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Habit and Identity: Behavioral, 
Cognitive, Affective, and Motivational 
Facets of an Integrated Self
Bas Verplanken* and Jie Sui

Department of Psychology, University of Bath, Bath, United Kingdom

Two studies investigated associations between habits and identity, in particular what 
people consider as their “true self.” Habit-identity associations were assessed by within-
participant correlations between self-reported habit and associated true self ratings of 80 
behaviors. The behaviors were instantiations of 10 basic values. In Study 1, significant 
correlations were observed between individual differences in the strength of habit-identity 
associations, measures of cognitive self-integration (prioritizing self-relevant information), 
self-esteem, and an orientation toward an ideal self. Study 2 further tested the assumption 
that habits are associated with identity if these relate to important goals or values. An 
experimental manipulation of value affirmation demonstrated that, compared to a control 
condition, habit-identity associations were stronger if participants explicitly generated the 
habit and true self ratings while indicating which values the behaviors would serve. Taken 
together, the results suggest that habits may serve to define who we are, in particular 
when these are considered in the context of self-related goals or central values. When 
habits relate to feelings of identity this comes with stronger cognitive self-integration, 
higher self-esteem, and a striving toward an ideal self. Linking habits to identity may 
sustain newly formed behaviors and may thus lead to more effective behavior 
change interventions.

Keywords: habit, identity, integrated self, true self, self-esteem, self-regulatory focus, value affirmation

INTRODUCTION

What determines our identity? A potential source of identity, which has received little attention 
in the literature on the self and the self-concept, is the array of our habits. A large portion 
of everyday behavior is habitual, that is, being performed frequently, often automatically, and 
in stable contexts (e.g., Verplanken and Aarts, 1999; Wood et al., 2002; Gardner, 2015; Verplanken, 
2018). Habits vary in a number of ways. One is complexity; some habits involve simple acts, 
such as nail biting or checking the time, while others are part of more complex behaviors or 
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routines, such as donating to charity or exercising. Habits also 
vary in terms of involvement of other people. For instance, 
taking the car to work is a solitary activity, whereas calling 
your parents maintains a relationship. And habits vary in the 
extent to which they are important to us. We  may not even 
be aware of the many unimportant habits, such as where you sit 
at the table or the way you  tie your shoes. Other habits are 
more important, such as those which express an important 
value. An unanswered question is whether or when habits 
contribute to what we  consider as our identity, and if this is 
the case, how these sources of identity are embedded in other 
self-related constructs and processes, such as beliefs about 
ourselves, self-esteem, and self-regulation.

Personal or self-identities can be  considered as mental 
representation individuals hold about who they are, which 
include autobiographical memories, self-attributions, beliefs, 
motivations, recurrent thoughts, emotions, and self-perceptions. 
These narratives are constantly constructed and revised (e.g., 
Vignoles, 2011). Habits may become part of self-identities 
through various psychological processes. One such process may 
be  the end result of enacted motivations, such as suggested 
in socio-cognitive models (e.g., Fishbein and Ajzen, 1975; Deci 
and Ryan, 1991; Rise et al., 2010). A strong motivation, anchored 
in self-identity, may instigate repeated action, which may then 
become a habit. Such habits may function as vehicles of self-
control in accomplishing a goal: habits relieve an individual 
from having to deliberate and decide on actions and may thus 
promote the accomplishment of a goal (e.g., Galla and Duckworth, 
2015). Another path to a habit-identity relation is through 
self-perception (e.g., Bem, 1972). Through the perception of 
our own frequently performed behaviors, we  may infer that 
these are important to us and may thus be  part of who we  are 
(e.g., Neal et  al., 2012; Wood and Rünger, 2016).

Empirical Evidence for a Habit-Identity 
Relation
What is the evidence for a habit-identity relationship? Some 
habits directly signify a particular identity. For instance, while 
the culture around smoking is rapidly changing, in some 
population segments this habit still stands for masculinity 
or being “cool” (e.g., Ng et  al., 2007). Self-identity has been 
studied as a potential addition to the theory of planned 
behavior. This theory poses an intention to act as the primary 
determinant of behavior, which in turn is determined by an 
attitude, normative pressure, and perceived control of the 
behavior (e.g., Ajzen, 1991). In a meta-analysis on the role 
of self-identity in the theory of planned behavior, Rise et  al. 
(2010) established that self-identity correlated 0.33 with past 
behavior, which has often been considered as a proxy for 
habit. A number of primary studies provided evidence for 
a habit-identity association. Charng et  al. (1988) reported a 
0.22 correlation between blood donation habit and a measure 
of identity as blood donor. Gardner et  al. (2012) found a 
strong correlation between measures of binge drinking habit 
and binge drinking identity among university students 
(r = 0.69). Gardner and Lally (2013) found a strong correlation 

between habit and intrinsic motivation for physical activity 
(r  =  0.64). Gatersleben et  al. (2014, Study 2) found that 
measures of environmental and frugal identities mediated 
between environmental values and pro-environmental behaviors 
(βs  =  0.35 and 0.28, respectively). Lindgren et  al. (2015) 
found a significant correlation between an implicit measure 
of drinking identity and drinking habit (r = 0.36). Verplanken 
and Roy (2016) found that an index of pro-environmental 
habits correlated significantly with biospheric values (r = 0.31), 
personal norms (r = 0.45), and personal involvement (r = 0.30), 
i.e., constructs that are closely related to self-identity. McCarthy 
et  al. (2017) reported a strong correlation between a measure 
of health-conscious identity and an assessment of healthy 
eating habit (r = 0.69). Albini et al. (2018) found a significant 
correlation between personal importance and habit of 
consuming vegetables (r = 0.49). As the relationships mentioned 
above are correlational, the causal flow in the habit-identity 
relation is unknown and may well be bi-directional: a particular 
identity may instigate behavior and thus maintain a habit, 
while the self-perception of a habit may feed into self-identity 
(cf., Wood and Rünger, 2016).

Two perspectives outside the social psychological domain 
may be  taken to support a link between habit and identity. 
The first comes from the area of moral development of the 
self as a core of personal identity. Developing a self-concept 
and self-identity comes with the development of a moral 
identity (e.g., Blasi, 1994). From an early age, we  learn to 
“do the right thing” in a variety of situations. By repeating 
such moral actions, these may turn into moral habits and 
feed into a moral identity. Such habits may become what can 
be  designated as “character,” “second nature dispositions,” or 
indeed, a moral identity (e.g., Aquino and Reed, 2002; Hulsey 
and Hampson, 2014; Ward and King, 2018). Second, an 
interesting view on the relationship of habit and identity from 
a philosophical perspective was put forward by Wagner and 
Northoff (2014). These authors discussed the difference between 
“personhood” and “personal identity.” Personhood refers to 
features that define a person at one specific point in time. 
However, as such features are fluid and impermanent, and 
in order to persist as the same person, that is, to have a 
personal identity, features need to remain stable. Wagner and 
Northoff (2014) thus considered habit as an explanatory 
construct, which links these different temporal dimensions to 
form a personal identity.

The empirical basis of a relationship between a habit and 
a self-identity is not unequivocal. For instance, Murtagh et  al. 
(2012) reported nonsignificant correlations between a measure 
of identity and measures of past travel mode behaviors (rs 
varying between 0.02 and 0.07). Also, while in the Albini 
et  al. (2018) study cited above personal importance and habit 
of consuming vegetables correlated significantly, no such 
correlation was present for consuming fruit (r  =  0.06). There 
was neither evidence of a habit-identity relation in a 
comprehensive study into the nature of students’ everyday 
habits conducted by Wood et  al. (2002), in which participants 
were asked to write hourly reports on their ongoing behaviors 
and experiences. If anything, in this study habits were associated 
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with negative self-evaluations and the relative unimportance 
of these behaviors for attaining personal goals.

Taken together, the studies and perspectives discussed above 
lead to two conclusions. The first is that there exists significant, 
and sometimes substantial, associations between measures of 
habit and measures of self-identity, and there are some 
arguments beyond social psychology for such a relationship. 
Second, such correlations are not being found across the 
board; there is a large variation between studies in the size 
of habit-identity correlations. This suggests that certain habits, 
but not all, relate to self-identity. We  contend that prime 
candidates for such a role are habits that are related to 
important goals or values. Goals and values may be integrated 
in one’s self-concept and are thus likely to be  repeatedly 
enacted (e.g., Deci and Ryan, 1991; Sheldon and Elliot, 1999; 
Aarts and Dijksterhuis, 2000; Verplanken and Holland, 2002; 
Bardi and Schwartz, 2003; Hitlin, 2003; Gatersleben et  al., 
2014; Burkley et  al., 2015). In addition, we  anticipate that 
people differ in the strength of habit-identity associations. 
First, different people have different habits and may thus 
associate different habits with their self-identity, which may 
lead to variation between studies. Second, people may differ 
in the extent to which they identify habits as being relevant 
for one’s identity in the first place.

The Integrated Self
An emerging theme in the literature on the self is the realization 
that some parts of the self are more essential than others, 
which has been referred to as real self (e.g., Rogers, 1961), 
authentic self (e.g., Koole and Kuhl, 2003; Johnson et  al., 
2004), or true self (Newman et  al., 2014; Strohminger et  al., 
2017). At the heart of this concept lies the notion of an 
integrated self, that is, a high degree of connectedness within 
and between cognitive, affective, motivational, and behavioral 
systems. Kuhl et  al. (2015) presented a neurobiological model, 
which explains the various functional characteristics of the 
integrated self, such as emotional and somatosensory 
connectedness, attention to self-relevant information, and self-
positivity. The integrated self is holistic and incorporates a 
vast amount of autobiographical memory. It functions by means 
of high-level parallel-distributed processing, operating largely 
at implicit levels, and is thus able to integrate a large amount 
of self-related processes – cognitive, emotional, motivational, 
and volitional – simultaneously (Kuhl et al., 2015). We contend 
that self-perception of behaviors per se is not what connects 
them to the self but that behaviors become part of the integrated 
self if two conditions are fulfilled. One is that the behavior 
has become habitual, that is, being repeatedly and automatically 
executed and has thus become ingrained in the person’s 
autobiographical memory. The second is that a behavior is 
related to an important goal or value. This is not the case 
for all habits and for all individuals.

Sui and Humphreys (2015) summarized a body of work 
that sheds light on properties of an integrated self in more 
detail at the neuro-cognitive level. As an indicator of the 
degree to which a person possesses an integrated self, these 

researchers used perceptual matching tasks, which assess 
differences in reaction time and accuracy between matching 
self-related versus other-related stimuli (Sui et  al., 2012). 
Larger differences indicate stronger self-prioritization effects 
(i.e., a stronger “self-bias”). Sui and colleagues demonstrated 
that self-referencing can have wide-ranging integrative effects 
with respect to perception, attention, memory, and decision 
making (e.g., Sui et  al., 2012), which is thus interpreted as 
cognitive self-integration. This evidence suggests that self-
referencing is not simply a narrative reflecting ongoing self-
related processes. Rather, self-referencing actively modulates 
cognitive processes and acts as a “glue,” which binds different 
forms of information, for instance, between stimuli in 
perception and memory, or integrates different stages of 
information processing, such as in decision making. Sui et al. 
(2012) argued that self-referencing leads to robust self-
prioritization effects in perception and cognition. Sui and 
Gu (2017) further put forward a neural framework of an 
integrated self where they argued that cognitive and affective 
aspects of the self-interact to influence behavior through the 
three neural networks – the ventral network including the 
ventral medial prefrontal cortex (vmPFC), the cognitive control, 
and the salience networks. Researchers have reported that 
inducing emotional valence can alter self-prioritization in 
face recognition. For example, when participants are asked 
to evaluate negative personality traits, there is a reduced 
advantage for processing self vs. others’ faces (Ma and Han, 
2010). Consistent with this, the self-prioritization effect in 
the perceptual matching task was disrupted in individuals 
with low mood (Sui et  al., 2016), due to the breakdown of 
the integrated self (in this case, the intrinsic association 
between self and positive emotion) in depressed individuals. 
In short, the strength of self-prioritization (“self-bias”) observed 
in these perceptual matching tasks can be  considered as a 
proxy for cognitive self-integration.

At the experiential level, a number of authors describe the 
“true self,” which arguably is a subjective experience of an 
integrated self (e.g., Newman et  al., 2014; Strohminger and 
Nichols, 2014; De Freitas et  al., 2018). The true self is what 
a person considers as one’s authentic core and is experienced 
as inherently moral and good. Although the true self is in 
essence a belief a person holds about oneself and may thus 
be false or distorted, it has consequences for a person’s cognitive 
and social functioning. For example, it has been reported 
that unfavorable self-related events are more likely to 
be  forgotten (Hu et  al., 2015). People also tend to attribute 
positive outcomes to themselves relative to other people while 
linking negative outcomes to others, thus demonstrating biased 
causal attributions in social evaluation (Greenwald, 1980), or 
to influence the environment (e.g., Newman et  al., 2014). 
Finally, moral values that make up someone’s true self may 
serve as benchmarks to judge others’ moral value status (e.g., 
Newman et  al., 2014). Thus, the true self has the potential 
to evoke feelings of self-worth and a sense of meaning in 
life (e.g., Schlegel et  al., 2009) and to protect the self from 
negative perspectives (Sedikides and Green, 2009). Particular 
habits, then, may be seen as instantiations of the accomplishment 
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of goals or values associated with the true self and may thus 
become incorporated in one’s self-identity.

The Present Studies
The present studies aimed at investigating the relationships 
between the degree to which individuals associate habits with 
their true self and how this relates to cognitive, affective, and 
motivational aspects of the self. Variation in habit-identity 
associations was assessed by presenting participants with 80 
behaviors, and asking two ratings for each of those behaviors, 
i.e., self-reported habit and how much the activity reflects their 
true self. For each participant, a correlation was calculated 
between these two ratings across the 80 behaviors, which thus 
served as a measure of habit-identity associations. In Study 1, 
this association measure was correlated with the measures of 
cognitive self-integration obtained by the perceptual matching 
paradigm as developed by Sui et  al. (2012). In addition, the 
study contained assessments of self-esteem as an affective 
component of the self and chronic self-regulatory focus style 
(i.e., “promotion” and “prevention”; Higgins, 1998) as a 
motivational aspect of the self. A promotion style is an orientation 
toward hopes, aspirations, and your ideal self. A prevention 
style is an orientation toward safety and responsibilities and 
fulfills what you  think ought to be  done. Positive correlations 
were expected between habit-identity associations, cognitive 
self-integration, self-esteem, and a promotion-style self-regulatory 
focus. Study 2 focused in more detail on the habit-identity 
association measure. This study aimed at demonstrating that 
habit-identity associations are stronger if these are being generated 
in the context of goals and values compared to a more 
concrete context.

STUDY 1

Method
Participants and Procedure
The study was conducted in a laboratory at the authors’ 
university. A power analysis was conducted prior to this study. 
In a previous study among 67 participants, admittedly older 
than in the present study, a mid-range correlation of 0.36 
(p  <  0.003) was found between cognitive self-integration in 
the perceptual matching task used in the present study and 
a self-report measure of personal distance (Sui and Humphreys, 
2017). Together with setting an α of 0.05, two-sided testing, 
accepting a power of 0.80, and aiming at detecting medium 
effect size correlations (r ≈ 0.30), a sample size of approximately 
85 was required. A total of 90 participants were recruited 
from the university’s student population. There were 29 males 
and 61 females. Their mean age was 21  years (SD  =  2.67). 
All participants had normal or corrected-to-normal vision. 
Informed consent was obtained from all participants according 
to procedures approved by the authors’ departmental ethics 
committee (IRB).

Participants worked individually and visually separated. They 
first carried out the perceptual matching task, which assessed 
cognitive self-integration. This was followed by a questionnaire, 

which contained the habit and identity ratings and assessments 
of self-esteem and self-regulatory focus. A session took 
30–40 min. Participants were paid £5.00 for their contribution.

Measures
Cognitive Self-Integration
Cognitive self-integration was measured by assessing the 
strength of self-prioritization (“self-bias”) in a perceptual 
matching task (Sui et  al., 2012). Participants were first asked 
to name one of their best friends. They then selected a gender-
matched stranger from a common name list not corresponding 
to anyone they knew. The named friend and stranger were 
then used in the perceptual matching task, where they were 
instructed to associate three geometric shapes (triangle, circle, 
square) with labels indicating the self (“You”), the named 
best friend (“Friend”), and the named stranger (“Stranger”), 
respectively. The assignment of the particular shapes to the 
three labels was counterbalanced across individuals. The self-
prioritization scores were calculated using the performance 
scores of “You” and “Stranger.” The reason “Friend” was 
included in the task was to make it sufficiently challenging 
so as to avoid ceiling effects.

After the association instruction, participants conducted 
the shape/label matching task. Participants were asked to 
judge whether or not simultaneously presented shape/label 
pairs (e.g., a circle/“You”) matched according to the associations 
they had been instructed to make. Each trial started with a 
central fixation cross for 500  ms, followed by a shape/label 
pair at the center of the screen for 100 ms. A shape (triangle, 
circle, or square) with 3.5  ×  3.5° of visual angle appeared 
above a white central fixation cross with 0.8  ×  0.8° of visual 
angle. One of three labels (“You,” “Friend,” or “Stranger”) 
covering 1.76/2.52°  ×  1.76° of visual angle was displayed 
below the fixation cross. All stimuli in white were displayed 
on a gray background. E-prime software version 2.0 was 
used to present the stimuli and to record responses. The 
experiment was run on a PC with a 22-in monitor 
(1,920  ×  1,080 pixels) at 60  Hz.

Half of the shape/label pairs conformed to the association 
instruction and should thus be responded to as “match” trials; 
on the remaining trials, the shapes and labels were re-paired 
to form “mismatch” trials. For mismatch trials, a shape was 
paired with one of the other labels (e.g., a circle/“Stranger,” 
in our example). The next frame was a 1,000  ms blank field. 
Participants were encouraged to make a “match” or “mismatch” 
response as quickly and accurately as possible within this 
1,000 ms interval by pressing one of two keys on the keyboard 
with the index or middle finger of the right hand. The order 
of response keys was counterbalanced across participants. A 
feedback message (“correct,” “incorrect,” or “too slow”) was 
then given in the center of the screen for 500 ms. Participants 
were informed of their overall accuracy at the end of each 
block. There were three blocks of 60 trials following 12 
practice trials. Thus, there were 30 match and 30 mismatch 
trials in each block.

Self-bias scores were calculated for reaction times (RT)  
and accuracy, respectively, for correct responses on match 
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shape-label trials. Only correct responses longer than 200  ms 
were included. All participants had accuracy scores >0.55 
(i.e., 5% or more above chance level). Self-bias on RT was 
inferred from the difference in RT for the self against the 
stranger condition, divided by the sum of the two conditions 
and multiplied by 100 {i.e., 100  ×  [(stranger − self)/(self + 
stranger)]}. Self-bias on accuracy was indexed by the difference 
in performance for the self against the stranger condition 
divided by the sum of the two conditions [i.e., (self − stranger)/
(self + stranger)]. Larger scores of both measures indicated 
a stronger self-bias and thus were taken as stronger cognitive 
self-integration.

Habit-Identity Associations
Participants were presented with 80 behaviors, which were 
chosen to cover 10 value-related motivation areas (cf., Schwartz, 
1992; Bardi and Schwartz, 2003): hedonism (e.g., “Enjoy a 
movie”), stimulation (e.g., “Do something exciting”), self-direction 
(e.g., “Find something out by yourself ”), universalism (e.g., 
“Buy ecological products”), benevolence (e.g., “Donate to 
charity”), conformity (e.g., “Wear what’s in fashion”), tradition 
(e.g., “Attend family occasions”), security (e.g., “Make sure your 
door is locked”), power (e.g., “Make your voice be  heard”), 
and achievement (e.g., “Study during the weekend”). Participants 
were asked to provide two ratings for each of the behaviors. 
The first rating was the self-reported frequency of performing 
the behavior (“How frequently do you do this activity”), which 
was considered as a proxy for habit strength. Responses were 
given on a 5-point scale ranging from “never” (1) to “always” 
(5). The second rating concerned the extent to which the 
behavior reflected participants’ true self. The instruction was 
to indicate “how much this activity is something that reflects 
who you  really are as a person (your “true self ”).” Responses 
were given on a 5-point scale ranging from “not at all” (1) 
to “very much” (5). For each individual participant, a correlation 
was calculated between the frequency and true self ratings 
across the 80 behaviors. These within-participant correlations 
were considered as a measure of individual differences in habit-
identity associations.

Self-Esteem
Self-esteem was assessed by the 10-item Self-Esteem Scale 
(Rosenberg, 1965). Sample items are “I feel I  have a number 

of good qualities” and “I wish I  could have more respect for 
myself ” (reverse-coded). Responses were given on 5-point scales 
ranging from “disagree” (1) to “agree” (5). Scores were coded 
such that higher numbers indicate higher self-esteem. Cronbach’s 
α was 0.85.

Self-Regulatory Focus
Individual differences in self-regulatory focus were assessed 
by the 18-item Promotion/Prevention Scale (Lockwood et  al., 
2002). The scale contains two subscales measuring a promotion 
and a prevention self-regulatory orientation, respectively. 
Examples of promotion orientation items are “I frequently 
imagine how I  will achieve my hopes and aspirations” and 
“My major goal right now is to achieve my ambitions.” Examples 
of prevention orientation items are “I’m anxious that I  will 
fall short of my responsibilities and obligations” and “My major 
goal right now is to avoid becoming a failure.” Responses were 
given on 7-point scales ranging from “not at all true of me” 
(1) to “very true of me” (7). Scores were coded such that 
higher numbers indicate a strong promotion or prevention 
focus. Cronbach’s αs were 0.87 and 0.73 for the promotion 
and prevention orientation subscales, respectively. The correlation 
between the two subscales was 0.42, p  <  0.001. In order to 
investigate the unique variances of each subscale, uncorrelated 
factor scores for each subscale from a Varimax rotated factor 
analysis were used in the further analyses.

Results and Discussion
The within-participant habit-identity correlations ranged from 
−0.19 to 0.89, suggesting substantial individual differences in 
habit-identity associations. The median correlation was 0.46. 
In the subsequent analyses, the habit-identity correlations were 
Fisher-Z transformed, although the results were nearly identical 
when untransformed correlations were used.

In Table 1, means, standard deviations, and correlations 
between the study variables are presented. In Figure 1, the 
corresponding scatterplots of eight key correlations are shown. 
The results suggest that the degree to which individuals associated 
habits with self-identity correlated statistically significantly with 
both self-bias measures as well as with self-esteem and a 
promotion self-regulatory orientation. In addition, the self-bias 
measures correlated statistically significantly with self-esteem 
and a promotion orientation.

TABLE 1 | Means, standard deviations, and correlations (Study 1).

Variable M SD 2 3 4 5 6

1. Habit-identity associations1 0.46 0.36 0.34*** 0.34*** 0.45*** 0.68*** 0.06
2. Self-bias on RT 6.23 5.34 0.51*** 0.22* 0.40*** 0.09
3. Self-bias on accuracy 0.11 0.12 0.21* 0.41*** 0.05
4. Self-esteem 3.60 0.71 0.52*** −0.34***
5. Promotion orientation2 0.00 1.00 0.00
6. Prevention orientation2 0.00 1.00

Note: N = 90. * = p < 0.05; *** = p < 0.001. 
1Within-participant Fisher-Z transformed correlations.
2Factor scores from a Varimax rotated solution. The means and standard deviations of the promotion and prevention raw scores were 5.13 (1.01) and 4.39 (0.88), respectively.
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Feelings of identity derived from habits were found 
associated with cognitive, affective, and motivational facets 
of the self. The pattern of correlations suggests that individuals 
for whom habits are strongly related to feelings of identity 

show stronger cognitive self-integration, higher self-esteem, 
and a stronger striving toward an ideal self. Note that the 
obtained correlations were between three very different types 
of data, that is, within-participant habit-identity correlations, 

A B

C D

E F

G H

FIGURE 1 | (A–H) Scatterplots of key correlations in Study 1.
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latency/accuracy data, and self-assessments, respectively, which 
speaks against inflated correlations due to consistency and 
social desirability biases.

STUDY 2

The assumption in Study 1 was that habits are implied in 
feelings of identity if these relate to important goals or values. 
Study 2 aimed to test that assumption. We  contend that habit-
identity associations are stronger if participants affirm the values 
that are perceived to be  related to the respective habits. The 
habit-identity association task, which was used in Study 1, 
was thus presented under two conditions1. In a value affirmation 
condition, participants were asked for each of the 80 behaviors 
to indicate why they would do the activity, in addition to the 
habit and true self ratings. They could choose between 10 
values, which represented the motivational continuum of 
Schwartz’s (1992) value circumplex. Participants in the control 
condition indicated for each activity at which time of the day 
they would likely engage in the activity and could choose 
between 10 specified times. The expectation was that the within-
participant correlations between the habit and true self ratings 
would be  stronger in the value affirmation versus control 
condition. The rationale was that value affirmation would 
enhance the salience of goals participants adhered to, which 
would thus lead to higher importance ratings.

Method
Participants and Design
The study was conducted online via Prolific Academic, which 
is a UK-based platform for online studies. A power analysis 
was conducted prior to this study. As there are no previous 
studies that could serve as a benchmark, we  aimed at being 
able to detect a small effect size in a two-sided t test between 
two independent samples (Cohen’s d  ≈  0.25), setting an α of 
0.05, and accepting a power of 0.80. The sample size needed 
for this setup was approximately 500. A total of 500 participants 
were recruited, 482 of which completed the study. All participants 
were students. There were 307 males and 173 females, while 
two participants did not indicate a gender. Their mean age 
was 22  years (SD  =  3.07). Informed consent was obtained 
from all participants according to procedures approved by the 
departmental ethics committee (IRB). Participants were randomly 
allocated to a value affirmation versus control condition. The 
task took 15–20  min to complete. Participants were paid £2.25 
for their contribution.

Materials
The habit-identity association task contained the same 80 behaviors 
that were used in Study 1. As an explanation of habit ratings, 
participants were told: “How much of a habit is this activity for 
you? A habit is something you  do frequently and automatically.” 
The ratings were then introduced as “When you  have the 

1 None of the other assessments in Study 1 were included in this study.

opportunity, how frequently and automatically do you  do this?2” 
Responses were given on a 5-point scale ranging from “never” 
(1) to “always” (5). As an explanation of true self ratings, 
participants were told: “How much does the activity reflect who 
you  really are as a person? That is, to what extent does the 
activity represent what you  would consider as your ‘true self.’” 
The identity ratings were then introduced as: “How much does 
this activity reflect your true self?” Responses were given on a 
5-point scale ranging from “not at all” (1) to “very much” (5). 
In between each habit and identity rating, participants in the 
value affirmation condition were asked to choose from a pull-
down menu why they would do the activity (“If you  would do 
this, why?”). They were presented with 10 value areas (Schwartz, 
1992), which were briefly explained: “Influence (social status and 
prestige, control over people and resources)”; “Achievement 
(personal success, competence, meeting high standards)”; “Pleasure 
(enjoyment, sensual gratification, indulgence)”; “Excitement 
(adventure, novelty, seeking challenges, exploring)”; “Independence 
(seeking freedom, independence, uniqueness, creativity)”; “Welfare 
(understanding, tolerance, welfare of people and nature)”; “Helpful 
(helping people you  meet or are in frequent contact with)”; 
“Tradition (respect, commitment, acceptance of customs from 
culture or religion)”; “Conformity (abiding by the rules, meeting 
others’ expectations, respecting norms)”; “Security (safety, harmony, 
stability for yourself, others, and the community at large).3” The 
value labels and their descriptions were presented on an instruction 
page, while the pull-down menu contained the 10 value labels. 
In the control condition, participants were also presented with 
a pull-down menu but were asked to indicate when they would 
do the activity (“If you  would do this, at what time would this 
typically occur?”). They could select one of the following 10 
times: 7  AM, 9  AM, 11  AM, 1  PM, 3  PM, 5  PM, 7  PM, 9  PM, 
11  PM, and 1  AM.

The validity of the value affirmation manipulation was tested 
in an online study among 93 participants. There were 38 males 
and 55 females, while two participants did not indicate a 
gender. Their mean age was 27  years (SD  =  8.28). Informed 
consent was obtained from all participants according to 
procedures approved by the authors’ departmental ethics 
committee (IRB). Participants were presented with a random 
selection of 25 from the 80 behaviors and were randomly 
assigned to the value affirmation or control condition described 
above. For each behavior, they were asked how important this 
activity would be  for them on a 6-point scale ranging from 
“not at all” (1) to “very much” (6). The 25 ratings were averaged. 
Participants in the value affirmation condition indeed gave 
higher importance ratings than participants in the control 
condition, M-value affirmation  =  4.02, control  =  3.73, 
t(91)  =  2.25, p  <  0.03, Cohen’s d  =  0.47. This supported the 
validity of the value affirmation manipulation.

2 We used “frequently and automatically” in Study 2 instead of “frequently” in 
Study 1, because, on reflection, the former is more aligned with contemporary 
conceptions of habit (e.g., Verplanken and Orbell, 2003; Gardner, 2015).
3 Some of the labels for the value areas were slightly adapted from the original 
labels Schwartz (1992) presented, as some of the latter were found too abstract 
for the purpose of this study (e.g., we  used “helpful” instead of “benevolence”, 
and “influence” instead of “power”).
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Results and Discussion
The within-participant habit-identity correlations in this sample 
ranged from −0.21 to 0.99. The median correlation was 0.69. 
The median correlation was 0.71  in the value affirmation 
condition and 0.65  in the control condition. A t test was 
conducted after a Fisher-Z transformation of the correlations. 
The difference between the two conditions was statistically 
significant, t(480)  =  2.34, p  <  0.02, Cohen’s d  =  0.21. The 
results were nearly identical when untransformed scores were 
used, t(480)  =  2.58, p  <  0.01, Cohen’s d  =  0.23. This result 
provides proof of concept and suggests that habit-identity 
associations are stronger if habits are linked to value-
based motivations.

GENERAL DISCUSSION

As we  argued in the introduction, habits are not necessarily 
associated with identity. Individuals differ in which habits they 
develop, and thus in which habits, if any, make up part of 
their self-identity. Incidentally, we  do not wish to argue that 
non-habitual behaviors cannot be part of someone’s self-identity. 
Our assumption was that some habits may be  more prone 
to relate to feelings of identity than others, namely those 
habits that are instantiations of chronic goals or values. In 
the present studies, habits were selected that were inferred 
from basic value domains (Schwartz, 1992). As values are 
inherently motivational forces, those habits are more likely to 
be  associated with value-related goals and have a higher 
likelihood to be  central to the self and feelings of self-identity 
(e.g., Verplanken and Holland, 2002). The variation in the 
habit-identity association measure used in both studies 
demonstrated that there are individual differences in the degree 
to which people associate habits with self-identity. In Study 1, 
this variation correlated with cognitive self-integration (self-
prioritization), self-esteem, and a promotion-style self-regulatory 
focus. Study 2 demonstrated that habit-identity associations 
are stronger when these are explicitly considered as instantiations 
of values, which corroborate the assumption that value-related 
habits are implied in feelings of self-identity.

The correlations found in Study 1 are consistent with 
integrated self frameworks as suggested by Kuhl et  al. (2015) 
and Sui and Gu (2017), which stress the interactions between 
cognitive, affective, and motivational aspects of the self for 
control of behavior. The correlations with habit-identity 
associations suggest that perceiving oneself to do things that 
fulfill important goals may be  part of such a network and 
may thus add to feelings of self-worth and represent strivings 
toward an “ideal self.” The latter may also be  a source of 
positive emotional experiences, as positive emotions and higher 
self-esteem are consequences of successful promotion-oriented 
self-regulation (e.g., Higgins, 1998). Consistent with this, breaking 
down intrinsic associations between self and positivity leads 
to reduced performance in self-recognition (Ma and Han, 2010), 
and negative mood induces a decreased self-prioritization effect 
in perception (Sui et  al., 2016). Kuhl et  al. (2015) considered 
self-positivity and inner security as one of the functional 

characteristics of the integrated self. The positive relations found 
in Study 1 may thus point to what Rogers (1961) described 
as characterizing “a fully functioning person,” that is, someone 
who aims at fulfilling their full potential. While the individual 
components that were included in this study are interesting 
in their own right, the apparent relationships between these 
different pieces of data suggest such a more holistic integrative 
structure. Self-perception of habits and associated feelings of 
identity may thus play a role in this system, at least to the 
extent to which an integrated self has been developed. It should 
be  noted though that a strong integrated self is not necessarily 
positive or wholesome but may also characterize individuals 
who are highly delusional or be  associated with narcissism 
and self-aggrandizing. But in those individuals too, self-perception 
of habits may function to support such beliefs.

An important question is what exactly the underlying 
mechanisms are of an integrated self. In other words, what 
are the dynamics that govern the relationships between 
behavioral, cognitive, affective, and motivational facets of an 
integrated self? The correlational data of Study 1, while 
demonstrating relations between these entities, leave unanswered 
questions of causality. For instance, do stronger habit-identity 
associations contribute to stronger cognitive self-integration 
and positive self-feelings, or do individuals with a strong 
integrated self and high self-esteem become more attentive to 
what they are doing to fulfill their ideal self? A promising 
approach to model these relationships is provided by control-
process models, which describe how individuals self-regulate 
in terms of behavior, cognition, affect, and motivation (e.g., 
Carver and Scheier, 1998; Vohs and Baumeister, 2017). While 
elaboration on these models is beyond the scope of this article, 
they describe processes that unfold when individuals experience 
discrepancies between a current state and a goal. Moral values 
that make up part of one’s true self may constitute such goals. 
If and when the self is activated, habits may fulfill different 
roles in a control-process model, for instance, as a way to 
lower the perceived discrepancy between a current state and 
a goal and thus generate positive affect. Habits may also 
function as a standard against which goal fulfillment is evaluated, 
which may lead to positive or negative feelings, depending 
on the outcome of such an operation. Another possible role 
of habits is a mechanism for the mind to prioritize the action 
from a range of options, which would lead to goal fulfillment 
(e.g., Verplanken et  al., 1994).

In both studies, we  correlated participants’ habit ratings with 
the degree to which they perceived these behaviors to be  part 
of their true self. While the true self is experienced as highly 
personal and is fundamental to who a person thinks they are 
(e.g., De Freitas et  al., 2018), the content of the moral beliefs, 
which underlie the true self, are strongly anchored in the culture 
the person belongs to (e.g., De Freitas et  al., 2017). This makes 
the true self an inherently social construct. A specific habit 
(e.g., helping an elderly person) may thus constitute a course 
of action by which a culturally determined moral value 
(benevolence) is expressed. Habits that are strongly associated 
with moral values may thus function as benchmarks to evaluate 
not only oneself but also to make inferences, and indeed, judgments, 
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about  other  people’s personality, mental state, or behavior (e.g., 
Newman et  al., 2014, 2015; De Freitas et  al., 2018).

A limitation of the present studies is that, for the obvious 
reason of avoiding an overload for participants, the habit and 
identity assessments for the 80 behaviors had to be  confined 
to one-item measures, while for psychometric reasons, this is 
not ideal. A related, and arguably more fundamental, limitation 
is that the one-item measures of behavioral frequency leave 
room for the argument that we  measured frequent, repetitive, 
or familiar behaviors, which may or may not be  habitual 
according to the contemporary definitions of habit. This has 
been salvaged somewhat in Study 2 by assessing how “frequent 
and automatic” the behaviors were executed (but see Gardner 
and Tang, 2014). While we  acknowledge this limitation, it has 
been demonstrated in numerous studies that used the Self-
Report Habit Index (Verplanken and Orbell, 2003), which 
contains items assessing the experience of repetition as well 
as automaticity, that these two components are strongly correlated.

As a corollary, the present study contributes to a discussion 
with respect to the Self-Report Habit Index (SRHI; Verplanken 
and Orbell, 2003). One of the 12 items of this scale refers to 
self-identity (“Behavior X is something that is typically me”). 
It has been debated whether this item should be  part of a 
self-assessment of habit (e.g., Gardner et al., 2012; Rebar et al., 
2018). Apart from the fact that this item consistently shows 
high item-total correlations with the scale, the present findings 
support the validity of the item as part of the SRHI.

Insight into the relationship between habit and identity may 
have important implications for behavior change interventions, 
in particular the longevity of a change if an intervention is 
successful. Two conditions may have to be  fulfilled for behavior 
change to be  maintained over time. The first is to turn new 
behavior into a habit, that is, behavior that is executed frequently 
and automatically (e.g., Rothman et al., 2009; Walker et al., 2015; 
Gardner and Lally, 2018). But second, long-term behavior 
maintenance may be  enhanced if a habit becomes part of an 
individual’s self-identity. For instance, West (2006) posits that 
self-identity can be  a major driver of behavior change and, 
importantly, the maintenance of newly acquired behavior (e.g., 
Tombor et  al., 2015). The present studies may thus point to an 
exciting new direction in designing more effective behavior change 

interventions, namely not only changing behavior per se but 
also turning new behavior into habits that are embedded in a 
self-identity context, and thus capitalize on an integrated 
self framework.

Conclusion
Some habits serve a self-identifying purpose, in particular when 
these are considered in the context of self-related goals or 
central values. The self may function as a subjective center of 
gravity, involving cognitive, affective, motivational, and behavioral 
facets (e.g., Sui, 2016). The strength of this “gravitational force” 
differs between individuals. For some, the self seems a relatively 
loosely assembled structure, whereas for others, it has a much 
stronger coherence. The present studies suggest that for the 
latter type of individuals habits may play a role in this structure 
and thus make up part of one’s self-identity.
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Background: Habits have been proposed to develop as a function of the extent to
which a behavior is rewarded, performed frequently, and executed in a stable context.
The present study examines how each of these factors are associated with behavioral
automaticity across a broad variety of behaviors drawn from previous habits research.
This study further assesses how perceived complexity of the behavior influences the
associations of rewards, frequency, and contextual stability with automaticity.

Methods: Participants (N = 459) completed an online survey assessing their
experiences and engagement with 25 different behaviors, including exercise,
handwashing, smoking, and medication adherence, among others. Exploratory factor
analysis validated a short, relatively novel scale of perceived behavioral complexity,
and multilevel analyses grouped by participant were used to examine the factors that
contribute to automaticity.

Results: Across behaviors, frequency, contextual stability, and perceived rewards were
positively associated with automaticity. Perceived complexity was negatively associated
with automaticity and moderated the influence of contextual stability and rewards, but
not frequency, on automaticity. Both contextual stability and rewards were stronger
predictors of automaticity when behavioral complexity was high rather than low, as
predicted; in addition, when contextual stability was high, more complex behaviors
showed greater automaticity than simpler behaviors.

Conclusion: The results of this study confirm that behavioral frequency, rewards,
and contextual stability are each independently associated with automaticity across a
spectrum of behaviors. This study further demonstrates that perceived complexity of a
behavior moderates the extent to which contextual stability and rewards are associated
with automaticity. The results affirm a need to further understand the components of
habits and how they differ across varying behaviors.
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Frontiers in Psychology | www.frontiersin.org 1 July 2019 | Volume 10 | Article 155615

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2019.01556
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2019.01556
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2019.01556&domain=pdf&date_stamp=2019-07-24
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.01556/full
http://loop.frontiersin.org/people/644178/overview
http://loop.frontiersin.org/people/742446/overview
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-01556 July 22, 2019 Time: 17:18 # 2

McCloskey and Johnson Habits, Quick and Easy

INTRODUCTION

As people go through their days, they execute thousands of
behaviors. Some behaviors may be complex, such as going to the
gym in the morning, and other behaviors may be simple, such as
shutting off the lights before one leaves the house. Some behaviors
may promote health; others may harm it. As behavior has
important consequences for individuals’ life outcomes, impacting
numerous domains such as health, career, and relationships,
a large body of literature aimed at predicting behavior has
developed. Perspectives such as the Theory of Planned Behavior
(TPB) posit that behavior is the direct result of intention, and
thus strive to uncover the factors that motivate individuals
to engage in particular behaviors (Fishbein and Ajzen, 1975).
Other approaches aim to understand the automatic influences
that drive behavior regardless of an individual’s intentions.
One particular approach focuses on the influence of habits.
Habits are behaviors that are performed repeatedly and with
little preceding forethought (Ouellette and Wood, 1998). As
about 45% of people’s behavior might qualify as habitual (Neal
et al., 2006), understanding habits is an important direction for
behavior research.

In psychology, habits might be understood as impulses toward
a behavior that are generated automatically in response to an
environmental cue from a context in which that behavior has
previously been repeatedly executed (Lally and Gardner, 2013),
or as the dominant responses that are mentally accessible in the
presence of such an environmental cue (Wood and Neal, 2009).
The concept of habit has been applied to predict diverse behaviors
such as recycling, seafood consumption, consumer behaviors,
‘cyber loafing’ at work, use of information technology, exercise,
and even negative thinking (Low, 2016). In a meta-analysis of
72 studies of exercise behavior, Hagger et al. (2002) showed
that including past behavior explained 19% of the variance
in later behavior over and above the variance accounted for
by TPB variables. A second meta-analysis examined a broad
spectrum of behaviors and found that past behavior explained
additional variance after accounting for TPB variables: 3.4% for
dietary behaviors, 10.3% for physical activity behaviors, 11.4%
for abstinence behaviors, and 25.3% for health-risk behaviors
(McEachan et al., 2011). In fact, when including past behavior
in the model, past behavior was the only significant predictor
of health-risk behaviors. Thus, understanding the mechanisms
whereby past behavior predicts future behavior is key to
understanding the determinants of many important behaviors.

Three major ‘ingredients’ have been proposed to be associated
with habit formation: contextual stability, behavioral frequency,
and rewards (Wood and Neal, 2016). Habits are environmentally
linked, such that a cue in the environment automatically triggers
an impulse toward a behavioral tendency (Wood, 2017). When
a behavior is performed regularly in a stable context, the
individual is more likely to encounter consistent cues that can
form the basis for a context-behavior association. As frequency
of this behavior increases, so too can the strength of the
context-behavior association (Wood and Neal, 2009). Rewards –
either intrinsic or extrinsic – may contribute to this process
by encouraging behavioral repetition (Wood and Neal, 2009;

Johnson et al., 2019), or by strengthening the ability of
behavioral repetition to contribute to habit strength (de Wit
and Dickinson, 2009). Previous research has examined the roles
of these components individually. For instance, Verplanken
(2006) established that, while behavioral frequency contributed
to habits, behavioral frequency alone cannot explain the full
impact of habits. Meanwhile, Wood et al. (2005) demonstrated
that changing contexts disrupted habits. Indeed, the associations
of frequency and contextual stability with habit strength are so
well accepted that the multiplicative interaction of behavioral
frequency and contextual stability (BF × CS) has been often
used as a measurement of habit strength (see Ouellette and
Wood, 1998). Phillips et al. (2016) have also shown that intrinsic
rewards predict exercise behavior through intentions for those
beginning an exercise routine, but through habit strength for
those maintaining a previous routine. A further, recent study
found that intrinsic motivation and pleasure strengthened the
repetition-habit association for new behaviors (Judah et al., 2018).
Yet, to date, no single study has simultaneously mapped the
relative weights of each of these three components (frequency,
contextual stability, and reward) in their associations with
automaticity. Further, there has been no research assessing how
each of these components contribute to automaticity across a
spectrum of behaviors.

As mentioned, McEachan et al. (2011) found that different
types of behavior were differentially predicted by past behavior;
therefore, there is a need to understand how characteristics of
behaviors influence automaticity. The complexity of the behavior
has been proposed to impact the development of habit-related
automaticity (Wood et al., 2002; Verplanken, 2006; Wood and
Neal, 2009; Lally et al., 2010). Behavioral complexity can be
understood as the number of physical or mental steps involved in
executing the behavior, in which behaviors that are complex are
more time-consuming and require a greater amount of planning;
for example, simple behaviors are exemplified by handwashing or
cigarette smoking and complex behaviors by performing well on
an intellectual task or quitting smoking (Boynton, 2005). More
complex behaviors may have reduced habit strength compared to
simple behaviors due to the number of steps that must be learned
before the behavior becomes automatic. Verplanken (2006)
showed that when behavioral complexity was experimentally
manipulated in a laboratory word-search task, habit formation
was impeded, even when frequency was kept constant. In a
daily diary study, Wood et al. (2002) further found that greater
complexity of a task was associated with more thoughts about the
task, which may indicate that simpler tasks are more automatic.
Further generalization of this association to a broad spectrum
of behaviors can bolster these findings, and other measures can
assess the influence of complexity as perceived by the individual
doing the behavior.

Behavioral complexity may also moderate the associations
of frequency, contextual stability, and rewards with behavioral
automaticity, but these interactions have not yet been tested.
We developed several hypotheses a priori and listed them in
our institutional review board protocol, along with rationales
for each (although we did not pre-register them otherwise).
Specifically, behavioral frequency might be a stronger predictor of
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automaticity of simple behaviors, rather than complex behaviors,
due to the number of steps that need to be learned in complex
behaviors. Indeed, in the previous study by Verplanken (2006),
habit strength for a novel behavior depended on complexity
when behavioral frequency was kept constant. If habit strength
presumably began at equal points (i.e., no habit strength) for
each of these novel simple and complex behaviors, the differential
development of habit strength over repeated actions would
imply an interaction effect between frequency and complexity.
Specifically, habit strength developed more slowly over repetition
when the behavior was complex, rather than when it was simple.
Yet, this previous study did not directly test an interaction
between frequency and contextual stability. The present study
examines such an interaction.

Conversely, contextual stability may be a weaker predictor
of automaticity for simple behaviors compared to complex
behaviors. Whereas the habits literature has focused primarily on
behaviors that are executed automatically in a singular context,
other behavior literature has also considered behaviors that are
cued in multiple contexts. The addiction literature, for example
has shown that multiple environmental cues can yield increased
craving and engaging in a problem behavior for a particular
individual (Fatseas et al., 2015). Implementation intention
research has also assessed the use of multiple cue-behavior
associations, but demonstrated that developing multiple “if [cue],
then [behavior]” plans does not yield effective behavioral changes,
compared to setting a single if-then plan (de Vet et al., 2011;
Verhoeven et al., 2013). As implementation intentions as well
are thought to yield behavior by increasing cognitive accessibility
of cue and behavior (Webb and Sheeran, 2008), there is need
to understand the conditions under which single or multiple
cues yield inclinations toward behavior. Behavioral complexity
may be a factor in the association between cues and the
resulting behavior, as simple behaviors might easily be performed
frequently in a broad variety of contexts such that many diverse
cues can become strongly associated with the behavior. A jogging
habit, for instance, may be cued only once a day when a person
arrives home from work, as finding the time and planning
resources to go jogging frequently at multiple times during the
day would be difficult. The same individual may be cued to
check their phone while making coffee, while in the bathroom,
and during their lunch break. The contextual variability of this
simpler behavior does not disprove its automaticity or cue-
behavior associations.

Complexity may also moderate the influence of rewards on
behavioral automaticity. It has been argued that rewards yield
habit development through increased repetition, particularly by
increasing intention to re-engage in that behavior (Rothman
et al., 2009; Johnson et al., 2019). Yet, in a survey assessing
individuals’ engagement with 48 different behaviors, from
handwashing to seatbelt use to quitting smoking, Boynton
(2005) also showed that intention is a stronger predictor
of engagement in behavior when behaviors are complex,
rather than when they are simple. Thus, if both patterns
appear, then it follows that rewards are likely to be stronger
predictors of automaticity for complex behaviors rather than
simple behaviors.

In order to examine the associations between behavioral
frequency, contextual stability, rewards, and behavioral
complexity on automaticity, this study utilizes and assesses
three relatively new scales. Low (2016) developed one to assess
contextual stability, and another to measure perceived rewards.
Both scales can be easily adapted to different behaviors, but
neither scale has undergone rigorous validation. Boynton (2005)
developed and validated a similarly generalizable self-report scale
measuring perceived behavioral complexity, but no subsequent
research has replicated it. Moreover, of these three novel scales,
none have been yet published in the scientific literature.

Low’s (2016) contextual stability scale drew on TPB literature
to create a broader measure of what constitutes a behavioral
context. Specifically, Ajzen and Fishbein’s (2005) Principle of
Compatibility is the principle that predictors such as attitudes
and intentions best predict behavior when they match on the
behavioral elements of target, action, context, and time (TACT).
Given the learned, associative nature of habits, an impulse toward
a behavior is likely to be greatest when an individual encounters
a situation that matches on TACT to a previous situation in
which that individual has been rewarded for the behavior. Indeed,
Low (2016) argued that habits’ strong predictive validity with
future behavior may be in part due to the greater inherent TACT
compatibility between past and future behavior. That said, while
habit research has tended to examine the extent to which an
individual repeats a given behavior, thus keeping constant ‘target’
and ‘action,’ context has been assessed primarily as the extent
to which an individual engages in a behavior in the same place
(e.g., Norman and Cooper, 2011) or in the presence of a single,
researcher-generated cue (Ouellette and Wood, 1998). ‘Context,’
or the environment in which an individual engages in a behavior,
could be considered in broader terms, and may also include other
individuals present or the tools with which one performs the
behavior (Ajzen, 1988, 2002). A pianist cannot play music unless
an instrument is present, for example, and the presence of an
electronic keyboard, compared to the presence of a piano, may
afford different behavioral impulses. Low’s measure, drawing on
the Principle of Compatibility, includes the social context, tools,
and manner with which the behavior is performed.

Previous published research assessing rewards in habit
strength have measured reward constructs with a single item
(e.g., Wiedemann et al., 2014; Judah et al., 2018), or through
behavior-specific scales assessing intrinsic motivation to engage
in a behavior (e.g., Phillips et al., 2016). Low’s measure of rewards
assesses the emotional and physical feelings of engaging in a
behavior, as well as the feelings of not engaging in that behavior,
and examines both positive and negative feelings. As a result,
Low’s scale potentially affords a more expansive and broadly
applicable measure than is presently available.

Behavioral complexity has been assessed in previous habits
literature, either through experimental manipulation (e.g.,
Verplanken, 2006) or through judgment on the part of the
researcher (e.g., Wood et al., 2002; Lally et al., 2010). To our
knowledge, Boynton’s (2005) scale represents the only validated
self-report survey of individuals’ perceptions of behavioral
complexity; her study found that this scale has good reliability
and construct validity across 48 different behaviors. The present
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study aims to replicate these findings with our selection of
25 behaviors, including health behaviors and behaviors more
contemporarily relevant to current lifestyles (e.g., mobile phone
checking). Use of a measure of perceived behavioral complexity
also has potential value for the literature, as perception of
behavioral barriers do not always correlate with objective
measures of such behaviors (McGinn et al., 2007), but perception
of difficulty nevertheless has the potential to influence behavior
(Gilpin et al., 2004).

By measuring the influence of behavioral frequency,
contextual stability, and rewards on automaticity across a
spectrum of 25 different behaviors, the present study examines
the ‘ingredients’ of habit development proposed by Wood and
Neal (2016) to draw together the wide reaches of the habits
literature – from exercise behavior to negative thinking. In
addition, the present study expands on the tools available
for examining habitual processes by testing the psychometric
characteristics of three scales related to theorized components
of habits, and furthers the discussion of habits by considering
how characteristics of the behavior (complexity) contribute
to automaticity.

MATERIALS AND METHODS

Participants and Procedure
Participants were recruited using MTurk; they were required
to be 18 or older and to reside in the United States. After
reviewing an information sheet and indicating agreement
with the procedures, participants were directed to complete
a survey using Qualtrics. Each participant was randomized
to one of three clusters in which they rated 11 behaviors
on several dimensions; seven behaviors were unique in each
cluster, and four behaviors (exercise, smoking, handwashing, and
medication adherence) were held constant across clusters. In
total, 462 surveys were returned. Three participants submitted
duplicate surveys; second surveys completed by the same
participant were deleted. No other surveys were removed,
making for a total of 459 surveys retained for analysis (154
in the first behavior group, 152 in the second group, and
153 in the third group). Ratings were extracted only from
behaviors that participants had performed, making for a total
of 3,790 behavior observations. Participants were paid $5 for
completing the survey.

Ethical Considerations
The protocol for this study was approved by the University
of Connecticut Institutional Review Board on August 9th,
2018 (protocol #X18-095, available from authors on request).
Potential participants were informed regarding the procedures
and demands of the study prior to starting the survey, and were
encouraged to contact the researchers if they had any concerns.
Individuals who agreed to the demands of the study were
directed to then complete the survey. Written consent was not
collected; the survey was designed to be anonymous and low-risk,
and obtaining signed consent would result in the collection of
identifying information. A waiver of signed consent was granted
by the University of Connecticut Institutional Review Board.

Measures
Behavior Level (Level-1) Variables
Behaviors
In total, this study collected ratings on 25 different behaviors
(see Appendix). For each behavior, participants first were
presented with a qualifier question; participants rated the extent
to which they engaged in each behavior on a 7-point Likert
scale. If participants responded that they did “not at all” engage
in a particular behavior, then they were directed to provide
ratings only on their perceived complexity of the behavior,
and their ratings were not retained for analysis in this study.
All participants were presented with questions for exercise,
handwashing, smoking, and medication adherence. Exercise and
handwashing were chosen to act as controls across groups.
Smoking and medication adherence ratings were collected from
all participants to achieve power with these behaviors as the
authors reasoned that most participants would neither smoke
nor take medications regularly and thus, a sizeable number of
participants would not be able to provide ratings about their
experiences with these behaviors.

In addition to the four behaviors presented to all participants,
in cluster one, participants also provided ratings on active
commuting, information technology use, sunscreen use, sitting,
flossing, recycling, and playing music (either by singing or
playing an instrument). In cluster two, participants also provided
ratings on car use, making savings deposits, condom use,
negative self-thoughts, sugary drink consumption, checking their
phone, and texting and driving. In cluster three, participants
also provided ratings on fruit and vegetable consumption,
unhealthy snacking, alcohol consumption, internet use, seafood
consumption, use of food safety practices, and playing video
games. These behaviors were selected to represent many
behaviors that have been assessed using habits in past research,
as identified in a recent meta-analysis (Low, 2016).

Behavioral frequency
Behavioral frequency was measured with a single item.
Participants who reported that they did engage in the given
behavior on the qualifier question used a sliding scale to indicate
how many times they engaged in that behavior in the average
week, from 0 to 20 (or more) times a week.

Contextual stability
Contextual stability was assessed using the eight items Low (2016)
developed to assess contextual stability of a behavior based on the
factors of Ajzen and Fishbein’s (2005) Principle of Compatibility.
Each item in this scale was scored on a scale from 0 to 10.

Perceived rewards
Perceived rewards were assessed as the feelings elicited by doing
a behavior, using the items Low (2016) developed. This scale
includes six items that assess the physical and emotional feelings
individuals experience as a result of doing or not doing a
particular behavior, and assesses both good and bad feelings. Each
item in Low’s scale is scored from 0 to 10.

Perceived behavioral complexity
Perceived behavioral complexity was measured with the six-item
scale that Boynton (2005) developed and validated. This scale
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assesses the perceived steps involved in executing a particular
behavior by measuring the extent to which an individual views
a particular behavior as difficult, time-consuming, and requiring
significant planning for the average adult. Each item was assessed
on a 7-point Likert scale.

TPB components
Perceived behavioral control and intention were measured based
on the guidelines Fishbein and Ajzen (2011) provided. Perceived
behavioral control was measured using two 7-point Likert items:
“I am confident I am capable of [doing behavior],” and “whether
or not I [do behavior] is up to me.” Behavioral intention was
measured with a single 7-point Likert item: “I intend to engage in
this behavior.” For the purposes of this analysis, we included only
TPB components that have been theorized to predict behavior
directly. (The TPB variables of attitude and social norm were also
measured but not analyzed for the present study.)

Automaticity
Automaticity was measured using the Self-Report Behavioral
Automaticity Index (SRBAI: Gardner et al., 2012). While
automaticity alone does not necessarily assess solely habits, this
measure has been shown to be reliable and valid, and available is
an adequate shorter version of the widely used Self Report Habit
Index (SRHI: Verplanken and Orbell, 2003; Gardner et al., 2012).
The measure has been applied to a wide variety of behavioral
domains including safe food handling, fruit consumption, and
physical activity (Low, 2016). Each item is scored on a 7-point
Likert scale (from low to high).

Participant Level (Level-2) Variables
Demographics
Participants provided their gender, range of annual income, and
age range. Participants also reported if they had found the survey
through an online forum such as Reddit. Personality traits of
conscientiousness and neuroticism were also measured, but not
reported, for the present study.

Preliminary Analyses
Factor analyses were used to test scale validity. Exploratory factor
analysis was applied to the three relatively new scales used in this
study: behavioral complexity, contextual stability, and rewards.
Confirmatory factor analyses were used to test the validity of
the scales that have been previously well-supported. Exploratory
factor analysis was run in SPSS version 25.0 (Ibm Corp., 2017).
Confirmatory factor analysis was run in R (R Core Team, 2018)
using the lavaan package (Rosseel, 2012). Further, intraclass
correlations (ICC) were also calculated for each Level-1 variable
(using adjusted scales, if deemed appropriate; see Results) to
assess the extent to which the different behaviors and participants
accounted for variation for each scale. Within-group ICC values,
clustered by participant, were also computed between Level-1
variables using the psych package in R (Revelle, 2018).

Main Analyses (and POMP-Scored
Variables)
In order to account for the multiple behavior observations taken
from each participant, multilevel models were used, in which

behavior ratings were nested within participants. All multilevel
models were run in R using the lme4 package (Bates et al., 2015).
Level-1 predictors consisted of individual ratings of behavior,
including behavioral frequency, contextual stability, rewards,
and complexity of the behavior. Level-2 predictors consisted
of participant-level characteristics, including age and gender.
Predictors were uncentered and were entered in the model in
the form of percent of maximum possible (POMP) scores, such
that the intercept represented the lowest score possible for each
predictor (Cohen et al., 1999). Cohen et al. (1999) recommend
use of POMP scores as more intuitive than presenting varying
scales with unique and often meaningless units. POMP scoring
has previously been used to compare across disparate scales, most
frequently in meta-analysis (Cerasoli et al., 2014). In the present
study, POMP scoring eases visual comparison of variables across
multiple scales. Further, POMP scoring facilitates multilevel
modeling and interpretation of results, as it ensures all variables
are entered in the model on equivalent scales. Gender was
dummy-coded. All multilevel models included random effects of
behavior and participant. Significant interactions were inspected
with the jtools package in R (Long, 2018). Post hoc mediation
analyses were run using the mediation package in R (Tingley
et al., 2014). Two primary models were run.

Model 1
Model 1 tested how Level-1 variables of each behavioral
frequency, contextual stability, rewards, and complexity impact
automaticity, as well as how complexity interacts with the other
three variables to predict automaticity. An interaction between
frequency and contextual stability was also included, in order
to account for the association between automaticity and the
popular BF × CS measurement of habit strength. Gender and
age were included as Level-2 covariates; first, main effects only
were tested (reported as Model 1a), after which interactive effects
were added to the model (reported as Model 1b) so as to yield
accurate estimates of main and interactive effects. The model was
tested with and without the interaction between frequency and
contextual stability; results did not meaningfully differ, and only
the model including the interaction is reported. The conceptual
model appears in Figure 1. The general form of the model
is given by:

AUTO = [γ00 + γ01GENDER + γ02AGE + γ10FREQ

+ γ20CONTEXT + γ30REWARD + γ40COMPLEX

+ γ50COMPLEX × FREQ + γ60COMPLEX

× CONTEXT+ γ70COMPLEX × REWARD

+ γ80FREQ× CONTEXT] + ε

Model 1 was first run as a multilevel model across behaviors,
and then again individually as a regression for each of the four
behaviors presented to all participants (exercise, handwashing,
smoking, and medication adherence). By re-examining Model
1 for individual behaviors, extraneous confounds introduced
by assessing varying behaviors in the multilevel model (such
as behavioral desirability or healthiness of the behavior) were

Frontiers in Psychology | www.frontiersin.org 5 July 2019 | Volume 10 | Article 155619

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-01556 July 22, 2019 Time: 17:18 # 6

McCloskey and Johnson Habits, Quick and Easy

FIGURE 1 | Model 1: The influence of each frequency, contextual stability, and rewards on automaticity, as moderated by complexity (conceptual model). Level 1
variables are behavior variant, meaning that within participants, multiple scores were collected for different behaviors; behavior invariant variables include Level 2
variables that represent participant characteristics that are consistent across multiple observations for different behaviors.

controlled for. In particular, objective complexity was held
constant in each individual behavior model and thus the role of
perceived complexity was central.

Model 2
Model 2 aimed to replicate findings of Model 1 by testing the
influence of rewards and complexity on habit strength, using
the BF × CS interaction as a measure of habit strength. Age
and gender were again included as Level-2 covariates, and a
complexity × reward interaction was entered after main effects.
The conceptual model appears in Figure 2. The general form of
the model is given by:

BF × CS = [γ00 + γ01GENDER + γ02AGE+

γ10REWARD + γ20COMPLEX + γ30COMPLEX×

REWARD] + ε

RESULTS

Each participant provided ratings for an average of eight different
behaviors, and each behavior was rated by an average of 152
participants (Table 1). Of all behaviors assessed in this study,
handwashing was rated by the greatest number of participants
(453), and texting and driving was rated by the fewest number
of participants (45, representing 30% of participants presented
with this behavior). Table 2 provides descriptive statistics for
both Level-1 and Level-2 variables, aggregated across behaviors.
The recruited sample had similar demographic characteristics to
a typical MTurk sample (Huff and Tingley, 2015). Of the 459
participants, 260 (57%) participants were male, and 197 (43%)

participants were female. A plurality (48%) of participants was
between 25 and 34 years of age. Demographic information is
available in the Supplementary Materials.

Preliminary Analyses
Missing Data
In total, 375 items were missing (0.0019% of items possible).
The key dependent variable of automaticity was determined to
be non-normally distributed using a Shapiro–Wilk normality test
(W = 0.90, p < 0.001), and thus imputation was performed in R
with the MICE package (van Buuren and Groothuis-Oudshoorn,
2011) using predictive means matching, which is particularly
appropriate for non-normal data (Morris et al., 2014). Mean
differences between the imputed and non-imputed datasets were
assessed for each item (Diggle et al., 1995; Dong and Peng, 2013),
and no significant differences were found for any items.

Differences Between Groups
There were no significant differences for behavior group
for age [F(2,456) = 2.83, p = 0.060] or for gender [for
being male, F(2,456) = 3.014, p = 0.050; for being female,
F(2,456) = 2.89, p = 0.056; two participants selected ‘other’
as their gender]. Nonetheless, as these analyses approached
significance, age and gender were retained as covariates for
further analyses.

Scale Reliability and Validity
Of the scales used in this analysis, all but the scale for rewards had
acceptable reliability. Contextual stability showed a reliability of
α = 0.85, 95% CI [0.85, 0.86] (ranging from α = 0.77 to α = 0.93
for individual behaviors); behavioral complexity had a reliability
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FIGURE 2 | Model 2: The influence of rewards and complexity and their interaction on habit strength, as measured by frequency and contextual stability. Level 1
variables are behavior variant, meaning that within participants, multiple scores were collected for different behaviors; behavior invariant variables include Level 2
variables that represent participant characteristics that are consistent across multiple observations for different behaviors.

TABLE 1 | Behaviors rated, ordered from most frequent to least frequently rated behaviors, along with means on key study variables.

Behavior N Ratings % Ratings
possible

Frequency Contextual
stability

Rewards Complexity Habit
strength

PBC Intention

Handwashing 453 98.69 89.56 61.73 57.88 32.01 78.80 94.37 93.47

Exercise 374 81.48 26.91 62.91 64.06 65.64 40.87 89.38 85.98

Medication use 257 55.99 40.19 70.62 41.17 48.04 55.38 85.13 82.82

Fruit and vegetable consumption 153 100.00 53.73 59.00 72.75 43.79 51.70 93.42 91.13

Internet use 153 100.00 91.08 68.89 73.59 48.96 76.14 92.67 94.30

IT use 152 98.70 85.20 64.02 60.86 58.46 74.25 86.70 90.98

Sitting 152 98.70 92.66 68.50 61.71 28.03 85.48 87.03 79.89

Food safety practices 149 97.39 66.54 65.75 54.83 54.19 76.68 91.95 93.10

Phone checking 147 96.71 88.03 58.70 52.18 32.65 76.43 88.97 83.48

Smoking 143 31.15 68.25 66.42 65.94 46.77 69.26 80.42 72.13

Unhealthy snacking 139 90.85 30.76 48.17 69.21 32.33 51.82 87.62 63.72

Car use 136 89.47 50.51 63.88 53.82 59.33 58.27 87.29 86.97

Recycling 133 86.36 47.18 59.13 57.82 45.69 65.79 90.76 88.72

Playing video games 125 81.70 38.72 64.19 76.88 64.43 45.97 90.80 83.65

Flossing 122 79.22 37.91 68.73 48.11 43.51 55.15 91.74 87.70

Seafood consumption 119 78.29 17.90 48.36 73.70 42.26 34.15 89.20 77.79

Negative self-thoughts 119 77.78 38.11 30.48 13.45 44.44 69.33 67.11 33.73

Depositing savings 118 77.63 13.69 57.42 72.72 53.24 48.27 85.53 88.74

Sunscreen use 113 73.38 20.49 54.70 46.37 41.14 46.62 91.40 82.81

Sugary drink consumption 110 72.37 33.41 52.69 65.73 32.94 47.34 85.32 59.61

Active commuting 109 70.78 40.32 70.60 49.08 58.22 61.37 81.59 81.26

Alcohol consumption 97 63.40 21.55 60.48 70.31 42.39 36.49 87.26 67.75

Playing music 94 61.04 42.45 54.73 80.53 61.23 58.97 84.19 82.07

Condom use 78 51.32 18.97 54.31 58.72 44.32 57.83 85.71 80.95

Texting and driving 45 29.61 28.67 46.92 36.67 64.83 49.37 72.06 51.43

Variables are represented in the form of percent of maximum possible (POMP) scores so that higher scores represent more of the variable, using the adjusted scales
where applicable (see preliminary results for more details). PBC, Perceived behavioral control. See Appendix for detailed definitions of each behavior.

of α = 0.84, 95% CI [0.84, 0.85] (ranging from α = 0.55 to α = 0.91
for individual behaviors). One item on this scale consistently
reduced the reliability of the complexity scale (“For the average
adult, how automatic is this behavior?”); this item was further
inspected in factor analysis and ultimately removed for multilevel
analysis. Without this item, the behavioral complexity scale had
a reliability of α = 0.92 (ranging from α = 0.77 to α = 0.96 for

individual behaviors). The SRBAI had consistently high reliability
(α = 0.96, 95% CI [0.96, 0.96], ranging from α = 0.90 to 0.97 for
individual behaviors).

The scale for rewards had a poor reliability of α = 0.51,
95% CI [0.49, 0.54] (ranging from α = 0.03 to α = 0.69
for individual behaviors). Exploratory factor analyses on the
underperforming rewards scale suggested two factors, but the
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TABLE 2 | Descriptive statistics for within-person (Level 1) variables.

M SD

Habit variables

Automaticity 60.41 29.84

Behavioral complexity 46.90 23.93

Contextual stability 60.72 21.88

Rewards 59.25 30.44

Frequency 52.02 36.85

Theory of Planned Behavior variables

Perceived behavioral control 87.99 15.46

Intention 82.23 22.93

These descriptive statistics are drawn from the percent of maximum possible
(POMP) scores, using the adjusted scales where applicable (see preliminary results
for more details).

scale fit poorly onto two factors (RMSEA = 0.69, 95% CI
[0.67, 0.71]). Given the poor reliability and validity of the
rewards scale, main analyses were performed using only a
single item from this scale (“When you [do behavior], how
pleasurable does it feel?”). This approach is in line with
previous research that has associated pleasure with habit strength
(Judah et al., 2018).

Exploratory factor analysis for the behavioral complexity scale
also suggested two factors, but the scale did not fit well on a
two-factor model (RMSEA = 0.20, 95% CI [0.18, 0.22]); item
analysis revealed that the second factor was driven entirely by
a single item (“For the average adult, how automatic is this
behavior?”). As this item also reduced the overall reliability
of the scale and was determined to be particularly similar to
our dependent variable of automaticity, the item was removed;
when removed, the complexity scale fit well onto a single
factor (RMSEA = 0.045, 95% CI [0.035,0.059]). Thus, further
analyses were completed using the five-item version of the
complexity scale. For contextual stability, exploratory factor
analysis also suggested two factors. Item analysis suggested the
two factors represented a factor of stability of the physical
environment, and a factor of stability of the social environment.
Yet, the scale did not optimally fit onto a two-factor model
(RMSEA = 0.24, 95% CI [0.24, 0.25]). Further, despite good
reliability of the scales, the measure for contextual stability
also did not map well onto a single factor (RMSEA = 0.18,
95% CI [0.17, 0.18]). Removing the two items that loaded
on the social environment factor did not improve the fit of

this scale, and thus the full scale was retained. The SRBAI
showed acceptable fit for a one-factor model (RMSEA = 0.072,
95% CI [0.054, 0.092]). The Appendix shows all scales as
used for analysis.

Intraclass Correlations
First, empty multilevel linear models with random effects of
behavior were used to compute an ICC for each Level-1
variable. As frequency and automaticity were found to be
bimodally distributed around the extremes, these variables
were stratified into ‘low’ and ‘high’ using a median split,
and a logistic multilevel regression was run to compute ICC
scores, using the formula proposed by Zeger et al. (1988).
Frequency had an ICC of 0.48; automaticity had an ICC
of 0.21. With a Gaussian distribution, contextual stability
showed an ICC of 0.16, rewards showed an ICC of 0.22,
and behavioral complexity had an ICC of 0.22. In addition,
ICC values were also calculated using empty multilevel linear
models with random effects of participant. With random
effects of participant, rewards had an ICC of 0.29, contextual
stability 0.36, and behavioral complexity 0.22. Using logistic
models, frequency showed an ICC of 0.08 and automaticity
0.27 with random effects of participant. Within-group ICC
values between Level-1 variables, clustered by participant, are
reported in Table 3.

Main Analyses
Model 1
Model 1 (Figure 1) was conducted using a multilevel generalized
linear model with a binomial logistic distribution, due to the
non-normal distribution of automaticity. Model 1a tested main
effects and found frequency, contextual stability, and rewards
positively predicted behavioral automaticity, while behavioral
complexity and age negatively predicted automaticity. Model
1b also included interactive effects; two significant interactions
appeared (Table 4). At high levels of behavioral complexity, as
hypothesized, rewards were more predictive of high automaticity
compared to at low levels of behavioral complexity (Figure 3,
left panel). Complexity interacted with contextual stability as
predicted such that when behaviors were perceived as complex,
contextual stability was a stronger predictor of high behavioral
automaticity than when behaviors were perceived as simple. In
addition, at low levels of contextual stability, more complex
behaviors were less likely to show automaticity than simpler
behaviors, while at the highest levels of contextual stability,

TABLE 3 | Within-group intraclass correlations (ICC) values between Level-1 variables, clustered by participant (all ps < 0.001).

Measure 1 2 3 4 5 6 7

(1) Automaticity 1.00

(2) Frequency 0.65 1.00

(3) Contextual stability 0.30 0.31 1.00

(4) Reward 0.10 0.13 0.18 1.00

(5) Complexity −0.26 −0.25 0.06 0.05 1.00

(6) Perceived behavioral control 0.12 0.18 0.26 0.26 −0.07 1.00

(7) Intention 0.27 0.34 0.45 0.34 0.07 0.44 1.00
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TABLE 4 | Results of Model 1: frequency, contextual stability, and rewards as predictors of habit strength, moderated by behavioral complexity.

Predictor variable Unstandardized B SE Standardized β p

Model 1a (Main effects only)

Frequency 0.039 0.002 2.856 <0.001∗∗∗

Complexity −0.006 0.003 −0.278 0.026∗

Rewards 0.005 0.002 0.278 0.008∗∗

Contextual stability 0.020 0.003 0.866 <0.001∗∗∗

Age −0.012 0.003 −0.539 <0.001∗∗∗

Male 0.0004 0.002 0.041 0.794

Model 1b (Including interactive effects)

Frequency × Complexity −0.00004 0.0001 −0.214 0.380

Frequency × Contextual stability −0.00003 0.0001 −0.16 0.666

Complexity × Rewards 0.0002 0.0001 0.813 0.019∗

Complexity × Contextual stability 0.0005 0.0001 2.176 <0.001∗∗∗

Model 1a tested only the main effects; Model 1b included interactive effects alongside the previously tested main effects. Both models included random effects of behavior
and participant, with behaviors nested within participant. ∗p < 0.05. ∗∗p < 0.01. ∗∗∗p < 0.001.

FIGURE 3 | (Left) Probability of high automaticity across behaviors as a function of the reward value of the behavior, moderated by behavioral complexity. (Right)
Probability of high automaticity across behaviors as a function of the stability of the context in which one does the behavior, moderated by behavioral complexity;
lines curve due to the logistic analysis.

more complex behaviors were more likely to show greater
automaticity than simpler behaviors (Figure 3, right panel).
Frequency did not interact with behavioral complexity or
contextual stability to predict high behavioral automaticity.
Including interactive effects in the model significantly improved
fit over the model including only main effects, χ2 (4,
N = 459) = 31.61, p < 0.001.

Individual behaviors
Model 1 was also run individually for the four behaviors
that were rated in all three clusters: exercise, handwashing,
smoking, and medication adherence (Table 5). Of these
four behaviors, exercise was, on average, rated the most
complex and handwashing was rated the simplest; exercise
was also rated on average the most complex across the
full sample of 25 behaviors, and handwashing was rated
among the simplest (second only to sitting). Results for these
behaviors generally showed parallel patterns to the multilevel
model, with some exceptions. Behavioral frequency, contextual

stability, and rewards each predicted high automaticity for
all four control behaviors, with the exception that rewards
did not predict automaticity for smoking. Perceived behavioral
complexity predicted high automaticity only for exercise and
medication adherence. Rewards did not interact with perceived
complexity to predict automaticity for any of the behaviors,
but contextual stability interacted with complexity to predict
high automaticity for handwashing, and a similar trend
emerged for smoking. When handwashing was perceived as
complex, contextual stability was positively associated with high
automaticity, but when handwashing was perceived as simple,
the predictive value of contextual stability on automaticity was
reduced (Figure 4, left panel). When smoking was perceived
as complex, contextual stability was positively associated
with high automaticity, but when smoking was perceived
as simple, contextual stability was negatively associated with
automaticity (Figure 4, right panel). When the interaction
between frequency and context was included in the model,
this effect was no longer significant for smoking. Nevertheless,
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TABLE 5 | Results of Model 1 by individual behaviors: frequency, contextual stability, and rewards as predictors of habit strength, moderated by behavioral complexity.

Behavior Predictor variable Unstandardized B SE Standardized β p

Exercise

Frequency 0.057 0.010 1.188 <0.001∗∗∗

Complexity 0.040 0.012 0.627 <0.001∗∗∗

Contextual stability 0.041 0.013 0.878 0.001∗∗

Rewards 0.010 0.008 0.267 0.207

Male 0.002 0.003 0.100 0.561

Age −0.014 0.008 −0.305 0.111

Frequency × Complexity 0.001 0.001 0.203 0.539

Frequency × Contextual stability 0.001 0.001 0.270 0.457

Complexity × Contextual stability −0.0004 0.001 −0.163 0.549

Complexity × Rewards −0.0001 0.001 −0.022 0.920

Handwashing

Frequency 0.023 0.006 0.450 <0.001∗∗∗

Complexity 0.002 0.007 0.053 0.730

Contextual stability 0.023 0.007 0.418 0.001∗∗

Rewards 0.011 0.004 0.334 0.009∗∗

Male −0.003 0.003 −0.131 0.299

Age −0.007 0.006 −0.157 0.198

Frequency × Complexity −0.0002 0.0003 −0.104 0.434

Frequency × Contextual stability −0.0002 0.0004 −0.094 0.495

Complexity × Contextual stability 0.001 0.0005 0.360 0.041∗

Complexity × Rewards 0.0005 0.0003 0.299 0.091

Smoking

Frequency 0.042 0.009 1.505 <0.001∗∗∗

Complexity 0.036 0.012 0.954 0.003∗∗

Contextual stability 0.013 0.013 0.262 0.334

Rewards −0.002 0.010 −0.038 0.875

Male −0.003 0.005 −0.128 0.582

Age −0.019 0.012 −0.389 0.108

Frequency × Complexity −0.001 0.0004 −0.524 0.201

Frequency × Contextual stability −0.0002 0.0004 −0.148 0.608

Complexity × Contextual stability 0.001 0.0008 0.771 0.080

Complexity × Rewards 0.0004 0.0006 0.250 0.526

Medication adherence

Frequency 0.017 0.006 0.490 0.005∗∗

Complexity 0.015 0.008 0.342 0.055

Contextual stability 0.048 0.011 0.918 <0.001∗∗∗

Rewards 0.020 0.005 0.673 <0.001∗∗∗

Male −0.0001 0.003 −0.003 0.985

Age 0.0001 0.0001 0.146 0.340

Frequency × Complexity 0.0002 0.0003 0.126 0.522

Frequency × Contextual stability −0.0003 0.0004 −0.151 0.499

Complexity × Contextual stability −0.0002 0.0006 −0.086 0.730

Complexity × Rewards 0.0004 0.0002 0.302 0.089

In all models, interactions and main effects were entered separately. ∗p < 0.05. ∗∗p < 0.01. ∗∗∗p < 0.001.

the frequency and context interaction did not significantly
predict automaticity.

Model 2
Model 2 (Figure 2) aimed to replicate findings of Model
1, using the BF × CS measurement of habit strength in
place of automaticity. As Model 1 used a binomial logistic
distribution, the BF × CS variable was also stratified into ‘high’

and ‘low’ using a median split in the interests of replication.
In Model 2, rewards again were associated with high habit
strength, and complexity was negatively associated with habit
strength (Table 6). Complexity further interacted with rewards
to predict habit strength, following the same patterns found in
Model 1; when behaviors were perceived as complex, rewards
were stronger predictors of high habit strength (Figure 5),
compared to when behaviors were seen as simple. Including the
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FIGURE 4 | (Left) Probability of high automaticity for handwashing as a function of the stability of the context in which one does the behavior, moderated by
behavioral complexity; lines curve due to the logistic analysis. (Right) Probability of high automaticity for smoking as a function of the stability of the context in which
one does the behavior, moderated by behavioral complexity; lines curve due to the logistic analysis.

TABLE 6 | Results of Model 2: rewards as associated with of habit strength (BF × CS), moderated by behavioral complexity.

Predictor variable Unstandardized B SE Standardized β p

Model 2a (Main effects only)

Rewards 0.108 0.013 0.660 < 0.001∗∗∗

Complexity −0.010 0.002 −0.491 < 0.001∗∗∗

Age −0.001 0.002 −0.028 0.774

Male −0.0003 0.001 −0.029 0.769

Model 1b (Including interactive effects)

Complexity × Rewards 0.003 0.001 1.295 < 0.001∗∗∗

Model 2a tested only the main effects; Model 2b included interactive effects alongside the previously tested main effects. Both models included random effects of behavior
and participant, with behaviors nested within participant. ∗∗∗p < 0.001.

interaction term significantly improved the fit of the model, χ2

(1, N = 459) = 23.47, p < 0.001.

Post hoc Analyses
Preliminary analyses suggested that unhealthy behaviors were
more automatic than healthy behaviors. A mediation analysis
evaluated whether behavioral complexity was confounded with
unhealthiness of behavior in the present study. A significant
mediation effect emerged (ACME = 0.019, p < 0.001), with
behavioral complexity accounting for 42.6% of the association
between unhealthy behavior and automaticity. Unhealthiness of
the behavior was no longer associated with automaticity when
behavioral complexity was accounted for (β = 0.122, p = 0.18),
suggesting complete mediation.

Given that rewards have been predicted to promote
habit strength by promoting intention to engage in the
behavior, an additional mediation analysis tested if intention
explained the effect of rewards in Model 1; it did not
(ACME =−0.0001, p = 0.084).

Finally, a model evaluated the predictive validity of
automaticity on behavior enactment in our sample. As

behavior enactment was bimodally distributed around the
extremes, a logistic analysis was again used. Results revealed that
automaticity significantly predicted behavior above and beyond
the effects of intention and perceived behavioral control alone,
χ2(1, N = 459) = 595.88, p < 0.001.

DISCUSSION

The present study confirmed that, across 25 behaviors, behavioral
frequency, contextual stability, and rewards were each associated
with behavioral automaticity. It additionally established
that complexity of the behavior predicts automaticity and
interacts with both contextual stability and rewards, thus
providing insights to the role of behavioral complexity in
habitual processes (Figure 3). Together, these findings provide
clarity regarding the components of habits across multiple
domains of behavior.

The interactive effects of complexity on the influence of
rewards and contextual stability on automaticity explains the
ways in which experiences of a behavior lend to non-effortful
control. Rewards are associated with positive attitudes and
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FIGURE 5 | Probability of high habit strength as a function of perceived rewards, moderated by complexity; lines curve due to the logistic analysis.

intentions, and they may provide utilitarian function in
promoting engagement in beneficial behaviors (e.g., even beyond
the influence of intentional processes; Diamond and Loewy,
1991). Johnson et al. (2019) maintained that rewards impact
habit strength by promoting intention to perform the behavior
in the future, and Boynton (2005) found that executing complex
behaviors (e.g., studying for an exam) is more dependent on
intention than simpler behaviors (e.g., using a seatbelt). In line
with this previous literature, we had expected that rewards
would positively predict behavioral automaticity, and that this
association would be strengthened with more complex behaviors.
Both patterns appeared, when using either automaticity and
the BF × CS interaction as measures of habit strength. Thus,
regardless of whether one considers habit as a function of
automaticity or as a function of frequency and contextual
stability, perceptions of rewards and complexity are important
components of habit strength.

Still, post hoc analyses found no significant mediation effect
in which the influence of rewards on automaticity was explained
by greater intention for rewarded behaviors. These findings
cast doubt on an association of rewards and habit strength
solely through intention, but are, nonetheless, in line with
other recent research. For example, Phillips et al. (2016) found
that rewards predicted exercise behavior through intention for
behavior instigators, but not for behavior maintainers; possibly,
in the habit formation process, intention increases initially,
but diminishes as habits develop. Due to the cross-sectional
nature of this study, the present research was not able to give
a full picture of rewards in behavior for initiators compared to

maintainers. Judah et al. (2018) also found only inconsistent
support that rewards predicted habit development through
increased behavioral repetition; rather, rewards impacted habit
strength by strengthening the association between doing a
behavior and habit development.

The present study did not test a moderation association
between rewards, behavioral frequency, and habit strength, but
if complex behaviors are executed less frequently due to the
number of steps and time involved in doing these behaviors,
rewards may be more important for habit development for
complex behaviors than simple, frequently executed behaviors
by strengthening the effect of few repetitions. Additionally,
Lally et al. (2010) found a logarithmic function of habit
development over frequency; plausibly, rewards might drive
this pattern by providing diminishing returns with each
repetition. Indeed, the operant conditioning literature has
established that continuous reinforcement is not as effective
for long-term behavior change as variable reinforcement
(Guttman, 1953), and Stawarz et al. (2015) found that
although rewards effectively promoted behavior, automaticity
development was hindered. Thus, simple behaviors that can
easily be executed may not benefit as strongly as complex
behaviors from the presence of rewards due to a function of
diminishing returns.

Thus, while TPB approaches have argued that rewards impact
behavior by promoting positive attitudes toward a behavior,
which then increases intention to engage in the behavior, the
present research confirms that rewards are also instrumental
in non-intentional behavioral processes. In the case of positive,
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healthy behaviors, this reward-based process can promote self-
regulation by transferring control past the limits of intention
and yielding long-term behavior change (Lally and Gardner,
2013). Yet, in the case of unhealthy or negative behaviors,
rewards have the potential to circumvent self-regulation efforts
(Johnson et al., 2019). The present findings support the need
for a more nuanced understanding of the mechanisms through
which rewards yield behavior in habits and other forms of
non-effortful control.

It was hypothesized that complexity and contextual stability
would interact to predict automaticity such that contextual
stability would be a stronger predictor of automaticity when
complexity is low. The results did reveal this pattern, which lends
support to the argument that simple behaviors might be executed
easily in multiple contexts, such that multiple cues might come
to cue the same behavior. If habits are understood as the
impulse toward a given behavior when an individual encounters a
particular cue (Lally and Gardner, 2013), measurement of simple
behavioral habits using self-report measures might not target a
single habit, but rather multiple habits related to executing the
same behavior. As the present study did not directly measure the
specific cues that trigger habitual behaviors for each individual,
this explanation cannot be further substantiated. An alternative
argument might posit that while complex and simple habits
have the potential to be triggered by a single environmental cue,
complex behaviors require more complex cues that depend on
multiple broader aspects of the overall context, while simpler
habits can be initiated in response to a simple cue that can exist
in multiple contexts. For instance, an individual’s exercise habit
might be cued when they see their sneakers by the door, but
only after work and when the weather is fair, while the same
individual’s seatbelt habit might be cued every time they sit in
a car, regardless of time of day or weather conditions. Such
experiences have been reported qualitatively in previous research
(Lally et al., 2011).

An unexpected interaction between contextual stability and
complexity also appeared, such that when contextual stability
was high, more complex behaviors were associated with greater
automaticity compared to simpler behaviors. This finding
appears counter-intuitive; we had no reason to expect that
more complex behaviors become more automatic than simple
behaviors when both the simple and complex behaviors are
performed in stable contexts. The interaction found in this study
may be an artifact of using self-report measures of automaticity
across such a spectrum of behaviors; the validity of asking
individuals the extent to which they enact a behavior ‘without
awareness’ has been previously questioned (Hagger et al., 2015).
It is possible – perhaps even likely – that participants scored
the extent to which they executed behaviors automatically based
on what they considered was automatic for that particular
behavior, rather than across behaviors. Doing so may have yielded
different criteria by which the varying behaviors were rated as
automatic. For instance, we hypothesized that contextual stability
would be a stronger predictor for complex behaviors rather than
simple behaviors as simple behaviors could be easily executed
in multiple contexts, leading to automaticity across contexts.
Our participants may have been using a similar lay theory; thus,

when considering simple behaviors executed only in a particular
context, they may have considered these behaviors to be less
automatic because of their situational dependence, expecting that
truly automatic simple behaviors would be executed regardless
of context. Previous literature has shown, for example, that social
smokers are less likely than those who smoke in multiple contexts
to identify as smokers or to consider their behavior a ‘personal
addiction’ (Moran et al., 2004), but may nevertheless reflect
physiological addiction (DiFranza and Wellman, 2005).

