvar can be installed
by typing:
pip install numpy cython

pip install anncolvar

(or with sudo, depending on user rights and type of installation).
PyPI installs all required python libraries. Successful installation
can be checked by typing:
anncolvar -h

to print help. Anncolvar can be also installed from Anaconda
Cloud (https://anaconda.org/spiwokv/anncolvar).

The program anncolvar is written in a way so that it requires
a preprepared reference structure and a training trajectory. The
reference structure is a single structure of the molecular system
in PDB format. It is used as a template for RMSD fitting in order
to remove translational and rotational motions. Furthermore,
input data for artificial neural networks are typically scaled to lie
between 0 and 1. The reference structure is used in this process.
It must be prepared to fulfill following requirements:

1. It may contain only atoms intended for the analysis. Atoms
not intended for the analysis, such as hydrogen atoms, must
be deleted. The program anncolvar does not ask which atoms
are to be analyzed and which are not. Numbering of atoms
should not be changed by deletion of unwanted atoms, e.g., if
atoms 2, 3, 5, 6, 8, etc. are deleted, the remaining atoms must
be numbered 1, 4, 7, etc., not 1, 2, 3, etc.

2. It must be centered in a reasonably large box with coordinates
of one corner set to [0,0,0] and the diagonal corner set to [lx,
ly, lz] (cubic boxes were used in this work). The size of the
box must be sufficient to accommodate the analyzed molecule
in all snapshots of the simulation (the program returns an
error message if this fails). In the preprocessing step done by

1Cholet, F., and co-workers, https://keras.io, 2019.
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FIGURE 1 | Schematic representation of anncolvar function. Three input files are needed for training: (i). reference structure (in PDB) of the molecule located in the

center of box with one corner with coordinates [0, 0, 0] and size of [lx , ly , lz ], (ii) training trajectory (without molecules broken by periodic boundary condition) and, (iii)

file containing precomputed values of the CV for each snapshot of the training trajectory. The program generates the input file for PLUMED. In PLUMED the molecule

is fit to the template (reference structure) and the CV is calculated by neural network.

anncolvar the coordinates are fitted to the reference structure
and then divided by lx, ly and lz to lie between 0 and 1. The
reference structure can be generated, for example, in Gromacs
by a command:

gmx editconf -f input.pdb -o reference.pdb

-box 6 6 6 -c

for a box with lx = ly = lz = 6 nm. The values of lx, ly and lz
must be specified by options -boxx, -boxy and -boxz.

The training trajectory must be prepared to fulfill
following requirements:

1. It may contain only atoms intended for the analysis, i.e., the
same atoms as in the reference structure.

2. The molecule must not be broken due to periodic
boundary condition.

Fitting to a template is done by mdtraj library in anncolvar. For
special fitting protocols it is possible to fit the training trajectory
before running anncolvar and switch off fitting in anncolvar by
-nofit option.

Finally, the program requires a set of precalculated values of
collective variables for each snapshot of the training trajectory
(option -c). This must be a space-separated file with a column
containing values of the CV in the order of snapshots in the
training trajectory. The index of the column can be specified by
-col (e.g., -col 2 for the second column).

The program makes it possible to modify the design of
the neural network, namely the number of hidden layers

(1, 2, or 3 is supported), activation functions in each layer

(keras activation functions are supported), and the details

of optimization (loss function, batch size and optimization

algorithm). The results are written to a text output file
for easy visualization of the correlation between original

and predicted CV values. This output file controlled by -o

option contains predicted and original values in the first and

the second column, respectively. The third column indicates

whether the value was used in the training (TR) or test (TE)
set. Stratification of data into the training and test sets is

controlled by -test (size of test set) and -shuffle (whether

snapshots of the trajectory are or are not shuffled before
the stratification).

Input file for the PLUMED open-source library for analyzing
and biasing molecular dynamics simulations (Tribello et al.,
2014) is also provided (-plumed option). This file (default
name plumed.dat) makes it possible without much changes

to calculate the CV for a trajectory (by PLUMED driver)
or to monitor the value of the CV during a simulation.
Application of the output PLUMED file in metadynamics

or other enhanced sampling method supported by PLUMED
requires minor changes easy for an experienced PLUMED
user. In case the training trajectory and the biased simulation

use a different atom numbering, it is necessary to renumber

atoms in the PLUMED input file. The reference file is used
as a template for fitting of the molecule in order to remove
rotational and translational degrees of freedom. It may be
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necessary to modify the PDB format to fulfill the requirements
of PLUMED.

Proper function of anncolvar can be checked by recalculation
of the CV in the training trajectory using plumed driver utility
followed by comparison with the text output of anncolvar.

A sample training may be executed by:
anncolvar -i traj.xtc -p reference.pdb -c

results_isomap -col 2 \

-boxx 1 -boxy 1 -boxz 1 -layers 1 -layer1

64 -epochs 2000 \

-o corr1.txt -plumed plumed1.dat

This carries out 2,000 epochs of training on an artificial neural
network with the training trajectory in traj.xtc (Gromacs format),
reference structure in reference.pdb and precalculated CV values
in results_isomap (in the second column). The artificial neural
network was composed of one hidden layer with 64 neurons with
sigmoid (default) activation function.

Simulation Details
All simulations were carried out in Gromacs 5.1.1 (Abraham
et al., 2015) with PLUMED 2.4 (Tribello et al., 2014).

Cyclooctane derivative (trans,trans-1,2,4-
trifluorocyclooctane) was simulated as described elsewhere
(Spiwok and Králová, 2011). Briefly, it was simulated in General
AMBER force field (Wang et al., 2004) in vacuum using
stochastic dynamics integrator with 1 fs step and without
constraints. Temperature was kept constant at 300K using
Parrinello-Bussi thermostat (Bussi et al., 2007). Electrostatics was
modeled without cut-off. The set of 8,375 reference structures
was kindly provided by Brown and co-workers (Brown et al.,
2008). They were generated by Brown and co-workers using
a systematic generation algorithm as described in their work
(Brown et al., 2008).

Trp-cage was modeled using Amber99SB-ILDN (Lindorff-
Larsen et al., 2010) force field. The protein was placed in a
periodic box of size 7× 7× 7 nm (metadynamics, MTD) or 3.548
× 3.896 × 3.389 nm (parallel tempering metadynamics, PT-
MTD) containing 11,128 (MTD) (Laio and Parrinello, 2002) or
1,366 (PT-METAD) (Bussi et al., 2006) water molecules and one
chloride anion. Step of molecular dynamics simulation was set to
2 fs. All bonds were constrained. Electrostatics was modeled by
Particle-mesh Ewald method (Darden et al., 1993). Temperature
was kept constant using Parrinello-Bussi thermostat
(Bussi et al., 2007).

For MTD, the system was minimized by steepest descent
algorithm. This was followed by 100 ps simulation in NVT and
100 ps simulation in NVT ensemble. This was followed by 100 ns
well tempered metadynamics (Barducci et al., 2008) at 300 K.

For PT-MTD, the system was minimized by steepest descent
algorithm. This was followed by 100 ps simulation in NVT
and 100 ps simulation in NVT ensemble. The system was
preequilibrated by 500 ps NVT simulations at 32 temperatures:
278.0, 287.0, 295.0, 303.0, 312.0, 321.0, 329.0, 338.0, 346.0,
355.0, 365.0, 375.0, 385.0, 396.0, 406.0, 416.0, 427.0, 437.0, 448.0,
459.0, 470.0, 482.0, 493.0, 505.0, 517.0, 528.0, 539.0, 551.0, 562.0,
573.0, 584.0, and 595.0 K. After that PT-METAD was performed

at same temperatures. Replica exchange attempts were made
every picosecond.

Trajectory of 208µs simulation of Trp-cage folding/unfolding
was kindly provided by D. E. Shaw Research (Darden et al., 1993).
It was converted to Gromacs format and prepared by Gromacs
tools for analysis in anncolvar.

RESULTS AND DISCUSSIONS

Cyclooctane Derivative Conformational
Transitions
Cyclooctane non-symmetric derivative (trans,trans-1,2,4-
trifluorocyclooctane) was introduced as a model molecular
system by Brown and co-workers (Brown et al., 2008; Martin
et al., 2010). They generated more than one million of
conformations of this molecule by a systematic geometry-based
algorithm. Then they filtered this set to obtain a set of 8,375
non-redundant structures. These structures were analyzed by a
non-linear dimensionality method Isomap (Tenenbaum et al.,
2000). Brown and co-workers demonstrated that it is possible
to describe conformation of the model molecule using just
three low-dimensional Isomap embeddings (see Figure 2A

for the reproduction of the results of Brown and co-workers)
(Brown et al., 2008).

It is very challenging to use low-dimensional embeddings
as CVs in biased simulations. For this, it is necessary to
calculate a low-dimensional embedding for a new out-of-sample
structure. Furthermore, in order to apply biasing forces on a
molecular structure it is necessary to calculate derivatives of
the low-dimensional embedding with respect to the Cartesian
coordinates. Unfortunately, using Isomap and most other non-
linear methods it is not possible to directly calculate neither
low dimensional embeddings for a new out-of-sample structure,
nor their derivatives. For this purpose we have tested the
Property Map Collective Variables (Spiwok and Králová, 2011),
an extension of Path Collective Variables (Branduardi et al.,
2007). An interesting alternative is application of autoencoders
recently used by Chen and Ferguson (2018).

Here we test an artificial neural network performed by
anncolvar to approximate Isomap embeddings. The set of
8,375 structures provided by Brown et al. (2008) was analyzed
by Isomap to obtain three low-dimensional embeddings
(Figure 2A). Next we use them to train a neural network to
approximate these embeddings. Briefly, we used the command:
anncolvar -i traj_fit.xtc -p

reference.pdb \

-c results_isomap -col 2 \

-boxx 1 -boxy 1 -boxz 1 \

-layers 3 -layer1 8 -layer2 8 -layer3 8 \

-actfun1 sigmoid -actfun2 sigmoid

-actfun3 sigmoid \

-optim adam -loss mean_squared_error \

-epochs 1000 -batch 256 \

-o low1.txt -plumed plumed1.dat

The set of 8,375 structures was stored in Gromacs format
in traj_fit.xtc. A reference structure was stored in the file
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FIGURE 2 | Three-dimensional Isomap embeddings of trans,trans-1,2,4-trifluorocyclooctane (A) and its approximation using anncolvar (B). Isomap embeddings in

(A) and (B) were rotated by angle [0.00 rad, 2.40 rad, −0.55 rad] for better clarity. Training set points are in gray, test set points are in different colors depending on

whether they were used to train Isomap embedding 1, 2, or 3. Comparison of Isomap embeddings 1 (C), 2 (D), and 3 (E) original (horizontal) vs. approximated by

anncolvar (vertical). Training set points are in black, test set points are in red. Distribution of differences between original and predicted CVs can be found in Figure S1.

reference.pdb. It was centered in the cubic box of size 1 nm with
the corners at [0,0,0], [0,0,1], . . . [1,1,1] (in nm). Isomap low-
dimensional embeddings were stored in the file results_isomap
(space-separated, with structure ID and Isomap embedding 1, 2,
and 3 in each column). This carried out 1,000 epochs of training
(ADAM optimizer, mean square error loss function) of a network
composed of an input layer with 72 neurons (for Cartesian
coordinates of 24 atoms) and three hidden layers, each with
eight neurons with the sigmoid activation function. By default,
10% of randomly selected structures are used as the test set and
remaining as the training set.

This was repeated for the second and third Isomap
coordinates (with -col 3 and 4, respectively). The resulting
PLUMED input files were combined manually to one PLUMED
input file. It was also necessary to renumber atoms due to a
different numbering in the original data set and used force field.

There were visible differences between original Isomap
embeddings and values approximated by anncolvar (Figure 2),
nevertheless, these differences do not affect the functionality
of embeddings. Pearson correlations of original and anncolvar-
predicted Isomap low-dimensional embeddings were higher than
0.997. There was no significant difference between correlations in
the training and test sets.

Next, the PLUMED input file was edited to enable
metadynamics (Laio and Parrinello, 2002) with all three Isomap
embeddings used as CVs. Hills were added every 1 ps with
constant height of 0.2 kJ·mol−1 and width 0.02 (for all three
Isomap CVs). The results of 100 ns metadynamics are depicted
in Figure 3. The simulation started from one of boat-chair
conformation located in the central “hourglass.” After ∼20 ns

all eight boat-chair conformations were flooded and the system
started to explore one of boat conformations at the “equator.”
After ∼30 ns it started to explore the crown conformation at
the “south pole.” At time ∼50 ns also the inverted crown at the
“north pole” was sampled. The convergence was assessed as the
evolution of free energy difference between crown and boat-chair
(see Figure S2). The free energy surface was visualized by Mayavi
(Ramachandran and Varoquaux, 2011) and PoVRay (Persistence
of Vision, 2018)2. The resulting free energy surface (Figure 3B)
is in good agreement with the results of our previous studies
(Spiwok and Králová, 2011; Pazúriková et al., 2017).

Trp-Cage Folding
Intuitively solvent-accessible surface area (SASA) of a protein
is likely to be an interesting CV for protein folding simulation,
because SASA of a protein in the folded state is likely to be smaller
than for the unfolded state, which is one of requirements for a CV
to be successful. For this purpose we used a 208-µs trajectory of
Trp-cage miniprotein kindly provided by D. E. Shaw Research
(Lindorff-Larsen et al., 2011). We admit that this is not solution
to the “chicken-and-egg problem” [as discussed by (Chen and
Ferguson, 2018)], because we cannot train the neural network
without a long simulation trajectory with folding and unfolding
events. Reinforcement learning (Nandy and Biswas, 2018)may be
solution to this problem, but it is out of scope of this manuscript.

The trajectory provided by D. E. Shaw Research was converted
to Gromacs format and SASA was calculated for 1,044,000
frames using gmx sasa tool from the Gromacs package (Abraham

2Persistence of Vision Pty. Ltd., http://www.povray.org, 2018.
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FIGURE 3 | Sampling of CVs in 100 ns metadynamics with Isomap low-dimensional embeddings calculated by anncolvar (A). Free energy surface depicted as an

isosurface (in violet) at + 30 kJ·mol−1 (relative to the global free energy minimum) (B). Isomap embeddings were rotated by angle [0.00 rad, 2.40 rad, −0.55 rad] for

better clarity.

FIGURE 4 | Comparison of SASA calculated by gmx sasa (horizontal) and

predicted by anncolvar (vertical). The line shows the diagonal (y = x).

et al., 2015). Next, a neural network was trained in anncolvar
to approximate SASA. It contained 432 neurons in the input
layer (for coordinates of 144 atoms placed in a cubic box of size
6 nm) and one hidden layer with 32 sigmoid neurons. The set
of 10% of randomly selected structures was used as the test set
and remaining as the training set. This provided a good 0.976
correlation (Pearson) between SASA calculated by gmx sasa and
predicted by anncolvar (Figure 4).

We also examined the effect of training set size on anncolvar
performance. The observed effect was small. The Pearson
correlation coefficient for reference and predicted values ranged
from 0.9750 (50% of trajectory frames used) to 0.9756 (90% of
trajectory frames used), both using 1,000 epochs. We also tested

training using a sub-optimal training set. Unfolded structures
(RMSD form NMR structure >0.25 nm on all atoms, 879,759
structures) were selected from the trajectory and used as a
training set. The resulting neural network predicts SASA with
relatively good accuracy (Pearson correlation coefficient 0.96
for all structures and 0.77 for folded structures, see Figure S7).
We plan to test anncolvar trained on sub-optimal training sets
in future.

In order to evaluate performance of anncolvar we decided
to estimate costs of SASA calculation by conventional program
(gmx sasa from Gromacs package) and to compare it with
anncolvar. The program gmx sasa calculates SASA of Trp-cage in
approximately one millisecond. This corresponds to reasonably
good performance of ∼0.6 s/ps or 10 min/ns. However, for
biasing it is necessary to calculate not only SASA, but also
its derivatives dSASA/dx. Methods for calculation of analytical
surface derivatives have been reported in literature (Sridharan
et al., 1995), but their implementation into available simulation
packages would require intensive coding. In order to use
numerical derivatives it would be necessary to evaluate delta
SASA for incremental changes 1r of all coordinates of all atoms.
This would downgrade performance to ∼days/ns. There are
approaches that can be applied to address this problem, such as
evaluation of CVs in multiple time steps (Ferrarotti et al., 2015),
parallelization or GPU offloading. However, all these approaches
either require intensive changes in a code or they may have
other disadvantages.

The PLUMED input file was used to drivemetadynamics (Laio
and Parrinello, 2002) and parallel tempering metadynamics (PT-
METAD) (Bussi et al., 2006) with SASA as a collective variable.
Similarly to cyclooctane derivative it was necessary to manually
edit plumed.dat file because of different atom numbering in
the D. E. Shaw Research data set and the force field we used.
Since formation of secondary structure is very important and
potentially the slow step of Trp-cage folding, another CV was
used to enhance formation of secondary structure. We selected
an alpha helical content of a protein structure (ALPHARMSD)
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FIGURE 5 | Free energy surfaces of Trp-cage calculated by PT-METAD with SASA and Alpha RMSD collective variables at four selected temperatures.

(Pietrucci and Laio, 2009) collective variable with parameters
set to default in PLUMED. Well-tempered metadynamics was
performed with hills of height 1 kJ·mol−1 added every 1 ps
with hill widths 1 nm2 for SASA and 1 for ALPHARMSD,
respectively. Bias factor of well-tempered metadynamics was set
to 15 (Barducci et al., 2008). Unfortunately, 100 ns metadynamics
starting from the folded structure lead to quick unfolding but not
to folding (see Supporting Information, Figure S3).

Therefore, in order to enhance sampling in degrees of
freedom that cannot be addressed by the applied CVs we
replaced metadynamics by PT-METAD (Bussi et al., 2006).
The system was simulated at 32 temperatures ranging from
278.0 to 595.0 K. Metadynamics parameters were not changed.
The plot in Figure S4 demonstrated significant overlap of
potential energy histograms, which is a prerequisite for a
reasonable replica exchange rate. During a PT-METAD (50 ns
in each replica) we observed eight folding events (recognized

by visual inspection of “demuxed” trajectories, see Supporting
Information, Figure S5). This is in contrast to a parallel
tempering molecular dynamics simulation with otherwise same
parameters (without metadynamics), where no folding events
were observed.

The size of box in PT-METAD was small to increase replica
exchange probability and thus to reduce required number of
replicas. We admit that this increases risk of self-interaction
artifacts in folding simulations. We visually examined folding
simulation trajectories and discovered examples of self-
interactions (see Figure S6). These interactions were relatively
short-living. Moreover, we believe that self-interactions
complicate, not facilitate, folding. Therefore, neural network
approximated SASA can be seen as a successful CV.

Free energy surfaces were calculated from Gaussian hills
accumulated at each temperature in PT-METAD (Figure 5).
Free energy surfaces are in a good agreement with the
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results from literature (Lindorff-Larsen et al., 2011). At
low temperatures there were two free energy minima with
approximately same value of free energy. One at CVs [∼17
nm2, ∼6] corresponds to the folded structure. The second
one at CVs [∼21 nm2, ∼0.5] corresponds to the unfolded
structure. The fact that both minima have approximately
same free energy value is in agreement with the fact that
in an unbiased simulation (Lindorff-Larsen et al., 2011) the
system spends approximately same time in unfolded and
folded state. At slightly elevated temperatures the minimum
corresponding to the folded state becomes more shallow
and at high temperature it becomes almost indistinguishable.
Other states, such as those with higher helical content or
low-SASA states with low helical content, were predicted as
energetically unfavorable.

One of the motivations for development of anncolvar was
the potential speed gain compared to Path Collective Variables
and Property Map. These two approaches require multiple
RMSD-fitting processes in each step. This problem has been
addressed by Close Structure algorithm (Pazúriková et al., 2017),
which reduces the number of RMSD-fitting processes, but still
requires multiple RMSD-fitting processes in some steps of the
simulation. The approach presented here requires only one
RMSD-fitting in each step. RMSD-fitting free approaches (such
as those using interatomic distances) are not supported by
anncolvar, but can be used in future if it turns out to be a
viable strategy.

For the cyclooctane derivative, metadynamics was
significantly slower than unbiased simulation (∼40 ns·day−1

vs. ∼7 µs·day−1 on single CPU). However, this can be
explained by the fact that not only CV calculation, but
also calculation of the bias potential takes large proportion
of CPU load in the system much smaller (24 atoms) than
biomolecular systems with explicit solvents. On the other
hand, the situation was much more favorable in biomolecular
systems with an explicit solvent. Metadynamics (Trp-cage
with 11,128 water and one chloride) was approximately twice
slower than corresponding unbiased simulation (both on 8
CPU cores). Examination of one part (5 ns) of metadynamics
simulation revealed that metadynamics force calculation
accounts for 78% of total force calculations and 59% of total
calculations. Similarly PT-METAD (Trp-cage with 1,366 waters
and one chloride) was also approximately twice slower than
corresponding unbiased parallel tempering simulation (both on
32 CPU cores).

Neural networks architectures used in this study were
relatively small to avoid slowing down of simulations. They
are not deep enough to be called deep learning. There are
several options to improve the program in order to enable
deeper neural network models. For example, we plan to enable
loading of weights and biases into PLUMED as text files.

This would also simplify file handling. There is also space for
parallelization and GPU offloading. We plan to work on this in
near future.

In this work we used two different data sets to train the neural
network. The first was generated by a systematic conformer
generation. The second was generated by a long molecular
dynamics simulation. Both approaches require that the structure
corresponding to the free energy minimum is present in the
training data set. This leads to the “chicken-and-egg problem”
discussed by Chen and Ferguson (Chen and Ferguson, 2018).
We have to know the structure of folded protein (or at least it
must be present in the training data set without knowing that
it is the folded one) in order to simulate folding of the protein.
Therefore, the approach outlined in this work is suitable to study
protein folding mechanisms with known folded structure, but
it is not suitable for de novo structure prediction. Generative
machine learning models, which involve models that can make
accurate prediction outside the training set as they learn a
broad distribution of the training set, may be useful to address
this problem. Reinforcement learning can be another answer to
this problem.
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TEM family of enzymes is one of the most commonly encountered β-lactamases
groups with different catalytic capabilities against various antibiotics. Despite the studies
investigating the catalytic mechanism of TEM β-lactamases, the binding modes of
these enzymes against ligands in different functional catalytic states have been largely
overlooked. But the binding modes may play a critical role in the function and even the
evolution of these proteins. In this work, a newly developed machine learning analysis
approach to the recognition of protein dynamics states was applied to compare the
binding modes of TEM-1 β-lactamase with regard to penicillin in different catalytic states.
While conventional analysis methods, including principal components analysis (PCA),
could not differentiate TEM-1 in different binding modes, the application of a machine
learning method led to excellent classification models differentiating these states. It
was also revealed that both reactant/product states and apo/product states are more
differentiable than the apo/reactant states. The feature importance generated by the
training procedure of the machine learning model was utilized to evaluate the contribution
from residues at active sites and in different secondary structures. Key active site
residues, Ser70 and Ser130, play a critical role in differentiating reactant/product states,
while other active site residues are more important for differentiating apo/product states.
Overall, this study provides new insights into the different dynamical function states of
TEM-1 and may open a new venue for β-lactamases functional and evolutional studies
in general.

Keywords: TEM-1 β-lactamase, functional binding modes, structural analysis, random forest classification,

machine learning, molecular dynamics

INTRODUCTION

Antibiotic resistance against almost all the existing antibiotics presents a major risk to global health.
Among many other factors, β-lactamases as a group of proteins that hydrolyze antibiotics play a
key role in antibiotic resistance. The serine β-lactamases, which utilize a serine residue to hydrolyze
the β-lactam ring-based antibiotics, and zinc based β-lactamases, are the two main groups of
β-lactamases in general. Class A β-lactamases are one dominant subgroup in serine β-lactamases
and are highly diversified. TEM-1, the most commonly encountered β-lactamase in Gram-negative
bacteria, belongs to the Class A β-lactamases (Bradford, 2001). The structure and potential catalytic
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mechanisms of TEM-1 have been studied extensively as a model
system of Class A β-lactamases (Lamotte-Brasseur et al., 1991,
1999; Jelsch et al., 1992; Fonzé et al., 1995; Maveyraud et al.,
1998; Petrosino et al., 1998; Minasov et al., 2002; Díaz et al.,
2003; Hermann et al., 2003; Golemi-Kotra et al., 2004; Roccatano
et al., 2005; Savard and Gagné, 2006; Doucet et al., 2007). The
catalytic mechanism of TEM-1 can be divided into acylation and
deacylation steps using penicillin as an example. The acylation
step leads to an acylenzymeMichaelis-complex intermediate with
a covalent bond formed between the Ser70 residue and ring
opening product of penicillin β-lactam ring. This covalent bond
in the acylenzyme intermediate is further hydrolyzed during
the deacylation step, leading to an ineffective β-lactam ring-
opening product detached from the enzyme. Catalytic functions
of key residues at and surrounding an active site have been
investigated extensively with some ongoing controversy (Oefner
et al., 1990; Herzberg and Moult, 1991; Lamotte-Brasseur et al.,
1991, 1992, 1994; Strynadka et al., 1992, 1996; Matagne et al.,
1998). The active site of TEM-1 contains several conserved
residues that are important for catalysis: Ser70, Lys73, Lys234,
Glu166, and Ser130 (Fisette et al., 2010). Here and in the rest
of the article, the sequence numbering of Ambler et al. (1991)
is used to be consistent with the general literature about TEM-
1 (Savard and Gagné, 2006; Doucet et al., 2007; Fisette et al.,
2010). It is also believed that some residues, including Asn170,
Ala237, Ser235, and Arg244, help to stabilize the acylenzyme
intermediate. Although not fully determined, the contribution
of these residues to TEM-1 catalytic mechanisms have been
investigated extensively (Zafaralla et al., 1992; Stec et al., 2005;
Marciano et al., 2009; Stojanoski et al., 2015; Palzkill, 2018).
In addition, an allosteric site consisted of helixes 11 (residue
219–226) and 12 (residues 271–289) of TEM-1 were proposed
(Horn and Shoichet, 2004). Two novel inhibitors were reported
to destabilize the TEM-1 at high temperature. The two inhibitors
can bind to the allosteric site in TEM-1, which locates in between
helices 11 and 12. The allosteric site is 16 Å away from the
active site. It was proposed that TEM-1 conformational changes
were transmitted by a key catalytic residue, Arg244 (Horn and
Shoichet, 2004). In another study, the allosteric site of TEM-
1 was further detected through binding with a β-lactamase
inhibitor protein (BLIP). It was suggested that the connections
between active site and allosteric site may be modulated by
the helix 10 region (residues 218–230) and Tpr229 in TEM-
1 (Meneksedag et al., 2013). The allosteric site helixes 11 and
12 were also proposed as a cryptic pocket formation of TEM-1
(Oleinikovas et al., 2016). In addition, the residues P226-W229-
P252 were identified as a PWP triad to stabilize the helix 10
region (Avci et al., 2016, 2018).

One important aspect of TEM-1 for its function is dynamics.
Therefore, the molecular dynamics (MD) simulations were
carried out to characterize dynamical properties of TEM-1
binding with benzyl penicillin molecule. A so-called � loop
spans residues 163 through to 180 (including the key Glu166
residue for catalysis), and forms one edge of the active site
(Dideberg et al., 1987; Herzberg and Moult, 1987; Moews
et al., 1990; Jelsch et al., 1993; Vanwetswinkel et al., 2000).
Some earlier MD simulations showed that the � loop was

rather stable even with the absence of the ligand (Díaz et al.,
2003). The whole TEM-1 has also been shown to be unusually
rigid with limited motions on the picosecond-to-nanosecond
time scale through a nuclear magnetic resonance (NMR)
spectroscopy study (Savard and Gagné, 2006). Through more
extended simulations and NMR studies, a variety of motions
displayed by � loop are revealed to be potentially important
for catalysis (Fisette et al., 2010). Another simulation study of
TEM-1 binding with benzylpenicillin suggested that a substrate
binding led to increased flexibility of � loop while making
TEM-1 globally more rigid (Fisette et al., 2012). In addition
to benzylpenicillin as a substrate, simulations were also carried
out for TEM-1 bound with another two antibiotics, amoxicillin
and ampicillin, to reveal that even the subtle differences in
chemical structures of ligands could also regulate the substrate
recognition (Pimenta et al., 2013).

One overlooked aspect of TEM-1’s function is the binding
with antibiotics and their hydrolysis product. Penicillin, for
example, could bind with TEM-1 as favorable substrate, while the
hydrolysis product of penicillin needs to leave the binding pocket
for the turnover of this enzyme. Given the rigidity and sensitivity
of the TEM-1 structure to the ligand, the response of protein
dynamics to the ligand, in different chemical states through
catalysis, could be significant and important for its function,
however, this remains under-appreciated. One of the reasons for
this is probably due to the fast turnover rate, which does not
allow for a reliable experimental probe of the protein binding
with ligands during its quick catalytic cycles. MD simulations
provide an alternative way to scrutinize the difference between
the binding modes of protein with similar ligands. However, due
to the rigidity of TEM-1 and the similarity between two ligands
of interest, some special analysis tools would be necessary for the
purpose of comparison.

Machine learning methods are computational tools that
construct data-driven prediction models based on training
data. In recent years, machine learning methods have been
successfully applied in computational chemistry (Husic and
Pande, 2018), including pharmaceutical data analysis (Burbidge
et al., 2001), protein–ligand binding affinity prediction (Ballester
and Mitchell, 2010; Decherchi et al., 2015) and MD simulations
based on machine learning analysis of quantum-mechanical
forces (Li et al., 2015; Cortina and Kasson, 2018; Shcherbinin
and Veselovsky, 2019). Recently, we have introduced two
widely applied machine learning algorithms, a decision tree and
an artificial neural network, to build classification models to
differentiate two allosteric states of the second PDZ domain
(PDZ2) in the human PTP1E protein as a dynamics-driven
allosteric protein (Zhou et al., 2018). Despite the lack of a
significant conformational change between two states of PDZ2,
it was demonstrated that both algorithms could build effective
prediction models and provide reliable quantitative evaluation of
the contributions from individual residues to overall difference
between the two states.

In this study, we applied another machine learning algorithm,
random forest, to build models. Random Forest (Breiman, 2001)
is a supervised learning algorithm that relies on an ensemble
method to create an entire forest of random uncorrelated
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decision trees, in order to achieve a more accurate and stable
prediction. It has been found to be very useful in a wide scope
of applications, due to its superior performance in classification
and regression problems, as well as its ease of use and flexibility.
The recognition of TEM-1 against ligands in different states
is interrogated through simulations studies. The random forest
method as an effective machine learning technique has been
applied to analyze the simulations of TEM-1 in different binding
states and evaluate the contribution from every residue and
related secondary structures to the recognition of ligands in
different states of TEM-1. Potential key residues could be
identified based on their feature importance generated from
the machine learning model of the simulation data of TEM-
1 in different states. The TEM-1 hydrolysis mechanism is of
great interest and has been subjected to extensive computational
studies focusing on the TEM-1 active site or nearby residues
(Díaz et al., 2001; Meroueh et al., 2005; Roccatano et al., 2005;
Sgrignani et al., 2014). However, the potential contribution from
protein dynamics in different states to catalysis has been largely
overlooked. We hypothesize that TEM-1 in different catalytic
states, including binding states with reactant and product, are
differentiable and could provide further mechanistic details if
subjected to appropriate analyses.

Therefore, the current study focuses on the development
of classification models to differentiate dynamics of TEM-1
in different functional states and on obtaining information to
correlate protein dynamics with individual residues regardless
their positions relate to the active site. The dynamics of
different states are compared with each other in the training
process, governed by the random forest method. In the random
forest method, the contribution from each residue to the
overall classification model was measured as importance of
features (Zhou et al., 2019). A higher importance value of a
feature represented a higher contribution in classifying different
functional states. Using the feature importance, important
structures and residues identified by this computational study
are also in agreement with previous studies of this enzyme. The
analysis about active and allosteric sites of TEM-1 also sheds
new light on the allosteric component of TEM-1 functions. The
remainder of the paper is organized in four parts: computational
methods, results, discussion, and conclusion.

COMPUTATIONAL METHODS

Molecular Dynamics (MD) Simulations
Three states of TEM-1 were subject to molecular dynamics (MD)
simulations. TEM-1 bound with benzyl penicillin (Figure 1A)
is referred to as the reactant state; TEM-1 bound with product
of hydrolyzing benzyl penicillin (Figure 1B) is referred to
as the product state, and TEM-1 alone without a ligand is
referred to as the apo state. No crystal structure is available
for TEM-1 binding with penicillin either as a reactant or
product. The complex structure related to TEM-1 catalysis
against penicillin with the best quality is an intermediate
structure (PDB ID: 1fqg), which has been used for various
computational studies. Therefore, this crystal structure was used
to generate all three states of TEM-1, based on a hypothesis

FIGURE 1 | Chemical structures of (A) Benzyl penicillin, (B) the hydrolysis
product of benzyl penicillin.

that equilibrium simulations could lead to sufficient sampling
in these functional states. CHARMM molecular simulation
program suite, version 40b1, was used to prepare and set up
the systems (Halgren, 1992). Hydrogen atoms were added to
the crystal structure of TEM-1 bound with benzyl penicillin
using the hydrogen position construction facility (HBUILD) of
the CHARMM. The benzyl penicillin ligand was removed to
create the apo state of TEM-1. The benzyl penicillin structure
was also modified using CHARMM internal coordinate editing
functions to produce the benzyl penicillin hydrolysis product.
CHARMM36 force field was used for TEM-1(Best et al.,
2012). The CHARMM General Force Field (CGenFF) was
generated for the benzyl penicillin and the benzyl penicillin
hydrolysis product using online server ParamChem (https://
cgenff.paramchem.org/). All systems are solvated in a water box
using a TIP3P model with the addition of sodium and chloride
ions to balance the charge and reproduce typical physiological
ion concentrations.

The simulation boxes were subjected to 5,000 steps of
the steepest descent energy minimization and further energy
minimization using the adopted basis Newton-Raphson (ABNR)
method until the total gradient of the system was lower
than 0.02 kcal/mol•Å. Subsequently, the minimized simulation
systems were subjected to 24 picoseconds (ps) isothermal-
isobaric (NPT) ensemble equilibrium, gradually raising the
temperature from 100 to 300K. The system was then equilibrated
via NVT ensemble MD simulations at 300K. The time step
for MD simulations is 2 fs, with all the bonds associated
with hydrogen being fixed during the simulation using
SHAKE method (Ryckaert et al., 1977). Periodic boundary
condition was used in all simulations, and electrostatic
interactions were calculated using the particle mesh Ewald
method (Darden et al., 1993). For each state, five independent
100 ns NVT ensemble MD simulations were carried out as
the production runs after 10 ns of equilibration. OpenMM
simulation package was used to carry out the production MD
simulations (Friedrichs et al., 2009; Eastman and Pande, 2015;
Eastman et al., 2017).

Analysis of MD Simulations
Root-Mean-Square Deviation (RMSD)
RMSD is used to measure the difference in conformation for
each snapshot of the MD simulations from a reference structure.
For a molecular structure represented by Cartesian coordinate
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vector ri (i = 1 to N) of N atoms, the RMSD is calculated as
the following:

RMSD =

√

∑N
i=1 (r

0
i − Uri)

2

N
, (1)

Where r0i is the Cartesian coordinate vector of the ith atom in the
reference structure. The transformationmatrix U is defined as the
best-fit alignment between the TEM-1 structure along trajectories
with respect to the reference structure.

Root-Mean-Square Fluctuation (RMSF)
RMSF is used to measure the fluctuation of conformation for
each frame of the trajectories from the averaged structure.

RMSFi =

[

1

T

T
∑

t=1

∣

∣

∣
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∣

∣

∣

2
]

1
2

, (2)

Where T is the time period and ri is the averaged position of atom
i over the whole time period.

Principal Component Analysis (PCA)
For each state, PCA was performed by projecting each of the
extracted 25,000 frames from five independent trajectories on
the principal normal modes. The analysis was carried out using
mdtraj package (McGibbon et al., 2015) and scikit-learn library
in python (Pedregosa et al., 2011). PCA is a method to reduce
the dimensionality of the motion of molecules. It can extract the
dominant modes of the motion from a trajectory of molecular
dynamic simulation. The normal modes for PCA (Jolliffe, 2011)
were obtained through diagonalizing the correlation matrix of
the atomic position in one trajectory. The correlation matrix
element is calculated by

Cij =
cij

√
ciicjj
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〈
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〉
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−
〈
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〉2
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, (3)

Where Cij is the Pearson correlation coefficient between atoms i
and j.

The distributions of three TEM-1 states simulations in the
PCA projection space are normalized and plotted as a density
contour graph. The distribution density function was estimated

by the Gaussian kernels (Scipy 1.2.1) (Turlach, 1993; Bashtannyk
and Hyndman, 2001; Scott, 2015; Silverman, 2018).

Random Forest Model
The random forest classification was used in this study to
develop classification models for the three states of TEM-1. The
python package scikit-learn v0.20.3 was used to carry out the
training and testing using this model. For each independent
100 ns simulation of all states, 5,000 frames were evenly
extracted as the training and testing data. For each state,
four simulations among five production runs were randomly
selected as the training set with the remaining simulation
used as the testing set. For each selected frame from the

simulation, all the pairwise distances among the α carbons
(Cα) of TEM-1 backbone are extracted as the features for
training purpose. A total of 263 TEM-1 amino acid residues
result in 34,453 pairwise distances as the training features.
As a pre-step before the classification, the feature selection
is carried out using the random forest classification model.
Following a previous study to build feature selection using
machine learning methods (Zhou et al., 2018), all features
are pre-screened to select features accounting for 98.0% as
total importance. The apo/product model has 901 features
out of the total of 34,453 features. Similarly, after the feature
selection, the reactant/product model has 1,170 features, the non-
product/product model has 964 features and the apo/reactant
model has 1,923 features for their classification models. The
final classification models were developed using these preselected
features. The number of preselected features for four training
models with all preselected features are provided in the
Supplementary Material.

A random forest algorithm was built on the decision tree
models. First, training data was randomly divided into numerous
sets and decision tree models were built based on each set. Then
all the decision tree models were combined to generate final
random forest classification model (Breiman, 2001; Geurts et al.,
2006; Louppe, 2014). The random forest algorithm implemented
in scikit-learn v0.20.3 (ensemble.RandomForestClassifier) was
employed in this study. The number of decision trees generated
in the random forest model (referred to as n_estimator) was
varied for the best performance with the highest training and
validation accuracy (Supplementary Figure 1). For each model,
the number of decision trees to obtain the highest accuracy of
validation was selected for the final classification model.

The random forest method was employed for two purposes in
this study, including feature prescreening and classification
model developing. In feature prescreening, the feature
importance generated from preliminary random forest training
process is assigned to each feature. All features are sorted
based on their feature importance. The features with the sum
of their importance accounting for 98% are selected for the
final classification model. These pre-screened features of each
classification model present in this study are listed in the
Supplementary Material. The final classification models were
trained using the pre-screened features and with new set of
feature importance generated from the training process. The new
set of feature importance is used for further analyses presented
in this study.

Scores
In this study, the scores including accuracy, precision, recall,
and F1 score were used to evaluate the performance of each
classification model. The python package v0.20.3 (Pedregosa
et al., 2011; Buitinck et al., 2013) was employed to generate these
four scores. The accuracy score is defined as

accuracy =
1

N

∑N−1

i=0
1(ŷi = yi), (4)

where N is the number of samples, ŷi is the predicted label and yi
is the true label for the ith sample.
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In a binary classification task, such as the classification models
in this study with two labels, the predictions of the model are
evaluated as the following. Positive/negative labels are used to
reflect the prediction made by the model. True/false are used
to represent whether the predicted labels correspond to the
observed labels (real labels). Accordingly, precision, recall and F1
scores are defined as the following.

precision =
tp

tp+ fp
, (5)

recall =
tp

tp+ fn
, (6)

F1 = 2
precision∗recall

precision+ recall
, (7)

Term tp (true positive) represents the situation that the model
gives positive prediction and the observed label is indeed positive.
Term fp (false positive) represents that the model gives positive
prediction, but the observed label is negative. Term fn (false
negative) represents that the model gives negative prediction, but
the observed label is actually positive. F1 score is a weightedmean
of the precision and recall.

Feature Importance
The importance of each feature is generated by random
forest algorithm based on Gini impurity (Equation 8). A
higher importance represents a more important feature
in distinguishing different states. The Gini importance
implemented in python package scikit-learn v0.20.3 was
used in this study and briefly introduced in the Equations (8–12)
as the following.

The feature importance was calculated as Gini impurity:

Gini impurity =
∑C

i=1
−fi(1− fi), (8)

where fi is the frequency of a label at a node, and C is the number
of labels.

In the random forest models, many decision trees are
constructed for training purpose. All the predictions from these
individual trees are collected to make the final random forest
classification model. The importance (nj) of a node j in each
decision tree was represented by Gini impurity:

nj = wjCj −
∑m

1
wm(j)Cm(j), (9)

wherewj is the weighted number of samples reaching node j, Cj is
the impurity value of node j, and m is the number of child nodes
of the tree.

The feature importance of feature i on decision tree is
calculated as:

fi =

∑s
1 nj

∑

k∈all nodes nk
, (10)

where s is the times of node j split on feature i.

The normalized feature importance in a decision tree is
calculated through:

norm fi =
fi

∑

j ∈all features in a tree fj
, (11)

The final feature importance in random forest classification is
calculated as:

Fi =

∑

j∈all trees norm fi

N
, (12)

where norm fi is the normalized feature importance values of
a decision tree, N is the total number of trees (Breiman, 2001;
Geurts et al., 2006; Pedregosa et al., 2011; Louppe, 2014).

In our classification models, the features are pairwise Cα

distances. To evaluate the importance of each amino acid residue,
all the feature importance of the pairwise distances relating to
each residue are summed up and divided by two to generate
the importance of a residue. Then the total importance of 263
residues were accumulated and the importance percentage of
each residue could be calculated based on the total importance.
The value of importance percentage represents the ability of
a residue to differentiate three states. In other words, the
importance could help to evaluate the contribution from a
residue to differentiate three states in dynamic motions.

RESULTS

TEM-1 Three States Simulations Analysis
The time evolution of the RMSD of TEM-1 in five independent
simulation sets in apo, reactant, and product states are plotted in
Figure 2. All RMSD values were calculated with reference to the
TEM-1 crystal structure. The averaged RMSD values are 1.5, 1.3,
and 1.1 Å for the apo, reactant, and product states, respectively.
The plots suggest that the TEM-1 is rather stable with low
RMSD fluctuations in all three states. Among three states,
the apo state displays the highest TEM-1 fluctuation, and the
product state displays the lowest TEM-1 fluctuation. To address
the concern of the simulation convergence, we also calculated
the accumulative entropy of TEM-1 in each state along each
independent simulation (Supplementary Figure 2). All three
states display clear convergence tendency in each simulation.

RMSF of individual residues was calculated for each state
using all five simulations and plotted in Figure 3. In agreement
with the RMSD results, TEM-1 in the apo state has the highest
fluctuation for most part of the protein (blue dashed line in
Figure 3). However, TEM-1 in both the reactant and product
states also displays higher fluctuation than the apo state in certain
part, revealing that the binding with ligands and the type of ligand
do exert a subtle impact on protein dynamics.

Then, we carried out PCA using all 15 simulations from three
states as an attempt to develop a model differentiating three
states of TEM-1. The simulations of each state are projected onto
the surface as contour plots with normalization using the first
principal component (PC1) and second principal component
(PC2) (Figure 4). Overall, all three states largely overlap with
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FIGURE 2 | The RMSD distribution of molecular dynamics simulations of TEM-1 in (A) apo state, and binding with benzyl penicillin in (B) reactant and (C) product
states. In each state, the RMSD are calculated in five independent 100 ns simulations labeled as set 1 to set 5.

