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Editorial on the Research Topic

Intact Forests

INTRODUCTION

Earth’s forests cover an area approximately equal to Africa and Europe’s landmasses combined
(Keenan et al., 2015) and play vital roles in the global carbon, water, and energy cycles. But there is
growing evidence that intensive, industrialized human uses reduce forest ecological integrity and
damage these and other processes. It is increasingly clear that the most intact forests, i.e., those free
from significant human-induced degradation, tend to support the highest levels of many important
ecosystem values and services (Watson et al., 2018). As such they require particular attention in
policies and management.

This special issue of Frontiers in Forests and Global Change was inspired by the 2018 Oxford
Conference on “Intact Forests in the Twenty First Century,” which was held in part due to the
increasing desire of the global conservation policy community to understand, map and conserve
intact ecosystems. The issue contains fifteen papers which can inform global policy and practice in
this critical area.

CLARIFYING DEFINITIONS AND METRICS

The term “intact forests” represent a special case of the broader concept of ecological integrity (or,
equivalently, intactness); namely the degree to which the composition, structure and functions of
an ecosystem are within their natural ranges of variability. This formed one of the foundational
concepts of the 1992 Rio Declaration, but has proven difficult to operationalize beyond bottom-up,
local approaches (Hansen et al., 2021). However, recent advances in remote sensing, big data and
cloud computing have enabled new biome-wide or global metrics to be generated (Grantham et al.,
2020; Hansen et al., 2020; Williams et al., 2020; Nicholson et al., 2021). Rapid further developments
are anticipated, and these new tools have already helped to build the confidence of the global
policy community that ecological integrity can be measured and monitored in practical ways. For
example, an increasing number of countries are incorporating forest degradation data into their
greenhouse gas reporting (Lee et al., 2018) and it seems likely that the Parties to the Convention on
Biological Diversity (CBD) will include the maintenance of the integrity of forests and other natural
ecosystems as a headline goal under the forthcoming Global Biodiversity Framework 2021–2050
(CBD, 2021).

Ecological integrity is a multi-dimensional concept (Nicholson et al., 2021) so scientists must
be careful to define exactly which aspects of it they are measuring, and to recognize that different
aspects of integrity may not be perfectly correlated. One key challenge is to specify the natural
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range of states where no integrity is considered to have been
lost. In addition to data constraints, there are philosophical
questions relating to what degree of human activity should be
considered a part of the natural system and how ongoing changes
in environmental conditions are treated (Ellis et al., 2021; Morel
andNogué). For example, Harvey et al. show that what ecosystem
is considered ’intact’ in the mountains of Guatemala depends in
part on how far in the past the reference state is measured. A
range of practical solutions exists (Hansen et al., 2021) as long as
the issue is dealt with transparently, and as long as the sensitivity
of results to the choice of approach is considered.

We note there is some debate over how best to qualify a
forest as “intact” or “not intact,” along a given dimension of
integrity. Whilst binary categories are inherently attractive and
can be potentially useful for policy design and communications
(e.g., Potapov et al., 2017), it is important to recognize that they
are usually simplifications of continuous gradients of variation.
For example, Plumptre et al. found that even areas qualifying
as Intact Forest Landscapes (IFLs) on structural grounds may
not be wholly intact with respect to their vertebrate faunas, as
some hunting-sensitive species are absent at some sites. A key
insight here is that in the Anthropocene (Malhi, 2017) few, if any,
forests still lie wholly within their natural ranges of variation on
all dimensions (Malhi et al., 2014). Hence attempts to identify
’perfectly intact’ forests are likely to be largely uninformative for
policy and planning.

A more useful approach is to quantify the degree of integrity,
and then to assess the levels of integrity below which particular
environmental values are significantly reduced. This may in turn
help to identify threshold levels for integrity which are relevant
in a particular context. For example, Qie et al. (2017) found
that average annual carbon sink values were consistently high
across Bornean forest interiors but begin to drop off steeply
within 450m of a forest edge, indicating that below this particular
threshold of structural integrity a significant change is observed
in a key ecological function.

VALUES ASSOCIATED WITH HIGH

INTACTNESS

A wide diversity of values and services tends to be found at
higher levels in more intact forests of a given type. Biomass
carbon stocks are a good example (Keith et al., 2009; Mackey
et al., 2020), and forests and other ecosystems without a history
of significant disturbance also collectively absorb around 30% of
anthropogenic carbon emissions annually (Friedlingstein et al.,
2020). Two papers in this volume (Leverett et al.; Moomaw et al.)
highlight the carbon values of intact North American forests, and
also draw attention to the strong carbon sequestration services
provided by older regrowth forests as their integrity returns
toward more natural levels. Moreover, other climate regulatory
services also tend to be higher in more intact forests, including
moderation of local and regional air and land temperatures, and
the return of moisture to the air through evapotranspiration
(Baker and Spracklen).

Many aspects of biodiversity tend to be higher in more
intact forests. For example, loss of ecological integrity tends to
increase the numbers of species at elevated risk of extinction
in an ecosystem (Betts et al., 2017; Donald et al., 2019) and to
reduce or eliminate populations of many species (Haddad et al.,
2015), including top predators and other species with large area
requirements or particularly specialized niches. Hill et al. map
variation in the natural (undisturbed) biodiversity importance
of forests, and also estimate reductions in these forest species
populations due to pressure from nearby human populations.

Many Indigenous Peoples’ livelihoods and cultural security are
underpinned by the integrity of the forest and other ecosystems
within their territories and are at risk as degradation and
clearance proceed (Garnett et al., 2018; Fa et al., 2020). There
is often a reciprocal relationship between such communities and
the integrity of their lands, since many have actively protected the
lands they benefit from against destructive pressures originating
elsewhere (Wells et al.).

The current global pandemic has put a spotlight on the sources
of recent emerging infectious diseases, over 40% of which have
been associated with transmission from wild animal species
(Jones et al., 2008). Loss of integrity in natural systems, especially
along tropical forest frontier zones, is believed to be a key
factor driving rising rates of human-livestock-wildlife contact,
and hence disease outbreaks, in recent decades (Dobson et al.,
2020; Petrovan et al., 2021).

Due to methodological challenges, much remains to be
learnt on the determinants of long-term ecosystem resilience,
and on short-term resilience to conditions that ecosystems
have not faced during the recent observational record (Morel
and Nogué). Nonetheless, several key aspects of ecological
resilience (including related concepts such as resistance) have
been shown to be higher in intact forests and reduced
following degradation (Thompson et al., 2009), including
sensitivity to drought (Alencar et al., 2015) and vulnerability
to fire (Nikonovas et al., 2020). For example, palaeoecological
techniques show that intact Bornean mangroves appeared
resilient over long periods to a regime of occasional fires,
but experienced lasting and detrimental changes once fires,
combined with multiple other pressures, exceeded some critical
threshold of intensity following European colonization (Cole
et al.).

THREATS TO INTACT FORESTS

Past pressures have already reduced the intactness of many
forests such that only around 40% still have high ecological
integrity (Grantham et al., 2020) with even less existing in
blocks large enough to qualify as IFLs (Potapov et al., 2017).
Declines are continuing, as shown by the >9% decline in
the global extent of IFLs during 2000–16 (Potapov et al.,
2017 and updates thereto)1 Integrity is also in decline
within these larger blocks (Benítez-López et al., 2019) and in
smaller primary forest fragments outside them (Sabatini et al.,
2020).

1http://intactforests.org/data.ifl.html
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Many human activities are causing these declines, notably
logging, infrastructure development, changes to natural fire and
flood regimes, and fragmentation by expanding farms (Potapov
et al., 2017; Scullion et al.) as well as less visible issues such as
hunting, over-grazing, pollution, and invasive species. It is clear
that these threats and their indirect drivers (economic, social,
and demographic) will grow in the future. For example, Wells
et al. summarize the vast and expanding industrial footprint of
logging, hydropower, mining, and oil and gas across the North
American boreal forests whilst Grantham et al. (2021) found
that 20% of tropical IFLs are currently overlapped by licenses
for exploration or extraction by the oil, gas and minerals sectors
and Putz et al. (2012) famously noted that, aside from those
in protected areas, most tropical forests have been or will be
selectively logged. Over 25 million km of new roads will be
built by 2050, many in currently intact areas (Laurance et al.,
2014).

Detailed metrics allow the exact impacts of various
processes to be explored at a range of scales—for example,
first-cut selective logging in tropical forest typically leaves
patches averaging almost 70% of the area allocated for
harvesting undamaged, though this number may decline
in subsequent cycles (Putz et al.). Osuri et al. highlight
the differential impacts on faunal assemblages from
hunting and from habitat disturbance, whilst Morgan et al.
examine the fine-grain effects of certified logging on great
ape habitats.

SOLUTIONS: HALTING AND REVERSING

THE DECLINE OF INTACT FORESTS

Significant efforts are underway to halt both the deforestation
and degradation of intact forests, and increasingly also to
restore elements of integrity (e.g., rewilding). Proposed solutions
are as diverse as the threats and drivers themselves (Scullion
et al.). Wells et al. suggest a package of measures for the
North American boreal zone whilst Moomaw et al. propose a
refocusing on intact forest (which they term “proforestation”) in
the US context.

One group of solutions involves area-based conservation
measures, which include state or private protected areas and a
wide range of Indigenous- or community-led approaches, from
protected areas to the broader-scale management of traditional
territories. To be fully effective, area-based measures should be
supported by legally recognized, multi-sectoral spatial plans. Few
protected area systems currently meet the necessary thresholds
for extent, representativeness or effectiveness due to a range of
constraints (Maxwell et al., 2020). Resourcing, legal limitations
and other factors also constrain Indigenous and community-
led approaches from reaching their full potential scale or
impact (RFN, 2021; Wells et al.). Furthermore, communities
defending forests are being disproportionately targeted with
violence and murder (Butt et al., 2019), making it urgent for
the international community to recognize their contribution
and intervene in these predominantly politically- and corporate-
driven attacks.

A crucial complementary approach to area-based methods
is to address the drivers of loss. For example, over the last
decade there has been a swell of industry-led zero-deforestation
supply chain commitments, but implementation is still lacking
and many companies are yet to act (NYDF Assessment Partners,
2020). In addition, these efforts have been found to seldom target
locations where the pressure on intact forests will be highest
in future (Leggett and Lawrence, 2021). Kleinschroth et al.
explore some of the challenges to using voluntary certification
approaches to minimize the impacts of logging on intact forests.
On deforestation, Haywood and Henriot argue that voluntary
approaches are largely ineffective and that it is essential for the
governments of forest countries to take the lead, setting and
enforcing appropriate laws.

To be successful, both area-based and driver-based
approaches require a range of enabling conditions across
society, including an ambitious and well-designed policy
framework with clear targets that make the retention of large
areas of intact natural ecosystems a high priority at international
and national levels across all sectors including climate, health,
biodiversity, industry and rural development (Maron et al., 2018,
2020; Milner-Gulland et al., 2021). Other critical factors are the
availability of credible evidence, high levels of public awareness
and interest, sufficient financial resourcing, attention to human
rights and stakeholder participation, and economic tools that
promote more sustainable alternative forms of development
(Díaz et al., 2020; Scullion et al.).

In conclusion, this special issue highlights the necessity to
conserve intact forests for their unique role in maintaining
a variety of ecological functions and values in the face of
growing threats. Participants in the conference together wrote
the Declaration on Intact Forests in the Twenty First Century2

which subsequently attracted support from a wide diversity of
scientists, practitioners, and advocates. It is clear that if today’s
intact forests are to survive into the twenty second century,
then globally coordinated action is very much needed, at all
scales from individual sites and the struggles of environmental
defenders through to over-arching UN conventions such as the
CBD and UNFCCC.
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Efforts to designate priority areas for conservation have had a long history, with most

modern initiatives focused on either designating areas important for biodiversity or

those least impacted by direct human disturbance. Ecologically intact ecosystems are

becoming increasingly limited on the planet, making their identification and conservation

an important priority. Intact forest landscapes (IFL) are defined as forests that are mainly

free of significant anthropogenic degradation and at least 500 km2 in size. Here we define

a new metric, the Last of the Wild in each Ecoregion (LWE), as a preliminary scoping of

the most intact parts of each ecoregion. IFL and LWE are approaches among a broad

family of techniques to mapping ecological integrity at the global scale. Although both

implicitly include species integrity as a dimension of intactness, this is inferred rather

than directly measured. We assessed whether IFL or LWE areas were better at capturing

species where they are most abundant using species distribution data for a set of forest

species for which range-wide data were available and human activity limits the range.

We found that IFL and LWE methods identified areas where species we assessed are

either absent or at too low an abundance to be ecologically functional. As such many

IFL/LWE polygons did not have intact fauna. We also show that 54.7% of the terrestrial

realm (excluding Antarctica) has at least one species recorded as extinct and that two

thirds of IFL/LWE areas overlap with areas where species have gone extinct in the past

500 years. The results show that even within the most remote areas, serious faunal loss

has taken place at many localities so direct species survey work is also needed to confirm

faunal intactness.

Keywords: intact forest landscapes, ecoregions, faunal intactness, prioritization for conservation, species

extinction
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INTRODUCTION

Throughout history, the reasons why areas have been established
for wildlife protection have varied considerably. Some of the
oldest forms of wildlife protection occurred as a result of
land being put aside by the nobility for hunting (Hamin,
2002). For example, the Białowieża Primeval Forest protected
the European bison for royal hunts and its habitats persisted
for over 500 years (Jędrzejewska and Jędrzejewski, 1998).
Prioritization of conservation sites for other reasons started with
the establishment of the first national parks in the late 1800s.
Initially, concepts of natural wonders, spiritual refuge, and scenic
beauty were the criteria used to identify these parks (Runte, 1997;
Nash, 2001; Lewis, 2007). In Africa, many of the first protected
areas in the early to mid-1900s were established to enable sport
hunting with a focus on the conservation of large mammals
(with big trophies), usually where it was observed that they were
declining in numbers (Willock, 1964).

It wasn’t until the mid-1970s and 1980s that the attention
started to shift to biodiversity conservation and the idea of
saving life on Earth in all its forms. In the mid-1990s, Centres
of Plant Diversity were identified to map species-rich plant
regions (Davis et al., 1994). This led to the identification of
ecoregions (Olson et al., 2001), areas of similar floristic and faunal
composition, and the prioritization of these into the Global
200 (Olson and Dinerstein, 1998). The definition of biodiversity
hotspots (Mittermeier et al., 2004) also emerged—regions rich
in endemic plant species that also suffered a high degree of
human impact. However, these broad-scale prioritizations, while
helpful in identifying general regions important for conservation
investment, were not easily translated into conservation actions
at a local scale, and were biased toward tropical regions of the
planet (Noss et al., 2015).

The Important Bird Areas (IBA) program (Donald et al.,
2018), established in the early 1980s, was one of the first site-
based prioritization initiatives based on the diversity of all
species within a taxon. When it was shown that prioritization
for birds also led to a good percentage of other taxa being
captured, IBAs became known as the Important Bird and
Biodiversity Areas program (Donald et al., 2018). Numerous
additional schemes to identify important sites for taxonomic
or thematic subsets of biodiversity (e.g., Alliance for Zero
Extinction sites (AZE) etc.) were independently created. These
formed the basis of a consolidated approach: the Key Biodiversity
Areas (KBA) framework and methodology (IUCN, 2016), the
purpose of which was to bring a standard and comparable
approach to the identification of the most important sites
for biodiversity on Earth that could be applied across all
taxa. Following extensive consultation within the conservation
community, A Global Standard for the Identification of Key
Biodiversity Areas was finalized (Potapov et al., 2009; IUCN,
2016). Sites of importance for the global persistence of
biodiversity can be selected if they meet one of five higher level
criteria that have been recognized in several site identification
or conservation prioritization approaches: (A) Threatened
species or ecosystems, (B) Geographically restricted species or
ecosystems, (C) Ecological Integrity, (D) Biological processes

or congregations, and (E) Irreplaceability (IUCN, 2016). The
ecological integrity criterion (C) was designed to identify
outstanding examples at the global scale of still-natural and
intact areas that maintain fully functional ecosystems within each
ecoregion, and are therefore critical for sustaining biodiversity in
the face of human-induced change.

KBA Criterion C deliberately incorporates both intactness
and biotic integrity (IUCN, 2016) into the KBA approach by
calling for the delineation of wholly intact natural areas with
minimal post-industrial anthropogenic disturbance, sufficiently
large to accommodate most broad-scale ecological processes, and
supported by evidence that all ecosystem components (including
highly mobile predators and herbivores and long-lived structural
plant species) still fulfill their functional roles (KBA Standards
Appeals Committee, 2018). Because comprehensive assessments
of biotic communities will be impractical in many areas with
high ecological integrity, especially in remote ecoregions with
few human settlements and limited access, direct measures of
intact faunal communities would have to be accomplished using
indicator species (KBA Standards Appeals Committee, 2018).
We note that unfortunately many ecoregions will not have
criterion C KBAs because they have been so heavily impacted
by humans that no areas within them now satisfy a meaningful
intactness requirement.

The effort to identify which parts of the planet are globally
important for biodiversity has been paralleled with assessments
of global threats, in particular the impact of humans on the
environment. The Human Footprint (Sanderson et al., 2002;
Venter et al., 2016a; Allan et al., 2017) aimed to map the variation
in human influence around the world using remotely sensed
and other geographic data, such as human population data,
infrastructure, and lights visible to a satellite at night. Areas
of the least human influence within biomes have been termed
“Last of the Wild” areas (Sanderson et al., 2002; Watson et al.,
2016). It is now clear that these are rapidly dwindling in size and
connectivity (Watson et al., 2016; Jones et al., 2018) and at the
same time our understanding is growing of the exceptional value
of intact ecosystems for provision of ecosystem services (water,
carbon, etc.), biodiversity conservation, indigenous peoples, and
human health (Watson et al., 2018).

Intact Forest Landscapes (IFL) adopted a similar approach to
“last of the wild,” albeit restricted to forested ecosystems (Potapov
et al., 2008, 2017). The methodology identifies large undeveloped
forest areas through satellite-basedmapping of tree canopy cover,
with areas unfragmented by roads or other development of no
smaller than 500 km2, assumed to be large enough to “maintain
all native biodiversity, including viable populations of wide-
ranging species” (Potapov et al., 2008, 2009). This size threshold
was developed to be globally generalizable, but has been critiqued
for being arbitrary and without scientific basis with respect to
meeting biotic expectations, given the space needs of many wide-
ranging species (Venier et al., 2018).

Here we make a scoping of the wildest parts of each ecoregion,
what we term the “last of the wild in each ecoregion (LWE)” and
compare this with IFL. We focused the Last of theWild approach
(Sanderson et al., 2002) down to the ecoregion scale with the
LWE method because of the value in conserving the most intact
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areas of each ecoregion, rather than the most intact areas of each
biome. This method is also a first step in a scoping of potential
KBA Criteria C sites. With a focus on forested ecosystems,
we assessed whether either approach identifies areas of faunal
intactness as a preliminary measure of a more comprehensive
species intactness. LWE and IFL are two approaches in what
is now a broad family of techniques to mapping ecological
integrity at the global scale, identified throughmeasures of degree
of human impact or influence, rather than through mapping
of intact faunal communities. Others include Wilderness Areas
(McCloskey and Spalding, 1989), Frontier Forests (Bryant et al.,
1997), Hinterland Forests (Tyukavina et al., 2016), and very
recently the Human Modification map (Kennedy et al., 2019).
One concern with all these approaches is that they do not
map what the satellites cannot see. Defaunation (Dirzo and
Miranda, 1990) in what appears to be intact forest has long
been recognized, and often referred to as “empty forest”
(Redford, 1992; Wilkie et al., 2011). Verification of defaunation
would require complete biological inventories and intimate
historical knowledge.

Because both KBA and IFL approaches implicitly include
species integrity as a dimension of intactness, it is of significant
interest to determine the extent to which measures of human
impact truly correspond with locations of intact animal
communities, given the absence of credible global measures of
this mapping dimension (Martin et al., 2019). An initial scoping
of KBA criteria C sites requires likely intact areas of each
ecoregion to be identified. The LWE approach we document here
uses one method that might be used to scope potential Criteria
C sites by identifying the areas with lowest human impact as
measured by the human footprint. Threats are often mapped
at various scales, from local to global, using remote sensing
products, but their value for identifying intact fauna is often
assumed rather than tested. In this paper we use both IFL and
LWE areas as two measures of low human impact to assess how
well measures such as these, made using remote sensing products
and global datasets, actually capture important areas for fauna.
We test the areas with (1) data on large, forest-dwelling mammals
for which there are global data that tend to be negatively affected
by human pressures and are likely to be some of the first species
lost from a site, and (2) a measure of species extinction.

METHODS

We compared two estimates of intact habitat: IFL and LWE. “Last
of the Wild” (Sanderson et al., 2002; Watson et al., 2016) maps
focused on the wildest areas within biomes; the largest such areas,
not surprisingly, are inhospitable deserts and tundra areas, and
inaccessible areas such as the Amazon. Rather than using biomes,
we modified the “last of the wild” method (Sanderson et al., 2002)
to select within ecoregions rather than biomes. Ecoregions are
more ecologically fine-grained and representative of biodiversity
than biomes, as well as potentially compatible with the KBA
Criterion C. Other similar published metrics (e.g., hinterland
forests - Tyukavina et al., 2016) have an overlap of 92% with
IFL maps.

Scoping of LWE Areas
We undertook a scoping of candidate LWE areas by identifying
the five most intact areas for each ecoregion of the world.
We overlaid the most recent human footprint map (Venter
et al., 2016a,b) on the most recent map of ecoregions of the
world (Dinerstein et al., 2017). The human influence index
(HII) can range between 0 and 50; for the purposes of this
analyses we identified the best 10% of each ecoregion (lowest
footprint scores), and within this subset selected the 5 largest
intact polygons. HII has been widely used relative to more
recent datasets of humanmodification (e.g., Kennedy et al., 2019)
and therefore offered opportunities to compare our results with
previous literature. A similar approach was used for the “Last
of the Wild” (Sanderson et al., 2002), except this assessed the
10 largest areas within the best 10% of each Biome. In order to
avoid polygons that had a lot of “gaps” resulting from pockets
of high human activity in otherwise non-impacted landscapes,
we applied a 5 km smoothing buffer to the HII map (each pixel
representing the average HII score within the buffer radius).
We selected this buffer radius from a range between 0 and
25 km, testing the result in ∼2.5 km increments. The 5 km buffer
provided the best smoothing, and appeared to stabilize both
the reduction in border effects and remnant habitat selection
(median effects on area perimeter and shape did not substantially
vary using larger buffers). Thismeant that fragmented and border
habitats would experience an increase in HII, while core areas
would remain unaffected.

We selected a subset of these areas, designated Forest LWE,
which selected only those forested ecoregions that overlapped
with IFL polygons. We used these polygons to intersect with
global maps of species loss (see below).

Our rationale for using anthropogenic influence to identify
LWE areas is that a reduced anthropogenic influence is likely to
translate to a reduced ecological impact, including species loss.
Global maps of anthropogenic influence, however, are not likely
detailed enough in many places of the world to capture (directly
or indirectly) all pressure types that might result in species loss, or
if modern measures of anthropogenic influence can still capture
historical impacts. Notable pressures that are unmapped to date
include hunting/poaching andwill have drastically altered species
composition in large landscapes; regional or local-scale maps will
capture more elements of the human footprint. The regions we
identify will need to go through more stages of rigorous analysis,
including on-the-ground evaluation before KBA criterion C
sites can be positively identified. As such, this is a preliminary
scoping of regions of the world where such sites are likely
to exist.

Intersecting IFL and LWE Areas With

Species Distributions
Species With Measures of Density
To assess how well these areas might capture faunal intactness
we compiled range and, where possible, density maps for a
small subset of tropical forest mammals that are sensitive to
human disturbance. We assembled density data for the following
species: jaguars (Panthera onca) (Jedrzejewski et al., 2018),

Frontiers in Forests and Global Change | www.frontiersin.org 3 June 2019 | Volume 2 | Article 2412

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Plumptre et al. Are We Capturing Faunal Intactness?

FIGURE 1 | (A) Map of LWE sites. These are the five largest parts of each ecoregion with the lowest 10% of human influence index scores. Different colors represent

different ecoregions. (B) map of IFL sites.

African forest elephants (Loxodonta africana cyclotis) (Maisels
et al., 2013), western lowland gorillas (Gorilla gorilla gorilla),
central chimpanzees (Pan troglodytes troglodytes) (Strindberg
et al., 2018), eastern chimpanzees (P. t. schweinfurthii) (Plumptre
et al., 2010), eastern gorilla (Gorilla beringei) (Plumptre et al.,
2016), Bornean orangutan (Pongo pygmaeus) (Voigt et al., 2018),
Sumatran orangutan (P. abelii) (Wich et al., 2016), and Tapanuli
orangutan (P. tapanuliensis) (Nater et al., 2017). For each of

these maps we identified a threshold density separating high
and low density populations using expert assessment of the
relevant author’s knowledge of each of the species. We then
intersected the maps of IFL and the LWE areas with each species
map to calculate areas of high density that were within these
polygons and the area across the species range. We measured
the percentage of the area of the LWE and IFL polygons that
contained high density scores for a species and compared this
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TABLE 1 | The area of suitable habitat, or area where the species was at high

density (for species with density estimates), calculated within the LWE sites or IFL

sites (where they overlap the species range), and within the global range of the

species as a whole.

Species LWE sites

(km2)

Intact forest

landscapes (km2)

Global extent of

range (km2)

RANGE WIDE PRIORITY MAPPING

Asian black bear (Ursus

thibetanus)

127,273

(24.3%)

83,341

(53.0%)

1,095,792

(28.5%)

Asian sun bear (Helarctos

malayanus)

77,153

(23.3%)

79,297

(29.5%)

409,691

(17.5)

Brown bear (Ursus

arctos)

4,565,655

(82.1%)

4,257,441

(84.8%)

14,214,665

(59.9%)

Sloth bear (Melursus

ursinus)

52,796

(39.7%)

0

(0.0%)

352,042

(11.7%)

Snow leopard (Panthera

uncia)

173,670

(36.0%)

19,668

(84.8%)

1,003,608

(44.3%)

Asian elephant (Elephas

maximus)

60,750

(54.7%)

40,918

(74.3%)

526,101

(58.7%)

Peccary (Tayassu pecari) 102,403

(82.7%)

3,571,133

(90.1%)

5,899,639

(42.3%)

Tapir (Tapirus terestris) 50,267

(84.9%)

3,580,578

(91.1%)

5,830,185

(44.1%)

Tiger (Panthera tigris) 155,294

(71.5%)

116,950

(81.4%)

930,093

(78.1%)

DENSITY MAPS (WITH THRESHOLD DENSITY BETWEEN HIGH AND

LOW IN PARENTHESES)

African forest elephant

(Loxodonta africana

cyclotis) (0.2/km2 )

33,591

(16.4%)

37,078

(4.5%)

62,903

(3.8%)

Central chimpanzee (Pan

troglodytes troglodytes)

(0.5/km2 )

9,950

(7.3%)

18,136

(8.3%)

31,399

(5.5%)

Eastern chimpanzee (Pan

troglodytes shweinfurthii)

(0.5/km2 )

22,729

(22.7%)

156,371

(52.6%)

261,106

(28.8%)

Western lowland gorilla

(Gorilla gorilla gorilla)

(1/km2)

44,574

(32.7%)

53,279

(24.4%)

85,056

(14.7%)

Grauers gorilla (Gorilla

beringei graueri)

(0.5/km2 )

0

(0.0%)

7,640

(9.9%)

14,000

(7.1%)

Jaguar (Panthera onca)

(2/100 km2)

1,521,277

(60.5%)

2,569,571

(64.6%)

4,611,009

(49.4%)

Bornean orangutan

(Pongo pygmaeus)

(0.5/km2 )

8,945

(53.6%)

7,283

(41.0%)

89,138

(50.6%)

Sumatran orangutan

(Pongo abelii) (0.5/km2)

3,754

(86.0%)

5,695

(84.7%)

15,370

(91.6%)

Tapanuli orangutan

(Pongo tapanuliensis)

(0.5/km2 )

0.0

(0.0%)

0.0

(0.0%)

989

(96.0%)

The percentage of suitable/high density habitat of the total area within the LWE, IFL and

global range is also given.

with the percentage area of high density scores across the species
global range to assess whether the methods selected more of
the area where species are considered to be likely to be at a
functional density. We used this calculation because IFL and

LWE areas have a great difference in extent, and failing to do so
would have almost certainly indicated the larger areas to be more
inclusive, despite the potential to also include large segments of
low-density populations.

Species With Range-Wide Priority Setting
We also compiled maps from range-wide priority setting
exercises that mapped areas where a species was definitely
occurring, probably/possibly occurring and extirpated. We
assembled maps for tigers (Panthera tigris) (Dinerstein et al.,
2006), white-lipped peccary (Tayassu pecari), and tapir (Tapirus
terrestris) (Taber et al., 2008), Asian black bear (Ursus thibetanus),
brown bear in Asia (Ursus arctos), sloth bear (Melursus ursinus)
and sun bear (Helarctos malayanus) (Garshelis et al., 2007),
snow leopard (Panthera uncia) (McCarthy et al., 2016; Sanderson
et al., 2016) and Asian elephant (Elephas maximus) (Hedges
et al., 2009; Calabrese et al., 2017). Although large areas of
IFL and LWE occur in boreal forest, analogous full range
assessments of boreal species other than brown bear in Asia
were not available. For the purposes of this analysis we assumed
that where a species was definitely known, it was occurring
at a reasonably functional density, because the species could
be detected. Where a species was possible/probable it was at
low density because it was uncertain whether the species was
present. We use the term “suitable habitat” to define where a
species definitely occurred in the rest of this paper. This will
overestimate where a species is at functional density because
there will be many sites where the species is known to occur, but
only at low density, as well as known sink sites. We calculated
the area of suitable habitat within the LWE and IFL polygons
as well as within the species global range. We also assessed the
percentage of the range of the species with suitable habitat and
the percentage of this suitable habitat within LWE areas and
within IFLs, to assess whether the method was selecting areas
where the species was more likely to be at a higher density and
more functional.

Intersecting IFL and LWE Areas With a Map

of Where Species Have Gone Extinct
We assessed loss of faunal intactness by mapping the distribution
of extinct ranges for species. We compiled maps of all species
assessed from the IUCN Red List of Threatened Species (IUCN,
2018) and mapped the native range where a species was
considered to be extinct or possibly extinct as classified under
the range fields “Presence” for each species range polygon. The
Red List assesses where species have gone extinct since the year
1500 AD, so does not include species that were extirpated prior
to this date and there are recognized gaps in coverage as a result.
It maps species that have gone extinct, and areas of range where
extant species have lost range. We mapped all such ranges to
assess the numbers of extinct species to obtain a measure of loss
of faunal intactness across the world. We then intersected this
map with the IFL and LWE/Forest LWE polygons to calculate the
percentage area of polygons that had not lost any species using
this measure.
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FIGURE 2 | A comparison of the percentage of “high density” or “suitable” habitat within a species range plotted against the percentage of the area within the

LWE/IFL polygons that overlap the species range. Species below the 1:1 line have less suitable/high density habitat than available.

RESULTS

LWE Areas
The map of LWE areas is visually dominated by large areas
of the northern ecoregions in tundra, taiga, and boreal forests
(Figure 1). This is because the HII in these less populated
ecoregions are mostly scored zero, so that when selecting the
10% of lowest scores, all cells with zero are selected. Human
impacts in these regions include logging and other resource
development (e.g., mining areas, seismic lines), but these are not
available on global maps and therefore do not get incorporated
in the HII (though see Kennedy et al., 2019). This highlights a
compromise tied with using current global data sets, accepting
data that may be of lower quality than locally available in order
to reduce geographical bias across management units (countries
or sub-national regions). For this reason, there have been several
efforts to make regional human footprint maps (Leu and Hanser,
2008; Woolmer et al., 2008) What is clear is that for most of
the ecoregions of the planet, the five most intact areas of each
ecoregion are relatively small in size (average area was 6,323 km2

but median area was only 696 km2), reflecting the fine scale of
many ecoregions and the density of human activity. Only 340
areas out of a total of 3,852 identified were larger than 10,000
km2, the recommended minimum size for a KBA criterion C site
(IUCN, 2016).

Intersection of Species Ranges and

IFL/LWE Areas
The results of the intersection of the IFL and LWE areas
with the ranges of the 16 species for which we had data on
density or suitable habitat are shown in Table 1 (Figure S1 in
supplementary material shows the overlap of LWE/IFL with
suitable/high density habitat for all forest species). This table
shows the areas of high density/suitable habitat in the LWE areas,
the IFLs and the percentage of the species global range. On
average 21% of high density/suitable habitat of a species range
was captured within the LWE areas and 34% within IFLs. Given
that all LWE areas (including those in non-forest ecoregions)
cover only 2% of the surface covered by IFL (24.4 million km2 vs.
1,163.3 million km2), we also compared the relative percentages
of high density/suitable habitat captured by each approach by
plotting the percentage of high density/suitable habitat within the
species range against the percentage of the area of the LWE/IFL
polygons where there was overlap (Figure 2). For example, only
17% of the LWE areas that overlap African forest elephant range
have high elephant densities, and this drops to only 4.5% in
IFL polygons, similar to the global percentage across their range
(3.8%). In some cases, the LWE areas capture more of a species’
high-density range while for others the IFL do a better job.
For the most part both capture a larger percentage than what
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FIGURE 3 | The ranges where any species on the IUCN Red List of Threatened Species has been assessed as extinct or possibly extinct. Note that this map will be a

significant underestimate because the IUCN Red List does not map species prior to 1500 AD and many extant species probably do not have their extinct ranges

mapped.

is available within the species’ range (species above the line of
1:1 –Figure 2), although many of the comparisons are close to
what would be expected if polygons were allocated randomly (1:1
line—Figure 2). For many species, however, large areas of the
IFL or LWE polygons do not have high density/suitable habitat.
In these areas, the species are unlikely to be at a functional
density or not even present. This was particularly true for those
species measured using density, which were likely to better reflect
functional integrity of a site. Note that the percentage areas of
suitable habitat will be on the high side for the ranges determined
by range wide priority setting because the assumption was made
that definite/confirmed range or high quality range would have
functional densities of the species, yet at many areas this may not
be the case and they are simply recorded as being present which
qualifies it as definite range. This assessment clearly shows that
these species, which tend to be affected by human impact, will
be at low and likely non-functional densities across large areas of
either IFL or the LWE areas.

Faunal Loss in IFL and LWE Areas
Figure 3 shows the results of mapping all species assessed on
the IUCN Red List where a species has been extirpated or is
possibly extirpated since 1500 AD. A total area of 54.7% of the
terrestrial realm of the earth (excluding Antarctica) has at least
one species with range recorded as extinct or possibly extinct.
The white areas in Europe and central Asia would certainly
have had species that had been lost prior to 1500 AD, such as
bears (Ursus arctos), wolves (Canis lupus), and beavers (Castor
fiber). It is important to note that within the IUCN Red List
assessments, most records do not estimate where the species has
lost part of its range. Therefore, this map will very much be

TABLE 2 | The results of intersecting the IFL, LWE, and Forest LWE polygons with

the Extinct species map.

Intactness measure Percentage of sites without

extinct species (% area)

IFL sites 30.6

All LWE sites 33.3

Forest LWE sites 19.4

The percentage area of “intact” polygons are given, defined as area where no species are

recorded as extinct.

an underestimate of species loss across the world. Yet it is still
valuable in highlighting how much of the world has lost one or
more species.

Intersecting all LWE areas with this map shows that 33%
of the area of LWE polygons have no recorded extinctions,
compared with 31% of IFL polygons. However, of the forested
LWE areas only 19% of their total area have no extinctions
recorded (Table 2).

DISCUSSION

What Do We Mean by Intactness?
Our results show that there are few places left on the planet
that are faunally intact, a result that corresponds with many
assessments of global biodiversity (e.g., Secretariat of the
Convention on Biological Diversity United Nations Environment
Programme, 2014; Wolf and Ripple, 2017). The two measures we
assessed of intactness—the IFL measure and the LWE areas—
encompass reasonably large areas of the globe. However, when
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we look at forest species that might be using the IFLs and LWE
areas, for many there are large parts of these “intact areas” where
they are absent or at low densities (Figure 2) that are not likely
ecologically functional (sensu Sanderson, 2006). In extreme cases,
species may be present, but ecologically extinct (Estes et al.,
1989; Novaro et al., 2000). Assessment of species range loss or
complete extinction also shows that a large area of the earth does
not have a full complement of species and cannot be thought
of as faunally intact (Figure 3). More than half of LWE areas
had no species recorded as having gone extinct, but this would
decrease if pre 1500 data were available for ecoregions in Europe
in particular, and if extinction records in the IUCN Red List were
more comprehensive in general. Comparison of forested areas
demonstrated that more than half of IFL and forest LWE areas
had lost at least one species.

Table 1 shows that areas of suitable habitat/high density range
for the species we assessed were not captured by the IFL or
LWE assessments, indicating that there are important areas for
species where lack of intactness, as measured by HII or from
anthropogenic alteration of forest cover, is still important for
these species.

Estimates of human influence could be improved by using
available local and regional data at the jurisdictional (e.g.,
national or subnational) level (e.g., Woolmer et al., 2008). Many
smaller-scale analyses will reveal considerably higher levels of
human impact, however, which could reduce the area of IFL
polygons or LWE areas. Our use of a 10% threshold to select
the least impacted areas of each ecoregion does limit the area
where candidate LWE sites could occur in some ecoregions
where human impacts are negligible throughout the ecoregion. In
ecoregions with extensive scores of zero (northern tundra/taiga)
LWE areas were large and included more than 10% of the area of
the ecoregion, however for most ecoregions we were able to limit
the analysis to the best 10% or smaller area of the ecoregion (if
there were more than 5 candidate sites). There is a need to assess
the potential impact of this on the identification of LWE areas
in future.

In addition to regional-scale human pressures mapping,
accurate assessments of faunal intactness will require (1) better
models of direct pressures on biodiversity such as hunting
intensity, which cannot be predicted using HII-like approaches,
and (2) knowledge of the extent to which abundance levels
have changed relative to historical baseline for multiple species
throughout their ranges. How far a hunter will move into a forest
will be determined by several factors such as the importance of
hunting to their livelihood (e.g., poachers in wealthier vs. poorer
countries), the relative reward obtained from hunting a species
(e.g., ivory vs. bushmeat), the accessibility of a site (e.g., rugged
terrain vs. flat), and the intensity and likelihood of penalties
that might be incurred if caught (e.g., small fine vs. jail terms).
Considerably more detail than traditional range maps will be
necessary to evaluate the extent to which faunal communities
have retained their integrity in the face of human disturbance.
Only when we have a good handle on factors such as these will
we be able to start modeling faunal intactness better. A recent
study that was published as this paper went to press makes the
first attempt tomodel hunting across tropical forests (López et al.,
2019) which estimates large mammals have been lost in more

than 50% of IFL. Global analyses, while being useful to help with
planning for conservation, must also be supplemented with site
evaluations for identification of evidence-based, intact areas for
species, as specified by Global Standard for the identification of
Key Biodiversity Areas with respect to criterion C sites.

Intactness as measured by global datasets and functional
ecological integrity of biodiversity may not always co-occur
and it is important to recognize that the two have a value
for conservation independently. Some well-managed protected
areas, for example, will inevitably have a high degree of
anthropogenic influence, while at the same time retaining a full,
or nearly full, complement of species at functional densities,
exactly because they are being well protected and managed (e.g.,
Nairobi National Park on the outskirts of Nairobi city in Kenya
(Ogutu et al., 2013). On the other hand, some intact areas may
not currently contain species at functional densities but numbers
might be recovered with management, so that areas become
ecologically functional in the future. Areas, for instance, where a
keystone species has been extirpated through hunting, and could
meet KBA criterion C status after reintroduction and recovery of
that species to functional levels.

The message highlighted from these analyses is that faunal
intactness is highly rare in the remaining large areas on earth
and that we cannot easily identify this from satellite images
of seemingly intact forest canopy and human disturbance (the
IFL method) nor from assessments using the HII (the LWE
areas). Recent papers have highlighted the small percentage of
remaining wilderness or intact sites (Watson et al., 2016, 2018;
Potapov et al., 2017) and yet our results indicate that truly intact
sites with a full complement of species are likely to be much
rarer still.
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Climate change and loss of biodiversity are widely recognized as the foremost

environmental challenges of our time. Forests annually sequester large quantities of

atmospheric carbon dioxide (CO2), and store carbon above and below ground for long

periods of time. Intact forests—largely free from human intervention except primarily

for trails and hazard removals—are the most carbon-dense and biodiverse terrestrial

ecosystems, with additional benefits to society and the economy. Internationally, focus

has been on preventing loss of tropical forests, yet U.S. temperate and boreal forests

remove sufficient atmospheric CO2 to reduce national annual net emissions by 11%.

U.S. forests have the potential for much more rapid atmospheric CO2 removal rates

and biological carbon sequestration by intact and/or older forests. The recent 1.5

Degree Warming Report by the Intergovernmental Panel on Climate Change identifies

reforestation and afforestation as important strategies to increase negative emissions,

but they face significant challenges: afforestation requires an enormous amount of

additional land, and neither strategy can remove sufficient carbon by growing young

trees during the critical next decade(s). In contrast, growing existing forests intact

to their ecological potential—termed proforestation—is a more effective, immediate,

and low-cost approach that could be mobilized across suitable forests of all types.

Proforestation serves the greatest public good by maximizing co-benefits such as

nature-based biological carbon sequestration and unparalleled ecosystem services such

as biodiversity enhancement, water and air quality, flood and erosion control, public

health benefits, low impact recreation, and scenic beauty.

Keywords: biodiversity crisis, Pinchot, afforestation, reforestation, forest ecosystem, biological carbon

sequestration, old-growth forest, second-growth forest

INTRODUCTION

Life on Earth as we know it faces unprecedented, intensifying, and urgent imperatives. The two
most urgent challenges are (1) mitigating and adapting to climate change (Intergovernmental
Panel on Climate Change, 2013, 2014, 2018), and (2) preventing the loss of biodiversity
(Wilson, 2016; IPBES, 2019). These are three of the Sustainable Development Goals, Climate,
Life on Land and Life under Water (Division for Sustainable Development Goals, 2015),
and significant international resources are being expended to address these crises and limit
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negative impacts on economies, societies and biodiverse natural
communities. The recent 1.5 Degree Warming Report of the
Intergovernmental Panel on Climate Change (2018) was dire
and direct, stating the need for “rapid, far-reaching and
unprecedented changes in all aspects of society.” We find
that growing additional existing forests as intact ecosystems,
termed proforestation, is a low-cost approach for immediately
increasing atmospheric carbon sequestration to achieve a
stable atmospheric carbon dioxide concentration that reduces
climate risk. Proforestation also provides long-term benefits for
biodiversity, scientific inquiry, climate resilience, and human
benefits. This approach could be mobilized across all forest types.

Forests are essential for carbon dioxide removal (CDR), and
the CDR rate needs to increase rapidly to remain within the 1.5
or 2.0◦C range (Intergovernmental Panel on Climate Change,
2018) specified by the Paris Climate Agreement (2015). Growing
existing forests to their biological carbon sequestration potential
optimizes CDR while limiting climate change and protecting
biodiversity, air, land, and water. Natural forests are by far the
most effective (Lewis et al., 2019). Technologies for direct CDR
from the atmosphere, and bioenergy with carbon capture and
storage (BECCS), are far from being technologically ready or
economically viable (Anderson and Peters, 2016). Furthermore,
the land area required to supply BECCS power plants with tree
plantations is 7.7 million km2, or approximately the size of
Australia (Intergovernmental Panel on Climate Change, 2018).
Managed plantations that are harvested periodically store far
less carbon because trees are maintained at a young age and
size (Harmon et al., 1990; Sterman et al., 2018). Furthermore,
plantations are often monocultures, and sequester less carbon
more slowly than intact forests with greater tree species diversity
and higher rates of biological carbon sequestration (Liu et al.,
2018). Recent research in the tropics shows that natural forests
hold 40 times more carbon than plantations (Lewis et al., 2019).