The findings of this study largely supported the hypotheses,
but other results were surprising. No effect of age was
hypothesized, but age was found to be negatively associated
with automaticity in the first model. It is possible this finding
was driven by the choice of behaviors assessed in this study;
alcohol consumption has been shown to peak in young adulthood
(Britton et al., 2015), and several behaviors assessed in the present
study are dependent on phone or internet use (such as texting
and driving and IT use), which are associated with younger age
(Andone et al., 2016; Neves et al., 2018).

In the first model, an interaction between behavioral frequency
and complexity was predicted, such that when complexity was
high, frequency would be a weaker predictor of habit strength,
but no interaction was found. The present findings would suggest
that the association between behavioral frequency and complexity
as predictors of habit strength is purely additive. To our
knowledge, the present study is the first to examine an interaction
between frequency and complexity, and the present findings
might support the interpretation of Verplanken’s (2006) results
as an additive association. While individuals in the simple task
condition had higher habit strength than those in the complex
task condition when frequency was held constant, perhaps the
simple task condition started with higher habit strength due to
the low levels of complexity.

Further, the BF × CS interaction did not significantly predict
automaticity after accounting for the main effects of frequency
and contextual stability. This null effect is perhaps surprising
given that BF × CS is frequently used as a proxy for habit
strength. Taken with the finding that contextual stability is less
associated with automaticity when complexity is low rather than
high, these results may suggest a need to better understand
contextual stability in habits. Frequency and contextual stability
may have additive rather than interactive associations with habit-
related automaticity. Yet, rewards and complexity were similarly
associated with the BF × CS interaction as with automaticity;
regardless of whether one considers habits as automaticity or as
patterns of behavior, these components of habit hold constant.
Thus the present findings appear to be relatively robust.

While the multilevel model assessed factors associated with
automaticity across behaviors while accounting for random
effects of individuals, the following single-level models compared
individuals on a single behavior. These single-level models
examining individual behaviors (see Table 5) provide insights
into the components of habit strength when behavioral
characteristics are held consistent. For instance, frequency
was associated with automaticity for each individual behavior
assessed, but rewards were associated with automaticity only
for the health promotion behaviors of exercise, handwashing,
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and medication adherence, and not for the health risk behavior
of smoking. Thus, the prominence of frequency as a factor
of habit is maintained, and rewards are important factors for
behavioral automaticity, but further behavioral moderators may
need to be considered.

In addition, the single-level models provide particular insights
to the role of perceived complexity, as examining single behaviors
at a time holds the objective complexity constant. When
decomposing the first model to test the influence of each
behavioral frequency, contextual stability, perceived rewards, and
behavioral complexity on automaticity for individual behaviors,
the patterns found across the full spectrum behaviors did always
not hold consistent. Some associations with automaticity for
individual behaviors were surprising; for each exercise, smoking,
and medication adherence, perceived complexity was positively
associated with high automaticity. Further, participants tended to
rate exercise as more complex (M = 64.06) than handwashing
(M = 32.01), yet, despite the finding that rewards were a
stronger predictor for complex, rather than simple, behaviors
when assessing all behaviors, rewards were only a significantly
associated with automaticity for handwashing and not exercise.
These findings further support the need to better understand
the factors that yield perceptions of behavioral complexity for
different behaviors; for instance, individuals who are required
to take multiple daily medications may perceive medication
adherence as complex, but have stronger habits for medication
adherence than someone who only takes only one pill daily
for a relatively minor condition. An individual who exercises
moderately by jogging a few times a week may view exercise
as relatively non-complex, while a ‘gym rat’ who devotes a
significant amount of time to daily exercise may have an
elaborate exercise routine. The Dunning-Kruger effect may also
have played a role in the present findings, as individuals who
engage more in particular behaviors may come to understand
the complexities involved with that behavior, compared to
those who have only had passing experiences with a behavior
(Dunning, 2011). Thus, the individual behavioral models may
point to additional moderators for future research examining
habits across behaviors, such as health importance or knowledge
of the behaviors. Further analyses with objective measures of
complexity might also be compared to the present findings
to confirm the influence of perceived complexity as compared
to objective complexity. Given the theoretical non-reasoned
pathways of habitual control, differential influences of perceived
and objective complexity would be particularly interesting.

This study further supported the validity of a five-item
version of Boynton’s (2005) behavioral complexity scale using
a large sample assessing a diverse span of behaviors. Future
research might draw on this short, easily administered scale
to assess the extent to which perceived behavioral complexity
predicts behavior outcomes. Unfortunately, the other two new
scales assessed by this study were not as well supported. Low’s
(2016) measure of contextual stability showed good reliability
but was found to load onto two factors, rather than a single
factor. The presence of two factors in this scale might call
to question the structure of a behavioral ‘context.’ Previous
descriptions of context in the Principle of Compatibility have

called for consideration of broad contextual factors on equal
levels of generality or specificity (Ajzen, 1988), but have not
detailed key facets of such contexts. Examination of the two
factors that appeared in this study reveals a factor loading on
the physical environment as well as a factor loading on the
social environment. Future research might assess if physical
and social contexts differentially influence behavioral predictors.
Regardless, the scale of contextual stability did not fit particularly
well on a two-factor model. The items of this scale could be
adjusted and re-assessed to examine if a better-fitting two-factor
structure emerges. Following such adjustments, this scale has
the potential to be a valid assessment of contextual stability
that provides a broader assessment than extant measures. The
rewards scale showed remarkably poor reliability and validity,
which may suggest this scale does not generalize to all behaviors.
Different measures of rewards should be used and evaluated in
future research.

Limitations and Future Directions
The findings of this study are limited by measurement validity.
Several variables were assessed with a single item, and the
contextual stability scale did not load well onto the expected
one-factor model. Issues of measurement validity are evident
in our results by the convergence of our models (Model 1
converged at gradient 0.100, while Model 2 converged at gradient
0.0004), and by the existence of standardized effect sizes greater
than 1, which were not accounted for by multicollinearity. In
light of considering these issues, the current findings should
be interpreted with caution, and future analyses should aim to
substantiate the findings of the present study with improved
measures. In particular, the use of new measures for rewards
and frequency would be particularly apt, given that each of these
variables were measured with a single item in the present study.
In addition, this study examined factors that have been theorized
to lead to habit development, but only using cross-sectional
methods; thus, each factor was shown to be associated with
habit strength, but not explicitly to be involved with the process
of habit development. Longitudinal replications are needed to
support our findings.

Also, habits were measured using the SRBAI, which represents
one of the shortest, validated measures tapping automaticity in
habit strength. Despite the practical strengths of this measure,
the SRBAI does not directly examine habits as a function of
cue-behavior association, which is an important aspect of habits
(Wood and Neal, 2016). As a result, the SRBAI may potentially
fail to differentiate between habits and other non-learned forms
of automaticity (Gardner, 2015). Regardless, findings from
the second model in the present study reveal that similar
patterns emerge when using alternative measurements of habit
strength. No measure yet adequately taps all three dimensions
of frequency, automaticity, and cue-behavior association, but
as such measures are developed, findings from the present
study might be further replicated with these new measures.
Further, one item of the SRBAI measures the extent to which
a behavior is performed frequently; in the present study, this
item overlaps with the predictor of frequency, and may account
for the remarkably high association between frequency and
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automaticity, or for the null association between the BF × CS
and automaticity, after accounting for the main effect of
frequency. An association between frequency and automaticity
is unsurprising and has been supported many times in the
literature, but in order to more accurately assess the relative
associations between each habit ‘ingredient’ and automaticity,
alternative measures that do not directly tap frequency should be
used in the future.

There are alternative ways the construct of ‘rewards’ might be
considered. The rewards item used in the present study assessed
rewards as a function of the extent to which an individual finds
the behavior to be pleasurable – which can be thought of as an
immediate, sensory experience (Judah et al., 2018). This approach
draws on the conceptualization of rewards in animal learning
models of habit (e.g., Broadbent et al., 2007). Other studies
have also frequently examined rewards in habits by assessing
intrinsic motivation, or the inclination to act because of inherent
enjoyment of the behavior (e.g., Gardner and Lally, 2013; Phillips
et al., 2016). Pleasure and intrinsic motivation have been shown
to have similar patterns of influence on habit strength, suggesting
that both may be valid ways of tapping the rewards pathway
(Judah et al., 2018), but future research measuring rewards
as intrinsic motivation may further substantiate our findings.
Rewards might also be conceptualized as extrinsic rewards: that
is, as a reinforcement external to the behavior. Previous literature
has suggested that external rewards might in fact undermine habit
development (Wood and Neal, 2016), but future research might
assess if complexity impacts this association as well.

Given that behavioral complexity and healthiness of behaviors
were confounded in the present study, a different sampling of
behaviors may yield a more complete picture of habits in healthy
and unhealthy behaviors. Engagement in unhealthy behavior may
also be influenced by low levels of social desirability and other
factors specific to undesired behaviors that were not assessed in
this research. Further studies might assess the different pathways
by which healthy and unhealthy habits develop, controlling for
complexity in order to understand the influence of these other
factors. That said, the current sample of behaviors was drawn
largely from the habits literature; present findings suggest that
commonly studied health promotion and health risk behaviors
may have different associations with habit in part due to varying
levels of complexity, which substantiates the need to understand
behavioral complexity in habits. Participants in the present
study reported also consistently high levels of intention and
perceived behavioral control, even for unhealthy behaviors; as
such, findings may not be generalizable to unintended habits.
Future research may wish to compare the factors associated with
intended as compared to non-intended habits.

This study focused primarily on the components of habit
development; future research might assess the influence of
complexity on habit disruption. Previous research has often
focused on habit disruption through changing contexts (e.g.,
Wood et al., 2005; Verplanken et al., 2008). If contextual stability
is a stronger predictor of habit strength for complex, rather
than simple behaviors, this approach might be more effective
for changing complex behaviors and less effective for simpler
behaviors such as the health-risk behaviors assessed in this
study. Given the influence of habits on behavior beyond that of

intention, understanding the role of complexity in disruption of
unwanted habits would improve efforts at behavior change in
negative or health-risk behaviors.

CONCLUSIONS

In sum, this study confirms that each of the three ‘ingredients’
of habit development proposed by Wood and Neal (2016) –
behavioral frequency, contextual stability, and rewards –
are independently associated with automaticity across
a broad spectrum of behaviors, and that complexity of
the behavior often influences these associations. Perceived
behavioral complexity appears to strengthen the associations
of rewards and contextual stability on habit strength, and
thus behavioral complexity is an important factor in mapping
habitual processes and is worthy of future investigations to
better understand it.
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APPENDIX

Measures
Contextual Stability
When you [do behavior], how consistently do you do it. . .
0(Never the Same). . . 10(Always the same)

(1) At the same time(s) of day?
(2) On the same day(s) of the week?
(3) For the same amount(s) of time per sitting?
(4) In the same particular way(s)?
(5) In the same location(s)?
(6) With the same people (who are also doing it)?
(7) Around the same people (who are NOT doing it)?
(8) Using the same object(s) or tool(s)?

Rewards
When you [do behavior] how does it feel? 0(Not at all). . . . . . . .
10(Extremely)

(1) Pleasurable?

Behavioral Complexity
1(Not at All). . . . . 7(A Great Deal)

(1) In general, how challenging is [behavior] for the average
person?

(2) How much attention does the average person need to give
to [behavior] to do it well?

(3) How complex is [behavior]?
(4) How much planning is involved before [behavior]?
(5) On average, how much time does it take to [behavior]?

Behavior Definitions
Exercise
By exercise, I mean engaging in physical behavior for 30 min or
more that elevates your heart rate.

Handwashing
By handwashing, I mean washing your hands in any context.

Smoking
By smoking, I mean using cigarettes to smoke tobacco.

Taking Medication
By taking medication, I mean taking medication that has been
prescribed to you by a healthcare professional.

Fruit and Vegetable Consumption
By eating fruits and vegetables I mean any time you eat fruits or
vegetables, not necessarily at the same time.

Unhealthy Snacking
By unhealthy snacking I mean eating foods high in fat or sugar
not at meal times.

Alcohol Consumption
By drinking alcohol, I mean drinking at least one unit of alcohol
(approximately one measure of spirits, half a glass of wine, or half
a pint of beer).

Internet Use
By internet use, I mean accessing the internet through computers,
phones, or tablets for either leisure or work use.

Seafood Consumption
By eating seafood, I mean eating fish or shellfish.

Food Safety Practices
By food safety practices, I mean handling and treating food in
such a way as to reduce the risk of getting sick from food, such as
washing hands and surfaces when handling food, keeping food at
the “correct” temperature, and avoiding unsafe foods.

Playing Video Games
By playing video games, I mean playing games on a
computer or console.

Active Commuting
By active commuting, I mean traveling to and from work or
school by a means that requires some physical activity on your
part, such as walking, biking, or using public transport.

IT Use
By IT use, I mean using technology to save, receive, or
send information.

Sunscreen Use
By sunscreen use, I mean applying a product with SPF
protection to your skin.

Sitting
By sitting, I mean sitting in any context, such as in a car or on a
bus, or at work/home/or school.

Flossing
For the following questions, I will ask you about your feelings and
behaviors regarding flossing. By flossing, I mean using dental floss
to floss your teeth.

Recycling
By recycling, I mean putting recyclable materials in
recycling receptacles.

Playing Music
By playing music, I mean performing music by playing a musical
instrument and/or by singing.

Car Use
By car use, I mean that when you need to use transportation, you
drive a car.

Depositing Savings
By depositing savings, I mean putting money in a dedicated
savings account.

Condom Use
By condom use, I mean using a condom while engaging in
sexual activity.
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Negative Self-Thoughts
By negative self-thoughts, I mean negative thoughts you
have about yourself.

Sugary Drink Consumption
By drinking sugary drinks, I mean drinking beverages that are
high in sugar, such as soda, energy drinks, or juice.

Phone Checking
By checking your phone, I mean checking your phone for
notifications with or without a notification alert.

Texting and Driving
By texting and driving, I mean reading and sending texts and/or
instant messages while driving.
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Enhanced Avoidance Habits in
Relation to History of Early-Life
Stress
Tara K. Patterson* , Michelle G. Craske and Barbara J. Knowlton

Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States

The effect of stress on the balance between goal-directed behavior and stimulus–
response habits has been demonstrated in a number of studies, but the extent to
which stressful events that occur during development affect the balance between these
systems later in life is less clear. Here, we examined whether individuals with a history of
early-life stress (ELS) show a bias toward avoidance habits on an instrumental learning
task as adults. Participants (N = 189 in Experiment 1 and N = 112 in Experiment 2) were
undergraduate students at the University of California, Los Angeles. In Experiment 1, we
hypothesized that a history of ELS and a longer training phase would be associated with
greater avoidance habits. Participants learned to make button-press responses to visual
stimuli in order to avoid aversive auditory outcomes. Following a training phase involving
extensive practice of the responses, participants were tested for habitual responding
using outcome devaluation. After completing the instrumental learning task, participants
provided retrospective reports of stressful events they experienced during their first
16 years of life. We did not observe evidence for an effect of the length of training,
but we did observe an effect of ELS, with greater stress predicting greater odds of
performing the avoidance habit. In Experiment 2, we sought to replicate the effect of
ELS observed in Experiment 1, and we also tested whether the presence of distraction
during training would increase avoidance habit performance. We replicated the effect of
ELS but we did not observe evidence of an effect of distraction. Taken together, these
data lend support to the hypothesis that stress occurring during development can have
lasting effects on the balance between goal-directed behavior and stimulus–response
habits in humans. Enhancement of avoidance habits may help explain the higher levels
of negative health outcomes such as heart and liver disease that have been observed in
individuals with a history of ELS. Some of the negative health behaviors that contribute to
these negative health outcomes, e.g., overeating and substance use, may be performed
initially to avoid feelings of distress and then transition to being performed habitually.

Keywords: stress, habit, avoidance learning, instrumental learning, outcome devaluation, goal-directed action

INTRODUCTION

The effects of stress on physical and psychological health have been of increasing interest in recent
years, with one area of focus being how individuals are affected by stress that occurs during
development (early-life stress, ELS). Common sources of ELS are childhood abuse and neglect. Such
experiences have been shown to cast a long shadow on health throughout the lifespan, affecting
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outcomes in adulthood ranging from severe obesity (Anda et al.,
2006), heart disease (Dong et al., 2004), and liver disease (Dong
et al., 2003) to sexually transmitted disease (Hillis et al., 2000)
and depressive disorders (Chapman et al., 2004). The behavioral
and neural mechanisms of the associations between ELS and
adult health are largely unknown. Because many negative health
outcomes are linked to repetitive behaviors such as overeating
or substance use, it is possible that an increased reliance on
stimulus–response habits in this population could explain some
of the health effects experienced by its constituents.

Stimulus–response habits can be defined as instrumental
behaviors that, in contrast to goal-directed actions, have come
to be automatically elicited by stimuli in whose presence the
behavior has been repeatedly performed, without regard to
instrumental outcomes (Dickinson, 1985). For example, an
animal that has been overtrained to press a lever to obtain a
food reward will persist in lever pressing even after the food
outcome has been devalued (Adams, 1982). In this scenario,
the animal’s behavior is thought to be guided by the stimulus–
response association (i.e., the association between the lever and
the pressing behavior) rather than by the value of the outcome
(i.e., the food reward), because the animal persists in performing
the response when the stimulus is present even though the
outcome associated with performing that response is no longer
desired. Habits have also frequently been studied using maze
navigation tasks, especially in rodents; in this assay, habitual
behavior is assessed by setting up a situation where the extent
to which behavior is based on stimulus–response associations
can be inferred from navigation decisions or performance (e.g.,
Packard and McGaugh, 1992; McDonald and White, 1994).
In humans, habitual behavior has also been investigated with
the probabilistic classification task, in which participants learn
to classify stimuli based on trial-by-trial feedback. This task
can be performed using the habit memory system, as in the
case of individuals with amnesia (Knowlton et al., 1994),
and can also be performed using the declarative memory
system, as in the case of individuals with Parkinson’s disease
(Knowlton et al., 1996).

A number of studies have shown that stress increases
habitual behavior in both non-human animals and humans.
Experimentally induced stress has been shown to decrease
sensitivity to outcome devaluation (Dias-Ferreira et al., 2009;
Schwabe and Wolf, 2009, 2010), increase habitual behavior in
maze navigation (Kim et al., 2001; Schwabe et al., 2008), and
bias competition between the declarative memory system and the
habit learning system in favor of habit learning in probabilistic
classification (Schwabe and Wolf, 2012). The effects of stress on
habitual behavior are likely mediated by stress hormones (for
review, see Wirz et al., 2018), and a study using human infants
showed that this stress-induced shift to habitual responding can
occur as early as 15 months of age (Seehagen et al., 2015).
Although most studies of this phenomenon have measured
habitual behavior shortly after stress exposure, a study of male
rats exposed to stress during the first 2 weeks of life found
that they showed increased habitual behavior in maze navigation
as adolescents (Grissom et al., 2012), and humans whose
mothers reported that they were exposed to stress prenatally

showed increased habitual behavior in maze navigation as adults
(Schwabe et al., 2012).

Two other factors that have been shown to influence habitual
behavior are the amount of training and the presence of
distraction. Animals that receive a limited amount of training
show behavior that is goal-directed (i.e., sensitive to outcome
devaluation), whereas animals that receive extended training
show behavior that is habitual (i.e., insensitive to outcome
devaluation), indicating that with greater training, behavior
transitions from being controlled by action–outcome associations
to being controlled by stimulus–response associations (Adams,
1982; Dickinson, 1985). One study has successfully demonstrated
this effect in humans, showing that participants who received
limited training were sensitive to outcome devaluation whereas
participants who received extended training were not (Tricomi
et al., 2009). A second factor that appears to influence habits is
distraction. For example, in the probabilistic classification task,
the presence of distraction by a secondary task appears to bias
competition between the declarative memory system and the
habit learning system in favor of habit learning (Foerde et al.,
2006, 2007).

Stimulus–response habits can be appetitive (e.g., pressing a
lever to receive a food reward) or avoidant (e.g., pressing a
lever to avoid a shock). Most research on stimulus–response
habits has been conducted using appetitive habits, as the
methods for evaluation of habit formation through devaluation
of appetitive outcomes via conditioned taste aversion or selective
satiation procedures have been well established (for review, see
Knowlton and Patterson, 2018). However, in a pair of studies
conducted by Gillan et al. (2014, 2015), a shock avoidance task
incorporating a novel procedure for devaluation of aversive
outcomes was used to investigate avoidance habits. In this
task, participants learned to avoid electric shocks delivered
to the left and right wrist by making responses to warning
stimuli with the left and right foot, respectively. Next, one
of the two outcomes was devalued by disconnecting one
of the electrodes and leaving the other electrode connected.
Participants’ responding to the valued and devalued stimuli was
then tested in extinction. Selective responding to the still-valued
stimulus indicates that participants have flexibly adjusted their
behavior (i.e., that they are behaving in a goal-directed manner),
whereas persistence in responding to the devalued stimulus
despite the built-in cost to performance that results from
continuing to hold in mind a rule that no longer applies
and executing unnecessary behaviors on the basis of this
rule is interpreted as habitual behavior. Using this procedure,
Gillan et al. (2014, 2015) demonstrated enhanced avoidance
habits in individuals with obsessive-compulsive disorder. Like
compulsions, some negative health behaviors such as overeating
and substance use can be understood as avoidance habits, because
they may be performed initially in order to avoid feelings
of distress, and then eventually transition to being performed
habitually. We were therefore interested in whether adults with
a history of ELS might also show enhanced avoidance habits.
If so, this tendency could represent a behavioral vulnerability
that increases the likelihood of the poor health outcomes
observed in this group.
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We used a noise avoidance task similar to the shock avoidance
task used by Gillan et al. (2014, 2015), wherein participants could
avoid hearing aversive noises delivered to the left and right ears
by making the correct keyboard responses to associated warning
stimuli. After learning the responses, participants underwent
an instructed devaluation procedure in which one of the two
earphones previously delivering aversive noises was removed,
and then a test for habit formation was conducted in extinction.
Avoidance habit formation was measured by whether the
participant persisted in making the keyboard response associated
with avoiding noise to the ear from which the earphone had
been removed. In addition to testing for an effect of ELS,
we also manipulated the level of training participants received
(Experiment 1) and the level of distraction present during
training (Experiment 2). The primary hypothesis of this study
was that individuals who reported a history of ELS would show
enhanced avoidance habits. The secondary hypotheses were (a)
that individuals who received a greater level of training prior
to devaluation would show enhanced avoidance habits relative
to those who received less training, and (b) that learning the
stimulus–response associations in the presence of distraction
would lead to enhanced avoidance habits relative to associations
learned without distraction.

EXPERIMENT 1

Materials and Methods
Participants
Study participants were recruited from the undergraduate
student population in the Psychology Department at the
University of California, Los Angeles. Participants were
compensated with credit toward partial fulfillment of course
requirements. Study procedures were approved by the
Institutional Review Board of the University of California,
Los Angeles, and all participants provided written record of
informed consent.

A total of 198 participants were recruited for the study. Five
participants did not complete the experiment, one participant
failed to follow the instructions, two participants provided
incomplete questionnaire data, and one data file was overwritten
due to experimenter error, yielding a sample size of 189 (148
women, 41 men, Mage = 20.31 years, SDage = 1.81 years, age
range: 18–28 years).

Design and Procedure
The avoidance learning task was adapted from procedures
described in Gillan et al. (2014, 2015). A schematic of the task
is shown in Figure 1. Participants were instructed that their task
was to avoid hearing aversive noises. Participants were shown
two abstract visual warning stimuli that predicted aversive noise
to the left and right earphones, respectively, and were told that
they could avoid hearing the aversive noises by making the
correct keyboard responses when they saw the warning stimuli.
Performing the correct response with the left hand avoided noise
to the left earphone, and performing the correct response with the
right hand avoided noise to the right earphone. A third stimulus

FIGURE 1 | Task schematic. (A) Participants learned to make avoidance
responses to two warning stimuli that predicted aversive noise played to the
left (top) and right (bottom) earphones. If the correct avoidance response
(shown in red) was made in time, the aversive noises were not delivered.
(B) After training, one of the two outcomes was devalued by having
participants remove one of the two earphones.

was designated as the “safe” stimulus and never predicted aversive
noise. Assignment of the three images to the three experimental
trial types (warning stimulus 1, warning stimulus 2, and safe
stimulus) was randomized across participants. On each trial, one
of the three stimuli was selected randomly and presented on
screen for 500 ms. Correct responses to the warning stimuli
prevented aversive noise from being delivered to the earphones,
but did not terminate the stimulus. If the participant pressed the
incorrect key or failed to respond within 500 ms, the aversive
noise (an audio file resembling a female scream) was delivered
to the corresponding earphone. A female scream was selected
as the aversive outcome based on the ease of implementation
in comparison to an electric shock and based on prior research
that used a female scream as an effective unconditional stimulus
(e.g., Lau et al., 2008; Britton et al., 2011). Responses to the safe
stimulus had no effect. There was a delay of 500 ms between
termination of the warning stimulus and delivery of the aversive
noise, and the intertrial interval was 2 s. Audio files were 1 s long
and played at a volume of 82 dB.

Following demonstration of the stimulus–outcome
contingencies, participants performed six practice trials (two
per stimulus). Participants were allowed to repeat the practice
phase if desired. The main experiment consisted of two phases,
a training phase and a post-devaluation habit test. The amount
of training was varied between subjects; participants in the short
training condition completed 120 trials (40 per stimulus), and
participants in the long training condition completed 600 trials
(200 per stimulus). Assignment to condition was randomized
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across participants. After training was complete, one of the two
outcomes was devalued by having participants remove one of
the earphones. Which earphone was removed (left versus right)
was counterbalanced across participants. Participants were told
that they would be evaluated based on the responses they made
to avoid noise to the earphone that had not been removed, and
that it was not necessary to make the response associated with
avoiding noise to the earphone that had been removed. The habit
test was conducted in extinction (i.e., no noises were delivered to
either earphone), but participants were not informed of this. The
habit test consisted of 30 trials (10 per stimulus in random order).
The dependent variable of interest was whether the participant
persisted in performing the response associated with avoiding
aversive noise to the removed earphone, as performance of this
behavior was no longer of value and thus would be evidence
of habit formation. Therefore, during the post-devaluation
habit test, responding to the valued stimulus was defined as
performing the response associated with avoiding aversive
noise to the non-removed earphone when presented with the
stimulus that had predicted aversive noise to the non-removed
earphone, and responding to the devalued stimulus was defined
as performing the response associated with avoiding aversive
noise to the removed earphone when presented with the stimulus
that had predicted aversive noise to the removed earphone.

Participants completed the experiment in a private testing
room on a desktop computer. Stimulus presentation and
response collection were implemented in E-Prime Standard
(Version 2.0). Button press responses were made using the
computer keyboard. Following completion of the computer task,
participants completed a packet of questionnaires. The 25-item
Childhood Trauma Questionnaire – Short Form (CTQ-SF;
Bernstein et al., 2003) was used to assess stress exposure during
the first 16 years of life. The items on the questionnaire ask about
experiences of physical abuse (e.g., being hit hard enough to
leave bruises), physical neglect (e.g., not having enough to eat),
emotional abuse (e.g., being called names), emotional neglect
(e.g., not feeling loved), and sexual abuse (e.g., being touched in
a sexual way). Each item is rated on a 5-point scale with response
options ranging from “never true” to “very often true.” The mean
score reported by Bernstein et al. (2003) for this measure based on
a normative community sample (N = 579) was 39.6. The 40-item
State–Trait Anxiety Inventory (STAI; Spielberger, 1983) was used
to assess anxiety at the present moment (state anxiety) and in
general (trait anxiety). The 20-item Beck Depression Inventory-II
(BDI-II; Beck et al., 1996) was used to assess depressive symptoms
during the past 2 weeks (suicidality question omitted). Finally, the
10-item Perceived Stress Scale (PSS; Cohen et al., 1983) was used
to assess how unpredictable, uncontrollable, and overloading
participants’ lives had been during the past month. The entire lab
visit took approximately 1 h.

Data Analysis
Statistical analyses were performed using IBM SPSS Statistics
(Version 25). Data from the acquisition phase (response
accuracy to the two warning stimuli and false alarm rate
to the safe stimulus) and level of responding to the valued
stimulus during the habit test were analyzed using two (level

of training: 120 trials, 600 trials) × two (level of ELS:
low-ELS, high-ELS) between-subjects ANOVA with participants
categorized as low-ELS or high-ELS based on a median split
of the CTQ-SF scores. Responding to the devalued stimulus
during the post-devaluation habit test was analyzed using binary
logistic regression with participants’ responses binned into zero
responses to the devalued stimulus (no habitual behavior) or
one or more responses to the devalued stimulus (habitual
behavior). Responding was binarized in this manner based on
a bimodal distribution of the response data among participants
who responded to the devalued stimulus, with one subgroup of
participants making few responses to the devalued stimulus and
a second subgroup of participants responding on the majority
of devalued stimulus trials. We therefore collapsed across the
two subgroups, classifying all participants who responded to the
devalued stimulus as exhibiting habitual behavior. The following
predictors were included in the regression model: CTQ-SF, level
of training, devalued side, STAI state anxiety, STAI trait anxiety,
BDI-II, PSS, CTQ-SF × level of training, CTQ-SF × devalued
side, CTQ-SF × STAI state anxiety, CTQ-SF × STAI trait anxiety,
CTQ-SF × BDI-II, CTQ-SF × PSS, age, and gender. Continuous
predictors used to create interaction terms were mean-centered
to reduce multicollinearity, and dichotomous predictor variables
were dummy coded. A significance level of 0.05 was used for all
statistical tests.

A supplemental data analysis in which the number of
responses to the devalued stimulus was entered as the outcome
variable is provided in Supplementary Table 1.

Results
Sample characteristics are reported in Table 1 (prevalence of ELS
by degree and type of stress reported) and Table 2 (scores on
questionnaire variables for low-ELS and high-ELS participants).
The mean CTQ-SF score was 36.02 (SD = 11.98), and the
median CTQ-SF score was 33.00. The low-ELS group had a mean
CTQ-SF score of 27.96 (SD = 2.17) and the high-ELS group had
a mean CTQ-SF score of 43.99 (SD = 12.38). The high-ELS group
differed significantly from the low-ELS group on measures of
state anxiety, t(187) = 5.37, p < 0.001, d = 0.78; trait anxiety,
t(187) = 6.57, p < 0.001, d = 0.96; depression, t(187) = 6.96,
p < 0.001, d = 1.01; and perceived stress, t(187) = 3.72,
p < 0.001, d = 0.54.

We first tested for effects of the level of training (120 training
trials versus 600 training trials) and level of ELS (low-ELS versus
high-ELS) on response accuracy during training, false alarm rate
during training, and level of responding to the valued stimulus
during the post-devaluation habit test. The data from the training
phase are shown in Figure 2. During training, response accuracy
to the two warning stimuli was 81.29% (SD = 12.10%), and the
false alarm rate to the safe stimulus was 11.68% (SD = 19.14%).
Training accuracy did not differ significantly across levels of
training, F(1,185) = 2.57, p = 0.111, η2

p = 0.014, or levels of ELS,
F(1,185) = 0.96, p = 0.330, η2

p = 0.005, and the interaction between
training and ELS was not significant, F(1,185) = 0.78, p = 0.379,
η2

p = 0.004. False alarm rate did not differ significantly across
levels of training, F(1,185) = 0.07, p = 0.786, η2

p < 0.001, or levels
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TABLE 1 | Prevalence of ELS in sample.

Experiment 1 Experiment 2

5 6–10 11–15 16–20 21–25 5 6–10 11–15 16–20 21–25

CTQ-SF subscale

Physical abuse 62.43 31.22 4.76 0.53 1.06 59.82 33.93 3.57 2.68 0.00

Physical neglect 46.56 43.92 8.47 1.06 0.00 53.57 46.43 0.00 0.00 0.00

Emotional abuse 31.22 47.62 14.81 2.65 3.70 25.89 57.14 10.71 6.25 0.00

Emotional neglect 26.98 47.09 17.46 6.88 1.59 29.46 47.32 17.86 4.46 0.89

Sexual abuse 84.66 11.11 1.59 1.59 1.06 84.82 9.82 2.68 0.89 1.79

Percentage of participants in each experiment reporting Early-Life Stress (ELS) broken down by degree and type of ELS reported. For each subscale, five is the lowest
score, corresponding to a response of “never” for all items. CTQ-SF, Childhood Trauma Questionnaire – Short Form (Bernstein et al., 2003).

TABLE 2 | Characteristics of low-ELS and high-ELS groups.

Experiment 1 Experiment 2

Low-ELS High-ELS Low-ELS High-ELS

CTQ-SF 27.96 (2.17) 43.99 (12.38) 27.80 (1.72) 41.15 (8.70)

STAI

State anxiety 36.01 (10.76) 44.77 (11.62) 34.51 (12.68) 42.36 (12.64)

Trait anxiety 38.34 (9.75) 48.68 (11.78) 39.96 (11.13) 47.95 (11.57)

BDI-II 7.56 (6.11) 16.42 (10.73) 7.09 (7.09) 12.57 (9.33)

PSS 17.07 (6.32) 20.53 (6.51) 16.16 (6.44) 20.08 (7.31)

Mean (SD) scores on questionnaire measures for participants grouped by reported
level of childhood stress exposure. ELS, Early-Life Stress; CTQ-SF, Childhood
Trauma Questionnaire – Short Form (Bernstein et al., 2003); STAI, State–Trait
Anxiety Inventory (Spielberger, 1983); BDI-II, Beck Depression Inventory-II (Beck
et al., 1996); PSS, Perceived Stress Scale (Cohen et al., 1983).

of ELS, F(1,185) = 0.05, p = 0.832, η2
p < 0.001, and the interaction

between training and ELS was not significant, F(1,185) < 0.01,
p = 0.960, η2

p < 0.001.
During the post-devaluation habit test, 100% of participants

responded to the valued stimulus (i.e., performed the valued
response in the presence of the valued stimulus), with an
average response rate of 90.69% (SD = 12.93%). Responding to
the valued stimulus did not differ significantly across levels of
training, F(1,185) = 2.77, p = 0.098, η2

p = 0.015, or levels of
ELS, F(1,185) = 2.43, p = 0.121, η2

p = 0.013, and the interaction
between training and ELS was not significant, F(1,185) = 1.13,
p = 0.289, η 2

p = 0.006.
The distribution of responses to the devalued stimulus (i.e.,

performance of the devalued response in the presence of the
devalued stimulus) during the post-devaluation habit test is
shown in Figure 3. The average response rate to the devalued
stimulus was 18.57% (SD = 30.99%). Participants occasionally
made the valued response to the devalued stimulus (average
response rate = 10.11%, SD = 17.41%); these responses were
not treated as habitual as they did not reflect the stimulus–
response association learned during training. We tested for the
effects of ELS and length of training on habitual behavior by
conducting a binary logistic regression analysis on responding
to the devalued stimulus during the post-devaluation habit
test. Participants’ responses were binned into zero responses

FIGURE 2 | Acquisition behavior for the two early-life stress (ELS) groups in
Experiment 1 by training condition. Panels (A) and (B) show % correct
avoidance responses to the warning stimuli during the training phase for the
short and long training conditions, respectively. Panels (C) and (D) show %
false alarms to the safe stimulus during the training phase for the short and
long training conditions, respectively. Error bars represent one standard error
from the mean.

to the devalued stimulus (no habitual behavior) or one or
more responses to the devalued stimulus (habitual behavior).
This analysis was conducted in order to test for the effect
of ELS by using CTQ-SF as a continuous predictor variable
while controlling for the effects of age, gender, and the other
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FIGURE 3 | Distribution of responses to the devalued stimulus in Experiment
1. Panels (A) and (B) show % of participants making each of the possible
number of responses to the devalued stimulus during the post-devaluation
habit test for the short and long training conditions, respectively.

questionnaire variables which differed across the low-ELS and
high-ELS groups. We included devalued side (i.e., whether the
right or left earphone was removed during the post-devaluation
habit test) as a predictor because there is evidence suggesting that
individuals are more likely to engage in habitual behaviors when
they are using their dominant hand (Neal et al., 2011). Although
we did not measure participants’ handedness, it is reasonable
to assume that a large majority of participants were right hand
dominant and therefore might show greater habitual responding

if assigned to the condition in which the right side was devalued.
We also included interaction terms to test for moderation of the
effect of ELS. The results of this analysis are shown in Table 3.
Consistent with our hypothesis of greater habitual behavior in
individuals with a history of stress during development, ELS
was found to be a significantly positive predictor of habitual
responding, B = 0.080, p = 0.020. The odds ratio for this
predictor was 1.083, meaning that for every one point increase
in CTQ-SF score, the expected odds of performing a habitual
response are increased by 8.3%. Contrary to our hypothesis of
greater habitual responding in participants who received more
training trials, level of training was not a significant predictor
of habitual responding, B = 0.015, p = 0.962, and devalued
side was not a significant predictor of habitual responding,
B = −0.073, p = 0.822. None of the other questionnaire variables
(state anxiety, trait anxiety, depression, and perceived stress) were
significant predictors, smallest p = 0.438, and the effects of age
and gender were also not significant, smallest p = 0.367. We did
not observe evidence for moderation of the effects of ELS as is
shown by the lack of significance in the interaction predictors,
smallest p = 0.092.

EXPERIMENT 2

In Experiment 1, we found support for the hypothesis that
ELS is associated with enhanced avoidance habits. Given the
number of predictors included in the model, however, there is
a risk that the observed effect was the result of Type I error.
Therefore, in Experiment 2, we sought to replicate the effect of
ELS observed in Experiment 1, and we also added a condition
in which participants performed the avoidance learning task
under distraction to test the hypothesis that stimulus–response
associations learned under distraction would result in greater
habitual responding.

Materials and Methods
Participants
As in Experiment 1, study participants were recruited from the
undergraduate student population in the Psychology Department
at the University of California, Los Angeles. Participants
were compensated with credit toward partial fulfillment of
course requirements. Study procedures were approved by the
Institutional Review Board of the University of California,
Los Angeles, and all participants provided written record of
informed consent.

A total of 119 participants were recruited for the study.
One participant failed to follow the instructions, one participant
provided incomplete questionnaire data, and five participants
were excluded for left-hand dominance (see the section “Design
and Procedure” below), yielding a sample size of 112 (90
women, 22 men, Mage = 20.54 years, SDage = 1.59 years, age
range: 18–26 years).

Design and Procedure
Participants performed the avoidance learning task described
above in Experiment 1. We manipulated the level of distraction
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TABLE 3 | Summary of binary logistic regression analysis predicting responding to the devalued stimulus during the post-devaluation habit test in Experiment 1.

Variable B SE Wald p Exp(B)

CTQ-SF 0.080 0.034 5.39 0.020 1.083

Level of training (120 trials vs. 600 trials) 0.015 0.320 0.00 0.962 1.016

Devalued side (right vs. left) −0.073 0.326 0.05 0.822 0.929

STAI state −0.005 0.018 0.09 0.766 0.995

STAI trait 0.013 0.025 0.27 0.601 1.013

BDI-II −0.017 0.028 0.37 0.542 0.983

PSS 0.032 0.041 0.60 0.438 1.032

CTQ-SF × length of training −0.045 0.031 2.07 0.150 0.956

CTQ-SF × devalued side −0.048 0.033 2.14 0.143 0.953

CTQ-SF × STAI state 0.001 0.002 0.09 0.762 1.001

CTQ-SF × STAI trait −0.005 0.003 2.84 0.092 0.995

CTQ-SF × BDI-II −0.001 0.002 0.12 0.730 0.999

CTQ-SF × PSS 0.006 0.004 1.84 0.175 1.006

Age −0.085 0.094 0.81 0.367 0.919

Gender (male vs. female) 0.166 0.405 0.17 0.681 1.181

Significant results (p < 0.05) shown in bold. For dichotomous predictors, the first term in parenthetical is the reference. CTQ-SF, Childhood Trauma Questionnaire – Short
Form (Bernstein et al., 2003); STAI, State–Trait Anxiety Inventory (Spielberger, 1983); BDI-II, Beck Depression Inventory-II (Beck et al., 1996); PSS, Perceived Stress Scale
(Cohen et al., 1983).

within subjects during the training phase of the experiment by
having participants perform a counting task during alternate
blocks of 30 trials. During counting blocks, participants were
randomly shown an image of a dog or a cat for 500 ms
after each noise avoidance trial. They were instructed to count
the cats and ignore the dogs. At the end of each counting
block, participants were asked to report how many cats they
had counted in the previous block. Before beginning the main
experiment, participants completed practice trials on both the
avoidance task and the counting task, and were allowed to repeat
the practice trials if desired. To minimize task difficulty, we
increased the response window for the noise avoidance task from
500 to 750 ms. Six stimulus images were used for the noise
avoidance task, such that the same three stimuli were shown
during all counting blocks and the other three stimuli were shown
during non-counting blocks. Participants completed a total of 360
training trials (180 trials per level of distraction).

The devaluation procedure was the same as in Experiment
1, except that in Experiment 2 we instructed all participants
to remove the right earphone for the habit test. Although the
effect of devalued side and the interaction between devalued
side and ELS in Experiment 1 were not significant, there was
slightly greater habitual responding in participants instructed to
remove the right earphone, and the effect of ELS on habitual
responding was slightly stronger among participants instructed
to remove the right earphone. Therefore, in order to maximize
our ability to detect an effect in Experiment 2, we screened
participants for right hand dominance and then tested for
habitual behavior in the right hand by having participants remove
the right earphone during the devaluation procedure. The
post-devaluation habit test consisted of 60 trials, 30 containing
stimuli that had been learned in the no-distraction condition and
30 containing stimuli that had been learned in the distraction
condition. The 60 stimuli were presented in random order.
Participants were not required to perform the counting task

during the habit test. As in Experiment 1, the dependent variable
of interest was whether the participant persisted in performing
the response associated with avoiding aversive noise to the
removed earphone.

Participants completed the experiment in a private testing
room on a desktop computer. Stimulus presentation and
response collection were implemented in E-Prime Standard
(Version 2.0). Button press responses were made using the
computer keyboard. Following completion of the computer task,
participants completed the packet of questionnaires described
above for Experiment 1. We additionally administered the
Edinburgh Handedness Inventory (Oldfield, 1971) to screen
for right hand dominance, using a cut point of 0. Seventeen
participants who did not complete the handedness questionnaire
were all included in the sample. The entire lab visit took
approximately 1 h.

Data Analysis
Statistical analyses were performed using IBM SPSS Statistics
(Version 25). Data from the acquisition phase (response accuracy
to the two warning stimuli and false alarm rate to the safe
stimulus) and level of responding to the valued stimulus during
the habit test were analyzed using two (level of distraction:
no-distraction, distraction) × two (level of ELS: low-ELS,
high-ELS) mixed-model ANOVA with participants categorized
as low-ELS or high-ELS based on a median split of the
CTQ-SF scores. Responding to the devalued stimulus during
the post-devaluation habit test was analyzed using a binary
logistic regression generalized linear mixed model with level
of distraction as a repeated measure. As in Experiment 1,
participants’ responses were binned into zero responses to
the devalued stimulus (no habitual behavior) or one or more
responses to the devalued stimulus (habitual behavior). The
following predictors were included in the generalized linear
mixed model: CTQ-SF, level of distraction, STAI state anxiety,
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STAI trait anxiety, BDI-II, PSS, CTQ-SF × level of distraction,
CTQ-SF × STAI state anxiety, CTQ-SF × STAI trait anxiety,
CTQ-SF × BDI-II, CTQ-SF × PSS, age, and gender. Continuous
predictors used to create interaction terms were mean-centered
to reduce multicollinearity, and dichotomous predictor variables
were dummy coded. A significance level of 0.05 was used for all
statistical tests.

A supplemental data analysis in which the number of
responses to the devalued stimulus was entered as the outcome
variable is provided in Supplementary Table 2.

Results
Sample characteristics are reported in Table 1 (prevalence of ELS
by degree and type of stress reported) and Table 2 (scores on
questionnaire variables for low-ELS and high-ELS participants).
The mean CTQ-SF score was 34.83 (SD = 9.26) and the median
CTQ-SF score was 32.00. The low-ELS group had a mean
CTQ-SF score of 27.80 (SD = 1.72) and the high-ELS group had a
mean CTQ-SF score of 41.15 (SD = 8.70). The high-ELS group
differed significantly from the low-ELS group on measures of
state anxiety, t(110) = 3.28, p = 0.001, d = 0.62; trait anxiety,
t(110) = 3.71, p < 0.001, d = 0.70; depression, t(110) = 3.47,
p = 0.001, d = 0.66; and perceived stress, t(110) = 3.01,
p = 0.003, d = 0.57.

We first tested for effects of the level of distraction (no-
distraction versus distraction) and level of ELS (low-ELS versus
high-ELS) on response accuracy during training, false alarm rate
during training, and level of responding to the valued stimuli
during the post-devaluation habit test. The data from the training
phase are shown in Figure 4. During training, response accuracy
to the four warning stimuli was 91.74% (SD = 7.59%), and the
false alarm rate to the two safe stimuli was 9.45% (SD = 19.13%).
There was a significant effect of distraction on training accuracy,
F(1,110) = 16.05, p < 0.001, η2

p = 0.127, such that accuracy was
higher in single-task condition blocks (M = 92.72%, SD = 7.60%)
than in dual-task condition blocks (M = 90.76%, SD = 8.41%).
Training accuracy did not differ significantly across levels of
ELS, F(1,110) = 0.41, p = 0.525, η2

p = 0.004, and the interaction
between distraction and ELS was not significant, F(1,110) = 0.05,
p = 0.830, η2

p < 0.001. False alarm rate did not differ significantly
across levels of distraction, F(1,110) = 0.89, p = 0.349, η2

p = 0.008,
or levels of ELS, F(1,110) = 2.76, p = 0.099, η2

p = 0.024, and
the interaction between distraction and ELS was not significant,
F(1,110) = 0.22, p = 0.637, η 2

p = 0.002.
During the post-devaluation habit test, 100% of participants

responded to the valued stimuli (i.e., performed the valued
response in the presence of the valued stimuli), with an average
response rate of 92.99% (SD = 10.75%). Responding to valued
stimuli did not differ significantly across levels of distraction,
F(1,110) = 0.07, p = 0.791, η2

p = 0.001, or levels of ELS,
F(1,110) = 0.08, p = 0.773, η2

p = 0.001, and the interaction between
distraction and ELS was not significant, F(1,110) = 1.56, p = 0.214,
η 2

p = 0.014.
The distribution of responses to the devalued stimuli (i.e.,

performance of the devalued response in the presence of the
devalued stimuli) during the post-devaluation habit test is shown

FIGURE 4 | Acquisition behavior for the two early-life stress (ELS) groups in
Experiment 2 by distraction condition. Panels (A) and (B) show % correct
avoidance responses to the warning stimuli during the training phase for the
no-distraction and distraction conditions, respectively. Panels (C) and (D)
show % false alarms to the safe stimulus during the training phase for the
no-distraction and distraction conditions, respectively. Error bars represent
one standard error from the mean.

in Figure 5. The average response rate to the devalued stimuli was
23.84% (SD = 36.91%). Participants occasionally made the valued
response to the devalued stimuli (average response rate = 9.87%,
SD = 18.16%); these responses were not treated as habitual as
they did not reflect the stimulus–response associations learned
during training. We tested for the effects of ELS and distraction
on habitual behavior by conducting a binary logistic regression
generalized linear mixed model analysis on responding to the
devalued stimulus during the post-devaluation habit test. As
in Experiment 1, participants’ responses were binned into zero
responses to the devalued stimulus (no habitual behavior) or one
or more responses to the devalued stimulus (habitual behavior).
The results of this analysis are shown in Table 4. Consistent
with Experiment 1, ELS was found to be a significantly positive
predictor of habitual responding, B = 0.064, p = 0.022. The odds
ratio for this predictor was 1.066, meaning that for every one
point increase in CTQ-SF score, the expected odds of performing
a habitual response are increased by 6.6%. Contrary to our
hypothesis of greater habitual responding to stimuli that were
trained in the presence of distraction, level of distraction was
not a significant predictor of habitual responding, B = 0.112,
p = 0.723. Of the other questionnaire variables included as
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FIGURE 5 | Distribution of responses to the devalued stimulus in Experiment
2. Panels (A) and (B) show % of participants making each of the possible
number of responses to the devalued stimulus during the post-devaluation
habit test for the no-distraction and distraction conditions, respectively.

predictors (state anxiety, trait anxiety, depression, and perceived
stress), two were significantly positive predictors of habitual
responding: state anxiety, B = 0.047, p = 0.018 and perceived
stress, B = 0.093, p = 0.025. For state anxiety, the odds ratio was
1.048, meaning that for every one point increase in the STAI
state anxiety score, the expected odds of performing a habitual
response are increased by 4.8%. For perceived stress, the odds
ratio was 1.097, meaning that for every one point increase in the
PSS score, the expected odds of performing a habitual response
are increased by 9.7%. The other questionnaire variables were not
significant predictors, smallest p = 0.209, and the effects of age
and gender were also not significant, smallest p = 0.352. We did
not observe evidence for moderation of the effects of ELS as is
shown by the lack of significance in the interaction predictors,
smallest p = 0.143.

DISCUSSION

In two experiments using an avoidance learning task, we
observed evidence of enhanced avoidance habits in adults
who reported a history of ELS. An important implication of
this finding is that this behavioral tendency may contribute
to the negative health outcomes commonly experienced by
individuals with a history of ELS. Some of the negative health
outcomes associated with self-reported developmental stress
include severe obesity (Anda et al., 2006), heart disease (Dong
et al., 2004), liver disease (Dong et al., 2003), and sexually
transmitted disease (Hillis et al., 2000). Negative health outcomes
are frequently tied to negative health behaviors, which may be
performed habitually. Some of the negative health behaviors
associated with self-reported developmental stress that contribute
to the aforementioned negative health outcomes include smoking
(Anda et al., 1999), alcohol abuse (Dube et al., 2002), and
risky sexual behavior (Hillis et al., 2001). These negative
health behaviors, along with the overeating that contributes
to severe obesity and obesity-related health outcomes, can be
conceptualized as avoidance behaviors, which over time can
become avoidance habits. For example, individuals may initially
engage in overeating, substance use, or risky sexual behavior in
a goal-directed manner to avoid feelings of distress, but over
time these behaviors may become more automatic and stimulus-
bound. It should be noted, however, that such behaviors have an
appetitive aspect to them as well; understanding the relationship
between ELS and negative health outcomes may require a model
in which behavior is driven by both appetitive and avoidant
motivations, such as in Baumeister’s (1991) “escape from the self ”
theory of alcoholism.

One question raised by this pair of experiments is whether ELS
is linked specifically to avoidance habits as opposed to avoidance
behavior. Although we did not observe differences in avoidance
behavior between the low-ELS and high-ELS participants
during training, such differences may exist. Because the
stimulus–response–outcome contingencies were demonstrated
to participants explicitly at the beginning of the training phase
rather than learned through experience, we may have had limited
sensitivity to detect differences in the initial learning of the
associations. This question could be tested in future research.

A possible biological basis for enhanced habitual behavior
following ELS is that stress selectively compromises the neural
structures that support goal-directed behavior, which could
lead to a compensatory over-reliance on habitual responding.
Goal-directed behavior relies on prefrontal cortex, dorsomedial
striatum, and the hippocampus, which have been shown to
atrophy following stress exposure (McEwen, 2000; Joëls et al.,
2007; Dias-Ferreira et al., 2009; Soares et al., 2012). Habitual
behavior, on the other hand, appears to rely on the dorsolateral
striatum (Yin and Knowlton, 2004; Yin et al., 2004, 2006),
which is less sensitive to stress and indeed has been shown
in some cases to undergo stress-induced hypertrophy (Dias-
Ferreira et al., 2009; Soares et al., 2012). The extent to which
these morphological changes are reversible is not known. The
presence of significant stress during a sensitive period of
development may crystallize these dynamics, setting the stage
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TABLE 4 | Summary of binary logistic regression generalized linear mixed model analysis predicting responding to the devalued stimulus during the post-devaluation
habit test in Experiment 2.

Variable B SE t p Exp(B)

CTQ-SF 0.064 0.028 2.31 0.022 1.066

Distraction (no distraction vs. distraction) 0.112 0.315 0.36 0.723 1.119

STAI state 0.047 0.020 2.39 0.018 1.048

STAI trait −0.033 0.026 −1.26 0.209 0.968

BDI-II −0.003 0.026 −0.13 0.899 0.997

PSS 0.093 0.041 2.25 0.025 1.097

CTQ-SF × distraction −0.016 0.035 −0.45 0.655 0.984

CTQ-SF × STAI state −0.003 0.002 −1.47 0.143 0.997

CTQ-SF × STAI trait −0.004 0.003 −1.18 0.240 0.996

CTQ-SF × BDI-II −0.001 0.003 −0.23 0.817 0.999

CTQ-SF × PSS 0.000 0.005 0.07 0.946 1.000

Age −0.004 0.103 −0.04 0.966 0.996

Gender (male vs. female) −0.384 0.412 −0.93 0.352 0.681

Significant results (p < 0.05) shown in bold. For dichotomous predictors, the first term in parenthetical is the reference. CTQ-SF, Childhood Trauma Questionnaire – Short
Form (Bernstein et al., 2003); STAI, State–Trait Anxiety Inventory (Spielberger, 1983); BDI-II, Beck Depression Inventory-II (Beck et al., 1996); PSS, Perceived Stress Scale
(Cohen et al., 1983).

for an overreliance on habitual responding in adulthood. Some
evidence supporting this hypothesis includes the finding that
male rats exposed to maternal separation during the first 2 weeks
of life are more likely to use a stimulus–response navigation
strategy in early adolescence (Grissom et al., 2012), and humans
exposed to stress prenatally are more likely to use a stimulus–
response navigation strategy in adulthood (Schwabe et al., 2012).
Future research incorporating neuroimaging of habit learning
in the ELS population should investigate this possibility. Recent
neuroimaging studies that target the neuroendocrine basis of
the stress-induced shift toward habitual behavior are helping to
elucidate the mechanisms that underlie this shift (for review, see
Wirz et al., 2018); it would be interesting to see how the effects
of acute stress on habit compare to the effects of ELS on habit at
the neural level.

An additional finding of the present study is that in
Experiment 2 we also observed enhanced avoidance habits in
individuals who reported higher levels of state anxiety and higher
levels of perceived stress during the past month. This finding is
consistent with previous literature on stress and habitual behavior
(e.g., Schwabe and Wolf, 2009, 2010, 2012), but to our knowledge
an effect of stress has not previously been demonstrated with
avoidance habits. However, since this result was only present in
Experiment 2 and not in Experiment 1, further research should
be done to confirm the finding.

In addition to providing support for the hypothesis that
ELS alters the tendency toward habitual responding, the results
of the present study also demonstrate the utility of avoidance
learning tasks in human habit research. Research on habits in
humans has traditionally been carried out in appetitive situations
with participants working for monetary rewards, points, or food
(e.g., Tricomi et al., 2009), but tasks employing aversive stimuli
have a long history of success in the non-human animal habit
learning literature, particularly in maze navigation tasks where
animals are motivated to escape a negative situation such as a
water tank or open surface (e.g., Packard and McGaugh, 1992;

McDonald and White, 1994). However, it should be noted that
these maze navigation studies differ from the present study in that
they do not use outcome devaluation to test habitual behavior.
Aversive stimuli like the scream sound used in the present study
are not difficult to incorporate into computer-based tasks and
may provide greater motivation than appetitive stimuli.

Two hypotheses that we made in this pair of experiments
were not borne out by the results. In Experiment 1, we
predicted that a longer period of training would result in greater
habitual responding, and in Experiment 2, we predicted that
distraction during training would result in greater habitual
responding. Neither of these manipulations affected the level
of habit formation as measured by our post-devaluation habit
test. It is possible that the manipulations we employed were
not effective because the manipulations were not strong enough.
Our manipulation of amount of training was a fivefold increase
in the number of training trials, but participants in the long
training condition still received only a single training session, and
it is possible that to see an effect of training, multiple sessions
would be required. A previous study conducted with appetitive
stimuli that showed an effect of level of training on habitual
responding implemented 12 training sessions over the course of
3 days (Tricomi et al., 2009); an avoidance learning study with
a similar amount of training across multiple days may reveal a
relationship between level of training and habitual responding.
Similarly, the distraction task we used may have failed to
provide enough of a challenge to produce the distraction-induced
increase in habitual responding observed in previous studies
(Foerde et al., 2006, 2007).

On the other hand, our failure to find an effect of length
of training on habitual responding is consistent with a recent
series of experiments conducted by de Wit et al. (2018), in which
length of training was manipulated across a variety of tasks and
in each case extended training failed to produce greater habitual
responding. Notably, the noise avoidance procedure used in our
experiments was very similar to the noise avoidance procedure
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used in one of the experiments conducted by de Wit et al. (2018);
therefore, the null result of extended training in the present study
serves as a replication of the null result of extended training
reported in de Wit et al.’s (2018) noise avoidance experiment.
The response rate to the devalued stimuli in our experiments was
somewhat higher than the response rate to the devalued stimuli
observed in the de Wit et al. (2018) noise avoidance experiment
[approximately 20% in our experiments versus approximately
10% in the de Wit et al. (2018) experiment]. This difference may
be due to the fact that responses in the de Wit et al. (2018) noise
avoidance experiment were performed with a foot pedal whereas
our participants performed responses with their index fingers on
a computer keyboard.

An area of future research suggested by the present study
is whether ELS affects habit learning, habit performance, or
both. Previous research employing acute stress and challenges
to executive control has indicated that these factors affect
both the learning and performance of habits. For example,
studies using the probabilistic classification task have shown that
acute stress and distraction modulate which memory system
is engaged during classification learning, biasing competition
between the declarative memory system and the habit learning
system in favor of habit learning (Foerde et al., 2006, 2007;
Schwabe and Wolf, 2012). In contrast, studies that induce
acute stress or executive challenge after learning but before
a habit test demonstrate how these factors influence the
performance of habits that have been learned previously. For
example, Schwabe and Wolf (2010) showed that acute stress
after learning decreases sensitivity to devaluation, and Lin et al.
(2016) showed that completion of a task designed to deplete
executive resources after learning an unhealthy habit increased
performance of the unhealthy habit. Of course, as ELS cannot
be induced between learning and testing, the paradigms that
have been used to investigate performance effects of acute
stress and executive challenge cannot be applied, and different
paradigms possibly incorporating neuroimaging will be necessary
to tease apart the effects of ELS on habit learning versus
habit performance.

One limitation of the present study is that because we used a
college sample, our ELS groups may be more high-functioning
and resilient to stress than individuals with a history of
ELS in the general population. Nevertheless, even this sample
yielded evidence in support of our hypothesis that ELS
affects avoidance habit formation. Future research with a
more representative sample would, however, yield important
information about the generalizability of our findings and
typical effect sizes. A second limitation is that our sample
was primarily composed of young adult females. Neither age
nor sex were found to be significant predictors of habitual
responding in this set of experiments; however, the age range
of participants in our sample was relatively limited and
the sample of male participants was relatively small. Future
studies should investigate whether these variables are truly
non-significant by testing a wider age range and sampling a larger
number of males.

Our findings extend recent work demonstrating enhanced
avoidance habits in individuals with obsessive-compulsive

disorder (Gillan et al., 2014, 2015), identifying a second
population with this behavioral pattern. Additional populations
that may show similar patterns include individuals with
post-traumatic stress disorder, binge eating disorder, and
substance use disorders. Future research should investigate
these possibilities. A deeper understanding of the role of
avoidance habits in maladaptive behavior has the potential to
inform interventions that may mitigate their negative effects on
individuals’ lives.
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A hallmark of habitual actions is that, once they are established, they become insensitive 
to changes in the values of action outcomes. In this article, we review empirical research 
that examined effects of posttraining changes in outcome values in outcome-selective 
Pavlovian-to-instrumental transfer (PIT) tasks. This review suggests that cue-instigated 
action tendencies in these tasks are not affected by weak and/or incomplete revaluation 
procedures (e.g., selective satiety) and substantially disrupted by a strong and complete 
devaluation of reinforcers. In a second part, we discuss two alternative models of a 
motivational control of habitual action: a default-interventionist framework and expected 
value of control theory. It is argued that the default-interventionist framework cannot solve 
the problem of an infinite regress (i.e., what controls the controller?). In contrast, expected 
value of control can explain control of habitual actions with local computations and 
feedback loops without (implicit) references to control homunculi. It is argued that 
insensitivity to changes in action outcomes is not an intrinsic design feature of habits but, 
rather, a function of the cognitive system that controls habitual action tendencies.

Keywords: habit, outcome devaluation, Pavlovian-to-instrumental transfer, default-interventionist framework, 
expected value of control, cognitive control

“The chains of habit are too weak to be felt until they are too strong to be broken.” (adage 
credited to Samuel Johnson, 1748, “The vision of Theodore”)

Human beings like to view themselves as rationally behaving agents (Nisbett and Wilson, 1977). 
Yet, we  are also creatures of habit. Accordingly, scientists in many different fields have been 
attracted to the study of habits because they invoke a dichotomy between automatic and controlled 
behavior (Wood and Rünger, 2016). A popular view is that habits run on autopilot until 
something goes wrong. For an illustration, let us take the example of our fictitious friend Tom: 
when he  comes home from work, he  has the habit to grab a can of cold beer from the fridge 
and to enjoy his after-work beer. On one unfortunate day, his wife bought the wrong beer, 
and the drama unfolds: Tom takes his usual large gulp, grimaces in distaste, and the moment 
is spoiled. What will happen to Tom? Will he  continue with drinking, even if he  cannot have 
his favorite beer? Maybe at a reduced rate? Or does he  stop beer drinking all at once?

These questions are far from trivial, because behavior analysts commonly agree that habitual 
action is in principle and by definition independent of the current value of the produced 
outcome (see the next section). Yet, it is also clear that most people can control and correct 
habitual actions to some degree if the outcome is dysfunctional. In fact, a persistent inability 
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to correct for unwanted habitual action patterns is a hallmark 
of a variety of pathological states (e.g., addiction)—and hence 
the atypical outcome of action control in healthy adults.

This article reviews research on the motivational control of 
habitual action. In a first section, we  will discuss insensitivity 
to changes in action outcomes as a defining feature of habitual 
actions. Then, we  will review behavioral and neuroscientific 
studies that examined a goal-independency of cue-instigated 
action tendencies with posttraining outcome revaluation 
procedures in operant learning and outcome-selective Pavlovian-
to-instrumental transfer (PIT) tasks. In the second part, we will 
discuss two theoretical accounts: a default-interventionist 
framework and expected value of control (EVC) theory. While 
both accounts can explain a motivational control of habitual 
action, we  will argue that EVC theory has more potential to 
provide a convincing account of habit control in PIT tasks.

PART I

Dual Action Psychology: Habitual and 
Goal-Directed Actions
According to behavior analysts, a habit is an acquired behavior 
that is triggered by an antecedent stimulus (Dickinson, 1985). 
Habit is distinguished from goal-directed action that is controlled 
by the current value of the action goal through knowledge 
about the instrumental relations between the action and its 
consequences. Often implicit to this distinction is an assignment 
of features of automaticity (e.g., associative, unintentional, 
efficient, etc.) to habitual actions and features of non-automaticity 
(e.g., rule-based, intentional, capacity-limited, etc.) to goal-
directed actions (Dickinson and Balleine, 1993). However, close 
scrutiny of this distinction makes clear that this dichotomy 
is not justified and too simple (for thorough discussions, see 
Bargh, 1994; Moors and De Houwer, 2006; Keren and Schul, 
2009; for counterarguments, see Evans and Stanovich, 2013). 
More useful seems a functional distinction based on correlations 
between actions and context features and correlations between 
actions and valued outcomes: instrumental actions are goal-
directed because they are correlated more strongly with the 
presence or absence of desired outcomes than with the presence 
of particular contexts or stimuli. For example, if Tom drinks 
his after-work beer because he  has a desire to get drunk, 
he  would be  willing to consume another alcoholic beverage 
if it has the same intoxicant effect. Habitual action, by contrast, 
is correlated more strongly with context features than with 
the presence or absence of a particular outcome of the action. 
For example, Tom would drink his after-work beer even if 
he  is not thirsty or keen on getting drunk. For him, it is a 
behavioral routine that becomes activated in the appropriate 
context. That means, he  would not have drunk the beer at 
another time or place, and assuming that he  has developed 
a habit of beer drinking, even not another beverage.

At this point, a few additional qualifications are necessary. 
First, the correlation of habitual actions with particular contexts 
(or states) does not mean that they are unrelated to the value 
of these contexts. Habits typically arise from frequent repetitions 

of previously rewarded (instrumental) actions, that means, they 
often have a strong reward history (Yin and Knowlton, 2006). 
This rewarding context does not change with the performance 
of a habitual action (“Tom still gets drunk after beer 
consumption”) but, rather, the internal representation of this 
state as action outcome has changed (“getting drunk is a 
by-product and not an intended consequence anymore”). 
Complicating things further, a similar point can be  made in 
respect to a correlation between instrumental actions and context 
features. Goal-directed actions are situated in particular contexts 
that offer a variety of informative cues for action control. 
Organisms exploit these cues in their active pursuit of a valued 
outcome and, if encountered on a regular basis, the action is 
correlated with the presence and absence of these contextual 
cues. Taken together, this means that a functional distinction 
between habitual and goal-directed actions based on the relative 
strength of correlations is gradual—and not a categorical one.

Second, for the analysis of a goal-dependency of actions, 
it is meaningful to distinguish between proximal and distal 
outcomes of actions. According to the standard definition, 
habitual action is not controlled by the value of proximal 
outcomes (“Tom does not drink his after-work beer because 
of the good taste of the beer”); however, the context in which 
the habit is performed is controlled by outcomes that are more 
distally related to the habitual behavior (e.g., “Tom wants to 
enjoy his leisure time and beer drinking serves this goal”). 
Thus, distal consequences can be  causally involved in the 
performance of a habitual action even if its performance is 
insensitive to its immediate outcome. Note that this relationship 
implies a roughly hierarchical structure in which the habit 
(“beer drinking”) is nested in a more abstract and/or temporally 
extended activity (“enjoyment of the evening”). In the following, 
we mean an insensitivity to immediate outcomes when referring 
to a goal-independency of habits.

Goal-Independency of Habits
Having laid out what habitual actions are, we now discuss studies 
examining a goal-independency of habitual actions. Given the 
extensive research literature on habit acquisition and performance, 
this review is necessarily selective. In the following, we  will 
focus on laboratory studies with humans and animals in which 
reinforcing stimuli were devalued after extensive instrumental 
training. For example, devaluation treatments could be the pairing 
of a food reinforcer with toxin, or the devaluation of a monetary 
reinforcer. Critically, this devaluation was done after reinforcement 
learning; consequently, the value of the reinforcer was changed 
in the absence of the associated action. Following devaluation, 
action performance was tested in extinction (i.e., without 
presentation of the reinforcer that would have allowed for new 
reinforcement learning). If the animal or human continued to 
perform the behavior which had produced the now-devalued 
reinforcer, it was concluded that the motivation to perform this 
action was not driven by the current value of the reinforcer 
(i.e., action outcome)—and hence habitual.

First, it should be noted that many studies with posttraining 
devaluations of action outcomes found that actions  
do not become habitual even after extensive training  
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(e.g., Adams and Dickinson, 1981). For example, a classic 
study trained rats to perform two distinct actions, each 
reinforced by a unique food reward (Colwill and Rescorla, 
1985). After extensive training, one reward was devalued by 
pairing it with a toxin (flavor-aversion conditioning). Then, 
the animal was given the opportunity to engage in each of 
the responses in extinction. The study showed that the 
postlearning devaluation of the food reinforcer selectively 
reduced working for that food. Obviously, the rat had retrieved 
a memory of the devalued food outcome during the extinction 
test, in contradiction to early views that the reinforcer becomes 
not encoded in associative stimulus-response structures 
controlling reinforced behaviors (Thorndike, 1911; Hull, 1931). 
On the other hand, working for the devalued outcome was 
often not completely abolished in this research, which was 
viewed as evidence for habit formation. However, caution 
is warranted with this interpretation. First, other factors 
besides context features could have motivated the residual 
performance. For instance, the animal could have tested out 
whether the action will continue to produce no reinforcer 
in the extinction test (see research on the so-called “extinction 
burst”; Lerman and Iwata, 1995). Second, the devaluation 
of the reinforcer was most typically incomplete (Colwill and 
Rescorla, 1990). We  will come back to this issue when 
we  discuss the effectiveness of outcome devaluation 
treatments below.

Subsequent studies examined more specific conditions in 
which instrumental performance becomes insensitive to outcome 
values. This research suggested that overtraining, single-response 
training regimes, and interval-based reinforcement schedules 
(relative to a fixed-ratio schedule) are conducive to habit 
formation (e.g., Dickinson et  al., 1983; Tricomi et  al., 2009; 
Kosaki and Dickinson, 2010). However, even these protocols 
do not invariably lead to an insensitivity outcome values (for 
a recent failure, see de Wit et  al., 2018) and the conditions 
necessary for habit formation are still not very well understood 
(Hogarth, 2018). Most important, the ideal “habit test” examines 
not only an insensitivity to correlations with (de)valued outcomes 
but also a sensitivity to correlations with context features. This 
test is found in a procedure called outcome-selective Pavlovian-
to-instrumental transfer of control (PIT).

In outcome-selective PIT, stimuli that are predictive of 
specific outcomes prime instrumental responses that are 
associated with these outcomes. The canonical procedure is 
shown in Figure 1 and consists of three separate phases: an 
a first Pavlovian training phase, participants learn predictive 
relations between stimuli and differential outcomes (e.g., 
S1-O1, S2-O2). In a subsequent instrumental training phase, 
they learn to produce these outcomes with particular actions 
(e.g., R1-O1, R2-O2). In a transfer test, both actions are 
then made available in extinction, and the preference for a 
specific action is measured in the presence of each conditioned 
stimulus (i.e., S1: R1 or R2?; S2: R1 or R2?). The typical 
result is a preference for the action whose outcome was 
signaled by the Pavlovian cue (i.e., S1: R1 > R2; S2: R2 > R1), 
suggesting that this stimulus has gained control over responding 
(for a review and meta-analysis, see Holmes et  al., 2010; 

FIGURE 1 | Pavlovian, instrumental, and transfer phases in the outcome-
selective PIT paradigm. S, stimulus cue; R, response; O, outcome. The 
animal shows no preference for a particular outcome (here: two flavors of 
cheese) before the training. In the transfer test, the response associated with 
the same outcome as the stimulus cue is typically preferred (i.e., S1: R1 > R2; 
S2: R2 > R1). See the text for more explanation.
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Cartoni et  al., 2016). Note that this cue-instigated action 
tendency cannot be  explained with rote S-R learning because 
the action was not paired with the Pavlovian cue before the 
transfer test. Instead, it has been suggested that the Pavlovian 
cue primes the action by activating the sensory representation 
of the associated outcome via an associative S:(R-O) or S:(O-R) 
chain (Trapold and Overmier, 1972; Asratyan, 1974; Balleine 
and Ostlund, 2007; de Wit and Dickinson, 2009). According 
to this account, the Pavlovian cue activates a cognitive 
representation of the identity of the outcome (whatever its 
value), and this activation excites the action that is associated 
with the same outcome. In line with an associative S-O-R 
mechanism, research on “ideomotor effects” showed that 
presentations of action effect-related stimuli prime actions 
producing these effects (for reviews, see Shin et  al., 2010; 
Hommel, 2013). An alternative account proposed that the 
Pavlovian cues act like discriminative stimuli in a hierarchical 
network that signal when a specific R-O relationship is in 
effect (Cartoni et  al., 2013; Hogarth et  al., 2014). According 
to this account, action choice in PIT tasks is driven by 
participants’ explicit beliefs about which action is more likely 
reinforced in the presence of a specific cue. For instance, 
participants in one experiment were told that the cues presented 
during a PIT test would indicate which action would not 
be  rewarded. This instruction reversed the cue-instigated 
action tendency (Seabrooke et  al., 2016). A follow-up study 
found this reversed PIT effect abolished by a cognitive load 
manipulation, while the standard PIT effect was spared 
(Seabrooke et  al., 2019b). This research suggests that several 
processes could contribute to outcome-selective PIT effects: 
a resource-dependent one that is highly amenable to 
instructions, and a relatively resource-independent one that 
could be  an association-based mechanism or a very simple 
behavioral rule. It should be  noted that outcome-selective 
PIT effects were also observed in rodent studies, and it has 
been argued that the underlying mechanisms are causally 
involved in a broad range of “habitual” behaviors (Everitt 
and Robbins, 2005; Watson et  al., 2012; Hogarth et  al., 2013; 
Colagiuri and Lovibond, 2015).

Importantly, the outcome-selective PIT task can be combined 
with outcome devaluation treatments to examine a goal-
independency of cue-instigated action tendencies. Using this 
research approach, animal studies found that rodents still work 
harder for a devalued food in the presence of a Pavlovian or 
discriminative cue associated with that food (Rescorla, 1994; 
Corbit and Balleine, 2005; Corbit et  al., 2007). For example, 
in one study (Holland, 2004), hungry rats learned relations 
between stimuli and two unique food rewards (sucrose and 
food pellets). These food rewards were then used to reinforce 
two distinct actions (chain pulling and lever presses). In a 
subsequent extinction test, the rats had access to these responses 
during presentations of the Pavlovian cues. Performance in 
this first transfer test showed a standard outcome-selective 
PIT effect. After this test, one of the two food rewards was 
devalued by pairing it with a toxin. Then, the rats worked on 
a second transfer test in extinction. Although the conditioned 
food aversion clearly decreased working for that food at baseline, 

the cue-instigated action tendency augmenting the devalued 
response was spared.

Results of outcome-selective PIT studies with human adults 
were however more mixed. While some studies confirmed the 
finding of animal studies that reinforcer-selective PIT does 
not change when the outcome is no longer desirable (Hogarth 
and Chase, 2011; Hogarth, 2012; Watson et  al., 2014; van 
Steenbergen et  al., 2017; De Tommaso et  al., 2018), a few 
studies observed a change. One of these studies used a stock-
market paradigm for a postlearning devaluation of outcomes 
(Allman et  al., 2010). Human adults first learned to associate 
specific symbols and instrumental actions with two (fictitious) 
money currencies. In this phase of the experiment, both 
currencies had the same value, and participants knew that 
they can swap the earnings into real money after the study. 
In a first extinction test, a clear PIT effect was observed. After 
retraining, and immediately before a second transfer test, one 
of the two currencies was devalued by making the currency 
worthless. In the subsequent extinction test, responding for 
the intact currency was still elevated by matching cues; in 
contrast, working for the devalued money was generally disrupted 
and not affected by presentations of a matching cue. In short, 
the Pavlovian cue had lost its capacity to excite the 
devalued action.

Follow-up research showed that the cue-instigated action 
tendency is affected by a postlearning value decrease, but not 
by an equidistant value increase (Eder and Dignath, 2016a). 
The study used a stock-market paradigm similar to Allman 
et  al. (2010). This time, however, the revaluation treatment 
involved three monetary outcomes: one currency was made 
worthless as in Allman et  al. by decreasing its value by one 
unit (1  →  0); the value of another currency was doubled 
(1  →  2); the third currency maintained its value (1  →  1) for 
baseline comparisons. If the cue-instigated action tendency is 
truly sensitive to the current value of outcomes, then it should 
decrease following the devaluation but increase following the 
upvaluation of the outcome. Results however showed that only 
the devaluation treatment had an effect: Outcome-selective PIT 
was significantly reduced after devaluation, reproducing the 
result of Allman et  al. (2010). In contrast, PIT effects were 
not different from the baseline condition after the upvaluation. 
In short, only a decrease in the outcome value affected 
cue-instigated action tendencies, while an equidistant value 
increase had no effect.

The PIT studies reviewed above are puzzling and at odds 
with a large number of studies that reported no effect of 
postlearning changes in outcome values. In the search for 
an explanation, Watson and colleagues proposed that the 
stock-market paradigm involved highly abstract representations 
of values that were presumably more accessible to explicit 
choice strategies (Watson et  al., 2018). While it is unclear 
why those explicit decision rules should not take a value 
increment into account (see Eder and Dignath, 2016a), recent 
studies confirmed that explicit beliefs can have a profound 
impact on outcome-selective PIT effects (see e.g., Seabrooke 
et  al., 2016). In addition, the theoretical argument was made 
that Pavlovian cues can only activate the sensory identity of 
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action outcomes in PIT tasks and not their value (Balleine 
and Ostlund, 2007; de Wit and Dickinson, 2009). If money 
outcomes in the stock-market studies were represented 
predominantly in terms of their value, this could have made 
a critical difference to (animal) studies that used primary 
reinforcers with a more detailed sensory representation. 
Accordingly, it could be  hypothesized that a standard PIT 
task with food outcomes should be not sensitive to postlearning 
changes in the values of outcomes.

Eder and Dignath (2016b) tested this hypothesis with 
liquid reinforcers. Participants were trained in separate sessions 
to associate specific symbols and keypresses, respectively, with 
red and yellow lemonades. Importantly, participants in this 
study were asked to consume the lemonades earned during 
a transfer test1. After having worked on a first transfer test, 
one of the lemonades was devalued with bad-tasting Tween20. 
Then, a second transfer test was performed. Each transfer 
test was further subdivided into two test blocks. In the first 
experiment, participants consumed the earned lemonades 
immediately after each test block. In the second experiment, 
consumption was not immediate, and participants could take 
the earned lemonades with them in bottles. Figure 2 shows 
the response rates in both experiments as a function of the 
Pavlovian cue in each test block. As can be  seen, a strong 
and robust PIT effect was observed in both experiments 
before devaluation: working for a specific lemonade was 
elevated by presentations of cues associated with that lemonade 
(relative to a baseline condition with a neutral cue associated 
with no lemonade). However, response rates changed 
dramatically following the devaluation. Participants now 
preferred the action that produced the intact lemonade. 
Responding for this lemonade was still augmented by a 
matching cue relative to baseline. In contrast, the cue-instigated 
action tendency was abolished for the devalued response in 
Experiment 1  in which the liquids earned in a test block 
were consumed immediately. Interestingly, in Experiment 2 
(without immediate consumption of the liquids), the 
cue-instigated tendency for the devalued response was abolished 
in the first test block only and restored in the second test 
block2. It is plausible that the immediate consumption of 
the drinks increased the motivational relevance of the devalued 
drink. These results hence show that a strong devaluation 
treatment of food outcomes can also reduce cue-instigated 
action tendencies operating on a primary reinforcer.

1 The transfer test was carried out in nominal extinction (i.e., without feedback 
whether or which lemonade had been earned). This was done to prevent the 
feedback from influencing the response choice. Instruction explicitly stated 
that the actions during the transfer test procure lemonades (2.5  ml according 
to the fixed-ratio 9 schedule) and that the probability of a reward is not 
influenced by the pictures presented during this phase. Note that a reward 
expectancy during the extinction test is common in PIT studies (see e.g., 
Hogarth and Chase, 2011; Colagiuri and Lovibond, 2015). Furthermore, it 
increases the ecological validity of the PIT task to behavior outside of the 
laboratory (for a discussion of this point see Lovibond and Colagiuri, 2013).
2 Collapsed across both test blocks, however, there was small PIT effect for the 
devalued response. Furthermore, the magnitudes of the PIT effects for the 
devalued response in both test blocks were not significantly different.

For an explanation, Eder and Dignath (2016b) suggested 
that only strong devaluation treatments suppress cue-instigated 
instigated actions. In fact, most studies that found no effect 
of the devaluation treatment used rather weak and/or incomplete 
devaluation treatments, such as ad libitum feeding, conditioning 
of a taste aversion, or health warnings (for a similar 
argumentation, see De Houwer et  al., 2018)3. Hogarth and 
Chase (2011), for instance, used a specific satiety procedure 
to devalue a tobacco outcome. Although smoking a cigarette 
before a transfer test reduced participants’ craving and working 
for cigarettes during the PIT test, cue-instigated action 
tendencies for that reward were not affected. Critically, working 
for the devalued tobacco outcome (irrespective of the cue) 
was still on a high level (>40%), suggesting that the devaluation 
was not very strong. In addition, regular smokers typically 
know that the state of satiety is only temporary. Therefore, 
it could be argued that working for cigarettes was still attractive 
for them during the transfer test. The devaluation treatment 
that is most comparable to the one used by Eder and Dignath 
(2016b) is conditioning of a taste aversion. Rodent studies 
often devalued a food reinforcer by pairing it with lithium 
chloride (LiCl) inducing sickness (e.g., Rescorla, 1994; Holland, 
2004). Although LiCl-conditioning has a strong and lasting 
effect on the consumption of that food, the devaluation is 
often incomplete, because the animal must approach a magazine 
to consume the poisoned food and could reject consumption 
before the devaluation was complete. In fact, when Colwill 
and Rescorla (1990) used a standard procedure to devalue a 
sucrose solution with LiCl-injections before a transfer test, 
the devaluation treatment did not eliminate the cue-instigated 
action tendency. However, when the poisoned sucrose solution 
was injected directly into the mouth of the rat during 
conditioning, the stimulus lost its capacity to elevate the 
devalued response. Thus, animal research also found 
cue-instigated action tendencies abolished after a strong and 
immediate devaluation treatment, in line with the results of 
human studies reviewed above.

Our main conclusion from this short review is that the 
cue-instigated action tendency was suppressed when the 
devaluation of the associated action outcome was strong and 
complete. This does not mean that the action tendency scales 
directly with the current value of the associate outcome, as 
proposed for a goal-directed process. In this case, studies with 
a weak (but still effective) devaluation of the outcome should 
also have observed a reduction in cue-instigated tendencies, 
which was not the case (e.g., Hogarth and Chase, 2011; 
Watson et  al., 2014; De Tommaso et  al., 2018). In addition, an 

3 A notable exception is Experiment 1  in Seabrooke et  al. (2017) that showed 
a PIT effect despite the use of a fairly strong devaluation treatment (coating 
of snacks with a distasteful paste). It should be  noted, however, that (1) this 
study presented pictures of the food outcomes (and not Pavlovian cues) during 
the transfer test; (2) despite a clear reduction in subjective liking ratings, 
working for the devalued food (in the baseline condition) was still on a sizeable 
level (~25%); (3) the devalued food earned during the test was not immediately 
consumed (see Eder and Dignath, 2016b); (4) the same devaluation treatment 
affected PIT tendencies in subsequent experiments after modification of the 
task procedure (Seabrooke et  al., 2017, 2019a).
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upvaluation of the associated outcome should have enhanced 
the cue-instigated action tendency, which was not observed 
(Eder and Dignath, 2016a). In short, the studies reviewed above 
do not question that the cue-instigated action tendency was 
“habitual” in the sense that the behavior was insensitive to 
the current value of the outcome; rather, they suggest that the 
habitual action tendency was cognitively suppressed because the 
devalued outcome was in conflict with other goals or intentions. 
According to this interpretation, an internal conflict signal is 
created after registration that the present state will deteriorate 
markedly with continued performance of the habitual action. 

Detection of this conflict signal then triggers behavioral adaptations 
that aim to correct for the maladaptive habitual response. In 
the next section, we  will describe two frameworks of how such 
a control system could be  implemented on the cognitive level: 
a default-interventionist framework and EVC theory.

PART II

In this part, we  will discuss two alternative frameworks of 
cognitive control: (1) a default-interventionist framework that 

A

B

FIGURE 2 | Response ratios in Eder and Dignath (2016b) before and after the devaluation of a liquid reinforcer as a function of stimulus cue, action, and test block 
in Experiment 1 (upper panel A) and Experiment 2 (lower panel B). S, stimulus cue; R, response; dev, devalued outcome. *significant difference to the baseline 
condition at p < 0.05.
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proposes a higher order cognitive control system that intervenes 
when the habitual action goes faulty. (2) EVC theory that 
explains the allocation of control with neural computations of 
the expected payoffs from engaging in cognitive control.

Default-Interventionist Framework
The default-interventionist framework postulates a cognitive 
control system that can intervene when the habitual “default” 
response becomes inappropriate, cumbersome, or defective. 
In its most basic form, the framework assumes two systems 
or control units of actions: a habitual controller and a  
goal-directed controller. Only the goal-directed controller is 
sensitive to changes in outcomes, while the habitual controller 
implements a stimulus-driven behavior without detailed 
representation of its consequences. This distinction is supported 
by neurophysiological research that studied dissociations in 
the control of voluntary and habitual actions on a neural 
systems level. More specifically, habitual and goal-directed 
controllers have been linked to two distinct (but interacting) 
cortico-basal ganglia networks in the brain: The associative 
cortico-basal ganglia loop controls goal-directed actions via 
projections from the prefrontal cortex (PFC) to the caudate 
nucleus and the anterior putamen. The sensorimotor loop 
controls habitual actions and connects the somatosensory 
and motor cortex with the medial and posterior putamen 
(for reviews, see Yin and Knowlton, 2006; Balleine et  al., 
2007; Graybiel and Grafton, 2015). Research found that after 
overtraining of a response (i.e., habit formation), neural 
activation is shifted from the associative loop to the 
sensorimotor loop (Ashby et  al., 2010). Interestingly, goal-
oriented behavior can be  reinstated after inactivation of the 
infralimibic prefrontal cortex in the rodent brain (Coutureau 
and Killcross, 2003). This finding suggests that the circuits 
controlling goal-directed behavior are actively suppressed after 
habit formation.

The default-interventionist framework rests on the idea 
that there is a dynamic balance between action control 
systems, and that control could be  shifted back from the 
habitual to the goal-directed control system if needed. This 
idea also fits with the long-standing view that prefrontal 
cortical areas have the capacity to override unwanted lower-
order action tendencies (Koechlin et  al., 2003). However, it 
has been argued that regaining control over habitual action 
tendencies is effortful and requires cognitive resources 
(Baddeley, 1996; Muraven and Baumeister, 2000). Furthermore, 
the person must be  sufficiently motivated to invest resources 
in the executive control of the habitual action (Inzlicht and 
Schmeichel, 2012). Hence, a number of requirements must 
be met for the default-interventionist framework (for a defense 
and criticisms of this view, see Evans and Stanovich, 2013; 
Kruglanski, 2013; Hommel and Wiers, 2017; Melnikoff and 
Bargh, 2018).