FIGURE 3 | The RMSF of α-carbons (Cα) from 26 to 288 on TEM-1 β-lactamase in apo (blue dash line), reactant (red line) and product states (dot line), � loop
(residue 163–180) highlighted. All three states have overall similar distribution but with significant difference. The product shows the lowest overall RMSF. The apo
state show the highest overall RMSF.

each other on the PC1/PC2 surface, and each state has two
or three minima, which are referred to as attraction basins.
The reactant and product states cover similar areas and largely
overlap with each other, with their attraction basins close to
each other. The apo state has different attraction basins and
has much narrower distribution than the other two states. The
PCA results reflect that the TEM-1 structure is generally rigid
without significant global conformational change. However, the
subtle differences among the distributions of TEM-1 in different
states in the PCA space do indicate the shift in population
of TEM-1 in different binding states. The following analysis
using the random forest model provides more insight into these
subtle differences.

Random Forest Model
The training and testing results of the random forest model for all
three states, including accuracy, precision, recall, and F1 scores,
are plotted in Figure 5. Classification models were developed
to differentiate between apo and product states, reactant and
product states, non-product (combining the apo and reactant
states) and product states, as well as between apo and reactant
states. For the classification model to differentiate the reactant
and product states, the training with cross-validation provides
high performance, and testing provides better than 87% accuracy
in all categories (Figure 5A), suggesting that the TEM-1 reactant
and product states are highly differentiable using the Cα pairwise
distances as protein structural information. Slightly better scores
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FIGURE 4 | The projection of the simulations of TEM-1 in apo (red), reactant (green) and, product (blue) states onto Component 1 and Component 2 of combined
states. Components 1 and 2 are the first and second components from the principal component analysis (PCA) based on the simulations of all three states. The
projection on to components 1 and 2 are normalized.

are obtained for the classification model to differentiate the apo
and product states (Figure 5B). These results show that the TEM-
1 in the product state is clearly distinguishable fromTEM-1 in the
apo and reactant states. However, distinguishability between the
apo and reactant states of TEM-1 is significantly lower than the
first two pairs (Figure 5C), suggesting that these two states share
significant similarity in terms of protein backbone structural
distributions represented as Cα pairwise distances. To further test
this, both apo and reactant states are combined together to be
considered as non-product state vs. product state. A classification
model differentiating the non-product and the product states
is built with cross-validation performance measures close to
100% and testing performance measures ranging between 82 and
99% (Figure 5D), similar to the models for apo/product and
reactant/product pairs.

As part of preliminary study, two other widely applied
machine learning methods, artificial neural network and
support vector machine methods, were also applied to develop
classification models for TEM-1. Both methods produced
models with performance worse than random forest model
(Supplementary Figures 3, 4). In addition, the random forest
method provides importance numerical value for each feature,
which could be used to search for key residues and functional
groups in protein structure. Therefore, the remainder of the study
focuses on random forest model result.

Secondary Structures Contribution
In random forest classification models, each Cα pair is given an
importance value reflecting its contribution for the classification

model. These values could be used to evaluate, to some extent,
the importance of individual amino acid residues. We first
used these values to evaluate the contribution of secondary
structures in TEM-1, with regard to the differences among
different states. For each secondary structure, all the importance
values associated with residues in that structure are summed
together and divided by two as the overall importance. Three well
performing classification models, apo/product, reactant/product,
and non-product/product, are used for this comparison purpose.
The TEM-1 structure is divided into β-sheets, α-helices, coils and
turns as secondary structures and the residues inclusive in these

structures. The β-sheet and α-helices of TEM-1 are defined in

a previous study (Savard and Gagné, 2006), and are commonly
used in general literatures of TEM-1 (Simm et al., 2007; Fisette

et al., 2010, 2012). The definition of coils and turns in the database
of secondary structure assignments (DSSP) are used in this study

(Kabsch and Sander, 1983). There are some coils and turns with
just one or two residues. Some of them have small importance
values. For simplification, when such a short coil or turn is
adjacent to another coil or turn, they are combined as a new coil
or turn structure for analysis. However, if a short coil or turn is
between β-sheets or α-helices, it was kept by itself.

We further calculate the importance of individual secondary
structures and plot it in Figure 6. All five β-sheets in TEM-1
have importance values lower than 5% (Figure 6A), indicating
that the β sheets may not play an important role, with regard
to ligand binding. There are 11 helices with varying lengths in
TEM-1. Most helices have low importance (Figure 6B). The only
exception is helix (69–85), which has overall importance close
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FIGURE 5 | The performance of random forest classification models in accuracy, precision, recall, and F1 scores for training-validation set (blue shadow) and testing
set (red). (A) Reactant and product states model; (B) Apo and product states model; (C) Apo and reactant states model; (D) Non-product and product states model.

to 16% in the reactant/product model (Figure 6B), and also one
of the helices around the active site of TEM-1 (Figure 7 green
transparent surface).

There are 10 short fragments being considered as random
coils in TEM-1. Among this, residues 213–215 coil shows the
highest importance in all three models (Figure 6C), which
is illustrated and highlighted as cyan structure in Figure 7.
The second important coil is residues 129–131, with three
residues accounting for more than 8% importance in the non-
product/product model and around 5% in the other two models.
Both 213–215 and 129–131 (highlighted as red structure in
Figure 7) coils are adjacent to the active site.

There is a total of 15 turn structures in TEM-1, some with
significant difference among three classification models. The
importance of the residue 216–220 turn (highlighted as yellow
structure in Figure 7) is the highest on average among all turn
structures, followed by residues 102–108 turn (highlighted as
green structure in Figure 7). Both turns are positioned as gate to
cap the TEM-1 active site.

For a better understanding of each residue, the mapping of
importance percentage of each residue in TEM-1 obtained from
the machine learning training process is plotted in Figure 8

(divided into three parts A, B, and C). The serial numbers
of residues from the PDB file that start from 26 to 111 are
used in Figure 8A, from 112 to 198 are used in Figure 8B and
from 199 to the end 288 are used in Figure 8C. The overall
distributions of TEM-1 individual residue importance based on

different classification models resemble each other. Residue 213
has the highest percentage (9.3%) in the apo/product model
(Figure 8C), which is also the highest percentage for a single
residue among all three models. In reactant/product model,
residue 70 has the highest percentage as 8.4% (Figure 8A). In
all three models, residues 67–73, 103–107, 127–135, 162–171,
176–182, and 210–220 have relative high importance percentages
in all three models. Interestingly, these residue regions were
proposed to undergo conformational changes in a previous NMR
study (Savard and Gagné, 2006).

For each model, the top 10 residues with the highest
percentages are listed and illustrated with the TEM-1 structure
in Figures 9A–F. Most of the key residues identified through the
classificationmodel are not on either helices or strands secondary
structures. However, few active site residues are among the top 10
residues (illustrated in green in Figures 9D–F). The percentages
of active site residues are significantly different, which is plotted
for all three models (Supplementary Figure 5). Ser70 from the
TEM-1 active site has significantly high importance in the
reactant/product model. Ser70 in the other two models, and all
other active site residues, only display importance lower than 3%.
These are in the agreement that the TEM-1 active site is generally
rigid for the purpose of catalysis.

We further investigate the distribution of residues importance
with reference to the active site. The importance of residues
lying within a certain distance range (i.e., between 4 and
5 Å) from the active site residues are accumulated and
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FIGURE 6 | The total feature importance of individual secondary structure in TEM-1: (A) β-sheets; (B) α-helix; (C) Random coils; (D) Turns. Each secondary structure
is labeled by residue number. There are five β-sheets and 11 α-helices with varying sizes in TEM-1 structure.

normalized by the number of residues within a distance
range, which is shown in Figure 10A. There are clearly three
peaks of importance for the shells around 4, 7, and 10
Å away from the active site. The sums of importance of
residues away from the active site region in the three models
are plotted in Figure 10B. The accumulative importance of
residues surrounding the active site is smoothly increasing along
the distance.

The Conformational Analysis
In three states classifications, the key residues are identified
based on the feature importance obtained from the classification
models. However, the conformational changes in three states
are very important for detecting the catalytic mechanism of
TEM-1 bound with penicillin G complex. Therefore, further
conformational analysis is carried out based on the selected key
residues with top feature importance. Among the top 10 residues
based on their accumulative feature importance, Tyr105 as a
gatekeeper of the active site could stabilize the ligand binding
(Doucet and Pelletier, 2007; Doucet et al., 2007). However,

the interaction between Asn132 and Tyr105 may perturb the
stabilizations (Wang et al., 2002). And a mutant of Asn105 has
been proposed to create disruptive steric clashes with Asn132
and destabilize the ligand binding (Doucet and Pelletier, 2007).
Asn132 is also a special residue, which was proposed to provide
additional space for active site (Swarén et al., 1998). Therefore,
the distance between Cα atoms of Tyr105 and Asn132 was
selected for further analysis to reveal detailed conformational
change relevant to functional states. In addition, the interaction
between Lys73 and Asn132 was reported as important residues
for TEM-1’s catalytic function (Swarén et al., 1998). Accordingly,
the Cα atoms distance between Lys73 and Asn132 is subjected
to further analysis in this study. Two residues Gln39 and Thr269
among the top 10 residues are distal from the active site. Thr269
is really close to the allosteric site Helices 12 (Residue 272–
288) identified in previous study (Horn and Shoichet, 2004). To
reveal potential correlation between the active site and Gln39
as well as Thr269, the Cα atoms distance from Ser70 as the
center of active site to these two residues are also subjected to
further analysis.
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FIGURE 7 | The secondary structures of TEM-1 with significant total feature
importance. Residues 69 through 85 as α-helix (blue), residues 213 through
215 as random coil (cyan); residues 216 through 220 as turn (yellow);
Residues 129 through 131 as random coil (red), residues 102 through 108 as
turn (green), residues 160 through 165 as random coil (purple). The ligand
penicillin-G molecule is also illustrated as green transparent surface. The
residue 160–165 is behind of the residue 69–85 in this view.

The density distributions of Cα atom distances of Tyr105-
Asn132, Lys73-Asn132, Ser70-Gln39, Ser70-Thr269, and residue
pairs for all three TEM-1 states are plotted in Figure 11.
The Cα atom distance distribution of Tyr105-Asn132 has only
one main peak close to 6 Å for reactant state (Figure 11A).
However, the conversion from reactant to product leads to
a second peak between 8 and 9 Å. Interestingly, the apo
state without a ligand shows a similar distance distribution
to the product state of this pair with two peaks between
6–7 Å and 8–9 Å. The density distribution of Lys73-
Asn132 Cα atom distance has two peaks in the reactant
state, one close to 9 Å and one between 10 and 11 Å
(Figure 11B). The conversion to the product leads to only
one peak around 9.2 Å of this distribution. In apo state, this
distribution has a peak around 9.3 Å and a small shoulder
about 10.3 Å.

For Ser70-Gln39 pair, the distributions of their Cα atom
distance in all three states have only one peak (Figure 11C),
which are located at 23.8, 24, and 24.5 Å for the apo, reactant and
product states, respectively. Similarly, the density distributions
of Ser70-Thr269 Cα atom distance also have only one peak for
all three states, all between 19 and 20 Å (Figure 11D). These
analyses demonstrated that the key residues with high feature
importance do behave significantly in different functional states
of protein. The residues Lys73, Asn132, Gln39, Ser70, and Thr269
are illustrated in the TEM-1 apo, reactant and product aligned
structures with green transparent surface representing the ligand
penicillin G binding pocket (Figure 12).

We further investigated four groups including � loop
(residues 163–180), residues 213–220 including a turn and

random coil structure and residues 102–108 as a turn structure,
which are related to structures with high importance percentages
illustrated in Figure 7. The helix 12 (residues 272–288) with high
importance (>5%) in reactant/product model is also included.
To reveal a potentially significant conformational change of these
groups, the RMSD of these groups with the TEM-1 (1fqg) crystal
structure as a reference are calculated and plotted in Figure 13.
In TEM-1 bound with inhibitors, helix 11 (residues 219–226)
and helix 12 (residues 272–288) were identified as an allosteric
site (Horn and Shoichet, 2004). In the classification models
generated in this study, helix 11 has a low feature importance and
residues 213–220 have high importance. The RMSD distributions
of residues 213–220 and helix 12 as potential allosteric sites
are plotted in Figures 13B,C. The RMSD of residues 102–108
as a turn structure containing key residue Tyr105 is plotted in
Figure 13D. The positions of the four residues group in TEM-
1 are also illustrated in Figure 12. Interestingly, although �

loop has high importance percentage, the RMSD distributions
of � loop in three states are similar with each other displaying
one main peak around 0.7 Å (Figure 13A). It indicated that
� loop is not very flexible, agreeing with some NMR studies
(Roccatano et al., 2005; Bös and Pleiss, 2009; Fisette et al.,
2010). On the contrary, the RMSD distributions of 213–220 turn
are significantly different among three states. In the reactant
state, there are two main peaks around 1.2 and 2 Å and one
small peak around 2.5 Å. In the product state, the RMSD
distribution shift toward lower values with three peaks around
0.8, 1.3, and 2.5 Å. In the apo state, there is a dominant
peak around 1.3 Å with a smaller peak around 2.6 Å. This
clearly revealed significant conformational changes of this turn
structure. The RMSD densities of helix 12 (residues 272–288)
are similar in all three states with only one peak around 0.4
Å (Figure 13C), suggesting little conformational change of this
secondary structure. The RMSD densities of residues 102–108
turn have one dominant distribution in three states (Figure 13D).
The reactant and product states have the peak smaller than
0.4 Å. The apo state has the peak larger than 0.4 Å. These
analyses demonstrate that the conformational change may play
important role only in a limited local structure to differentiate
functional states.

DISCUSSIONS

The role of protein dynamics in catalysis is becoming essential
in understanding enzyme’s catalytic mechanisms. TEM-1 is one
of the proteins that has been interrogated for the correlation
between dynamics and functions both experimentally and
computationally (Farmer et al., 2017; Modi and Ozkan, 2018). In
a detailed study of TEM-1 using NMR, the backbone motion of
several TEM-1 mutants at Tyr105 was characterized and linked
to its enzymatic function, because the residue in TEM-1 plays
a key role in substrate differentiation and stabilization (Doucet
et al., 2007). Coincidently, Tyr105 is identified as the secondmost
important residue to differentiate the apo and product states in
the current study (Figure 9A). The NMR study of TEM-1 also
revealed that the mutations at residue 105 led to the change
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FIGURE 8 | The accumulative feature importance of each residue in TEM-1. The blue circles represent the apo and product states classification model, the red
triangles represent the reactant and product states classification model, and the green stars represent the non-product and product states classification model. On
the top of each sub-figure, the β-sheets and α-helices are labeled as red and blue rectangles, respectively. �-loop is highlighted in yellow. (A) Residues 26 through
115; (B) Residues 112 through 202; (C) Residues 199 through 288.

of backbone motion exceeding the TEM-1 active site and with
a wide range of motion time scales. Interestingly, many key
residues discovered in this study to be important for TEM-1
dynamical functional states are in a good agreement with the
comprehensive NMR study.

The comparison among NMR spectroscopy of TEM-1
mutants showed that the most significant effect on backbone
amide motion, marked as chemical shift differences, occur in
the residues in 68–80, 100–115, 120–140, 163–170, 213–218,
and 235–246 regions (Doucet et al., 2007). All these regions
have significant feature importance from all classification modes
developed in the current study (Figure 8). In general, the
chemical shift differences observed in NMR spectroscopy have
no direct connections with protein dynamics. But the backbone

amide chemical shift is sensitive to the hydrogen bonding
interactions in protein (Paramasivam et al., 2018). In another
study, it was proposed that TEM-1 with mutant Tyr105 displayed
effects on the backbone amide chemical shift of wild-type TEM-
1 and can reduce the catalytic efficiency of TEM-1 binding
with benzyl penicillin complex (Doucet et al., 2004). Although
the backbone amide chemical shift difference is caused by the
Tyr105 mutation of TEM-1 in the reference, there is indeed
a relationship between the chemical shift difference and the
catalytic efficiency for TEM-1 with benzyl penicillin complex.
Therefore, the correlation between feature importance of key
residues with the backbone amide chemical shift differences
may help us to further understand the meaning of the machine
learning based classification model. It is possible that the
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FIGURE 9 | Top 10 residues with the highest feature importance in TEM-1 β-lactamase based on classification models: (A) Apo/product model, (B) Reactant/product
model, (C) Non-product/product model; The structures of top 10 residues with the highest feature importance and their positions comparing with the active site of
TEM-1 in each model: (D) apo/product model, (E) reactant/product model, and (F) non-product/product model. The ligand penicillin-G molecule is also illustrated as
green transparent surface. The active site of TEM-1 is the pocket holding the penicillin-G molecule.

FIGURE 10 | The feature importance of residues with reference to the distance from active site for apo/product, reactant/product, and non-product/product
classification models. (A) The normalized feature importance of residues within certain distance from active site (using 1 Å window). For example, the importance
percentage 0.25% in 5 Å represents the importance percentage of all residues located in distance range 4–5 Å away from the active site; (B) Accumulative feature
importance of residues with a certain distance from the active site. For example, the importance percentage of 5 Å represents the importance percentage including all
the residues within 5 Å away from the active site.

backbone amide motion indicated by the NMR spectroscopy is
well-coupled with the backbone Cα motion, which is used to

construct features for the machine learning training models in

this study. Further comparison also shows remarkable agreement
at the individual residue level. Some conserved residues and

residues at the so-called active site wall showed significant NMR
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FIGURE 11 | The density distributions of pairwise α carbon atoms distance in apo (blue dot line), reactant (green dot dashed line) and product (red dashed line) states:
(A) Tyr105 and Asn132, (B) Lys73 and Asn132, (C) Ser70 and Gln39, (D) Ser70 and Thr269.

TABLE 1 | The key residues from current study and a NMR study.

Residues with high

feature importancea
Adjacent key NMR residuesb

Met68, Ser70 Thr71

Ser130, Asp131 Met129 Asn132

Asp163, Trp165,
Glu166

Arg164, Glu168

Arg178, Asp179 Thr181

Ala213, Asp214,
Ala217

Lys215, Val216, Gly218

Ser235 Lys234

Thr269 Met270

aCurrent study
bTable 4 in a NMR study (Doucet et al., 2007).

relaxation parameter changes between the wild type and the most
significantly different Y105D mutant (Doucet et al., 2007). Six
residues (Asn132, Tyr105, Lys215, Val216, Thr71, and Arg243)
among the 21 residues with the highest important features from
the classification modes in this study (Figure 9) are among the
key residues for the local dynamic effects identified in the NMR
study. Many more residues (a total of 14) selected by the feature
importance are also in the adjacent region within the key residues
selected in the NMR study (Table 1).

Comparison between the NMR spectroscopy between wild
type and Y105D mutant also revealed that significant local
differences in the regions of residues 70–80, 124–135, and
most importantly in 211–221. Our analysis shows that these
regions display high accumulative feature importance as various
secondary structures, such as residues 70–80 belonging to α-
helix, residues 124–135 spreading across random coil and α-helix,
and residues 211–221 containing both random coil and turn
structures (Figure 6).

� loop (163–180) is a key secondary structure close to the
ligand binding site in TEM-1 and important for its catalytic
function. A previous NMR and MD simulation work showed
that� loop displayed limited flexibility with the key translational
component (Bös and Pleiss, 2009) It was proposed that the� loop
is a key structural feature for substrate binding and recognition
(Fisette et al., 2012). It was observed in the same study that the
inter-� loop salt bridge between Arg164 and Asp179 is prone
to be affected by the substrate binding, while the Arg164-Thr71
interaction is stabilized by the ligand binding. Accordingly,
the � loop shows significant and various importance in our
three classification models, with the most significance in the
non-product/product model. Residues Asp163, Arg164, Trp165,
and Asp179 are very important residues (>3% in Figure 8B

� loop green highlighted part) for the non-product/product
differentiation model. Residues Trp165, Glu166, and Glu168 are
important residues (>2% in Figure 8B � loop green highlighted
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FIGURE 12 | The structure of TEM-1 in apo (blue), reactant (green) and
product (red) states. � loop (residues 163–180), helix 12 (residues 272–288),
residues 102–108, and residues 213–220 are highlighted in each state with
same colors. Also key residues Gln39, Thr269, Ser70, Lys73, Tyr105, and
Asn132 are labeled. The ligand penicillin-G molecule is represented as green
transparent surface.

part) for the apo/product differentiation model. In comparison,
the �-loop is somewhat less important in the reactant/product
model than in the other two models, indicating the importance
of differentiating the product from other states. In the non-
product/product model, both Arg164 (close to 0.3% percentages
of importance) and Asp179 (close to 0.8% percentages of
importance) are emphasized as important residues. The Asp179
and Arg164 locate at the entrance of the active site and
form the inter-� loop salt-bridge to stabilize the loop. In
reactant/product and apo/product models, the importance of
Arg164 and Asp179 are not obvious, the combination of apo
and reactant magnify their importance in non-product/product
model. We hypothesized that the interaction between Arg164
and Asp179 exist in all three states to stabilize the loop. Both
hydrolyzed benzyl penicillin and benzyl penicillin molecules
as substrates can strengthen the interaction. That may be the
reason why the overall � loop does not carry high importance
percentage in reactant/product model. The overall � loop
is more stable in reactant and product states than in the
apo state. In addition, Trp165 is highlighted in both non-
product/product and apo/product models, which indicates that
Tpr165 is a key residue to classify the apo/reactant and product
states. Therefore, it is likely that Tpr165 plays an important
role in de-acylation step of the catalytic mechanism, which is
also mentioned in experimental study (Petrosino et al., 1998).
Another key residue for acylation, Glu166, has a relative high
importance in apo/product model. We proposed that Glu166 is
not only as a general base in acylation (Minasov et al., 2002)
but also very important in the de-acylation step. These detailed

comparisons with experimental study provided further insight
into the functions of the � loop of ligand binding in addition
to enzyme catalysis.

The NMR study suggested the key � loop motion was in
the microsecond (µs)-millisecond (ms) time scale, which was
beyond the current simulation study. However, it was also
pointed out that the � loop dynamics is more focused and
less random than other secondary structures even at a large
time scale. The good agreement and complimentary comparison
between the classification models developed in this study and
previous NMR studies of TEM-1 suggests the effectiveness of the
machine learning method in the application of protein dynamics
and functional analysis. The usage of Cα distance as training
features from extensive MD simulations for training practically
bridges among protein dynamics with inter-residue correlation,
regardless the distance region within the framework of different
functional states.

Asn132 was identified as a residue controlling the size of the
TEM-1 active site cavity. Distance distribution analysis of Lys73
and Asn132 reveals that the binding with reactant effectively
compresses the active site into a closed active site and creates
a minor open state representing by two peaks of Cα distance
distribution in reactant state (Figure 11B). However, the product
binding state only has one main peak as a closed active site
without a minor open state. This could be a key dynamical
difference between reactant and product binding states. The
interaction between Tyr105 and Asn132 also related to the active
site. Opposite to the Lys73 and Asn132 Cα distance distribution,
the Cα distance distribution of Tyr105 and Asn132 changes
from single dominant peak in reactant state to double peaks in
the product state (Figure 11A). The difference of the apo state
distribution from both reactant and product states also sheds
light on these TEM-1 functional states. Helix 11 (residues 219–
226) and 12 (residues 272–288) were proposed as an allosteric
site with 3–7 Å shift in helix 11 and 1–3 Å shift in helix 12
comparing to the apo structure (Horn and Shoichet, 2004; Avci
et al., 2018). The significant conformational change of residues
213–220 as a turn and random coil structure adjacent to helix
11 could be coupled with the allosteric function residing in
this region. The similarity of the helix 12 RMSD distributions
shared by all three states warrants further study to elucidate
the allosteric mechanism associated with this local structure
(Figures 13B,C).

It could be a concern that the initial structures for apo,
reactant and product state, generated from the same crystal
structure (1FQG) in catalytic intermediate state, may not present
three target states well. To address this concern, we collected
a total of eight crystal structures of wild type TEM-1 in apo
states and five crystal structures of wild type TEM-1 binding
with various ligands from PDB, including the one with penicillin
used as starting structure in this study, as reference structures
for the simulations. The averaged RMSDs of each functional
state simulations with reference to these crystal structures
were calculated and plotted in Supplementary Figure 6. It is
interesting that the product state simulations consistently have
lower RMSDs with reference to all 13 crystal structures, including
both apo and holo states of TEM-1 and the structure used in this
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FIGURE 13 | The density distributions of residues groups’ RMSDs in apo (green dot dashed line), reactant (red dashed line) and product (blue dot line) states: (A)
RMSD of � loop (residues 163–180), (B) RMSD of residues 213–220, (C) RMSD of helix 12 (residues 272–288), (D) RMSD of residues 102–108.

study, than both apo and reactant state simulations. In addition,
both apo and reactant states simulations consistently have
similar RMSDs with reference to these TEM-1 crystal structures.
Although these results could prove either the simulations are
sufficient for the sampling of each state or not, these results
are consistent with our results that the apo and reactant states
are similar to each, and both are different from the product
state. It may suggest that binding with the catalysis product is
a dynamically stable state for TEM-1 and contributes to the
catalytic activities of TEM-1 against antibiotics. This could lead
to some intrinsic dynamical properties of TEM-1 in different
functional states, which warrant further in-depth studies.

CONCLUSION

In this study, we developed classification models for TEM-
1 β-lactamases in different binding modes against penicillin
using a machine learning method called random forest. Using
the backbone Cα distances of all residue pairs as the features
for the model training purpose, the developed classification
models effectively correlate the global protein dynamics with
the individual residue correlation, with regard to the different
binding modes. The feature importance generated from the
classification model training process was used to evaluate the
contribution from individual residues, as well as secondary

structures in TEM-1, to each model. It is shown that the random
coil structures carry the highest feature importance among
secondary structures, including α-helix, β-strands, and turns. It
may indicate that the motions of coils contribute significantly to
the differences among three states, and lead to more flexibility
of random coils than in other secondary structures. Accordingly,
the protein flexibility is proposed to be a key factor in ligand
recognition of TEM-1. Detailed comparison also revealed that
the individual key residues identified from the machine learning
models not only have a good agreement with the NMR study,
but also provide unprecedented insight into the function of
individual residues with regard to differentiating protein in
different binding modes. Specifically, it is suggested that some
catalytically important residues at the active site are also critical
for recognizing the hydrolyzed product of antibiotics. Overall,
this study demonstrates that machine learning methods provides
effective tools to analyze protein dynamics in different binding
modes and produce intriguing insight into the correlation
between protein functional states and various structural levels.
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Simulations of intrinsically disordered proteins (IDPs) pose numerous challenges to

comparative analysis, prominently including highly dynamic conformational states and

a lack of well-defined secondary structure. Machine learning (ML) algorithms are

especially effective at discriminating among high-dimensional inputs whose differences

are extremely subtle, making them well suited to the study of IDPs. In this work, we apply

various ML techniques, including support vector machines (SVM) and clustering, as well

as related methods such as principal component analysis (PCA) and protein structure

network (PSN) analysis, to the problem of uncovering differences between configurational

data from molecular dynamics simulations of two variants of the same IDP. We examine

molecular dynamics (MD) trajectories of wild-type amyloid beta (Aβ1−40) and its “Arctic”

variant (E22G), systems that play a central role in the etiology of Alzheimer’s disease.

Our analyses demonstrate ways in which ML and related approaches can be used to

elucidate subtle differences between these proteins, including transient structure that is

poorly captured by conventional metrics.

Keywords: machine learning, intrinsically disordered proteins, molecular dynamics, amyloid fibrils, amyloid beta,

protein structure networks, support vector machines, clustering

1. INTRODUCTION

Molecular dynamics (MD) simulations, either alone or guided by experimental data, have greatly
enhanced our ability to probe molecular motions at the atomic scale. Unfortunately, these advances
can also lead to the creation of a map that is almost as complex as the territory it describes: as
simulation methodology has improved, the need for approaches to analyze and make sense of
increasingly information-rich simulated trajectories has grown. This is particularly true in the
case of intrinsically disordered proteins (IDPs), where recent developments in the combined use
of simulation methods with NMR (Dedmon et al., 2005; Salmon et al., 2010; Salvi et al., 2016)
and small angle x-ray scattering data (Sibille and Bernadó, 2012) have led to a proliferation of
configurational information. The dynamics of and transient conformations explored by IDPs are
often extremely high dimensional and are not always well described by the standard vocabulary
of structural biology. Machine learning and network analytic approaches offer potentially valuable
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ways of addressing such problems by facilitating (respectively)
the detection of systematic patterns in high-dimensional data
and the representation and modeling of complex structures
that do not follow simple, regular motifs (e.g., alpha helices
or beta strands). In this paper, we show how tools drawn
from both traditions can give purchase on the comparative
exploratory analysis of molecular dynamics trajectories from
protein variants, yielding insights that would be difficult to obtain
using more conventional methods. We illustrate our approach
using simulations of the wild type (WT) Aβ1−40, a well-known
intrinsically disordered protein and its E22G (“Arctic”) variant,
which is implicated in familial Alzheimer’s disease (Nilsberth
et al., 2001), and which has been a system of interest for many
previous molecular dynamics studies (Cecchini et al., 2006; Lam
et al., 2008; Urbanc et al., 2010).

The majority of proteins have a well-defined structure-
function relationship, whereby the protein’s biological role
is contingent on it being correctly folded into its flexible,
but locally stable, functional configuration. By contrast,
intrinsically disordered proteins (along with proteins possessing
a significantly large intrinsically disordered region) owe their
function to not being confined to a small number of stable
regions of configuration space. For example, many signaling
proteins are able to bind a wide variety of targets due to their
intrinsic disorder (Iakoucheva et al., 2002). The study of IDPs
presents challenges inherent to both the molecular systems
themselves and the standard conventions used by the scientists
who study proteins. In addition to the difficulty of distilling down
the complex motions of these “moving targets” of structural
biology to some intuitable form, there are additional difficulties
due to the standard descriptive and experimental toolkits used
by structural biologists and chemists, from Ramachandran
plots to X-ray crystallography, being tailored toward gaining
insight about proteins within the paradigm of a small number
of favored static configurations. Thus, if we wish to search
for latent order characteristics of a particular IDP, we must
establish methodologies for characterizing and interpreting IDP
data. Such problems, where vast amounts of high-dimensional
unstructured data is available for a set of known classes (e.g.,
WT class vs. E22G class) are the exact situations where machine
learning algorithms excel. In fact, a great deal of progress has
been made in the development of ML-based technologies for
the interpretation of chemical and biochemical systems, such
as automated optimal partitioning of configuration space for
building kinetic models (Grazioli et al., 2017), clustering-based
methods for building Markov models of protein folding (Husic
and Pande, 2017), protein conformational space mapping with
self-organizing maps (Bouvier et al., 2014), protein-ligand
interaction scoring (Ragoza et al., 2017), automating the
definition of atom types in molecular mechanics force fields
(Zanette et al., 2018), and even the inverse design of materials,
using ML to guide material design, given a set of desired material
properties (Sanchez-Lengeling and Aspuru-Guzik, 2018).

A related problem is summarizing the transient structures
of IDPs in a way that is reductive enough to provide useful
simplification while still being flexible enough to accommodate
a wide range of irregular structural configurations. Network

representations, which have been extensively studied in the
context of human social networks (Wasserman and Faust, 1994),
provide a natural tool for this purpose. Most relevant to IDP
behavior are protein structure networks (PSNs), which represent
protein structures in terms of relationships (e.g., bonded or non-
bonded interactions) among groups of atoms (e.g., moieties,
residues, or whole secondary structure elements). PSNs are
useful for coarse-graining protein structure while retaining
topological information describing internal contacts, and have
been employed to rapidly identify enzymes with distinct but non-
obvious structural features (Butts et al., 2016), characterize local
packing characteristics distinguishing closely related enzyme
classes (Unhelkar et al., 2017), distinguish structural features
particular to thermophilic vs. mesophilic proteins (Brinda and
Vishveshwara, 2005), analyze simulation trajectories (Benson
and Daggett, 2012), and predict differences in overall protein
(Atilgan et al., 2001; Jacobs et al., 2001) and active site (Duong
et al., 2018) flexibility, among other tasks (Csermely et al., 2012).
PSNs can be modeled using statistical techniques adapted from
social network analysis (Yaveroğlu et al., 2015), allowing for very
flexible and computationally efficient identification of structural
biases distinguishing groups of proteins, tests of hypotheses
relating to protein topology, and simulation of PSN structure.
Here we leverage these techniques to uncover differences
in the respective energy landscapes of Aβ1−40 wild type
and E22G.

In addition to providing broadly applicable methodology, we
also present applications of this approach to the elucidation
of the dynamic, and often subtle, characteristics of wild-type
Aβ1−40 and its variant E22G that lead to their distinct behavior
in solution, despite their being identical in all but one amino
acid. Although the present discussion is focused on applying
our methodologies to IDPs, it is noteworthy that there are
also examples of well-folded proteins, like TEM-1 β-lactamase
(Roccatano et al., 2005) or ZASP PDZ (Fratev et al., 2014),
where the structural changes caused by point mutations can
also be very difficult to discern in molecular simulations, despite
the mutations having known physiological effects. Thus, the
approaches discussed here may have applicability beyond the
IDP case. The remainder of the paper is organized as follows:
we begin by applying simple and well-established methods for
comparing data generated by molecular dynamics simulations
of both WT Aβ1−40 and the E22G variant (e.g., Ramachandran
plots), highlighting their limitations in the context of intrinsically
disordered proteins. Although the two proteins seem at first
blush to exhibit nearly identical behavior, we show how support
vector machines (SVMs) can be employed to construct a metric
that readily distinguishes them. Projection of conformations
obtained from structures of Aβ fibrils onto this metric can then
be used to predict differences in fibrillization behavior. Moving
from torsion angles to topology, we employ exponential family
random graph models (ERGMs) to characterize the properties
of favorable transient structures in Aβ1−40 residue-level PSNs,
and use this to explore the structures most energetically favored
by WT vs. E22G (and vice versa). We then close with a
demonstration of how joint k-means clustering of conformations
from long WT and E22G trajectories and network analysis of
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the Markov transition graph on the resulting conformational
states reveals substantial differences in dynamics that are not
apparent on casual inspection. Additional technical details
regarding our simulations and analysis are provided in the
following section, and we conclude with a discussion of our
findings and how approaches such as these can be used to select
targets for further experimental biophysical characterization and
structural biology.

2. RESULTS

2.1. Exploring the Torsion Angle Space of
Energy Minima
Prior to applying more complex, ML-based techniques
for identifying the characteristic differences between the
configurational dynamics of the WT and E22G variants, it is
reasonable to first apply more established approaches toward that
same end. Thus, we begin by calculating a Ramachandran plot
(Figure 1) from a large set of configurations generated by MD
simulations from a highly dispersed set of seed conformations
(details provided in section 4), as well as from conformations
associated with large samples of local energy minima. It is clear
from the data shown in Figure 1 that WT and E22G cannot
be distinguished by their distributions in Ramachandran space.
This result illustrates the core problem of exploratory analysis of
intrinsically disordered proteins: many of the simple and familiar
tools of structural biology exploit the fact that folding confines
typical proteins to a narrow range of conformations, and the lack
of such confinement leaves them with little signal to leverage.

Given that the Ramachandran plot does not display any
obvious differences that could be used to distinguish between
WT and E22G conformations in torsion angle space, it is
natural to ask whether these variants might still be distinguished
by the distribution of their angular velocities in the same
space. Employing a large number of trajectories initialized from
a set of widely dispersed local minima (see section 4), we
plot the distribution of local ψ and φ angular velocities in
the equivalent of a Ramachandran space (Figure 2). As can
be seen, the resulting velocity distribution is homogeneous
both by residue index (left) and by variant (right), with the
points colored for each attribute overlapping so completely
that they appear to form a single undifferentiated distribution.
Plainly, this property cannot differentiate between WT and
E22G. Moreover, the similarity in velocity distributions between
variants suggests that differences in the energy landscape
associated with the E22G mutation are extremely subtle, despite
its known differences in aggregation behavior relative to wild type
(Lord et al., 2006; Norlin et al., 2012).

The lack of distinguishing features in either the
Ramachandran space of conformations or the “differentiated
Ramachandran” space of angular velocities highlights the subtle
nature of differences in IDP behavior, and points to the need for
more flexible—and high dimensional—techniques to identify
differences. We now turn to a family of kernel learning methods
that are well-suited to this purpose.

2.2. Finding Relatively Favored
Conformations via SVM
The observation that WT and E22G Aβ1−40 differ by a
single residue, yet exhibit differing propensities for fibrillization
in experiments (Norlin et al., 2012), seems to imply that
the conformations they sample in solution must originate
from differing equilibrium distributions in configuration space.
Further, we note that if a configuration is defined as a vector
of all torsion angles for residues 1 through 40, the respective
distributions forWT and E22G both “live” in the same coordinate
space. Thus, we may posit some characteristic axis, onto which
any configuration in the shared torsion angle space can be
projected, where points at one extreme are most characteristic of
WT (and least likely to be sampled by E22G) and points on the
other extreme are most characteristic of E22G (and least likely
to be sampled by WT). If we, for the sake of argument, were to
imagine that the sets of conformations sampled by each variant
were linearly separable—i.e., a separating hyperplane in torsion
angle space could be placed between them with all WT points on
one side and all E22G points on the other—such an axis would be
trivial to define: it would be the vector normal to the separating
hyperplane. Unfortunately, the condition of linear separability is
an unrealistic assumption for two systems that are both highly
similar and high dimensional, and the Ramachandran analysis of
Figure 1 suggests that it is inapplicable here. However, we could
consider an alternative version of our construction, in which
we nonlinearly map our torsion angle space into an alternative
space (called a feature space) in which our conformations are
linearly separable and then find the characteristic axis within this
modified space. The resulting characteristic axis would no longer
take a simple form in our original space (the input space), but we
could nevertheless use it to “score” hypothetical conformations
for similarity to WT vs. E22G by mapping them into the feature
space and finding their projection onto the characteristic axis in
that space.

Finding transformations of this type in high-dimensional data
is a central problem of kernel learning (Scholkopf et al., 1999),
and identifying a “characteristic axis” like the one envisioned
above is a natural application of support vector machines (SVMs)
(Vapnik, 2013). In a classification context, SVMs seek maximum-
margin separating hyperplanes between sets of observations, with
the characteristic axis corresponding to a quantity (often called
the decision value) that is used to predict class membership.
While “pure” SVMs are linear algorithms, kernelized SVMs (i.e.,
SVMs operating on kernel-transformed inputs) are powerful
tools for finding complex separating surfaces (or, in the case of
imperfect separability, approximate separating surfaces) in more
general contexts.

A heuristic illustration of how SVMs can be used to extract
a characteristic axis from linearly non-separable data classes is
shown in Figure 3, as an aid to intuition. Note that in the input
space {x, y} (Figure 3A), no single plane can be defined that
perfectly separates the blue class from the red class. By mapping
the data to the higher-dimensional space of all polynomials in x
and y (truncated to the subspace {x, y, x2} in Figure 3B, chosen
for visualization purposes), this same data set is now linearly
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FIGURE 1 | Ramachandran plots for all conformations (Left panel) and conformations of local minima (Right panel). Points are colored by variant (blue - WT, red -

E22G); apparent purple color indicates near identical distribution of torsion angles.

FIGURE 2 | Angular velocity distributions by dihedral angle colored by residue index (Left panel) and by protein (Right panel). No systematic variation is visible in

either case.

separable. Such a mapping onto quadratic functions of the
inputs constitutes a polynomial kernel of order 2, with mapping
into higher-order polynomials corresponding to higher-order
kernels; mapping to polynomial functions of arbitrary order can
be performed by selection of e.g., the Gaussian or radial basis
function (RBF) kernel, whose basis set can be interpreted in
terms of Taylor series expansions of exponential functions. Such
an expansion can in principle find a separating hyperplane for
any point set (subject to regularity conditions), making the RBF
kernel a so-called “universal” kernel.With a separating plane now
defined in the kernel-transformed feature space, the data points

can be projected onto the vector normal to that plane (C). This
vector is our characteristic axis, with the 0 point corresponding
to the point of maximum margin when dividing the two classes.

To apply this idea to the case of our Aβ variants, we
trained an SVM classifier under a RBF kernel to distinguish
low-energy conformations of WT (obtained by independent
annealing trajectories seeded with an overdispersed sample of
conformations obtained via a high-temperature trajectory) from
those of E22G (see section 4 for details). To gain insight into
conformations that are relatively favorable for E22G vs. WT, we
approximately linearize the decision surface (i.e., the pre-image
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FIGURE 3 | This schematic demonstrates the process of mapping linearly non-separable data to a single coordinate that indicates membership to each class. (A) An

example of linearly non-separable 2D data with two classes indicated by red and blue dots. (B) An exact mapping of the points shown in (A). To a 3D feature space,

where the data is linearly separable by the plane shown as gray mesh. (C) A vector normal to the separating plane (black double-headed arrow) is introduced, along

with the intersection of the separating plane and normal vector (green dot). (D) The points in the 3D feature space are projected onto the normal vector. (E) The

projected points on the characteristic axis are shown in the 3D space. (F) The characteristic axis now serves as the reference frame for a scalar scoring indicating a

point’s affinity for one class vs. the other.

of the separating hyperplane in the input space) and examine its
characteristics averaged over the E22G/WT conformations that
are closest to it. Specifically, we identify the support vectors from
the SVM solution (i.e., the data cases with non-zero weight, from
which the decision surface is defined), and identify pairs of WT
and E22G support vectors that are as close as possible within the
input space (as measured by Euclidean distance between inputs).
Each of these pairs can be envisioned as straddling the decision
surface, with no other pair being strictly closer to it (since, if so, at
least one point in the pair would not be a support vector). Taking
the difference of properties between one conformation in the pair
and the other thus allows us to approximate the gradient of the
decision surface with respect to those properties in the original
(input) space, at some point between the conformation pair.
Considering the distribution of such differences over all such
pairs then gives us insight into the properties that typically do (or
do not) typically distinguish E22G trajectories from those of WT.

Figure 4 shows the result of such a calculation performed for
the (circular) mean differences in torsion angles between paired
E22G and WT support vectors, for the low-energy conformation
model. Although many angles show no significant differences—
indicating that, on average, there is no net contribution of
position on this angle to relative favorability—some show a clear
and systematic difference across the decision boundary. Perhaps
most notable are the torsion angles for φ22 and ψ22, both of
which show positive change when moving across the decision
boundary from the WT to the E22G side. (Put another way,
ψ22 tends to be turned approximately 0.35 radians to the right
within E22G minima from its value in similar WT trajectories).

In addition to confirming the intuition that the substantial loss of
side chain steric hindrance brought about by the E22G mutation
alters the local backbone curvature at the mutation site, our
analysis allows us to focus on the torsion angle changes that
best distinguish otherwise similar local minima. For instance,
we also see significant increases in φ angles for residues 18, 20,
25, and 38, and decreases for residues 5, 23, and 37, showing
systematic effects on several (but not all) sites along the backbone.
Similarly, we see significant additional increases in ψ angles for
residues 6 and 36, and decreases for residues 13, 21, 23, 26, and 39,
showing that the two torsion angles are affected differently by the
mutation but that those effects show signs of clustering (e.g., the
relatively numerous angular differences near the mutation site, or
for residues 37-39 at the C terminus).

Another method for determining which degrees of
freedom contribute most substantially to the classification
of a configuration as belonging to either WT or E22G is to
combine SVMs with principal component analysis (PCA),
as shown in Figure 5. In this treatment, the differences in
torsion angles between WT and E22G minima across the SVM
decision boundary are processed using PCA, resulting in a new
reference frame in which the principal components are linear
combinations of the original dimensions that begin with the
direction of maximum variance and proceed in subsequent
orthogonal directions in order of diminishing variance (Pearson,
1901). Thus, plots of the first two principal components, such
as Figure 5, display the two directions through the space of
torsion angle differences that best summarize (in a least squares
sense) the total pattern of variation in torsion angle differences
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FIGURE 4 | Mean angular difference in torsion angles between WT and E22G

minima, across the SVM decision boundary. For each torsion angle, y axis

values show the average across all support vector pairs of the angular

difference in WT and E22G values; 95% confidence intervals indicated by thick

lines (orange values significantly positive, teal values significantly negative).

Prominent deviations are seen at the mutation site (blue dotted lines) but can

also be seen at many other locations along the backbone.

across the decision surface. The loadings on these components
hence provide information on which angles contribute most
to these directions, and on the sense of that contribution (i.e.,
positive or negative).