Alternative forest-based CDR methods include afforestation
(planting new forests) and reforestation (replacing forests on
deforested or recently harvested lands). Afforestation and
reforestation can contribute to CDR, but newly planted forests
require many decades to a century before they sequester
carbon dioxide in substantial quantities. A recent National
Academy study titled Negative Emissions Technologies and
Reliable Sequestration: A Research Agenda discusses afforestation
and reforestation and finds their contribution to be modest
(National Academies of Sciences, 2019). The study also
examines changes in conventional forest management, but
neglects proforestation as a strategy for increasing carbon
sequestration. Furthermore, afforestation to meet climate goals
requires an estimated 10 million km2–an area slightly larger
than Canada (Intergovernmental Panel on Climate Change,
2018). The massive land areas required for afforestation and
BECCS (noted above) compete with food production, urban
space and other uses (Searchinger et al., 2009; Sterman et al.,
2018). More importantly, neither of these two practices is as
effective quantitatively as proforestation in the next several
decades when it is needed most. For example, Law et al. (2018)
reported that extending harvest cycles and reducing cutting
on public lands had a larger effect than either afforestation

or reforestation on increasing carbon stored in forests in the
Northwest United States. In other regions such as New England
(discussed below), longer harvest cycles and proforestation are
likely to be even more effective. Our assessment on the climate
and biodiversity value of natural forests and proforestation aligns
directly with a recent report that pinpointed “stable forests” –
those not already significantly disturbed or at significant risk – as
playing an outsized role as a climate solution due to their carbon
sequestration and storage capabilities (Funk et al., 2019).

Globally, terrestrial ecosystems currently remove an amount
of atmospheric carbon equal to one-third of what humans emit
from burning fossil fuels, which is about 9.4 GtC/y (109 metric
tons carbon per year). Forests are responsible for the largest
share of the removal. Land use changes, i.e., conversion of forest
to agriculture, urban centers and transportation corridors, emit
∼1.3 GtC/y (Le Quéré et al., 2018). However, forests’ potential
carbon sequestration and additional ecosystem services, such
as high biodiversity unique to intact older forests, are also
being degraded significantly by current management practices
(Foley et al., 2005; Watson et al., 2018). Houghton and Nassikas
(2018) estimated that the “current gross carbon sink in forests
recovering from harvests and abandoned agriculture to be
−4.4 GtC/y, globally.” This is approximately the current gap
between anthropogenic emissions and biological carbon and
ocean sequestration rates by natural systems. If deforestation
were halted, and secondary forests were allowed to continue
growing, they would sequester −120 GtC between 2016 and
2100 or ∼12 years of current global fossil carbon emissions
(Houghton and Nassikas, 2018). Northeast secondary forests
have the potential to increase biological carbon sequestration
between 2.3 and 4.2-fold (Keeton et al., 2011).

Existing proposals for “Natural Climate Solutions” do not
consider explicitly the potential of proforestation (Griscom et al.,
2017; Fargione et al., 2018). However, based on a growing
body of scientific research, we conclude that protecting and
stewarding intact diverse forests and practicing proforestation as
a purposeful public policy on a large scale is a highly effective
strategy for mitigating the dual crises in climate and biodiversity
and ultimately serving the “greatest good” in the United States
and the rest of the world. Table 1 summarizes some of the key
literature supporting this point.

A SMALL FRACTION OF U.S. FORESTS IS
MANAGED TO REMAIN INTACT

Today,<20% of the world’s forests remain intact (i.e., largely free
from logging and other forms of extraction and development).
Intact forests are largely tropical forests or boreal forests in
Canada and Russia (Watson et al., 2018). In the U.S.—a global
pioneer in national parks and wildlife preserves—the percentage
of intact forest in the contiguous 48 states is only an estimated
6–7% of total forest area (Oswalt et al., 2014), with a higher
proportion in the West and a lower proportion in the East.
Setting aside a large portion of U.S. forest in Inventoried
Roadless Areas (IRAs) was groundbreaking yet only represents
7% of total forest area in the lower 48 states—and, ironically,
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TABLE 1 | Comparison of climate and biodiversity benefits of intact (either old-growth forest or younger forest managed as Gap 1 or Gap 2, and thus protected from

logging and other resource extraction) and traditionally managed forests for multiple forest types in the United States.

Location Forest type Forest condition with

greater value

References

ECOSYSTEM CHARACTERISTICS

Density of large trees (>60 cm DBH) Eastern US mid-Atlantic oak-hickory forests, northern

hemlock-hardwood forests, and

boreal spruce-fir forests

Intact (81% greater) Miller et al., 2016

Proportion of old forest Eastern US Same as above Intact Miller et al., 2016

Basal area of dead standing trees Eastern US Same as above Intact Miller et al., 2016

Coarse woody debris volume Eastern US Same as above Intact (135% greater) Miller et al., 2016

Carbon storage Pacific Northwest US Douglas fir and western hemlock; Intact (75–138% greater) Harmon et al., 1990

Carbon storage Northeastern US Northern hardwood conifer Intact (39–118% greater) Nunery and Keeton, 2010

Forest fire burn severity Western US Pine and mixed conifer forests Managed (two SEs greater) Bradley et al., 2016

BIODIVERSITY

Tree species richness Eastern US mid-Atlantic oak-hickory forests, northern

hemlock-hardwood forests, and

boreal spruce-fir forests

Intact Miller et al., 2018

Proportion rare tree species Eastern US Same as above Intact Miller et al., 2018

Bird species richness and abundance Northeastern

Minnesota

Hemi-boreal Intact (12–20% greater) Zlonis and Niemi, 2014

Trunk bryophyte and lichen species

richness

Northwestern Montana Grand-fir Intact (33% greater) Lesica et al., 1991

Salamander density Ozark Mountains,

Missouri

Oak-hickory Intact (395–9,500% greater) Herbeck and Larsen, 1999

Probability of occurrence of invasive

plant species

Eastern US Deciduous and mixed forest managed Riitters et al., 2018

Intact forests range in size and previous disturbance history but they are not under active management and have been allowed to continue growing according to the procedures

described for proforestation.

management of some IRAs allows timber harvest and road
building (Williams, 2000), a scenario happening currently in the
Tongass National Forest in Alaska (Koberstein and Applegate,
2018). These scant percentages worldwide and particularly in
the U.S. are insufficient to address pressing national and global
issues such as rising CO2 levels, flooding, and biodiversity loss, as
well as provide suitable locations for recreation and associated
public health benefits (Cordell, 2012; Watson et al., 2018). In
heavily populated and heavily forested sub-regions in the Eastern
U.S., such as New England, the total area dedicated as intact
(i.e., primary management is for trails and hazard removals) is
even more scarce, comprising only ∼3% of land area. Just 2% of
the region is legally protected from logging and other resource
extraction (Figure 1). A large portion of forest managed currently
as intact or “reserved forest” – and thus functioning as “stable
forest” (Funk et al., 2019) – is designated solely by administrative
regulations that can be altered at any time.

Intact forests in the U.S. include federal wilderness areas
and national parks, some state parks, and some privately-owned
holdings and conservation trust lands. Recent studies reveal
that intact forests in national parks tend to be older and have
larger trees than nearby forests that are not protected from
logging (Miller et al., 2016; Table 1). Scaling up protection
of intact forests and designating and significantly expanding
reserved forest areas are public policy imperatives that are
compatible with public access and with the country’s use

of forest products. Identifying suitable forest as intact (for
carbon sequestration, native biodiversity, ecosystem function,
etc.) can spawn new jobs and industries in forest monitoring,
tourism and recreation, as well as create more viable local
economies based on wood reuse and recycling. Public lands
with significant biodiversity and proforestation potential also
provide wildlife corridors for climate migration and resilience for
many species.

PROFORESTATION INCREASES
BIOLOGICAL CARBON SEQUESTRATION
AND LONG-TERM STORAGE IN U.S.
FORESTS

Net forest carbon reflects the dynamic between gains and losses.
Carbon is lost from forests in several ways: damage from natural
disturbances including insects and pathogens (“pests”), fire,
drought and wind; forest conversion to development or other
non-forest land; and forest harvest/management. Together, fires,
drought, wind, and pests account for ∼12% of the carbon lost in
the U.S.; forest conversion accounts for ∼3% of carbon loss; and
forest harvesting accounts for 85% of the carbon lost from forests
each year (Harris et al., 2016). Forests in the Southern US have
the highest percentage of carbon lost to timber harvest (92%)
whereas the Western US is notably lower (66%) because of the
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FIGURE 1 | Distribution of forest cover and intact “wildland” forest across six New England states. At left, map of overall forest cover (green) vs. forest

protected legally (red) or managed currently (yellow) as intact in New England. At right, regional and state specific % forest cover (green), % managed as intact Gap 1

(limited intervention other than trails and hazard removals) but not protected legally (yellow), and % legally protected as intact forest (red, designated U.S Geological

Survey (USGS) Gap 1 or Gap 2 and primarily federal and state wilderness areas, and certain national parks). Adapted and compiled from National Conservation

Easement Database (2014); United States Geological Survey (2019a,b), and the University of Montana (2019). USGS Gap level 1 or 2 lands receive the highest level of

protection from logging and other resource extraction and generally correspond with IUCN protected categories 1a, 1b, and II (https://gapanalysis.usgs.gov/blog/

iucn-definitions/).

greater contribution of fires to carbon removal. The Northern
U.S. is roughly equivalent to the national average at 86%
(Harris et al., 2016).

Proforestation produces natural forests as maximal carbon
sinks of diverse species (while supporting and accruing
additional benefits of intact forests) and can reduce significantly
and immediately the amount of forest carbon lost to non-
essential management. Because existing trees are already
growing, storing carbon, and sequestering more carbon more
rapidly than newly planted and young trees (Harmon et al.,
1990; Stephenson et al., 2014; Law et al., 2018; Leverett
and Moomaw, in preparation), proforestation is a near-term
approach to sequestering additional atmospheric carbon: a
significant increase in “negative emissions” is urgently needed to
meet temperature limitation goals.

The carbon significance of proforestation is demonstrated in
multiple ways in larger trees and older forests. For example,
a study of 48 undisturbed primary or mature secondary forest
plots worldwide found, on average, that the largest 1% of trees
[considering all stems≥1 cm in diameter at breast height (DBH)]
accounted for half of above ground living biomass (The largest
1% accounted for ∼30% of the biomass in U.S. forests due to
larger average size and fewer stems compared to the tropics) (Lutz

et al., 2018). Each year a single tree that is 100 cm in diameter
adds the equivalent biomass of an entire 10–20 cm diameter tree,
further underscoring the role of large trees (Stephenson et al.,
2014). Intact forests also may sequester half or more of their
carbon as organic soil carbon or in standing and fallen trees that
eventually decay and add to soil carbon (Keith et al., 2009). Some
older forests continue to sequester additional soil organic carbon
(Zhou et al., 2006) and older forests bind soil organicmattermore
tightly than younger ones (Lacroix et al., 2016).

If current management practices continue, the world’s forests
will only achieve half of their biological carbon sequestration
potential (Erb et al., 2018); intensifying current management
practices will only decrease living biomass carbon and increase
soil carbon loss. Forests in temperate zones such as in the
Eastern U.S. have a particularly high untapped capacity for
carbon storage and sequestration because of high growth and
low decay rates (Keith et al., 2009) and because of recent
recovery from an extensive history of timber harvesting and
land conversion for agriculture in the 18th, 19th, and early 20th
centuries (Pan et al., 2011; Duveneck and Thompson, 2019).
In New England, median forest age is about 75 years of age
(United States Forest Service, 2019), which is only about 25–
35% of the lifespan of many of the common tree species in these
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forests (Thompson et al., 2011). Much of Maine’s forests have
been harvested continuously for 200 years and have a carbon
density less than one-third of the forests of Southern Vermont
and New Hampshire, Northwestern Connecticut and Western
Massachusetts—a region that has not been significantly harvested
over the past 75–150 years (National Council for Air Stream
Improvement, 2019). Western Massachusetts in particular has a
significant portion classifed as Tier 1 matrix forest, defined as
“large contiguous areas whose size and natural condition allow
for the maintenance of ecological processes” (Databasin, 2019).
However, forests managed as intact do not need to be large
or old in absolute terms to have ecological value: disturbances
create gaps and young habitats, and the official policy of the
Commonwealth of Massachusetts Department of Environmental
Management (now Department of Conservation and Recreation)
considers an old-growth forest of at least 2 hectares ecologically
significant (Department of Environmntal Management, 1999).

As shown in Table 1, ecosystem services accrue as forests
age for centuries. Far from plateauing in terms of carbon
sequestration (or added wood) at a relatively young age as was
long believed, older forests (e.g., >200 years of age without
intervention) contain a variety of habitats, typically continue to
sequester additional carbon for many decades or even centuries,
and sequester significantly more carbon than younger and
managed stands (Luyssaert et al., 2008; Askins, 2014; McGarvey
et al., 2015; Keeton, 2018). A recent paper affirmed that
letting forests grow is an effective way to sequester carbon—
but unlike previous studies it suggested that sequestration is
highest in “young” forests (Pugh et al., 2019). This conclusion
is problematic for several reasons. One confounding factor is
that older forests in the tropics were compared to young forests
in temperate and boreal areas; temperate forests in particular
have the highest CO2 removal rates and overall biological carbon
sequestration (Keith et al., 2009) but this high rate is not
limited to young temperate and boreal forests. The age when
sequestration rates decrease is not known, and Pugh et al. defined
“young” as up to 140 years. As noted above, Keeton et al.
(2011) estimate that secondary forests in the Northeast have
the potential to increase their biological carbon sequestration
several-fold. More field work is needed across age ranges,
species and within biomes, but the inescapable conclusion is
that growing forests is beneficial to the climate and maintaining
intact forest has additional benefits (Table 1). We conclude that
proforestation has the potential to provide rapid, additional
carbon sequestration to reduce net emissions in the U.S. by much
more than the 11% that forests provide currently (United States
Environmental Protection Agency, 2019). A recent report on
natural climate solutions determined that negative emissions
could be increased from 11 to 21% even without including
proforestation (Fargione et al., 2018). Quantified estimates of
increased forest sequestration and ecosystem services were
based on re-establishing forests where possible and lengthening
rotation times on private land; they explicitly did not account for
proforestation potential on public land.

Although biological carbon storage in managed stands,
regardless of the silvicultural prescription, is generally lower than
in unmanaged intact forests (Harmon et al., 1990; Ford and

Keeton, 2017)—even after the carbon stored in wood products
is included in the calculation—stands managed with reduced
harvest frequency and increased structural retention sequester
more carbon than more intensively managed stands (Nunery
and Keeton, 2010; Law et al., 2018). Such an approach for
production forests, or “working” forests—balancing resource
extraction with biological carbon sequestration—is often termed
“managing for net carbon” or “managing for climate change”
and an approach that should be promoted alongside dedicating
significant areas to intact ecosystems. Oliver et al. (2014)
acknowledge a balance between intact and managed forest and
suggest that long term storage in “efficient” wood products
like wood building materials (with the potential for less carbon
emissions compared to steel or concrete, termed the “avoidance
pathway”) can offer a significant carbon benefit. To achieve this,
some questionable assumptions are that 70% of the harvested
wood is merchantable and stored in a lasting product, all
unmerchantable wood is removed and used, harvesting occurs at
optimum intervals (100 years) and carbon sequestration tapers
off significantly after 100 years. Forestry models underestimate
the carbon content of older, larger trees, and it is increasingly
clear that trees can continue to remove atmospheric carbon at
increasing rates for many decades beyond 100 years (Robert
T. Leverett, pers. comm. Stephenson et al., 2014; Lutz et al.,
2018; Leverett et al., under review). Because inefficient logging
practices result in substantial instant carbon release to the
atmosphere, and only a small fraction of wood becomes a
lasting product, increasingmarket forces and investments toward
wood buildings that have relatively short lifetimes could increase
forest extraction rates significantly and become unsustainable
(Oliver et al., 2014).

HABITAT PROTECTION, BIODIVERSITY
AND SCIENTIFIC VALUE OF
PROFORESTATION

Large trees and intact, older forests are not only effective and
cost-effective natural reservoirs of carbon storage, they also
provide essential habitat that is often missing from younger,
managed forests (Askins, 2014). For example, intact forests in
Eastern U.S. national parks have greater tree diversity, live and
dead standing basal area, and coarse woody debris, than forests
that are managed for timber (Miller et al., 2016, 2018; Table 1).
The density of cavities in older trees and the spatial and structural
heterogeneity of the forest increases with stand age (Ranius
et al., 2009; Larson et al., 2014), and large canopy gaps develop
as a result of mortality of large trees, which result in dense
patches of regeneration (Askins, 2014). These complex structures
and habitat features support a greater diversity of lichens and
bryophytes (Lesica et al., 1991), a greater density and diversity of
salamanders (Petranka et al., 1993; Herbeck and Larsen, 1999),
and a greater diversity and abundance of birds in old, intact
forests than in nearby managed forests (Askins, 2014; Zlonis
and Niemi, 2014; Table 1). Forest bird guilds also benefit from
small intact forests in urban landscapes relative to unprotected
matrix forests (Goodwin and Shriver, 2014). Several bird species
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in the U.S. that are globally threatened—including the wood
thrush, cerulean warbler, marbled murrelet, and spotted owl
are, in part, dependent on intact, older forests with large trees
(International Union for Conservation of Nature, 2019). Two
species that are extinct today—Bachman’s warbler and Ivory-
billed woodpecker—likely suffered from a loss of habitat features
associated with old forests (Askins, 2014).

Today, forest managers often justify management to maintain
heterogeneity of age structures to enhance wildlife habitat and
maintain “forest health” (Alverson et al., 1994). However, early
successional forest species (e.g., chestnut-sided warbler and
New England cottontail) that are common targets for forest
management may be less dependent on forest management than
is commonly believed (cf. Zlonis and Niemi, 2014; Buffum et al.,
2015). Management also results in undesirable consequences
such as soil erosion, introduction of invasive and non-native
species (McDonald et al., 2008; Riitters et al., 2018), loss of
carbon—including soil carbon (Lacroix et al., 2016), increased
densities of forest ungulates such as white-tailed deer (Whitney,
1990)—a species that can limit forest regeneration (Waller,
2014)—and a loss of a sense of wildness (e.g., Thoreau, 1862).

Forest health is a term often defined by a particular set
of forestry values (e.g., tree regeneration levels, stocking, tree
growth rates, commercial value of specific species) and a goal of
eliminating forest pests. Although appropriate in a commercial
forestry context, these values should not be conflated with the
ability of intact natural forests to continue to function and even
thrive indefinitely and provide a diversity of habitats on their own
(e.g., Zlonis and Niemi, 2014). Natural forests, regardless of their
initial state, naturally develop diverse structures as they age and
require from us only the time and space to self-organize (e.g.,
Larson et al., 2014; Miller et al., 2016).

Intact forests provide irreplaceable scientific value. In addition
to a biodiverse habitat an intact forest provides an area governed
by natural ecological processes that serve as important scientific
controls against which to compare the effects of human activities
andmanagement practices (Boyce, 1998). Areas without resource
extraction (i.e., timber harvesting, hunting), pest removal, or
fire suppression allow for a full range of natural ecological
processes (fire, herbivory, natural forest development) to be
expressed (Boyce, 1998). Only if we have sufficient natural areas
can we hope to understand the effects of human activities on
the rest of our forests. Additional research and monitoring
projects that compare ecological attributes between intact and
managed forests at a range of spatial scales will also help
determine how effective protected intact forests can be at
conserving a range of biota, and where additional protected areas
may need to be established (e.g., Goodwin and Shriver, 2014;
Jenkins et al., 2015).

PROFORESTATION AND FOREST FIRES

Given the increase in forest area burned in the United States
over the past 30 years (National Interagency Fire Center,
2019), it is important to address the relationship between forest
management and forest fires. There is a widely held perception

that the severity and size of recent fires are directly related
to the fuels that have accumulated in the understory due to a
lack of forest management to reduce these fuels (i.e., pulping,
masticating, thinning, raking, and prescribed burning; Reinhardt
et al., 2008; Bradley et al., 2016). However, some evidence
suggests that proforestation should actually reduce fire risk and
there are at least three important factors to consider: first, fire
is an integral part of forest dynamics in the Western U.S.;
second, wildfire occurrence, size, and area burned are generally
not preventable even with fuel removal treatments (Reinhardt
et al., 2008); and third, the area burned is actually far less
today than in the first half of the twentieth century when
timber harvesting was more intensive and fires were not actively
suppressed (Williams, 1989; National Interagency Fire Center,
2019). Interestingly, in the past 30 years, intact forests in the
Western U.S. burned at significantly lower intensities than did
managed forests (Thompson et al., 2007; Bradley et al., 2016;
Table 1). Increased potential fuel in intact forests appear to
be offset by drier conditions, increased windspeeds, smaller
trees, and residual and more combustible fuels inherent in
managed areas (Reinhardt et al., 2008; Bradley et al., 2016).
Rather than fighting wildfires wherever they occur, the most
effective strategy is limiting development in fire-prone areas,
creating and defending zones around existing development
(the wildland-urban interface), and establishing codes for fire-
resistant construction (Cohen, 1999; Reinhardt et al., 2008).

PROFORESTATION AND ECOSYSTEM
SERVICES: SERVING THE GREATEST
GOOD

In 1905 Gifford Pinchot, Chief of the U.S. Forest Service,
summarized his approach to the nation’s forests when he wrote
“. . .where conflicting interests must be reconciled, the question
will always be decided from the standpoint of the greatest good
of the greatest number in the long run.” This ethos continues to
define the management approach of the U.S. Forest Service from
its inception to the present day. Remarkably, however, even in
2018 the fivemajor priorities of the Forest Service do notmention
biodiversity, carbon storage, or climate change asmajor aspects of
its work (United States Forest Service, 2018).

Today, the needs of the nation have changed: emerging forest
science and the carbon and biodiversity benefits of proforestation
demand a focus on growing intact natural public and private
forests, including local parks and forest reserves (Jenkins et al.,
2015). There is also a growing need across the country, and
particularly within reach of highly populated areas, for additional
local parks and protected forest reserves that serve and provide
the public with solitude, respite, and wild experiences (e.g.,
Thoreau, 1862). Detailed analysis of over one thousand public
comments regarding management of Hoosier National Forest, a
public forest near population centers in several states, revealed a
strong belief that wilderness contributes to a sense of well-being.
Responses with the highest frequency reflected an interest in
preservation and protection of forests and wildlife, a recognition
of the benefits to human physical and mental health, a sense
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of ethical responsibility, opposition to damage and destruction,
monetary concerns, and a preponderance of sadness, fear and
distress over forest loss (Vining and Tyler, 1999).

Quantifiable public health benefits of forests and green spaces
continue to emerge, and benefits are highest in populations with
chronic and difficult-to-treat conditions like anxiety, depression,
pain and post-traumatic stress disorder (Karjalainen et al., 2010;
Frumkin et al., 2017; Hansen et al., 2017; Oh et al., 2017).
In the United Kingdom “growing forests for health” is the
motto of the National Health Service Forest (2019) and there
is a recognized need for evidence-based analysis of human
health co-benefits alongside nature-based ecosystem services
(Frumkin et al., 2017).

POLICY RECOMMENDATIONS

To date, the simplicity of the idea of proforestation has perhaps
been stymied by inaccurate or non-existent terminology to
describe it. Despite a number of non-binding international
forest agreements (United Nations Conference on Environment
Development, 1992; United Nations Forum on Forests, 2008;
Forest Declaration, 2014) and responsibilities by a major
UN organization [Food and Agriculture Organization (FAO)],
current climate policies lack science-based definitions that
distinguish forest condition—including the major differences
between young and old forests across a range of ecosystem
services. Lewis et al. (2019) further note that broad definitions
and confused terminology have an unfortunate result that
policymakers and their advisers mislead the public (Lewis
et al., 2019). Most discussions concerning forest loss and
forest protection are in terms of percentage of land area that
has tree canopy cover (Food and Agriculture Organization,
2019). This lack of specificity significantly hampers efforts to
evaluate and protect intact forests, to quantify their value, and
to dedicate existing forests as intact forests for the future.
For example, the UN Framework Convention on Climate
Change and the FAO consider and group tree plantations,
production forests, and mature intact forests equally under
the general term “forest” (Mackey et al., 2015). In addition,
“forest conservation” simply means maintaining “forest cover”
and does not address age, species richness or distribution—or
the degree that a forest ecosystem is intact and functioning
(Mackey et al., 2015). The erroneous assumption is that all forests
are equivalently beneficial for a range of ecosystem services—a
conclusion that is quantitatively inaccurate in terms of biological
carbon sequestration and biodiversity as well as many other
ecosystem services.

Practicing proforestation should be emphasized on suitable
public lands as is now done in U.S. National Parks and
Monuments. Private forest land owners might be compensated
to practice proforestation, for sequestering carbon and providing
associated co-benefits by letting their forests continue to grow.
At this time, we lack national policies that quantify and truly
maximize benefits across the landscape. At a regional scale,
however, some conservation visions do explicitly recognize and

promote the multiple values and services associated with forest
reserves or wildlands (e.g., Foster et al., 2010) and climate offset
programs can be used explicitly to support proforestation. For
example, a recent project by the Nature Conservancy protected
2,185 hectares (5,400 acres) in Vermont as wildland and is
expected to yield ∼$2M over 10 years for assuring long-term
biological carbon storage (Nature Conservancy, 2019). Burnt
Mountain is now protected by a “forever wild” easement and part
of a 4,452 hectare (11,000 acre) preserve. More public education
and similar incentives are needed.

CONCLUSIONS

To meet any proposed climate goals of the Paris Climate
Agreement (1.5, 2.0◦ C, targets for reduced emissions) it is
essential to simultaneously reduce greenhouse gas emissions from
all sources including fossil fuels, bioenergy, and land use change,
and increase CDR by forests, wetlands and soils. Concentrations
of these gases are now so high that reducing emissions alone
is insufficient to meet these goals. Speculation that untested
technologies such as BECCS can achieve the goal while allowing
us to continue to emit more carbon has been described as
a “moral hazard” (Anderson and Peters, 2016). Furthermore,
BECCS is not feasible within the needed timeframe and CDR
is urgent. Globally, existing forests only store approximately
half of their potential due to past and present management
(Erb et al., 2018), and many existing forests are capable of
immediate and even more extensive growth for many decades
(Lutz et al., 2018). During the timeframe while seedlings planted
for afforestation and reforestation are growing (yet will never
achieve the carbon density of an intact forest), proforestation
is a safe, highly effective, immediate natural solution that does
not rely on uncertain discounted future benefits inherent in
other options.

Taken together, proforestation is a rapid and essential strategy
for achieving climate and biodiversity goals and for serving the
greatest good. Stakeholders and policy makers need to recognize
that the way to maximize carbon storage and sequestration is
to grow intact forest ecosystems where possible. Certainly, all
forests have beneficial attributes, and the management focus of
some forests is providing wood products that we all use. But until
we acknowledge and quantify differences in forest status (Foster
et al., 2010), we will be unable to develop policies (and educate
landowners, donors, and the public) to support urgent forest-
based benefits in the most effective, locally appropriate and cost-
effective manner. A differentiation between production forests
and natural forest ecosystems would garner public support for
a forest industry with higher value products and a renewed focus
on reducing natural resource use—and for recycling paper and
wood. It could also spur long-overdue local partnerships between
farms and forests—responsible regional composting keeps jobs
and resources within local communities while improving soil
health and increasing soil carbon (Brown and Cotton, 2011). The
forest industry as a whole can benefit from proforestation-based
jobs that focus on scientific data collection, public education,
public health and a full range of ecosystem services.
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In sum, proforestation provides the most effective solution
to dual global crises—climate change and biodiversity loss.
It is the only practical, rapid, economical, and effective
means for atmospheric CDR among the multiple options that
have been proposed because it removes more atmospheric
carbon dioxide in the immediate future and continues
to sequester it long-term. Proforestation will increase the
diversity of many groups of organisms and provide numerous
additional and important ecosystem services (Lutz et al.,
2018). While multiple strategies will be needed to address
global environmental crises, proforestation is a very low-cost
option for increasing carbon sequestration that does not
require additional land beyond what is already forested and
provides new forest related jobs and opportunities along with
a wide array of quantifiable ecosystem services, including
human health.
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The selective logging that characterizes most timber extraction operations in the tropics

leaves large patches of logging blocks (i.e., areas allocated for harvesting) intact,

without evidence of direct impacts. For example, in ∼10,000 ha sampled in 48 forest

management enterprises in Africa (Gabon, Republic of Congo, and the Democratic

Republic of Congo), Indonesia, Suriname, and Mexico, an average of 69% (range 20–

97%) of the area in logging blocks was not directly affected by timber harvests. The

proportion of intact forest within logging blocks decreased very slightly with increases

in harvest intensity in the accessed portion of the logging blocks (9–86 m3 ha−1) but

decreased strongly with harvest intensity in entire logging blocks (0.3–48.2 m3 ha−1).

More forest was left intact in areas farther from roads, on slopes >40%, and within 25m

of perennial streams, but the effect sizes of each of these variables was small (∼8%). It

is less clear how much of the intact forest left after one harvest will remain intact through

the next. Conservation benefits without reductions in timber yields will derive from better

management planning so that sensitive and ecologically critical areas, such as steep

slopes and riparian buffers, constitute large and permanent proportions of the intact

forest in selectively logged landscapes in the tropics.

Keywords: conservation, land-use planning, reduced-impact logging, sparing-sharing, tropical forestry

INTRODUCTION

Heightened concerns about tropical forest fates and limited funds for their conservation are reasons
to strive for efficiency and effectiveness in investments in environmental protection. Where forests
are threatened by agricultural conversion, insights have been derived from contrasts of the ends
of the land-use continuum that runs from forest sparing via agricultural intensification in small
areas through land-sharing with extensive wildlife-friendly agricultural practices (e.g., Phalan et al.,
2011). This dichotomous approach proved less appropriate where productive land uses do not
result in biodiversity decimation, such as natural forest management based on selective logging
(e.g., Edwards et al., 2014; Griscom et al., 2018; Runting et al., 2019). Here we elaborate on
the forest sparing-sharing discourse by focusing on forest spared from logging’s direct impacts
in landscapes allocated for timber production. By direct impacts, we mean logging-induced
changes in vegetation and soils such as forest clearing and soil scarification for road building,
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soil compaction on skid trails, and canopy opening in felling gaps.
We refer to these spared stands as “intact” in full recognition
that they may have lost or might soon lose their fauna,
may be hydrologically compromised, or suffer other forms
of degradation such as from pollution and invasive exotic
species. In other words, we focus only on the direct or primary
impacts of selective logging in full recognition of the often
critical secondary impacts associated with the access provided by
logging roads.

Due to differences in market acceptability and commercial
species stocking, logging intensities also vary substantially among
regions (e.g., Putz et al., 2001; Ellis P. W. et al., 2019). For
example, in the forest management enterprises (FMEs) analyzed
in this study, logging intensities ranged from 0.3 and 1.1 m3

ha−1 in two Mexican ejidos (i.e., community-based FMEs;
Ellis E. A. et al., 2019) to 53.3 and 56.5 m3 ha−1 in two
industrial concessions in Indonesia (Griscom et al., 2019).
Understanding how the intensity of timber trees removal affects
the intactness of forest within a logging block is critical for future
management planning.

Due to the spatial aggregation of commercially valuable
timber trees in most tropical forests, coupled with topographical
impediments and other biophysical/economic constraints,
selective logging is notoriously patchy. This aggregation means
that values for intensity that are averaged over large areas often
poorly reflect conditions on the ground. For example, in 32 plots
of 1 ha set up prior to logging in East Kalimantan, Indonesia,
(Sist et al., 1998) reported that logging intensities averaged
86.9 m3ha−1 (nine trees ha−1) but ranged 9–247 m3 ha−1 with
1–17 trees ha−1 harvested. In Gabon, where overall logging
intensities averaged 8.11 m3ha−1 and 0.82 trees ha−1, five of
the ten 1 ha plots established in the logging area yielded no
timber, and two of those were also not traversed by skid trails
(Medjibe et al., 2011). Reported levels of spatial variance are
noticeably lower in studies in which plots were set up post-
logging to represent a range of logging intensities (e.g., Ewers
and Banks-Leite, 2013; Riutta et al., 2018), but can nevertheless
be substantial, especially when sampled at sub-hectare scales
(e.g., Pfeifer et al., 2016; Senior et al., 2017).

In discussions of intactness, the issues of spatial scale and
characteristics of surrounding habitats should loom large. We
fully endorse appropriate forms of protection for as much of
the remaining large swaths of intact tropical forests as possible;
those areas are of irreplaceable environmental and spiritual value.
Smaller areas of forest might not support viable populations
of forest interior species and may not provide people with
wilderness experiences. Nevertheless, even small patches of
undisturbed forest are functionally intact for some processes
and fully suitable for some species while they maintain gene
pools and serve as seed sources (e.g., Turner and Corlett, 1996;
Arroyo-Rodríguez et al., 2009). Furthermore, the ecological value
of small intact areas is augmented if the surroundings are
selectively logged and not cleared, especially if the harvests are
low intensity and conducted using reduced-impact (RIL) logging
practices. In regards to the permanence of the status of intact
patches of forest in selectively logged landscapes, we argue that
even temporary reprieves from deforestation or degradation

are of value, given the rate of wholesale forest destruction. An
analogous situation pertains to “wildfire refugia,” those patches
of unburned forest in landscapes subjected tomixed-severity fires
(e.g., Kolden et al., 2017).

Although the shape and temporal permanence of intact forest
patches in logged landscapes are not considered in our analysis,
we recognize that intactness is as multidimensional a concept
as forest degradation (e.g., Thompson et al., 2013) and similarly
deserving of local definitions (e.g., Vásquez-Grandon et al., 2018).
What makes defining intactness particularly challenging is that
its dimensions are not all orthogonal, linear, continuous, and
constant, nor can they all be objectively delineated. Proclaimed
definitions or benchmarks (e.g., >500 km2; Potapov et al., 2017)
are easily communicated and can be politically expedient, but
the fact remains that intactness is not a binary trait. We argue
that intact forest in logged landscapes ranges in size from small
and isolated patches of remnant trees through contiguous strips
of riparian forest, to unlogged high-conservation value areas of
hundreds or thousands of hectares.

Here we describe the spatial heterogeneity of selective logging
impacts in tropical Southeast Asia, Africa, and the Americas
with field data collected with identical protocols and analyzed in
a uniform manner. We explore why intact forest was retained
in logged landscapes such as due to regulatory constraints
(e.g., riparian buffer zones), remoteness, steepness, low soil
trafficability, inaccessibility (e.g., surrounded by rocky cliffs), or
low stocking. This last-mentioned condition may be permanent,
if due to adverse conditions, or temporary. With some reluctance
because this study was not designed to assess the impacts of
Forest Stewardship Council (FSC) certification [for a description
of how such studies should be designed see (Romero et al., 2017)],
we also present a naïve comparison of the proportions of logged
blocks left intact in the 12 certified FMEs with the 36 non-FSC
FMEs.We note that a similar analysis for the same FMEs revealed
no association between FSC certification and carbon emissions
from selective logging (Ellis P. W. et al., 2019).

CAVEAT

Before proceeding, we want to clarify that we are not
unquestioning advocates of logging, especially not in primary
forest. Nevertheless, we accept that tropical forests will continue
to be logged and recognize the geopolitical and economic
justifications for use of renewable natural resources. This
justification is bolstered by the failure of environmentalists
to secure the funds needed to make protection a financially
attractive option for all but a few forests. Our main goal
is improved timber stand management, as appropriate for
maintenance of ecological integrity, in tropical forests that will be
logged.We also assert that intact forest within logging landscapes
deserve recognition and that there are environmental as well as
economic benefits to be derived from better spatial planning of
tropical forest management. That said, we do not equate relatively
small patches of unlogged forest in selectively logged landscapes
with the extensive (i.e., >500 km2) areas free from substantial
human impacts that qualify as “Intact Forest Landscapes,” as
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defined by Potapov et al. (2008) and mapped and tracked by
international organizations including such as World Resources
Institute andGreenpeace (http://www.intactforests.org/; Potapov
et al., 2017). We point out, however, that selectively logged
landscapes maintain substantial proportions of their biodiversity
and carbon stocks (e.g., Sist and Nguyen-Thé, 2002; Putz et al.,
2012; Edwards et al., 2014), especially if logging intensities are
low (i.e., <8 trees ha−1; Burivalova et al., 2014), reduced-impact
logging practices are employed (e.g., Pinard and Putz, 1996;
Bicknell et al., 2014), and hunting is limited (e.g., Roopsind et al.,
2017).

METHODS

Blocks of forest with active logging operations in each
country were selected at random from strata defined by
forest management enterprise (FME) size, soils, elevation, and
certification status (i.e., FSC certified or not). The sampled
countries (Indonesia, Gabon, Democratic Republic of Congo,
Republic of Congo, Suriname, and Mexico) represent a wide
range of selective logging intensities, harvesting methods,
ecological conditions, and socio-political contexts. In Indonesia
field data were collected in recently logged areas with the
reduced-impact logging for climate (RIL-C)method described by
Griscom et al. (2014, 2019), while in other geographies a refined
RIL-C protocol was used as described by Ellis P. W. et al. (2019).
We deviate from the RIL-C protocol only insofar as we defined
accessed areas individually for each country based on delineation
of skid trail buffers at the 95th percentile of the distance from
stumps of harvested trees to the nearest skid trail; buffers ranged
from 9.8m in RoC to 32.7m in Indonesia (Ellis P. W. et al., 2019;
see Figure 1). Basically, to map skid trails in 42 of the 48 logging
blocks sampled (one per FME except in Indonesia), field crews
equipped with wide-area augmentation system-enabled Garmin
GPS receivers mapped an average of 6 km of skid trails and
measured the widths of 5 km of logging roads (distance between
the trunks of standing trees >10 cm DBH) in recently logged
blocks of 38–415 ha (see Ellis P. W. et al., 2019 for further
description of field and analytical methods). In the remaining six
logging blocks in Indonesia, we collected medium density (mean
= 4.5 points m−2), discrete return lidar data from a standard
altitude of 650m in April 2013 and used those data to map
logging impacts in 5,620 ha that included six annual cutting areas
encompassing 54 logging blocks in five FMEs following methods
described in Ellis et al. (2016) to avoid pseudoreplication, we used
mean logging block statistics from each annual cutting area.

The hypothesis that intact forest is farther from the nearest
haul road than areas that were accessed by loggers was tested
by comparing the means of the Euclidian distances between
the closest haul road section and the accessed and intact forest
areas in each logging block with a paired t-test. Two blocks
were excluded due to computational difficulties and additional
four were excluded because no haul roads crossed the blocks.
Data included in this analysis were from 42 logging blocks in six
countries, with six in Indonesia, eight inMexico, six in Suriname,
eight in DRC, eight in Gabon, and six in ROC.

To determine whether loggers avoided steep slopes, we first
classified steep forest areas as those with slopes >40% (21.8

◦

)

FIGURE 1 | Lidar-delimited (1:10,000) skidding/felling (blue) and haul-road

(orange) impact zones in an FME in Kalimantan, Indonesia with purple lines

demarcating the logging block boundaries, ridges are indicated by dark

shading, valleys with light shading, and the logging road in red (reprinted with

permission from Ellis et al., 2016). Note that timber in the area to the northwest

was not yet harvested.

based on a 1 arc second (30m) digital elevation model (DEM)
constructed with SRTM data (USGS, 2004). We then used the
proportions of entire logging blocks left intact to generate the
expected proportions of intact steep pixels and then compared
this expected proportion with the observed values for blocks
with >15% steep pixels. We used a similar approach to test the
hypothesis that loggers avoided riparian areas, which we defined
as being within 25m of a stream. Of the many ways to identify
streams, we employed a basic approach using Esri’s Hydrology
toolset. First, we located each logged block within a Level 12
HydroSHEDS Basin (Lehner et al., 2008) and used this to bound
our analysis area. We identified and filled sinks within each
30m DEM, and then used a D8 flow method to compute flow
directions. Finally, we calculated the accumulated flow within
each watershed and then used the mean flow accummulation for
the watershed as the threshold to identify the head of the drainage
network (Tang et al., 2001).

All geospatial analyses were conducted in ArcGIS v10.
10.3.1 (ESRI, 2015) and statistical analyses with base packages
in R v 3.5.0 (R Development Core Team, 2016), unless
mentioned otherwise.

RESULTS

Intact forest covered a mean of 69% (range 20–97%) of the
48 logged blocks in six tropical countries (Figure 2). When
data from all regions are combined, we detected a small but
statistically insignificant decrease in the proportion of forest left
intact in logged blocks with harvest intensity in the accessed area
(% intact = 0.78–0.0026 ∗ harvest intensity; SEb = 0.0014, df =
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FIGURE 2 | Proportions of intact forest in selectively logged harvest blocks (DRC, Democratic Republic of Congo; RoC, Republic of Congo).

45, P = 0.06, adjusted R2 = 0.055; Figure 3A). In contrast, if
harvest intensities are assumed to represent conditions in entire
logging blocks, which is commonly assumed, there was a more
marked decrease in intact area with harvest intensity (% intact=
0.83–0.0109 ∗ harvest intensity per cutting block; SEb = 0.0015,
df = 46, P < 0.001, adjusted R2 = 0.529; Figure 3B). In the 42
logging blocks in six countries with road data, as expected, intact
areas averaged a larger distance (289.6m, SD= 25.54m) from the
nearest haul-road than accessed areas (231m, SD = 20.6m; t =
4.0, P< 0.01). Distances to haul-roads ranged 64–722m for intact
areas and 56–662m for accessed areas. There was no apparent
difference in the proportion of forest left intact in the 12 FSC-
certified (65± 21% SD) and the 36 non-certified FMEs (71± 17%
SD, t = 0.77, P= 0.45; Figure 4; see supplementary data table for
complete results and logging block statistics).

Analyses of the effects of steep slopes and stream buffers on
the distribution of logging were limited by the presence of these
conditions in the surveyed harvest blocks. Steep areas (>40%
slope) covered <15% of the logging blocks in Suriname and the
Democratic Republic of Congowhile there were no streams in the
Mexican blocks due to subterranean drainage. Of the 13 logged
blocks with their area>15% on slopes>40%, forest was left intact
in 76% of the steep pixels and 60% of the less steep pixels (SD =

27 and 22%, respectively; t = 6.8, P < 0.001; Figure 5A). In the
26 blocks with streams, an average of 73% (S.D. = 24%) of pixels
< 25m from a stream were intact in contrast to 61% of pixels
farther from streams (SD= 26%; t = 3.5; P < 0.001; Figure 5B).

DISCUSSION

In the six tropical countries in which we assessed spatial variation
in selective logging impacts, more than half of the forest in blocks
allocated for logging experienced no direct impacts of timber

harvests. This finding indicates that studies that describe the
impacts of logging based on data collected only where harvests
actually occurred exaggerate those impacts by a factor of two.
Depending on the spatial distributions of intact forest in logged
landscapes and the permanence of those refugia, opportunities
abound for both conservation and silvicultural intensification.
Ideally, standing forest should be retained in riparian and
other ecologically sensitive areas. Conversely, for both ecological
and economic reasons, silvicultural treatments prescribed to
increase the stocking and growth of commercial timber should
be concentrated near existing roads and on suitable terrain.
If appropriate spatial planning regulations were developed and
then followed, both economic and ecological benefits could be
secured, but tropical forestry has proven itself incredibly resistant
to regulatory reform (e.g., Fraser, 2019).

Many factors influenced how much forest was left unscathed
by loggers and the locations of the fractions that escaped felling,
skidding, and hauling damage. Surprisingly, logging intensity,
as expressed in terms of timber volumes harvested from the
accessed portions of logging blocks, explained little of the
variance in the proportions of intact forest retained. For example,
logging refugia were scarce in the intensively logged forests
of Indonesia, but were also scarce in Suriname where logging
intensities were low. This finding is partially explained by the
relatively small sizes of individual trees harvested in Suriname,
which meant that for the same volumetic yields, more trees
were harvested. To a small but statistically significant extents,
loggers avoided areas on steep slopes, near streams, and far from
haulroads. Harvesting costs obviously increase with distance but
also increase with slope basically due to the need to overcome
gravitational forces (Putz et al., 2018). Whether riparian area
avoidance was due to regulations, physical constraints on timber
extraction, low stocking, or some combination of these factors,
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FIGURE 3 | The extents of intact forest (%) in selectively logged forests as a function of harvest intensities (m3 ha−1) in accessed areas (A) and across entire logging

(cutting) blocks (B).

the result is clearly environmentally beneficial. We note that in
the lidar-sampled FMEs in Indonesia, Ellis et al. (2016) found that
above-ground biomass in steep and riparian areas did not differ
from elsewhere in the logging blocks, which suggests that timber
scarcity was not the predominant cause of these findings.