It is likely that these conditions were met in the posttraining 
devaluation studies reviewed above. With a strong and complete 
devaluation of the outcome, participants were arguably motivated 
to avoid that outcome. In addition, performing the free-operant 
transfer task was very easy and without time pressure. However, 

the explanatory problems with the default-interventionist 
framework are much more fundamental and concern the very 
architecture of this account. Specifically, it is not specified 
what controls the controller, leading to an infinite logical 
regress. This problem became apparent in early accounts that 
conceptualized the interventionist as a unitary system 
(supervisory attentional system, working memory system, goal-
directed action controller, etc.,). This approach was heavily 
criticized of introducing a “homunculus” (the executive 
controller) that pulls the levers to regulate lower levels if 
needed (Monsell and Driver, 2000). As a reaction to this 
criticism, the unitary control system view was replaced by 
more complex models that decomposed the “executive” in 
more specific control functions (e.g., mental set shifting, memory 
updating, response suppression; Miyake et al., 2000). However, 
as Verbruggen et al. (2014) unerringly pointed out, this approach 
only resulted in a multiplication of control homunculi and 
not in an explanation of how control is exercised. Thus, a 
fundamentally different approach is needed that explains 
cognitive control functions as an emergent phenomenon of 
the cognitive system.

Expected Value of Control
A model that has the potential to explain habit control in 
the PIT paradigm without recourse to control homunculi is 
found in EVC theory (Shenhav et al., 2013, 2016). This model 
analyzes cognitive control as a domain of reward-based decision 
making; that means, it is assumed that cognitive control 
functions serve to maximize desired outcomes through 
“controlled” processes when those outcomes could not otherwise 
be  achieved by (habitual) “default” processes (Botvinick and 
Braver, 2015). The model aims to explain whether, where, 
and how much cognitive control is allocated to ongoing or 
planned activities. At the neural level, it is assumed that a 
central hub in this decision making process is the dorsal 
anterior cingulate cortex (dACC) that lies on the medial 
surfaces of the brain’s frontal lobes (see the central panel in 
Figure 3). Many studies showed that the dACC becomes 
active in control-demanding situations in which automatic 
action tendencies, such as habits, are in conflict with task-
defined responses (see e.g., Procyk et  al., 2000; for meta-
analyses see Ridderinkhof et  al., 2004; Nee et  al., 2007). As 
a key hub in a wide network of distributed brain regions, 
it receives inputs from brain areas responsible for the valuation 
of incoming stimuli or action outcomes and sends output 
signals to areas responsible for the implementation of control 
(see Figure 3). In this network, it is assumed that dACC 
serves several functions: (1) it monitors ongoing processing 
to signal the need for control; (2) it evaluates the demands 
for control; (3) and it allocates control to downstream regions 
(Botvinick, 2007; Shenhav et al., 2016); for a different account 
of dACC functions, see Kolling et  al., 2016).

According to EVC theory, two sources of value-related 
information are integrated in the dACC: (1) what control 
signal should be  selected (i.e., its identity) and (2) how 
vigorously this control signal should be  engaged (i.e., its 
intensity). The integration process considers the overall payoff 
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that can be  expected from engaging in a given control signal, 
taking into account the probabilities of positive and negative 
consequences that could result from performing a task. In 
addition, it takes into account that there is an intrinsic cost 
to engaging in control itself, which is a monotonic function 
of the intensity of the control signal (Shenhav et  al., 2017). 
The expected value of a candidate control signal is the sum 
of its anticipated payoffs (weighted by their respective 
probabilities) minus the inherent cost of the signal (a function 
of its intensity). By relative comparisons, the candidate control 
signal with the maximum expected value is selected for a 
down-stream regulation of more basic processes. This selection 
process has been simulated as a stochastic evidence 
accumulation process using the drift diffusion model that 
avoids any recourse to a homunculus (Musslick et  al., 2015). 
In contrast to the default-interventionist framework, EVC 
theory does not assume a hierarchy of action control systems 
but, rather, views the control of habitual actions as an emergent 
phenomenon of a unitary cognitive system. In addition, neural 
computations of the expected payoffs are continuously 
performed during task engagement, and control (e.g., attention) 
can be  applied in varying degrees to the task at hand. It 
should be noted that the hypothesis of a neural implementation 
in the dACC is in principle independent of the computations 
proposed by the theory on the algorithmic level (Marr, 1982). 
In other words, it is possible that future neuroscientific research 
will identify other neural structures that calculate expected 
payoffs of engaging in control. By providing a computationally 
coherent and mechanistically explicit account of cognitive 
control functions on the algorithmic and implementational 
levels, EVC theory avoids the pitfall of introducing a new 
homunculus-like entity that magically guides cognition 
and behavior.

EVC theory can account for cognitive control functions 
and subsequent control adaptations in classic response conflict 
tasks (Ridderinkhof et  al., 2004; Carter and van Veen, 2007; 
Nee et  al., 2007), and the model was also used to explain 
behavioral flexibility that is characteristic of exploration and 
foraging (Shenhav et al., 2016). Most important for the present 
discussion, EVC theory can help to understand habit control 
in PIT tasks. In the remainder of this article, we  provide a 
preliminary account of control functions in outcome-
selective PIT.

In PIT tasks, the default response that must be  potentially 
overcome is the cue-instigated action tendency that primes 
actions associated with shared outcomes. Before the revaluation 
treatment, however, there exists no motivation to override this 
default tendency. There is no action that would be more “correct” 
or valuable and that could be  increased for a better payoff. 
To the contrary, overcoming the PIT tendency would be effortful 
(for indirect evidence on this assumption, see Cavanagh et  al., 
2013; Freeman et  al., 2014; see also Yee and Braver, 2018). 
Therefore, the expected payoff does not justify the intrinsic 
cost of control. As a result, the cue-instigated action tendency 
is not or only minimally controlled in this phase, resulting 
in a PIT effect.

Expected payoffs however change dramatically after a strong 
revaluation of the outcome. Now, there exists a clear difference 
in the value of action outcomes, and response rates are adjusted 
to maximize the reward. At the computational level, this 
behavioral adjustment is implemented by prioritizing control 
signals that maximize the value of outcomes. As a consequence, 
control of action tendencies that would produce devalued 
outcomes is now justified, because the anticipated outcome of 
the intact response outweighs the effort that is necessary to 
override the devaluated response. Control is however not 

FIGURE 3 | Control allocation according to EVC theory. The dACC monitors ongoing processes for signals relevant to evaluating EVC and specifies the optimal 
control allocation to downstream regions for overriding a default behavior. OFC, orbitofrontal cortex; STN, subthalamic nucleus; mPFC, medial prefrontal cortex; 
PFC, prefrontal cortex. Figure reprinted by permission from Springer Nature: Nature Neuroscience, “Dorsal anterior cingulate cortex and the value of control”,  
© Shenhav et al. (2016).
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intensified following the registration of an action tendency 
that would result in high-value outcomes. As a consequence, 
the cue-instigated action tendency is only controlled  
(i.e., suppressed) if it results in a devalued outcome, whereas 
actions resulting in desirable outcomes do not (or to a much 
smaller degree) demand control.

EVC theory can hence explain why studies found reduced 
PIT tendencies only with very strong and/or complete 
devaluation treatments. The outcome value arguably shrank 
less by a weak relative to a strong devaluation treatment. 
The small decrement in the expected payoff does not justify 
the intrinsic costs of engaging in control. Furthermore, a 
EVC account of the PIT task can also explain observed effects 
that the default interventionistic account cannot explain. For 
instance, computations of expected payoffs take into account 
a temporal discounting of future and/or past outcomes (Yi 
et al., 2009). Immediate outcomes are typically weighted more 
than temporally distant outcomes. This immediacy bias can 
explain why immediate (relative to delayed) consumptions 
had a stronger effect on cue-instigated action tendencies in 
the study of Eder and Dignath (2016b). Furthermore, if the 
negative value of the devalued drink was discounted with 
the time that elapsed or will elapse since the consumption 
of that drink (Yi et  al., 2009), the expected value of engaging 
in control is the largest immediately after consumption of 
the drink. Temporal discounting of the negative outcome 
value can hence explain why PIT tendencies were abolished 
in the first test block and restored in the second test block 
of Eder and Dignath’s experiment.

EVC theory also provides an explanation why the 
postlearning devaluation of the outcome had a stronger effect 
on the control of PIT tendencies compared to the upvaluation 
(Eder and Dignath, 2016a). Research on cognitive control 
showed that negative outcomes elicit a stronger control signal 
(Hajcak et  al., 2005) and that conflict is aversive (Botvinick, 
2007; Inzlicht et  al., 2015). In line with this suggestion, 
studies found that conflict elicits a negative affective response 
(Dreisbach and Fischer, 2012) that triggers avoidance (Dignath 
et al., 2015; Dignath and Eder, 2015). In addition, (unexpected) 
positive events reduce conflict-driven behavioral adaptations, 
presumably because they weaken the negative conflict signal 
that signals need for control (e.g., van Steenbergen et  al., 
2009; but see also Dignath et  al., 2017). It is hence plausible 
that a positive affective response to the (unexpected) 
upvaluation of a currency in the study of Eder and Dignath 
(2016a) has analogously decreased the intensity of the control 
signal that signaled need for control of the cue-instigated 
action tendency.

In summary, EVC theory can explain most findings of 
the PIT studies reviewed above. While this account is ex 
post facto, it has the benefit of providing a formal and 
mechanistic account of the effect of posttraining revaluation 
treatments on PIT tendencies. In addition, the account allows 
for new predictions. According to EVC theory, cognitive 
control of cue-instigated action tendencies should be inversely 
related to the intrinsic cost of control effort. Therefore, one 

would expect that PIT tendencies should recover in demanding 
transfer tasks with high intrinsic costs of control, even when 
the devaluation of the associated outcome was very strong. 
For instance, costs of engaging in control could be manipulated 
by increasing the investment of resources that are necessary 
to reach a decision and/or to implement the action (Boureau 
et  al., 2015). These costs could be  cognitive (e.g., evaluation 
times), physical (e.g., energy expenditure), and/or emotional 
(e.g., negative affective experiences). When intrinsic costs 
outweigh the cost of producing a devalued outcome in a 
PIT task, the prediction would be that control of cue-instigated 
action tendencies becomes relaxed, resulting in larger outcome-
selective PIT effects. Having a strong foundation in 
neuroscientific research, the account also makes new predictions 
at the neural level. Specifically, activity of dACC should 
increase following the strong devaluation of an outcome, 
indexing the monitoring and implementation of a control 
setting. In addition, dACC should be  most active during 
presentations of Pavlovian cues predictive of the devalued 
outcome. Hence, several hypotheses can be  deduced from 
EVC theory that could be  examined in future research.

CONCLUSION

Habits have a great influence on our behavior. Some habits 
we strive for, and work hard to make them part of our behavioral 
repertoire. Other habits we  want to abolish because they are 
problematic. Habits are consequently closely linked to cognitive 
control functions that regulate habitual action tendencies for 
the pursuit of higher-order goals. In this article, we  argued 
on the basis of EVC theory that the allocation of control to 
habitual action tendencies is based on evaluations that compute 
the expected value of control by taking intrinsic costs of effortful 
control into account. Habits hence may be insensitive to changes 
in outcomes values because the expected benefits that follow 
from habit control do not justify the costs of control. The 
often cited insensitivity to changes in action outcomes is 
consequently not an intrinsic design feature of habits but, 
rather, a function of the cognitive system that controls habitual 
action tendencies.
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Attention-deficit/hyperactivity disorder (ADHD) is associated with neurobehavioral
reward system dysfunctions that pose debilitating impairments in adaptive decision-
making. A candidate mechanism for such anomalies in ADHD may be a compromise
in the control of motivated behaviors. Thus, demonstrating and restoring potential
motivational control irregularities may serve significant clinical benefit. The motivational
control of action guides goal-directed behaviors that are driven by outcome value, and
habits that are inflexibly cue-triggered. We examined whether ADHD symptomology
within the general population is linked to habitual control, and whether a motivation-
based manipulation can break well-learned habits. We obtained symptom severity
scores from 106 participants and administered a Go/NoGo task that capitalizes on
familiar, well-learned associations (green-Go and red-NoGo) to demonstrate outcome-
insensitivity when compared to newly learned Go/NoGo associations. We tested
for outcome-insensitive habits by changing the Go and NoGo contingencies, such
that Go signals became NoGo signals and vice versa. We found that generally,
participants responded less accurately when green and red stimuli were mapped to
color-response contingencies that were incongruent with daily experiences, whereas
novel Go/NoGo stimuli evoked similar accuracy regardless of color-response mappings.
Thus, our Go/NoGo task successfully elicited outcome-insensitive habits (i.e., persistent
responses to familiar stimuli without regard for consequences); however, this effect
was independent of ADHD symptomology. Nevertheless, we found an association
between hyperactivity and congruent Go response latency, suggesting heightened pre-
potency to perform habitual Go actions as hyperactivity increases. To examine habit
disruption, participants returned to the lab and underwent the familiar version of the
Go/NoGo task, but were given mid-experiment performance tracking information and a
monetary incentive prior to contingency change. We found that this motivational boost
via dual feedback prevented the incongruency-related accuracy impairment, effectively
breaking the habit, albeit independent of ADHD symptomology. Our findings present
only a modest link between ADHD symptomology and motivational control, which
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may be due to compensatory mechanisms in ADHD driving goal-directed control,
or our task’s potential insensitivity to individual differences in ADHD symptomology.
Further investigations may be crucial for determining whether ADHD is related to
motivational impairments.

Keywords: ADHD, reward, habit, goal-directed, motivation, control

INTRODUCTION

Individuals with attention deficit-hyperactivity disorder (ADHD)
are known to exhibit cognitive impairments that span domains
of attention and impulsivity (American Psychiatric Association,
2013). These hallmark symptoms are often accompanied by
executive control irregularities, such as diminished inhibitory
control and excessive distractibility that interfere with daily
functioning (Willcutt et al., 2005). Additionally, behavioral
and neurobiological reports have highlighted reward-related
abnormalities in ADHD, in that individuals with ADHD
display impairments in learning from, interacting with, and
processing rewards (Ceceli et al., 2019). Children and adults
with ADHD present heightened delay aversion, such that they
choose immediate, less valuable rewards over delayed yet larger
rewards (Sonuga-Barke et al., 1992; Kessler et al., 2005b; Antrop
et al., 2006; Marx et al., 2013). In addition to such examples
of suboptimal decision-making, individuals with ADHD also
exhibit abnormal reward-related neural processing in the brain’s
reward circuitry, such as decreased signaling in the ventral
striatum during reward anticipation, and atypical orbitofrontal
cortex (OFC) activity during reward delivery (Ströhle et al.,
2008; Wilbertz et al., 2012; Furukawa et al., 2014; Plichta and
Scheres, 2014; von Rhein et al., 2015). The affected regions
of the brain that regulate reward anticipation and processing
(i.e., the striatum and prefrontal cortex), are also known as
integral areas for executing motivated behaviors (Balleine and
O’Doherty, 2009; O’Doherty, 2016). These neurobehavioral
dysfunctions in ADHD, when taken together with the cardinal
presentations of inattention and impulsivity, suggest potential
disparities in the control of motivated behaviors that have yet
to be elucidated.

The motivational account of behavioral control posits that our
actions can be either goal-directed, as in, performed deliberately
in pursuit of a desirable outcome, or habitual, as in, triggered in
response to a salient cue regardless of outcome value (Dickinson
and Balleine, 1994). These components of motivational control
have distinct neural signatures, such that the prefrontal cortex
and caudate are known to be imperative for the execution of goal-
directed behaviors, while cue-based habitual control is largely
associated with the putamen and motor cortex (Haber, 2003;
O’Doherty et al., 2004; Tricomi et al., 2009). Interestingly, a
compelling body of work documents functional and structural
abnormalities in ADHD when compared to neurotypicals (NTs)
in these brain regions, suggesting a compromised corticostriatal
system that could be indicative of motivational control deficits.
For example, ADHD is associated with reduced gray matter
volume in the caudate, expansion of the posterior putamen,
and aberrant connectivity in the ventromedial prefrontal cortex

(vmPFC) and anterior cingulate cortex (ACC) (Qiu et al., 2009;
Frodl and Skokauskas, 2012; Costa Dias et al., 2013; Norman
et al., 2016; von Rhein et al., 2017; Rosch et al., 2018).
Studies in rodents have suggested that a rat model of
ADHD, the spontaneously hypertensive rat, exhibits a habit-
dominated motivational control system, in that these rats that
possess ADHD-like symptoms also display outcome-insensitive
behavioral patterns (i.e., pressing a lever that predicts a food
outcome to which the rat is sated) (Natsheh and Shiflett,
2015). Neural evidence suggests that this behavioral deficit is
linked to imbalances in dopamine receptor activation, supporting
the idea that abnormalities in the striatal systems may also
manifest as an over-reliance on habitual control in ADHD
(Natsheh and Shiflett, 2018).

If ADHD is indeed associated with enhanced habitual control
that favors outcome-insensitive behaviors, the next logical and
translationally valuable step would be to identify strategies that
can overcome this behavioral deficit. For instance, performance-
contingent feedback is a frequently employed tool that has been
shown to improve behavioral output (Montague and Webber,
1965; Kluger and DeNisi, 1996). The positive effects of feedback
in the form of performance-tracking information, as well as
primary and secondary incentives, have been well-documented
in the cognitive flexibility domain – namely using task-switching
paradigms. Indeed, even the promise of a future performance-
contingent reward has been shown to amplify task-switching
performance (Yee et al., 2016). Importantly, performance-
contingent monetary feedback is associated with the engagement
of top-down control of task-switching processes (Umemoto and
Holroyd, 2015). Taken together, we believe that the benefits
of feedback on behavioral output and control over actions
may carry over to the restoration of goal-directed behaviors in
ADHD. Specifically, we reason that amplifying the salience of
the outcomes of one’s behaviors with feedback (e.g., tying task
performance to monetary incentives and performance tracking)
may reactivate goal-representations in otherwise stimulus-
driven associations. In support of this hypothesis, we have
previously demonstrated the beneficial effects of feedback on the
motivational control of action (Ceceli et al., 2019).

Tackling the expression of habits and the restoration of
goal-directed behaviors in potentially compromised populations
may involve overcoming the methodological limitations of the
traditional habit paradigm. A meaningful assessment of habit
expression and disruption may require access to rigid habits
with a strong association between the triggering stimulus and
the behavioral response. Therefore, instead of relying on labile,
newly learned habits that have been the subject of inquiry in most
investigations of motivational control (Ceceli and Tricomi, 2018),
it may be more effective to study habit expression and disruption
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via well-learned, existing S–R associations that do not require
extensive training in the laboratory (Ceceli et al., 2019).

To this end, we developed a Go/NoGo task that capitalizes
on familiar green and red traffic light stimuli that activate
existing stimulus–response associations (Ceceli et al., 2019).
If green-Go and red-NoGo associations are habit-driven,
an incongruent Go/NoGo mapping (green-NoGo, red-Go)
should produce significant decrements in accuracy. Importantly,
Go/NoGo mappings that involve novel stimuli with no
significant behavioral representations (i.e., blue and purple
light stimuli) should evoke no mapping-related performance
impairments. If ADHD is associated with heightened habitual
control, symptom severity might track the mapping-related
impairments elicited by the familiar Go/NoGo stimuli (e.g.,
higher symptom severity scores should predict heightened
errors of commission – response execution when instructed to
withhold). Furthermore, if performance and monetary feedback
are effective in restoring goal-directed control, this dual feedback
delivery should protect against the mapping-related accuracy
impairment, preventing the increase in commission errors
when Go and NoGo associations are incongruent with daily
experiences. Similarly, such a disruption in habits may also
be correlated to ADHD symptom severity, such that a more
severe presentation of ADHD symptoms may be less affected
by the beneficial effects of feedback. Alternatively, if feedback
is a salient enough motivator, highly symptomatic individuals
may also benefit from our feedback manipulation, resulting in
habit disruption across the board. To reveal whether ADHD
is associated with habitual control, and whether a habit-
dominated motivational control system may be remediated, we
administered our well-learned habit task over the course of
2 days on a large sample from the general population, from
whom we collected ADHD-related symptomology information.
On the first day, we examined the execution of well-learned
habits in our sample, and on the second day, we introduced
our motivational enhancement manipulation – a combined
delivery of performance information and monetary feedback –
to restore goal-directed control. Importantly, per our pre-
registered analysis plan (document URL)1, we used ADHD-
related measures to detect whether symptoms of the disorder
tracked well-learned habit expression and disruption.

MATERIALS AND METHODS

Participants
To determine the sample size for our study, we performed
an a priori power analysis on data from an existing study
that examined inhibitory control capacity and ADHD-related
symptoms (Wodushek and Neumann, 2003). In this study,
healthy adults were categorized into high vs. low ADHD
symptom groups for inhibitory control comparisons. We
extracted effect sizes from the correlations between inhibitory
control and non-verbal inattention in both symptom severity
groups, and averaged the two resulting projected sample sizes.

1https://osf.io/fjcbw

The averaged sample size needed to reach 80% statistical power
was determined to be 105. We recruited 106 participants to make
up for one participant’s corrupted data. Thus, 106 undergraduate
students (79 female, 27 male; Mage = 20.23, SDage = 4.07)
from the Rutgers University-Newark campus participated for
course credit. Informed consent was provided by all subjects per
Declaration of Helsinki human subject protection guidelines. The
Rutgers University Institutional Review Board approved study
protocols. Individuals were excluded from participation for self-
reported color-blindness. Two participants’ data were excluded
from analyses due to attrition (n = 1) and data corruption (n = 1).
Thus, the statistical analyses were performed on the remaining
104 participants (77 female, 27 male participants; Mage = 20.20,
SDage = 4.10).

Materials and Procedures
Participants performed Go/NoGo tasks adapted from Ceceli et al.
(2019) over 2 days. On day one, all participants underwent
Go/NoGo tasks with familiar green and red traffic light stimuli
(Familiar condition), and novel blue and purple traffic light
stimuli (Novel condition) as Go and NoGo signals. Participants
were instructed to respond as quickly and accurately to
these stimuli as possible using the keyboard. A second phase
followed in each Stim_Familiarity condition (Familiar/Novel
conditions), where the color-response mappings were swapped
(see Figure 1). In the Familiar condition, the Green-Go/Red–
NoGo color-response mapping was considered “congruent” with
daily experiences, while the Red–Go/Green–NoGo mapping was
considered “incongruent,” in that it required the participant to
override the well-established go and stop meanings of these
stimuli. The Novel condition stimuli, however, are assumed
to have no well-established Go or NoGo associations in daily
life, in that the swapping of the color-response mappings
should not require overriding associations that have been well-
established. If familiar associations elicit habitual, cue-driven
behavioral control, participants should experience a significant
impairment in NoGo accuracy when green is mapped with NoGo.
In the Novel condition, participants should perform similarly
when managing either color-response mapping due to blue and
purple not being strongly associated with Go/NoGo signals,
reflecting goal-directed performance. We counterbalanced the
order in which participants underwent the two phases within
each Stim_Familiarity condition to ensure that our results
were not due to a specific order of managing color-response
contingencies. We also counterbalanced the order in which
participants underwent the Familiar and Novel conditions.
Lastly, participants completed the Adult ADHD Self-Report
Scale (ASRS), a two-part survey that captures inattentive and
hyperactive symptom manifestation associated with ADHD
(Kessler et al., 2005a), and a demographic survey, concluding day
one’s procedures.

Day two was completed within 3 days of day one and
examined the potential habit-disrupting effect of a motivational
enhancement. We separated these sessions by at least 1 day to
minimize potential training effects. On day two, all participants
underwent the Familiar condition of the Go/NoGo task,
completing the “congruent” color-mapping first. Next, we
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FIGURE 1 | Go/NoGo task with familiar and novel lights. Participants undergo
both Familiar and Novel conditions. In the Familiar condition, participants
complete two phases: one in which green represents Go and red represents
NoGo (“congruent” mapping), and one in which red represents Go and green
represents NoGo (“incongruent” mapping). In the Novel condition, participants
complete two similar phases, but the colors are blue and purple, for which we
assume no strong pre-existing associations with go/stop responses. We
predicted more commission errors in the Familiar condition for incongruent
than congruent mappings, indicating outcome insensitivity, with no such
within-subject differences expected in the Novel condition. Phase and
Stim_Familiarity condition orders were counterbalanced across subjects.

induced motivational enhancement via the delivery of cumulative
performance feedback and a monetary incentive. Specifically,
participants’ cumulative task performance was displayed as a
percentage score on the screen. Additionally, the experimenter
briefly left the room, returning shortly after with a $5 cash
bonus. The participants were informed that the $5 bonus was
due to their performance on the task. The participants were
then instructed to perform the “incongruent” color-mapping
of the Familiar condition, and were informed that they may
receive another performance-contingent cash bonus afterward.
Unbeknownst to the participants, the mid-session cash bonus
was not actually contingent on performance. We did not
counterbalance color-mapping of Go/NoGo contingencies on
day two to render the congruent color-mapping performance as
baseline. Thus, we were able to test whether the presence of a
mid-experiment motivational manipulation affected subsequent
incongruent color-mapping performance (i.e., overriding the
green-Go/red-NoGo habit). Lastly, participants completed the
Creature of Habit Survey (COHS) (Ersche et al., 2017),
quantifying the frequency of daily habitual tendencies, and a brief
post-experiment questionnaire.

In each phase, there was a 5:1 Go/NoGo ratio, with 100
Go and 20 NoGo trials. Each Go/NoGo stimulus remained on
the screen for 400 ms. Participants were required to respond
to Go signals before the offset of the stimulus for a correct
response. After offset, each response produced a brief “correct”
or “incorrect” text slide. To ensure engagement with the
task, inter-trial intervals varied randomly between 1200 and
2400 ms. Participants completed a practice session prior to each
Stim_Familiarity condition, which consisted of six correct Go or
NoGo responses using that condition’s stimuli. The experimenter
remained present to ensure the instructions were understood
during the practice sessions.

Data Analysis
We pre-registered our task procedures and analyses prior to data
collection via the Open Science Framework project registration
portal (document URL: see text footnote 1). Analyses that were
not outlined in our pre-registration document are marked as
exploratory below. Data analysis was performed using the nlme
package in R (version 3.5.1).

We used NoGo accuracy as our primary measure of outcome-
sensitivity,as the moderate Go to NoGo ratio was hypothesized
to produce prepotent Go responses (Young et al., 2018). NoGo
accuracy has been the gold standard in studying behavioral
control (Schulz et al., 2007; Meule, 2017). We selected this
measure as our primary outcome of interest because our
hypotheses are grounded in the idea that overriding the
prepotent Go response will differ based on the real-world
familiarity associated with color-response mappings in the task,
and be further driven by ADHD symptom severity. As a
secondary measure of outcome-sensitivity, we also performed
all analyses using Go accuracy to supplement our assertions
of differential outcome-sensitivity across Familiar and Novel
conditions, and reveal the potential role of ADHD symptom
severity in contributing to outcome-sensitivity. An alternative
method of reporting Go/NoGo results is centered on the signal
detection approach, in which Z-scored “hits” are subtracted from
Z-scored “false alarms” to derive a sensitivity bias estimate for
that particular run (Stanislaw and Todorov, 1999). However,
this approach may complicate extracting color-specific accuracy
information that is spread out over multiple runs—for example,
extracting a sensitivity bias for green would require hits from
the congruent, and false alarms from the incongruent run.
Nonetheless, when sensitivity biases are derived on familiarity
and congruency (e.g., when measured using Green-Go hits
together with Red-NoGo false alarms to yield a sensitivity bias
for the familiar-congruent mapping) the results mirror the
analyses reported here using traditional accuracy rates. The
corresponding signal detection analyses can be found in our
shared analysis scripts and data output materials in the section
Supplementary Data Sheet 1, “Signal Detection Analyses” in
Supplementary Material.

Participants with standardized residuals less than −3.3
and greater than 3.3 were identified as outliers (Tabachnick
and Fidell, 2007). Analyses excluding outliers are reported
if data removal produces substantial changes in results (i.e.,
changes in statistical significance of any regressor). Bootstrapped
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95% confidence interval values for all model regressors are
included in their corresponding data tables (1000 bootstrap
iterations in each model).

ADHD Symptom Severity and Well-Learned Habits
We performed an omnibus hierarchical multiple regression test
to discern the contributions of symptom severity on outcome-
sensitivity within Familiar and Novel condition data collected
on day 1. This hierarchical structure permitted us to extract
information about the amount of variance explained by groups
of regressors (i.e., controlled variables, individual difference
measures, and experimental variables), while also obtaining the
predictive strengths of each individual regressor. Importantly,
each additional step in the hierarchy updates the parameter
estimates of the regressors in the previous steps, such that
we are also able to detect how controlled variables may
influence other regressors of interest. We used 1NoGo_Accuracy
(i.e., change in NoGo accuracy scores across mappings) as
our dependent variable (DV) to measure the within-subject
mapping-related change in accuracy. A greater mapping-
related impairment represents greater outcome-insensitivity
(e.g., heightened difficulty overriding a color-response mapping).
In a hierarchical structure, we first input the regressors Age,
Gender, Stim_Familiarity_Order (order in which participants
underwent Familiar and Novel conditions), Phase_Order (order
in which participants underwent color-response mappings within
each Stim_Familiarity condition), and Driving (each participant’s
experience driving, scaled in months), with Subject as a random
factor into a linear mixed model. This model extracted the
predictive strength of each of these controlled variables on
outcome-sensitivity. In the next hierarchical step, we added
the regressors ASRS_Inattentive (part A of the ASRS measure
capturing symptoms of inattention), ASRS_Hyperactive (part B
of the ASRS measure capturing symptoms of hyperactivity), and
ASRS_Total (parts A and B aggregated to derive a composite
score of ADHD symptom severity). Because our sample included
six participants who had received ADHD diagnoses, we also input
a Diagnosis regressor to determine whether clinical manifestation
of ADHD – albeit in a small proportion of participants – affects
outcome-sensitivity. We used COHS scores as a regressor to find
potential correlations with tendency to behave habitually in daily
life and outcome-sensitivity in our task. These regressors served
to explain the main effects of each individual difference measure
on outcome-sensitivity. In the third step of the hierarchical
model, we input Stim_Familiarity (Familiar/Novel) as a regressor
to specifically detect whether participants exhibited differential
outcome-sensitivity across Familiar and Novel conditions.
A significant contribution of this variable would confirm that
the familiar red and green stimuli indeed elicit outcome-
insensitive, habitual control, while the novel stimuli are labile,
and thus controlled by goal-directed processes. We performed
post hoc t-tests of NoGo accuracy between phases in each
Stim_Familiarity condition to ascertain differential mapping-
related impairment across Familiar and Novel conditions. Lastly,
because of our specific focus on the influence of ADHD
symptomology on habitual control, we also entered all individual
difference measures’ interactions with Stim_Familiarity as

regressors (e.g., ADHD_Inattentive × Stim_Familiarity) into
step four of the model. Thus, we were able to distinguish the
effects of each variable on outcome-sensitivity across Familiar
and Novel conditions.

In brief, we expected the controlled demographic
and counterbalancing variables (Age, Gender, Driving,
Stim_Familiarity_Order, and Phase_Order) to be trivial in
predicting outcome-sensitivity. We did not expect the Driving
regressor to play a significant role in altering outcome-sensitivity,
as we expect our well-learned habit task to capture well-
established associations that extend beyond experience with
these color-response mappings in a traffic context. We input
both main effect and interaction regressors related to individual
differences in ADHD symptomology and daily habitual
tendencies to reveal potential associations with outcome-
sensitivity. This way, we were able to inquire whether these
individual difference regressors yielded strong associations with
global outcome-sensitivity (i.e., main effects predicting mapping-
related impairments independent of stimulus familiarity), and
further interrogate whether such an association existed with
well-learned habit expression in particular (i.e., ADHD-related
measure × Stim_Familiarity interaction predicting an effect
on outcome-sensitivity differentially across Familiar/Novel
conditions). We also expected Stim_Familiarity to serve as
a significant predictor in driving outcome-sensitivity, as the
Familiar condition stimuli should selectively elicit outcome-
insensitive habits, while the Novel condition stimuli should have
no such effect on behavior.

ADHD Symptom Severity and Habit Disruption
We have previously shown the habit-disrupting effect of
cumulative performance and monetary feedback (Ceceli
et al., 2019). Here, we test via another omnibus regression
whether ADHD symptom severity predicts habit disruption
success. We performed a similar linear mixed model on
the aggregate of Familiar data across 2 days, encompassing
performance to the Familiar stimuli with and without
feedback. We input our controlled variables of Age, Gender,
Driving, Stim_Familiarity_Order, and Phase_Order, with
Subject as a random factor into the first step. Our model
similarly included ASRS_Inattentive, ASRS_Hyperactive,
ASRS_Total, Diagnosis, and COHS in the second step to
detect the main effects of individual differences on outcome-
sensitivity. In the third step, our regression included a
Feedback regressor that coded the availability of the mid-
experiment dual-feedback manipulation. Because this analysis
was performed only on the Familiar condition data (the
Novel condition was not administered on the second day
with feedback), we included no Stim_Familiarity regressor.
Lastly, we included in step 4 our individual difference
measures’ interactions with Feedback as regressors (e.g.,
ASRS_Inattentive × Feedback) to examine habit disruption
per variations in ADHD-related behaviors and daily
habitual tendencies.

Similar to our previous omnibus regression, we expected
trivial contribution from our controlled variables, but a
significant contribution from the Feedback regressor, as
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the delivery of dual feedback should disrupt the well-
learned habit. We expected that symptom severity may
affect outcome-sensitivity globally (significant main effects
of individual difference measures), but also differentially
across Feedback sessions (e.g., significant contribution of
ADHD_Inattentive × Feedback). Additionally, we identified
an alternative hypothesis – the possibility of habit disruption
across the board (pre-registration document, Hypothesis 2b_alt).
We expected no directionality in subtypes governing outcome-
sensitivity (as in, inattentiveness or hyperactivity specifically
driving habits), but we do note that if either subtype plays a major
role in driving motivational control in the previous omnibus
regression detecting the role of symptom severity on habitual
control, that same subtype should predict habit disruption. We
expected the frequency of habitual tendencies in daily life, as
assayed by COHS, to yield a negative correlation with habit
disruption (i.e., a significant COHS× Feedback result).

Supplementary Index of Outcome-Sensitivity: Go
Accuracy
We used Go accuracy as a supplemental measure of outcome-
sensitivity. Thus, we repeated all mixed models that examined
1NoGo_Accuracy using 1Go_Accuracy as DV.

Exploratory Analyses: Go RT and Individual
Difference Measures
We extended our analyses beyond the pre-registered plans
and explored the potential correlations between Go reaction
time (RT) and our individual difference measures of symptom
severity (ASRS_Inattentiveness and ASRS_Hyperactivity) and
daily habitual tendencies (COHS). These variables were entered
into a correlation matrix, and Pearson’s r values were corrected
for multiple comparisons using the Holm–Bonferroni method.
Specifically, we expected a negative correlation between RT and
our individual difference measures. Most notably, we expected
such an association between RT and ASRS_Hyperactivity, which
would suggest quicker familiar Go actions to be associated with
pronounced hyperactivity.

RESULTS

ADHD Symptom Severity and
Well-Learned Habits
We performed a linear mixed model using 1NoGo_Accuracy
as the DV and Subject as a random factor to determine whether
ADHD symptom severity significantly predicts outcome-
sensitivity in our well-learned habit task. Our proposed model
violated the assumptions of non-multicollinearity, in that
three pairs of fixed factors were highly correlated with each
other (for the associated Variance Inflation Factors, see section
“Supplementary Material”). Thus, we report the analyses as
registered in the section “Supplementary Material,” and report
below an adjusted model that meets the assumptions of non-
multicollinearity, normality and homoscedasticity (see Table 1).
Specifically, we revised our model to remove the regressors
Age, Stim_Familiarity_Order, and ASRS_Total to prevent

multicollinearity with the regressors Driving, Phase_Order,
and ASRS_Inattentive/Hyperactive that are more crucial
for our hypotheses.

Standard within-group residuals were within −3.3 and 3.3;
thus, no participants were identified as outliers (Tabachnick
and Fidell, 2007). In the first step of our hierarchical mixed
model, contrary to our hypothesis, Gender significantly predicted
outcome-sensitivity, βGender = −0.15, p = 0.036, in that
female participants displayed significantly worse mapping-
related impairments. Neither Driving experience nor the
counterbalancing variable, Phase_Order, predicted outcome-
sensitivity (ps > 0.252), model R2 = 0.03. In the second step of the
model, we added the individual difference measures of ADHD
symptom severity, clinical ADHD diagnosis, and frequency of
habitual tendencies in daily life (COHS). We found no main
effects of individual difference measures on outcome-sensitivity
(all ps > 0.548). The log likelihood estimate derived by comparing
first and second steps of our model yielded no significant global
(as in, non-Stim_Familiarity specific) contribution attributable to
the ASRS_Inattentive, ASRS_Hyperactive, Diagnosis, and COHS
regressors, χ2(4) = 0.70, p = 0.952, R2 = 0.03, 1R2 < 0.01.
In the third step, we entered the Stim_Familiarity regressor,
which significantly improved the predictive strength of the
model, χ2(1) = 21.53, p < 0.001, R2 = 0.13, 1R2 = 0.10,
βStim_Familiarity = 0.31, t(103) = 4.66, p < 0.001, meaning outcome-
sensitivity was differentially affected by whether participants
managed the Familiar or Novel versions of the task. Post
hoc t-tests confirmed that mapping-related NoGo accuracy
impairments were evident only when managing Go/NoGo
contingencies in the Familiar condition, t(103) = 5.33, p < 0.001,
while performance in the Novel condition was comparable
regardless of color-mapping associations, t(103) = −1.09,

FIGURE 2 | Familiar stimuli elicit incongruency-related impairments in NoGo
accuracy. Participants exhibit outcome-insensitivity when managing familiar
stimuli with color-response mappings that are incongruent with their daily
experiences (p < 0.001). Newly learned Go/NoGo signals evoke no significant
change in NoGo accuracy regardless of color-response mapping, indicating
intact goal-directed performance (p = 0.279). The differential habit expression
effect across Stim_Familiarity conditions depicted here is independent from
ADHD symptom severity (see Table 1 for individual difference measure
contributions to habit expression). Color of bars reflects NoGo stimulus colors.
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TABLE 1 | Hierarchical mixed model of ADHD symptomology and habit expression: 1NoGo_Accuracy.

Variable VIF β (SE) B [95% CI] t sig.

Model 1

Gender 1.01 −0.15 (0.07) −0.06 [ − 0.11, > −0.01] −2.13 0.036

Phase_Order 1.01 −0.01 (0.07) > −0.01 [ − 0.02, 0.02] −0.09 0.931

Driving 1.00 0.08 (0.07) < 0.01 [ > −0.01, < 0.01] 1.15 0.252

Model 2

Gender 1.08 −0.14 (0.07) −0.05 [ − 0.11, > −0.01] −2.00 0.049

Phase_Order 1.04 −0.01 (0.07) > −0.01 [ − 0.02, 0.02] −0.15 0.877

Driving 1.30 0.08 (0.08) < 0.01 [ > −0.01, < 0.01] 1.08 0.283

ASRS_Inattentive 1.62 −0.01 (0.09) > −0.01 [ − 0.01, < 0.01] −0.08 0.939

ASRS_Hyperactive 1.71 0.05 (0.09) < 0.01 [ > −0.01, 0.01] 0.54 0.591

Diagnosis 1.30 0.01 (0.08) 0.01 [ − 0.11, 0.12] 0.14 0.891

COHS 1.06 −0.04 (0.07) > −0.01 [ > −0.01, < 0.01] −0.60 0.548

Model 3

Gender 1.08 −0.14 (0.07) −0.05 [ − 0.10, > −0.01] −2.10 0.039

Phase_Order 1.04 −0.01 (0.07) > −0.01 [ − 0.02, 0.02] −0.16 0.871

Driving 1.30 0.09 (0.08) < 0.01 [ > 0.01, < 0.01] 1.13 0.260

ASRS_Inattentive 1.62 −0.01 (0.08) > −0.01 [ > −0.01, < 0.01] −0.08 0.936

ASRS_Hyperactive 1.71 0.05 (0.09) < 0.01 [ > −0.01, 0.01] 0.57 0.573

Diagnosis 1.30 0.01 (0.08) 0.01 [ − 0.10, 0.11] 0.14 0.885

COHS 1.06 −0.04 (0.07) > −0.01 [ > −0.01, < 0.01] −0.63 0.528

Stim_Familiarity 1 0.31(0.07) 0.10 [0.06, 0.15] 4.66 < 0.001

Model 4

Gender 1.08 −0.14 (0.07) −0.05 [ − 0.10, > −0.01] −2.11 0.039

Phase_Order 1.04 −0.01 (0.07) > −0.01 [ − 0.02, 0.02] −0.16 0.871

Driving 1.30 0.09 (0.08) < 0.01 [ > −0.01, < 0.01] 1.14 0.260

ASRS_Inattentive 3.17 −0.01 (0.08) < 0.01 [ − 0.01, 0.01] −0.08 0.936

ASRS_Hyperactive 3.31 0.05 (0.09) < 0.01 [ > −0.01, 0.01] 0.57 0.573

Diagnosis 2.35 0.01 (0.08) −0.06 [ − 0.20, 0.08] 0.14 0.885

COHS 2.12 −0.04 (0.07) > −0.01 [ > −0.01, < 0.01] −0.64 0.528

Stim_Familiarity 64.79 0.31 (0.07) 0.13 [ − 0.47, 0.22] 4.68 < 0.001

ASRS_Inattentive × Stim_Familiarity 16.51 −0.02 (0.08) > −0.01 [ − 0.01, 0.01] −0.29 0.774

ASRS_Hyperactive × Stim_Familiarity 13.60 −0.05 (0.08) > −0.01 [ − 0.01, 0.01] −0.56 0.575

Diagnosis × Stim_Familiarity 2.16 0.10 (0.07) 0.15 [ − 0.04, 0.34] 1.51 0.134

COHS × Stim_Familiarity 57.37 0.12 (0.07) < 0.01 [ > −0.01, 0.01] 1.74 0.085

Model comparisons

Model R2 Log likel. χ2 χ2 sig. 1R2

Model 1 0.03 79.53

Model 2 0.03 79.87 0.70 0.952 < 0.01

Model 3 0.13 90.64 21.53 < 0.001 0.10

Model 4 0.15 93.73 6.19 0.186 0.03

Top layer of table depicts all regressors included in the hierarchical model. Model Comparisons layer depicts the predictive strength of each model, as compared to its
previous step. VIF, Variance Inflation Factor; SE, Standard Error; CI, Confidence Interval; Log likel., Log likelihood. Significant p-values depicted in bold typeface. Analyses
have been outlier corrected, with resulting deviations highlighted in the text. 95% confidence intervals were obtained by bootstrapping 1000 samples in each model.

p = 0.279 (see Figure 2). In the fourth step of the model, we
input the interaction of each individual difference regressor with
Stim_Familiarity to detect their potentially differential effects on
outcome-sensitivity across Familiar and Novel conditions, but
found no significant contribution from any ADHD-related or
daily habit frequency variable (all ps > 0.085, χ2(4) = 6.19,
p = 0.186, R2 = 0.15, 1R2 = 0.03). These results suggest that our
sample exhibited outcome-insensitive well-learned habits across
the board, but the degree of habitual control as assessed by

change in NoGo accuracy was not significantly related to ADHD
symptom severity.

ADHD Symptom Severity and Habit
Disruption
Similarly, we altered our pre-registered model to prevent
multicollinearity, and performed a linear mixed model to
examine the link between ADHD symptomology and habit
disruption (see Table 2). The pre-registered analysis that
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TABLE 2 | Hierarchical mixed model of ADHD symptomology and habit disruption: 1NoGo_Accuracy.

Variable VIF β B [95% CI] t sig.

Model 1

Gender 1.01 0.04 (0.07) 0.02 [ − 0.03, 0.07] 0.60 0.553

Phase_Order 1.01 0.10 (0.07) 0.02 [ − 0.01, 0.04] 1.48 0.142

Driving 1.00 −0.02 (0.07) > −0.01 [ > −0.01, < 0.01] −0.28 0.779

Model 2

Gender 1.08 0.04 (0.07) 0.02 [ − 0.04, 0.07] 0.62 0.537

Phase_Order 1.04 0.09 (0.07) 0.01 [ − 0.01, 0.03] 1.25 0.215

Driving 1.30 0.02 (0.08) > −0.01 [ > −0.01, < 0.01] 0.24 0.807

ASRS_Inattentive 1.62 −0.06 (0.09) > −0.01 [ − 0.01, < 0.01] −0.69 0.491

ASRS_Hyperactive 1.71 0.10 (0.09) < 0.01 [ > −0.01, 0.01] 1.12 0.263

Diagnosis 1.30 −0.05 (0.08) −0.04 [ − 0.16, 0.08] −0.61 0.542

COHS 1.06 −0.10 (0.07) > −0.01 [ > −0.01, < 0.01] −1.41 0.162

Model 3

Gender 1.08 0.04 (0.07) 0.02 [ − 0.03, 0.07] 0.64 0.521

Phase_Order 1.04 0.09 (0.07) 0.01 [ − 0.01, 0.03] 1.30 0.198

Driving 1.30 0.02 (0.08) > −0.01 [ > −0.01, < 0.01] 0.25 0.799

ASRS_Inattentive 1.62 −0.06 (0.08) > −0.01 [ − 0.01, < 0.01] −0.72 0.474

ASRS_Hyperactive 1.71 0.10 (0.09) < 0.01 [ > −0.01, 0.01] 1.17 0.245

Diagnosis 1.30 −0.05 (0.08) −0.04 [ − 0.15, 0.07] −0.64 0.526

COHS 1.06 −0.10 (0.07) > −0.01 [ > −0.01, < 0.01] −1.47 0.146

Feedback 1 −0.28 (0.07) −0.09 [ − 0.14,−0.05] −4.13 < 0.001

Model 4

Gender 1.08 0.04 (0.07) 0.02 [ − 0.03, 0.07] 0.64 0.525

Phase_Order 1.04 0.09 (0.07) 0.01 [ − 0.01, 0.07] 1.28 0.202

Driving 1.30 0.02 (0.08) > −0.01 [ − 0.01, 0.03] 0.25 0.801

ASRS_Inattentive 3.15 −0.06 (0.08) > −0.01 [ − 0.01, < 0.01] −0.71 0.478

ASRS_Hyperactive 3.29 0.10 (0.09) < 0.01 [ > −0.01, 0.01] 1.16 0.250

Diagnosis 2.34 −0.05 (0.08) −0.05 [ − 0.19, 0.10] −0.63 0.530

COHS 2.10 −0.10 (0.07) > −0.01 [ > −0.01, < 0.01] −1.45 0.150

Feedback 64.79 −0.28 (0.07) 0.01 [ − 0.34, 0.37] −4.12 < 0.001

ASRS_Inattentive × Feedback 16.49 0.05 (0.08) < 0.01 [ − 0.01, 0.01] 0.62 0.539

ASRS_Hyperactive × Feedback 13.58 −0.01 (0.08) > −0.01 [ − 0.01, 0.01] −0.16 0.869

Diagnosis × Feedback 2.14 0.02 (0.07) 0.02 [ − 0.17, 0.21] 0.24 0.811

COHS × Feedback 57.35 0.06 (0.07) > −0.01 [ > −0.01, < 0.01] −0.86 0.391

Model comparisons

Model R2 Log likel. χ2 χ2 sig. 1R2

Model 1 0.01 72.53

Model 2 0.03 74.13 3.19 0.526 0.01

Model 3 0.11 82.68 17.10 < 0.001 0.08

Model 4 0.11 83.46 1.56 0.815 0.01

Top layer of table depicts all regressors included in the hierarchical model. Model Comparisons layer depicts the predictive strength of each model, as compared to its
previous step. VIF, Variance Inflation Factor. SE, Standard Error. CI, Confidence Interval. Log likel., Log likelihood. Significant p-values depicted in bold typeface. Analyses
have been outlier corrected, with resulting deviations highlighted in the text. 95% confidence intervals were obtained by bootstrapping 1000 samples in each model.

violated assumptions of multicollinearity can be found in the
section “Supplementary Material.” In our corrected model,
we input Gender, Phase_Order, and Driving experience into
step one, where none significantly predicted outcome-sensitivity
(all ps > 0.142), model R2 = 0.01. In step two, we added
ASRS_Inattentive, ASRS_Hyperactive, Diagnosis, and COHS
into the model, and found that none of these regressors yielded
main effects on outcome-sensitivity (all ps > 0.162), and they

did not significantly improve the predictive strength of the
model, χ2(4) = 3.19, p = 0.526, R2 = 0.03, 1R2 = 0.01. We
input Feedback as a regressor in step three, which contributed
significantly to predicting outcome-sensitivity, βFeedback =−0.28,
t(103) = −4.13, p < 0.001, and rendered the model a significant
predictor of 1NoGo_Accuracy, χ2(1) = 17.10, p < 0.001,
R2 = 0.11, 1R2 = 0.08. We performed post hoc paired-
samples t-tests to confirm the beneficial effect of dual feedback.
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We found that a significant NoGo accuracy impairment was
evident in absence of dual feedback, t(103) = 5.33, p < 0.001,
whereas the delivery of feedback yielded no significant accuracy
impairments, t(103) = −0.50, p = 0.616 (see Figure 3). No
individual difference measures’ interaction regressor in step
four significantly predicted outcome-sensitivity (all ps > 0.391,
χ2(4) = 1.56, p = 0.815, R2 = 0.11, 1R2 = 0.01). These results
suggest that the delivery of dual feedback indeed had a protective
effect on outcome-sensitivity when managing familiar stimuli,
albeit independent of ADHD symptom severity.

Supplementary Analysis of ADHD
Symptom Severity and Well-Learned
Habits
We performed identical analyses using 1Go_Accuracy as
DV and Subject as a random factor to capture the potential
association between ADHD symptomology and a supplemental
assay of outcome-sensitivity (see Table 3). Two participants’ data
were identified as outliers. Due to changes in statistical
significance following outlier correction, we report our
outlier-removed dataset below, highlighting any change in
statistical significance due to outlier correction. Neither
Gender, Phase_Order, nor Driving experience predicted
1Go_Accuracy (all ps > 0.323), model R2 = 0.01. In step
two, the Diagnosis regressor, which codes for the presence of
a clinical ADHD diagnosis, made a significant contribution,
βDiagnosis = 0.17, t(94) = 2.11, p = 0.038 (without outlier
correction: βDiagnosis = 0.14, t(96) = 1.80, p = 0.076). Specifically,
the presence of a diagnosis predicted more flexible Go actions. No

FIGURE 3 | Dual monetary/performance feedback prevents the
incongruency-related impairments in NoGo accuracy, breaking the habit.
Participants exhibit no incongruency-related NoGo accuracy impairments
after receiving cumulative performance and monetary feedback (p = 616).
Without this feedback integration, participants exhibit a significant impairment
in NoGo accuracy when the color-response mappings are incongruent with
daily experiences (p < 0.001). The habit disruption effect of feedback is
independent of ADHD symptom severity (see Table 2 for individual difference
measure contributions to habit disruption). Color of bars reflects NoGo
stimulus colors.

FIGURE 4 | Familiar stimuli elicit incongruency-related impairments in Go
accuracy. Analysis of our supplementary index of outcome-sensitivity, Go
accuracy, yields evidence of habitual Go actions when managing familiar
stimuli with color-response mappings that are incongruent with daily
experiences (p < 0.001). In contrast, newly learned Go/NoGo contingencies
evoke no significant change in Go accuracy regardless of color-response
mapping, indicating intact goal-directed performance (p = 0.445). The
differential habit expression effect across Stim_Familiarity conditions depicted
here is independent from ADHD symptom severity (see Table 3 for individual
difference measure contributions to habit expression). Color of bars reflects
Go stimulus colors.

other step two regressor significantly predicted 1Go_Accuracy
(all ps > 0.259) The step two model was not significantly
improved from step one, χ2(4) = 5.56, p = 0.235, R2 = 0.04,
1R2 = 0.03. The Stim_Familiarity regressor in step three served
as a significant predictor, βStim_Familiarity = 0.14, t(101) = 2.07,
p = 0.010, improving the predictive strength of the model,
χ2(1) = 4.44, p = 0.035, R2 = 0.06, 1R2 = 0.02. Paired-samples
t-tests revealed a significant Go accuracy impairment in the
Familiar condition, t(101) = 3.80, p < 0.001, but not the
Novel condition, t(101) = −0.77, p = 0.445 (see Figure 4).
Lastly in step four, other than Diagnosis × Stim_Familiarity,
βDiagnosis × Stim_Familiarity = 0.19, t(97) = 2.71, p = 0.008,
no individual difference measures significantly predicted
1Go_Accuracy across the Familiar and Novel conditions
(all other interaction ps > 0.125, χ2(4) = 10.43, p = 0.034,
R2 = 0.10, 1R2 = 0.05). Because we only had six individuals with
an ADHD diagnosis, we refrain from further interpretations
of the contribution of the Diagnosis regressor. These results
suggest that Go accuracy is differentially affected by whether
familiar or novel stimuli serve as Go/NoGo signals, and a
significant impairment is evident when familiar contingencies
are incongruent with daily experiences. However, the habitual
Go actions elicited by our familiar stimuli are independent of
ADHD symptom severity.

Supplementary Analysis of ADHD
Symptom Severity and Habit Disruption
We investigated habit disruption via mapping-related changes
in Go accuracy using a similar mixed model (see Table 4). Our
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TABLE 3 | Hierarchical mixed model of ADHD symptomology and habit expression: 1Go_Accuracy.

Variable VIF β B [95% CI] t sig.

Model 1

Gender 1.01 < 0.01 (0.07) < 0.01 [ − 0.03, 0.03] −0.01 0.997

Phase_Order 1.01 0.07 (0.07) < 0.01 [ − 0.01, 0.01] 0.99 0.323

Driving 1.00 0.06 (0.07) < 0.01 [ > −0.01, < 0.01] 0.88 0.383

Model 2

Gender 1.08 0.02 (0.07) 0.01 [ − 0.02, 0.04] 0.34 0.731

Phase_Order 1.04 0.08 (0.07) < 0.01 [ − 0.01, 0.01] 1.13 0.260

Driving 1.30 −0.01 (0.08) > −0.01 [ > −0.01, < 0.01] −0.23 0.815

ASRS_Inattentive 1.59 0.02 (0.09) > −0.01 [ > −0.01, < 0.01] 0.22 0.828

ASRS_Hyperactive 1.66 −0.03 (0.09) > −0.01 [ > −0.01, < 0.01] −0.39 0.699

Diagnosis 1.30 0.17 (0.08) 0.06 [ − 0.01, 0.12] 2.11 0.038

COHS 1.06 −0.03 (0.07) > −0.01 [ > −0.01, < 0.01] −0.41 0.681

Model 3

Gender 1.09 0.02 (0.07) 0.01 [ − 0.02, 0.04] 0.35 0.729

Phase_Order 1.04 0.08 (0.07) < 0.01 [ − 0.01, 0.01] 1.14 0.256

Driving 1.30 −0.02 (0.08) > −0.01 [ > −0.01, < 0.01] −0.24 0.813

ASRS_Inattentive 1.59 0.02 (0.09) > −0.01 [ > −0.01, < 0.01] 0.22 0.826

ASRS_Hyperactive 1.66 −0.03 (0.09) > −0.01 [ > −0.01, < 0.01] −0.39 0.696

Diagnosis 1.30 0.17 (0.08) 0.06 [ > −0.01, 0.12] 2.13 0.036

COHS 1.06 −0.03 (0.07) > −0.01 [ > −0.01, < 0.01] −0.42 0.678

Stim_Familiarity 1 0.14 (0.07) 0.03 [0.01, 0.06] 2.07 0.041

Model 4

Gender 1.09 0.02 (0.07) 0.01 [ − 0.02, 0.04] 0.35 0.729

Phase_Order 1.04 0.08 (0.07) < 0.01 [ − 0.01, 0.01] 1.16 0.256

Driving 1.30 −0.02 (0.08) > −0.01 [ > −0.01, < 0.01] −0.24 0.813

ASRS_Inattentive 3.11 0.02 (0.09) > −0.01 [ > −0.01, 0.01] 0.22 0.826

ASRS_Hyperactive 3.23 −0.03 (0.09) > −0.01 [ − 0.01, < 0.01] −0.40 0.696

Diagnosis 2.35 0.17 (0.08) > −0.01 [ − 0.08, 0.07] 2.16 0.036

COHS 2.12 −0.03 (0.07) > −0.01 [ > −0.01, < 0.01] −0.42 0.678

Stim_Familiarity 65.83 0.14 (0.07) < 0.01 [ − 0.19, 0.21] 2.10 0.038

ASRS_Inattentive × Stim_Familiarity 16.65 −0.08 (0.08) > −0.01 [ − 0.01, < 0.01] −0.95 0.343

ASRS_Hyperactive × Stim_Familiarity 13.71 0.04 (0.09) < 0.01 [ > −0.01, 0.01] 0.53 0.599

Diagnosis × Stim_Familiarity 2.16 0.19 (0.07) 0.12 [0.01, 0.23] 2.71 0.008

COHS × Stim_Familiarity 57.08 0.11 (0.07) < 0.01 [ > −0.01, < 0.01] 1.55 0.125

Model comparisons

Model R2 Log likel. χ2 χ2 sig. 1R2

Model 1 0.01 218.44

Model 2 0.04 221.22 5.56 0.235 0.03

Model 3 0.06 223.44 4.44 0.035 0.02

Model 4 0.10 228.65 10.40 0.034 0.05

Top layer of table depicts all regressors included in the hierarchical model. Model Comparisons layer depicts the predictive strength of each model, as compared to its
previous step. VIF, Variance Inflation Factor; SE, Standard Error; CI, Confidence Interval. Log likel., Log likelihood. Significant p-values depicted in bold typeface. Analyses
have been outlier corrected, with resulting deviations highlighted in the text. 95% confidence intervals were obtained by bootstrapping 1000 samples in each model.

multicollinearity-corrected model identified two outliers.
We report outlier-removed results below, accompanied
by any changes in statistical significance following outlier
correction. In step one of the mixed model, no controlled
regressors predicted 1Go_Accuracy (all ps > 0.093), model
R2 = 0.02. In step two, COHS was a near significant variable,
βCOHS = −0.14, t(94) = −1.95, p = 0.054 (without outlier-
correction: βCOHS = −0.08, t(96) = −1.05, p = 0.296), suggesting

that a higher frequency of daily habits may predict more
outcome-insensitive Go actions. Otherwise, no individual
difference regressor served as a significant predictor of
1Go_Accuracy (all other ps = 0.149), although the inclusion
of step two regressors resulted in the Phase_Order variable to
yield a near-significant p-value, p = 0.066. Step two regressors
in aggregate yielded only a near-significant contribution on the
DV, χ2(4) = 8.56, p < 0.073, R2 = 0.06, 1R2 = 0.04. In step
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FIGURE 5 | Dual monetary/performance feedback prevents the
incongruency-related impairments in Go accuracy, breaking the habit. Similar
to our NoGo accuracy results, analyses of the outcome-sensitivity measure of
Go accuracy yield evidence for habit disruption due to cumulative
performance and monetary feedback delivery. Participants exhibit no
incongruency-related Go accuracy impairments after receiving dual feedback
(p = 0.573). Without this feedback integration, participants exhibit a significant
impairment in Go accuracy when the color-response mappings are
incongruent with daily experiences (p < 0.001). The habit disruption effect of
feedback is independent of ADHD symptom severity (see Table 4 for
individual difference measure contributions to habit disruption). Color of bars
reflects Go stimulus colors.

three, the Feedback regressor significantly predicted outcome-
sensitivity as indexed by 1Go_Accuracy, βFeedback = −0.26,
t(101) = −4.07, p < 0.001, improving the predictive strength
of the model, χ2(1) = 16.01, p < 0.001, R2 = 0.13, 1R2 = 0.07.
This finding suggests that outcome-sensitivity as assessed
by 1Go_Accuracy is differentially impacted depending on
the availability of dual feedback. Indeed, a post hoc paired-
samples t-test confirms a significant impairment in Go accuracy
when no feedback is delivered, t(103) = 3.85, p < 0.001,
whereas with feedback, no such impairment is evident,
t(103) = −0.56, p = 0.573 (see Figure 5). In step four, we
found that COHS × Feedback significantly predicted habit
disruption, βCOHS × Feedback = −0.16, t(97) = −2.46, p = 0.016
(without outlier-correction: p = 0.120), suggesting that an
increased daily habit frequency predicts a reduction in the
beneficial effects of dual feedback in restoring goal-directed
control. No other individual difference × Feedback regressor
predicted habit disruption (all ps > 0.188, χ2(4) = 9.70, p = 0.046,
R2 = 0.16, 1R2 = 0.04). Similar to our primary measure of
outcome-sensitivity using NoGo accuracy, the protective effect
of dual feedback on Go accuracy was independent from ADHD
symptomology. However, we do observe a significant association
between habitual tendencies in daily life and a difficulty in
suppressing a well-learned habit.

Exploratory Analyses: Go RT and
Individual Difference Measures
We explored the potential association between prepotency to
respond to the familiar Go stimulus and our individual difference

FIGURE 6 | Hyperactivity symptom severity is negatively correlated with
green-Go RT. Participants exhibit a significant negative correlation between
hyperactivity symptoms and RT when responding to the familiar Go stimulus
that is hypothesized to elicit prepotency. In other words, participants who
score higher in hyperactivity make quicker Go responses when the
contingencies are congruent with their daily representations. Pearson’s
r = −0.25, p = 0.030, corrected for multiple comparisons using the
Holm–Bonferroni method.

measures of ADHD symptom severity (ASRS_Inattentiveness
and ASRS_Hyperactivity) and daily habit frequency (COHS).
We reasoned that hyperactive individuals may exhibit a more
pronounced prepotency to respond to Go stimuli, thus we
were especially interested in the hyperactivity scale’s association
with RT. As hypothesized, we found a significant negative
correlation between Go RT to the familiar green-Go color-
response mapping and ASRS_Hyperactivity, r =−0.25, p = 0.030,
Holm–Bonferroni corrected (Figure 6), suggesting that higher
hyperactivity scores are associated with faster Go responses.
This relationship between hyperactivity and response latency
was not apparent when the Go signal was incongruent with
lifelong experiences (red-Go r = −0.05, p = 1, Holm–Bonferroni
corrected), or when the Novel condition stimuli served as
the Go signal (purple-Go r = −0.12, p = 0.630; blue-Go
r = −0.10, p = 0.770, Holm–Bonferroni corrected). The
association between familiar Go RT and ASRS_Hyperactivity
may suggest that individuals high in hyperactive symptoms may
be exhibiting abnormally pronounced prepotency to stimuli that
evoke habitual control.

DISCUSSION

The neurobehavioral evidence of atypical reward-related
processes in ADHD, and the scarcity of strategies to restore
potential behavioral rigidities, motivated us to examine
the expression and disruption of well-learned habits as a
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TABLE 4 | Hierarchical mixed model of ADHD symptomology and habit disruption: 1Go_Accuracy.

Variable VIF β B [95% CI] t sig.

Model 1

Gender 1.02 −0.03 (0.07) −0.02 [ − 0.02, 0.01] −0.41 0.684

Phase_Order 1.02 0.12 (0.07) < 0.01 [ > −0.01, 0.01] 1.69 0.093

Driving 1.00 −0.03 (0.07) > −0.01 [ > −0.01, < 0.01] −0.49 0.623

Model 2

Gender 1.09 −0.03 (0.07) > −0.01 [ − 0.02, 0.01] −0.41 0.679

Phase_Order 1.04 0.13 (0.07) 0.01 [ < 0.01, 0.01] 1.86 0.066

Driving 1.30 −0.05 (0.08) > −0.01 [ > −0.01, < 0.01] −0.63 0.529

ASRS_Inattentive 1.59 0.02 (0.09) > 0.01 [ > −0.01, < 0.01] 0.27 0.788

ASRS_Hyperactive 1.66 −0.14 (0.09) > −0.01 [ > −0.01, < 0.01] −1.57 0.121

Diagnosis 1.30 −0.04 (0.08) −0.01 [ − 0.04, 0.03] −0.53 0.598

COHS 1.06 −0.14 (0.07) > −0.01 [ > −0.01, < 0.01] −1.95 0.054

Model 3

Gender 1.09 −0.03 (0.07) > −0.01 [ − 0.02, 0.01] −0.42 0.678

Phase_Order 1.04 0.13 (0.07) 0.01 [ < 0.01, 0.01] 1.87 0.065

Driving 1.30 −0.05 (0.08) > −0.01 [ > −0.01, < 0.01] −0.63 0.527

ASRS_Inattentive 1.59 0.02 (0.09) < 0.01 [ > −0.01, < 0.01] 0.27 0.787

ASRS_Hyperactive 1.66 −0.14 (0.09) > −0.01 [ > −0.01, < 0.01] −1.57 0.119

Diagnosis 1.30 −0.04 (0.08) −0.01 [ − 0.04, 0.03] −0.53 0.596

COHS 1.06 −0.14 (0.07) > −0.01 [ > −0.01, < 0.01] −1.96 0.053

Feedback 1 −0.26 (0.06) −0.03 [ − 0.04,−0.01] −4.07 < 0.001

Model 4

Gender 1.09 −0.03 (0.07) > −0.01 [ − 0.02, 0.01] −0.41 0.681

Phase_Order 1.04 0.13 (0.07) 0.01 [ < 0.01, 0.01] 1.85 0.068

Driving 1.30 −0.05 (0.08) > −0.01 [ > −0.01, < 0.01] −0.62 0.531

ASRS_Inattentive 3.11 0.02 (0.09) > −0.01 [ > −0.01, < 0.01] 0.27 0.789

ASRS_Hyperactive 3.23 −0.14 (0.09) > −0.01 [ > −0.01, < 0.01] −1.56 0.123

Diagnosis 2.35 −0.04 (0.08) −0.01 [ − 0.05, 0.03] −0.53 0.600

COHS 2.12 −0.14 (0.07) < 0.01 [ > 0.01, < 0.01] −1.94 0.056

Feedback 65.83 −0.26 (0.06) 0.03 [ − 0.09, 0.14] −4.22 < 0.001

ASRS_Inattentive × Feedback 16.65 0.10 (0.08) < 0.01 [ > −0.01, 0.01] 1.33 0.188

ASRS_Hyperactive × Feedback 13.71 −0.07 (0.08) > −0.01 [ > −0.01, < 0.01] −0.83 0.410

Diagnosis × Feedback 2.16 < 0.01 (0.06) < 0.01 [ − 0.06, 0.06] 0.02 0.984

COHS × Feedback 57.08 −0.16 (0.06) > −0.01 [ > −0.01, < 0.01] −2.46 0.016

Model comparisons

Model R2 Log likel. χ2 χ2 sig. 1R2

Model 1 0.02 336.38

Model 2 0.06 340.66 8.56 0.730 0.04

Model 3 0.13 348.66 16.01 < 0.001 0.07

Model 4 0.16 353.52 9.70 0.046 0.04

Top layer of table depicts all regressors included in the hierarchical model. Model Comparisons layer depicts the predictive strength of each model, as compared to its
previous step. VIF, Variance Inflation Factor; SE, Standard Error; CI, Confidence Interval; Log likel., Log likelihood. Significant p-values depicted in bold typeface. Analyses
have been outlier corrected, with resulting deviations highlighted in the text. 95% confidence intervals were obtained by bootstrapping 1000 samples in each model.

function of ADHD symptom severity. To this end, we collected
ADHD symptom severity metrics from a wide sample of
participants in the general population and administered our
Go/NoGo task that capitalizes on familiar green-Go/red-NoGo
associations. Importantly, our incorporation of a motivational
enhancement manipulation (i.e., cumulative performance and
monetary feedback) permitted the study of habit expression
and disruption. Our results replicate our recent documentation

of familiar Go/NoGo stimuli evoking rigid habitual control,
which is also rendered more flexible (i.e., goal-directed) with
motivational enhancement (Ceceli et al., 2019). However,
we found only modest support for the hypothesis of ADHD
symptomology tracking behavioral rigidity and habit disruption.
No measure of ADHD significantly predicted outcome-
insensitivity as assayed by color-response mapping-related
NoGo or Go accuracy impairments. Our exploratory analyses,
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however, supported our hypothesis of a significant association
between pre-potency of habitual Go actions (i.e., familiar
green-Go RT) and hyperactivity presentation. Furthermore,
although not directly associated with ADHD, we also found a
link between the frequency of habitual tendencies in daily life and
habit disruption as indexed by our supplementary measure of
outcome-sensitivity: mapping-related Go accuracy impairments.
This significant association between daily habit frequency
and difficulty breaking well-learned Go associations lends
further credence to the idea that the familiar associations we
capitalize on are indeed related to well-established, ecologically
relevant habits.

A cardinal indicator of habitual control is the performance
of an action regardless of the outcome value (Dickinson and
Balleine, 1994). Accordingly, we believe that our Go/NoGo task
captures outcome-sensitivity, in that the contingency change
requires the agent to update which action produces the desired
outcome. An impairment in the ability to override the well-
learned habit may cause difficulties in flexibly updating the
associations between cues and actions (i.e., the color-response
mappings) that yield desirable outcomes (e.g., the value of
performing a correct action).

We assert that our familiar stimuli elicit outcome-insensitive
habits due to their well-established nature. The newly formed
associations (e.g., purple-Go) are more labile, allowing the agent
to exert goal-directed control regardless of changes to the
color-response mappings. By this logic, these novel associations
should eventually elicit habitual control with sufficient exposure –
similar to overtraining of S–R associations in rodents (Adams,
1982). The magnitude of training necessary for this switch
in motivational control using a change in Go and NoGo
contingencies remains unknown. Previous research has suggested
that pre-training stimuli over the course of an extra training
session can yield stronger S–R execution in comparison to new
stimulus sets (McKim et al., 2016). Possibly, extensively training
the novel associations in our paradigm may also produce habitual
control, albeit not with the behavioral rigidity elicited by the
familiar associations that have been associated with go and stop
actions over the course of development.

In both scientific reports and diagnostic criteria, ADHD
is characterized by pronounced deficits in inhibitory control
(Wodka et al., 2007; American Psychiatric Association, 2013).
When taken together with the reward-related irregularities, we
posited that ADHD may also be associated with an impaired
motivational control system favoring habits over goal-directed
behaviors. Our results do not support this hypothesis with our
primary analyses, which could be due to a few key factors.

First, our study recruited participants from the general
population and obtained a normal distribution of ADHD-
related symptom severity, such that most participants in our
sample did not reach the clinical threshold for an ADHD
diagnosis. This approach contextualizes any potential ADHD-
related impairment in motivational processes to a wider audience,
thus expanding the applicability of our research. Consequentially,
we are unable to sufficiently represent those who are most
debilitated by the symptoms in question: individuals who meet
the clinical threshold for ADHD. Any potential ADHD-related

effect may therefore be weakened by the large proportion of
individuals who present symptoms below the clinical threshold at
magnitudes that do not impair daily functioning. Indeed, a study
that recruited adults from the general population to examine
ADHD symptomology-related inhibitory control disparities
found only a modest association between symptom severity and
Go/NoGo task accuracy with 440 participants (Polner et al.,
2015). A study with a larger sample size (n = 1156) obtained from
the general population pinpointed Go/NoGo impairments due to
high ADHD-like symptoms, though these effects were sensitive
to variations in task structure (e.g., speed and reward structure)
(Kuntsi et al., 2009). Taken together with our results, although the
ADHD–Go/NoGo impairment association is well-documented
in clinical presentations of ADHD, symptom-based approaches
may not be sensitive to such effects in the general population.
Nonetheless, although there may be disorder-specific factors
playing a role in behavioral flexibility that are undetected here,
we had reasoned that sampling indiscriminately – that is, without
diagnostic cutoffs – could expand the generalizability of potential
symptom-related anomalies to the public.

An alternative explanation for the absence of a strong link
between motivational control and ADHD symptomology is the
notion that individuals with ADHD-like symptoms may also have
compensatory mechanisms that promote adaptive behavioral
output. For instance, despite the strong evidence of response
inhibition deficits in ADHD, attention compensation supported
by parietal brain activity has been documented, resulting in
comparable Go/NoGo task performance (Ersche et al., 2017).
Another possibility is that individuals with ADHD may adopt
habitual or goal-directed control in different circumstances.
A design that capitalizes on varying task difficulty or cognitive
demands may be able to reflect such shifts in habitual and goal-
directed processes that are sensitive to individual differences.
Brain maturation is another candidate for behavioral similarities
in ADHD and NT populations. ADHD is associated with
a delayed maturation of the prefrontal cortex (Shaw et al.,
2007), a region that is critical for error detection, reversal
learning, and conflict monitoring. These processes are crucial
for optimal Go/NoGo task performance (Garavan et al., 2002;
Zhang et al., 2016), especially one involving changes to color-
response mappings. Accordingly, adults with ADHD may
produce signs of intact Go/NoGo performance due to the
maturations in prefrontal regions, compensating for potential
impairments that may have been evident with a less mature
cortex (Carmona et al., 2012). Another potential compensatory
mechanism may be driven by ADHD medications that act on
the brain’s dopaminergic systems. We did not ascertain whether
our participants – with or without ADHD – were taking ADHD
medication. Methylphenidate, for instance, has been reported to
enhance executive function in individuals with ADHD, as well
as in NTs (Schweitzer et al., 2004; Linssen et al., 2014; Moeller
et al., 2014). These beneficial effects of ADHD medication on
executive function have also been shown to extend beyond
methylphenidate (Hosenbocus and Chahal, 2012). Our sample
of adults with varying degrees of ADHD-related symptoms
may be recruiting similar compensatory mechanisms that aid in
maintaining goal-directed control. Future research that captures
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developmental and pharmacological aspects of ADHD and goal-
directed control may elucidate which of these mechanisms plays
a critical role in adaptive motivational control.

We reasoned that because hyperactive ADHD presentation is
associated with the number of impulsivity-related items endorsed
on the ASRS (Kessler et al., 2005a), participants exhibiting high
hyperactivity may execute quicker, impulsive Go actions. Our
green-Go RT data supported our hypothesis, in that hyperactivity
scores correlated with quicker responses to the well-learned
habit eliciting stimulus. It should be noted that this finding was
the result of an exploratory analysis. Nonetheless, our finding
of a significant response latency and hyperactivity association
bridges the fields of motivation and ADHD. Impulsivity, a
core element of the hyperactive presentation of ADHD, is
also associated with reflexive behaviors to cues and heightened
variability in response latency (Kirkeby and Robinson, 2005). The
heightened pre-potency to respond to habitual cues tracked by
our hyperactivity scale may suggest an overlap in the motivational
and inhibitory mechanisms underlying hyperactivity in ADHD,
potentially explaining the lapses in behavioral output that result
in higher RT and accuracy variability (Kirkeby and Robinson,
2005; Tamm et al., 2012). In other words, if hyperactivity predicts
quicker responses to well-learned stimuli and high RT variability,
this effect may be due to motivational and motor processes that
are activated depending on past experience with the cue at hand.
Future research will be imperative in effectively dissociating the
motivational, attentional, and inhibitory processes that underlie
response latency variability in ADHD.

In addition to the analyses reported here, an alternative
method of exploring Go and NoGo performance is via signal
detection. In a typical signal detection analysis, hits, misses,
false alarms, and correct rejection values are used to derive
d’ – an estimate of response bias (Stanislaw and Todorov,
1999). Importantly, in each run of our task, a color-response
mapping (e.g., green-Go) would only provide two of the four
values that comprise a d’ score (i.e., hits and misses, but not
false alarms or correct rejections for this color). The remaining
parameters would need to be extracted from the “incongruent”
run (green-NoGo), which would make it difficult to obtain
accurate response bias information. However, one can indeed
investigate signal detection based on familiarity and congruency
of the color-response mappings (e.g., where green-Go and red-
NoGo together are coded as d’_familiar_congruent, and green-
NoGo, red-Go are together coded as d’_familiar_incongruent).
When performed as such, response bias results mirror our NoGo
and Go accuracy findings reported here, in that (1) participants
show high response bias when the color-response mappings
are familiar and congruent with daily experiences, (2) response
bias is significantly lower when familiar stimuli are mapped
onto incongruent responses, (3) the two novel color-response
mappings are similar in the elicited response bias, and (4)
response bias does not show significant associations with ADHD-
related individual difference measures.

Limitations
We acknowledge several limitations in the present study that
should be considered in future investigations.

Although we were able to generalize our findings to
a wider audience by recruiting without diagnostic cutoffs,
we did not survey participants for history of psychiatric
illnesses or psychoactive medication use. Several psychiatric
conditions have been documented to affect motivational control
(Griffiths et al., 2014). Furthermore, ADHD medications have
been shown to improve executive function (Hosenbocus and
Chahal, 2012; Linssen et al., 2014; Moeller et al., 2014),
which may be related to the expansion of cognitive resources
necessary to maintain goal-directed control. An interesting
avenue to explore in future ADHD research may be the
roles of psychiatric comorbidities and treatment history in the
expression of habits.

Our study’s primary hypotheses regarding habitual control
and ADHD symptomology were motivated by reports of
reward circuitry dysfunction in ADHD (Ceceli et al., 2019).
However, we did not collect neural data that may speak to
the potential links between ADHD symptomology and habitual
control as mediated by neural function. The brain systems of
reward processing and learning are outside the scope of our
study, but the mechanisms underlying motivational control as
related to ADHD symptoms may be effectively elucidated by
a neurobiological approach. Future research that examines the
potential disparities in the ADHD brain related to motivational
control may advance our understanding of the disorder’s
pathophysiology.

We adopted a within-subject design to tackle the expression
and disruption of habits over the course of two sessions.
This design permitted us to compare habit expression and
disruption at an individual basis while improving statistical
power. However, it can be argued that administering a task
twice to the same set of participants may introduce training
effects. Our second session data suggest that participants
did not significantly improve their performance in the face
of congruent associations by merely undergoing the task
in the previous session. However, the definitive method to
circumvent potential training effects would be to apply a
between-subjects design, in which separate sets of participants
undergo the feedback and no-feedback sessions. We report
in another study that adopts a between-subject design
a similar pattern of results – motivational enhancement
indeed disrupts the expression of well-learned habits
(Ceceli et al., 2019).

CONCLUSION

Attention deficit-hyperactivity disorder is a heterogenous
psychiatric condition with debilitating consequences to behavior,
neural processing, and well-being. In this study, we aimed to
reveal the potential irregularities in managing well-learned habits
by sampling symptom severity information from the general
population. Although we did not find a strong association
between motivational control deficits and ADHD-related
symptoms, our data replicate a previous report of well-learned
habit expression and disruption, and allude to a link between
hyperactivity and pre-potency to respond to well-learned Go
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stimuli. Taken together with previous reports of compensatory
mechanisms aiding in Go/NoGo task performance in ADHD,
delay in cortical maturation in ADHD yielding differential
inhibitory processes across children and adults, and our
sample largely comprising subclinical ADHD presentations,
a full understanding of the potential link between ADHD
and motivational control may require a neurobehavioral and
developmental approach.
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Binary Theorizing Does Not Account 
for Action Control
Bernhard Hommel*

Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, Netherlands

Everyday thinking and scientific theorizing about human action control are equally driven 
by the apparently obvious contrast between will and habit or, in their more modern 
disguise: intentional and automatic processes, and model-based and model-free action 
planning. And yet, no comprehensive category system to systematically tell truly willed 
from merely habitual actions is available. As I argue, this is because the contrast is 
ill-conceived, because almost every single action is both willed and habitual, intentional 
and automatic, and model-based and model-free, simply because will and habit (and 
their successors) do not refer to alternative modes or pathways of action control but rather 
to different phases of action planning. I further discuss three basic misconceptions about 
action control that binary theorizing relies on: the assumption that intentional processes 
compete with automatic processes (rather than the former setting the stage for the latter), 
the assumption that action control is targeting processes (rather than representations of 
action outcomes), and the assumption that people follow only one goal at a time (rather 
than multiple goals). I conclude that (at least the present style of) binary theorizing fails to 
account for action control and should thus be replaced by a more integrative view.

Keywords: action control, dual-route models, goal, automaticity and control, intention

BINARY THEORIZING ON ACTION CONTROL

Will vs. Habit
The study of action control was driven by binary theorizing right from the start. In his first 
systematic analysis of the human will, Ach (1910) postulated that will can be  best studied by 
analyzing the degree to, and the conditions under which, it can overcome what Ach considered 
its natural opponent: acquired habits. To achieve that, he  developed what he  called the combined 
method (“kombiniertes Verfahren”), which first established a particular habit, defined as a set of 
stimulus-response associations reflecting a particular stimulus-response rule, and then changed 
the instruction in such a way that participants were now to respond differently to the previously 
acquired stimulus set (see Hommel, 2000a). For instance, participants may first learn to read 
through lists of nonsense syllables that were followed by a rhyme (e.g., zup → tup, tel → mel) 
over an extended time period and then respond to the same stimulus syllables by changing the 
order of the letters (e.g., zup → puz, tel → let). As predicted, participants were slower and 
produced more errors when applying the new instruction to a stimulus set that was previously 
related to different responses than when working with a new set. The idea was that being exposed 
to lists constructed according to the first rule created stimulus-response habits that would need 
to be  overcome in order to successfully apply the second rule. Accordingly, the degree to which 
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participants were able to overcome the previously acquired habit 
(i.e., the difference in performance on old versus new sets) was 
taken to measure “willpower,” which was shown to differ between 
individuals (which was taken to diagnose individual willpower) 
and to vary systematically with the practice given on old sets 
(which was taken to increase the strength of the habit).

It is easy to see that this pioneering approach has survived 
until today, even though researchers less frequently take the 
effort to induce habits experimentally anymore: they often exploit 
existing habits, such as the tendency to read words even if 
one is to name their color, as in the notorious Stroop task 
(Stroop, 1935; even though Stroop himself did analyze the 
impact of experimental training). Like in Ach’s studies, the 
degree to which performance is impaired with stimulus sets 
that are assumed to activate the hypothetical habit (such as 
words denoting response-incompatible colors in the Stroop task) 
as compared to suitable control sets (such as nonwords, non-color 
words, or words denoting response-compatible colors) is taken 
to reflect the strength or weakness of willpower, which meanwhile 
has been relabeled as “cognitive control” or “executive function”—
presumably in an attempt to get rid of the phenomenological 
connotations of the will concept (Goschke, 2003).

Working with binary oppositions such as will and habit has 
been taken to reflect human nature (Newell, 1973; Melnikoff 
and Bargh, 2018), and so it comes as no surprise that the will/
habit couple has survived in various disguises until today. Its 
long-standing history tends to be  systematically underestimated 
by available reviews, which for instance have dated back its 
introduction into theorizing about action control to the work 
of Tolman (1948, see Dolan and Dayan, 2013), Atkinson and 
Shiffrin (1968, see Monsell and Driver, 2000), or Dickinson (1985, 
see Gillan et  al., 2015)—thus rather generously neglecting the 
pioneering study on the phenomenology of will by Michotte 
and Prüm (1911); the first systematic experimental program on 
studying will and habit by Ach (1910, 1935), which spanned no 
less than 30  years; the first approach questioning the goal-
independence of habits by Lewin (1922a,b); and the other 200 
or so studies on action control summarized in Ach (1935) already.

The basic thought underlying the opposition between will 
and habit is that some responses are so strongly associated 
with particular stimuli that encountering the stimulus is sufficient 
to activate the response. This holds for rhyming in Ach’s 
studies—seeing a nonsense syllables triggers the overlearned 
rhyming response, reading in the Stroop task—seeing the word 
is sufficient to trigger some reading tendency, and performing 
a left or right response in the Simon task (Simon, 1969)—
processing a left or right stimulus triggers a spatially 
corresponding action (Kornblum et  al., 1990). The basic setup 
of all tasks investigating the interplay between will and habit 
puts the two against each other, just as recommended by Ach 
(1910), by instructing individuals to carry out a relatively 
uncommon or counterintuitive action B to a particular stimulus 
that is assumed to be  strongly associated with another action 
A. If then any experimental evidence can be  found that action 
A was activated to at least some measurable degree, the 
participant is thought to have experienced an action-control 
problem that was due to the fact that practice established an 

association between A and the stimulus, so that encountering 
the stimulus would activate action A even under circumstances 
where A is not appropriate and not wanted.

Very soon after Ach’s claims that stimulus-response 
associations can challenge and may even outcompete the 
processes controlled by the actual goal, Lewin (1922a,b) reported 
findings calling for a more moderate view. On the one hand 
it was possible to counteract an intense intention with a habit 
that relied on few, sometimes just one repetition but, on the 
other, 300 repetitions were insufficient to have any impact. 
According to Lewin (1928), the key to understand the impact 
of habits has to do with their specific role in the current 
action plan. On the one hand, habitual actions do not represent 
real alternatives to intentional actions, in the sense that people 
would face difficulties to decide whether they should name 
the color of a Stroop word or read it. Lewin suggests that 
the intention to open a door that requires pushing the handle 
up, rather than down, will not be  hindered by the thousands 
or so previous repetitions of opening doors by pushing the 
handle down. On the other hand, however, habitual actions 
do have the potency to interfere if they are embedded into 
a larger action context, such as if one is to open the door 
on one’s way to get a glass of water from the other room.

The same principle seems to apply to the Stroop effect, 
which is very pronounced (often >100  ms effect size) if the 
response set consists of spoken color words (i.e., the responses 
that reading the words would produce) but often dramatically 
shrinks or disappears with keypressing responses (e.g., McClain, 
1983)—and even the effects that keypressing responses sometimes 
do produce seem to be  artifacts due to task-irrelevant but 
spontaneously occurring internal naming strategies (Martin, 
1978; Mascolo and Hirtle, 1990). In other words, the Stroop 
effect is likely to depend on introducing an obvious contradiction 
by requiring participants to attend to, and actually generate 
color words and at the same time nominally declaring color 
words task-irrelevant and to-be-ignored. Another obvious 
contradiction results from the fact that, in the standard Stroop 
task (as well as in other tasks following the same rationale), 
violating the instruction by reading the word actually pays off 
in 50% of the trials. This means that, on average, participants 
are rewarded for unintentionally or intentionally reading the 
word, especially given that word-reading is faster and requires 
less effort—just because of the more elaborate practice. That 
this is an important ingredient of the task is obvious from 
the finding that the size of the effect varies systematically with 
the percentage of the payoff: it becomes stronger if payoff 
increases and weaker if it decreases (e.g., Logan and Zbrodoff, 
1979). This suggests that the impact of habitual action tendencies 
is anything but non-intentional, and clearly very sensitive to 
the expected outcome—a theme I  will get back to below.