Figure 5 shows that, with the exceptions of φ37−38, the first
two components are strongly dominated by the ψ torsion angles.
This result is consistent with the greater variance in ψ relative
to φ in standard protein secondary structures, but it was not
observable from the Ramachandran plot of Aβ conformations
given in Figure 1. The strongest contrasts seen are between: ψ13

and ψ15−16 (left) and a group of angles including ψ31−32, ψ3,
ψ9, ψ25, and ψ28 (right); and ψ20 and ψ22−23 (top) and ψ14,
ψ18, and ψ24 (bottom). The first contrast involves a cluster of
residues marking the N-terminal end of a stretch of residues
forming a (transient) α-helix in a solution-state NMR structure
(PDBID: 2LFM) (Vivekanandan et al., 2011) vs. a collection of
several residues in the terminal regions of the protein. The second
contrast, interestingly, pits a cluster of residues at the C-terminal
end of the aforementioned helix-forming region with three
residues spanning it (two at either end and one in the middle).
This suggests one mode involving the extent of helical structure
in range of residues 14-23, and another involving a broader
pattern of curvature throughout the protein. By identifying
such patterns, we can potentially focus attention on particular
conformational features that are differentially favored by E22G
vs. wild-type Aβ .

One obvious application for a score distinguishing WT and
variant conformations is in screening for the potential to exhibit
distinct patterns of fibrillization. Fibrillization is difficult to probe
directly via MD trajectories, due to the long timescales and
large atom counts involved, and fibrillization experiments with
new systems are costly. In particular, structure determination

FIGURE 5 | PCA of angular differences in torsion angles between WT and

E22G minima, across the SVM decision boundary. Vectors show φ (teal) and φ

(orange) torsion angle loadings on the first two principal components; angles

with similar loadings tend to show similar patterns of differences for E22G vs.

WT conformations.

efforts are time-consuming and often require technological
innovations to achieve. Although amyloid fibrils by definition
form a common cross-β structure, they often differ in detailed
structural topology. Therefore, given a new variant with potential
clinical significance, it is useful to be able to obtain some
indication of whether or not it is likely to form fibrils with the
same structural topology as the wild-type protein. While the
SVM analysis conducted here cannot provide a definitive answer
to this question, it can tell us (based on the sets of trajectories
available) whether known fibril structures involve monomeric
conformations that are more characteristic of wild-type than the
variant. If WT and the variant (here E22G) have similar affinity
for a particular set of fibrillar conformations, then this suggests
that the variant will have a similar propensity to produce such
fibrils in practice; however, if the affinity differs strongly between
WT and the variant, then this may indicate a difference in the
propensity to produce fibrils of this topology.

Such an approach is illustrated in Figure 6, where the relative
similarity of fibrillar conformations to E22G vs.WT (as expressed
by projection onto the characteristic axis) is shown for all
conformations from 10 Aβ fibril structures found in the Protein
Data Bank. While some individual configurations appear more
favorable for E22G than WT (positive values), all fibril structures
were overall significantly more typical of WT solution minima
than the minima observed for E22G (hence all plot markers
are blue in Figure 6), suggesting that the latter has a different
fibrillization pattern. Interestingly, the two non-wild type fibrils
included (PDBIDs 2LNQ and 2MPZ, both of the D23N or
“Iowa” variant) show particularly strong relative affinity for WT
vs. E22G, suggesting that E22G’s fibrillization behavior differs
from that of both variants. These results are compatible with
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FIGURE 6 | Distribution of similarity scores for conformations from known fibril

structures (Aβ residues 15–40). Higher values (above dotted mid-line) indicate

greater net E22G affinity, while lower values indicate greater net WT affinity. The

overwhelming majority of conformations are more characteristic of WT minima

than E22G minima, suggesting that there is a different fibrillization pattern for

E22G, making this variant a high priority for future structural studies.

experimental findings that have previously suggested that E22G
may have a different fibrillization mode from WT, potentially
proceeding through a different oligomeric precursor. A study
employing a variety of biophysical techniques concluded that
aggregation of this species proceeds via a characteristic type
of on-pathway intermediates and then quickly progresses to
a highly polymorphic variety of fibrils (Norlin et al., 2012),
making high-resolution structure determination difficult. Given
the time and expense necessary for solving atomic-resolution
structures of even a single fibrillar conformation, measures of
potential dissimilarity in fibrillization behavior are useful tools
for choosing new structural targets. Disease-relevant variants,
such as E22G, that are likely to occupy one or more novel fibril
topologies can be considered high-priority targets for further
structure determination efforts. It is important to reiterate here
that the similarity scores for each fibril type represent how similar
each fibril structure is to WT vs. E22G, thus two fibril structures
whose similarity scores are close in value may or may not be
similar to each other.

As with the decision surface, we can gain some additional
insights regarding the local factors that tend to lead fibrillar
conformations to be more favorable for E22G vs. WT by local
linearization. In this case, we proceed by regressing the similarity
score (projection onto the characteristic axis) for each fibrillar
conformation onto the input features of each conformation
(the real and imaginary components of its torsion angles). The
coefficients from this regression represent the mean gradient of
the score over the fibrillar conformations; to convert these into
statements involving the original torsion angles, we express the
gradient elements associated with each angle (i.e., β̂i sin(θi) +
β̂ ′i cos(θi), for angle θi with regression coefficients β̂i, β̂

′
i ) in the

periodic form bi sin(θi − yi) [where bi =

√

β̂i
2
+ β̂ ′i

2
and yi =

tan−1(β̂ ′i/β̂i)]. Intuitively, the modulus bi scales the absolute
magnitude of the contribution of local changes to the ith torsion
angle to changes in the expected similarity score, while the
argument yi defines a reference angle or angular offset such that
small increments above yi increase similarity to E22G, while small
decrements below yi decrease it.

A schematic detailing how such an approach is implemented
is shown in Figure 7 using a single pair of φ and ψ torsion
angles in a simplified, two-dimensional example. We consider
two variants of a hypothetical protein (designated “blue” and
“red”) with two torsion angles of interest, φ and ψ . The blue and
red dots on the angular plots for φ and ψ in Figure 7A represent
the values for these angles for 1,000 different configurations
sampled for each variant. From these conformations we may
create an affinity score surface by training an SVM classifier to
classify blue vs. red configurations using the real and imaginary
components of both angles φ and ψ as the training data
({Re(ψ), Im(ψ),Re(φ), Im(φ)}). Figure 7B shows this affinity
score surface in φ,ψ space (lighter values favor blue, while
darker values favor red), together with the sampled red and
blue configurations from panel Figure 7A. Now, consider a set
of comparable torsion angles obtained from fibril structures;
these may also be projected into our angular space, as shown
in Figure 7C (cyan points). Each fibrillar conformation can be
assigned an affinity score based on its location on the affinity
score surface, indicating the extent to which it is more typical
of the blue vs. the red variant. Regressing the affinity scores
of the fibrillar conformations on the underlying torsion angles
yields the mean gradient of the affinity score surface in angular
space across the fibrillar conformations (orange arrow). From
this we can equivalently construct a set of reference angles
(green dot) that expresses the torsion angles that would provide
the average greatest tendency to be more blue-like (vs. red-
like) in the vicinity of the fibrillar conformations. Returning
to an angular representation, Figure 7D shows both the mean
vectors for the fibrillar conformations (cyan) and the reference
angles (orange/green) in polar space. Local rotations toward the
reference angle are here associated with increasing “blueness,”
while rotations away are associated with increasing “redness.”

In applying this methodology at scale to the Aβ system, we
display these regression coefficients in the form of what we call an
orrery plot in Figure 8. Each y axis value in the orrery plot gives
the reference point for the associated torsion angle, while moduli
are shown by point radius. Higher moduli indicate greater local
contributions to the affinity score. (Note that, due to unreported
residues in the fibrillar PDB structures, we limit our examination
to residues 15-40). At a glance, the orrery plot tells us that the
dominant local contributors to E22G similarity are the torsion
angles at the mutation site, as well as angles such as φ17, φ27, φ32,
ψ18, ψ21, and ψ34. The offset values show that not all torsion
angles of the same type are in phase with each other (in the
sense of having a common reference such that values higher or
lower than the reference have the same impact on the similarity
score), although some sets of residues do have very similar
offsets. This may suggest particular groups of residues whose
local conformations play a similar role in initiating or stabilizing
fibril structure in wild-type Aβ . We also see many residues whose
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FIGURE 7 | Schematic demonstration of the linearized similarity score used in Figure 8 using a simplified 2-dimensional example. (A) 1000 sampled conformations

for two protein variants (blue and red dots) on two torsion angles. (B) Depiction of blue and red conformations in Ramachandran space, with an SVM-derived affinity

score (background gradient). Lighter regions are more typical of the blue variant, while darker regions are more typical of the red variant. (C) Mapping a set of

hypothetical fibrillar conformations into Ramachandran space (cyan) allows them to be associated with affinity scores. Regression of affinity scores onto the underlying

angular components yields the mean gradient of the affinity score local to the fibrillar conformations (orange arrow), which can be re-expressed in terms of a reference

angle (green dot). (D) Re-expression of conformations in angular space, with reference angles (orange/green) and mean fibrillar conformations (cyan arrows) indicated.

Direction of rotation relative to the reference indicates whether local angular changes (from the mean fibrillar conformation) would make the structure more “blue-like”

vs. “red-like”.

FIGURE 8 | Linearization of the similarity score for fibrillar conformations.

Relative affinity for E22G (vs. WT) increases as b sin(θ − y), where y is the

angle offset (y axis), b is the weight coefficient (circle size), and θ is the torsion

angle. The color spectrum from red to blue indicates the sequence position

from N-terminal to C-terminal.

conformations do not seem to be strongly associated with relative
affinity for wild-type vs. E22G (e.g., φ37 or ψ24), which suggests
that differences in fibrillization behavior between the two variants
are not likely to depend on the local conformations of these
residues. The orrery plot thus provides us with guidance on
the angular degrees of freedom that are more or less likely to
distinguish protein variants with respect to their propensity to
adopt fibrillar conformations.

2.3. Identifying Differences in Transient
Structure via Network Analysis
As noted, a central challenge in the analysis of IDPs is their lack of
the characteristic secondary structure motifs that are the primary

point of reference for describing and comparing the tertiary
structures of folded proteins. Although IDPs by definition lack
stable secondary structure, they nevertheless form other types
of transient structures that can be characterized. Transient
structural features have been observed in weakly structured
proteins (Williamson and Miranker, 2007; Lee et al., 2014) or
partially folded intermediates (Teilum et al., 2002; Bernard et al.,
2005), often using the sensitivity of NMR chemical shifts to local
backbone conformation (Spera and Bax, 1991); such features are
often found to resemble more stable structural elements formed
upon interaction with a binding partner (Song et al., 2008). A
natural approach to characterizing transient structural elements
is via the use of residue-level PSNs to characterize the pattern
of interactions among residues within sampled conformations,
giving rise to coarse-grained representations that are flexible
enough to represent the wide range of conformational variation
exhibited by IDPs. A residue-level PSN is a network structure (or,
more formally, a graph) whose nodes or vertices correspond to
individual residues, and whose edges correspond to inter-residue
contacts. Here, we define two residues vi, vj to be in contact
(adjacent) if there exists an atom ai in residue vi and atom aj in
residue vj such that the inter-atomic distance between ai and aj is
less than 1.2 times the sum of their respective van derWaals radii.
We compute a PSN for each conformation in our set of respective
WT and E22G energy minima, giving us an ensemble of PSNs
(each a 40-node network) for each Aβ1−40 variant.

2.3.1. Where Is Transient Structure Formed in E22G

and WT?
A natural first question to address is where transient structure is
potentially formed in the wild-type and variant proteins. While
there are many types of local network structure that might be
considered, we follow (Unhelkar et al., 2017) in using the degree
k-cores of the PSN to indicate areas of cohesive interaction
among residues. A (degree) k-core (Wasserman and Faust, 1994)
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is a maximum set of nodes such that every member of the set
is adjacent to at least k other members of the set; the highest
k such that vertex v belonging to the kth core of a graph
is referred to as v’s core number, and is an indication of v’s
embeddedness in locally cohesive structure. While k-cores need
not be globally cohesive, high-numbered k-cores are composed
of locally cohesive elements, and hence vertices with high core
numbers represent residues belonging to regions of the protein
connected by multiple redundant contacts. By contrast, vertices
with low core numbers represent residues residing in regions that
are at best very loosely connected.

To summarize global tendencies toward structure formation
in the two variants, Figure 9 shows the mean core numbers
for each WT and E22G residue, averaged over all minimum
energy conformations in each respective set. Observed mean
core numbers range from just over 1 at the N-terminus to over
3 in the internal region of the protein, falling again near the
C-terminus. The relatively low core numbers near the termini
are reflective of the high flexibility of these regions, though we
observe a substantial and significant difference between the N-
terminal and C-terminal regions (with the former being far less
structured, on average, than the latter). In general, WT and E22G
show very similar patterns of core structure throughout the N-
terminal region, although E22G shows significantly higher core
numbers for the majority of residues. The largest differences in
core numbers are observed for a band of residues extending
roughly from G15 to M35. Within this region, E22G produces
substantially more local cohesion, on average, than WT. The
elevated level of structure within this band for both variants may
stem in part from interactions among the numerous nonpolar
residues located within it, but the cross-variant difference points
to a major role for E22 in destabilizing possibly aggregation-
inducing local interactions throughout the C-terminal region.
Although comparative experimental results are not available
for these proteins, this central region of higher connectivity
is consistent with the observations of Rosenman et al. (2013)
from NMR experiments on the wild-type protein at low
temperature. Based on measured J-couplings and molecular
dynamics simulations, several frequently populated structural
elements were observed, including a transient salt bridge between
E22 and K28 [also observed by Rosenman et al. (2013)], which
was observed in the minima of our wild-type models.

To get a better sense of how these differences in structure arise,
it is useful to distinguish the residue contacts that arise more
often in E22G than WT (and vice versa). Figure 10 shows, for
both sets of PSNs, the edges that are found significantly more
often in E22G (red) or in WT (blue). Mutation of the glutamic
acid at position 22 to glycine clearly enhances a large complex
of potential contacts, prominently including residues 7-8, 11-
12, and 22-23 (among others); in addition, we see a weaker but
more broad-based enhancement of contact rates throughout the
protein, but particularly in the C-terminal region. By contrast,
relatively few contacts are more prevalent in WT, among the
exceptions being pairwise contacts between 1 and 22 and 3 and
11, as well as some relatively local contacts in the C-terminal
region (appearing to involve interactions among nearby non-
polar residues). Overall, the broad pattern suggests that in WT,

FIGURE 9 | Mean degree core number by residue, WT vs. E22G, with 95%

confidence intervals. Significant differences in core numbers are indicated by

dark circles. E22G shows a region of markedly higher average cohesion

involving internal residues in the C-terminal portion of the protein, suggesting a

major role for these residues in the formation of transient structural elements

that may be involved in aggregate formation.

E22 both blocks interactions among residues in its immediate
vicinity and limits the ability of the two large patches of nonpolar
residues within the C-terminal region to interact (with some
of these instead participating more often in ephemeral internal
interactions). In E22G, the replacement of the bulky glutamic
acid with the small and highly flexible glycine appears to allow
these previously blocked groups to interact with much higher
frequency, raising the average local cohesion.

It should be noted that all of the above contacts are transient,
with typical conformations being quite sparsely connected
(though some do have considerable self-interaction). Thus, these
patterns reveal biases or general tendencies in a fluctuating
system, rather than the stable structures characterizing more
typical proteins. This raises the question of which particular
structures are more strongly favored for WT vs. E22G, to which
we now turn.

2.3.2. What Transient Structures Characterize the

Difference Between WT and E22G?
The above give us some sense of where transient structure is being
formed inWT and E22G, but they do not provide a strong holistic
sense of which sorts of global structures are more characteristic of
E22G vs. WT. For that purpose, we must consider the networks
as a whole. To do this, we fit statistical models to the respective
E22G andWTminima that identify the network features that are
more or less enhanced for each variant. We do this by leveraging
ERGMs (Hunter et al., 2008), parametric statistical models for
graphs that allow direct representation of complex dependence
among edges. Given a random graph G, defined on support G,
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FIGURE 10 | Relative PSN edge frequencies, E22G vs. WT. Of edges that

differ statistically between E22G and WT, more of them are characteristic of

the E22G variant (red) than wild type Aβ(blue); backbone edges (black) are

provided as a reference, with vertices colored by residue index (red to blue).

Edge width and translucency reflect the magnitude of relative difference in

appearance rates (heavier edges differ more). Although E22G forms structure

more readily in most locations, a key complex of activity involves residues 7, 8,

11, 22, and 23 (with several other residues also participating).

we may write its probability mass function in ERGM form as

Pr(G = g|θ , t,X) =
exp(θT t(g,X))h(g)

∑

g′∈G exp(θT t(g′,X))h(g′)
, (1)

where t :G,X 7→ R
k is a vector of sufficient statistics, θ ∈ R

k is a
parameter vector, h is a reference measure satisfying 0 ≤ h(g′) ≤
∞ for g′ ∈ G and h(g′) = 0 otherwise, andX is a set of covariates.
In the case of residue-level PSNs,G is the set of all simple graphs
on N vertices (where N is the length of the primary sequence),
subject to the constraint that each vertex is tied to the vertices
corresponding to its neighbors in the protein backbone. Here, we
follow typical practice for unvalued, fixed-N networks and take
h to be the counting measure on G, implying that h(g′) ∝ 1 for
g′ ∈ G and 0 otherwise. Since h then cancels for graphs in the
support, we henceforth omit it in our notation (it being tacitly
assumed that the probability of graphs outside the support is 0).

An extensive statistical literature exists on ERGMs, and in
particular on the problem of inferring an unknown θ from
observations of G. Substantively, the model can be understood
as describing biases in the distribution of G relative to the
reference measure (in our case, the uniform distribution over
possible 40-node PSNs), with the nature of each bias determined
by the choice of statistics (t) and the direction and strength
of each bias determined by θ . Here, we fit separate ERGMs

to the sets of observed WT and E22G minima (respectively),
inferring θ in each case by approximate Bayesian inference using
Laplace parameter priors analogous to the L1 regularization
employed in the well-known LASSO procedure (Tibshirani,
1996). Table 1 shows the posterior mean estimates, posterior
standard deviations, and 95% central posterior intervals for the
parameters (i.e., θ) of each fitted model. The estimated effects
(i.e., t) are described in greater detail in section 4, but may
be summarized as follows: an Edges effect sets the baseline
PSN density; Backbone Dist indicates the effect of the absolute
distance through the backbone (in units of residues) on the
propensity of each residue pair to be in contact; Hydophobicity
indicates the effect of hydrophobicity (as measured by the scale
of Kyte and Doolittle, 1982) on the overall propensity of each
residue to form contacts; Charge Mixing indicates the effect of
like or unlike charges to be respectively in contact or not in
contact (for charged residues); Polar/Nonpolar Mixing indicates
the propensity of polar residues to be in contact with nonpolar
residues; Polar/Polar mixing indicates the propensity of polar
residues to be in contact with other polar residues; Volume
indicates the effect of residue van der Waals volume (in Å3)
on the propensity to form contacts; Mass indicates the effect
of residue mass (in Da) on the propensity to form contacts;
Dist from Termini indicates the effect of residue distance from
the nearest terminus (ranging from 1 at the center to 0 at
either terminus) on the propensity to form contacts;GWESP(0.5)
indicates a geometrically weighted shared partner statistic with
a decay parameter of 0.5, reflecting the tendency toward triadic
clustering within the PSN; and Prior Scale refers to the scale
of the Laplace parameter prior (which determines the strength
of regularization).

Of the estimated effects, all except for hydrophobicity and
mass have 95% credible intervals that do not contain 0, and
posterior means for both models are quite similar. Broadly,
we may interpret the parameter estimates as follows. The low
baseline density (as determined by the edges parameter) is
compatible with the general observation that bothWT and E22G
are generally unstructured, with most residues having few non-
backbone contacts at any given time.We observe a mild tendency
for residues that are far from each other in the primary sequence
to interact; the high flexibility of Aβ implies relatively little
inhibition of long-range contacts, however, and the effect is fairly
small. As would be expected on physical grounds, electrostatic
and nonpolar effects are fairly large (with pairs of nonpolar
residues relatively more likely to form contacts than pairs of
polar residues or polar/nonpolar pairs). Volume also has a small
effect on contact formation, with larger residues being somewhat
more likely to have more contacts. Perhaps more interestingly,
distance from the nearest terminus (equivalently, placement in
the middle of the primary sequence) is a strong positive predictor
of the tendency to form contacts, and there is a strong overall
tendency toward clustering (as might be expected on geometric
grounds). Thus, there is a net bias toward structure formation for
the interior of the protein, despite its overall high mobility and
lack of persistent secondary structure.

Although these models are highly simplified, they can be
thought of as expressing approximate “force fields” describing
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TABLE 1 | Posterior estimates for the WT and E22G PSN ERGMs (respectively).

Wild type E22G

Parameter Post mean Post SD Q2.5% Q97.5% Post mean Post SD Q2.5% Q97.5%

Edges −6.137 0.0719 −6.286 −5.986 −6.356 0.0667 −6.484 −6.218

Backbone dist −0.025 0.0017 −0.028 −0.021 −0.019 0.0014 −0.021 −0.016

Hydrophobicity −0.003 0.0038 −0.010 0.005 0.002 0.0039 −0.006 0.009

Charge mix −0.999 0.0449 −1.083 −0.909 −0.996 0.0533 −1.108 −0.901

Polar/Nonpolar mix −0.347 0.0320 −0.411 −0.285 −0.365 0.0295 −0.419 −0.308

Polar/Polar mix −0.512 0.0531 −0.614 −0.410 −0.478 0.0465 −0.571 −0.393

Volume 0.004 0.0007 0.003 0.006 0.003 0.0007 0.001 0.004

Mass −0.001 0.0007 −0.002 0.001 0.001 0.0007 0.000 0.002

Dist from termini 0.140 0.0239 0.097 0.188 0.190 0.0247 0.145 0.241

GWESP(0.5) 2.137 0.0235 2.090 2.182 2.205 0.0221 2.159 2.246

Prior scale 0.941 0.0102 0.922 0.960 0.958 0.0080 0.941 0.974

the relative favorability of different PSN structures with respect to
each variant. Drawing on this intuition, wemay use the models to
construct a log “favorability ratio” that, for a given PSN, measures
the extent to which it is relatively favorable for E22G vs. WT. In
particular, let θ̂WT be the estimated coefficients for theWTmodel,
and θ̂E22G the corresponding coefficients for the E22G model.
Then, for PSN G, the quantity

f E22GWT (G) = θ̂E22GtE22G(G)− θ̂WT tWT(G) (2)

is the log favorability ratio for E22G vs. WT (where tE22G and
tWT indicate the vectors of graph statistics for G evaluated for
each respective sequence, the two having slightly different residue
properties). It may be observed from Equation 1 that f E22GWT (G)
is equal to the log ratio of the probability of observing G under
the two respective models, up to an additive constant that does
not depend upon the PSN. Thus, while the absolute level of
f E22GWT (G) cannot be interpreted, differences in the log ratio for

different choices of G are meaningful; in particular, if f E22GWT (G) >

f E22GWT (G′), then PSN G is relatively favored by E22G vs. WT vis a
vis G′.

The log favorability ratio provides considerable insight into
the types of transient structures that are most heavily favored
by E22G relative to WT. For instance, Figure 11 shows the five
PSN structures most favored by E22G and WT, respectively,
out of all minima from both (pooled) sets. As can be seen,
the minima most favored by E22G involve extensive, cohesive
structures, while those favored byWT tend to be extremely sparse
(with most structure being local with respect to the backbone).
Interestingly, where the wild type-favored PSNs have more
extensive structure, it tends to be near the termini (in contrast
with E22G, which shows more extensive structure within the
interior of the protein). As noted above, both models encourage
structure formation within the interior of the primary sequence;
however, wild type Aβ1−40 appears to favor conformations
with terminal structure more than the E22G variant (plausibly
because the E22G places far more probability mass on globally
cohesive structures that are destabilized in the wild-type protein).

Examination of these extreme cases thus gives us an immediate
intuition for the nature of the subtle differences in transient
structure formation that distinguish the two variants.

2.4. Comparative Cluster Analysis of WT
and E22G Dynamics
Cluster analysis is a useful tool for subdividing conformational
spaces, having been successfully employed in applications such
as refinement of protein structure homology models (Raval
et al., 2012), building Markov models for protein folding
(Husic and Pande, 2017), and probing the configurational and
hydrogen bonding structure of solvating water molecules in
confined regions of proteins (Young et al., 2007). Here, we
show how cluster solutions calibrated for accurate treatment of
conformational dynamics combined with comparative analysis
of cluster-induced transition networks can be used to reveal
differences in the behavior of the WT and E22G Aβ variants.

2.4.1. Can Differences in Physiological Temperature

Dynamics for WT and E22G Be Detected?
It has been shown in the present study and elsewhere (Chebaro
et al., 2015; Granata et al., 2015) that the thermodynamics of
intrinsically disordered proteins are governed by vast potential
energy surfaces with numerous or perhaps innumerable local
minima corresponding to nearly isoenergetic microstates, rather
than a single well-defined global minimum. This situation makes
comparative analysis of thermodynamic distributions for similar
IDPs extremely difficult compared to systems where only a
few local minima exist. At the same time, experiments have
confirmed that even subtly different IDPs, such as the WT and
E22G proteins being studied in the present work, do exhibit a
marked difference in their capacity to form amyloid fibrils (Lord
et al., 2006; Norlin et al., 2012). This sharp contrast between
the thermodynamic similarities of WT and E22G and the
substantial difference in their behavior under solution conditions
strongly suggests that there may be more easily discernible
kinetic differences between them. In other words, although the
configurations of both systems are distributed very similarly
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FIGURE 11 | Five PSN structures most heavily favored by E22G (Top) and WT (Bottom), respectively. E22G-favored structures are highly cohesive, while those

favored by WT have little structure (most of which is local).

when time-marginalized, the way the proteins transition between
regions of the conformation space may be distinct.

While the conventional intuition motivating clustering or
segmentation of conformational space in the context of protein
dynamics is that the protein will restricted to a relatively small
number of low free energy basins (with relatively rare transitions
over free energy barriers between basins) (Bolhuis et al., 2002),
this cannot be assumed for IDPs: while local minima exist,
they are extremely numerous and widely dispersed across a
relatively flat energy landscape (Granata et al., 2015). However,
even without the assumption of well-defined basins, we can
segment conformational space into a set of discrete regions and
use this as the basis for a coarse-grained treatment of protein
dynamics (estimating transition rates from observed simulation
trajectories). While many approaches could be used for this
purpose, k-means clustering (Hartigan and Wong, 1979) on
input space of torsion angles is a natural choice: it is highly
scalable, adaptively places boundaries around regions of high
conformational density, and leads to cells that are both convex
and relatively compact. Here, we apply k-means clustering (using
the R implementation R Core Team, 2018) to trajectories in
torsion angle space produced by 500 ns long molecular dynamics
simulations (10 × 106 time steps each), jointly clustering WT
and E22G to create a shared coarsening of their common
conformational space. We then examine the dynamics on this
coarsened space to reveal differences between the two systems.

2.4.2. Choosing the Number of Clusters to Optimize

Dynamic Accuracy
An important parameter to determine in fitting any k-means
clustering model is k, i.e., the number of clusters the algorithm
will generate. One of the most common and straightforward
metrics for determining the optimal choice of k is to plot
the mean squared distance between the data points and their

respective cluster centers, a.k.a. an elbow plot. For data sets with
a strong characteristic number of clusters, a sharp decline in
this distance will be observed when k is set to that characteristic
number of clusters. As shown in Figure 12A, the configurations
produced by theMD simulations of theWT and E22G variants of
Aβ1−40 showed no well-defined elbow, a pattern compatible with
a widely dispersed range of conformations with no deep potential
energy wells. Although somewhat diminishing gains are observed
somewhere between k = 5 and k = 10, this result is by no means
conclusive, thus additional metrics for selecting k are needed.

Another commonly used metric for finding an optimal value
of k for k-means clustering is to plot mean silhouette width as a
function of k and look for a well-defined maximum (Rousseeuw,
1987). The silhouette width of a given data point i is defined as:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(3)

where a(i) is the mean distance between point i and all other
points within its cluster, b(i) is the mean distance between point
i and all points in the cluster it is nearest to but to which it
does not belong. This equation produces silhouette width values
−1 ≥ s(i) ≤ 1, where, on the extremes, 1 indicates ideal cluster
membership for point i and -1 indicates that i has been grouped
into the wrong cluster. Silhouette analysis of our system is shown
in Figure 12B. Although the optimal choice of k is clearly greater
than 8, again, the standard metric provides evidence for the wide
dispersal of conformations, and a need to choose a k-selection
approach that is tailored for the case of IDP trajectories.

Given that our goal is to segment a continuous conformation
space for the purpose of building a coarse-grained approximation
to the underlying dynamics, an alternative approach is to
estimate the accuracy of the dynamic model produced by
a given choice of k, and to find the k that leads to the
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lowest level of approximation error. Intuitively, the error
involved in a Markov approximation of the true dynamics
is dominated by two terms: the coarsening loss due to the
approximation of each specific conformation within a voxel
by the voxel centroid; and the transition rate error associated
with imperfect estimation of the inter-voxel transition rates.
Given a fixed set of trajectories, it is apparent that the
coarsening loss is diminishing in k: the more finely we divide
the space, the more accurately each observed conformation is
represented. At the same time, however, larger choices of k
also reduce the information available to estimate each inter-
voxel transition rate, leading to errors that are increasing in
k. Minimizing the total error is thus expected to lead to a
k that optimizes the trade-off between coarsening and rate
estimation errors.

To put these two error sources on an even footing, we unify
them by defining a one-step prediction error for the coarsened
Markov model. Specifically, given an observed conformation
within a particular voxel, we predict the next conformation in the
trajectory by (1) drawing the next voxel state from the Markov
model, and (2) drawng a random conformation from the set of all
observed conformations within the voxel. The distance between
this drawn conformation and the observed next conformation is
the one-step prediction error. Minimizing this error (summed
over all observed transitions) automatically incorporates both the
coarsening loss and the transition rate error, in a manner that is
conceptually true to our end goal (approximating complex, high-
dimensional conformational trajectories with a coarse-grained
Markov model).

The one-step prediction error summed over all trajectories is
referred to as the total Markov error, and is computed as follows.
First, assume a set of observed trajectories, a clustering solution,
and an estimated transition rate matrix. Next, begin with the first
observed conformation, and proceed as follows:

1. Taking the current cluster ID as input to the Markov model,
predict the cluster membership of the next time point.

2. Draw a configuration from the cluster into which the model
predicted a transition.

3. Measure the distance between the predicted configuration
and the actual configuration for that time step, and add that
distance to the total Markov error.

4. Repeat steps 1 through 3 for the remainder of the trajectory,
and either repeat with the next trajectory if any remain or else
return the TME for that model.

The TME metric for k-means clustering was applied to 20
separate k-means model fitting calculations, varying k from
2 through 16 and averaged to produce the plot shown in
Figure 12C. The metric shows a well-defined optimum at
k = 11, where the total Markov error is at a minimum.
The TME methodology implicitly strikes a balance in bias-
variance tradeoff between the extremes of too few clusters, where
transition frequencies are more likely to be well-sampled but the
configuration draws from step 2 are drawn from higher variance
clusters, and too many clusters, where smaller clusters have lower
variance but under-sampling of transitions imparts a bias to the
random walks in cluster space.

2.4.3. Transition Frequency Graphs From k-Means

Clustering of WT and E22G Trajectories
Once the optimal number of clusters of k = 11 was identified
using the total Markov error metric, the lowest TME of the 20 k-
means models with k = 11 was selected for further analysis. The
matrices of transition frequencies between clusters (see section
4) are ideally represented using graphs (Figures 13, 14). A few
key observations are immediately apparent when comparing
Figure 13 with Figure 14. The E22G graph displays a much
higher degree of connectivity compared to WT, with more
evenly distributed populations across the clusters visited along
its trajectory. Notably, cluster number 6, the highest populated
cluster in the E22G transition graph, is both highly connected
and minimally populated in the WT graph. This is noteworthy
because although transitions were observed between cluster 6
and 9 of the 10 other clusters present in the WT trajectories, the
trajectories did not remain in cluster 6 long enough to produce
a more substantial population in that cluster. This implies that
while cluster 6 is highly accessible to bothWT and E22G variants,
E22G appears to exhibit substantially higher stability in this
region of configuration space.

Given the sharp contrast between the transition frequency
graphs in Figures 13, 14, it is necessary to examine the possibility
that the difference in configuration space sampling is due to
the trajectories being too short. More specifically, since the
configuration space of Aβ1−40 is believed to be expansive, it is
necessary to demonstrate that the observed differences are not
occuring because the two variants simply did not have time to
cover the distance between the configuration subspaces favored
by one vs. the other. As a way to address this, we generated the
cluster proximity graph shown in Figure 15. It is immediately
obvious that this is a very well-connected graph, with many of
the strongest ties occurring between vertices whose populations
are dominated by differing variants. For example, note that
most of the strongest ties in the graph are between nodes of
substantially different relative populations of WT vs. E22G. As
a specific case, consider the three most WT-dominant nodes on
the graph, nodes 4, 8, and 9: all exhibit some strong ties, yet
none of their respective strong ties are shared between each other.
The cluster center proximity graph provides strong evidence that
the disparity between the clusters sampled in the WT and E22G
simulations are indeed inherent to their respective dynamics, and
not an artifact of under-sampling.

3. DISCUSSION

This comparative study of the wild type Aβ1−40 protein and
its “Arctic” E22G variant identifies some key differences in
the types of transient structures formed by monomers of
the disease-related variant. Although the Ramachandran plots
and angular velocity distributions of MD trajectories for these
proteins are essentially identical, SVM analysis finds key sets
of torsion angles that are indicative of conformations that are
more characteristic of either wild-type or E22G. Combining
this approach with PCA provides a more detailed view of
the differences in transient structural motifs formed, namely
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FIGURE 12 | (A) Mean distance from cluster centers as a function of the number of clusters generated k, often called an elbow plot, is a typical metric for determining

the ideal number of clusters to use in k-means clustering. In strongly clustered systems, the point where this mean distance drops abruptly, or the “elbow,” is the

optimal value for k. Here we show the mean elbow plot for 20 separate clustering calculations using k values ranging from 2 through 16. (B) Mean silhouette width as

a function of k is another common metric for choosing an optimal value of k. Although the metric shows that the optimal k value ought to be greater than 6, no clear

optimum is demonstrated. The silhouette widths shown were generated by sampling 10 sets of 5,000 silhouette width values from all 20 clustering calculations and

averaging. (C) Our metric for optimal k selection, whereby the quality of a given clustering was evaluated on the basis of how well a Markov model generated from a

transition frequency matrix of transitions between clusters performed at predicting the actual trajectory’s path through torsion angle configuration space. Here we see

a clear optimum: k = 11, where the total Markov error metric is at a minimum.

FIGURE 13 | This graph of transition frequencies between clusters 1 through 11 was generated by clustering the trajectory in torsion angle space from a 500 ns

simulation of wild type Aβ1−40. This particular clustering model was selected due to it having the minimum total Markov error (sum of both WT and E22G) of all 20

replicates having k = 11. Each vertex represents one cluster, edges indicate that transitions were observed between each respective pair of vertices, and molecular

structures shown are the structures from the trajectories nearest each cluster center (N termini are labeled green and C termini are labeled orange). Note that this is a

directed graph, thus the size of the arrowheads are proportional to the number of transitions that occurred in that direction. The size of each vertex is proportional to

the number of configurations from the WT trajectory belonging to that cluster, and the color of each vertex represents the relative populations of WT vs. E22G in the

aggregate of both trajectories (the bluer the more WT, the redder the more E22G).

the amount of helical character in the vicinity of residues 14-
23 and the amount of contact between the C-terminal region
and other parts of the protein. Comparisons of the similarity
scores for the wild-type and E22G monomers investigated here
with known fibril structures from the Protein Data Bank reveal

that most of the known fibril structures occupy more wild-
type like conformations, suggesting that E22G may fibrillize
into a different topology, a hypothesis that is consistent with
morphological differences in experimentally observed fibrils
(Norlin et al., 2012), although high-resolution structures have
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FIGURE 14 | This graph of transition frequencies between clusters 1 through 11 was generated by clustering the trajectory in torsion angle space from a 500 ns

simulation of E22G mutants of Aβ1−40. The clustering model used is the same as that shown in Figure 13, only applied to the E22G trajectory instead. The image

convention used is also the same as that of Figure 13.

FIGURE 15 | (A) For the cluster center proximity graph, the vertex color follows the same convention as Figures 13, 14, while vertex size is proportional to the

aggregate population (both WT and E22G). The edges of this graph represent the proximity between their respective vertices in configuration space (the darker the

edge, the closer the vertices are positioned in torsion angle space). (B) Distribution of the pairwise distances between cluster centers. (C) Distribution of grayscale

values (0 is black, 1 is white) for the edges in (A) was produced by mapping the pairwise distances with a sigmoidal function. Note that the shape of the distribution is

very close to that of (B), indicating an accurate representation of the proximity data in the grayscale.

not yet been solved for this variant. The previously discussed
results approach the structures from torsion angle space, which
is a convenient representation of backbone conformations, but

does not address intramolecular connectivity. Protein structure
networks (PSNs) enable a parsimonious representation of local
and long-range cohesion. We find that the mean degree core
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number, a measure of each residue’s connectivity, is significantly
higher for most residues in E22G compared to wild-type, with
particularly large differences observed in residues G15 to M35.
This region of enhanced structural cohesion in the E22G variant
may represent a nucleation site for the formation of pathological
aggregates. PSN analysis of the five structures most favored by
wild-type vs. E22G shows that the former prefers much sparser,
extended structures, while the latter is prone to compact, densely
connected conformations. Overall, this enhanced propensity
of E22G to form denser patterns of inter-residue contacts,
even if these species exist only transiently, is indicative of its
increased susceptibility to aggregation. Our results not only
provide insight into this protein system, but also illustrate a more
general approach that can be applied to comparative analysis
of intrinsically disordered proteins in other settings. While a
strong precedent exists for applying frameworks devised for
characterizing proteins with well-defined folded states, like DSSP
(definition of Secondary Structure of Protein Joosten et al., 2010),
toward characterizing the transient structure present in IDPs
(Rosenman et al., 2013), we present a methodology that allows
the latent structure of the data itself to define the metrics for
similarity or difference between variants. Our approach does
not risk the confirmation bias that can result from applying
methods that search for a particular known type of order in an
intrinsically disordered system. Rather, the ML-based methods
shown herein search for themost predictive latent structure in the
data and thenmaps that structure onto some intuitable paradigm.
In most supervised machine learning applications, the goal is to
train a classifier or regression model that can be used to make
predictions on future data points after being trained on training
data from the past. We have demonstrated that tools from the
ML toolkit, such as SVMs and clustering algorithms, can be
used in ways that go beyond traditional “black box” approaches,
and instead be used to answer mechanistic questions about how
and why subtle structural differences in complex systems like
IDPs can lead to markedly different dynamics. Although fitting
the models remains an important step in the present work, the
utility of a well-trained ML model goes beyond being able to
make accurate predictions. Using our approach, the fact that
we are able to train a model to accurately classify or group
structures as having WT or E22G character, given the training
data, serves as an indication that the input data is indeed a set of
sufficient statistics for discerning between the classes of interest.
This is a key piece of information for molecular simulations
in general, as one must always be wary that an inconclusive
result is due to the inherent problems of molecular simulations,
such as under-sampling or insufficiently detailed models. For
example, in the case of the present work, wild-type Aβ and the
E22G variant are known to exhibit radically different fibrillization
dynamics on experimentally accessible size and time scales, yet
standard approaches to analysis of MD simulations of these
systems show little to no difference in their behavior (e.g., the
Ramachandran plot if Figure 1). As is the case for MD-based
study, when standard methods of analysis are inconclusive, a
legitimate concern is that lack of detail in the MD forcefields
and/or under-sampling could be to blame for the inability to
differentiate between WT and E22G dynamical data with the

standard methods. By using multiple ML approaches to first
prove that indeed enough simulation data is present to reliably
differentiate between variants, and subsequently probe the ML
models themselves to determine which input characteristics
and even which specific configuration data points were most
informative, we have demonstrated that our ML-based methods
can be used to simultaneously verify the adequacy of the sampling
while providing a less biased interpretation of the dynamics of
intrinsically disordered proteins.

While there is no one-size-fits-all approach for characterizing
the transient structure of IDPs–different questions demand
different representations–we would suggest that several methods
shown here are likely to prove widely useful in practice. As
noted, we find residue-level PSNs to provide a fairly simple way
to represent transient structure that complements traditional,
secondary structure-based methods while capturing features that
are hard to express via the latter. Measures of local cohesion
(like the core numbers used here) are easily computed, and
provide immediate insight into which regions of the protein
tend to occupy locally folded conformations; comparing these
measures across variants allows the impact of mutations on
transient structure to be assessed without requiring formation of
recognizable secondary structure. Model-based analysis of PSN
structure using ERGMs is more complex, but provides a powerful
tool for identifying transient structures that are differentially
favored across variants. Given the rich analytic toolkit developed
for the study of social networks (Wasserman and Faust, 1994;
Brandes and Erlebach, 2005; Butts, 2008a) (which are themselves
characterized by irregular and often transient structure), this
would seem to be an area with substantial potential for
further development.

4. MATERIALS AND METHODS

4.1. Molecular Dynamics Simulation of
AβMonomers
All MD simulations Aβ1−40 monomers were carried out using
the NAMD 2.10 molecular dynamics software package (Phillips
et al., 2005) with the CHARMM36 force field (Best et al., 2012)
in Generalized Born implicit solvent (Qiu et al., 1997) with an
electrostatic interaction cutoff of 14Å, an alpha (i.e., descreening)
cutoff of 12Å, a 2fs step size, and an ionic concentration of
0.1M; except as noted below, all simulations were performed
at constant temperature using a Langevin thermostat with
a damping coefficient of 1/ps. The seed structure for WT
Aβ1−40 was taken from the lowest energy conformation of the
monomeric solution structure of (Paravastu et al., 2008) (PDB:
2LMN). The seed structure for the E22G variant was obtained
via homology modeling using SWISS-MODEL (Schwede et al.,
2003) (template PDB 2M4J Lu et al., 2013). Visualizations of the
molecular structures were generated using the VMD software
package (Humphrey et al., 1996), with additional processing
performed using R (R Core Team, 2018).

4.1.1. Identification of Local Minima
To obtain an overdispersed set of seed conformations, 100 ns
MD simulations at 450K were carried out for WT and E22G,
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respectively using the above protocol; 1,000 conformations were
collected in each case (1 per 100 ps), with the first being
discarded and the rest being retained for subsequent analysis.
Each conformation obtained from the above process was then
used to seed a 1ns annealing trajectory in which temperature
was systematically lowered from 310K to 0K by constant
increments of 1K (i.e., with approximately 1,600 time steps
between increments) using velocity reinitialization (no Langevin
thermostat). The final conformation from each of 1998 annealing
runs was retained as a local minimum for further analysis
(resulting in 999minima for each ofWT and E22G, respectively).

4.1.2. Simulation of Conformations and Angular

Velocities from Dispersed Starting Points
To sample Aβ1−40 conformations across a wide range of
conformation space, we use the above-identified local minima
as seeds for short secondary trajectories at physiological
temperature. For each minimum, we simulated 10 independent
trajectories at 310K, using our base protocol. Each trajectory
was simulated for 50 intervals of 2 ps, separated by “bursts”
in which conformations were recorded 10 times separated by
intervals of 20 fs. This resulted in a total length per trajectory of
approximately 110 ps. In total, 9,990 trajectories were simulated
for each of WT and E22G, with approximately 500,000 10-
configuration “bursts” recorded for analysis. Mean angular
velocities were then estimated for each burst by taking the mean
of the circular (angular) difference between frames on each
torsion angle and dividing by the interval between frames.

4.1.3. Simulation of Dynamics at Physiological

Temperature
To examine longer-range Aβ1−40 dynamics at physiological
temperature, independent trajectories using our base protocol
were simulated for WT and E22G at 310K for 500 ns. 250,000
conformations (1/2ps) were retained from each trajectory for
subsequent analysis.