Given concerns about forest degradation and the fact that
selective logging in the tropics is the major cause of that
degradation (e.g., Asner et al., 2005; Hosonuma et al., 2012;
Pearson et al., 2017), it behooves conservationists to be
abundantly clear in their analyses of the impacts of timber
harvests and other interventions. Based on the findings presented
in this paper, forest degradation analyses (e.g., Vásquez-Grandon
et al., 2018) need to consider the spatial patterns of reduced basal

area or biomass, loss of species, domination by pioneer species,
or lack of regeneration. Clearly, the ecological consequences
of a 50% reduction in biomass are different if that change is
spatially uniform than if half the area is clear-cut while the other
half remained unscathed. It also matters whether the unscathed
portion is a continuous band of riparian forest or small, isolated
patches of standing trees in an otherwise deforested landscape.
Edge effects also deserve consideration but are likely modest
and temporary in selectively logged forests except along the
main haul roads, which typically cover <2% of logging areas in
the tropics (Malcolm and Ray, 2000; Kleinschroth and Healey,
2017). Our analyses demonstrate that the impacts of selective
logging are not spatially uniform in the tropics, which is also
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FIGURE 4 | A naïve comparison of the proportions of intact forest in Forest Stewardship Council (FSC; N = 12) and non-certified forest management enterprises (N =

36). Box plot hinges correspond to first and third quartiles, and whiskers extend to highest and lowest values.

apparently the case in similarly treated temperate forests (e.g.,
Grushecky and Fajvan, 1999).

Comparison of our results with other published measures of
logging impacts is challenging due to methodological differences,
but the patterns we observed are similar to other reports in the
literature. For example, based on field measurements of ground
disturbance by selective logging in South America reported for 17
plots in six different published studies, Feldpausch et al. (2005)
reported that 46–88% of the forest was not affected directly
by logging. Those same authors reported that intact forest area
decreased with logging intensity and was much smaller for
conventional logging than RIL. In a more recent study of a forest
subjected to RIL in Belize at a block-wide intensity of 2.9 m3 ha−1

(2.7 trees ha−1), Arevalo et al. (2016) reported that 93% of the
350-ha harvest block experienced no direct impacts of logging.
That value is much higher than the global average of 69% intact
reported here, but is similar to the 77–97% intact forest found
in logging blocks in Mexico where harvest intensities were also
low (0.24–3.15 trees/ha). Similarly, in a pantropical review of
the literature on logging roads, Kleinschroth and Healey (2017)
reported a median impact of 1.7% of the ground surface. Studies
based on remote sensing, especially those that employed canopy-
penetrating lidar and wall-to-wall sampling of logged blocks,
often report considerably higher proportions of intact forest than
field studies (e.g., Ellis et al., 2016). Despite the opportunities for
lidar to detect accessed areas accurately (Melendy et al., 2018),

larger scale studies using canopy-penetrating lidar have yet to
reveal the spatial patterns of intactness in landscapes designated
for logging beyond the scale of individual harvest blocks, which
could have large implications for meta-population dynamics.

Considerations of the impacts of selective logging in the
tropics need to reflect its tremendous spatial variation at all
scales. If large portions of logged areas are not directly affected
by logging, any data collected on or adjacent to roads, skid trails,
or felling gaps (i.e., in the impact zones) needs to be adjusted
accordingly. Failure to adjust the results to account for the areas
not directly affected clearly exaggerates the impacts of logging.
For example, the much- cited study by Thiollay (1997) on the
influence of selective logging on birds in French Guiana was
based on point counts centered on skid trails and in logging gaps.
More recently, Blonder et al. (2018) reported substantially higher
temperatures in moderately and heavily logged forests than in
old growth, but the two logged hectare plots lost 53 and 86%
of their biomass, respectively. It would be dangerous to extend
these results to other selectively logged tropical forests that lose,
on average, only 11% of their biomass (Ellis P. W. et al., 2019).

Maximizing intact forest in areas designated for logging
might, from a landscape-level environmental perspective, be
counter-productive especially if by so doing, timber yields
decline. Instead, we advocate first of all for scrupulous use of
RIL practices and for yield maintenance in designated portions
of the logging landscape that are ecologically and economically
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FIGURE 5 | Percentages of 30m pixels in logged blocks left intact by loggers on (A) steep slopes (>40%) and (B) <25m of permanent streams. Green squares show

the percent of intact forest in entire logged blocks, blue dots show percent intact on steep slopes and in riparian zones, and gray arrows represent the residual effect

size.
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appropriate. We also endorse at least gentle silvicultural
intensification with interventions designed to increase growth
and yield, such as cutting lianas on future crop trees (e.g., Putz
and Romero, 2015; Mills et al., 2019). In addition to accessibility,
site capability, and environmental or cultural constraints, spatial
planning of management in logging landscapes in the tropics
should also consider adjacency, connectivity, and patch size (e.g.,
Llorente et al., 2017).

Improvements in tropical forest management require better
spatial planning, but such plans, if properly implemented,
might reduce the area of intact forest in logged blocks unless
accompanied by clear demarcation and better protection of
ecologically sensitive areas. Better planning of logging operations
might explain why our naïve comparison on FSC certified and
non-certified FMEs did not differ in amounts of intact forest
retained. Indeed, one of the benefits of proper planning and
implementation of RIL operations is that fewer trees and logs
are missed by harvest crews (Holmes et al., 2002). Our results
also show that loggers already avoid steep areas and riparian
zones to some extent, but they also seem to skip patches of
forest with standing commercial timber apparently because
they are unaware of its existence, despite their preparation of
government-required stand maps. The reliability and actual use
of those maps in Suriname (Zalman et al., 2019) may explain
the scarcity of intact forest in the relatively lightly logged harvest
blocks in that country (Figure 2). Alternatively, perhaps trees
were left standing in patches of intact forest after loggers reached
the volumetric quotas set by government or the industries
they supply.

RIL is promoted as leakage-free insofar as yield reductions
are not required, and as more cost-effective than conventional
logging, despite the mixed support for these claims in the
literature (Medjibe and Putz, 2012; Sasaki et al., 2016). The
claim of being leakage-free is admittedly not supported when
scrupulous adherence to RIL guidelines results in no logging
on steep slopes, in riparian areas, in inaccessible enclaves, and
during wet weather (Healey et al., 2000). Logic supports the claim
that RIL is more profitable than conventional logging, but the
data are far from consistent. The model studies on this topic,
both conducted in Amazonian Brazil by Barreto et al. (1998) and
Holmes et al. (2002), reported that RIL was, respectively, 35 and
18% more profitable than conventional logging. The principal
financial benefits derived fromworker training, harvest planning,
and close supervision were from higher timber recovery in RIL
areas. Directional felling by trained workers toward pre-planned
skid trails coupled with better bucking and less felling damage to
commercial logs should all also result in more efficient and less
costly harvests, but this assumption is not consistently supported
by research (Medjibe and Putz, 2012). Given the deficiencies in
the experimental designs of many cost-benefit analyses of RIL
and the variety of conditions under which selective logging is
carried out in the tropics, the financial consequences of adoption
of improved logging practices remain unclear.What ismade clear
by the lack of adoption of RIL (e.g., Ellis P. W. et al., 2019)
is that the decision-makers in tropical forestry operations, be
they concession owners, crew bosses, or chain saw operators,
clearly do not recognize the financial benefits of RIL. An obvious
need is for more and better research that tracks the costs and

benefits by specific operation (e.g., tree felling, log skidding,
and worker training) and from the perspectives of the various
relevant stakeholders (e.g., chainsaw operators, crew bosses, and
concession owners; Putz and Romero, 2012). Alternatively, given
the existence of an accurate and inexpensive way to monitor
logging impacts with the RIL-C protocol (e.g., Ellis P. W. et al.,
2019), where there are reliable regulatory authorities, FMEs could
be rewarded for demonstrated improvements in their forest
management practices relative to established baselines.

RECOMMENDATIONS

The environmental benefits of the intact forest in logged
landscapes would be greatly enhanced by spatial planning with
enforcement of restrictions on access to sensitive habitats.
If the observed proportions of selectively logged forest were
left intact near streams and on steep slopes, the deleterious
environmental impacts of logging would be greatly diminished
(Griscom et al., 2019). In addition to the hydrological benefits,
protection of riparian corridors would enhance connectivity
for wildlife. Any reductions in timber yields could be easily
compensated for with silvicultural treatments in accessible stands
(e.g., Ruslandi et al., 2017). Enforcement of spatial planning
regulations could be enhanced if governmental and certification
body auditors included comprehensive GPS tracks in their
reports on inspections of logging locations and practices.

To reduce the deleterious environmental impacts of selective
logging in steep areas, we endorse long-line cable yarding with
modified excavators (e.g., LogFishers: http://www.logfisher.com/
contact.html). Such machines move easily along ridge-top roads
so that almost every log follows a different path of up to
200m upslope. Even in the absence of data, we are confident
that this approach, at least compared to cutting switchbacks
with bulldozers, results in reductions in soil damage, carbon
emissions, and costs. We advocate this approach to cable
yarding in full recognition of the massive but little documented
environmental destruction caused by unregulated high-lead cable
yarding in Malaysian Borneo and the Philippines during the
1970s and 1980s (reviewed by Ewel and Conde, 1981). While it
would be environmentally preferable to not log steep slopes, few
countries have such prohibitions (Putz et al., 2018). Furthermore,
if slope restrictions were enacted and enforced, yields from the
increasingly steep lands being allocated for logging would decline
and risks of activity-shifting leakage (i.e., loggers go elsewhere for
timber) would increase.

Data limitations make it difficult to assess the permanence of
the intact forests in logged landscapes.Wewere surprised to learn
the extent to which governmental agencies ultimately responsible
for the forest and FME managers both lacked reliable records of
the locations of previous episodes of timber extraction. Be that
as it may, if the intact patches retained through the first harvest
are logged after only 25–30 years, the reprieves are not durable.
Perhaps worse, if hunters travel the logging roads to access intact
areas and wipe out wildlife, that dimension of intactness will
disappear. Furthermore, just as species differ in the degree to
which their biology is disrupted by selective logging, the impacts
of that intervention are not all immediate—some increase in
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response to elevated post-logging treemortality rates while others
decrease as forest recovers.

The emphasis of many environmental scientists on describing
in ever-increasing detail the problems associated with selective
logging in the tropics needs to shift toward finding solutions to
those problems. Researchers and environmental advocates need
to accept that, at least in much of the remaining tropical forest of
the world, as long as there is merchantable timber to be harvested,
logging is likely. Whether that logging is carried out by private
forest owners, entrepreneurial rural communities and indigenous
groups, or the employees of large corporations, there will be
impacts. Understanding these impacts is essential, but given that
many are obvious already well described, attention should be
directed toward finding financially viable and ecologically sound
ways to manage tropical forests sustainably. To this end, more
full-fledged silviculturalists, mensurationists, forest engineers,
and forest economists are essential, but well-trained ecologists
can also re-train in those more applied disciplines. More to
the main point of this study, improved spatial planning of
logging and other silvicultural interventions will help increase the
sustainability of natural forest management in the tropics.
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A Corrigendum on

Intact Forest in Selective Logging Landscapes in the Tropics

by Putz, F. E., Baker, T., Griscom, B. W., Gopalakrishna, T., Roopsind, A., Umunay, P. M., et al.
(2019). Front. For. Glob. Change 2:30. doi: 10.3389/ffgc.2019.00030

In the original article, there was a mistake in Figure 3B as published. There was a mistake
(underestimates) in calculations of the proportion of cutting blocks left intact. The corrected
Figure 3B appears below.

In the original article, there was a mistake in Figure 4 as published. There was a mistake
(underestimates) in calculations of the proportion of cutting blocks left intact. The corrected
Figure 4 appears below.

In the original article, there was a systematic error in calculations that resulted in under-
estimations of the proportions of logging blocks not directly affected by timber harvests.

In the original article, there was a mistake in the Abstract. It read as “an average of 57% (range
22–97%) of the area in logging blocks was not directly affected by timber harvests.” The corrected
sentence should read as “an average of 69% (range 20–97%) of the area in logging blocks was not
directly affected by timber harvests.”

In the original article, there were twomistakes in the first paragraph of the Results section. It read
as “Intact forest covered a mean of 57% (range 22–93%) of the 48 logged blocks in the six tropical
countries we sampled (Figure 2)”. The corrected sentence should read as “Intact forest covered
a mean of 69% (range 20–97%) of the 48 logged blocks in six tropical countries (Figure 2).” The
second mistake reads as “There was no apparent difference in the proportions of forest left intact
in the 12 FSC-certified (53± 19% SD) and the 36 non-certified FMEs (85± 17% SD, t= 1.54, P =

0.13; Figure 4; see Supplementary Table 1 for complete results and logging block statistics).” The
corrected sentence should read as “There was no apparent difference in the proportion of forest left
intact in the 12 FSCcertified (65± 21%SD) and the 36 non-certified FMEs (71± 17% SD, t= 0.77,
P = 0.45; Figure 4; see supplementary data table for complete results and logging block statistics).”

In the original article, there was a mistake in paragragh 4 of the Discussion section. It read as
“That value is much higher than the global average of 57% intact reported here, but is similar to
the 77–97% intact forest found in logging blocks in Mexico where harvest intensities were also
low (0.24–3.15 trees/ha).” The corrected sentence should read as “That value is much higher than
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the global average of 69% intact reported here, but is similar
to the 77–97% intact forest found in logging blocks in Mexico
where harvest intensities were also low (0.24–3.15 trees/ha)”. The
corrected paragraphs appear below.

ABSTRACT

The selective logging that characterizes most timber extraction
operations in the tropics leaves large patches of logging blocks
(i.e., areas allocated for harvesting) intact, without evidence of
direct impacts. For example, in ∼10,000 ha sampled in 48 forest
management enterprises in Africa (Gabon, Republic of Congo,
and the Democratic Republic of Congo), Indonesia, Suriname,
and Mexico, an average of 69% (range 20–97%) of the area in
logging blocks was not directly affected by timber harvests. The
proportion of intact forest within logging blocks decreased very
slightly with increases in harvest intensity in the accessed portion
of the logging blocks (9–86 m3 ha−1) but decreased strongly with
harvest intensity in entire logging blocks (0.3–48.2 m3 ha−1).
More forest was left intact in areas farther from roads, on slopes
>40%, and within 25m of perennial streams, but the effect sizes
of each of these variables was small (∼8%). It is less clear how
much of the intact forest left after one harvest will remain intact
through the next. Conservation benefits without reductions in
timber yields will derive from better management planning so
that sensitive and ecologically critical areas, such as steep slopes
and riparian buffers, constitute large and permanent proportions
of the intact forest in selectively logged landscapes in the tropics.

Results (paragraph 1):
Intact forest covered a mean of 69% (range 20–97%) of the

48 logged blocks in six tropical countries (Figure 2). When
data from all regions are combined, we detected a small but
statistically insignificant decrease in the proportion of forest left
intact in logged blocks with harvest intensity in the accessed area
(% intact = 0.78–0.0026 ∗ harvest intensity; SEb = 0.0014, df =
45, P = 0.06, adjusted R2 = 0.055; Figure 3A). In contrast, if
harvest intensities are assumed to represent conditions in entire
logging blocks, which is commonly assumed, there was a more
marked decrease in intact area with harvest intensity (% intact=
0.83–0.0109 ∗ harvest intensity per cutting block; SEb = 0.0015,
df = 46, P < 0.001, adjusted R2 = 0.529; Figure 3B). In the 42

logging blocks in six countries with road data, as expected, intact
areas averaged a larger distance (289.6m, SD= 25.54m) from the
nearest haul-road than accessed areas (231m, SD = 20.6m; t =
4.0, P< 0.01). Distances to haul-roads ranged 64–722m for intact
areas and 56–662m for accessed areas. There was no apparent
difference in the proportion of forest left intact in the 12 FSC-
certified (65± 21% SD) and the 36 non-certified FMEs (71± 17%
SD, t = 0.77, P= 0.45; Figure 4; see supplementary data table for
complete results and logging block statistics).

Discussion (paragraph 4):
Comparison of our results with other published measures of

logging impacts is challenging due to methodological differences,
but the patterns we observed are similar to other reports in the
literature. For example, based on field measurements of ground
disturbance by selective logging in South America reported for 17
plots in six different published studies, Feldpausch et al. (2005)
reported that 46–88% of the forest was not affected directly
by logging. Those same authors reported that intact forest area
decreased with logging intensity and was much smaller for
conventional logging than RIL. In a more recent study of a forest
subjected to RIL in Belize at a block-wide intensity of 2.9 m3 ha−1

(2.7 trees ha−1), Arevalo et al. (2016) reported that 93% of the
350-ha harvest block experienced no direct impacts of logging.
That value is much higher than the global average of 69% intact
reported here, but is similar to the 77–97% intact forest found
in logging blocks in Mexico where harvest intensities were also
low (0.24–3.15 trees/ha). Similarly, in a pantropical review of
the literature on logging roads, Kleinschroth and Healey (2017)
reported a median impact of 1.7% of the ground surface. Studies
based on remote sensing, especially those that employed canopy-
penetrating lidar and wall-to-wall sampling of logged blocks,
often report considerably higher proportions of intact forest than
field studies (e.g., Ellis et al., 2016). Despite the opportunities for
lidar to detect accessed areas accurately (Melendy et al., 2018),
larger scale studies using canopy-penetrating lidar have yet to
reveal the spatial patterns of intactness in landscapes designated
for logging beyond the scale of individual harvest blocks, which
could have large implications for meta-population dynamics.

The authors apologize for these errors and state that they do
not change the scientific conclusions of the article in any way.
The original article has been updated.
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Mountain tropical forests of the Southern Maya Area (Pacific Chiapas and Guatemala, El

Salvador, and Northern Honduras) predominantly comprise pine and oak formations,

which form intricate mosaics and complex successional interactions following

large–scale fire. These forests have been transformed by the peoples of the Maya

civilization through practices of horticulture, agriculture, and architectural developments

over thousands of years. Anthropogenic impacts and the extent of early human

interaction with these upland forests is currently poorly understood. In this study

we identify: (i) the natural baseline vegetation of the region; (ii) when human impact

and agrarian practices began in the Maya uplands; and (iii) what impacts the Maya

had on forest structure, composition, and successional regeneration. Past vegetation,

anthropogenic use of fire, and faunal abundance were reconstructed using proxy

analysis of fossil pollen, macroscopic charcoal, microscopic charcoal, and dung

fungal spores (Sporormiella). Three phases of forest succession were identified from

4000B.C.E. to 1522CE that broadly overlap with the well–defined archaeological

periods of (i) the Archaic (10,000–2000B.C.E.); (ii) Pre–Classic (2000B.C.E.−100C.E.);

(iii) Terminal Pre–Classic (100–250C.E.); (iv) Classic (250–950C.E.); and (v) Post–Classic

(950–1522C.E.). These results also include the earliest evidence for agriculture within

the Southern Maya Area through presence of peppers (Capsicum) from 3850B.C.E.

and the rise of maize cultivation (Zea mays) from 970B.C.E. Persistent high intensity

burning driven by agricultural practices and lime production during the Late–Pre-Classic

(400–100B.C.E.) to Classic Period resulted in a compositional change of forest structure

c.150B.C.E. from oak (Quercus) dominated forests to pine (Pinus) dominated forests. The

legacy of Pre–Columbian anthropogenically driven fire in these mountain tropical forests

demonstrates the resilience and thresholds for fire driven succession. These findings are

particularly relevant for addressing current land use and management strategies involving

agriculture, fire, and forest management in the mountain tropical forests of the Southern

Maya Area.

Keywords: fire, pine-oak forest, Zea mais, early agriculture, Capsicum, Sporormiella, palaeoecocology, Maya
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INTRODUCTION

Unlike the Amazon or boreal regions, Central America does
not have large tracts of intact forests (Watson et al., 2018),
and further reductions in the extent of intact forests are a
concern. Potapov et al. (2017), for example, determined that
forest cover declined by 13.3% in Guatemala between 2000 and
2013C.E. Mountain tropical forests (MTF) are important for
the provision of ecosystem services, particularly biodiversity and
water (Martínez et al., 2009), and loss of intactness has serious
implications for these ecosystem services. Given the current high
international interest in the effects of human actions that cause
degradation of forests and subsequent loss of ecological function,
the development of long–term ecological data will provide insight
on how forests were influenced by anthropogenic and natural
factors during pre–history and thereby help inform potential
future responses to similar actions and/or occurrences. For
Central America such long–term ecological datasets are scarce
and are rarely considered in modern conservation discussions
(Jeffers et al., 2015). In particular, the Middle to Late Holocene
(6000–2000B.C.E.) vegetation history of the Central American
uplands (>1,000m.a.s.l.) is not well-documented but is essential
to our understanding of early human impacts and prehistoric
land use across the Maya Area (Neff et al., 2006). Filling
these temporal and spatial gaps in knowledge is essential for
understanding the function and protection of intact forests in this
region and more generally.

The Maya occupied three separate areas: the Southern
Uplands, and the Central, and Northern Lowlands (<1,000m)
(Figure 1). Our research area lies within the Southern Uplands,
which includes the highlands of Guatemala and adjacent Chiapas
(Coe and Houston, 1966). There are altitudinal gradients in
temperature and precipitation, with annual mean temperatures
ranging between 14 and 25◦C and annual rainfall ranging
between 900 and 3,700mm per year (Kappelle, 2006). The
vegetation inhabiting this upland area typically comprises
tropical and subtropical mixed deciduous and coniferous forests,
known as mountain tropical forest (MTF) formations, which
start in the Sierra Madre de Chiapas (Southern Mexico) and
extend down to Northern Nicaragua (Dinerstein et al., 2017).

PREVIOUS WORK IN THE MAYA AREA

Early human populations across Central America are suggested
to have increasingly interacted with their surrounding
environment from 6000B.C.E., aided by progressively more
favorable climatic conditions (Turner and Miksicek, 1984;
Colunga–GarcíaMarín and Zizumbo–Villarreal, 2004; Ford
and Nigh, 2009). In palaeoecology records from Maya sites,
anthropogenic impacts to vegetation are typically inferred
from the: (i) presence of known cultigens, such as Capsicum
(peppers), Cucurbitaceae (gourds), Maranta arundinacea
(arrowroot), Phaseolus (beans), and Zea mays (Maize) (White,
1999); (ii) presence of “weedy taxa,” such as, Amarathaceae,
Compositae, and Polygonum (Dull, 2004a; Franco-Gaviria
et al., 2018); (iii) reductions in all or select arboreal taxa, such
as Quercus (Dull, 2004a,b, 2007; Velez et al., 2011); and (iv)

increases in local and regional burning (e.g., Dull, 2004a,b, 2007;
Anderson and Wahl, 2016).

Archaic (10,000–2000B.C.E.) anthropogenic impacts and the
extent of early human interaction with the upland forests of
the Maya Area are currently poorly understood. There have
been 11 palaeopalynological studies conducted in the southern
Maya Area (Figures 1, 2), and only five of these reconstructions
have been undertaken in the uplands (Dull, 2004a; Caffrey
et al., 2011; Velez et al., 2011; Franco-Gaviria et al., 2018).
Interpretations of fossil pollen and charcoal records from
Laguna Verde (El Salvador) and Lago Amatitlan (Guatemala)
identify extensive human alteration of the upland vegetation
between 2550 and 625B.C.E. (Dull, 2004a; Velez et al., 2011).
Likewise, records from Lake San Lorenzo and Lake Esmeralda
(Chiapas) provide evidence that anthropogenic and climatic
impacts drove vegetation changes from c.450B.C.E. (Franco-
Gaviria et al., 2018). In contrast, palynological data from Miqul
Meadow (Guatemala) indicates that climate is the sole driver of
vegetation change (Caffrey et al., 2011). These records are mostly
low in resolution (more than 200 years between samples: e.g.,
Laguna Verde and Miqul Meadow) and poorly chronologically
constrained (e.g., Miqul Meadow), limitations that prevent
conclusive assessment of questions related to the timing of events.
In order to reconstruct the impacts of disturbance events in MTF
and forest succession, palaeoecological datasets must be sampled
at a resolution higher than that of the rate of succession, which
is up to 200 years in MTF (Kappelle, 2006). In addition, many of
these studies rely on geographically distant proxy records to infer
the impacts of climate on vegetation dynamics (e.g., La Yeguada,
Panama: (Bush et al., 1992) and Peten Itza, Guatemala: Islebe
et al., 1996). Given the spatial heterogeneity in precipitation
patterns across Central America through time (e.g., Metcalfe
et al., 2015), it is critical to include local palaeoclimate records
for comparison with vegetation reconstructions.

FOREST SUCCESSION

Currently the arboreal canopy of MTF predominantly comprise
a combination of coniferous forest taxa (e.g., Pinus and Abies)
and mixed hardwood forest (MHWF) taxa (e.g., Quercus, Alnus,
and Liquidambar), which are well-adapted to variable climatic
conditions and natural fires (Corrales et al., 2015). These MTF
are a combination of pine forests (PF), pine–oak forests (POF),
mountain–pine–oak forests (MPOF), oak forests (OF), pine–
oak–Liquidambar forests (POLF), mountain rain forests (MRF),
and cloud forests (CF) (Kappelle, 2006). These typically overlap
in floristic composition but vary in species abundance (Miranda,
1952; Breedlove, 1981; Kappelle, 2006; Figueroa-Rangel et al.,
2008, 2010, 2012). POF form intricate mosaics and complex
successional interactions, especially at higher elevations, which
extend up into the broad–leaved evergreen CF (Rzedowski,
2006). Altitudinally, MPOF in Chiapas are found above 1,500m,
while POF have an extensive range from 500 to 3,400m.a.s.l.,
with strong turnovers between species along altitudinal gradients
(Kappelle, 2006). There are over 150 species of Pinus and
Quercus that can be found across the uplands of Guatemala
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FIGURE 1 | Topographic map of Central America depicting (i) Maya regions; (ii) independent climate proxies (blue diamonds); (iii) previous vegetation reconstructions

in the Maya Area (green diamonds); (iv) location of archaeological complex Chinkultic (black triangle); and (v) location of Cenote Kail (red circle). Dark gray shading

represents elevation >1,000m.a.s.l. (see Supplementary Information for sites).

(Muller, 1942; Kappelle, 2006). Only 47% of forest cover
(1990–2000C.E.) remains, and it is highly fragmented due to
high human population densities and land modification for
subsistence farming (Corrales et al., 2015).

Drivers of POF dynamics have been previously investigated
in upland Guatemala (Velez et al., 2011), neighboring Chiapas
(Domínguez-Vázquez and Islebe, 2008), Pacific Mexico
(Figueroa-Rangel et al., 2008, 2010, 2012) and Costa Rica
(Islebe and Hooghiemstra, 1997), detailing the climatic and
anthropogenic mechanisms that contribute toward changes in
POF composition through time (Kappelle, 2006). In these studies
fire has been identified as the dominant driver of structural
and successive turnover within POF systems. However, there is
disagreement as to what factors are driving these fires, changes

in burning are controlled by complex interactions of fire, fuel
load, climate, and humans (Cochrane and Barber, 2009; Bowman
et al., 2011; Anderson and Wahl, 2016). While it is not possible
wholly to differentiate between anthropogenic and naturally
occurring fires (Anderson and Wahl, 2016), inferences can be
made by combining multiple lines of evidence such as fossil
charcoal with the presence of known agricultural grains (e.g., Zea
mays) (Dull, 2004a,b, 2007), or with climatic proxy data, to infer
known shifts in precipitation, which can impact fuel loads and
ignitions (Bowman et al., 2011).

Research conducted on the Pacific coast of Mexico (Figueroa-
Rangel et al., 2008, 2010, 2012) and in Costa Rica (Islebe
and Hooghiemstra, 1997) suggests that fire within POF are
primarily climatically driven; whereas palynological work in
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FIGURE 2 | Summary of reported vegetation drivers and impacts to the vegetation from the Maya Area during the Pre–Columbian Holocene, as reported by authors

from palynological reconstructions (see Supplementary Information for sites).

Guatemala and Chiapas (Domínguez-Vázquez and Islebe, 2008;
Velez et al., 2011) indicates a more intertwined relationship
of climate and people. Other factors considered to affect
the structure and successional regeneration of POF are
overall climate (temperature and precipitation), soil (type,
nutrient availability), and anthropogenic activities (timber
extraction and agriculture) (Kappelle, 2006). In addition,
herbivory can cause deviations in successional pathways through
sapling browsing and seed dispersal (Baker et al., 2016;
Arroyo-Rodríguez et al., 2017).

It has been suggested that without further disturbances
natural recovery will return a fallow field to a POF within c.80
years (Figueroa-Rangel et al., 2008). Sustained low–intensity
and long-duration human disturbance leads to a deviation from
this natural sequence resulting in slowed recovery, and more
intensive anthropogenic or climatic disturbances can reverse
or reset recovery times (Kappelle, 2006). However, these are
theoretical timelines and to date there is very little evidence
on recovery rates from different types of disturbances (fire,
human, climate) in this region, nor on how this varies according
to altitude.

This study seeks to identify (i) the natural baseline vegetation
of the region; (ii) when human impact and agrarian practices
began in the Maya uplands; and (iii) what impacts the Maya had
on forest structure, composition, and successional regeneration.
To address the potential impacts of anthropogenic influences
and herbivory upon the biota of upland Guatemala, a proxy
reconstruction of changes in vegetation, burning, and animal
populations from 4000B.C.E. to 1522C.E. was developed using
fossil pollen, macroscopic charcoal (>150µm), microscopic
charcoal (<150µm), and fossil dung fungal spore (Sporormiella),
from Cenote Kail, a lake situated in the uplands of the Southern
Maya Area. These records were then compared with local and
regional climatic archives and information on human population
dynamics collected from nearby archaeological sites.

METHODS

Study Site: Cenote Kail
Cenote Kail (150m diameter) is located within the uplands
of the Southern Maya Area (N16◦00′00.0′′W91◦33′14.4,
1,534m.a.s.l.) and situated 28 km away from the well-
documented archaeological complex Chinkultic (Ball, 1980;
Figure 1). This city was established sometime between 50B.C.E
and 75C.E. and occupied until 300–350C.E. The city was then
abandoned between 350 and 700C.E. before being occupied
again from 700 to 1,250C.E. (Ball, 1980). The lake is presently
surrounded by a coniferous forest mosaic best described as POF
or MPOF. Vegetation is distributed between densely populated
mixed deciduous and coniferous forested patches, and large
open shrub/grasslands.

Field and Sampling Techniques
In 2015 a 545 cm–long composite sediment core, with
overlapping sections, was extracted from Cenote Kail using
a Livingstone piston corer (Livingstone, 1955). Forty-six
samples (1g wet weight) were extracted at 10 cm intervals for
biological proxy analysis of macroscopic charcoal (>150µm),
microscopic charcoal (<150µm), pollen, and coprophilous
fungal spores (Sporormiella).

Chronology
An age depth model was constructed using 38 calibrated
radiocarbon dates obtained from charcoal and terrestrial leaf
fragments, which represent a single event or from one to
two seasons of growth (Table 1). Samples were pre–treated
using standard acid–base–acid protocols (Abbott and Stafford,
1996). Radiocarbon dates were generated at the W.M. Keck
Carbon Cycle Accelerator Mass Spectrometry Laboratory at
the University of California, Irvine. The IntCal13 radiocarbon
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TABLE 1 | Measured, calibrated, and modeled radiocarbon ages for Cenote Kail.

Lab# Measured age

(C14 B.P.)

Depth 2σ Calibrated age

range

(B.C.E./C.E.)

Median 2σ

calibrated age

(B.C.E./C.E.)

OxCal 2σ

modeled age

(B.C.E./C.E.)

Median 2σ

modeled agev

(B.C.E/C.E.)

Model

agreement

index

146795 385 ±20 106.5 1,445 1,620 1,532.5 1,560 1,633 1,596.5 99.9

209175 260 ±20 118.75 1,528 1,797 1,662.5 1,515 1,595 1,555 99.2

209176 560 ±25 138.75 1,311 1,425 1,368 1,312 1,425 1,368.5 105.7

209177 870 ±20 160.75 1,052 1,220 1,136 1,061 1,224 1,142.5 102.3

146797 1,080 ±30 192 894 1,018 956 895 1,017 956 114.4

169170 1,380 ±80 229.8 433 865 649 431 767 599 107.3

146798/

146799

1,975/2,115 ±20/45 267 −44 53 4.5 −40 61 10.5 55.9

209178 2,070 ±30 299.25 −174 −1 −87.5 −188 −50 −119 85.5

209179 2,235 ±25 318.75 −385 −206 −295.5 −389 −210 −2,995 103

209180 2,515 ±25 332.75 −791 −543 −667 −789 −543 −666 101.2

146800 2,585 ±20 342 −805 −772 −788.5 −806 −770 −788 64.8

209181 2,990 ±50 355.75 −1,391 −1,054 −1,222.5 −1,371 −1,023 −1,197 116.6

209182 3,220 ±20 378.75 −1,527 −1,439 −1,483 −1,596 −1,436 −1,516 130.8

209183 3,350 ±35 382.75 −1,739 −1,531 −1,635 −1,728 −1,529 −1,628.5 118.4

209184 3,405 ±20 387.75 −1,749 −1,642 −1,695.5 −1,745 −1,654 −1,699.5 102.9

209185 3,415 ±20 390.75 −1,767 −1,658 −1,712.5 −1,757 −1,667 −1,712 110.1

209186 3,590 ±20 394.5 −2,018 −1,889 −1,953.5 −2,015 −1,886 −1,950.5 106.8

209188 3,700 ±60 407.75 −2,284 −1,928 −2,106 −2,196 −1,984 −2,090 103.9

209189 3,750 ±40 412.75 −2,286 −2,035 −2,160.5 −2,270 −2,046 −2,158 95.6

209190 3,750 ±25 413.75 −2,278 −2,041 −2,159.5 −2,273 −2,052 −2,162.5 100.4

146802 3,940 ±25 428.5 −2,561 −2,345 −2,453 −2,466 −2,310 −2,388 98.9

209191 3,875 ±25 431.25 −2,465 −2,286 −2,375.5 −2,468 −2,343 −2,405.5 101.1

209193 4,315 ±30 467.25 −3,013 −2,888 −2,950.5 −3,011 −2,888 −2,949.5 96.1

209195 4,475 ±25 484.25 −3,338 −3,030 −3,184 −3,303 −3,025 −3,164 93

209196 4,570 ±25 498.25 −3,491 −3,119 −3,305 −3,361 −3,118 −3,239.5 92.6

193048 4,545 ±25 508.8 −3,366 −3,106 −3,236 −3,367 −3,146 −3,256.5 102.5

146803 4,570 ±20 519 −3,485 −3,126 −3,305.5 −3,659 −3,194 −3,426.5 100.8

193050 4,900 ±25 521.7 −3,709 −3,643 −3,676 −3,708 −3,642 −3,675 106.9

193051 4,995 ±25 532.9 −3,927 −3,704 −3,815.5 −3,913 −3,705 −3,809 100.7

193052 5,100 ±20 536.9 −3,965 −3,804 −3,884.5 −3,961 −3,798 −3,879.5 13.9

193054 5,130 ±30 543.7 −3,990 −3,804 −3,897 −3,989 −3,811 −3,900 66

*209187 3,485 ±25 404.75 −1,886 −1,703 −1,794.5 −2,164 −1,759 −1,961.5 42

*209192 4,275 ±25 438.25 −2,916 −2,879 −2,897.5 −2,916 −2,369 −2,642.5 28.1

*209194 4,185 ±40 472.25 −2,892 −2,633 −2,762.5 −3,145 −2,755 −2,950 22.8

*209197 5,020 ±60 499.25 −3,958 −3,674 −3,816 −3,386 −3,116 −3,251 6.9

*193049 5,090 ±20 516.33 −3,961 −3,801 −3,881 −3,872 −3,281 −3,576.5 16.5

*193053 5,330 ±25 541.3333 −4,245 −4,051 −4,148 −4,197 −3,805 −4,001 19.8

*Omitted dates identified by the general outlier model.

dataset (Reimer et al., 2013) was used to calibrate the measured
radiocarbon dates, and OxCal (v.4.3) was used to construct
an age–depth model applying a Bayesian approach (Ramsey,
2009). Outliers were identified using the general outlier model
implementing an outlier probability of 0.05 (Ramsey, 2008).
Sedimentation rates were calculated using this age-depth model.

Fossil Pollen and Sporormiella Analysis
Fossil pollen was used to reconstruct the abundance and
composition of past vegetation dynamics. Fossil pollen extraction

and preparation followed standard palynological procedures
applying the Oxford Long–Term Ecology Laboratory (OxLEL)
protocol (OxLEL, 2016). Silicone oil was used as the mounting
agent to allow for the rotation of grains, easing identification.
Samples were spiked with known concentrations of an exotic
marker, Lycopodium spores (batch No. 20848 or 9666), to
calculate pollen accumulation rates. Pollen influx was calculated
using pollen accumulation rates and sedimentation rate (Bennett
and Willis, 2001). Counting and identification of pollen grains
were conducted at 400x and 1000x magnification. For each
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level a minimum of 300 terrestrial pollen grains were counted
(Data Sheet 1). Morphological identification was achieved using
(i) pollen databases (APSA, 2007; Bush and Weng, 2007; Martin
and Harvey, 2017); (ii) published plates: (Roubik and Moreno,
1991; Willard et al., 2004); and (iii) botanical reference materials
from the OxLEL reference collection. In order to interpret the
relative composition of the forest, coniferous andmixed—hard—
wood forest (MHWF) canopy taxa were compared as a ratio.
The abundance of Sporormiella spores was used to indicate
herbivorous animal presence and abundance. Sporormiella spores
were counted and morphologically identified on the same slides
(Davis and Shafer, 2006; Baker et al., 2016).

Charcoal Analysis
Macroscopic fossil charcoal fragments (150µm), were used to
infer past occurrences of local fires where local is taken to
represent burning within a 10 km radius of the catchment area
(Gavin et al., 2003; Lynch et al., 2004; Higuera et al., 2007,
2011; Peters and Higuera, 2007; Anderson and Wahl, 2016).
All fragments over 150µm in the 1 g samples were counted at
10x magnification.

Microscopic charcoal (<150µm), representing a regional
signal of up to 100 km (see Clark, 1988), were also counted on
the same slides, applying the point counting method at 400x
magnification (Clark, 1982). Microscopic charcoal counts were
recorded until a minimum of 50 Lycopodium spores and 200
fields of view were encountered for each level to allow for influx
of microscopic charcoal (cm2 per year) to be calculated.

Data Handling
Pollen counts were converted to percentages, while Sporormiella,
macroscopic, and microscopic charcoal are presented as
annual influx (Maher, 1981; Bennett, 1994; Bennett and
Willis, 2001; Whitlock and Larsen, 2002; Baker et al., 2016).
To identify discrete zones in the resulting palynological
diagrams, constrained hierarchical clustering upon the
palynological assemblage was applied following the broken
stick model (Bennett, 1996).

Statistical analysis and presentation of data were performed
using packages Vegan (Oksanen et al., 2015) and Rioja (Juggins,
2009) in base R (R. Core Team, 2012). Before preforming
all ordination analyses, the percentage data were square–root
transformed to normalize the distribution and for variance
stabilization (Bennett and Willis, 2001; Legendre and Legendre,
2012). A square root transform was chosen because it can
be applied to data sets containing zero values. Detrended
Correspondence Analysis (DCA) was conducted upon the
palynological assemblage data to check if it was appropriate
to apply a linear or unimodal ordination method (Ter Braak
and Prentice, 1988). The site scores for the first axis of the
DCA were then extracted to calculate the species turnover.
Next, a Principal Component Analysis (PCA) was used to
infer similarities between samples and the change in trajectories
of composition of taxa through time, applying a singular
value decomposition of the centered, but not scaled, data
matrix. Finally, a Canonical Correspondence Analysis (CCA) was
performed to quantify the relationship between environmental

variables (fire and herbivory) and the palynological assemblage
data. Ellipses representing the discrete Zones were calculated
using standard parameterization (cos(theta + d/2), cos(theta –
d/2)), where cos(d) is the correlation of the parameters (see
Murdoch and Chow, 1996).

RESULTS

Chronology and Resolution
The age–depth model indicates that the sediment sequence (545–
105 cm) continuously (i.e., without hiatus) spans 4000B.C.E. to
1522C.E. (Figure 3). The general outlier model (see Ramsey,
2008) identified six dates as outliers and thus were removed
from the overall age–depth model (Table 1). The overall model
agreement index was high (96.7), indicating there is very little
variance between the modeled ages and the observational data.
The sedimentation rate is on average 1.2mm per year.

Palaeoecological Trends
Three statistically significant Zones were identified using the
broken stick model (Figures 4, 5). Seventy–six taxa were
recognized in the palynological sequence extracted from
Cenote Kail (see Supplementary Information). Throughout this
sequence Pinus, Quercus and Morella cerifera dominate the
arboreal component while Compositae and Poaceae are the most
abundant herbaceous taxa (Figure 5). Temporal spacing between
samples is as follows: (i) Zone 1 represents an average spacing of
130 years spanning 1800 years (with a range of 68–415 years); (ii)
Zone 2 represents an average spacing of 137 years spanning 2300
years (with a range of 53–192 years); and, (iii) Zone 3 represents
an average of 90 years spanning 1400 years (with a range of
68–160 years).

Results from the CCA show that microscopic and
macroscopic charcoal are significant environmental variables
most associated with Zones 2 and 3, while Sporormiella is
most associated with Zone 1 and is not statistically significant
(Figure 4A). The PCA displays a distinct gradient and several
associations between taxa and samples (Figure 4B). The first axis
represents 20.2% of the variation, while axis two represents 10.5%
of the variation. The arch between samples suggests that there
is only one clear gradient. When the independently calculated
palynological Zones are superimposed upon these quadrants, the
top, and bottom right quadrants are most associated with Zone
1, the top left quadrant is most associated with Zone 2 and the
bottom left quadrant is most associated with Zone 3 (Figure 4B).
The first taxonomic association comprises canopy taxa Quercus,
understory taxa Leguminosae, Myrica, Ericaceae, and the
herbaceous and agrarian taxa Capsicum, which is most associated
with Zone 1. The second taxonomic association comprises
of understory taxa Juniperus and Terminalia, herbaceous
taxa Polygalaceae, Apiaceae, Compositae Aphelandra, and
agrarian taxa Capsicum most associated with Zone 2. The third
taxonomic association comprises canopy taxa Pinus, Alnus, and
Liquidambar together with understory taxaMorella cerifera, and
herbaceous taxa Poaceae, and Campanulaceae, which is most
associated with Zone 3 (Figure 4B).
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FIGURE 3 | Age depth model for Cenote Kail.
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FIGURE 4 | Canonical correspondence analysis of the palaeopalynological data set ordinated against independent environmental indicators of local fire (macroscopic

charcoal), regional fire (microscopic charcoal), and herbivory (Sporormiella) (A). Principal component analysis of the palaeopalynological data set (B). Zones are derived

from the broken stick model and are represented by ellipses at a confidence of 95%. Zone 1 = green triangles; Zone 2 = yellow squares; Zone 3 = blue circles.

FIGURE 5 | Palynological percentage diagram of taxa appearing in an abundance >2%; forest structure; coniferous to hardwood ratio; pollen influx; macroscopic and

microscopic influx; DCA axis 1; and Occupation of Chinkultic (dark bands). The palynological data are expressed as a percentage of total land pollen.