Controlled vs. Automatic
As pointed out by Goschke (2003), theories on action control 
have seen a rather dramatic conceptual overhaul since the early 
days of Michotte, Ach, and Lewin. While the pioneering approaches 
were still strongly connected to the phenomenology of willing 
and acting, understanding which was even an explicit theoretical 
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aim of Michotte and Ach, later theorizing preferred a less 
“subjective” terminology that was inspired by the increasingly 
popular computer metaphor for the description and analysis of 
human cognition in the 1950s and 1960s (Broadbent, 1958; 
Neisser, 1967). This terminological preference favored less colorful 
concepts like “controlled” versus “automatic” processing over the 
old-fashioned terms will and habit. Even though the basic idea 
was the same, the explanations changed in flavor: whereas the 
older approaches tried to explain the strong impact of habits 
by referring to an assumed cause—the strong stimulus-response 
association driving the habitual action, the new generation of 
processing theories tended to emphasize different degrees of 
speed and efficiency of the underlying processes (even though 
some studies still tested the practice-dependency of automaticity 
directly: e.g., Schneider et  al., 1984; Smith and Lerner, 1986; 
MacLeod and Dunbar, 1988). For instance, the observation that 
responses are easier to perform in response to particular stimuli 
than others (e.g., left rather than write keypresses to stimuli 
appearing on the left) was explained by postulating the existence 
of a particular “population stereotype” (Fitts, 1951). At the surface, 
accounts of this sort do not seem to go beyond redescribing 
the actual finding in theoretically sounding terms, but they often 
implicitly rely on associationist logic: one way or another, such 
shared stereotypes must emerge from shared practices and training, 
which implies that stereotype is just another word for an associative 
structure linking stimuli to particular responses.

In other approaches the correspondence between controlled 
versus automatic processes on the one hand and will versus 
habit on the other is even more opaque. For instance, in their 
comprehensive model of stimulus-response compatibility, 
Kornblum et  al. (1990) attribute the impact of what previously 
counted as habit to automaticity. It is automaticity that does 
the major trick in the explanation of why irrelevant stimuli 
seem to be  able to trigger responses that conflict with the 
actually intended action, like in a Stroop task. Where automaticity 
comes from is a topic that the authors explicitly neglect: they 
briefly consider the possibility that training plays a role but 
then choose “not to make practice a major focus or concern” 
in their model (p. 263). Again, this renders the major theoretical 
contribution to the question of why irrelevant stimuli can 
trigger conflicting responses a mere reformulation of the 
empirical observation in theoretical terms1.

These and other theoretical developments indicate that the 
systematic replacement of the will/habit concept by the controlled/
automatic concept has tempted at least more cognitively oriented 
theorists as cited above2 to refocus the theoretical attention 

1 According to Lewin (1931), the idea that categorizing a particular phenomenon 
is sufficient to explain it is a reflection of what he called Aristotelian psychology 
(a theoretical attitude that is very typical for stage approaches to studying 
human information processing: Hommel, in press), which he  contrasts with 
Galilean psychology that seeks to unravel the actual functional mechanisms.
2 This is not to say that attempts to systematically control the degree of automaticity 
acquired through experimental practice no longer exist. The learning-theoretical 
tradition to make training/exercise part of the experimental design has survived 
especially in the cognitive neurosciences (e.g., Schwabe and Wolf, 2009) and 
applied areas related to lifestyle issues and addiction (e.g., Watson et  al., 2014; 
Lin et  al., 2016).

away from the possible causes of the impact of the relevant 
information on action control to the consequences—away from 
the possible role of overlearning to the resulting automaticity. 
As a consequence, in these approaches automaticity was no 
longer defined with respect to its origin, such as the amount 
of training necessary to achieve it, but with respect to its 
opponent: the intention or control process. Note that this is 
a dangerous theoretical twist. The explananda targeted by 
control/automaticity theories derive from empirical observations 
that some behavior or some aspects of behavior do not fully 
comply with the instructions given to the investigated participants: 
they tend to read words rather than naming their color and 
press the key that spatially corresponds to the stimulus even 
if they should do the opposite. A certain lack of control is 
thus inherent in these observations, which renders the attempt 
to explain the observations by referring to automaticity circular: 
if automaticity is only defined by the absence of control, and 
if control is defined by compliance with the experimental 
instruction, the observed behavior must be automatic. In other 
words, automaticity cannot be  an explanation because it is an 
integral component of the description of the to-be-explained 
phenomenon—automaticity is an explanandum, not an explanans!

These terminological confusions aside, it is fair to say that 
true automaticity has yet to be  demonstrated. Kornblum et  al. 
(1990) suggest applying the definition of Kahneman and Treisman 
(1984, p.  43), according to whom a strongly automatic process 
is one that is “neither facilitated by focusing attention on [its 
object] nor impaired by diverting attention from [it],” whereas 
“a partially automatic process is one that is normally triggered 
without attention directed at its object but is facilitated by 
having attention focused on it” (Kornblum et al., 1990, p. 261). 
“According to this view,” Kornblum et  al. (1990) continue, “an 
automatic process could under some conditions be  attenuated 
or enhanced. However, under no conditions could it be ignored 
or bypassed.” I  have already mentioned evidence suggesting 
that even the Stroop effect, thought to be one of the milestones 
of demonstrating true automaticity, can disappear by simply 
changing the response set. However, such evidence might 
be  discounted by considering a role of attention, which might 
be  drastically reduced by this change and thus make the 
automaticity only partial. Moreover, Kornblum et al. claim true 
automaticity only for feature-overlap between stimuli and 
responses, which arguably is reduced, in some sense even 
eliminated by changing the response set in a Stroop task. 
However, automaticity can be  shown to not exist even without 
changing the responses.

For instance, Valle-Inclán and Redondo (1998) presented 
participants with a Simon task, in which they responded to 
red and green colored circles by pressing the left and right 
response keys, respectively. In one condition, participants received 
the stimulus-response mapping first and were then presented 
with the lateralized color circle. Electrophysiological recordings 
showed that the presentation of the stimulus led to an increased 
activation in the cortical hemisphere opposite to its location—a 
classical lateralized readiness potential that is thought to represent 
response activation of the contralateral response hand (Eimer, 
1995). This potential was even seen if the actual response 
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required movement of the other hand, suggesting that it indicated 
the potency of the stimulus to automatically activate the spatially 
corresponding response hand. In another condition, the stimulus 
appeared first, and only thereafter the stimulus-response mapping 
was presented. If, according to the definition of Kahneman 
and Treisman and Kornblum et  al., the association between 
stimulus location and response would be  strongly automatic, 
the presentation of the stimulus should generate the same 
electrophysiological response as in the other condition. If the 
association would be  partially automatic, the stimulus might 
show a reduced electrophysiological response. However, the 
findings showed no response whatsoever. If anything, this 
suggests that implementing the instruction is a precondition 
for automatic responses to occur, which means that they are 
neither fully nor partially automatic (cf., Trafimov, 2018) but 
what Bargh (1989) has called conditionally automatic.

A key problem with dealing with the concept of automaticity 
is that it remains a moving target in the literature. For instance, 
some authors (like Kahneman and Treisman, 1984) speak of 
automatic processes while others speak of automatic actions 
(e.g., Wheatley and Wegner, 2001). Some authors have argued 
that automatic processes need to meet all criteria for automaticity 
to deserve this label (what Moors and de Houwer, 2006, call 
the “all-or-none view”; e.g., Johnson and Hasher, 1987), while 
others were more liberal, allowing for various combinations 
of some of the criteria (e.g., Bargh, 1994; Moors and de 
Houwer, 2006), and the fact that the discussed criteria themselves 
vary extensively from author to author (see Melnikoff and 
Bargh, 2018) did not help to find a broad consensus either. 
For instance, while Kahneman and Treisman considered a 
process automatic if it is “neither facilitated by focusing attention 
on [its object] nor impaired by diverting attention from [it],” 
Bargh (1994) suggested a combination of a lack of awareness 
and intentionality, high efficiency, and a lack of motivation 
(a criterion that appeals to the desire criterion that I  will 
criticize below), and Moors and de Houwer (2006) extend 
this list to eight criteria, according to which automaticity might 
refer to processes that are unintentional, uncontrollable, goal 
independent, autonomous, purely stimulus driven, unconscious, 
efficient, and fast.

I will not provide point-to-point point reviews of these 
criteria but do like to set the stage for the following discussion 
by means of two comments: first, the sheer number and 
variability of suggested criteria for sorting processes into 
automatic versus intentional ones, together with the fact that 
authors increasingly give up the idea that automaticity criteria 
might converge onto any coherent category (Bargh, 1994; Moors 
and de Houwer, 2006; Melnikoff and Bargh, 2018), undermine 
the original idea that cognitive processes can be  categorized 
into two non-overlapping categories. Second, the criteria that 
have been suggested so far undoubtedly relate to measurable 
features of processes but there are reasons to doubt whether 
they even speak to the question of willed vs. non-willed 
behavior. As I  will elaborate below, this is because: (1) goals 
and intentions control outcomes of behavior but not the processes 
producing it, which renders the connection between action 
control and criteria like controllability or autonomy questionable; 

(2) selecting an action emerges from the goal-driven but fully 
automatic competition between automatically executed action 
tendencies, which undermines the very idea that processes 
might be  non-automatic in principle; and (3) the selection 
value that processes bring to this competition may well refer 
to the efficiency and speed of the action that this process 
represents, suggesting that the relevance of these criteria in 
action selection should be  considered a sign of intentionality 
rather than the opposite.

Model-Based vs. Model-Free
The most recent version of will/habit thinking comes in the 
disguise of models contrasting model-based and model-free 
systems. This contrast refers to two kinds of modeling 
reinforcement learning (e.g., Sutton and Barto, 2017): model-
based learning is assumed to rely on a state-transition model, 
which accumulates knowledge about the current state, the 
possible actions this state allows, and the state that would 
follow when taking this action, and a reward model that 
connects end-states with particular rewards. Hence, this kind 
of learning is based on a kind of model of the environment, 
which allows forward-planning and reward-maximization even 
when the environment changes. Model-free learning, in contrast, 
does not consider sequential dependencies like state-action-
outcome relationships or rewards but relies on stored selection 
values for all previously experienced state-action contingencies.

It is fair to say that there is no coherent theory integrating 
the available thoughts about how these systems work and how 
they interact, and it is also fair to say that quite a bit of 
confusion exists regarding what the terms model-based and 
model-free imply. One idea is that the goal-related model-based 
system stores contingencies between actions and outcomes while 
the automatic, model-free system stores stimulus-response 
associations (Dickinson and Balleine, 1994). According to this 
idea, model-based action implies consideration of the expected 
outcome whereas model-free action is driven by some contextual 
cue—a metamorphosis of the traditional habit. Others have 
criticized this conceptual opposition. For instance, Miller et  al. 
(2019) have argued that the original idea assumes that habits 
are outcome-blind (“value-free”), whereas modern reinterpretations 
(e.g., Daw et al., 2005) imply that habits and model-free actions 
are driven by a reward-maximization process, that is, a process 
that depends directly on potential outcomes. Given that habit 
strength, the parameter that conventional habit theorists consider 
to be  crucial for the probability to select a stimulus-response 
association, can well be  considered a kind of selection value, 
the difference between value-free and value-based modeling 
might be less dramatic than Miller et al. (2019) assume. However, 
in their review on habits, Wood and Rünger (2016) question 
whether habits can be equated with model-free learning in view 
of suggestions that habits are acquired through model-based 
processes (Dezfouli and Balleine, 2012) and failures to find 
relationships between the strength of model-free learning and 
habit formation in individual-difference studies (Friedel et  al., 
2014; Gillan et  al., 2015). Hence, it is clear that the model-free/
model-based framework is still under development and it 
remains to be  seen whether a systematic connection between 
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model-based/model-free learning on the one hand and will/
habit on the other will emerge. In any case, model-free action 
is considered to be  insensitive to current action goals, whereas 
model-based algorithms are assumed to compute transition 
probabilities (e.g., an agent’s likelihood of being in a wanted 
state after having performed a given action), which are used 
to compute the expected value of actions by comparing the 
states they are predicted to produce to the states the agent 
wants to establish. Some approaches assume that the two systems 
compete for action control (e.g., Gillan et al., 2015), while others 
assume that they can be integrated (Krueger and Griffiths, 2018). 
Some authors consider the model-based/model-free approach 
a strongly advanced version of the original will/habit approach 
(e.g., Dolan and Dayan, 2013), while others consider the two 
pairs of concepts basically equivalent (e.g., Friedel et  al., 2014).

However, the probably most defining two novelties in the 
context of the model-based/model-free approach are the contrast 
between action-outcome contingencies, which are related to 
the model-based/goal-related system, and stimulus-response 
associations, which are the main ingredients of the model-
free/habitual system (De Wit and Dickinson, 2009), and the 
experimental procedure used to test whether a particular action 
relies on one or the other system. The latter is based on 
Heyes and Dickinson’s (1990) “desire criterion” of voluntary 
action, which together with the “belief criterion” serves as 
diagnostic indicator of whether a particular action is based 
on a goal. The belief criterion requires the voluntarily acting 
agent to know about the current action-outcome relation and 
the desire criterion requires him or her to actually want the 
current outcome. Given that voluntary action is commonly 
defined as an activity directed toward the creation of some 
intended effect, the belief criterion is uncontroversial and 
explicitly or implicitly shared by any approach to voluntary 
action control (see Hommel and Wiers, 2017). The role and 
relevance of the desire criterion is less clear, however. The 
key procedure to assess whether the desire criterion is fulfilled 
is test after satiation, which reflects the behaviorist heritage 
of the model-based/model-free approach and the fact that it 
is mainly based on experiments carried out with rodents. For 
instance, participants who like popcorn would be  tested for 
popcorn-related actions before and after receiving the 
opportunity to eat as much popcorn as they like (e.g., Watson 
et  al., 2014). If they would show similar attentional and 
behavioral biases toward popcorn after the sating procedure 
as they showed before the procedure, the corresponding 
behavioral tendency would be considered to rely on the model-
free system and the stimulus-response associations it contains. 
The rationale for that conclusion seems straightforward: the 
sating procedure should make sure that participants no longer 
want popcorn, so if they would still be  showing popcorn-
approaching behavior this cannot rely on an active popcorn-
getting goal—leaving a previously acquired popcorn-getting 
habit as the only option.

But is this rationale watertight? Let us consider why a 
person might eat popcorn. She may like digesting popcorn, 
feeling popcorn in her mouth, smelling popcorn, listening to 
the sound of popcorn being chewed, the attention she attracts 

from other popcorn-loving individuals, the satisfaction of 
having access to one’s favorite food, the entertainment of filling 
time with a liked activity, and more. Liking popcorn is thus 
not a simple desire for one single aspect of popcorn-eating 
behavior but rather a complex compound of what one might 
call desire aspects or subdesires. Which of those would be sated 
by eating as much popcorn as one likes? Being stuffed with 
popcorn might make the digesting aspect less attractive, but 
would it eliminate the joy experienced by any of the other 
aspects? How reasonable is it to expect that the intentional 
component of the behavior of a sated popcorn-lover would 
be  identical to the behavior of a popcorn-hater or of one 
who just does not care about popcorn? I  suggest that the 
fundamental flaw of satiation logic consists in the idea that 
agents have just one single goal and that this goal is 
comprehensively captured by the aspect of the goal that the 
sating procedure is targeting (Hommel and Wiers, 2017). While 
it is not impossible that this is indeed the case, it is not 
very likely either.

Moreover, real human actions do not only rely on more 
than one goal aspect, they also consist of multiple elements: 
eating one popcorn consists in  locating it in a nearby spot, 
moving one’s hand toward it, opening and closing the hand 
until the popcorn is being grasped, moving it to one’s mouth, 
opening the mouth, moving the popcorn inside, dropping it, 
closing the mouth, and starting to chew. Most of the elements 
of this action pattern have been discussed as the paragon of 
goal-directed voluntary action in the literature on grasping 
(e.g., Jeannerod, 1988; Milner and Goodale, 1995), which 
does not seem to fit with the classification of the entire 
pattern as a non-intentional stimulus-driven habit. One might 
object that the grasping part of the action may well 
be  intentional and the popcorn part may not, but this is 
exactly my point: actions commonly comprise of multiple 
goals and it is unlikely that any satiation procedure can ever 
target all of them.

Finally, if all the popcorn-related behavior of the sated 
popcorn-lover would really be  run by the model-free system 
alone, why would she actually eat the popcorn? Popcorn-
lovers are likely to have done many things with popcorn 
apart from eating: buying and putting it into the bag, carrying 
it home and putting it into the cupboard, unpacking it and 
putting it on the table, offering it to others, cleaning the 
table from it, and throwing the remains into the trash, and 
so forth. The stimulus popcorn must thus be  associated with 
many different responses, which raises the question which 
of the corresponding stimulus-response habits are triggered 
by the popcorn after satiation. What experiments show is 
that even the most popcorn-loving participants show 
contextually appropriate behavior even after satiation: they 
may eat some if they stand in front of it, but they do not 
clean the table from it, store them, or do other things that 
would not fit the experimental context and the social situation 
it creates. If so, sating the popcorn-lover does not seem to 
prevent her from showing contextually and socially appropriate 
popcorn-related behavior, which is not well-covered by calling 
it model-free.
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MISCONCEPTIONS IN BINARY 
THEORIZING

This brief and incomplete historical tour through some of 
the highlights of binary theorizing on action control was 
intended to show that none of the suggested terminological 
couples really works. Practicing stimulus-response combinations 
is likely to change the representations thereof, and presumably 
makes these representations more available under certain 
circumstances. However, there is still no evidence that stimuli 
can do what intentions and goals can: to trigger a particular 
response. What stimuli are capable of is to trigger misleading 
action tendencies under circumstances that are dictated by 
the kind and generality of the action goal, and to the degree 
that they are primed and enabled by the goal, whereas the 
actual association strength often fails to predict the degree 
to which representations of stimulus-response combinations 
affects action control. The opposition of controlled and automatic 
processes suffers from similar problems and from the lack of 
convincing demonstrations of true automaticity. The available 
demonstrations are consistent with the idea that automatic 
processes are enabled by the goal (as suggested by Exner, 
1879; James, 1890; Bargh, 1989; Gollwitzer, 1993), so that it 
is the goal that eventually determines whether what is considered 
to be an automatic process has any impact on action selection. 
If the model-based/model-free approach goes beyond the will/
habit approach at all, which is not always clear, it does not 
make a convincing case that satiation procedures are a diagnostic 
method to tell truly goal-driven from purely stimulus-driven 
actions. The main problem is that this approach systematically 
underestimates the complexity of human action planning, a 
possible reflection of its behaviorist heritage. One complaint 
about binary theorizing has been that, even though action-
control processes can be  easily divided into two categories, 
the various categories that researchers have created so far do 
not sufficiently overlap to make a convincing coherent story 
(Melnikoff and Bargh, 2018). Even though I  agree, I  would 
even argue that the criteria offered so far have been ill-conceived 
and failed to allow sorting processes into non-overlapping 
categories. The reasons for that, I  believe, have to do with 
some fundamental misconceptions regarding (1) the temporal 
relationship between the operation of processes assumed to 
reflect the goal and the operation of processes that are assumed 
to be automatic; (2) the aspects of actions that control operations 
keep themselves busy with; and (3) the number of goals 
involved in action control. In the following, I  will discuss 
each misconception in turn.

The Competition Misconception
When he  was laying the ground for modern reaction-time-
based analyses of human cognitive processes, Donders 
(1868/1969) was optimistic to have measured the time demands 
of what he  called the “expression of the will.” By cleverly 
manipulating the cognitive demands of rather simple reaction-
time experiments, and by subtracting the corresponding reaction 
times, Donders estimated the time demands of what we nowadays 

would call “response selection” in a binary-choice task to about 
1/28  s. More important than the validity of this estimate is 
the time point at which Donders thought that the will would 
express itself: between processing the stimulus information and 
executing the response. Once we  replace the outdated terms 
“will” and “expression of the will” through their modern 
successors “goal” and “controlled process,” we  can see that the 
main function of controlled processes are thus assumed to 
consist in stimulus-response translation. This scenario perfectly 
fits with most modern action-control approaches, including 
the model of Kornblum et  al. (1990), where the stimulus-
guided “identification of the correct response” is actually the 
only control(led) process. It is this process that is assumed to 
compete with the habitual, automatic, or model-free process 
for controlling the eventual action.

Even though Donders’ view turned out to provide the basic 
theoretical template for modern action-control approaches, 
alternatives were available. In particular, Exner (1879) rejected 
the idea that the will intervenes between stimulus and response 
processing. Instead, he  argued that preparing for a task or a 
particular action is accomplished by turning oneself into an 
automatic system long before the first stimulus appears. It is 
this automatic state that according to Exner enables humans 
to act efficiently. Note that the temporal relationship between 
actual control and automaticity has changed from concurrent 
competition to a sequence in which control operations set up 
the stage for automatic processes to take over. Exner’s view 
provides an excellent theoretical framework for understanding 
the observations of Valle-Inclán and Redondo (1998) discussed 
above: automaticity can indeed be demonstrated but it depends 
on the implementation of the action goal, just as the conditional-
automaticity approach has claimed (Bargh, 1989). Hence, rather 
than competing with habitual, automatic, and model-free 
processes, goal-related control processes turn the cognitive 
system into a “prepared reflex,” as Woodworth (1938) has called 
it (see Hommel, 2000b).

The Process-Control Misconception
One of the oldest theoretical problems that experimental 
psychology deals with relates to what Turvey (1977) has called 
“executive ignorance”: how is it possible that humans can carry 
out intentional actions but, if being asked how they did so, 
have very little of interest to report? The answer favored by 
ideomotor theorists since Lotze (1852) and James (1890) consists 
in the assumption of a mechanism that integrates co-activated 
representations of the sensory consequences of a movement 
(reafferent information) and the motor patterns generating these 
consequences. According to this view, infants and other novices 
start by motor babbling—performing relatively random 
movements—and integrate the produced motor patterns with 
the sensory consequences thereof (i.e., action effects). Once 
they have experienced action effects they like or find functional 
in achieving a particular goal, they “imagine,” “expect,” or 
“predict” these consequences, which functionally translates into 
reactivating the sensory representations of action effects. Given 
that these representations have been integrated with the motor 
patterns that have generated them in the past, reactivating 
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them will prime and eventually activate the associated motor 
patterns, which is likely to reproduce the (now intended) 
sensory consequences.

Recent research has provided strong evidence for the existence 
of such an ideomotor mechanism, unraveled its neural and 
functional underpinnings, and its role in the development of 
intentional action (for reviews, see Hommel, 2009; Shin et  al., 
2010). However, for present purposes, the only important 
implication of this research relates to the target of control. If 
it is true that all that an intentionally acting agent has available 
are representations of past (and now expected) sensory 
consequences of movements, it is clear that action planning 
mainly consists in the activation and maintenance of these 
representations. In other words, action control deals with and 
operates on representations of expected sensory outcomes. 
While this might sound obvious, it is important to emphasize 
that this does not imply that action control is targeting particular 
processes. It is in fact the inability to intentionally target 
particular processes—the executive ignorance—that has provided 
the main impetus for ideomotor approaches to emerge. It thus 
makes little sense to compare processes that are thought to 
be controlled with processes that are thought to be not controlled 
or, as in most approaches, controlled by external stimuli. Instead, 
it makes more sense to assume that implementing a particular 
goal establishes a condition that allows representations of 
action-outcome relations to compete, and the representation 
with the closest fit to the intended action effect to win, at 
least under ideal circumstances (see Hommel and Wiers, 2017, 
for elaboration). If so, it would only be  the implementation 
of the goal that could meaningfully be referred to as intentional 
or controlled, while the resulting competition would be  fully 
automatic—just as Exner envisioned.

From this perspective, stimuli might be  able to activate 
particular goals but, once a particular goal is implemented, 
they would not be  able to make an agent perform an action 
that is entirely unrelated to that goal. And this is indeed what 
all available purported demonstrations of automaticity show: 
if a participant commits an error in a manual Stroop task, 
she is very unlikely to actually speak the word out loud—even 
though this should theoretically be  the strongest habit and 
the most automatic tendency—but rather press the key that 
corresponds to the color designated by this word. Note that 
this error is anything but model-free, as it reflects many aspects 
of the task instruction, actually results from obviously 
outcompeting the strongest habit, and takes into account the 
goal of intending to press keys, rather than to say something 
or do something else. In other words, the error reflects the 
consideration of almost all aspects of the goal and the task 
model—something that arguably undermines all available 
binary accounts.

The Single-Goal Misconception
Distinguishing between goal-related and automatic processes 
requires a good understanding of what the current goal actually 
is. Researchers implicitly or explicitly identify the current goal 
with reference to the instruction: aspects of the task that 
were considered relevant in the instruction are assumed to 

be  represented by the goal whereas aspects of the task that 
were considered irrelevant are not. If thus evidence for processing 
the latter can be obtained, this is taken as evidence for control 
leakage and, thus, automatic processing. Importantly, the logic 
of this rationale presupposes that people have only one goal 
at a time, which unfortunately is entirely unrealistic. According 
to Atkinson and Birch (1970), the stream of human behavior 
is driven by multiple internal response tendencies that 
continuously vary in strength. Vallacher and Wegner (1987) 
have suggested that actions can be  described at various levels, 
due to the concrete action plans being commonly nested into 
more abstract action plans, which are part of even more 
abstract plans, etc. Indeed, if a student is participating in a 
Stroop task, she is unlikely to give up her plans to earn some 
money, to complete her studies in time, to become a famous 
scientist, to be  a sympathetic person, and to lead a happy 
life when entering the lab. How are all these goals, small-
scale and large-scale, long-term and short-term, reflected in 
current theorizing on action control? I am afraid they are not.

That this has severe consequences for our understanding 
of action control can be  easily shown. As discussed earlier, 
tasks that are thought to tap into action control give participants 
mixed messages about the relevance of processing particular 
information. In the Stroop task, words are explicitly declared 
to be  irrelevant and yet in a substantial portion of the trials, 
often up to 50%, processing the word or even reading it pays 
off, and the argument holds for Simon tasks, flanker tasks, 
and many other versions of them as well. Mixed messages of 
this kind are likely to undermine the instructed ignorance to 
the type of information that the instruction has declared 
irrelevant. Why would a system that is assumed to be  attuned 
to optimizing reward, as the human cognitive system, not 
be  sensitive to the possibility to receive reward in 50% of the 
trials? Moreover, researchers commonly try to counteract 
reward-sensitive strategies by varying the irrelevant information 
in an unpredictable fashion. This however implies considerable 
variability with respect to the irrelevant stimulus dimension. 
Variability implies uncertainty, and the human cognitive system 
is notoriously interested in reducing uncertainty. This has been 
emphasized in recent predictive-coding approaches (Friston, 
2009) but also featured strongly in the approach of Berlyne 
(1949, 1960). Berlyne has claimed that one of the major human 
drives consists in curiosity—a chronic goal that is unlikely to 
be  traded for a Stroop instruction. Curiosity is assumed to 
be attracted to stimulus aspects of maximal uncertainty, which 
the cognitive system then tries to reduce by improving its 
expectations (Sokolov, 1963) or, in more fashionable terms, 
its predictions (Friston, 2009). If we thus assume that participants 
bring their curiosity goal to our labs, it should not be  overly 
surprising that they are particularly interested in information 
satisfying it. If they are, this would not indicate a lack of 
goal-related action control but rather imply that participants 
satisfy various goals concurrently. Among other things, this 
predicts that effects hitherto assumed to reflect a leakage of 
control decrease as irrelevant information becomes less 
uncertain—which is exactly what Frings et  al. (2019) 
have observed.
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A UNITARY ALTERNATIVE

As I  have tried to argue, binary theorizing that divides actions 
into willed and un-willed categories does not provide us with 
a useful perspective to understand action control, neither in 
the disguise of the will/habit opposition, nor in the case of 
the intentional/automatic opposition, nor with the model-based/
model-free opposition.3 There can be  little doubt that practice 
changes the representation of stimulus and action events, that 
it creates associations between the codes forming these 
representations, and that these associations have impact on 
action control. However, there is no systematic evidence 
suggesting that the amount of practice can predict which actions 
people choose, or that people choose actions that are unrelated 
to their current goals. Rather, it seems that goals set the stage 
for the competition of various, presumably automatic processes. 
Given that people control goals, rather than processes, it is 
always possible that one of the processes being involved in 
the competition turns out to be  less functional than others, 
but this is a normal outcome of processing in a system that 
is as competitive as the human brain. As argued and developed 
in some detail elsewhere (Hommel and Wiers, 2017), the time 
seems ripe to move on toward a more integrative framework 
of human action control: a framework that embraces the 
complexity of action control and that goes beyond mere binary 
categorization, both in terms of functional explanation and 
with respect to the neural mechanisms. In the following, I will 
briefly sketch the core concepts of Hommel and Wiers’ Unitary 
Model of Action Control (UMAC; the interested reader is 
referred to Hommel and Wiers, 2017, for more detail) and 
relate them to existing dual-route models.

According to UMAC, selecting an action is biased by multiple 
goals. Goals are functionally represented by one or many 
selection criteria that serve to provide top-down support for 
representations of actions that are expected to meet these 
criteria. For instance, the decision to grasp a cup of coffee 
on a table by means of one’s right hand might be  driven by 
selection criteria that promote actions that involve grasping, 
actions that serve reaching a cup, actions that are likely to 
have positive consequences, actions that are easy to perform, 
and actions that go fast. The selection criteria might be  taken 
to represent multiple goals, like quenching one’s thirst for 
coffee, moving with little effort, having fun, and pushing one’s 
energy, but UMAC does not require the specification or even 

3 Note that what I  criticize is the way theorists have sorted actions, action-
control operations, and related processes into two categories over the last 
150  years or so. It is thus a particular kind of binary theorizing that I  criticize, 
and my main argument is that the distinctions being drawn between the 
binary categories make little sense both theoretically and empirically. I  would 
like to emphasize that I  am  more interested in the flaws in making these 
distinctions than in the binary nature of the underlying theorizing. Accordingly, 
theories that would keep that distinction but add further categories would not 
escape my criticism. Conversely, binary theories that make other distinctions 
than between willed and un-willed (and related versions) may well escape it, 
even though I  find it difficult to imagine what kind of distinction that might 
be  and even though I  would suspect that it would still tempt researchers to 
categorize actions and related processes rather than understanding their mechanics 
(the tendency that I  criticize in Hommel, in press).

the integration of dedicated goals—all that counts are activated 
selection criteria. Given that many of the criteria will be satisfied 
by more than one action representation, the (entirely automatic!) 
competition between suitable representations might be  fierce 
but eventually be  gravitating toward the representation of the 
action that best meets most or all of the criteria. Note that 
this scenario implies both: that all actions reflect goal states 
and that all actions are selected automatically. In other words, 
all actions are both intentional and automatic.

Highly overlearned actions or actions that the agent has 
preferred to choose under coffee-drinking circumstances may 
well have a selection benefit in the competition, because they 
had been learned to have low control demands (i.e., they meet 
the easy-to-perform criterion particularly well) and to go fast 
(i.e., they meet the high-speed criterion particularly well). 
However, it is important to emphasize that the degree of 
overlearning as such does not render the corresponding action 
special (or “more automatic”) in any way. There would be nothing 
wrong with calling the corresponding action a habit, simply 
because the agent tends to prefer this action over others—which 
is the defining criterion for calling something a “habit” in 
everyday communication. But the habitual character only exists 
in the eyes of the observer—the agent simply selects an action 
that is fast and easy. In other words, the key difference between 
binary theories and UMAC is that the former assume that 
particular actions tend to be  chosen because they are habits 
that happen to be  fast and efficient, whereas the latter (e.g., 
Moors and de Houwer, 2006) assumes that they are chosen 
exactly because they are fast and efficient. Whereas the former 
reasoning implies that the selection of a habit is non-intentional, 
at least under some circumstances, the latter implies that the 
selection takes place because of the current goals—which of 
course may involve selection criteria other than my current 
examples speed and efficiency.

From a UMAC perspective, it makes little sense to develop 
any binary system to sort actions into two categories. While 
practicing an action may well increase the likelihood of 
selecting it in the future, there is no theoretical reason to 
reserve a dedicated label to overlearned actions. For instance, 
even if overlearning to open a door by pressing the handle 
down, to use Lewin’s example, will make down-pressing a 
particularly fast and efficient action that is likely to be  a 
strong competitor for selection under high-speed pressure  
(a selection criterion that propagates fast and efficient actions), 
a strong accuracy instruction is likely to render this candidate 
entirely impotent. Note that this theoretical problem cannot 
be solved by turning the binary distinction between intentional 
action and habit into a continuous dimension; it rather 
highlights the actual status of the word “habit,” which should 
be considered a descriptive term taken from everyday language 
but not a scientific, and certainly not an explanatory concept 
(cf., Hommel, in press).

An obvious objection against UMAC might be  that it is 
merely changing the semantics in a way that is impossible to 
test: every time some seemingly non-intentional behavior can 
be  demonstrated, a new goal might be  invented to account 
for it. This would indeed not do a good service to our 
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understanding of action control, but fortunately UMAC is not 
at all immune to empirical test, as the following examples 
show. First, a key point of UMAC is that implementing an 
action goal/intention enables (increases the possible impact 
of) event representations with features from dimensions that 
either are or seem to be  task-relevant. It is this task-relevance 
that renders the tendency to say “red” in a Stroop task a 
potent competitor in action selection. A strict automaticity 
approach could thus easily disconfirm the corresponding UMAC 
prediction by demonstrating that people say “red” when being 
faced with the word “RED” in the absence of any task or in 
a task that neither requires reading nor otherwise dealing with 
colors or color words. Second, even though it may be  difficult 
to create conditions under which chronic goals like curiosity 
or novelty-seeking can be  entirely switched off, it is certainly 
possible to create conditions that make that goal more or less 
relevant, like in a dual-task paradigm with one task emphasizing 
or not emphasizing novel information. Demonstrating that such 
a manipulation has no impact on the processing of novel 
information whatsoever would be  difficult to take for UMAC.

Another interesting issue in the comparison of UMAC and 
strict automaticity approaches relates to the role of external 
stimuli. Both approaches assume that action alternatives can 
be  activated by processing external stimuli: the automaticity 
approach assumes that processes and even actions can be triggered 
by stimuli—where the latter, as I  have argued above, is yet to 
be  demonstrated in humans—and UMAC assumes that stimuli 
activate all representations that feature-overlap with the stimulus 
on task-relevant dimensions (Hommel, 2004; Hommel and Wiers, 
2017). The critical difference between these two theoretical 
approaches does thus not relate to the possibility of stimulus-
induced activation of internal representations but rather to the 
question whether the degree of this activation is moderated 
by task-relevance (which UMAC assumes but the automaticity 
approach does not) and whether activation can result in action, 
as the automaticity approach assumes, or in competition for 
action control according to goal criteria, as UMAC suggests.

Yet another difference refers to the role of the context. Many 
automaticity accounts imply a rather pure, de-contextualized 
connection between particular stimuli and overlearned responses 
to these stimuli (e.g., Dickinson, 1985; De Wit and Dickinson, 
2009). In contrast, UMAC assumes that the basic representational 
unit is an event file (Hommel, 2004), which integrates stimuli, 
actions, and outcomes, as well as internal and external context 
conditions. This feature allows UMAC to deal with findings as 
those reported by Neal et  al. (2011). These authors found that 
participants who are used to eating popcorn in the cinema are 
likely to eat popcorn even if it is stale and even though they 
report disliking it, but only if it is offered in the cinema but 
not in a lab room while watching music videos. Even though 
more research is required to identify further conditions of such 
observations, UMAC’s assumption that action representations 
are contextualized and, thus, more likely retrieved and more 
strongly activated in a context in which they were acquired, is 
well-equipped to tackle such empirical challenges in principle.

Last but not least, it is important to point out that UMAC 
does not deny the important role of practice—the key player 

of automaticity accounts. According to UMAC, practice can 
change behavior in various ways that have an impact on action 
control, that is, on the probability that the event file related 
to a practiced action is eventually selected for execution. For 
instance, practice is known to increase the speed and efficiency 
at which an action is carried out. Increasing practice will thus 
increase the number of event files that satisfy goals that 
emphasize or imply speed and efficiency, which will make 
these event files more likely to outcompete others if and to 
the degree that these goals are activated. Practice will also 
lead to a more systematic, sharpened integration of other action 
effects, so that the experienced popcorn-eater, say, will have 
learned and will thus anticipate a richer and more specific 
set of sensory outcomes of popcorn eating than the popcorn 
greenhorn. This in turn will make the resulting event files 
more potent competitors under conditions in which goals that 
are satisfied by such outcomes are activated. For instance, it 
may take some time to register and appreciate social-improvement 
signals from other popcorn-eaters in the cinema, so that popcorn 
eating is more likely to satisfy social goals in the more experienced 
popcorn-eater. Practice may also increase or reduce the role 
of context, depending on the kind of experience: if 90% of 
the event files resulting from one’s street-crossing experience 
contain a representation of a green light, encountering a green 
light is likely to play a stronger role in selecting the appropriate 
action than if light representations in street-crossing event files 
would be much more varied. UMAC and automaticity accounts 
do thus not differ with respect to the assumption that practice 
and learning can have a strong impact on action control, but 
they rather differ with respect to why and how this impact 
is thought to be  achieved. If, thus, the popcorn-lover keeps 
eating popcorn even after having finished an XXL tube, this 
might reflect the ongoing satisfaction of (e.g., tactile, olfactory, 
or social) goals that are not yet sated, or simply an attempt 
to fight boredom, rather than a breakdown of intentionality.

CONCLUSION

The unitary account to action control shows that there is no 
need to heed the conventional distinction between will and 
habit. In this framework, goals still play an important role, as 
do automatic processes and practice, but goals and automatic 
processes do not compete but serve complementary purposes. 
The next challenge will be  to better understand how goals and 
selection criteria constrain the operation of automatic processes, 
and when and under which circumstances action representations 
become relevant competitors in the action-selection process. In 
any case, I  believe that theorizing about action control is ready 
to take the next step, and that this next step should not consist 
in inventing yet another binary opposition.
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Do habits play a role in our social impressions? To investigate the contribution of habits
to the formation of social attitudes, we examined the roles of model-free and model-
based reinforcement learning in social interactions – computations linked in past work to
habit and planning, respectively. Participants in this study learned about novel individuals
in a sequential reinforcement learning paradigm, choosing financial advisors who led
them to high- or low-paying stocks. Results indicated that participants relied on both
model-based and model-free learning, such that each type of learning was expressed
in both advisor choices and post-task self-reported liking of advisors. Specifically,
participants preferred advisors who could provide large future rewards as well as
advisors who had provided them with large rewards in the past. Although participants
relied more heavily on model-based learning overall, they varied in their use of model-
based and model-free learning strategies, and this individual difference influenced the
way in which learning related to self-reported attitudes: among participants who relied
more on model-free learning, model-free social learning related more to post-task
attitudes. We discuss implications for attitudes, trait impressions, and social behavior,
as well as the role of habits in a memory systems model of social cognition.

Keywords: social, cognition, attitude, learning, habit, model-free, model-based, computational

MODEL-BASED AND MODEL-FREE SOCIAL COGNITION

Human thriving depends on social relationships, and the impressions we form of new
acquaintances are essential guides to our social behavior (Fitzsimons and Anderson, 2013). We
befriend people who are kind, hire people who are competent, avoid those who are domineering, or
seek counsel from those who are empathic. In this way, impression formation often serves our goals
(Brewer, 1988; Fiske and Neuberg, 1990; Bargh and Ferguson, 2000), as we use our knowledge of
other people – their traits, mental states, and behaviors – to predict their actions and decide whether
to interact with them (Heider, 1958; Tamir and Thornton, 2018).

Yet, while goals drive much of human behavior, this is not always the case. Habits, in
particular, are responses that occur automatically and independent of our goals, often representing
a highly-repeated behavior that was once goal-directed but that persists and is expressed even
when the goal has changed (Wood and Rünger, 2016; Robbins and Costa, 2017). Habits likely
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explain many behaviors, from benign compulsions like biting
one’s nails to more harmful acts like mindlessly reaching for a
cigarette. Here, we asked whether habit-like processes may also
contribute to social cognition – how we learn about, interact
with, and evaluate other people – and thus help explain social
behaviors that appear to occur independently of, or in opposition
to, one’s goals.

Multiple Systems for Social Learning
Research on impression formation has, to date, primarily
emphasized conceptual forms of learning that give rise to goal-
directed behavior; that is, acquiring conceptual knowledge about
a person’s traits and behavior (Uleman and Kressel, 2013). Early
theories of impression formation focused on instructed forms of
learning, in which we learn about a person from descriptions
shared by others (Asch, 1946; Wyer and Carlston, 1979). If we
are told that Bob is generous and friendly, we may infer that he’s
a good person. We can also learn about other people through
observation and the use of attributional processing (Heider, 1958;
Jones and Davis, 1965; Rydell and McConnell, 2006). If we see
Jane offer money to a homeless person, we may infer from
her actions that she is generous; if we see Jane choose a high-
performing stock, we may infer that she is competent. These
conceptual inferences can give rise to goal-directed behaviors, like
choosing to spend time with someone who is generous or to hire
someone who is competent.

More recent research has shown that social attitudes
and impressions can also be formed through reward-based
instrumental learning in direct social interaction – trial-and-
error learning in which people make choices and receive feedback
(Hackel et al., 2015). For instance, one might choose a lunch
partner and experience rewards when they share their food, or
one might hire a financial advisor and experience rewards when
their advice pays off. Through this feedback, one can learn the
reward value of an individual while also inferring aspects of
their character traits (Hackel et al., 2015). Unlike instructed and
observational forms of learning, which are typically passive (e.g.,
reading about another person), instrumental learning is active:
it concerns feedback from another person regarding one’s own
actions. If, on most days, Bob’s greeting to Jane is met with a smile,
he will associate reward with his behavior toward Jane in addition
to inferring that she is friendly.

Instrumental learning thus represents a distinct mode of
learning in social interactions relative to conceptual knowledge
(Amodio, 2019). Instead of inferring other people’s qualities in
order to decide how to interact with them, instrumental learning
involves learning the reward value of social interaction through
direct action and feedback. That is, in traditional impression
formation approaches, Bob learns to interact with Jane because
he infers she is friendly, and he wants to be around friendly
people. In instrumental learning, Bob learns to interact with Jane
because he previously did so and received rewarding outcomes,
such as social rewards like smiles and compliments or material
rewards like money and food. He may like Jane as a result of
those rewards, rather than as a result of qualities he attributes to
her. Thus, instrumental learning directly informs how we should
interact with others given the rewards they provide. In this way,

preferences acquired through instrumental learning may be more
directly tied to behavior.

A Role for Habits in Social Cognition?
Over time, instrumentally learned responses may be automatized
into habits (Thorndike, 1911; Robbins and Costa, 2017).
Although people may initially perform an action deliberately to
achieve a goal, rewards can “stamp in” an association between
a stimulus (or context) and a response, such that people later
perform the response automatically. In contrast to skills, which
are goal-directed action routines triggered intentionally, habits
reflect a well-learned response that unfolds even when it is not
consistent with a goal, and it persists even when its expression
is no longer rewarded (Balleine and Dickinson, 1998; Tricomi
et al., 2009; Wood and Rünger, 2016; Wood, 2017). Nevertheless,
habits can be adaptive, initiating an important behavior that
we might otherwise forget in the pursuit of another goal, such
as grabbing our keys when rushing out the door to get to
work in the morning.

Habits differ from other forms of unintentional learning
that may contribute to impression formation. For example,
spontaneous trait impressions (STIs) form when a perceiver
is simply asked to read and memorize a set of trait-implying
sentences (Winter and Uleman, 1984; Carlston and Skowronski,
1994). People may be unaware that they formed an impression,
yet STIs become evident in measures of cued recall and may
subsequently influence judgment (Moskowitz and Roman, 1992).
There is also evidence that evaluative conditioning, in which a
neutral social target is paired repeatedly with either positive or
negative images (Walther, 2002; Olson and Fazio, 2006), may
even occur when such images are presented subliminally (e.g.,
De Houwer et al., 1997; Hofmann et al., 2010; but see Sweldens
et al., 2014). However, both forms of learning involve passive
exposure to stimuli and the formation of conceptual associations,
likely supported by a semantic/conceptual associative memory
system (Amodio and Berg, 2018; Amodio, 2019), in contrast
to the active process of action-outcome learning involved in
instrumental habit formation.

Examining Habit Formation Through
Reinforcement Learning
A major challenge in the study of habits in humans is that
it is often difficult to discern habits from other, goal-directed
processes in behavior. However, this distinction has recently
been linked to two forms of behavior within a computational
account of reinforcement learning (Daw et al., 2011). Broadly,
reinforcement learning algorithms describe how an agent learns
the value of different actions with different states of the world
by making choices and experiencing rewards (Sutton and Barto,
1998). According to this account, two types of computations can
underlie reinforcement learning: Agents can engage in model-
based learning, in which they consider the likely outcomes of
their actions given knowledge about their environment, and
also in model-free learning, in which they associate actions
directly with reward value and repeat previously rewarded actions
(Daw et al., 2011; Doll et al., 2015). Model-based learning is thus
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prospective and goal-oriented, sensitive to both environmental
contingencies (e.g., how to get to a reward) and expected
outcomes (e.g., whether a desirable reward will be attained) –
like a hungry mouse considering how to navigate a maze to
reach the room with the tastiest cheese. In contrast, model-
free learning is retrospective, relying on a past history of
rewards for an action; it requires no internal model of one’s
environment and is insensitive to the outcomes an action
will presently bring. A model-free learner stores cached values
for previously performed actions and selects actions with the
highest cached value.

Because model-free learning is computationally simpler but
less flexible than model-based learning, it may give rise to
behavior that has features of habits. For instance, an animal
might continue to press a food lever despite being fully sated
because this action was previously rewarded and thus associated
with high reward value (Dickinson and Balleine, 1994; Daw
et al., 2011). Although a model-free learner could eventually
learn to adapt to the new value, it would persist in pressing
the lever until learning takes place in its newly satiated state. In
contrast, a model-based learner should not require this learning
at all; instead, it should plan ahead to the likely outcome of
the lever press, realize that it does not desire that outcome,
and avoid the action from the start. Given these characteristics,
the model-based/model-free distinction has been used recently
to probe the role of habits in a range of learning contexts
in humans. For instance, individuals who engage in greater
model-based learning show less persistence in a devaluation
task – a classic marker of habits (Gillan et al., 2015). Yet, to
date, this approach has not been applied to questions on the
formation of social impressions through direct social interactions
with other people.

Model-Free Learning in Social Cognition
How might a model-based/model-free account relate to social
impressions? When other people provide us with material
feedback (like a gift) or social feedback (like a smile or a
compliment), we experience this feedback as rewarding; as a
result, this feedback can reinforce our social choices and draw
us back to the same partners again in the future (Jones et al.,
2011; Lin et al., 2011; Lindström et al., 2014; Hackel et al.,
2015; Lindström and Tobler, 2018). If people learn from this
feedback in a model-free manner, specifically, they might return
to interaction partners previously associated with high reward
regardless of whether those partners will currently provide
desirable outcomes. This pattern would resemble a traditional
definition of habit.

Some existing work hints at the possibility that reward
feedback gives rise to social preferences that persist in a habit-
like manner. In research by Hackel et al. (2015), participants
played an economic game in which they chose partners who
could share money; partners varied in the average amount they
shared (indicating reward value) and average proportion they
shared (indicating generosity). During initial learning, it was
economically advantageous for participants to prefer individuals
who provided large rewards, regardless of their generosity.
However, when participants were later asked to choose one of

these partners to work with in a non-economic puzzle-solving
task – a context where generosity, but not previous reward value,
is advantageous – participants’ choices were still influenced by
partners’ past reward value in addition to their generosity. This
persistent influence of past reward – even when reward value no
longer informed desired outcomes – suggests that participants
may have developed model-free reward associations that guided
subsequent social preferences. Nevertheless, past work has not
directly tested this possibility by dissociating model-based and
model-free learning in social interaction.

Study Overview
The present research was designed to provide initial evidence
for model-free learning in social impression formation. To
this end, we administered a sequential choice task commonly
used to dissociate model-based and model-free learning (Kool
et al., 2016; Kool et al., 2017; see also Daw et al., 2011),
adapted to examine social partner choice and attitudes. On each
round, participants chose financial advisors who had supposedly
invested in one of two stocks; participants then received a
payout from that advisor’s stock. We examined the extent to
which participants chose advisors based on model-based and
model-free reinforcement, and further examined whether these
forms of learning predicted participants’ subjective attitude
toward each advisor.

MATERIALS AND METHODS

Participants
Sixty-nine participants (42 male, 27 female) were recruited via
Amazon Mechanical Turk (AMT), in exchange for $3.50 for
study completion, plus a monetary bonus based on their task
performance. A sample size of 65 participants was chosen a priori;
an additional four participants completed the task due to an
error in which an extra set of slots was posted. Data collection
was completed before analysis. Participants were eligible if they
were located in the United States, completed at least one prior
AMT study, and had approval rates of at least 95%. Informed
consent was obtained from all participants in accordance with the
guidelines of the New York University Committee on Activities
Involving Human Subjects. We excluded data from participants
who did not respond in time to either the first or second stage
of a trial on more than 20% of trials (Kool et al., 2017). This
rule excluded data from four participants, leaving data from 65
participants in analyses.

Procedure
Participation took place via Psiturk, an online platform for
cognitive tasks (Gureckis et al., 2016). After providing consent,
participants read a self-guided description of the study, which
included practice trials, and completed the main experimental
task. Next, participants completed self-reported evaluation items
and a demographics questionnaire. Lastly, participants were
informed of their bonus compensation for participating and
then completed a debriefing procedure that included a suspicion
probe and an explanation of study goals. All data exclusions, all
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manipulations, and all measures included in this research are fully
reported in this article.

Two-Step Task
We adapted a sequential learning task (Kool et al., 2016, 2017)
designed to dissociate model-free and model-based learning
(Figure 1). In our adaptation, participants were told they
would learn about choices made by four AMT workers who
previously participated in a financial decision-making study (see
Supplementary Material for full task instructions). According to
this cover story, these previous workers were assigned the role of
“Financial Advisor,” in which they chose (only) one of two stocks
(“Axiom” and “Zephyr”) to invest in for the duration of the study.
These Advisors then earned money based on the performance of
their chosen stock, which fluctuated throughout the study and
could change from one round of “dividends” to the next.

Next, participants were assigned to the role of the “Client,” in
which they would make a series of decisions about which Advisor
to hire. Participants learned they would earn points based on the
performance of the stock chosen by their hired Advisor on each
round. Participants were explicitly told that the performance of
the stocks would change over time (“a stock that was bad at the
beginning of the game might start performing well, and a stock
that initially pays well might perform poorly later on”), and that
they should try to hire Advisors with the better performing stock
at that particular moment. Moreover, participants were informed
that they would receive a monetary bonus for their performance
in the task, with better performance (in terms of points earned)
equating to a larger bonus.

Return on each trial, participants began in one of two
randomly chosen first-stage states. In these states, participants
were presented with one of two pairs of Advisors, represented
by distinct cartoon avatars (Figure 1). Avatars were randomly

FIGURE 1 | Schematic of task design. In the first stage of each round,
participants saw one of two sets of advisors and chose an advisor for that
round. Participants then viewed the stock that advisor had chosen; after
making a button press, participants saw feedback indicating the payout
provided by the stock, ranging from zero to nine points. Within each pair of
advisors, one advisor always led to the “Axiom” stock and the other always
led to the “Zephyr” stock. This feature of the task rendered the two sets of
advisors equivalent, such that a model-based learner could apply experiences
with one set of advisors to choices involving the other set of advisors.

assigned to different roles across participants (i.e., which stock
they were linked with) and were equally likely to appear on
the left or right side of the screen. Participants chose one of
the two Advisors via button response and then transitioned
deterministically to one of the two stocks, which comprised the
second-stage states. That is, participants could reach either of the
two stocks from each of the first-stage states; one Advisor in each
pair always invested in the Axiom stock and the other Advisor in
the given pair always invested in the Zephyr stock.

When they reached the second-stage state, participants were
instructed to press the spacebar to reveal the performance of the
stock in which the chosen Advisor invested. If participants did
not respond in time to either the first- or second-stage states, no
reward was provided and participants moved to the next trial. The
number of points obtained for each stock fluctuated slowly and
stochastically over the course of the task, varying according to a
Gaussian random walk (SD = 2) with reflecting bounds at 0 and
+9 points. The drifting nature of the reward feedback encouraged
continuous learning throughout the task.

Importantly, the two first-stage states were equivalent in terms
of the stocks they could lead to: within each pair of advisors,
one Advisor always invested in the Axiom stock, whereas the
other Advisor always invested in the Zephyr stock. This design
allows for the separation of model-free and model-based control.
Given that both stocks can be reached from each pair of Advisors,
the stock reached from one set of advisors can be used by a
model-based learner to update preferences regardless of which
set of advisors is encountered on the next trial. For instance, if
an Advisor in one pair invested in the Axiom stock and this stock
paid out a large number of points on that trial, a model-based
learner should subsequently be more likely to choose the Advisor
in the other pair that also invests in the Axiom stock. That is, a
model-based learner can generalize across equivalent first-stage
choice options due to its exploitation of the overarching task
structure. Conversely, model-free learners would not generalize
across equivalent first-stage choice options, as they simply rely on
directly-experienced action-outcome associations – the outcomes
experienced following a choice in one pair of advisors should
not affect preferences for the advisors in the second pair, and
vice-versa.

Participants were trained extensively on the deterministic
transitions (i.e., which financial advisor in a given pairing
invested in which of the two stocks) prior to completing the
experimental trials, such that 80% accuracy across 15 consecutive
trials was required to advance to the main task. Participants did
not receive explicit instructions on which advisor led to which
stock, but rather were required to learn these transitions through
experience. After this training phase, participants completed 150
trials of the main task, split evenly between the two first-stage
states. The response deadline in both stages was 1500 ms and
feedback was presented for 1000 ms.

Post-task Evaluations
Following the two-step task, participants responded to a series
of self-report items which pertained to participants’ evaluations
(or “liking”) of the different Advisors encountered during the
two-step task. Participants were presented with the avatar of
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each financial advisor, one at a time, and rated how much they
liked the advisor using a seven-point scale (from 1 = “Do not
like them at all” to 7 = “Like them a lot”). Finally, participants
were also asked to estimate how valuable, on average, each
of the two stocks were over the course of the learning task
(see Supplementary Material).

Computational Model
In order to determine the degree to which participants employed
model-based and model-free learning, we fit data from the
learning phase to a computational model of reinforcement
learning used in previous work (Kool et al., 2017). Doing so
allowed us to estimate latent variables related to social learning
for each subject (Hackel and Amodio, 2018), which we then used
as input in our analyses.

The model contains a hybrid of model-free learning and
model-based learning for selecting advisors (see Supplementary
Material for additional details and Supplementary Table S1 for
parameter fits). The model-free system stores values for advisors
at the first stage and for stocks at the second stage based on prior
reward feedback. The model-based system computes the value of
selecting each advisor at the time of choice, combining knowledge
about how advisors lead to stocks with the expected payoff of each
stock (acquired through model-free learning at the second stage).
A model-based learner thus prospectively plans toward a goal: he
or she selects an advisor based on the stock the advisor will lead
to, in light of the reward expected from each stock. In contrast,
a model-free learner selects advisors based on the rewards those
advisors have led to in the past.

Critically, the model includes a weighting parameter (w)
that indicates the relative influence of model-based and model-
free learning in choice, ranging between 0 (purely model-
free) and 1 (purely model-based). This parameter can serve
as an individual difference measure of the extent to which a
participant engaged in model-based or model-free learning. We
fit this model for each participant using maximum a posteriori
(MAP) estimation, with empirical priors used in previous work
(Gershman, 2016; Kool et al., 2017). Doing so allowed us
to estimate each participant’s w parameter (mean = 0.83),
indicating the extent to which they relied on model-based vs.
model-free learning. We used this parameter in subsequent
analyses examining individual differences in the use of these
learning strategies.

RESULTS

Model-Free and Model-Based Social
Learning
To what extent did participants engage in model-based and
model-free social learning? To answer this question, we examined
choices in the learning phase, drawing on the following logic
of the task. As noted above, the two sets of advisors in the
task are equivalent, such that one advisor from each set leads
to a particular stock. As a result, a model-based learner would
generalize experiences with one set of advisors to the other set.
For instance, imagine a participant who sees the first pair of

advisors, picks the advisor that leads to the “Axiom” stock, and
receives a large reward. On the next round, a model-based learner
would try to return to the “Axiom” stock regardless of whether
they see the same pair of advisors or a different pair of advisors.
In contrast, a model-free learner updates values for individual
advisors and chooses advisors based on these values. A model-
free learner would therefore repeat their choice on the next trial
if presented with the same advisors but would do so to a lesser
extent if presented with different advisors. That is, the model-free
learner would fail to generalize across sets of advisors.

Drawing on this task logic, we fit learning phase data
to a lagged regression model predicting, on a trial-by-trial
basis, whether or not participants repeated their most recent
choice of Stage 2 stocks (1 = stay, 0 = switch). This analysis
provides a model-agnostic way to test the qualitative behavioral
predictions of the model-free/model-based account of learning.
Following Kool et al. (2016), predictors included the reward
earned on the previous trial (standardized, within-subject, to
z-scores), whether or not the previous trial started with the
same set of advisors (1 = same, -1 = different), and the
interaction of these two predictors. A main effect of reward
would indicate model-based learning: people return to a high-
paying stock regardless of whether they see the same or different
advisors on the next trial to get to that stock (simulated
data shown in Figure 2A). An interaction of reward and
start state would indicate model-free learning: people try to
return to a high-paying stock, but particularly do so when
presented with the same set of advisors, thus repeating the
advisor choice that led to the large reward (Figure 2B). Models
were fit using the lme4 package in R (Bates et al., 2015;
R Core Team, 2016). Random variances were allowed for the
intercept and all slopes (see Supplementary Table S2 for
all coefficients.).

This analysis revealed a main effect of reward, b = 1.47,
SE = 0.07, z = 19.80, p < 0.001, consistent with model-based
learning: overall, participants returned to second-stage stocks
after receiving large rewards. However, the analysis also revealed
a Reward × Start State interaction, b = 0.22, SE = 0.03, z = 6.45,
p < 0.001, indicating the presence of model-free learning:
participants were more likely to return to a high-paying stock
when starting with the same advisors at the first stage. Although
participants in our sample were highly model-based (mean w
parameter in the computational model fits = 0.83), these results
support the hypothesis that both model-based and model-free
reinforcement learning contributed to social choice (Figure 2C).

Post-task Evaluations
If reinforcement learning also gives rise to attitudes, participants
might like advisors who can provide reward in the future
(model-based value) and advisors associated with past reward
(model-free value). To test how learning affects attitudes, we
examined participants’ self-reported liking of each advisor
following the learning task. Using each subject’s individual
parameter fits in the computational model, we estimated the final
model-based and model-free values associated with each advisor
for each subject at the end of learning, given the unique series
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FIGURE 2 | Behavioral predictions and data. Plots depict the probability of staying with the same second-stage stock as on the previous trial, based on whether the
set of advisors encountered at the first stage was the same as or different from that of the previous trial, and whether the previous trial delivered a high or low reward.
(A) Simulated model-based predictions. (B) Simulated model-free predictions. (A,B) Produced from model simulations (see section Supplementary Material) with
weighting parameter w specifying fully model-based (w = 1) and fully model-free learning (w = 0), respectively. (C) Observed data indicates the presence of both
model-based and model-free learning. Error bars reflect standard error of the mean, adjusted for within-subjects comparisons (Morey, 2008).

of stimuli and outcomes viewed by each participant. We then
regressed liking ratings simultaneously on each type of value.

Notably, model-based values were identical for advisors
who led to the same stock. That is, if the Axiom stock
would be expected to deliver 6 points on average at the
end of the task, then each advisor who leads to the Axiom
stock would have a model-based value of 6 points. If social
evaluations reflect model-based learning, participants would
therefore like the two advisors who led to the Axiom stock
equally. In contrast, model-free values reflect the unique
reward history associated with a particular advisor; even
for two advisors who led to the Axiom stock, participants
might have experienced different reward outcomes with each
advisor. If social evaluations reflect model-free learning,
people would therefore prefer advisors who provided
greater rewards. Finally, this tendency should depend on
individual differences in learning, as reflected in the w
parameter: individuals who engage in greater model-free
learning should especially like advisors associated with high
model-free value.

To test these hypotheses, we fit a mixed-effects linear
regression predicting post-task liking ratings (Supplementary
Table S3). Predictors included each participant’s final model-free
values and model-based values toward each advisor (estimated
from the computational model), each participant’s w parameter,
and the interaction of w with each type of value. Each
predictor was standardized to z-scores (within-subject for the
value regressors and between-subject for the w parameter).
As a result, main effects of value regressors are interpretable
relative to the mean level of the w parameter (w = 0.83). We
included random variances for the intercept and each predictor.
The models were fit using the lme4 package and lmerTest
packages (Bates et al., 2015; Kuznetsova et al., 2016) in R
(R Core Team, 2016).

This analysis yielded a main effect of model-based values,
b = 0.30, SE = 0.14, t(71.46) = 2.17, p = 0.03, and a marginally
significant main effect of model-free values, b = 0.16, SE = 0.09,
t(162.97) = 1.82, p = 0.07. In other words, at mean levels of the

w parameter, attitudes reflected both kinds of learning: people
liked advisors who could lead them to more rewarding stocks
and also liked advisors who were uniquely associated with greater
reward in the past.

We further examined whether the effects of model-based
and model-free learning on reported attitudes varied by
participants’ individual learning tendencies, as indexed by
the w parameter. We found that the w parameter, which
represents this individual difference variable, interacted with
model-free values, b = −0.24, SE = 0.08, t(148.01) = −2.97,
p = 0.004. Participants who exhibited relatively greater model-
free learning also expressed greater liking of partners who
had provided more reward. Simple effects analysis supported
this interpretation: for learners relying relatively more on
model-free control (centered at the 25th percentile of the
w parameter, or w = 0.70), model-free values were strongly
predictive of attitudes toward advisors, b = 0.31, SE = 0.10,
t(155.32) = 3.11, p = 0.002, revealing a novel effect of model-
free learning on social evaluation. By contrast, for those relying
relative more on model-based control (centered at the 75th
percentile of the w parameter, or w = 1), model-free values
were not associated with evaluations, b = −0.03, SE = 0.11,
t(162.01) = −0.31, p = 0.76. Thus, participants who exhibited
model-free learning also liked advisors associated with greater
model-free value1.

Together, these results identify two ways in which
reinforcement learning influences social attitudes, one that
is goal-directed and one that is habit-like: people like others who
are equivalently capable of providing large rewards in the future,
and they also like others who have uniquely provided large
rewards in the past. Moreover, the influence of past (model-free)
reward history depends on individual differences in learning:
individuals who weight model-free rewards more strongly during

1In contrast, we did not observe an interaction between the w parameter and
model-based values (see Supplementary Material). This finding is consistent
with the fact that model-based learning was relatively high across participants,
whereas not all participants showed a meaningful degree of model-free learning
(i.e., w < 1).
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learning also have a stronger preference for advisors associated
with past rewards.

DISCUSSION

Does habit play role a social impressions? Our findings
demonstrate that, indeed, people form impressions through
reward-based reinforcement processes that include model-free
learning – a form of learning thought to contribute to habitual
behavior. In the sequential learning task used here, participants
chose financial advisors based on both model-based and model-
free learning. That is, participants chose advisors who could lead
them to desirable stocks in the future (model-based) as well
as who were associated with high rewards in prior interactions
(model-free). Although participants relied far more heavily on
model-based (as opposed to model-free learning) in general, this
pattern of model-free learning suggests the additional role of a
habit-like component of learning and behavior in the context of
social impression formation.

Furthermore, participants’ learning processes had
implications for their explicit social evaluations. Across
participants, both model-based and model-free learning
predicted self-reported attitudes toward advisors. Moreover,
participants varied in their reliance on model-based vs. model-
free processing during the learning task, and this individual
difference in learning related to differences in evaluation:
participants who exhibited greater model-free learning during
the investment task showed an effect of model-free learning on
self-reported attitudes. Thus, these findings dissociate two routes
through which reinforcement learning contributes to attitudes
toward social partners, and they highlight the importance of
considering individual differences in learning strategies during
social interactions to understand the effects of rewards on social
attitudes and decisions.

Model-Based and Model-Free Social
Cognition
Our central finding – of model-free learning in social
impression formation – offers novel theoretical implications
for social cognition, learning, and attitudes. First, our findings
highlight a role for reward-based reinforcement learning in
social interactions. Previous impression formation research
demonstrates that people learn about the traits of others in order
to predict how others will behave (Heider, 1958). For instance,
by observing financial advisors, people can form impressions
of an advisor’s competence and predict that advisor’s future
performance (Boorman et al., 2013; Leong and Zaki, 2018). Our
results introduce a complementary mode of social learning based
on reward: people also learn whom to choose and whom to
like through instrumental learning, such as directly choosing an
advisor and experiencing rewards as a result.

The observation of model-free social learning, in particular,
supports the proposed role of habit in social cognition. In model-
free learning, people repeat previously-rewarded choices in a
relatively inflexible manner – the hallmark of a habit. Habits
may therefore influence social behavior: because habits reflect

routinized responses that operate most adaptively in invariable
environments, they may fill in the gaps between goal-directed
responses to facilitate social behavior. In some cases, habits
may have harmful effects; for example, people may persist in
interacting with social partners with whom they had positive
past experiences, even when other partners might be equally or
more relevant to one’s current goals. In other cases, habits may
be beneficial, leading an individual to approach a previously-
rewarding person while distracted by their pursuit of an unrelated
goal – perhaps eliciting help, if needed, or simply avoiding
a social faux pas. In both cases, their effects may be subtle,
relative to goal-directed responses, yet still crucial to adaptive
social function.

Although model-based and model-free learning offer different
benefits and costs, their concerted function may promote
successful social interactions. Social life offers a wealth of
information about other people – their traits, preferences, and
emotions – which lets us know whom to interact with and
how to interact with them. Through experience, we learn which
members of our social networks to turn to for empathy as
opposed to fun (Morelli et al., 2017) and which verbal or
facial cues predict different emotions for close others (Zaki
et al., 2016). Model-free learning offers a computationally simple
way to learn how to act around others given this wealth of
information, requiring little deliberation (Otto et al., 2013). Yet,
at the same time, model-free learning is relatively inflexible,
leaving people unable to adapt as contingencies change or
to plan ahead in novel settings. By comparison, model-based
learning requires greater effort but allows people to adapt
to new contingencies and make novel plans – for instance,
choosing a gift for another person for the first time given
knowledge about their preferences. Both types of learning are
functional, with tradeoffs that depend on the particulars of a
situation, and thus an important goal of future research will
be to explore how these tradeoffs are managed and prioritized
across situations.

It is notable that participants’ behavior was highly model-
based in our study, on average – more so than in past work using
this task (Kool et al., 2017; see also Da Silva and Hare, 2019). It
is possible that the social framing of the task made it easier for
people to reason in a model-based manner, much as people find
it easier to reason about social relations than non-social relations
(Cosmides, 1989; Mason et al., 2010). Moreover, our instructions
framed rewards in terms of stock performance, which offers a
familiar and intuitive explanation for drifting outcomes. While
it is possible that these features made our instructions clearer
relative to past work (Da Silva and Hare, 2019), the familiarity
of concepts used in our task framing may have facilitated model-
based choices – an interesting possibility for future research.

Finally, and more broadly, this work sheds light on how
multiple forms of learning and memory can contribute to social
cognition. Based on research in cognitive neuroscience (Squire,
2004; Henke, 2010), Amodio (2019; see also Amodio and Ratner,
2011) theorized that social cognition comprises multiple distinct
and interactive learning and memory systems, including habits.
Although classic work in social psychology has focused primarily
on the roles of conceptual associations and Pavlovian forms
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of learning, research has just recently begun to probe the role
of reward-based forms of learning in social cognition (Hackel
et al., 2015; Lindström and Tobler, 2018). To date, these studies
have not distinguished between types of computations that may
underlie instrumental learning from rewards. Here, by using a
two-step learning task to examine social learning, we were able to
dissociate model-based and model-free forms of reward learning
and, in doing so, provide new evidence for the role of multiple
learning systems, functioning in concert, in social cognition.

Potential Limitations
The goal of this research was to examine learning processes
that give rise to habitual behavior. However, there remain
open questions about the extent to which model-free learning,
as assessed in sequential decision-making (i.e., two-step)
tasks, corresponds to traditional definitions of habit. First,
questions have been raised as to whether additional strategies
may contribute to observed effects of model-free learning in
sequential decision tasks (Dezfouli and Balleine, 2012; Da
Silva and Hare, 2019; but see Morris and Cushman, 2019),
just as other representations may contribute to observed
effects of model-based learning (Momennejad et al., 2017;
Russek et al., 2017).

Although our task was designed to examine two specific
learning processes, it is useful to consider the possibility of
alternative ways of representing the task and outcomes that
might yield different inferences. For instance, if participants
grouped the two “Axiom” advisors under one abstract action
representation of “pro-Axiom-choice” (possibly through model-
based processes), then putative patterns of model-based learning
might actually reflect model-free learning over such groupings;
conversely, if participants represented four end states in the
task – acting as if there were two distinct Axiom stocks and
two distinct Zephyr stocks depending on the advisor chosen –
then putative patterns of model-free learning could reflect
model-based learning. However, we believe such a four-state
task representation is unlikely, given that the instructions and
visual display emphasized that there were two end states,
each reached from two advisors. For a participant to use
a 4-state task representation, they would have to ignore
this information and the actual transition structure of the
task, associating end-states with actions used to get there, in
which case it may not be obvious that this would still be a
model-based controller (see Morris and Cushman, 2019, for
related discussion). Future work could test whether people
generate unexpected task representations and whether these
contribute to learning.

More broadly, people may use learning and choice strategies
not encapsulated by our task and analyses, moving beyond
the two approaches studied here (see Supplementary Material
for further discussion). For instance, in other settings, people
might choose individual advisors based on trait impressions
(Hackel et al., 2015) or might learn specific motor actions
(Shahar et al., 2019) – such as pushing a particular button or
walking toward a colleague’s office – in addition to learning
the value of a social partners. Although our experiment
did not address these broader theoretical questions regarding

model-based and model-free learning accounts, future research
on reinforcement learning in social cognition will benefit
from advances in our understanding of these processes
as they develop.

Second, there is some debate on whether – and to what
extent – model-free learning maps on to traditional definitions
of habitual control (Miller et al., 2019; see also Gillan et al.,
2015; Sjoerds et al., 2016). Miller et al. (2019) argue that
traditional conceptualizations of habits reflect stimulus-response
associations devoid of expected value representations (i.e., are
value-free), whereas model-free algorithms still depend on
the expected value representations associated with a learner’s
available actions (i.e., are value-based). In this view, habits
form directly through action repetition within a given context,
regardless of reward outcomes. It is possible that both model-
free RL and action repetition contribute to behaviors commonly
considered habitual (Pauli et al., 2018). These processes might
align with a theoretical distinction between “direct” cuing
of habits, in which responses are directly associated with
context cues, and “motivated” cuing of habits, in which
responses depend on the motivation linked to a behavior
through past rewards (Wood and Neal, 2007). To complement
and extend our findings, future work could consider these
varied approaches.

New Questions About Habits in Social
Behavior
Our use of the two-step task to probe the role of habits in social
cognition raises several new questions regarding other aspects of
habits in social life. For instance, a classic marker of a habit is its
persistence even when it no longer fulfills a valued goal (Wood
and Rünger, 2016). Past work suggests that reward feedback in
social interaction can have such a persistent impact (Hackel et al.,
2015). Future work should consider tasks traditionally employed
to test for this kind of habitual persistence, such as the slips-of-
action paradigm (e.g., Gillan et al., 2011; de Wit et al., 2012) or
outcome devaluation/revaluation procedures (e.g., Valentin et al.,
2007; de Wit et al., 2009; Tricomi et al., 2009; see Foerde, 2018,
for review).

Our findings raise further questions regarding the specificity
of habits in social impressions, relationships, and behaviors.
For example, do people form habits to interact with specific
partners in specific contexts? Or do they form habits to approach
or avoid social interaction in general? Are there benefits to
forming such social habits? Answering these questions promises
to illuminate the structure of people’s social lives, much as
advances in habit research sheds light on how habits can promote
healthy eating, exercising, or studying (Galla and Duckworth,
2015; Lin et al., 2016).

Finally, the implications of our findings extend to other
areas of research within social psychology, such as intergroup
relations, complementing recent work suggesting that model-
free learning may underlie implicit attitudes toward social
groups (Kurdi et al., 2019). The concept of habit has previously
been invoked in prior theories of social attitudes, such as
to describe the phenomenon of implicit prejudice and the
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difficulty people have in ridding themselves of it (e.g., “breaking
the prejudice habit,” Devine, 1989; Devine et al., 2012). However,
this usage has been largely colloquial or metaphorical, as previous
research has not used methods capable of assessing habit-like
patterns of preference and choice. Our findings suggest that social
experiences may indeed give rise to a form of habit, but these are
rooted more directly in reward-based action tendencies than in
conceptual processes such as stereotypes.

Nevertheless, if some aspects of prejudice are truly habit-
like, then they may be extraordinarily difficult to control or
eradicate. As such, interventions involving the replacement of a
biased thought or action with an egalitarian response (Devine,
1989) or changes in the situational affordances for bias expression
(Amodio and Swencionis, 2018) should be more effective than
methods for unlearning bias (Lai et al., 2014). Furthermore, an
intervention aimed at “unlearning” a habit-like response would
require action-based interventions, in contrast to conventional
interventions aimed at modifying a person’s beliefs and values.
As our conceptualization of habits in social cognition develops,
it may begin to elucidate psychological processes in other
domains as well.

CONCLUSION

Habits are integral to everyday human behavior, and they may
also support our social behaviors. Our findings represent an
initial demonstration that habit-like learning processes are also
involved in the formation of social preferences and attitudes.
These findings expand our understanding of how learning
and memory systems support social cognition and provide a
foundation for new research on the role of habit in social learning.
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The core message of this paper is that many of the challenges of habit research can 
be traced back to the presence of causal elements within the definition of habits. For 
instance, the idea that habits are stimulus-driven implies that habitual behavior is not 
causally mediated by goal-representations. The presence of these causal elements in the 
definition of habits leads to difficulties in establishing empirically whether behavior is 
habitual. Some of these elements can also impoverish theoretical thinking about the 
mechanisms underlying habitual behavior. I argue that habit research would benefit from 
eliminating any reference to specific S-R association formation theories from the definition 
of habits. Which causal elements are retained in the definition of habits depends on the 
goals of researchers. However, regardless of the definition that is selected, it is good to 
be aware of the implications of the definition of habits for empirical and theoretical research 
on habits.

Keywords: habits, automaticity, conceptual analysis, learning, goal-directed behavior

When asked to explain their behavior, lay people often refer to habits. Likewise, when 
making resolutions for the future, they often express a wish to install new habits or to 
change old ones. The concept “habit” is popular not only with lay people but also engages 
academic psychologists (see Wood and Rünger, 2016, for a review). As noted by Gardner 
(2015), one important difference in the way habits are conceptualized by lay people versus 
academics is that the former focus on observable aspects of behavior (e.g., the frequency 
with which a behavior is emitted) whereas the latter focus on the (mental) causes of behavior 
(e.g., the fact that the behavior is triggered by cues in the environment without being 
directed at goals; see Wood and Neal, 2007, for a discussion of the interface between habits 
and goals).

Although the focus on explanation is an undeniable strength of the academic approach to 
habits, in this paper, I  draw attention the downsides of incorporating assumptions about causes 
into definitions of habits and habitual behavior. In the section “The Conceptual Level: Defining 
Habits and Habitual Behavior,” I  briefly consider some of the definitions of habits that have 
been put forward by lay people and academics. These definitions have in common that they 
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have implications for the criteria that are used to distinguish 
empirically between habitual and non-habitual behavior. In the 
section “The Empirical Level: Establishing the Presence of 
Habitual Behavior,” I discuss problems with empirically verifying 
the causal criteria put forward in the scientific literature on 
habits. The section “The Theoretical Level: Explaining Habitual 
Behavior” focuses on the constraints in theorizing that follow 
from definitions of habits that refer to S-R associations (i.e., 
links between stimulus and response representations via which 
activation can spread). Finally, I  discuss the possible merits 
of removing causal assumptions from the definition of habits. 
Many of the challenges that are addressed in this paper have 
been discussed before by others (e.g., Watson and de Wit, 
2018). The current paper aims to go beyond those past 
contributions by highlighting how these challenges relate to 
the causal nature of scientific definitions of habits. Based on 
this insight, new ways of tackling these challenges can 
be  considered.

THE CONCEPTUAL LEVEL: DEFINING 
HABITS AND HABITUAL BEHAVIOR

The first challenge for any area of research is to reach some 
level of clarity about and consensus on what is being studied 
(i.e., what constitutes the explanandum). To the extent that 
definitions of a research topic diverge, scientific progress is 
bound to be hampered by misunderstandings and false debates. 
Although the definition of a concept can change over time 
and general agreement about definitions is rare in psychological 
science, there is merit in trying to improve clarity at the 
conceptual level, if only by creating awareness of the various 
definitions that have been proposed and the way in which 
they are related (Machado and Silva, 2007). In this section, 
I  will first consider the different ways in which habits have 
been defined. This allows me to then highlight the causal 
nature of those definitions and the implications this has for 
habit research.

The recent paper of Gardner (2015) provides an excellent 
starting point for considering the range of definitions of habits 
that have been proposed. Lay definitions are mainly descriptive, 
referring to habits as behaviors that are emitted frequently or 
in a persistent, automatic manner. Scientific definitions of habits, 
on the other hand, contain explanatory elements. Some of 
these scientific definitions also refer to habits as (frequent, 
persistent, or automatic) behaviors but in addition those behaviors 
are said to have particular causes. These causes can refer to 
past experience, such as the idea that habits are the result of 
the repetition of behavior, and/or to underlying mental processes, 
such as the idea that habits result from the activation of S-R 
associations without the involvement of goals (i.e., representations 
of desired end states; see Gardner, 2015, for an overview). 
Many of these definitions imply that habitual behavior is 
stimulus-driven, that is, dependent on cues in the current 
context that trigger the behavior without considerations of the 

current outcomes of the behavior1. Other scientific definitions 
do not refer to habits as a behavior but as a mental cause 
underlying behavior. For instance, habits have been defined 
as behavioral impulses that are instigated by S-R associations 
or as the S-R associations themselves. Many definitions, however, 
refer to several of these components. To illustrate, Gardner 
et  al. (2011, p.  175) define habits as “behavioural patterns 
learned through context dependent repetition: repeated 
performance in unvarying settings reinforces context-behaviour 
associations such that, subsequently, encountering the context 
is sufficient to automatically cue the habitual response.” Wood 
and Neal (2009, p. 580) define habits as “A type of automaticity 
characterized by a rigid contextual cuing of behavior that does 
not depend on people’s goals and intentions. Habits develop 
as people respond repeatedly in a stable context and thereby 
form direct associations in memory between that response 
and cues in the performance context.”

Gardner (2015) already highlighted the fundamental difference 
between habits as a type of behavior and habits as a underlying 
determinant of behavior (e.g., an impulse or S-R association). 
To reduce confusion, in this paper, I will use the term “habitual 
behavior” to refer to habits as a type of behavior. Importantly, 
all definitions of habits put forward criteria for distinguishing 
between habitual and non-habitual behavior. These criteria can 

1 Note that the concept of stimulus-driven behavior does not overlap with the 
concept of respondent behavior that is often used by functional researchers 
(see Skinner, 1953). Like stimulus-driven behavior, respondent behavior is under 
the control of stimuli in the environment. However, unlike stimulus-driven 
behavior, behavior can be  called respondent only if it was never before under 
the control of its consequences. This is an important distinction because it is 
typically assumed that many stimulus-driven behaviors are originally goal-directed 
but become stimulus-driven only as the result of the frequent execution of 
the behavior. Hence, most stimulus-driven behaviors do not qualify as respondent 
behavior. The distinction between respondent and stimulus-driven behavior is 
related to the fact that functional psychology focuses on functional causation 
(A is a function of B) whereas cognitive psychology focuses on mechanistic 
causation (A triggers B; see Chiesa, 1992, for an excellent discussion). Functional 
causation does not require contiguous causes (i.e., events in the here and now 
that put behavior in motion, much like one cogwheel can put another cogwheel 
in motion) but allows for causes that are present in the past. Hence, if the 
presence of a behavior in the past has been a function of its consequences 
(i.e., it was an operant behavior) and if its current presence is a function of 
its presence in the past (i.e., it is more likely now because it was repeatedly 
emitted in the past), then the current presence of the behavior is a function 
of the consequences of the behavior in the past, which is why also the current 
behavior would qualify as an operant behavior. The concept of stimulus-driven 
behavior, on the other hand, only takes into account contiguous causes and 
thus only entities that are present immediately before the behavior is initiated. 
For cognitive psychologists, these contiguous causes can be events in the current 
physical environment but also representations at the mental level. A behavior 
qualifies as stimulus-driven if the only contiguous cause of the behavior is 
(the representation of) a stimulus in the environment without the involvement 
of representations of goals. In sum, whereas the concept of respondent behavior 
is inherently functional in nature, the concept of stimulus-driven behavior is 
inherently mental in that it refers to the (absence of a) mechanistic causal 
impact of goal representations (see De Houwer, 2011; Hughes et  al., 2016, for 
a discussion of the relation between functional and cognitive psychology). 
Within functional psychology, one could in principle study how the frequency 
of reinforcement in the past changes the moderators of behavior in the present 
(e.g., Barnes-Holmes et  al., 2017).
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refer to more or less observable characteristics of behavior 
(e.g., frequency, persistence, automaticity); to assumptions about 
the experiences that cause this behavior (e.g., repetition of a 
behavior in a context); and/or to assumptions about the mental 
processes and representations that cause the behavior (e.g., 
the activation of an impulse via the operation of an 
S-R association).

In this paper, I  focus on the implications of the criteria 
that habit researchers use to distinguish habitual from 
non-habitual behavior. Although Gardner (2015) correctly points 
out that scientists should move beyond mere description of 
behavior and consider the causes of behavior, there are downsides 
to incorporating causal elements within scientific definitions 
of to-be-explained phenomena. First, it can hamper attempts 
to verify empirically whether the phenomenon is present (i.e., 
to determine whether a behavior qualifies as habitual), which 
leads to difficulties in studying the phenomenon. Causality 
can never be  observed directly but must always be  inferred 
from observable events. This problem is exacerbated when the 
causes themselves are unobservable, as is the case with many 
mental processes and representations (e.g., S-R associations in 
memory). Second, defining phenomena in terms of their causes 
confounds the explanandum (that which needs to be explained) 
with the explanans (that by which the explanandum is explained; 
Hempel, 1970). In other words, it implies a priori assumptions 
about the causes of the phenomenon. This is less problematic 
when those a priori assumptions turn out to be  justified. 
However, if those assumptions are incorrect, then research 
based on this definition does not necessarily inform us about 
the phenomenon, thus hampering the cumulative nature of 
research. Moreover, an a priori commitment to certain causes 
of a phenomenon may prevent researchers from considering 
the role of other potential causes of the phenomenon, thereby 
reducing theoretical diversity and ultimately hampering 
theoretical progress.

In the remainder of this paper, I  discuss these challenges 
at the empirical and theoretical level, as well as possible ways 
to deal with those challenges. Rather than providing a systematic 
review of the literature in order to assess the exact extent to 
which problems at the empirical and theoretical level arise in 
habit research, I  will focus on developing the conceptual 
argument and will merely provide examples of the problems 
that can arise. The examples that I provide come from behavioral 
research on habits in humans. The conceptual issues that 
I  address also apply to neuroscientific research on habits in 
humans but this research will not be  covered in this paper.

THE EMPIRICAL LEVEL: ESTABLISHING 
THE PRESENCE OF HABITUAL 
BEHAVIOR

For many psychologists, the defining characteristic of habits 
is that they are stimulus-driven (Gardner, 2015; Wood and 
Rünger, 2016). This idea introduces several causal assumptions 

within the definition of habitual behavior. In the following 
paragraphs, I  will highlight these causal assumptions, as well 
as the challenges they create for establishing that behavior is 
habitual in the sense of stimulus-driven.

On the one hand, the concept of stimulus-driven behavior 
implies that habitual behavior is caused directly by stimuli in 
the environment. Although the causal impact of stimuli on 
behavior cannot be  observed directly, it is relatively easy to 
infer the environmental causes of behavior by manipulating 
the presence of stimuli and examining how this influences the 
presence of the behavior. If the behavior is present when a 
certain stimulus is present in the environment but absent when 
that stimulus is absent, this provides strong grounds for arguing 
that the stimulus is causally related to the occurrence of 
the behavior.

On the other hand, in the context of habit research, “stimulus-
driven” not only implies that a stimulus is causally related to 
the behavior but also that the behavior is not a function of 
its anticipated consequences. Put differently, stimulus-driven 
behavior is not directed at goals (Adams, 1982; Heyes and 
Dickinson, 1990; see Moors et  al., 2017, for a detailed analysis 
of what it means to say that behavior is goal-directed). Hence, 
establishing that a behavior is habitual requires arguments for 
the conclusion that the behavior is not directed at goals2. There 
are, however, several reasons why it is not easy to convincingly 
demonstrate that behavior is not directed at goals. First, goal 
representations are mental entities that cannot be  observed 
directly by researchers (and, in the case of unconscious goals, 
also not by the person who possesses the goal). Second, whether 
these entities have a causal impact can also not be  observed 
directly because causality always needs to be  inferred from 
observations. Third, verifying the absence of causal impact of 
mental entities is even more difficult to achieve than verifying 
the presence of these entities and their causal impact on behavior.

Habit researchers have tried to circumvent the first two 
problems by using behavioral proxies of the causal impact of 
goal representations on behavior. They reasoned that if a goal 
causally mediates a behavior, then changing the goal or its 
relation to the behavior should also change the behavior. For 
instance, in order to establish that lever pressing is mediated 
by the goal to eat a specific food, one could reduce the goal 
to eat that food by making it aversive (i.e., devaluation test) 
or by no longer delivering the food after a lever press (i.e., 
contingency degradation test). From a cognitive point of view, 
it is indeed relatively safe to conclude that the behavior is 
mediated by a particular goal representation if those interventions 
change behavior (e.g., Adams, 1982; Heyes and Dickinson, 1990).

Whereas this strategy might circumvent the first two problems 
that were noted above, it does not solve the third problem. 

2 If one interprets “stimulus-driven” in a strict manner as indicating that the 
behavior is a function solely of the stimulus, then demonstrating the stimulus-
driven nature of behavior would also require evidence that the behavior does 
not depend on any enabling conditions, such as the availability of sufficient 
attentional resources (Bargh, 1989). In this paper, however, I  focus only on 
the assumption that goals are not causally involved in stimulus-driven behavior.
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More specifically, behavior may be  mediated by goals even if 
an effect of devaluation and contingency degradation is not 
found (Heyes and Dickinson, 1990; Thrailkill and Bouton, 2015; 
Moors et  al., 2017). It is indeed possible that the intervention 
was not strong enough (e.g., it did not fully eliminate the 
palatability of the food), that statistical power was insufficient 
for establishing the presence of goals and their impact on 
behavior (see Vadillo et  al., 2019), or that the intervention 
targeted another goal than the one that actually mediates 
behavior (De Houwer et  al., 2018).