4.2. Support Vector Machine Analysis of
Low-Energy Conformations
Backbone dihedral angles were obtained for all local minima
using a combination of R and VMD scripts; for subsequent
analysis, each torsion angle was represented via its real and
imaginary components (for a total of 160 input features per
conformation). SVM analysis was performed using the e1071
package for R (Meyer et al., 2018), using a Gaussian (aka radial
basis function) kernel. Hyperparameter tuning for the kernel
bandwidth and cost parameters was performed via a grid search
using 10-fold cross-validation. For local analysis of mean angular
differences across the decision surface, the set of all support
vectors for the SVM solution was obtained and sorted into
matched E22G/WT pairs by Euclidean distance in the input space
(with the closest pair being matched first, then the next closest,
and so on until no pairs remained). Angular (i.e., minimum
circular) differences were then computed for the torsion angles
in each pair, expressed as the angular displacement needed to go
from the WT angle to its E22G counterpart (in radians).

For analysis involving fibrillar conformations, all models
were extracted from PDB Berman et al. (2000) entries 2LMN
(Paravastu et al., 2008), 2LMO (Paravastu et al., 2008), 2LMP
(Paravastu et al., 2008), 2LMQ (Paravastu et al., 2008), 2LNQ
(Qiang et al., 2012), 2M4J (Lu et al., 2013), 2MPZ (Sgourakis
et al., 2015), 2MXU (Xiao et al., 2015), 5KK3 (Colvin et al., 2016),
and 5OQV (Gremer et al., 2017). The conformation of each
monomer in each fibril structure was extracted and converted
to torsion angle features as described above. Because many
reported structures were missing most or all of the N-terminal
residues, we limited analysis to residues 15-40. A second SVM
solution was obtained from the minima using only these residues
using the above protocol, which was employed for this analysis.
The projection of each fibril onto the feature space vector
normal to the separating hyperplane (the “affinity score”) was
performed by obtaining the decision value for the classification
prediction (E22G vs. WT) for each fibrillar conformation. To
obtain information on the mean gradient of the affinity score
over the fibrillar conformations, scores were regressed on the
input features of the conformations; the resulting coefficients
estimate the mean gradient of the affinity score for the real and
imaginary portions (respectively) of each torsion angle, averaged
across conformations. For visualization, the two coefficients for
each torsion angle were transformed into modulus/argument
representation [i.e., for torsion angle θi, βisin(θi) + β ′i cos(θi) =

bisin(θi − yi) with bi =

√

βi
2 + β ′i

2 and yi = tan−1(β ′i/βi)]. All

calculations were performed using R (R Core Team, 2018).

4.3. Protein Structure Network Analysis
Residue-level PSNs were obtained for each local minimum
conformation by calculating distances among all atom pairs and
forming an edge between residues ri and rj if there existed atoms
ai ∈ ri, aj ∈ rj such that the ai, aj distance was smaller than
1.2 times the sum of their van der Waals radii. All analysis and
visualization was performed using R and statnet (Handcock et al.,
2008; R Core Team, 2018); van der Waals radii were taken from
Alvarez (2013). k-cores were calculated for all PSNs using the sna
library for R (Butts, 2008b).

ERGM estimation was performed using an approximate
Bayesian procedure building on the approach of Desmarais and
Cranmer (2012). We independently estimate a model for each
sample of PSNs, with the structure

σ ∼ Inv− Gamma(κ , ζ )

θ1, . . . , θp ∼ Laplace(0, σ )

Y1, . . . ,Yn ∼ ERGM(θ ,X),

where σ is the prior scale (with hyperparameters κ and ζ ),
θ = (θ1, . . . , θp) is the vector of ERGM coefficients, Y =

(Y1, . . . ,Yn) is a PSN sample, and X is a set of protein-
specific covariates (e.g., residue properties). Draws at each
level are taken to be conditionally independent. Intuitively,
this model is a Bayesian analog to the LASSO procedure
applied to a pooled ERGM, with the Laplace parameter priors
inducing the equivalent of L1 regularization on the posterior
mode. (To improve regularization performance, we rescale the
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changescores associated with θ to unit variance during the
estimation process, so that each coefficient is on the same scale;
reported estimates have been returned to the original scale).
Because direct posterior simulation for this model would be
prohibitively computationally expensive on the large sample
of networks used here, we instead employ an approximate
inference strategy closely related to that of Schmid andDesmarais
(2017) for single networks and Desmarais and Cranmer (2012)
dynamic networks. Our approach proceeds as follows. For a
specific sample, Y , we approximate the posterior mode θ |Y ,X by
numerically maximizing the quantity

∫ ∞

0
p(θ |σ )p(σ |κ , ζ )

n
∏

i=1

PL(Yi|θ ,X)dσ

where PL is the conditional pseudo-likelihood of Yi (Strauss
and Ikeda, 1990) given the constraint that all residues must be
adjacent to their neighbors along the protein backbone. The
pseudo-likelihood is an easily calculated approximation to the
exact ERGM likelihood whose mode, for large conditionally
independent samples, approaches that of the true likelihood
(Strauss and Ikeda, 1990). To obtain approximate posterior
quantities, we then perform Bayesian bootstrap (Rubin, 1981)
simulation of θ |Y(j),X over replicates Y(1), . . . ,Y(m) of the
original data set (with graphs as the independently resampled
units). We report approximate posterior mean, standard
deviations, and 95% credible intervals obtained through this
procedure for θ and σ .

Model terms used for the PSN ERGM analysis were computed

using a combination of R scripts and tools within the ergm
statnet package (Hunter et al., 2008); descriptions for model

terms used here follow e.g., Morris et al. (2008). A standard
edges term was used as a density offset, with an absdiff term for
distance along the backbone, and a nodemix for polar/nonpolar
interaction (with nonpolar/nonpolar as the reference category).
Electrostatics were implemented via an edgecov term with a
covariate matrix Z such that Zij = 1 if ri and rj have the same
nonzero charge, Zij = −1 if ri and rj have the different nonzero
charge, and Zij = 0 if either ri or rj are uncharged. nodecov terms
were included for hydrophobicity (using the scale of Kyte and
Doolittle, 1982), residue volume (in Å3), residue mass (in Da),
and residue-wise distance from the nearest terminus (scaled from

0 to 1). Finally, we account for endogenous clustering using a

fixed-decay geometrically weighted edgewise shared partner term
(GWESP(0.5)). For the Laplace scale, we employ a minimally
informative (i.e., diffuse) hyperprior (κ = 0.1, ζ = 1.1).

Computation for the log relative favorability ratio was
performed for each PSN by calculating the model statistics (i.e.,
terms) for the adjacency structure of the PSN under the respective
residue properties of each variant and then multiplying by their
respective parameter estimates per equation 2. f E22GWT was then
calculated for all WT and E22G minima PSNs, with the highest
and lowest scoring configurations (respectively) being chosen
for visualization.

4.4. Comparative Cluster Analysis of WT
and E22G Dynamics
All k-means clustering was carried out using the standard R
implementation of k-means clustering (R Core Team, 2018).
Torsion angle vectors used to define the configuration space
were expanded into real and imaginary components, as outlined
in section 4.2. The Markov models for the total Markov
error metric were generated matrices of transition frequencies
by defining a Jeffreys prior on each row, with the observed
transitions for that row treated as multinomial data, leading
to a posterior mean for the cij transition of (Zij + 0.5)/(Ni +

k/2), where Ni is the number of cluster pairs starting in ci and
Zij is the total number of transitions from cluster i to cluster
j.
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Intrinsic disorder in cell-signaling and cancer-associated proteins. J. Mol. Biol.

323, 573–584. doi: 10.1016/S0022-2836(02)00969-5

Jacobs, D. J., Rader, A., Kuhn, L. A., and Thorpe, M. (2001). Protein flexibility

predictions using graph theory. Proteins 44, 150–165. doi: 10.1002/prot.1081

Joosten, R. P., Te Beek, T. A., Krieger, E., Hekkelman, M. L., Hooft, R. W.,

Schneider, R., et al. (2010). A series of pdb related databases for everyday needs.

Nucl. Acids Res. 39(Suppl. 1):D411–D419. doi: 10.1093/nar/gkq1105

Kyte, J., and Doolittle, R. F. (1982). A simple method for displaying

the hydropathic character of a protein. J. Mol. Biol. 157, 105–132.

doi: 10.1016/0022-2836(82)90515-0

Lam, A., Teplow, D., Stanley, H., and Urbanc, B. (2008). Effects of the arctic

(e22→g) mutation on amyloid β-protein folding: discrete molecular dynamics

study. J. Am. Chem. Soc. 130, 17413–17422. doi: 10.1021/ja804984h

Lee, C., Kalmar, L., Xue, B., Tompa, P., Daughdrill, G., Uversky, V. N., et al. (2014).

Contribution of proline to the pre-structuring tendency of transient helical

secondary structure elements in intrinsically disordered proteins. Biochim.

Biophys. Acta 1840, 993–1003. doi: 10.1016/j.bbagen.2013.10.042

Lord, A., Kalimo, Hannuand Eckman, C., Zhang, X.-Q., Lannfelt, L., and Nilsson,

L. N. (2006). The Arctic Alzheimer mutation facilitates early intraneuronal Aβ

aggregation and senile plaque formation in transgenic mice. Neurobiol. Aging

27, 67–77. doi: 10.1016/j.neurobiolaging.2004.12.007

Lu, J.-X., Qiang, W., Yau, W.-M., Schwieters, C. D., Meredith, S. C., and Tycko,

R. (2013). Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain

tissue. Cell 154, 1257–1268. doi: 10.1016/j.cell.2013.08.035

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., and Leisch, F. (2018).

e1071: Misc Functions of the Department of Statistics, Probability Theory Group

(Formerly: E1071), TUWien. R package version 1.7-0.

Morris, M., Handcock, M. S., and Hunter, D. R. (2008). Specification of

exponential-family random graph models: terms and computational aspects.

J. Stat. Softw. 24, 1–24. doi: 10.18637/jss.v024.i04

Nilsberth, C., Westlind-Danielsson, A., Eckman, C., Condron, M., Axelman, K.,

Forsell, C., et al. (2001). The ’Arctic’ APP mutation (E693G) causes Alzheimer’s

disease by enhanced A β protofibril formation. Nat. Neurosci. 4, 887–893.

doi: 10.1038/nn0901-887

Norlin, N., Hellberg, M., Filippov, A., Sousa, A. A., Gröbner, G.,

Leapman, R. D., et al. (2012). Aggregation and fibril morphology of

the Arctic mutation of Alzheimer’s Aβ peptide by CD, TEM, STEM

and in situ AFM. J. Struct. Biol. 180, 174–189. doi: 10.1016/j.jsb.2012.

06.010

Paravastu, A. K., Leapman, R. D., Yau, W.-M., and Tycko, R. (2008). Molecular

structural basis for polymorphism in Alzheimer’s β-amyloid fibrils. Proc. Natl.

Acad. Sci. U.S.A. 105, 18349–18354. doi: 10.1073/pnas.0806270105

Pearson, K. (1901). Liii. on lines and planes of closest fit to systems of

points in space. London Edinburgh Dublin Philos. Mag. J. Sci. 2, 559–572.

doi: 10.1080/14786440109462720

Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E.,

et al. (2005). Scalable molecular dynamics with namd. J. Comput. Chem. 26,

1781–1802. doi: 10.1002/jcc.20289

Qiang, W., Yau, W.-M., Luo, Y., Mattson, M. P., and Tycko, R. (2012). Antiparallel

β-sheet architecture in Iowa-mutant β-amyloid fibrils. Proc. Natl. Acad. Sci.

U.S.A. 109, 4443–4448. doi: 10.1073/pnas.1111305109

Qiu, D., Shenkin, P. S., Hollinger, F. P., and Still, W. C. (1997). The

gb/sa continuum model for solvation. a fast analytical method for the

calculation of approximate born radii. J. Phys. Chem. A 101, 3005–3014.

doi: 10.1021/jp961992r

R Core Team (2018). R: A Language and Environment for Statistical Computing.

Vienna: R Foundation for Statistical Computing.

R Core Team (2018). R: A Language and Environment for Statistical Computing. R

Statistical Software Package.

Ragoza, M., Hochuli, J., Idrobo, E., Sunseri, J., and Koes, D. R. (2017). Protein–

ligand scoring with convolutional neural networks. J. Chem. Inform. Model. 57,

942–957. doi: 10.1021/acs.jcim.6b00740

Raval, A., Piana, S., Eastwood, M. P., Dror, R. O., and Shaw, D. E. (2012).

Refinement of protein structure homology models via long, all-atommolecular

dynamics simulations. Proteins 80, 2071–2079. doi: 10.1002/prot.24098

Roccatano, D., Sbardella, G., Aschi, M., Amicosante, G., Bossa, C., Di Nola,

A., et al. (2005). Dynamical aspects of tem-1 β-lactamase probed

Frontiers in Molecular Biosciences | www.frontiersin.org June 2019 | Volume 6 | Article 4265

https://doi.org/10.1093/bioinformatics/btu849
https://doi.org/10.1529/biophysj.105.064485
https://doi.org/10.1111/j.1467-839X.2007.00241.x
https://doi.org/10.18637/jss.v024.i06
https://doi.org/10.1016/j.csbj.2016.05.003
https://doi.org/10.1016/j.jmb.2006.01.009
https://doi.org/10.1038/srep10386
https://doi.org/10.1021/jacs.6b05129
https://doi.org/10.2174/138920312799277992
https://doi.org/10.1021/ja044834j
https://doi.org/10.1016/j.physa.2011.10.018
https://doi.org/10.1039/C8IB00140E
https://doi.org/10.1021/ci5001136
https://doi.org/10.1038/srep15449
https://doi.org/10.1063/1.4989857
https://doi.org/10.1126/science.aao2825
https://doi.org/10.18637/jss.v024.i01
https://doi.org/10.2307/2346830
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.18637/jss.v024.i03
https://doi.org/10.1021/acs.jctc.6b01238
https://doi.org/10.1016/S0022-2836(02)00969-5
https://doi.org/10.1002/prot.1081
https://doi.org/10.1093/nar/gkq1105
https://doi.org/10.1016/0022-2836(82)90515-0
https://doi.org/10.1021/ja804984h
https://doi.org/10.1016/j.bbagen.2013.10.042
https://doi.org/10.1016/j.neurobiolaging.2004.12.007
https://doi.org/10.1016/j.cell.2013.08.035
https://doi.org/10.18637/jss.v024.i04
https://doi.org/10.1038/nn0901-887
https://doi.org/10.1016/j.jsb.2012.06.010
https://doi.org/10.1073/pnas.0806270105
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1002/jcc.20289
https://doi.org/10.1073/pnas.1111305109
https://doi.org/10.1021/jp961992r
https://doi.org/10.1021/acs.jcim.6b00740
https://doi.org/10.1002/prot.24098
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Grazioli et al. ML-Based Comparative Analysis of IDPs

by molecular dynamics. J. Comput. Aided Mol. Design 19, 329–340.

doi: 10.1007/s10822-005-7003-0

Rosenman, D. J., Connors, C. R., Chen, W., Wang, C., and García, A. E. (2013). Aβ

monomers transiently sample oligomer and fibril-like configurations: ensemble

characterization using a combined MD/NMR approach. J. Mol. Biol. 425,

3338–3359. doi: 10.1016/j.jmb.2013.06.021

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation

and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65.

doi: 10.1016/0377-0427(87)90125-7

Rubin, D. B. (1981). The bayesian bootstrap. Ann. Stat. 9, 130–134.

doi: 10.1214/aos/1176345338

Salmon, L., Nodet, G., Ozenne, V., Yin, G., Jensen, M., Zweckstetter, M., et al.

(2010). NMR characterization of long-range order in intrinsically disordered

proteins. J. Am. Chem. Soc. 132, 8407–8418. doi: 10.1021/ja101645g

Salvi, N., Abyzov, A., and Blackledge, M. (2016). Multi-timescale dynamics

in intrinsically disordered proteins from NMR relaxation and molecular

simulation. J. Phys. Chem. Lett. 7, 2483–2489. doi: 10.1021/acs.jpclett.6b00885

Sanchez-Lengeling, B., and Aspuru-Guzik, A. (2018). Inverse molecular design

using machine learning: generative models for matter engineering. Science 361,

360–365. doi: 10.1126/science.aat2663

Schmid, C. S., and Desmarais, B. A. (2017). “Exponential random graph models

with big networks: maximum pseudolikelihood estimation and the parametric

bootstrap,” in IEEE International Conference on Big Data (Boston, MA), 116–

121.

Scholkopf, B., Mika, S., Burges, C. J., Knirsch, P., Muller, K.-R., Ratsch, G., et al.

(1999). Input space versus feature space in kernel-based methods. IEEE Trans.

Neural Netw. 10, 1000–1017. doi: 10.1109/72.788641

Schwede, T., Kopp, J., Guex, N., and Peitsch, M. C. (2003). Swiss-model: an

automated protein homology-modeling server. Nucl. Acids Res. 31, 3381–3385.

doi: 10.1093/nar/gkg520

Sgourakis, N. G., Yau, W.-M., and Qiang, W. (2015). Modeling an in-register,

parallel “Iowa” Aβ fibril structure using solid-state NMR data from labeled

samples with Rosetta. Structure 23, 216–227. doi: 10.1016/j.str.2014.10.022

Sibille, N., and Bernadó, P. (2012). Structural characterization of intrinsically

disordered proteins by the combined use of NMR and SAXS. Biochem. Soc.

Trans. 40, 955–962. doi: 10.1042/BST20120149

Song, J., Guo, L.-W., Muradov, H., Artemyev, N. O., Ruoho, A. E., and Markley,

J. L. (2008). Intrinsically disordered γ -subunit of cGMP phosphodiesterase

encodes functionally relevant transient secondary and tertiary structure. Proc.

Natl. Acad. Sci. U.S.A. 105, 1505–1510. doi: 10.1073/pnas.0709558105

Spera, S., and Bax, A. (1991). Empirical correlation between protein backbone

conformation and Cα and Cβ 13C nuclear magnetic resonance chemical shifts.

J. Am. Chem. Soc. 113, 5490–5492. doi: 10.1021/ja00014a071

Strauss, D., and Ikeda, M. (1990). Pseudolikelihood estimation for social networks.

J. Am. Stat. Assoc. 85, 204–212. doi: 10.1080/01621459.1990.10475327

Teilum, K., Kragelund, B., and Poulsen, F. (2002). Transient structure formation

in unfolded acyl-coenzyme A-binding protein observed by site-directed

spin labelling. J. Mol. Biol. 324, 349–357. doi: 10.1016/S0022-2836(02)

01039-2

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat.

Soc. B (Methodol.). 58, 267–288. doi: 10.1111/j.2517-6161.1996.tb02080.x

Unhelkar, M. H., Duong, V. T., Enendu, K. N., Kelly, J. E., Tahir, S., Butts, C. T.,

et al. (2017). Structure prediction and network analysis of chitinases from

the Cape sundew, Drosera capensis. Biochim. Biophys. Acta 1861, 636–643.

doi: 10.1016/j.bbagen.2016.12.007

Urbanc, B., Betnel, M., Cruz, L., Bitan, G., and Teplow, D. (2010). Elucidation of

amyloid β-protein oligomerization mechanisms: discrete molecular dynamics

study. J. Amer. Chem. Soc. 132, 4266–4280. doi: 10.1021/ja9096303

Vapnik, V. (2013). The Nature of Statistical Learning Theory. New York, NY:

Springer Science & Business Media.

Vivekanandan, S., Brender, J., Lee, S., and Ramamoorthy, A. (2011). A partially

folded structure of amyloid-beta (1-40) in an aqueous environment. Biochem.

Biophys. Res. Commun. 411, 312–316. doi: 10.1016/j.bbrc.2011.06.133

Wasserman, S., and Faust, K. (1994). Social Network Analysis: Methods and

Applications, Vol. 8. Cambridge, UK: Cambridge University Press.

Williamson, J. A., and Miranker, A. D. (2007). Direct detection of transient

αhelical states in islet amyloid polypeptide. Protein Sci. 16, 110–117.

doi: 10.1110/ps.062486907

Xiao, Y., Ma, B., McElheny, D., Parthasarathy, S., Long, F., Hoshi, M., et al.

(2015). Aβ(1-42) fibril structure illuminates self-recognition and replication

of amyloid in Alzheimer’s disease. Nat. Struct. Mol. Biol. 22, 499–505.

doi: 10.1038/nsmb.2991
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Intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions

(IDRs) play important roles in many aspects of normal cell physiology, such as signal

transduction and transcription, as well as pathological states, including Alzheimer’s,

Parkinson’s, and Huntington’s disease. Unlike their globular counterparts that are defined

by a few structures and free energyminima, IDP/IDR comprise a large ensemble of rapidly

interconverting structures and a corresponding free energy landscape characterized by

multiple minima. This aspect has precluded the use of structural biological techniques,

such as X-ray crystallography and nuclear magnetic resonance (NMR) for resolving their

structures. Instead, low-resolution techniques, such as small-angle X-ray or neutron

scattering (SAXS/SANS), have become a mainstay in characterizing coarse features

of the ensemble of structures. These are typically complemented with NMR data if

possible or computational techniques, such as atomistic molecular dynamics, to further

resolve the underlying ensemble of structures. However, over the past 10–15 years, it

has become evident that the classical, pairwise-additive force fields that have enjoyed

a high degree of success for globular proteins have been somewhat limited in modeling

IDP/IDR structures that agree with experiment. There has thus been a significant effort to

rehabilitate these models to obtain better agreement with experiment, typically done by

optimizing parameters in a piecewise fashion. In this work, we take a different approach

by optimizing a set of force field parameters simultaneously, using machine learning to

adapt force field parameters to experimental SAXS scattering profiles. We demonstrate

our approach in modeling three biologically IDP ensembles based on experimental

SAXS profiles and show that our optimization approach significantly improve force field

parameters that generate ensembles in better agreement with experiment.

Keywords: intrinsically disordered proteins, machine learning, optimization, force-field parameters, molecular

dynamics
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1. INTRODUCTION

Our understanding of classical structure-function paradigm of
proteins was first established by recognizing a unique three-
dimensional (3D) structure of specific amino acid sequence
(Anfinsen, 1973). However, in the late ’90s, it was reported
that many proteins remain natively unfolded while biologically
active (Wright and Dyson, 1999). Such intrinsically disordered
proteins or regions (IDPs/IDRs) do not fold autonomously
into stable 3D structures; however, they may possess short-
transient secondary structure (Uversky, 2011; Das and Pappu,
2013; Latysheva et al., 2015). IDPs typically have an abundance
of charged and polar residues while lacking hydrophobic
groups. In addition, a recent study suggests IDPs, even with
a low net charge, and high hydrophobicity, possess extended
conformations in water (Riback et al., 2017). The 3D structure
of IDPs is specifically influenced by their sequence, e.g., a linear
sequence patterning of oppositely charged residues was found
to govern the conformational dimension in polyampholytic
IDPs (Das and Pappu, 2013).

Despite the interconverting ensemble of conformations and
absence of structured region, IDPs play a vital role in many
cell physiology, such as signal transduction and transcription
(Habchi et al., 2014; Latysheva et al., 2015; Wright and
Dyson, 2015; Mollica et al., 2016). Interest in IDPs also stems
from their association with multiple diseases, such as cancers
[p53 (Wells et al., 2008) and HPV (Uversky et al., 2006)],
diabetes, cardiovascular, and neurodegenerative disorders (e.g.,
Alzheimer’s and Parkinson’s diseases) (Uversky et al., 2008;
Knowles et al., 2014). Therefore, IDPs not only exemplify a new
paradigm for understanding disorder-function relationships but
also provide insights on pathological mutations that can lead to
serious human diseases (Latysheva et al., 2015).

Nuclear magnetic resonance (NMR) spectroscopy (Wells
et al., 2008; Pérez et al., 2009, 2013; Robustelli et al., 2012;
Jensen et al., 2014; Arai et al., 2015; Lee et al., 2016; Arbesü
et al., 2017), single-molecule Förster resonance energy transfer

(smFRET) (Hofmann et al., 2012; Fuertes et al., 2017), cryo-
electron microscopy (cEM) (Busch et al., 2015; Levine et al.,
2015) and small-angle X-ray scattering (SAXS) (Wells et al.,

2008; Receveur-Bréchot and Durand, 2012; Arbesü et al., 2017;
Fuertes et al., 2017; Riback et al., 2017; Drulyte et al., 2018)
are widely being used to study the disordered structures of
IDPs. However, they lack a complete atomic or molecular
description of disorder due to instrumental resolution and the
ensemble-averaged nature of the measurements, which present
a steep challenge to the unambiguous interpretation of the
measurements (Fuertes et al., 2017; Kosciolek et al., 2017; Best
et al., 2018; Drulyte et al., 2018; Riback et al., 2018). Therefore,
molecular dynamics (MD) simulations are often combined with
experiments for determining the ensemble of 3D structures of
IDPs (Huang et al., 2017).

At the heart of running atomistic molecular dynamics (MD)
simulations is a set of empirical potential energy functions from
which forces are derived for characterizing the time evolution
of a system (typically a protein, or a set of proteins, or other
bio-molecules) (Karplus andMcCammon, 2002). These potential
energy functions are typically referred to as a force field (FF).

The last four decades of FF development have been critical
in enabling studies of bio-molecular systems in the context of
ligand binding, enzyme reactions, protein folding/misfolding
and other complex biological phenomena, such as self-assembly
(Karplus, 2002).

Current FFs for proteins and other bio-molecules are
mature in the sense that they have been rigorously validated
for benchmark systems, have an underlying methodology for
parameterization, and are being continuously improved upon
as discrepancies between simulation results and experimental
physical observables arise (Lopes et al., 2015). These deficiencies
become particularly noticeable with current advances in
sampling ability of MD on modern computer hardware and
algorithmic improvements in the software, enabling limitations
in sampling to be ruled out as the deficiency (Tiwary et al., 2015).
One notable deficiency of standard, pairwise additive force fields
is in their ability to correctly capture the experimentally observed
properties of intrinsically disordered proteins (IDP) and partial
disorder. While empirical force fields have demonstrated a
high degree of success in reproducing experimentally derived
physical properties of globular proteins, which are characterized
by a few relevant, compact conformations, they are deficient
in capturing the many transient conformational states and
corresponding free energy minima characteristic of IDPs (Huang
and MacKerell, 2018). This is best demonstrated in the tendency
of empirical force fields to predict a small set of overly compact
conformations, in contrast to experimental prediction of a
large ensemble of more extended, less compact conformations
where the protein interacts much more with solvent (Nettels
et al., 2009; Best et al., 2014; Piana et al., 2014, 2015; Skinner
et al., 2014). Indeed, this observation, as well as hydration free
energy calculations on small molecules being observed to be too
unfavorable (Shirts et al., 2003; Shirts and Pande, 2005) compared
with experiment, have pointed to standard force fields being
excessively solvophobic.

These observations have led researchers to tune the non-
covalent energetic parameters in an effort to create a more
balanced picture of protein-water interactions. While it could
be argued that more complicated functional forms may be
necessary, it is highly desirable to be able to preserve the
current simple functional forms if possible, given their history
of success in capturing an array of biophysical phenomena
of interest, and their easy implementation on GPU and other
high-performance platforms.

Efforts at rehabilitating FFs for use with IDP/IDR have focused
on adjustment of short-ranged non-covalent contributions to
protein-water interactions through tuning of van der Waals
energetics, modeled in all cases by a Lennard-Jones potential
with a 6–12 functional form (Best et al., 2014; Piana et al.,
2015; Robustelli et al., 2018). In addition to reparameterization
of protein-water interactions, closer attention has been paid
to the underlying water model, recognizing the advantages of
recently parameterized four-site water models, such as TIP4P-
Ew (Horn et al., 2004) and TIP4P/2005 Vega and Abascal (2005),
over simpler three-site models, such as TIP3P (Best and Mittal,
2010). Given the overly compact nature of simulated IDP, it
was also considered natural to reparameterize the side-chain
and backbone torsional parameters, and a number of groups
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have pursued this line of research (Nerenberg and Head-Gordon,
2011; Rauscher et al., 2015; Huang et al., 2017; Song et al., 2017;
Robustelli et al., 2018). Reparameterization of torsional potentials
is likely necessary for a different reason, namely, the fact that
torsional potentials implicitly have a degree of short-ranged non-
bonded character. Despite the continuous progress in improving
FF accuracy, our ability to recapitulate gross experimental
observables, such as neutron reflectivity/scattering profiles from
MD simulations has therefore remained extremely challenging.

For IDPs, small-angle X-ray and neutron scattering (SAXS
and SANS, respectively) are ideal experimental methods for
investigating the ensemble of IDP structures, as traditional
imaging methods, such as X-ray crystallography or nuclear
magnetic resonance (NMR), by themselves are not able to resolve
the large number of rapidly interconverting structures of which
the IDP ensemble is composed Bernado and Svergun (2012),
Kikhney and Svergun (2015). Indeed, low-resolution methods,
such as SANS/SAXS are ideal for conformationally polydisperse
systems, such as IDP whose conformational ensemble is very
large and consists of structures that are rapidly interconverting
among themselves. SAXS and SANS are able to provide coarse
structural information about the structural ensemble, such as
compactness and overall size and shape. Due to the fact that
the SAXS/SANS scattering intensities constitute an average over
many different structures, these methods must be complemented
by additional higher-resolution experimental data, such as NMR
observables (Grishaev et al., 2005; Marsh et al., 2007; Marsh and
Forman-Kay, 2009; Wang et al., 2009; Schwieters et al., 2010), or
simulation-based methods (Bernado et al., 2007; Pelikan et al.,
2009; Yang et al., 2010; Rozycki et al., 2011) to elucidate the
structures of which the ensemble is composed. Therefore, given
the important role of MD simulations as a complement to the
interpretation of SAXS/SANS data, it is imperative that the
underlying force field be accurate.

Here, we studied three IDPs with varying molecular
weight and different charge-hydrophobicity characteristics (see
Figure 1A): RS-peptide (24 residues), PaaA2 (63 residues),
and SH4UD (95 residues). RS-peptide is highly charged
IDR without any structured region in Serine/arginine-rich
proteins, such as serine/arginine-rich splicing factor 1 (SRSF1)
and plays a significant role in RNA metabolism, including
transcription, RNA splicing and RNA export (Xiang et al.,
2013). The phosphorylation of serine residues in RS repeats
regulates peptide’s interaction and subcellular localization,
whereas it undergoes several cycles of phosphorylation and
dephosphorylation during splicing (Xiang et al., 2013). PaaA2
is the antitoxin domain of toxin-antitoxin (TA) module in
the human pathogen E. coli O157, which neutralizes the toxin
domain such that TA module copes with different sources
of stress (Sterckx et al., 2014, 2016). The TA module is also
associated with the establishment of persister phenotype and
virulence mechanisms (Sterckx et al., 2016). It has two preformed
helices connected by a flexible linker in the absence of a binding
partner, however is, classified as IDP due to a high degree of
conformational flexibility from SAXS and NMR studies (Sterckx
et al., 2014). Proto-oncogene non-receptor human tyrosine
kinase c-Src is a multi-domain protein (Tatosyan and Mizenina,

2000; Pérez et al., 2009) that encompasses an N-terminal IDR
containing the Src homology 4 (SH4) and unique (U) domains
hereafter refer as SH4UD. Several studies suggest the high activity
of the c-Src kinase in a wide variety of human cancers, such
as colon, breast, pancreas, and brain (Wheeler et al., 2009).
The phosphorylation in SH4UD induces a global electrostatic
perturbation forcing c-Src kinase to untie from the membrane
(Pérez et al., 2009).

In this work, we have implemented a method to optimize
FF parameters against experimental SAXS and SANS intensities
in ForceBalance (Wang et al., 2014)—these observables
can be understood as ensemble-averaged properties with
derivable gradients and Hessians with respect to force field
parameters. Starting with the most recent and comprehensive
reparameterization of an IDP force field (Robustelli et al., 2018)
from the D. E. Shaw research group, we optimized the water
and protein backbone Lennard-Jones σ and ǫ, as well as the
barrier heights of protein backbone torsions, as was done in their
study. We sought to determine whether we could systematically
improve on the parameters they had derived, as our initial set of
parameters was their optimized IDP force field named a99SB-
disp. We found that through our systematic reparameterization
using ForceBalance that we could achieve improved agreement
with experimental SAXS profiles for 3 systems: RS-peptide,
PaaA2, and SH4UD. We will henceforth refer to our version of
the algorithm as ForceBalance-SAS (small-angle scattering). A
key advantage of our approach is that nearly any experimental
observable can be encoded as an ensemble-averaged property,
for which analytic gradients and approximate Hessians with
respect to force field parameters that are being optimized
can be obtained.

2. METHODS

2.1. Parameter Optimization With
ForceBalance-SAS
ForceBalance-SAS parameterization proceeds through an
iterative non-linear least-squares minimization of the squared
residual between experimental and calculated properties
using analytical gradients and approximate Hessians (Gauss-
Newton approximation whose term consists of a product of
first derivatives) with respect to a set of FF parameters. A
flowchart illustrating our approach is shown in Figure 1. Each
iteration consists of a MD simulation with the current set
of FF parameters, followed by a calculation of the objective
function, gradient, and approximate Hessian (at the current
set of FF parameter values), and an optimization step using
Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt,
1963) followed by a regularization to avoid overfitting.

The Levenberg-Marquardt algorithm is used, because it is
both gradient- and Hessian-based. Moreover, if the initial
parameters are far from the local minimum, it is able to converge
faster than the Gauss-Newton algorithm. Lastly, the Levenberg-
Marquardt algorithm is ideal due to its intrinsic ability to
incorporate an adaptive trust radius (Dennis et al., 1981; More
and Sorensen, 1983), effectively enabling the algorithm to change
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FIGURE 1 | Flowchart depicting the ForceBalance-SAS algorithm. An initial set of parameters is input, followed by MD simulation and calculation of

ensemble-averaged small-angle scattering intensities. After the simulation stops, the residual between the simulated and experimental scattering intensities is

calculated, along with the gradients and Hessians of the residual. If the desired convergence criteria are met, the algorithm stops, and the new force field parameters

are output; if not, optimization is performed, a new set of parameters are obtained, and a simulation with the updated parameters are performed, completing the

cycle. The current implementation of the ForceBalance (Wang et al., 2014) approach is demarcated from our approach using dotted lines.

the size of the step according to how well the objective function
was improved in the previous step, as shown in the following
equation framed in the context of the fitting task presented in
this work:

(JTJ+ γ I)δ = JT(Aexp − 〈Acalc(λ)〉), (1)

and

Jij =
∂Acalc

i

∂λj
. (2)

In the above equation,Aexp is the set of experimentally measured
observables, 〈Acalc〉 is corresponding calculated set of ensemble-
averaged observables, λ are the parameters (here, FF parameters)
whose values we are optimizing, δ is the step taken at the current
step of the optimization, and γ is the parameter controlling
the adaptive trust radius. In this work, the initial trust radius

was set to 1.0, which is larger than the default of 0.1 in the
standard ForceBalance approach. Aminimum trust radius of 0.05
was allowed (the default in standard ForceBalance is 0.0). An
adaptive damping factor controlling how much the trust region
can vary from the initial value was set to the default value used
in ForceBalance of 0.5. Regularization is achieved by means of
a harmonic penalty function that constrains FF parameters to a
physically reasonable range of values as follows:

R(λ) =
λ2

α2
, (3)

where R(λ) is the harmonic penalty function, λ is the FF
parameter, and α corresponds to the radius within which the
parameter value can vary. In this work, α is determined by
ForceBalance automatically according to the magnitudes of λ,
and were 0.0529177, 2.4784, and 96.4853 for van der Waals
σ , van der Waals ǫ, and torsional barrier heights, respectively.
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If convergence criteria are met, the algorithm stops and the
optimized FF parameters are output. If not, the cycle continues
with a simulation at the new set of parameters.

Our method rests on the ability of ForceBalance-SAS to
directly optimize a set of FF parameters with respect to
the experimental SAXS and SANS scattering intensities. Any
condensed phase observable can be calculated from rigorous
statistical mechanical principles. In the isobaric-isothermal
ensemble, the ensemble-averaged observable 〈A〉 (in our specific
case, 〈I(q)〉, the small-angle scattering intensity—described in
Equation 6), for all experimentally observed scattering vectors,
I(q) for a given set of FF parameters λ is:

〈A〉λ =
1

Q(λ)

∫

A(r,V , λ) exp(−β(E(r,V , λ)+ PV))dRdV , (4)

where Q(λ) =
∫

exp(−β(E(r,V , λ) + PV) is the isothermal-
isobaric partition function. Here, E is the potential energy, β is
1

kBT
, T represents the temperature, P is the pressure, and V is

the volume. In practice, 〈A〉 is not evaluated through a direct
integration of Equation (4), but rather is sampled numerically
by MD assuming ergodicity. Analytic gradients of properties A
with respect to FF parameters λ can be obtained by analytically
differentiating Equation (4):

∂〈A〉λ

∂λ
= 〈

∂A

∂λ
〉λ − β(〈A

∂E

∂λ
〉λ − 〈A〉λ〈

∂E

∂λ
〉λ). (5)

The above terms are calculated for each value of I(q) in
the experimental (and simulated) scattering profile. Thus, the
primary objective of ForceBalance-SAS is to improve the
agreement between experimental and calculated SAXS intensities
by minimizing the following residual term:

χ2 =
1

Nq

Nq
∑

i=1

( Iexp(qi)− 〈Icalc(qi)〉

σexp(qi)

)2
, (6)

where Iexp(qi) and Icalc(qi) are the experimental and calculated
intensities, respectively, at a given wavenumber qi, σexp(qi) is the
experimental error in the measurement of Iexp(qi), and Nq is the
number of observations of qi obtained.

While the expression for the gradient of a property with
respect to the FF parameters is analytic, gradients of the potential
energy with respect to FF parameters are themselves calculated
with three-point finite difference using a step size of 10−9. In this
work the FF parameters λ were the σ and ǫ of protein backbone
Lennard-Jones, and the barrier heights of protein backbone
torsions. The final simulation parameters were achieved for
RS-peptide and PaaA2 after 18 and 4 cycles of ForceBalance-
SAS (Figure S1), respectively, which amounted to the desired
reduction in χ2 of at least 50%.

2.2. SAXS/SANS Calculations
The experimental SAXS data for RS-peptide and PaaA2 were
taken from (Rauscher et al., 2015) and (Sterckx et al., 2014),

respectively. SH4UD SAXS data was provided by Hugh M.
O’Neill, which was measured at X-Ray Laboratory, Spallation
Neutron Source, Oak Ridge National Laboratory. SAXS/SANS
scattering intensities I(q) were calculated from MD snapshots
using the crysol/cryson algorithms in the ATSAS package
(Svergun et al., 1995; Franke et al., 2017). Since crysol/cryson
are based on use of implicit solvent, it is essential that its
parameter modeling the difference in solvation between the
protein surface and bulk be optimized. To achieve this, we
averaged the coordinates of all snapshots saved for the simulation
of each iteration, and then fit the averaged coordinates to the
experimental SAXS/SANS to optimize the solvation parameter;
this optimization was done internally within crysol/cryson and
details of how this is done can be found in (Svergun et al., 1995).
This optimized value was used for the calculated SAXS/SANS
of each of the snapshots. Since the calculated and experimental
SAXS can have different number of q points, a spline-based
interpolation of the calculated and experimental SAXS/SANS
curves was used to match the number of q points between
the two. Finally, the calculated SAXS/SANS intensities will
necessarily have different amplitudes owing to aspects of the
experiment not accounted for in the calculation. To match the
amplitudes between calculation and experiment, a linear fit was
performed between the SAXS/SANS I(q) profile averaged over all
snapshots and the corresponding experimental I(q). These fitting
parameters were then used for the calculated intensities I(q) of
the individual snapshots.

2.3. MD Simulations
The initial MD simulations (step 1 of Figure 1) of three
systems (RS-peptide, PaaA2, and SH4UD) were conducted using
GROMACS 5.1.2 (Van der Spoel et al., 2005; Hess, 2008;
Abraham et al., 2015) using newly developed a99SB-disp FF
parameter set (Robustelli et al., 2018). The energy of the system
was minimized using 1,000 steepest decent steps, which was
followed by 1 ns of equilibration using NVT and NPT ensembles.
Finally, 1 µs of production runs were performed using the NPT
ensemble. The snapshots saved at the end of the 1 µs simulations
were further utilized for ForceBalance-SAS optimization.

For each cycle of ForceBalance-SAS, as part of our
optimization procedure (step 2 in Figure 1), each protein was
then simulated for 5 ns of production at each iteration in
the isothermal-isobaric (NPT) ensemble at 1 atm and 298
K, preceded by 50 ps of equilibration. Achieving statistical
convergence of the target scattering property is critical. Our
choice of 5 ns of production for each iteration of ForceBalance-
SAS was determined heuristically by running a single iteration
at a range of production lengths from 0.5 ns to 50 ns.
Scattering intensity and Kratky curves were calculated for each
simulation length. We used the χ2 metric (Equation 6 above)
to quantitatively evaluate whether the global features of the
scattering profiles at various time-windows from the simulation
trajectory (50, 25, 10, 5, 2.5, 1, 0.5 ns) were sufficiently captured
(see Figure S2). We found that a choice of 5 ns to have better
χ2 fit to the experimental data and our choice of 5 ns was an
expedient compromise between computational cost and accuracy
for each cycle of the optimization. Note that the choice of 5
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ns production runs was made based prior to the start of the
optimization step. We do note that this length of the simulations
may affect the overall quality of fits obtained (see Discussion).

Thermostating (in steps 1 and 2 of Figure 1) was performed
using GROMACS (Van der Spoel et al., 2005; Hess, 2008;
Abraham et al., 2015)modified Berendsen thermostat (Berendsen

FIGURE 2 | Three prototypical IDP systems chosen for the ForceBalance-SAS approach indicate diverse structural characteristics. (A) The mean normalized

hydrophobicity vs. the absolute net charge (Uversky) plots indicate that the RS-peptide system is more disordered than the other two systems. The red line is used to

mark the boundary between disordered proteins vs. more folded/globular proteins; the gray highlighted area is indicative of the region that is enriched for folded/

globular proteins (Uversky, 2011). (B) Comparison of the SAXS determined experimental radius of gyration (Rg) values vs. the Rg values predicted using simulations

from the original FF (red dots) and the optimized FF (blue dots). The theoretical Rg values predicted from the Flory equation for IDPs (see Results section) is shown in

black, along with expected standard deviations (gray dotted lines). The corresponding Rg values for a globular protein with the same number of amino acid residues is

shown for reference (gray solid line). Additional details of the sequence/structural properties of the IDP ensembles considered here are provided in the supporting

information.

FIGURE 3 | ForceBalance-SAS based simulations generate IDP ensembles that are better fit to the experimental SAXS observables at shorter timescales. (A) The

scattering profiles for RS-peptide showing the experimental data (black dots with error bars) along with the predicted SAXS scattering profiles from the original FF

simulations (red lines) vs. the optimized FF simulations (blue lines). For clarity, the χ2 values between the experiment and the respective simulations are shown in the

legend. (B) The Kratky plot from experiments (black dots), and predicted profiles from simulations (red line corresponding to the original FF, blue line—optimized FF).

For clarity, the error bars from the experiments are excluded. (C,D) Highlight the same comparison for the PaaA2 system. The factor improvement (FI) in the χ2 values

between the optimized and original FFs are listed above each protein system.
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et al., 1984) with separate coupling of the protein and solvent
to a heat bath at 298 K. Initial velocities assigned according to
the Maxwell-Boltzmann distribution at 298 K. Barostating was
performed with the Parrinello-Rahman method (Parrinello and
Rahman, 1981). A 2-fs timestep was used, and covalent bonds
between hydrogen and heavy atoms were constrained using the
LINCS algorithm (Hess et al., 1997; Hess, 2008). A 12-Å distance
cutoff was used for van der Waals and the real-space component
of electrostatics. Long-range electrostatics were calculated using
Particle Mesh Ewald (Darden et al., 1993) with a grid spacing of
1.6Å. Coordinate snapshots were saved every 100 ps. Simulations
were run on a GPU-enabled version of Gromacs (v. 2019) on a
single node equipped with two Tesla K80s.