Zone 1 (545.75–421 cm, 14 samples, 4000–2200B.C.E.) spans
c.1800 years concurrent with the last 2000 years of the
Archaic Period (10,000–2000B.C.E.) (Figure 5). This Zone is
predominantly defined by POF taxa Quercus (25.9%) and
Pinus (11%) alongside herbaceous taxa Compositae (27.6%).
Between 4000 and 3300 B.C.E. there is evidence for a decline

in canopy taxa (from 61.3 to 37.3% of the total pollen sum),
particularly Quercus (18–9.7%). In contrast, Pinus became
abundant during this period, rising from 4000B.C.E. (2.3%)
to 3300B.C.E. (16.7%). Myrica and Alnus are mostly present
throughout this Zone, peaking at 3100B.C.E. (15.3%). Brosimum
(0–4.3%), Anacardiaceae (0.3–4.3%), Leguminosae (0–6.3%),
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Morella cerifera, and Rubiaceae (0–9%) are present in low
abundance and on average decrease from 4000 to 2200B.C.E.
The ratio of coniferous to MHWF is on average 30:70. The
coniferous to MHWF ratio changes from 25:75 to 66:34 between
3700 and 3300B.C.E. Compositae abundance increases between
4000 and 3200B.C.E. (17.3–35.3%) and peaks at 2900B.C.E.
(53.3%) and 2700B.C.E. (47.3%). Amaranthaceae is present at
10.3% from 4000B.C.E. but subsequently declines leading up to
3700B.C.E. (1.3%). Capsicum appears and increases from 3850
to 3300 B.C.E. (0.3–5.3%), and Polygalaceae follows a similar
trend, peaking at 3300B.C.E. (4.3%). Poaceae is stable and in
low abundance throughout the record (2.3–5.6%). Pollen influx
is low, decreasing from 4000 to 3300B.C.E. (965–344 grains x103

cm2 per year) and increasing after 2300B.C.E. (1,919 grains x104

cm2 per year). Sporomiella abundance is relatively high and stable
(2.6–10.5%), falling below 4% abundance at 3100B.C.E. (2.6%),
2700B.C.E. (2.9%), and 2320B.C.E. (3.8%); there is a sustained
high abundance of >10% between 2600 and 2500B.C.E. (10.2–
13.3%). Macroscopic and microscopic charcoal are relatively low,
decreasing between 4000 and 3000B.C.E. (macroscopic charcoal:
0.44–0.32 particles cm2 per year; and, microscopic charcoal:
552–86 particles cm2yr1) then increasing through to 2300B.C.E
(macroscopic: 1.2 particles cm2 per year; and, microscopic: 770
particles cm2 per year).

Zone 2 (412−263.5cm, 17 samples, 2200B.C.E−100C.E.)
spans 2100 years, including the Early, Middle, and Late
Pre–Classic Periods (2000–B.C.E.−100C.E.) and is defined by
arboreal taxaQuercus, Pinus andMorella cerifera and herbaceous
taxa Compositae, Poaceae, and Zea mays (Figure 5). Quercus
continues to dominate the arboreal component (23%) but
decreases between 1550 and 970B.C.E. (34–6%). After 970B.C.E.
(6%) Quercus recovers until 550B.C.E. (43%) before decreasing
rapidly by 350C.E. (17.3%) and stabilizing by 100C.E. (13%).
Pinus continues to be persistently present and in stable
abundance with slight increases between 1550 and 650B.C.E.
(4.6–17.7%) and a larger increase from 340B.C.E.−100C.E. (6.3–
28.3%). The low ratio of coniferous to MHWF taxa indicates
relatively abundant MHWF, particularly Quercus (47:63), with a
turnover to more coniferous taxa between 1150 and 970B.C.E.
(17:83–74:26) and 230B.C.E.−50C.E. (4:6–7:3). Morella cerifera
first substantially enters the record from 970B.C.E. (10.3%)
but does not establish until 230B.C.E. where it rises to the
second most abundant forest taxa through to 100C.E. (19.7%).
Prior to the arrival of Zea mays (c.1000B.C.E.), Amaranthaceae
abundance briefly increases c.1150B.C.E. (5.3%). The rise of
Zea mays from 970B.C.E. (8.6%) peaks at 930B.C.E. (17%) and
is abundant until 650B.C.E. (4.6%). Polygalaceae re–establishes
between 1350 and 750B.C.E. (4–3.3%). Poaceae begins to
increase from 1150B.C.E (2%) through to 100C.E. (11.5%), while
Compositae remains the dominant herbaceous taxa (33.1%).
Pollen influx is high overall during this Zone, peaking at
1150B.C.E. (175 × 104 grains cm2 per year), with the exception
of lower values at 970B.C.E. (577× 103 grains cm2 per year) and
again between 650 and 550B.C.E. (810–781× 103 grains cm2 per
year) and 340–130B.C.E. (881– 98 × 103 grains cm2 per year).
Macroscopic charcoal rises substantially after 1150B.C.E. (1.25
particles cm2 per year) until 50C.E. (24.9 particles cm2 per year).

Microscopic charcoal follows a similar trend; however, it begins
to increase from the beginning of this Zone (1,163 particles cm2

per year) and peaks at 970B.C.E. (4,004 particles cm2 per year),
increasing again from 650 B.C.E. to 50C.E. (911–5,660 particles
cm2 per year). Sporormiella continues to be high in abundance
and remains stable (0.6–8.8%) but on average is lower (4.4%)
than in Zone 1 (7.2%). There are particularly high abundances
of Sporormiella from 2100B.C.E. (7.4%) to 1750B.C.E. (8.8%),
930B.C.E (6.5%), and at 550B.C.E. (7.7%).

Zone 3 (254.5–114 cm, 15 samples, 100–1,522C.E.)
encompasses c.1400 years and is defined by the arboreal
components: Pinus, Quercus, Morella cerifera, and Liquidambar,
and herbaceous components: Compositae and Poaceae
(Figure 5). This zone is representative of the Terminal Preclassic
(150–250C.E.), Classic (250–950C.E.) and Post–Classic Periods
(950–1,522C.E.). Quercus and Morella cerifera decline between
200 and 1,070C.E. (30–4.7%) while Pinus increases (21.3–64%).
Liquidambar establishes and rises from 1070C.E. (0.7%) through
to 1522C.E. (9.3%). Of the remaining MHWF canopy taxa, Alnus
increases after 850.C.E. (1.3%) through to 1150C.E. (6.3%) and
then again from 1200 to 1,522.E. (0.7–6.3%). The coniferous to
MHWF ratio increases between 100 and 1,522C.E. (78:22) in
favor of coniferous taxa. Compositae remains in high abundance
(22.9%) but decreases after 850C.E. (45.3%) through to 1522C.E.
(7.7%). Poaceae increases from 200 to 650C.E. (15.7–28%). Pollen
influx decreases from 200C.E. through to 1522C.E. (10 to 20 ×

104 grains cm2 per year). Sporormiella abundance increases from
70B.C.E. (0.9%) through to 200C.E. (7.1%) then decreases until
the end of this Zone (4.1%). Overall Sporormiella abundance
is comparatively lower (3.3%) than in Zone 2 (4.4%). Influx of
macroscopic and microscopic charcoal decreases from 200 to
1000C.E. (macroscopic charcoal: 0.44–0.32 particles cm2 per
year; and, microscopic charcoal: 552–86 particles cm2 per year).

DISCUSSION

The Natural Baseline Vegetation
This palaeoenvironmental sequence represents the vegetation
dynamics of the Maya uplands of Guatemala from 4000B.C.E.
to 1522C.E. Our data indicate that the natural baseline of
this region is best described as OF to MPOF. This deciduous
coniferous mosaic of oak dominated forests largely persisted
from 4000 to 230B.C.E. after which, the vegetation assemblage
deviates away from the natural baseline toward pine dominated
forests. Deviation from the natural baseline was attributed to
extensive and prolonged anthropogenic settlement and activities
surrounding agrarian practices and use of fire for architectural
developments (Anderson and Wahl, 2016). While our record
suggests that this region has been predominantly forested
through time, there is clear evidence for compositional changes
in flora as a direct result of anthropogenic activities, particularly
between 3700 and 3300B.C.E. and from 1000B.C.E.−1522C.E.
(Figure 5). For example, the transition from MPOF in Zone 1
(4000–2200B.C.E.) through to PFs in Zone 3 (100–1522C.E.)
is reflected in the taxonomic associations of the PCA and the
environmental drivers presented in the CCA (Figure 4).
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Anthropogenic Impacts and Agrarian Practices
Archaeological records have widely found that village farming
became firmly established across the wider Maya Area after
c.1800B.C.E. (Neff et al., 2006). This is reflected in the
interpretations of the reconstructed palynological assemblages
for both the Maya lowlands and the upland areas (Figure 2).
Disturbance driven by anthropogenic activities, such as: (i)
agricultural practices (e.g., Dull, 2004a,b, 2007); (ii) rearing
livestock (Lovell, 1985); (iii) timber extraction (e.g., Dull, 2004a,b,
2007; Velez et al., 2011); and (iv) lime production (Anderson
and Wahl, 2016), can initiate or maintain local vegetation
succession impacting: (i) forest composition, (ii) structure, and
(iii) regeneration (González-Espinosa et al., 1991).

Archaic populations from the Maya Area combined
agriculture (e.g., pepper, beans, maize, squash, and chili)
with hunting and gathering from as early as 5200B.C.E. (Pope
et al., 2001). Evidence for agriculture from Centote Kail is first
indicated by vegetation changes from 4000B.C.E. The observed
changes include (i) a decline in canopy and understory taxa; (ii)
increases in weedy disturbance taxa; (iii) a very small increase in
local and regional burning; (iv) and the presence of cultivated
taxa such as Capsicum (White, 1999), between c.3850 and
3300B.C.E. or Zea mays between c.970 and 550B.C.E. (Figure 5).
A mixture of traditional hunter–gather practices combined
with limited agriculture is exemplified by the abundance and
variety of edible fruits and nuts (e.g., Brosimum, Myrica, and
Anacardiaceae) and high abundance of fauna as indicated by the
influx of Sporormiella.

Little is known about the Pre–Columbian human habitation
of the upland Maya Areas, particularly during the Archaic, due
to a scant archaeological record (MacNeish, 1982; Clark and
Cheetham, 2002; Lohse et al., 2006; Lohse, 2009). Evidence
from Cenote Kail suggests that people were manipulating
the uplands of Guatemala from at least c.4000B.C.E. and
practicing agriculture from c.3850B.C.E. This is the earliest
palynological evidence for agriculture in the Southern Maya
Area, preceding evidence from lowland Pacific Guatemala and
from El Salvador, which all indicate agrarian practices established
from c.3500B.C.E. (Dull, 2004a; Neff et al., 2006). Based on this
evidence, we hypothesize that agriculture in the Southern Maya
Area started in the uplands and spread to the lowlands, driven by
increasingly favorable climatic conditions in the lowlands during
the Holocene Thermal Maximum (6000–3000BC.E.) (Ford and
Nigh, 2009). Human populations dispersed with the expansion
of the lowland forests (Rosenmeier et al., 2002; Hillesheim et al.,
2005; Neff et al., 2006; Wahl et al., 2006, 2014; Bush et al., 2009;
Mueller et al., 2009; Escobar et al., 2012), increasingly interacting
with the tropical forest ecosystem and gaining ethnobotanical
knowledge (Ford and Nigh, 2009).

The start of the Pre–Classic (2000B.C.E.) is marked by the
first appearance of state level settlements and an increased
reliance on domesticated crops, particularly Zea mays (Neff et al.,
2006). Settlements and agriculture were concentrated around
water bodies, such as Cenotes, which provided reliable access
to fresh water for sustenance and agriculture (Lucero et al.,
2014). Although pollen records have been used to document the
spread of maize agriculture in the Maya Area, most of these
records are from the lowlands (Figure 1). Consequently, our

understanding of the initial arrival of maize in the uplands of
Central America is poor. Results from Cenote Kail are filling
this gap. For example, traditional Zea mays agriculture is evident
from 970B.C.E. in the Cenote Kail record. This is late compared
to the uplands of El Salvador, c.2500B.C.E. (Dull, 2004a);
however, the relative palynological abundance of Zea mays found
in Cenote Kail, suggests that the expanse of agriculture in the
Guatemala highlands was much greater. Zea mays agriculture is
typically associated with Milpa (e.g., Dull, 2004a,b, 2007), which
entails a 5–10 year cycle between periods of cultivation and
fallow (Cowgill, 1962). Intensification of milpa cycling due to
increasing human populations commonly leads to the depletion
of nutrients in the soil (Ford and Nigh, 2009). We suggest
that after 550B.C.E the agricultural settlement surrounding
Cenote Kail was abandoned in favor of more productive soils in
the lowlands.

By c.350B.C.E. large pyramids were being built across the
Maya Area including the establishment of Chinkultic c.50B.C.E.
(Ball, 1980). These pyramids were typically covered in plaster for
architectural as well as decorative purposes (Anderson andWahl,
2016). The production of this lime plaster involved the burning of
powdered limestone (Oates, 2008). Monuments built during the
Pre–Classic period were covered in this plaster (Hansen, 2001,
2012; Anderson and Wahl, 2016). Hansen (2012) reports that
floor thickness alone could exceed 13cm. Anderson and Wahl
(2016) explore the amount of fuel required to produce sufficient
lime to meet the demands of this monument building and the
impact that this might have had on the forest environment.
They calculate 192 km2 of forest would have been required
for burning to create enough plaster for the construction of
El Mirador in the central Maya Area. While Chinkultic is
significantly smaller than El Mirador, the required plaster to
create the complex of temples and ball courts would have been
extensive. Agriculture in the Guatemala highlands culminated
c.400 years before the Chinkultic settlement was established
(Ball, 1980). Therefore, we suggest that the large increase of
macroscopic and microscopic charcoal from c.200B.C.E. in
Cenote Kail might relate to the production of lime plaster
at Chinkultic, coinciding with its founding. The extraction of
wood from the surrounding forests for burning is reflected in
the structure of these POF as well as patterns for local and
regional burning.

Forest Structure, Composition, and Successional

Regeneration
Relatively equal abundances of canopy, understory, and
herbaceous taxa from 4000 to 3700B.C.E. indicate a diverse and
stratified forest structure comprising at least three vegetative
levels. The high diversity of taxa, particularly in the understory
(e.g., Leguminosae, Anacardiaceae, Myrica, and Rubiaceae),
suggests a relatively low and open canopy allowing light to
penetrate to the forest floor (Bush, 2000). This structure is typical
of middle succession in mixed POF after a large clearance event
(Peterson and Reich, 2001).

Weedy disturbance taxa (e.g., Amaranthaceae), reductions
in canopy taxa (e.g., Quercus) and the creation of more
open habitats exemplify anthropogenic disturbance prior to
the agrarian establishment of Zea mays (e.g., Dull, 2004a,b,
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2007). Anthropogenic impacts, as indicated by agricultural grains
and reductions in forest taxa in Zone 1 occur at Cenote Kail
between c.4000 and 3300B.C.E. Disturbance to the natural
vegetation baseline was likely caused by settlement and agrarian
practices directly surrounding Cenote Kail. After 3300B.C.E.
cultivation ceases and arboreal taxa (understory and canopy)
re–establish within c.100 years (3200–3100B.C.E.). This follows
the expected recovery time of c.80 years for POF (Kappelle,
2006; Figueroa-Rangel et al., 2008). By 2600B.C.E. the mature
structure of the POF are well-established and persist in relative
equilibrium until further anthropogenic disturbance at 1150C.E.
Deforestation, agrarian cultivar, and increased regional burning
surrounding Cenote Kail all coincide at c.1000B.C.E. (Figure 5),
and are attributed to the expansion and development of the
Pre–Classic Maya (e.g., Neff et al., 2006). Increases in local and
regional burning from the onset of Pre–Classic agriculture marks
the sustained decline and eventual transition of POF to Pine
dominated forests.

Plant community composition after burning is often
explained by: (i) the sprouting ability of dominant species, (ii)
the ability of subdominant species to increase in numbers, and
(iii) the failure of invasive species to become established (Elliott
et al., 1999, McDonald et al., 2003). Many species of oak rapidly
sprout from their root collar after burning (e.g., Quercus insignis,
Q. skinneri), dominating early successional stands (Barnes and
Van Lear, 1998; Kirby and Watkins, 2015). However, several
species of pine have also adapted to fire through the development
of thick bark, serotiny, rapid growth, and sprouting, including
Pinus teocote and P. pseudostrobus (Richardson, 2000; Rodríguez-
Trejo and Fulé, 2003). The early successional formation of oak
dominance is evident between 970 and 550B.C.E. (Figure 5). As
the forest becomes more established, oak abundance typically
diminishes under faster-growing conifers (Sheffer, 2012).

Extraction of wood, sustained land clearance, and most
importantly burning has changed the structure of the POF from
oak-dominated to pine-dominated (Figure 5). Additionally,
herbivores, such as the white–tailed deer (Odocoileus virginianus)
may also have impacted forest composition and regeneration
through selective browsing on young saplings and individual
species (Vera, 2000; Kirby and Watkins, 2015). We suggest
that the coppice systems created by the Maya are particularly
vulnerable to browsing from medium and large sized herbivores
(Joys et al., 2004). Pines have been found to be preferentially
browsed compared with other arboreal taxa (Blair and Brunett,
1980). While overall herbivore abundance decreases through
time, their browsing impacts upon forest structuremay have been
particularly important to recovery after prolonged disturbance
(Joys et al., 2004).

The pine-dominated forests become increasingly established
between 150B.C.E. and 1070C.E. (Figure 5). When coniferous
forests form closed stands, they change the environment beneath
them. The most substantial changes involve the greater uptake
of soil water and decrease of light reaching the ground
(Jucker et al., 2014). The combination of these factors makes
it almost impossible for other arboreal taxa to establish and
grow (Kappelle, 2006). For example, most species of oak suffer
increased reproductive failure under closed canopy conditions

(Jucker et al., 2014), relying on the dispersal of acorns to forest
edges or clearings through animal transport (Lopez-Barrera,
2003; Kappelle, 2006). Large herbivores, such as the Baird tapir
(Tapirus bairdii), are important to the structure and diversity of
recovering POF due to their role as long distance seed dispersers,
ingesting whole seeds and dropping them intact with their feces
(Bodmer, 1991; Rodrigues et al., 1993; Fragoso, 1997; Olmos,
1997; Lawton, 2000). The reduction of herbivore abundance
during the transition of oak dominated POF to pine dominated
POF at Cenote Kail (c.220B.C.E.) is likely to have contributed
to the established rise in pine. Coniferous forest stands remain
dominant until they are removed through felling or die of disease,
insect attack or old age (Jones, 1974). The transition from pine
dominated coniferous forests to MHWF is gradual and relies
upon the breakup of the coniferous forest canopy to allow
for secondary canopy taxa to rise through (Jones, 1974). The
establishment of Quercus, Liquidambar and Alnus at Cenote Kail
after c.850C.E. demonstrates this final transition back to MHWF
dominance (Figure 5).

Results from this study indicate that fire has been the
most important driver of vegetative change in this ecosystem
throughout the last c.6000 years, particularly during the Pre–
Classic and Classic periods (2000B.C.E.−950C.E.). Fire driven
change from MHWF (oak–dominated) to coniferous forests
(pine–dominated) has previously been attributed to climate
driven aridity (e.g. Figueroa-Rangel et al., 2008, 2010, 2012);
however, our study suggests that anthropogenic activity is
the most likely source of burning and overall vegetative
change. The predominantly anthropogenic signal for burning
represented in Cenote Kail is inferred through the combined
evidence of: (i) agricultural practices, (ii) reduction of MHWF
taxa, and (iii) rapid increase of burning coinciding with the
establishment and expansion of nearby Maya temples and
settlements (e.g., Chinkultic).

Terrestrial hydroclimatic reconstructions from the upland
Maya Area suggest that only modest changes in precipitation
amounts occurred over the last several millennia. Climatic
evidence from Lago Amatitlan indicates lower lake levels from
250B.C.E. to 125C.E. and 875 to 1375C.E., which has been
attributed to a decline in water level resulting from either a drier
climate and/or reforestation after anthropogenic abandonment
(Velez et al., 2011). Also, evidence from San Lorenzo (Chiapas)
indicates generally wetter conditions from c.1400–700B.C.E.,
500–850B.C.E., and c.1200–1522C.E. interrupted by periods of
drought from c.700–500B.C.E. and c.850–1200C.E. (Franco-
Gaviria et al., 2018). These records suggest that although climate
may have played an abetting role in driving forest dynamics,
the timing of these hydroclimatic changes do not reflect the
forest and fire dynamics reconstructed from Cenote Kail. Our
findings suggest that anthropogenic activities revolving around
agriculture and architectural developments have initiated and
maintained successive regeneration of vegetation from mixed
oak dominated forests to pine dominated forests. However,
further work investigating past hydroclimate changes for this
region will be required to fully understand the role of
climate as an independent driver of the vegetation surrounding
Cenote Kail.
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CONCLUSIONS

The sedimentary sequence from Cenote Kail was continuously
deposited from 4000B.C.E. to 1522C.E. and provides a record
of past changes in vegetation and human impacts. We have
found that POF within the SouthernMaya area were transformed
by Pre–Columbian human populations through practices of
agriculture and architectural developments over thousands of
years extending back into the Archaic Period (Betz, 1997;
Piperno and Pearsall, 1998; Smith, 1998; Dull, 2004a; Neff et al.,
2006). Three successional phases can be discerned following
a combination of natural and anthropogenically modified
successional pathways. The Archaic period is defined by light
anthropogenic disturbance, centered around some land clearance
for agriculture. Zea mays cultivation is prevalent from 970
to 550B.C.E., after which time sedentary agriculture does not
appear to be widely practiced. Herbivorous animals, such as
deer and tapir, are likely to have played an important role
in forest recovery after disturbance; however, discerning their
individual impacts would require further research. Persistent
high intensity burning for lime production during the Late–
Pre-Classic to Classic Period are suggested to have resulted in
a turnover of forest structure c.150B.C.E. from oak-dominated
POF to pine-dominated POF. Evidence for the fragmentation,
degradation and subsequent recovery of these MTF over the past
c.6000 years provides a valuable comparison for the present–
day anthropogenic activities that are driving current changes
in this region. To protect the remaining intact fragments of
these MTF and to encourage the recovery of areas that have
suffered past compositional or structural shifts, fire needs to be
carefully managed.
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A Corrigendum on

The Legacy of Pre–Columbian Fire on the Pine–Oak Forests of Upland Guatemala

by Harvey, W. J., Nogué, S., Stansell, N., Petrokofsky, G., Steinman, B., andWillis, K. J. (2019). Front.
For. Glob. Change 2:34. doi: 10.3389/ffgc.2019.00034

In the original article, there was an error. After discussions with the wider scientific community, the
pollen taxa identified as Corylus is more likely to be Myrica; and the pollen taxa identified
as Cercocarpus is more likely to be Terminalia.

A correction has therefore been made to the Results, subsection Palaeoecological Trends,
paragraph two and three:

“Results from the CCA show that microscopic and macroscopic charcoal are significant
environmental variables most associated with Zones 2 and 3, while Sporormiella is most associated
with Zone 1 and is not statistically significant (Figure 4A). The PCA displays a distinct gradient
and several associations between taxa and samples (Figure 4B). The first axis represents 20.2% of
the variation, while axis two represents 10.5% of the variation. The arch between samples suggests
that there is only one clear gradient. When the independently calculated palynological Zones are
superimposed upon these quadrants, the top, and bottom right quadrants are most associated
with Zone 1, the top left quadrant is most associated with Zone 2 and the bottom left quadrant
is most associated with Zone 3 (Figure 4B). The first taxonomic association comprises canopy taxa
Quercus, understory taxa Leguminosae, Myrica, Ericaceae, and the herbaceous and agrarian taxa
Capsicum, which is most associated with Zone 1. The second taxonomic association comprises of
understory taxa Juniperus and Terminalia, herbaceous taxa Polygalaceae, Apiaceae, Compositae
Aphelandra, and agrarian taxa Capsicum most associated with Zone 2. The third taxonomic
association comprises canopy taxa Pinus, Alnus, and Liquidambar together with understory taxa
Morella cerifera, and herbaceous taxa Poaceae, and Campanulaceae, which is most associated with
Zone 3 (Figure 4B).”

“Zone 1 (545.75–421 cm, 14 samples, 4000–2200B.C.E.) spans c.1800 years concurrent with the
last 2000 years of the Archaic Period (10,000–2000B.C.E.) (Figure 5). This Zone is predominantly
defined by POF taxa Quercus (25.9%) and Pinus (11%) alongside herbaceous taxa Compositae
(27.6%). Between 4000 and 3300 B.C.E. there is evidence for a decline in canopy taxa (from
61.3 to 37.3% of the total pollen sum), particularly Quercus (18–9.7%). In contrast, Pinus became
abundant during this period, rising from 4000B.C.E. (2.3%) to 3300B.C.E. (16.7%). Myrica and
Alnus aremostly present throughout this Zone, peaking at 3100B.C.E. (15.3%). Brosimum (0–4.3%),
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FIGURE 4 | Canonical correspondence analysis of the palaeopalynological data set ordinated against independent environmental indicators of local fire (macroscopic

charcoal), regional fire (microscopic charcoal), and herbivory (Sporormiella) (A). Principal component analysis of the palaeopalynological data set (B). Zones are derived

from the broken stick model and are represented by ellipses at a confidence of 95%. Zone 1 = green triangles; Zone 2 = yellow squares; Zone 3 = blue circles.

FIGURE 5 | Palynological percentage diagram of taxa appearing in an abundance >2%; forest structure; coniferous to hardwood ratio; pollen influx; macroscopic and

microscopic influx; DCA axis 1; and Occupation of Chinkultic (dark bands). The palynological data are expressed as a percentage of total land pollen.

Anacardiaceae (0.3–4.3%), Leguminosae (0–6.3%), Morella
cerifera, and Rubiaceae (0–9%) are present in low abundance
and on average decrease from 4000 to 2200B.C.E. The ratio of
coniferous to MHWF is on average 30:70. The coniferous to
MHWF ratio changes from 25:75 to 66:34 between 3700 and
3300B.C.E. Compositae abundance increases between 4000 and
3200B.C.E. (17.3–35.3%) and peaks at 2900B.C.E. (53.3%) and

2700B.C.E. (47.3%). Amaranthaceae is present at 10.3% from
4000B.C.E. but subsequently declines leading up to 3700B.C.E.
(1.3%). Capsicum appears and increases from 3850 to 3300
B.C.E. (0.3–5.3%), and Polygalaceae follows a similar trend,
peaking at 3300B.C.E. (4.3%). Poaceae is stable and in low
abundance throughout the record (2.3–5.6%). Pollen influx is
low, decreasing from 4000 to 3300B.C.E. (965–344 grains x103
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cm2 per year) and increasing after 2300B.C.E. (1,919 grains x104

cm2 per year). Sporomiella abundance is relatively high and stable
(2.6–10.5%), falling below 4% abundance at 3100B.C.E. (2.6%),
2700B.C.E. (2.9%), and 2320B.C.E. (3.8%); there is a sustained
high abundance of >10% between 2600 and 2500B.C.E. (10.2–
13.3%). Macroscopic and microscopic charcoal are relatively low,
decreasing between 4000 and 3000B.C.E. (macroscopic charcoal:
0.44–0.32 particles cm2 per year; and, microscopic charcoal:
552–86 particles cm2yr1) then increasing through to 2300B.C.E
(macroscopic: 1.2 particles cm2 per year; and, microscopic: 770
particles cm2 per year).”

A correction has also been made to theDiscussion, subsection
Anthropogenic Impacts and Agrarian Practices, paragraph two:

Archaic populations from the Maya Area combined
agriculture (e.g., pepper, beans, maize, squash, and chili)
with hunting and gathering from as early as 5200B.C.E. (Pope
et al., 2001). Evidence for agriculture from Centote Kail is first
indicated by vegetation changes from 4000B.C.E. The observed
changes include (i) a decline in canopy and understory taxa; (ii)
increases in weedy disturbance taxa; (iii) a very small increase in
local and regional burning; (iv) and the presence of cultivated
taxa such as Capsicum (White, 1999), between c.3850 and
3300B.C.E. or Zea maysbetween c.970 and 550B.C.E. (Figure 5).
A mixture of traditional hunter–gather practices combined

with limited agriculture is exemplified by the abundance and
variety of edible fruits and nuts (e.g., Brosimum, Myrica, and
Anacardiaceae) and high abundance of fauna as indicated by the
influx of Sporormiella.

Additionally, a correction has been made to Discussion,
subsection Forest Structure, Composition and Successional

Regeneration, paragraph one:
“Relatively equal abundances of canopy, understory, and

herbaceous taxa from 4000 to 3700B.C.E. indicate a diverse and
stratified forest structure comprising at least three vegetative
levels. The high diversity of taxa, particularly in the understory
(e.g., Leguminosae, Anacardiaceae, Myrica, and Rubiaceae),
suggests a relatively low and open canopy allowing light to
penetrate to the forest floor (Bush, 2000). This structure is typical
of middle succession in mixed POF after a large clearance event
(Peterson and Reich, 2001).”

Corrections have also beenmade in Figure 4 and Figure 5. The
correct figures appear above.

Lastly, the Supplementary Material (including
Supplementary Tables 1 and 2 and the raw data) has also
been updated to reflect the correct taxa.

The authors apologize for this error and state that this does
not change the scientific conclusions of the article in any way.
The original article has been updated.
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The tropical forests of Western Equatorial Africa are home to extraordinary biodiversity,

including sympatric chimpanzees (Pan troglodytes troglodytes) and western lowland

gorillas (Gorilla gorilla gorilla). The region is also comprised of significant stands of

Intact Forest Landscapes (IFL) that are in rapid decline. As part of a regional monitoring

effort, we partnered with local government officials, conservation NGOs, and the timber

company working in the region to assess ape abundances in relation to habitat

characteristics and anthropogenic disturbances and compare IFL and non-IFL areas

in the Sangha Trinational landscape, Republic of Congo. We found that chimpanzees

and gorillas occur at high densities in IFL, as well as non-IFL. To better understand how

selective logging changes floristic factors, we compared herb and tree densities from

botanical surveys conducted in IFL and non-IFL. IFL had higher tree stem densities and

less terrestrial herbs than logged habitats. However, few ape resources were logged

in this extraction cycle and areas with tree stems removed subsequently had higher

abundances of terrestrial herbs preferred by apes, which may contribute to the elevated

ape abundance estimates. Floristic differences in logged forest were identified to coincide

with differences in ape resource use. The chimpanzee tree nesting niche was reduced

in non-IFL as night nests were constructed significantly closer to the ground than in IFL.

Whereas, gorilla nest height locations did not differ significantly between IFL and non-IFL.

To identify other potential anthropogenic impacts, we assessed direct and indirect

impacts of road expansion and illegal hunting on wildlife in these remote areas. Increased

access to IFL that facilitates illegal hunting raises concern for protecting wildlife across

Western Equatorial Africa. We urge that the results of biodiversity assessments and

strategic aspects of long-term protection should be taken into account when identifying

conservation set-asides and maintaining diverse states of modified forests. Finally, the
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results of our monitoring efforts are provided as evidence of the value of long-term

collaborations among local stakeholders, government officials, conservation agencies,

and industrial partners to improve the implementation of certification standards and

biodiversity conservation initiatives.

Keywords: gorilla, chimpanzee, certification, biodiversity, Congo Basin

INTRODUCTION

Early efforts to identify the world’s remaining “frontier” forests
highlighted the substantial abundance of pristine habitats in the
tropics (Bryant et al., 1997). Since the identification of such
Intact Forest Landscapes (IFL), which are forest/mosaics at least
500 km2 (50,000 ha) lacking overt anthropogenic disturbance
such as infrastructure (Potapov et al., 2008), there has been
dramatic decline in such areas (Potapov et al., 2017). The startling
loss of IFL is largely due to tropical nations’ economies and
infrastructural development being rooted in the exploitation of
natural resources. Africa contains one of the three large blocks
of the world’s tropical forests and with the depletion of natural
resources in Asia, multi-national companies have sought new
outlets in timber-rich nations such as those inWestern Equatorial
Africa (Angola (Cabinda enclave), Cameroon, Central African
Republic, mainland Equatorial Guinea, Gabon, and Republic
of Congo). Selective logging is the primary extraction industry
responsible for IFL loss in the region (Asner et al., 2010; Potapov
et al., 2017) and Republic of Congo has been in the vanguard of
this expansion. An accelerated rate of logging road construction
has ensued particularly in the north of the country over the last
two decades (Laporte et al., 2007; Kleinschroth andHealey, 2017).
In the wake of such expansion follows considerable degradation
of natural resources and increased human immigration (Geist
and Lambin, 2002; Watson et al., 2018). If action is not taken to
avert losses, it is estimated that all IFL outside of protected areas
in Republic of Congo will have disappeared by 2050 (Potapov
et al., 2017) and wildlife populations in the region will be reduced
by 80% (Fa et al., 2003). These developments will assuredly
have negative consequences on forest and biodiversity within
protected areas including those of Natural World Heritage Sites
as many are already under elevated levels of human pressure
and forest conversion (DeFries et al., 2005; Laurance et al., 2012;
Bailey et al., 2016; Lui and Coomes, 2016; Allan et al., 2017).

Identifying important environmental attributes of forest
intactness and indicators of change in intactness are key
to more informed conservation management. With 77.4% of
critically endangered western lowland gorillas and 80.7% of
endangered central chimpanzees existing outside of protected
areas (Strindberg et al., 2018) there is a great need for
management beyond protected areas to conserve these flagship
species. Based on recent regional modeling, gorillas and
chimpanzees occur at higher densities in IFL compared to non-
IFL (Strindberg et al., 2018). The physical structure of these
forests has considerable influence on great ape distributions with
generally higher ape densities associated with increasing tree
canopy height (Strindberg et al., 2018). The emergent and high
canopy levels are the result of a few “biomass hyperdominant”

tree species (Bastin et al., 2015) in a region overall typified by low
tree stem densities (Lewis et al., 2013). Local-scale surveys and
remote sensing indicate frequent disruption in canopy continuity
even in an intact state (Devos et al., 2008). This is a product of the
mixed species forest composition which is comprised of a mosaic
of regenerating patches from natural disturbances with canopies
varying in height and composition. The dynamic and complex
nature of this habitat supports high densities of both chimpanzees
and gorillas (Devos et al., 2008).

A key question remains as to how increases in canopy gaps
associated with the loss of dominant canopy trees, as occurs
in selective logging, affect forest composition and resources
important to apes. In South America, highly disturbed forests
have been shown to support elevated densities of climbers such
as those of the genus Ficus, which include species bearing high-
quality fruit found to predict populations of primates (Terborgh,
1986; Leighton, 1993; Wrangham et al., 1993; Marshall and
Leighton, 2006). Removal of canopy trees also brings elevated
light exposure to the lower understory strata which in turn
bolsters the growth of non-arboreal pioneer species (Malcolm
and Ray, 2000) that are likely of benefit to apes. Members of the
families referred to as terrestrial herbaceous vegetation (THV)
are important to gorillas and chimpanzees for both foraging and
nesting (e.g., Wrangham, 1986; Rogers and Williamson, 1987;
Fay, 1997). Chimpanzees are classically referred to as more of
a dietary specialist with their resource use focused on fruit-
bearing tree species whereas gorillas are typically considered
to be more along the lines of a generalist with a diet focused
mostly on herbaceous ground vegetation (Bourliere, 1985). This
classification has proven to be a useful dichotomy when assessing
factors shaping species responses to perturbation, with the
former more often negatively impacted by forestry than the latter
(Johns and Skorupa, 1987; Sodhi et al., 2010; Burivalova et al.,
2014). To date, however, surveys of gorillas and chimpanzees
in post-logged forests indicate increases as well as decreases
in population numbers, which raises questions regarding the
relationship between compositional changes in the environment
and ape abundance. Overall, gorilla populations in this region
are in decline (Strindberg et al., 2018) and negative impacts
of anthropogenic disturbance on chimpanzee behaviors have
become increasingly apparent (Kuehl et al., 2019). However,
alteration in the structural complexity of IFL may not be the
only or principal factor responsible for potential changes in ape
abundance in logged habitats of Western Equatorial Africa.

The rise in unsustainable hunting of wildlife for meat (i.e.,
bushmeat) and body parts is the most severe and rapidly
expanding threat facing species today (Ripple et al., 2017).
Life-history traits are known to influence species-specific
vulnerability to hunting pressure (Reynolds, 2003; Marshall and
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Leighton, 2006). Human settlements, consumption practices, and
accessibility are also strong determining factors in the persistence
or decline of wildlife in an area (Barnes and Lahm, 1997; Fa
et al., 2000; Blake, 2002; Jerozolimski and Peres, 2003; Blake
et al., 2008). We suggest that a putative pattern of hunting
pressure is triggered by increasing access to IFL. Forests distant
from human infrastructure have higher abundances of wildlife
compared to forests with longer histories of human influence
(e.g., Eves and Ruggiero, 2000; Fa et al., 2004; Dupain et al., 2012)
and greater accessibility (Yackulic et al., 2011). It follows that
larger and highly profitable animals are reportedly originating
from more distant and less-accessible areas (Allebone-Webb
et al., 2011). There are indications that declines in wildlife
associated with opening of IFL are rapid. In a previously intact
concession in northern Congo, (Wilkie et al., 1992) estimated
that 3,140 km of primary roads, secondary roads, and transects
were opened in a single year. This region has subsequently
been shown to be a primary source of most ivory reaching
markets, substantiated by the staggering 62% decline of forest
elephants in the Congo Basin since the early 2000s (Wasser et al.,
2004; Maisels et al., 2013). Understanding the temporal-spatial
patterning of hunting pressure in relation to the decline of IFL is
crucial to preventing species declines both in protected areas and
neighboring forests through proactive conservation measures to
address such threats.

As part of a regional monitoring effort, we partnered with
local government officials, conservation NGOs, and the timber
company working in the region to assess ape abundances
in relation to habitat characteristics and anthropogenic
disturbances and compare IFL and non-IFL in the Sangha
Trinational landscape. Baseline estimates of great ape densities
in an IFL are compared with post-logging densities to better
understand population dynamics in relation to anthropogenic
disturbance. We also document floristic differences between
IFL and non-IFL and relate floral differences to great ape
resource use needs. The study took place in and around the
Goualougo Triangle which is located in the southern portion
of the Nouabalé-Ndoki National Park. Initial surveys in this
region conducted by the Wildlife Conservation Society which
led to the creation of the Nouabalé-Ndoki National Park cited
the intact nature of the Goualougo Triangle and its conservation
as essential for maximizing protection of a key area of core
habitat for the region (Fay et al., 1990; Fay, 1992; Blake, 1994).
Among all long-term ape research sites in Africa, the Goualougo
study area was found to be the least disturbed by anthropogenic
disturbances (Wilson et al., 2014). As such, we provide an
update on the expansion of timber harvesting in the forest
surrounding this protected area and increasing anthropogenic
pressures which have reached the most remote areas of the
Goualougo Triangle. This provides a rare opportunity to observe
the temporal patterning of increased accessibility to remote
forests and how this relates to illegal poaching pressures.
We use this information to provide recommendations for
park management and forest certification policies, as well
as to promote the potential for permanent research sites to
contribute to conservation initiatives through monitoring
and surveillance.

MATERIALS AND METHODS

This study took place in the Nouabalé-Ndoki National Park
(NNNP; 2◦05′-3◦03′ N; 16◦51′-16◦56′ E) and the adjacent Kabo
Forestry Management Unit (FMU) which is an immediately
neighboring logging concession in northern Republic of Congo.
The National Park was established in 1993 and covers 5,000 km2

of forest and is part of the Trinational de la Sangha (TNS),
a designated UNESCO Natural World Heritage Site (NWHS)
which spans the Republic of Congo, Cameroon, and Central
African Republic. The landscape is primarily comprised of a vast
stretch of lowland Guineo-Congolian forest (White, 1983) with
altitudes ranging from 330 to 600m. The major habitat types
in this region include monodominant Gilbertiodendron forest,
mixed species forest, transitional Gilbertiodendron to mixed
species forest, and swamp forest. This semi-deciduous mixed
species forest has a diverse flora and canopy that is not always
continuous. Rainfall is bimodal with a main rainy season from
August through November and a short rainy season in May.
Annual rainfall averaged 1,728± 47mm between 2010 and 2017.

TheWildlife Conservation Society has the mandate to manage
the NNNP and the FMU bordering it. In 1995, the landscape
encircling the NNNP was divided into four concessions. The
Kabo FMU is comprised of 2,960 km2 which surrounds the
southern sector of the National Park. The western sector of
the Kabo FMU was selectively logged between 1971 and 1972
by the Société Nouvelle des Bois de la Sangha (SNBS) and
then harvested a second time from 2005 to 2009 by Congolaise
Industrielle des Bois (CIB). The Kabo concession was among the
first concessions in Western Equatorial Africa to achieve Forest
Stewardship Council (FSC) certification in 2006. The majority
of the volume extracted consisted of Entandrophragma species,
Triplochiton scleroxylon, and Milicia excelsa (CIB 2014). The
eastern sector of the Kabo FMU was an IFL until the mid-2000s
(Figure 1).

The Goualougo Triangle Ape Project (GTAP) was established
in 1999 with the aim of conducting applied conservation
research on the behavioral ecology of gorillas and chimpanzees
in northern Congo. The Goualougo Triangle is an enclave of
lowland forest between the Ndoki and Goualougo Rivers, which
forms the southernmost section of the NNNP. It is bordered to
the south, west, and east by the Kabo FMU (Figure 1). The Djeke
Triangle is located between the Ndoki National Park in Central
African Republic and NNNP in Republic of Congo. The GTAP
and Wildlife Conservation Society research teams maintain a
year-round field presence in the Goualougo and Djeke Triangles
with daily reconnaissance missions to follow great apes that have
been habituated to human presence. Both the Goualougo and
Djeke Triangles are represented as IFL.

Forest Status
We used the IFL inventory map (Potapov et al., 2008) to define
intactness of the NNNP and neighboring Kabo FMU. This map
is based on the extent of roads and settlements documented from
Landsat images (of 30m resolution) up to 2013 (Potapov et al.,
2017). The IFL regions are forested areas >500 km2 and >10 km
wide that fall outside a 1-km buffer around such infrastructure
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FIGURE 1 | Location of the study area within the Sangha Trinational landscape. Inset shows Goualougo and Djeke Triangle which both consist of IFL in relation to

recent declines of IFL within the adjacent Kabo Forestry Management Unit.

(Potapov et al., 2008). Since the 2013 estimate of IFL, new
road networks have been established within the concessions
surrounding NNNP and within the IFL with updated estimates
for the region provided in Morgan et al. (in press). Digital
features representing new roads were provided by the local
timber operating company and Kleinschroth et al. (2016). We
used current Landsat 8 satellite imagery to review road features
and verify placement. Duplicated roads in Kleinschroth et al.
(2016) and the timber company files were removed. Once
completed, the new roads were buffered and used to update
the extent of IFL for areas of interest following Potapov et al.
(2008). The revised extent of IFL in the Kabo concession was
presented and reviewed by the local industrial logging company
for verification.

Accessibility
Accessibility was assessed retrospectively based on the
progression of roads within the Kabo concession from 1996 to
2018. Peres and Terborgh (1995) proposed a 10-km criterion to
set how far hunter incursions into neighboring interior forests
are likely to occur from roads. The 10-km criterion differs from
the IFL measure that also considers the location of settlements in
a given area.

Human Presence
Armed law enforcement teams began foot and vehicle patrols
in NNNP and Kabo FMU in 2005. The location of human sign

data, as well as other signs (carcasses, spent ammunitions, camps)
observed, were recorded by either mobile research teams or
patrol teams traversing the study region or on fluvial patrols.
In 2015, patrol teams began using the Spatial Monitoring and
Reporting Tool (SMART) (Connect version 4.1).

Since the project’s inception in 1999, GTAP research teams
have documented any human activities detected while following
habituated apes or during surveys (ape nest transects, botanical)
within or outside of NNNP. Both direct and indirect signs of
illegal human activity are reported to law enforcement officials.
In 2017, GTAP adopted the SMART data collection method
implemented by NNNP patrol teams so as to use our field efforts
to contribute to regional surveillance.

Botanical Surveys
Botanical plots (50 × 50m) were conducted in IFL and a twice
selectively logged forest. To enumerate and measure stems of
different size classes and growth forms within each plot, we
identified and measured all trees with diameter at breast height
(DBH) >80 cm with a base falling entirely within 25m of either
side of the midline, and all strangler figs with DBH ≥10 cm
whose host trees had a base falling entirely within 25m of the
midline. We identified and measured all trees and free-standing
Ficus spp. with a DBH 30–80 cm with bases falling entirely within
12.5m of either side of the midline. All strangler Ficus spp.
associated with trees in the survey plots were also identified
and measured. We recorded all trees with a DBH of 10–30 cm
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with bases falling entirely within 2.5m of either side of the
midline, as well as every stem or leaf rooted in the ground for all
terrestrial herbaceous vegetation. In cases where specimens were
not identifiable, vouchers were collected for identification by
Dr. David Harris, Royal Botanical Garden of Edinburgh. Overall
stem densities were generated by averaging densities across plots
within each zone type (intact, logged).