With regard to the latter point, De Houwer et  al. (2018) 
examined one of the most widely used paradigms in research 
on habits in humans, namely the fabulous fruit game (e.g., 
de Wit et  al., 2007). Without going into detail, in this task, 
participants repeatedly press keys in order to generate images 
of fruits, some of which are worth points. During an outcome 
devaluation phase, the value of some of the fruits is reduced 
(i.e., they are no longer worth points). Habits are typically 
inferred from the lack of impact of fruit-devaluation on key 
presses. However, the data reported by De Houwer et al. support 
the idea that these seemingly habitual key presses are still 
directed at the goal of obtaining points. For instance, changing 
the value of points did influence responding even when changing 
the value of fruits did not.

As another example, consider the well-known study of Neal 
et  al. (2011). These authors observed that people who often 
eat popcorn when watching a movie in a cinema theater 
(“habit” group) will continue to eat popcorn even when it is 
stale (i.e., devalued) whereas people who do not often eat 
popcorn in cinemas (“nonhabit” group) stop eating stale 
popcorn. Although this suggests that eating popcorn in the 
“habit” group is not mediated by the goal to have tasty food 
whereas that goal does mediate popcorn eating in the “nonhabit” 
group, it does not necessarily imply that popcorn eating in 
the “habit” group was stimulus-driven. For instance, it is 
possible that eating popcorn in the “habit” group was mediated 
by the goal to have a more complete cinematic experience. 
Let us assume that for people who often eat popcorn in a 
cinema theater, the cinematic experience is not complete 
without eating popcorn whereas for controls, the richness of 
the cinematic experience does not depend on eating popcorn. 
If this assumption is correct, then eating stale popcorn will 
be  goal-conductive for members of the “habit” group but not 
for controls. In other words, people in the “habit” group might 
be  more willing to tolerate the bad taste of the stale popcorn 
because for them, eating popcorn while watching a movie 
has merit as such, even when it does not taste good. Of 
course, it remains to be seen whether these auxiliary assumptions 
about the differences in the goal-conduciveness of eating 
popcorn in the “habit” and “nonhabit” group are valid. If 
additional studies do not provide support for the alternative 
goal-directed account, one should be  willing to accept the 
conclusion that the behavior is habitual rather than adhere 
to the irrefutable claim that the behavior must be  mediated 
by some type of goal. Nevertheless, researchers should consider 
the possibility that devaluation and contingency degradation 

tests lack sensitivity or fail to target the goal that is actually 
driving behavior (De Houwer et  al., 2018)3.

These problems cannot be sidestepped by inferring the lack 
of goal-directedness from the automatic nature of behavior. 
Because stimulus-driven behavior is assumed to be  automatic, 
one might see evidence for automaticity as an indication of 
the fact that behavior is stimulus-driven. However, it is now 
generally accepted that automatic behavior is not necessarily 
stimulus-driven (e.g., Bargh, 1989, 1990; Aarts and Dijksterhuis, 
2000; for a recent discussion, see Huang and Bargh, 2014). 
Even addictive behaviors, which are often seen as prototypical 
examples of automatic behavior because they are emitted 
despite their obvious negative consequences, are now considered 
by some to be  directed at realizing goals (e.g., Baumeister, 
2017; Hogarth, 2018; Kopetz et  al., 2018). Moreover, if one 
would decide to infer the stimulus-driven nature of behavior 
from its automaticity, there remains the problem of establishing 
whether behavior qualifies as automatic. Just like there are 
many definitions of the concept “habit,” there are many 
definitions of the concept “automatic.” Most of these definitions 
refer to one or more automaticity feature, such as unintentional, 
involuntary, fast, efficient, or unconscious (Bargh, 1989, 1994; 
Moors and De Houwer, 2006). Because different automaticity 
features do not necessarily co-occur, establishing automaticity 
thus requires one to specify the automaticity features one has 
in mind and to test the presence of each feature individually. 
This opens up debates about which features are crucial for 
determining whether a behavior is automatic and whether 
the term “automaticity” is still useful as a unifying concept 
(Fiedler and Hütter, 2014). Moreover, Moors (2016) convincingly 
argued that the extent to which a type of behavior or process 
displays a certain feature of automaticity (e.g., the extent to 
which semantic processing depends on conscious input) can 
vary across contexts. Hence, there is little merit in saying 
that a process or behavior has a certain feature of automaticity 
in an absolute sense (e.g., that semantic processing is an 
unconscious process)4. For all these reasons, there is little 

3 Note that this problem in part arises because in this and many other studies 
with humans, researchers did not have full experimental control over the 
outcomes that at which behavior is directed. Instead, researchers often look 
at behaviors that were acquired before participants took part in the study (e.g., 
popcorn eating in cinema visitors). In most animal studies, on the other hand, 
the potentially habitual behavior has been established experimentally by linking 
it with a particular outcome (e.g., food). In these cases, there is more certainty 
about the outcome that is actually controlling the behavior during its initial 
stages. Hence, it is unlikely that the behavior is controlled by a different outcome 
when devaluation or contingency degradation tests suggest that it is no longer 
controlled by the original outcome of the behavior. Nevertheless, even in fully 
experimental research, one should take care that statistical power is sufficient 
to establish the absence of an effect (Vadillo et al., 2019) and that the devaluation 
and contingency degradation tests are sensitive enough.
4 One could argue that the time needed to initiate or complete a behavior is 
related to whether the behavior can be considered a skill rather than to whether 
a behavior is considered to be  a habit. Nevertheless, speed of performance 
has explicitly been put forward by some as a characteristic of habitual behavior, 
next to other automaticity features (e.g., Wood and Rünger, 2016, p.  292). 
Because of the difficulty in distinguishing conceptually and empirically between 
skills and habits, I  will sidestep this issue in the current paper.
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merit in establishing the stimulus-driven nature of behavior 
on the basis of its automaticity.

Many definitions of habits do not only incorporate the assumption 
that habits are stimulus-driven but also assumptions about the 
factors that are responsible for the stimulus-driven nature of habits 
(see Gardner, 2015). First, it is often assumed that behavior 
becomes stimulus-driven if it has been frequently emitted in the 
context of a certain stimulus. Second, many researchers assume 
that stimulus-driven behavior is instigated via the activation of 
S-R associations that have been formed gradually as the result 
of the frequent co-occurrence of a stimulus and a behavior. 
Although both proposals certainly have merits, from the current 
perspective, they add additional causal elements to the definition 
of habits and habitual behavior which result in additional difficulties 
in establishing whether behavior qualifies as habitual.

Let us first consider frequency as a cause of stimulus-driven 
behavior. Many researchers assume that behavior should become 
more habit-like (i.e., stimulus-driven) the more frequently it 
is emitted in a certain context, that is, the more it is overtrained 
(e.g., de Wit et  al., 2018). The causal role of frequency can 
be  examined by manipulating the frequency of a behavior and 
observing indices of the stimulus-driven nature of the behavior. 
Note, however, that experimental designs allow for causal 
conclusions only if confounding variables are controlled for. 
For instance, the frequency of behavior (i.e., how often it 
occurs) can be  confounded with the recency of behavior (i.e., 
the time elapsed between the test phase and the most recent 
occurrence of a behavior). Assuming that the impact of past 
events decreases with time and/or the number of intervening 
events (Ebbinghaus, 1913), it is possible that differences at 
test between frequent and infrequent behavior reflect recency 
rather than frequency or a combination of both. A confound 
between frequency and recency is typically avoided by varying 
frequency while keeping recency constant across conditions 
(e.g., de Wit et  al., 2018). Another approach which has been 
implemented less frequently in the literature on habits is to 
manipulate frequency and recency orthogonally so that the 
relative contribution of and interaction between both factors 
can be  examined (e.g., Schmidt et  al., 2019, submitted).

Researchers often also refer to S-R associations as the mental 
cause of stimulus-driven behavior. More specifically, they assume 
that a stimulus can initiate a behavior by activating its 
representation in memory, activation which can then spread 
via the S-R association to the response representation and 
thereby bring about the response without the involvement of 
the representations of goals. Traditionally, S-R associations are 
assumed to form gradually as the result of the frequent 
co-occurrence of a stimulus and a behavior, as well as the 
presence of rewards that follow the behavior when it is emitted 
in the presence of the stimulus (e.g., de Wit et  al., 2007; 
Wood and Rünger, 2016). Establishing that stimulus-driven 
behavior is mediated by S-R associations is faced with the 
same problems as establishing stimulus-driven behavior (see 
above) but also with the additional problem of demonstrating 
the mediating role of S-R associations. The fact that neither 
S-R associations themselves nor their causal impact can 

be observed directly complicates efforts to verify the involvement 
of S-R associations in behavior. Procedures have been developed 
to assess the strength of S-R associations indirectly (e.g., via 
their impact on lexical decision times; e.g., Neal et  al., 2012) 
but the usefulness of these procedures depends on how valid 
they are (see De Houwer, 2011).

One could argue that stimulus-driven behavior is by definition 
mediated by S-R associations and that evidence for the stimulus-
driven nature of behavior thus constitutes evidence for the 
mediating role of S-R associations. However, in that case, it 
is not clear what the idea of S-R associations adds to the 
notion of stimulus-driven behavior. Such added value can come 
only from specific theoretical ideas about what those S-R 
associations are (e.g., abstractive links between mental 
representations of stimuli and responses), how they are formed 
(e.g., gradually as the result of repetition or rewards), and 
how they influence behavior (e.g., via the automatic spreading 
of activation from the stimulus to the associated response 
representation; e.g., de Wit et  al., 2007). Hence, incorporating 
the notion of S-R associations into the definition of habits 
comes with specific theoretical commitments, which requires 
the specification of additional criteria to distinguish “real” 
habitual behavior (i.e., stimulus-driven behavior that is mediated 
by a specific type of S-R associations that develops under 
specific conditions) from other stimulus-driven behavior (i.e., 
behavior that is stimulus-driven but mediated by another type 
of representation). In sum, defining habits in terms of S-R 
associations only aggravates the problem of empirically verifying 
whether behavior is “truly” habitual.

THE THEORETICAL LEVEL: EXPLAINING 
HABITUAL BEHAVIOR

Introducing causal elements within the definition of habits and 
habitual behavior not only results in challenges at the empirical 
level (i.e., the possibility of verifying that behavior is habitual) 
but can also limit theoretical innovation. In this section, I focus 
primarily on definitions of habits that refer to S-R associations. 
After discussing their dominance, I  sketch two alternative 
theories of habitual (in the sense of stimulus-driven) behavior. 
In that way, I  hope to clarify that it is not only possible to 
consider other models when trying to explain habitual behavior 
but also that it can be  beneficial to do so. Considering these 
other models is, however, only possible if one removes the 
notion of S-R associations from the definition of habits.

The current theoretical literature on habits is dominated by 
S-R association formation models. Even researchers who do 
not explicitly define habits in terms S-R associations often 
consider only S-R associations when trying to explain habitual 
behavior (e.g., Wood and Rünger, 2016). This dominance of 
S-R association models in the literature on habits is probably 
based on the fact that these models are compatible with the 
widespread definition of habitual behavior as behavior that is 
automatic and stimulus-driven as the result of frequent stimulus–
response co-occurrences. Behavior that is driven by S-R 
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associations (1) must have been emitted frequently enough to 
allow for the gradual formation of an S-R association, (2) has 
features of automaticity because activation can spread across 
associations automatically, and (3) is stimulus-driven in that 
the activation of S-R associations is instigated only by a stimulus 
and does not involve goal representations. In fact, the match 
between the mechanism of activating gradually acquired S-R 
associations and the phenomenon of habitual (i.e., frequency-
induced automatic stimulus-driven) behavior is so good that 
one might wonder whether any other mechanism could account 
for behavior that is stimulus-driven and automatic. In this 
section, I briefly discuss two of these alternatives just to illustrate 
that (1) other mechanisms are possible and (2) there is merit 
in at least allowing for theoretical diversity.

First, Logan (1988) pointed out that behavior could 
be  mediated by the similarity-based automatic retrieval of 
episodic representations from memory. Episodic memory traces 
differ from S-R associations as they are typically conceived 
of as being non-abstractive: whereas different experiences all 
contribute to the strength of a single association, episodic 
memory models assume that each individual experience is 
stored as a separate memory trace (e.g., Medin and Schaffer, 
1978). Moreover, whereas simple associations do not specify 
the way in which events are related (e.g., whether A causes, 
predicts, or merely co-occurs with B; see Lagnado et al., 2007), 
episodic memory traces encode the way in which an event 
is constructed by an individual, including assumptions that 
are made about the relation between events. According to 
episodic models, stimuli in the current environment 
automatically activate episodic memory traces that contain 
information about similar stimuli. If those activated memory 
traces also contain information about a particular response, 
then this can lead to the automatic execution of that response. 
The likelihood that responses are automatically activated depends 
on the number of episodes that encompass both the stimulus 
and the response, as well as time that has elapsed since the 
episode was constructed. Hence, episodic models differ in 
important ways from S-R association formation models as 
they are typically conceived of (i.e., concrete vs. abstract; 
relational vs. associative; similarity-based retrieval vs. spreading 
of activation). Nevertheless, according to episodic models, a 
stimulus in the current environment can result in behavior 
that (1) has frequently been emitted in the context of that 
stimulus, (2) has features of automaticity, and (3) is merely 
stimulus-driven5. As such, episodic memory models such as 

5 Note, however, that episodes can also contain information about the goals 
that someone has when performing an action. Hence, automatic retrieval 
of episodes (and thus automatically activated behavior) could also depend 
on goals at the time of retrieval (Logan, 1988). In those cases, the behavior 
at the time of retrieval would not qualify as stimulus-driven. It would 
be  interesting to run simulations to see whether there are circumstances in 
which goals at retrieval do not influence the automatic retrieval of episodes 
(e.g., when stimulus–response relations remain constant while goals vary). 
Such simulations could provide new insights into whether and when behavior 
is stimulus-driven.

those proposed by Logan (1988) provide an interesting alternative 
for S-R association formation models of habitual behavior.

Considering also episodic models of habitual behavior will 
increase theoretical diversity within the literature on habits, 
which is bound to enrich theoretical discussions and empirical 
research. For instance, unlike typical S-R association formation 
models, episodic memory models assign an important role 
to the recency of events and can thus inspire research that 
examines the relative contribution of frequency and recency 
in habitual behavior (see Schmidt et  al., 2019, submitted, for 
an example). Moreover, because episodes can encode also 
instructions, episodic models might provide a new perspective 
on the finding that automatic behavior can result from simple 
instructions and implementation intentions (e.g., Martiny-
Huenger et  al., 2017; Meiran et  al., 2017). Finally, because 
episodic models assign an important role to factors at retrieval, 
they can also inspire research on the context dependency of 
habitual behavior. With regard to the latter point, it remains 
to be seen whether the emphasis on retrieval factors in episodic 
models fits with what is known about the functioning of 
habit memory.

Second, habit researchers have recently benefited from another 
alternative for the traditional S-R association formation model, 
namely predictive coding models. These models have been 
highly influential in neurocognitive research on a variety of 
topics such as perception, memory, and attention (e.g., Friston, 
2010, 2018; Clark, 2013). The core assumption is that organisms 
constantly build a mental model of the world which allows 
them to behave in ways that minimize energy expenditure. 
Both model construction and behavior selection are assumed 
to be  based on inferential processes that can operate under 
conditions of automaticity. As such, predictive coding models 
provide a natural account of automatic behavior (Van Dessel 
et  al., 2019). Stimulus-driven behavior, on the other hand, 
could be  conceptualized as behavior that is guided by simple 
(i.e., hierarchically shallow) models that do not include 
information about higher order goals of the organism (see 
FitzGerald et  al., 2014; Friston et  al., 2016, for more details). 
Although predictive coding theories are not incompatible with 
the idea of gradually acquired S-R associations, they do provide 
a new perspective on how those S-R associations are formed 
and influence behavior. Moreover, considering predictive coding 
models could offer highly formalized theories of habits that 
allow for new predictions, for instance, with regard to what 
happens when habitual behavior does not lead to predicted 
outcomes (FitzGerald et  al., 2014).

Note that considering alternative theories about habitual 
behavior does not change the fact that it is advisable to ban 
assumptions of specific mental representations and processes 
from the definition of habits. Regardless of the nature of the 
mental representations or processes that are assumed to be crucial 
for habits (S-R associations, episodes, predictive coding), it 
will always be  difficult to verify empirically the involvement 
of a specific type of mental representation of process. 
Acknowledging multiple mental process explanations of habitual 
(in the sense of stimulus-driven) behavior also does not solve 
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the problem that it is difficult to demonstrate with certainty 
that behavior is not directed at (hidden) goals. However, 
considering multiple theories about the mental representations 
and processes that mediate habitual behavior does enrich the 
theoretical debate and can thus lead to new discoveries.

FINAL THOUGHTS ON OVERCOMING 
THE CHALLENGES OF HABIT 
RESEARCH

Habit research is faced with many challenges (see de Wit et al., 
2018; Watson and de Wit, 2018, for a discussion). The central 
message of this paper is that many of these challenges result 
from the inclusion of causal elements within the definition of 
habits. This not only makes it difficult to establish and thus 
study habits and habitual behavior (see section “The Empirical 
Level: Establishing the Presence of Habitual Behavior”) but 
can also constrain thinking about the mechanisms mediating 
habitual behavior (see section “The Theoretical Level: Explaining 
Habitual Behavior”). Hence, from this perspective, a possible 
solution for the challenges of habit research is to reduce the 
number of causal elements from the definition of habits and 
habitual behavior.

Based on the arguments presented above, it can be  strongly 
recommended to remove any assumptions about S-R associations 
from the definition of habits and habitual behavior. Such 
assumptions aggravate the problems of empirically verifying the 
presence of habitual behavior and entail the risk of impoverishing 
theoretical debate by (implicitly or explicitly) committing 
researchers to a priori assumptions about the nature of the 
representations and processes that mediate stimulus-driven 
behavior. Theories about S-R associations can still be an important 
part of habit research but rather than being a part of the 
explanandum (i.e., that which needs to be  explained) the role 
of these theories would be  firmly restricted to that of one 
possible explanans (i.e., that which explains; Hempel, 1970).

What about the widespread idea that habits are stimulus-
driven? As noted above, this idea introduces a number of causal 
elements within the definition of habits, not only about what 
is a cause of behavior (i.e., the stimulus) but also about what 
is not a cause of behavior (i.e., goals). Especially the latter 
element hampers the capacity to determine whether a behavior 
qualifies as habitual. However, as Gardner (2015) correctly pointed 
out, scientists are engaged with the causes of behavior rather 
than with simply describing behavior. As far as psychological 
explanations go, the distinction between explanations that do 
and do not involve goals is a fundamental one, not least because 
it has important implications for how to influence behavior 
(i.e., manipulating goals will only affect behavior that is mediated 
by those goals; De Houwer, 2019). Hence, it is understandable 
that cognitive scientists are interested in studying stimulus-driven 
behavior, that is, behavior that is not mediated by goals.

Nevertheless, researchers who wish to study habits in the 
sense of stimulus-driven behavior are well advised to proceed 

cautiously. The stimulus-driven nature of behavior cannot be 
observed directly, nor are there perfect proxies for establishing 
stimulus-driven behavior. As noted about, devaluation and 
contingency degradation test are strong indicators of the 
involvement of goals but not of the non-involvement of goals. 
Establishing the automaticity of behavior is not only difficult 
but also does not guarantee that the behavior is stimulus-
driven. Although these difficulties should not stop researchers 
from examining stimulus-driven behavior, they need to 
be aware of these problems and take them into account when 
drawing conclusions.

Another option is to ban any reference to the stimulus-
driven nature of habits from the definition of habits, which 
would leave only the notion that habits result from the frequent 
performance of a behavior in a certain context, as well as the 
notion that habits are automatic (Gardner, 2015). Choosing 
this option would imply that behavior is regarded as habitual 
if it can be  established that (1) its presence is due to its past 
frequency and/or (2) it has features of automaticity. As noted 
above, both criteria are also not without problems. Establishing 
the role of frequency requires well-controlled experimental 
studies. Establishing the automaticity of behavior can entail 
many different, non-overlapping, and context-dependent 
automaticity features, some of which are difficult to verify 
because they refer to mental processes (Moors, 2016). Moreover, 
focusing exclusively on frequency would eliminate recency as 
a possible cause of habitual behavior. Hence, researchers who 
wish to define habit research as the study of frequent or 
automatic behavior should also be  aware of the challenges 
entailed by this view on habits.

A possible way to reduce these challenges is to focus 
on features of automatic behavior that are relatively easy 
to verify. For instance, habit researchers could study behavior 
that is instigated quickly in certain contexts or that people 
subjectively experience as having little conscious control 
over. These criteria can be  verified using experimental tasks 
or questionnaires. Once consensus over these criteria has 
been reached, researchers could document the moderators 
of those behaviors (i.e., the conditions under which behaviors 
with those automaticity features occur), which constrains 
theories about the mental mechanisms that produce those 
behavior. Such an approach would imply a clear separation 
between the explanandum of habit research (i.e., specific 
instances of automatic behavior) and the explanans of habit 
research (i.e., assumptions about the causal mechanisms that 
produce automatic behavior). It would also bring academic 
habit research closer to the notion that lay people have 
about habits.

Different researchers will probably choose different paths 
to overcome the challenges of habit research. Those whose 
primary interest lies in studying whether and when behavior 
is stimulus-driven (i.e., not mediated by goal representations) 
will probably continue to define habitual behavior as stimulus-
driven behavior but, hopefully, ban any reference to specific 
S-R theories from their definitions, as well as use proxies of 
stimulus-driven behavior in a cautious manner. Those who 
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wish to understand why behavior can be  initiated quickly and 
why people sometimes report to have little control over their 
behavior will be  probably be  happy with defining habits as 
automatic behavior. The aim of this paper is not to convince 
researchers to ban all causal elements from the definition of 
habits (or other concepts in psychology), nor to promote a 
particular definition of habits. Instead, the main aim is to 
highlight that choosing a definition of habits has important 
implications for both empirical research (i.e., how to establish 
whether behavior is habitual) as well as theory development 
(i.e., proposals about the mechanisms that underlie habitual 
behavior). Hence, it is important to make explicit the causal 
assumptions that researchers make when using a particular 
definition of habits, as well as to acknowledge the challenges 
that these assumptions imply.
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It is now commonly accepted that instrumental actions can reflect goal-directed control; 
i.e., they can show sensitivity to changes in the relationship to and the value of their 
consequences. With overtraining, stress, neurodegeneration, psychiatric conditions, or 
after exposure to various drugs of abuse, goal-directed control declines and instrumental 
actions are performed independently of their consequences. Although this latter insensitivity 
has been argued to reflect the development of habitual control, the lack of a positive 
definition of habits has rendered this conclusion controversial. Here we consider various 
alternative definitions of habit, including recent suggestions they reflect chunked action 
sequences, to derive criteria with which to categorize responses as habitual. We consider 
various theories regarding the interaction between goal-directed and habitual controllers 
and propose a collaborative model based on their hierarchical integration. We argue that 
this model is consistent with the available data, can be instantiated both at an associative 
level and computationally and generates interesting predictions regarding the influence 
of this collaborative integration on behavior.

Keywords: goal-directed action, habits, action sequences, chunking, model-based, model-free,  
reinforcement learning

INTRODUCTION

Although it has long been debated how precisely actions variously called volitional, voluntary 
or goal-directed should be  defined, over the last 20  years or so it has proven fruitful to define 
as goal-directed those actions demonstrably sensitive to changes in: (1) the causal relationship 
to their consequences and (2) the value of those consequences (Balleine and Dickinson, 1998). 
When the performance of an action demonstrates sensitivity to both of these changes, it is 
defined as goal-directed; when its performance is insensitive to these changes, it is not. By 
taking this approach, considerable progress has been made not only in providing evidence for 
goal-directed action in a variety of species (including humans!) but also for the neural bases 
of these kinds of action. In addition, the usefulness of these tests to delineate goal-directed 
from non-goal-directed actions has inspired various investigators to apply them as a means 
of establishing whether the performance of an action reflects the operation of a second form 
of action control, usually referred to as habits.

Despite their apparent simplicity, habits are actually quite complicated. Although most theories 
of habit are very clear about what they are – referring to their non-cognitive, repetitive regularity, 

107

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2019.02735&domain=pdf&date_stamp=2019-12-11
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2019.02735
https://creativecommons.org/licenses/by/4.0/
mailto:bernard.balleine@unsw.edu.au
https://doi.org/10.3389/fpsyg.2019.02735
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.02735/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.02735/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.02735/full
https://loop.frontiersin.org/people/753/overview
https://loop.frontiersin.org/people/860592/overview


Balleine and Dezfouli Hierarchical Action Control

Frontiers in Psychology | www.frontiersin.org 2 December 2019 | Volume 10 | Article 2735

their stimulus control, and so on – demonstrating that an 
action is a habit is not straightforward. For example, numerous 
papers have advanced the idea that a habit is an action that 
is insensitive to changes in the action-outcome relationship 
and in outcome value (reviewed in Balleine and O’Doherty, 
2010). However, in practice, where the effects of such changes 
are evaluated against some control group, this has meant asserting 
the null hypothesis. Thus, for example, when the experimental 
group differs from, say, a non-devalued or a non-degraded 
control, then performance of the former is regarded as goal-
directed. However, when these experimental and control groups 
do not differ, then performance of the former is regarded as 
habitual. Furthermore, these criteria fail to differentiate habits 
from other forms of reflex; for example, although habits are 
insensitive to changes in the action-outcome relationship, so 
are Pavlovian conditioned reflexes (although, whereas habits 
are insensitive to devaluation, Pavlovian CR’s often are not; 
cf., Dickinson and Balleine, 1994, 2002). The general problem, 
however, is asserting an action is a habit when it fails to 
satisfy the tests for goal-directed action, because this does not 
discriminate that action from performance when the actor is 
simply confused, forgetful, or having trouble integrating beliefs 
regarding action outcomes with their desire for a particular 
outcome. In such cases, behavior may appear habitual when 
it is in fact controlled by a faulty goal-directed controller. This 
could be  the case in people suffering psychiatric conditions, 
addictions, or brain damage of various kinds and in such cases 
although the evidence might confirm their behavior is not 
normatively goal-directed, it may not be entirely habitual either.

COMPETITION BETWEEN GOAL-
DIRECTED AND HABITUAL CONTROL

This latter criticism has obvious implications for how habits 
should be  defined but also affects how we  should think about 
the way that habitual and goal-directed actions interact. 
Generally speaking, the consensus supposes these forms of 
action control as competing, at least as far as instrumental 
performance is concerned (Figure  1A). At a behavioral level, 
for example, it is usual to point, first, to the relatively clear 
evidence that distinct associative processes underlie the two 
forms of action control; whereas goal-directed actions depend 
on the action-outcome association, habits are commonly 
thought to involve a process of stimulus-response association 
(Dickinson, 1994). Based on this distinction, various dual 
process accounts of the way these distinct learning processes 
influence instrumental performance have been developed, 
perhaps the most influential of which suggests that, whereas 
an action, such as lever pressing in rodents, begins under 
goal-directed control, the net influence of the action-outcome 
association declines as the strength of the S-R association 
increases until the influence of the latter exceeds the former 
and so takes over motor control (Dickinson et  al., 1983; 
Dickinson, 1985, 1994). And, indeed, a number of studies 
have reported behavioral evidence consistent with the dual 
process perspective (reviewed in Dickinson and Balleine, 2002).

Neural Evidence
Considerable evidence for competition has also come from studies 
assessing the neural bases of these two forms of control. Thus, 
for example, sometime ago we  reported evidence that lesions of 
the prelimbic prefrontal cortex, the dorsomedial striatum, and the 
mediodorsal thalamus had in common the effect of reducing  
the sensitivity of instrumental performance to changes in  
both the action-outcome relationship and outcome value; i.e., 
compromising goal-directed control appeared to cause a reversion 
to habit, consistent with the idea that these control processes 
compete (Balleine, 2005; Balleine et al., 2007; Balleine and O’Doherty, 
2010). Following the criticism above, however, loss of sensitivity 
to tests of goal-directed action may not necessarily mean the 
action has become a habit and may instead reflect a loss in the 
accuracy of retrieval or in translating learning to performance. 
Again, what is required to support this claim is positive evidence 
that a loss of goal-directed control increases habitual control.

There are two other sources of positive evidence from studies 
assessing the neural bases of action control consistent with a 
competitive process. The first comes from findings suggesting 
that one effect of goal-directed control is to inhibit the performance 
of habits (Norman and Shallice, 1986). For example, although 
extensively trained instrumental actions are insensitive to outcome 
devaluation, this insensitivity is only observed in tests conducted 
in extinction; i.e., in a situation in which outcome delivery is 
withheld and so does not provide direct and immediate negative 
feedback. When feedback is provided, by delivering the devalued 
outcome contingent on the action, then the performance of 
even extensively trained actions rapidly adjusts; punishment 
appears to result in response suppression which is as rapid for 
an extensively trained action as a relatively modestly trained 
one (see, for example: Adams, 1982; Dickinson et  al., 1983, 
1995). Importantly, damage to, or inactivation of, the neural 
network mediating goal-directed control attenuates this effect 
of punishment and results in the persistence of an action even 
when it delivers a demonstrably devalued outcome (one, for 
example, that the animal will not consume; e.g., Balleine et  al., 
2003; Yin et  al., 2005). Second, a number of studies have found 
that damage to, or inactivation of, the dorsolateral striatum (Yin 
et  al., 2004), or structures interacting with dorsolateral striatum, 
such as the central nucleus of the amygdala (Lingawi and Balleine, 
2012), can block habitual control resulting in even extensively 
trained actions remaining goal-directed. Although also consistent 
with other accounts (see below), this effect is nevertheless 
consistent with a competitive interaction between habitual and 
goal-directed control processes and the view that, at least in 
some situations, when habits are inhibited goal-directed action 
control is liberated from its competing influence.

Nevertheless, other features of habitual performance tend, on 
their face, to reduce the importance of much of this evidence 
for competition between control processes. One factor is the 
increase in the speed of performance commonly observed to 
accompany habits. For example, a number of studies have found 
evidence that the speed of both response initiation (reaction time) 
and motor movement is increased with experience. Thus, biases in 
reaction time appear to depend on parameters experienced during 
prior training rather than new computations (Wong  et  al.,  2017) 
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and are  manifest as costs when conflicting response strategies, 
involving the repetition of movements at a particular speed or 
toward a particular direction, influence the kinematics of 
subsequently performance (Huang et  al., 2011; Verstynen and 
Sabes, 2011; Hammerbeck et  al., 2014). This is true of studies 
of human action but has also long been claimed in studies of 
habit in animals, especially rodents working in runways of various 
kinds (reviewed in Bolles, 1967, ch. 8). The suggestion that 
performance speed increases as actions become habitual in some 
ways trivializes competition between goal-directed and habitual 
controllers because, if habits are faster, they could potentially 
be  completed before the goal-directed system is engaged and so 
will not directly compete with goal-directed control. Indeed, it 
is this speed of action that allows us to make sense of the errors 
that habits bring; e.g., the planning errors and slips of action 
apparent in selecting or completing an action that will otherwise 
result in an unwanted, devalued, or aversive outcome. It can also 
explain the reversion to goal-directed action induced by inactivation 
of the dorsolateral striatum; when habitual control  is offline, there 
is simply more time to implement goal-directed control.

Computational Evidence
But what of evidence that goal-directed control inhibits habits? 
Another class of account consistent with a competitive view 

has been driven by the computational descriptions of goal-
directed and habitual action control derived from distinct forms 
of reinforcement learning (RL): model-based RL in the case 
of goal-directed action and model-free RL in the case of habit 
(see Dolan and Dayan, 2013 for review). The former views 
goal-directed control as a planning process; the actor foresees 
the future actions and the transitions between future states 
necessary to maximize reward via a form of tree search and 
integrates these into an internal model of the environment. 
In contrast, model-free RL supposes that action selection in 
a particular state is determined by the predicted long run 
future reward value of the action options in that state. Within 
this literature, whether an agent selects goal-directed or habitual 
control has been argued to be  the outcome of a competitive 
arbitration process (Figure  1B); computationally, the actor 
selects the control process for which the state-action value is 
least uncertain (Daw et  al., 2005). And this is true too of 
more recent accounts; whether framed in terms of reliability 
(Lee et al., 2014) or costs and benefits to determine the outcome 
of arbitration (Pezzulo et al., 2013; Shenhav et al., 2013; Keramati 
et al., 2016), they also contend that actions and habits compete 
for control. Treatments (whether behavioral or neural) that 
influence arbitration will be  predicted to influence the balance 
between goal-directed and habitual control; viz., if reduced 
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FIGURE 1 | Competition and collaboration in goal-directed and habitual action control. (A) Simple model of competition for performance with goal-directed and habitual 
controllers mutually inhibiting one another. (B) More sophisticated approach to competition, with goal-directed and habitual controllers competing through arbitration. (C) 
Behavioral evidence suggests, in contrast to competition, that habit and goal-directed processes are intimately connected and collaborate in action selection, evaluation, 
and execution. (D) A formal associative architecture that instantiates the collaboration between habit and goal-directed controllers through the interaction of habit 
memory and associative memory systems, the latter feeding back to control performance. Action selection in the habit memory is mediated by the association of S1 and 
R1 that feeds forward to provide both subthreshold activation of the motor output and activation of the action representation, A1, in the associative memory provoking 
retrieve of the action outcome (O1) and its evaluation through the interaction of the associative and evaluative memory systems. The latter provides a promiscuous, 
feedback (cybernetic) signal that sums with the forward excitation from the habit memory. If positively evaluated (blue lines/arrows), it provokes action execution; if 
negatively evaluated (red lines/arrows), it blocks performance. (E) An example of the representation of a complex habit sequence in the habit memory incorporating lever 
press and magazine approach responses together with a simple lever press action. Both are represented in the habit memory (the expanded sequence, the acquisition 
of which is supported by proprioceptive feedback from motor output) and its chunked representation in the associative memory (e.g., ALO-MA). (F) The formal associative-
cybernetic model incorporating chunked action sequences and simple actions in both the habit memory and the associative memory.
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reaction times bias arbitration toward a model-free process, 
then perhaps the delivery of an unexpected aversive or noxious 
outcome biases arbitration toward a model-based one.

Evidence for competitive model-based and model-free 
controllers has been most clearly derived from computational 
analyses of performance on a class of task that attempts to 
pit goal-directed and habitual choices against one another in 
a multistage discrimination situation (Daw et  al., 2011). The 
aim of this task is essentially to set up a continuous revaluation 
procedure across trials. In one version, a first stage choice 
transitions probabilistically to one of two second stage states, 
one with a higher probability than the other. At the second 
stage, a choice results, again probabilistically, in reward or no 
reward, the probability of which changes slowly throughout 
the task to encourage the decision-maker to sample new options. 
The task is, therefore, structured on a RL view of the world 
with explicit states and action-related transitions between those 
states. Importantly, it is assumed that learning that a choice 
in the second stage state results in reward (or no reward) 
revalues (or devalues) that state as a goal. The question then 
becomes: does the decision-maker take advantage of that 
information or not? If so then their choice is assumed to 
reflect planning based on the interaction of the stage 1 and 
stage 2 states and so to be  model-based (or goal-directed). If 
not, it is assumed that the choice merely recapitulates prior 
performance and is model-free (or habitual).

Based on these assumptions, the stage 1 choices of human 
subjects on the two-stage task show a mixture of model-based 
and model-free control (Daw et  al., 2011) that can be  biased 
toward one or other process by a variety of factors; e.g., amount 
of training (Gillan et  al., 2015), cognitive load (Otto et  al., 
2013), altered activity in the dorsolateral frontal cortex 
(Smittenaar et al., 2013), and (likely relatedly) via the influence 
of various psychiatric conditions (Gillan et al., 2016). Although 
this intermixing of controllers is consistent with variations in 
the influence of competitive controllers, trial-to-trial variation 
presents something of a puzzle, the explanation of which – if 
we  are to maintain this perspective – returns us to the issue 
of arbitration.

Importantly, while there are computational theories of 
arbitration (e.g., Griffiths et  al., 2015), whether an arbitrator 
actually regulates the contribution of each system remains 
unknown. And, in fact, analyses that break the world into 
discrete states may not be  the best way to assess this problem. 
Although such analyses may be  helpful both when the 
experimenter is trying to tie neural events to behavioral responses 
or is hoping, computationally, to apply a reinforcement learning 
approach to these tasks, the original data that inspired our 
understanding of distinct goal-directed and habitual forms of 
action control came from continuous, self-paced, unsignaled 
situations in which humans and other animals explore the 
environment, discover its structure, learn new actions and their 
causal consequences, and then utilize that knowledge to maximize 
reward. Non-human animals in particular encode these 
relationships based on their own experience and not via the 
instructions of the experimenter. In contrast, what human 
participants learn on multistage discrimination tasks can 

be difficult to discern and may not accord with the assumptions 
of model-based and model-free RL analyses as to the drivers 
of performance. There are issues in establishing whether the 
assumptions from model-based and model-free reinforcement 
learning are consistent with the subjects’ behavior; how accurately 
they update common and rare transition probabilities; how 
large the state-space that subjects use to make choices actually 
is (see Akam et  al., 2015 for discussion). Furthermore, other 
factors, such as performance rules or environmental cues, 
including the stimulus predictions embedded in the task, could 
also influence performance; indeed, it has never been clear 
why experimenters commonly use both actions and stimuli 
to predict the second stage states in two-stage tasks. Another 
factor recently suggested to influence arbitration between model-
based and model-free control is the integration of the costs 
and benefits of each system; i.e., the rewards based on the 
average return of model-based and model-free control against 
which are contrasted the intrinsic cost of model-based control 
(Kool et  al., 2016). Interestingly, evidence has been collected 
from novel versions of the two-stage task suggesting variations 
in reward value and costs based on planning complexity can 
alter the model-based and model-free trade-off (Kool et  al., 
2017, 2018). Importantly, however, these factors do not appear 
to influence arbitration on the original version of the two-stage 
task, likely due to its intransigence in the calculation of reward 
estimates due to a lack of access to the second stage reward 
outcomes (Kool et  al., 2016). Indeed, whereas model-based 
and model-free RL provide reasonable simulations of the first 
stage choices of the two-stage task, experimenters investigating 
these positions have typically not generated predictions about 
what animals will do on the second stage choice (Dezfouli 
and Balleine, 2013, 2019). It is clear, therefore, that our 
understanding of what animals and humans are actually doing 
on these complex tasks is very far from settled.

Taken together, these issues concerning the behavioral, neural, 
and computational evidence for competition between action 
controllers raise significant questions regarding: (1) how habits 
are best characterized; (2) the kind of evidence that we  should 
accept for their occurrence; and (3) whether explaining their 
interaction with goal-directed control requires the generation 
of a third kind of quasi-controller positioned to arbitrate 
between the other two. Fortunately, there are other accounts 
available that allow us to move beyond each of these issues.

COLLABORATION BETWEEN 
CONTROLLERS

Against the competition view, alternative positions have been 
developed proposing that goal-directed and habitual controllers 
collaborate to coordinate instrumental performance. In the past, 
we  have described a number of sources of behavioral evidence 
for this perspective (Balleine and Ostlund, 2007), among the 
strongest of which comes from studies assessing the factors 
controlling the selective reinstatement of instrumental actions 
(Ostlund and Balleine, 2007). The basic phenomenon was 
established as an assessment of the effects of outcome delivery 
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on subsequent action selection. Rats trained on two actions 
for distinct outcomes were then given a period of extinction 
on both actions until performance was completely withheld. 
At that point, one or other of the two outcomes was delivered 
non-contingently. The question at issue was what the free 
outcome delivery would produce; if the outcome retrieved the 
action with which it was associated then we  should expect 
that action to be  selected and executed, and that is what 
we  observed. Subsequently, we  sought to assess whether the 
outcome selected the action that delivered the non-contingent 
outcome as a goal or whether that outcome served as a stimulus 
that retrieved the next performed action. To achieve this, rats 
were again trained on two actions for different outcomes; 
however, each action-outcome pair was trained in alternation; 
i.e., A1  →  O1 was always followed by A2  →  O2. Again, both 
actions were extinguished before we  assessed the effects of 
non-contingent outcome delivery on the reinstatement of A1 
and A2. If an outcome retrieves the action that delivered it 
as a goal, then delivering, say, O1 should retrieve A1. If, however, 
O1 acts as a stimulus that retrieves the next action, then O1 
should retrieve A2. In fact, we found the latter result; outcome-
specific reinstatement appears to reflect the effect of a forward 
outcome-response association on performance. Furthermore, 
this effect was not diminished by devaluing the reinstating 
outcome suggesting that outcome-mediated response retrieval 
is not dependent on the outcome’s value but on its stimulus 
properties. This result suggests, therefore, that instrumental 
action selection is initiated by a form of S-R process in which 
the stimulus properties of the outcome are the proximate cause 
of action retrieval (Balleine and Ostlund, 2007).

Importantly, subsequent studies found that, when retrieved 
in this way, it is the outcome that serves the selected action 
as a goal that mediates the execution of the action. To establish 
this, we used a similar training situation except that the outcomes 
were used as explicit discriminative cues for action selection, 
and found that these kinds of stimuli can, in fact, engage an 
evaluative process but of the action subsequently retrieved by 
those discriminanda (Ostlund and Balleine, 2007). Devaluing 
the outcome that served as a goal for the retrieved action 
reduced the vigor of performance but not the ability of the 
outcome to serve a discriminative cue, consistent with other 
reports using more traditional discriminative stimuli (Colwill 
and Rescorla, 1990; Rescorla, 1994). That is, performance, but 
not action selection, was attenuated if the outcome earned by 
the reinstated action was devalued. In the ordinary course of 
events, therefore, the outcome controls actions in two ways: 
(1) through a form of S-R, or ideomotor, association in which 
the stimulus properties of the outcome can select the action 
with which they are associated; and (2) through the standard 
R-O association in which a selected action retrieves its specific 
outcome as a goal. Clearly, the subsequent retrieval of the 
value of the outcome is a necessary step toward the actual 
performance of the action. Hence, this behavioral evidence 
suggests that a selection-evaluation-execution sequence lies at 
the heart of instrumental performance and that this control 
requires the collaborative integration of habitual S-R and goal-
directed R-O control processes (Figure  1C).

Cybernetic Control
At least two kinds of account accord with this collaborative 
control process. The first, advanced some years ago, is what 
has become known as the associative-cybernetic model of 
instrumental performance (Dickinson and Balleine, 1993). This 
account has its origins in Thorndike’s (1931) ideational theory 
of instrumental action proposing that a stimulus that evokes a 
response urge or tendency calls to mind the consequences of 
the action selected by that tendency and these two processes – 
driven essentially by stimulus–response and action-outcome 
associations – check or favor one another to release action 
execution. In addition to providing a clear basis for the 
collaborative integration of habitual and goal-directed controllers, 
this view also has the merit of providing an answer to one 
of the thornier questions; why do we  do anything at all? Early 
cognitive theorists, concerned by the poverty of the stimulus-
response approach, developed models of action based on more 
elaborate internal variables (e.g., Tolman, 1932). Nevertheless, 
how thought initiates action remained an ongoing issue; the 
concern being, as Guthrie put it, that such views left the actor 
buried in thought (Guthrie, 1935). When and why does thinking 
about actions and their consequences stop and acting begin? 
Thorndike’s account suggests that it is external stimuli rather 
than thoughts that initiate this process by urging a response; 
that the action and its consequences are brought to mind only 
subsequently, at which point the value of the latter provides 
the basis for either checking the urge, when the consequences 
are punishing, or favoring it, when they are rewarding, thereby 
providing the necessary feedback to modulate action execution.

These ideas have been developed in a number of ways to 
capture both the behavioral data on instrumental performance 
and their neural bases (reviewed elsewhere; Dickinson and 
Balleine, 1993; Dickinson, 1994; Balleine and Ostlund, 2007). 
Generally, it has been suggested that a stimulus–response 
memory interacts with an associative memory to drive the 
retrieval of a specific action and its consequences, that the 
latter retrieves an incentive memory of the outcome that, by 
marshaling specific motivational and emotional processes, 
determines the value of the outcome, to potentiate or de-potentiate 
the motor signal associated with the response tendency of the 
S-R memory, thereby increasing the probability that the action 
will be  executed. It is this latter process that constitutes the 
cybernetic or feedback component of the model (Figure  1D).

Hierarchical Control
Alternatively, we  have recently argued that goal-directed and 
habitual control processes interact in a hierarchical manner; 
i.e., that habits are selected by a goal-directed control process 
as one means of achieving a specific goal (Dezfouli and Balleine, 
2012). Within this account, although habits are often described 
as single-step actions, their tendency to combine or chunk 
with other actions and their insensitivity to changes in the 
value of, and causal relationship to, their consequences suggest 
that they are better viewed as forming the elements of chunked 
action sequences. In this context, chunking means that the 
decision-maker treats the whole sequence of actions as a single 
action unit and so the individual actions of which the sequence 
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is composed are represented independently of their individual 
outcomes. As a consequence, the value of an action sequence 
will be  established independently of the individual action-
outcome contingencies and the values of the outcomes of the 
action elements inside the sequence boundaries, which will 
be  invisible to the decision-maker. Once selected, each action 
will then be executed in the order determined by the sequence 
in an open loop manner; i.e., without further feedback from 
their individual consequences.

Integrating Cybernetic and  
Hierarchical Control
In fact, hierarchical and cybernetic control are not mutually 
exclusive and, indeed, starting with James (1890), there has 
been a long tradition of associative accounts of action sequences, 
particularly from within the behaviorist tradition that used 
stimulus-response sequences to explain apparently cognitive 
control processes. A good example of this approach is Hull’s 
explanation of latent learning. Tolman, for example, was able 
to demonstrate that changing the value of a specific goal box 
in a previously explored maze by giving a rat food in that 
box was sufficient immediately to alter the speed and accuracy 
with which the rat reached the goal subsequently without the 
need for additional training (Tolman and Honzik, 1930). The 
natural interpretation of this effect is that the rat had learned 
about the change in value of the goal and was able to incorporate 
that knowledge into what it knew about the structure of the 
maze to alter its choice performance, much as we  have argued 
for goal-directed actions generally. In response to effects like 
this, however, behavioral theorists introduced the fractional 
goal-response, responses such as chewing or licking, that, when 
associated with other responses within the maze, could form 
a sequence able to explain choice performance without resorting 
to goal-directed control (Hull, 1952).

Although these kinds of explanation are no longer favored 
for goal-directed actions, they give a feeling for how an 
account of habits in terms of action sequences might 
be  constructed and deployed. In the simplest case, it would 
apply to overtraining-induced habits by arguing that the target 
action, say lever pressing, is incorporated into a sequence 
with other common responses performed around the lever 
press response; e.g., lever orienting, lever approach, lever 
press, magazine approach, magazine entry, magazine exit, lever 
orient, and so on (see Figure  1E). Initially, these sequences 
of responses would be purely incidental; the simple component 
action of lever pressing is sufficient and any tendency to 
press the lever will call to mind the action-outcome relationship 
resulting in outcome evaluation and the execution or suppression 
of the action. With practice, however, chunking these component 
responses together would allow the whole sequence to run 
off rapidly and smoothly using minimal cognitive resources. 
There are, however, costs associated with this form of action 
control; chunking these component responses together may 
allow stimuli antecedent to the response tendency to set off 
the habitual chain without requiring the animal to monitor 
each component action, however it will also render the 
consequences of responses within the chain and the value 

of those consequences invisible to the decision maker. If such 
sequences are structured and selected independently of their 
simpler component actions, such as lever pressing, and if 
the sequence’s relationship to and the value of its outcome 
are not dependent on these component actions, then one 
can immediately see how, when chunked within a sequence, 
a target action can appear insensitive to changes in its 
relationship to and the value of its programmed consequences 
(cf. Dezfouli and Balleine, 2012; Dezfouli et  al., 2014).

Within the associative-cybernetic model, habit sequences 
would form within the habit memory through the integration 
of responses, perhaps via their feedback; i.e., the proprioceptive 
stimuli they evoke. This response-response chaining is what 
is meant by the chunking of an action sequence and, as an 
action, it can be  selected in the associative memory just as 
any other action is selected; i.e., a response tendency, initiated 
in habit memory, activates the action sequence representation 
and its outcome in associative memory. If positively evaluated, 
each subsequent response will be  executed without evaluation 
until the sequence is terminated (see Figure  1F).

Although it was argued above that such an account can 
explain why habits are insensitive to degradation and devaluation 
treatments, it might be  asked, if the outcome of the sequence 
needs to be evaluated positively for the sequence to be initiated, 
why devaluation does not result in a reduction in the production 
of the overall sequence. The answer to this is that it can do 
so if the outcome that is devalued is the outcome associated 
with the sequence (Ostlund et  al., 2009). If, however, the 
outcome that is devalued is associated with a response inside 
the sequence boundaries, then the devalued outcome will 
be invisible to the associative memory and will not be evaluated. 
In this case, the sequence will persist despite devaluation. That 
something like this must be  going on is suggested by the fact 
that, after overtraining, habitual lever presses in rats have been 
found to become more sensitive to devaluation over the course 
of extinction as, presumably, the press-approach sequence 
described above was broken down (Dezfouli et  al., 2014).

More direct evidence for this account has recently been 
reported by Ostlund and colleagues (Halbout et  al., 2019). In 
this study, rats were trained to lever press for a food pellet 
reward before the goal-directed nature of this response was 
assessed using an outcome devaluation assessment conducted 
in extinction. The investigators developed a novel microstructural 
analysis of the performance of the animals during training 
and test, investigating the tendency to press the lever but also 
the degree to which such presses were followed by approach 
responses to the food magazine and how the relative incidence 
of these responses changed after devaluation. Importantly, they 
found evidence that the rats used two different strategies when 
initiating the lever press response, performing it as part of 
an action chunk (press-approach) or as a discrete action (press 
only). Consistent with an account in terms of habitual sequences, 
these distinct strategies appeared to be  differentially sensitive 
to reward devaluation; whereas the rats were generally less 
likely to lever press for the devalued than for the valued reward, 
the press-approach chunk was found to be  less sensitive to 
reward devaluation than presses that were not followed by 

112

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Balleine and Dezfouli Hierarchical Action Control

Frontiers in Psychology | www.frontiersin.org 7 December 2019 | Volume 10 | Article 2735

approach. Furthermore, the proportion of chunked lever press-
approach actions was actually greater for the devalued action 
than for the valued action. This suggests there was a change 
in the willingness to select the chunked sequence on the 
devalued relative to the non-devalued action, consistent with 
the claim that the sequence had a higher value than the 
individual lever press after devaluation.

Generally, therefore, we  argue that hierarchical control can 
be  accommodated within an associative-cybernetic account of 
instrumental conditioning. In fact, it appears to be well suited 
to this account with individual actions and chunked action 
sequences sitting at the same level in the associative memory 
and with simple or serially chained stimulus–response 
associations sitting at the same level in habit memory. This 
account is also consistent with several other features of habitual 
control. First it is consistent with the increased speed of habit 
execution: without having to evaluate the individual actions 
through the cybernetic feedback component of the model, 
the action sequence can run off more rapidly than if each 
response is evaluated. Second, this account addresses slips of 
actions by pointing to the chaining of responses at a mechanistic 
level. Appropriate response feedback will initiate the next 
action in a chain irrespective of the outcome of that response 
(Matsumoto et  al., 1999). Furthermore, feedback relating to 
a response in the middle of a chain should be  expected to 
result in a “capture error”; i.e., in the completion of that 
chain even when the animal is pursuing some other outcome 
(Norman and Shallice, 1986).

EVIDENCE FOR HIERARCHICALLY 
ORGANIZED COLLABORATION

Given that hierarchical control can be  implemented within an 
associative-cybernetic architecture that requires the integration 
of goal-directed and habit controllers to explain instrumental 
performance, what evidence exists for this kind of collaboration? 
Here we  describe two sources of evidence from human and 
rodent subjects consistent with this account, both taken from 
performance on the two-stage task described above.

Human
As mentioned, the two-stage task developed by Daw et  al. 
(2011) essentially arranges for changes in value to occur while 
the decision-maker is faced with an ongoing series of binary 
choices. Repeating past choices is assumed to be  driven by 
the habit controller; altering choices in accord with predictions 
of future outcomes is assumed to be driven by the goal-directed 
controller. Critically for this analysis, all previous assessments 
of these factors have focused purely on stage 1 choices largely 
because popular reinforcement learning descriptions of choice 
on this task, i.e., model-based and model-free RL, only make 
differential predictions regarding stage 1 choices. However, it 
should be clear that, because the hierarchical-cybernetic model 
described above views habits as sequences of responses nested 
within a goal-directed controller and treats all actions as 
requiring collaboration between habit and goal-directed control, 

this approach is unique in making differential predictions not 
just for the first stage choices but also for second stage (and 
indeed for further) choices too.

We constructed a version of the two-stage task – see 
Figure  2A (cf. Dezfouli and Balleine, 2013 for details) – in 
which human subjects were instructed to make a binary choice 
at stage 1 (i.e., A1 or A2), the outcome of which was either 
O1 or O2, which were distinct two-armed slot machines. 
Subjects could then make a second binary choice in stage 2, 
choosing one or other arm (i.e., R1 or R2), and were then 
rewarded or not rewarded for their choice. We  arranged the 
relationship between the stages as in previous reports of this 
task: i.e., A1 commonly led to O1 and A2 to O2; however, 
on rare trials, A1 led to O2, and A2 to O1. As a consequence 
of this arrangement, the role of stage 2 choices was, essentially, 
to manipulate the value of O1 and O2 and, in order to revalue 
the outcomes during the session, the probability of reward 
following each stage 2 choice increased or decreased randomly 
on each trial, causing frequent devaluation or revaluation of 
the O1 and O2 outcomes during the course of the task. Whereas 
changes in outcome value are usually accomplished by offline 
treatments, such as specific satiety and taste aversion learning, 
in this task values are changed through exposure to rare 
transitions inserted among the more common transitions.

Replicating previous reports, we  found that stage 1 choices 
were sensitive to this form of revaluation, confirming that these 
actions were goal-directed – Figure 2C (human data). However, 
and more importantly, because two steps are required to reach 
reward it is possible for subjects to expand their choice options 
from A1 and A2 by combining stage 1 and stage 2 actions to 
construct action sequences; i.e., A1R1, A1R2, A2R1, A2R2 and 
to choose between these options based on their relationship to 
reward – see Figure  2B. Although the choice of stage 2 action 
(R1 vs. R2) should be  based on the outcome of the stage 1 
action, we  found that, when the previous trial was rewarded 
and subjects repeated the same stage 1 action (A1 or A2), they 
also tended to repeat the same stage 2 action (R1 or R2), 
irrespective of the outcome of the stage 1 action. In these 
cases, the stage 2 action was determined at stage 1 when the 
sequence was executed. This observation of the open-loop 
execution of actions was not due to the generalization of action 
values from the common to the rare second stage outcome 
(e.g., using the example in Figure  2B; from O1 to O2). If this 
were the case, then subjects should have been more likely to 
repeat the same stage 2 action irrespective of the stage 1 action 
chosen. However, subjects had a higher tendency to repeat the 
same stage 2 action (e.g., O2) only when they executed the 
same stage 1 action (e.g., A1) – Figure  2D.

Recall that, according to the hierarchical approach, actions 
will be habitual if they fall within the boundaries of a sequence. 
And that is the case here; the outcomes of the stage 1 choices 
(i.e. O1 and O2) fall within the boundaries of the action 
sequences, consistent with the claim that these sequences were 
not always revalued during rare trials. This finding suggests 
that subjects should also make systematic errors after revaluation; 
i.e., if revaluation occurs on a rare transition then selecting 
the same action sequence performed on the previous trial 
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means the subject must have ignored the fact that it was the 
alternative stage one action that was revalued. And indeed, 
consistent with this, reward on the previous trial increased 
the likelihood of repeating the same stage 1 action, whatever 
outcome and stage 1 action was revalued. Importantly, as 
previously reported, we also found performance to be a mixture 
of responses apparently insensitive to outcome revaluation and 

those sensitive to these manipulations. On previous accounts, 
such findings were argued to reflect competition between 
model-based and model-free controllers. On the hierarchical 
account, however, this merely reflects the difference between 
a model-based controller selecting simple actions (A1 and A2) 
on the one hand and habit sequences (A1R1, A1R2, A2R1, 
and A2R2) on the other. Importantly, we  found evidence that, 

A E

F

B

C G

D H

FIGURE 2 | Evidence for hierarchical collaboration in humans and rats. (A) Two-stage task in human subjects. (B) After a rare transition (example shown) and 
revaluation of O2 (upper panel), an expanded action repertoire using action sequences (e.g., A1R1) can induce insensitivity to revaluation of the second stage choice 
(e.g., R1). (C) The influence of reward and non-reward on the tendency to stay on the same first stage choice after a common and a rare transition in human 
subjects. (D) Simulated (sim) second stage choices from various flat model-based and/or model-free RL models (left panel), a hierarchical RL model (center), and 
the human data (right panel). (E) Design of a two-stage task in rats with training conducted on a two-stage discrimination that is reversed, initially, every four trials 
and subsequently every eight trials. At various points in training, we included rare transitions as probe tests (sessions 40, 66, 78, 87, and 94). (F) The odds ratio of 
staying on the same stage 1 action after reward on the previous trial over the odds ratio after no reward. The horizontal line represents the indifference point. Each 
vertical line is one session. (G) Results from the probe tests. Note the comparable performance of rats and humans when rats show evidence of having acquired an 
accurate representation of the multistage nature of the task. (H) Rat data from second stage choices using a comparable version of the task to that used in humans. 
Panels (A–D,G,H) are taken directly from Dezfouli and Balleine (2013, 2019). Panels (E,F) are redrawn from Dezfouli and Balleine (2019).
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whereas model-based and model-free RL were as successful 
as a hierarchical RL model in simulating the stage 1 choices, 
only the hierarchical RL model could capture the stage 1 and 
stage 2 choices, and this superiority was established using 
Bayesian comparison between these different model families –  
see simulations in Figure  2D.

Generally, therefore, this study found evidence of action 
sequences that were insensitive to a change in outcome value, 
a finding that is uniquely addressed by the collaborative 
hierarchical account. Another feature of this account is that 
it provides a straightforward reason why the chronometry of 
action and habits should differ. Any attempt to evaluate each 
simple action before execution will necessarily slow the temporal 
dynamics of choice between the two stages compared to habit 
sequences, which can run off continually in open loop fashion 
without intervening evaluation. As such, when the second 
action in the sequence is not taken at stage 2, then reaction 
times should increase. We  found evidence for this prediction 
in the data: if the previous trial was rewarded, reaction times 
were significantly faster (<379  ms) when a subject completed 
an action sequence than when the second stage action was 
not executed as part of a sequence (>437  ms). Importantly, 
this effect was not significant when the previous trial was not 
rewarded, which rules out the possibility that the observed 
increase in the reaction times was because of the cost of 
switching to the other second stage action. Only when (1) 
the previous trial was rewarded, (2) the subject took the same 
first stage action, and (3) their reaction time was low did the 
subject repeat the second stage action, consistent with the 
prediction of the collaborative hierarchical account.

Rodent
A number of reports have now been published evaluating 
two-stage discrimination learning in rodents (Akam et al., 2015; 
Miller et  al., 2017; Groman et  al., 2019). In a recent study, 
using a task modeled on that described for use in humans 
above, we  sought to investigate how the state-space and action 
representations adapt to the structure of the world during the 
course of learning without any explicit instructions about the 
structure of the task – which obviously cannot be  provided 
to rats (Dezfouli and Balleine, 2019) – see Figure  2E. Briefly, 
we found evidence that, early in training, the rats made decisions 
based on the assumption that the state-space was simple and 
the environment composed of a single stage, whereas, later in 
training, they learned the true multistage structure of the 
environment and made decisions accordingly – Figures 2F,G. 
Importantly, we  were also able to show that concurrently with 
the expansion of the state-space, the set of actions also expanded 
and action sequences were added to the set of actions that 
the rats executed in similar fashion to human subjects – 
Figure  2D vs. Figure  2H: human vs. rat data.

In more detail, the lack of instructions implies that the 
rats have first to establish the nature of what might be  called 
the “task space,” in this case, the fact that the task has two 
stages. This means that the rats needed to use feedback from 
the previous trial to track which stage 2 state was rewarded 
so as to take the stage 1 action leading to that state. It was 

clear that, early in training, the rats responded as if the first 
stage was not related to the second stage; as shown in Figure 2F, 
the rats failed to show a tendency to take the same stage 1 
action after earning a reward on the previous trial and instead 
tended to repeat the action taken immediately prior to reward 
delivery; i.e., if they took “L” at stage 1, and “R” at stage 2 
and earned reward, then they repeated action “R” at the 
beginning of the next trial. Therefore, actions were not based 
on a two-stage representation. Importantly, however, this pattern 
of choices reversed as the training progressed and the rats 
started to take the same stage 1 action that earned reward 
on the previous trial rather than repeating the action most 
proximal to reward – Figure  2F. Clearly, the rats had learned 
that the task has two stages and, at that point, acquired the 
correct state-space of the task. If this is true, however, then, 
during the course of training, the task space used by the 
animals expanded from a simple representation to a more 
complex representation consistent with its two-stage structure.

Importantly, learning the interaction of the two stages of the 
task is not the only way that the rats could have adapted to 
the two-stage structure of the environment; as mentioned above, 
in this task, reward can be  earned either by executing simple 
actions in each stage or an action sequence; i.e., the rats could 
have learned to press the left or the right lever in series and/
or to perform left → right or right → left as a chunked sequence 
of actions. Using these expanded actions, the rats could then 
repeat a rewarded sequence instead of merely repeating the 
action proximal to the reward. If this is true, however, then 
the transition in the pattern of stage 1 actions shown in Figure 2F 
could have been due to the development of action sequences 
rather than learning the task space. To establish whether the 
rats were using chunked sequences of actions, we  examined 
their choices in probe test sessions in which the common (trained) 
transitions from stage 1 were interleaved with rare transitions; 
meaning that, after repeating the same stage 1 action, rats could 
end up in a different stage 2 state than on the previous trial  – 
see Figure  2G for 1st stage choices and Figure  2H for 2nd 
stage choices. In this situation, we  should expect them to take 
a different stage 2 action, if they were selecting actions singly, 
whereas, if they are repeating the previously rewarded sequence, 
they should take the same state 2 action. In fact, the data 
revealed clear evidence for the latter and for the fact that the 
rats were using action sequences in this way – Figure  2H. 
Generally, if the previous trial was rewarded and the rats stayed 
on the same stage 1 action, then they also tended to repeat 
the same stage 2 action. Therefore, the pattern of choices at 
stage 2 we  observed was consistent with the suggestion that 
the rats expanded the initial set of actions to a more complex 
set that included action sequences.

Hence, exactly as we  found in human subjects, we  found 
evidence that rats could incorporate both simple actions and 
complex action sequences into their repertoire and that, when 
responding on a sequence, the actions in the sequence were 
performed regardless of their specific consequences. We  also 
sought to establish the computational model that best characterized 
the decision-making process used by the rats comparing 
non-hierarchical model-based RL, hierarchical model-based RL, 
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and a hybrid model-based RL and model-free RL and found, 
using Bayes model comparison, that hierarchical model-based 
RL provided the best explanation of the data.

Taken together, these experiments provide consistent evidence, 
across species in rats and humans, that a hierarchical collaborative 
process mediates instrumental performance in which simple 
actions and chunked sequences of actions are available for 
evaluation by the same goal-directed control process in associative 
memory and, when positively evaluated, add similarly to the 
impetus for those urges to be  executed.

DISCUSSION

The issue of how to identify a habit is rapidly becoming an 
important one for neuroscience and behavioral analyses of 
decision-making and action control to resolve. The suggestion 
that habits are merely the obverse of goal-directed actions, 
i.e., are actions that can be  shown to be  insensitive to their 
causal consequences and to the value of those consequences, 
is simply too broad. Many actions will appear habitual by 
these criteria when they are not, and, as mentioned above, in 
practice, these criteria devolve to asserting the significance of 
the null hypothesis.

Defining Habits
In order to overcome this issue, positive qualities of habitual 
control need to be  specified. Within the current framework, 
we  advanced the claim that one way to identify habits is via 
their relationship to other actions within chunked action 
sequences. Habits, it was claimed, are not single solutions but 
sit within a flow of stimuli and responses with internal response-
induced stimuli supporting the initiation of each subsequent 
action in a sequence of actions. This is not to say that sequences 
of this sort cannot be quite short, even though, with continuing 
practice, they are likely to become quite elaborate. Rather it 
is claimed that any action that is habitual will be  performed 
in an open loop manner; that its antecedent causes are the 
effects of the immediately preceding action and its consequences 
relevant only for the next response in the chain. From this 
perspective flows other potential features of habits; for example, 
their chronometry: the reduced reaction time, and increased 
speed of movement that accompanies these kinds of action 
spring immediately from the nature of action sequences as 
open loop systems. The lack of dependency of each sequential 
movement on feedback from their external consequences ensures 
that each movement can be  initiated quickly. Similarly, the 
refinement of each movement through repetition and its 
association with its specific eliciting conditions within the 
sequence ensures its topographical similarity across instances 
(meaning the invariance in the kinematics of the motor 
movement). Habits, then, are actions shown to accord with 
four distinct observations: (1) relatively rapidly deployed and 
executed, (2) relatively invariant in topography, (3) incorporated 
into chunked action sequences, and (4) insensitive to changes 
in their relationship to their individual consequences and the 
value of those consequences.

Actions and Habits Do Not Compete
The division of actions and habits into separate and competing 
control processes is difficult to sustain when their level of 
collaboration is fully recognized. As described here, the evidence 
points strongly to the integration of S-R and R-O selection 
processes through which the various options for action are 
evaluated. An urge can then be  acted upon, whether through 
a single response or a sequence of responses, or it can be withheld. 
In some cases, the strength and speed of an urge can produce 
slips of action; i.e., actions that would otherwise have been 
withheld. In others, the selection of an action that is part of, 
or similar to an action that is part of, a sequence can result 
in “action capture” and the unintentional completion of a 
sequence of responses inappropriate to the situation. These 
errors are anticipated from a hierarchical control perspective, 
whereas from a competitive perspective they are not.

Although the behavioral, neural, and computational evidence 
for competition between controllers seems overwhelming, careful 
consideration of this evidence suggests that much of it is open 
to reinterpretation. From the current perspective, for example, 
the general claim is that factors argued to influence arbitration 
between goal-directed and habitual controls can be  as readily 
argued to influence choice between simple actions and action 
sequences. Costs and benefits influencing this selection process 
will do so for much the same reason that has been suggested 
previously; except, of course, the emphasis will be  largely on 
the reduced cost associated with selecting sequences and the 
potentially increased rewards associated with simple actions 
due to their more immediate adjustment to environmental 
constraints based on feedback. Similarly, to the extent that 
cognitive load and increased planning complexity favor habits 
(see, for example, Otto et  al., 2013), a model-based controller 
should be expected to select action sequences more than simple 
actions. This is because the evaluation of action sequences is 
less cognitively demanding than a set of single actions as the 
former do not rely on calculating the value of middle states. 
Similarly, with changing planning complexity; in simple 
environments planning can be  handled by individual actions, 
which have a higher accuracy, but as the environment becomes 
more complex the reliance on action sequences becomes more 
important because the cost of evaluating individual actions 
increases exponentially with the complexity of the environment. 
Nevertheless, although many of the interpretations of the 
behavioral and neural evidence have generated definitions of 
habit that are, ultimately, circular, the computational approach 
is different in this regard. The evidence from tasks and models 
is impressively closely related. Much of this evidence has, 
however, been driven by a number of simplifying assumptions 
that in many ways beg the question; such as equating habits 
with reward-related repetition and so with model-free control.

Computational Collaboration
We contend, therefore, that an architecture favoring the 
collaboration between controllers makes greater sense of the 
data, appears less subject to arbitrary assumption, and so more 
open to test. We  advanced these ideas here by relating a 
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hierarchical reinforcement learning approach to the functions 
of the associative memory in an associative-cybernetic model 
of instrumental conditioning. The mechanics of the individual 
actions, or action sequences, we  assume to be  the province 
of the S-R memory, and the evaluation of these actions, including 
their costs, to be determined by an incentive memory. This 
provides a simple “algorithmic level” architecture within which 
collaboration is structurally determined through the selection-
evaluation-execution of simple actions or action sequences and 
is amenable in computational terms to hierarchical 
reinforcement learning.

Perhaps for this reason, several computational accounts appear, 
superficially at least, to have similar features to the hierarchical 
account. For example, one collaborative view, Dyna (Sutton, 
1991; see also Gershman et  al., 2014; Momennejad et  al., 2018), 
proposes that model-based replay can train the model-free system; 
a suggestion that devolves to something like rehearsal or perhaps 
consolidation. An animal simulating or thinking through previous 
choices through the steps of a decision tree could provide 
sufficient instances to enable a model-free system to learn more 
rapidly. This is, however, clearly learning-related collaboration; 
goal-directed and habitual controllers are collaborating in training 
habitual actions, not in the performance of instrumental actions 
generally. Although one could certainly imagine this kind of 
process contributing to the consolidation or chunking of habitual 
sequences of actions, it is not clear how it would function to 
select between the various options subsequently. It could, as 
has been argued (Momennejad et al., 2018), improve goal-directed 
planning, but in that case it remains unclear whether such 
improvement is due to better integration of performance factors 
or improved encoding of task structure.

Another interesting example is that of Cushman and Morris’ 
(2015) habitual goal selection theory, which inverts the 
relationships described here, proposing model-free control over 
hierarchical goal selection. From this perspective, a habit controller 
provides the animal with goals toward which it can plan in 
a goal-directed manner. These ideas are interesting but require 
significant broadening of what is traditionally taken to be  the 
subject matter of habitual control. More typically in the literature 
the goal of a habit is taken to be  a specified motor movement; 
it is not a state of affairs in the world. An animal working 
to change the world to accord with its desires is usually taken 
to be working in a goal-directed manner; its aim is an external 
goal-state and the way in which its actions achieve that state 
is of only secondary importance (e.g., whether the rat presses 
the lever with its paw or its elbow is immaterial to ensuring 
delivery of a food pellet). In many ways, Cushman and Morris’ 
claims have much in common with theories emphasizing the 
function of discriminative cues, such as occasion-setters in 
hierarchical S-(R-O) theories of instrumental action (Rescorla, 
1991). On such views these associations are modulatory; the 
stimulus modulates the selection and performance of specific 
actions in a hierarchical fashion and not as a S-R habit. Within 
the hierarchical-cybernetic model described here, Cushman and 
Morris’ habitual controller would not lie in the habit memory 
but would modulate action selection in the associative memory 
in line with associative accounts of modulation. Given the 

division we  have drawn between sequential and simple goal-
directed actions, therefore, we suggest that habitual goal selection 
theory applies more directly to goal selection within the goal-
directed system and is not related to habits.

An explicitly performance-based collaborative account has 
also been developed by Keramati et  al. (2016) based on a 
“planning until habit” approach; i.e., a certain amount of goal-
directed planning is undertaken until a habit is selected at 
which point the habit takes over the control of performance. 
This account has potentially a great deal more in common 
with the hierarchical approach because habits are nested within 
the goal-directed planner which selects habits at some point 
in the decision tree to complete the action; essentially a model-
based process uses model-free values at the end of the decision 
tree to complete the action. In contrast, the hierarchical approach 
to habit described above can be implemented using hierarchical 
RL which eschews a description of this process as model-free. 
A similar approach is taken in a recent paper by Miller et  al. 
(2019) who argue that habits are mediated by a value-free 
perseverative process that, following Thorndike’s law of exercise 
and Guthrie’s contiguity account, is determined by repetition 
alone. From this perspective, goal-directed actions are mediated 
by model-free and model-based processes, the former when 
outcomes are represented by their general affective qualities 
and the latter when they are characterized by their specific 
sensory properties. Nevertheless, these forms of action control 
do not collaborate and their interaction remains both competitive 
and mediated by an arbitrator, the latter sensitive to the strength 
of the action-outcome contingency.

It may be  possible within a value-free model of habits to 
develop an account of chunked action sequences in which 
they are mediated by motor stimuli, much as we  have argued 
for the integrated hierarchical-cybernetic model above. However, 
from the value-free perspective, if such sequences are habitual 
they will also be  value-free and there is good evidence to 
suggest that this is not the case. For example, Ostlund et  al. 
(2009) trained rats on two action sequences and found that, 
although the individual responses of which they were composed 
were insensitive to outcome devaluation and contingency 
degradation, these manipulations reduced the performance of 
the specific sequences that delivered the devalued or the 
non-contiguous outcome during these tests. Thus, although 
the individual actions in the sequences appeared habitual, the 
sequences themselves were clearly goal-directed.
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The alignment of habits with model-free reinforcement learning (MF RL) is a success story

for computational models of decision making, and MF RL has been applied to explain

phasic dopamine responses (Schultz et al., 1997), working memory gating (O’Reilly and

Frank, 2006), drug addiction (Redish, 2004), moral intuitions (Crockett, 2013; Cushman,

2013), and more. Yet, the role of MF RL has recently been challenged by an alternate

model—model-based selection of chained action sequences—that produces similar

behavioral and neural patterns. Here, we present two experiments that dissociate MF

RL from this prominent alternative, and present unconfounded empirical support for the

role of MF RL in human decision making. Our results also demonstrate that people are

simultaneously using model-based selection of action sequences, thus demonstrating

two distinct mechanisms of habitual control in a common experimental paradigm. These

findings clarify the nature of habits and help solidify MF RL’s central position in models of

human behavior.

Keywords: reinforcement learning, action sequences, model-free control, habit, decision-making

1. INTRODUCTION

Sometimes people make decisions by carefully considering the likely outcomes of their various
options, but often they just stick with whatever worked in the past. For instance, people sometimes
flexibly plan a new route to work when their old route is under construction, but sometimes they
follow the old route anyway. This fundamental distinction—often cast as "planned" vs. "habitual"
behavior—animates a century of decision-making research and organizes a wide array of human
and non-human behaviors (Dolan and Dayan, 2013).

This distinction is commonly formalized within the “reinforcement learning” (RL) framework
(Sutton and Barto, 1998; Dolan and Dayan, 2013). In this framework, planning is a form of explicit
expected value maximization, or “model-based” reinforcement learning (Daw et al., 2011; Doll
et al., 2015). But what is the appropriate formal description of habitual action?

Currently, two basic accounts compete (Figure 1). The first posits that habits arise from a
representation of historical value, averaging across similar past episodes—a form of model-free
reinforcement learning (MF RL) (Schultz et al., 1997; Glascher et al., 2010; Dolan and Dayan, 2013).
In other words, people repeat actions when they have been rewarded often in the past. For instance,
a person might habitually pull their smart-phone out of their pocket when standing in line because
they have often enjoyed using their phone in similar past circumstances.

In contrast, the second posits that habits arise from the “chunking” of actions into sequences that
often co-occur (Dezfouli and Balleine, 2012, 2013; Dezfouli et al., 2014). For instance, the sequence
of actions that a person uses when tying their shoes co-occurs commonly, and so this sequence has
been “chunked.” Although the chunk itself may be assigned value and controlled by an instrumental
system, the elements within the chunk are not assigned value; a person executing a chunked action
sequence is simply on auto-pilot.
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These models are regarded as competitors because they offer
divergent accounts for many of the same empirical phenomena.
Most pointedly, a recent influential critique from Dezfouli and
Balleine (DB) (Dezfouli and Balleine, 2012, 2013; Dezfouli et al.,
2014) seeks to explain current behavioral and neural evidence for
model-free RL instead in terms of action sequences selected by a

superordinate planning process. In other words, they posit that

model-free RL is not employed by humans; value representations
are employed exclusively during model-based planning, and
habitual action exclusively reflects chunked action sequences.

In theory, however, these proposed mechanisms are not
incompatible—they could operate side-by-side within a single
cognitive architecture. Here, we show that both model-free RL

and chunked action sequences simultaneously contribute to
human decisions. To do this, we modify a popular set of “two-

step” behavioral tasks to isolate unique behavioral signatures

of each. Using the modified tasks, we demonstrate both (a)
model-based control of action sequences (consistent with DB),

but (b) model-free control of single, non-sequenced actions
(inconsistent with DB). Thus, our results indicate two important
and distinct forms of behavioral organization that contribute to
“habitual” (i.e., non-planned) action.

We first review the reinforcement learning framework, and
then present the standard two-step task designed to distinguish
between MF and MB influence on choice. Then, following DB,

we show how (for a particular representation of the task’s reward

structure) model-based selection of chunked action sequences
can produce seemingly MF-like behavior on this standard task.

Finally, we demonstrate that an alternate variant of the task
predicts separate behavioral signatures for model-free control

and action sequences, and we present two experiments in which
people simultaneously exhibit both signatures.

2. TWO MODELS OF HABITUAL ACTION

Reinforcement learning offers a powerful mathematical
framework for characterizing different types of decision
algorithms, and allows us to conceptually and empirically
distinguish between two forms of habitual action: (1) model-free

FIGURE 1 | Relationship between various models. Human behavior in sequential decision making tasks is often modeled as the red squares: a mixture of

model-based and model-free control of single-step actions. Dezfouli and Balleine (2012, 2013) argue that previous empirical results can be explained by the blue

outline: model-based control of single-step actions and action sequences. We report evidence that people simultaneously use both model-based control of action

sequences and model-free control of single-step actions.

RL, and (2) model-based RL with action sequences. In this
section, we first introduce the classic distinction between model-
based and model-free control, and describe an experimental
paradigm, the “two-step task,” which was purported to provide
evidence for model-free control in humans. We then introduce
DB’s “action sequences” critique, and show how a model-based
algorithm with action sequences could produce the patterns of
habitual behavior in the original two-step task.

Before continuing, there are two theoretical issues worth
clarifying. First, throughout this paper, we assume that the
behavior produced by a model-free RL controller maps onto our
intuitive notion of “habitual” behavior. This assumption, though
common (Glascher et al., 2010; Dolan and Dayan, 2013), has
been disputed (Miller et al., 2019). We do not engage with this
important debate here. Our experiments dissociate model-free
RL frommodel-based action sequences, and test whether humans
actually employ model-free RL. If it turns out that model-free RL
is not the right description of true habits, but instead represents a
different type of unplanned behavior, then our results should be
reinterpreted in that light.

Second, throughout this paper, we take “model-free” to
mean a type of decision controller that does not store or use
information about its environment’s “transition function”—i.e.,
what the consequences in the environment will be of taking
an action from a particular state. It is sometimes difficult
to draw a sharp line between model-free and model-based
algorithms; there may be a spectrum between them (Miller
et al., 2019). Nonetheless, there is a clear distinction between
the two ends of the spectrum, with model-free algorithms
relying primarily on caching from experience with minimal
prospection at decision time, andmodel-based algorithms relying
primarily on forward planning over a model of the environment’s
transition function. For our simulations and model-fitting, we
will rely on algorithms considered canonical examples of each
type (Sutton and Barto, 1998).

2.1. Model-Based and Model-Free
Reinforcement Learning
In the RL framework, an agent is in an environment characterized
by the tuple (S,A,T,R), where S is the set of states that the agent
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can be in, A is the set of actions available at each state, T is a
function describing the new state to which an action transitions,
and R is a function describing the reward attained after each
transition (Sutton and Barto, 1998). (For simplicity, we assume
there is no discounting). The agent’s goal is to find a policy—
a function that describes the probability of taking each action
in each state—that maximizes the agent’s long-term reward. To
accomplish this, the agent estimates the sum of expected future
rewards following each action, called the action’s "value," and
then simply chooses actions with high values. We will denote the
value of an action a in state s as Q(s, a).

In model-based RL, the agent learns a representation of the
transition function T′ and reward function R′1. For instance, the
agent might represent that taking action 1 in state 3 has a 40%
chance of leading to state 4—or formally, T′(a = 1, s = 3, s′ =
4) = 0.4. (This is analogous to representing the consequences
of one’s actions—i.e., “turning left at this intersection will lead to
Cedar Street”). Then, the agent might represent that transitioning
to state 4 gives a reward of +10. (This is analogous to
representing the desirability of those consequences—i.e., “Cedar
Street is the fastest way to work”). Before making a choice, a
model-based agent can recursively integrate over the decision
tree implied by these two representations to compute the precise
value of each available action:

QMB(s, a) =
∑

s′

T′(s, a, s′) ∗ (R′(s, a, s′)+max
a′∈A

QMB(s
′, a′)) (1)

where s is the agent’s current state, a is the action under
consideration, and s′ are the possible subsequent states.

In contrast, model-free agents do not represent the transition
or reward functions—i.e., they don’t prospect about the
consequences of their actions. Instead, model-free agents
estimate action values directly from experience, and cache these
value representations so they can be accessed quickly at decision
time. (In other words, instead of learning that “turning left at
this intersection will lead to Cedar street”, a model-free agent
will have simply learned that “turning left at this intersection
is good”). In the popular model-free algorithm Q-learning
(Watkins and Dayan, 1992), for instance, action values are
updated after each choice according to the following formula:

QMF(s, a)← QMF(s, a)+α∗(r+max
a′∈A

QMF(s
′, a′)−QMF(s, a)) (2)

where s is the agent’s current state, a is the chosen action, s′ is
the subsequent state, r is the reward received, and α is a free
parameter controlling the learning rate. By incorporating both
the immediate reward and the next state’s action values into the
update rule, theQ(s, a) value estimates converge to the long-term
expected reward following each action, and Q-learning agents
learn to maximize long-term reward accumulation without
explicitly representing the consequences of their choices.

1In many cases, the reward function is static and given to the RL agent ahead of

time. But, in our experiments (and many others; e.g., Glascher et al., 2010; Kool

et al., 2017), the reward function is constantly changing, and so the agent must

continually learn it.

[Note that, although canonically considered a model-free
algorithm (Sutton and Barto, 1998), Q-learning involves some
minimal type of prospection: It uses value estimates of the actions
a′ in the subsequent state s′ to update its value estimate for
selecting a in s2. As discussed above, the line between model-
free and model-based is not always sharp (Miller et al., 2019).
Nonetheless, like standard model-free algorithms, Q-learning
does not use an explicit model of the transition function T.
Moreover, its lack of forward planning at decision time means
that it produces the standard signature of model-free control
in the task used here, which we describe below. Hence, it is an
appropriate formalization of model-free RL for our purposes].

Model-free RL is a particularly powerful model of habitual
behavior. It captures human and animal behavior in a variety
of paradigms (Glascher et al., 2010; Daw et al., 2011; Dolan
and Dayan, 2013), as well as behavioral deficits in obsessive-
compulsive disorder (Voon et al., 2015), Parkinson’s (Frank et al.,
2004), and drug addiction (Redish, 2004). It elegantly explains
phasic dopamine responses in primate midbrain neurons
(Schultz et al., 1997) and BOLD signal changes in the human
striatum (Glascher et al., 2010). Finally, it forms the basis of
models of other cognitive processes, such as moral judgment
(Crockett, 2013; Cushman, 2013), working memory gating
(O’Reilly and Frank, 2006), goal selection (Cushman and Morris,
2015), and norm compliance (Morris and Cushman, 2018).

2.2. The Two-Step Task
The difference between model-based and model-free control can
be illustrated in a popular sequential decision paradigm called
the "two-step task" (Daw et al., 2011). In the two-step task,
participants go through a series of trials and make choices that
sometimes lead to reward. On each trial, they make two choices
(Figure 2A). The first choice (“Stage 1”) presents two options
(“Left” and “Right”) that we label L1 and R1. These actions
bias probabilistic transitions to two subsequent states (“Stage 2”
states) which are yellow and green, and which are not rewarded.
For instance, L1 might typically lead to a green screen, and R1
to a yellow screen. After transitioning to one of the Stage 2
states, people then make a second choice between two further
options, L2 and R2. These each probabilistically transition to one
of two terminal states: a state with reward, or a state without
reward. These transition probabilities drift over the course of
the experiment. Thus, to maximize earnings, participants must
continually infer which Stage 2 state-action pair has the highest
probability of reward, and make choices in both stages to attain
that outcome.

The two-step task was initially designed to distinguish
betweenmodel-based andmodel-free control of single-step, non-
sequenced actions. The key logic of this experimental design
depends on the probabilistic transitions between Stage 1 and
Stage 2 (Figure 2A). 80% of the time, L1 leads to green and
R1 to yellow. But, 20% of the time, the transitions are reversed.
Participants’ choices following rare transition trials reveal the
distinction between model-free and model-based RL. Imagine
an agent chooses L1, gets a rare transition to yellow, chooses

2We thank a reviewer for raising this point.
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FIGURE 2 | (A,B) The original two-step task, which uses binary reward outcomes. This task is often represented with the structure in (A), in which terminal states are

defined by their reward values (e.g., State 4 gives a reward of 1, State 5 gives a reward of 0), and drifting reward probabilities are encoded as transition probabilities to

those terminal states. However, the task can also be represented with the structure in (B), in which each Stage 2 choice leads to a unique terminal state (choosing L2

in State 2 leads to State 4, and so on). In this alternate representation, drifting reward values are encoded as the value of those “path-based” terminal states. We show

that action sequences can only mimic model-free choice patterns in the reward-based terminal state representation. (C,D) Our modified task, which uses graded

reward outcomes (i.e., –5 through 5). Using graded reward outcomes precludes the reward-based terminal state representation, which would require eleven terminal

states and forty-four transition probabilities (shown in C). Instead, this modified task induces the alternate, path-based terminal state representation (shown in D),

allowing us to deconfound action sequences and model-free control.

R2, and receives a reward. How will that reward affect behavior
on the next trial? A model-based agent will, using its internal
model of the task, increase its value estimate of the Stage 1 action
that typically leads to yellow: R1. [Formally, in Equation 1, the
value of Q(State3,R2) will get applied primarily to Q(State1,R1),
not Q(State1, L1), because the former has a higher probability

of transitioning to State 3]. In contrast, a model-free agent,
who has not represented the transition structure, will increase
its value estimate of the Stage 1 action it chose: L1. In other
words, a model-based agent’s response to reward or no reward
will depend on whether the preceding transition was rare or
common; but a model-free agent will respond by becoming
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more or less likely to repeat its last choice, no matter the
transition type.

This logic leads to clear behavioral predictions. If an agent is
model-based, the probability of repeating a choice will depend on
the interaction between the reward type (reward vs. no reward)
and the transition type (common vs. rare). In contrast, if an agent
is model-free, the probability of repeating a choice will depend
on the reward type only. When humans play the two-step task,
they consistently show a mixture of both approaches (Glascher
et al., 2010; Daw et al., 2011). They show both an interaction
between reward and transition type (signature of MB RL), and
a main effect of reward (signature of MF RL). The interpretation
is that people are sometimes planners (captured by MB RL) and
sometimes habitual (captured by MF RL). This finding is a pillar
of support for the case that humans employ model-free RL in
decision making.