2.4. Sequence-Structure Property
Predictions
Per-residue disorder prediction was performed with the PONDR
(Prediction of Natural Disordered Regions; Obradovic et al.,
2003) algorithm using the VLXT model whose predictions
are based on the integration of predictions made by three
different neural networks. We used the web server CIDER
(Holehouse et al., 2017) to ascertain relationships between

the charged residue content of a sequence and its structural
ensemble propensities.

3. RESULTS

SAXS and SANS scattering intensities were implemented as
force field parameter fitting targets in ForceBalance-SAS. As
the intensities are condensed-phase observables, much of the
optimization machinery in ForceBalance-SAS was ideal for
this purpose and modification to incorporate SAXS/SANS was
straightforward. As our initial set of force field parameters,
we used the most state-of-the-art IDP-specific force field,
a99SB-disp, which has been developed and validated using a
comprehensive IDP benchmark consisting of a range of protein
systems and experimental observables. To have continuity with
their work and previous efforts, we optimized the σ and ǫ of
the water and protein backbone atoms’ Lennard-Jones, as well
as the protein backbone torsion barrier heights. Unlike previous
efforts, we are able to optimize all of these simultaneously and,
importantly, are able to directly target the agreement of calculated
and experimental SAXS scattering profiles. This is an ideal
experimental target, as it directly reports on how contracted or

FIGURE 4 | Longer timescale simulations using the ForceBalance-SAS optimized FF parameters preserve improvement with experimentally observed scattering

profiles. (A) The scattering profiles for RS-peptide showing the experimental data (black dots with error bars) along with the predicted SAXS scattering profiles from

the original FF simulations (red lines) vs. the optimized FF simulations (blue lines). For clarity, the χ2 values between the experiment and the respective simulations are

shown in the legend. (B) The Kratky plot from experiments (black dots), and predicted profiles from simulations (red line corresponding to the original FF, blue

line—optimized FF). For clarity, the error bars from the experiments are excluded. (C,D) Highlight the same comparison for the PaaA2 system. The factor improvement

(FI) in the χ2 values between the optimized and original FFs are listed above each protein system. Note that the FI in each simulation has decreased compared to the

shorter timescales (Figure 3)—however, still preserves the overall trends. It is also notable that the fits of the MD simulations to the longer q values are poorer in

both cases.
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expanded protein conformations in the ensemble are, a protein
property that force fields have notable difficulty in capturing.

3.1. ForceBalance-SAS Enables Better
Agreement Between Experimental and
Simulated Ensembles
We chose three prototypical IDP systems that are of biological
interest: (1) RS-peptide (Xiang et al., 2013), (2) prokaryotic
type II antitoxin module PaaA2 from the human pathogen E.
coli O157, and (3) the N-terminal regulatory region consisting
of the SH4 unique domain (SH4UD) of the C-Src family of
non-receptor tyrosine kinases. An examination of the mean
hydrophobicity vs. net charge of these three IDP systems, also
referred to as the Uversky plots (Uversky, 2011), shows that
the RS-peptide system is more disordered than the other two
systems (Figure 2A). Not surprisingly, the secondary structural
content for the RS-peptide is significantly lower, given that its
absolute charge is much higher compared to the other two
IDP systems. Indeed from experimental data, such as circular
dichroism (CD) and nuclear magnetic resonance (NMR), PaaA2
consists of at least two partially formed α-helices (Sterckx et al.,
2014) and SH4UD consists of several transient helices (Pérez
et al., 2009; Arbesü et al., 2017). We performed calculations with
the CIDER (Classification of Intrinsically Disordered Ensemble
Relationships) web server to further parse the sequence-structure
relationships based on the fraction of positively and negatively
charged residues in the sequence. The diagram of states generated
by CIDER shows the propensity of some structure for both
PaaA2 and SH4UD (Figure S3), in accord with CD and NMR
predictions. RS-peptide presents an interesting case in that

TABLE 1 | Original and optimized torsion angle parameters for RS-peptide.

Atom types comprising torsion Original FF Optimized FF % Change

C–N–CT–C 0.142260 0.145503 2.280

C–N–CT–C 1.40164 1.40177 0.001

C–N–CT–C 2.27610 2.27026 −0.256

C–N–CT–C 0.334720 0.334548 −0.051

H1–CT–C–O 3.34720 3.34905 0.055

H1–CT–C–O 0.334720 0.331802 −0.872

H1–CT–C–OB 3.34720 3.34574 −0.044

H1–CT–C–OB 0.334720 0.334634 −0.026

HB–N–C–OB 8.36800 8.36773 −0.003

HB–N–C–OB 10.4600 10.4603 0.003

N–CT–C–N 0.824250 0.826095 0.224

N–CT–C–N 6.04588 6.05070 0.080

N–CT–C–N 2.00414 2.00474 0.030

N–CT–C–N 0.0799100 0.0797917 −0.148

N–CT–C–N 0.0167400 0.0197590 18.035

The left-hand label of each row indicates the four atom types of which each torsion is

composed. C, backbone carbonyl carbon; N, backbone amide nitrogen; CT, aliphatic

carbon (Cα in this context); O, backbone carbonyl oxygen; H1, hydrogen bound to Cα;

HB, hydrogen bound to backbone amide nitrogen.

it is predicted to be collapsed or expanded, depending on
context, but lies very close to the region corresponding to an
expanded polyelectrolyte, which is supported by NMR and CD.
The experimental observations from NMR and CD are further
supported by predictions using the sequence-based prediction
method PONDR (Prediction of Natural Disordered Regions),
which predicts order for residues 16–35 and 52–75 for PaaA2 and
SH4UD, respectively (Figures S4A,B); RS-peptide was too short
in length for PONDR to make any prediction.

We next examined how the experimentally determined radius
of gyration (Rg) varies with the amino-acid chain length. The
experimental Rg values are obtained through Guinier fits to
the scattering profiles. Notably, the experimentally determined
Rg values for the three IDPs aligns closely with the theoretical

predictions of R
Flory
g from the Flory equation: R

Flory
g = (2.54 ±

0.01) × N(0.522±0.01), where N represents the number of amino-
acid residues in the IDP of interest. As shown in Figure 2B,

the agreement between experimental Rg and R
Flory
g is quite

remarkable. However, we note that when considering the
simulated ensembles, the original a99SB-disp FF overestimates
the Rg values for the PaaA2 protein where as the optimized
FF underestimates the Rg for the SH4UD ensemble. On the
other hand, the ForceBalance-SAS optimized FF overestimates
the Rg values for the SH4UD ensemble, while being close
to the experimentally observed Rg values for the RS-peptide
and PaaA2 system. Note that for the SH4UD system, we did
not explicitly optimize the FF parameters—we just took the
optimized parameters from the PaaA2 simulation and used it to
simulate the SH4UD system (see section 3.3).

The Guinier fits to the SAXS profiles for the three IDP systems
provide a gross summary of their conformational ensembles;
however, the Rg value by itself does not sufficiently capture
all of the information contained in the scattering profiles.
We therefore posited that even though the ForceBalance-SAS
may underestimate the overall Rg values, its ability to fit the
simulated ensembles to experimentally observed SAXS profiles
may be better. To test this hypothesis, we used the χ2 metric
(Equation 6) to assess the quality of the fit. By optimizing
the aforementioned set of force field parameters, we were able
to reduce the discrepancy with experiment by a factor of 3.3
and 4.2 for RS-peptide and PaaA2, respectively, where the
factor of improvement is simply the ratio of the χ2 value
obtained with the original parameters to that obtained with the
optimized parameters.

Visual inspection of the I(q) vs. q profile for RS-peptide
(Figure 3A), as well as the Kratky plot (Figure 3B) of q2I(q) vs. q
(Figure 2), reveal more information about the specific aspects of
protein structure that have been improved. In general, the lower
q values report on low-resolution protein behavior, such as how
contracted or expanded the structures in the ensemble are, while
larger q values can report more on finer scale detail. The Kratky
plot is useful for quantifying disorder in a polymer chain. For
the RS-peptide example, it is clear that the original FF predicts
a more disordered ensemble, while both the experiment and
the optimized FF based simulations predict some local structure
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TABLE 2 | Original and optimized Lennard-Jones parameters for RS-peptide.

Original FF Optimized FF

Atom type σ ǫ σ ǫ % Change σ % Change ǫ

C 0.339967 0.359824 0.339966 0.359787 –0.000235359 –0.0104181

H 0.106908 0.0656888 0.106908 0.0656513 –0.000374220 –0.0570937

HB 0.106908 0.0656888 0.106908 0.0657721 –0.000374220 0.126688

N 0.325000 0.711280 0.325000 0.711355 0.000123099 0.0105384

N3 0.325000 0.711280 0.324998 0.711156 –0.000492395 –0.0173983

OB 0.295992 0.878640 0.295992 0.878593 –0.000135163 –0.00539543

O2 0.295992 0.8786401 0.295992 0.878633 0.000135163 –0.000784472

OW-tip4pd 0.316500 0.998989 0.316502 0.998914 0.000505619 –0.00750471

C, backbone carbonyl carbon; H, hydrogen bound to N-terminal nitrogen; HB, hydrogen bound to backbone amide nitrogen; N, backbone amide nitrogen; N3, N-terminal amine

nitrogen; OB, backbone carbonyl oxygen; O2, C-terminal carboxyl oxygen; OW-tip4pd, water oxygen of TIP4P-d model.

in the ensemble. It is interesting to note that the χ2 value
has also significantly improved (3.21 with the original FF vs.
0.98 with the optimized FF), indicating that the ensemble from
the optimization process has indeed improved the similarity to
the experimental data. For the RS-peptide there is evidence of
improvement at high q values as well, indicating that fine-scale
protein-solvent structural details have been improved.

The I(q) vs. q plot for PaaA2 shows marked improvement
for the optimized set of parameters in all parts of the profile
(Figures 3C,D), and while an improvement is seen for RS-
peptide the effect is not as strong (Figure 3A). As can be seen
in Figure 3C, improvement is seen at lower q values for both RS-
peptide and PaaA2, suggesting that the problem with predicting
an overly compact ensemble has been remedied.

In light of the well-appreciated importance of sampling the
rugged conformational landscape of IDPs, we extended our
simulations of RS-peptide and PaaA2 using the parameters
obtained from the shorter 5-ns simulation lengths to 0.459 and
0.512 µs, respectively. We found that the optimized parameters
yield an improvement in χ2, albeit more modest than that of the
shorter simulation (Figure 4). We note too that the discrepancies
between the experimental and simulated ensembles are more
apparent at higher q ranges, indicating that fine scale interactions
are not as well-modeled as global interactions. Nonetheless, this
demonstrates that major features of the ensemble that inform
the optimization, namely those reflecting large scale interactions,
are captured at shorter timescales and are transferrable to
longer timescales.

Given the improvements in agreement with experimental
observables, it is instructive to ascertain which optimized
parameters differed the most from their original values. For
both RS-peptide (Tables 1, 2) and PaaA2 (Tables 3, 4), it was
the torsional barrier heights that changed the most from their
original values. Interestingly, the van der Waals parameters
changed little from their original values. This is perhaps expected,
given the relatively longer history of attention to balancing
solute-solvent, and protein-water, interactions through these
terms. This notion is supported by a separate set of calculations
where we optimized only the van der Waals parameters for
RS-peptide in PaaA2. When only the van der Waals parameters

TABLE 3 | Original and optimized torsion angle parameters for PaaA2.

Atom types comprising torsion Original FF Optimized FF % Change

C–N–CT–C 0.142260 0.144172 1.344

C–N–CT–C 1.401640 1.380281 −1.524

C–N–CT–C 2.276100 2.233383 −1.877

C–N–CT–C 0.334720 0.355767 6.288

H1–CT–C–O 3.347200 3.287138 −1.794

H1–CT–C–O 0.334720 0.356079 6.381

H1–CT–C–OB 3.347200 3.326153 −0.629

H1–CT–C–OB 0.334720 0.355767 6.288

HB–N–C–OB 8.368000 8.378679 0.128

HB–N–C–OB 10.460000 10.438641 −0.204

N–CT–C–N 0.824250 0.845297 2.553

N–CT–C–N 6.045880 6.088597 0.707

N–CT–C–N 2.004140 2.015231 0.553

N–CT–C–N 0.079910 0.068819 −13.880

N–CT–C–N 0.016740 0.023640 41.219

Refer to the Table 1 legend for an explanation of the atom types.

were optimized, the factors of improvement of the χ2 values were
only 1.98 and 1.3 for RS-peptide and PaaA2, respectively.

3.2. ForceBalance-SAS Improves
Agreement With NMR Chemical Shift
Observables for PaaA2
These observations also led us to the next question: do the
optimized FF parameters allow us to improve agreement with
other (independent) experimental observables, such as NMR? We
posited that the improvement in agreement with respect to the
gross structural details of the IDPs from SAXS data should also
translate to agreement between NMR and MD simulations using
the optimized FF. To test this hypothesis, we examined the PaaA2
system in greater detail. While previous work (Sterckx et al.,
2014) used both NMR and SAXS data to refine conformational
ensembles of PaaA2 using the Flexible-Meccano (Charavay et al.,
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TABLE 4 | Original and optimized Lennard-Jones parameters for PaaA2.

Original FF Optimized FF

Atom type σ ǫ σ ǫ % Change σ % Change ǫ

C 0.339967 0.359824 0.339979 0.360922 0.0034457 0.30501

H 0.106908 0.0656888 0.106920 0.0654144 0.010798 –0.41769

HB 0.106908 0.0656888 0.106920 0.0656251 0.010957 –0.097042

N 0.325000 0.711280 0.324998 0.710731 –0.00064537 –0.077150

N3 0.325000 0.711280 0.325006 0.711554 0.0018022 0.038575

OB 0.295992 0.878640 0.295998 0.879181 0.0019788 0.061544

O2 0.295992 0.878640 0.295969 0.879181 –0.0079152 0.061544

OW-tip4pd 0.316500 0.998989 0.316512 0.998715 0.0036472 –0.027465

Refer to the Table 2 legend for an explanation of the atom types.

FIGURE 5 | ForceBalance-SAS improves agreement with NMR chemical shift observables for the PaaA2 ensemble. (A–D) Panels highlight the comparison between

the average experimental (x-axis) chemical shift vs. predicted (y-axis) chemical shift values for N, Cα , C, and Cβ atoms, respectively. Predictions from the optimized FF

(blue dots) are compared with the original FF (red dots) simulations along with the R2 value for the fits (shown as black lines). Error bars are not highlighted for clarity.

2012) approach, here we used the optimized FF parameters to
recapitulate the NMR chemical shift observables.

For each conformer in the MD trajectories from the original
FF and the optimized FF, we used the program ShiftX2 (Han
et al., 2011) to determine the chemical shifts of the backbone
atoms: N, Cα , and C, along with the side-chain: Cβ . We
then plotted the agreement between the average experimental
chemical shifts with the predicted chemical shifts. As shown in
Figures 5A–D, the ForceBalance-SAS optimized FF parameters
result in ensembles that are in better agreement with the
experimental data, notably for Cα and Cβ atoms. The agreement
for the backbone Nitrogen atoms is also significantly improved
compared to the original FF, indicating that our approach results
in ensembles that better agree with NMR data. Further, for
each of the atom types, a non-parametric bootstrap test (p-
values) for significance also indicated that these correlations are
significant (Table 5).

TABLE 5 | Summary of the statistical significance in comparing NMR observed

chemical shifts with the FF parameters (original and optimized) for PaaA2 system.

Original FF Optimized FF

Atom type R2 Standard error p-value R2 Standard error p-value

N 0.11 0.123 1.31E-05 0.42 0.072 1.23E-14

Cα 0.84 0.056 5.67E-27 0.91 0.039 5.68E-35

Cβ 0.99 0.009 4.52E-72 1.00 0.005 5.53E-85

C 0.44 0.108 9.64E-10 0.63 0.090 5.42E-14

These were calculated using the sckit.learn package (Pedregosa et al., 2011;

Buitinck et al., 2013).

This led us to further examine the generated ensembles. Each
ensemble in Figure 6 is colored using the Rg value corresponding
to that conformation. The experimentally determined ensemble
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FIGURE 6 | Comparison of the PaaA2 Ensembles determined from experiments and simulations highlight regions of long-range interactions between the two

α-helices. (A) A cartoon depiction of the PaaA2 ensemble determined using SAXS and NMR techniques using Flexible-Meccano. (B) Shows the normalized mean

distance matrix showing the various interactions between residues; shades of blue indicate proximity in the chain—implying the increased likelihood of interactions.

(C) Cartoon representation of the PaaA2 ensemble from the original FF along with the (D) normalized mean distance matrix. Note that many of the conformations are

in the extended state—indicating less likelihood of interactions between the α-helices. (E) Cartoon representation from the PaaA2 ensemble from the optimized FF

simulation along with the (F) normalized mean distance matrix. The conformations generated by the optimized FF are more compact than the other two datasets

mainly because the sampling from the optimization runs are limited.

(Flexible-Meccano, Figure 6A) shows the presence of large-
scale fluctuations in the orientation between the two α-
helices. Each conformer in the ensemble is colored using
its Rg value to highlight the nature of compactness (darker
shades of red indicate larger Rg , implying less compact states).
To better characterize the nature of these fluctuations, we
chose to examine the average (normalized) distance matrix
for the experimental ensemble (Figure 6B). This provides us
a qualitative measure of the long-range interactions between
specific regions of the PaaA2 ensemble. The MD simulations
from the original FF capture some of the large-scale fluctuations,
however is not fully representative of the experimental data
(Figure 6C). Notably, within the experimental ensemble, there
are some interactions between the two α-helices, which are
not represented in the original FF simulations (Figure 6D).
Although visually the average distance matrices look similar, the
ensemble generated from the MD simulations using the original
FF is dominated by mostly extended states (thus de-emphasizing
the interactions between the two α-helices). The simulations
from the optimized FF, on the other hand highlight mostly
compact conformations (Figure 6E). An examination of the
distancematrix (Figure 6F) also shows that there are significantly
larger number of interactions between the two α-helices and
only localized fluctuations in their relative orientations. We

posit that this observation may be a consequence of limited
sampling of the conformational landscape (∼5 ns every iteration
of the optimization).

3.3. ForceBalance-SAS Optimized FF
Parameters Are Partially Transferable at
Shorter Timescales
We lastly sought to determine whether our optimized parameters
would improve the experimental SAXS agreement for an
independent test case. We hypothesized that an appropriate test
case would be a protein with a similar charge/hydrophobicity
(Uversky) profile, as this has been shown to predict relative
disorder/order. For the training system PaaA2, a protein close
on the Uversky plot is SH4UD. For this system, we were able
to observe a reduction in χ2 from 9.7 to 7.2 (Figure 7A), with
improvements in agreement seen in the mid-range to high q
regions of the Kratky plot (Figure 7B). Note that this simulation
(with the PaaA2 FF parameters) was carried out only for 5 ns—
corresponding to the same timescales of the optimization cycle.
Although the improvement in the χ2 value is somewhat limited
in the high q values, we still observe that the ensembles have a
better agreement with the SAXS observables.

Frontiers in Molecular Biosciences | www.frontiersin.org August 2019 | Volume 6 | Article 6477

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Demerdash et al. ML-Derived Force Fields for Disordered Proteins

FIGURE 7 | FF parameters learned from the PaaA2 simulations used to simulate the SH4UD IDR improves the fit to experimental SAXS data. Although the factor of

improvement (FI) is lower than the other two systems (A), the fit to the experimental data as seen from the Kratky plot (B) shows better agreement in the mid-q range.

This allows us to determine that the parameters learned from one simulation can be used reasonably on other proteins as well. Further fine-tuning may be essential to

obtain better fits (especially with solvent-protein interactions). (C) and (D) highlight the same information as in (A) and (B) but for longer timescales. Note that the

factor of improvement has reversed.

However, when we extend the simulations to about 0.3 µs,
we find that the agreement between experimental SAXS and the
MD ensemble deteriorates (see Figures 7C,D). This observation
is significant, given the fact that the PaaA2 ensemble consists of
two well-defined α-helices (a feature is mostly well-described by
existing FFs) and the SH4UD consists of only transient helices,
which are not fully captured at the timescales of our current
simulations. Further studies would be necessary to validate these
simulations (and the transferability of the FF parameters at longer
timescales) against available experimental data.

4. DISCUSSION

We have presented a proof-of-concept demonstration to

optimize a set of FF parameters using small-angle scattering

data on a protein-by-protein basis. We started with a few
assumptions, including that (1) simulations would be initiated
from a single starting structure (for e.g., from an experimental
crystal structure), (2)MD simulations would be performed under
some equilibrium conditions without necessitating enhanced
sampling techniques, such as replica exchange, and (3) longer
time-scale simulations (O(µs) would not be accessible for all
systems of interest. Such assumptions, especially in the context
of IDP systems may seem limiting, given that both enhanced

sampling and ensemble MD simulation techniques are known
to improve the overall ability of MD simulations to “match”
experimental observations (Lee and Chen, 2016; Holehouse
et al., 2017; Bhattacharya and Lin, 2019). We believe that
the optimization scheme outlined here can be extended in a
straightforward way for ensemble MD strategies, and it would
need some modifications for enhanced sampling strategies. This
is a direction that we will pursue in the near future.

The fact that our method seemed to change the torsional
parameters much more than the van der Waals is noteworthy.
As mentioned previously, the torsional components are covalent
energetic degrees of freedom, but also implicitly contain a degree
of non-covalent character, given the larger 1-4 separation of the
atoms (as opposed to the 1–2 and 1–3 separations for bond
stretching and angle bending, which can more definitively be
considered purely covalent). It is therefore likely that short-
ranged non-covalent energetics that are not explicitly accounted
for in typical force field functional forms are being folded into the
torsional term.

We note that the fitting procedure used in ForceBalance-
SAS improves the agreement with independent observations,
such as NMR chemical shifts. NMR chemical shifts represent
effective local measurements for conformational changes in
an ensemble and provide a powerful technique to characterize
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IDP/IDR ensembles in the context of their biological function
(Pérez et al., 2009; Sterckx et al., 2014; Arbesü et al., 2017).
Our optimization procedure takes into account only the SAS
measurements. However, by fitting our MD ensembles to
SAS curves, we also found that it consequently improved the
agreement of local measurements. In the context of modeling
IDP/IDR ensembles, our approach therefore represents a
complementary approach to using multiple experimental
methods to capture atomistic details of these systems.
Whereas approaches such as Flexible-Meccano (and other
tools) utilize all of the available experimental data to model
IDP/IDR ensembles, our iterative approach can be modified
to take into account gross structural features first, and then
followed by further tuning FF parameters to recapitulate
fine-grained features.

We also showed that the optimized FF parameters developed
for an IDP could be transferred (in a limited manner) to
other IDPs. Although the improvement in agreement between
experiments and simulations was only marginal, we were still
able to recapitulate some of the finer grained details of the
SH4UD ensemble better than the original FF at short simulation
length. The parameters that get optimized most likely depend
on the amount of sampling carried out at each iteration.
While preliminary testing indicated that calculated SAXS profiles
appeared to converge at about 5 ns for each iteration, it is
likely that this may not hold for all IDP systems of interest,
especially those that are larger than the systems studied here.
Indeed, the rugged free energy/conformational landscapes of
IDP are very different from those of systems such as neat
water to which the parent ForceBalance method had been
previously applied (Wang et al., 2013, 2014; Laury et al.,
2015). Nonetheless, the fact that longer simulations at 100s
of nanoseconds performed with parameters obtained from a
5-ns simulation length still show improved agreement of the
MD ensemble with the experimental SAXS supports the view
that major signatures of the full ensemble are captured and
can be optimized against to yield the observed improvement at
longer timescales. Further work on the reproducibility of our
approach is also needed, especially in the context of benchmark
IDP/IDR ensembles that have been recently made available
(Varadi et al., 2013). To this end, the effect of the simulation
length in ForceBalance-SAS on the resulting parameters will be
investigated in the future.

We are endeavoring to enhance this method on a number of
fronts. We plan on addressing the sampling issue by deploying
this method on more powerful supercomputers so that longer
simulations in each cycle of the algorithm are less onerous.
We also note that in all cases, the ability to optimize in the

higher q range was poorer than in the low q range, as is
best depicted in the Kratky plots. This indicates that in the
current regime, we are optimizing global scale interactions
better than fine scale interactions. Therefore, it is only natural
that a worthwhile objective is to differentially weight the
contributions of different q regions to the objective function
during the optimization. Furthermore, current work is focused
on optimizing FF parameters using the experimental data of
multiple protein targets simultaneously, which should enhance
the transferability of the optimized parameters. Nonetheless, for
those who are interested in detailed simulation studies of specific
systems, the current system-by-system approach is useful.
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Development of machine learning solutions for prediction of functional and clinical

significance of cancer driver genes and mutations are paramount in modern biomedical

research and have gained a significant momentum in a recent decade. In this work, we

integrate different machine learning approaches, including tree based methods, random

forest and gradient boosted tree (GBT) classifiers along with deep convolutional neural

networks (CNN) for prediction of cancer driver mutations in the genomic datasets. The

feasibility of CNN in using raw nucleotide sequences for classification of cancer driver

mutations was initially explored by employing label encoding, one hot encoding, and

embedding to preprocess the DNA information. These classifiers were benchmarked

against their tree-based alternatives in order to evaluate the performance on a relative

scale. We then integrated DNA-based scores generated by CNN with various categories

of conservational, evolutionary and functional features into a generalized random forest

classifier. The results of this study have demonstrated that CNN can learn high level

features from genomic information that are complementary to the ensemble-based

predictors often employed for classification of cancer mutations. By combining deep

learning-generated score with only two main ensemble-based functional features, we

can achieve a superior performance of various machine learning classifiers. Our findings

have also suggested that synergy of nucleotide-based deep learning scores and

integrated metrics derived from protein sequence conservation scores can allow for

robust classification of cancer driver mutations with a limited number of highly informative

features. Machine learning predictions are leveraged in molecular simulations, protein

stability, and network-based analysis of cancer mutations in the protein kinase genes

to obtain insights about molecular signatures of driver mutations and enhance the

interpretability of cancer-specific classification models.

Keywords: cancer driver mutations, machine learning classifiers, ensemble-based machine learning features,

random forest, deep learning, convolutional neural networks, drug discovery
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INTRODUCTION

Deep sequencing studies have enabled a detailed characterization
of cancer genomes and unveiled important gene-
specific signatures of somatic mutations (Davies et al., 2002;
Bardelli et al., 2003; Futreal et al., 2004; Samuels et al., 2004;
Stephens et al., 2004, 2005; Wang et al., 2004; Sjoblom et al.,
2006; Greenman et al., 2007; Wood et al., 2007; Vogelstein et al.,
2013; Watson et al., 2013). The steadily growing amount of
data generated in cancer genomic studies and next-generation
sequencing (NGS) have been the impetus behind formation of
international cancer genomic projects and development of large
bioinformatics data resources such as Cancer Genome Atlas
(TCGA), Genomics Data Commons Portal (https://portal.gdc.
cancer.gov/) (Weinstein et al., 2013; Jensen et al., 2017), COSMIC
database (http://cancer.sanger.ac.uk) (Forbes et al., 2015), and
the International Cancer Genome Consortium (ICGC) (Hudson
et al., 2010; Zhang et al., 2011; Klonowska et al., 2016; Hinkson
et al., 2017). The Cancer Gene Census of the Catalog of Somatic
Mutations in Cancer (COSMIC) database has grown from 291
well-characterized cancer genes (Futreal et al., 2004) to more
than 500 entries (Forbes et al., 2015) where some cancer genes
can be commonly mutated across cancer types, while other genes
are predominantly cancer-specific. The cBio Cancer Genomics
Portal (https://www.cbioportal.org/) is an open-access resource
for exploration of large cancer genomics data sets (Cerami
et al., 2012; Gao et al., 2013). These datasets have allowed for
comprehensive genome-wide analyses of genetic alterations in
multiple tumor types (Poulos andWong, 2018). A relatively small
fraction of somatic variants known as driver mutations have
considerable functional effects and can be acquired over time as
a result of a range of mutational processes, rather than inherited
(Haber and Settleman, 2007; Lawrence et al., 2013; Vogelstein
et al., 2013). A comprehensive analysis of cancer driver genes and
mutations has provided classification of 751,876 unique missense
mutations, producing a dataset of 3,442 functionally validated
driver mutations (Bailey et al., 2018). Another significant dataset
of 1,049 experimentally tested and functionally validated driver
mutations (Ng et al., 2018) has expanded our knowledge of
cancer-causing variants in oncogenes and tumor suppressor

genes. TCGA organized the Multi-Center Mutation Calling in
Multiple Cancers (MC3) network project which generated a
comprehensive and consistent collection of somatic mutation
calls for the 10,437 tumor samples dataset (Ellrott et al., 2018).
Computational approaches that assess the impact of somatic
mutations are often characterized by different basic assumptions,
types of input information, models, and prediction targets such
as driver gene or driver mutation (Gonzalez-Perez et al., 2013;
Cheng et al., 2016).

A number of somatic variant callers based on various
statistical and machine learning approaches are now available
for somatic mutation detection, including MuTect2 (Cibulskis
et al., 2013), MuSE (Fan et al., 2016), VarDict (Lai et al., 2016),
VarScan2 (Koboldt et al., 2012), Strelka2 (Kim et al., 2018),
SomaticSniper (Larson et al., 2012), and SNooPer (Spinella et al.,
2016). A deep convolutional neural network (CNN) approach
termedDeepVariant can identify genetic variation inNGS data by

discerning statistical relationships around putative variant sites
(Poplin et al., 2018). To facilitate systematic and standardized
somatic variant refinement from cancer sequencing data, random
forest (RF) models and deep learning (DL) approach were
utilized, showing that these machine learning techniques could
achieve high and similar classification performance across all
variant refinement classes (Ainscough et al., 2018). A machine
learning approach called Cerebro increased the accuracy of
calling validated somatic mutations in tumor samples and
outperformed several other somatic mutation detection methods
(Wood et al., 2018).

Many computational methods have been proposed for
prediction of cancer driver genes. Some of these approaches
use cohort-based analysis to detect driver genes, including
ActiveDriver (Reimand and Bader, 2013), MutSigCV (Lawrence
et al., 2013), MuSiC (Dees et al., 2012), OncodriveCLUST
(Tamborero et al., 2013), OncodriveFM (Gonzalez-Perez and
Lopez-Bigas, 2012), and OncodriveFML (Mularoni et al., 2016).
The success of hybrid methods for scoring coding variants
has indicated that integration of different tools may enhance
predictive accuracy for both coding and non-coding variants (Li
et al., 2015). A deep learning-basedmethod (deepDriver) predicts
driver genes by CNN trained with mutation-based feature matrix
constructed using similarity networks (Luo et al., 2019). Since
many methods are often found to predict distinct or partially
overlapping subsets of cancer driver genes, a consensus-based
strategy was recently proposed, showing considerable promise
and outperforming the individual approaches (Bertrand et al.,
2018). A unified machine learning-based evaluation framework
for analysis of driver gene predictions compared the performance
of these methods, showing that the driver genes predicted by
individual tools can vary widely (Tokheim C. et al., 2016;
Tokheim C. J. et al., 2016).

Computational methods designed to identify driver mutations
have become increasingly important to facilitate an automated
assessment of functional and clinical impacts (Gnad et al.,
2013; Ding et al., 2014; Martelotto et al., 2014; Raphael
et al., 2014; Cheng et al., 2016). Functional computational
prediction methods include Sorted Intolerant From Tolerant
(SIFT) (Sim et al., 2012), PolyPhen-2 (Adzhubei et al., 2010),
Mutation Assessor (Reva et al., 2011), MutationTaster (Schwarz
et al., 2010), CONsensus DELeteriousness score of missense
mutations (Condel) (Gonzalez-Perez and Lopez-Bigas, 2011),
Protein Variation Effect Analyzer (PROVEAN) (Choi et al.,
2012), and Functional Analysis Through Hidden Markov
Models (FATHMM) (Shihab et al., 2013). Cancer-specific High-
throughput Annotation of Somatic Mutations (CHASM) (Carter
et al., 2009; Douville et al., 2013; Masica et al., 2017),
Cancer Driver Annotation (CanDrA) (Mao et al., 2013), and
FATHMM (Shihab et al., 2013). Many new approaches have
recently addressed a problem of locating driver mutations
within the non-coding genome regions (Piraino and Furney,
2016). The identification of cancer mutation hotspots in protein
structures has been a fruitful approach for identifying driver
mutations (Dixit et al., 2009; Dixit and Verkhivker, 2011; Gao
et al., 2013; Gauthier et al., 2016; Niu et al., 2016; Tokheim
C. et al., 2016; Tokheim C. J. et al., 2016). To consolidate
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functional annotation for SNVs discovered in exome sequencing
studies, a database of human non-synonymous SNVs (dbNSFP)
was developed (Liu et al., 2011, 2013, 2016; Dong et al.,
2015; Wu et al., 2016). This resource allows for computation
of a total of 48 functional prediction scores for each SNV,
including 32 functional prediction scores by 13 approaches
and 15 conservation features (Wu et al., 2016). In our recent
investigation, two cancer-specific machine learning classifiers
were proposed that utilized 48 functional scores from dbWGFP
server in classification of cancer driver mutations (Agajanian
et al., 2018).

In this work, we explore and integrate RF and DL/CNN
machine learning approaches for prediction and classification
of cancer driver mutations. We first explore the ability of CNN
models to identify and classify cancer driver mutations directly
from raw nucleotide sequence information without relying on
specific functional scores. The performance of these classifiers
was compared to RF and gradient boosted tree (GBT) methods
to provide a comparative analysis of various classification
models. These raw sequence-derived scores are advantageous
because they can be obtained for any mutation with a known
chromosome and position, whereas the functional scoring
features can be limited to subsets of genomic mutations. By
developing a successful classification scheme that could leverage
information from rawDNA sequences, the universe of classifiable
mutations can be greatly expanded leading to more general and
robustmachine learning tools. The results of this study reveal that
CNN models can learn high importance features from genomic
information that are complementary to the ensemble-based
predictor scores traditionally employed in machine learning
classification of cancer mutations. We show that integration
of the DL-derived predictor score with only several ensemble-
based features can recapitulate the results obtained with a
large number of functional features and improve performance
in capturing driver mutations across a spectrum of machine
learning classifiers. Machine learning predictions are leveraged
in biophysical simulations and network analysis of protein kinase
oncogenes to obtain more detailed functional information about
molecular signatures of activating driver mutations, aiding in the
interpretability of cancer mutation classifiers.

MATERIALS AND METHODS

Mutational Datasets and Feature Selection
In our earlier study (Agajanian et al., 2018) we used RF
classifier to predict cancer driver mutations using a combination
of two golden datasets (Mao et al., 2013; Martelotto et al.,
2014). Here, we expanded this dataset by adding the predicted
cancer driver mutations and passengers from the analysis
of missense mutations in Cbioportal database (Agajanian
et al., 2018). By leveraging the earlier analysis, we created a
dataset consisting of functionally validated 6,389 cancer driver
mutations and 12,941 passenger mutations. The driver/passenger
classifications for 2,570 of these mutations were present in the
two aforementioned golden datasets, and our RF classifier made
predictions on the remaining 16,760 missense mutations from
the Cbioportal database. Given the performance level of our
model (Agajanian et al., 2018), we conjectured that a combination

of the two golden datasets and the missense mutations in
the Cbioportal database would yield an informative dataset
for the current study. The initially selected features for RF
predictions were obtained from dbWGFP web server (Wu et al.,
2016) of functional predictions for human whole-genome single
nucleotide variants (Supplementary Table S1). A total of 32
sequence-based, evolutionary and functional features identified
in our previous study (Agajanian et al., 2018) were initially
used for machine learning experiments with the new dataset
of cancer mutations. In cancer driver mutation predictions,
traditional input data contain distinct features that cannot be
directly applied to CNN models due to their lack of spatial
meaning. Using the chromosome and the position on that
chromosome that corresponded to the mutated nucleotide, we
could retrieve the surrounding nucleotides of the mutation of
interest to perform classification with only this raw string of
nucleotides. To represent the original nucleotide and its mutated
version, we placed two nucleotide sequences on top of each other,
one containing the original string, and the other contained the
mutated version. This would only result in a one nucleotide
difference between the two, allowing to effectively utilizing the
sliding window format of the CNN models. The schematic
workflow diagram of the CNN approach employed in this study
is presented in Figure 1.

To create this dataset, we parsed information from
University of California, Santa Cruz (UCSC) Genome Browser
(http://genome.ucsc.edu/) (Tyner et al., 2017) which takes a
chromosome (CHR) and a position (POS) on that chromosome
as arguments and returns back all nucleotides within the
sequence. Using the dataset consisting of 6,389 driver mutations
and 12,941 passengers, we created 5 different datasets of various
window sizes around each given CHR/POS pair. The explored
window sizes (10, 50, 100, 500, and 5,000) produced nucleotide
strings of length 21, 101, 201, 1,001, and 10,001, respectively.
To represent the type of mutation (A->C, A->G, etc.) we
stacked two of the same nucleotide sequences on top of each
other, having one contain the original nucleotide at the position
passed in initially, and the other containing the mutated version
(Figure 2A). This operation resulted in a total input matrix size
of (2, 21), (2, 101), (2, 201), (2, 1001), and (2, 10001), respectively.
Three different preprocessing techniques were then applied to
the dataset to allow it to be passed into the CNN model in the
numerical form: label encoding (Figure 2B), one-hot encoding
(Figure 2C; Goh et al., 2017), and embedding (Figure 2D).
Label encoding involves assigning each nucleotide its own
unique ID (A->0, C->1, etc.) This imposes an ordering on the
nucleotide sequences that may have implications for the neural
network learning (Figure 2B). This technique was implemented
using the Scikit-learn LabelEncoder package for the Python
programming language. We also tried one-hot encoding the
dataset by assigning each nucleotide its own bit encoded string
(A -> [0,0,0,0,1], C-> [0,0,0,1,0]) (Figure 2C). This tends to be
a favorable preprocessing function for weight-based classifiers
because no artificial ordering is imposed on the samples. This
technique tends to be the default representation choice for
categorical variables due to how it is interpreted. Because
each nucleotide gets its own index in a 5 bit string, a 1 in any
particular index means that nucleotide is present in that location.
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FIGURE 1 | The schematic workflow diagram of the CNN approach employed in this study. To determine the optimal architecture, we performed a grid search over a

total of 72 different neural network architectures. These 72 architectures consisted of between 1 and 3 convolutional layers and 1–3 fully connected layers following.

The number of nodes in each of these layers was also varied between 2 and 256 in powers of 2. The simplest architecture covered in this search contains 1

convolutional layer with 2 filters feeding into 1 fully connected layer with 2 nodes, and the most complex would have 3 convolutional layers feeding into 3 fully

connected layers, all containing 256 nodes.

For example, since A->[0,0,0,0,1], this can essentially be read
as “There are 0 ‘n,’ 0 ‘g,’ 0 ‘t,’ 0 ‘c,’ and 1 ‘a’ nucleotides present
at this location.” Since the one-hot encoding preprocessing
technique lengthens the string, the resulting dimensionalities
were (2, 105), (2, 505), (2, 1005), (2, 5005), and (2, 50005),
respectively. The final preprocessing technique employed for
the DNA sequences involved learned embeddings created with
the word2vec algorithm (Mikolov et al., 2013). This technique
analyzes the sequential context of the nucleotides assigning
them a numeric representation in vector space. Using this
representation, the nucleotide segments with similar meaning
in the word2vec model would yield similar vectors in an N-
dimensional representation. This technique was implemented
using the Word2Vec model from the genism library for the
Python programming language. Since the vocabulary in this
application is fairly small, consisting of only 5 bit components,
we chose to convert the nucleotide to 2 dimensional vectors
which is sufficient to effectively encode this set. This resulted in
the input sizes (2, 42), (2, 202), (2, 402), (2, 2002), and (2, 20002),
respectively (Figures 1, 2). The implementation and execution
of these three preprocessing techniques provides adequate and
efficient nucleotide representations for the CNN classifier.

Machine Learning Models
We used and compared performance of tree based classifiers and
DL/CNN machine learning models. For the tree based methods,
we used previously established protocol for obtaining hyper-
parameters (Agajanian et al., 2018). The model training and
tuning was done using Scikit-learn free software machine
learning library for the Python programming language
(Pedregosa et al., 2011; Biau, 2012). The Keras framework
was used for training, validation and testing of CNN models
(Erickson et al., 2017). We initially held out 20% of the data
in a stratified manner as a testing set so that it had the same

distribution of passengers/drivers as the total dataset. We then
used the remaining 80% of the dataset as the training set to learn
and tune its hyper-parameters. To choose between the hyper-
parameters attempted, we test our model out on unseen data
so that we have an unbiased estimate of its performance. To do
this, we performed 3-fold cross validation, splitting the training
set up into three equal sized portions. The model trains on two
of them, and makes predictions on the third. This is repeated
three times so that each of the three portions has been predicted
on. A workflow diagram of the CNN approach (Figure 1) was
carefully engineered to determine the optimal architecture. For
this, we performed a grid search over a total of 72 different
neural network architectures. These 72 architectures consisted
of between 1 and 3 convolutional layers and 1–3 fully connected
layers following. The number of nodes in each of these layers
was also varied between 2 and 256 in powers of 2. The simplest
architecture covered in this search contains 1 convolutional layer
with 2 filters feeding into 1 fully connected layer with 2 nodes,
and the most complex would have 3 convolutional layers feeding
into 3 fully connected layers, all containing 256 nodes. The ReLU
activation function was used, which returns max (0, X). All 72
different architectures (Table 1) were tested using this cross-
validation algorithm and the architecture that had the highest
F1 score across all 3-folds was chosen. Our neural networks
were trained for 100 epochs, which means that they will pass
through the entire dataset 100 times to complete their training.
In between each epoch, the model recorded its predictions on
the validation fold, and the epoch with the best performance
on the validation set was recorded. Dropout was applied in
between layers, so that inputs into a layer are randomly set to
0 with a certain probability. This prevents the neural network
from overfitting, forcing it to learn without random features
present. The best architecture was used for predictions on the
test set.
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FIGURE 2 | Preprocessing of the nucleotide information for CNN machine learning of cancer driver mutations. Two different preprocessing techniques were then

applied to the dataset to allow it to be passed into the CNN model in the numerical form: label encoding and one-hot encoding. (A) A schematic diagram of window

sliding protocol. To represent the original nucleotide and its mutated version, two nucleotide sequences are placed on top of each other, one containing the original

string, and the other contained the mutated version. This representation allows to utilize the sliding window format of the CNN models. (B) A schematic diagram of

label encoding preprocessing protocol. Label encoding assigns each nucleotide its own unique ID (A->0, C->1 etc.) This imposes an ordering on the nucleotide

sequences. (C) A schematic diagram of one hot encoding preprocessing protocol. One-hot encoding assigns each nucleotide its own bit encoded string (A ->

[0,0,0,0,1], C-> [0,0,0,1,0]). This tends to be a favorable preprocessing function for weight-based classifiers because no artificial ordering is imposed on the samples.

(D) A schematic diagram of embedding preprocessing scheme created with the word2vec algorithm.

TABLE 1 | The parameters of displayed CNN architectures in classification of

cancer driver mutations.