To better understand how herb density is affected by logging,
as well as whether the effect is consistent across the floral
families present, we used lme4 (Bates et al., 2015) in R (version
3.4.3, R Core Team, 2017) to run a linear mixed effect model
with Gaussian error structure. The response variable was the
square root-transformed herb density of each floral family
in each plot surveyed. The fixed effect predictors were zone
(logged and intact), family (Commelinaceae, Marantaceae, and
Zingiberaceae), and their interaction. Plot ID was included as
a random effect. The model residuals were assessed visually
and were normally distributed as well as homogenous. We also
assessed model stability by removing data points from each
plot ID sequentially and running the model again each time.
The results from the models using the reduced datasets were
consistent with the results from the original model, suggesting
the model was stable. The dataset for this model contained 138
total data points from 46 plots. We first established the combined
significance of the fixed effects by comparing the full model,
which contained all fixed effects and the random effect, to a null
model (Forstmeier and Schielzeth, 2011), which contained only
the random effect, using a likelihood ratio test (Dobson, 2002).
We then tested the effect of the interaction using a likelihood ratio
test (Barr et al., 2013), comparing the full model to a model that
did not contain the interaction term.

Ape Abundance
We stratified the southern section of NNNP and Kabo FMU
into study zones to systematically evaluate changes in forests
and ape abundance and distribution as related to protection
status, forestry activities, and other factors. The automated survey
design component of the custom Distance software was used
to generate systematically-spaced transects with a random start
throughout the study area (Thomas et al., 2010). The total line
length (and number of transects) in each zone is sufficient to
calculate precise densities (and precise estimates of precision)
of great apes for each zone individually (see Morgan et al.,
2006). Ape nests and human signs were recorded during each
survey. See Morgan et al. (2006) for a detailed description of data
collection protocols and methods. Ape densities and abundance
were calculated using decay rates for gorilla and chimpanzee
nests from Morgan et al. (2016) a nest creation rate of 1.09
nests/day (SE= 0.05).

Species Specific Nest Heights in IFL vs.
Logged Habitat
All independent gorillas and chimpanzees build one-night nest
per day on average. A separate investigation of species-specific
nesting heights in IFL vs. non-IFL was conducted using archived
ape transect data collected by GTAP research teams in the NNNP

and Kabo FMU (see Morgan et al., 2006, 2018). Nests not
assigned to a particular species along transects were classified as
constructed by either chimpanzee or gorilla following Sanz et al.
(2007). A Wilcoxon rank sum test was used to test within species
for statistically significant differences in nest heights between IFL
and logged forest. This test was chosen since nest height was
not normally distributed.We customized the wilcox.test function
from R (version 3.4.3, R Core Team, 2017) so that the z-score
from the test would be available as an output.

RESULTS

Quantification of IFL
In 2000, 756 km2 of the Kabo logging concession (2,960 km2)
consisted of IFL. Review of the IFL map from Potapov et al.
(2008) revealed 69.7 km2 of terre firma forest in the Kabo
concession was erroneously classified as IFL. This area was
selectively logged in the 1970’s and so was removed from the
IFL estimate. Industrial logging activities in the 1970s focused
on timber extraction on the western section of the concession.
Over the last two decades 415.38 km2 of IFL in the concession
was spared from timber extraction for conservation purposes.
In 2012, a 310 km2 area known as the Goualougo Triangle
was officially annexed to the Nouabalé-Ndoki National Park by
presidential decree. In 2005, the 102 km2 consisting of the Djeke
Triangle was designated as a “conservation de serie” or land-
set aside to meet environmental standards for certification of
the concession.

Over the last two decades the Goualougo Triangle experienced
two temporally and spatially distinct periods of logging outside
its boundaries. The first was in non-IFL from 2005 through 2009
when a second cycle of industrial logging along the western
border of the Goualougo Triangle occurred. Starting in 2014,
timber extraction began in neighboring IFL southeast of the
Goualougo Triangle and progressed north along the eastern
border of the study area through 2018.

From 2000 to 2018, a 68% reduction in the amount of IFL
occurred in the Kabo FMU. A notable increase in the yearly
percent of IFL loss started in 2013 and continued through 2018
as a result of road expansion and timber removal in the eastern
section of the Kabo concession. Since 1985, nearly 1,400 km of
timber extraction routes (primary, secondary roads) have been
opened in the Kabo concession.

In 2017, the first illegal incursions (three instances of hunting
raids) were detected inside the Goualougo Triangle after nearly
two decades of surveillance. In 2018, five illegal incursions were
recorded. These events coincided with timber removal in the
neighboring forest which was previously IFL but being exploited
for timber (Figure 1). Entry points of poachers into the IFL of the
Goualougo Triangle were within 10 km of logging roads.

Botanical Surveys
A total of 28 botanical plots were surveyed within the mixed-
species IFL of the Goualougo Triangle. In addition, we surveyed
18 botanical plots within the logged forests of Kabo West. We
counted and identified 562 trees and 16,140 herb stems within
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TABLE 1 | Comparison of average basal area and density of timber trees in intact vs. logged forests.

Species Avg basal area (m2) Small tree density

10–30cm

(stems/km2)

Medium tree density

80–30cm DBH

(stems/km2)

Large tree density

>80cm DBH

(stems/km2)

Intact Logged Intact Logged Intact Logged Intact Logged

Entandrophragma angolense 0.074 0.000 0.000 0.000 0.286 0.000 0.286 0.000

Entandrophragma candollei 0.065 0.000 0.000 0.000 0.000 0.000 0.286 0.000

Entandrophragma cylindricum 0.251 0.248 4.286 0.000 0.857 0.444 0.857 0.667

Entandrophragma utile 0.023 0.000 0.000 0.000 0.000 0.000 0.143 0.000

Milicia excelsa 0.000 0.036 0.000 0.000 0.000 0.000 0.000 0.222

Nauclea diderrichii 0.007 0.000 0.000 0.000 0.286 0.000 0.000 0.000

Pterocarpus soyauxii 0.100 0.124 1.429 4.444 1.143 1.333 0.286 0.444

Pterygota bequaertii 0.012 0.000 0.000 0.000 0.286 0.000 0.000 0.000

Triplochiton scleroxylon 0.110 0.102 0.000 0.000 0.000 0.000 0.286 0.444

Total 0.642 0.510 5.715 4.444 2.858 1.777 2.144 1.777

Medium and Large tree average diameter at breast height (DBH) measurements provided.

TABLE 2 | Comparison of herb densities between intact and logged forests.

Family, Species Intact forest Logged forest

Mean ± 95%CI SD Range % Plots Mean ± 95%CI SD Range % Plots

Commelinaceae

Palisota ambigua 0.14 ± 0.04 0.12 0.0–0.5 100 0.36 ± 0.14 0.30 0.0–1.2 100

Palisota brachythyrsa 0.42 ± 0.10 0.28 0.1–1.1 100 0.40 ± 0.16 0.35 0.0–1.5 100

Palisota spp. 0.02 ± 0.03 0.07 0.0–0.4 35.7 0.01 ± 0.01 0.02 0.0–0.1 27.8

Marantaceae

Haumania danckelmaniana 0.45 ± 0.05 0.14 0.2–0.7 100 0.49 ± 0.13 0.29 0.1–1.0 100

Hypselodelphys scandens 0.00 ± 0.00 0.00 0.0–0.0 0 0.03 ± 0.05 0.11 0.0–0.5 11.1

Marantochloa spp. 0.44 ± 0.16 0.42 0.0–1.9 96.4 0.63 ± 0.37 0.81 0.0–3.0 100

Megaphrynium macrostachyum 0.16 ± 0.11 0.30 0.0–1.2 39.3 0.10 ± 0.18 0.38 0.0–1.6 22.2

Sarcophrynium schweinfurthianum 0.63 ± 0.18 0.48 0.0–2.5 100 0.72 ± 0.30 0.65 0.1–2.4 100

Trachyphrynium braunianum 0.00 ± 0.00 0.00 0.0–0.0 3.6 0.02 ± 0.05 0.10 0.0–0.4 5.6

Zingiberaceae

Aframomum spp. 0.05 ± 0.03 0.08 0–0.30 53.6 0.41 ± 0.31 0.68 0–2.70 83.3

IFL. A total of 313 trees and 14,314 herb stems were surveyed
within the logged forest.

Average density of trees and figs was 389.86 stems/ha in IFL,
with 38 families and 143 species represented. We documented
an average density of 354.89 stems/ha in the logged forests,
representing 34 families and 110 species. The average basal area
for trees in IFL (4.35 m2) was higher than in logged forest (3.17
m2 per plot). As shown in Table 1, this was also the case for the
subset of timber tree species. Total densities of trees across large,
medium, and small size classes were lower in logged forest vs. IFL.

The average herb density in the intact zone, 2.31 stems/m2,
was lower than the average herb density in the logged zone which
was 3.18 stems/m2. Mean herbaceous stem densities ranged
considerably between families and forest status (Table 2). The
combined fixed effects from the linear mixed model were found
to be significant (likelihood ratio test: X2

= 156.470, df = 5, p <

0.001). Specifically, the interaction between forest status (intact
vs. logged) and herb family exhibited a trend (likelihood ratio
test: X2

= 4.826, df = 2, p= 0.090). The nature of the interaction
can be seen in Figure 2. The density by family is always larger in
the logged zone, with the difference between intact and logged
areas appearing largest for the Zingiberaceae family and more
moderate for the Commelinaceae and Marantaceae families.
These THV density estimates are placed in context of botanical
surveys conducted across African ape field sites (Table 3).

Ape Density Estimation
As reported in Table 4, line transect surveys of great ape
nests were conducted in both intact and logged forests of
northern Congo. A total of 272 ape nests were surveyed along
26 transects (34 km of total effort) in the Djeke Triangle
which comprises the last block of IFL in the Kabo FMU.
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FIGURE 2 | Herb densities across intact and logged forest. Boxes span the

25th to 75th percentile and whiskers extend to the 2.5th and 97.5th

percentiles. Medians are shown as bold lines while expected values produced

by the model are shown as dashed lines.

TABLE 3 | Comparison of THV densities between sites.

Study site Ape(s) THV density References

present (stems/m2)

Seringbara, Guinea P.t.v. 4.2 Koops et al.,

2013

Odzala, RoC P.t.t., G.g. 20.0 Brugière et al.,

2000

Lopé, Gabon P.t.t., G.g. 7.7 Rogers and

Williamson,

1987

Kabo FMU, RoC P.t.t., G.g. 3.2 This study

Dja, Cameroon P.t.t., G.g. 3.0 Willie et al., 2013

Goualougo, RoC P.t.t., G.g. 2.3 This study

Ndoki, RoC P.t.t., G.g. 2.3 Malenky et al.,

1994

Bai Hokou, CAR P.t.t., G.g. 0.8 Carroll, 1988

Petit Loango, Gabon P.t.t., G.g. 0.5 Morgan, 2000

Ngotto, CAR P.t.t., G.g. 0.3 Brugiere and

Sakom, 2001

Kahuzi, DRC P.t.s., G.b.g. 1.0 Basabose, 2002

Kalinzu, Uganda P.t.s. 0.1-2.1 Furuichi et al.,

2001

Kibale, Uganda P.t.s. 0.9 Malenky and

Wrangham,

1994

Virungas, DRC G.b.b. 8.8 Watts, 1984

Lomako, DRC P. paniscus 2.0 Malenky and

Wrangham,

1994

We surveyed another 332 ape nests along 10 transects (54 km
of effort) in the Goualougo Triangle which comprises the
southernmost section of NNNP. Surveys within logged forest
were conducted within the once-logged forests located to the

east of the Goualougo Triangle (henceforth referred to as Kabo
East) and within forests that have been harvested twice that
are immediately west of the Goualougo Triangle (henceforth
referred to as Kabo West). A total of 471 ape nests were
surveyed along 29 transects (107 km of effort) in Kabo East,
and a total of 647 nests along 14 transects (88 km of effort) in
Kabo West.

Transect surveys within IFL yielded overall density estimates
of 1.43 apes/km2 within the Goualougo Triangle and 1.47
apes/km2 within the Djeke Triangle (see Table 4). In the
logged forests, we documented 1.05 apes/km2 in once-
logged forests located to the east of the Goualougo Triangle
and 2.10 apes/km2 in the forests west of the Goualougo
Triangle which have been subjected to a second cycle of
timber exploitation.

Species Specific Nest Heights in IFL vs.
Logged Habitat
A total of 3,902 nests representing 1,447 nest sites were
identified as either built by chimpanzee or gorilla. In IFL we
recorded the heights (m above ground) of 359 chimpanzee
and 267 gorilla nests included within 141 and 94 nest sites,
respectively. Whereas, in twice logged forests we documented
1,794 chimpanzee and 1,482 gorilla nests within 682 and 530 nest
sites, respectively. This allowed nest height comparisons between
these two different environmental conditions. Chimpanzee nests
were built significantly closer to the ground in logged forests
than IFL (Z = 13.89, p < 0.001; 95% CI, 5.0–6.0) (see Figure 3).
While gorilla nest heights were also lower in logged forests than
IFL, the difference was non-significant (Z = 0.36, p = 0.72)
(see Figure 4).

DISCUSSION

Once considered a stronghold of pristine habitat, IFL loss in
Western Equatorial Africa is occurring at an alarming rate.
Comparisons between intact vs. disturbed habitats in the Kabo
FMU confirmed that overall tree stem density and total basal
area were lower in non-IFL than IFL forests. While ape food
resources still persist in these forests, as selectively logged
habitats contain fruit-bearing tree species and canopy gaps
promote growth of high abundances of terrestrial herbs, the
long-term ecological consequences of timber extraction on ape
populations are not yet known. For example in this study, we
documented species-specific changes in resource use in nesting
between IFL and twice logged habitat. Chimpanzees nested
significantly closer to the ground in logged forests suggesting that
changes in forest structure associated with logging may impact
resource use. In addition, nearly two decades of antipoaching
surveillance in the region indicate concerning trends between
proximity of new roads in IFL and increasing vulnerability
of wildlife to illegal hunting in neighboring IFL including
protected areas. Together, such biodiversity assessments and
strategic aspects of long-term protection should be taken into
account when identifying conservation set asides. For example,
the majority of the remaining IFL in the Kabo concession is
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TABLE 4 | Ape density estimates in IFL and non-IFL with percent coefficient of variation (%CV) and 95% confidence intervals (95% CI) for each survey stratum and for the

landscape.

Status Protection Area Effort (km) Ape Density % CV Upper 95%CI Lower 95%CI

Intact National Park Goualougo 54 1.43 15.29 1.03 1.98

Conservation de serie Djeke 26 1.47 16.46 1.06 2.04

Logged Kabo FMU Kabo East 107 1.05 17.58 0.74 1.49

Kabo FMU Kabo West 88 2.10 15.67 1.52 2.91

FIGURE 3 | Chimpanzee nest height in IFL and logged differed significantly.

Boxes span the 25th to 75th percentile and whiskers extend to the 2.5th and

97.5th percentiles. Medians are shown as bold lines. In IFL chimpanzee nests

were constructed higher in the forest canopy compared to those documented

in twice logged habitat.

within the Djeke Triangle which is contiguous with the Ndoki
National Park in Central African Republic and the Nouabalé-
Ndoki National Park in Republic of Congo. Thus, this area
is a strategic location for curbing future poaching incursions
into both protected areas. It also comprises the home ranges
of gorillas habituated to human presence for scientific study
and tourism development. This information could be used to
advocate for the formal protection of the Djeke Triangle, not
only as remaining IFL but for its conservation value and role
in serving as a buffer to neighboring protected areas. However,
such initiatives will only be successful through collaboration of
local stakeholders, government officials, conservation agencies,
and industrial partners.

It has been previously asserted that chimpanzees prefer
primary forest (Tutin and Fernandez, 1984; Furuichi et al., 1997),
whereas primary lowland forests were thought to be insufficient
in terrestrial herbaceous vegetation to support high gorilla
numbers (Schaller, 1963; Groves, 1971). The intact Ndoki forest
can be considered a climax forest with a high vertical canopy
structure created by light-demanding pioneer species such
as mahogany (Entandrophragma spp.) which were established
centuries ago (Fay, 1997). Such large trees play critical ecological
roles in forest dynamics (Lindenmayer and Laurance, 2017) and
also influence neighboring floral communities. Natural canopy
disturbance is consequential in terms of THV recruitment
and can resemble structural changes similar to selectively
logged forest. The impact is reflected in our botanical surveys,

FIGURE 4 | Gorilla nest height locations in IFL and logged forest were not

significantly different. Boxes span the 25th to 75th percentile and whiskers

extend to the 2.5th and 97.5th percentiles. Medians are shown as bold lines.

showing relatively high densities of THV in intact as well
as logged forests. In sum, the diversity of tree species and
variation in canopy coverage of IFL in northern Congo provide
adequate resources to support relatively large numbers of both
chimpanzees and gorillas.

Overall dietary flexibility and degree of folivory have been
cited in primate species’ abilities to cope with environmental
disturbances (Johns, 1997; Meijaard and Sheil, 2008) and could
explain high ape densities documented in non-IFL. However,
it is also possible that these forests historically differed in their
inherent suitability to support great apes which was not taken
into account in this investigation. We found lower stem densities
and total basal areas of larger trees in logged forest which
has implications on carbon storage potentials and elevating
environmental risks. Forest stand change was also accompanied
by a successional shift to more numerous trees in the small and
medium size classes. These findings are in accord with other
studies on the effects of selective logging on forest composition
and growth dynamics in semi-deciduous forests in Western
Equatorial Africa (Gourlet-Fleury et al., 2013a,b) and support
findings that logged tropical forests transition to shorter and
more broken canopy stands (Felton et al., 2003). Evidence for
changes in forest structure influencing ape resource use was
provided by species-specific nest height selection. We found
that chimpanzees preferentially nested in the middle and upper
story tree stratums in IFL. Whereas, chimpanzees nested at
significantly lower heights in logged forests than in IFL. Nesting
options located higher in the canopy may have diminished with
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the loss of the large timber species. These findings are similar
to reports that orangutans shift their nest locations lower in
logged environments (Felton et al., 2003). Gorilla nests heights
did not significantly differ between IFL and logged habitat. There
was however notable variability in gorilla nest height location
in logged vs. intact forests which may indicate this species
is opportunistically responding to increased nesting options.
Increased diversity in nest construction patterns of gorillas may
be a result of the elevated availability of THV documented and
associated growth in pioneer species in the exploitation zone.

Industrial logging is projected to continue at 30-year rotation
cycles in most of Western Equatorial Africa and so the fate of
many tree species is unknown. Repeated removal of timber even
at low intensity levels can degrade the quality of habitat over
time (Lindenmayer and Franklin, 2002), and could have negative
consequences for apes as shown in the degraded forests of Asia
(Rao and van Schaik, 1997; Felton et al., 2003; Wich et al., 2004;
Husson et al., 2009). Structural changes in the logged forests
in this study indicate some implications for floral climbers and
epiphytes. Compared to the diverse representation of Ficus in
the IFL, few figs were found in non-IFL which raises important
questions about host specificity of strangler figs in relation to
logging species and potential consequences to the frugivore
community reliant on these resources. Ficus spp. are a critical
component of the overall chimpanzee diet in IFL (Morgan and
Sanz, 2006). Monitoring the direct impacts of logging on large
fruit-bearing tree species preferred by chimpanzees and gorillas
in future exploitation cycles will be important as such resources
can influence reproduction and fitness in wild apes (Emery
Thompson et al., 2007). Future studies of nesting resource use
and distribution could also be informative for conservation
planning, as the difference observed in chimpanzee nesting in
IFL vs. logged habitat could be the result of indirect rather than
direct disturbances associated with logging. Low intensity logging
was practiced in the concession with off-take ranging between
0.5 and 3.0 trees/ha. Importantly, the top three marketable tree
species exploited in the study area were rarely used for nest
construction by chimpanzees or gorillas. Such insights on shifting
resource use by apes should be considered in identification of
High Conservation Value Forests (HCVF) which is an important
environmental criterion of FSC certification.

Compared to IFL, apes in non-IFL are also at increased risk of
synergistic interactions with other threats such as edge effects and
emerging diseases. For example, areas of high disturbance and
elevated undergrowth as documented in this study are likely to
be more fire prone. Logging routes and their margins transform
the local forest with elevated levels of disturbance (Brandt et al.,
2016) which is followed by rapid growth of high densities of
Marantaceae and Zingiberaceae families in the abandoned tracks
and edges (Malcolm and Ray, 2000; Kleinschroth et al., 2015).
Increased rates of tree mortality, leaf litter accumulation, and
damage (Ferreira and Laurance, 1997; Laurance et al., 1998)
likely combine with changes in microclimate conditions and
combustibility of flora, elevating risks of severe fire (Leighton and
Wirawan, 1986; Campbell, 1992; Dennis and Colfer, 2006). The
recent fire that raged across IFL and non-IFL bordering the main
national road accessing the north of Republic of Congo provides
evidence that wildfire is now an agent of disturbance in this

region (Potapov et al., 2017). Another threat that is exacerbated
by reduction of IFL is considerable spatial overlap between
apes and humans occurring in proximity to roads that may
elevate risk for cross-species transmission of pathogens through
handling of shared resources or even direct contact. Finally,
dramatic reductions of great ape numbers in some regions of
northern Congo have been attributed to excessive hunting levels
(Bermejo et al., 2006).

Poaching remains the greatest threat to wildlife in this region,
and the spatial-temporal relationship between expanding road
networks and increased illegal hunting pressure within NNNP
is both pervasive and instructive. Since the Park’s creation,
effective management of poaching pressure in the surrounding
logging concessions has been a priority to protect the integrity
of the core area (Elkan et al., 2006). Law enforcement patrols
can lower threat levels to protected areas (Stokes et al., 2010;
Tranquilli et al., 2014), but increased support for these activities is
critical as expanding road networks are providing unprecedented
access to previously remote areas. We documented the first
instances of poacher incursions in Goualougo Triangle region of
NNNP that coincided spatially and temporally with the arrival of
roads and active logging in adjacent forest. The spatiotemporal
patterning of high-value natural resource extraction in Africa
has expanded across a gradient from high to low sourced areas
(Ahrends et al., 2010). Currently, the NNNP is in the midst
of experiencing the first wave of hunting pressure targeted at
ivory. This supports assumptions that poachers preferentially
target IFL. It is likely part of a larger spatial pattern that
has typified hunting in Western Equatorial Africa since the
onset of selective logging in the early 1970s, but is only now
reaching the previously inaccessible forests which form the
core protected areas of the Sangha Trinational NWHS. At
the time of this study, the poaching profitability perimeter
for ivory hunters remained spatially close to logging roads.
Entry points of illegal raids into the southeastern sector of
the NNNP were typically within 10 km of the nearest road
which supports broader assumptions of distances traveled by
hunters (Peres and Terborgh, 1995). We strongly urge research
assessing whether the profitability of hunting diminishes with
closure of logging roads. The arrival and sudden intensification
of poaching in the Goualougo Triangle is particularly concerning
given the incessant poaching pressure over the last decade in
the IFL of the Dja Faunal Reserve NWHS which is another
important landscape for great ape conservation (IUCN, 2014).
Long-term studies in Malaysia also suggest survival prospects
for species such as orangutans in production forests are mainly
determined by hunting (Ancrenaz et al., 2004). If properly
coordinated with regional antipoaching efforts, we assert that
research outposts and field teams can serve as sentinels of such
poaching pressure in remote areas and act as force multipliers in
maintaining surveillance. In addition to improving coordination
of ecological and behavioral data collection across research
sites, technologically-enhanced monitoring with SMART has the
potential to expedite reporting of regional antipoaching efforts.
More importantly, this increased monitoring and collaboration
can lead to the arrest of poachers, which proves that the
relationship between law enforcement and research efforts can be
mutually beneficial in safeguarding wildlife.
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Beyond implementation of best practice guidelines in and
outside production forests, the most effective way to protect
the outstanding flora and fauna attributes of IFL is through
policies that formally set aside such forests (Watson et al., 2016).
Successful mandates to attain increased protected status require
collaborative and holistic approaches (Peres, 2005; Haurez et al.,
2017; Chazdon, 2018) such as those that led to the annexation
of the Goualougo Triangle to the NNNP (Morgan et al., 2012).
In these cases, increases in formal protected status were the
result of coordination among local stakeholders, government
officials, conservation agencies, and industry partners. Over the
last several years the debate regarding the fate of IFL, particularly
in certified logging concessions, has become a central focus of
global conservation. In 2016, the IUCN World Conservation
Congress adopted a motion (https://portals.iucn.org/congress/
motion/048) encouraging the monitoring and sparing of IFL
from degradation and loss. FSC has integrated the protection
of IFL into their International Standards, urging governments
and concessionaires to decrease the rate of IFL loss. The Djeke
Triangle comprises the majority of remaining IFL in the Kabo
concession, and is also the location of the longest-running gorilla
research and tourism site in Western Equatorial Africa, which
employs a large number of local people. Given its location
along the international borders of two National Parks, increased
protected status through annexation to the NNNP would further
strengthen efforts to maintain the ecological integrity of the
Sangha Trinational.

CONCLUSION

Our ground-based efforts to identify and verify IFL resulted
in a more accurate depiction of both the amount and location
of remaining intact forest in the Kabo FMU. We found that
69.7 km2 of the terre firma forest in the concession had
previously been erroneously classified as lacking anthropogenic
disturbance, when it had actually been logged. Botanical surveys
conducted in IFL revealed higher densities of trees across
all size classes, relative to non-IFL. Non-IFL forests were
composed of reduced numbers of trees, but elevated herb
densities. Results from our longterm studies of chimpanzees
and gorillas show that ape resource use may be affected by
logging, as nesting patterns differed between intact and logged
forests. The height of chimpanzee nests was significantly lower
in non-IFL compared to IFL, indicating that nesting niche
options may be reduced in modified habitats. In contrast, there
is indication that the gorilla niche may have expanded in
logged habitat as a result of greater nesting material options
associated with secondary growth in logged habitats. Along with
the ecological changes in logged forest, we also documented
that road expansion was associated with increased poaching

pressure in nearby IFL. Real time indicators of forest change
and associated data on resource use by endangered species
are critical to promoting long-term preservation of biodiversity
across different landscapes. However, such opportunities to study
and protect IFL areas are quickly vanishing. As of 2013, it was
estimated that only 8% of forests within Central Africa remained
intact (Potapov et al., 2017).
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The growing demand in global markets for commodities like palm oil, soy and cocoa

has a disastrous impact on forests, carbon emissions, as well as the lands and

livelihoods of forest-dependent people. Governments, private sector, civil society and

forest-dependent people have, separately or jointly, committed to voluntary actions to

protect forests (e.g., pledges, zero deforestation commitments, certification standards).

However, recent research shows that these voluntary commitments and standards have

neither halted nor slowed deforestation. This demonstrates that they cannot stand alone.

Alongside voluntary action, national legal frameworks that regulate forest conversion are

crucial. This research explores the importance of national laws for reducing deforestation

from forest-risk commodities and the legal options available to national law-makers to

address competing demands for forested lands.

Keywords: forest conversion, law, supply chain, deforestation, land, voluntary commitments, forest risk

commodity

INTRODUCTION

Global demand for commodities like soy, cocoa, palm oil, beef, and minerals drives global tropical
deforestation (FAO, 2016). Forests are being cleared and permanently converted to other land uses,
predominantly agriculture but also mining and urbanization (Kissinger et al., 2012)—a process
referred to in this paper as forest conversion. Forest conversion is the largest cause of global
deforestation (Curtis et al., 2018) and intact forest landscapes1 are not spared from land use change
(Potapov et al., 2017).

Demand for forest-risk commodities2 comes from both domestic and international
markets (FAO, 2016). Therefore, policy measures to reduce forest conversion should come
from both commodity-producing countries (supply-side) and commodity-consuming countries
(demand-side) (Walker et al., 2013). On the demand side, the European Union (EU) is one of
the major global importers of meat, soy and palm oil, and it is exploring ways to tackle its impact
on deforestation (COWI A/S, 2018). However, the EU has yet to establish a binding regulation
targeting forest-risk commodities.

1An intact forest landscape (IFL) is a seamless mosaic of forest and naturally treeless ecosystems with no remotely detected
signs of human activity and a minimum area of 500 km2 (Potapov et al., 2017).
2Forest-risk commodities are “globally traded goods and raw materials that originate from tropical forest ecosystems, either
directly from forest areas, or from areas previously under forest cover whose extraction or production contributes significantly
to global tropical deforestation and degradation” (Rautner et al., 2013).
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In the current absence of international binding regulatory
measures that directly address forest conversion, many actors
on both the demand and supply side have adopted voluntary
measures (COWI A/S, 2018). They include international policy
declarations—such as Goal 15 of the Sustainable Development
Goals and the 2014 New York Declaration on Forests; private-
sector zero-deforestation commitments—such as the Consumer
Goods Forum resolution to achieve zero net deforestation;
public-private initiatives—such as the Tropical Forest Alliance
2020; and private certification standards—such as the Roundtable
on Sustainable Palm Oil. Voluntary measures rely mostly
on sustainability criteria, encompassing economic, social, and
environmental requirements.

Voluntary measures have not yet proven effective in reducing
deforestation [Donofrio et al., 2017; Food and Agriculture
Organization of the United Nations (FAO), 2018; Haupt et al.,
2018; Jopke and Schoneveld, 2018]. On their own, they have
been found insufficient due to inter alia (i) the selective adoption
of commitments and (ii) leakage. First, not all companies have
adopted voluntary measures; some question the business need
and others the costs of complying with sustainability criteria
(Lambin et al., 2018). Small companies and farmers, in particular,
face unmanageably high costs and administrative burdens. They
are, therefore, not signing up to voluntary commitments, which
can exclude them from profitable international markets (Jopke
and Schoneveld, 2018; Lambin et al., 2018). Second, leakage is
the displacement of deforestation from one location to another
or from certain actors to others, due to measures that restrict
deforestation within a limited geographic or production scope or
among a limited group of actors (Delacote et al., 2016). Leakage
is likely to occur when demand for forest-risk commodities is not
reduced (Lambin et al., 2018).

Despite the limits of voluntary measures, they have a role
to play. Voluntary measures fit within a policy mix that also
includes demand-side regulations and national supply-side laws
(see Table 1). Nonetheless, as demand-side regulations have
been slow to materialize and voluntary measures are not yet
achieving their aims, this article analyses opportunities presented
by national supply-side laws to protect forests from conversion.
National laws can particularly address the abovementioned
failings of voluntary measures. First, national laws set a
(minimum3) standard that all actors within a jurisdiction must
adhere to, thereby preventing selective adoption (Brack and
Wolosin, 2018). Focusing on national laws also grants producer
countries the ability to set standards based on national context
(COWI A/S, 2018). Setting this minimum standard also avoids
leakage between actors. If designed to encompass all conversion
activities, national laws can also minimize leakage between
commodities. Nevertheless, stringent regulations in one country
are a significant factor in leakage to others with less stringent
standards (Gan andMcCarl, 2007). This is because, depending on
the rules established, national laws can either set up a framework
to reduce or halt forest conversion, or encourage it (FAO, 2016).

ClientEarth’s research analyzed national legal frameworks
governing forest conversion in nine tropical countries, which

3See e.g., the discussion in Brack andWolosin, 2018 of how a legality approach can
“act as a stepping-stone” to sustainability.

all have a significant rate of deforestation: Brazil, Cameroon,
Cote d’Ivoire, Gabon, Ghana, Liberia, Peru, Republic of Congo,
and Vietnam. The research identified areas of legal weakness,
including ambiguities, overlaps, and gaps that create risks for
national forests. It found that supply-side legal frameworks
involve laws of several different sectors, such as land, forest,
agriculture, environment, mining and investment. This opens
up the potential for laws to be unclear, incomplete or
contradictory, which means forest conversion is ineffectively
regulated (ClientEarth, 2018).

While recognizing differences between countries, and
complexities of creating a unique set of rules, ClientEarth
identified several key legal areas that require specific attention
in all countries in order to achieve a comprehensive and clear
national framework that regulates forest conversion and protects
forests (ClientEarth, 2018). Section 2 describes ClientEarth’s
research findings on three of these areas: laws governing land
allocation, forest clearance and protection of the environment.
However, laws on paper are only the beginning. Therefore,
we also identify complementary policy processes that enable
supply-side laws to function. Section 3 draws out actionable
recommendations for supply-side law reform to strengthen
national laws for forest conversion.

POLICY OPTIONS AND IMPLICATIONS:

NATIONAL SUPPLY-SIDE LAWS FOR

REDUCING DEFORESTATION

Achieving a cohesive supply-side legal framework governing
forest conversion across all sectors is challenging (Hewitt, 2013).
Through a process of legal reform, national law-makers and
other actors can undertake an exercise of balancing economic
growth, food security, protection of forests and climate change
mitigation. Acknowledging the importance of natural resources
for development in many forested countries but considering the
need to protect intact forests, this review concentrates on legal
options for forest protection and their implications.

Allocation of Land—The Need for Clarity
Before implementing a project that includes forest conversion,
all nine countries analyzed require a developer to have a right
to use the land. When the government grants a land title for a
project, the land may include forests. ClientEarth’s legal analysis
found that before allocating land, it is essential that the relevant
authority has a clear understanding of whether the land under
consideration contains forest, and if so, which areas of forested
land cannot be allocated to land-use change and which can be
converted, and under what conditions.

One legal instrument which can assist countries to map the
forested land in their territory is land-use planning (de Wasseige
et al., 2010). A land-use plan is a national document that
provides information on the most appropriate use(s) of land
[UN Economic Commission for Europe (UNECE), 2008]. The
zoning of forested land is particularly important because it has
to balance economic, sustainable development, food security,
as well as environmental interests and equity considerations. It
should be acknowledged that achieving this balance in practice
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TABLE 1 | Complementarity of policy options for deforestation.

Policy measures

and their roles

Binding

nature

Select challenges How can voluntary

measures address

the selected challenges?

How can national

supply-side laws address

the selected challenges?

How can demand-side laws

address the

selected challenges?

Voluntary measures

Role: Frontrunner

actors make a

commitment to zero

deforestation from their

supply chains.

Voluntary Selective adoption of

commitments by countries

and companies.

Leakage, where

deforestation from one

region/area, commodity or

actor is displaced

to another.

Set a standard for forest

conversion to which all

actors within a jurisdiction

must adhere.

A single standard aligns

requirements across

different sectors,

minimizing leakage.

Set a standard to which all

companies wishing to sell products to

that country or region must adhere.

If covering all/most deforestation-risk

commodities, aligns requirements,

minimizing leakage between sectors.

National supply-side

laws

Role: set a

nationally-determined

standard to which all

actors involved in forest

conversion must

adhere.

Mandatory If national laws are not

ambitious, clear nor

comprehensive, there may

be no reduction in forest

conversion.

Weak enforcement limits

impact of laws.

Leakage, where companies

move production to

countries with weaker laws

and/or enforcement.

Voluntary measures that are

more stringent than national

laws can build the ambition

of national actors to

strengthen laws.

Incentive to strengthen national laws if

countries wish to remain competitive

in markets applying demand-side

standards.

If covering all/most deforestation-risk

commodities, aligns requirements,

minimizing leakage between sectors.

Demand-side laws

Role: Reduce demand

for products associated

with deforestation,

ensuring trade is used

as a means of reducing

deforestation in supply

chains.

Mandatory Slow to materialize (French

law on the corporate duty of

vigilance one of the few)

Leakage, where companies

sell commodities at risk of

deforestation to regions and

countries with

weaker standards.

Voluntary measures that are

more stringent than

demand-side laws can build

the ambition of

demand-side actors.

Frontrunner supply-side

countries reduce

deforestation from their

supply chains.

Strong legal frameworks

supply-side countries may

increase the ambition of

demand-side standards.

has proven a challenge for many tropical forested countries
(Nana Inkoom et al., 2017).

In the absence of, or in addition to land-use planning, sectoral
laws on forestry, land, agriculture and mining may address
land allocation; however, these laws are often contradictory and
open to conflicting interpretations (Sartoretto et al., 2017). For
instance, forest laws may clearly specify which forested lands
should remain permanently forested. In Liberia, the Protected
Forest Areas Network Law prohibits prospecting, mining and
farming in national parks, nature reserves, communal forests
and cultural sites (Republic of Liberia, 2003). However, in other
countries, such as Gabon, the forest legislation does not provide
for any permit to convert forests, which makes it more difficult
to know whether particular forests can or cannot be converted
(Sartoretto et al., 2017).

Even where forest laws provide protection from conversion
to certain categories of forests, laws from other land-use sectors
may contradict them. In Ghana, laws and policies across sectors
give contradictory information on whether mining is permitted
in forest reserves. The National Land Policy bans mining outright
in forest reserves (Ghana Ministry of Lands and Forestry,
1999). The Forest and Wildlife Policy implies that mining is
permitted in forest reserves, within limits (Ghana Ministry of
Lands and Natural Resources, 2012). The Minerals and Mining

Act limits the land available for mineral rights, however, these
limits do not include a restriction on mining in forest reserves
(Republic of Ghana, 2006). This legal confusion has meant some
mining exploration has already begun. We, therefore, suggest
it is essential that forest land banned from being allocated to
conversion projects under forest law is also recognized in other
sectoral laws.

Coherent laws that clearly specify which forests may not
be converted offer an opportunity to protect intact forests or
forests with biologically important ecosystems. Research has
demonstrated that the loss of intact forests were lower in
protected areas where enforcement was strong, than outside
protected areas (Potapov et al., 2017). Where strong enforcement
is lacking, land may be granted to conversion projects even in
designated protected areas and national parks, as has been seen
in Gabon (Gabonese Republic, 2012).

Clearing Forested Land—The Need for

a Permit
A clearance permit provides the right to deforest in order to use
forested land for another purpose (Hewitt, 2013). ClientEarth’s
research found that a clearance permit can represent a crucial step
in the forest-conversion process if it requires due consideration of
whether it is appropriate to clear an area of forest for another use.
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ClientEarth’s legal analysis found that it is important for
the law to establish clear rules about where, when, how and
by whom clearance can take place – but that this has been
challenging in practice. Without clarity, state authorities can
operate under different mandates and according to different
rules. In Liberia, for example, the Minerals andMining Law gives
authority to the Minister for Mines to authorize clearing trees
and shrubs “necessary for the mineral rights holder’s activities
outside the boundaries of his license or licenses” (Republic of
Liberia, 2000). This is incoherent with the forest law, which
designates the forestry administration as the representative
of Government in any matter concerning the use of forest
(Republic of Liberia, 2006).

ClientEarth’s research also found that clearance permits may
be inappropriately used for the sole aim of selling the timber,
particularly if they are easier or quicker to obtain than a
selective logging permit. This is undesirable as clear-cutting
a forest for timber is more environmentally destructive than
selective logging (Edwards et al., 2014). For example, in the
Republic of Congo, a conversion project can access rights to
clear timbermore easily than a logging concessionaire (Sartoretto
et al., 2017), and may freely dispose of the timber stemming
from forest clearance (Republic of Congo, 2000). According to
the country’s Independent Monitor4, five companies obtained
a forest clearance permit and have been found to use this
permit simply to commercialize high-value timber, seemingly
without the intention to undertake the planned agricultural
activities (Independent Monitor of the FLEGT-VPA in the
Independent Monitor of the FLEGT-VPA in the Republic of
Congo, 2017). In order to avoid this, clearance permits can
include a requirement to develop the land within a certain
timeframe. Companies in violation of this requirement may face
a penalty.

Environmental Protection—The Need

for Consideration
Environmental protections can be established in law to reduce
forest loss, and anticipate and mitigate environmental impacts
of agricultural, mining or infrastructure projects. While many
environmental legal tools may impact upon forests, two are of
interest here.

The first is the environmental (and social) impact assessment
(ESIA) that grants an opportunity 1) to assess a conversion
project in its proposed form before decisions are made to
commit to that project, and 2) to investigate mitigating measures
to reduce environmental issues identified in that assessment
(Morgan, 2012; FAO, 2016). ESIA laws should also establish
clear grounds on which to refuse an environmental permit.
However, to be effective, the practical details of how the ESIA
process should proceed and what it should include must be

4The Independent Monitor is a component of the Forest Law Enforcement
Governance and Trade (FLEGT) Voluntary Partnership Agreements with timber-
producing countries. It is independent of a country’s forest sector regulatory bodies
and aims to provide credibility to the FLEGT licensing scheme by checking that
all relevant aspects of a country’s forest laws are operating as intended [European
Commission (EC), 2007].

explicit in the law itself. In Gabon, by contrast, details of the
ESIA process are established in the Manual of Procedures for
ESIAs and in the Guidance on Implementation of the Manual
of Procedures, neither of which are legally binding (Biotope,
2015; Gabonese Republic, 2015). This can make it harder to
enforce implementation.

While not traditionally considered environmental law,
our research found that access to environmental information
can support protection of forests. Legal rights to access
environmental information, such as final decisions and
documentation on land allocation, clearance permits and
ESIA approvals can empower citizens and NGOs to monitor
and seek government enforcement of companies’ obligations
(Gouldson, 2004). For example, in Liberia, the law establishing
the Liberia Extractive Industries Transparency Initiative requires
a national depository of mining, oil, logging, agriculture and
forestry concessions, as well as the right to audit the process
by which each concession, contract, license, and other right is
granted (Republic of Liberia, 2009; Liberia Extractive Industries
Transparency Initiative (LEITI), 2013).

Complementary Policy Options to National

Supply-Side Laws
National laws in supply-side countries cannot work alone. This
section considers two complementary policy options that enable
laws to function: participatory law reform and enforcement.

Firstly, to achieve a comprehensive legal framework that
mitigates environmental and social damage from forest
conversion, countries may need to undertake a legal reform
process. Research has shown that legal reform involving
a participatory approach, including civil society, local
communities, and indigenous peoples in decision-making
processes can better achieve environmental aims (Newig and
Fritsch, 2009). The EU’s Voluntary Partnership Agreement
negotiations with forested countries are one example of how this
participatory approach has been applied to the forest sector, with
encouraging results for improved forest governance and clearer
laws (Overdevest and Zeitlin, 2018).

Secondly, strong enforcement is a necessary complement
to strong laws, in order to regulate and reduce deforestation
(FAO, 2016). When laws are implemented consistently and when
authorities detect and penalize violations, the law on paper is
more likely to translate into results on the ground (Downs,
2013). Even so, law enforcement can exacerbate socio-economic
inequalities, as informal activities (often by the poorest people)
become criminalized (Colchester et al., 2006).

In many of the tropical forested countries analyzed, there
is a complex enforcement environment, with overlapping
mandates across different government agencies, which weakens
the governance system (Hoare, 2015). Moreover, many
forestry and environmental agencies are under-resourced
and therefore struggle to operate effectively (ClientEarth,
2017). ClientEarth’s research found that it is necessary for
national governments and judiciaries to have the appropriate
financial and human capacity as a first step toward strong
law enforcement.
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ACTIONABLE RECOMMENDATIONS

Tropical countries may need to undertake review or reform
of national laws to ensure that the legal framework facilitates
balancing of competing demands for land. As an initial step in the
legal reform process, all relevant laws and institutional mandates
across different sectors should be assessed for consistency
and harmonized as necessary (Blaser, 2010; ClientEarth,
2018). The following recommendations offer guidance to
legal reform:

• Land-use plans that identify which forested land is allowed or
prohibited from clearance can assist land-use agencies to grant
appropriate areas of land for projects at risk of conversion.

• Coherence of prohibitions on clearing certain areas of forest
land across sectoral laws, particularly those that give amandate
for land allocation, can help to streamline forest protection.

• In order to ensure that clearance permits are not used as a
loophole to clear the land for the sole aim of selling the timber,
clearance permits can include a requirement to develop the
land into the planned agricultural, mining or infrastructure
project within a certain timeframe.

• Making the practical details of how environmental
assessments proceed and what they should include explicit
in the law itself can strengthen the effectiveness and
enforceability of ESIAs.