2.3. The Action Sequences Critique
However, as DB show, the behavioral pattern in the original
two-step task can be explained without invoking model-free RL.
Instead, DB argue, people are employing model-based selection
of chained action sequences (Dezfouli and Balleine, 2013). An
action sequence is a series of actions that are precompiled into
a single representation. For instance, a person tying her shoelaces
does not consider each step in the sequence separately; rather,
she simply chooses the abstract option "tie my shoes," and
then executes the sequence of lower-level actions automatically.
Similarly, a person driving to work may not consider each turn
to be a new decision. Rather, she made only one decision, in
which she chose the option "drive to work"; and the sequence of
lower-level actions (e.g., start the car, turn left onto Cedar Street)
followed automatically. Crucially, the action sequence model
posits that the internal structure of the option is not guided by
a value function; this is the key point of divergence with standard
MF RL methods.

It is uncontroversial that people employ action sequences in
some form (Dezfouli and Balleine, 2012, 2013; Dezfouli et al.,
2014). We do not detail all the evidence DB marshal for the
existence of action sequences. Rather, we focus on one key
hypothesis: that action sequences can fully explain away any
apparent role of MF RL in human behavior. Specifically, we focus
on the claim that action sequences can produce the standard
signature of MF RL in the two-step task.

2.3.1. Action Sequences in the Two-Step Task
On the action sequences model, when people make a Stage
1 choice, they employ model-based RL to choose between six
possible options: the two single-step actions L1 and R1, and four
action sequences L1-L2, L1-R2, R2-L1, and R2-L2 (Figure 3A).
If a person chooses a single-step action like L1, she transitions
to either the green screen or yellow screen and then uses that
information to make her Stage 2 choice. But if a person chooses
an action sequence like L1-L2, she selects L1 and then L2,
no matter what screen she transitions to. In other words, she
employs a form of “open-loop control” that is insensitive to
information obtained during execution of the action sequence
(Dezfouli and Balleine, 2012).

To see how the introduction of action sequences could explain
seemingly model-free behavior in the two-step task, imagine
that a participant chooses L1-L2, passes through yellow (rare
transition), and receives a reward. Importantly, “receiving a
reward” in the original paradigm is indicated by transitioning to
a screen with a picture of money on it. This “rewarded” terminal
state is not in any way specific to the path the person took to
it—every unique sequence of actions terminates in one of two
identical states: one that is rewarded, and another that is not.
Thus, an agent who was insensitive to information obtained
during the action sequence could learn from the reinforcement
experience without ever referencing whether it had transitioned
to the yellow or green state. All she would learn is that she
had chosen the sequence L1-L2, and ended up at the screen
with reward. (In figurative terms, when exiting “autopilot,”
she would know if she got money, but not where she had
been). If rewarded, then, on the next trial, when consulting her
internal model of the environment, she would become more
likely to stay with L1-L2, not switch to R1-L2 (left-hand-side
of Figure 3B). In this way, a purely model-based agent could
mimic the signature of MF algorithms, and human behavior on
the original two-step task can be explained without reference
to MF RL.

In this paper, we demonstrate that action sequences can only
produce MF-like behavior for this particular reward structure
with binary outcomes. Then, in two experiments, we modify the
two-step task to induce an alternate reward structure in which
action sequences cannot produce MF-like behavior, and show
that people still exhibit the behavioral signatures ofMF RL. At the
same time, our paradigm also produces unambiguous evidence
that people do employ model-based control of action sequences.
We conclude that people’s habit-like behavior can be produced by
both model-free RL and action sequences.

3. SIMULATIONS: ACTION SEQUENCES
CAN ONLY MIMIC MF-LIKE BEHAVIOR
FOR A PARTICULAR REWARD
STRUCTURE

Although not previously emphasized, the action sequencesmodel
can only produce MF-like behavior in the original two-step
task because the task has a peculiar property: The terminal
reward conditions can plausibly be represented as two unified
reward states (one for a reward, one for no reward), subject to
drifting transition probabilities from each Stage 2 state-action
pair (e.g., green-L2, yellow-R2). In other words, for any given
action sequence that is selected at the beginning of the task,
“reward probability” and “state transition probability” coincide
perfectly—the relevant states are simply defined in terms of
reward. For example, suppose an agent selects and executes the
action sequence L1-L2, and that she then receives a reward.
The result is encoded as an increased probability of L1-L2
transitioning to the “reward” state (i.e., State 4 in Figure 3A).
Or, if she instead chooses R1-L2 and receives a reward, the
result is again encoded as an increased probability of R1-L2
transitioning to the “reward” state. This representational scheme
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FIGURE 3 | Experiment 1 predictions. (A) How an agent using action sequences would represent the two task variants. In the original task with binary outcomes, they

are represented as actions which lead directly, with drifting probabilities, to one of two reward states. In the modified task, they are represented as actions which lead,

with fixed probabilities, to different terminal states with drifting values. (B) Example trials in which an agent chooses the action sequence R1-L2, receives a reward,

and updates its beliefs. In the original task representation, both MF and MB controllers have the same response, allowing the model-based action sequences model

to produce MF-like behavior; in the alternate representation, the MF and MB responses diverge. (C) Simulated probability of Stage 1 choice in the two

representations, as a function of last trial’s reward and transition type. We compared a traditional, flat model with partial MF control (“MF model”) to an action

sequences model with only MB control (“MB AS model”). The action sequence model produces MF-like behavior in the original representation, but not the alternate

one. (Asterisks and “n.s.” refer to the significance of the main effect of reward in each simulation. Error bars are ±1 SEM).

has an important consequence: Model-based selection of action
sequences is insensitive to the distinction between common and
rare transitions.

Consider, however, an alternative representation of the reward
structure (Figure 3B). Here, the current expected reward from
each Stage 2 state-action pair is incorporated into the value of a
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separate terminal state. For example, if the participant chooses
R1-L2, passes through green, and receives a reward, she increases
the value of the terminal state associated with green-L2 (State 4).
Crucially, under this alternate task representation, model-based
selection of action sequences cannot produce MF-like behavior.
The critical test is: After choosing a sequence like R1-L2, passing
through green, and receiving a reward, will she increase the
probability of choosing R1-L2 (the MF-like option) or L1-L2 (the
MB-like option)? Under the alternate representational scheme,
a model-based planner will recognize that L1-L2 is more likely
than R1-L2 to lead to the high-reward terminal state green-L2
(right-hand-side of Figure 3C). Thus, a model-based planner will
not show the signature of model-free control, and cannot explain
MF-like behavior in this version of the two-step task.

Put differently, in order for model-free and model-based
controllers to make different behavioral predictions after a rare
transition, the model-based controller needs to incorporate the
fact that it was a rare transition into its post-trial update. When it
chooses an action sequence, remains on autopilot through Stage
2, and arrives at an undifferentiated terminal state (the original
task representation), the fact that it experienced a rare transition
is not represented (explicitly or implicitly). But in the alternate
task representation, the fact of the rare transition is encoded into
the terminal state itself and, thus, it is naturally encoded in the
MB controller’s post-trial update.

In sum: The two-step task was designed to produce divergent
behavior for model-free and model-based controllers after a rare
transition. DB showed that, in the original task, a model-based
controller with action sequences predicts the MF-like behavioral
response (repeating the same Stage 1 choice after a rewarded
rare transition). We show that this is only true for a “reward-
based terminal state” representation of the task; in a “path-
based terminal state” representation of the task, a MB controller
with action sequences returns to predicting the MB-like, not
MF-like, response3. We now report simulations confirming this
theoretical analysis.

3.1. Methods
We simulated two algorithms: one that employed a weighted
mixture of model-based and model-free control (the “MF

3How does a path-based terminal state representation relate to the “Markov”

assumption in reinforcement learning? Informally, the Markov assumption is that,

after conditioning on the current state, the future is independent of the path taken

to reach the current state. It is a key assumption in RL (Sutton and Barto, 1998).

Path-based representations will still have the Markov property; if necessary, they

can just build the path taken to reach a state into the representation of the state

itself (e.g., if I sprint to my friend’s house, the resulting state representation might

include, not just “at my friend’s house,” but also “exhausted from the sprint”). This

kind of augmented state representation is often necessary for complex applications

of reinforcement learning (Sutton and Barto, 1998). However, in the tasks we use to

induce the path-based representation, that kind of augmented state representation

is actually not needed, because the different terminal states (States 4–7, Figure 2)

are clearly differentiated from each other. Hence, the representation for State 4

does not need to explicitly include the information “I chose L1 and L2 to get here,”

because State 4 already clearly differs from the other terminal states. (Keeping with

our analogy, the terminal states are more akin to different friends’ houses). We still

refer to this as a “path-based” terminal state representation only to emphasize that,

unlike in the reward-based representation, the terminal states resulting from each

Stage 2 choice path are different.

model”), and one that employed only model-based control
but included action sequences (the “MB AS model”). In
both algorithms, model-based and model-free Q-values were
computed as described in section II; model-based Q-values4 were
computed by recursively applying Equation (1), while model-free
Q-values were computed via Q-learning (Equation 2). For the
model-free Q-values, we included eligibility traces, with decay
parameter λ. This means that, after participants chose an action
in Stage 2, the reward prediction error was immediately “passed
back” to update the Stage 1 action (discounted by λ; see Sutton
and Barto, 1998). (The presence of eligibility traces are critical
for the analysis of the two-step task described above. Without
eligibility traces, a reward on trial t would not immediately
influence Stage 1 choice on trial t + 1; see Daw et al., 2011).

3.1.1. MF Model
In the MF model, agents estimate both model-based and model-
free Q-values for single-step actions; these estimates must be
integrated to ultimately produce a choice. How RL agents should,
and how people do, arbitrate between model-based and model-
free systems is a complex and important topic (Daw et al., 2005;
Kool et al., 2017; Miller et al., 2019). Here, following past work
(e.g., Daw et al., 2011; Cushman and Morris, 2015), we sidestep
this question and assume that the model-based and model-free
Q-values are ultimately combined with a mixture weight ω:

Qcombined(s, a) = ω ∗ QMB(s, a)+ (1− ω) ∗ QMF(s, a)

ω = 1 leads to pure model-based control, and ω = 0 leads to
pure model-free control. This formalization is agnostic between
different interpretations of the actual integration process, such as
agents alternating between model-based and model-free systems
on different trials, or agents estimating both types of Q-values
on each trial and weighting them together. For a discussion of
the distribution of ω values observed in our experiments, see the
trial-level model fitting sections below. (For an in-depth analysis
of the arbitration problem, see Kool et al., 2017).

After combining the model-based and model-free Q-values,
agents chose actions with probability proportional to the
exponent of the combined Q-values (plus a “stay bonus”
capturing the tendency to repeat previous actions5). Formally,
the probability of choosing action a in state s was given by a
softmax function with inverse temperature parameter β , with a
stay bonus ν:

Prob(s, a) =
eβ∗Qcombined(s,a)+ν∗1a=aprev

∑
a′∈A e

β∗Qcombined(s,a
′)+ν∗1a′=aprev

4To compute the model-based Q-values, agents need an estimate of the transition

function. Since participants in the experiments were explicitly told the transition

probabilities and given practice with them, we assumed that participants would

begin the task with an accurate estimate of the transition function. Thus, we gave

agents an accurate model of T. The results do not change if we model agents as

learning the transition probabilities dynamically.
5Note that, although we don’t give it much attention here, some recent work

theorizes that the stay bonus is actually a formalization of habits that is closer to

our intuitive notion of what it means to be “habitual” (Miller et al., 2019).
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We used separate inverse temperature parameters for Stage 1 and
Stage 2 choices. The MF model did not include action sequences.

3.1.2. MB AS Model
The MB AS model differed from the MF model in two ways.
First, it employed only model-based Q-values to select actions
(i.e., ω = 1). Second, it included action sequences. In the MB
AS model, in addition to being able to choose the two single-
step actions in Stage 1, agents could also choose four additional
action sequences: L1-L2, L1-R2, R1-L2, and R1-R2. Agents chose
between all these options via a softmax function over the model-
based Q-values (with a stay bonus). If the agent chose an action
sequence in Stage 1, it executed the Stage 2 action automatically;
if it chose a single-step action, then, at Stage 2, it made a second
choice between the two single-step actions L2 and R2.

When using action sequences, there is a question of when
to update their value estimates: Should an agent update its
value estimate of an action sequence only after having selected
it as an action sequence, or additionally after having chosen
the single-step actions that happen to correspond to the
sequence? Concretely, after choosing the single-step actions
L1 and R2 (without invoking action-sequence control), should
the agent then update the value representation associated
with the action sequence L1-R2? Following Dezfouli and
Balleine (2013), we present results assuming that the agent
does update sequences after choosing their component actions;
this assumption probably better captures how sequences are
“crystallized” in real life (Dezfouli and Balleine, 2012; Dezfouli
et al., 2014). However, all our results are similar if we assume the
agent does not.

3.1.3. Parameter Values
Both models had a learning rate, two inverse temperatures, and a
stay bonus.We used the same parameter distributions as Dezfouli
and Balleine (2013). For each agent, the learning rate was
randomly sampled from Beta(1.1, 1.1); the inverse temperatures
from Gamma(1.2, 5); and the stay bonus from Normal(0, 1). The
MF model had two additional parameters: the mixture weight ω,
which was sampled from Uniform(0, 1), and the eligibility trace
decay parameter λ, which was also sampled from Uniform(0, 1).

We simulated 1,000 agents of each type playing each task
variant (one with a reward-based terminal state representation,
and one with a path-based terminal state representation). All
agents performed 125 trials.

3.1.4. Analysis
Following the logic in section 2, we tested whether each model
produced the signature of model-free control by estimating a
logistic mixed effects models, regressing a dummy variable of
whether they repeated their Stage 1 choice on (a) the last trial’s
transition type (common vs. rare), (b) the last trial’s reward,
and (c) their interaction. The classic signature of model-free
control in this setting is a main effect of last trial’s reward on
Stage 1 choice.

3.2. Results
In the original task representation, both algorithms showed
a main effect of reward on Stage 1 choice (left-hand-side of
Figure 3C; for MF model, p < 0.0001; for MB AS model, p <

0.0001). But in the alternate representation, only the algorithm
with model-free control showed a main effect of reward (right-
hand-side of Figure 3C; for MF model, p < 0.0001; for MB AS
model, p = 0.57).

3.3. Discussion
We simulated two algorithms—one that included model-free
RL, and one that was purely model-based but included action
sequences—and found the result predicted by our analysis. In the
original task with a reward-based terminal state representation,
model-based control of action sequences canmimic the signature
of model-free control; but with a path-based terminal state
representation, model-based control of action sequences cannot
mimic model-free control. Thus, if people continue to show
MF-like behavior in a version of the two-step task that induces
the alternative representation, it would demonstrate that action
sequences cannot account for all MF-like behavior.

In this simulation, we only reported the patterns of Stage 1
choices. Following past work (Daw et al., 2011; Cushman and
Morris, 2015; Gillan et al., 2016), Stage 1 choice is the key
variable we use to test for an effect of model-free control, and
hence was the focus of this simulation. However, testing for an
effect of model-free control is not our only goal; we also hope
to show that people are simultaneously using action sequences
(in Experiment 1), and to test whether those action sequences
are themselves under model-free or model-based control (in
Experiment 2). For those purposes, we will end up relying on two
other outcome variables: Stage 2 choices, and the reaction times
of Stage 2 choices. If people are employing action sequences, then
their Stage 2 choices and reaction times will exhibit a unique
pattern noted by Dezfouli and Balleine (2013) and described
below in Experiment 1. Hence, Stage 2 choice and RT will
be used in Experiment 1 to test for the presence of action
sequences. Moreover, in the simulations for Experiment 2, we
will show that Stage 2 choice and reaction time can also be used
to distinguish between model-free and model-based control of
action sequences. This logic will be described in section 5.

4. EXPERIMENT 1: DISAMBIGUATING
CONTROL WITH A GRADED REWARD
STRUCTURE

In our first experiment, we adopt a modified version of the
two-step task that induces the “path-based terminal state”
representation. In the original version, the amount of reward
present in each terminal state was constant (e.g., 1 bonus point),
and what drifted throughout the task was each Stage 2 state-
action pair’s probability of transitioning to the reward state vs.
the non-rewarded state. For example, green-L2 might initially
have a 75% chance of giving 1 bonus point, but later it might
only have a 25% chance. This configuration supported the
representation in Figures 2A, 3A, where drifting rewards are
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FIGURE 4 | Experiment 1 results. (For graphical convenience, we bin “last reward” into two categories: positive (“+$”) and negative (“–$”); we do not mean to imply

that people actually represent the rewards this way. All statistical analyses are computed with unbinned reward). (A) Stage 1 choices as a function of last trial’s reward

and transition type. People showed MF-like behavior (main effect of reward), even under the alternate task representation. (B) Histogram of best-fit mixture weights ω

across subjects. People showed substantial model-free control. (C) Stage 2 choices as a function of last trial’s reward and this trial’s Stage 1 choice (on trials with a

rare transition, following trials with a common transition). People’s decisions to repeat their Stage 2 choices were more correlated with their decisions to repeat their

Stage 1 choices following a reward—a unique behavioral signature of action sequences (Dezfouli and Balleine, 2013). (D) Stage 2 reaction times. People are faster to

repeat their Stage 2 action, and this effect is strongest for trials following a reward where they repeated their Stage 1 action. This pattern is another signature of action

sequences. (E) Probability of repeating Stage 1 choice as a function of last trial’s unbinned reward. People are sensitive to the graded nature of the rewards,

suggesting that they are not binning them into “positive”/“negative” categories. (This result is important for ensuring that people are employing a path-based, not

reward-based, representation of the terminal states). All error bars are ±1 SEM; asterisks indicate the significance of the main effect of last trial’s reward (in A), or the

interaction between last trial’s reward and this trial’s Stage 1 choice (in C,D).

encoded as transitions probabilities to terminal states associated
with “reward” or “no reward.”

In our version, rewards could take on a range of point values,
and what drifted was the number of points associated with
each Stage 2 state-action pair (Kool et al., 2016). For example,
green-L2 might initially be worth 3 points, but later it might

be worth -4 points. (Point values were restricted to [–5, 5] and
drifted via a reflecting normal random walk with µ = 0, σ =
1.75). This configuration induces the “path-based terminal state”
representation in Figure 2D. To see why, imagine a person trying
to use the original “reward-based terminal state” representation
in our modified task. The person would have to represent eleven
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separate terminal states (one for each possible point value),
and forty-four terminal transition probabilities (Figure 2C). This
would be a very inefficient representation and so we consider
it unlikely. We further encouraged the path-based terminal
state representation by reformatting the reward screen to clearly
indicate which Stage 2 state-action pair had been chosen.

Thus, in this modified task, we assume that participants
represent the task with path-based terminal states, and thus this
task deconfounds the signatures of action sequences and model-
free control. If, in this task, people still exhibit the behavioral
signature of model-free control—a main effect of reward on
subsequent Stage 1 choice—then it cannot be explained by
model-based selection of action sequences.

Of course, graded rewards are not a new innovation, and have
been used in several past studies (Cushman and Morris, 2015;
Kool et al., 2016). Our contribution is to leverage graded rewards
to deconfound the behavioral signatures of action sequences and
MF RL.We collected new data, rather than reanalyze past studies,
to ensure that the details of the task design were appropriate for
the present question.

4.1. Methods
One hundred and one participants were recruited on Amazon
Mechanical Turk. (We blocked duplicate IP addresses, only
allowed IP addresses from the United States, and only used
workers who had done over 100 previous studies on Turk with
an overall approval rating of at least 95%). All participants gave
informed consent, and the study was approved by Harvard’s
Committee on the Use of Human Subjects.

We used the version of the two-step task described in Kool
et al. (2017), which has a cover story about spaceships to make
the task more understandable. We explained the task in detail
to participants, including explicitly telling them the transition
structure. After being explained the task, participants completed
25 untimed practice trials which did not count toward their
bonus payment. After the practice trials, participants were given a
review of the task. Finally, they completed 125 real trials, in which
each choice had a 2 s time limit.

Following Dezfouli and Balleine (2013), we did not
counterbalance which side of the screen the actions appeared
on; L1 was always on the left, R1 on the right, and so on. This
feature maximizes the potential for participants to employ
action sequences.

Participants were excluded if they completed the instructions
in less than 1 min (suggesting that they did not read carefully);
although the experiment was not pre-registered, this exclusion
criterion was chosen in advance. Five participants were excluded,
leaving 96 for the analyses.

We analyzed people’s Stage 1 choices using logistic mixed
effects models, regressing a dummy variable of whether they
repeated their Stage 1 choice on (a) the last trial’s transition
type (common vs. rare), (b) the last trial’s reward, and (c)
their interaction. We included all random intercepts and
slopes, and computed p-values with Wald z-tests. We estimated
correlations between random effects, except in models with
three-way interaction terms (where we disallowed random
effect correlations to support model convergence). We report

unstandardized regression coefficients as b. (We analyzed
people’s Stage 2 choices similarly).

4.2. Results
4.2.1. Signature of Model-Free RL
The results of Experiment 1 are shown in Figure 4. People
continue to show the signature pattern of MF-like behavior
(Figure 4A). For Stage 1 choice, in addition to the interaction
between last reward and transition type (signature of MB RL;
b = 0.29, z = 12.4, p < 0.0001), there was a main effect of last
reward (signature of MF RL; b = 0.16, z = 8.4, p < 0.0001).
This result provides an example of MF-like behavior that cannot
be explained by action sequences, and is the key finding of
Experiment 1.

4.2.2. Concurrent Evidence for Action Sequences
Although action sequences cannot explain MF-like behavior
in our task, we did find concurrent evidence that people are
employing action sequences in this paradigm. This evidence is
important, because it suggests that our task alteration did not
discourage people from using action sequences; rather, people
seem to employ MF RL and action sequences simultaneously.
(We will also exploit these behavioral signatures in Experiment
2 in order to test for model-based vs. model-free control of
action sequences).

The first piece of evidence for action sequences derives from
logic originally presented by DB (Dezfouli and Balleine, 2013).
Consider a trial in which a person chooses an action sequence,
experiences a common transition, and receives a reward or
punishment. She should be more likely to repeat the sequence
on the following trial if she receives a reward, as opposed to a
punishment6. Moreover, a consequence of her tendency to repeat
the action sequence is that her decisions to repeat Stage 1 and
Stage 2 actions will be correlated: If she repeats the same Stage 1
action, she will be more likely to repeat the same Stage 2 action.
Putting these ideas together, a signature of action sequences is
that repetition of Stage 1 and repetition of Stage 2 actions will be
more correlated following a reward than following a punishment
(simulations in Figure 4C).

This signature, however, is insufficient. There is an alternate
explanation for it: Following a reward, a person using single-step
actions should be more likely to repeat the same actions on the
next trial. Thus, any factors which make her more likely to repeat
her Stage 1 action—e.g., she was paying more attention on that
trial—would make her more likely to repeat her Stage 2 action
also, inducing a correlation.

To remedy this issue, we follow DB and restrict our analysis
to trials in which the current Stage 2 state is different from
the previous Stage 2 state (Dezfouli and Balleine, 2013). For
instance, on the last trial, a person may have chosen R1-L2 and
gone through the yellow state to State 6; but on this trial, the
person may have chosen R1-L2 and, due to a rare transition,
gone through the green state to State 4. If the correlation between

6This analysis is restricted to trials following a common transition, to avoid

questions about model-based vs. model-free control of action sequences; that

question is addressed in Experiment 2. Here, the goal is to demonstrate that people

are using action sequences in some form.
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Stage 1 and Stage 2 actions is due to action sequences, this
restriction won’t matter; people executing an action sequence
are on “autopilot,” and won’t alter their behavior based on the
Stage 2 state. But if the correlation is due to confounding factors
like attention, then this restriction should eliminate the effect: A
reward on the last trial would not influence a single-step agent’s
choice in a different Stage 2 state7.

As in prior work (Dezfouli and Balleine, 2013), people in
our task showed precisely this pattern (interaction b = 0.11,
z = 7.4, p < 0.0001), suggesting that they are indeed using
action sequences (Figure 4C). However, the results in section
4.2.1 indicate that they are not relying on pure model-based
control; there is a model-free influence on their choice. Hence,
it appears that people are using both types of unplanned choice
mechanisms: model-free control and action sequences. (For a
discussion of how often people use each mechanism, see the
section on trial-level model fitting below).

An additional signature of action sequences appears in
participant’s Stage 2 reaction times. While executing a sequence,
people don’t have to make any further decisions (e.g., to compare
the values of alternative actions), and hence should be faster
at selecting actions. This fact, combined with the effect above,
leads to the following prediction. As described above, people
tend to repeat the same sequence on consecutive trials following
a reward. This implies that, on trials where they repeat their
Stage 1 action, people should be faster to select a response in
Stage 2 if they are repeating the same Stage 2 choice—i.e., if they
are following the prescription of the action sequence. (We again
restrict this analysis to trials following a common transition, with
a different Stage 2 state than the previous trial). To test this
prediction, we computed the difference in reaction times between
trials when people repeated their Stage 2 action and trials when
they didn’t, conditioning on (a) whether they received a reward
or punishment last trial, and (b) whether they repeated their
Stage 1 choice. Replicating Dezfouli and Balleine (2013), we find
the predicted interaction: People are faster when repeating their
Stage 2 action, and this effect is strongest on trials following a
reward where people chose the same Stage 1 action (b = 14.9,
t = 5.2, p < 0.0001)8. The interaction is key: The fact that the
boost in reaction time is stronger when participants chose the
same Stage 1 action, and when they received a reward on the
last trial, suggests that the effect is not due to an inherent time
cost of switching Stage 2 actions (which would produce a main
effect where people are always faster to choose the same Stage 2
action). The interaction is a unique signature of action sequences
(Dezfouli and Balleine, 2013). (The raw reaction time data are
presented in Figure A1 in Appendix).

7Moreover, if people are generalizing across Stage 2 states (i.e., blending together

their value estimates for L2 in State 2 and in State 3), then they should exhibit a

main effect of reward on Stage 2 choice—not the predicted interaction between

reward and Stage 1 choice. See Dezfouli and Balleine (2013) for a more thorough

justification for this test.
8For simplicity, we graph these results as a two-way interaction on the difference in

reaction time. But, for the analysis, we properly test for a three-way interaction on

the raw reaction times between last trial’s reward, this trial’s Stage 1 choice, and this

trial’s Stage 2 choice. Following DB, we did not apply a log transformation to RTs.

4.2.3. Are People Representing the Rewards as

Graded?
As discussed above, the logic of Experiment 1 depends on
people using the path-based, not reward-based, terminal state
representation (Figure 2D, not Figure 2C). The reward-based
terminal state approach is an implausible representation of a task
with graded rewards. However, it is possible that, even though
the task has graded rewards, people are not representing it that
way; they could be representing the rewards as binary (e.g.,
either positive or negative). This possibility is problematic for
our analysis, because it means that people could still be using the
reward-based terminal state representation.

To demonstrate that people are treating the rewards as graded,
we examined Stage 1 choices after rewards of each point value.
(In this analysis, we focus exclusively on trials following common
transitions). The results are shown in Figure 4E. People are
clearly representing the full range of rewards, and not just
binning them into positive or negative—every increase in point
value is associated with an increase in stay probability. We tested
this statistically by comparing two logistic mixed effects models:
one that predicted Stage 1 choice from last trial’s graded reward
(i.e., the actual point value), and one that predicted choice from
last trial’s binned reward (i.e., either positive or negative). The
former was heavily preferred (AIC of the former model was over
458 less than the AIC of the latter). Thus, the reward-based
terminal state approach remains an implausible representation of
our task9.

4.3. Trial-Level Model Fitting
As an additional analysis, we fit several variants of the model-
free and action sequence models to participant choices at a trial
level, and used Bayesian model selection to adjudicate between
them. We fit five models: one model that did not use sequences,
and four models that used sequences and employed different
elements of MF and MB control (Table 1). For each model, we
first estimated each subject’s maximum a posteriori parameters,
using the same priors as in the simulations and the fmincon
function in MATLAB. To get each subject’s best-fit parameters,
we reran the optimization procedure ten times with randomly
chosen parameter start values and selected the overall best-fitting
values. We then used the Laplace approximation to compute
the marginal likelihood for each subject for each model (Daw,
2011), and used the random-effects procedure of Rigoux et al.
(2014) to estimate protected exceedance probabilities (PXPs)—
i.e., the probability that each model is the most prevalent in
the population.

The results are shown in Table 1. The preferred model used
a mixture of model-free and model-based values to select both
single-step actions and action sequences (PXP = 0.60), although
it was closely followed by the model that did not use action
sequences (but still used a mixture of MF and MB values to
select single-step actions; PXP = 0.40). Analyzing the subject-
level mixture weight ω, we find that subjects’ behavior showed

9Of course, when graphing our results, we treat the rewards as binary (positive or

negative). But this approach is just for graphical convenience, and does not imply

that people are representing the rewards that way.
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TABLE 1 | Models used in model comparison, and comparison results.

Model Uses

sequences

Control of

single-step

actions

Control of

action

sequences

PXP in

Expt. 1

PXP in

Expt. 2

No

sequences

No Mixture of MF

and MB

N/A 0.40 0

Pure MB Yes MB MB 0 0

Mixture-

actions/

MB-

sequences

Yes Mixture of MF

and MB

MB 0 1

MB-actions/

Mixture-

sequences

Yes MB Mixture of MF

and MB

0 0

Mixture-

actions/

Mixture-

sequences

Yes Mixture of MF

and MB

Mixture of MF

and MB

0.60 0

PXP stands for protected exceedance probabilities (Rigoux et al., 2014).

In Experiment 1, the preferred model used a mixture of model-free and model-based

methods to evaluate both single-step actions and action sequences (although it was

closely followed by a model that omitted action sequences entirely). In Experiment 2, the

preferred model used a mixture of model-free and model-based methods to evaluate

single-step actions, but only model-based methods to evaluate action sequences –

consistent with the behavioral results of Experiment 2.

substantial model-free influence (Figure 4B); the mean weight
was 0.44, and the distribution was peaked near 0 (pure model-
free), with only 16% of subjects showing a weight greater than 0.9.

These results are consistent with our central claim that people
are employing model-free control in this task. On the other
hand, these results are mixed about whether people are using
action sequences. Given the strong behavioral evidence in favor
of action sequences, both in our experiments and past work
(Dezfouli and Balleine, 2013), we think it likely that most subjects
were using them; this inconsistency in the model-fitting suggests
that the behavioral results may provide more reliable tests of our
hypotheses (see Palminteri et al., 2017 for an in-depth argument
in favor of this approach). Nonetheless, we include the model-
fitting results here for completeness. We consider inconsistencies
between the model-fitting and behavioral results in the section 6.

One question that model-fitting can help answer is how
often people employ each choice mechanism. The mean mixture
weight was 0.44. This number could mean different things
depending on the interpretation of action selection. If people are
employing model-free methods on some trials and model-based
methods on others, then a mean ω of 0.44 indicates that people
would on average be employing model-free RL on 56% of trials. If
people are instead averaging model-free and model-based values
together on each trial, then ameanω of 0.44 indicates thatmodel-
free value makes up 56% of the final value estimate. We remain
agnostic between these interpretations (Kool et al., 2017). Either
way, there was substantial between-subject variation in mixture
weights (Figure 4B).

A more difficult question to answer is on what percentage of
trials people are using action sequences. We do not know when
a person used an action sequence, nor it is a parameter explicitly

estimated in the model-fitting procedure (Dezfouli and Balleine,
2013). We leave this question to future research.

4.4. Discussion
We modified the two-step task to induce an alternate reward
representation in which model-based selection of action
sequences could not produce MF-like behavior. In this modified
task, people still showed the same behavioral pattern, including
the signature main effect of reward on Stage 1 choice. This
analysis suggests that people are employing MF RL in some
capacity—even in a task where they are also using action
sequences. Here, action sequences and MF RL seem to be
complements, not competitors.

One potential concern with this experiment is that people
are using a different representation of the task than the one we
assume (Figure 2D). We believe it is implausible that people are
using the reward-based terminal state representation assumed
by Dezfouli and Balleine (2013) (Figure 2C); however, there
is another representation that could be problematic for our
analysis. Specifically, people might be collapsing States 4–7 into
one undifferentiated terminal state, with the rewards encoded
into the preceding actions—e.g., the reward in State 4 might
actually be encoded as the reward from choosing L2 in State
2, with the terminal state ignored. This representation would
be problematic for our analysis because a model-based action
sequence controller could plausibly, after exiting the action
sequence, be aware of the reward it received without being aware
of the path it took to get that reward. Hence, amodel-based action
sequence controller could ignore the transition type, and mimic
model-free behavior10.

A similar worry goes as follows. Even if people are using our
assumed path-based terminal state representation (Figure 2D),
a MB controller could still in principle select some type of
“extended” action sequence that ignores the identity of the
terminal state. For instance, imagine a MB controller chooses L1-
L2, gets a rare transition in the middle of the sequence, receives
a reward, and ignores the associated terminal state (e.g., State
6) because it is still on “autopilot.” This model-based controller
would credit the reward to the sequence L1-L2 itself, and not
to the and would thus appear model-free. This concern makes it
seem as if a model-based controller can still mimic a model-free
one in our task.

A priori, there is some reason to doubt these concerns. We
clearly differentiated the four terminal states with unique visual
features, which included an image of the last action taken to
reach that terminal state. Moreover, people could not quickly
pass through the screen indicating the terminal state; they were
required to remain on that screen for several seconds. If an
action sequence controller is ignoring all this easily-accessible
information about the transition structure and instead crediting
the reward directly to the action sequence itself, then it is not
obvious that the controller is still model-based. It is showing no
sensitivity to the task’s transition structure, and instead caching
value directly to actions themselves—the definition of a model-
free controller.

10We thank a reviewer for raising this point.
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Nonetheless, we seek direct evidence against this possibility.
Experiment 1 tested for the presence of model-free control, but it
was not designed to test which type of controller was being used
to select action sequences specifically. In the next experiment, we
modify the design to produce a unique behavioral signature of
model-free and model-based control of action sequences. This
design allows us to address the aforementioned concern in the
following way. If people are using an “unresponsive” model-
based controller to select action sequences in a way that ignores
the identity of the terminal state and mimics model-free control
(e.g., through an undifferentiated terminal state representation,
or an “extended” sequence), then we should find evidence of
apparent model-free control of action sequences. Conversely, if
we find no evidence of apparent model-free control of action
sequences, that result would suggest that people do not use an
“unresponsive” model-based controller for this family of tasks—
and hence that the MF-like behavior in Experiment 1 was not
produced by such a controller, and was genuinely model-free11.

To preview our results, we find that people are not exhibiting
apparent model-free control of action sequences; they instead
produce the behavioral signature of accurate model-based
control of action sequences (with knowledge of the differentiated
terminal states). Yet, they still exhibit a signature of some
type of model-free control. Together, this pattern suggests
that people are not exhibiting apparent model-free control
via an unresponsive model-based action sequence controller;
rather, they are exhibiting genuine model-free control of single-
step actions.

5. EXPERIMENT 2: TESTING FOR
MODEL-BASED VS. MODEL-FREE
CONTROL OF ACTION SEQUENCES

Experiment 2 was designed to answer the question:Which type of
controller is being used to select action sequences? In principle,
MB and MF control can be applied to both single-step actions
and action sequences (Figure 1). Models of choice in the two-step
task commonly assume that single-step actions are controlled
by a mixture of model-based and model-free control (green box
in Figure 1; Glascher et al., 2010; Daw et al., 2011; Kool et al.,
2017). But what about action sequences? DB posited that action
sequences would be chosen exclusively by MB control, but their
paradigm did not allow them to test this claim. By using graded
rewards in a modified task structure, we can test for unique
behavioral signatures of model-based and model-free control of
action sequences. We find strong evidence that, as DB predicted,
action sequences are under model-based control. In contrast,
although we find clear evidence that people are employing some
type of model-free control, we find no evidence that they are
using model-free RL to select action sequences. This result helps
address the concern from Experiment 1—that an unresponsive

11Though the model-fitting results in Experiment 1 suggested that people were

showing apparent model-free control of action sequences, Experiment 1 was not

designed to address this question, and we prefer to address the question with

clear behavioral predictions (Palminteri et al., 2017). We review and consider

inconsistencies in the model-fitting results in section 6.

model-based action sequence controller was mimicking model-
free control—by simultaneously demonstrating (a) model-free
control of some type, but (b) no apparent model-free control
of action sequences. More broadly, this result suggests that
two types of habitual mechanisms coexist in this paradigm:
(accurate)model-based selection of action sequences, andmodel-
free control of single-step actions.

5.1. Logic of Experiment 2
The second experiment differed from the first only in the
transition structure between Stages 1 and 2 (Figure 5). As before,
L1 and R1 had an 80% chance of transitioning to the green and
yellow states, respectively. But in Experiment 2, both actions have
a 20% chance of transitioning to a novel red state (State 4). Since
both Stage 1 actions have the same chance of transitioning to
the red state, the value of State 9 should not influence a model-
based controller’s choices in Stage 1; a model-based controller
will integrate out any experience it has in the red state, and be
unaffected by feedback from State 9. This fact, combined with
the effect of action sequences on Stage 2 choices and reaction
times described in Expt. 1, elicits unique behavioral predictions
for model-based and model-free selection of action sequences.

The key to Experiment 2 is that, following trials with
transitions to the red state, a person using model-free control
to select action sequences will show the Stage 2 action sequence
effects, while a person using model-based control to select
sequences will not (Figure 6A; right-hand-side of Figure 6B).
Recall from Experiment 1 that, if a person is using action
sequences, their Stage 2 choices will be predicted by a positive
two-way interaction between last trial’s reward and this trial’s
Stage 1 choice: They will be more likely to repeat their Stage
2 choice after being rewarded last trial and repeating their
Stage 1 choice this trial (Figure 4C). [As described above, this
interaction occurs because people will be most likely to be
repeating an action sequence, and hence to repeat their Stage 2
choice, following reward and repeated Stage 1 choice. The same
is true for their reaction times: They will be fastest to repeat
their Stage 2 choice after being rewarded last trial and repeating
their Stage 1 choice this trial. See Figure 4D. As in Experiment
1, we rule out confounds by restricting this analysis to trials in
which the Stage 2 state differs from the previous trial, which
does not matter for an action sequence controller because it is
insensitive to transitions while executing the sequence (Dezfouli
and Balleine, 2013)]. Experiment 2 combines this fact with a
design ensuring that only a model-free controller will be affected
by reinforcement after a rare transition; a model-based controller
will ignore the reinforcement (Figure 5). In Experiment 2, if
people are using model-free control of action sequences, they will
show the signature of action sequences (the two-way interaction
of last trial’s reward and this trial’s Stage 1 choice on Stage
2 choice/reaction time) after a rare transition; but if they are
using model-based control of action sequences, they won’t
show this signature. (Both controllers will show the signature
after common transitions; left-hand-side of Figure 6B). Hence,
if people exhibit this two-way interaction after both common
and rare transitions, we can infer that their action sequences
are under some degree of model-free control. In contrast, if
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FIGURE 5 | Design of Experiment 2. Rare transitions now lead to a common red state with a single reward outcome. This prevents experience in the red state from

affecting a MB controller’s decisions, allowing us to isolate MF behavior.

people exhibit this two-way interaction in common but not rare
transitions, we can infer that their action sequences are under
model-based control. (And if people exhibit the interaction after
neither type of trial, we would infer that they are not using action
sequences at all). These effects are summarized in Table 2.

Note that, if people are using model-based control of action
sequences, we can go one step further in our analysis. As
just discussed, we predict that in this case people would show
the two-way interaction after common transitions but not rare
transitions. Statistically, this means that they would show a
significant two-way interaction after common transitions, a null
effect for the interaction after rare transitions—and, critically,
a significant three-way interaction when including common vs.
rare transition as an additional regressor. In other words, they
will show a significantly stronger interaction after common
transitions than after rare transitions. This result would provide
positive evidence for model-based control of action sequences
that goes beyond a null effect after rare transitions.

To preview our results, we find precisely the patterns predicted
by model-based control of action sequences: People show the
signature two-way interaction (in both Stage 2 choices and
reaction times) after common transitions but not rare transitions,
and show a three-way interaction when including transition
type as a regressor. This is strong evidence that, at the higher
level of the action hierarchy (i.e., action sequences), people in
this paradigm employ model-based control. At the same time,
we find concurrent evidence that people are employing model-
free control at some point in their decision making. Hence,
our results again suggest that model-free control and action
sequences coexist in people’s decisionmaking process, and that, at

least in this paradigm, model-free control may be more strongly
applied at lower levels of the action hierarchy.

5.2. Simulations
We confirm this analysis by simulating agents performing
the task in Experiment 2 (Figure 6C). We used the same
methods as in the prior simulations, with one change. The
two algorithms now both used a mixture of model-free
and model-based Q-values to assign value to single-
step actions (e.g., L1, R1), and both employed action
sequences (e.g., L2-R2); they differed only in the type of
value assignment to action sequences. One algorithm used
model-free Q-values to assign value to action sequences
(“MF AS”), while the other algorithm used model-based
Q-values (“MB AS”).

The results confirmed our theoretical analysis. After trials with
a common transition, both MF AS and MB AS agents showed
the predicted two-way interaction: Their Stage 2 choices were
predicted by their Stage 1 choices times last trial’s reward (p′s <

0.0001; left-hand-side of Figure 6C). In contrast, after trials
with a rare transition, only MF AS agents showed the two-way
interaction (p < 0.0001); MB AS agents showed no interaction
(p = 0.71; Bayes factor in favor of null is 88; right-hand-side of
Figure 6C). Moreover, when including last trial’s transition type
as a regressor, MB AS agents showed the predicted three-way
interaction (p < 0.0001). These simulation results confirm the
theoretical analysis above, and demonstrate that this paradigm
can detect unique effects of model-free and model-based action
sequence control. Next, we test for these effects empirically.
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FIGURE 6 | Predictions in Experiment 2. (A) The representation of Experiment 2 by an agent using action sequences. All sequences have an 80% chance of leading

to their respective terminal states, and a 20% chance of leading to State 9. This design ensures that a model-based controller’s decisions will not be influenced

by the value of State 9. (B) Two types of critical trials. On the left, we analyze trials following common transitions. Here, both model-free andmodel-based action sequence

(Continued)
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FIGURE 6 | models (MF AS and MB AS) predict an interaction between Stage 1 choice and last trial’s reward on Stage 2 choice. On the right, we analyze trials

following rare transitions. Here, MF AS predicts the same interaction, but MB AS predicts that the interaction should disappear, because the value of State 9 will not

matter for sequence selection. (This analysis is restricted to instances in which Trial 2 has a different Stage 2 state than Trial 1; this restriction rules out confounds

described in Experiment 1). (C) Simulations to confirm the predictions in (B). All error bars are ±1 SEM; asterisks indicate significant interactions.

TABLE 2 | Key predictions in Experiment 2.

Sequence

controller

Predicted pattern after

common transitions

Predicted pattern after rare

transitions

Pure MF, or

mixture of

MF/MB

2-way interactions of

S2 choice ∼ S1 choice

* Last reward,

S2 RT drop ∼ S1 choice

* Last reward

2-way interaction of

S2 choice ∼ S1 choice

* Last reward,

S2 RT drop ∼ S1 choice

* Last reward

Pure MB 2-way interaction of

S2 choice ∼ S1 choice

* Last reward,

S2 RT drop ∼ S1 choice

* Last reward

No 2-way interactions

No

sequences

No 2-way interactions No 2-way interactions

S1 stands for Stage 1; S2 stands for Stage 2; S2 RT drop indicates the predicted

gain in speed (and hence drop in reaction time) from repeating a Stage 2 choice. If

a person is using model-free control of action sequences, they will show the action

sequences’ signature two-way interactions (Stage 2 choice/RT drop ∼ Stage

1 choice * Last trial’s reward) after both a common and rare transition. But if

a person is using model-based control of action sequences, they will show the interactions

after common but not rare transitions, and hence will show three-way interactions

of Stage 2 choice/RT drop ∼ Stage 1 choice * Last reward * Last

transition type.

5.3. Methods
Three hundred participants were recruited on Amazon
Mechanical Turk, using the same filtering criteria as in
Experiment 1. The task was identical to Experiment 1, except
for the change in the state/transition structure. We excluded 18
participants who finished the instructions in less than 1 min, and
1 participant for whom the study severely glitched.

In the instructions, we emphasized to people that the
transition probabilities to the rare state did not change over
the course of the experiment, and that when a rare transition
happened was completely random with no way to plan for it. To
ensure that participants believed this key part of the experimental
design, we added a question at the end of the experiment: “Did
you believe that, on any given round, the two Stage 1 choices
had the same probability of transitioning to the red state?” (We
also added a second question: “Did you believe that, on any
given round, the two actions in the red state always led to the
same amount of bonus money?” The significance of this belief
is discussed below). We excluded an additional 84 participants
who answered “No” to either of these questions, leaving 197
participants for analysis. Also, at the end of the instructions,
we included three comprehension check questions, asking, for
each Stage 2 state, which of the Stage 1 actions was most
likely to reach it (or whether both actions were equally likely).
Participants generally understood the transition structure: The
percentage of participants giving correct answers for the three
Stage 2 states were (in order): 87, 94, and 95%. If participants
got the comprehension check question wrong, they were told the

correct answer and reminded of the transition structure (but not
excluded). Again, although these results were not pre-registered,
all exclusion criteria were chosen in advance.

As can be seen in Figure 5, both actions in the red state lead
to the same outcome; participants were told this fact explicitly.
This design feature ensured that all action sequences had the
same probability of transitioning to State 9, and that a model-
based controller would not incorporate information from rare-
transition trials into its subsequent Stage 1 choice.

All statistical methods are similar to those in Experiment
1. Bayes factors were computed with a BIC approximation
(Wagenmakers, 2007).

5.4. Results
5.4.1. Evidence for Model-Free RL
First, we conceptually replicate the finding from Experiment
1 that model-free RL influences choice. In this paradigm, the
signature of MF RL is simple (Cushman and Morris, 2015). If
people are usingMF RL, their Stage 1 choice should be influenced
by the reward received on a rare transition; they should be more
likely to repeat their Stage 1 choice after a reward in State 9,
compared to a punishment. But if they are using only model-
based RL (with or without action sequences), their Stage 1 choice
should not be influenced by the value of State 9 (simulations in
Figure 7A).

Indeed, people show the signature of MF RL (Figure 7A).
They are more likely to repeat their Stage 1 choice following
a more positive reinforcement in State 9 (main effect of last
reward; b = 0.20, z = 7.0, p < 0.0001). This result demonstrates
that MF RL influences people’s choice in some way in
this paradigm.

5.4.2. Evidence for Model-Based Selection of Action

Sequences
Second, we turn to the main question of Experiment 2: Does
model-free RL influence people’s choices of action sequences, or
are action sequences controlled primarily by model-based RL?

In this paradigm, people seem to choose action-sequences
primarily through model-based RL (Figure 7B). As predicted
by MB RL, in trials following a rare transition, there is no
interaction on Stage 2 choice between Stage 1 choice and last
reward (interaction term, b = 0.022, z = 1.1, p = 0.27, BFnull =
41). This result suggests that people are not using model-free RL
to select action sequences.

Moreover, we find positive evidence for model-based control
of sequences. Regressing people’s Stage 2 choices on (a) their
Stage 1 choice, (b) last trial’s reward, and (c) last trial’s transition
type, we find the predicted three-way interaction: People show
the signature of action sequences [an interaction between (a) and
(b)] more in trials following a common transition, compared to
trials following a rare transition (Figure 7B; interaction term, b=
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FIGURE 7 | Results of Experiment 2. (A) Evidence for model-free control. After trials with a rare transition, people are more likely to repeat their Stage 1 choice if

rewarded; purely model-based agents (with or without action sequences) do not show this pattern. (B,C) Evidence for model-based control of action sequences.

People show the action sequence signature—a tendency to repeat their Stage 2 choice most often following a reward on the last trial and a repeat of their Stage 1

choice on this trial (i.e., the interaction Stage 2 choice ∼ Stage 1 choice * Last reward)—following a common transition, but not a rare transition. Their

reaction times show a similar pattern. These patterns are predicted by model-based, but not model-free, control of action sequences. All error bars are ±1 SEM;

asterisks indicate a significant main effect of last trial’s reward (in A) or significant interactions between last trial’s reward and this trial’s Stage 1 choice (in B,C).

0.44, z= 10.7, p < 0.0001). This is precisely the pattern predicted
by model-based control of action sequences.

A similar signature of model-based control of action
sequences comes from people’s reaction times in Stage 2. As
described above, if people are using model-based control of
action sequences, then their gain in speed from repeating their
Stage 2 choice should be predicted by the two-way interaction of
their Stage 1 choice and last trial’s reward—but only following
common, not rare, transitions. And indeed, people exhibit
precisely this pattern (Figure 7C): They showed the predicted
interaction after common transitions (b = 48.7, t = 10.8, p <

0.0001), no interaction after rare transitions (b=−7.1, t =−1.1,
p= 0.26—although the Bayes factor was weak, BFnull = 2.5), and
a significant interaction between those two effects when including
transition type as a regressor (b= 55.2, t = 6.8, p < 0.0001)12.

12As in Experiment 1, for readability, we describe and graph the RT

effects with “Stage 2 RT drop from repeating Stage 2 choice” as the

5.5. Trial-Level Model-Fitting
As an additional analysis, we fit the same models from
Experiment 1 to trial-level choices in Experiment 2 (using
identical procedures as before). The preferred model used a
mixture of model-free and model-based methods to evaluate
single-step actions, but only model-based methods to evaluate
action sequences (PXP = 0.999). This result is consistent with
the behavioral results in Experiment 2. (On the other hand, it is

dependent variable. But in our actual analysis, we test the effects with

raw Stage 2 RT as the dependent variable, and Stage 2 choice as an

additional regressor interacting with the others. Hence, if people are using

model-based control of action sequences, they will properly show a three-

way interaction of Stage 2 RT ∼ Stage 1 choice * Last reward

* Stage 2 choice after common but not rare transitions, and hence a four-

way interaction of Stage 2 RT ∼ Stage 1 choice * Last reward

* Stage 2 choice * Last transition type. These interactions are
what we report here.
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inconsistent with the model-fitting result in Experiment 1. We
return to this issue in section 6).

5.6. Discussion
We replicated the finding from Experiment 1 that people are
employing model-free control of some sort. Moreover, we found
evidence that people’s choice of action sequences was under
model-based, and not model-free, control. People’s patterns of
Stage 2 choice qualitatively matched the simulated behavior
of agents using model-based control of action sequences.
Additionally, the best-fitting model used a mixture of model-free
and model-based control to select single-step actions, but only
model-based control to select action sequences.

These results validate the hypothesis of Dezfouli and Balleine
(2013) that action sequences would be under model-based
control. On the other hand, they further reinforce our primary
claim that model-free RL is part of people’s decision making
repertoire, and not explained away by model-based control of
action sequences. In particular, they provided evidence against
the concern raised at the end of Experiment 1: that people
could be using an unresponsive model-based action sequence
controller which mimics model-free control. If that were the
case, we would have seen evidence of apparent model-free
control of action sequences in Experiment 2. Instead, we find
that people select action sequences using an accurate model-
based method, but select single-step actions with some degree of
model-free control.

We do not make the strong claim that people never exhibit
unresponsive model-based control of action sequences, or
genuine model-free control of action sequences. It is difficult to
draw strong conclusions from a null result. Nonetheless, in our
paradigm, model-free control appears to be applied primarily to
lower levels of the action hierarchy. We return to this question
in section 6.

One worry with this experiment is that it depends on people
believing that the two Stage 1 actions had the same probability
of transitioning to the rare state on each trial. If people were
committing a “hot hands” fallacy and believing that a Stage 1
action that produced a rare transition last trial was more likely
to produce one this trial, that mistaken belief could potentially
produce apparent model-free behavior (Gilovich et al., 1985).
We mitigated this risk by repeatedly emphasizing to people that
the transition probabilities did not change from trial to trial,
and that each rare transition was unpredictable and independent
of the others. Moreover, we excluded participants who reported
not believing this fact. Nonetheless, it is possible that this belief
persisted in polluting our data. Future work should rule out this
potential confound more thoroughly.

6. GENERAL DISCUSSION

Our work aligns with many prior studies arguing that some
form of model-free RL is implemented by humans. Model-
free RL has proved a successful model of human and animal
behavior in sequential decision tasks (Dolan and Dayan, 2013),
phasic dopamine responses in primate basal ganglia (Schultz
et al., 1997), fMRI patterns during decision making (Glascher

et al., 2010), and more. We defend this model against a recent
critique (Dezfouli and Balleine, 2012, 2013; Dezfouli et al., 2014)
by providing unconfounded evidence that, in a variant of the
popular two-step task, people do employ model-free RL, and not
just model-based control of chained action sequences.

At the same time, our work provides strong evidence that, in
addition to model-free RL, people indeed employ model-based
control over action sequences. This result suggests that the puzzle
of habits will not be solved by one model; “habits” likely comprise
multiple decision strategies, including both model-free RL and
action sequences.

6.1. Relationship Between Behavioral and
Model-Fitting Results
We presented two types of evidence: one-trial-back behavioral
effects (e.g., the effect of last trial’s reinforcement on this trial’s
choice), and model-fitting results. In general, these methods were
in agreement. In Experiment 1, both methods indicated that
people were employing model-free RL and (generally) action
sequences. In Experiment 2, both methods indicated that people
were usingmodel-free RL to evaluate single-step actions, but only
model-based RL to evaluate action sequences. This concordance
reinforces those claims.

There were, however, two points on which the model-fitting
results were inconsistent. First, in Experiment 1, the model-
fitting suggested that many of the participants were not actually
using action sequences. This is possible, but seems unlikely
in light of our clear behavioral results and the results of past
work (Dezfouli and Balleine, 2012, 2013; Dezfouli et al., 2014).
Second, the preferred model differed between Experiments 1
and 2. In Experiment 2, the preferred model used only model-
based RL to evaluate action sequences, but in Experiment 1 the
preferred model used both model-based and model-free RL to
evaluate them. It is possible that participants in Experiment 1
were actually using more model-free control of action sequences
than in Experiment 2. On the other hand, since it was Experiment
2 that was designed to test for the type of action sequence
controller, the preferred model in Experiment 2 is probably
more informative on this point. In any case, the inconsistency
casts doubt on the reliability of the model-fitting approach for
answering these questions. We believe that our clear patterns of
qualitative behavioral results are stronger evidence for our claims
than the model-fitting results; for a detailed discussion of this
point, see Palminteri et al. (2017).

6.2. Could MF-Like Behavior Be Produced
by Model-Based Algorithms With
Inaccurate Beliefs?
Wepresented evidence formodel-free control in human behavior
that is deconfounded from one potential alternative: model-
based control of action sequences. There are, however, other
model-based algorithms that could mimic model-free control
by having an inaccurate model of the task. For instance,
consider a person in Experiment 1 who believes that rare
transitions lead to unique Stage 2 states—e.g., that a rare
transition from L1 leads to a different state than a common
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transition from R1 (Figure A2A in the Appendix). A model-
based agent with this task model would produce MF-like
behavior because it would be more likely to repeat its Stage
1 choice following both common and rare transitions (since
a reward from a rare transition no longer suggests that the
agent should switch its Stage 1 choice; Figure A2B). Other
examples of inaccurate models that can produce MF-like
behavior are given by da Silva and Hare (2019). In the most
extreme case, MF-like behavior in this task an always be
mimicked by an algorithm that ignores the task instructions
and builds a transition model of the form “repeating behavior
after being rewarded leads to more money at the end of
the experiment.”

There is some reason to doubt that MF-like behavior can be
explained this way, as an “inaccurate model-based” controller.
A key feature of model-free RL is its computational simplicity
(relative to model-based RL). This feature helps makes sense of
why people would exhibit MF-like behavior relatively more when
under cognitive load (Otto et al., 2013), or when the financial
stakes are lower (Kool et al., 2017). These results are more
difficult to explain under an “inaccurate-model-based” account,
since it is not clear that using an inaccurate model of the task is
more computationally efficient. Moreover, there is strong neural
evidence for model-free RL that is difficult to explain under an
inaccurate-model-based account (Schultz et al., 1997; Dolan and
Dayan, 2013).

However, this is an active area of debate (da Silva and
Hare, 2019). Here, we do not rule out all the inaccurate-model-
based alternative accounts of our behavioral results, or provide
definitive evidence for model-free RL. We instead make the more
modest claim that the signature of model-free RL observed here
is not due to model-based control of action sequences.

6.3. At What Level of Abstraction Does
Model-Free RL Operate?
Our results contribute to an ongoing investigation into the scope
of model-free RL. Model-free RL—and habits in general—are
often characterized as applying to relatively concrete actions (e.g.,
a rat pulling a lever, or a human pushing a button). But some
research has suggested that MF RL can also apply to relatively
abstract “actions”, like goal selection (Cushman and Morris,
2015) or working memory gating (O’Reilly and Frank, 2006).

Here, we tackled the question of whether MF RL also applies
to the control of another type of abstract action: action sequences.
We found no evidence that people used model-free RL for action
sequences. Rather, in Experiment 2, we found strong evidence
that people used model-based RL to evaluate sequences. This
result aligns with the predictions of Dezfouli and Balleine (2013)
that action sequences would be under model-based control.

There are two reasons, however, not to draw strong
conclusions from this result. First, it is a null result; it is possible

that in other paradigms, or other experimental settings, people
would have shown evidence of model-free sequence selection.
Second, it is highly likely that some action sequences can be under
model-free control. After all, the actions “pull a lever” or “push a
button” actually comprise manymotor subroutines—so if MF RL
can apply to them, it must apply to sequences of some kind.

Nonetheless, our results raise important questions about when
and how MF RL operates at higher levels of abstraction in the
action hierarchy. This question is ripe for future research.

7. CONCLUSION

Humans exhibit many habit-like patterns of behavior. Our
studies demonstrate one such pattern that is best explained by
model-free RL, and another that is best explained bymodel-based
selection of action sequences. This suggests that action sequences
should be viewed as complements, not alternatives, to MF RL,
and that combining MF RL with other approaches will give us a
fuller understanding of habits.
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A. APPENDIX

FIGURE A1 | Distribution of Stage 2 reaction times, as a function of the previous trial’s transition and reinforcement and the current trial’s Stage 1 choice. All

distributions were roughly unimodal and right-skewed.
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FIGURE A2 | Simulations illustrating how a model-based algorithm with an inaccurate task model could mimic model-free control. (A) The example inaccurate task

model. The algorithm believes that rare transitions lead to unique Stage 2 states. (B) Simulation results for agents using a mixture of an accurate model-based

algorithm and the inaccurate model-based algorithm. These agents produce both an interaction between last trial’s reward and transition type (the classic signature of

model-based control), and a main effect of last trial’s reward (the classic signature of model-free control). Hence, these agents produce MF-like behavior without MF

control. We consider possibilities like these in section 6. (We thank David Melnikoff for suggesting this example).
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Habits are a powerful route to efficiency; the ability to constantly shift between goal-directed 
and habitual strategies, as well as integrate them into behavioral output, is key to optimal 
performance in everyday life. When such ability is impaired, it may lead to loss of control and 
to compulsive behavior. Habits have successfully been induced and investigated in rats using 
methods such as overtraining stimulus-response associations and outcome devaluation, 
respectively. However, such methods have ineffectively measured habits in humans because 
(1) human habits usually involve more complex sequences of actions than in rats and (2) of 
pragmatic impediments posed by the extensive time (weeks or even months), it may take for 
routine habits to develop. We present here a novel behavioral paradigm—a mobile-phone app 
methodology—for inducing and measuring habits in humans during their everyday schedule 
and environment. It assumes that practice is key to achieve automaticity and proficiency and 
that the use of a hierarchical sequence of actions is the best strategy for capturing the cognitive 
mechanisms involved in habit formation (including “chunking”) and consolidation. The task is 
a gamified self-instructed and self-paced app on a mobile phone that enables subjects to learn 
and practice two sequences of finger movements, composed of chords and single presses. 
It involves a step-wise learning procedure in which subjects begin responding to a visual and 
auditory cued sequence by generating responses on the screen using four fingers. Such cues 
progressively disappear throughout 1 month of training, enabling the subject ultimately to 
master the motor skill involved. We present preliminary data for the acquisition of motor 
sequence learning in 29 healthy individuals, each trained over a month period. We demonstrate 
an asymptotic improvement in performance, as well as its automatic nature. We also report 
how people integrate the task into their daily routine, the development of motor precision 
throughout training, and the effect of intermittent reinforcement and reward extinction in habit 
preservation. The findings help to validate this “real world” app for measuring human habits.

Keywords: habit, skill, automaticity, motor sequence learning, extinction, sequence completion times, preparation  
time, routine
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INTRODUCTION

The concept of habit learning has been extensively studied 
across distinct fields of research, using different methodologies 
(for a comprehensive review on habits, see Wood and Rünger, 
2016). Habits are usually defined as automatic responses elicited 
by specific environmental stimuli (including contexts) performed 
autonomously of the goal (e.g., Lin et  al., 2016; Robbins and 
Costa, 2017). Habits have been assumed to require practice 
or repeated training as demonstrated in experimental animals 
(e.g., Adams and Dickinson, 1981) and humans (Tricomi et al., 
2009). However, it has proven to be  surprisingly difficult to 
demonstrate robust habit learning in humans as a function 
of training (de Wit et  al., 2018), possibly for reasons related 
to the time allowed for response preparation prior to execution 
(Hardwick et  al., 2019), the need for much longer periods of 
training for humans than are possible in the laboratory and 
a focus on single actions rather than more complex sequences 
of behavior. Dezfouli and Balleine (2012) have argued that 
“habits are complex actions that reflect the association of a 
number of actions into rapidly executed action sequences.” 
Such action sequences have been understudied, especially given 
the evidence for the “chunking” together of elements of response 
sequences and their dependence on the striatum, a brain 
structure also associated with habit learning and performance 
(Graybiel, 1998; Sakai et  al., 2003). Action sequences may also 
provide proprioceptive and kinesthetic sensory feedback that 
facilitates habit learning via the stimulus-response associations 
occurring as a consequence of the response chain and distal 
to the goal occurring at the end of the sequence. In this 
research, we  aimed to develop a method for investigating 
habitual control of motor response sequences in the real world 
using a very familiar apparatus (the smartphone) over protracted 
training periods in human participants—and we  report here 
a preliminary study aimed at validating a gamified application 
for this purpose.

Previously, self-reported questionnaires have been used to 
investigate aspects of habits distinguishing between routine and 
automatic tendencies in humans (Gardner et  al., 2012; Ersche 
et  al., 2017). These are useful but do depend on self-report 
rather than providing more objective measures of habits.

“Ecological” paradigms have also been used to track “real-
world” habits (Lally et al., 2010; Fournier et al., 2017) assessing, 
among other elements, the “four horsemen of automaticity” 
as defined by Bargh and colleagues: awareness, intention, 
efficiency, and control (Bargh, 1994). Hence, we  incorporated 
measures of automaticity of our response sequences, including 
speed, accuracy, and motor invariance.

Capitalizing on novel technology, we developed a smartphone 
motor sequence application to measure habit formation within 
a more naturalistic setting (at home). Habit strength is 
promoted here by the permanent accessibility of the app 
(given that most people carry their mobile phones everywhere), 
which facilitates training frequency and enables context stability 
since the tactile, visual, and auditory stimuli associated with 
the phone and its operation establishes a strong context for 
all participants regardless of their concurrent circumstances. 

Thus phone-based tasks favor habit formation since as the 
frequency of the behavior increases in a stable context, so 
it increases the strength of the context-behavior association, 
an effect that is crucial for habit development (Verplanken 
and Wood, 2006). Indeed, mobile phones are notorious for 
their elicitation of absent-minded and unintentional use 
patterns which are suggested to be characteristic of automated 
behaviors (Bargh, 1994).

We continuously collected data online, in real time, thus 
enabling measures of progressive learning and of processes 
involved in habit formation such as “caching” (Haith and 
Krakauer, 2018) and “chunking” (Graybiel, 1998). Previous 
studies have shown that practice in itself is insufficient for 
habit development as it requires off-line consolidation 
computations, through longer periods of time (de Wit et  al., 
2018) and sleep (Walker et  al., 2003; Nusbaum et  al., 2018). 
This article presents the method in detail and preliminary 
data, acquired with 29 healthy human volunteers. Specifically, 
we  report data on task engagement and how people integrated 
the task into their daily routine. We  also report objective 
accuracy data and sequence completion times throughout a 
30-day training period in order to measure task-related 
automaticity and motor precision.

The application incorporated attractive sensory features 
in a game-like setting, in which participants earned reward 
points according to their performance (see video for illustration 
in the “Methods” section). This app-based method for 
measuring habits in the real world is based on previous 
findings that have defined training frequency, context stability, 
and reward contingencies as important for increasing habit 
strength (Verplanken and Wood, 2006; Wood and Rünger, 
2016). Previous work in experimental animals (Dickinson 
et  al., 1983) has shown that the schedule of reinforcement 
(or reward) employed affects the speed of habit learning. 
Hence, we  employed both continuous reinforcement (where 
each correct sequence received reward) and a more 
probabilistic schedule of rewards for correct sequences, with 
the hypothesis that the weaker correlation of correct sequences 
with reward would weaken goal-directed behavior in favor 
of habitual learning.

In order to assess the autonomy of habits from goal-directed 
actions behavioral neuroscientists employ goal devaluation 
or contingency degradation strategies as interventions to probe 
habitual control (Dickinson and Weiskrantz, 1985; Tricomi 
et  al., 2009). Although such interventions may unmask habits 
only indirectly by removing goal-directed control (Gillan et al., 
2015; Robbins and Costa, 2017) both rodent and human 
studies using them have successfully shown that well-learned 
action sequences can indeed become habitual and are 
hierarchically organized such that distinct decision-making 
processes may differentially control the initiation and execution 
of sequences (Dezfouli and Balleine, 2013; Garr and Delamater, 
2019). We  further report here the outcome of extinction  
(a form of contingency degradation; Balleine and Dickinson, 
1998), by removing all the reward feedback stimuli and 
therefore determining how performance of the sequence 
was maintained.
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MATERIALS AND METHODS

Participants
Twenty-nine volunteers, recruited from the community via 
advertisements (flyers), participated in the present study (11 
males/18 females, mean age: 39.14  ±  11.79  years). They were 
all in good health, unmedicated, had no history of neurological 
or psychiatric conditions, and were also free from any substance 
dependence. Two participants who scored above 4 on the Beck 
Depression Scale (Beck et  al., 1961) and higher than 6 on 
the Montgomery-Åsberg Depression Rating Scale (Montgomery 
and Asberg, 1979) were excluded. Only one of our recruited 
participants used to play video games. All participants were 
given a letter of information, gave written informed consent 
prior to participation, in accordance with the Declaration of 
Helsinki, and were financially compensated for their participation 
(£20 in total: £5 incentive each week for keeping their motivation). 
They were told that this research aims at investigating how 
habits are formed, and therefore, we  would need them to 
repeat the task for a longer period (1 month) than in usual 
studies. This study was approved by the East of England–
Cambridge South Research Ethics Committee (16/EE/0465).

Habit Training Task Design
The task consisted of a motor practice program that participants 
committed to pursue daily, for a period of 1 month (see description 
of the task design in Figure 1 and in the following video: https://
youtu.be/XSYrBzD7ZpI).

Using a simple and self-instructed application downloaded 
to their mobile devices, participants learned and practiced two 
sequences of fingers movements, composed of chords (two or 
three simultaneous finger presses) and single presses (one finger 
only). Each sequence comprised six moves, performed using 
four fingers of the dominant hand (index, middle, ring, and 
little finger). Sequence generation was randomized so that each 
participant had their own pair of sequences to practice throughout 
the month. This randomization was conducted to rule out 
finger-specific effects at individual sequential positions, as each 
finger will contribute equally to the RTs at each sequential 
position. However, for each sequence, the order of finger 
movements was pseudo-randomly generated such that (1) all 
sequences had three single press moves, two two-finger chord 
moves, and one three-finger chord move and (2) difficult finger 
combinations were avoided, for example, a three-finger chord 
with simultaneous index, middle, and little fingers or index, 
ring, and little fingers. Therefore, despite being different, all 
sequences had a similar level of difficulty.

Participants were instructed to respond swiftly and accurately. 
They were required to keep their fingers very close to the 
keys to minimize amplitude variation and to enable them to 
play quickly. To enable sequence learning and memorization, 
three levels of increased difficulty guided practice. Initially, 
subjects responded to a visually and auditory cued sequence: 
they simply followed lighted keys, also associated with musical 
notes (level 1). These exteroceptive cues were slowly removed 
throughout the practice progression such that level 2 only 
included auditory cues and level 3 contained no cues. Successful 

performance at each stage resulted in progression to the next. 
Unsuccessful performance resulted in titration to the immediately 
preceding stage.

Participants received continuous feedback on their 
performance. Successful trials were followed by a positive ring 
tone and mistakes by a negative ring tone. Every time a mistake 
occurred (irrespective of which move in the sequence they 
were), participants had to restart the sequence in order to 
perform it entirely correctly.

As previously mentioned, all participants had to practice 
two motor sequences, each identified by a specific abstract 
picture. Each sequence was associated with a specific reward 
schedule. In our design, one of the reward schedules was 
continuous reward (points were received for every successful 
trial, as a function of the speed of performance) and the other 
a variable reward schedule (points were randomly received on 
37% of the trials). Calculation of the points was as follows: 
points decreased linearly from 100 to 0 over 1 second; the 
counting started as soon as the app became ready to receive 
the user’s input. This counter reset and restarted counting after 
each move. As soon as the keys were pressed (for each move), 
the counter stopped and registered the points achieved for 
that move. The points received after each sequence was completed 
were the sum of all the points achieved on each move. All 
this within-move counting was done in the background so 
participants only saw the points gained for each sequence once 
they completed it. This system was implemented to promote 
speed: the faster participants played the sequence, the more 
points they gained. If they were too slow, that is, if the key 
press occurred after the counter had reached 0, then no points 
were gathered for that particular move. In the continuous 
reward sequence, participants received the total points acquired 
after each successful trial completed. In the variable reward 
sequence, there was a 63% chance that any points earned on 
a sequence would be set to zero. To compensate for the missing 
points, the earned points provided on this schedule were 
doubled. Therefore, both sequences resulted in similar scores 
by the end of practice. By this point, after 20 sequences had 
been completed (see “Practice Schedule” section below), subjects 
could see the total (cumulative) points achieved throughout 
the practice. While playing, they could also see their current 
total, gathered at a particular moment. To promote motivation, 
feedback was also given across daily practice sessions, so subjects 
could compare their performance across practices and see 
whether they were improving over days.

Practice Schedule
All participants were presented with a calendar schedule and 
were asked to practice both sequences daily (Figure  1B). They 
were instructed to practice as many times as they wish, whenever 
they wanted during the day and with the sequence order they 
would prefer. However, a minimum of two practice sessions 
per sequence was required every day; each practice comprised 
20 sequences. The instruction was the following: “You can practice 
as many times as you  wish, whenever you  want during your 
day and with the sequence order you  want. Your minimum 
training required per day is 2 rounds of practice for each sequence 
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but since every person has different learning rates, you  are 
responsible for assessing how much you  need to practice in order 
to make sure you  come back for a second session, in a month 
time, mastering the sequences. You  need to know them by heart, 
automatically and quickly!”. Once the minimum practice sessions 
were completed, a short retention speed test of five trials followed, 
to assess that day’s performance. During this short session, 
participants were instructed to repeatedly tap a sequence as 
rapidly as possible while making as few errors as possible. After 
this, participants were asked to rate, on a percentage scale, the 
following two questions: (1) How much did you  enjoy playing 
this sequence? and (2) How confident are you  that you  know 
this sequence by heart? Finally, participants were required to 
engage in a 10 trial-switch test, in which they would practice 
switching between the two sequences in a pseudo-random order. 
The sequence to be played was cued by the respective associated 
picture. Speed and switch tests never received reward feedback 
(only the practice sessions). This sequence of events (practice, 
speed, ratings and switch sessions) happened every day 
(Figure  1B). If subjects would miss a day of practice, they 
would need to catch up on the training the day after, that is, 
they would be  required to do the minimum training for the 
current and previous day. To remove pauses in the training, a 
“dead man” switch procedure was implemented in the app.

Thirty days of practice were required, and all data were 
anonymously collected in real time, through an online server. 
At the 21st day of practice, the reward schedules were 
removed (extinction) to test how autonomous of external 
feedback the response sequence had become. This procedure 
(1) ensured that the response sequence was more dependent 

on interoceptive (proprioceptive and kinesthetic) feedback 
and on the subjects’ internal motivation to continue the 
training and (2) ensured that we  were able to measure and 
train response sequences triggered by their context, which 
persisted without explicit reinforcement.

An orientation session, lasting between 30 and 60  min 
depending on people’s dexterity, was conducted at the Herschel 
Smith Building, Addenbrooke’s Hospital, in Cambridge. During 
this session, the researcher helped the participant to download 
the app to their devices, reviewed the training instructions, 
and discussed how the task works. All participants were 
instructed to practice every day to make sure they could 
perform both sequences automatically and rapidly as they would 
be  assessed in a second session taking place 1 month later. 
This cover story was introduced in preparation for a follow-up 
session including a devaluation strategy, which assessed 
participants’ preferences for habitual sequences over goal-seeking 
sequences. This task manipulation would test the hypothesis 
that the behavioral mechanism underlying the transition from 
a goal-directed to a habitual action is that the action, with 
repetition, acquires the rewarding properties of its outcome, 
which may simply be its own proprioceptive/kinesthetic feedback 
(data to be  reported elsewhere).

Data Analyses
Behavioral output measures included sequence accuracy and 
sequence completion times (learning rates), temporal pattern 
of daily practice, days until habit acquisition, performance as 
function of different reward schedules, effect of reward extinction 
and finger position and timings.

A B

FIGURE 1 | Habit Training Task. (A) App setup and screenshot examples of the task design: (1) sequence selection panel, each sequence identified by an abstract 
picture; (2) panel exemplifying difficulty level 1; (3) panel exemplifying difficulty level 2. (B) Description of the daily practice schedule comprising its components: 
practice, speed and switch tests. Each day subjects performed both sequences in a self-determined order. After a 20-trial practice of each sequence, subjects 
received a speed test where they were instructed to perform the sequence as fast as possible. In a final phase (after concluding the practice of both sequences), they 
were given a switch test, where they were cued by the sequence-associated pictures to switch between the two practiced sequences in a pseudo-random order.
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For more detailed analyses, we  broke down the sequence 
completion times into two components: (1) move preparation 
time: the time period between the last release of the previous 
move and the first press of the current move and (2) move 
performance time: the time period between the first press and 
the last release of each move, representing the duration of 
each move from the time participants press until they release 
the keys (i.e., muscle time).

App data were automatically uploaded to a Cloud-based 
database. Data analysis was performed using custom scripts 
in MATLAB and Python.

RESULTS

Validation of Training and Individual 
Routines
As shown in Figures 2A–D, our participants reliably committed 
to their regular training schedule. They generally fulfilled the 
requirement of practicing consistently both sequences every day 

(Figure  2A). The approximately bimodal distribution observed 
in Figure  2C depicts our participant’s tendency to practice 
mostly during early mornings (~7:00) and evenings (~19:00). 
This tendency was relatively consistent across days (Figure  1B). 
Moreover, on a daily basis, participants typically chose to practice 
at one time point of their day as shown by the anti-correlations 
in app engagement across different daily time periods (Figure 2D). 
In particular, those who chose to practice in the evening tended 
not do it in the morning and vice versa, as indicated by the 
strongest anti-correlation between 8 and 12 am and 4 and 8 pm.

Effects of Extinction
We analyzed the two blocks of practice pre- and post-removal 
of the external rewarding feedback occurring after 21  days 
of training. After extinction, during the practice session, 
there was a significant decrease in performance in terms 
of both increased errors (p  <  0.0001) and longer sequence 
completion times (p  <  0.05) (Figures  3A,E). This effect 
occurred irrespective of the reward feedback schedule 
(continuous versus variable, Figure 3B). Nevertheless, analyses 

A B

C D

FIGURE 2 | App engagement. (A) App responses (i.e., number of touches) per day computed separately for each motor sequence. (B) Probability of app 
responses per hour for each days. (C) App responses per hour in the day. Error bars reflect standard error of the mean across subjects. (D) Correlation matrix of 
app engagements per daily time period (only significant correlations are shown, p < 0.05).
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of subsequent effects of extinction on the switch and speed 
tests (although these had never previously received reward 
feedback) showed that there was a significant performance 
decrement post-extinction during the switch test, only following 
continuous reward feedback training (p < 0.001) (Figure 3D). 
There was however no effect on sequence completion time 
(Figure  3H). There was no effect on post-extinction 
performance during the speed test (Figures 3C,G). In summary, 
participants made significantly more errors after extinction 
in both sequences, irrespective of whether successful sequences 
were previously rewarding in a continuous or variable manner. 
During the switch test, this accuracy effect was only strongly 
observed for the continuous reward. Generally, accuracy 
seemed to be strongly affected by reward extinction (Figure 3, 
top row - number of successful trials) but sequence completion 
times were less sensitive to this manipulation (Figure  3, 
bottom row - sequence completion times).

Sequence Performance
Significant improvements in accuracy (Figure 4A) and normalized 
group-averaged decreases in sequence completion times 
(Figure 4C) throughout training indicate that learning occurred 
as expected. Participants started their training with a mean 
sequence completion of 3,719 ms in successful trials based on 
the first five blocks of practice (referred to as “early training”) 
and completed their training with a mean sequence completion 
time of 2,346 ms calculated using the last five blocks of practice 
(late training). A paired t-test between the mean sequence 
completion time per subject in the early versus late training 

periods was significant at p  <  10−20 (Figure  4D). Accuracy also 
improved significantly (p  <  10−7) from early (mean success 
rate  =  0.46) versus late (mean success rate  =  0.75) training, 
with steep improvements occurring at the beginning of training 
and remaining stable to the end of app engagement (Figure 4B). 
There were no significant differences for either errors or sequence 
completion times as a function of the reward feedback schedule 
(i.e., continuous versus variable). For errors, performance appeared 
to reach an asymptote between blocks 15 and 20. In contrast, 
for sequence completion time, performance continued to improve 
throughout training suggesting that these behavioral measures 
are differentially sensitive to distinct learning processes. Throughout 
training, the sequence completion time of the first trial within 
each block appeared to be  longer than subsequent trials within 
the same block (Figure  4D, dashed lines).

When decomposing the sequence completion time on 
successful trials into preparation (i.e., quantifying the time 
just before a move) and motor-related components (Figure 5A), 
there was an order effect by which the move number inversely 
correlated with the preparation time, consistent with a 
competitive queuing model of action sequence preparation 
(Averbeck et  al., 2002; Rhodes et  al., 2004). That is, as the 
sequence is performed successfully, fewer moves compete for 
motor output, thus resulting in shorter preparation times. 
There was a significantly larger preparation time for the first 
move, as compared with all the remaining moves of the 
sequence (Figure  5A). This time period before the first move 
also includes the time devoted to the sensory processing of 
the input stimuli from the app. The linear decrease in 

A B C D

E F G H

FIGURE 3 | (A-D) Effect of extinction on number of successful trials. (A) Across the three different training sessions (practice, speed, and switch) pre- and post-
extinction. (B) Separately for continuous and variable reward conditions for practice sessions only. (C) Separately for continuous and variable reward conditions for speed 
sessions only. (D) Separately for continuous and variable reward conditions for switch sessions only. (E-H) same as (A-D) but for sequence completion time. ns: p > 0.05; 
*: 0.01 < p <= 0.05; **: 0.001 < p <= 0.01; ***: 0.0001 < p <= 0.001; ****: p <= 0.0001.
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sensorimotor processing before the first move over training 
was in contrast to the exponential decay toward baseline 
observed in the remaining moves. This suggests that qualitatively 
different learning processes are engaged by the brain in order 
to optimize sensory-to-motor and motor-to-motor mappings. 
In correlation analyses (Figure  5B), it was found that move 
preparation times and move motor times were (separately) 
strongly correlated, whereas preparation times and motor times 
were weakly anti-correlated. This suggests that, over learning, 
preparation times and motor times were improved in a consistent 

manner across moves and that the brain may trade-off 
preparation and motor times in order to achieve an efficient 
balance between speed and accuracy. In particular, the anti-
correlation between preparation and motor times on successful 
trials emerged due to trials with both fast preparation and 
fast motor times leading to errors. In summary, despite 
theoretical and empirical dependencies between these two 
components of the RT, there was some degree of independence 
between them as reflected in the relatively lower correlation 
cross-component correlation values.

A B

C D

FIGURE 4 | Performance. (A) Trial success rate (i.e., rate of correct sequences) over practice training. (B) Trial success rate in early versus late blocks of practice. 
Dashed line: late blocks, Continuous line: early blocks. (C) Sequence completion time, normalized within each subject, on successful trials over practice. (D) 
Sequence completion time in successful trials in early versus late blocks of practice. Dashed line: late blocks, Continuous line: early blocks.

BA

FIGURE 5 | Decomposing sequence completion times into preparation and motor related components. (A) Preparation time (time before moves) as a function of 
practice for each move in each sequence averaged across subjects. (B) Correlations between motor (move time) and preparation times.
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Motor Precision
We also assessed how motor precision, as measured by finger 
position variance, varied throughout training. This measure 
was computed using the X and Y pixel coordinates of participants’ 
screen touches (Figure  6). There was a decrease in average 
motor precision throughout training, mainly during the first 
10 blocks of practice (Figure  6B). This decrease was slightly, 
but not significantly, more pronounced in the continuous 
reward condition (p  =  0.040) than in the variable reward one 
(p  =  0.061) (Figure  6C).

DISCUSSION

We have presented an experimental paradigm based on motor 
sequence learning which can be  employed to study, in a 
systematic and controlled way, the building blocks of more 
complex behavioral sequences that make up our everyday real-
world actions. Designed as a smartphone tool, and thus easily 
available to subjects, it enabled for the first time, the induction 
and measurement of habitual behavior in humans during their 
everyday schedule, routines, and environment (in the comfort 
of their homes), while collecting continuously 30  days of real-
time data. Such a naturalistic experimental set-up may perhaps 
be  useful for the future investigation of habits.

The test paradigm is assumed to encompass multiple and 
continuous cycles of model-free and model-based learning 
processes thought to be  required for habit development, which 
include processes of instrumental or operant reinforcement, 
adaptation, plasticity, and other explicit cognitive processes 
(Krakauer and Mazzoni, 2011; Haith and Krakauer, 2013). It 
also assumes that practice is key to achieve automaticity and 
proficiency and that the use of a hierarchical sequence of 
actions is the best strategy for capturing the cognitive mechanisms 
involved in habit formation and consolidation.

This app-based method to measure habits in the real world 
is based on previous literature which has isolated frequency, 
context stability, rewards, and simplicity as important factors 

that promote habit strength (Verplanken and Wood, 2006; 
Wood and Rünger, 2016). Participants perform the task on 
a frequent basis in a similar context (i.e., the phone and 
app), supported by game-related rewards. Our purpose here 
is to present the method in detail and validate it based on 
data in healthy volunteers. Our preliminary analyses attest 
to its successful design and good tolerability. All subjects 
completed the training. After 1 month of training, their speed 
and accuracy greatly improved. They were also capable of 
learning the task and performed it with a pronounced degree 
of automaticity. Participants reported that the task became 
simpler and easier to perform throughout the training, 
corroborating the assumption that perceived complexity of 
a behavior is also an element that influences the extent to 
which automaticity is attained (McCloskey and Johnson, 
2019). In agreement with recent questionnaire methods for 
parsing components of habits (e.g., Ersche et  al., 2017), 
we  observed both routine (evidenced by the anti-correlation 
in app engagement across different daily time periods) and 
automaticity (evidenced by a combination of an asymptotic 
performance and responsiveness in the absence of cues).

Automaticity was measured in terms of three criteria: sequence 
completion times, progressive extinction of learning cues, and 
autonomy from the goal as assessed by extinction. Additionally, 
proficiency was also measured in terms of motor precision. 
The significant increase in finger variance throughout the 
training is also a strong indicator of motor performance 
optimization. According to optimal feedback control theory 
(Todorov and Jordan, 2002), optimal performance is achieved 
by allowing variability in redundant (task-irrelevant) dimensions. 
While still learning, participants tend to be  more precise, 
“freezing” the degrees of freedom of their movements and 
having a fine-tuned and highly accurate sequence of movements 
(Bernstein, 1967; Vereijken et  al., 1992). With training, as the 
skill develops into a fluid level of proficiency, motor variance 
increases because subjects learn that this will not impact 
successful sequence completion and contributes to an improved 
speed-accuracy trade-off (Todorov and Jordan, 2002).

B CA

FIGURE 6 | Motor precision. (A) Distribution of touch locations on the screen (example of one subject). (B) Finger precision variance over practice training. (C) 
Difference in finger variance between early and late training for each reward feedback schedule (presented for the continuous and variable sequences separately).
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In terms of proficiency and automaticity, sequence completion 
times significantly improved throughout training, reaching 
asymptotic performance levels between practice blocks 40 and 
50. The exponential decay in error rates to an asymptote and 
further optimization of the speed/accuracy trade-off is clear 
evidence of learning and skill development. The greater 
improvement in sequence completion time during the initial 
20 blocks corresponds to the “fast learning” mode, typically 
observed during the goal-based acquisition phase mediated by 
the associative striatal regions, in coordination with cerebellum, 
prefrontal, and premotor cortical regions (Hikosaka et al., 2002; 
Hardwick et  al., 2013). The progressive stabilization of the 
sequence completion times during the remaining blocks of 
training likely resembles a shift to an autonomous stage of 
habit development (Hikosaka et al., 1999), hypothetically linked 
to a devolution of control to sensorimotor striatal regions 
(Hikosaka et  al., 1999; Lehericy et  al., 2005), and progressive 
disengagement of cognitive control hubs in the frontal and 
cingulate cortices (Bassett et  al., 2015). The asymptotic 
performance attained with our task indicates that proficiency 
was attained as one criterion of response sequence development. 
Of special note also is the significantly longer sequence completion 
time of the first trial compared with subsequent trials within 
each block that occurred only during the later stages of training 
when asymptotic performance was observed. This may reflect 
the initial retrieval of the memory of the motor program into 
working memory and its subsequent priming on succeeding 
trials. This cognitive mechanism may be an initial step underlying 
the “chunking” process, by which elements of the motor sequence 
are most efficiently ordered into a motor program, well known 
in motor learning research (Graybiel, 1998; Sakai et  al., 2003).