Architecture # Layers # Nodes per layer

0 2 32,2

1 3 16,8,2

2 3 16,16,2

3 3 32,16,2

4 3 32,8,2

5 3 64,32,2

6 3 64,16,2

7 4 64,64,16,2

8 4 128,64,16,2

9 4 128,64,32,2

10 5 128,64,32,16,2

To assess the performance of each model, Accuracy, Recall,
Precision, and F1 score were calculated to measure the
performance of classification models. These parameters are
defined as follows:

Accuracy =
TP + TN

all
; Precision =

TP

TP + FP
(1)

Recall =
TP

TP + FN
; F1 = 2

Precision ∗ Recall

Precision+ Recall
(2)

True Positive (TP) and True Negative (TN) are defined as the
number of mutations that are classified correctly as driver and
passenger mutations, respectively. False Positive (FP) and False
Negative (FN) are defined as the number of mutations that
are misclassified into the other mutational classes. Precision is
defined as the amount of positive samples the model predicts
correctly (true positives) divided by the true positives plus the
false positives. Recall is defined as true positives divided by
true positives plus false negatives. The model performance was
evaluated using receiver operating characteristic area under the
curve. The receiver operating curve (ROC) is a graph where
sensitivity is plotted as a function of 1-specificity. The area under
the ROC is denoted AUC. The sensitivity or true positive rate
(TPR) is defined as the percentage of non-neutral mutations that
are correctly identified as driver mutations:

Sensitivity = TPR =
TP

TP + FN
(3)

The specificity or true negative rate (TNR) is defined as
the percentage of mutations that are correctly identified
as passengers:

Specificity = TNR =
TN

TN + FP
(4)
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In combination, these scores allow us to differentiate models
by providing evaluation options to properly asses a model’s
performance. We relied on the F1 score, precision and recall as
the primary discriminatory measures that can assess the quality
of classification more reliably than accuracy. Under this data
distribution, a model that only predicted passenger would yield
an accuracy of 66.95%, but an F1 score of 0. In the case that two
model’s exhibited the same F1 score, we used the AUCmeasure to
break the tie. The AUC measure is derived from the fact that the
output of these classificationmodels is a likelihood value between
0 and 1. A powerful classifier learns a likelihood function that
consistently maps instances of the negative class to likelihoods
lower than the positive class. A model that is reliable able to
do this would receive an AUC of 1, whereas a model that only
predicted the negative class would also receive an AUC of 0.

Bimolecular Simulations of Cancer
Mutation Effects: Rigidity Decomposition
and Protein Stability Analysis
We used FIRST (Floppy Inclusion and Rigid Substructure
Topography) approach (Jacobs et al., 2001; Rader et al., 2002;
Chubynsky and Thorpe, 2007) and the Python-based Constraint
Network Analysis (CNA) interface (Hespenheide et al., 2002;
Kruger et al., 2013; Pfleger et al., 2013a,b) to analyze partition
of rigid and flexible regions in a set of protein kinases with the
predicted cancer driver mutations. The employed parameters
are consistent with our previous studies of protein kinases
(Stetz et al., 2017). Protein stability computations that evaluated
the effect of cancer driver mutations on the functional forms
of the ErbB kinases were performed using CUPSAT (Cologne
University Protein Stability Analysis Tool) (Parthiban et al., 2006,
2007). This approach was successfully adopted for the energetic
analysis of cancer mutation hotspots (Dixit et al., 2009; Dixit
and Verkhivker, 2011). We also employed the Foldx method
(Guerois et al., 2002; Schymkowitz et al., 2005; Tokuriki et al.,
2007; Van Durme et al., 2011) that allows for robust assessment
of mutational effects on protein stability. These calculations were
done with the user interface for the FoldX force field calculations
(Schymkowitz et al., 2005) implemented as a plugin for the
YASARA molecular graphics suite (Van Durme et al., 2011).

Protein Structure Network Analysis
For network-based analysis, a graph-based representation of
protein structures is employed in which residues are treated
as network nodes and inter-residue edges represent residue
interactions (Sethi et al., 2009; Vijayabaskar and Vishveshwara,
2010; Stetz and Verkhivker, 2017). NAPS approach (Chakrabarty
and Parekh, 2016) was used for construction of the residue
interaction networks and subsequent residue-based network
centrality analysis. For our analysis, an interaction strength-
based graph representation of protein structures was used in
which a residue is considered as node in the network and
an edge is constructed if the interaction strength between
two residues is more than the threshold of 4%. The pair of
residues with the interaction Iij greater than a user-defined
cut-off (Imin) are connected by edges and produce a protein

structure network graph for a given interaction cutoff Imin. The
interaction strength Iij is considered as edge weight. The edges
in the residue interaction networks were weighted based on the
defined interaction strength and dynamic residue correlations
couplings (Sethi et al., 2009; Stetz and Verkhivker, 2017). Using
the constructed protein structure networks, the residue-based
betweenness parameters were also computed with the NAPS
server (Chakrabarty and Parekh, 2016). The betweenness of
residue i is defined to be the sum of the fraction of shortest paths
between all pairs of residues that pass through residue i:

Cb(ni) =

N
∑

j<k

gjk(i)

gjk
(5)

gjk denotes the number of shortest geodesics paths connecting
j and k, and gjk(i) is the number of shortest paths between
residues j and k passing through the node ni. Residues with high
occurrence in the shortest paths connecting all residue pairs have
a higher betweenness values. For each node n, the betweenness
value is normalized by the number of node pairs excluding n
given as (N − 1)(N − 2)/2, where N is the total number of nodes
in the connected component that node n belongs to.

RESULTS

Deep Learning Classification of Cancer
Driver Mutations From Nucleotide
Information
We began with an attempt to recapitulate our predictions by
using various DL/CNN architectures informed by raw nucleotide
sequence data evaluated the ability to make predictions based
solely on raw genomic information. The inclusion of the three
different preprocessing techniques allowed us to select the most
informative representation of the nucleotides. The one hot
encoded sequences yielded the model with the best performance,
and for clarity of presentation we report only the dimensions and
performance of the one hot encoded model. This preprocessing
model resulted in input matrices of size (2, 105), (2, 505), (2,
1005), (2, 5005), and (2, 50005) corresponding to the different
window sizes (10, 50, 100, 500, 1,000) surrounding the original
nucleotide. It is worth noting that the embedding algorithm
also learned meaningful representations of the nucleotides.
The missing place indicator, “n,” was predictably separated
from the original nucleotides, which were arranged in 2 neat
clusters (Figure 2D). Cluster 1 consisted of the adenine and
tyrosine nucleotides, and cluster 2 consisted of the guanine and
cytosine nucleotides. These two clusters are easily identified due
to the fact that their constituent components are very close
to each other while simultaneously being far away from the
other cluster.

We employed 72 different DL architectures (Table 1) and
the results for the window size of 10 are presented since they
revealed more variance (Figure 3). The figures below display
the 10 best performing models out of the 72 attempted. The
training accuracy continued to increase for the duration of
training (Figure 3A), while on the validation testing set of
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cancer mutations, the best DL/CNN architecture achieved an
average validation accuracy of 86.68% with an F1 score of
0.61 (Figure 3B). Interestingly, we found that the DL model
seemed to learn early on, overfitting with each successive epoch
(Figure 3B). In fact, the model achieved its highest validation
accuracy on the first epoch, and proceeds to decline as learning
proceeds in subsequent epochs. Furthermore, the AUC score
of the model as well as the F1 score consistently stayed the
same throughout all of the process. This is further contextualized
by the tree based method’s performance on the same dataset.
The GBT classifier exhibited an F1 score of 0.57 with an
average validation accuracy of 66.59%, and the RF classifier
exhibited an F1 score of 0.58 and an average validation accuracy
of 69.86%. We analyzed predictions by the DL/CNN model
by assigning the predicted values for the entire dataset as a
separate new feature termed DL score. Although we probed a
variety of different architectures and several nucleotide-encoding
protocols, a direct brute-force application of DL/CNN models
to predict driver mutations only as a function of surrounding
nucleotides appeared to be challenging. As a result, we suggested
that a diverse set of more informative features may be required
to recapitulate the level of robust performance achieved in our
earlier work with sequence-based conservation and functional
features (Agajanian et al., 2018).

We first used the RF classifier on the cancer mutation
dataset with functional and conservation features obtained from
dbWGFP server and adopted in our previous study (Agajanian
et al., 2018). A database of human non-synonymous SNVs
(dbNSFP) was developed as a one-stop resource for analysis of
disease-causing mutations (Liu et al., 2011, 2013, 2016; Dong
et al., 2015; Wu et al., 2016) storing 8.58 billion possible
human whole-genome SNVs, with capabilities to compute
a total of 48 functional prediction scores for each SNV,
including 32 functional prediction scores by 13 approaches,
15 conservation features from 4 different tools including
ensemble-based predictors RadialSVM, LR, and MSRV scores.
The initially selected features were obtained from dbWGFP

web server of functional predictions for human whole-genome
single nucleotide variants that provided 32 functional prediction
scores and 15 evolutionary features (Agajanian et al., 2018).
Functional prediction scores refer to scores that predict the
likelihood of a given SNV to cause a deleterious functional
change in the protein, and evolutionary scores refer to scores
providing different conservation measures of a given nucleotide
site across multiple species (Supplementary Table S1). Some of
the score features (SIFT, PolyPhen, LRT, Mutation Assessor,
MutationTaster, FATHMM, RadialSVM, LR, MSRV, and SinBaD)
can be applied only to SNVs in the protein coding regions,
while other scores (Gerp++, SiPhy, PhyloP, Grantham, CADD,
and GWAVA) can evaluate SNVs spreading over the whole
genome (Supplementary Table S1). The ensemble-based scores
RadialSVM and LR are integrated features that used machine
learning approaches to combine information from 10 individual
component scores (SIFT, PolyPhen-2 HDIV, PolyPhen-2 HVAR,
Gerp++, MutationTaster, Mutation Assessor, FATHMM, LRT,
SiPhy, PhyloP) (Agajanian et al., 2018).

In this baseline experiment we evaluated feature performance
of 32 input features on the expanded dataset (Figure 4A).
Similar to our previous investigation (Agajanian et al., 2018),
we found that the ensemble-based scores LR and RadialSVM
considerably overshadowed the contributions of other features
(Figure 4). By adding DL score to the original 32 features, we
applied the RF model for predicting cancer driver mutations
with this expanded set of features. The first question was to
analyze feature importance of the RF model with the DL score
included and determine whether the nucleotide-based scoring
feature can contribute to the prediction performance in a
meaningful and appreciable way (Figure 4). In the second round
of RF classification experiments, we added DL score to the
original list of 32 features (Figure 4B). Strikingly, the DL score
ranked third following the ensemble-based LR and RadialSVM
scores (Figure 4B). Moreover, it was evident that these
three feature scores completely dominated feature importance
distribution, with the DL score contributing almost as much

FIGURE 3 | The average accuracy of CNN model using exclusively nucleotide information. (A) Average accuracy across all 3-folds on an epoch by epoch basis on

the training set with the sliding window size = 10. (B) Average accuracy across all 3-folds on an epoch by epoch basis on the validation set with the sliding window

size = 10.
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FIGURE 4 | Feature importance of the RF machine learning model on the cancer mutation dataset. The dataset consists of functionally validated 6,389 cancer driver

mutations and 12,941 passenger mutations. The initially selected features for RF predictions were obtained from dbWGFP web server (Wu et al., 2016) of functional

predictions for human whole-genome single nucleotide variants (Supplementary Table S1). The test set contained 20% of the samples from the original dataset,

ensuring that the distribution of drivers and passengers was equivalent to that of the original dataset. The training set was subjected to recursive feature elimination

process, resulting in a final dataset of 32 features. (A) Feature importance of 32 functional and sequence conservation features with DL score feature produced by

CNN model excluded. (B) Feature importance of 33 features with the DL score included in the RF classification. The feature importance values are shown in blue filled

bars and annotated. Feature importance is measured using the information value and weight of evidence criteria.

as the ensemble-based RadialSVM feature (Figure 4B). Quite
remarkably, the DL-based score derived by CNN exclusively
from primary nucleotide information can deliver significant
information content and enrich predictions.

Using Spearman’s rank correlation coefficient, we computed
the pairwise correlations between different prediction scores
(Figure 5). In this analysis, we found that the two dominant
feature scores RadialSVM and LR are only moderately correlated
with DL score, with the correlation coefficient of 0.486 and
0.423, respectively. Interestingly, RadialSVM and LR scores are
more significantly correlated, suggesting that these ensemble-
based features could be complementary with the nucleotide-
based DL score. Accordingly, we argued that a combination
of these dominant and yet complementary scores may allow
for feature reduction and more robust performance of the RF
classification models.

Integration of CNN Predictions With
Ensemble-Based Features in Classification
Models of Cancer Driver Mutations
Based on these findings, we evaluated feature selection again
aiming to recreate the same accuracy with only 8 features:
RadialSVM score, LR score, DL score, GerpRS, LRT score,
verPhyloP, SiPhy score, GerpN (Figure 6A). The RF model
with only 8 features produced a similar ranking in which
the ensemble-based scores and DL score contributed the most
(Figure 6A). Other contributing features included evolutionary
conservation scores derived from multiple sequence alignments
and reflecting functional specificity, such as GerpRS (Davydov
et al., 2010), SiPhy (Garber et al., 2009), and PhyloP (Garber
et al., 2009) also showed appreciable information score values
(Figure 6A). We then tested the performance of the RF model

FIGURE 5 | The pairwise Spearman’s rank correlation heat map between

different prediction scores. The heat map of pairwise Spearman’s rank

correlation coefficients is shown for top 8 ranking features in the RF

classification of cancer mutations with a total of 33 features with DL score

included. The high ranking features include ensemble-based RadialSVM, LR

scores along with DL score produced by CNN model solely from the raw

nucleotide information.

and feature importance by performing machine learning of
cancer driver mutations using only 3 top features (Figure 6B).

The predictive performance of the RF models with different
set of features was examined using area under the curve (AUC)
plots (Figure 7). First, we examined difference in the AUC
curves for RF-based classification with 32 functional features
and with additional DL score (Figure 7A). The results showed
a very similar high-level prediction performance with AUC =
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FIGURE 6 | Feature importance of the RF model on the cancer mutation dataset with the reduced number of features. (A) Feature importance ranking based on RF

classification with only 8 most informative features. (B) Feature importance ranking based on RF classification with only 3 top features that included ensemble-based

RadialSVM, LR scores, and DL score produced by CNN model. The feature importance values are shown in blue filled bars and annotated. Feature importance is

measured using the information value and weight of evidence criteria.

0.95–0.96. It is worth noting that due to high AUC value for
RF classification with 32 informative functional features, the
addition of DL could not significantly enhance it. However, we
showed that this nucleotide-derived predictor score provides an
additional information content and is complementary to the
ensemble-based RadialSVM score and LR score. In this context,
it was instructive to observe that addition of DL score may
marginally improve separation between TPR and FPR at higher
values of these parameters (Figure 7A).

Strikingly, RF learningmodel that relied on only 3 top features
(RadialSVM score, LR score, and DL score) yielded AUC =

0.94, thereby showing that these features may be sufficient to
achieve robust classification of cancer driver mutations on a
fairly large dataset of somatic mutations employed in this study.
Combined with the findings that DL score only weakly correlated
with the ensemble-based scores, we concluded that unexpectedly
few highly informative parameters can achieve high level of
performance (Figure 7).We then tested several machine learning
models including RF, GBTs and support vector machine (SVM)
on the dataset with the top 8 features to benchmark performance
against the original RF model with 32 features (Agajanian et al.,
2018). The performance of classification models was carefully
assessed (Table 2). All methods achieved a high classification
accuracy of∼90%. The sensitivity values were higher for the SVM
and RFmodels, but all methods yielded similar high performance
classification on the dataset with only limited number of major
features that included DL score (Table 2).

To summarize, our results supported the notion that machine
learning-derived ensemble functional predictors may play a
central role in classification of cancer driver mutations. The
central finding of these machine learning experiments was that
combination of ensemble-based features and DL score derived
by CNN model from nucleotide information are complementary
and when combined can yield classification accuracy comparable
and often exceeding the one obtained with a full set of features.

The important lesson from this analysis is that integrated high-
level features derived by machine learning approaches from
primary nucleotide and protein sequence information may
be sufficient to predict an important functional phenotype.
Although structure-derived features and other functional scores
contribute to feature importance ranking and tightly linked
with the mutational phenotype, the success of machine learning
tools in deciphering predictive features from primary sequence
information is encouraging and should be further explored in
other applications.

Leveraging Machine Learning Predictions
in Structure-Functional Analysis of
Molecular Signatures of Driver Mutations
in Oncogenic Protein Kinases
Machine learning driver/passenger classifications typically
consider activating, inactivating and inhibitory (or resistant)
mutations as drivers, often leaving aside a more detailed
characterization and assignment of driver positions. Direct
predictions of these specific classes may not be adequately
suited for machine learning tools due to smaller datasets. To
expand our predictions and aim at extracting a more granular
functional information about driver mutations, we conducted
rigidity decomposition simulations and analyzed conformational
flexibility of the predicted driver positions in protein kinase
genes. The objective of this analysis was to facilitate functional
validation and interpretation of machine learning results
through coarse-grained biophysical simulations as an effective
post-processing tool of machine learning classification. In
fact, the proposed simulation analysis of mobility at the driver
positions allows to expand classification of driver mutations
further and characterize activating drivers. Previous studies
have suggested that conformational mobility of many oncogenic
kinases may be linked with preferential localization of activating
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FIGURE 7 | The ROC plots of sensitivity (TPR) as a function of 1-specificity, where specificity (TNR). (A) The ROC curves for overall performance of the RF model with

32 functional features excluding DL score (in green) and 33 features that included DL score (in red). (B) The ROC curves for the RF model with all 33 features (in green)

and with the top 3 performing features that included LR score, Radial_SVM score, and DL score (in red). Higher AUC score indicates better performance. These plots

illustrated a comparative performance of machine learning models for top prediction scores.

TABLE 2 | The relative performance metrics and statistics of various machine

learning models in classification of cancer driver mutations with the top 8 features.

Boosted trees SVM Random forest

Accuracy 0.896 0.890 0.896

F1 score 0.900 0.890 0.900

Precision 0.900 0.890 0.900

Recall 0.900 0.890 0.900

True positive rate 0.850 0.949 0.857

False positive rate 0.112 0.797 0.123

True negative rate 0.115 0.016 0.107

False negative rate 0.913 0.748 0.907

cancer mutations in flexible functional regions (Paladino et al.,
2015; Kiel et al., 2016; Stetz et al., 2017).

We examined flexibility of specific functional regions targeted
by driver mutations in oncogenic protein kinases and probed
functional propensity of these drivers to promote transitions to
constitutively active states. The primary focus of this analysis is
on the family of the ErbB protein tyrosine kinases (Lemmon and
Schlessinger, 2010; Roskoski, 2014). A number of human cancers
are associated with mutations causing the increased expression
of the ErbB kinases. A large number of activating and drug
resistance EGFR mutations have been extensively studied at the
molecular and functional levels (Paez et al., 2004; Kobayashi et al.,
2005; Zhou et al., 2009; Eck and Yun, 2010). Oncogenic kinase
mutants are known to act by destabilizing the inactive dormant
kinase form while promoting conformational transitions and
stabilization of a constitutively active kinase state—a salient
functional characteristic linked with the initiation or progression
of cancer (Carey et al., 2006; Wang et al., 2011). We used the
crystal structures of the EGFR, ErbB2, ErbB3, and ErbB4 kinases
that constitute this family to perform rigidity decomposition
and then align the positions of the predicted cancer driver

mutations with the structural mobility maps (Figure 8). We
examined how the predicted driver mutations for ErbB protein
kinases are distributed on the rigidity/flexibility map of the
catalytic core and whether the dynamic preferences of mutational
sites can be linked with their primary function as activating
drivers. To explore these questions, we examined the predicted
cancer driver mutations for the ErbB kinase family. Structural
mapping of these cancer mutations onto the crystallographic
ErbB conformations showed that activating driver mutations are
preferentially localized in the flexible regions and target positions
where they can readily promote conformational changes to
the active form without severely compromising thermodynamic
stability (Figure 8).

To quantify these arguments further, we also characterized
the free energy differences between wild-type and cancer-
driver mutations for the ErbB proteins in both inactive and
active kinase forms (Figure 9). Since both CUPSAT and FoldX
approaches yielded similar results, we illustrated our findings by
presenting FoldX-derived protein stability changes (Figure 9).
The results of this simulation-driven functional classification of
predicted driver mutations were compared with the biochemical

and mutagenesis data. The analysis of driver mutations in
EGFR confirmed that L858 and L861 positions target flexible
regions as can be manifested by classical activating driver
mutations L858R and L861Q (Littlefield and Jura, 2013; Red
Brewer et al., 2013). The energetics of these activating drivers
is consistent with a common mechanism of the constitutive
activation of kinases by driver mutations (Figure 9A). This
mechanism reflects a combined effect of activating mutations
producing a more significant destabilization of the inactive

state as compared to the active state, triggering shift of the
thermodynamic equilibrium toward the active conformation.
We found that some EGFR mutations such as T854A are
mapped onto more stable regions of the kinase (Figure 8A) and
showed similar destabilization in the inactive and active forms.
Accordingly, this predicted cancer driver mutation is likely not
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FIGURE 8 | Structural maps of rigidity decomposition and mobility signatures of cancer mutation drivers in the ErbB protein kinases. Structural mapping of rigidity and

flexibility regions in the crystal structure of EGFR (pdb id 1XKK) (A), crystal structure of ErbB2 kinase (pdb id 3PP0) (B), crystal structure of ErbB3 kinase (pdb id 3KEX)

(C), and crystal structure of ErbB4 kinase (pdb id 3BBT) (D). Crystallographic conformations are colored using a color range from red (highest flexibility) to blue

(highest rigidity). The positions of predicted in machine learning cancer driver mutations are shown in spheres (colored according to their mobility level) and annotated.

activating but rather may be attributed to inhibitory or resistant
mutations. Indeed, the recent experimental studies showed that
T854A mutation is the acquired mutation causing resistance
to known drugs (Bean et al., 2008). Another EGFR mutation
V769M/L showed an intermediate level of mobility (Figure 8A)
and greater stabilization of the active state. These results are
in line with recent functional experiments showing that EGFR-
V769Mmutation is indeed activating that may explain the role of
this driver mutation in the development of multiple lung cancers
in a pool of lung cancer patients (Deng et al., 2018).

The positions of almost all predicted driver mutations in
ErbB2 kinase target highly flexible regions and can be assigned
in our model to activating driver mutations (Figures 8B, 9B).
Our previous biophysical simulations and network analysis of
activation mechanisms in the ErbB proteins similarly indicated
that almost all oncogenic ErbB2 variants are localized in
the mobile αC-β4 loop and highly dynamic in their inactive
states promoting transition to the active form and causing an
uncontrollable activity (James and Verkhivker, 2014). These
findings are consistent with the experimental studies (Fan et al.,
2008; Aertgeerts et al., 2011). While the majority of somatic
mutations in the EGFR and ErbB2 kinases increase the kinase
activity, a number of the classified ErbB4 cancer mutants have

been shown to inhibit or reduce the kinase activity (Tvorogov
et al., 2009). In particular, some cancer-associated mutations
of ErbB4 can promote loss of ErbB4 kinase activity as these
alterations weaken the important functional interactions in the
catalytic core and may interfere with the protein stability.
According to experimental data, some cancer mutations have
only minor or no effect on kinase activity (V696I, E785K,
A748S, P757Q, P829Q, and T901M), while K726R abolishes
kinase activity and D818N and D836Q are known as kinase-
dead mutations (Tvorogov et al., 2009). We found that predicted

cancer driver mutations are mapped onto more stable regions
in ErbB4, owing to the greater rigidity of this catalytic domain
(Figures 8D, 9D). Accordingly, the respective driver mutations
cannot function as activating but rather may cause significant
distortions of the kinase structure, causing abolishment of kinase
activity which is the functional signature ofmost cancer drivers in
ErbB4 kinase. The performed simulation-driven post-processing
of machine learning predictions facilitated in silico functional
characterization of cancer mutations and allowed to properly
assign activating or inhibiting phenotypic effects to a pool of
pathogenic kinase variants.

To provide more quantitative insights, we used the predicted
cancer mutations in the ErbB kinases and conducted protein

Frontiers in Molecular Biosciences | www.frontiersin.org June 2019 | Volume 6 | Article 4493

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Agajanian et al. Deep Learning of Cancer Drivers

FIGURE 9 | Protein stability analysis of the predicted cancer driver mutations. Protein stability differences calculated between the wild-type and mutants for predicted

cancer driver mutations in the ErbB kinases using FOLDx approach. Protein stability changes induced by cancer driver mutations in the inactive and active states of

EGFR kinase (A), ErbB2 kinase (B), ErbB3 kinase (C), and ErbB4 kinase (D). Positive values of protein stability changes correspond to destabilizing mutations.

structure network analysis to identify whether positions of
deleterious mutations would overlap with the global mediating
nodes in the interaction networks. The betweenness of a
residue node is defined as the number of shortest paths that
can go through that node, thus estimating the contribution
of the node to the global communication flow in the
system. High betweenness nodes can influence the spread of
information through the network by facilitating, hindering,
or altering the communication between others. According to
our hypothesis, cancer mutations may preferentially target the
essential mediating residues with a high centrality that play an
important role in activity and signaling of protein kinase genes.

The centrality analysis revealed important differences in the
distribution of mediating centers in the ErbB kinase structures
(Figure 10). We particularly observed that the betweenness of
the active form of EGFR (Figure 10A) and ErbB4 (Figure 10D)
was on average higher than for the inactive states. Importantly,
the location of the properly classified EGFR mutations with
the highest oncogenic potential (L858R, T790M, L838V, V742A,
V851A, I853T) corresponds to some of the high centrality
peaks of the profile (Figure 10A). In addition, these residues
showed appreciable differences in the betweenness values
between the inactive to the active states, as the residue
centrality in these positions typically increased in the functional

active form (Figures 10A,D). These findings suggested that
a number of key activating mutations in the ErbB kinases
target mediating sites of global allosteric communication in the
protein structures. We believe that by adding this significant
additional component to our study, we have been able to further
quantify and explain the protein rigidity/flexibility analysis of
predicted cancer mutations in the kinase genes. In our view, by
complementing machine learning predictions with the structural
and network-based analyses we can obtain useful insights
into mechanisms underlying effects of cancer mutations and
also identify limitations of classification models and ways to
improve interpretability and trustability of machine learning
model approaches.

DISCUSSION

As large-scale biological data are available from high-throughput
assays, and methods for learning the thousands of network
parameters have matured, we can now assess feasibility and
practicality of using specialized neural network architectures as
classification tools for recognizing cancer-causing variants and
associated cancer types. Given rapid proliferation and increasing
popularity of deep learning tools to address various biological
problems, there are several fundamental questions arising in the
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FIGURE 10 | The residue-based betweenness profiles of the ErbB kinase structures. The residue betweenness (residue centrality) profiles for the inactive and active

crystal structure states of EGFR (A), ErbB2 (B), ErbB3 (C), and ErbB4 kinases (D). For ErbB2 and ErbB3 only crystal structures of the inactive-type states were

available for the analysis. The positions of somatic mutations predicted by machine learning experiments are shown in maroon-colored filled triangles, and residue

positions corresponding to the hydrophobic spine residues are shown in orange-colored filled triangles. Protein kinase activation is controlled by two networks of

mostly hydrophobic residues that form a regulatory spine (R-spine) and a catalytic spine (C-spine). The EGFR R-spine residues include L777 from the β4-strand, M766

from the C-terminal end of the αC-helix, F856 of the DFG motif in the activation segment, H835 of the HRD motif of the catalytic loop, and D896 of the αF-helix.). The

R-spine residues in ErbB2 are M774, L785, F864, H843, and D904. The R-spine residues in ErbB3 are I744, L755, F843, H813, and D874. The R-spine residues in

ErbB4 are M747, L758, H816, F837, and D877.

context of classification of cancer driver mutations. Will deep
learning make all other models obsolete? Can deep learning
models achieve robust classification and recognition of cancer
driver mutations based solely on nucleotide information? What
is the role of many functional and structural predictors derived
from biophysical perspective in this context? In this work,
we have explored and integrated different machine learning
approaches for prediction and classification of cancer driver
mutations. We first explored the ability of CNN models to
identify and classify cancer driver mutations directly from raw
nucleotide sequence information without relying on specific
functional scores.

The results of this study have demonstrated that while CNN
models can learn high level features from genomic information
that has sufficiently high importance, accurate classification of
cancer mutation driver phenotype using exclusively nucleotide
data continues to be challenging. This problem is admittedly
more complex than the experimental design suggests, due to
the complex nature of protein interactions in the human body.
This experimental setup considered only the primary sequence
form of the nucleotides, which could only ever partially explain

the onset of cancer. The secondary, tertiary, and quaternary
form of these same strings would certainly contain more
information, due to the folding processes that occur in these
steps. Additionally, this technique ignores all of the possible
interactions that can be had with other structures in the body,
which further dilutes the informational value present in the
dataset. As such it’s unreasonable to assume that our solely
primary sequence based dataset would be able to explain all
of the variance present in a complex problem like determining
a single mutation’s level of effect on the onset of cancer.
The experimental inclusion of the different window sizes was
also an attempt to allow increasing numbers of surrounding
nucleotides to have an influence on our chosen mutation’s effect.
An obvious assumption here is that more nucleotides would
in fact bring in more information. This, however, proved not
to hold up as the only dataset that provided any significant
variance in performance was the window size = 10 dataset.
This suggests that more nucleotides only confuse the model and
disallow it from learning informative patterns. This problem
could possibly be combatted in future research by testing out
larger architectures.
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The benefits of integrating CNN-derived predictors obtained
from nucleotide information with protein sequence features,
evolutionary and functional scores were then carefully examined.
By exploring various encoding techniques and an array of
different CNN architectures, we have found that neural networks
can quickly learn an important functional signal, but can rarely
steadily improve the initial performance spike with the number of
additional epochs. The juxtaposition of monotonically increasing
training accuracy with monotonically decreasing validation
accuracy is a telltale sign of overfitting. This suggests that there
is only a small amount of useful information that can be learned
very early on, and subsequent epochs only cause the model to
learn noisy patterns that are only exhibited in the training set. It is
difficult to determine exactly what was learned by the model due
to the black box nature of neural networks, however due to the
short path to optimality it is safe to say that any learned concepts
cannot be overly complex. We have pursued a synergistic
strategy in which the prediction score generated by CNN
models was integrated with physics-based functional, structural
and evolutionary conservation features. The important lesson
of this analysis was the revelation that CNN-derived features
may be complementary to the ensemble-based predictors often
employed for classification of cancer mutations. These other
scores are not calculated from raw sequence based techniques,
which supports this DL score as a novel inclusion into a portfolio
of scores due to its unique derivation.

By combining deep learning-generated score with only two
main ensemble-based functional features, we were able to achieve
a high performance level for cancer driver mutations. The
robustness of this approach was verified by several traditional
machine learning classifiers, including RF, SVM, and GBTs. We
have found that integration of CNN-derived predictor score
with only several ensemble-based features can recapitulate the
results obtained with a large number of functional features and
improve performance in capturing driver mutations across a
spectrum of machine learning classifiers. Our findings have also
demonstrated that synergy of nucleotide-based deep learning
scores and integrated metrics derived from protein sequence
conservation scores can allow for robust classification of cancer
driver mutations with a reduced number of highly informative
features. This is an interesting and highly informative result,
as the law of parsimony holds for machine learning models
so simpler models with comparable performance are typically
preferred over their more complex counterparts. Part of this
model complexity includes the number of features that a model
relies on. As such a reduction in features is a universally positive
outcome. In addition to the improved quality of the model, it
also expands the universe of predictable nucleotides that are
available to us since we depend only on the presence of two
ensemble-based scores. The DL score can be derived for any
mutation with known coordinates so this is not a limiting factor.
In this respect our initial goal of expanding the nucleotides we
can make predictions for was partially achieved. This increase
in the generalization of these models facilitates the logical
conclusion of driver classification efforts, accurately classifying all
known nucleotides.

While machine learning approaches can often produce
robust and accurate predictors, the ultimate goal of research
is fundamental understanding of the underlying phenomena
which requires a mechanistic model of the world. In this context,
machine learning predictions are leveraged in biomolecular
simulations to enable analysis of cancer mutation mechanisms
and obtain a more specific information about an important
subset of cancer mutations, activating drivers. The results of
our investigation suggested that through integration of machine
learning classification and biomolecular simulations of cancer
mutations we can often validate the predictions and facilitate a
more detailed functional analysis of activating driver mutations.
These findings can provide insight and new angle to the problem
of interpretability of “black box” machine learning results. By
carefully inspecting predictions of machine learning models in
the context of dynamic and energetic signatures of mutational
sites for oncogenic protein kinases, this study offered instructive
strategy for simulation-based post-processing of machine
learning predictions and detailed functional specification of
cancer driver mutations. The proposed synergistic integration
of machine learning and biomolecular simulations into a
single computational platform allows to rapidly process large
datasets and make robust predictions on functionally significant
cancer drivers. The results of this study may also inform
and guide design of targeted and personalized therapeutic
agents combating a spectrum of mutational changes occurring
in cancer.
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In recent years the analysis of molecular dynamics trajectories using dimensionality

reduction algorithms has become commonplace. These algorithms seek to find a

low-dimensional representation of a trajectory that is, according to a well-defined

criterion, optimal. A number of different strategies for generating projections of

trajectories have been proposed but little has been done to systematically compare how

these various approaches fare when it comes to analysing trajectories for biomolecules

in explicit solvent. In the following paper, we have thus analyzed a molecular dynamics

trajectory of the C-terminal fragment of the immunoglobulin binding domain B1 of protein

G of Streptococcus modeled in explicit solvent using a range of different dimensionality

reduction algorithms. We have then tried to systematically compare the projections

generated using each of these algorithms by using a clustering algorithm to find the

positions and extents of the basins in the high-dimensional energy landscape. We find

that no algorithm outshines all the other in terms of the quality of the projection it

generates. Instead, all the algorithms do a reasonable job when it comes to building

a projection that separates some of the configurations that lie in different basins. Having

said that, however, all the algorithms struggle to project the basins because they all have

a large intrinsic dimensionality.

Keywords: molecular dynamics, dimensionality reduction, machine learning, trajectory analysis, computer

simulation, clustering

1. INTRODUCTION

For many years researchers have sought to determine whether it is possible to predict the tertiary
structure of a protein from the amino acid sequence alone. Numerous structure prediction
algorithms have been developed to solve this problem and these algorithms have then been tested
in the biennial, community-wide blind tests to predict the unknown structures of proteins. The
tertiary structure of the protein is only a part of the story, however. To truly understand how these
molecules function in the cell we must also understand their dynamical behavior (Dunker et al.,
2008; Constanzi, 2010; Goldfeld et al., 2011; Kmiecik et al., 2015). In fact, a whole new class of
intrinsically disordered proteins (IDP) that do not have the same familiar and relatively permanent
tertiary structures has been discovered (Dyson and Wright, 2005).

Molecular dynamics (MD) simulations with force fields that model the interactions between the
atoms in the biomolecule have emerged as a useful tool for investigating the dynamical structure of
proteins. This technique is, in fact, particularly important for IDPs as the experiments alone often
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do not provide sufficient information on the conformers adopted
by the biomolecules. Detailed structural information is thus
obtained by formulating constraints based on the experimental
data and by then performing constrained MD simulations
(Bonomi et al., 2017). There is a problem, however, when it
comes to visualizing the results from these MD simulations.
Biomolecules, unlike simpler chemical systems such as solids,
do not undergo transitions that involve a change of symmetry.
Instead, they undergo transitions between various low symmetry
structures, which makes it difficult to know how to analyze the
trajectories that emerge fromMD simulations.

During the last few decades, many researchers have sought
to solve the problems outlined in the previous paragraph by
analyzing their MD trajectories using dimensionality reduction
algorithms. The theory behind such approaches is that the
computer can determine what features of the data are important
and what features are simply noise. Many different algorithms
have been used to analyze MD trajectories and some have
even been developed with this particular purpose in mind
(Garcia, 1992; Amadei et al., 1993; Balsera et al., 1996; Yuguang
et al., 2005; Das et al., 2006; Konrad, 2006; Plaku et al., 2007;
Spiwok et al., 2007; Zhuravlev et al., 2009; Stamati et al., 2010;
Sutto et al., 2010; Ceriotti et al., 2011; Spiwok and Kralova,
2011; Tribello et al., 2012; Noé and Clementi, 2015, 2017;
Tiwary and Berne, 2016; Sultan and Pande, 2017; Chen and
Ferguson, 2018; Sultan et al., 2018). Much less work has been
done, however, to compare the performance of the various
dimensionality reduction algorithms although there are a few
notable examples of work on systems in implicit solvent in the
literature (Duan et al., 2013).

One reason why few systematic comparisons between
the projections of trajectories generated using different
dimensionality reduction have been performed is that it is
difficult to formulate an appropriate method to test the quality of
a projection. After all, if we knew what the appropriate method
for analyzing our trajectory was we most likely wouldn’t be
reliant on dimensionality reduction algorithms. Duan et al.
(2013) argue that one feature of a good projection is that the
distances between the projections of the points are similar to
the true distances between the trajectory frames. This criterion
is undoubtedly sensible but it is also the criterion that is
used when optimizing the projection. What we thus find out
when it is measured is the extent to which the algorithm was
able to satisfy the constraints of the optimization problem.
As Duan et al. (2013) point out it is much more difficult
to unequivocally say that the assumptions of method X are
appropriate. Particularly so when it comes to the non-linear
methods. Nevertheless, in what follows we use a number of
different algorithms to analyze the trajectory of a biomolecule
in explicit solvent. We show two-dimensional projections of
the trajectory that are obtained using each of these algorithms
and perform various analyses to compare how well these
projections have encoded the information in the trajectory in
section 3. Before getting onto this, however, we provide some
background information on the various algorithms that we
have used in section 2 and the trajectory we have analyzed in
section 3.

2. BACKGROUND

Amolecular dynamics trajectory for a set ofN atoms is essentially
an ordered set of 3N-dimensional vectors. Furthermore, if we
assume that the simulated system is equilibrated and if we are
only interested in static properties then the order the vectors are
in is not particularly important. The problem of analysing the
trajectory thus reduces down to one of simply visualizing the
position of each frame in the trajectory relative to all the others.
Obviously, however, we cannot draw a diagram illustrating the
position of each trajectory frame in the 3N-dimensional vector
space of atomic positions and are thus forced to discard (ideally)
all but two of these dimensions.

Oftentimes decisions as to how to plot the relationships
between the trajectory frames are made using chemical or
physical intuition about the problem under study. In these cases,
some function/s of the atomic positions - usually referred to as
collective variables or CVs - is computed for each of the trajectory
frames. The positions of each of the trajectory frames in the low-
dimensional CV space can then be plotted so that conclusions
can be drawn about the parts of space that were sampled in
the trajectory.

Dimensionality reduction algorithms adopt a similar
approach. Instead of using chemical/physical intuition to
decide on the appropriate low dimensional space in which to
visualize the data, however, dimensionality reduction algorithms
introduce a loss function. Optimization algorithms are then used
to ensure that a low-dimensional representation of the data that
minimizes the value of this loss function is found.

To understand how these algorithms work in practice
consider how the multidimensional scaling (MDS) algorithm
(Borg and Groenen, 2005) would produce a low dimensional
representation, {x(i)} of the N M-dimensional vectors in the set,
{X(i)}. The first step is to compute the dissimilarity between each
pair of trajectory frames using Pythagoras theorem:

||X(i) − X(j)|| =

√

√

√

√

M
∑

k=1

(X
(i)
k

− X
(j)

k
)2 (1)

The low dimensional representation is then found by optimizing
the loss function:

χ({x(i)}) =
∑

i6=j

{

||X(i) − X(j)|| − ||x(i) − x(j)||
}2

(2)

where x(i) and x(j) are the low dimensional representations
of points i and j respectively. In other words, the MDS
algorithm works by endeavoring to arrange the points in the low
dimensional space so that the distances between the projections
are the same as the dissimilarities between the trajectory frames.

All of the dimensionality reduction algorithms that have been
used to analyze molecular dynamics trajectories work using a
strategy that is similar to the one described above. In short, some
features that describe how the data is arranged across the high
dimensional space are computed. Points are then arranged in
the low dimensional space in a way that reproduces the high-
dimensional features as closely as possible. A large number of
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algorithms exist, however, because one can perform numerous
variations on this theme. The best way to understand these
variants is to consider the choices that must be made in order
to analyze a trajectory using one of these algorithms:

• How to represent the trajectory frames - The simplest
representation to use for the trajectory frames is a list of
atomic coordinates. Using the atomic coordinates is not
particularly sensible, however, as one essentially discards all
chemical and physical intuition about the problem at hand. It
is thus often better to embed the known physical details about
the problem when one is calculating the high-dimensional
vectors that represent each of the trajectory frames. As a
case in point, it may well be better to input vectors of
backbone dihedral angles into the dimensionality reduction
algorithmwhen one is examining a trajectory of a biomolecule.
Alternatively, a number of general purpose representations
of atomic structures have been developed in the context of
fitting potentials based on the results of density functional
theory calculations (Behler, 2011; Bartók et al., 2013; Willatt
et al., 2018). These representations have the advantage of
providing a systematically convergent description of the
chemical environment and were used in De et al. (2016);
Bartók et al. (2017); Musil et al. (2018).

• Whether to use landmark points and if so how to choose

these landmarks - Dimensionality reduction algorithms scale
quadratically with the number of input vectors. It is thus

often not feasible to perform a dimensionality reduction

with a whole trajectory as input. Researchers therefore often
adopt a more computationally-efficient strategy whereby they
run the algorithm on a small number of so-called landmark
frames. Projections for all the frames in the trajectory are then
constructed using an out-of-sample procedure. Obviously,
using this procedure entails choosing an appropriate number
of landmark points and devising a strategy for selecting
these landmarks. Typically, however, one of two strategies is
employed either (i) landmarks frames are selected randomly
so the distribution of landmarks resembles the distribution of
trajectory frames or (ii) landmarks frames are selected using
farthest point sampling so as to have frames from all the
regions of configuration space that were explored. A third
option that combines the strengths of these two approaches
is discussed in Ceriotti et al. (2013)

• How to construct the loss function - By changing the way
the loss function is defined one can change what features
from the high-dimensional space the algorithm is endeavoring
to reproduce as it arranges the projections in the low-
dimensional space. Minimizing Equation 2 for instance is
akin to attempting to reproduce the Euclidean distances
between the high-dimensional vectors. It is possible to use
a different method for calculating the dissimilarity between
the trajectory frames, however. For example, in isomap
(Tenenbaum et al., 2000) dissimilarities between the high-
dimensional frames are computed by using Dijkstra’s shortest
path algorithm to compute the approximate geodesic distances
between frames. In an isomap projection, it is thus the
geodesic distances between frames that are reproduced. Other

algorithms, sketch-map for example (Ceriotti et al., 2011),
have a loss function that is designed so that only a particular
subset of the dissimilarities between the trajectory frames are
reproduced. Yet another option is to design the loss function
so that amatrix of non-linear kernels is reproduced rather than
a matrix of dissimilarities (Schölkopf et al., 1998; Schölkopf
et al., 1999). One final option is to design a loss function
that reproduces the distribution of points in the neighborhood
of each of the high-dimensional points (van der Maaten and
Hinton, 2008).

• How to optimize the loss function - As with any optimization
problem there is a concern when finding the low dimensional
projection that the minimum found is a local rather than the
global optimum. In many of the commonly used algorithms,
this problem is sidestepped by insisting that the distances
between the projections should constitute the best linear
approximation of the dissimilarities. This approximation
simplifies matters considerably as finding the projections
simply becomes a matter of diagonalizing a matrix. The fact
remains, however, that the algorithm used to optimize the loss
function may have an effect on the final projection produced.

The rationale that should be born in mind when making these
decisions is not always clear. In other fields, decisions are often
made based on an understanding of what the high-dimensional
data looks like and on an understanding of what features in the
high-dimensional data set the users of these algorithms would
like to reproduce (Rosman et al., 2010). One might therefore,
suspect that by trying a range of algorithms and by determining
howwell each one performs onemight be able to get some insight
into the structure of the data in the high dimensional space.

3. METHODS

To test how effective various dimensionality reduction
algorithms are at projecting data from biomolecular trajectories
we took the data from the parallel tempering metadynamics
trajectories of the 16-residue C-terminal fragment of the
immunoglobulin binding domain B1 of protein G of
Streptococcus that was generated in Ardevol et al. (2015)
and projected it using a range of different algorithms. Within
that work, the protein was simulated using Gromacs-4.5.5 (Hess
et al., 2008), the AMBER99SB-ILDN* force field (Lindorff-
Larsen et al., 2010) and an explicit solvation model. The protein
and surrounding water molecules were then simulated for 300
ns/replica with metadynamics biases that acted on the radius of
gyration and the number of hydrogen bonds between backbone
atoms. The same protein was studied in the work in the work
on comparing different dimensionality reduction algorithms by
Duan et al. (2013) but an implicit solvent model was used in that
work rather than the explicit model that we have used.