• Strong enforcement of laws is important to translate the law
on paper into forest protection on the ground, but requires
clear enforcement mandates and appropriate financial and
human capacity.

CONCLUSION

The risk to forests from the global demand for agricultural
is firmly understood (Heino et al., 2015; Potapov et al.,
2017) and is driven by a global demand for forest-risk
commodities (Hosonuma et al., 2012; Curtis et al., 2018).
To address this risk, policy solutions need to match the
scale of the issue: they need to encompass the demand
side, as well as the supply side. The nature of the policy
measures—voluntary or binding—also has to match the

need for an effective framework that is able to lead to
behavioral change.

The current situation remains far from this goal. Many
voluntary measures have emerged over the past decades, but have
not achieved the aim of reduced deforestation, and demand-
side regulations have been slow to materialize. National supply-
side regulations offer an opportunity for forested countries to
establish a framework to reduce deforestation taking into account
each national context. However, ClientEarth’s research has shown
that supply-side regulations are still often unclear, contradictory
and incomplete.

ClientEarth’s research has identified the details of what a
supply-side national framework should include, in order to
regulate forest conversion. Clear, complete, and comprehensive
legal frameworks involve coordination across a complex array of
sectoral laws and institutional mandates to create a set of rules
to be followed by those involved in forest conversion. If well-
developed, these rules determine (i) what will be authorized, (ii)
what is forbidden, and (iii) what conditions need to be followed
for rights to access forested land and clear it for another use to
be granted.

We acknowledge that laws on paper are not enough. Laws
must be implemented and enforced (FAO, 2016). Moreover, laws
must be accepted by the citizens of a country, and a participatory
process of law reform can be crucial to reaching this acceptance
(Newig and Fritsch, 2009).
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Tropical peat swamp forests are invaluable for their role in storing atmospheric carbon,

notably in their unique below-ground reservoirs. Differing from terra firme forests, the

peat-forming function of tropical swamps relies on the integrity of discrete hydrological

units, in turn intricately linked to the above-ground woody, and herbaceous vegetation.

Contemporary changes at a local, e.g., fire, to global level, e.g., climatic change, are

impacting the integrity, and functioning of these ecosystems. In order to determine the

level of impact and predict their likely future response, it is essential to understand past

ecosystem disturbance, and resilience. Here, we explore the impact of burning on tropical

peat swamp forests. Fires within degraded tropical peatlands are now commonplace;

whilst fires within intact peat swamp forests are thought to be rare events. Yet little is

known about their long-term natural fire regime. Using fossil pollen and charcoal data

from three peat cores collected from Sarawak, Malaysian Borneo, we looked at the

incidence and impact of local and regional fire on coastal peat swamp forests over the last

7,000 years. Palaeoecological results demonstrate that burning has occurred in these

wetland ecosystems throughout their history, with peaks corresponding to periods of

strengthened ENSO. However, prior to the Colonial era c. 1839 when human presence

in the coastal swamp forests was relatively minimal, neither local nor regional burning

significantly impacted the forest vegetation. After the mid-nineteenth century, at the onset

of intensified land-use change, fire incidence elevated significantly within the peatlands.

Although fire does not correlate with past vegetation changes, the long-term data reveal

that it likely does correlate with the clearance of forest by humans. Our results suggest

that human activity may be strongly influencing and acting synergistically with fire in

the recent past, leading to the enhanced degradation of these peatland ecosystems.

However, intact tropical peat swamp forests can, and did recover from local fire events.

These findings support present-day concerns about the increase in fire incidence and

combined impacts of fire, human disturbance and El Niño on peat swamp forests, with

serious implications for biodiversity, human health and global climate change.

Keywords: disturbance, fire, human impact, palaeoecology, peat swamp forests, resilience, tropical peatlands,

vegetation change
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INTRODUCTION

Tropical peatlands constitute one of the most effective mediums
through which we can mitigate the ongoing global rise in carbon
emissions (Page et al., 2011; Lawson et al., 2015). This is only the
case however, if these peatlands are in an intact state (Dommain
et al., 2014). The peat swamp forests of Southeast Asia, covering
an area of 25 million ha (Page et al., 2011), hold c. 12%, some
69 Giga tons, of the total carbon stored in the world’s peatlands
(Page et al., 2011). The performance of these peat swamps as
a carbon sink relies on a tight interrelationship between the
landscape, vegetation, and hydrological conditions (Page et al.,
1999; Dommain et al., 2010; Posa et al., 2011), making the forest
component of this ecosystem vital for its maintenance.

Tropical peat swamp forests are formed in environments
where water-logged conditions develop, coupled with high
humidity (Liong and Siong, 1979; Andriesse, 1988; Dommain
et al., 2014). Waterlogging creates an anaerobic environment,
in which limited decomposition can occur, resulting in an
accumulation of layers of leaves, and woody matter from
the resident vegetation. Though not restricted to low-lying
areas, coastal peat domes are common across Southeast Asia
(Dommain et al., 2011). Their development is thought to have
started c. 7000 Cal. year BP (Dommain et al., 2014), after the mid-
Holocene sea-level highstand, prior to sea-level fall and coastal
progradation (Dommain et al., 2011).

These coastal peat swamp forests provide multiple ecosystem
services to many different communities. At a global level, they
are hugely important for their carbon storage and sequestration
potential (Dommain et al., 2014); the peat swamp forests of
Malaysia store 9.1 Giga tons of carbon, c. 2% of the volume
globally stored in peat despite comprising <1% of the global
area (Page et al., 2011), and have been sequestering it for
thousands of years (Dommain et al., 2011, 2014). With much
of the region’s lowland forest habitat of mineral soils having
already been converted into agriculture or other uses (Miettinen
et al., 2016), the peat swamp forests also act as a refuge for a
vast array of flora and fauna (Yule, 2010), and a primary habitat
for specially-adapted species, such as blackwater fish (Thornton
et al., 2018).

Despite this, peat swamp forests are being lost at a rapid pace:
in Southeast Asia between 2000 and 2010, 56% were converted
to plantations (Miettinen et al., 2012b), in addition to the area
lost through logging and other development (Koh et al., 2011).
In particular, fire is considered one of the most important drivers
of land-use change and vast areas of these tropical peat swamps
burn every year (Razali et al., 2010; Phua et al., 2012; Gaveau et al.,
2014), especially on the island of Borneo (Langner and Siegert,
2009; Hoscilo et al., 2011; Miettinen et al., 2016).

Burning has increasingly affected the peat swamp forests of
Southeast Asia in the last 2 to 3 decades (Taylor, 2010) and
is now claimed to be one of the most profound threats to
peatland habitats (Lee, 2000; Razali et al., 2010), as well as to all
rainforest ecosystems (Laurance, 2003). However, natural fires,
predominantly caused by lightning strikes, have constituted an
important part of the ecosystem dynamics in these tropical peat
swamps (Taylor et al., 2001) by creating gaps in which succession

can occur. A study on peat swamp forests inWestern Kalimantan
suggests that fire has been a component of the landscape for at
least the last 30,000 years (Anshari et al., 2001), and in Singapore,
for the last 23,000 years (Taylor et al., 2001).

Small-scale forest burning by humans, largely as part of
shifting cultivation practices (Haberle et al., 2001), has been
recorded in forests in Sarawak from the early Holocene (Hunt
and Premathilake, 2012). More recently however, fires are
reported to have increased in frequency, magnitude, and impact
in peat swamp forests in eastern Kalimantan (Hope et al., 2005),
in Australasia over the last few centuries (Mooney et al., 2011),
and across other areas of Southeast Asia in the last 2 or 3 decades
(Taylor, 2010). How much recent fire frequency has increased
relative to historical levels, and what impact it has had in shaping
ecosystem dynamics in the peat swamp forests of Sarawak, is
still poorly understood. These constitute important knowledge
gaps for the ongoing management of fire within these peatland
ecosystems, as has been proven elsewhere (Marrs et al., 2018).

This study aimed to investigate the patterns of fire, both
local and regional in scale, in Sarawak’s coastal peat swamp
forests, using a long-term ecological approach. Three sediment
sequences were extracted from peatlands on the coast of northern
Borneo, where peat swamp forests dominated in the past (Cole
et al., 2015), replaced now by degraded peatlands. Cole et al.
(2015) demonstrated that peat swamp forest plant communities
persisted for thousands of years in these locales, showing
resilience through periods of climatic variability and other
forms of disturbance; but that these communities have become
more unstable in the recent past, coinciding with increases in
indicators of human presence in the landscape. The overall
objective of this paper is to explore more closely the presence,
dimensions and impact of fire in these forests over the Late
Holocene: to determine the change in frequency and magnitude
of past burning in these (previously) intact ecosystems, infer
the likely causes of any changes and examine if/how fire has
influenced forest composition. Through reconstructing past
burning regimes and vegetation change from these three fossil
records, this work addresses three key research questions: (i)
What is the natural fire regime in these swamps, and how has it
changed through time?; (ii) What caused such patterns of fire in
the landscape?; and (iii) How do the changing fire regimes impact
the peat swamp forest vegetation? Results provide insights into
past fire regimes, and their drivers, across three coastal peatland
ecosystems, demonstrating the differing impacts of burning on
the forest communities over time.

MATERIALS AND METHODS

Data Collection
The State of Sarawak, in northern Borneo, contains the greatest
proportion of Malaysia’s peat swamp forests, covering an area
of approximately 3,000 km2 or 2% of the State (Miettinen
et al., 2012a), and its deforested peatlands, which extend over
an additional 11% (FAO, 2012). Until recently, the peat swamp
forests of Sarawak were denounced as “marginal wastelands”
(Sawal, 2003), of little use except in the absence of alternative
land. As such, large-scale conversion has occurred (Miettinen
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FIGURE 1 | Map showing the geographical location of Sarawak, Malaysian Borneo (inner box), within Southeast Asia, annotated with the main settlements (blue

circles), and three peat swamp sites (red circles) from which cores were extracted: DPL (Deforested Peatland), PSF (Peat Swamp Fragment), and CPL (Converted

Peatland). Sarawak State Boundary is demarked by a gray line; peatland areas by brown shading [courtesy of Wetlands International: “Malaysia peat lands,” accessed

through Global Forest Watch (www.globalforestwatch.org) (17/04/2019)].

et al., 2012b), predominantly for agricultural production (Koh
et al., 2011), where fire is commonly used to clear the forest
vegetation (Wooster et al., 2012).

Sedimentary cores were extracted using a hand-held
coring device, from three peatlands across the Miri and Batu
Niah Districts of north-east Sarawak: Deforested Peatland
from Senadin, Kuala Baram (04

◦

30′47′′N, 114
◦

2′47′′E), an
area of degraded peatland covering >50 km2; Peat Swamp
Fragment from Sungai Dua Forest Reserve (04

◦

21′24′′N,
114

◦

0′21′′E), a c. 2 km2 fragment of secondary peat swamp
forest; and Converted Peatland from Sungai Niah (03

◦

52′4′′N,
113

◦

42′43′′E), an agriculture-forest matrix of c. 1 km2

(Figures 1, 2). Though these three sampled sites cover a
relatively narrow geographical range of 80 km along the coast
of northern Borneo, since there is limited variation in climate,
geology and land-use across the region, they are sufficiently
representative of the coastal peat swamp ecosystems of Sarawak,
and potentially those at a greater distance within insular
Southeast Asia.

Using standard palaeoecological techniques (Bennett and
Willis, 2001), the sediment cores were analyzed at set intervals
for fossil pollen, microfossil, and macrofossil charcoal, and
mineral magnetic material (magnetic susceptibility) (see
Supporting Material for more information on the methods used
in sediment and pollen preparation and analysis).

Chronology
To determine the age-depth relationship of the three sedimentary
profiles, samples containing bulk organicmaterial, were extracted
from each peat core, prepared for 14C dating and analyzed with
AMS radiocarbon dating techniques, at the 14Chrono Center
in the Archaeology and Palaeoecology Department, Queen’s
University Belfast, and the SUERC AMS Laboratory, NERC
Radiocarbon Facility. (See Wust et al., 2008, for a critique
of sampling techniques of tropical peat cores for radiocarbon
dating). The coding package Clam (Blaauw, 2010) in R Core
Team (2012), with a Northern Hemisphere correction, i.e.,
the IntCal04 curve, was used to calibrate the conventional
radiocarbon dates, and construct the best-fitting age-depth
models (see Figure S1).

Reconstructing Past Burning Regimes
A size-class analysis of fossil charcoal, i.e., differentiating
between macrofossil and microfossil charcoal, was performed
to investigate changes in local and regional fire regimes,
respectively, in each site through time (Whitlock and Larsen,
2002). Macrofossil charcoal particles, henceforth macrocharcoal,
were isolated from each 1 cm3 sample extracted for pollen
analysis, by passing the sample through a 150µm sieve. This
process divides the macro- and microfossil components of the
sediment. The resulting macrofossil isolates were then observed
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FIGURE 2 | Photographs of each study site: (A) Deforested Peatland, an area

of degraded peatland covering >50 km2 (with a fire burning in the distance

when this photograph was taken); (B) Peat Swamp Fragment, a c. 2 km2

fragment of secondary peat swamp forest; and (C) Converted Peatland, an

agriculture-forest matrix of c. 1 km2 (Photographs taken by L.E.S.C).

under a light microscope and the complete macrocharcoal
content counted to give a measure of the number of particles
per cm3 at simultaneous intervals with fossil pollen counts.
Fossil charcoal particles are identifiable as black, opaque,

block-shaped, and angular (Clark, 1988). The microfossil
charcoal concentration, henceforth microcharcoal, was counted
at the same intervals. Since microcharcoal particles are both
small, i.e., <150µm, causing them to separate out with the
pollen component during the sieving of samples, and resistant
to the processing performed to isolate fossil pollen grains and
spores, they can be counted on the same slides prepared for
pollen analysis. Clark’s point count method (Clark, 1982), which
converts standardized count data into concentration values,
measured in cm2/cm3, was used to quantify the microcharcoal
concentration in thin section. Macrofossil charcoal is used to
broadly reconstruct local fire events, since the larger charcoal
particles produced during fires, i.e., those >150µm, will be
heavier and less easily transported by wind or other vectors away
from the burning focus, and thus concentrate around it.Whereas,
microcharcoal, comprising smaller and therefore lighter charred
particles, can be transported over large distances from the site of
burning, and therefore signal regional fire events (Clark, 1988).

Reconstructing Vegetation Change Over
Time
Due to the diversity of species in the peat swamp flora and
differing levels of pollen production, and to allow for an
interpretation of the palaeo-plant communities (for example
Muller, 1963), taxa identified in the fossil pollen record were
allocated to ecological groups (seeTable S2, SupportingMaterial)
using various publications from the region (Anderson, 1964,
1980; Stuijts, 1993; Coode et al., 1996; Anshari et al., 2001,
2004). A pollen sum was then calculated and used to estimate
the relative abundance of each taxa and each ecological group
through time, giving a percentage score, e.g., PSF%. The different
ecological groups are defined as follows: total PSF (TotPSF),
which encompasses all peat swamp forest (PSF) associated taxa;
the mature PSF community (PSF); the pioneer PSF community
(PSF+) (indicative of transient canopy openings within a
closed peat swamp forest); taxa of degraded peatlands (DP)
(signaling spatially and temporally greater forest discontinuities
on peat); taxa of other forests not occupying peat substrates
(OF); coastal vegetation (CV) (e.g., mangroves); and Open
vegetation, comprising taxa which dominate highly disturbed,
open-canopied areas, for example Poaceae, Cyperaceae, and
ferns (both of monolete and trilete morphologies). This latter
ecological group is used as an indicator of human impact:
Poaceae can be associated with human presence in forested
palaeo-environments (Bush, 2002), and Cyperaceae and ferns are
documented as characteristic of unmanaged degraded peatlands
(Miettinen and Liew, 2010). These taxa can also produce
unusually large volumes of pollen per plant, which can bias the
interpretation of the vegetation composition of the landscape
in palaeo studies (Bush, 2002). For this reason, and for their
utility as anthropogenic indicators, Open vegetation was not
included within the pollen sum but reported as a separate
response variable.

Significant pollen assemblage zones were constructed using an
optimal splitting by information content technique on all pollen
data, after assessing the number of zones that were significant
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via a broken stick modeling approach across multiple analyses
(Bennett, 1996). Psimpoll version 4.26 (Bennett, 1994) was used
to display all pollen, spore, and charcoal records (Figure 3, and
Figures S2, S3).

Data-Handling Techniques
In order to explore the fire regime of each core and specifically
when/if peaks in fire activity have occurred through time,
the macrocharcoal and microcharcoal data (C), recorded as
cm2/cm3 and particles/cm3, respectively, were transformed to
isolate such peaks from background noise. Firstly, background
burning levels were assessed, and secondly, peaks in fire
activity isolated from these. Prior to the transformation, both
sets of data were divided by the sediment accumulation
rate calculated in Clam, to produce a rate of macrocharcoal
and microcharcoal accumulation through time, measured in
cm2/year and particles/year, respectively. This reduced the
chances of fossil charcoal peaks in the sedimentary records being
an artifact of sediment accumulation variability rather than real
elevations in fire activity through time (Higuera et al., 2012). Both
sets of fossil charcoal data were then resampled in the first step
of the transformation, using a natural logarithm to stabilize the
variance in the datasets and isolate the background fire activity,
Cback, i.e., the baseline fire activity recorded in each sediment
profile, using the following equation:

Cback = log(C + 1)

The second step then involved subtracting this background trend
from themacrocharcoal andmicrocharcoal data, to create a series
of residuals, i.e., peaks:

Cpeak = C − Cback

This transformation thus provides a record of fossil charcoal
fluctuation, Cpeak, through time for all three sites (see Figure S2,
Supporting Material), in which unusually intense burning
incidences are highlighted. Although the true rate of fire events
cannot be estimated due to unequal sampling intervals, episodes
of increased burning frequency can be inferred where there are a
greater number of elevated peaks within a period of time.

To investigate the relationship between fire and peat swamp
forest vegetation through time, multivariate analyses were carried
out. Principal Components Analysis (henceforth PCA) was
performed in CANOCO (ter Braak and Smilauer, 2002) to
explore and graphically represent the nature of the relationships
between all recorded environmental variables and both internal
and external peat swamp forest dynamics. Data were square-
root transformed and species scores were divided by standard
deviations and scaled according to inter-species correlations.
Internal dynamics are represented by changes in PSF% and
PSF+%, and external dynamics by the four key ecological groups
in the landscape, i.e., TotPSF, DP, OF, and CV%. To analyse the
strength of the correlation between firstly fire, and secondly all
environmental variables, Monte Carlo Permutation Tests were
performed, using 999 restricted permutations by sample, to
account for the time-series nature of the data.

RESULTS

(i) What Is the Natural Fire Regime in These
Coastal Peat Swamps? How Has It
Changed Toward the Present Day?
Fire has been present in all three sites through time (Figure 3, and
Figure S2). Fluctuations in macrocharcoal and microcharcoal
levels vary within and between cores, though there are several
distinct phases of elevated magnitude and frequency of burning
as follows.

2,800–1,800 Cal. year BP
Within the Peat Swamp Fragment and Converted Peatland
sites, there is a coincident increase in size, i.e., magnitude,
of macrocharcoal peaks, and microcharcoal for the latter
site, between approximately 2,800–1,800 Cal. year BP. These
magnitudes do not exceed those seen in the last 200 years
however. In the Converted Peatland site the magnitude
and frequency of macrocharcoal peaks and frequency of
microcharcoal peaks appear to be greater prior to c. 5,000
Cal. year BP, coinciding with the local presence of a mangrove
ecosystem (Figure 3). After this period, levels of macrocharcoal,
and microcharcoal demonstrate very low magnitudes in all three
sites until the next period of elevated burning, from c. 200 Cal.
year BP.

200 Cal. year BP to Present
Over the last 200 years, macrocharcoal and microcharcoal levels
indicate an increase in both magnitude and frequency of local
and regional burning, respectively, in all three sites. These
results further suggest that levels of burning exceed those seen
throughout the fossil charcoal records of all cores. Microcharcoal
levels in the Deforested Peatland and Peat Swamp Fragment
sites, especially, greatly exceed those recorded in the past. The
exception to these historically-novel elevations of fossil charcoal
is in the Converted Peatland site, though not associated with a
peat swamp vegetation community (Figure 3).

(iii) How Do the Changing Fire Regimes
Impact the Peat Swamp Forest Vegetation?
Peat swamp forest is considered the baseline vegetation at
all three sites over the Late Holocene period, given that this
ecosystem type has dominated the vegetation profiles since its
development in each location. Each sediment core records a
different peat development history, with Deforested Peatland
having the most recently accumulated peat soils, starting from
approximately 1,500 Cal. year BP; in Converted Peatland, organic
matter started to accumulate in the substrate of an estuarine
mangrove ecosystem several thousand years prior, though the
forest associated with peat swamps did not develop until c. 2,800
Cal. year BP; and in Peat Swamp Fragment the onset of peat
development arose c. 3,500 Cal. year BP (See Figure S3, for
summary pollen diagrams).

Since the inferred onset of peat swamp development, the
percentage of pollen from the total PSF ecological group
(aggregate dark and light green components on the pollen sum
diagram, Figure 3) has been relatively constant in each site
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FIGURE 3 | Pollen summary diagrams for each site: (A) Deforested Peatland; (B) Peat Swamp Fragment; and (C) Converted Peatland, showing the sediment

stratigraphy, magnetic susceptibility, five different ecological groups (represented by the following colors: PSF dark green, PSF+ light green, DP brown, OF orange and

CV yellow), open vegetation (light gray), and macrocharcoal and microcharcoal (red). Significant pollen zones are shown for each (labeled D-, P-, and C-, respectively).

TotPSF% comprises the sum of PSF% and PSF+%, and is represented by the division between PSF+% and DP%.
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TABLE 1 | Monte Carlo Permutation Test results, performed to analyse the strength of the relationship between changes in the vegetation in each site and

(a) microcharcoal and macrocharcoal, and (b) all recorded environmental variables, i.e., macrocharcoal, microcharcoal, magnetic susceptibility and open vegetation

(only the strongest relationship is displayed).

Site Environmental variable F-statistic p-value Degrees of freedom†

DEFORESTED PEATLAND

(a) Internal Microcharcoal 0.14 0.892 61

Macrocharcoal 0.82 0.553 61

External Microcharcoal 0.57 0.476 125

Macrocharcoal 1.77 0.180 125

(b) Internal Magnetic Susceptibility 6.28 0.078 61

External Magnetic Susceptibility 12.75 0.094 125

PEAT SWAMP FRAGMENT

(a) Internal Microcharcoal 1.75 0.482 99

Macrocharcoal 0.74 0.477 99

External Microcharcoal 3.51 0.142 101

Macrocharcoal 0.55 0.527 101

(b) Internal Open vegetation 4.21 0.155 99

External Microcharcoal 3.51 0.142 101

CONVERTED PEATLAND

(a) Internal Microcharcoal 2.04 0.097 117

Macrocharcoal 1.66 0.685 117

External Microcharcoal 6.08* 0.014 237

Macrocharcoal 0.84 0.723 237

(b) Internal Magnetic Susceptibility 15.59 0.262 117

External Open vegetation 9.55* 0.015 237

*Significant relationship at p < 0.05 level.
†
Number of sampled sediment levels per core: Deforested peatland, 33; Peat swamp fragment, 52: Converted Peatland, 61.

The vegetation is split into internal PSF dynamics, i.e., the most significant recorded factors associated with PSF% and PSF+% dynamics, and external landscape dynamics, i.e.,

factors most strongly linked with changes in all ecological groups in the landscape (TotPSF, DP, OF, and CV%). [999 restricted permutations by sample (allowing a time-series analysis)

were used to calculate F-statistics and p-values].

through time, fluctuating c. 80%. However, in the Peat Swamp
Fragment and Converted Peatland sites, the total PSF proportion
declines in the last c. 500 years. The indicator group for turnover
within the peat swamp forest, PSF+, does not appear to follow
a pattern within or across sites, thus demonstrating internal
dynamism throughout the past. Open vegetation levels in all sites
remain low until c. 200 Cal. year BP, with the exception of an
anomalous peak in the Peat Swamp Fragment prior to 2,000 Cal.
year BP. This notable increase in open vegetation taxa suggests
that there was a higher incidence of open-canopied areas in the
vicinity of these sites in the last several 100 years.

Both internal peat swamp forest dynamics and external
landscape change do not appear to correlate with fire, whether
local or regional in scale (Table 1). The exception is the
relationship between microcharcoal and external ecological
change in the Converted Peatland site. Here, regional burning
is correlated with vegetation fluctuations in the wider landscape
(F-statistic = 6.08, p-value = 0.014): as microcharcoal levels
increase, the degraded peat ecological group (DP), and to an
extent non-PSF-related forest taxa (OF), increase (Figure 4C).
In terms of other environmental variables, the peat swamp
forest and landscape vegetation within the Deforested Peatland
site appears to correlate most with magnetic susceptibility
changes, and in the Peat Swamp Fragment with changes in
open vegetation and regional fire, albeit all non-significantly. In

the Converted Peatland site, PSF dynamics had the strongest
association with magnetic susceptibility, and landscape dynamics
were significantly correlated with changes in open vegetation
(F-statistic= 9.55, p-value= 0.015).

Despite each core exhibiting different ecological patterns, one
key trend is visible from the ordination diagrams: increases in
open vegetation are correlated in all three sites with the pollen
samples counted within the last c. 200 years (see circled clusters,
Figure 4). In the Converted Peatland and Peat Swamp Fragment
cores, the degraded peat ecological group is also associated
with this recent landscape trend, and across all sites, Trema
(Cannabaceae), increases during this period (see Figure S3,
Supporting Material).

DISCUSSION

This investigation has provided novel insights into the local
to regional patterns of past burning across three peatland sites
over the Late Holocene, the potential drivers of this pattern
and its influence on the peat swamp forest vegetation. Fossil
charcoal analysis found there to be no consistent fire regime
across the three studied peat swamp forest ecosystems on the
coast of Sarawak over the last 2,000–7,000 years. Palaeoecological
results also demonstrate that fire has not had a significant impact
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FIGURE 4 | PCA Ordination diagrams for coring sites (A) Deforested Peatland, (B) Peat Swamp Fragment, and (C) Converted Peatland, showing the relationships

between the recorded environmental variables (i.e., macrocharcoal, microcharcoal, magnetic susceptibility, and open vegetation), and temporal changes in (i) internal

PSF dynamics: mature (PSF%), and pioneer PSF taxa (PSF+%), and (ii) external landscape dynamics: the ecological groups comprising total PSF (TotPSF%),

degraded peat (DP%), other forest (OF%), and coastal vegetation (CV%). In (A), the 1st axis of the ordination explains 33.3% of the variance in the distribution of the

ecological groups and the 2nd axis, 4.4%; with the inclusion of environmental variables, this percentage variance accounted for by the 1st and 2nd axes becomes

(Continued)
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FIGURE 4 | 87.1 and 11.4%, respectively. In (B), 11.3% variance is attributed to the 1st axis and 2.2% to the 2nd axis, with the explained variance increasing to 79.5

and 15.4%, respectively, when environmental variables are accounted for in the assessment of directional distribution of taxa. In (C), 43.9 and 3.1% are due to the 1st

and 2nd axes, and 93.1 and 6.6%, respectively, when environmental variables are included. As Table 1 demonstrates, only microcharcoal and open vegetation are

significantly correlated with external landscape dynamics in the Converted Peatland site. All samples dated within the last 200 Cal. year BP have been highlighted

(represented by a thicker cross), and encircled where they have a notable association with environmental variables, i.e., predominantly open vegetation.

on either internal peat swamp forest vegetation communities
or ecological change within the wider landscape through
time. Rather, patterns of burning appear to be predominantly
idiosyncratic and drivers of vegetation change predominantly
anthropogenic, influenced by changes in the political, social, and
economic environment of the region in the last two millenia.

(i) What Is the Natural Fire Regime in These
Coastal Peat Swamps? How Has It
Changed Toward the Present Day?
Results from this study demonstrate the presence of fire, to
some degree, throughout the past within these coastal peat
swamp forests, in accordance with findings from elsewhere in
the region (Anshari et al., 2001; Taylor et al., 2001). However,
there is no apparent “natural” or predictable baseline for the
local or regional burning regime. Instead, evidence suggests that
there were two notable episodes of increased fire across sites,
overlaying a background of heterogeneity. In line with other
studies, there are lengthy periods, for example between c. 1,800–
500 Cal. year BP, where fire frequency and magnitude appear to
be low. Hope et al. (2005) found that fire was a rare occurrence
in peat swamp forest at a distance from rivers before 3,000 years
ago, and from contemporary work, Miettinen et al. (2012c), and
Cattau et al. (2016) report the near absence of burning in intact
peat swamp forests in Sumatra and Kalimantan, respectively. The
large elevation in local and, to an extent, regional burning in the
Converted Peatland site prior to 5,000 Cal. year BP can likely
be explained by the existence of an estuarine ecosystem during
that period. It is probable that charcoal from extra-local fires was
washed in with tidal currents and accumulated in the mangrove
muds (a process enabling both micro- and macro-sized particles
to travel and become deposited), since past mangrove ecosystem
dynamics are not strongly associated with fire (e.g., Alongi, 2008).
Thus, these earlier elevated levels of burning are likely associated
with tidally-influenced mangrove communities, rather than peat
swamp forests.

Two episodes where considerable coherence and elevation in
the fossil charcoal records do occur across sites, suggestive of
increased regional burning, or pervasive landscape change, are
as follows: the first between approximately 2,800–1,800 Cal. year
BP, and the second, within the last 200 years. In order to explore
the factors that could have influenced these fire patterns over the
Late Holocene, records of regional climate and information on
local anthropogenic land-use change were sourced.

(ii) What Caused Such Patterns of Fire in
This Landscape?
In general, climate did not appear to have a significant impact
on the burning regime in any of the three sites through time.

However, the first simultaneous episode of elevated local and
regional burning observed between c. 2,800–1,800 Cal. year
BP, coincides with a period of climatic drying in the Tropics
that is reported to occur in the interval 2,000–3,000 Cal. year
BP (Woodroffe et al., 2003; Selvaraj et al., 2007) (Figure 5).
Anshari et al. (2001) report a similar increase in microfossil
charcoal particles during this period, in a peat core extracted
fromWest Kalimantan, and suggest that increased ENSO-related
climatic variability may have been one reason for such an
increase, predominantly through causing stress to previously
stable ecosystems. They also refer to human disturbance as a
potential driving force for greatly elevated charcoal to pollen
ratios recorded from c. 1,400 year BP (Anshari et al., 2001).

In order to assess the probable anthropogenic influence on
burning regimes in the coastal peat swamp forests studied here,
there is a complex history of human-environment interactions
(Figure 5) that warrants consideration. Evidence for the first
human presence in northern Borneo comes from a “Deep
Skull” found in the Niah Caves in northeast Sarawak, which
has been dated to over 35,000 Cal. year BP (Barker et al.,
2007). Other work suggests that people have been living in
this area for even longer (Hunt and Premathilake, 2012), and
using fire to clear forest vegetation (Hunt and Rushworth,
2005). During the late Pleistocene and much of the Holocene,
low-density human communities in Borneo would have had
limited impact on their densely-forested environment, and
their activities, predominantly as hunter-gatherers and shifting
cultivators, are unlikely to have extended far beyond the edges of
peat domes, or from river-based transport networks (Hope et al.,
2005). Large-scale landscape modification started to happen with
the establishment of Colonial rule. Captain James Brooke, the
first Viceroy of Sarawak, landed on Borneo’s shores in 1839,
and proceeded to organize her politics and landscape. Captain
Brooke’s goals were to improve levels of peace amongst the
resident communities and to increase the productivity of the
land (MacDonald, 1956). Fire would have played an important
role in this strategic landscape conversion. At this time, people
searched for land on which to farm and secure rights, in some
cases turning to the relatively under-exploited peat swamps.
Interview data suggests that people began living in these areas
from c. 1850, but the majority settled in peatlands much later, i.e.,
the early 1970s (Cole, 2013). Approximately 100 years after the
first settlement, mechanization had drastically increased, along
with the wealth and population of the State; developing this
waterlogged “wasteland” on a large scale became both more
feasible and more financially rewarding. Selective logging in the
coastal peat swamps started in the early 1950s and constituted a
key income for the State for 20 years. It continues today, although
with declining extraction rates due to the much-depleted tree
stocks. Prior to the Environmental Quality Act of 1974 (Dolmat,

Frontiers in Forests and Global Change | www.frontiersin.org 9 August 2019 | Volume 2 | Article 4888

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Cole et al. Fire in Tropical Peatlands

FIGURE 5 | Composite diagram illustrating the environmental, anthropogenic, and peat swamp forest ecological changes occurring within the study region over the

last 3,000 years, from the first distinct phase of elevated burning across two sites (CPL and PSF, Figure 3). Historical and climatic drivers of past fire incidence within

Sarawak’s coastal peatlands have been identified through a literature search and interviews (Cole, 2013), with the most recent 200 years hosting a period of significant

socio-political change. Variability in macrocharcoal peaks (Cpeak , measured in peak component charcoal accumulation rate (cm3/yr), see Figure 2, Supporting

Material) and TotPSF% (percentage of pollen sum) across all cores are represented on separate axes, aligning with one chronological scale. (For more information on:

ENSO variability, see Table S3, Supporting Material; and the history of political development in Sarawak, see (Cramb et al., 2009) and references therein).

2005), open burning to clear peat swamp forest was legal,
and thus would have been used extensively by smallholder
and plantation farmers. After this time, only small controlled
burns were permitted by the Department of the Environment,
and clearance fires were replaced by large machinery that also
drained, compressed and piled peat in preparation for the
establishment of oil palm and pulpwood plantations, amongst
other land uses. Such modification of the land, in particular the
drying caused by drainage, makes peatlands more vulnerable
to fire (Page et al., 2002; Hoscilo et al., 2011; Taufik et al.,
2018), whether ignited by natural or anthropogenic sources
(Cattau et al., 2016).

Until several 100 years ago, local fires (those within peat
swamp forest) would predominantly have been driven by natural
disturbances such as lightning strikes, especially during dry
climatic periods, i.e., El Niño years (Hope et al., 2005). Human
disturbance would have been minimal (Sawal, 2003), restricted to
activities such as subsistence sago cultivation: a crop that grows
well on marginal lands (Donner, 1987). Within the last 200 years
however, the coincidence of data showing dramatic increases
in the magnitude and frequency of local and regional fire (and
open areas), with the reporting and documenting of increased
human interaction with Sarawak’s coastal peat swamp forests,
suggests that humans were responsible for these elevations in
burning. Significant landscape exploitation by people is likely
to have started after Colonial Rule was established in Sarawak
approximately 170 years ago. The following quote, attributed to
the Second Raj of Sarawak, Charles Brooke, in 1867, illustrates
the attitude toward “idle” forested land that would have driven
large-scale landscape conversion: “[We want] to see the jungle

falling left and right and people settled over what are now lonely
wastes and turning them into cultivated land.” The dramatic
recent increase in burning peatlands has also been recorded in
Sumatra (Miettinen et al., 2012c) and across Southeast Asia (Van
Eijk et al., 2009; Dohong et al., 2017).

(iii) How Do the Changing Fire Regimes
Impact the Peat Swamp Forest Vegetation?
Results from this study suggest that fire has not caused significant
disturbance to these three coastal peat swamp forests through
time. Even during episodes of elevated burning in the past, for
example during the inferred dry phase between c. 2,800–1,800
Cal. year BP, there is no decline in the peat swamp forest or
apparent impact on the vegetation within these ecosystems. In
terms of internal peat swamp forest dynamics through time, the
fluctuation between mature and pioneer taxa does not correlate
with fire incidence, again suggesting that, in general, burning
has not played a significant role in the regeneration of these
ecosystems. Since anthropogenic burning is hypothesized to have
only started in the last two centuries, it appears that the natural
burning regimes in each site, which have been predominantly
idiosyncratic, have not had a significant negative impact on these
peat swamp forests. An exception to this appears in the results of
the Converted Peatland site, where regional fire appears to have
a significant impact on peat swamp forest ecosystem abundance
within the wider landscape. Further sampling is required to
decipher reasons for this unusual finding in the Converted
Peatland site.

In contrast to the long-term burning and peat swamp
forest vegetation dynamics, as levels of local and regional fire
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elevate to historically-novel levels in the most recent past,
declines in peat swamp forest within the landscape and an
apparent lack of regeneration within the forests, suggests fire
is now impacting on these ecosystems. However, the most
influential drivers of peat swamp forest change across sites
appear to be disturbances associated with anthropogenic activity:
open vegetation, signifying forest clearance, and magnetic
susceptibility, indicating disturbance and/or drying in the peat
substrate. These relationships are strongest in the recent past
(Figure 4), coinciding with and, most probably, driving the
large elevations in local and regional fire, as suggested by other
studies in this region (Lee, 2000; Langner and Siegert, 2009;
Van Eijk et al., 2009). Despite these associations between peat
swamp forest and environmental variables, it is important to
note that the only significant relationship observed in this study
occurs between open vegetation and external landscape change,
i.e., a decline in peat swamp forest, in the Converted Peatland
site. Further evidence for the predominantly anthropogenic
origin of fire within peat swamp forest in the last 200 years,
is the coincident increase in ferns, Poaceae and other non-
woody taxa of open areas (Hoscilo et al., 2011), such as Trema
(Cannabaceae). This plant has been associated with the creation
of gaps within the peat swamp forest greater than those resulting
from local disturbances (Flenley and Butler, 2001), such as wind-
throw (Anderson, 1964).

In conjunction, the results from the three studied sediment
cores strongly suggest that fire has been present in tropical peat
swamp forests for thousands of years and that it is not the
most prominent driver of long-term or recent changes in coastal
peat swamp forest vegetation, contrary to the common concern
expressed in the literature on the sustainable management of
tropical peat swamp forests today (for example Razali et al.,
2010; Miettinen et al., 2012c). Instead, human impact has had
the most influence on internal peat swamp forest dynamics and
peat swamp forest decline: with this disturbance manifesting
only in the last c. 200 years and at unprecedented levels when
compared to the last 7,000 years. In reality, it is likely that various
forms of human disturbance, notably forest clearance, drainage
and fire, occur simultaneously and act synergistically in these
landscapes, exacerbating impacts, reducing forest regeneration
potential and thus jeopardizing the resilience of these peat
swamp forests.

To explore the relationship between fire, its drivers and
vegetation change at a higher temporal resolution, further
sampling, and the use of additional proxies, would be required.
Though individual fire events can be identified from fossil
charcoal records extracted from peat deposits, palaeoecological
data is best suited to identifying historical trends in fire
regimes (Remy et al., 2018). Observing a true response of
the vegetation to an incidence of burning, or another form
of disturbance, can also be challenged by differing rates
of pollen production amongst species and varying distances
over which pollen grains are transported, in turn affected
by the changing characteristics of the canopy around the
coring site, amongst other constraints (Davies et al., 2018).
Signals of regional burning can, in particular, be affected by
canopy cover, since microcharcoal particles can be caught in

the vegetation overlying the forest floor; this can reduce the
volume of microcharcoal that is found in sediment profiles
causing potential under-estimations of fire incidence and
intensity at a regional scale. However, this potential under-
estimation is not considered a significant obstacle in this
and other palaeo-environmental reconstructions in tropical
peatland ecosystems (e.g., Hope et al., 2005). Due to these
various factors, interpretations of the data reported in this
study have been limited to broad trends, and thus give an
impression of ecosystem level sensitivity to burning during the
Late Holocene.

Despite the limitations of long-term ecological studies, the
insights gained through these data greatly extend our ability
to understand the ecological functioning of ecosystems (Willis
et al., 2010; Cole et al., 2015), particularly in response to
fire. The findings can be used to infer how the intact peat
swamp forests, and degraded peatlands, may respond to future
disturbances and thus develop informed management strategies
(Davies et al., 2014). In contemporary ecosystems that now exist
predominantly in a degraded state (as is increasingly the case
for Southeast Asia’s peat swamp forests (Murdiyarso et al., 2009),
long-term ecological data also enable us to define the parameters,
and resilience, of their intact condition.

Management Implications
The causes of fire are complex, and include underlying
cultural, political and socio-economic conditions, not simply
environmental factors (Stolle et al., 2003; Langner and Siegert,
2009; Carlson et al., 2012; Shimin Sze et al., 2018). However, when
considering peat swamp forest management, it is important to
note that degraded, in comparison to relatively intact peatlands,
are more susceptible and fundamentally less resilient to fire (for
example Page et al., 2002; Van der Werf et al., 2008; Wösten
et al., 2008; Hoscilo et al., 2011). The interaction between
different drivers of disturbance requires further investigation
when considering management interventions. This study has
demonstrated however, that recent forms of anthropogenic
disturbance, likely driving elevated incidences of burning, are
unprecedented in the ecological history of these ecosystems.

Draining and/or forest clearing, which accompanies the
majority of peat swamp forest land-use change, leads to highly
flammable conditions, and inevitably subsidence (Hooijer et al.,
2011) and ongoing carbon emissions (Wijedasa et al., 2018). This
often results in peatlands becoming “unmanaged wastelands”
or entirely converted to agriculture (Miettinen et al., 2012b).
Restoration of such areas is being attempted in peatlands in
Central Kalimantan (Page et al., 2009) and across Indonesia
(BRG, 2018), but unless these areas are protected against fire,
notably through re-wetting (Dommain et al., 2010), restoration
may prove impossible (Van Eijk et al., 2009).

Contemporary studies have shown that the impacts of
local fire within peat swamp forests can be severe: once the
substrate has been ignited, fires can burn both above and,
devastatingly, below-ground for many months (Goldammer and
Seibert, 1989; Goldammer, 1992; Saharjo and Nurhayati, 2006;
Posa et al., 2011), destroying meters of peat. In addition to
destroying the current understory vegetation, these fires can
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hinder regeneration post-fire (Saharjo and Nurhayati, 2006;
Cole, 2013), and thus reduce the possibility of future recovery,
especially if soil seed banks are disturbed (Posa et al., 2011).

Unusually intense and frequent fires can also disturb natural
regeneration cycles, such as those that have burnt in Indonesia’s
inland peat swamps during the recent extreme drought events
of strong El Niño years, exemplified by the 1997–1998 episode
(Page et al., 2009). Biomass burning during this period released
vast amounts of carbon (between 0.81 and 2.57 Gt) into
the atmosphere (Page et al., 2002). In addition, these fires
caused a host of serious health and environmental problems
in the region (Marlier et al., 2013), as well as disrupting
economic activity (Varma, 2003; Aiken, 2004). Although the
coastal peatlands of Southeast Asia appear to have been less
impacted by these climatic events in the past (Dommain
et al., 2011), managing for increased fire risk during dry
El Niño years [(Pan et al., 2018) and indeed non-El Niño
years, with recent land-use change causing an elevation in
burning uncoupled with ENSO (Gaveau et al., 2014)], may
help to prevent a recurrence of these disastrous effects in the
future (Phua et al., 2007, 2012). Fire risk mapping, looking at
impacts of infrastructure, for example roads and settlement,
may also help (Razali et al., 2010; Shimin Sze et al., 2018),
since historical fire incidence in peatlands in Kalimantan
has been associated with accessibility (Hope et al., 2005).
Furthermore, if the international mechanisms being developed
to encourage countries to reduce their carbon emissions through
forest conservation, such as the Reducing Emissions from
Deforestation and Degradation (REDD+) scheme (FAO, 2012),
are to include tropical peat swamp forests, the huge volumes
of carbon gases released from peat fires will need to be
abated (Murdiyarso et al., 2010).

At present, large scale burning of tropical peat is largely
confined to Indonesia, but tropical peatlands are not only found
in Southeast Asia: vast areas have recently been mapped in the
Peruvian Amazon (Draper et al., 2014) and the central Congo
Basin (Dargie et al., 2017). Currently, these ecosystems are largely
intact and as such of huge global significance (Watson et al.,
2018); but this could change if they are not protected from the

multiple threats to which they could soon be exposed (Roucoux
et al., 2017; Dargie et al., 2018), including the more pervasive
threat of climate change (Wang et al., 2018).