The preservation of this skilled behavior after extinction of 
the external cues, maintaining the same high level speed-
accuracy trade-off, is an additional sign of automaticity and 
habitual control. Our findings are consistent with Hardwick 
et  al. (2019), who also demonstrated that practice influences 
habits by modulating the likelihood of habit expression via 
reducing the average time of movement initiation (Hardwick 
et  al., 2019). We  also found that in later stages of the training, 
our participants’ response preparation times were extremely 
brief and unlikely to enable expression of goal-directed responses.

One test of habitual control effected in this task was extinction, 
involving the omission of explicit reward feedback. The removal 
of rewarding feedback on the 21st day of training mainly affected 
errors. Although there was a small effect on sequence completion 
time (only in the practice condition), this was much less significant, 
possibly indicating that performance had indeed attained a degree 
of autonomy from the goal. This suggests that the motor sequence 
had become habitual in part but still retained some sensitivity 
to goal despite extinction (and hence goal-directed control). Of 
course, this extinction manipulation did not remove all forms 
of motivation from performance because of the degree of intrinsic 
motivation that humans exhibit in such research studies.

Although one could expect different learning patterns as 
consequence of different reward schedules, we  did not observe 
significant effects of the reward feedback schedule (i.e., continuous 
versus variable) on habit development. There was, however, a 

selective effect of reward schedule in performance during the 
switch test. The detrimental effect of extinction on this switch 
test depended on the previous schedule of reward feedback, 
specifically occurring in the continuous condition only. A possible 
explanation for this might be  that pitting two habits against one 
another in an explicit choice situation recruits executive processing, 
hence re-engaging the goal-directed system, which may be  more 
vulnerable to extinction in the continuously rewarded condition 
because the change in reward contingency is more immediate 
and explicit than for the variable schedule. Future studies may 
seek to vary the nature of intermittency of the reward schedule 
by explicitly comparing random ratio versus random interval 
schedules, the latter being associated with greater habitual control 
(Dickinson et  al., 1983), although making such a comparison 
is challenging for response sequences as distinct from single actions.

This study has a few limitations and challenges to consider. 
Its ecological nature, enabling people to conduct the task in 
the comfort of their homes, including it in their everyday 
schedule, routines, and environment and at their own pace, 
partly solves the major problem of the artificial nature of 
previous studies. However, this feature limits the study to its 
behavioral nature, making it more difficult if one wants to 
investigate the neural basis of habit and skill development 
using functional imaging. There were also some technical 
difficulties to deliver the app on android phones, confining 
our recruitment to Apple users, which obviously decreased 
our recruitment pool of subjects. Several iPods were purchased 
for lending to participants in order to facilitate recruitment. 
Additionally, the study required careful monitoring by the 
researchers on a daily basis, to track participants’ commitment, 
gauge motivation, and send reminders when needed. Conducting 
this study with clinical populations might be challenging, given 
that some patients may not be so motivated as healthy volunteers. 
However, this concern has not in fact been the case with 
patients with OCD we  have also begun to recruit, following 
the same procedures. Despite all the technical challenges, which 
also included a continuous update of the online server for 
data collection, such an advanced methodology was worth 
pursuing since it facilitated the acquisition of a large dataset, 
without requiring much effort from our participants.

In conclusion, this article aimed to validate a novel behavioral 
method for measuring motor response sequence habits in the 
real world using a mobile phone app. The analysis provided 
here is preliminary but sufficient to show that proficiency and 
automaticity is attained according to several different criteria. 
When tested in clinical populations, the method may provide 
new insights into the mechanisms underlying abnormal habit 
learning and corticostriatal functioning in psychiatric disorders 
and their putative contributions to compulsive behavior. Ongoing 
research is using this novel app to investigate the neural 
mechanisms of compulsive behavior in patients with OCD. 
More generally, this app-based approach could be  deployed 
in a wide variety of discrete sequential production paradigms 
including dexterity, music, and memory training. It could also 
be  used in the studies of individual differences, for example, 
to investigate whether aspects of the Big 5 predict how quickly 
habit/skill is developed.
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A habit is a regularity in automatic responding to a specific situation. Classical learning
psychology explains the emergence of habits by an extended learning history during
which the response becomes associated to the situation (learning of stimulus-response
associations) as a function of practice (“law of exercise”) and/or reinforcement (“law
of effect”). In this paper, we propose the “law of recency” as another route to habit
acquisition that draws on episodic memory models of automatic response regulation.
According to this account, habitual responding results from (a) storing stimulus-
response episodes in memory, and (b) retrieving these episodes when encountering
the stimulus again. This leads to a reactivation of the response that was bound to
the stimulus (c) even in the absence of extended practice and reinforcement. As a
measure of habit formation, we used a modified color-word contingency learning (CL)
paradigm, in which irrelevant stimulus features (i.e., word meaning) were predictive of
the to-be-executed color categorization response. The paradigm we developed allowed
us to assess effects of global CL and of an instance-based episodic response retrieval
simultaneously within the same experiment. Two experiments revealed robust CL as well
as episodic response retrieval effects. Importantly, these effects were not independent:
Controlling for response retrieval effects eliminated effects of CL, which supports the
claim that habit formation can be mediated by episodic retrieval processes, and that
short-term binding effects are not fundamentally separate from long-term learning
processes. Our findings have theoretical and practical implications regarding (a) models
of long-term learning, and (b) the emergence and change of habitual responding.

Keywords: law of recency, law of exercise, law of effect, habit acquisition, stimulus-response binding, event files,
episodic response retrieval, contingency learning

INTRODUCTION

In the cafeteria, you might notice that you bought some fries for lunch – yet again – instead of the
much healthier salad. After a long day at work, you might find yourself taking the way home to your
old place rather than the new one you recently moved to. Everyone knows situations like these, in
which we behave by mere force of habit, sometimes even against our good intentions. But how did
we acquire these habits? What is the source of habitual behavior? Psychologists have pondered over
the processes underlying habit formation for over a century now.
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Currently, the theoretical terrain on habit acquisition is
dominated by two accounts, based on either the “law of effect” or
the “law of exercise” (for overviews, see, e.g., Wood and Rünger,
2016; Wood, 2017; Miller et al., 2019). Early accounts explained
habit acquisition in terms of operant conditioning (Thorndike,
1898; Hull, 1943). According to Hull (1943), habit strength is
a direct function of the reinforcement history of a particular
response in a specific situation. Whereas responding is initially
based on the trial-and-error principle, the likelihood of showing
a particular response again in a given situation will increase if
the response was rewarded, but will decrease if the response was
punished in the past. This emergence of habits for behaviors that
were reinforced before is called the “law of effect” (Thorndike,
1898). Learning psychology has seen some debates of what counts
a reward or reinforcer, with suggestions ranging from stimuli
that reduce states of deprivation of biological needs and that are
adaptive for survival (Hull, 1943), to more formal definitions
focusing on the transituationally stable quality of a stimulus
to increase the probability of different behaviors of a specific
organism (Meehl, 1950), to opportunities to execute behaviors
that are chosen with high frequency under free-choice conditions
(Premack, 1965). A detailed discussion of these accounts is
beyond the scope of this article, but it is evident that rewards
can also be subtle effects and qualities of the behaviors that are
studied. We will take up this important point again in the General
Discussion (section “What Is a Reward?”).

Even early learning psychology, however, already had another
explanation of habit acquisition that was independent of
reinforcement: According to the “law of exercise,” habits can
emerge as a mere result of repeating the same behavior in
the same situation over and over again (Thorndike, 1898).
Since reinforcement and repetition are typically confounded,
the outcome devaluation paradigm has been used in order to
assess habitual behavior that is independent of reward or valuable
outcomes (Dickinson, 1985). Several studies have shown that
although outcomes have a strong influence on instrumental
behavior, behavior that has been highly overlearned in many
repetitions continues to be shown even in the absence of reward
or after the outcome has lost all its reinforcing qualities. For
instance, the behavior might still be present after having paired
the outcome with shock or after providing so much of the reward
(e.g., food) that the animal is completely satiated, resulting in a
refusal to consume the previously rewarding outcome when it
is available (e.g., Rescorla, 1991; Colwill, 1993). These findings
provide unambiguous evidence that mere repetition of a response
can produce habitual behavior independently of expected reward
or reinforcement. In sum, then, the concept of a habit captures
the fact that behaviors eventually are elicited in a more or less
automatic fashion by situational cues, even in the absence of
rewards and intentions.

The concept of a habit can be broadly defined to reflect
automatic operant behavior that is elicited by certain stimuli
or situations. According to this definition, habitual behavior
is necessarily characterized as being automatic, although
the reverse does not hold: Behaviors can share features of
automaticity, without necessarily reflecting habitual behavior
(e.g., Amodio and Ratner, 2011). For instance, behavior that

is based on instincts or autonomous reflexes (“respondent
behavior”) can operate automatically without being habitual, and
automatic processes without a behavioral component are also not
considered to reflect habits (e.g., automatic semantic activation).
Thus, a crucial feature that characterizes habits on top of their
reflecting features of automaticity is that habits refer to operant
behaviors that result from some kind of learning or experience.

Importantly, this definition describes what a habit is, but it
does not imply specific assumptions regarding its explanation.
That is, a habit can be observed regardless of whether the behavior
was reinforced in a certain situation or whether it was just
executed (repeatedly or just once) in this situation (without
necessarily having been reinforced). Relatedly, the definition
of habitual behavior is mute with regard to its underlying
causes. Habits might reflect associations between situational cues
and responses that will emerge gradually as a consequence of
repeated and/or rewarded pairings, as early learning theories have
assumed. Again, however, alternative conceptions are possible
that explain habitual behavior by automatic memory processes,
without necessarily drawing on the concept of associations.
Whatever the correct theoretical explanation is, characterizing
a behavior as habitual implies that it is assumed to share some
features of automaticity (e.g., goal-independence, efficiency,
speed, unawareness; Bargh, 1994; Moors and De Houwer, 2006),
that it is categorized as operant behavior, and that it is somehow
related to learning/experience.1

The present study proposes an alternative view according to
which habit acquisition can be explained by recent cognitive
accounts of automatic action regulation that draw on episodic
memory models (indeed, this view is also suggested by Wood
and Rünger, 2016). In line with such a perspective, we propose
the “law of recency” as another route to habitual behavior.
According to this instance-based account of habit acquisition,
having executed a behavior in a specific situation increases the
likelihood of executing the same behavior in the same situation
again when it is encountered the next time, even in the absence of
reward and although the behavior was executed only once (i.e.,
in the absence of multiple repetitions). The core focus of our
study is to provide a test of the law of recency, and to dissociate
influences of an instance-based retrieval of the behavior that was
executed during the last encounter with the current situation
from alternative explanations in terms of multiple repetitions
(global contingencies) and reward. Specifically, we investigate
whether habitual behavior resulting from pairings between a
stimulus and a response can be explained in terms of such an

1Researchers in the tradition of the law of exercise have claimed that outcome
devaluation (Adams, 1982) is a necessary criterion for establishing that behavior
is habitual (e.g., Dickinson, 1985; Ostlund and Balleine, 2007). Although we
agree that demonstrating the stability of a behavior against outcome devaluation
is important for establishing that a certain behavior is habitual rather than
instrumental, we do not think that it should be considered to be a necessary
criterion to establish behaviors as habitual. In some cases (e.g., the present study),
behaviors are not systematically linked to any (positive or negative) outcomes in
the first place. If habitual behavior is established in the absence of reinforcement,
the outcome devaluation procedure is not directly applicable (if there is no reward
that is linked to the habitual behavior in question, then it cannot be devalued).
In addition, alternative criteria can be used to establish that the behavior in
question shares features of automaticity (e.g., unawareness, efficiency [resource
independence]), and thus can be established as being habitual.
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episodic retrieval of responses. To provide a pure test of habitual
behavior resulting from previous pairings, we used a paradigm
that does not contain any kind of rewards, thus effectively
ruling out any influence of reinforcement on the emergence of
habits in our study.

It is important to note that our study does not claim to
show that reinforcement is irrelevant for the emergence of
habits. We just want to limit our study to the investigation of
mere repetition effects, without making any claims regarding the
validity of the “law of effect” or its underlying causes. Even if we
fully succeeded in explaining effects of practice on the basis of
episodic response retrieval, this would still leave room for the
possibility of reinforcement having an independent, additional
effect on habit acquisition, which may or may not be mediated
by episodic retrieval.

Episodic Memory Models of Automatic,
Stimulus-Based Action Regulation
The idea of stimulus-response bindings (“event files,” Hommel,
1998) is a central characteristic for stimulus-based action
regulation accounts (Logan, 1988; Hommel et al., 2001;
Rothermund et al., 2005). Accordingly, whenever a response is
executed to a stimulus, their mental codes become integrated,
resulting in episodic stimulus-response bindings that are stored
in memory. Stimulus repetition on a later occasion triggers
retrieval of the response that was bound to the stimulus. This
will facilitate or impede performance, depending on whether
the retrieved response is appropriate or not on the current
trial. To date, a burgeoning amount of findings attests that
storage and retrieval of these episodic stimulus-response bindings
are pervasive principles of action regulation and apply to a
broad scope of stimuli and responses (for an overview, see
Henson et al., 2014).

A crucial difference between stimulus-response bindings and
stimulus-response associations in standard learning paradigms is
that stimuli and responses are typically not correlated in designs
which are used to investigate stimulus-response binding and
retrieval (SRBR) effects. Specifically, SRBR effects are assessed in
a sequential trial design, in which the factors Stimulus Relation
(i.e., does the stimulus repeat or change from trial n-1 to trial n)
and Response Relation (i.e., does the response repeat or change
from trial n-1 to trial n) are orthogonally manipulated. In other
words, there simply is nothing to learn over the course of the
experiment in these tasks, since each word is presented equally
often with each response. Yet, it is an unresolved issue how
SRBR effects relate to learning effects. Although this is a much
debated and discussed topic, empirical findings so far are scarce
and unsystematic (Colzato et al., 2006; Herwig and Waszak, 2012;
Moeller and Frings, 2014, 2017; Schmidt et al., 2016, 2019). Some
of these studies suggest that SRBR effects are only a transient
“by-product” of distributed processing and intentional action
planning but are unrelated to persistent learning effects (Colzato
et al., 2006; Herwig and Waszak, 2012; Moeller and Frings,
2014, 2017). In turn, other studies favor the view that short-term
binding effects and more persistent learning effects are essentially
the same thing, only studied at different time scales (Schmidt

et al., 2019). Hence, one could conceive of SRBR effects as “one
trial learning” that serves as a founding stone for contingent
associations which are stored in memory on a long-term basis.
This reasoning is further supported by recent computational
modeling simulations (Schmidt et al., 2016) which indicate that
both types of effects might result from the same underlying
learning mechanism.

An Episodic Account of Habit Acquisition
According to the present account, habitual responding results
from (a) storing stimulus-response bindings in memory and (b)
retrieving the most recent of these bindings when the stimulus is
re-encountered on a later occasion. This leads to a reactivation
of the response that was bound to the stimulus during the last
occurrence of the stimulus. In other words, habitual responding
can be understood as a result of previous stimulus-response
bindings that emerged over the course of the experiment. First
and foremost, we propose this account – the “law of recency” – as
an explanation for habits that are based on repetition. According
to this account, it is always the most recent instance of the current
stimulus situation that is retrieved on the next occasion, and that
influences responding in the current situation via a retrieval of
the response that was shown during the previous instance. Our
account provides an alternative explanation of repetition effects
that competes with association- or frequency-based accounts
of repetition-based habits that were proposed in the tradition
of the law of exercise (e.g., Miller et al., 2019). The crucial
difference between the two accounts is that according to the law
of recency, it is the most recent episode that drives responding,
whereas according to the law of exercise, the global frequency
or contingency of responding to all previous occurrences of this
situation is the decisive factor. To distinguish between these
accounts, the behavior that was shown during the last occurrence
has to be manipulated independently of the global context in
which this behavior has been shown.2 In the current study, we
will manipulate these two factors independently.

Importantly, and in contrast to existing accounts on habit
formation, stimulus-response bindings can emerge even in the
absence of past reinforcement and hence do not rely on any
behavior-reward correlation. Hence, our account predicts that
habit formation should be possible even though responses are
never reinforced. Importantly, our study is not meant to rule
out any effects of reinforcement on habit acquisition (“law of
effect”), nor do we test whether any such effect is due to episodic
retrieval processes. We just wanted to make sure that the habitual
behavior we studied reflects pure repetition effects, which is why
we studied behavior in the absence of any tangible rewards.

To test the underlying causes of habit formation in the absence
of reinforcement, we used a modified color-word contingency
learning (CL) paradigm (e.g., Schmidt et al., 2007; for a review,
see MacLeod, 2019). In our task, participants classify the color
of printed words (neutral adjectives) on each trial. However,
each word is presented most often in two of four colors (high

2A similar rationale is used in studies investigating the competing influence of local
and global contexts on thought and action (e.g., Meier and Kane, 2013; MacLellan
et al., 2015; Fröber et al., 2018).
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contingency combinations) and less often in the remaining two
colors (low contingency combinations, see Table 1). Although
the word meaning is irrelevant for the color categorization
task, participants learn the contingencies between word stimuli
and color responses. Learning of contingencies served as an
index of habit formation and is reflected in faster and more
accurate performance on high compared with low contingency
combinations (Schmidt et al., 2007; for related work, see Miller,
1987; Carlson and Flowers, 1996).

Deviating from previous research on CL, we chose to study
the effects of comparatively weak and complex contingencies
on behavior. Previous research already showed that participants
produce contingency effects even when unaware of the
contingencies, thus establishing the automatic (i.e., habitual)
nature of behavior that is driven by the CL (Schmidt et al.,
2007). Furthermore, learning in this paradigm is incidental, as
participants are not informed in advance of contingencies and
the words are irrelevant to the main task of color identification.
In our study, we used much weaker contingencies than in the
original paradigm, and we employed more complex rules in
which one stimulus was systematically paired with two instead
of just one response. Through these measures, the contingencies
in our study were more subtle and much harder to detect, and
they could not be translated into simple S→R rules (due to
the dual response pairings), making it even less likely that our
participants would be able to use the contingencies strategically.
By implication, any effect of CL in our study can be taken as
evidence for automatic behavior regulation, thus representing an
index of habitual responding.

The core idea of our study is that habit acquisition that
is based on CL can be explained in terms of an episodic
retrieval of previous stimulus-response episodes (cf. Schmidt
et al., submitted). For high contingency trials, probabilities are
above chance (which is p = 0.25 in a four color choice task) that
the word of the current trial was presented in the same color
also during its last occurrence (in our study, this probability is
p = 0.33 and p = 0.40 for Experiments 1 and 2, respectively),
whereas for low contingency trials, probabilities of word-color
repetitions are lower than chance (p = 0.17 and p = 0.10 for

TABLE 1 | Example for word-color contingency manipulation in Experiments
1 and 2.

Color
responses

Word stimuli

‘warm’ ‘klein’ ‘ganz’ ‘fast’

Exp 1 Red 2 (hc) 2 (hc) 1 (lc) 1 (lc)

Green 2 (hc) 1 (lc) 2 (hc) 1 (lc)

Blue 1 (lc) 2 (hc) 1 (lc) 2 (hc)

Yellow 1 (lc) 1 (lc) 2 (hc) 2 (hc)

Exp 2 Red 4 (hc) 4 (hc) 1 (lc) 1 (lc)

Green 4 (hc) 1 (lc) 4 (hc) 1 (lc)

Blue 1 (lc) 4 (hc) 1 (lc) 4 (hc)

yellow 1 (lc) 1 (lc) 4 (hc) 4 (hc)

Exp, Experiment. Hc, high contingency word-color response combinations; lc, low
contingency word-color response combinations.

Experiments 1 and 2, respectively). By implication, retrieving
the response that was stored together with the word during its
last occurrence will facilitate responding for 33% (Experiment
1) or 40% (Experiment 2) of the high contingency trials, but
for only 17% (Experiment 1) or 10% (Experiment 2) of the
low contingency trials. Likewise, response retrieval of the last
episode in which the word was presented will activate a different
response and will delay responding for 67% (Experiment 1) or
60% (Experiment 2) of the high contingency trials but for 83%
(Experiment 1) or 90% (Experiment 2) of the low contingency
trials. Our study aims to test the hypothesis that retrieving the
response from the last occurrence of the word stimulus drives the
CL effect, and is the underlying mechanism of habit formation.
We predicted that controlling for these differences in retrieving
either the same or a different response should eliminate the global
CL effect (cf. Schmidt et al., 2019).

As a crucial design feature of our study, we aimed to assess
episodic response retrieval effects and CL effects simultaneously,
that is, in the very same experiment. Our study had the following
expectations: First, we predicted to find robust CL effects. Second,
we predicted to find response retrieval effects (reflected in an
effect of response relation regarding the current and previous
occurrence of the word). Third, and most central to our research
aims, we tested whether response retrieval effects can explain
habit formation (i.e., the CL effect). We expected that CL will be
substantially reduced (or even eliminated) as soon as we control
for differences in response retrieval effects. Such a pattern of
results would support the law of recency as an explanation of
habitual behavior, while at same time controlling for (and ruling
out) an alternative explanation in terms of the law of exercise (i.e.,
a global, frequency based account of repetition effects).

EXPERIMENT 1

Method
Participants
Thirty native German-speaking FSU Jena students (18 female;
Mage = 23.03 years; range: 18–30 years) took part in the
experiment. A priori power calculations (G∗Power 3; Faul et al.,
2007) showed that we need at least 27 participants to detect a
medium sized effects (d = 0.5) with sufficient power (1-β ≥ 0.8).
Up to six participants were tested in parallel. Each participant
was seated individually in a small cubicle. Sessions lasted 25 min.
Participants received €2.50 for their participation plus a chocolate
bar or ice cream voucher if they fulfilled criteria for speed
(more than 80% of all reaction times [RT] faster than 1000 ms)
and accuracy (less than 15% errors) in the experimental trials.
In accordance with guidelines of the American Psychological
Association, prior to the study, all participants gave their
explicit consent to take part via pressing the “j” key of the
keyboard (responses to the informed consent were saved for each
participant). The study was canceled before any data collection
started for participants who did not give their consent. An ethics
approval was not required as per applicable institutional and
national guidelines and regulations because no cover-story or
otherwise misleading or suggestive information was conveyed

Frontiers in Psychology | www.frontiersin.org 4 January 2020 | Volume 10 | Article 2927156

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-02927 December 27, 2019 Time: 17:31 # 5

Giesen et al. The Law of Recency

to participants (this procedure is in accordance with the ethical
standards at the Institute of Psychology of the FSU Jena).

Apparatus and Stimuli
The experiment was programed with E-Prime 3.0. Stimuli
were the four neutral monosyllabic German adjectives “warm”
(“warm”), “klein” (“small”), “ganz” (“whole”) and “fast”
(“almost”). Stimuli were presented in Times New Roman font
(16 pts.) on a black background on a 17′′ inch CRT screen.
A response pad, attached to the computer via the parallel port,
served to collect responses. Participants responded by pressing
four colored keys on the response pad with their middle and
index fingers of the left and right hand (key order from left
middle to right middle finger: red, green, blue, yellow). A fifth
key, operated via (left or right) thumb press, was labeled with
“Los” (“go”) and served to start the experiment.

Design
Central to our study, we manipulated the contingency
between word stimuli and color responses: Each of the four
word stimuli appeared in each of the four colors; however,
combinations differed in their frequencies. Specifically, each
word appeared twice as often in two colors (high contingency
combinations) than in the two remaining colors (low contingency
combinations), yielding a contingency ratio of 2:1. Thus,
each word was predictive of two colors/responses (high
contingency combinations) and non-predictive of the other two
colors/responses (low contingency combinations).3

The contingency manipulation resulted in 16 different word-
color combinations. Given that high contingency combinations
were shown twice as often as low contingency combinations,
this amounted to a total of 24 word-color combinations (i.e.,
16 word-color combinations plus 8 “duplicates” resulting from
the 2:1 contingency manipulation, see Table 1). Each word-
color combination was presented as stimulus in trial n-1 and
as stimulus in trial n, resulting in a total of 24∗24 = 576
experimental trials.

As another advantage, the chosen design allowed us to analyze
immediate trial sequences to assess SRBR effects in a systematic
and fully controlled manner. For immediate trial sequences
within each experimental list, we realized a maximally balanced
2 (contingency of present trial n: high vs. low) × 2 (contingency
of preceding trial n-1: high vs. low)× Stimulus Relation between
trial n and trial n-1 (stimulus repetition [SR; 25%] vs. stimulus
change [SC; 75%]) × Response Relation between trial n and trial
n-1 (response repetition [RR; 25%] vs. response change [RC;
75%]) design. Note that trial sequences for the SR-RR cell are
only possible when trial n-1 and trial n both represent high
contingency trials or when both represent low contingency trials
(i.e., when the contingency matches between a trial sequence). Put
differently, if both the stimulus and the response repeat in a given
trial n from the previous trial n-1, then the contingency from the

3Another reason for making each word predictive of two colors was to investigate
stimulus-response binding and retrieval effects for immediate sequences in a
design that is maximally balanced with regard to contingency as well as stimulus-
and response relations. This aspect of our studies, however, was not the core focus
of the current paper.

trial n-1 has to repeat as well. In turn, contingency mismatches
(e.g., high contingency on trial n-1, but low contingency on trial
n, or vice versa) are impossible to create within the SR-RR cell.
Thus, to analyze SRBR effects, only trial sequences with matching
contingencies were regarded.

Procedure
Instructions were given on screen. Participants were informed
that on every trial, a word stimulus would first appear in white
font and then change its color to red, green, blue, or yellow.
Their task was to categorize the color of each word stimulus
by pressing the corresponding key on the response pad. After
reading the instructions, participants worked through 24 practice
trials that were identical to trials in the experimental blocks.
The practice block was repeated if more than 20% errors were
committed. If error rates still exceeded 20% after the third run
of the practice block, the experiment was terminated (however,
this never occurred during data collection). Upon successful
completion of the practice block, the main experiment started,
consisting of 576 experimental plus 1 filler trial (i.e., trial 1,
which had no preceding trial). After 288 trials were completed,
participants were given a small, self-paced break. The first trial
after the break was identical to the last trial before the break
and served as filler. Filler trials were not analyzed. Experimental
trials were presented in a continuous fashion. At the end of the
experiment, participants were rewarded accordingly.

Each trial started with a fixation cross (500 ms), followed
by a white word for a variable duration by randomly selecting
one out of five possible durations (150, 200, 250, 300, or
350 ms) after which the word changed its color until key press.
Erroneous responses elicited the feedback message “Fehler –
reagiere sorgfältiger! Weiter mit ‘Los’ Taste” (“Error – be more
accurate! Continue with ‘go’ key. . .”). Responses slower than
1000 ms elicited the feedback message “Zu langsam – reagiere
schneller! Weiter mit ‘Los’ Taste” (Too slow – respond faster!
Continue with ‘go’ key. . .”). Feedback was displayed in white font
on red background until key press. Then, the next trial started.

Results
Trials with erroneous responses (6.8%) and RT outliers4 (2.6%)
were excluded from all analyses.

Contingency Learning Effects
We compared performance in low contingency (MRT = 534ms;
Merr = 6.7%) with high contingency trials (MRT = 528ms;
Merr = 6.9%). For RTs, this comparison yielded a significant CL
effect of 1low−high = 6 ms, t(29) = 3.13, p = 0.004, dz = 0.57,
BF10 = 9.08. For error rates, the effect was not significant
(1low−high =−0.2%, |t| < 1).

4Probe RT below 250 ms or more than 1.5 interquartile ranges above the third
quartile of the individual RT distribution were regarded as outliers (Tukey, 1977).
Note that results were virtually identical when trials were filtered according to the
“far out” criterion (i.e., exclusion of RTs more than 3 interquartile ranges above
the third quartile of the individual RT distribution) or when sample based RT
distributions were used instead of individual RT distributions.
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Explaining Contingency Learning Effects by
Response Retrieval Effects
We investigated whether response retrieval effects influenced
responding, and whether they can explain CL effects. To this
end, every trial was referenced back to the last prior occurrence
of the current stimulus – effectively, this implies that this
analysis is based on stimulus repetitions (see Figure 1B).
Furthermore, stimulus repetition trials were coded with regard
to two additional factors: First, we coded the relation between
the responses to the word in the current trial as well as during
its last occurrence, which could be the same or different (factor
Previous Response). Second, we coded how distant the last
occurrence was from the present stimulus repetition trial (factor
Distance: immediate vs. non-immediate stimulus repetition).
Distance was coded as a binary factor with “immediate stimulus
repetition” indicating that the present stimulus was repeated
from the immediately preceding trial n-1. In turn, trials in which
the last occurrence of the current word stimulus were further
away (i.e., trials n-2 to n-30) were coded as “non-immediate
stimulus repetition” (see Figure 1B for illustrations). Only last
occurrences in which a correct response was committed were
included. Thus, data were analyzed in a 2 (contingency: high vs.
low) × 2 (previous response: same vs. different) × 2 (distance:
immediate vs. non-immediate stimulus repetition) ANOVA on
mean RTs (the pattern of means is shown in Table 3).

Although we obtained a significant CL effect in our first
analysis (without controlling for SRBR effects, see above),
the main effect of contingency was no longer significant in
the final analysis, F < 1, BF01 = 6.79. Instead, the ANOVA
yielded a main effect of previous response, F(1,29) = 179.96,
p < 0.001, ηp

2 = 0.86, BF10 = 3.817e + 21, indicating that
performance was faster if the current stimulus repetition
required the same previous response (M = 480 ms) compared
with a different previous response (M = 548 ms). This
pattern of findings confirms our hypothesis that controlling
for episodic SRBR effects effectively eliminated the CL
effect in Experiment 1. The main effect of the distance
factor was also significant, F(1,29) = 141.22, p < 0.001,
ηp

2 = 0.83, indicating that performance was generally faster
for immediate stimulus repetitions (M = 497 ms) compared
to trials in which the last occurrence of the same word
stimulus was more distant (M = 531 ms). Main effects were
qualified by a Distance × Previous Response interaction,
F(1,29) = 322.52, p < 0.001, ηp

2 = 0.92. Follow-up tests
showed that response retrieval effects were significantly stronger
for immediate stimulus repetitions (Msameresponse = 432 ms;
Mdifferentresponse = 562 ms; t[29] = 16.53, p < 0.001, dz = 2.78), but
were also significant for stimulus repetitions of more distant trials
(Msameresponse = 528 ms; Mdifferentresponse = 534 ms; t[29] = 1.76,
p = 0.045, one-tailed, dz = 0.32). No other effect was significant
(all Fs < 2.9, all ps ≥ 0.10).

Multi-Level Analyses
We also conducted multi-level analyses on the basis of individual
trials, treating trials as nested within subjects. In these analyses,
CL and response retrieval reflect between factors (on the level of
trials), which allows us to simulate a stepwise regression approach

to test whether entering response retrieval as an additional
predictor in a second step eliminates effects of CL that had been
significant when entered as a single predictor into the regression
equation in step 1. The multi-level analyses also allow us to treat
distance of the last occurrence as a continuous predictor, so we
can calculate at which distance the effect of response retrieval
effectively becomes zero.

A multilevel analysis with contingency (high frequency = 1
vs. low frequency = 2) as the only level 1 predictor, allowing
for random intercepts and slopes, yields a significant CL effect,
β = 6.19, t = 3.15, p = 0.004, replicating the effect of the previous
analysis. Adding Previous Response (same = 1 vs. different = 2),
as an additional level 1 predictor in a second step produced a
highly significant effect for this variable, β = 34.21, t = 9.30,
p < 0.001, and it rendered the effect for the CL variable non-
significant, β = 0.59, t = 0.28, p = 0.78. Effectively, then, although
CL predicts RT when considered in isolation, this effect is fully
explained by response retrieval.

Although we were primarily interested in the main effects of
CL and response retrieval, the multinomial model also allows
us to introduce an interaction term for the two variables
(CL × previous response). Adding the product term in a third
step yields a beta that is positive and significant (t = 2.19,
p = 0.029). This interaction indicates that effects of response
retrieval were slightly stronger for low contingency trials, that
is, responses were slowest for low contingency trials in the
“different response” condition. A plausible explanation for this
asymmetry is that response retrieval may not only be influenced
by the last occurrence of the stimulus but may probably also
sometimes retrieve an earlier episode in which the stimulus was
presented. For low contingency trials in the “different response”
condition, such a retrieval of an earlier episode will retrieve a
different response in 83% of these trials. For high contingency
trials in the different response condition, only 67% of the
previous occurrences of the word contained a different response,
33% of the trials contained an identical response. It is thus
possible that in some high contingency trials in the “different
response” condition, the correct response was retrieved from an
earlier episode (leading to a facilitative effect that counteracted
the delay effect in the “different response” condition), even
though the last occurrence of the word was paired with a
different response.

Another multi-level analysis was used to evaluate the
moderating effect of distance on effects of response retrieval. For
this purpose, we predicted RT with the previous response factor
(pr), distance (d), and their interaction (pr × d). We also added
a squared term for distance (d2) and the interaction of this term
with previous response (pr× d2) to allow for a non-linear decline
of the influence of response retrieval with increasing distance.
The full model yielded significant effects for all predictors (all
p < 0.001). The regression equation is given by the following
set of parameter values: RT = 341 + 105.31pr + 46.72d–2.11d2–
25.43pr × d + 1.15pr × d2. Transforming this equation into
a form that represents the slope of pr as function of d and
d2 gives: RT = 341 + (105.31–25.43d + 1.15d2)∗pr + 46.72d–
2.11d2. Setting the quadratic formula in brackets that represents
the slope for pr to zero and solving for d yields d = 5.52, that
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FIGURE 1 | Schematic trial procedure in Experiments 1 and 2. Note that in the experiments, all stimuli were presented on black background in white font or in the
respective colors (see Table 1). For both figures, we inverted the coloring scheme only for illustrative purposes. Stimuli are not drawn to scale. Trials are classified as
high vs. low contingency trials (for details, see Table 1). Arrows in (A) illustrate different trial types for immediate sequence effects from trial n-1 to trial n to test for
immediate SRBR effects (SR, stimulus repetition; SC, stimulus change; RR, response repetition; RC, response change). Arrows in (B) illustrate trial classification for
the central analyses of interest to explain contingency learning effects by response retrieval effects, i.e., whether a given trial reflected an immediate (solid/blue lines)
vs. non-immediate (dotted/gray lines) stimulus repetition trial (factor Distance) with same or different response (factor Previous Response) compared to the last
occurrence of the stimulus word. See main text for details.
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is, the slope for response retrieval becomes zero at a distance
between 5 and 6 trials.

Stimulus-Response Binding and Retrieval Effects
To test for SRBR effects, we analyzed immediate sequence effects
from trial n-1 to trial n (cf. Figure 1A). In these analyses,
only sequences with matching contingencies were regarded (see
Method section for details). We performed two separate 2× 2× 2
repeated measurement analyses of variance (ANOVA) with the
factors stimulus relation (stimulus repetition vs. stimulus change
from trial n-1 to trial n), response relation (response repetition
vs. response change from trial n-1 to trial n), and type of
prime-probe contingency match (both trial n-1 and trial n high
contingency vs. both low contingency) on trial n performance
(i.e., RTs and error rates; see Table 2 for means).

For RTs, the ANOVA yielded significant main effects of
stimulus relation, F(1,29) = 7.74, p = 0.009, ηp

2 = 0.21, and
response relation, F(1,29) = 174.16, p < 0.001, ηp

2 = 0.86,
indicating that RTs were faster for stimulus repetition
(M = 495 ms) compared with stimulus change trials (M = 505 ms)
and that probe RTs were faster for response repetitions
(M = 444 ms) than for response changes (M = 556 ms). Most
importantly, both effects were qualified by a significant Stimulus
Relation × Response Relation interaction, F(1,29) = 39.62,
p < 0.001, ηp

2 = 0.58, that reflected the typical pattern
of SRBR effects. Follow-up tests showed that compared to
stimulus change from trial n-1 to trial n, stimulus repetition
significantly sped up performance by 1SCRR−SRRR = 29ms,
t(29) = 5.48, p < 0.001, dz = 1.00, for response repetition.
In turn, stimulus repetition (compared with stimulus change
from trial n-1 to n) significantly slowed down performance by
1SCRC−SRRC = −10 ms, t(29) = 2.42, p = 0.022, dz = 0.44, for

response changes. No other effect was significant (all Fs < 1.06,
all ps > 0.30).

For error rates, the same ANOVA yielded only a main effect
of response relation, F(1,29) = 65.81, p < 0.001, ηp

2 = 0.69,
indicating that participants made fewer errors on response
repetition (M = 2.4%) than on response change sequences
(M = 7.4%). No other effect was significant (all Fs < 3.2, all
ps > 0.08).

Discussion
The results of Experiment 1 are clear-cut: First, we obtained a CL
effect, indicating that participants incidentally learned the word-
color response associations over the course of the experiment.
Second, we obtained robust response retrieval effects, reflecting
faster RTs in the current trial when the same response had been
given during the last occurrence of the word stimulus that was
also presented in the current trial, compared to trials when a
different response had been executed during the last occurrence.
Third and most central to our research aims, the CL effect was
effectively eliminated after controlling for effects of response
retrieval. This pattern of findings emerged both for ANOVA
analyses with aggregated data and also in multilevel analyses in
which CL and response retrieval were coded on a trial level.
Importantly, effects of response retrieval were not limited to
the immediately preceding trial, but were found for distances
up to 5–6 trials, ruling out alternative explanations of the effect
in terms of mere response repetition. For immediate stimulus
repetition sequences (distance = 1), effects of response retrieval
are identical to effects of response repetition, until sequences in
which the stimulus changes are used as a baseline. These analyses
replicated the standard pattern of SRBR effects that obtained
in many previous studies (Rothermund et al., 2005; see also

TABLE 2 | Results for SRBR effects (probe RT and error rates) in Experiments 1 and 2.

Probe RT (ms) Probe errors (%)

Type of contingency match Response relation Stimulus relation M SD M SD
trial n-1 → trial n trial n-1 → trial n trial n-1 → trial n

Exp 1 High–high RR SR 432 40 1.8 3.3

SC 456 41 3.9 4.7

RC SR 559 58 7.5 4.1

SC 548 50 8.1 4.8

Low–low RR SR 426 45 1.4 4.2

SC 460 38 2.6 5.3

RC SR 562 60 6.5 9.5

SC 554 49 7.6 4.7

Exp 2 High–high RR SR 409 33 4.2 4.7

SC 452 38 5.5 4.4

RC SR 537 53 9.3 6.0

SC 529 52 8.5 5.6

Low–low RR SR 415 50 3.5 7.0

SC 451 61 7.0 12.6

RC SR 553 77 13.3 19.2

SC 551 54 11.1 11.0

Exp, Experiment. RR, response repetition. RC, response change. SR, stimulus repetition. SC, stimulus change.
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Frings et al., 2007; Giesen and Rothermund, 2014), rendering
explanations of response retrieval effects in terms of mere
response repetition unlikely. Together, findings from Experiment
1 support predictions derived from the law of recency that
episodic retrieval of responses from the most recent occurrence
of the stimulus represents a central process underlying habit
formation (i.e., learning of word-response contingencies). Effects
of global SR contingencies were completely eliminated after
controlling for an influence of the most recent last episode,
which rules out frequency-based explanations (law of exercise)
of habitual responding in the current study.

The CL effect observed in Experiment 1 was smaller than
in previous studies [dz = 0.57, reflecting a medium-sized effect
according to Cohen (1969) compared with effect sizes between
dz = 0.62 up to dz = 1.24, reflecting medium-to-large- to
very-large-sized effects in Schmidt et al., 2007]. In our view,
this is probably due to the fact that Experiment 1 had a
contingency ratio of only 2:1, which is a rather weak contingency
manipulation in and of itself and it is known that the magnitude
of contingency effects is proportional to the contingency (Forrin
and MacLeod, 2018; see also, Schmidt and De Houwer, 2016).
The low contingency was chosen on purpose, since we wanted
to make sure that contingencies went undetected, and thus could
not be applied in a strategic fashion. However, being aware of
the fact that single studies pose the risk of being unreliable
(Cesario, 2014; see also Tversky and Kahneman, 1971) and that
replication is an increasingly important research value (Nosek
et al., 2012), we ran a second experiment with the aim to replicate
our initial findings from Experiment 1, but with a stronger
contingency manipulation (ratio of 4:1) to boost CL effects.
By increasing the contingency we wanted to establish that the
contingency effect itself is strong beyond any reasonable doubt,
so that eliminating the effect by controlling for effects of response
retrieval cannot be attributed to the contingency effect being
unreliable in the first place. Although the contingency that was
chosen in Experiment 2 is stronger than in Experiment 1, we want
to emphasize that it is still much weaker than in previous studies
that already demonstrated contingency effects in the absence of
awareness (Schmidt et al., 2007). Furthermore, Experiment 2
again used contingencies in which one stimulus was predictive
of two different responses, preventing a simple strategic use
of the contingencies for response preparation. Furthermore,
Experiment 2 was preregistered online before any data collection
started (see details below).

EXPERIMENT 2

Method
Participants
Forty native German-speaking FSU Jena students (27 female;
Mage = 23.3 years, range: 18–32 years) took part in the
experiment. We decided to recruit a somewhat larger number
of participants compared to Experiment 1 in order to be able
to detect effects of CL that are even smaller than medium
in size (d = 0.4) with sufficient power (1-β ≥ 0.8). Power
calculations were conducted with G∗Power 3 (Faul et al., 2007).

All participants gave their explicit verbal consent to take part
prior to the study. Session duration and payment of participants
were similar to Experiment 1.

Apparatus, Stimulus, Design, and Procedure
Apparatus, stimuli, design, and procedure were similar to
Experiment 1 except for the following changes. In Experiment
2, we used a stronger contingency manipulation: Each word
appeared four times more often in two colors (high contingency
combinations) than in the two remaining colors (low contingency
combinations, see Table 1), resulting in a contingency ratio
of 4:1. As in Experiment 1, each word was predictive of two
colors/responses (high contingency combinations), only more
strongly in the present experiment, and non-predictive of the
other two colors/responses (low contingency combinations).

The contingency manipulation resulted in 16 different word-
color combinations plus 24 “duplicates” resulting from the 4:1
contingency manipulation, thus amounting to a total of 40 word-
color combinations. To control of immediate sequences, each
word-color combination was then presented as stimulus in trial
n-1 and as stimulus in trial n, yielding a total of 40∗40 = 1600
experimental trials. Since this number of experimental trials
would have resulted in an experiment of unreasonable length, the
total list was always split among a group of three participants,
taking care that the orthogonal variation of stimulus relation
and response relation was maintained for each participant. This
resulted in 535 experimental trials + 1 filler trial per participant.
Procedural details were again similar to Experiment 1, with the
only exception that whenever a timing or response error was
committed, participants had to press the correct response key
(instead of the “go” key) to continue the experiment.

Preregistration
Prior to data collection, we preregistered the exact method,
design, hypotheses, data preparation, and planned data analyses
online at www.aspredicted.org.5

Results
According to the same criteria as in Experiment 1, trials with
erroneous responses (8.1%) and RT outliers (3.0%) were excluded
from all analyses.

Contingency Learning Effects
We compared performance in low contingency (MRT = 517 ms;
Merr = 9.4%) with high contingency trials (MRT = 508 ms;
Merr = 7.7%). These comparisons yielded significant CL effects
for RTs, 1low−high = 9 ms, t(39) = 4.41, p < 0.001, dz = 0.70,
BF10 = 242.99, and also for error rates, 1low−high = 1.6%,
t(39) = 2.83, p = 0.007, dz = 0.45, BF10 = 5.64.

Explaining Contingency Learning Effects by SRBR
Effects
We investigated retrieval effects and whether the CL effect is
reduced or eliminated as soon as we control for these effects,
following the same approach as in Experiment 1. Thus, we

5https://aspredicted.org/blind2.php
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performed a 2 (probe contingency: high vs. low) × 2 (previous
response: same vs. different) × 2 (distance: immediate vs. non-
immediate stimulus repetition) ANOVA on mean RTs (the
pattern of means for this analysis is shown in Table 3).

Importantly, the main effect of contingency was no longer
significant in this analysis, F(1,39) = 1.34, p = 0.254,
ηp

2 = 0.03, BF01 = 7.26. Furthermore, the ANOVA yielded
additional main effects of previous response, F(1,39) = 276.64,
p < 0.001, ηp

2 = 0.88, BF10 = 1.078e + 38, indicating that
performance was faster if the current stimulus repetition trial
required the same previous response (M = 452 ms) compared
with a different previous response (M = 533 ms). These
findings replicate Experiment 1 and show that controlling
for response retrieval effects effectively eliminated the CL
effect also in Experiment 2. There was also a main effect of
distance, F(1,39) = 64.04, p < 0.001, ηp

2 = 0.62, meaning
that performance was faster if the stimulus was repeated
from the immediately preceding trial n-1 (M = 480 ms)
compared with non-immediate stimulus repetitions from more
distant trials (M = 504 ms).6 Both main effects were again
qualified by a significant Distance × Previous Response
interaction, F(1,39) = 198.75, p < 0.001, ηp

2 = 0.84. Follow-
up tests showed that response retrieval effects were stronger
for immediate stimulus repetitions (Msameresponse = 412 ms;
Mdifferentresponse = 548 ms; t[39] = 19.07, p < 0.001, dz = 3.01),

6This main effect supposedly reflects a combination of two things: (a) response
retrieval effects due to the repetition of a word are stronger for short (i.e.,
immediate repetitions) than for larger distances, and (b) benefits of retrieving a
correct response outweigh the costs that are incurred due to retrieval of a different
response (for a discussion, see Giesen and Rothermund, 2016). In sum, this leads
to a facilitating effect of word repetitions on performance that is stronger for
immediate than for distant repetitions.

TABLE 3 | Average RTs (and SDs) for the combinations of contingency (high vs.
low), previous response (same vs. different), and distance (immediate vs. non
immediate stimulus repetition) in Experiments 1 and 2.

RT (ms)

Contingency Distance Previous M SD
response

Exp 1 High Immediate stimulus Same 432 40

repetition Different 560 52

Non-immediate Same 533 46

stimulus repetition Different 533 45

Low Immediate stimulus Same 432 49

repetition Different 564 47

Non-immediate Same 522 39

stimulus repetition Different 536 46

Exp 2 High Immediate stimulus Same 409 33

repetition Different 537 51

Non-immediate Same 500 44

stimulus repetition Different 516 44

Low Immediate stimulus Same 415 50

repetition Different 559 60

Non-immediate Same 482 74

stimulus repetition Different 520 44

Exp, Experiment.

but were still significant for stimulus repetitions of more
distant trials (Msameresponse = 491 ms; Mdifferentresponse = 518 ms;
t[39] = 5.16, p < 0.001, dz = 0.82). Two additional interactions
were significant: First, the Distance × Contingency interaction,
F(1,39) = 11.95, p = 0.001, ηp

2 = 0.24. Follow-up tests revealed
that distance had a stronger facilitating effect for the high
contingency trials (Mimmediate = 473 ms, Mnon-immediate = 508 ms,
t[39] = 12.81, p < 0.001, dz = 2.03) than for the low
contingency trials (Mimmediate = 487 ms, Mnon-immediate = 501 ms,
t[39] = 2.55, p = 0.015, dz = 0.40). Second, the interaction
between Previous Response × Contingency was significant as
well, F(1,39) = 7.79, p = 0.008, ηp

2 = 0.17. Follow-up tests showed
that response retrieval effects were stronger for high contingency
trials (Msameresponse = 454 ms; Mdifferentresponse = 526 ms;
t[39] = 17.76, p < 0.001, dz = 2.81) than for low contingency trials
(Msameresponse = 449 ms; Mdifferentresponse = 539 ms; t[39] = 12.45,
p < 0.001, dz = 1.97).7 No other effect was significant (F < 1,
p > 0.60).

Multi-Level Analyses
Like in the previous experiment, we also conducted multi-level
analyses on the basis of individual trials, treating trials as nested
within subjects. A multilevel analysis with contingency (high
frequency = 1 vs. low frequency = 2) as the only level 1 predictor,
allowing for random intercepts and slopes, yields a significant
CL effect, β = 8.60, t = 4.26, p < 0.001, replicating the effect of
the previous analysis. Adding Previous Response (same = 1 vs.
different = 2), as an additional level 1 predictor in a second step
produced a highly significant effect for this variable, β = 44.52,
t = 15.71, p < 0.001, and it rendered the effect for the CL variable
non-significant, β = 0.33, t = 0.16, p = 0.87. Effectively, then,
although CL predicts RT when considered in isolation, this effect
is fully explained by response retrieval.

As in the previous experiment, the product term
CL × previous response was significant again (t = 7.00,
p < 0.001). Again, this interaction indicates that effects of
response retrieval were slightly stronger for low contingency
trials, that is, responses were slowest for low contingency trials
in the “different response” condition. For a possible explanation
of this interaction effect, see the corresponding paragraph in the
results section of Experiment 1.

Another multi-level analysis was used to evaluate the
moderating effect of distance on effects of response retrieval.
The full model yielded significant effects for all predictors (all
p ≤ 0.001). The regression equation is given by the following
set of parameter values: RT = 299 + 118.22pr + 47.30d–2.26d2–
26.08pr × d + 1.24pr × d2. Transforming this equation into
a form that represents the slope of pr as function of d and

7A possible reason for these additional interactions may be that the asymmetry
of benefits and costs that are due to retrieving the correct response are stronger
for high than for low contingency trials. The correct responses that are retrieved
in the high contingency condition are responses that have often been paired
with this word, whereas the correct responses that are retrieved in the low
contingency condition are responses that have been paired with this word only
rarely. Conversely, the wrong responses that are retrieved in the low contingency
condition are mostly those responses that have frequently been paired with this
word before.

Frontiers in Psychology | www.frontiersin.org 10 January 2020 | Volume 10 | Article 2927162

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-02927 December 27, 2019 Time: 17:31 # 11

Giesen et al. The Law of Recency

d2 gives: RT = 299 + (118.22–26.08d + 1.24d2)∗pr + 47.30d–
2.26d2. Setting the quadratic formula in brackets that represents
the slope for pr to zero and solving for d yields d = 6.61, that
is, the slope for response retrieval becomes zero at a distance
between 6 and 7 trials.

Stimulus-Response Binding and Retrieval Effects
Like in Experiment 1, when analyzing SRBR effects, only trial n-1
to trial n sequences with matching contingencies were regarded.
We performed two separate 2 × 2 × 2 repeated measurement
ANOVA with the factors stimulus relation (stimulus repetition
vs. stimulus change from trial n-1 to trial n), response relation
(response repetition vs. change from trial n-1 to trial n), and
type of sequential contingency match (high-high vs. low-low
contingency) on performance in trial n (RTs and error rates; see
Table 2 for means).

For RTs, the ANOVA yielded significant main effects of
contingency type, F(1,39) = 9.76, p = 0.003, ηp

2 = 0.20, stimulus
relation, F(1,39) = 24.04, p < 0.001, ηp

2 = 0.38, and response
relation, F(1,39) = 222.39, p < 0.001, ηp

2 = 0.85. Accordingly,
RTs were faster for high-high contingency trial sequences
(M = 481 ms) than for low-low contingency trial sequences
(M = 493 ms); further, RTs were faster for stimulus repetition
(M = 479 ms) than for stimulus change sequences (M = 496 ms);
last, RTs were faster for response repetition (M = 432 ms)
than for response change sequences (M = 542 ms). These main
effects were qualified by several interactions: Contingency type
significantly interacted with response relation, F(1,39) = 5.41,
p = 0.025, ηp

2 = 0.12 (however, this interaction is not of
theoretical interest and is thus not discussed further). Central
to our predictions, the Stimulus Relation × Response Relation
interaction was also significant, F(1,39) = 38.15, p < 0.001,
ηp

2 = 0.49. Follow-up tests showed that compared with stimulus
changes from trial n-1 to trial n, stimulus repetition significantly
sped up performance by 1SCRR−SRRR = 39 ms, t(39) = 7.02,
p < 0.001, dz = 1.10, for response repetition sequences. In
turn, stimulus repetition (compared with stimulus changes from
trial n-1 to trial n) descriptively slowed down performance by
1SCRC−SRRC = −5 ms, t(39) = 1.19, p = 0.24, dz = 0.18, for
response change sequences. No other effect was significant (all
Fs < 1, all ps > 0.36).

For error rates, the same ANOVA yielded only a main effect
of response relation, F(1,39) = 23.77, p < 0.001, ηp

2 = 0.38,
indicating that participants made fewer errors on response
repetition (M = 5.0%) than on response change sequences
(M = 10.5%). No other effect was significant (all Fs < 3.7, all
ps > 0.062).

Discussion
In Experiment 2, we used a stronger contingency manipulation
to boost CL effects, which was successful. What is more, findings
from Experiment 2 fully replicate the pattern of effects that were
obtained in Experiment 1. In detail, we obtained a robust CL
effect that was larger (dz = 0.70) than in Experiment 1 (dz = 0.57).
Thus, we can conclude that participants incidentally acquired
word-response associations over the course of the experiment.
Second, we obtained robust response retrieval effects. Third, the

CL effect was again effectively eliminated when we controlled for
response retrieval. Data from both experiments thus support the
law of recency according to which habit formation is mediated
by episodic retrieval processes, which lead to a reactivation of
the response that was stored in episodic memory together with
the stimulus during the most recent occurrence of the current
situation. Fourth, as in the previous experiment, the influence
of response retrieval was not limited to the previous trial but
was visible for distances up to 6–7 trials. Finally, standard SRBR
effects for immediate (n-1- > n) sequences in which stimulus
changes are used as a baseline condition were replicated also in
this experiment, indicating that response retrieval effects cannot
be attributed to mere response repetition.

GENERAL DISCUSSION

The present study provides initial evidence that response retrieval
effects may fully explain effects of CL (see also Schmidt
et al., 2019) and thus provide a potential explanation for
learning processes that eventually lead to habitual behavior.
In this respect, our study supports the claim that habit
formation can be mediated by episodic response retrieval
processes regarding the most recent previous occurrence of
the current situation (law of recency). These conclusions are
supported by data of two experiments, which yielded robust
evidence of the following effects: First, participants of both
experiments acquired contingencies between stimulus words
and color responses over the course of each experiment,
leading to faster and more correct responses in trials with
high frequency compared to low frequency combinations of
word and color. Importantly, participants were never explicitly
informed about any contingency relation between words and
responses. However, incidental knowledge about the inbuilt
word-response contingency was acquired nonetheless and
impacted performance, leading to habitual responding. What is
more, we obtained these findings even in the absence of any
explicit reinforcement schedule (apart from ordinary feedback
regarding errors and slow responses that was given on a negligible
number of trials). Second, participants in both experiments
also displayed episodic binding and retrieval effects, reflected
in performance benefits when the word had been presented
in the same color during the current trial and the trial in
which the word had been presented during its last occurrence,
reflecting a stimulus-based retrieval of the response from the
previous trial. Third and most importantly, both effect types
were not independent: That is, when we controlled for response
retrieval effects in joint analyses, the CL effect was effectively
eliminated in both experiments. Together, the present findings
support the view that episodic binding effects and persistent
forms of learning (e.g., habit acquisition) might result from the
same underlying learning mechanism (i.e., episodic binding and
retrieval). Our findings support the law of recency that explains
habit acquisition as an instance-based process. According to this
principle, habitual behavior emerges by retrieving and repeating
a behavior that was executed during the last encounter with the
current situation.

Frontiers in Psychology | www.frontiersin.org 11 January 2020 | Volume 10 | Article 2927163

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-02927 December 27, 2019 Time: 17:31 # 12

Giesen et al. The Law of Recency

Theoretical Implications
The present study exemplifies that habit acquisition that is based
on CL can be explained in terms of an episodic retrieval of
previous stimulus-response episodes (for further recent evidence,
see also Schmidt et al., 2019). In this respect, habitual responding
can be understood as resulting from the retrieval of stimulus-
response bindings that were stored in memory during the
last occurrence of the situation that is now encountered again
(law of recency).

Behavioral Signatures of the Law of Recency
The law of recency has a characteristic behavioral signature
that has been demonstrated in numerous studies (and also
in the present study) that revealed effects of SRBR. Basically,
the core finding attesting to the law of recency consists in
an interaction of stimulus relation and response relation in
successive trials of a forced-choice reaction task: Repeating the
prime stimulus in the probe leads to facilitation for response
repetition sequences, but produces interference for response
change sequences (Rothermund et al., 2005; see also Hommel,
1998; Mayr and Buchner, 2006; Frings et al., 2007; Giesen
et al., 2012; Giesen and Rothermund, 2014). This pattern can
be explained by a retrieval and reactivation of the response
information of the prime during the probe. The current study
demonstrates that SR binding and retrieval also plays a role in
a CL paradigm (Schmidt et al., 2007), and – crucially – that
effects of episodic SR binding during the last occurrence are what
underlies the CL effect.

The law of recency can be used to generate alternative
explanations for a wide range of experimental paradigms that
investigated effects of global contexts on behavior (e.g., context
effects in interference paradigms, Logan and Zbrodoff, 1979). In
many of these paradigms, global effects can be tested against local
effects of episodic retrieval in order to see whether the law of
recency can account for these effects.

Comparing the current study with a large literature on
habit acquisition addressing habit formation mostly in animals
reveals a crucial difference: Classical studies typically focus
on response frequencies as an outcome variable, whereas
our study used performance indices (response speed and
accuracy) as dependent variables. Relatedly, our study used
a forced-choice color categorization task, whereas standard
studies focus on a single qualitative response, the frequency
of which is counted (e.g., lever pressing). The paradigm that
is chosen to investigate habits may influence the results, so
it is perhaps hard to compare findings across these very
different experimental approaches. Despite its dissimilarity
to the paradigms that were typically employed in habit
research in the animal literature, focusing on RTs (instead
of response frequencies) may offer some advantages for the
study of habitual behavior in humans. It is no coincidence
that implicit measures aiming at assessing, for instance,
implicit prejudice or stereotypes typically rely on RT measures
(e.g., Wittenbrink and Schwarz, 2007; Gawronski and Payne,
2010; Klauer et al., 2012). The reason is that the speed of
responding is much less controllable than the execution of
a specific response, and thus provides a “window to the

mind” and into automatic influences of human behavior (see
Wentura and Rothermund, 2007).

Mathematical Modeling Approaches to the Law of
Recency
Processes of an instance-based retrieval of previous stimulus-
response episodes have been modeled mathematically within the
Parallel Episodic Processing model (PEP; Schmidt et al., 2016).
The model is specialized to simulate RT and error data in speeded
response time tasks and has been shown to be a powerful tool
that successfully simulates and explains experimental findings
across a wide variety of experimental paradigms with just one
mathematical architecture. For details regarding the modeling
approach, we refer the reader to the original articles in which the
PEP is presented (e.g., Schmidt et al., 2016). Although the PEP has
been developed to account for RT data, its basic rationale might
also be applied to model frequency data for single responses (e.g.,
lever pressing), which will require only minor adjustments in the
periphery of the model, which might be a promising endeavor for
the future development of the PEP and also for transferring the
law of recency to the large literature that uses response frequency
as the main dependent variable.

Habits Based on Repetition vs. Reinforcement
Given that CL in our experiments was obtained without linking
responses to rewards, the resulting behavior reflects an instance
of repetition-based rather than reward-based habits (Thorndike,
1898). Establishing habits without linking behaviors to rewards is
an interesting finding in and of itself, showing that reinforcement
is not a necessary condition for habit acquisition. On the other
hand, we cannot say anything definitive on the possible effects
that rewards may have (or not have) on episodic response
retrieval processes on the basis of our study, since we did not
manipulate rewards.

Separating effects of rewards from repetition can be difficult
since reinforcement cannot be applied in the total absence of
behavior and typically leads to a higher frequency of showing
the respective behavior in the situation in which it was rewarded.
As soon as frequent repetitions are involved, however, episodic
response retrieval may come into play, and may explain the
resulting effects. Our experimental paradigm offers an elegant
solution to address this problem in future studies: Systematically
varying the response that had to be performed during the last
occurrence of a stimulus and either rewarding (or punishing)
it or not allows for a systematic investigation of the effects of
episodic binding/retrieval, reinforcement, and their interaction
(preliminary evidence of a recent study, however, suggests that
reinforcement of SR combinations does not have a positive effect
on the strength of the resulting binding and retrieval effects;
Hauber, 2019).

What Is a Reward?
Although responses that are based on the contingencies of the
task are not reinforced by tangible external rewards (e.g., money),
it may still be the case that they are reinforced more indirectly, in
that responding in line with the contingencies on average leads
to performance benefits (i.e., faster responding). Our findings
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demonstrated that responding is faster in trials that confirm the
contingency in comparison to those trials that are exceptions
to the rule. Given that trials confirming the rule are more
frequent, this effectively leads to a performance advantage. In our
view, however, this difference is not yet evidence for a general
performance benefit due to the contingency. The RT difference
between high and low frequency trials does not reflect a difference
between responses following the contingency rule and those that
do not. Instead, both responses follow the contingency rule. The
fundamental rationale of the CL paradigm is that contingencies
affect responding in all trials, since participants do not know
which sort of trial will be presented next. If participants were
not influenced by the contingencies also in the low frequency
trials, there probably would have been no difference because there
were no costs. The claim that participants profit (overall) from
applying the contingency rule requires a comparison with a no
contingency condition, which was not part of our design. We
thus can only speculate on whether it is plausible to assume that
behavior in line with the contingency rule is rewarded. In our
view, this is unlikely for our study, for the following reasons. First,
due to the weak contingencies that we applied in our study, the
difference in RTs between high and low frequency trials (which
is the upper limit for a performance benefit in comparison to a
no contingency baseline) were very small (less than 10 ms), and
might not even be perceptible for participants. Second, although
there may be a (negligible) performance benefit with regard to
speed, responding in line with the contingencies also comes with
a somewhat less negligible cost regarding errors. In Experiment
2, absolute error rates were 1.6% higher in the low frequency
trials, which is a 20% increase given that overall, about 8% errors
were made. Of course, we cannot exclude with certainty that
the contingency might also have a beneficial effect on accuracy
in the high frequency trials, but such an effect is somewhat
unlikely, because the contingency favored not just one but two
responses, which should increase error percentages even in high
contingency trials.

We also investigated whether the contingency manipulation
has an effect on the immediate trial-by-trial feedback that
participants received during the task, and whether this might
have affected the resulting CL effects. Participants received
feedback (a) when their response was slow (i.e., above 1,000 ms)
or (b) when they responded incorrectly. With regard to the speed-
related feedback (i.e., “too slow” messages), the contingency
conditions did not differ significantly in either of the two
experiments, due to the fact that the CL effect was small
in absolute size and responses were faster than the response
deadline in most of the cases for both high and low frequency
trials. For error feedback, there was no difference in errors
between the contingency conditions in Experiment 1 (and thus
no difference in error-related feedback either), but there was a
small but significant effect (1.6%) in errors between the high
and low frequency conditions (corresponding to a difference
in error-related feedback) in Experiment 2. Controlling for
this difference at the subject level, however, did not alter the
CL effect for RTs at all, nor did it change any of the results
of the other analyses regarding the effects of the previous
occurrence. Most importantly, the interaction between CL (at

the trial level) and the error-related feedback effect of the
contingency manipulation (at the person level) did not interact
(t < 1), indicating that the CL effect was completely independent
of the difference in error-related feedback that participants
received. Apparently, the CL effect is unrelated to any feedback
participants received.

Assuming for a moment that contingencies may nevertheless
come with overall performance benefits (compared to a no
contingency baseline that was not part of our study), since
they reduce uncertainty, then what can one do about it? A
straightforward solution would be to eliminate (extinction) or
even reverse (countercondition) the contingency for some time,
similar to an outcome devaluation procedure in a study of
operant conditioning (cf. Schmidt et al., submitted). Based
on our findings, however, this is probably not a promising
strategy, since episodic retrieval is influenced by responses
that were given during the last occurrence of the situation
(“law of recency”). Eliminating or reversing the contingency
should thus eliminate or reverse the direction of retrieval
processes, effectively destroying the effect. Another somewhat
speculative possibility might be to incentivize speed or accuracy
in different parts of the experiment, but to keep the contingencies
constant. Assuming that contingencies produce mostly gains
in speed but mostly costs in accuracy, this should effectively
reverse the reinforcement logic, but will keep the basic S-R
contingencies intact.

The Question of Automaticity
A crucial question regards the implicitness or non-intentional
(i.e., non-instrumental) nature of CL, since this is a precondition
of considering it as an instance of habit formation. As we
have explained in the introduction, habits reflect stimulus-
driven operant behaviors that are characterized by features
of automaticity. Research on habit acquisition often relies on
using outcome devaluation as a crucial test for establishing the
habitual character of a behavior (e.g., Moors et al., 2017; De
Houwer et al., 2018). This criterion is of utmost importance
when behaviors have previously been reinforced or are still
followed by certain outcomes. Without establishing persistence
and stability of the behavior in question independently of the
rewards (i.e., after outcome devaluation), a core criterion of
automaticity cannot be claimed, which is goal-independence.
The resulting behavior may thus still have an instrumental
character, which speaks against its purely habitual character.
In our view, however, outcome devaluation is not a necessary
criterion of habit acquisition. Only when behaviors are or
have been linked to rewards can the criterion of outcome
devaluation be directly applied. If habitual (i.e., automatic)
operant behavior can be established via learning or experience
without involving reinforcement (as we would argue is the
case for the current study of CL without tangible rewards),
then the test of outcome devaluation is not directly applicable
(if there is no reward, then it cannot be devalued). Although
tests of outcome (in-)dependence can be added to investigate
the reward sensitivity (goal dependence) of a behavior, such
a test cannot question the reward independence of the
original behavior, which has been established in the absence
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of rewards. Demonstrating an influence of reinforcement does
not explain why habitual responding was found in the absence
of rewards in the first place. This becomes immediately
evident when considering outcome devaluation procedures,
where outcome devaluation typically does have a strong effect
on responding – the crucial aspect is that it does not eliminate
behavior completely.

However, if the question of goal-independence and the test
of outcome devaluation do not directly apply to our study,
because contingencies were not rewarded in the first place, what
is the basis on which we claim that CL results in a habit,
that is, is automatic? CL has been shown to operate in the
absence of awareness, which is a major criterion for automaticity
(Schmidt et al., 2007). In the current studies, we used weak
contingencies, which should be much harder to detect than the
contingencies that were used in the study by Schmidt et al. (2007).
In addition, we made the contingencies more complex, by making
each word predictive of two instead of only one color, which
should prevent participants from translating the contingencies
into simple response strategies (cf. Schmidt and De Houwer,
2016). Finally, our study capitalized on yet another criterion of
automaticity, which is speed. By introducing a response deadline
of 1,000 ms, we exerted time pressure on participants during
the task, which limits controlled processes during the task to a
minimum, and has been shown to foster habitual responding
(Hardwick et al., 2018; Luque et al., 2019). In sum, we thus feel
justified in claiming that the CL effects that were obtained in
our study reflect the operation of automatic processes, and thus
can be characterized as being implicit. Of course, we have to
acknowledge the limitation that we did not include any direct
measures in our study that allowed us to conduct an empirical test
for one or more criteria of automaticity within our experiments
(Moors and De Houwer, 2006).

To sum up, we want to emphasize that our study is based on
a broad conception of habits that categorizes operant behavior
as habitual if it is stimulus-bound and shares some features of
automaticity. This usage differs from a more narrow conception
of habits that has been proposed by some researchers in the
field (most notably, Dickinson, 1985), who argued that goal-
independence is the core criterion of a habit, and that outcome
devaluation is a necessary test to establish the habitual character
of a behavior. It is important to interpret our findings against
this background. Since we employed different criteria of habitual
behavior, our core finding that habits can be explained in terms
of episodic response retrieval may not generalize to habits that
were established in terms of outcome independence. Further
research is needed to clarify whether this functional explanation
can be transferred also to behavior that has been shown to be
goal-independent.

Stimulus Dependence, and Relevance of the
Situational Cues
On a more general level, our results also bear some important
implications for our understanding of habit formation. In
particular, our findings highlight that situational cues play a
crucial part in the acquisition and maintenance of habits, even
when these situational cues are completely irrelevant for the

performed behavior. This is supported by the fact that word
meaning was irrelevant for the color categorization task in the
present study. However, participants’ performance showed that
they were sensitive to the co-occurrence of words and responses,
and automatically retrieve the episodic instance in which the
current word was presented most recently. Our findings reveal
that effects of CL do not imply that participants were making
strategic use of these regularities (cf. Schmidt et al., 2007; Giesen
and Rothermund, 2015; see our arguments above). Apparently,
all it takes to produce these effects is retrieval of the last
occurrence of the word from episodic memory in order to
simulate global CL effects (Schmidt et al., submitted).

Moderating Effects of Distance
Our study provides support for the law of recency by
demonstrating that habits can emerge on the basis of retrieving
just one single episode, which is one in which the person
has responded to the current stimulus when it had been
encountered during its last occurrence. In a situation where
the last encounter has been fairly recent, this effect is strong
enough to override all other previous occurrences of this
situation that occurred before the last occurrence, rendering
global contingencies irrelevant. However, as our data show,
the last occurrence of a stimulus/situation quickly loses its
influences on behavior with increasing distance to the current
situation. Our findings revealed that after 5–6 intervening
trials the influence of the last occurrence already vanishes. It
remains unclear what happens if the last occurrence exceeds
this distance: Instance-based retrieval might either break down
completely for long intervals; alternatively, retrieval might
still operate but might no longer be restricted to the very
last occurrence (cf. Schmidt et al., 2016). According to the
latter alternative, the last episode becomes less distinct with
increasing distance and will more easily be confused with other
instances. The predictions of these two alternatives are starkly
different: According to the first variant, global contingencies
will not influence behavior at all after controlling for the last
occurrence, whereas the second account would predict that
effects of mere frequency and/or global contingencies become
visible when the last occurrences of the situation is distant. In
this case, contingency effects would still reflect retrieval, but
retrieval becomes less selective and will resemble more and
more the probabilities and contingencies that are inherent in
the entire set of previous episodes that share features with the
current situation.

Relation Between the Laws of Recency, Exercise,
and Effect
Our findings should not be taken to indicate that large
frequencies of executing the same behavior over and over again
(“law of exercise”) have no influence on habitual behavior. For
one thing, we did not test any influence of massive repetitions
in our studies. We do not have any evidence on this, but it
might well be that repeating a response for, say, more than
500 times might result in such a strong habit that inserting
one counter-example might not suffice to overcome it. In fact,
the influence of massive repetitions might be mediated by
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a different pathway, and might operate independently from
episodic retrieval process. On the other hand, instance-based
retrieval processes and the law of recency might also play an
important role for the explanation of overlearned behaviors. To
test such an assumption, experiments should vary the similarity
between the contexts in which the behavior was repeated and
when it is tested. If exercise-based habits are shown to be context-
dependent, then retrieval processes might also play a role in
explaining these effects, but as we said, that remains to be
investigated in future studies.

Finally, we also want to highlight that our findings do not
rule out that instrumental behavior is influenced by rewards
and incentives (“law of effect”). Demonstrating habitual behavior
in the absence of reward just shows that reinforcement is
not a necessary ingredient of habitual behavior (similar to
what previous research has already shown with the outcome
devaluation test). It could well be that reinforcement has a
strong influence on responding also in the CL task, and it
could also be that processes of episodic retrieval and CL are
influenced by systematically rewarding or punishing certain
combinations of stimuli and responses (but see Hauber, 2019).
Demonstrating habitual behavior in the absence of rewards,
however, attests to the fact that reinforcement is not a necessary
ingredient of habits.

Practical Implications
The present findings also have important practical implications
for the emergence and change of habitual responding. As shown
in the present experiments, (irrelevant) situational cues play a
major role in the acquisition and maintenance of habits. With
regard to practical implications, this insight renders “exposure
management” or “situation control” as another key variable
of habit change. This claim is supported by research showing
that a change of context reduces habitual responding in rats
(Thrailkill and Bouton, 2015) and also in humans (e.g., Wood
et al., 2005; Verplanken et al., 2008). Interestingly, gaining
control over situational retrieval cues (e.g., creating a “seating
habit” of sitting with one’s back to an all-you-can-eat buffet;
Wansink and Payne, 2008) has the potential to become a new,
desirable habit that counteracts undesirable habits (like unhealthy
eating) in the future.

The core finding of our study is that the most recent
stimulus-response bindings are crucial for the maintenance
of habitual behavior, attesting to the law of recency. This
reasoning is supported by the finding of the current study,
as well as others (Schmidt et al., submitted), that response
retrieval is much stronger for short distances, and that CL
effects seem heavily influenced by more recent bindings. Put
differently, in our study it was not the frequency of a pairing
(reflecting global SR contingencies) but the recency of the
episode that determines the direction of the habitual impulse.
Our findings thus attest to the enormous importance of the
very last occurrence of a certain situation in determining
the response that is retrieved. Each word stimulus occurred
hundreds of times during each experiment, and was paired with
four different responses, two of which were highly frequent.
Still, response retrieval was driven more or less completely

by the last occurrence of the word, and focusing on only
the last occurrence was sufficient to fully explain CL, that is,
habitual responding.

The strong effects of recency and in particular the behavior
that was shown during the last occurrence of a certain situation
offers important insights that can be inspiring for interventions
targeted at creating desirable or breaking undesirable habits
(for an overview, see Wood and Rünger, 2016): Executing a
new behavior only once should already have a strong effect on
subsequent behavior in this same situation. This strong effect is
well-known for piano players who often have the (deplorable)
experience that a specific error which occurred for the first time
(and only once) at a certain point in a piece of music then has
an extremely strong tendency to repeat at the next time, and to
become chronic (see Marx, 1971; Marx et al., 1973; Marx and
Marx, 1980; for a review, see Koppenaal, 1960).

On the other hand, this strong effect of a single episodic
occurrence also offers a chance to change a bad habit into a good
one by changing behavior only once. Breaking or overcoming
existing habits typically requires effort and concentration
(executive control). Our findings support the view, however, that
spontaneous retrieval kicks in after only one occurrence and that
execution of a response in a situation then impacts later behavior
when the situation is encountered again.

At the same time, however, it would probably be naïve
to assume that a strong habit is already formed just by
changing behavior once, and then trusting in retrieval of the
last occurrence. Although we would assume that such a strategy
may work remarkably well for the context in which the behavior
is changed for the first time, it may not work anymore once
the behavior has been interrupted by some other activity. It
is not that episodic retrieval would not operate across large
temporal distances (see previous section). Quite the contrary,
the fact that habits are so robust already shows that time
alone does not interfere with retrieval. What is different with
increasing time is that the advantage of the last response episode –
compared to the other episodes that were stored in memory
before the last episode – is eliminated. The sharp decay function
of episodic retrieval yields a clear advantage for the last episode
across short time intervals; across longer intervals, however,
the overall contingency should determine retrieval probabilities.
That is, changing a habit once will typically be followed by
immediate marked changes in behavior. To change it in the
long run, however, will require repeated attempts in each new
situation until the overall contingency has switched toward
the new behavior.
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Human habits are widely assumed to result from stimulus-response (S-R) associations
that are formed if one frequently and consistently does the same thing in the same
situation. According to Ideomotor Theory, a distinct but similar process could lead to
response-outcome (R-O) associations if responses frequently and consistently produce
the same outcomes. This process is assumed to occur spontaneously, and because
these associations can operate in a bidirectional manner, merely perceiving or thinking
of an outcome should automatically activate the associated action. In the current paper
we test this automaticity feature of ideomotor learning. In four experiments, participants
completed the same learning phase in which they could acquire associations, and were
either explicitly informed about the contingency between actions and outcomes, or not.
Automatic action selection and initiation were investigated using a free-choice task in
Experiment 1 and forced-choice tasks in Experiment 2, 3a, and 3b. An ideomotor effect
was only obtained in the free-choice, but not convincingly in the forced-choice tasks.
Together, this suggests that action-outcome relations can be learned spontaneously,
but that there may be limits to the automaticity of the ideomotor effect.

Keywords: action control, automaticiy, goal-directed behavior, ideomotor, implicit learning

INTRODUCTION

Habits are often regarded to be the result of stimulus-response (S-R) associations that are assumed
to be formed if people repeatedly and consistently perform the same behavior in the same situation,
often because there is an incentive to do so (Wood and Rünger, 2016). As a consequence, the
situation may trigger the associated response in an automatic fashion, leading to habitual behavior
that is no longer guided by deliberative processes (Aarts and Dijksterhuis, 2000), but controlled
by the environment. A relevant but distinct line of research proposes a similar mechanism in
which behaviors can become associated with the situations or events that follow actions: Ideomotor
theory proposes that if a behavioral response is repeatedly and consistently followed by the same
perceptual outcome, thinking about or activating the mental representation of that outcome can
to a certain extent prepare or trigger the behavior through bi-directional response-outcome (R-O)
associations. This mechanism of ideomotor action has been used to explain various instances in
which the environment triggers behaviors in an automatic fashion, such as mimicry, or behavior
from affordances (Iacoboni, 2008; Custers and Aarts, 2010).

Ideomotor-action could be relevant to the understanding of habitual behavior in at least two
ways. First, it may help to understand how the environment could trigger behaviors that look
like habits, but may not be the result of classic habit formation processes (i.e., not resulting from
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S-R associations). Second, it may help to understand the
implementation of seemingly abstract S-R associations. That
is, many behaviors that are regarded as habits (reading the
newspaper on Saturday morning, having coffee after dinner,
reading a book before going to sleep) are not directly represented
at the motor level, but representations include a rich collection of
experiences of the consequences of executing the behavior and
allow for an abstract representation of the behavior. Research
indeed suggests that people represent behaviors in a hierarchical
way, in which more abstract representations of the behavior are
often the outcomes of the lower-level actions that produced them
(Vallacher and Wegner, 1987; Kruglanski et al., 2002; Cooper
and Shallice, 2006). Representing behaviors in terms of their
outcomes may therefore help to produce the same behavioral
outcome (e.g., reading the newspaper) under slightly different
conditions (e.g., picking up the paper from a slightly different
location on the doormat each time and finding an empty chair
to read it; Powers, 1973; Custers and Aarts, 2010).

Although action-outcome representations may be
indispensable for human behaviors, and especially goal-
directed actions, it is less clear how these associations are
acquired. Moreover, although contemporary approaches to
ideomotor action (Hommel, 2013) assume that bi-directional
R-O associations could trigger responses in an automatic fashion,
there are few rigorous tests that demonstrate this. In the present
paper we put the automaticity in the formation and execution of
ideomotor action within the classic ideomotor paradigm to the
test. We first review current evidence for the automatic nature
of ideomotor action and evidence for spontaneous ideomotor
learning. We then investigate whether or not learning relations
between actions and outcomes can occur spontaneously, by
merely executing actions and observing following events, and
without specific instructions. Three different ideomotor tests are
used to gain insight in the degree to which potentially resulting
ideomotor actions are automatic.

Ideomotor Theory
The notion of ideomotor action dates back to the 19th century
(Carpenter, 1852; Lotze, 1852; James, 1890), aiming to explain
how thought can trigger action (for reviews see, Stock and Stock,
2004; Shin et al., 2010). The central idea of early ideomotor theory
was that merely envisioning an action triggers that action to a
certain extent (James, 1890), even in the absence of a conscious
intention to act (Ansfield and Wegner, 1996). Embracing the idea
that thinking of an action includes envisioning its anticipated
outcomes, Greenwald (1970) proposed that ideomotor action
relies on bi-directional R-O associations. That is, thinking about
an actions involves thinking about the perceptual experiences
that have become associated with particular motor programs
(see also., Zwaan and Taylor, 2006). While such associations
enable response selection based on outcomes of actions (i.e.,
goal-directed behavior), the strong version of ideomotor theory
(see Shin et al., 2010) holds that once the association is formed,
thinking (ideation) of an outcome, or merely perceiving a
related stimulus, is enough to trigger the associated action.
This backward activation appears to be a robust and general
phenomenon which has been observed for many different

action and stimuli, such as auditory stimuli (e.g., Elsner and
Hommel, 2001), faces (Herwig and Horstmann, 2011), locations
(Hommel, 1993), and letters (Ziessler and Nattkemper, 2002;
Hommel et al., 2003).

In the last two decades, the Theory of Event Coding (TEC)
(Hommel et al., 2001) has revived interest in ideomotor action, by
providing a cognitive-perceptual framework for understanding
these effects. This framework holds that both actions and
their perceived sensory effects are cognitively represented in a
similar distributed fashion and that their feature codes become
intricately linked in action-stimulus representations that contain
information about both. As these representations can be used
bi-directionally, observing or thinking of an outcome activates
the representation of the corresponding action, explaining
phenomena such as mimicry (Iacoboni, 2008) action priming
(Dijksterhuis and Bargh, 2001), and goal priming (Custers and
Aarts, 2010). According to TEC, representations of effects and
basic motor movement already become intertwined in early
infancy (Hommel et al., 2001; Heyes, 2010). It appears, then, that
R-O associations emerge spontaneously as a result of acting and
observing, giving rise to representations that can drive behavior
in an automatic, habit-like fashion.

Ideomotor Research
Following Greenwald (1970), tests of ideomotor learning
typically contain two-phases: An acquisition phase in which
action-outcome associations are acquired, and a test phase that
tests whether these stimuli (i.e., outcomes) facilitate associated
actions. In a classic study, Elsner and Hommel (2001) had
participants freely choose in the first phase (i.e., free-choice
acquisition phase) between left and right key presses that were
each consistently followed by a specific tone (high or low
pitch). Importantly, participants were explicitly informed that
the tones were irrelevant to the task. In the second phase
(forced-choice test phase, Experiments 1a, 1b), participants had
to press left or right keys preceded by the tones that mapped on
the earlier learned responses (non-reversal group), whereas for
the other group the Response-Outcome mapping was reversed
(reversal group). Results showed that actions were performed
faster when the mapping was consistent with that in the
acquisition phase, rather than reversed. Follow-up experiments
(Experiments 2–4) revealed a similar consistency effect in a
free-choice test phase that required subjects to press left and
right keys randomly: Actions that were consistent with the
Response-Outcome mapping were more frequently selected after
the tones, showing a response bias in free choice as a result of
outcome priming.

Later studies have systematically compared the effects of free-
and forced-choice learning phases. Herwig et al. (2007) used
a forced choice test-phase in which participants were allocated
to a non-reversal or reversal group. They found that effects of
ideomotor learning between actions and resulting outcomes only
occurred when participants voluntarily selected actions in the
learning phase (free-choice learning), and not when the required
responses were forced by cues (forced-choice learning). These
findings suggest that participants more readily represented the
stimuli (tones) as outcomes of their actions when they engaged

Frontiers in Psychology | www.frontiersin.org 2 February 2020 | Volume 11 | Article 185171

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00185 February 13, 2020 Time: 12:43 # 3

Sun et al. Automaticity Ideomotor Actions

in free-choice learning, whereas merely responding to cues did
not produce such a psychological process. Hence, even though
actions were followed by stimuli in exactly the same way in
free- and forced-choice learning phases, the stimulus information
appears to have been encoded differently during learning.

Subsequent work by Pfister et al. (2011) suggested that it
may not be the encoding in the acquisition phase, though, that
makes the difference, but rather the mode in which people control
their behaviors in the test phase. Using a free-choice test phase,
they found evidence for ideomotor effects, regardless of whether
learning took place in a free- or a forced choice phase. They
concluded that ideomotor learning takes place whenever actions
are followed by events, regardless of the acquisition task, but
that participants need to be engaged in “intention-based control”
in the test phase (that is, selecting outcome-related actions), for
ideomotor effects to arise. This would suggest that while learning
of habitual action-outcome relations may be spontaneous, it may
be conditional on a certain mind set or task set (i.e., conditional
automaticity; see Aarts and Dijksterhuis, 2000).

Instruction Effects
Although the research discussed above suggests that ideomotor
learning occurs spontaneously whenever events follow
actions, this “spontaneous learning” always occurs within
the experimental setting. As it happens, though, task instructions
in the acquisition phase often explicitly mention the presence of
outcomes in the task, stating that they are irrelevant and should
be ignore (e.g., Elsner and Hommel, 2001). Whilst it is not always
clear which exact instructions are provided in the acquisition
phase in ideomotor research, Eder and Dignath (2017) have
recently demonstrated in a task in which learning and testing
of ideomotor action are intertwined, that such task instructions
matter a lot. Based on recent insights in the power of instruction
effects (see Liefooghe et al., 2018), Eder and Dignath provided
instructions to ignore, attend, learn, or intentionally produce
action outcomes in one combined learning/test phase. Results
showed that instructions affect the task set with which action-
stimulus relations are learned (Custers and Aarts, 2011), but that
unlike the learning and intention instructions, instructions to
ignore or attend to outcomes did not lead to ideomotor learning,
at least not in this experimental setting.

In the present paper, we investigate whether ideomotor
learning occurs spontaneously in the standard two-phase
paradigm with auditory stimuli. In four studies, we manipulated
instructions in a free-choice learning phase, either saying
nothing at all about tones that followed actions, or emphasizing
their relationship in terms of actions and outcomes. All
experiments used a free-choice acquisition phase, as previous
research suggests that action-outcome relations are more strongly
acquired and subsequently used (Herwig et al., 2007; Pfister
et al., 2011). Given the complexity of obtaining clear and
reliable ideomotor effects, and in order to gain more insight
in what is learned in the acquisition phase, we employed
three different ideomotor tests in four separate experiments.
In Experiment 1, we used a free-choice test phase, as earlier
work has suggested that ideomotor effects are most likely
to occur under such conditions (e.g., Pfister et al., 2011).

However, as the free-choice ideomotor test is - by definition
- open to influences of conscious deliberation and choice,
we follow up in Experiment 2, 3a, and 3b with a forced-
choice ideomotor test. While Experiment 2 used a 2-block
design where participants received opposite instructions on
the different blocks that forced them to react to outcome
stimuli either in line with the acquired action-outcome mapping,
or the opposite mapping, Experiment 3a and 3b used an
interference paradigm with imperative cues (presented together
with outcome stimuli) to force people’s choice on trial level.
These forced-choice ideomotor tests would provide stronger
evidence for the automatic initiation of actions than the
free-choice test, with Experiment 3a and 3b being the least
susceptible to alternative explanations. As such, the current
line of experiments not only tests, but also aims to verify the
automatic nature, of potential ideomotor actions arising from
spontaneous ideomotor learning.

EXPERIMENT 1: FREE-CHOICE
IDEOMOTOR TEST

Method
Participants and Design
Sample sizes on previously published ideomotor learning studies
which varied from 12 (e.g., Kühn et al., 2009, Experiment 1) to
20 participants per condition (e.g., Herwig and Waszak, 2009,
Experiment 1–3), and given the fact that small sample sizes
can counterintuitively inflate effect size, we decided prior to
data collection to test at least 20 participants per condition in
each experiment.