The wild-type trajectory in the work of Ardevol et al.
(2015) that we have analyzed in this work contains 150,000
trajectory frames. Running each of the dimensionality reduction
algorithms on this large number of trajectory frames would be
computationally prohibitive so we selected a subset of 25,311 to
analyse with each of the algorithms by sampling configurations
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FIGURE 1 | The projections of the trajectory that were generated using each of the various dimensionality reduction algorithms. As discussed in the text the

projections in these figures are colored in accordance with the secondary structure content of the corresponding trajectory frame. As you can see the majority of the

algorithms do a reasonable job of separating those frames that have a configuration that resembles an alpha helix from those that have a configuration that resembles

a beta sheet.

from the trajectory of the lowest-temperature replica at random.
For each of these configurations, we computed the full set
of 32 torsional backbone dihedral angles. Two-dimensional
projections for each of these 32-dimensional vectors were then
generated using the implementations of the various algorithms
that are available in SciKit Learn (Pedregosa et al., 2011) and
the sketch-map code (Ceriotti et al., 2011). Detailed step-by-
step instructions showing how these projections were generated
using these tools can be found in the supporting information
(Data Sheet 1).

The algorithms that we used to project the data were principal
component analysis (PCA) (Jolliffe, 2002), Laplacian Eigenmaps
(Belkin and Niyogi, 2003), isomap (Tenenbaum et al., 2000),
t-distributed stochastic neighbor embedding (t-SNE) (van der
Maaten and Hinton, 2008) and sketch-map (Ceriotti et al., 2011).
In addition, we also generated a projection by simply minimizing
Equation 2 using conjugate gradients (dist. match).

We performed PCA on the dihedral angles in a way that is

sympathetic to the periodicity of these variables by using the
method described in Yuguang et al. (2005); Konrad (2006); Altis
et al. (2007). Meanwhile, for all the remaining algorithms we

simply incorporated periodic boundaries when calculating the
vectors connecting the positions of the trajectory frames in the
space of dihedral angles. For isomap and Laplacian Eigenmaps we
constructed graphs in the high dimensional space by connecting
each point to its 15 nearest neighbors. For Laplacian Eigenmaps
we then used a Gaussian kernel with a gamma parameter of 1.
When using t-SNE we employed the Barnes-Hut implementation
with a perplexity of 110 and a theta value of 0.5. Lastly, for
sketch-map, we selected 1000 landmark point using the well-
tempered farthest point sampling algorithm that is described in
the appendix of Ceriotti et al. (2013) and a gamma parameter
of 0.1. Weights for each of these landmarks were generated
using a Voronoi procedure and the sketch-map stress function
with parameters σ = 6, A = 8, B = 8, a = 2 and

b = 8 was then optimized to find projections. Once projections
for these landmarks had been found the rest of the trajectory
was projected using the out of sample procedure described
in Tribello et al. (2012).

4. RESULTS

Figure 1 shows the projections of the trajectories for
immunoglobulin binding domain B1 of protein G that we
obtained. Before projecting the trajectory we used the STRIDE
algorithm discussed in Frishman and Argos (1995) to determine
the secondary structure content in each of the frames that were
analyzed. In particular, we counted the number of residues
that had a structure that was similar to an alpha helix and the
number of residues that had a structure that was similar to a
beta sheet. When constructing the projections in Figure 1 we
thus colored the projections according to the number of residues
in the corresponding trajectory frames that appeared to be in
an alpha helix configuration and the number of residues that
appeared to be in a configuration that resembled a beta sheet.
Coloring the projections in this way gives us a qualitative way
to compare how well each of the algorithms does when it comes
to projecting the trajectory data. What we see is that all the
algorithms do a reasonable job of separating the configurations
that are predominantly alpha-helix-like from those that have a
structure that is predominantly composed of beta sheets. In this
sense at least then the algorithms all give a reasonable projection
of the high-dimensional data.

There are additional observations to be made based on
the results in Figure 1. For PCA the distances between the
projections are systematically shorter than the dissimilarities
between the corresponding trajectory frames. This fact is
illustrated in Figure 2, which shows pair distribution functions
for the dissimilarities, Rij, between the frames and the distances,
rij, between their corresponding projections for each of the
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FIGURE 2 | Histograms illustrating the joint probability density function for the

dissimilarities between the configurations in the trajectory and the distances

between the corresponding projections of these trajectory frames. The

particular projections that have been analyzed here are those that are shown in

Figure 1. The black line in each of these figures is the line Rij = rij . For an ideal

projection all the density in these histograms would lie on this line.

representations of the data shown in Figure 1. To compute
the dissimilarities, Rij, we inserted the vector of backbone
dihedral angles for each pair of trajectory frames into Equation
1 and made suitable dispensations for the periodicity of these
variables. The distances, rij, were, meanwhile, computed by
using Equation 1 on the projections of these points. With these
two quantities computed we then determined these probability
density functions by using:

P(D, d) =
1

0.5N(N − 1)

N
∑

i=2

i
∑

j=1

δ(Rij − D)δ(rij − d)

where N is the number of frames that were projected and where
δ is a Dirac delta function.

If a projection is perfect the distances between the projections
and the dissimilarities between the trajectory frames are identical
and all the density in the joint distribution function is
concentrated on the line y = x. For all the probability density

functions shown in Figure 2, however, we see that the density
away from y = x is substantial and we, therefore, know that
the projections are thus imperfect. Furthermore, for PCA we see
that all the density lies underneath the line y = x, which is why
we are able to state that the distances between the projections
are systematically shorter than the dissimilarities between the
corresponding trajectory frames. The fact that these distances are
shorter when we use this algorithm is unsurprising, however.
This algorithm projects the high-dimensional data into a linear
subspace. Any differences between configurations that are along
directions that are orthogonal to this subspace are thus discarded
when projections are constructed in this way.

It is possible to formulate PCA as a linear optimization
of Equation 2. In other words, this algorithm projects the
data in the linear subspace that is best able to reproduce the
dissimilarities between frames, which, incidentally, is why the
distances between the projections are systematically shorter than
the dissimilarities between the trajectory frames. We can avoid
producing a projection in which the distances between points
are systematically shorter than the dissimilarities between the
corresponding trajectory frames by minimizing Equation 2 using
an iterative algorithm such as conjugate gradient. The top right
panel of Figure 2 illustrates that when we do so the joint
probability distribution for the distances and dissimilarities is
then peaked around the line y = x so some distances are
projected further apart than they should be while others are
projected closer together. The effect this has on the appearance
of the projection is illustrated in Figure 1. Essentially the
projections of the points are spread more uniformly over the low
dimensional space than they would be if the projection had been
constructed using PCA. Given that one of our aims is to identify
the various basins in the free energy landscapes that were sampled
during the trajectory this spreading out of the projections is
clearly disadvantageous as it may cause different basins to overlap
with each other.

The other algorithms that have been tested in Figures 1, 2
all use different criteria when constructing the projections. In
other words, these algorithms do not seek to generate projections
in which the Euclidean distances between the trajectory frames
are reproduced in the projection. Instead, Laplacian Eigenmaps
(Belkin and Niyogi, 2003) and isomap (Tenenbaum et al., 2000)
seek to reproduce the diffusion distances and geodesic distances
respectively and calculate these distances by using ideas from
graph theory. t-SNE (van der Maaten and Hinton, 2008) and
sketch-map (Ceriotti et al., 2011), meanwhile, do not try to
generate projections in which the distances are reproduced at
all. Instead, sketch-map seeks to ensure that points that are far
apart in the high-dimensional space are projected far apart, while
simultaneously ensuring points that are close together in the
high-dimensional space are projected near to each other. t-SNE,
meanwhile, endeavors to generate a low-dimensional projection
that reproduces the distribution of neighbors around each point
in the high-dimensional space. The projections generated using
each of these algorithms that are shown in Figure 1 differ
starkly from those that are generated using the two forms of
distance matching that were described previously. Reassuringly,
however, all four algorithms do a reasonable job when it comes to
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separating the configurations that resemble an alpha helix from
those that resemble a beta sheet.

The non-Euclidean-distance-matching algorithms: isomap,
Laplacian Eigenmaps, t-SNE, and sketch-map make assumptions
about the structure of the manifold from which the trajectory
frames are sampled, which may or may not be valid. These
assumptions affect the dissimilarities that these algorithms
attempt to reproduce and can thus affect the distances
between the projections. In fact, Duan et al. (2013) showed
that projections generated using isomap do not preserve the
neighborhood structure in the high dimensional space even when
50-dimensional projections are constructed precisely because
of the way in which the geodesic distances are constructed.
Furthermore, Brown et al. (2008) showed that these algorithms
can give incorrect estimates for the dimensionality of energy
landscapes precisely because they assume that a manifold-
like structure exists that may not be there. To investigate
the effect these assumptions are having on the appearance of
the projections the bottom four joint probability distributions
in Figure 2 illustrate how each of the non-distance-matching
algorithms performs when it comes to generating a projection
in which the Euclidean distances between the various trajectory
frames are reproduced. As you can see only Laplacian
Eigenmaps produces a projection in which the distances between
projections are systematically shorter than the dissimilarities
between the corresponding trajectory frames. All the remaining
algorithms generate projections in which only some distances
are underestimated. The distances between the projections of
the points in these representations are, in contrast to the other
algorithms, predominantly larger than the dissimilarities between
the corresponding trajectory frames. This “stretching out" of
the distances in the projections is arguably a good thing as it
ensures that the representations of the various basins in the low
dimensional space do not overlap. At the same time, however, it
may be that this stretching out of space causes basins to appear
split into smaller pieces in the projection, which may give one the
impression that there are more features in the energy landscape
than there are in actuality.

To better understand the various projections in Figure 1

we performed an analysis of the trajectory that was similar to
that performed in Gasparotto et al. (2018). To generate the
images shown in Figure 3 we analyzed the high-dimensional
data using the probabilistic analysis of molecular motifs (PAMM)
method that is discussed in Gasparotto and Ceriotti (2014)
and Gasparotto et al. (2018). This clustering method works by
first selecting a sparse grid of points in the high dimensional
space. The probability density at each of these grid points is
then computed using kernel density estimation (KDE). Once the
density at each of these points has been estimated the Quick-
Shift algorithm is used to connect points on the grid to nearby
points that have higher probability densities unless a stopping
criterion is satisfied. The points at which the stopping criteria
are satisfied are then assumed to correspond to the various
local maxima in the probability density. In Gasparotto et al.
(2018) dimensionality reduction was performed in order to better
understand the clusters output by PAMM. In this work, however,
we performed PAMM in order to assign each of the structures

in our trajectory to the nearest local maximum in the high-
dimensional probability distribution so that the way in which
each of these features is represented in each of the projections
could be visualized. Figure 3, therefore, shows representative
configurations from each of the elevenmodes that were identified
using PAMM. The projections in Figure 3 are then colored
according to the particular mode from which the corresponding
trajectory frame was sampled. Once again we find that all the
algorithms do a reasonable job of projecting the data. In most
of the projections, the different modes are projected in different
parts of the low dimensional space and there is little overlap
between the projections of the modes.

There are a number of specific things that are worth noting
about the projections shown in Figure 3. The first is that all the
algorithms clearly struggle to project the PAMM motif that is
shown in light blue in the figures. In all the projections the blue
points are split into multiple distinct clusters. If, as PAMM is
telling us, these points are all from the same mode you would
hope that they would all be clustered in together in a single
feature of the projection. In other words, you would hope that the
points that are clustered together in the high-dimensional space
would appear clustered together in the projection. Given that this
appears to not be the case it would be unwise to run a clustering
algorithm on the low-dimensional projection.

The fact that the blue PAMMmotif appears to be so diffuse in
the projections is surprising as if you look at the representative
structure at the top right of the figure the structures in this
basin would appear to resemble alpha helices. One would expect
such a structure to be in a deep energetic minimum in the
free energy landscape and one might further expect that the
entropy of the configuration - and hence the size of the feature
- to be small. A comparison of Figures 1 and 3 clears these
matters up, however. In Figure 1, remember, the points were
colored red if they had a configuration resembling an alpha
helix. It is clear that the red regions in Figure 1 are considerably
smaller than the blue regions in Figure 3. It is thus clear that the
mode that is colored light blue in Figure 3 must also contain
structures that do not have a configuration that resembles an
alpha helix. What thus seems likely is that the alpha helix
configuration is at the bottom of a broad funnel in the free energy
landscape, which is why these features appear to be so diffuse in
these projections.

The fact that the alpha helix lies at the base of a broad
funnel in the free energy landscape is further confirmed by
the numbers that are given underneath the representative
configurations in Figure 3. These numbers were computed
from the covariance matrices for each of the various clusters
that were identified using PAMM. The first row of numbers
in Figure 3 gives the determinant of the covariance matrices
scaled by the determinant of the covariance of the largest
cluster. As you can see the alpha-helical cluster that is shown
in light-blue has the largest determinant and this cluster is
thus the mode that takes up the largest volume of the high-
dimensional space by some considerable margin. Furthermore,
the second largest mode is the other folded configuration;
namely, the purple-colored basin that includes the beta-
hairpin configuration.
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FIGURE 3 | As discussed in the text, we used the PAMM clustering algorithm to identify clusters that correspond to free energy minima in the high dimensional space.

In this figure, we have thus shown the projections again but this time with the points colored according to the particular cluster the PAMM algorithm identifies each of

the high dimensional configurations to lie within. Representative and similarly-colored configurations from each of the various clusters are shown below and to the right

of the projections. The three rows of numbers beneath the representative configurations provide information on the covariance matrix for each of the clusters that

PAMM identified. The top row of numbers contains the determinants of this matrix but these numbers have been scaled so that the cluster with the largest determinant

has a determinant of 1. To compute the second row of numbers, meanwhile, we divided the sum of the first two eigenvalues of these covariance matrices by the sum

of all the eigenvalues of these matrices. The final row of numbers contains the estimated dimensionality of each of the clusters, which was computed using Equation 3.

To compute the second row of numbers in Figure 3 we
diagonalized the covariance matrix for each of the PAMM
clusters and calculated the sum of the largest two eigenvalues
of this matrix divided by the sum of all the eigenvalues. These
numbers thus give a measure of howmuch of the variance of each
particular feature can be represented in a two-dimensional linear
subspace of the high dimensional space. It is apparent from this
analysis that each of the PAMM features that we have identified
is not well represented in a two-dimensional space as much of
the variation within each of the basins is in directions that are
orthogonal to these two principal eigenvectors. We should thus
perhaps not be surprised to find that the algorithms struggle to
project these clearly-high-dimensional features correctly.

Further information on the features that are difficult to
reproduce in a two-dimensional space is given in the third
row of numbers in Figure 3. This row of numbers contains the
dimension of each basin which was estimated using:

Di = exp

(

−

M
∑

k=1

ηk log ηk

)

where ηk =
λk

∑M
j=1 λj

(3)

and {λk} is the eigenvalue spectrum of the covariance matrix for
the ith PAMM feature. As you can clearly see all the algorithms
do a good job of projecting clusters that have an estimated
dimensionality that is less than around seven. These features
appear as a single cluster in the low dimensional space. It is
those features that have an estimated dimension that is higher
than around seven that represent a problem. The projections
of points from these clusters are often spread across multiple
separated clusters, which makes it difficult to realize that these
configurations are all part of a single basin.

It is interesting to note from Figure 3 how strongly the
projection generated using Laplacian Eigenmaps differs from the
others. The projection generated using this algorithm has the
light green motif separated strongly from all the other motifs,
which appear squeezed together. This same squeezing together
of some of the motifs and pulling apart of others is not observed
in the other representations of the trajectory. The representative
structure for the light green motif offers a tantalizing explanation
as to why this particular behavior might be observed for this
particular algorithm. The light green motif is the only structure
containing no secondary structure content. One might therefore
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FIGURE 4 | As discussed in the text, we can use an agglomerate procedure based on the error in the KDE procedure that is at the heart of PAMM to construct the

hierarchy shown in the bottom left corner of this figure for the PAMM clusters that were identified and shown in Figure 3. This hierarchy would seem to indicate that

we can reduce the 11 PAMM clusters shown in Figure 3 down to 6 macro clusters. In the projections above the points are therefore colored according to the

particular macro cluster the PAMM algorithm identities each of the high dimensional configurations to lie within. As in Figure 3 representative and similarly-colored

configurations from each of the various clusters are shown below and to the right of the projections together with scaled values for determinant of the covariance

matrices for each of the clusters (Top), ratios of the sum of the largest two eigenvalues of these matrices to the sum of all the eigenvalues of these matrices (Middle)

and the estimated dimensionality of each of the features (Bottom).

suppose that this motif corresponds to a random coil, that
the diffusion distance, which Laplacian Eigenmaps endeavors to
reproduce when it constructs a projection, between these states
and the other folded configurations might well be quite large,
and that the transitions between this random coil state and the
other folded states might thus be quite infrequent. As we will
show in what follows it is not clear that this interpretation is
correct, however.

Gasparotto et al. (2018) discuss how bootstrapping can be
used to judge the statistical significance of the clusters identified
by PAMM. Furthermore, in analysing the errors in this way a
distance between clusters that determines whether or not clusters
get merged in some of the 41 bootstrap samples that we took
from the trajectory can be defined. We have used this distance
measure in Figure 4 to generate a tree-like plot that illustrates the
results of a hierarchical clustering procedure performed on the
eleven clusters that were identified in Figure 3. The clusters that
are connected in this plot are those that are likely to be merged
in the bootstrap samples. We thus also re-show the projections
generated using each of the algorithms in Figure 4 but this time

we have reduced the number of PAMM clusters from eleven to
six by using the connectivity that is identified in the tree diagram.

The PAMM analysis shown in Figure 4 makes clear that the
free energy landscape for this protein contains two broad funnels
and three additional, much-smaller funnels. The beta-hairpin
and alpha-helical configurations lie at the bases of the two broad
funnels while the three narrower funnels have three unfolded
structures at their base that have much higher energies. We can
speak of the size of the funnels because we have, once again,
performed an analysis of the covariance matrices and because
the determinant of the clusters that contain the alpha-helix and
beta-sheet are both considerably larger than those of the other
identified features. The other aspects of this analysis demonstrate
that if we take the ratio of the sum of the two largest eigenvalues
of the covariance matrix to the sum of all the eigenvalues of this
matrix we find thatmany of the fluctuations that take place within
these two funnels take place along directions that are orthogonal
to the direction of the eigenvectors that correspond to these
two largest eigenvalues of the funnel. Furthermore, the estimated
dimensionalities of these two features are substantial.
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FIGURE 5 | A three-dimensional projection of the trajectory that was generated using PCA. The positions of projections in the three panels above are all identical. In

the left-most panel, however, points are colored in accordance with their secondary structure as they are in Figure 1. In the middle panel, they are colored as they are

in Figure 3 and in the right panel they are colored as in Figure 4.

When we look at the various projections in Figure 4 we see
that all the algorithms do a good job of separating the red
configurations that come from the funnel that has the alpha
helix at is base from the yellow configurations that come from
the funnel that has the beta sheet at its base. Furthermore, the
fact that these two features have a larger spatial extent than
the other clusters identified by PAMM is clear from the way
these features are projected using all the different algorithms.
Having said all that though there is no way that one would
be able to identify these two features in the landscape if one
were just given the projections generated using one of these
algorithms. In all these various representations of the trajectory,
the red and yellow points appear divided up into multiple
separate clusters. The most dramatic example of this is in the
projection generated using Laplacian Eigenmaps which divides
the yellow points between two very distinct clusters. It is
clear from a comparison of the projections in Figures 3 and 4

that the configurations in these two clusters are separated in
all the other projections of the trajectory. Furthermore, the
hierarchy of clusters shown in Figure 4 also indicates that these
two clusters are likely to be separate features. It may well
be, therefore, that the rate of transition between these two
parts of configuration space is slow because there is perhaps
a kinetic trap on the folding funnel for the beta hairpin. This
observation does, however, raise an interesting question when
it comes to selecting which dimensionality reduction algorithm
to use when constructing a projection. Using the slow degrees
of freedom to construct a low-dimensional representation of
the data makes physical sense but it may well be that the
projections generated using algorithms that work by constructing
a low dimensional representation of a trajectory in which the
dissimilarities between trajectory frames are reproducedmay give
one a clearer sense of the various different structural possibilities
in the ensemble.

It is interesting to ask if we can construct a clearer visualization
of the structure in the data by producing a three-dimensional
projection. Figure 5 shows three representations of a three
dimensional PCA projection of the trajectory with the points
colored as in Figures 1, 3, 4. It is clear from this figure

that the points in this three dimensional PCA projection
are spread out over all three coordinates and certainly not
split into distinct clusters. Furthermore, when it comes to
distinguishing configurations with different secondary structures
the projection is OK but there is still a substantial overlap
between the regions of space where the structure has a
lot of alpha-helical content and the regions of space where
the structure more closely resembles a beta-hairpin as was
the case for the two dimensional projection in Figure 1. In
addition, each of the various PAMM features identified in
Figures 3, 4 does not appear as a single cluster that is well
separated from each of the other features. Instead, the points
belonging to each of these features appear split between multiple
apparently distinct clusters much like they appeared in the two-
dimensional projections shown in Figures 3, 4. In short, a three-
dimensional projection of this trajectory does not provide much
greater insight than the two-dimensional projections that we
have shown thus far and is considerably harder to visualize
and interpret.

5. CONCLUSIONS

In the preceding sections, we have analyzed a molecular
dynamics trajectory for a short protein molecule using a
number of different dimensionality reduction algorithms. The
results we have are in some senses reassuring as all the
algorithms do a reasonable job when it comes to giving
a representation of the trajectory that gives a sense of
the structural diversity that one observes in the trajectory.
In all the projections if two configurations have markedly
different structures they are projected in different parts of
the low dimensional space. Furthermore, configurations that
are structurally similar are for the most part projected close
together. In other words, even projections constructed using
the easier to apply dimensionality reduction algorithms such
as PCA and MDS, which have no parameters that need to be
tuned, can provide one with a useful visualization of the high-
dimensional data.
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When one of these dimensionality reduction algorithms

clearly outperforms the others it is often because the data has

some structure that only one of the algorithms can recognize.
For instance, isomap will outperform PCA when it comes to
projecting data that lies on a curved manifold because PCA
assumes the data lies on a linearmanifold in the high dimensional
space. The fact that all the algorithms perform similarly well
and that no algorithm outshines the other thus perhaps simply
reflects the fact that we do not fully understand how the
trajectory data is distributed across the high-dimensional space.
In other words, none of the data distribution models underlying
these various algorithms provides a complete description of the
structure of the data in the high-dimensional space. It seems
that the data does not all lie on a low-dimensional linear or

non-linear manifold and similarly there perhaps isn’t a single

length scale that separates configurations that lie in different
basins in the free energy landscape. Perhaps then, given that

all these algorithms are imperfect, the appropriate strategy
for analysing an MD trajectory is to try something similar
to the approach that has been taken in this paper. In short,
analyze the trajectory using a range of different dimensionality
reduction and clustering algorithms and consider what the
result from each analysis is telling you by comparing the
results obtained.
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Gasparotto, P., MeiǍŸner, R. H., and Ceriotti, M. (2018). Recognizing local and

global structural motifs at the atomic scale. J. Chem. Theory Comput. 14,

486–498. doi: 10.1021/acs.jctc.7b00993

Frontiers in Molecular Biosciences | www.frontiersin.org June 2019 | Volume 6 | Article 46109

https://github.com/cosmo-epfl/sketchmap/tree/master/examples/protein
https://github.com/cosmo-epfl/sketchmap/tree/master/examples/protein
https://www.frontiersin.org/articles/10.3389/fmolb.2019.00046/full#supplementary-material
https://doi.org/10.1063/1.2746330
https://doi.org/10.1021/ct500950z
https://doi.org/10.1126/sciadv.1701816
https://doi.org/10.1103/PhysRevB.87.219902
https://doi.org/10.1063/1.3553717
https://doi.org/10.1162/089976603321780317
https://doi.org/10.1016/j.sbi.2016.12.004
https://doi.org/10.1063/1.2968610
https://doi.org/10.1073/pnas.1108486108
https://doi.org/10.1021/ct3010563
https://doi.org/10.1002/jcc.25520
https://doi.org/10.1073/pnas.0603553103
https://doi.org/10.1039/C6CP00415F
https://doi.org/10.1021/ct400052y
https://doi.org/10.1016/j.sbi.2008.10.002
https://doi.org/10.1038/nrm1589
https://doi.org/10.1063/1.4900655
https://doi.org/10.1021/acs.jctc.7b00993
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Tribello and Gasparotto Dimensionality Reduction on Biomolecules

Goldfeld, D. A., Zhu, K., Beuming, T., and Friesner, R. A. (2011).

Successful prediction of the intra- and extracellular loops of four g-

protein-coupled receptors. Proc. Natl. Acad. Sci. U.S.A. 108, 8275–8280.

doi: 10.1073/pnas.1016951108

Hess, B., Kutzner, C., van der Spoel, D., and Lindahl, E. (2008). Gromacs

4: algorithms for highly efficient, load-balanced and scalable molecular

simulation. J. Chem. Theory Comput. 4, 435–447. doi: 10.1021/ct700301q

Jolliffe, I. (2002). Principal Component Analysis. New York, NY: Springer-Verlag.

Kmiecik, S., Jamroz, M., and Kolinski, M. (2015). Structure prediction of the

second extracellular loop in g-protein-coupled receptors. Biophys. J. 106, 2408–

2416. doi: 10.1016/j.bpj.2014.04.022

Konrad, H. (2006). Comment on: “energy landscape of a small peptide revealed by

dihedral angle principal component analysis.” Prot. Struct. Funct. Bioinform.

64, 795–797. doi: 10.1002/prot.20900

Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror,

R. O., et al. (2010). Improved side-chain torsion potentials for the amber

ff99sb protein force field. Prot. Struct. Funct. Bioinformat. 78, 1950–1958.

doi: 10.1002/prot.22711

Musil, F., De, S., Yang, J., Campbell, J. E., Day, G. M., and Ceriotti, M. (2018).

Machine learning for the structure-energy-property landscapes of molecular

crystals. Chem. Sci. 9, 1289–1300. doi: 10.1039/C7SC04665K

Noé, F., and Clementi, C. (2015). Kinetic distance and kinetic maps from

molecular dynamics simulation. J. Chem. Theory Comput. 11, 5002–5011.

doi: 10.1021/acs.jctc.5b00553

Noé, F., and Clementi, C. (2017). Collective variables for the study of long-time

kinetics from molecular trajectories: theory and methods. Curr. Opin. Struct.

Biol. 43, 141–147. doi: 10.1016/j.sbi.2017.02.006

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., et al. (2011). Scikit-learn: machine learning in Python. J. Machine

Learn. Res. 12, 2825–2830. Available online at: http://www.jmlr.org/papers/v12/

pedregosa11a.html

Plaku, E., Stamati, H., Clementi, C., and Kavraki, L. E. (2007). Fast and reliable

analysis of molecular motion using proximity relations and dimensionality

reduction. Prot. Struct. Funct. Bioinform. 67, 897–907. doi: 10.1002/prot.21337

Rosman, G., Bronstein, M. M., Bronstein, A. M., and Kimmel, R. (2010).

Nonlinear dimensionality reduction by topologically constrained isometric

embedding. Int. J. Comput. Vision 89, 56–58. doi: 10.1007/s11263-010-

0322-1

Schölkopf, B., Smola, A., and Müller, K.-R. (1998). Nonlinear component analysis

as a kernel eigenvalue problem. Neural Computat. 10, 1299–1319.

Schölkopf, B., Smola, A., and Muller, K.-R. (1999). “Kernel principal component

analysis,” in Advances in Kernel Methods-Support Vector Learning eds B.

Schölkopf, C. J. C. Burges, and A. J. Smola (Cambridge, MA: MIT Press),

327–352.

Spiwok, V., and Kralova, B. (2011). Metadynamics in the conformational space

nonlinearly dimensionally reduced by isomap. J. Chem. Phys. 135:224504.

doi: 10.1063/1.3660208

Spiwok, V., Lipovová, P., and Králová, B. (2007). Metadynamics in essential

coordinates: free energy simulation of conformational changes. J. Phys. Chem.

B 111, 3073–3076. doi: 10.1021/jp068587c

Stamati, H., Clementi, C., and Kavraki, L. E. (2010). Application of nonlinear

dimensionality reduction to characterize the conformational landscape of small

peptides. Prot. Struct. Funct. Bioinform. 78, 223–235. doi: 10.1002/prot.22526

Sultan, M. M., and Pande, V. S. (2017). tica-metadynamics: accelerating

metadynamics by using kinetically selected collective variables. J. Chem. Theory

Comput. 13, 2440–2447. doi: 10.1021/acs.jctc.7b00182

Sultan, M.M.,Wayment-Steele, H. K., and Pande, V. S. (2018). Transferable neural

networks for enhanced sampling of protein dynamics. J. Chem. Theory Comput.

4, 1887–1894. doi: 10.1021/acs.jctc.8b00025

Sutto, L., Dâbramo, M., and Gervasio, F. L. (2010). Comparing the efficiency

of biased and unbiased molecular dynamics in reconstructing the free

energy landscape of met-enkephalin. J. Chem.. Theory Comput. 6, 3640–3646.

doi: 10.1021/ct100413b

Tenenbaum, J. B., Silva, V. d., and Langford, J. C. (2000). A global geometric

framework for nonlinear dimensionality reduction. Science 290, 2319–2323.

doi: 10.1126/science.290.5500.2319

Tiwary, P., and Berne, B. J. (2016). Spectral gap optimization of order parameters

for sampling complex molecular systems. Proc. Natl. Acad. Sci. U.S.A. 113,

2839–2844. doi: 10.1073/pnas.1600917113

Tribello, G. A., Ceriotti, M., and Parrinello, M. (2012). Using sketch-map

coordinates to analyze and bias molecular dynamics simulations. Proc. Natl.

Acad. Sci. U.S.A. 109, 5196–5201. doi: 10.1073/pnas.1201152109

van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-sne. J. Mach.

Learn. Res. 9, 2579–2605. Available online at: http://www.jmlr.org/papers/v9/

vandermaaten08a.html

Willatt, M. J., Musil, F., and Ceriotti, M. (2018). Atom-density representations for

machine learning. J. Chem. Phys. 150:154110. doi: 10.1063/1.5090481

Yuguang, M., H., Nguyen, P. H., and Gerhard, S. (2005). Energy landscape of a

small peptide revealed by dihedral angle principal component analysis. Prot.

Struct. Funct. Bioinform. 58, 45–52. doi: 10.1002/prot.20310

Zhuravlev, P. I., Materese, C. K., and Papoian, G. A. (2009). Deconstructing the

native state: energy landscapes, function and dynamics of globular proteins. J.

Phys. Chem. B 113, 8800–8812. doi: 10.1021/jp810659u

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Tribello and Gasparotto. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2019 | Volume 6 | Article 46110

https://doi.org/10.1073/pnas.1016951108
https://doi.org/10.1021/ct700301q
https://doi.org/10.1016/j.bpj.2014.04.022
https://doi.org/10.1002/prot.20900
https://doi.org/10.1002/prot.22711
https://doi.org/10.1039/C7SC04665K
https://doi.org/10.1021/acs.jctc.5b00553
https://doi.org/10.1016/j.sbi.2017.02.006
http://www.jmlr.org/papers/v12/pedregosa11a.html
http://www.jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1002/prot.21337
https://doi.org/10.1007/s11263-010-0322-1
https://doi.org/10.1063/1.3660208
https://doi.org/10.1021/jp068587c
https://doi.org/10.1002/prot.22526
https://doi.org/10.1021/acs.jctc.7b00182
https://doi.org/10.1021/acs.jctc.8b00025
https://doi.org/10.1021/ct100413b
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1073/pnas.1600917113
https://doi.org/10.1073/pnas.1201152109
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1063/1.5090481
https://doi.org/10.1002/prot.20310
https://doi.org/10.1021/jp810659u
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


ORIGINAL RESEARCH
published: 24 May 2019

doi: 10.3389/fmolb.2019.00036

Frontiers in Molecular Biosciences | www.frontiersin.org May 2019 | Volume 6 | Article 36

Edited by:

Vojtech Spiwok,

University of Chemistry and

Technology in Prague, Czechia

Reviewed by:

Natallia Kulik,

Institute of Microbiology

(ASCR), Czechia

Gareth Aneurin Tribello,

Queen’s University Belfast,

United Kingdom

*Correspondence:

Daria B. Kokh

daria.kokh@h-its.org

Rebecca C. Wade

rebecca.wade@h-its.org

Specialty section:

This article was submitted to

Biological Modeling and Simulation,

a section of the journal

Frontiers in Molecular Biosciences

Received: 27 March 2019

Accepted: 02 May 2019

Published: 24 May 2019

Citation:

Kokh DB, Kaufmann T, Kister B and

Wade RC (2019) Machine Learning

Analysis of τRAMD Trajectories to

Decipher Molecular Determinants of

Drug-Target Residence Times.

Front. Mol. Biosci. 6:36.

doi: 10.3389/fmolb.2019.00036

Machine Learning Analysis of
τRAMD Trajectories to Decipher
Molecular Determinants of
Drug-Target Residence Times

Daria B. Kokh 1*, Tom Kaufmann 1,2, Bastian Kister 1,2 and Rebecca C. Wade 1,3,4,5*

1Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany,
2Department of Biosciences, Heidelberg University, Heidelberg, Germany, 3 Zentrum für Molekulare Biologie der Universität

Heidelberg, DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany, 4 Interdisciplinary Center for Scientific

Computing (IWR), Heidelberg University, Heidelberg, Germany, 5Department of Physics, Heidelberg University, Heidelberg,

Germany

Drug-target residence times can impact drug efficacy and safety, and are therefore

increasingly being considered during lead optimization. For this purpose, computational

methods to predict residence times, τ , for drug-like compounds and to derive

structure-kinetic relationships are desirable. A challenge for approaches based on

molecular dynamics (MD) simulation is the fact that drug residence times are typically

orders of magnitude longer than computationally feasible simulation times. Therefore,

enhanced sampling methods are required. We recently reported one such approach: the

τRAMD procedure for estimating relative residence times by performing a large number

of random acceleration MD (RAMD) simulations in which ligand dissociation occurs in

times of about a nanosecond due to the application of an additional randomly oriented

force to the ligand. The length of the RAMD simulations is used to deduce τ . The

RAMD simulations also provide information on ligand egress pathways and dissociation

mechanisms. Here, we describe a machine learning approach to systematically analyze

protein-ligand binding contacts in the RAMD trajectories in order to derive regression

models for estimating τ and to decipher the molecular features leading to longer τ

values. We demonstrate that the regression models built on the protein-ligand interaction

fingerprints of the dissociation trajectories result in robust estimates of τ for a set of

94 drug-like inhibitors of heat shock protein 90 (HSP90), even for the compounds for

which the length of the RAMD trajectories does not provide a good estimation of τ .

Thus, we find that machine learning helps to overcome inaccuracies in the modeling

of protein-ligand complexes due to incomplete sampling or force field deficiencies.

Moreover, the approach facilitates the identification of features important for residence

time. In particular, we observed that interactions of the ligand with the sidechain of F138,

which is located on the border between the ATP binding pocket and a hydrophobic

transient sub-pocket, play a key role in slowing compound dissociation. We expect that

the combination of the τRAMD simulation procedure with machine learning analysis will

be generally applicable as an aid to target-based lead optimization.

Keywords: drug-protein residence time, machine learning, drug-target binding kinetics, structure-kinetic

relationships (SKRs), heat shock protein 90 (HSP90), molecular dynamics simulation, tauRAMD
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INTRODUCTION

The binding affinity of small compounds to their target is
commonly used as a selection criterion in drug design pipelines,
both for the early screening of chemical libraries and for the
subsequent lead optimization. Recent studies have, however,
shown that drug efficacy often correlates better with the residence
time than with the binding affinity of drugs (Copeland et al.,
2006; Schuetz et al., 2017). These observations suggest that the
optimization of the kinetic properties of drug candidates at an
early stage of the drug design process would be advantageous.

The computation of drug-target binding kinetics by using
MD simulations is more challenging than the computation of
binding affinity (Romanowska et al., 2015). A major problem
in using conventional MD simulations for computing binding
kinetic parameters is the need to sample the intermediate
transition states between the bound and unbound states, which
is not required for the calculation of binding affinity. This
poses tremendous challenges for brute-force conventional MD
sampling, whose application is so far limited to computation of
the binding kinetics of small molecules to small proteins, e.g.,
benzamidine to trypsin, which still requires extensive millisecond
simulations (Dror et al., 2011; Wu et al., 2016). Reconstruction
of a single dissociation event for a pharmacologically relevant
compound, which typically occurs on the time-scale of minutes
or hours, is currently not feasible from conventional MD
simulations. To overcome this limitation, a range of enhanced
sampling techniques has been explored recently (Bruce et al.,
2018). Some of them are aimed at the reduction of the
configurational space to be sampled for the computation of
binding kinetic rates, e.g., metadynamics (Tiwary et al., 2015,
2017), weighted ensemble methods (Dickson and Lotz, 2016;
Dixon et al., 2018), or milestoning (Tang and Chang, 2017)
[a detailed review can be found elsewhere (Mollica et al.,
2016; Dickson et al., 2017)]. Although these methods are
designed for the prediction of the absolute values of binding
and unbinding rates within a reasonable computation time,
they are still very computationally demanding and require high
user expertise, which impedes the implementation of these
methods in drug design pipelines. Furthermore, in addition to

the limitations arising from the selection of the sub-space to be
sampled, intrinsic limitations of the underlying physical model
of molecular interactions, such as the force field and the water
model, may affect the accuracy of the computed rates.

While absolute values are difficult to attain, it has been
demonstrated recently that the relative values of unbinding
rates for a series of ligands of a particular target are more
robust to these limitations (Marques et al., 2019). In line with
this finding, computationally efficient approaches that provide
estimates of the relative residence times for a set of compounds
have been reported. Instead of deriving the residence time from
the energetic profile of dissociation paths, these techniques allow
estimation of relative τ values from the times required for ligand
egress during enhanced sampling simulations. The residence
times obtained can then be scaled for direct comparison with
experimental data. One example of this approach is scaled
MD (Mollica et al., 2015; Schuetz et al., 2018a) in which the

potential of the system is rescaled during simulations. Another
approach, recently developed in our group, is the τRAMD
method (Kokh et al., 2018), which employs multiple short
random acceleration MD, RAMD, simulations to generate ligand
dissociation trajectories. Relative drug-protein residence times
are estimated from the times required for the ligand to leave
the binding pocket in simulations started from the structures of
protein-ligand complexes. In RAMD (Lüdemann et al., 2000),
an additional randomly oriented force is applied to the ligand’s
center of mass and its direction is altered during the simulations,
depending on the motion of the ligand. RAMD was originally
developed to explore ligand egress routes from protein binding
sites [see e.g., (Winn et al., 2002; Schleinkofer et al., 2005)],
where simulated trajectories were employed to explore ligand
unbinding pathways andmechanisms. In the τRAMDprocedure,
many trajectories are generated (usually more than 40 for each
compound) and each trajectory contains hundreds of thousands
of snapshots that may contain important information for the
ligand unbinding rate. The value of extracting molecular features
from MD simulations as fingerprints for building machine
learning (ML) models to predict molecular properties has been
demonstrated in Re. (Riniker, 2017). Here, we explore whether
fingerprint-basedML techniques can aid the detection of features
important for drug-target residence time in RAMD trajectories
and, furthermore, improve the robustness of the estimated
residence times.

ML has been applied for drug-target τ prediction in several
studies. Qu et al. (2016) derived quantitative structure-kinetics
relationships (QSKRs) for a set of HIV-1 protease inhibitors by
using Volsurf descriptors. Chiu and Xie (2016) went beyond a
static model by accounting for flexibility with a coarse-grained
normal mode analysis to classify HIV-1 protease inhibitors
in binding kinetics classes using a multi-target ML approach.
Comparative Binding Energy (COMBINE) analysis (Ortiz et al.,
1995; Perez et al., 1998), in which PLS (Partial Linear Regression
Projection to Latent Structures) is used to reweight components
of the bound protein-ligand interaction energies to predict
binding properties, has recently been applied to datasets of
HSP90 and HIV-1 protease inhibitors (Ganotra andWade, 2018)
and was found to give models with good predictive ability for
residence time. It should be noted that the COMBINE analysis
method was originally developed for the prediction of binding
affinity for congeneric series of compounds. While compounds
with a common scaffold are required for good prediction of
the equilibrium dissociation constant, KD, a good prediction
of the off-rate could be obtained for a dataset of diverse
compounds from analysis of the bound protein-ligand complexes
(Ganotra and Wade, 2018) suggesting that differences in the
unbound state are less important for off-rate than for binding
affinity. Huang et al. (2019) applied PLS analysis to interaction-
energy fingerprints extracted from snapshots of steered MD
ligand dissociation trajectories to obtain a predictive model
for residence time for a set of HIV-1 protease inhibitors and
found that important interactions for determining τ were in
the first half of the dissociation processes. This is consistent
with a previous steered MD study of HIV-1 protease inhibitor
dissociation in which the strength of the ligand-protein hydrogen
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FIGURE 1 | Structural and binding kinetic properties of the dataset of 94 N-HSP90 inhibitors. (A,B) Two conformations of the ATP binding site in N-HSP90 with a

bound ligand shown in stick representation with coloring by atom type; α-helix3 (highlighted in red) can be distorted in the middle (loop-type conformation (A),

compound 5 PDB ID 5J2X) or complete (helix-type conformation (B), compound 13, PDB ID 5J9X) (Amaral et al., 2017); the molecular surface of the binding pocket

colored by the Coulomb potential is shown in insets for both conformations: the ATP binding site has predominantly negative charge (red), whereas the transient

sub-pocket under α-helix3 is mostly hydrophobic. (C) Protein-ligand contacts for helix-binding compounds are illustrated for compound 13, (PDB ID 5J9X): the

ligand-protein binding network consisting of D93, T184, and three water molecules (red spheres) is common to all compounds; compounds bound to the

helix-conformation of the binding site also interact with F138 and may interact with residues in the hydrophobic pocket, such as W162 and Y139. (D) 2D

representation showing the four main groups of compounds discussed in the text. (E) Similarity matrix of the 90 N-HSP90 inhibitors generated using Maestro

[(Schrödinger, 2019); see text]. (F) Distribution of the experimental binding rate constants of the entire set of compounds. The three largest groups of compounds are

colored as denoted in the legend: “Ind. exposed”—indazole-based compounds with different R1 fragments, “Ind. buried”—indazole compounds with different R2

fragments, compounds with resorcinol and quinazoline scaffolds, as well as bulky compounds with a tricyclic fragment and different ATP-pocket binding core. (G)

Distribution of residence times of the helix-binding and loop-binding compounds.

bond network of the bound state was found to be crucial
for the dissociation process (Li et al., 2011), as well as with
the above-mentioned models based solely on analysis of the
bound state.

In the present study, we use our previously published τRAMD
simulation results for a data set of 70 inhibitors of the cancer
target HSP90 for which off-rates were measured by surface
plasmon resonance (SPR) (Amaral et al., 2017; Kokh et al.,
2018). These compounds bind in the ATP binding site of the
N-terminal domain of human HSP90 (N-HSP90α, residues 9-
236; NP_005339). The τRAMD procedure gave predictions of
relative residence times with an accuracy of about 2.3τ for
78% of the compounds and <2.0τ within congeneric series. It
was found that the computed residence times were sensitive to
the quality of the underlying MD simulations of the protein-
ligand complexes. For some compounds, deficiencies in the
force field or inaccuracies in the docking pose led to notable
underestimation of the residence time, although within a series of
compounds with the same binding scaffold and small fragment
substitutions, the ranking of the residence time was well-
reproduced. The latter result suggests that the inaccuracy of the
simulations of the bound state may be overcome in τRAMD
simulations if the transition state is the main determinant

of the variation in residence time within a congeneric series
of compounds.

Here, we have performed τRAMD simulations for an
additional 25 HSP90 inhibitors, whose binding kinetics were
recently reported (Schuetz et al., 2018b). We have then combined
these simulations with our previous simulations (Kokh et al.,
2018), and applied ML approaches to the combined dataset of
simulated trajectories for 94 HSP90 inhibitors.