If recent elevated trends in burning can be prevented,
predominantly through halting forest clearance and drainage,
this and other studies (e.g., Hope et al., 2005; Hapsari et al.,
2018) provide evidence that peat swamp forests can recover.
However, in the face of current conversion rates and future
land-use planning in the region (Miettinen et al., 2012b, 2016;
Gaveau et al., 2016; Wijedasa et al., 2017), potential disturbance
by fire must be a central consideration in the more responsible
management of these carbon-rich ecosystems.
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Tropical forests have an important regulating influence on local and regional climate,

through modulating the exchange of moisture and energy between the land and the

atmosphere. Deforestation disrupts this exchange, though the climatic consequences of

progressive, patch-scale deforestation of formerly intact forested landscapes have not

previously been assessed. Remote sensing datasets of land surface and atmospheric

variables were used to compare the climate responses of Amazon forests that lost

their intact status between 2000 and 2013. Clear gradients in environmental change

with increasing disturbance were observed. Leaf area index (LAI) showed progressively

stronger reductions as forest loss increased, with evapotranspiration (ET) showing

a comparative decline. These changes in LAI and ET were related to changes in

temperature (T), with increasedwarming as deforestation increased. Severe deforestation

of intact Amazon forest, defined as areas where canopy cover was reduced below 70%,

was shown to have increased daytime land surface T by 0.44◦C over the study period.

Differences between intact and disturbed forests were most pronounced during the

dry season, with severely deforested areas warming as much as 1.5◦C. Maintenance

of canopy cover was identified as an important factor in minimizing the impacts of

disturbance. Overall, the results highlight the climate benefits provided by intact tropical

forests, providing further evidence that protecting intact forests is of utmost importance.

Keywords: intact forest landscapes, deforestation, leaf area index, evapotranspiration, temperature, precipitation

INTRODUCTION

Tropical rainforests moderate the flux of energy and water between the land and the atmosphere,
and affect atmospheric chemistry through the exchange of trace gases (Silva Dias et al., 2002). Tall
rainforest trees provide a physical connection between deep soil layers and heights up to 40m
above the Earth’s surface (Simard et al., 2011). In the Amazon, tropical forest has an important and
complex role governing local and regional climate (seeMarengo et al., 2018 and references therein).
At the local scale, evaporating moisture affects the partitioning of radiation between sensible and
latent heat (the Bowen ratio), leading to a cooling and moistening of the boundary layer (Da Rocha
et al., 2004; Bonan, 2008). At larger spatial scales, the “cascade” of water vapor propagating across
the basin drives regional rainfall and provides a buffer against the damaging effects of drought,
with forests in the southern Amazon a particularly important source of re-evaporated water for
sustaining forest biomes further downwind (Zemp et al., 2014; Staal et al., 2018).
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Almost 1 million km2 of Amazon forest has already been
deforested, representing nearly a fifth of its original extent
(Davidson et al., 2012; Nobre et al., 2016). Most of the
deforestation has occurred along the southern margins of the
basin, in the so-called “arc of deforestation” (Malhi et al., 2008).
The implementation of a satellite monitoring program in Brazil
[Projeto de Monitoramento do Desmatamento na Amazônia
Legal por Satélite (PRODES)], saw a marked reduction in annual
deforestation rates over the Brazilian legal Amazon from 2004
to 2012, since which time the clearance rate has remained
comparatively stable, though evidence suggests that it has begun
to rise again in recent years (INPE, 2019). However, a new
study has shown that PRODES, which only considers primary
forest removal and excludes small-scale (<6.25 ha) patches from
its definition of deforestation, may have been underestimating
recent deforestation by as much as a factor of two. Kalamandeen
et al. (2018) showed that small-scale forest loss accounted for
approximately 40% of deforestation across the entire Amazon
from 2001 to 2014, and had a strong positive trend over this
period. This rise in low-density forest loss just as large-scale
forest clearance events appeared to be coming under control,
illustrates the growing threat of small-scale deforestation to
Amazon ecosystems.

In addition to perturbing the global carbon balance (Pan
et al., 2011; Baccini et al., 2012), removal of tropical forest
has consequences for local and regional climate, and can even
drive temperature and precipitation changes outside of the
tropics (see D’almeida et al., 2007; Davidson et al., 2012;
Lawrence and Vandecar, 2014). Much understanding has come
from experiments with regional or general circulation models,
with simulations revealing the climate consequences of forest
clearance in the model world (D’almeida et al., 2007; Sampaio
et al., 2007; Costa and Pires, 2010; Medvigy et al., 2011, 2013;
Swann et al., 2015). Ameta-analysis of 44modeling studies found
a negative linear relationship between Amazon deforestation
extent and basin-wide rainfall (Spracklen et al., 2015), though
many of the studies analyzed had highly idealized deforestation
scenarios, such as 100% forest removal. Trajectory-based analyses
have also shown that deforestation is likely to exacerbate the
effects of droughts in the Amazon, through a reduction in
atmospheric moisture transport from deforested areas to regions
downwind (Spracklen et al., 2012; Bagley et al., 2014).

Site-level studies have provided valuable data on the impacts
of Amazon forest clearance on the local microclimate. Net surface
radiation is lower over cleared areas, due to a combination
of higher albedo, and greater outgoing longwave radiation
compared with forests (Bastable et al., 1993; Gash and Nobre,
1997). However, despite a lower energy balance, station data
show deforested sites may be up to 2◦C warmer than adjacent
forested areas, and show higher diurnal and seasonal temperature
variability (Von Randow et al., 2004; Dubreuil et al., 2012).
This is due to differences in evapotranspiration (ET): eddy
covariance flux towermeasurements from pasture and forest sites
in the southern Amazon revealed lower ET and higher sensible
heating over the pasture site throughout the year (Von Randow
et al., 2004). Differences were greatest during the dry season

(June–August) as forests were able to access and transpire deep
groundwater, unlike short-rooted pasture vegetation.

Remote sensing techniques have made it possible to analyse
the environmental impacts of deforestation over larger spatial
scales. Studies using satellite ET observations to evaluate the
effects of deforestation in the Brazilian Cerrado (Spera et al.,
2016), and the Brazilian Amazon (Lathuillière et al., 2012; Silvério
et al., 2015), all found strong hydrological responses to land
cover change. High ET fluxes over continuous forest in the Xingu
Indigenous Park of southern Amazonia resulted in it being 1.9◦C
cooler than the surrounding patchwork agricultural landscape
(Silvério et al., 2015). At the pantropical scale, Alkama and
Cescatti (2016) used satellite temperature retrievals to show that,
in line with ground-based measurements, diurnal temperature
variability increased by approximately 2◦C following clearance of
tropical forest. The authors also showed land surface temperature
to be more sensitive to forest cover loss than air temperature,
which showed approximately two thirds of the sensitivity.
Impacts on rainfall may depend on the scale of deforestation.
Some remote sensing studies have observed increased rainfall
over patches of forest loss (Negri et al., 2004; Chagnon and Bras,
2005; Funatsu et al., 2012), particularly within a few kilometers of
forest edges (Knox et al., 2010), though larger-scale deforestation
reduces moisture recycling and thus has a negative effect on
rainfall (see Spracklen et al., 2018 and references therein).

Over the past decade, researchers and conservationists have
used satellite data to map intact forests across the globe (Potapov
et al., 2008, 2017). Intact forests were defined as forests with
no remotely-detectable signs of anthropogenic disturbance, with
forests assumed to be intact unless evidence to the contrary was
found. One caveat of this approach is that selective logging and
small-scale disturbances, which are difficult to observe remotely,
could be overlooked, causing a possible overestimation of “intact”
status (Potapov et al., 2008). In a recent review, Watson et al.
(2018) summarized the myriad benefits and services that intact
forest ecosystems provide, including regulating weather on local
and regional scales, mitigating climate change, contributing to
the conservation of biodiversity, improving air quality, and
helping to preserve indigenous cultures. In the tropics, only
20% of all forested areas are classified as intact, a fraction that
is diminishing as humans continue to encroach further into
pristine ecosystems (Potapov et al., 2017). Protected areas can
help prevent deforestation in the Amazon (Soares-Filho et al.,
2010; Spracklen et al., 2015), but face a variety of legal threats
(Nogueira et al., 2018). Together with the rise in small-scale
disturbances in the region documented by Kalamandeen et al.
(2018), this shows that there is a growing need to evaluate the
climate impacts of deforesting intact forests in the Amazon.

This study seeks to quantify the climatic value of intact
tropical forests in the Amazon, and evaluate the biophysical
changes that occur during progressive, patch-scale deforestation
of larger forested landscapes. Forest change datasets were used in
conjunction with remote sensing observations of the land surface
and the atmosphere to identify local environmental changes
over areas that were differentially impacted by anthropogenic
disturbance between 2000 and 2013.
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MATERIALS AND METHODS

Classification of Forest Disturbance
Categories
To evaluate the biophysical consequences of deforesting intact
Amazon forest between 2001 and 2013, forest pixels were
classified into four categories that were designed to represent
increasing levels of anthropogenic disturbance. This approach
utilized two global forest datasets: the Intact Forest Landscapes
(IFL) product, which maps forests that have no remotely-
detectable signs of human impact (Potapov et al., 2017), and the
Global Forest Change (GFC) version 1.6 product, which records
forest cover change over time (Hansen et al., 2013). The IFL
shapefiles for 2000 and 2013 were used in this study (IFL_2000
and IFL_2013), along with the following GFC layers: tree canopy
cover for year 2000 (treecover2000) and year of forest cover
loss (loss year).

The 2000 and 2013 IFL shapefiles were rasterised to 0.05◦

spatial resolution in order to match the grids of the climate data
used in the analysis. This was performed using the Geospatial
Data Abstraction software Library Python package (GDAL/OGR
contributors, 2018). Pixels were classified as “intact” if the center
of the pixel fell within the IFL polygon and non-intact if the pixel
center fell outside the polygon. Pixels that were classified as intact
but had tree cover changes >5% were excluded from the analysis
(<2% of IF pixels), as it is likely these weremisclassified as a result
of the rasterization process.

The GFC datasets were first used at their original resolution
(approximately 30 × 30m at the Equator) to calculate a tree
cover dataset for the year 2013 (treecover2013). For this, the
treeCover2000 dataset was masked to remove pixels where
deforestation had occurred up to and including the year 2013
(determined using the loss year dataset). The GFC data layers
treecover2000 and treecover2013 were then resampled to 0.05◦

by finding the mean tree cover across all 30 m-resolution pixels
within each 0.05◦ grid cell.

Next, the GFC datasets were used to derive forest masks for
use in the classification procedure. A 70% tree-cover threshold
was chosen to distinguish between land areas classified as forest
and non-forest. The treecover2000 and treecover2013 datasets
(each at 0.05◦) were then used to create forest masks for 2000
and 2013 by selecting all pixels where tree cover exceeded 70%
in those years (forestcover2000 and forestcover2013). Our results
were found to be robust across a gradient of other canopy cover
thresholds (Figure S1).

Amazon forest pixels were divided into four categories
representing a gradient in the extent of disturbance that
occurred between 2000 and 2013 (Table 1). The analysis was
constrained to the Amazon evergreen broadleaf forest biome, as
defined by the Collection 5 (C5) Moderate Resolution Imaging
Spectroradiometer (MODIS) land cover classification product
(MCD12C1) for the year 2001 (Friedl et al., 2010). Boolean logic
was applied to identify pixels in each category. First, intact forest
(IF) pixels were identified using the 2013 IFL dataset. IF pixels
represent undisturbed or pristine forests that did not experience
any remotely-detectable disturbance over the period analyzed
and were thus considered the control group. The other three

categories represent the “disturbance categories,” and include
forests that have lost their intact status, either prior to, or over
the course of, the analysis period. The non-intact forest (NIF)
category contained pixels that were not classified as intact in
2000, but had >70% tree canopy cover in 2000 and were still
forests (>70% tree cover) in 2013. The third and fourth categories
were forests that lost their intact status between 2000 and 2013. If
tree cover was≥70% in 2013 then pixels were classified as having
experienced “moderate,” patch-scale deforestation, while pixels
where tree cover fell below the 70% threshold were categorized
as having experienced “severe” deforestation. For pixels in both
of these categories, landscapes of intact forest with high canopy
cover in 2000 were transformed to a patchwork of forested and
deforested areas by 2013, with categories differing only in the size
and extent of the deforested patches.

The spatial distributions of intact forest, non-intact forest, and
previously intact forest areas that experienced either “moderate”
or “severe” deforestation between 2000 and 2013, are shown
in Figure 1A. Non-intact forests are fairly widely distributed
across the Amazon, but tend to follow the contours of rivers
and other water courses. This is related to the IFL mapping
approach, which excludes forests within 1 km of navigable rivers,
as these are more accessible to humans and thus more likely
to have experienced disturbance than inaccessible inland forests
(Potapov et al., 2017). Most of the forests that lost their intact
status over the analysis period (orange and magenta areas in
Figure 1) are in the southern Amazon, with a few patches of
moderate deforestation over the Guiana Shield in the northeast.
Deforestation primarily occurred along themargins of non-intact
forest areas, indicating an expansion of human-impacted forest
landscapes along disturbance frontiers.

Remote Sensing Datasets
The environmental impact of intact forest disturbance was
assessed using remote sensing datasets of the land surface and the
atmosphere (Table 2). Leaf area index (LAI), evapotranspiration
(ET), land surface temperature (T) and precipitation (P) datasets
were analyzed over the period 2001–2013.

LAI data were retrieved from the monthly GLASS01B01
0.05◦ product, which is based on MODIS reflectance from
2001–2014 (Liang et al., 2014). For ET, we used the Level
3, gap-filled 0.05◦ C5 MOD16 MODIS product provided by
the Numerical Terradynamic Simulation Group (NTSG) at the
University of Montana (Mu et al., 2007, 2011), regridded from 8-
day to monthly resolution. Since previous work has highlighted
differences in remote sensing ET products over the Amazon, and
warned against using any one data product in isolation (Miralles
et al., 2016), monthly ET estimates were additionally obtained
from the 8-km Global Land Surface Evapotranspiration (GLS-
ET) product (Zhang et al., 2010), also distributed by NTSG, and
the 0.25◦ × 0.25◦ Global Land Evaporation Amsterdam Model
(GLEAM) version 3.2a dataset (Miralles et al., 2011; Martens
et al., 2017). The MODIS ET and GLS-ET products were derived
using variations of the Penman-Monteith equation (Monteith,
1965), although the remote sensing and reanalysis input datasets
for the two products are different. Meanwhile, the GLEAM
ET estimates are founded on the Priestley-Taylor approach for
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TABLE 1 | Forest disturbance categories used in this study.

Category Definition Tree cover in

year 2000 (%)

Tree cover in

year 2013 (%)

Tree cover

change (%)

Intact forest (IF) Forest pixels classified as intact in 2013 (no

anthropogenic degradation)

97.79 97.62 −0.18

Non-intact forest (NIF) >70% tree cover in 2000 but not within IFL, still >70%

tree cover in 2013

93.49 89.73 −4.04

Moderate

deforestation

Forest pixels that were intact in 2000 but not in 2013, still

>70% tree cover in 2013

97.80 93.54 −4.37

Severe deforestation Forest pixels that were intact in 2000 but not in 2013,

with <70% tree cover 2013

91.56 53.98 −39.81

Mean tree cover values for 2000 and 2013 are shown for each category, and the mean change in fractional tree cover as a percentage of the original coverage.

FIGURE 1 | (A) Map showing the distribution of intact forest (pale green), non-intact forest (sage green), moderately deforested (orange), and severely deforested

(magenta) pixels across the Amazon evergreen broadleaf forest biome at 0.05◦ × 0.05◦ resolution. The black box indicates the region shown in (B). (B) Illustration of

the moving-window analysis used in this study. Each pixel in each disturbance category (non-intact, moderate, and severe) was placed at the center of a 5 × 5-pixel

grid box. For the biophysical variable of interest, change over the central pixel (e.g., the “severe deforestation” pixel marked “X,” or the “moderate deforestation” pixel

marked “Y”), was compared with the mean change over surrounding intact forest (hatched pixels).

estimating ET (Priestley and Taylor, 1972). GLS-ET and GLEAM
were analysed at 0.25◦ resolution and results are shown in the
Supplementary Material (Figures S2 and S3).

T data were taken from the monthly 0.05◦ × 0.05◦ C6 Terra
MODIS (MOD11) land surface T product (Wan, 2014). The
Terra satellite has a local daytime overpass time of 10:30 a.m.
We used the MOD11 Terra product because of the longer time
record compared to the MYD11 Aqua satellite product (data
available from 2000 vs. 2002 for Terra and Aqua, respectively).
Repeating the analysis using the Aqua product yielded similar
results (Figure S4). The 0.05◦-resolution Climate Hazards Group
InfraRed Precipitation with Station data (CHIRPS) dataset,
which merges spaceborne and ground-based measurements
to estimate P (Funk et al., 2015), was also downloaded.
CHIRPS is based on the Tropical Rainfall Measuring Mission
(TRMM) Multi-Satellite Precipitation Analysis (TMPA) version
7 product (Huffman et al., 2007), which was used to calibrate
a longer timeseries of thermal infrared observations of cold
cloud duration to estimate P from 1981–present. In addition
to CHIRPS, 3-h TRMM P data were retrieved from the
3B42 version 7 product, in order to test the diurnal P

response to deforestation. High-resolution LAI, ET, T, and
P data were regridded to 0.25◦ using an area-weighted
regridding scheme (Python package Iris: https://scitools.org.
uk/iris/docs/latest/index.html) to test the influence of spatial
scale on our results. Finally, topography data from the Global
Land One-km Base Elevation Project (GLOBE) (Hastings
and Dunbar, 1998) were resampled to 0.05◦ to match the
climate datasets.

Statistical Analysis
For each biophysical variable (LAI, ET, T, and P), multi-year
composites were created by finding the annual mean across the
first three years of the analysis period (2001–2003) and across
the last three years (2011–2013). Change (1) in each variable
was then determined by differencing the 2001–2003 composite
from the 2011–2013 composite. This approach removed some of
the influence of interannual climate variability from the datasets
and was therefore expected to make the 1 estimates more
robust. Maps showing the mean annual change (1annual) over the
Amazon for each variable are presented in the Supplementary
Material (Figure S5). In addition, deforestation responses were

Frontiers in Forests and Global Change | www.frontiersin.org 4 August 2019 | Volume 2 | Article 4798

https://scitools.org.uk/iris/docs/latest/index.html
https://scitools.org.uk/iris/docs/latest/index.html
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Baker and Spracklen Climate Benefits of Intact Forests

TABLE 2 | Details of the remote sensing observations used in this study.

Variable Product Original resolution (◦) References

Leaf area index (LAI) MODIS GLASS01B01 0.05 Liang et al., 2014

Evapotranspiration (ET) MODIS MOD16

Global Land Surface ET

GLEAM v3.2a

0.05

0.08

0.25

Mu et al., 2007

Mu et al., 2011

Zhang et al., 2010

Miralles et al., 2011

Martens et al., 2017

Land surface temperature (T) MODIS MOD11

MODIS MYD11

0.05

0.05

Wan, 2014

Wan, 2014

Precipitation (P) CHIRPS

TRMM 3B42

0.05

0.25

Funk et al., 2015

Huffman et al., 2007

Results from datasets in italics are presented in the supplementary information.

evaluated at the monthly timescale by differencing the seasonal
climatologies for 2011–2013 and 2001–2003. For P data only,
the annual and monthly-scale analyses were repeated using
data from the southern (5–20◦S) and northern (5◦S−10◦N)
regions of the Amazon separately, to account for spatial
variation in precipitation seasonality. Changes in the mean
diurnal P cycle were also computed, using the same multi-
year composites, also analyzing data from the south and north
Amazon separately. Finally, to compare the climate impacts of
deforestation between the wet and dry seasons, annual mean
1 values for all variables were determined using the three
wettest and three driest months in each year, calculated on
a per pixel basis using seasonal P data from CHIRPS (1wet

and 1dry).
As can be seen in Figure 1A, forests that lost their

“intact” classification between 2001 and 2013 are not randomly
distributed in space, but show spatial clustering, particularly
along the southern margins of the Amazon. This tendency for
nearby pixels to have more similar characteristics than distant
pixels is known as positive spatial autocorrelation (SAC). In
order to relate the biophysical changes detectable from remote
sensing to changes in forest cover in a robust way, SAC must
be taken into consideration. To remove the influence of SAC,
we used a moving-window analysis to compare environmental
changes over pixels in each of the disturbance categories with
changes observed over nearby IF. For each of the categories
(Table 1), a 5 × 5-pixel grid box was centered on each pixel in
turn, and the change value for that pixel was compared with the
mean change over all IF pixels within the grid box (Figure 1B).
For the 0.05◦-resolution analysis, this meant comparing against
IF pixels within a radius of approximately 10 km (2 × 0.05◦

grid cells), while for the 0.25◦ resolution analysis it meant
comparing IF pixels within approximately 50 km (2 × 0.25◦

grid cells). This meant that pixels in each disturbance group
were matched with a set of neighboring IF pixels, ensuring
that all comparisons were made between geographically-close
impacted and non-impacted forests (see Table S1 for the number
of pixels included in each group). Pixels that had no IF within
the grid box to compare against were excluded from the analysis.
Mean 1 values of the paired datasets were compared using
a Student’s t-test, to test the statistical significance of any
observed differences.

Finally, 1 values for each environmental variable were
related to reductions in canopy cover following loss of
intact status. For this, the treecover2000 and treecover2013
datasets were used to calculate the fractional tree cover change
over the analysis period [(1tree_cover = (treecover2013–
treecover2000)/treecover2000]. For all formerly intact forest
pixels that experienced deforestation over the analysis period
(i.e., pixels in the “moderate” and “severe” disturbance categories
combined), 1LAI, 1ET, 1T and 1P values were binned by
1tree_cover, using a bin width of 2.5%, and discarding bins with
fewer than five data points. The analysis was applied to 1annual,
1wet and 1dry values to compare responses across different
climatic conditions.

RESULTS

Differences between intact and human-impacted forests were
found for three out of the four land-surface and atmospheric
variables examined. Annual mean 1LAI, 1ET, and 1T showed
significant differences from the changes observed over intact
forests for all disturbance categories (Figure 2), while1P showed
no significant responses (Figure 2D, Figure S6). The strongest
differences in 1LAI, 1ET, and 1T were evident over pixels that
saw the most extensive land-cover changes from 2001 to 2013
– those in the “severe” category, where deforestation reduced
tree cover to below 70%. Forests that lost their intact status but
maintained at least 70% tree cover, and forests that had lost their
intact status prior to 2000 (NIF pixels), also showed stronger
changes in LAI, ET, and T compared with forests that remained
intact. Biophysical responses across pixels in these two categories
were of a similarmagnitude, consistent with tree cover reductions
of approximately 5% in each case (Table 1).

LAI, ET, and T showed clear response gradients with
increasing forest disturbance (Figures 2, 3). Forest pixels in all
categories showed absolute declines in LAI, including forests
classified as intact in 2013 (Figure 2A). Relative 1LAI values
were all negative, and reduced progressively with increasing
forest disturbance (Figure 2B). The observed pattern of LAI
reductions was consistent with our independently-defined
disturbance categories (Table 1), providing verification that they
represented a true impact gradient. NIF pixels showed the
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FIGURE 2 | (A–D) Absolute changes in annual mean 0.05◦ remotely-sensed leaf area index (A), evapotranspiration (B), daytime land surface temperature (C), and

precipitation (D), averaged over pixels in each disturbance category and the corresponding neighboring intact forest (see Figure 1B), for the period 2001–2013.

(E–H) As in A–E, but with values expressed relative to the changes observed over nearby intact forest. Error bars show the 95% confidence intervals. Asterisks

indicate the significance of the differences, calculated using the Student’s t-test (*p < 0.05, ***p < 0.001, n.s. = not significant).

FIGURE 3 | Changes in annual mean 0.05◦ remotely-sensed leaf area index (A), evapotranspiration (B), daytime land surface temperature (C) and precipitation (D),

averaged over pixels in each disturbance category, and expressed relative to the changes observed over neighboring intact forest, for the period 2001–2013. The

boxes in each panel represent the quartiles of each dataset, mean values are marked with an “x,” and values along the lower axis indicate the number of data points.

smallest LAI response as these areas were degraded from intact
to non-intact forest prior to the analysis period, whereas pixels
in the other two categories lost their intact classification between
2001 and 2013. Even over “severe” deforestation pixels, the size of
the LAI response is still relatively modest, with a mean reduction
of 0.44 ± 0.04 m2m−2 (mean ± 95% confidence interval [CI]).

However, the variance within each category is large, as can be
seen in Figure 3. It must also be noted that satellite LAI tends
to saturate over dense broadleaf canopies (Myneni et al., 2002),
and thus reductions in LAI above the saturation threshold may
not be detected, which could partly explain the small magnitude
of the mean response.
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1ET becomes more negative as forests become more heavily
deforested, following the same trend as 1LAI. The MODIS
ET dataset is computed using MODIS LAI as an input, so the
two variables cannot be considered fully independent. However,
since absolute changes in LAI and ET showed opposite signs
(Figures 2A,B), we do not think our results were strongly
biased by the relationship between the datasets. The maximum
relative change in mean annual ET was over intact forests
that saw “severe” deforestation (−1.5 ± 0.4mm month−1,
Figure 2F). Similar trends were found for all three of the
remote sensing ET products analyzed, though not all responses
were significant for the lower resolution datasets (Figure S2).
Nonetheless, the consistency in trends provides a good indication
that the relationship between ET and tropical forest disturbance
is robust. Absolute change values varied slightly between ET
products, with MODIS, and GLS-ET showing ET increases
across all forest change categories, while GLEAM showed
declines (Figure 2, Figures S2a,b). These differences highlight
the necessity of comparing results across multiple satellite
ET products.

Most of the Amazon basin showed a warming trend over
the analysis timeframe (Figure S5c), though disturbed forests
warmed significantly more than neighboring intact forests
(Figures 2C,G). As with LAI and ET, the magnitude of the
1T response increased with increasing disturbance. Non-
intact forests and forests affected by “moderate” or “severe”
deforestation respectively warmed 0.014 ± 0.003, 0.050 ±

0.008, and 0.44 ± 0.06◦C more between 2001 and 2013 than
nearby forests that remained intact. For regions in the “severe”
category, warming was double that observed over surrounding
intact forests (Figure 2C). The mean elevation of pixels in each
degradation category was calculated to test for potential biases
that might influence the 1T results. Pixels in the “non-intact”
and “moderate” categories were found to be at significantly
lower elevation than IF pixels (NIF = −33.3 ± 1.8m, p <

0.001, and “moderate” = ± 3.3m, p < 0.01). Since warming
rates generally increase with altitude (Vuille et al., 2003; Bradley
et al., 2006), stronger warming over the lower elevation forests
could mean that elevational differences are masking some of the
effect of disturbance on 1T in these two categories. Although,
since the differences that were observed were <50m, and no
significant differences were observed for “severe” deforestation
areas, elevation is unlikely to have had a substantial impact on
the findings presented here.

We tested the sensitivity of our analysis to the spatial
resolution and to satellite overpass time. Repeating our analysis
at a coarser resolution of 0.25◦ yielded similar results (Figure S7),
with disturbed forests warming significantlymore than respective
nearby intact forests (p < 0.001). Relative change values were
higher, since the 5 × 5 grid box used to pair degraded and
intact forest pixels covered a larger area (approximately 125
× 125 km), and thus T values were compared across larger
distances. The reductions in LAI and ET with increasing
disturbance showed similar trends to those observed at 0.05◦

(Figures S7a,b), though for the 0.25◦ ET analysis responses were
not statistically significant.Mean annual P showed no response to
forest disturbance at either resolution (Figure 2D, Figure S7d).

We repeated our analysis with MYD11T data from Aqua,
which has a local daytime crossing time of 1:30 p.m. compared to
10:30 a.m. for Terra. Consistently, we found more warming over
pixels in all disturbance categories compared to IF (Figure S4),
with the strongest mean T response over “severe” deforestation
pixels (0.55 ± 0.05◦C). This 1 value is higher than that
for MOD11 (0.44 ± 0.06◦C), despite a slightly shorter data
record for Aqua (MYD11 1 values were calculated from
2003 to 2013), suggesting the midday warming response is
stronger than that in the morning. Variation in the diurnal
T response to deforestation was also tested using night-time
T data from the Terra and Aqua satellites, which have local
evening overpass times of 10:30 p.m. and 1:30 a.m. respectively.
Both datasets showed a modest night-time cooling response
over regions where intact forest was severely deforested (−0.1
± 0.03◦C for MOD11 and −0.07 ± 0.03◦C for MYD11,
Figure S8).

Seasonal variations in environmental response to disturbance
were evaluated. 1LAI, 1ET, and 1T showed a clear seasonal
signal in relative differences between intact and disturbed
forests (Figure 4). Seasonality increased with increasing forest
disturbance, with “severe” deforestation pixels showing the
highest intra-annual variability. Differences were greatest toward
the end of the Amazon dry season and lower during the
wetter months. In August and September, heavily disturbed
forests warmed by as much as 0.75 ± 0.1◦C more than
nearby intact forests (Figure 4C). Meanwhile, P responses to
deforestation, which were evaluated over the northern and
southern Amazon separately due to spatial differences in P
seasonality, showed limited monthly variability (Figure S9).
Furthermore, the differences between the forest disturbance
categories were much less distinct for 1P than for the other
variables analyzed. Changes in the diurnal P cycle were also
examined, though no clear responses to forest degradation were
detected (Figures S10, S11).

Finally, climate responses following loss of intact status were
related to fractional canopy-cover loss.1LAI,1ET, and1T were
roughly proportional to the reduction in tree cover, while 1P
showed no relationship with colocalized canopy cover reductions
(Figure 5). LAI, ET, and T showed small responses to disturbance
where canopy-cover changes were small, and progressively larger
responses with increasing canopy loss. Stronger responses were
observed during dry months and weaker responses during wet
months, in line with the monthly-scale analysis (Figure 4). Pixels
where tree cover declined by more than 60% showed up to
1.5◦C more warming in the driest three months of the year
(Figure 5c). This result highlights the need to limit canopy
destruction for tropical forests to be able to buffer the impacts of
climate change.

DISCUSSION

The aim of this research was to quantify the climatic value of
intact tropical forest in the Amazon. Following several recent
studies that used satellite data to examine the biophysical impacts
of deforestation (e.g., Alkama and Cescatti, 2016; Li et al.,
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FIGURE 4 | Monthly changes in 0.05◦ remotely-sensed leaf area index (A), evapotranspiration (B), and daytime land surface temperature (C), averaged over pixels in

each disturbance category, and expressed relative to the changes observed over neighboring intact forest, for the period 2001–2013. Shading shows the 95%

confidence intervals.

FIGURE 5 | Changes in annual mean, wet season (data from wettest 3 months, calculated per pixel) and dry season (driest 3 months, calculated per pixel) 0.05◦

remotely-sensed leaf area index (a), evapotranspiration (b), daytime land surface temperature (c), and precipitation (d), in response to reduction in tree cover. Data

come from all forest pixels that lost their intact status between 2000 and 2013. Values are expressed relative to the changes observed over neighboring intact forest,

for the period 2001–2013.

2016; Schultz et al., 2017), our analysis focused on detecting
the subtler changes that occur when tropical forest transitions
from an intact state to a non-intact state. To achieve this, we

used remote sensing observations to evaluate the environmental
consequences of progressive forest disturbance over a large
spatial scale.
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The IFL product classifies intact forests as areas with no
remotely-detectable signs of human activity (Potapov et al.,
2017). This definition could mean areas of forest with
selective logging or sub-canopy disturbance could potentially
be misclassified as intact. In comparisons between intact and
disturbed forest, overestimation of intactness may have led
to a slight underestimation in the biophysical responses to
disturbance shown here (Figures 2, 3). However, given that
climate impacts were small when declines in tree cover were close
to zero (Figure 5), potential overestimation of IFLs is unlikely
to have substantially influenced our results. Meanwhile, where
canopy loss did occur, such as the small (<5%) decreases over the
non-intact and “moderate” disturbance categories (Table 1), ET
and T showed significant responses relative to nearby intact forest
(Figure 2). This is consistent with work showing that relatively
subtle disturbance rates (5–10% canopy reduction) can result
in remotely detectable changes in Amazon forest functioning
(Koltunov et al., 2009). Another study, based on flux tower
measurements, reported reductions in carbon, water and energy
exchange that were directly proportional to canopy loss following
reduced-impact logging of an old-growth Amazon forest, though
these effects were found to be only transient (Miller et al., 2011).
Overall, the results presented here demonstrate that the climate
benefits provided by intact tropical forests are inherently related
to the intactness of canopy cover, suggesting the IFLmethodology
provides an adequate method of classifying intactness from a
climate perspective.

Our results revealed distinct gradients in environmental
change with increasing forest disturbance. As deforestation
increased, LAI and ET both showed declines relative to
neighboring intact forest (Figures 2, 3, Table 1). These results
are consistent with each other, since ecosystem ET has previously
been shown to scale with LAI (Zhang et al., 2016), and there were
no significant P responses that might have modulated the ET
response (Figures 2D,H). Tropical broadleaf forests have some
of the highest LAI of all land cover types (Bruijnzeel et al.,
2011), with values up to five times higher than measured over
crops or pastures (Gash and Nobre, 1997; Zhu et al., 2013;
Yan et al., 2016). The fall in LAI accompanying loss of intact
status reduces the efficiency of ET, since there is a smaller
surface area for transpiration, or for rainfall interception and
subsequent evaporation (Spracklen et al., 2018). In addition,
the removal of deep-rooted forest trees stems the flow of
deep soil water to the atmosphere, further contributing to ET
reductions (Von Randow et al., 2004; Davin and De Noblet-
Ducoudré, 2010). Indeed, declines in average root depth and
thus ET were thought to explain why even low levels of selective
logging resulted in seasonal reductions in greenness over forests
in Brazil (Koltunov et al., 2009). The results presented here
confirm that even relatively minor disturbance can impact forest
hydrological functioning.

The increase in surface 1T with increasing disturbance is
consistent with the declines in 1LAI and 1ET (Figure 2).
Both modeling (Davin and De Noblet-Ducoudré, 2010), and
observational (Zhang et al., 2014; Silvério et al., 2015; Alkama
and Cescatti, 2016; Li et al., 2016) studies agree that although the
T response to deforestation varies with latitude due to variable

influences on the surface energy budget (Duveiller et al., 2018),
in the tropics deforestation leads to a net daytime warming.
This is due to a combination of reduced ET efficiency and lower
surface roughness. Lower ET reduces latent heat fluxes, while a
smoother surface inhibits the turbulent transfer of energy from
the land to the atmosphere, both of which result in stronger
warming at the land surface (Davin and De Noblet-Ducoudré,
2010; Li et al., 2016). This contrasts with the T response to
deforestation at higher latitudes, where the increase in albedo
following forest clearance leads to a net cooling effect (Li et al.,
2016; Schultz et al., 2017). Our estimate of the surface warming
due to Amazon deforestation (0.44◦C from 2001 to 2013, which
equates to 0.34◦C decade−1) is based on simple differencing of
multi-year T composites, but is comparable with that estimated
by Li et al. (2016), who used a regression approach to calculate
pantropical T trends over a similar timeframe (0.28◦C decade−1

for 2003–2013). The weak night-time cooling also observed
over deforested areas in this study (e.g., −0.1 ± 0.03◦C for
MOD11, Figure S8) is consistent with previous work showing
deforestation causes a small negative night-time T response in the
tropics, and a stronger negative night-time T response at higher
latitudes (Schultz et al., 2017). The cooling is due to a reduction
in forest-generated turbulence, which brings warmer air to the
surface at night, and the lower thermal storage capacity of open
areas compared with forests. Finally, this study only considered
local surface warming, though a recent modeling study showed
that the non-local cooling impacts of deforestation caused by
changes in albedo and large-scale circulation could dominate the
T response at the global scale (Winckler et al., 2019).

Previous work has highlighted the climatic resilience of
intact forest (Huete et al., 2006; Malhi et al., 2008), and the
results presented here provide further evidence of this. Non-
intact forests warmed 11% more than neighboring intact forest
(0.014◦C from 2001 to 2003; Figure 2G), which could have
implications for drought-sensitive species at the limit of their
biogeographic range (Esquivel-Muelbert et al., 2017). The climate
impacts of deforestation could be particularly consequential
during periods of prolonged drying, such as occur during an
El Niño. It should be noted that land surface T, as used in
this study, may be up to 50% more sensitive to changes in
forest cover than air T (Alkama and Cescatti, 2016). Therefore,
perceived T changes in response to disturbance may be slightly
lower than those shown in Figure 2. Radiometric surface T
can be measured remotely by satellites, while air T products
are based on ground-based station measurements that may not
be available over some regions of remote tropical forest (e.g.,
Heft-Neal et al., 2017), and are thus unlikely to co-locate with
areas of forest loss. In a recent study, Winckler et al. (2019)
reviewed the differing responses of these two T metrics to
deforestation in climate models. They concluded that surface
T is particularly important for understanding surface energy
budgets and thus land-atmosphere interactions, while 2–m air
temperature might have greater ecological relevance. Overall,
the results shown here emphasize that non-intact forests warm
more, and thus might be less able to buffer the effects of climate
change, compared to forests that have been unimpacted by
anthropogenic disturbance.
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In this study, we identified forests as areas within the MODIS
evergreen broadleaf forest classification with tree canopy cover
above a threshold of 70%. Following this, we distinguished
between areas of “moderate” deforestation, which experienced
tree losses and LAI declines but where canopy cover remained
above 70%, and areas of “severe” deforestation, where tree
removal resulted in canopy cover declining below 70%. Much
lower canopy thresholds have been used to define forests, such as
the much-criticized United Nations Framework Convention on
Climate Change definition, which specified a tree cover threshold
of just 10–30% (UNFCCC, 2002; Sasaki and Putz, 2009; Putz
and Redford, 2010), or the Food and Agricultural Organization
threshold of 40% tree cover for closed canopy forests (FAO,
2001). However, the Amazon intact forest pixels in this study
had a mean tree cover of more than 97% (Table 1), thus a
higher canopy threshold was deemed appropriate. Lowering
(raising) the threshold effectively raises (lowers) the amount of
deforestation required before a pixel is considered “deforested,”
thus giving a stronger (weaker) warming response. However,
in general our results were shown to be robust to threshold
variation (Figure S1).

We found conversion of intact forest and increasing forest
loss had no discernible impact on annual mean P at the local
scale across Amazonia (Figures 2–4), and little effect on seasonal
or diurnal P cycles over the northern or southern Amazon
(Figures S9–S11). Previous studies, focusing on deforestation in
Rondônia in the southern Amazon, found forest removal resulted
in local increases in rainfall and a possible shift toward more
afternoon convection (Negri et al., 2004), or a redistribution
of rainfall in space (Khanna et al., 2017). Deforestation may
reduce downwind rainfall through reductions in ET and
reduced atmospheric moisture transport (Spracklen et al., 2012).
Modeling studies also suggest that regional-scale land-use change
will reduce rainfall at the regional scale (Spracklen and Garcia-
Carreras, 2015; Alves et al., 2017). However, such remote
impacts are not easily evaluated through an examination of co-
located land-use and climate changes, and any spatial offset in
the P impacts of deforestation wouldn’t be detected through
the methodology applied here. Further work should focus on
evaluating P responses to disturbance at different spatial scales,
and comparing impacts across the tropics.

Finally, seasonal variations in 1LAI, 1ET, and 1T were
shown to increase along the degradation gradient (Figure 4),
with the most pronounced differences at the end of the dry
season. Responses to canopy cover change were also enhanced
during the driest part of the year, with deforestation causing
warming of up to 1.5◦C over areas with high tree cover loss
(Figure 5c). Only the deepest-rooted trees can maintain ET
during the dry season, as they can access deep soil water that
remains unavailable to shorter-rooted pasture vegetation (Von
Randow et al., 2004; Davin and De Noblet-Ducoudré, 2010).
It follows, therefore, that removal of trees causes the strongest
changes at the end of the dry season, when soil water would
be at its most depleted. It has been suggested that ET fluxes
at the end of the dry season may play a role in triggering the
onset of the wet season, through increasing the humidity and
buoyancy of air, and thus making conditions more favorable for

atmospheric convection (Fu and Li, 2004; Myneni et al., 2007;
Wright et al., 2017). Deforestation disrupts this process, with
reduction in dry season ET possibly contributing to an observed
lengthening of the Amazon dry season over recent decades, as
has been suggested from observational (Fu et al., 2013) and
modeling (Alves et al., 2017) studies. Increased temperatures
have also been linked to greater fire occurrence in the Amazon
(Aragão et al., 2018; Lima et al., 2018), making degraded forests
more susceptible to dry season burning. Altogether, the results
presented here indicate that deforestation disrupts normal forest
functioning, particularly during the dry season when vegetation
is already at its most vulnerable.

SUMMARY

In this study, we used forest change datasets and remote
sensing observations to evaluate the climatic consequences of
disturbing intact Amazon forests. We found a clear signal of
stronger T increases over more disturbed forests, corresponding
to reductions in LAI and ET, while mean annual P showed no
significant response to deforestation at the scale of our analysis.
Deforestation of intact forests to below 70% tree cover was
shown to have caused 0.44◦C of annual warming between 2001
and 2013. Differences between intact and disturbed forests were
most pronounced during the driest part of the year, when T
increases of up to 1.5◦C were observed. The climatic stability
of intact tropical forests was closely related to preservation of
tree coverage, highlighting the importance of minimizing canopy
loss to limit changes in forest-climate interactions. Overall,
our results illustrate the climate benefits provided by intact
forests, strengthening the argument that intact forests are a vital
component of the Amazon climate system and should be a
conservation priority.
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In the face of dramatic climate change and human pressure acting on remaining

forest areas across tropical, temperate and boreal biomes, there has emerged a

coordinated effort to identify and protect forests that are currently considered “intact”.

These forests are hypothesized to be more resilient to future abiotic perturbations

than fragmented or degraded forests, and therefore, will provide more reliable carbon

storage and/or biodiversity services into an uncertain future. Research in the fields of

contemporary and paleoecology can offer valuable insights to enhance our ability to

assess resilience of forests and whether these would be comparable across forest

biomes. Contemporary ecological monitoring has been able to capture processes acting

over the short-to-medium term, while paleoecological methods allow us to derive insights

of the long-term processes affecting forest dynamics. Recent efforts to both identify

intact forests, based on area definitions, and assess vegetation climate sensitivity globally

have relied on satellite imagery analysis for the time period 2000–2013. In this paper, we

compare these published datasets and do find that on average intact forests in boreal

and tropical biomes are less sensitive to temperature and water availability, respectively;

however, the patterns are less clear within biomes (e.g., across continents). By taking

a longer perspective, through paleoecology, we present several studies that show a

range of forest responses to past climatic and human disturbance, suggesting that

short-term trends may not be reliable predictors of long-term resilience. We highlight

that few contemporary and paleoecology studies have considered forest area when

assessing resilience and those that have did find that smaller forest areas exhibited

greater dynamism in species composition, which could be a proxy for declining resilience.

Climatic conditions in the Anthropocene will be pushing forest systems across biomes

into novel climates very rapidly and with current knowledge it is difficult to predict how

forests will react in the immediate term, which is the most relevant timeframe for global

efforts to reduce carbon emissions.

Keywords: intact forest landscapes, resilience, tropical forest, boreal forest, paleoecology, climate sensitivity
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INTRODUCTION

Intact forests (i.e., that have not experienced large-scale
anthropogenic disturbance) have been highlighted as being
particularly valuable for conservation due to a number of unique
attributes and services, such as climate change mitigation, local
to regional weather regulation, invaluable biodiversity habitat,
clean water provision, support of dependent indigenous cultures
as well as wider benefits for human health (Watson et al., 2018).
Further, particularly large, contiguous areas of intact ecosystems
are posited to be more resilient to changing climate conditions
due to their harboring species with higher functional diversity,
and therefore, redundancy. A larger, contiguous area allows
for greater species dispersal potential as well as greater genetic
diversity within extant species (Thompson et al., 2009; Baho
et al., 2017). There is already considerable literature showing
the negative effects of even moderate levels of disturbance on
forest functioning and biodiversity (Gibson et al., 2011; Barlow
et al., 2016; Betts et al., 2017), particularly reduced carbon
sequestration and loss of species’ habitat due to increases in forest
edges (Haddad et al., 2015; Qie et al., 2017). At the same time,
the impact of disturbance on forest resilience, particularly over
larger time scales such as centuries and millennia, is less clear
(see Froyd and Willis, 2008; Cole et al., 2014). For example, are
there particular types of disturbance that might make a forest
ecosystem more resilient over time and is the impact of early
Neolithic cultures relevant for the designation of intact forest
areas today (Barlow et al., 2012; Willis et al., 2018)? The overall
aim of this paper is to discuss and provide a selection of spatial
and temporal metrics to inform efforts to assess forest resilience.
In particular, we will discuss these methodologies in the context
of the intact forest landscape (IFL)metric (Potapov et al., 2017) to
explore: (i) how are intact forests responding to disturbance and
climate change, (ii) is it possible to distinguish natural variability
of a forest ecosystem from increasing variability due to reduced
resilience, (iii) are there common mechanisms underpinning
resilience across biomes, and (iv) do larger forest patch areas
confer resilience?