Fifty participants took part in the experiment in exchange for
a small monetary payment or extra course credits. Participants
with attention-related disorders or those who were on related
medication were excluded beforehand. The experimental design
consisted of one between-subjects factor: Instructions (No-
Instructions vs. Instructions). After signing the informed
consent, participants were randomly assigned to either the No-
Instructions condition or the Instructions condition.

Data of one participant were lost because of a technical
issue, and two participants were excluded due to the unbalanced
proportion of key presses during the acquisition phase (outside of
the range of a left-to-right ratio of 40 to 60%), which was defined
before data collection. Data of the remaining 47 participants (No-
Instructions condition: n = 23, Instructions condition: n = 24)
were included in the analyses [37 females, mean age: 24 years
(18–30 years), no left-handed and 2 ambidextrous participants].

Procedure
Participants were told that they would perform two tasks on a
computer and were asked to read the instructions carefully. The
present study used the same design as the third experiment of
Elsner and Hommel (2001), consisting of an acquisition phase
and a test phase. Both phases featured a Go – No-Go paradigm,
and the auditory stimuli following responses in the acquisition
phase [i.e., a low tone (400 Hz) and a high tone (800 Hz)] were
presented again in the test phase upon which participants were
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to freely choose a left or a right response. After the acquisition
phase, they continued with the second task (i.e., the test phase).

After the two main phases, participants filled out a short
questionnaire that tested their knowledge about Response-
Outcome mappings acquired in the learning phase and measured
the representation levels on four hierarchically different levels
of self-causation (i.e., association, prediction, causality, and
agency level of Response-Outcome relations, see below) to check
whether the instructions induced the desired processing goals
differently. Response-Outcome mappings were counterbalanced
among the participants. That is, for half of the participants, the
left key was followed by the high tone and the right key by
the low tone (Response-Outcome mapping A), whereas for the
other half, the opposite key-tone mappings (Response-Outcome
mapping B) were used.

Acquisition Phase
After general task instructions, all participants read the following
specific instruction for the acquisition phase:

“In this part you have to press a key with your left or right index
finger, depending on the instructions on the screen: If you see
“<<>>”, you can choose yourself to press the left key (“z”), or the
right key (“/”). You can choose freely, but try, on average, to press
left and right equally often. If you see “xxxx,” however, you should
not press any key.”

Participants in the Instructions condition were then given
detailed additional information about the R-O mappings –
which depended on the counterbalancing of the mapping –
and were provided with processing goals through descriptions
of the relationship between the responses and their outcomes
in ascending levels of self-causation (i.e., from associative,
predictive, to causal) in the acquisition phase:

“Pressing your left key is associated with a High [Low] tone and
pressing your right key with a Low [High] tone. This means that
upon pressing your left key you can predict a High [Low] tone and
upon pressing your right key a Low [High] tone. In other words:
pressing your left key causes a High [Low] tone and pressing your
right key causes a Low [High] tone.”

It is important to keep in mind that in the No-Instructions
condition the tones are just stimuli that consistently followed key-
presses, without any related mention about the occurrence of the
tones, and that in the Instructions condition the stage was set for
processing the tones as outcomes of self-chosen actions.

The trial procedures of the acquisition phase are depicted
in Figure 1A. Each trial of the acquisition phase started with
a fixation asterisk (∗) for 500 ms on the middle of the screen,
followed by a 200-ms Go (i.e., “<<>>”) or No-Go (i.e., “xxxx”)
signal. Participants were asked to press the left or right key freely
as soon as they saw the Go signal and were asked not to respond in
No-Go trials. The program waited up to 1,000 ms for a response.
On Go trials, reaction times over 1,000 ms were treated as
omissions and responses faster than 100 ms as anticipations. Only
reaction times in the valid range (100–1000 ms) triggered the
contingent tone, which started after a 50-ms lag from the onset
of the keypress and was presented for 200 ms. Incorrect trials
(i.e., omissions, anticipations, and responses to No-Go trials)

were recorded, and were signaled to the participant by a 1000-
ms warning messages on the screen saying: “too slow”, “too fast,”
or “No-Go trial, respectively. All incorrect trials were repeated in
random order by the end of the first task. Participants had to redo
all the incorrect trials until all required responses were valid.

The acquisition phase consisted of three practice trials and 300
valid trials, divided into 10 blocks. Every two blocks, there was a
10 s break, during which participants were informed about how
often they had pressed the left and right keys. In the Instructions
condition, the extra processing information about the Response-
Outcome mappings was also repeated (e.g., “Each specific key
causes a specific tone. The left key causes a High tone and the
right key causes a Low tone”).

Test Phase
The test phase was similar to the acquisition phase, also using
the Go – No-Go paradigm. This time, however, two tones that
previously served as outcomes were presented as cueing stimuli
(see Figure 1B). Participants were instructed to press the left
or right key randomly in response to the tone. In addition,
as suggested by Elsner and Hommel (2001), to add response
uncertainty and prevent participants from responding before the
tone appeared, a novel sound (i.e., a 200-ms white noise signal)
was presented in one third of the test trials, serving as a No-Go
signal after which participants were to withhold their response.
Each test trial started after an inter-trial interval of 1,500 ms
with an asterisk on the center of the screen, followed by a 200-
ms sound (i.e., a high tone, a low tone or a white noise signal),
which were presented in a random order. Then the program
waited up to 1,000 ms for an appropriate response. Response
omissions and anticipations were defined in the same way as in
the acquisition phase. However, this time no error message was
presented and participants worked through six practice trials and
288 valid trials, divided into 8 blocks, including 96 No-Go trials
in total. Again, every two blocks, there was a 10 s break. This time
no extra information about the Response - Outcome mappings
was provided during the break.

Manipulation Check of R-O Mappings
After the test phase, participants answered two questions that
tested their knowledge about the relationship between the
responses (i.e., left/right key presses) and the corresponding
outcomes (i.e., low/high tones) in the acquisition phase, to check
whether participants were able to report which tone followed
which response. There were four answer options to each mapping
question. For instance, when asked: “Which tone did the left
key press produce?”, response option were: (1) the left key press
produced the High tone, (2) the left key press produced the
Low tone, (3) the left key press produced both tones, (4) the
left key press was irrelevant to the tones” (see Supplementary
Appendix S1 for more details).

Manipulation Check of Instructions
Subsequently, participants filled out a questionnaire designed
to measure changes in the representation of the response-
outcome relations as a result of the instructions manipulation.
The questionnaire probed the four levels of the hierarchical
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FIGURE 1 | Procedure of Experiment 1. (A) acquisition phase for all the experiments. (B) free choice ideomotor test phase of Experiment 1. In the present example
of the acquisition phase, the left response is always followed by a low tone (i.e., 400 Hz); whereas the right response is always followed by a high tone (i.e., 800 Hz),
but these mappings were counterbalanced.

representation used in the Instructions condition (i.e.,
association, prediction, causality, and agency level of Response-
Outcome relations). Specifically, for each level, three items
probed representations using a 9-point scale. The complete
questionnaire can be found in the Appendix (see Supplementary
Material). A difference between instruction conditions
on these measures would indicate that the manipulation
changed the way in which participants represented the
response-outcome relations.

Data Analysis Plan
Data were analyzed using R 3.5 (R Core Development Team,
2014). Visualizations of raw data points were built with the
raincloud plots (Allen et al., 2018). ANOVA’s were calculated
using the aov_ez function and Type III sums of squares (afex
package Version 0.22–1 in R) (Singmann et al., 2016). When
assumptions of sphericity were violated Greenhouse-Geisser
(GG) correction was utilized in the ANOVA model. In this
case, we reported uncorrected degrees of freedom and corrected
p-values. To further draw conclusions about the support of null
effects, we also calculated Bayesian factors (BFs) with the default
prior setting in JASP (version 0.9, JASP Team 2018) (van Doorn
et al., 2019). The advantage of BFs is that it quantifies evidence
in favor of one (e.g., null) hypothesis compared to another (e.g.,
alternative) hypothesis given the observed data.

Results
Acquisition Phase
First, we excluded all acquisition trials with anticipations (No-
Instructions: 0.01%, Instructions: 0.01%) and omissions (No-
Instructions: 0.04%, Instructions: 0.09%). Failures to withhold
responses on the No-Go trials were calculated and all
participants fell below the pre-set criteria of less than 20% (No-
Instructions: 2.89%, Instructions: 2.55%). After that, response
proportions (left/right keypress) were calculated. To make sure

the participants had followed the general instruction to press
the left and right key randomly but equally often, participants
with proportions outside the 40% to 60% range were excluded
(see section “Participants and Design”). The mean left/right
response proportions were equal in each condition – No-
Instructions condition: 49.9% vs. 50.1%; Instructions condition:
49.6% vs. 50.4%.

The mean RTs of the participants did not differ between the
No-Instructions, M = 362.94 ms, SD = 60.24 ms, and Instructions
condition, M = 362.41 ms, SD = 39.01, F(1,45) = 0.00, p = 0.97.
The mean RTs of right responses, M = 360.75 ms, SD = 52.40 ms,
were marginally faster than the mean RTs of left responses
M = 364.59 ms, SD = 48.49 ms, F(1,45) = 2.87, p = 0.10. This
difference was not qualified by an interaction with the between-
subjects factor Instructions, F(1, 45) = 0.75, p = 0.39.

Test Phase
Test trials with response anticipations (No-Instructions: 0.05%,
Instructions: 0.06%) and omissions (No-Instructions: 1.31%,
Instructions: 0.91%) were excluded from data analysis and
the percentage of responses that were consistent with the
previously acquired Response-Outcome mapping was calculated
for each participant.

As expected, in the No-Instructions condition the mean
proportion of consistent responses was significantly larger than
chance (i.e., 50%), M = 61.49%, SD = 22.61%, t(22) = 2.44,
p = 0.012 (one-tailed), Cohen’s dz1 = 0.508, and the Bayesian
one sample T-Test resulted in BF+0 = 4.80, which means that
the data are approximately 4.8 times more likely to occur
under H+ (i.e., proportion in consistent condition is higher
than chance level, that is, larger than 50%), than under H0
(i.e., proportion in consistent condition is at chance level). This

1Cohen’s dz is the standardized mean difference effect size, for a detailed
calculation see Lakens (2013).
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FIGURE 2 | Distribution of the proportion of consistent responses of all the individual data points in Experiment 1. Error bars represent the 95% confidence intervals.

result indicates moderate evidence in favor of H+. The same
effect was observed for the Instructions condition: M = 69.98%,
SD = 25.42%, t(23) = 3.85, p = 0.0004 (one-tailed), Cohen’s
dz = 0.786, and the Bayesian one sample T-Test result is
BF+0 = 83.90, which indicates strong evidence in favor of H+.
Finally, we tested whether instructions affected the proportion of
consistent responses, but the direct comparison between the two
conditions did not reveal any significant difference, t(45) =−1.21,
p = 0.23 (two-tailed), and the Bayesian Independent samples
T-Test result equals (BF01) 1.91, which only slightly favors
the null hypothesis (H0: The Instructions condition has no
effect on response preference) over the alternative hypothesis
(H1: the Instructions condition biases response selection). In
sum, while there was very strong support for an ideomotor
effect in the Instructions condition and substantial evidence
in the No-Instructions condition, evidence for no difference
between Instructions conditions was only anecdotal (see Figure 2
for distribution).

Furthermore, we compared RTs for consistent and
inconsistent trials in both Instructions conditions. There was no
difference between consistent (M = 502.42 ms, SD = 95.89 ms)
and inconsistent trials (M = 503.64 ms, SD = 99.22 ms) in the
No-Instructions condition, t(22) =−0.14, p = 0.894; nor between
consistent (M = 510.68 ms, SD = 70.11 ms) and inconsistent trials
(M = 506.64 ms, SD = 69.98 ms) in the Instructions condition,
t(21) = 0.77, p = 0.453. The corresponding BF also indicates
moderate evidence for the null hypothesis (H0: The reaction
times are not different between consistent and inconsistent
trials) over the alternative hypothesis (H1: The reaction times
are different between consistent and inconsistent trials) in

No-Instruction condition (BF01 = 4.535) and Instruction
condition (BF01 = 3.448), respectively.

Manipulation Check of R-O Mappings
Most participants (85% in total) were able to explicitly report
the correct mapping of responses and subsequent stimuli they
were exposed to in the acquisition phase. Six people missed the
response-stimulus mapping in the No-Instructions condition (6
out of 23), and only one participant failed in the Instructions
condition (1 out of 24).

Manipulation Check of Instructions
In order to assess whether there were differences in how
people represented the relation between responses and
outcomes in the acquisition phase, the average of each
of the three questions measuring association, prediction,
causality, and agency was calculated. The mean scale ratings
were analyzed as a function of Instructions conditions and
as a function of representation level (i.e., the hierarchical
levels explained before). Only a main effect of representation
level was found, F(3,135) = 7.97, p[GG] < 0.001, η2

p = 0.15,
which merely showed that collapsed over Instructions
conditions, there were significant differences in ratings
between the four level of representation constructs (Table 1
and Supplementary Table S1.1 presents more details of the
responses to the scales).

Discussion
These results provide support for an ideomotor effect, in the
sense that tones followed responses in the acquisition phase
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TABLE 1 | Means and Standard deviations of the four different representation
levels collapsed over Instructions conditions for all three experiments.

Representation
level

Exp1: free Exp2: block-based Exp3: trial-based

Association 7.45 ± 2.18 6.90 ± 2.63 7.55 ± 2.20

Prediction 6.67 ± 2.86 6.99 ± 2.73 7.32 ± 2.53

Causality 6.99 ± 2.78 7.03 ± 2.75 7.60 ± 2.23

Agency 6.26 ± 2.92 6.16 ± 3.10 6.83 ± 2.75

The means of each scale is relatively high, indicating that in both the Instructions
and No-instructions condition participants processed the learning task in line with
the Instructions manipulation.

were more likely to evoke these responses in the test phase.
Moreover, this effect occurred regardless of instructions about
the relation between responses and tones, which demonstrates
that ideomotor learning – at least in the current paradigm –
unfolded spontaneously.

Although the ideomotor effect was observed within
both instruction conditions, it appeared more pronounced
in the instructions condition. Bayesian tests, however,
revealed slightly more support for the absence of difference
between the two conditions. While it cannot be ruled
out that instructions can strengthen ideomotor learning,
it is clear that instructions were not necessary for
learning to occur in the acquisition phase. This finding is
further corroborated by an absence of a difference in the
representation-level checks.

While the observed ideomotor effect obtained in the test
phase seems comparable in size with other ideomotor studies
(c.f., Elsner and Hommel, 2001), the free choice test phase
does not provide strong evidence for the automatic nature of
the effect (i.e., that the responses are triggered automatically
by the stimuli that served as outcomes in the acquisition
phase), as this task allows for deliberate responses in the
test phase as well. On closer inspection, the response data
show a bimodal distribution, with the majority of people
responding at chance level and a considerable amount of
people demonstrating a very large bias, with some participants
showing near perfect consistence with the mapping acquired
in the acquisition phase. This could suggest that the observed
effect was not so much produced by the tones triggering
the corresponding actions in the test phase, but by some
people deliberately responding in line with the mapping learned
in the acquisition phase. We return to this issue in the
general discussion.

To rule out these more deliberate sources of the compatibility
effect and to investigate whether spontaneously learned action-
outcome associations can cause outcome stimuli to trigger
ideomotor action directly, Experiments 2, 3a, and 3b used a
forced-choice task, in which responses required by imperative
cues or instructions were accompanied by tones that –
according to the mapping learned in the acquisition phase –
should trigger either compatible or incompatible responses.
While compatible and incompatible trials were presented in
separate blocks in Experiment 2, they were intermixed in
Experiments 3a and 3b.

EXPERIMENT 2: BLOCK-BASED
INTERFERENCE IDEOMOTOR TEST

In Experiment 2, we used a block-based interference ideomotor
test in which participants completed two test blocks. In the
compatible block, participants received instructions to respond to
tones that were compatible with the earlier acquired mapping. In
the incompatible block, the instructions were reversed. The order
of the two test blocks was counterbalanced across participants.
We expected to observe significantly reduced RTs and lower error
rates in compatible blocks compared to incompatible blocks.

Method
Participants and Design
Fifty participants took part in the experiment in exchange
for a small monetary payment or extra course credits.
Participants with attention related disorders or those who were
on related medication were excluded beforehand. Participants
were randomly assigned to a cell of the 2 (Instructions: No-
Instructions vs. Instructions) ∗ 2 (Compatibility: Compatible vs.
Incompatible) mixed factorial design, with Compatibility as a
within-participants variable. The order of the compatible and
incompatible blocks was counterbalanced across participants.

Three participants were excluded due to the unbalanced
proportion of key pressing during the learning phase, that is,
the balanced left-to-right key ratio (i.e., 40–60%). Data of the
remaining 47 participants (No-Instructions condition: n = 24 vs.
Instruction condition: n = 23) were analyzed in the test phase [23
Females, mean age: 22 years (18–31 years), no left-handed and
two ambidextrous participants].

Procedure
The procedure was similar to Experiment 1. After finishing
the unchanged acquisition phase, participants came to the
interference ideomotor task with the compatibility manipulated
on the block level. With regard to the acquired R-O mapping, the
response rule participants received on one block was compatible,
whereas on the other block it was incompatible. For example, if
the participant got the R-O mapping A (left key – high tone, right
key – low tone), the compatible block meant that participants
were asked to press left key when hearing a high tone, and right
key for a low tone; while the response rule in the incompatible
block was reversed, that is, pressing left key for a low tone, and
right key for a high tone.

Acquisition Phase
The acquisition phase was as identical as the first task of
Experiment 1 (see Figure 1A).

Test Phase
Both the compatible and the incompatible block, consisted of 4
sub-blocks of 24 trials (see Figure 3). The order of the blocks was
counterbalanced between participants. Each trial began with a
1500-ms fixation with an asterisk (“∗”) centered in the screen, and
then one of the two effect tones (i.e., the one learned in acquisition
phase) was presented for 200 ms. The program would wait up
to 1,000 ms to accept a response. On the first block, participants
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were instructed to respond according to either the compatible or
incompatible response rule. Before switching to the second block
with the opposite rule of responding, participants had to perform
two example trials in which the responding requirements where
explained as well as four practice trials without any clues.

Manipulation Check of R-O Mappings
The questions were the same as in Experiment 1.

Manipulation Check of Instructions
The questionnaire was the same as in Experiment 1.

Results and Discussion
Acquisition Phase
Trials with response omissions (No-Instructions condition:
0.05%, Instruction condition: 0.11%) or anticipations (No-
Instructions condition: 0.05%, Instructions condition: 0.05%)
were excluded. After that, response proportions (left vs. right
keypress) were calculated for each group. The mean left/right
response proportions were equal in each condition (No-
Instructions condition, 50.2% vs. 49.8%; Instruction condition:
49.6% vs. 50.4%).

The mean RTs of the participants did not differ between the
No-Instructions, M = 374.38 ms, SD = 33.98 ms, and Instructions
condition, M = 376.57 ms, SD = 37.73 ms, F(1,45) = 0.04,
p = 0.83. The mean RTs of right responses M = 375.82 ms,
SD = 33.81 ms, were not faster than the mean RTs of left responses
M = 375.09 ms, SD = 37.83 ms, F(1,45) = 0.13, p = 0.72. There was
also no interaction with the between-subjects factor Instructions,
F(1,45) = 0.92, p = 0.34.

Test Phase
Participants who failed to meet the response criteria in the
acquisition phase were excluded (3 participants), Furthermore,
this time there were no trials with response anticipations

FIGURE 3 | Examples of compatible and incompatible conditions in the
Block-based interference test phase of Experiment 2. In these examples a low
tone of 400 Hz was mapped to a left response. All other combinations were
possible, but are not presented in this figure. During the task, participants
were asked to respond to tones directly based on the response rule, and the
orders between compatible and incompatible are counterbalanced between
participants. The compatible and incompatible blocks are defined depending
on the Response-Outcome mapping in the acquisition phase.

(No-Instructions condition: 0%, Instructions condition: 0%),
and trials with omissions (No-Instructions condition: 1.60%,
Instructions condition: 1.22%) were excluded from data analysis.

Error rates
A 3-way mixed 2 (Instructions: No-Instructions vs. Instructions)
∗ 2 (Order: Compatible First vs. Incompatible First) ∗ 2
(Compatibility: Compatible vs. Incompatible) ANOVA yielded a
main effect of Order, F(1,43) = 5.51, p = 0.02, η2

p = 0.11. Neither
the main effect of Instructions, F(1,43) = 0.04, p = 0.85, nor
that of Compatibility, F(1,43) = 0.00, p = 0.97, was significant.
No significant interaction effects between Instructions ∗ Order
F(1,43) = 0.99, p = 0.32, between Instructions ∗ Compatibility,
F(1,43) = 0.25, p = 0.62, or between Instructions ∗ Order
∗ Compatibility, F(1,43) = 0.02, p = 0.89, were found.
Only a 2-way interaction between Order and Compatibility,
F(1,43) = 4.36, p = 0.04, η2

p = 0.09, was found showing
that the direction of the Compatibility effect was different
for the two Order conditions. However, the Compatibility
effect was not significant in the Compatible first condition,
t(43) = 1.46, p = 0.15, nor was the Compatibility effect
significant in the Incompatible first condition, t(43) = −1.49,
p = 0.14.

To further evaluate the evidence for the absence of a
compatibility effect, the compatibility effect on error rates
was calculated for all participants regardless of Instructions.
If anything, errors showed a reversed compatibility effect
(MCE = −0.07324, SDCE = 0.042) and the independent T-Test
results, t(46) = −0.012, p = 0.51 (one-tailed), BF0+ = 6.373,
indicated moderate evidence for the null hypothesis (i.e., there
is no difference between compatible and incompatible condition,
namely, CE = 0) against the one-sided alternative hypothesis
(i.e., the incompatible condition has more error rates than the
compatible condition, namely, CE > 0).

Previous research tested the compatibility effect in a between-
subjects design with a non-reversal and reversal group (e.g.,
Elsner and Hommel, 2001, Experiment 1a, 1b). In such a
design, there is only one test block and participants just receive
a compatible or incompatible response rule. To perform a
comparable analysis on our date we zoomed in on the first block
only, with Compatibility as a between-subjects factor.

For the first block, we conducted a 2-way between-
subjects ANOVA (Mno−instruction_compatible = 0.012,
SD = 0.012; Mno−instruction_incompatible = 0.042,
SD = 0.046; Minstruction_compatible = 0.017, SD = 0.026;
Minstruction_incompatible = 0.034, SD = 0.018). The results found
a significant effect of compatibility, F(1,43) = 7.47, p = 0.009,
η2

p = 0.15, but no main effect of Instructions, F(1,43) = 0.02,
p = 0.90, nor an interaction, F(1,43) = 0.66, p = 0.42 (see Figure 4
for error rates in the first block visualized distribution).

Reaction times
Mean RTs for correct trials were subjected to a 3-way 2
(Instructions: No-Instructions vs. Instructions) ∗ 2 (Order:
Compatible First vs. Incompatible First) ∗ 2 (Compatibility:
Compatible vs. Incompatible) mixed measure ANOVA, that
along with the between-participants factor Instructions and
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FIGURE 4 | Distribution of error rates as a function of Compatibility and Instructions of block 1 in Experiment 2. The compatible and incompatible trials are defined
depending on the Response-Outcome mapping in the acquisition phase. Error bar represent the 95% confidence interval.

the within-participants factor Compatibility also included
the counterbalancing between-participants factor Order. No
main effects of Instructions, F(1,43) = 1.67, p = 0.20, Order,
F(1,43) = 0.03, p = 0.88, and Compatibility, F(1,43) = 0.18,
p = 0.67, were found. Furthermore, the Instruction ∗ Order,
F(1,43) = 0.10, p = 0.75, Instruction ∗ Compatibility,
F(1,43) = 0.46, p = 0.50, and Order ∗ Compatibility,
F(1,43) = 0.65, p = 0.42, interactions were not significant,
neither was the 3-way interaction, F(1,43) = 0.00, p = 0.99 (see
Figure 5 for visualized distribution).

To further evaluate the evidence for the absence of a
compatibility effect, the compatibility effect was calculated
for all participants regardless of Instructions and Order. If
anything, the compatibility effect was reversed, MCE =−2.65 ms,
MCE = 42.34 ms, and the independent T-Test results,
t(46) =−0.43, p = 0.665, BF0+ = 8.54, provided relevant moderate
evidence for the null hypothesis (i.e., there is no difference
between compatible and incompatible condition, namely, CE = 0)
against the one-sided alternative hypothesis (i.e., the reaction
time in the incompatible condition is longer than the compatible
condition, namely, CE > 0).

To further explore the data we zoomed in on the first block
only, with Compatibility as a between-subjects factor, comparable
to earlier ideomotor research. The RTs were subjected to a 2-way
between-subjects ANOVA (Mno−instruction_compatible = 492.46 ms,
SD = 81.76 ms; Mno−instruction_incompatible = 475.46 ms,
SD = 73.38 ms; Minstruction_compatible = 454.18 ms, SD = 57.94 ms;

Minstruction_incompatible = 459.18 ms, SD = 72.06 ms). Again,
no significant results were found, Instructions, F(1,43) = 1.69,
p = 0.20; Compatibility: F(1,43) = 0.08, p = 0.78; Interaction:
F(1,43) = 0.28, p = 0.60.

Manipulation Check of R-O Mappings
Not all participants (only 60% correct, 28 out of 47) were able
to explicitly report the correct mapping of actions and outcomes
they were exposed to in the acquisition phase. In the No-
Instructions condition, 10 out of 24 participants failed, either
forming a reversed R-O mapping, or randomly guessing the R-O
mapping. The Instructions condition has similar pattern, 9 out
of 23 participants missed the correct R-O mapping rule. This
number may be lower than in Experiment 1, though, as the
test phase also featured the opposite mapping, which may have
confused participants.

Manipulation Check of Instructions
In order to assess whether there were differences in how people
represented the relation between responses and outcomes in the
acquisition phase, the average of each three questions measuring
association, prediction, causality, and agency was calculated.
The 2 (Instructions condition: No-Instruction vs. Instructions)
∗ 4 Representation level ANOVA only found a main effect of
Representation level, F(3,135) = 4.25, p[GG] = 0.01, η2

p = 0.09,
which merely showed that collapsed over Instructions conditions,
there were significant differences in ratings between the four level
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FIGURE 5 | The response performance distribution of all the individual data points for each condition in Experiment 2. The compatible and incompatible trials are
defined depending on the Response-Outcome mapping in the acquisition phase. Error bars represent the 95% confidence intervals.

of representation constructs (Table 1 presents more details of the
responses to the scales).

Discussion
The block-based compatibility paradigm only provided limited
support for an ideomotor effect. While no effects on RTs were
found, participants made more errors on incompatible than
compatible trials, though only on the first block. With no
difference between instructions, this effect on errors at first glance
seems to replicate the finding of Experiment 1, that ideomotor
learning occurs spontaneously, also in the absence of instructions.

This compatibility effect – especially in the first block –
could, however, also emerge as a result of a task switch
(Monsell, 2003) that required participants who started with the
incompatible block to use a new mapping, whereas participants
in the compatible condition could still rely on the mapping
that was learned in the acquisition phase. This effect should
be less pronounced – or non-existing – in the second block,
as participants in both order conditions would have to switch
mappings. Note that an ideomotor effect based on an R-O
association forged in the acquisition phase would predict a
compatibility effect on the second block as well, as participants
who entered the compatible after the incompatible block would
benefit from the automatic responses triggered by the primes.

Evidence for a within-participants compatibility effect,
however, was not obtained. A closer inspection of the pattern
revealed that while participants who moved from a compatible
to an incompatible block made more errors on the second
block, showing a classic compatibility effect, participants who

moved from the incompatible to the compatible block also
made more errors on the second block. This suggests that the
switch in instructions from block 1 to block 2 created more
errors, regardless of whether the new rule was compatible or
incompatible with the acquisition phase. This may indicate that
people simply struggled to switch to a new response rule.

In order to rule out this possibility Experiment 3a and 3b
were conducted, in which the compatibility effect was tested at
trial level. This time, participants were instructed to react to
imperative cues, but were at the same time presented with stimuli
that had followed responses in the acquisition phase. These
stimuli should interfere with participants’ responses if they are
associated responses that are incompatible with the imperative
cues. Such a trial-based interference ideomotor test would be the
most rigorous test and cannot be regarded as a task-switch effect.

EXPERIMENT 3: TRIAL-BASED
INTERFERENCE IDEOMOTOR TEST

Experiment 3a
Method
Participants and design
Sixty participants took part in the experiment in exchange for
a small monetary payment or extra course credits. Participants
with attention-related disorders or those who were on related
medication were excluded beforehand. The experimental design
consisted of one between-subjects factor: Instructions (No-
Instructions vs. Instructions), and one within-subjects factor:
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Compatibility (Compatible vs. Incompatible). After signing the
informed consent, participants were randomly assigned to either
the Instructions condition or the No-Instructions condition.

Data of one participant were lost because of a technical
issue, and five participants were excluded due to the unbalanced
proportion of key presses during the learning phase (outside of
the range of a left-to-right ratio of 40 to 60%), which was defined
before data collection. Data of the remaining 54 participants (No-
Instructions condition: n = 25 vs. Instructions condition = 29)
were analyzed in the test phase [35 females, mean age: 23 years
(18–37 years), 7 left-handed and 3 ambidextrous participants].

Stimuli and procedure
We used the same sounds as in Experiment 1, plus a standard
Landolt “C” ring and its mirror image, as the target for the
interference ideomotor task in the test phase. We selected these
stimuli because they are clearly different form the arrow stimuli
in the acquisition phase, making sure that imperative cues
were not associated with responses (Muhle-Karbe and Krebs,
2012). Procedures were similar to Experiment 1, including an
acquisition phase and a test phase.

Acquisition phase
The acquisition phase was as identical to the one used in
Experiment 1 (see Figure 1A).

Test phase
In the test phase participants were asked to perform an
interference task, namely, the compatibility task, consisting of
eight main blocks of 24 trials. Each trial started with a 1500-
ms fixation (“∗”), and then one of the former effect sounds was
simultaneously presented with the Landolt “C” (see Figure 6).
The duration of the prime and the target were 200 ms and 250 ms,
respectively. Participants were told to detect and respond to the
opening direction of Landolt “C” ring as fast and accurately as
possible. Pressing the left key (“z”) for a left opening, and the right

FIGURE 6 | Examples of compatible and incompatible conditions in the
trial-based interference test phase of Experiment 3a and 3b. In these
examples a low tone of 400 Hz was mapped to a left response, which
depending on the R-O mapping in the acquisition phase. All other
combinations were possible, but are not presented in this figure. The main
task is the orientation discrimination task with the tones as primes, and the
compatible and incompatible are intermixed in trials level.

key (“/”) for a right. The program waited up to 1,000 ms for a
response. Response omissions and anticipations were defined in
the same way as in the acquisition phase. There was no response
feedback in the test phase.

Based on the R-O mapping in the acquisition phase, the test
trials were categorized as a compatible trial when the to-be-
executed response was the same as the response that was followed
by the primed tone in the acquisition phase and incompatible
trials when the to-be-executed response was the opposite of the
response that was followed by the primed tone in the acquisition
phase. For instance, if one had received the response – outcome
mapping “left key – low tone, right key – high tone”, a trial was
compatible when a left opening “C” ring was presented together
with a low tone, and when a right opening “C” ring was presented
with a high tone. A trial was incompatible when a left opening
“C” ring accompanied by a high tone, and a right opening “C”
ring with a low tone.

Manipulation check of R-O mappings
The questions were the same as in Experiment 1.

Manipulation check of instructions
The questionnaire was the same as in Experiment 1.

Data Analysis Plan
Analyses were similar to Experiment 1, RTs and error rates in
the test phase were analyzed as a function of Instructions and
Compatibility conditions.

Results
Acquisition phase
First, we excluded all acquisition trials with anticipations (No-
Instructions: 0.09%, Instructions: 0.09%) and omissions (No-
Instructions: 0.05%, Instructions: 0.08%). The remaining mean
error rate for the No-Instructions condition was 4.78%, whereas
for the Instructions condition it was 3.63%. After that, response
proportions (left vs. right keypress) were calculated for each
group. The mean left/right response proportions were equal
in each condition (No-Instructions condition: 49.6% vs. 50.4%;
Instructions condition: 49.8% vs. 50.2%).

The mean RTs of the participants did not differ between
the No-Instructions, M = 344.61 ms, SD = 51.34 ms, and
the Instructions condition, M = 358.07 ms, SD = 43.48 ms,
F(1,52) = 1.10, p = 0.30. The mean RTs of right responses
M = 349.00 ms, SD = 46.91 ms, were significantly faster than
the mean RTs of left responses M = 354.67 ms, SD = 48.43 ms,
F(1,52) = 7.03, p = 0.01, η2

p = 0.12. This effect was not qualified
by an interaction with the between-subjects factor Instructions,
F(1,52) = 0.60, p = 0.44.

Test phase
Participants who failed to meet the response criteria in the
acquisition phase were excluded (five participants). Furthermore,
trials with response anticipations (No-Instructions condition:
0.02%, Instructions condition: 0.036%) and omissions (No-
Instructions condition: 0.0%, Instructions: 0.018%) were
excluded from data analysis.
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FIGURE 7 | Distribution of error rates of Experiment 3a. The compatible and incompatible trials are defined depending on the Response-Outcome mapping in the
acquisition phase. Error bars represent the 95% confidence intervals.

Error rates. Error rates were analyzed based on all
trials. As Figure 7 shows, participants were relatively
accurate, and most of the error rates per condition
were less than 10% (Mno−instruction_compatible = 0.050,
SD = 0.070; Mno−instruction_incompatible = 0.053,
SD = 0.054; Minstruction_compatible = 0.035, SD = 0.043;
Minstruction_incompatible = 0.043, SD = 0.053). The 2 (Instructions:
No-Instructions vs. Instructions) ∗ 2 (Compatibility: Compatible
vs. Incompatible) mixed ANOVA did not reveal any significant
effects [Instructions effect: F(1,52) = 0.74, p = 0.39; Compatibility:
F(1,52) = 1.67, p = 0.20; Interaction: F(1,52) = 0.23, p = 0.63].

Thereafter, in further exploratory analyses, we calculated
the compatibility effect on error rates by collapsing over
the Instructions factor (MCE = 0.0054, SDCE = 0.029). An
independent T-Test, t(53) = 1.34, p = 0.09, BF0+ = 1.61, provided
relevant moderate evidence for the null hypothesis (i.e., there is
no difference between compatible and incompatible condition,
namely, CE = 0) against the one-sided alternative hypothesis
(i.e., the incompatible condition has more error rates than the
compatible condition, namely, CE > 0).

Reaction times. Reaction times (RTs) for remaining correct
trials were aggregated over compatible and incompatible trials
for each participant (see Figure 8, for visual distribution).
Subsequently, the mean RTs and error rates were subjected
to a 2 (Instructions: No-Instructions vs. Instructions) ∗ 2
(Compatibility: Compatible vs. Incompatible) ANOVA, with

Instruction as between and Compatibility as within-subjects
factor. RTs analysis did not reveal a significant compatibility
effect, F(1,52) = 2.26, p = 0.14. Neither the effect of interaction
reached significance F(1,52) = 0.91, p = 0.34, but we found a main
effect of Instruction F(1,52) = 5.23, p = 0.03, η2

p = 0.09, indicating
that participants in the Instructions condition were overall
slower to respond (MNo−Instrucitons = 314.22 ms, SD = 34.57 ms;
MInstruction = 337.66 ms, SD = 39.65 ms). If anything, RTs in the
compatible condition, M = 327.57 ms, SD = 40.05 ms, were higher
than the incompatible condition, M = 326.05 ms, SD = 38.33 ms,
t(53) = 1.58, p = 0.06, BF01 = 2.10.

To further evaluate the evidence for the absence of a
compatibility effect, the compatibility effect (CE) was calculated
for all participants regardless of Instructions, MCE = −1.515 ms,
SDCE = 7.05 ms. A directional T-Test, t(53) = −1.58, p = 0.94,
BF0+ = 16.31, provided strong evidence for the null hypothesis
(i.e., there is no difference between compatible and incompatible
condition, namely, CE = 0) against the one-sided alternative
hypothesis (i.e., the reaction time in the incompatible condition
is longer than the compatible condition, namely, CE > 0).

Manipulation check of R-O mappings
Most participants (nearly 91% correct, 49 out of 54) were able
to explicitly report the correct mapping of actions and outcomes
they were exposed to in the acquisition phase. Participants
could still recall previous learned R-O mapping rule. In the No-
Instruction condition, 4 out of 25 failed, and only one missed
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FIGURE 8 | The response performance distribution of all the individual data points for each condition in Experiment 3a. The compatible and incompatible trials are
defined depending on the Response-Outcome mapping in the acquisition phase. Error bars represent the 95% confidence intervals.

in the Instructions condition (n = 29). Collectively, this suggests
that participants indeed acquired R-O knowledge spontaneously,
although this did not translate into automatic response priming
in the test phase.

Manipulation check of instructions
In order to assess whether there were differences in how people
represented the relation between responses and outcomes in the
acquisition phase, the average of each three questions measuring
association, prediction, causality, and agency was calculated. The
2 (Instructions condition: No-Instructions vs. Instructions) ∗
4 Representation levels ANOVA only found a main effect of
Representation level, F(3,156) = 3.69, p[GG] = 0.03, η2

p = 0.07,
which showed that collapsed over Instructions conditions, there
were significant differences between the questions of the four
levels. among these four levels (see Table 1 for more details).

Discussion
The results in the present experiment did not reveal a
compatibility effect in any of the two groups, suggesting that
the presented outcomes did not trigger associated actions. The
paradigm used, though, was designed as the strongest test for
automatic action selection, with compatibility being manipulated
at the trial level. In such a paradigm, compatibility effects have
to arise at the trial level itself, if two stimuli evoke either the
same or two conflicting responses. As far as we known, only
two articles reported compatibility effects on trial level when

using the classical two-phases paradigm (Kühn et al., 2009; Sato
and Itakura, 2013). However, we were not able to replicate
these effects regardless of whether we provided participants
with instructions to pay attention to R-O mappings in the
acquisition phase or not.

Experiment 3b: Replication Trial-Based
Interference Ideomotor Test
To make sure that the null findings in the rigorous test of
Experiment 3a were not a false negative, we conducted a high-
powered replication of the core part of Experiment 3b. Because
of practical constraints we could not include the manipulation
checks, but we assume based on the previous three experiments
that most participants were aware of the correct mapping and that
the instructions had no effect on the way participants represented
the R-O relations.

Method
Participants and design
Two hundred and two participants (N = 202) took part in
the experiment in exchange for a small monetary payment or
extra course credits. Participants with attention-related disorders
or those who were on related medication were excluded
beforehand. The experimental design consisted of one between-
subjects factor: Instructions (No-Instructions vs. Instructions),
and one within-subjects factor: Compatibility (Compatible vs.
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Incompatible). After signing the informed consent, participants
were randomly assigned to either the Instructions condition or
the No-Instructions condition.

Data of ten participants were lost because of a technical
issue, and six participants were excluded due to the unbalanced
proportion of key presses during the learning phase (outside of
the range of a left-to-right ratio of 40 to 60%), which was defined
before data collection. Data of the remaining 186 participants
were analyzed in the test phase (No-Instructions condition: a
total of 90 participants, 63 female, age: M = 23 years, SD = 5;
Instructions condition: a total of 96 participants, 70 female, age:
M = 23 years, SD = 4).

Stimuli and procedure
We used the same stimuli and procedure as mentioned in
Experiment 3a, except that the procedure only had an acquisition
phase and a test phase. In this experiment the experimenter
was also blind to the real research goals, and waited outside
the testing room.

Acquisition phase
The acquisition phase was as identical to the one used in
Experiment 3a (see Figure 1A).

Test phase
The acquisition phase was as identical to the one used in
Experiment 3a (see Figure 6).

Data analysis plan
Analyses were the same as Experiment 3a, RTs and error rates
in the test phase were analyzed as a function of Instructions and
Compatibility conditions.

Results
Acquisition phase
First, we exclude all acquisition trials with omissions (No-
Instructions:0.10%, Instructions: 0.08%) and anticipations (No-
Instructions:0.15%, Instructions: 0.12%). The remaining mean
error rates for the No-Instructions condition was 5.29%, whereas
for the Instructions condition it was 5.26%. After that, response
proportion (left vs. right keypress) were calculated for each
group. The mean left/right response proportions were equal
in each condition (No-Instructions condition: 49.8% vs. 50.2%;
Instructions condition: 49.5% vs. 50.5%).

The mean RTs of the participants did not differ between the
No-Instructions, M = 360.76 ms, SD = 52.70 ms, and Instructions
condition, M = 356.10 ms, SD = 44.84 ms, F(1, 184) = 0.43,
p = 0.51. The mean RTs of left responses M = 356.95 ms,
SD = 49.96 ms, were significantly faster than the mean RTs
of right responses M = 359.76 ms, SD = 47.69 ms, F(1,
184) = 4.91, p = 0.03, η2

p = 0.03. This effect was not qualified
by an interaction with the between-subjects factor Instructions,
F(1, 184) = 0.05, p = 0.83.

Test phase
Participants who failed to meet the response criteria in the
acquisition phase were excluded (six participants). Furthermore,
trials with response anticipations (No-Instructions condition:

0.0%, Instructions condition: 0.02%) and omissions (No-
Instructions condition: 0.08%, Instructions: 0.11%) were
excluded from data analysis.

Error rates. Error rates were analyzed based on all valid
trials. Similar to the results in Experiment 2b, participants
were relatively accurate (Mno−instruction_compatible = 0.0578,
SD = 0.073; Mno−instruction_incompatible = 0.059,
SD = 0.073; Minstruction_compatible = 0.0512, SD = 0.062;
Minstruction_incompatible = 0.0588, SD = 0.090). We employed
the same 2-way mixed ANOVA with Instructions as
between-subjects factor (No-Instruction vs. Instruction)
and Compatibility as within-subjects factor (Compatible
vs. Incompatible). Again, the results were not significant:
Instructions: F(1,184) = 0.11, p = 0.74; Compatibility:
F(1,184) = 2.20, p = 0.14; Interaction: F(1,184) = 1, p = 0.32.

Following the analyses in Experiment 3a, we also conduct
the same Bayesian one sample T-test for the compatibility
effect on error rates by collapsing over the Instructions
factor (Merrorrates_CE = 0.0046, SDerrorrates_CE = 0.042). The
corresponding BF indicates more support to the null hypothesis
(i.e., there is no difference between compatible and incompatible
condition, namely, CE = 0), t(185) = 1.516, p = 0.07, BF0+ = 2.13).

Reaction times. The mean RTs on each condition
(Mno−instruction_compatible = 341.29 ms, SD = 56.13;
Mno−instruction_incompatible = 341.34 ms, SD = 54.61;
Minstruction_compatible = 339.36 ms, SD = 52.15;
Minstruction_incompatible = 338.97 ms, SD = 53.62) were also
subjected to the same 2 (Instructions: No-Instructions vs.
Instructions) ∗ 2 (Compatibility: Compatible vs. Incompatible)
ANOVA, with Instruction as between-subjects and Compatibility
as within-subjects factors. No effects approached significance
[Instructions: F(1,184) = 0.07, p = 0.79; Compatibility:
F(1,184) = 0.04, p = 0.84; Interaction: F(1,184) = 0.07, p = 0.79].

To further evaluate the evidence for the absence of a
compatible effect, the CE was calculated for all participants
regardless of Instructions (MCE = −0.179 ms, SDCE = 11.49),
and the Bayesian one sample T-test still give strong evidence for
the null hypothesis (H0: CE = 0), t(185) = −0.213, p = 0.584,
BF0+ = 14.34).

Discussion
The results in present experiment provide a powerful replication
of the effects obtained in Experiment 3a, namely strong evidence
for the absence of a compatibility effect and no effects of the
Instruction manipulation.

GENERAL DISCUSSION

Habits are often understood as actions that are automatically
triggered by stimuli or situations through S-R associations
resulting from repeated and consisted coactivation. In the
present paper, we explored whether repeated and consistent
coactivation of actions and effects can result in similar
structures (R-O associations) by which mere perception
of stimuli can then elicit the associated response (i.e.,
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ideomotor action). Specifically, we investigated whether
learning of R-O associations can occur spontaneously and
whether as a result, these stimuli can automatically trigger
associated responses. Accordingly, in four experiments,
we tested automaticity in ideomotor learning in the
standard two-phases paradigm that required participants
to perform actions (pressing keys) that lead to specific
outcomes (tones). In each experiment, we manipulated
instructions in a free-choice learning phase, either making
no mention in any way of the tones that followed actions,
or induced a processing goal that explicitly emphasizing the
relation between responses and the subsequent stimulus. In
Experiment 1, evidence for ideomotor action was observed
in a free-choice test phase, regardless of instructions.
Experiment 2, 3a, and 3b, however, which employed
forced-choice tasks to test for automaticity, provided little
evidence for ideomotor effects. Together, these results
don’t support the strong version of ideomotor theory.
That is, they suggest that ideomotor learning can occur
spontaneously, but that there are limits to the automatic
effect on behavior.

Mixed Evidence for Automatic Ideomotor
Effects
The findings of Experiment 1 demonstrate that ideomotor
learning can take place in the absence of explicit instructions
that emphasize the relation between actions and outcomes.
Although this finding matches with the literature on
implicit learning (e.g., Cleeremans et al., 1998) and
may indicate that associations have been formed as a
result of coactivation of response and resulting stimulus
representations, this does not necessarily mean that learning
occurred outside of awareness (Melnikoff and Bargh,
2018). Indeed, given the fact that the large majority of
participants could indicate which outcome was produced
by which action in the acquisition phase, and the relatively
high scores on these R-O mapping checks in the no-
instruction and instruction conditions, it seems to be the
case that although learning was spontaneous and may
have resulted in associations, the acquired knowledge was
clearly propositional in nature (Mitchell et al., 2009). This
effect on the R-O mapping checks was consistent across
all experiments, although reports were understandably less
accurate when the mapping was changed during the test
phase in Experiment 2. In sum, while learning occurred
spontaneously, it seems that participants had explicit
knowledge about which action caused which outcome in
the learning phase.

The results of the different test phases across our experiments
at first seem liked a mixed bag. While Experiment 1 produced
a healthy ideomotor effect consistent in size with the ideomotor
literature (c.f., Elsner and Hommel, 2001), Experiments 2, 3
did not provide such evidence. An exception is the effect in
Experiment 2 on error rates in the first block of trials of the
test phase. Below, we entertain two possible explanations to
reconcile these findings.

First, one could argue that on top of the reportable causal
knowledge about the action outcome mappings, people did
indeed form bi-directional associations, capable of producing
ideomotor effects. This explanation is consistent with the findings
of Experiment 1. In accordance with the strong version of
ideomotor theory (Shin et al., 2010), merely hearing the tones
during the free-choice task could have automatically triggered
the associated responses, leading to more mapping-consistent
responses. As the learning phases and explicit reports were
quite similar in Experiments 2 and 3, one would have to
assume, though, that the tones at least had the potential to
trigger similar responses in the corresponding test phases.
Maybe the null effects there could be explained by a lack of
power. This seems unlikely, though, as the number of trials is
comparable with other reports in the ideomotor literature and
the failure to find an effect in the high-powered replication
of Experiment 3 seems more in line with the absence of an
effect. It could be the case that the test tasks in Experiments
2, as well as Experiment 3a and its replication, were somehow
flawed and not able to pick up the ideomotor effect. This
seems unlikely as well. The tasks were closely modeled after
Elsner and Hommel (2001) and should theoretically have
produced the ideomotor effect, at least according to the strong
version of the theory.

A theoretical explanation for the null effects in Experiment
2 and 3, though, is that people were able to suppress or inhibit
ideomotor responses in the test phase. It has recently been argued
that automatic responding may emerge in some tasks, but be
overruled in others in which people have the goal to inhibit
such responses (Melnikoff and Bargh, 2018). Although the task
instructions in the test phases of Experiments 2 and 3 did not
explicitly ask people to ignore the tones, it may be the case
that people tried to ignore them, or at least suppress responses
in order to meet the task goal. That is, responding according
to the dictated response rule (Experiment 2), or responding to
the visual target (Experiment 3 and its replication). It could
indeed be possible that people were able to inhibit ideomotor
responses in the task and exactly cancel out the effect, without
revealing an opposite inhibition effect, or were fully able to
shut out the auditory stimuli in the compatibility tasks, but not
the free choice task. However, we believe another explanation
is more plausible.

This second explanation follows the opposite line of
argument: that bi-directional associations were not formed, at
least not strong enough for the tones to trigger responses
in an automatic fashion. This would then require and
explanation for the findings in Experiment 1. In this
experiment, participants engaged in a free-choice task,
which – by definition – allows for deliberate control of
behavior. It may have been the case that explicit knowledge
about the action-outcome relations drove the behavioral
effects (Seabrooke et al., 2016). Loersch and Payne (2011)
have noted that such biases can occur if primes affect
the explicit knowledge that is retrieved and used as input
for the decision-making process. Although this does not
necessarily imply that participants were aware of this bias,
it would entail an indirect priming effect that operates
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through biasing conscious decisions rather than by stimuli
automatically triggering responses. Although this may
suggest that people use knowledge of R-O mappings to
freely select their actions, this would not be ideomotor action
according to the strong version of the theory. Interestingly,
though, such a process fits well with action control models
that consider the preparation of human behavior to be
rooted in sensorimotor processes that operate under radar
of conscious awareness, while the ultimate execution of
actions is under the control of a decision making process that
selects actions associated with an act of conscious will (Gold
and Shadlen, 2007; Brass and Haggard, 2008; Aarts, 2012;
Zedelius et al., 2014).

Another explanation for the findings of Experiment 1 is that
participants may have used the tones to fulfill the criteria of
responding randomly and equally often with the two keys, or
have chosen to respond with the keys suggested by the tones
simply because it is easier. Random selection of responses is
extremely hard and the tones may have provided an easy way out.
Note that this explanation still assumes that people use the R-O
knowledge that was spontaneously obtained in the acquisition
phase. As a considerable number of participants responded
consistent with the mapping of the acquisition phase on nearly
100% of the trials (and two individuals in close to 0% of the
time, reflecting the use of a reversed mapping; see Figure 2),
this seems a plausible explanation. Although papers in the
ideomotor literature typically don’t provide information about
the distribution of scores, the means and standard deviations in
the present study are remarkably similar to earlier studies (e.g.,
Elsner and Hommel, 2001) suggesting that these studies may be
open to the same explanation.

In Experiment 2, we found no within-participants
compatibility effects, but did obtain a difference in error
rates in the first block of the experiment. While this effect is
consistent with the classic forced-choice effect (e.g., Elsner
and Hommel, 2001, Experiments 1a, 1b), these effects could
also be interpreted as a task-switching effect (Monsell, 2003).
That is, in the light of the explicit knowledge about the R-O
mapping in the acquisition phase, the instruction to use the
opposite mapping to respond to the outcome stimuli in the
test phase could have caused the increase in errors. Hence, the
obtained compatibility effect may say more about the challenges
of remembering and responding according to reversed task
rules, than ideomotor effects. The complexity of obtaining
ideomotor effects under forced-choice conditions (Herwig
et al., 2007; Pfister et al., 2011), and the relative absence of
ideomotor effects in the forced-choice task in the present study
indicates that further inquiry is needed to specify when and
how ideomotor learning effects emerge in the test paradigms
employed so far.

Implications for Habits
Although ideomotor learning can create R-O associations, only
weak evidence for the ideomotor effect was obtained. So based
on the current data, it seems that S-R associations underlying
habits function in a different way than the R-O learning that
drove the ideomotor effect in our free-choice test phase in

Experiment 1. This does not necessarily mean that ideomotor
action should be discarded as a mechanism by which outcome
stimuli can trigger responses, in a similar way as stimuli
trigger habitual responses. As the ideomotor effect has been
demonstrated across a large literature (although often with less
strict tests than in the current experiments), it could be the
case that the ideomotor effect holds, but that the learning
phase in our experiments was too short for R-O associations to
develop through co-activation, and that habit-like structures take
longer to develop. Moreover, research on rewards in ideomotor
learning has demonstrated that rewarding stimuli that follow
responses produce much stronger ideomotor effects in free-
choice or instructed compatibility tasks (Muhle-Karbe and Krebs,
2012; Eder et al., in press). It may be the case that ideomotor
learning is therefore more likely to occur in daily life, where
stimuli following actions are rarely neutral. Interestingly, with
this notion, the ideomotor effect becomes similar to the Pavlovian
Instrumental Transfer (PIT) effect, which holds that stimuli
associated with rewards are found to facilitate instrumental
responses that have been followed by those rewards during
learning (Watson and de Wit, 2018). Such a mechanism may
reflect habitual responses that are still mediated by outcome
representations at some level.

Further research is needed, though, to determine how
rewards boost responses in the ideomotor and PIT paradigm.
As ideomotor studies on this topic (Muhle-Karbe and Krebs,
2012; Eder et al., in press) used a block-based compatibility
paradigm, the enhanced effects could still be the results of explicit
knowledge, as a result of propositional learning, interfering with
conflicting task instructions. Relatedly, recent investigations into
the nature of the PIT effect have demonstrated that the PIT effect
itself is also dependent on propositional learning (Trick et al.,
2011; Seabrooke et al., 2016, 2017). As here it is also unclear
whether rewards influence learning, response execution, or both,
it is hard to predict whether the same results would emerge in a
trial-based compatibility task, to provide strong evidence for the
automaticity of ideomotor action.

Conclusion
Together, while the current findings do provide evidence
for spontaneous ideomotor learning, it is less evident how
resulting response-stimulus representations subsequently guide
behavior. Rather than automatically facilitating responses, it
may be the case that R-O knowledge affects behavior in
a less automatic way. While primed outcomes may activate
knowledge of associated actions (Bargh et al., 2001; Custers
and Aarts, 2005, 2010), they may influence behavior indirectly
by biasing conscious choice (see e.g., Custers et al., 2012).
As such, responses following outcome primes may be more
the result of biased choice than direct response priming.
Given the parallels between ideomotor thinking and the
study of habitual behavior, the current work suggests that
research on habitual behaviors could benefit from more careful
experimentation and theorizing (Marien et al., 2018, 2019) to help
understand in which ways cues in the environment could elicit
habitual behavior.
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We address the distinction between habitual/automatic vs. goal-directed/controlled
behavior, from the perspective of a computational model of the frontostriatal loops.
The model exhibits a continuum of behavior between these poles, as a function of
the interactive dynamics among different functionally-specialized brain areas, operating
iteratively over multiple sequential steps, and having multiple nested loops of similar
decision making circuits. This framework blurs the lines between these traditional
distinctions in many ways. For example, although habitual actions have traditionally
been considered purely automatic, the outer loop must first decide to allow such habitual
actions to proceed. Furthermore, because the part of the brain that generates proposed
action plans is common across habitual and controlled/goal-directed behavior, the
key differences are instead in how many iterations of sequential decision-making
are taken, and to what extent various forms of predictive (model-based) processes
are engaged. At the core of every iterative step in our model, the basal ganglia
provides a “model-free” dopamine-trained Go/NoGo evaluation of the entire distributed
plan/goal/evaluation/prediction state. This evaluation serves as the fulcrum of serializing
otherwise parallel neural processing. Goal-based inputs to the nominally model-free
basal ganglia system are among several ways in which the popular model-based vs.
model-free framework may not capture the most behaviorally and neurally relevant
distinctions in this area.

Keywords: habits, goals, controlled processing, automatic processing, computational modeling, frontal cortex,
basal ganglia

INTRODUCTION

Since its inception, the field of psychology has been fascinated by the distinction between two types
of behavior, one that leads us to act relatively automatically, according to well-worn habits, and
another that allows us to act with intent and deliberation (James, 1890; Thorndike, 1911; Hull, 1943;
Tolman, 1948). These two classes of thought and action have been referred to by several different
sets of terminologies, each with slightly varying definitions, which has sown some confusion in
the literature (Hassin et al., 2009; Kool et al., 2018; Miller et al., 2018, 2019). Historically, the first
terminology applied to this intuitive distinction was stimulus-response vs. cognitive-map guided
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(Thorndike, 1911; Tolman, 1948). This distinction was later
replaced by habitual vs. goal-directed behavior (Tolman, 1948;
Balleine and Dickinson, 1998; Dickinson and Balleine, 2002;
Killcross and Coutureau, 2003; Balleine, 2005; Yin and Knowlton,
2006; Tricomi et al., 2009), which co-existed alongside automatic
vs. controlled processing (Shiffrin and Schneider, 1977; Cohen
et al., 1990; Miller and Cohen, 2001). More recently, a good deal
of work has been directed at the distinction between model-free
and model-based reinforcement learning (Sutton and Barto, 1998;
Doya, 1999; Doya et al., 2002; Daw et al., 2005).

In this paper, we attempt to clarify the relationships
among these terminological distinctions through the lens of
a computational model of the underlying brain mechanisms.
This model builds on detailed neural recording data available
on animal action-selection. One of the major conclusions
from this model is that these apparently distinct types
of behavior may be manifestations of a core underlying
neural system, which evaluates the relative cost/benefit
tradeoffs of engaging in more time-consuming, deliberative
processing using the same basic mechanisms that drive
all the other behavioral decisions that an organism must
make. Furthermore, we argue that the neural pathways that
support the habitual stimulus-response level behavior are
actually an integral part of the same system that supports
deliberative, controlled processing. Thus, this framework
provides a unified view of action selection and decision
making from the most basic habitual level up to the most
complex, difficult decisions that people face. In our theory,
Type 2 (deliberative) decisions are essentially composed
of many Type 1 (automatic) decisions. Thus, it offers a
mechanistic explanation of the proposed continuum between
them (Melnikoff and Bargh, 2018).

Goal-Driven/Controlled vs.
Habitual/Automatic
We first establish some common ground by attempting to
define a consensus view about the closely-related distinctions
between goal-driven vs. habitual, and controlled vs. automatic
processing. Of the two, controlled vs. automatic (Shiffrin and
Schneider, 1977) is perhaps more clearly defined, by virtue
of a history of computational models based on the idea that
the prefrontal cortex (PFC) supports controlled processing by
maintaining active working memory representations that drive
top–down biasing of processing elsewhere in the brain (Cohen
et al., 1990; Miller and Cohen, 2001; Herd et al., 2006; O’Reilly,
2006; O’Reilly and Frank, 2006). Cognitive control is needed
to support novel, difficult, complex tasks, e.g., to overcome
prepotent (i.e., habitual) response pathways in the widely-studied
Stroop task. As a task or stimulus-response pathway becomes
more strongly practiced, behavior becomes more automatic and
free from the need for this top–down biasing support. Thus,
automatic and habitual are closely related terms. The connection
between goal-driven and controlled processing is somewhat less
exact, as one could imagine behaving according to goals that
do not require significant cognitive control (Bargh, 1989), and
potentially even exerting cognitive control in the absence of clear

goal-driven motivations. Sustained active neural firing of goal-
like representations, that can exert an ongoing biasing effect
on behavior, is perhaps a more direct mechanistic connection
between the two.

Phenomenologically, habitual behavior is typically
characterized as being relatively insensitive to the current
reward value of actions, and not as strongly under the control
of active, conscious goal engagement (Wood and Rünger,
2016). On the other hand, it remains a challenge to consider
the nature of real-world behaviors that are characterized as
habits, as they often involve extended sequences of actions
coordinated over reasonably long periods of time (e.g., driving
home from work, making coffee, etc.) – these do not seem to be
entirely unconscious activities devoid of any cognitive control
influences, or contextual sensitivity (Cushman and Morris,
2015). Furthermore, how can it be that subtle, unconscious
factors can sometimes strongly shape our overt behavior (Bargh,
2006; Huang and Bargh, 2014)?

Our general answer to these questions, as captured in our
computational modeling framework, is that both habits and
more controlled, goal-driven behaviors emerge from a shared
neural system, and both operate within a common outer-loop of
overall cognitive control that pervasively shapes and modulates
the nature of processing performed in the inner-loops associated
with specific task performance. This is similar to the hierarchical
control framework of Cushman and Morris (2015), except that
we postulate a sequential, temporal organization of decision
making and control, where the same neural systems iteratively
process multiple steps over time, including periodic revisiting
of the broader context and goals that we refer to as the outer-
loop. Thus, habits only drive behavior when permitted by this
outer-loop of cognitive control, and indeed the actual unfolding
of behavior over time is usually at least somewhat coordinated
by the outer-loop. Furthermore, as we’ll elaborate below, a
crucial factor across all behavior in our framework is a so-
called Proposer system that integrates many different factors in a
parallel-constraint-satisfaction system to derive a proposed plan
of action at any point in time – the properties of this system
may explain how unconscious factors can come to influence
overt behavior in the course of solving the reduction problem
of choosing one plan among many alternatives (Bargh, 2006;
Huang and Bargh, 2014).

The Model-Free vs. Model-Based
Dichotomy
Within the above context, how does the model-based vs. model-
free (MBMF) framework fit in? This framework has engaged
new enthusiasm by offering the promise of a more formal,
precise definition of the relevant processes, and by leveraging the
direct connection between reinforcement learning principles and
properties of the midbrain dopamine system (Montague et al.,
1996; Schultz, 2013). Specifically, the model-free component is
typically defined as relying on learned, compiled estimates of
future reward associated with a given current state (or potential
actions to be taken in that state), which have been trained via
phasic dopamine-like temporal difference signals, as in the classic
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TD and Q-learning reinforcement learning frameworks (Sutton
and Barto, 1998). By contrast, the model-based system adds an
internal model that can simulate the evolution of the state of the
world over multiple iterations, so that action selection can be
based on those predicted states. As such, the model-free system
is considered to be relatively inflexible to changes in the reward
function, including changes resulting from internal state (e.g., not
being hungry at the moment), whereas the model-based system
can dynamically adjust its predictions based on goal changes and
other changes, and is thus more flexible.

Thus, it is this key difference in the relative flexibility
of the two systems that maps onto the existing notions of
goal-driven vs. habitual behavior. However, there are various
other aspects of the MBMF framework which map less well,
creating significant confusion when people intend to characterize
the goal-driven vs. habitual distinction, but using the MBMF
terminology. At a very basic level, there is no principled
reason why a model-free system should not have access, as
inputs, to internal drive and goal states in addition to external
environmental states. If it does, its behavior can also be goal-
directed, and sensitive to internal bodily states such as hunger.
In addition, model-based is not synonymous with goal-directed,
as model-based is defined specifically in terms of models of
the external environment. In our framework, a model-free-
like system indeed receives internal state and goal inputs, and
thus participates in goal-directed behavior. This illustrates an
important mismatch between these two terminologies, which
are often taken to be interchangeable. More generally, standard
reinforcement-learning paradigms tend not to incorporate a
significant goal-driven component, and instead generally assume
a single overriding goal of maximizing a scalar-valued reward,
which is delivered to an entirely externally-motivated agent
(O’Reilly et al., 2014). Thus, aside from a few more recent
examples (Berseth et al., 2018), standard reinforcement-learning
models are not particularly well-suited for describing goal-driven
processing in the first place.

Recent reviews by Miller et al. (2018, 2019) point out
the following additional issues with the MBMF terminology.
First, it is problematic that the model-free system relies on
learned value estimates to drive action selection, whereas most
existing data indicates that habitual behavior is specifically
more insensitive to reward value (Wood and Rünger, 2016).
Second, the neural substrates associated with MBMF mechanisms
are largely overlapping and hard to disentangle, involving the
dopaminergic system, the basal ganglia (BG), and the prefrontal
cortex (PFC). Whereas the BG was traditionally viewed as
being primarily a habit-based motor area (e.g., Miller, 1981;
Mishkin et al., 1984; Squire and Zola-Morgan, 1991; Squire,
1992; Packard and Knowlton, 2002) more recent evidence and
theorizing suggest that, with the exception of the dorsal-lateral
striatum, most of the BG is more clearly involved with non-
habitual behavior and deliberative, controlled cognition in novel
and challenging tasks (Pasupathy and Miller, 2005; Samejima
et al., 2005; Yin et al., 2005; Balleine et al., 2007; Seger and
Spiering, 2011; Pauli et al., 2012). Many authors nevertheless
continue to assume the simple association of model-free with the
BG, in keeping with the traditional habit-based ideas.

Furthermore, while the MBMF distinction is often considered
to be dichotomous, more recent work has explored various
combinations of these aspects to deal with the computational
intractability of full model-based control, further blurring the
lines between them (Pezzulo et al., 2013; Cushman and Morris,
2015). Likewise, there are many ways of approximating aspects
of model-based predictions of future outcomes that may not fit
the formal definition of iterative model-state updating, e.g., using
predictive learning in the successor-representation framework
(Dayan, 1993; Littman and Sutton, 2002; Momennejad et al.,
2017; Russek et al., 2017; Gershman, 2018). This may be
considered acceptable if the distinction is just that the model-free
system has absolutely no model-like element, and the model-
based system has any kind of approximation of a world model
(Daw and Dayan, 2014), but this may end up straining the value
of the distinction. For instance, a successor-representation model
is otherwise quite similar to a standard model-free system, but
it does use information about outcomes (although they do not
usually explicitly predict an outcome).

The above considerations led Miller et al. (2018, 2019)
to conclude that MBMF are both aspects of the goal-
based, controlled-processing system, based on the prefrontal
cortex/basal ganglia/dopamine circuits in the brain, while
habitual, automatic processing is supported by an entirely
separate system governed by a Hebbian, associative form of
learning that strengthens with repetition.

Overview of the Paper
In the remainder of this paper, we present an alternative
framework based on computational models of the basal
ganglia/prefrontal cortex/dopamine system, which is consistent
with the overall critique of MBMF by Miller et al. (2018, 2019),
and provides a specific set of ways in which these brain systems
can support a continuum of goal-directed, model-based forms of
decision making and action selection. The original controlled vs.
automatic distinction has always incorporated this notion that
these are two poles along a continuum. Our framework goes
further in describing how model-based and model-free elements
interact in various ways and to varying degrees to provide a
rich and multi-dimensional continuum of controlled, goal-driven
cognition, which also supports varying degrees and shades of
habitual or automatic elements.

This framework contrasts with several others that posit
strongly dichotomous and internally homogenous habitual vs.
goal-driven pathways, followed by an arbiter system that decides
between the two (e.g., Daw et al., 2005; Miller et al., 2019).
Instead, we propose that an outer-loop of goal-driven, but model-
free, processing is itself essentially an arbiter of how much time
and effort to invest in any given decision-making process. It
controls the degree of engagement of a broader toolkit of basic
decision-making computations to be deployed, as a function of
their relative tradeoffs (c.f., Pezzulo et al., 2013). In particular,
it controls whether to perform additional steps of predictive
modeling down each given branch of the state-space model.

We also address a critical phenomenon for any model in this
domain, which is the nature of the transition from controlled
to automatic processing (Cohen et al., 1990; Gray et al., 1997;
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Hikosaka and Isoda, 2010). Behaviorally, this transition occurs
gradually over time and appears to reflect something like the
strengthening of habit representations, which offer advantages
in terms of speed, resistance to distraction, and the ability to
do more in parallel, at the cost of flexibility and sensitivity to
current goals – i.e., the fundamental underlying tradeoffs along
this dimension. However, due to the multi-component nature
of our goal-driven model, there are also various ways in which
learning within this system can change these relative tradeoffs,
leading to a richer picture of this process of habit formation.

THE PROPOSER-PREDICTOR-ACTOR-
CRITIC MODEL

Our theoretical framework has been specified as a neural network
model in the Leabra framework (O’Reilly, 1998; O’Reilly and
Munakata, 2000; O’Reilly et al., 2016).

The Proposer-Predictor-Actor-Critic (PPAC) model (Figures 1,
2; Herd et al., 2019) leverages the prototypical loops descending
from all areas of frontal cortex through the basal ganglia and
converging back to modulate the function of matching areas
of frontal cortex (Alexander et al., 1986; Haber, 2010, 2017;
Sallet et al., 2013). Functionally, these BG/PFC loops support the
ability to selectively activate and maintain neural activity (i.e.,
working memory) in the service of supporting top-down control
representations (Miller and Cohen, 2001; Frank and O’Reilly,
2006; Herd et al., 2006; O’Reilly, 2006). As such, this system
is critical for controlled, goal-driven processing. The PPAC
model includes an important distinction among the nature of
the cortical input representations into the BG: proposed actions
vs. predicted outcomes. Critically, complex decision-making
unfolds sequentially across multiple iterations in the model,
each of which involves parallel operations across these circuits
(i.e., a serial-parallel model, in which parallel computations are
iterated serially).

In this theory, complex decision-making consists of a series
of selections of internal “actions,” each of which consists of an
update to working memory and/or episodic memory. Selecting a
move in chess or choosing a plane ticket to purchase may each
require a large number of belief updates (like “too expensive to
fly direct in the afternoon”) and the selection of several new
mid-level plans (like “try to threaten a more valuable piece
instead of defending the knight”). Each of these can be stored
in active memory, which executes controlled processing (by
exerting top-down biasing of processing (Cohen et al., 1990;
Miller and Cohen, 2001; Herd et al., 2006). Maintaining each plan
or belief in working memory can also create an episodic memory
trace for later recall and re-use. Our theory holds that each
such representation is selected for maintenance (and therefore
plan execution) much as motor representations are selected, by
distinct but computationally and structurally analogous circuits.

Our theory expands on existing work on action selection in
the basal ganglia, and addresses the contributions of cortex to
this process. As such, we adopt the terminology of an actor-critic
reinforcement learning architecture (Sutton and Barto, 1998;
O’Reilly and Frank, 2006) to describe the computational roles

FIGURE 1 | Structure of Proposer-Predictor-Actor-Critic architecture (Herd
et al., 2019) across frontal cortex and subcortical areas. We depict two
parallel circuits with a hierarchical relationship. The top is a broad functional
diagram, emphasizing the serially iterative and hierarchical nature of our
proposed decision-making process. The bottom expands those functions,
and identifies the brain areas that perform each function.

of basal ganglia and the dopamine system. The basal ganglia
functions as an Actor that decides which action to take (or in our
extended model, which plan to pursue). The dopamine release
system, including amygdala, ventral striatum, and related areas,
serves as a Critic by gauging the success of each action relative
to expectations. Phasic dopamine release from this critic system
serves as a reward prediction error learning signal for the basal
ganglia actor system.

To this existing computational/biological theory we add two
new computations, each made by participating regions of cortex.
The first is a Proposer component. This system takes information
about the current situation as input, and produces a single
candidate plan representation. This proposer functional role may
be less important for laboratory tasks, since they usually have
a small set of actions (e.g., levers, yes/no responses), which can
be learned thoroughly enough to process all options in parallel
routes through the basal ganglia (e.g., Collins and Frank, 2014).
However, dealing with unique real-world situations requires
coming up with a potential approach before evaluating outcomes
(e.g., different plausible routes in a trip planning context). This
proposer system could use computations characterized as model-
free, stimulus-response, constraint satisfaction, or model-based,
depending on the complexity of the situation.

The other cortical addition is a Predictor component, which
predicts the likely outcome of each proposed plan. In our model
as currently implemented, this prediction always took place in
two steps: predicting an “Outcome,” and from that outcome,
predicting a “Result” or potential reward. We think that this
type of prediction is actually performed by a variety of brain
systems, using a variable number of steps for different types of
decisions; but for the present purposes, it is adequate to simply
think of this component as producing a prediction of an outcome
by any means. This system’s computation is thus very much
“model-based,” according to that terminology.
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FIGURE 2 | Neural network implementation of the Proposer-Predictor-Actor-Critic theory. The model performs a three-factor task of choosing a Plan that
accomplishes a current Goal in a current Situation. This abstract task can be conceptualized as navigation, social interaction, etc. The network’s Proposer
component selects one Plan, based on pattern completion from inputs representing the current Situation and the current Goal. Each Plan deterministically produces
an Outcome, each of which has one associated Result. The model is rewarded if that Result matches the current Goal. The Predictor component (when it is used)
then predicts the resulting Outcome and Result (based on the proposed Plan and the current Situation), and the Actor component then uses that prediction as input
to accept or reject that plan. If the plan is rejected, this computational cycle begins again with a new plan from the Proposer.

In our system, the Actor uses the predicted outcome (when
available) of the proposed plan to either accept or reject that
plan. Having this specific outcome prediction greatly simplifies
the computational task of the actor component; it need simply
accept plans that are predicted to have rewarding outcomes, and
reject those that do not. If the proposed plan is rejected, the
Proposer component makes a new, different proposal, a new
prediction is made by the Predictor, and the Actor again decides
to accept or reject that newly proposed plan. This operation
proceeds serially until a candidate plan is selected. The serial, one-
at-a-time plan consideration is slow, but computationally helpful
in making an accurate prediction of outcomes in novel, poorly
learned domains. It allows the full power of the cortex to be
directed toward each prediction, and avoids binding problems,
as we address further in the Discussion section.

This computational approach can attack complex problem
spaces by sequentializing a complex decision into many sub-
decisions, and allowing the actor component to accept or
reject each proposed sub-plan or sub-conclusion. We propose

that our ability to sequentialize a problem into sub-steps
and make a binary decision for each is the source of
humans’ remarkable cognitive abilities relative to other animals.
This method of simplification may, however, have particular
inherent weaknesses that explain some of humans’ notable
cognitive biases.

Continuum of Controlled/Goal-Directed
vs. Automatic/Habitual
Due to its sequential, hierarchical and multi-component nature,
the model provides a mechanistic basis for a continuum
of controlled/goal-directed vs. automatic/habitual behavior. At
every sequential step, there is the potential for an outer-loop
decision about what overall strategy to employ, e.g., whether to
engage in further prediction, or iterate to another proposed plan,
etc. Within that outer loop, there are more specific decisions
regarding what factors to focus on, such as which branches to
pursue in prediction, etc.
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In cases of high urgency or low stakes, all of that complexity
could be elided in favor of a quick thumbs-up (Go gating
decision) from the Actor to the Proposer’s initial suggestion.
This optimization for speed could be created by reinforcement
learning in the basal ganglia, with inputs that capture timing
and relevant time pressures. We suggest that this may represent
the majority of habitual or automatic responding – a fast
path through the very same circuits, typically at the lower
levels of the abstraction hierarchy (e.g., involving supplementary
motor areas and the dorsolateral striatum). Thus, consistent
with the continuum perspective, and a surprising difficulty in
finding explicit claims and data about what neural substrates
uniquely support habitual behavior (e.g., Wickens et al., 2007;
Seger and Spiering, 2011), there may be no separate neural
substrate associated with habitual behavior – it is just the simplest
and fastest mode of processing through the entire decision-
making apparatus.

If this is the case, then it would seem to challenge the various
attempts to establish strong dichotomies between e.g., model-free
vs. model-based, or even value-based vs. value-free or belief-
based vs. belief-free (Miller et al., 2018, 2019). In short, even
habitual behavior depends on a (usually implicit) decision to
not engage in a more controlled form of behavior, and that
decision likely depends on assessments of the relevant “stakes”
(values or utilities) in the current context, and the estimated
cost/benefit tradeoffs in engaging in more effortful levels of
control (Pezzulo et al., 2013).

Thus, estimated value is always in play, even in the context
of habitual behavior. To reconcile this idea with the finding that
habitual behaviors are relatively insensitive to changes in reward,
we would need to determine the relative cost/benefit tradeoff
estimates associated with the alternative options that might
have been taken instead of performing the habitual response.
Certainly, if the habitual response would lead to imminent severe
harm, and this was obvious to the individual, then we would
expect them not to engage in it. Typically when clearly erroneous
habitual responding occurs in the real world, it can be traced to a
lack of attention being paid to the relevant factors, likely resulting
from prior decisions to allocate that attention elsewhere. In
other words, taken literally, a purely habitual response presumes
that the person is otherwise somewhat of a zombie. Instead, we
suggest, consistent with others (e.g., Cushman and Morris, 2015)
that habitual responses occur within a broader context (i.e., the
outer-loop) of at least some level of cognitive control.

The Model-Free Actor in the Loop
A central feature of our model is that the basal ganglia Actor
system provides a value-based final Go/NoGo decision, even (and
perhaps especially) under controlled, deliberative situations. The
Actor fits the classic description of a model-free reinforcement
learning system, and thus our framework says that there is
an important model-free component to even high-level goal-
driven and controlled behavior. This is consistent with a similar
claim in the hierarchical model of Cushman and Morris (2015)
and with their more recent experimental results (Cushman
et al., this issue). Thus, whether one wants to call this Actor
“model-free” or not, even when it receives all manner of

highly-processed goal, internal state, and prediction inputs from
the cortex, further challenges the utility of this terminology.
Furthermore, as we noted above, the availability of predicted
outcome representations from the Predictor component can
make the Actor’s job very simple, and yet likely much more
effective than a typical model-free system.

The Central Role of the Proposer
The function of the Proposer is particularly central to our
overall framework, as it serves as the starting point for any
action/plan initiation process. As noted, we think it functions
through parallel, constraint-satisfaction processing to integrate a
large number of different constraints, cues, and other contextual
information to arrive at a plausible plan of action in a given
situation (O’Reilly et al., 2014). It is precisely through this
dynamic integration process that otherwise subtle, unconscious
factors may be able to have measurable influences over our
behavior (Bargh, 2006; Huang and Bargh, 2014). In addition, this
property of the proposer enables even habit-based behavior to be
somewhat flexible and capable of incorporating novel constraints
from the current environmental state – even habitual actions are
not purely ballistic and “robotic” in nature (Cushman and Morris,
2015; Hardwick et al., 2019).

Furthermore, as we’ll see next, the incremental shaping of
these Proposer representations over the course of learning
plays a critical role in the automatization and habitization of
behavior. Indeed, as the Proposer gets better and better at
generating effective plans for increasingly well-known contexts,
the Actor learns to essentially rubber-stamp these plans, thus
resulting in fast, efficient habitual behavior. This happens through
reinforcement learning shaping the weights from cortex to the
basal ganglia Actor system; as the Actor sees more positive,
rewarding examples, it becomes more biased toward a Go
response. Along with its importance in habitual behavior, the
Proposer component is also essential for coming up with plans
in novel, challenging situations requiring controlled processing.
Thus we argue that these functional distinctions may not have
clear corresponding anatomical distinctions: the basal ganglia,
Actor component is involved in all types of decisions, and
that different areas of cortex may be recruited to play roles
as Proposer, Predictor, and even to add more highly-processed
inputs to model-free value predictions (Herd et al., 2019).

Transition From Slow and Controlled to
Fast and Automatic Processing
One of the main results from our computational model (Herd
et al., 2019) is shown in Figure 3, where the Proposer component
gradually learned to choose a Plan appropriate for the current
situation and goal. Initially, without relevant domain knowledge,
the Proposer generates plans essentially at random, and a larger
number of iterations are required to arrive at a Plan that
the Actor approves of. Over the course of learning, the more
appropriate initial plans generated by the Proposer reduces
the number of iterations required, and thus the overall model
gradually transitions from a more serial, iterative mode of
processing to a more parallel mode of processing dominated
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by the parallel constraint-satisfaction dynamic in generating
plans in the Proposer system. This illustrates a continuum of
habitization occurring over learning within the same overall
system. Furthermore, the Proposer was able to learn only
when the remaining systems chose to pursue a given plan; its
learning was thus guided by the other systems, including the
Predictor component.

Our initial model does not include the outer-loop ability to
select which decision-making processes to engage in, so it did
not have the ability to further optimize decision making by not
engaging the Predictor at all, which would have resulted in even
greater speedup, and corresponds with a more purely habitual
response mode. We are currently working on a version of the
model with this functionality.

Goal-Directed Behavior From a
Model-Free System
In our model, the input to the Proposer system includes
information about goals, so the behavior produced by this
system qualifies as goal-directed, despite the relatively simple
computations. Most computational work on model-free
reinforcement learning systems addresses systems that do not
include current goals as inputs. Those systems can only produce
habitual behavior. However, there does not appear to be any
strong justification for this assumption, and it seems more
reasonable (as well as empirically justified) to assume that the
relevant systems in the mammalian brain have access to a variety
of useful information, including current goals. Indeed, there has
been some discussion of goal-directed habits in other literature
(Verplanken and Aarts, 1999; Aarts and Dijksterhuis, 2000).

When we assessed the accuracy with which the Proposer
component produced a Plan which accomplished the current
Goal (with Situation and Goal chosen at random from ten and
four possibilities, respectively), we observed that this component
displayed goal-directed behavior by matching Plans to Goals at an

above-chance level, but learned slowly (Figure 3). This matches
the slow transition from controlled to automatic processing (Gray
et al., 1997) (note that we did not optimize parameters for
Proposer learning in this task; some other parameterizations did
produce better and faster learning).

Thus, our model illustrates one case in which goal-directed
behavior results from thoroughly model-free computations.

Serial Processing Enables Coherent
Predictions
A key advantage of the serial evaluation of different proposed
plans in our model is that it allows many different brain areas to
contribute to the evaluation process, without suffering from the
binding problem that would otherwise arise from an attempt to
evaluate multiple options in parallel. For example, if two options
are considered together, and another brain area generates an
activation associated with a prediction of difficulty, while another
activates a prediction of relative ease, how do we know which
prediction goes with which option?

This is analogous to the binding problem in visual search,
where serial processing has also been implicated as a solution
(Treisman and Gelade, 1980; Wolfe, 2003). For example, people
cannot identify in parallel whether a display contains a particular
conjunction of features (e.g., a red X among green Xs and red Os),
whereas they can identify separable features in parallel (just Xs
among Os, or just red among green). Likewise, the conjunction
of options and their predicted consequences at many different
levels in the brain, which likely depends on the current internal
and external state, can be much more coherently evaluated by
considering options one at a time. Furthermore, this serialization
of the processing enables the same predictive and evaluative
neural representations to be re-used across different situations
and contexts, thus facilitating the transfer of knowledge to novel
situations. In short, more complex model-based, predictive forms
of control must involve serial processing mechanisms.

FIGURE 3 | Model’s simulation of habitization (from Herd et al., 2019). Performance grows faster with more training, but generalization is sacrificed. (A) Performance
(% correct). The model with the Proposer component (Full model) performs worse at generalization (test – dashed lines). (B) The Proposer component learns correct
behavior over time, with increasing probability of producing optimal plans for first consideration. (C) The Proposer’s learning reduces the total number of plans
considered, by providing good options for first consideration, and thus also reduces total performance time. This may capture one factor in habitization in humans
and animals.
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However, there are costs associated with serial processing, not
only in terms of time, but also in terms of the coordination
and control required to organize the serial processing itself. In
addition, evaluating any one option relative to the predicted
properties of other options requires some form of maintenance
and comparison operations across these predictions, placing
demands on working memory and other limited cognitive
resources. Nevertheless, there are strong serial-order effects on
decision-making, which such a serial model can naturally account
for, so future modeling work will need to address these challenges
in order to better address the complexities of these phenomena.

In summary, our sequential, integrated, systems-based
approach provides some potentially novel perspectives on
central questions about the nature of controlled/goal-driven vs.
automatic/habitual behavior.

DISCUSSION

We have presented a computational systems-neuroscience
approach to understanding the dynamics of decision making
and action selection, which suggests that the classical dichotomy
between habitual/automatic vs. goal-directed/controlled
processing can be understood as different modes of functioning
within a unitary system, operating fundamentally in a serial
manner. The serial nature of the processing affords a natural
incrementality to the continuum between these modes of
processing – as the system iterates longer and engages more
elaborated predictive and evaluative forms of processing, it
shades more toward the goal-driven, controlled-processing
end of the spectrum. By contrast, there is a fast track through
the system where a proposed plan of action is derived rapidly
through parallel constraint-satisfaction processing, which is then
quickly approved by the basal ganglia Go/NoGo system – this
corresponds to the habitual end of the spectrum. However, even
this habitual level of behavior is contingent on an outer-loop
of decision making that has established relevant thresholds and
control parameters to enable the fast-track to be taken in the first
place. Thus, habitual behavior still operates within an at-least
minimally controlled context, in situations where the overall
benefits of so behaving make sense compared to investing greater
levels of control.

This framework contrasts with the dual-pathway model
proposed by Miller et al. (2019) and similar models which
suggest that habitual and controlled, goal-driven processing are
subserved by parallel pathways that compete via an Arbiter
system for control over behavior. It also contrasts with other
models having a similar overall structure, but which use model-
free and model-based components that likewise require an
Arbiter system (e.g., Daw and Dayan, 2014). The framing of the
interrelationship of habitual and controlled processing provided
by Cushman and Morris (2015) is much more consistent with
our framework, but further work is required to establish more
detailed comparisons between their implemented models and our
model. Likewise, the Pezzulo et al. (2013) model shares the central
idea that model-based predictive mechanisms are only engaged
when they yield additional value, and we will be working to relate

their computational-level mechanisms to the more biologically
based framework we have developed.

Behaviorally, there are several important predictions that our
model makes, which can be tested empirically. For example,
consistent with a great deal of theory as well as folk psychology,
we argue that habitual control is only enabled in either low-
stakes or highly urgent situations. How does this outer loop of
control interact with the various behavioral paradigms that have
established the relative value-insensitivity of habitual behavior
(Wood and Rünger, 2016)? Can our model account for both
this value-insensitivity but also the cases where relevant expected
reward values shift the system to more controlled, goal-driven
behavior? What behavioral paradigms can effectively test such
dynamics? One recent result provides a nice confirmation of one
of our model’s core predictions: that habitization is primarily
about rapid activation of a good proposed plan of action (i.e., the
Proposer in our model), but there remains a final “goal-directed”
process (the Actor in our model) responsible for actual action
initiation (Hardwick et al., 2019).

Another fertile ground for testing the model is in the domain
of serial order effects on decision-making. For example, the
balloon analog risk task (Lejuez et al., 2003; White et al., 2008; Van
Ravenzwaaij et al., 2011; Fukunaga et al., 2012; Fairley et al., 2019)
involves making a long sequence of decisions about whether to
keep pumping a simulated balloon, or cash out with a potentially
sub-optimal level of reward, and it seems uniquely capable of
capturing real-world individual differences in propensity toward
risky behaviors (Lejuez et al., 2003; White et al., 2008). Various
sources of evidence suggest that there is something about the
sequential nature of this task that is critical for its real-world
validity. Thus, we are actively exploring this question in terms
of the serial processing present in our model. In addition, there
are other well-established serial-order effects in decision making,
including framing effects (Tversky and Kahneman, 1981; De
Martino et al., 2006), and the widely-studied foot-in-the-door
and door-in-the-face strategies (Pascual and Guéguen, 2005),
which our serial model is particularly well-suited to explain.
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