N-HSP90 is a challenging target for the prediction of binding
kinetics, as it has a flexible ATP binding site lined by the unstable
α-helix3 that can adopt either “helical” or “loop” conformations
(see Figures 1A,B), depending on the ligand bound. The “helical”
conformation contains an additional hydrophobic sub-pocket
adjacent to the ATP binding site, which provides space for
substitutions on ‘helix-binders’ (fragment R2, see Figures 1C,D),
while this fragment is absent in the compounds bound to
the “loop” conformation (‘loop-binders’). It has been recently
demonstrated that the binding kinetics of resorcinol inhibitors
of HSP90 is related to the protein binding site conformation in
the bound complex, and that the R2 substitution can effectively
stabilize α-helix3 and result in lower binding and unbinding
rates for ligands with such fragments (Amaral et al., 2017). In
particular, ligands with large R2 substitutions, such as tricyclic
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FIGURE 2 | Workflow incorporating the simulation protocol for τRAMD simulations and the ML analysis. The τRAMD simulations provide (i) computed relative

residence times, and (ii) trajectories that are used for analysis of protein-ligand contacts and building a ML regression model for prediction of residence times and

determining the factors governing residence time (see section Methods and Materials); data sets generated and elements of simulation workflow are highlighted by

blue and gray background, respectively.

compounds (Figure 1D), generally have the slowest binding and
unbinding kinetics (Figure 1F).

The set of 94 compounds considered in the present
study contains molecules with 11 different scaffolds:
resorcinol (28), hydroxyindazole (47), benzamide (3),
aminoquinazoline (8), aminopyrrolopyrimidine (2), 7-
azaindole (2), aminothienopyridine (1), imidazopyridine
(1), 6-hydroxyindole (1), and adenine (1) (with the number of
compounds given in brackets; see Supplementary Tables 1

and 2; SMILES of all studied compounds are given in
Supplementary Table 4). The scaffold occupies the ATP
binding pocket and binds to D93 as illustrated in Figure 1C

for an indazole-based compound. The three most populated
scaffolds are shown in Figure 1D, along with an example of
compounds with different binding scaffolds but a common
tricyclic group, which will be discussed below. Further, the
resorcinol compounds with triazole and 2-methylbenzyl solvent-
exposed groups and different buried fragments, illustrated
in Figure 1D, build a sub-group of 8 compounds. Following
Schuetz et al. (2018b), one can also distinguish two sub-groups
of indazole compounds: (i) indazole-exposed: 24 compounds
with a 3-methylbenzyl R2 moiety in the hydrophobic sub-pocket

and different exposed R1 fragments, and (ii) indazole-buried:
17 compounds with an exposed 4-(4-morpholinyl) phenyl R1

fragment and different buried R2 fragments (see Figure 1D).
The rest of the compounds is quite diverse, as can be seen
from the 2D similarity plot generated using Maestro software
(Schrödinger, 2019) by hierarchical clustering of compounds
based on their 2D fingerprint similarity in Figure 1E. There
are both loop- and helix-binders of different scaffolds, though
the sub-set of loop-binders is much smaller (only 13) than
the helix-binders.

The experimental binding kinetics data for the full compound
set (Amaral et al., 2017; Kokh et al., 2018; Schuetz et al., 2018b)
are plotted in Figure 1F. Both off-rates (koff = 1/τ ) and on
rates (kon) vary by several orders of magnitude and there is
no clear correlation between them, indicating that both the
height of the transition barrier and the free energy of the bound
state vary across the compound set. Notably, the helix-binders
generally have longer residence times than the loop-binding
compounds (Figure 1G).

Here, we built ML models based on the τRAMD dissociation
trajectories for this data set aimed at: (i) investigating whether
residence time can be deduced from the protein-ligand contact
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FIGURE 3 | Workflow illustrating the generation of features from simulated τRAMD trajectories: (1) Extraction of interaction fingerprints as features for ML; (2)

Discarding of the bound state part of the trajectory (highlighted in pink). The discarded part of the trajectory depends on the threshold used, resulting in data-sets A,

B, and C (see text for details); (3) Averaging of the features over all snapshots in each trajectory; (4) Averaging of the features over all trajectories for each compound;

(5) Removal of features that appear rarely or are strongly correlated with other features. The size of each set of data at each stage of the workflow is indicated in red.

occurrence in τRAMD ligand dissociation trajectories, in
particular for the cases where the relative residence times
derived from the lengths of τRAMD trajectories are consistently
underestimated; and (ii) identifying molecular properties that
affect ligand residence time and that can be used to guide the
design of ligands with altered binding kinetics.

METHODS AND MATERIALS

An overview of the simulation workflow is given in Figure 2.
For each compound, the τRAMD procedure was performed,
which consists of the preparation of the solvated protein-ligand
complex, the equilibration of the system using multiple replicas
of standard MD simulation, and then the simulation of multiple
RAMD ligand dissociation trajectories. The τRAMD relative
residence times are obtained using the protocol reported by Kokh
et al. (2018). In the second part of the workflow, the protein-
ligand contacts (referred to hereafter as interaction fingerprints,
IFs) are extracted from τRAMD dissociation trajectories. Then,
for all compounds, the IFs are transformed into a set of features
for the ML analysis, which includes the clustering of the ligand
dissociation properties and the building of regression models for
residence time based on available experimental binding kinetics
data (see the next section). The workflow is described in detail in
the following sections.

Kinetic and Structural Data for the Dataset

of HSP90 Inhibitors
We employed 69 of the 70 compounds with structural and kinetic
data in Kokh et al. (2018). One compound [70 in Kokh et al.

(2018)] was eliminated from the dataset because its complex with
N-HSP90 was structurally unstable duringMD equilibration. For
two compounds with affinities and long residence times beyond
the measurement range (PDB ID 2VCI and 5NYI, compounds 1
and 4, see Supplementary Tables 1, 2), we used the lower limit
values of koff = 10−4 s−1 and KD = 10−9 M−1. Additionally, we
studied 25 compounds from Schuetz et al. (2018b). Since there
are no crystal structures of protein-ligand complexes available
for these 25 compounds yet, the ligands were modeled in the N-
HSP90 binding site using (MOE., 2017) on the basis of similarity
to available crystal structures for similar compounds: PDB ID
5OCI and 6EFU for the indazole compounds, and PDB ID 5J86
for the resorcinol compounds.

MD and RAMD Simulations
The τRAMD protocol as described by Kokh et al. (2018) was
followed. Here, we outline this protocol briefly for completeness.
First, the starting structure of each protein-ligand complex was
protonated at pH 7. The ligand was protonated using MOE
(MOE., 2017) and the protein was protonated using PDB2PQR
(Unni et al., 2011). The atomic partial charges of the ligands
were assigned using the RESP approach (Bayly et al., 1993)
with the molecular electrostatic potential computed using ab
initio quantum mechanical calculations performed at the HF
level with a 6-31G∗(1d) basis set using the Gamess software
(Gordon and Schmidt, 2005). The protonated protein-ligand
complex was solvated in a periodic box of TIP3P water molecules
and Na+ and Cl− ions at an ionic strength of about 150mM.
Crystallographic water molecules were retained. The system was
energy minimized, gradually heated and shortly equilibrated
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FIGURE 4 | Results of τRAMD simulations. (A) Scaled τRAMD residence times plotted vs. measured log (1/koff ) values on a logarithmic scale for the complete set of

compounds. The τRAMD residence times are scaled according to the linear fitting (log(τRAMD) = 0.39*log(1/koff ) −0.52) of all compounds except for the 13 outliers

identified in Kokh et al. (2018) (shown with background yellow circles). Two groups of indazoles (with different exposed R1 and buried R2 fragments, see Figure 1D),

resorcinol and quinazoline compounds, as well as compounds with a tricyclic fragment, are colored as denoted in the legend; other compounds are shown in gray.

The black line shows the one-to-one correspondence of the computed and experimental data and the interval within 1.5-fold of the mean of the residuals (0.9 log([s]))

is shown by the gray area. The distributions of measured and τRAMD computed residence times are shown along the X and Y axes, respectively. (B) Linear fitting with

95% confidence interval for several sub-groups of compounds highlighted in (A): indazole exposed, indazole buried, and resorcinol colored as in (A). (C) Histogram

showing the distribution of the mean absolute error, MAE, of τRAMD residence times relative to measured values; the long tail arises from the outliers.

with gradually decreasing restraints on all non-hydrogen atoms
of the protein, ligand, and crystallographic water molecules
using the AMBER molecular dynamics simulation software
(Case et al., 2016). Simulations were run under NPT conditions
(Langevin thermostat and barostat). Then the coordinates of
the preliminary equilibrated binding complex were transferred
to the NAMD program (Phillips et al., 2005) and used as the
input for heating and equilibrating the system. The coordinates
and velocities obtained after 30–40 ns of equilibration were used
to initiate simulations of ligand dissociation using the RAMD
method with a randomly oriented force on the ligand with
a constant magnitude of 14 kcalmol−1Å−1. Every 100 fs, the
orientation of the force was randomly re-initialized if the center
of mass of the ligand had moved <0.025Å. The simulations were
stopped when the center of mass of the ligand had moved 30 Å
from the original bound position.

At least four MD equilibration replicas were prepared and
from each replica 10–20 RAMD dissociation trajectories were
generated. The relative residence time was defined as the
time when a dissociation event was observed in 50% of the
trajectories. It was computed for each starting replica and
then averaged over all replicas simulated. Sufficient sampling to
compute residence time was ensured by increasing the number
of equilibration replicas and/or the number of dissociation
trajectories if necessary as discussed in Kokh (2018).

Feature Generation
The feature generation procedure is illustrated in Figure 3. First,
a set of interaction fingerprints (IF) was obtained from the
τRAMD dissociation trajectories (40–100 trajectories for each
compound) using the following protocol: (i) the position of
the center of mass of the ligand and the coordinates of the
protein and the ligand atoms were extracted from each trajectory
frame and stored using a tcl script for the VMD program
(Humphrey et al., 1996) (snapshots illustrating egress routes and
residues contacting the ligand during dissociation are visualized
in Supplementary Figure 1); (ii) the coordinates extracted in (i)
were used to generate interaction fingerprints for each frame
using an OpenEye’s OEChem Toolkit (OpenEye., 2018) as 7-bit
strings encoding hydrophobic, aromatic face-to-face and edge-
to-face, H-bond donor/acceptor and cationic/anionic interaction
types (Marcou and Rognan, 2007; Mysinger et al., 2012). Then
the interaction fingerprints were grouped into four categories of
protein-ligand contacts: hydrogen-bond (HB), aromatic (ARO),
ionic (IP), and apolar (APO) interactions, and each category was
assigned a value of 1 or 0 according to whether the contact type
was, respectively, present or not; (iii) finally, the bound-state part
of the trajectory was removed and only the part of the trajectory
covering the transition of the ligand from the bound to the
unbound state was used for further analysis (step 2 in Figure 3).
Since the threshold for the separation between the bound- and
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FIGURE 5 | Result of clustering analysis based on the IFs of the ligand dissociation trajectories. (A,B) Clustering of the complete data set of 94 compounds: (A) mean

and standard deviation of log residence times in each cluster obtained in 50 clustering runs; (B) weights of IFs for each cluster. HB, ION, ARO, and APO mean

hydrogen bond (donor or acceptor), ionic, aromatic, and apolar interactions, respectively; (C,E) Position of indazole compound bound to the helix-type conformation

of the binding pocket (PDB ID:5LNZ), and (C) of resorcinol compound bound to the loop-type conformation (PDB ID: 5J2X) (E); residues that contribute to the

protein-ligand contacts along the ligand dissociation trajectories are shown in stick representation and colored by protein region consistently with (B). (D) Clustering of

the resorcinol loop-binders (see compound list in Supplementary Table 2) showing mean and standard deviation of the log residence time in each cluster (above)

and cluster composition (below).

transition parts can be defined arbitrarily, we explored three
possible threshold definitions (these will be referred to as data
sets, A, B and C, hereafter): (A) when two IF observed in the
bound state (i.e., in the first frame of a trajectory) are lost, or (B)
when 20%, or (C) when 60% of the bound-state contacts are lost
(the size of each data set is given in Supplementary Table 3).

Although the sequence of interaction events may bear
important information about the ligand dissociation mechanism,
preliminary tests showed that the RAMD trajectories generated
did not permit us to build a reliable time-dependent model,
probably due to having insufficient number of snapshots along
the ligand dissociation trajectories as the artificial random
force accelerated dissociation. Therefore, we eliminated time
dependence in our data by computing the occurrence of each
type of contact in each trajectory and averaging them over all
trajectories for a particular compound (steps 3 and 4 in Figure 3).
This provided us with a matrix of 94 labels (compounds) x 311
features (fingerprints). This matrix was further reduced by partial

elimination of the noise in the data set. In particular, since we
did not expect that a very rare contact would affect dissociation
rate, we excluded features that were found in fewer than 5% of the
frames for any compound. This reduced the number of features
to 68/69/75 for the complete A/B/C data-sets, respectively. Then,
we performed preliminary correlation analysis and removed one
of the features from each pair that had a correlation R2 > 0.9,
thus further reducing the number of features to 47/48/57 for the
data-sets A/B/C, respectively (see Supplementary Table 3).

To explore the influence of molecular properties on the
residence time, we additionally generated a set of molecular
features, MFs, for all compounds using MOE (MOE., 2017).
The MFs include the number of bonds of different types, the
number of atoms with hydrogen-bond properties, the number of
heavy atoms, and the solvation energy (the complete list is given
in Supplementary Table 2). For testing the importance of these
molecular features, they were either added to the IFs of data-set
A or used as a separate feature set.
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FIGURE 6 | Clustering of indazole compounds: (A) weights of IFs for each cluster (coloring scheme and labels as in Figure 4); (B) mean and standard deviation of log

residence times of compounds in each cluster; (C) population of selected molecular fragments in each cluster (see Supplementary Figure 6 for naming convention);

the structures of two compounds discussed in the text are shown below (fragment substitutions are highlighted in blue); (D) Position of indazole compound 37 in the

binding pocket, the main contact residues are shown in sticks and colored as in (A).

Machine Learning Protocol
The scikit-learn Python library (Pedregosa et al., 2011) was used
for all machine learning (ML) procedures.

Regression Analysis
The data sets were normalized by transforming each feature
vector to the interval [0:1]. The ML models were trained
and tested against measured log(1/koff) values. Two regression
models (RM), one linear—Ridge Linear Regression with L2

regularization terms (LR)—and one non-linear—Support Vector
Regression (SVR)—were found to be more balanced and slightly
more stable in cross-validation than the other methods tested
(Partial Least Squares, Random Forest and Gaussian Boosting
Regression). Additionally, a dummy regression model with the
mean value of the training set as a null-hypothesis (referred to as
Dummy Regressor hereafter) was used as a control.

The modeling workflow consisted of the following steps (as
illustrated in Supplementary Figure 2):

(i) Split the data set into a training (internal) set and an

external test set. For the test set, we selected 20% of
compounds from the data set while ensuring that the test set
contained 2 randomly selected compounds from the outlier
subset of 8 quinazolines (compounds 58–65) and six other
compounds (11, 17, 30, 66, 67, 69) as defined in Kokh
et al. (2018); these compounds are highlighted in yellow in
Supplementary Table 2), and 20% (i.e., at least 9 compounds)

from the subset of indazole compounds (compound scaffolds
are given in Supplementary Table 2). The rest of the test set
was selected randomly from the remaining compounds. The
purpose of this selection was two-fold: (1) to test the prediction
accuracy for compounds that were considered as outliers in
τRAMD simulations; and (2) to avoid over-representation
of the indazole compounds in the training set, since they
constitute almost 50% of all compounds in the data set.

(ii) Selection of hyperparameters for the two regression

models, LR and SVR (this block is zoomed in in
Supplementary Figure 2). The internal training set was
used for the selection of hyperparameters. The following
parameters were optimized: coefficient of the regularization
term for the LR model; kernel coefficient (the RBF kernel
was used), parameter of the loss function, and coefficient
of the error term for the SVR model. We employed
exhaustive grid-search with 10-fold cross-validation
(using random permutation splitting with a validation
test set size of 20%). The results of the optimization
procedure are given in Supplementary Data and illustrated
in Supplementary Figures 3, 4.

(iii) Training and testing of the models. After the
hyperparameters were selected, 10 cross-validation runs
were performed on the internal training set. In each round,
two regression models, LR and SVR, were trained on a sub-set
of the internal training set and then the mean absolute error,
MAE, and the Q2

F3 metric, reported as the most reliable
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FIGURE 7 | Representative examples of computed vs. experimental residence times obtained for data-sets. (A) A and (B) C using linear (LR) and non-linear (SVR) ML

models as well as from the τRAMD residence time estimation procedure. Black/blue and red points belong to the training/validation and external test sets, respectively.

metric for the evaluation of the regression models (Todeschini
et al., 2016), were computed for the training and validation
sub-sets (generated using random permutation splitting with
a validation sub-set size of 20%), as well as for the external
test set (all for the residence time on a log10 scale; for more
details, see Supplementary Information). Additionally, the
same data sub-sets were used to evaluate the Dummy model
and the τRAMD simulations.

Then new internal training/external test set combinations
were generated step (i) and the steps (ii–iii) were repeated.
All MAE and Q2

F3 values obtained in these calculations were
stored. Altogether, we performed 200 computation rounds,
each with a different split of training and test sets, to gain
proper statistics. The histograms of the MAE distributions
obtained for each ML method were compared with those for the
Dummy model for control; histograms of MAE and Q2

F3 were
compared with the corresponding distributions obtained from
the τRAMD protocol. The complete procedure for 100 rounds
takes about 1.5 h on a laptop with an Intel Core i5-5200U, 2.2
GHz processor.

Clustering
We employed a Gaussian Mixture Model (GMM) for the
classification of the compounds by their IFs in the data sets A for

all compounds and for the sub-set of indazole-based compounds
only. The feature set was normalized by transforming to the
interval [0:1], as for the regression models. For the scikit-learn
GMM function, we used an option where each component has
its own multivariate covariance matrix. To estimate the optimal
number of clusters, we used the Akaike information criterion (see
Supplementary Information for details). Following a scan of
cluster size, 6 clusters were chosen on the basis of minimum loss
of information for the complete data set of 94 compounds (A)
and 4 clusters for the indazole sub-set of the data set A (Ind) (see
Supplementary Figures 5A,B). For each dataset, 50 independent
repeats of clustering were performed. For each clustering round,
the clusters were ordered by increasing average residence time
of the inhibitors belonging to each cluster, and the weights of
all features in each cluster were stored. Finally, for each dataset,
the mean cluster residence time, τc, over the 50 clusterings was
computed for each of the clusters (from their average residence
times), with the first having the shortest τc.

Further, for the indazole subset (Ind), we explored how
some selected structural properties of the compounds are
distributed over the clusters. For this, we selected two sets of
small fragments that might affect the dissociation rate constant
(see Supplementary Figure 6): (i) seven types of solvent-
exposed fragments (i.e., different classes of the R1 substitution
(Figure 1D) and six types of buried fragments (i.e., R2, placed
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FIGURE 8 | Assessment of the RM quality. Histograms of mean absolute error, MAE (A) and Q2
F3 score (B) of the external test set obtained in 200 repeated

test/training set splitting using RMs and the same values computed from τRAMD simulations (C,D) are shown in blue along with results for the Dummy model

(orange); results for the sub-set of only quinazoline compounds (from the full data set A) are shown by red lines; in τRAMD simulations Q2
F3 values (D) are negative for

quinazoline compounds; in the right-hand plot of panels (C,D) all quinazoline compounds were removed as outliers. The data-set used are denoted in each plot: A

and C data-sets, MF—data-set from molecular descriptors only.

in the hydrophobic sub-pocket, see Figure 1C). The number of
compounds in each cluster with the corresponding R1 and R2

fragments was computed and normalized by the cluster size.

RESULTS AND DISCUSSION

τRAMD Simulations
Computed relative residence times obtained from the τRAMD
simulations for the 94 compounds are shown vs. measured 1/koff
values on the logarithmic scale in Figure 4A. As discussed in
our previous study (Kokh et al., 2018), 14 compounds from the
dataset are outliers: compounds 11, 17, 30, 66, 67, 69, and 8

quinazoline compounds (highlighted in yellow in Figure 4A).
Without the outliers, i.e. for 80 compounds (85% of the data set),
the correlation coefficient R2 = 0.75, MAE= 0.39± 0.06, and the
mean prediction uncertainty, MPU, is 3.1 τ on average, which
is somewhat higher than in the set of 70 compounds studied
previously (Kokh et al., 2018) (R2 = 0.86 and MPU = 2.3τ

for 78% of the compounds, i.e. 55 compounds after omission
of outliers).

To understand the reason for this difference, one has to
look at the simulation results for the indazole compounds
since most of the added compounds are indazoles. 17 out of
the 25 additional compounds have an indazole scaffold with
a buried 3-methylbenzyl R2 substituent and different exposed
R1 fragments (shown in dark red in Figures 1F, 4A). This
group has a computed τ that is systematically longer by
approximately 0.5 log units than the value from the linear fit
for the other compounds, despite showing a good correlation
with the experimental τ values within the group (R2 = 0.86,
MAE = 0.34, Figure 4B). In contrast, variation of the buried
R2 fragment in the indazoles leads to a large and non-specific
deviation of computed τ values from the fit. Specifically, a
series with 4-(4-Morpholinyl) phenyl substitutions in indazole
compounds (group colored in cyan in Figures 1F, 4A,B) has
a correlation coefficient with experimental data of R2 = 0.67,
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TABLE 1 | Results of evaluation tests for different models: mean of MAE and Q2
F3 score obtained from 200 rounds of simulations (the standard deviation is given in

parentheses) for the external test sets.

RM A B C A* MF Ind

MAE LR 0.47(0.08) 0.51(0.09) 0.60(0.11) 0.43(0.08) 0.51(0.10) 0.39(0.10)

SVR 0.48(0.09) 0.53(0.10) 0.60(0.11) 0.43(0.08) 0.45(0.11) 0.39(0.11)

τRAMD 0.76(0.12) 0.39(0.06) – 0.38(0.08)

Dummy 0.71(0.11) 0.61(0.11) 0.71(0.11) 0.55(0.14)

Q2
F3 LR 0.57(0.21) 0.44(0.30) 0.29(0.30) 0.54(0.23) 0.36(0.52) 0.41(0.52)

SVR 0.56(0.22) 0.44(0.30) 0.28(0.30) 0.51(0.25) 0.52(0.30) 0.38(0.58)

τRAMD −0.41(0.47) 0.69(0.10) – 0.57(0.23)

Calculations were done for data-sets A, B, and C (see main text) are based on the complete set of 94 compounds. The test sets in these three cases were required to contain some of
the outliers found by applying the τRAMD procedure to estimate relative residence times, see Methods for details. A*–data-set of 80 compounds with outliers discarded. MF—based
on molecular property features only. Ind—only IFs of indazole compounds from data-set A are included. For data-set A, the quinazoline compounds (8 compounds) have a mean MAE
= 0.60 ± 0.2/0.61 ± 0.2 and Q2

F3 = 0.44 ± 0.4/0.41 ± 0.4 for LR and SVR models, respectively; for the data set MF quinazoline compounds have a mean MAE = 0.59 ± 0.21/0.43
± 0.25 and Q2

F3 = 0.45 ± 0.39/0.65 ± 0.42 for LR and SVR models, respectively; for the Dummy model Q2
F3 = 0.

MAE = 0.43. Similarly, a subgroup of 6 resorcinol compounds
shown with different R2 (shown in Figure 1D, their residence
times are colored in orange in Figures 4A,B) substituents has a
low correlation, R2 = 0.72, MAE = 0.32. The mean prediction
uncertainties for the latter three groups are 2.3, 4.3, and 2.2
τ , respectively.

One possible explanation for the poorer correlations for
subgroups of compounds with different R2 fragments is
uncertainty regarding the structure of the bound-state of
the protein-ligand complex. All 21 indazole and 6 resorcinol
compounds mentioned above were modeled using a template
structure since crystal structures were not available for these
complexes. Some of these compounds require a relatively
large substituent to be modeled in, leading to uncertainty in
the protein and ligand conformations and in the position of
the compound, particularly when the fragment fits tightly in
the hydrophobic binding sub-pocket and adaptation of the
protein structure is necessary. The 40 ns MD equilibration
carried out might not be sufficient for achieving an optimal
ligand-protein configuration, which may affect the computed
residence time.

Another possible reason can be deduced from the observation

that sets of compounds with different buried fragments R2

demonstrate inhomogeneous deviations from the general linear

fitting of the complete set, while sets of compounds with the same

buried fragment show very similar deviations. This implies the
systematic omission of a specific contribution to the observed

residence time. In RAMD, conformational changes of the protein

induced by the ligand’s motions on the nanosecond timescale of

the simulations are captured rather well, but the longer time scale
motions of the protein are not fully sampled and these can be
expected to modulate the ligand dissociation times. For example,
if backbone changes, such as the unfolding of a helix, are needed
for ligand egress, then this is likely to be captured to a lesser extent
than side chain rotations in RAMD simulations. Such long-time
motions may facilitate ligand dissociation, and therefore poor
sampling of these motions may result in the overestimation of
residence times with the τRAMD procedure.

Elucidation of the Molecular Features

Affecting Residence Time From Simulated

Ligand Dissociation Trajectories
As discussed above, the relative τ value is obtained in the
τRAMD procedure from the computed ligand dissociation
times that are assumed to be longer for the slower dissociating
compounds and shorter for the faster dissociating ones. By
building a feature set of protein-ligand IFs from the ligand
dissociation trajectories, we deliberately omitted information
on the trajectory length (see section Methods and Materials).
Instead, we assessed whether the pattern of protein-ligand
contacts in the ligand dissociation trajectories contains
information on the ligand dissociation mechanism and whether
it can be used to deduce how ligand substituents affect residence
time prolongation.

To explore this, we employed the largest data-set, A, for
clustering of all 94 compounds by the similarity of their IF
features. We found that the optimal number of clusters was 6 (see
Methods and Materials for details). Although in some clusters,
the distributions of residence times are quite wide, there is a clear
difference in their mean residence times, so that the clusters can
be ranked by their mean τ value, τc (see Figure 5A). The average
cluster properties obtained from 50 repeated clusterings mainly
reflect the general structural similarity of compounds. The
composition of the clusters and their order is mostly preserved
in all 50 clustering rounds: the cluster with the longest average
residence time comprises compounds with a tricyclic fragment,
whereas the two clusters with the shortest average residence times
consist mainly of loop-binders and fast unbinding compounds,
such as quinazolines; in the two intermediate clusters, one
contains indazoles and one contains resorcinols. From the IF
weights in each cluster (Figure 5B), one can see that most of the
contacts associated with large τc values arise from residues lining
the hydrophobic sub-pocket formed due to α-helix3 stabilization:
specifically, residues that belong to α-helix3 (L107- A111, marked
in yellow in Figure 5B), those located in the hydrophobic sub-
pocket at its entrance (F138, Y139, V150, W162, F170, shown in
red and magenta in Figure 5B), and two residues at the bottom
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of the ATP binding pocket (V186 and T184, highlighted in
gray). These residues are shown in Figure 5C in the same color
as in Figure 5B. It is noteworthy, that the weights of several
residues located at the entrance of the hydrophobic sub-pocket,
specifically F138, V150, and L107, gradually increase with the
residence time. This result agrees with the conclusion of our
previous study that steric hinderance at the egress channel for
compounds partially located in the hydrophobic sub-pocket is an
important factor in increasing the transition state energy and thus
prolonging the residence time (Kokh et al., 2018). The interaction
with exposed residues lining the entrance to the ATP binding
pocket (polar residues N51, D54) has a large contribution for the
clusters III-V with intermediate residence times. However, they
do not show a notable correlation with the residence time in this
cluster splitting.

Overall, the splitting of the 94 compounds into just six
clusters reveals several very general tendencies, showing that
the interactions of the compound fragment located in the
hydrophobic sub-pocket generally promote slower dissociation,
while the interactions with exposed residues lining the entrance
to the ATP binding pocket may affect the residence time, but
without showing a systematic trend. Increasing the number
of clusters leads to a general reduction of the residence time
diversity in each cluster (see Supplementary Figure 5C),
which suggests that the similarity of the IFs in dissociation
trajectories does generally correlate with the residence
time. However, to obtain a more detailed understanding of
dissociation mechanisms, one has to consider clustering of
specific compound sub-sets. For example, clustering of the
11 resorcinol-based loop-binders from cluster I effectively
separates the faster dissociating compounds from the slower
dissociating compounds (Figure 5D). Interestingly, although the
cluster composition varies during repeated clustering, the main
difference between the slower dissociating compounds (clusters
III and IV) and the faster dissociating ones (cluster I and II) is
retained: either a halogen (Cl or Br) or an aliphatic fragment (for
example, a methyl group) on the resorcinol group (fragment R3
in Figure 5D) is always associated with longer residence time.
All other fragments (R1, R2, and R4) appear in both groups
with short and long residence times (clusters I/II and III/IV,
respectively). We therefore surmise that the interaction with
F138 (in particular from the Cl atom) is one of the important
factors for prolongation of the residence time even though this
interaction is not clearly established in the bound state (see
structure shown in Figure 5E).

Furthermore, we have performed clustering on the largest
subset of compounds available (indazole compounds bound
to the helix-type conformation). The averaged weights of
different types of IFs that distinguish the four clusters are
shown in Figure 6A. The mean residence time variation over
the clusters (Figure 6B) shows that there is a significant gap
between the fastest dissociating compounds in cluster I and
the slower dissociating ones in clusters II-IV. As we observed
for the complete set of compounds, the slowest dissociating
clusters are characterized by a large contribution of the IF
from residues lining the hydrophobic sub-pocket located at
α-helix3 (L107, G108, I110, A111) or at the entrance of or

inside the hydrophobic pocket (F138, V150, T139, W184).
Additionally, residues G135 and V136, located between the
entrance to the hydrophobic sub-pocket and the ATP binding
pocket, contribute (Figure 6D). These residues may interact with
the solvent-exposed part, R1, of the ligand, a 4-(40morpholinyl)
phenyl fragment (see Figure 1D). To obtain a more detailed
understanding of these protein-ligand interactions, we selected
several molecular fragments that predominantly define structural
variance in the indazole set (see Supplementary Figure 6) and
computed the average occurrence of these fragments in each
cluster (Figure 6C). It can be seen that all compounds with
a carbonyl oxygen at the R2 fragment (located between N51
and F138 in the bound complex, see Figure 6D), belong to
the long-residence time clusters III and IV. On the other
hand, although N51 can form an H-bond with the carbonyl
oxygen, this interaction does not have a large contribution to the
slowest unbinding clusters (see Figure 6A). The results suggest
that the carbonyl oxygen plays a similar role to the halogen
atom in the loop-binders discussed above, and forms transient
interactions with F138. Also, all compounds with alicyclic (and
methoxy) groups in the hydrophobic binding pocket (indicated
in Figure 6C as R2:Cy and R2:O, respectively) appear in the
clusters with the longest residence times. Consistently, the
hydrogen bonding (HB) interactionwith the buried Y139 appears
only in the slowest dissociating cluster and can be associated with
a polar (carboxyl) group at the R2 fragment. Finally, the effect of
the exposed R1 fragment on the residence time is less well-defined
than the buried R2 fragment (apart from a large contribution of
the 4-(40morpholinyl) phenyl fragment, R1:M, which is present
in about half of the indazole compounds).

Regression Models for the Prediction of

Residence Time
The results of two regression models, Linear Regression with a
regularization term (LR) and Support Vector Regression (SVR),
to different data-sets are shown in Figures 7, 8, and the computed
model quality metrics are given in Table 1. In particular, Figure 7
shows representative plots of computed against experimental
residence times for the data-sets A and C. The linear and non-
linear regression methods provide very similar results. Moreover,
the predictions of the two methods were strongly correlated
(similar under- or over-estimation of the residence times), which
indicates that the data set quality, not the complexity of the RM
chosen, poses the main limitation on the accuracy. Consistently,
the MAE distributions for both methods obtained from 200
different test sub-sets are similar, as shown in Figure 8. The
mean MAE value for the test sets are about 0.47 ± 0.08 for
both RMs, while the Dummy model yields 0.71 ± 0.11 (see
Table 1; the MAE histogram for the training and validation sets
are shown in Supplementary Figure 7). The predictions have
a Q2

F3 = 0.57/0.56 ± 0.2 for LR and SVR RMs, respectively,
which indicates that the model quality is acceptable, albeit with
a relatively large standard deviation. Note, that in this model
we included all compounds, even those that were considered as
outliers in τRAMD simulations in Kokh et al. (2018) and each
test set was required to contain at least 2 quinazoline compounds,
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FIGURE 9 | Average value of MAE for the sub-set of compounds with experimental residence times in the ranges of (<1s), (1s-2s), (2s-3s), and (>3s) as obtained in

100 simulations for different test sets and compared with the Dummy-model (null-hypothesis) and τRAMD for the same set of compounds. (A–C) For the complete

set of compounds in models (A–C), respectively; (D) For the data-set model A* (model A without outliers); (E) Only a sub-set of indazole compounds from the

data-set A was used; (F) Only molecular features were used.

whose τ is strongly underestimated in τRAMD simulations,
as can be seen in Figure 4A. Therefore, the τ estimated
directly from the τRAMD simulations has a large mean MAE
of 0.76± 0.12 (the MAE distribution is shown in Figure 4C).

To gain deeper insight into the determinants of the quality of
the RMs, we split the τ interval into four regions and plotted the
mean of the MAE distributions for each region (Figure 9). Both
RMs have almost identical results and they clearly outperform
τRAMD for all four intervals used if all the compounds are
considered (Figure 9A). However, the τRAMD method yields
better prediction accuracy than the RMs for the shortest and
longest residence time intervals if the 14 outliers (highlighted in

Figure 4A) are not included in the compound set (Figure 9D,
data-set A without outliers), with a mean of MAE = 0.39 ± 0.06
andQ2

F3 = 0.69± 0.10, seeTable 1. On the other hand, the quality
of the RMs is only slightly changed on removal of the outliers, see
Table 1. This is likely due to the much larger number of ligands
with intermediate τ values than those with short or long τ , as can
be seen from the histogram in Figure 4A, which ensures better
training of RMs in the middle of the interval but difficulties in
the prediction of more extreme values.

To further assess the ability of the RMs to correctly predict
the residence times of the compounds that appear as outliers
in τRAMD simulations, we computed the MAE distribution for
a test subset consisting of quinazoline compounds only, which
yielded a mean value of MAE = 0.60 ± 0.2 (MAE distribution
from the model dataset A is shown by a red line in Figure 8)
and a mean Q2

F3 = 0.44 ± 0.4. This result is worse than for
the whole set of compounds, probably because of the small

number of quinazoline compounds in the training set: 6, and in
the external test set, 2. Nonetheless, the estimation of τ from
RMs is much better for these compounds than that obtained
from τRAMD simulations of the residence time based on the
trajectory length, which results in underestimation of τ by several
orders of magnitude. This is an important result suggesting that
the residence time can be reasonably well-predicted by RMs
trained on diverse compounds whereas τRAMD simulations
cannot always be used to rank τ computed for compounds with
different scaffolds. In Kokh et al. (2018), it was hypothesized that
the main reason for the underestimation of the residence time
of the quinazoline compounds in τRAMD simulations was the

deficiency of the bound state representation in MD simulations.
Following this hypothesis, one may assume that the robustness
of ML models for such compounds is a consequence of the data
preprocessing, where the major part of the trajectory in which the
bound-state is sampled is discarded (i.e., the main bound-state
IFs are still considered but the exact length of the bound-state
trajectory is not retained).

To explore the importance of the bound state IFs for RMs,
we applied the same protocol using trajectories starting from
snapshots where 20% and 60% of the bound-state contacts were
lost (model data-sets B and C, respectively), which corresponds
to loss of 2–3 and 5–16 contacts, depending on the compound
size. Data-set B yielded only slightly worse prediction accuracy
than data-set A, whereas the predictive ability for data-set C was
notably worse and closer to the null hypothesis (see Figures 7–
9 and Table 1), especially for compounds with short residence
times, Figure 9C. The Q2

F3 score of the RMs drops from 0.57 to
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FIGURE 10 | Coefficients of the LR model in the test set averaged over 200 different splitting of the training and external test sets for the A and C data-sets (A) and

for the LR built on molecular descriptors only (B), as denoted in each plot.

0.44 and then to 0.29 for the data sets A, B, and C, respectively,

with SD values increasing, indicating a strong dependence of the
model performance on the test subset selected.

The coefficients of the IFs in the LR model on the data-set
A and C are compared in Figure 10A. The features that have
major contributions are quite similar for the data-sets A and
B (data for the set B are not shown). The largest contribution
comes from several residues lining the binding pocket and
located at the entrance of the hydrophobic sub-pocket (F138,
V150, G135), which is generally consistent with the clustering
analysis given above. Additionally, several more distant residues,
such as D102 and H154, appear to be important for the LR
model. It is noteworthy that in both the clustering analysis and
LR, the interaction with F138 plays a major role and correlates
with longer residence times. For the data-set C, however, the
hydrophobic sub-pocket residues do not contribute essentially.
Instead, the role of polar residues around the pocket entrance
(D54, N106, K58) and more distant residues, such as I110 and
T61, or even F20 (located at the exit of the hydrophobic sub-
pocket) increases. These results suggest that: (i) the presence of
the bound state IFs in the feature set is crucial for the quality
of RMs for prediction of residence times, although the RMs
do not seem to be very sensitive to the exact duration of the
bound state, (ii) dissociation pathwaysmay be very diverse, which
makes it difficult to build a consistent model from transition state
information only.

Notably, the residues that make the main contributions to
the LR and to the clustering models in the present study are
quite similar to those reported for COMBINE analysis of HSP90
inhibitors (Ganotra and Wade, 2018). They include residues of
the part of the α-helix3 fragment that lines the ATP binding
pocket (L107-A111), as well as some polar residues surrounding
the ATP binding site (N51, D54, D93, G97, D102), and several

residues inside the hydrophobic sub-pocket (Y139 and T184).

This agreement supports the main trend in the dissociation
kinetics of the HSP90 inhibitors studied, namely that large
compounds that bind in the hydrophobic sub-pocket formed by
αhelix3 are generally slower dissociators. The importance of the
interaction of the ligand with F138 was not highlighted by the
COMBINE analysis, likely because this residue does not always
directly interact with the ligand in the bound state. On the other
hand, some polar residues, such as K58, N51, and D54, seem to
have less importance when the complete dissociation trajectory
is considered. For example, although a H-bond between some
ligands and K58 is observed in the crystal structures, it is quite
unstable in MD simulations and its contribution is negligible to
both the LR and the clustering models.

RMs built for the congeneric series of 45 indazole compounds
(data-set Ind) demonstrate similar performance for the mid-
and long-range residence times to those for the complete data
set (Table 1, Figure 9E and Supplementary Figure 8). For the
region with koff > 0.01 s−1, however, the model quality is poor
because only 3 indazole compounds belong to this region.

Finally, we considered whether the model could be improved
by the inclusion of parameters describing the molecular features
of the ligands or even by training the model solely on ligand
parameters. Thus, we added several molecular descriptors, such
as solvation energy, number of heavy atoms, single, double
and aromatic bonds, hydrogen donors and acceptors, and
radius of gyration (see Supplementary Table 2) to the set of
IF features. Although the RMs were not notably improved
(data not shown), the number of heavy atoms appeared as a
major term in the LR model. We therefore went further and
trained RMs on molecular descriptors alone. Surprisingly, the
SVR model based on just molecular descriptors demonstrated
a good performance (Q2

F3 = 0.52 ± 0.30), comparable to
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that for data-set A, albeit with a larger SD, and better than
the LR model (Q2

F3 = 0.36 ± 0.52) on the same dataset
(see also MAE and Q2

F3 histograms in Figure 9F). The latter
is mostly driven by the number of the heavy atoms in the
molecule (Figure 10B), which is an expected result since there
is a clear correlation between the residence time and the
number of heavy atoms (R2 = 0.74, Supplementary Figure 9A).
The number of single bonds and solvation energy are the
next most important factors, where the dependence on the
solvation energy is mostly driven by the compounds with
different buried fragments, in particular, indazole compounds
(Supplementary Figure 9C) while variation of the exposed
fragment does not have much effect (the correlation of solvation
energy with log(1/koff) for different sub-sets is shown in
Supplementary Figures 9B–F).

CONCLUSIONS

In the present study, we propose a protocol for estimating
drug-target residence times and for exploring which protein-
ligand interactions affect the residence time. We performed
a machine learning analysis of ligand dissociation trajectories
obtained from τRAMD simulations. For the evaluation of the
method, we analyzed the ligand dissociation trajectories of 94
inhibitors of HSP90 [previously published for 69 compounds
(Kokh et al., 2018) and simulated for an additional 25 compounds
from Schuetz et al. (2018b)]. We excluded from the analysis
the first part of each simulated trajectory where the majority
of protein-ligand interactions were retained as in the starting
complex structure. We considered three different thresholds for
defining the minimum number of protein-ligand contacts that
must be lost to assign a snapshot to the transition part of the
trajectory: (i) 2 contacts, (ii) 20%, and (iii) 60% of all bound-
state contacts (data-sets A, B, and C, respectively). A collection
of protein-ligand interaction fingerprints, IFs, extracted from
the transition part of each dissociation trajectory as defined
above, was employed to build a set of features for machine
learning analysis.

We first explored the possibility to obtain insights into
key protein-ligand contacts and to reveal ligand fragments
that influence the ligand residence time using a clustering
algorithm and the data-set A. Then, we built regression models,
RMs, for the prediction of ligand dissociation rates using
experimental data. We tested different data models, as well
as a data sub-set containing indazole compounds only, and a
set of molecular descriptors. We systematically compared the
predictive performance of the RMs with the null-hypothesis,
as well as with the results of the τRAMD method, where
relative residence times were estimated based on the lengths
of the dissociation trajectories for each compound. We found
that RMs have good predictive ability for residence times, even
for compounds where the τRAMD method fails because of
deficiencies in the modeling of the ligand-protein bound state
due to force field or sampling issues.

Comparison of the three data-sets, with different definitions
of the transition part of the trajectory, shows that the residence

time strongly depends on the interaction of the ligand with
residues of the binding cavity, when most of the bound state
protein-ligand contacts are still preserved. This is in accord
with the recent calculations of relative residence times for
HIV-1 protease inhibitors (Huang et al., 2019) and HIV-1
protease and HSP90 inhibitors (Ganotra and Wade, 2018),
which demonstrated that protein-ligand contacts in the complex
could be used to deduce ligand residence times. From the
linear regression model, as well as from clustering analysis, we
found out that the interaction of the ligand with F138 is very
important. Although F138 is not always directly contacting the
ligands in their bound states, it forms transient interactions with
aromatic groups as well as with polar groups of the binding
core (either halogen or carbonyl oxygen) present in most of the
compounds, and thereby promotes prolongation of the ligand
residence time.

As expected, the quality of the ML models strongly
depends on the range and the homogeneity of the distribution
of kinetic rate constants for the compounds studied, and
the size of the set of compounds with similar scaffolds
but different substitutions. In particular, the quality of the
present models is strongly affected by the fact that about
50% of the compounds have intermediate residence times,
while there are much fewer compounds with short or long
values of τ .

Finally, we demonstrated that the LR model based only on
the molecular features of the compounds reproduced the general
trend in τ reasonably well. It showed an increase of τ with
molecular size, but was less reliable for the prediction of the
dissociation rates of compounds with short τ values, for which
the determinants of the dissociation kinetics are more complex.
On the other hand, the SVR model trained on the molecular
features shows surprisingly good performance (similar to that
obtained when the model was trained on the complete set of
IFs), albeit with a larger variation in the performance for different
sub-sets of compounds.

Overall, this study demonstrates that the proposed machine
learning procedures can effectively extend the value of the
τRAMD procedure by making corrections for outliers,
improving the predictive ability for ligand residence time,
and giving information on key determinants of the ligand
dissociation mechanism and the ligand functional groups that
are critical for residence time prolongation.
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