With increasing anthropogenic pressure, better
understanding the dynamics of intact forests is necessary
for human development to remain within planetary boundaries
(Steffen et al., 2018). Current efforts to identify forest without
evidence of contemporary disturbance and that are sufficiently
large to maintain the above listed services have relied on remote
sensing methods (Potapov et al., 2017). The IFL metric has
identified intact forests across all terrestrial biomes (i.e., tropical,
temperate, and boreal ecosystems) using a minimum area
definition of 500 km2 with a minimum width of 10 km and a
minimum corridor width of 2 km, which have not shown any
sign of human disturbance since 2000 (Potapov et al., 2017).
However, these systems have historically experienced very
different levels of human disturbance as well as evolved under
very different natural disturbance regimes (Thompson et al.,
2009). In theory, intactness is considered to be a core aspect
of resilience (Parrish et al., 2003), whereby current conditions
can be compared to historical baselines to assess the scale of
past disturbance or level of “ecological integrity” (see section

on “Baselines”). In practice, the assumption that the same area-
based definition of intactness would necessarily correlate with
resilience across all forests should be examined. Outlining clear
baselines for initial anthropogenic disturbance have proved to
be challenging (e.g., Nogué et al., 2017). Paleoecological records
have already provided evidence of a long presence of human
impacts on forest around the world. For example, evidence of
agricultural activity has been dated in New Guinea to 7,000
years ago (e.g., Willis and Birks, 2006) and more examples of
early anthropogenic impacts have been found in Amazonia
(e.g., McMichael et al., 2012), lowland Central Africa (Tovar
et al., 2014) and the Canary Islands (de Nascimento et al., 2009).
Therefore, the integration of spatial and temporal methodologies
is essential to advance our understanding of the resilience of
intact forests.

Competing Frameworks for Resilience
Defining forest resilience has its own challenges. First, it is
necessary to decide whether resilience is considered to be a
return to an equilibrium state (e.g., engineering resilience)
or as a dynamic system that maintains certain functions
following a disturbance (e.g., ecological resilience) (Holling,
1973). Carpenter et al. (2001) posited the question “resilience of
what, to what?” Are intact forest areas largely valued for their
carbon storage and sequestration services, which are supported
by highly diverse plant and animal communities, or are they
primarily more reliable areas of habitat for endangered and
rare species, including refugia for poorly dispersed species, that
have the added benefit of being a carbon storage facility? The
distinction may seem academic, but the metrics for assessing
forest resilience in either scenario could be quite different
as well as, potentially, policy approaches for achieving each
outcome (Newton, 2016). Existing theory to assess resilience
suggest a variety of metrics for predicting whether conditions are
approaching a tipping point, and by extension, a likely shift in
regime. This requires careful consideration of the temporal scale
of analysis, which some have argued should be based on the life-
cycle of the slowest relevant variable (e.g., at the century-scale for
capturing forest dynamics) (Folke, 2006). However, this shift in
temporal scale can lead to a mismatch between the extent of our
ecological knowledge and current management policies (Willis
et al., 2005).

Assuming a stable state theory, Baho et al. (2017) developed
a quantitative framework of resilience, consisting of quantifying
measures of resistance, persistence, variability, and recovery that
can be estimated using ecosystem-level measures of structural
and functional attributes following a disturbance. Resistance
relates to the amount of change observed in a chosen metric due
to a disturbance. Persistence refers to the length of time species
co-exist before going extinct. Variability is expected to be low
during a state of stability and increasing as a system approaches a
tipping point. While recovery relates to the engineering resilience
perspective of returning to a known or desired equilibrium state.
Conversely, if considering the resilience of a forest as a dynamic
adaptive system, it is unlikely it will “recover” to its original
state, but could undergo “renewal” or “regeneration” to a new
but similarly functioning system (O‘Neill, 1998). Evidence for
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taking a more complex view of ecosystem resilience relates to
the likelihood an ecosystem in a specific location could have
multiple-stable states, due to climate-lags in species response
rates, which can also exhibit hysteresis or path dependence
(Blonder et al., 2017). Finally, there is a spatial element to
resilience, which relates to how connectivity, gradients, ecological
lags, and asymmetries contribute to or feedback on a system’s
response to a disturbance (Cumming, 2011; Allen et al., 2016).

Spatial and Temporal Metrics for
Assessing Resilience
Several studies have attempted to estimate the resilience of
remaining forest areas using a wide range of metrics; although,
largely reliant on a stability-based understanding of resilience,
and to our knowledge, none considering the total size of forest
area. For instance, relative variability in a response variable has
been used as a proxy for forest resilience, such as variability in
latent heat fluxes from eddy covariancemeasures as a predictor of
drought vulnerability (Anderegg et al., 2018), climate sensitivity
of vegetation using spectral time series of moderate-resolution
satellite imagery (Seddon et al., 2016), or establishing a historical
range of variation (HRV) to describe a “basin of attraction”
for comparison with contemporary responses to disturbance
(Seidl et al., 2016). Through establishing an HRV, Seidl et al.
(2016) reinforce the understanding that with climate change the
range of variability, disturbance regime and rates of recovery
will change, thereby defining resilience as a dynamic property
of an ecosystem that is important to quantify for informing
forest management. Trends in ecosystem responses have been
used to assess whether a system is approaching a threshold, such
as comparing regional trends in minimum water-use efficiency
(WUE) during dry and wet years (Ponce-Campos et al., 2013)
or tree-ring growth and isotope signatures to assess changes in
community-level productivity (Sangüesa-Barreda et al., 2015; van
der Sleen et al., 2015; Brienen et al., 2016).

Beyond temporal trends, spatial patterns may also be
indicative of an approaching shift to an alternative state whereby
spatial correlation as well as spatial variability may increase.
Although, this has mostly been applied in dry environments
(Dakos et al., 2011). Other approaches have focused on functional
and structural measures of communities to estimate underlying
dynamics, which may consider overall species diversity (Hisano
et al., 2018), functional redundancy in species presence and
their relative abundance (Baho et al., 2017), functional trait
composition of the dominant species in a community (Bartlett
et al., 2019), whether combinations of functional traits in species
are supported by high phylogenetic diversity (Díaz et al., 2013),
or discontinuities in the distribution of measures (e.g., animal
body mass) that are expected to relate to overall ecological health
and resource availability (Nash et al., 2014; Angeler et al., 2016).
There are a limited number of metrics that incorporate both
spatial and temporal perspectives, although the climate sensitivity
metric developed by Seddon et al. (2016) does produce a globally
consistent decadal estimate, they do not consider neighborhood
effects or contiguousness of vegetation.

All of the metrics listed above, at best, estimate the probability
of an ecosystem shifting to an alternative regime, such as a shift
in species composition or in life-forms (e.g., to grassland or
savannah). Considering both the temporal and spatial scale over
which these kinds of shifts could occur, it becomes invaluable
to consider a longer temporal scale that paleoecological data
can provide. Paleoecological datasets such as fossil pollen and
charcoal coupled with statistical modeling are already producing
important insights about how forest ecosystem processes vary in
time and if observable variability is predictive of an ecosystem
approaching a threshold. For example, previous studies, based
on a metanalysis of over 200 pollen-records (covering ∼20,000
years) have estimated the recovery time between periods of forest
cover in the tropics to assess regional forest resilience, offering
a binary measure of forest or non-forest (Cole et al., 2014).
Other paleoecological resilience metrics have entailed innovative
analysis of Holocene pollen, charcoal records, functional traits
(e.g., bark thickness, plant height), and also diatoms to explore
observable forest responses to past biotic and abiotic drivers (e.g.,
Seddon et al., 2014; Brussel et al., 2018; van der Sande et al., 2019).

Baselines: Providing Trajectories of Intact
Forest to Assess Resilience
The approaches listed above allow the range of observed
ecosystem responses to be compared to an ecosystem’s ecological
history. Ecological history is important for determining the
degree of change that has occurred from baseline reference
conditions (Willis et al., 2005, 2010; Gillson et al., 2011).
Moreover, ecological history has been highlighted as crucial
to determine the level of intervention required to restore
an ecosystem that has been modified by human impacts to
a more “naturally functioning state” (Jackson and Hobbs,
2009). Assessing ecological history was undertaken to inform
management of island ecosystems, which included consideration
of multiple baselines (Nogué et al., 2017). There are also some
examples in the policy literature that have highlighted the
importance of identifying baselines. For example, the IUCN’s
“global standard for the identification of Key Biodiversity Areas”
have introduced the concept of ecological integrity (criterion c)
(IUCN, 2016), which has been defined as “when [an ecosystem’s
or species’] dominant ecological characteristics (e.g., elements
of composition, structure, function, and ecological processes)
occur within their natural ranges of variation and can withstand
and recover from most perturbations imposed by natural
environmental dynamics or human disruptions” (Parrish et al.,
2003, p. 852). This definition essentially combines the concepts
of intactness and resilience into one. Operationally, the term
involves considering both ecological integrity and intactness of
the ecological community, which combined refer to the baseline
(or historical benchmark) conditions that support intact species
assemblages and ecological processes (IUCN, 2016). Baselines
therefore, are relevant to identify in intact forest landscapes.
Calder and Shuman (2019) introduced an interesting approach
to measure resilience by considering the amount and duration of
change from a baseline and the potential to measure the rate of
recovery. Using paleoecological datasets from Connecticut and
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Colorado (USA) the authors suggested that identifying baselines
are important to determine recovery, an intrinsic feature of
resilience. Trends in recovery rate can also be considered,
whereby the ability of a system to recover following disturbances
slows before approaching a critical threshold (Veraart et al.,
2011). However, the challenge of identifying the accurate baseline
applies to nearly any time period (e.g., millennia to decades) and
disturbance (e.g., temperature increase, wildfire, and land-use
change) (Hansen et al., 2016).

COMPARISON OF STUDIES AND METRICS
FOR MEASURING RESILIENCE IN INTACT
FORESTS

While it is clear the question of forest resilience is incredibly
complex, locally driven, likely path dependent, and therefore,
difficult to assess at a global level; there are international policy
prerogatives to prioritize forest areas for conservation that can
help us achieve meaningful climate mitigation and adaptation.
Hence, there is a societal need to understand the conditions
required to allow for the unhindered persistence of forests
across biomes as we enter an uncertain climate regime, the
Anthropocene (Malhi et al., 2014). Early efforts may be overly
simplistic, namely identifying arbitrarily-sized patches of forest
globally and hypothesizing that their size and contiguousness
necessarily confers a level of resilience (Potapov et al., 2017),
but it is an interesting assumption to explore. Fragmentation of
previously large patches of forest have likely resulted in higher
carbon emissions already (Maxwell et al., accepted) and the
processes by which they would be further disturbed are likely
to make them more prone to further degradation (Putz and
Romero, 2014).

To explore the robustness of the IFL assumption that area
confers resilience, we assess published global contemporary
and local paleoecological studies across forest biomes for
evidence. We were interested whether IFL areas exhibited
lower contemporary climate sensitivity than non-intact forest
and whether this metric varied by biome and continent. Then
we illustrate different metrics for understanding resilience
from paleoecological studies across these biomes. Although,
the studies chosen were not intended to be exhaustive,
they are helpful in informing the range of responses
intact forest landscapes have exhibited over paleoecological
time to disturbance and how they compare to ecological
or engineering resilience approaches for understanding
resilience today.

Analysis of Contemporary Datasets
The analysis we present is based on a contemporary measure of
climate sensitivity developed by Seddon et al. (2016) partitioned
into intact and non-intact forest areas using the intact forest
landscapes (IFL) dataset generated by Potapov et al. (2017) and
forest cover dataset produced by Hansen et al. (2013). The IFL
dataset also uses the Hansen et al. (2013) forest cover dataset to
identify contiguous forest areas, as previously described. They
have produced a series of analyses, estimating IFL coverage
and loss between 2000 and 2013 and 2013–2016. We used the

analysis by Seddon et al. (2016) to explore whether there is
evidence that the area-based metric for IFLs are less sensitive
to climate anomalies, and therefore, potentially more resilient
than non-IFL forest areas. Although with the caveat that Seddon
et al. (2016) are quantifying “sensitivity” and not resilience
directly. Their approach uses Moderate Resolution Imaging
Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI)
time series from 2000 to 2013 (Solano et al., 2010) and various
climate variables to asses “variability,” under the assumption
that greater variability indicates higher sensitivity, potentially
lower resilience, and therefore, a higher probability of crossing a
threshold to an alternative state. To assess ecosystem sensitivity to
short-term climate variability, they developed a new metric, the
vegetation sensitivity index (VSI), which compares the relative
variance of vegetation productivity (EVI) with three ecologically
important MODIS-derived climate variables (air temperature,
water availability and cloud-cover) for the months in which EVI
and climate are found to be related. They used an autoregressive
(AR1) multiple linear regression approach, taking the three
climate variables and 1-month lagged vegetation anomalies to
identify areas with strong vegetation-climate coupling. Their
global VSI is generated from aggregating the EVI sensitivities
to each climate variable, weighted by the coefficients from
the linear regression modeling. The VSI provides a useful
dataset to explore contemporary responses to recent climate
anomalies; although, with a monthly canopy response interval,
this metric would not be capturing longer term responses.
Also, the resolution of the data is 5 km, which would be
aggregating the climate response over several landcovers in
more fragmented landscapes. While they were assessing the
sensitivity of all vegetation, not specifically forest, they found
that boreal forest and the wet tropical forests of South America,
Southeast Asia and Western Africa were among the most
“sensitive.” When they parsed the abiotic drivers, tropical forests
were more cloud limited and northern latitudes were more
temperature sensitive.

For our comparison we focused on the IFL layers for 2000–
2013 as that overlapped with the time period of study for
Seddon et al. (2016) and non-intact forest pixels for 2013 from
Hansen et al. (2013). The details of our analysis are described
in Supplementary Materials. We found that across the tropical
biome, IFL areas were less sensitive to water availability than
non-IFL areas. Southeast Asian (SEA) IFLs were more sensitive
than non-IFLs for all climate sensitivity variables (Figure 1),
which according to Potapov et al. (2017) represented 6% of
IFL area in 2000 but experienced an almost 15% reduction
in IFL area. We also found that this region has considerably
less forest area considered intact than non-intact as depicted in
the map and histograms in Figure 1. South American (SAM)
IFLs exhibited lower sensitivity to water availability and African
(AFR) IFLs exhibited lower overall climate sensitivity as well
as cloud and water sensitivity than non-IFLs (Figure 1). When
comparing intact forests within biomes across sub-regions, we
found that SEA IFLs were significantly more sensitive than both
SAM and AFR IFLs for overall climate sensitivity, water and
cloud sensitivity (Figure S1). SEA and SAM IFLs were similarly
sensitive to temperature and both were more sensitive than IFLs
in Africa.
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FIGURE 1 | (Top row) Distribution of intact and non-intact pixels for each analyzed continent across the tropics. (Middle row) Histograms of four climate sensitivity

metrics for intact (solid) and non-intact (dashed) forests for each continent. (Bottom row) TukeyHSD values, with confidence intervals, comparing climate sensitivity of

intact and non-intact forests for each climate sensitivity metric for all (“All”) forest pixels across the tropics and for each continent (“Region”). Negative values indicate

intact forest pixels exhibited lower sensitivity for each variable and positive values indicate non-intact forest pixels exhibited lower sensitivity.

Across the boreal biome, IFLs were less sensitive for overall
climate and temperature metrics (Figure 2). IFLs in Northern
European and Asia (NEA) were less sensitive for all climate
metrics than non-IFLs, while the opposite was true for North
American (NAM) IFLs. However, NAM IFLs were somewhat less
sensitive thanNEA IFLs for temperature and cloudmetrics, while
NEA IFLs were less sensitive to temperature (Figure S1). Potapov

et al. (2017) reported that NAM boreal IFL consisted of 24% of
global IFL, suffering a 3.3% loss between 2000 and 2013, while
NEA boreal IFLs were only 12% of global IFLs and experienced
a loss of 4.4%. When contrasting the area of forest in IFLs and
non-IFLs across both continents (Figure 2) it is clear that the
NEA boreal zone is significantly more fragmented compared to
the NAM boreal zone, which exhibits more similar levels of intact
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FIGURE 2 | (Top row) Distribution of intact and non-intact pixels for each analyzed continent across the boreal biome. (Middle row) Histograms of four climate

sensitivity metrics for intact (solid) and non-intact (dashed) forests for each continent. (Bottom row) TukeyHSD values, with confidence intervals, comparing climate

sensitivity of intact and non-intact forests for each climate sensitivity metric for all (“All”) forest pixels across the tropics and for each continent (“Region”). Negative

values indicate intact forest pixels exhibited lower sensitivity for each variable and positive values indicate non-intact forest pixels exhibited lower sensitivity.
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and non-intact forest area. We performed the same analysis for
temperate and southern boreal forests, although across these
biomes very small areas of IFL relative to total forest area remain
(Figure S2). Overall, temperate IFLs were more sensitive than
non-IFLs with only NEA IFLs being less sensitive to temperature
and Oceania (OCE) IFLs being less sensitive to water (Figure S2).
Comparisons across biomes are also presented; however the
signal was quite complicated.

Identified Paleoecological Studies
Figure 3 presents an overlay of global IFL and non-IFL
pixels with the location of several paleoecological studies
we discuss as illustrative examples, which are also listed
in Table 1. These examples were chosen to highlight the
complexity and opportunities that paleoecological approaches
can provide in terms of measuring resilience in different
landscape configurations and forest systems. These studies use
a variety of methods: fossil pollen, charcoal, soil erosion and
climate proxies, tree rings, and functional traits. The analysis
of these long-term datasets involves statistical analysis from
population modeling to rates of change. Studies A and G-I,
occurred in a currently fragmented agroforestry landscape that
revealed the persistence of forest species over the past 6,000 years
(Bhagwat et al., 2012; Nogué et al., 2018). Study B implements
paleoecological measures of functional traits and how they may
be selected for through changes in disturbance (Brussel et al.,
2018). Study C combines lake-sediment charcoal record with fire
scars on living spruce trees (Picea) to assess response of this forest
system to increasing human pressure since the gold rush (c. 1902)
(Gaglioti et al., 2016). Study D presents a study of Nothofagus
that revealed a long and stable persistence of this forest system
over time (Iglesias et al., 2018). Study E shows a 90,000 year
pollen record from an Afromontane site in Cameroon, indicating
highly unstable species composition with past climate changes
(Lézine et al., 2019). Study F explored the impacts of past human
activity on the floristic composition and carbon sequestration of a
peatland forest as well as identified “resilience friendly” activities
that could effectively conserve and restore this carbon-rich forest
system (Hapsari et al., 2018). Finally, study J used population
modeling of Symphonia, a Madagascan endemic tree, which
revealed rapid oscillations in their metric just before a threshold
shift in species composition of the community (Virah-Sawmy
et al., 2009).

DISCUSSION

How Are Intact Forests Responding
Currently?
Increasing concentrations of CO2 in the atmosphere combined
with changes in temperature, are impacting net ecosystem
productivity (NEP) and water use efficiency (WUE) of forests,
although the direction of the effect varies by biome. For
instance, NEP in northern latitudes appear to be increasing with
temperature and the tropics are exhibiting greater sensitivity
to CO2 (Fernández-Martínez et al., 2019). There is already
contemporary evidence that species composition of forest
communities are shifting in response to drying conditions

(Fauset et al., 2012) and even with CO2 fertilization, increases in
NEP are in areas that are less water limited (Fernández-Martínez
et al., 2019). The carbon sink across the tropical forest biome has
been relatively neutral since the 1990s, with sequestration rates
roughly equaling emissions from deforestation and degradation
(Mitchard, 2018). However, there have been spikes in this signal,
where the tropics became a net source of carbon during climate
extremes (Liu et al., 2017). Trends in carbon uptake of tropical
forests in the Amazon are showing signs of slowing as well as
enhanced carbon emissions from slowly decaying necromass,
which is modeled to be twice the magnitude of the decline
in carbon sequestration (Brienen et al., 2016). In addition,
there remains considerable uncertainty around the scale of
necromass and its vulnerability to increasing fire incidence
(Withey et al., 2018). Trends in carbon uptake can vary within the
tropics, whereby forests in Africa are more resource limited and
smaller, sub-canopy trees can be responsible for 20% of carbon
sequestration even though they may only store 11% of stand
biomass (Hubau et al., 2019).

Boreal forests are known to be experiencing warming twice the
rate of the global average during the twentieth century (Wolken
et al., 2011). However, the impact of temperature increase across
its range remains unclear (Frégeau et al., 2015; Girardin et al.,
2016). Warming is causing increases in the frequency, size and
severity of many natural disturbances, including pest outbreaks
that are known boreal forest stressors (Millar and Stephenson,
2015) as well as likely increasing rates of soil respiration
(German et al., 2012). Although multi-decadal soil warming
experiments suggest that increased respiration of microbes may
be short-lived with the dominant impact being enhanced root
production (Lim et al., 2019). Increasing temperature has been
identified as the most likely factor driving increased mortality
across North American forests, which has been outpacing the
rate of recruitment over the last few decades (van Mantgem
et al., 2009). The hotter, and therefore, drier conditions are
believed to be interacting with pathogen and insect incidence
to create this “novel forest decline” (Wong and Daniels, 2017).
Worryingly, suitable climate zones for the boreal biome have
been modeled to be moving to higher latitudes one order of
magnitude faster than species are expected to be able to migrate
(McKenney et al., 2007).

Unlike tropical or temperate systems, old growth boreal
systems are not characterized by tall dense stands in equilibrium.
Disturbance is a core aspect of this ecosystem, with fire
being the dominant driver followed closely by pest incidence
and disease. Fire occurs randomly throughout the landscape
independent of stand age resulting in a patchy distribution
of forest condition. Therefore, it has been argued that this
system would be better understood, and therefore, managed
at the landscape-scale, whereby a representative distribution
of stand ages are conserved to allow for recovery between
disturbance events (Kneeshaw et al., 2018). Evidence seems to
be growing that management decisions based on the stand-
level could be making boreal regions more susceptible to fire
and pest damage regardless of biotic factors (Seidl et al., 2016).
Our results suggest IFLs in the boreal biome overall show lower
sensitivity to temperature anomalies than non-intact forests,
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FIGURE 3 | Intact forest landscape (IFL) and non-intact forest pixels with locations of selected paleoecological studies illustrating the range of forest responses to past

disturbance. Table 1 lists the details of each study.

suggesting contiguous forest areas could be more resilient for
this biome.

What Does the Paleoecological Record
Suggest?
Palaeoecology offers a longer temporal perspective that is
important for assessing past forest responses; particularly, being
able to assess whether a previous regime shift was driven by
a climatological (“extrinsic”) or ecological (“intrinsic”) event
(Williams et al., 2011; Seddon, 2017). Using examples around
the world, the aim of this section is to discuss: stability,
population, and fragment dynamics as well as forest responses
to disturbances.

The paleoecological literature reveals several records that have
displayed stability or persistence over time, even with changes in
environmental conditions (e.g., Urrego et al., 2013). Therefore,
caution needs to be taken when analyzing contemporary changes
in variability. Paleoecological methods for detecting stability or
variability can rely on the rate of change in a pollen time-series
(Iglesias et al., 2018) as well as turnover in pollen composition
(e.g., Birks and Birks, 2008). First, in Patagonia, the Nothofagus
(southern beeches) forest was found to have prevailed relatively
unchanged for the past 9,800 years until the twentieth century by
calculating the rate of change in pollen records, which was equal
to zero (Iglesias et al., 2018) (Figure 3, Study D). This stability
could be attributed to Nothofagus’ resistance to environmental

change, its ability to rapidly recover or trade-offs in the plasticity
within Nothofagus’ species traits. Stability has also been found
in the Afromontane forest in the Eastern Arc Mountains of
Tanzania for∼48,000 years (Finch et al., 2009) as well as in some
tepui mountains in Venezuela (Rull, 2005; Nogué et al., 2009).
However, we still do not understand the underlying drivers of
this dynamic.

In other regions of the world, paleoecological models have
found discernible changes in population dynamics that preceded
a tipping point. For instance, inMalagasy littoral forest remnants,
authors studied the population dynamics of an endemic tree
(Symphonia) (Figure 3, Study J). The results of this case study
showed steeper oscillations in the response variance (e.g., species
dominance) to a climatic change threshold (Virah-Sawmy et al.,
2009), suggesting in this system erratic oscillations provided
advance warning of a threshold being reached. At the same time,
population models showed that overall, there was coexistence
between Symphonia and another local species, Erica, unless the
community was located in a nutrient-rich substrate. In this case,
competition seems to have promoted a decline in Symphonia,
demonstrating that local factors may determine the survival of
certain species undergoing abiotic stresses like climate change.

The Western Ghats in India also provides an illustrative
example of dynamism in species composition over long-time
scales in a fragmented landscape. This region exhibits high
levels of forest fragmentation due to heavy pressure to support
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TABLE 1 | List of paleoecological studies from intact forests featured in Figure 1.

Code References Country Location Latitude Longitude Biome Forest status Metric

A Bhagwat et al.,

2012

India Asia 12.28 75.22 Tropical Fragmented Relationship between vegetation

cover and drivers of environmental

and anthropogenic disturbance.

Quantile regressions.

B Brussel et al.,

2018

USA North

America

44.77 −121.78 Boreal Intact Time-series of fire-adapted traits

Fire frequency.

C Gaglioti et al.,

2016

USA North

America

64.86 −47.93 Boreal Fragmented Charcoal analysis preserved in varved

lake sediments (annually layered) and

fire scars in living trees

Local fire return intervals (FRIs) and

regional fire activity

D Iglesias et al.,

2018

Chile South

America

−48.20 −73.00 Temperate Intact Rate of change

E Lézine et al., 2019 Cameroon Africa 5.94 10.24 Tropical Montane Pollen % converted to tree or grass

dominated biome categories and

changing dominance of biomes

F Hapsari et al.,

2018

Indonesia Asia −1.24 103.62 Tropical Peatland Trends in carbon accumulation rate

(CAR)

Fire frequency

PCA analysis of floristic composition

G Nogué et al., 2018 India Asia 12.18 75.82 Tropical Fragmented Trajectories of change (generalized

mixed models, GAMM)

H Nogué et al., 2018 India Asia 12.22 75.79 Tropical Fragmented Trajectories of change (GAMM)

I Nogué et al., 2018 India Asia 12.05 75.98 Tropical Fragmented Trajectories of change (GAMM)

J Virah-Sawmy

et al., 2009

Madagascar Africa −24.95 47.00 Tropical Fragmented Population modeling

agricultural activities (Giriraj et al., 2010), which is a common
reality across tropical forest regions (Karanth and DeFries, 2010).
Using paleoecological data obtained from four small forests
fragments (∼5 ha) in a coffee (Coffea arabica) agroforestry
landscape in Karnataka, India, it was possible to reconstruct
7,500 years of vegetation dynamics (Figure 3, Studies A and G-
I). Taking into account regional climatic changes over this same
time period (e.g., monsoon activity) and other environmental
variables (e.g., anthropogenic fire, and soil erosion), results
suggested that fire was responsible for maintaining low tree
cover in the landscape over the past 3,500 years. In addition, it
appeared that retaining tree cover in this fragmented landscape,
was key to maintaining its ecological resilience to subsequent
environmental and anthropogenic disturbance (Bhagwat et al.,
2012). In addition, by investigating the dynamics of vegetation
(tropical forest, cultivated, grasses, and herbaceous taxa) and
environmental variables (biomass burning, canopy closure, and
habitat specialist trees) over the past 900 years across four of
the Western Ghats’ fragments, it was found that agricultural
activity had not precipitated a collapse of the Western Ghats
forests, but instead had enhanced the dynamism of vegetation
within and between forest patches. Furthermore, these results
are also relevant for conservation as it suggests that small
and informally protected-forest patches (e.g., sacred groves) in
human-dominated agricultural landscape might sustain high
quality tropical forests, temporally and spatially (Bhagwat et al.,
2014; Nogué et al., 2018). Although, this heightened dynamism

could indicate lower resilience of these fragments to novel
climatic conditions.

Finding general patterns and responses to disturbances (e.g.,
temperature increase and fire) for the boreal forest in the
paleoecological record proved to be challenging. Most of the
studies are focused on long-term shifts, and the fire regime data
are spatially limited and generally of low resolution. Therefore,
we discuss major regional temperature-related changes together
with local fire responses. First, paleoecological studies of forest
responses to the increase of temperature across the Pleistocene-
Holocene boundary (Levesque et al., 1997; Hou et al., 2007)
suggest different patterns across the boreal biome worldwide
(Shuman et al., 2002a,b; Wolken et al., 2011). For example, in
Alaska, spruce (Picea) forests have been dominant since the early
Holocene; however, during the deglacial period into the early
Holocene the woody vegetation was deciduous (e.g., Betula, Salix,
and Populus). Second, in addition to changing temperatures,
wildfire frequency also seems to control the long-term dynamics
of species composition in boreal forests (Carcaillet et al., 2010).
However, there is good evidence that in Alaska, climate change
drove species composition which in turn drove changes in
the fire regime (e.g., Lynch et al., 2002; Higuera et al., 2009).
When looking at specific case studies this complexity arises
further. Brussel et al. (2018) (Figure 3, Study B) found that
fire frequency may have driven selection pressure for fire-
adapted traits. This finding is consistent with 14C dated and
botanically identified charcoal (Frégeau et al., 2015) together
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with sedimentary sequences (Carcaillet et al., 2010) showing the
maintenance of both fire-prone and less fire-prone tree species
over time. At a very local scale, Gaglioti et al. (2016) (Figure 3,
Study C) found that even with a 4-fold increase in regional
burning following the arrival of gold miners near to Fairbanks,
Alaska, the permafrost and watershed of Ace Lake stayed mainly
intact. However, these authors worry that the legacy of this
heightened fire activity may make this region more susceptible
to megafires in the future as temperatures continue to increase.
The dynamics described above may suggest the ability of the
boreal biome to maintain its structure and function following
fire-related disturbances, which could be interpreted as an overall
resilience to changes in fire regimes (Carcaillet et al., 2010;
Frégeau et al., 2015). However, Johnstone and Chapin (2006)
showed that toomany firesmight also push the composition from
evergreen to deciduous forest in the Yukon region.

Can We Distinguish Natural Variability
From Variability Approaching a Tipping
Point?
If we consider an engineering approach to resilience, how can
we discern the natural variability of a dynamic ecosystem from
increasing variability due to its approaching a threshold? The
danger of using an equilibrium/stable state model of resilience
for a complex adaptive system, like a forest ecosystem, is that
management to maintain stability may have the effect of reducing
resilience through dampening its natural variability (Holling and
Meffe, 1996). Also, without considering a comparable baseline
of responses to past disturbance, it is very difficult to establish
whether contemporarily observed variation is predicting the
approach of a system threshold. Being able to combine the
temporal-scale of paleoecological studies with short-term and
more spatially explicit contemporary ecological studies, is
difficult. For one, from the paleoecological record, it is still
challenging to analyse species interactions or how vegetation
dynamics may have varied spatially in a study landscape.
Therefore, being able to differentiate whether more biodiverse
vegetation is necessarily more sensitive to recent climate changes
(e.g., Willis et al., 2018), or if that “sensitivity” is actually a
function of vegetation dynamics within the normal historical
range of those ecosystems, remains a challenge.

Southeast Asia is home to more than half of tropical peatland
area and 77% of tropical peat volume, storing 68.5 Gt of
carbon (Page et al., 2011). Deforestation since 1990 on Southeast
Asian peatlands has been dramatic, with only 28% of original
peat swamp forest cover remaining (Miettinen et al., 2012).
Deforested peatland areas have also been more prone to fire
incidence, worsening carbon emissions as well as lower carbon
accumulation rates (CAR), which might suggest a shift in regime.
A paleoecological study by Hapsari et al. (2018) (Figure 3, Study
F) were able to discern a reduction in floristic composition and
CAR with human activities during the Malayu Empire 1,200
years ago in Central Sumatra (Indonesia); however, with reduced
pressure due to population migration they saw a rapid recovery
of both measures within 60–170 years of abandonment. From
their findings, they were able to suggest appropriate methods

for sustainable use of peatswamp forests as well as appropriate
species for reforestation. Unfortunately, CAR across tropical
peatlands are expected to slow with increasing temperatures and
to become a net source by the end of the century (Gallego-Sala
et al., 2018). It is unclear the extent to which restoring peatswamp
forest would have a dampening effect on those predictions;
however, as evidenced by Hapsari et al. (2018) these systems can
recover, and therefore, returning them to a more “intact” state
would be advisable.

Proposed Mechanisms for Resilience
There are known and hypothesized physiological limits to
abiotic drivers across forest species, such as temperature and
water availability. However, photosynthesis appears to be more
impacted by drought than by temperature (Cusack et al.,
2016). Some groups suggest that there are intrinsic system-
level sensitivities to water availability across biomes (Ponce-
Campos et al., 2013) with the majority of trees exhibiting
relatively narrow hydraulic safety margins (Choat et al., 2012).
This would indicate low adaptive capacity to rapid changes in
temperature and rainfall regimes, resulting in higher mortality
rates for trees more at risk of embolism (Trugman et al., 2018).
Predictions for the tropics are that species dominance will shift
to those with drought tolerant traits, with concomitant loss
of evergreen species, particularly in sites exhibiting increasing
drought duration (Aguirre-Gutiérrez et al., 2019; Bartlett et al.,
2019). This transition is likely to entail large-scale die-off of the
tallest trees in old-growth forest, resulting in a pulse in global
carbon emissions (McDowell and Allen, 2015). For instance,
heightened mortality has been observed for the largest trees
or those with the lowest wood density (Phillips et al., 2010),
a dynamic that has been echoed in experimental conditions
replicating long-term droughts via through-fall exclusion (TFE)
(da Costa et al., 2010). However, in Nothofagus dominated forest
in Patagonia, it was the trees exhibiting the most variable growth
patterns, not the largest or oldest, that were more likely to die
(Suarez et al., 2004). Studies in Latin America have found the
smallest and youngest trees exhibiting greater mortality, with
concomitant impacts on community composition (Enquist and
Enquist, 2011). In addition, a pan-tropical, tree-level study by
Johnson et al. (2018) found that climatic conditions, such as
mean annual temperature (MAT) and cumulative water deficits
(CWD), were better predictors of mortality across size classes,
suggesting that size alone was not a reliable predictor.

The primary underlying mechanisms inducing tree mortality
seems to be a combination of hydraulic failure and availability
of non-structural carbohydrates (NSCs) (Adams et al., 2017;
McDowell et al., 2018). How these dynamics manifest at
the community-level via competitive or facilitative plant-plant
interactions will also determine the resilience of a forest
ecosystem to changing climate (Ploughe et al., 2019). For
instance, in the Canadian boreal region, Luo and Chen (2015)
identified a significant increase in tree mortality over their three
decade study and found the dominant drivers appeared to be due
to resource competition between individual trees and stand age.
Allen et al. (2015) review how tree mortality might be impacted
by climate change and identify several worrying drought trends,
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namely: droughts will be hotter, they will occur everywhere,
mortality can be faster with hotter droughts, deaths can
outpace growth creating novel forest systems and vapor pressure
deficit increases non-linearly with temperature. Worryingly, it is
emerging that the compound effects of extreme vapor pressure
deficit (VPD) and low soil moisture are occurring with increasing
frequency due to reinforcing feedback mechanisms (Zhou et al.,
2019).

Another commonality across biomes would be a relationship
between forest resilience and biodiversity. Seminal work in
grasslands has shown the importance of diverse systems for
being able to maximize niche differentiation, thereby enhancing
productivity and stability (Tilman et al., 2014). However, this
assumes biodiversity measures relate to functional diversity
(Cadotte et al., 2011). This recognition has led to the
advancement of trait-based diversity assessments, which focus
on the functional attributes of individuals based on their
morphological, physiological and phenological attributes, how
those contribute to performance traits like productivity and
their ability to persist in a community through environmental
filters (Violle et al., 2007). This has been simulated for the
Amazon using a range of plant functional traits, which found
with greater biodiversity biomass recovery could be up to
95% of pre-shock levels, granted only after several centuries
(Sakschewski et al., 2016). Díaz et al. (2013) proposed a
framework assessing specific effect functions (SEF) and specific
response functions (SRF), where the former relates to the
outcome of a species’ functional traits on an ecosystem and
the latter relates to the ability of a species to maintain its
functions while undergoing environmental change. They add
a community-level risk assessment for an ecosystem service
by considering the phylogenetic diversity of the SEF, which if
high would suggest redundancy of the functional response to
environmental change. Much of these assessments are based
on community weighted means for each species, and therefore,
rely on their relative abundance to relate to a community-level
resilience. However with current understanding, it is difficult to
predict how important rare species may be for an ecosystem’s
resilience, as sometimes these species can have a unique
combination of functional traits that may disproportionately
impact a systems’ adaptive capacity during a time of disturbance
(Mouillot et al., 2013). Nevertheless, studies have found that
forest systems dominated by a small number of species can be
more vulnerable to rapid climate changes (Fensham et al., 2015).

Climate change impacts on biodiversity are predicted to be
significant, and particularly if species are not able to thermally
adapt to new conditions, their loss could be greater than
losses due to drought or deforestation (Feeley et al., 2012).
CO2 fertilization seems to be beneficial for fast-growing, light-
demanding pioneer species (Cusack et al., 2016), which as
highlighted above may be more vulnerable to hydraulic failure
during drought conditions. One method for assessing the
impact of climate change on community-level biodiversity is the
community temperature index (CTI), whereby species relative
abundance and their known thermal optima are combined to
produce an average temperature preference for the community
(Stuart-Smith et al., 2015; Gaüzère et al., 2018). With repeat

measures in the same site, it can be possible to assess whether
more thermophilic species are migrating into a community,
suggesting one mode of adaptation to climate change. This
dynamic has been found along an Andean transect since
1990, whereby plot-level CTI have been increasing with species
migration up-slope. However, these species movements have
been halted at the barrier between ecotones (e.g., montane forest
to cloud forest) (Fadrique et al., 2018), suggesting physically-
imposed limits to species migration. The 90,000 year pollen
record from the Afro-montane forest of Cameroon (Figure 3,
Study E) showed a highly variable upper limit to the forest
zone with a relatively stable lower forest zone (Lézine et al.,
2019), also indicating long-term, complex constraints on species
dispersal. This dynamic contrasts starkly with the stability the
Afromontane forests in Tanzania exhibited over a 48,000-years
record (Finch et al., 2009) and further complicates the question
of how spatially constrained “natural variability” or a “baseline”
for current forest dynamics can be compared.

Do Larger Forest Patch Areas Confer
Resilience?
By combining paleoecological and contemporary perspectives,
can we answer the question of whether size of forest is positively
correlated with resilience? We do know that tropical forests
across the world are threatened by fragmentation (e.g., the
conversion of large areas of forest into smaller patches) as a
result of rapid land use conversion from forest to agriculture
(Curtis et al., 2018; Taubert et al., 2018), with extreme predictions
resulting in severe fragmentation of half the Amazon Basin
(Gomes et al., 2019). We also know that the process of
fragmentation has been associated with large-scale biodiversity
loss (Laurance et al., 2011; Haddad et al., 2015) and reduction of
carbon sequestration (Qie et al., 2017), due to edge effects and
habitat loss. However, the debate as to whether several smaller
forest fragments vs. the equivalent forest area in one contiguous
patch, keeping total habitat area constant, have significantly
different biodiversity outcomes is ongoing (Fletcher et al., 2018;
Fahrig, 2019). It is not clear the extent to which this can be
said of carbon sequestration rates or forest resilience more
generally, whereby following habitat fragmentation, vegetation
dynamics of intact forests’ systems are altered. For example,
fragments might display an increase in the frequency and/or
amplitude of population, community, and landscape dynamics
initially, and then gradually stabilize and approximate the
pre-fragmentation conditions (Laurance et al., 2002, 2011).
Conversely, fragments may not gradually stabilize toward the
pre-fragmentation conditions, and potentially, undergo a regime
shift. Unfortunately, more evidence is needed before relying
on an area-based definition for predicting the resilience of
forest fragments.

Studies from the tropics suggest that forest patches experience
exceptionally large variability in vegetation dynamics especially
when disturbances associated with shifting cultivation are
frequent; yet these records are restricted to relatively short
temporal scales (<50 years). In a >30 year project in Amazonian
forest fragments, Laurance et al. (2011) found that different
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fragmented landscapes can diverge to a surprising degree in
species composition and dynamics. Understanding how and why
the dynamics of fragmented landscapes are altered will improve
our ability to predict and manage the consequences of intact
forest landscape fragmentation. Our comparison of IFL areas and
climate sensitivity suggest that larger contiguous forest patches
in the tropics are exhibiting lower sensitivity to water availability,
and therefore, may be more resilient in their response to CO2

fertilization. This would be consistent with canopy drought
responses, measured as anomalies in EVI, which found shorter
recovery times in dense forests compared to secondary and
degraded forests over the Amazon for a similar time period to
our analysis (Anderson et al., 2018). Additionally, our results
identified IFLs in Africa as being less sensitive than both South
American and Southeast Asian tropical forest. This seems to be
corroborated by analysis of canopy responses to drought over
West and Central Africa, using QuickSCAT canopy backscatter
data, which found significantly shorter recovery times for the
continent compared to similar climate shocks in South America.
The authors attributed this observed resilience to the protracted
drying trend West and Central Africa has been undergoing since
the 1970s (Asefi-Najafabady and Saatchi, 2013).

In boreal systems, the dynamic between fragmentation, fire
and timber harvesting are complex and it is difficult to discern
whether there are discernible changes with climate change. In
principle, due to the boreal region’s adaptation to disturbance it
is considered to be less impacted by fragmentation (Harper et al.,
2015). A 30-years Landsat based analysis of the Canadian boreal

region showed lower rates of fragmentation and higher rates
of recovery in forests being actively harvested than unmanaged
areas driven by fire. However, the authors posit this could
relate to harvesting occurring in more productive and less
fragmented forests, while more fragmented forest areas could
be more susceptible to fire (Hermosilla et al., 2019). Lehsten
et al. (2016) focused specifically on the boreal shield and
boreal plains to compare fire dynamics within managed and
unmanaged systems in a similar ecotone. They found that
managed forest areas, particularly fire suppression activity, not
only did not reduce the number of large fires but decreased
the natural phenomenon of fuel fragmentation, increasing the
probability of more severe fires. Finally, fragmentation in the
boreal region can also be driven by climate change itself,
whereby climate suitability of species may shift so dramatically
over the next several decades that populations of vegetation,
birds, and mammals could be physically bifurcated at the
continental-scale (Murray et al., 2017) or sporadic thawing of
permafrost may shift currently forested areas to treeless wetlands
(Carpino et al., 2018).

CONCLUSIONS

This paper was intended to summarize the range of observable
responses of intact forest to environmental change and a selection
of contemporary and paleoecological metrics used to assess
forest resilience to these changes (see Figure 4). Primarily,
resilience metrics seem to fall into three main categories, namely

FIGURE 4 | Summary figure of key drivers of change to forests, observable responses, and the existing contemporary and paleoecological metrics to assess the

resilience of forest ecosystems to these drivers of change.
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measures of variability, linear trends, and stability of observable
forest response such as carbon uptake, species composition, and
recovery rate. In general, these metrics do not describe the
underlying driver that may be reducing the overall resilience
of a forest system, which are included in Figure 4 and have
been reviewed at length by Malhi et al. (2014). However, they
are, or should be, intended to assess the ability of a forest
ecosystem to respond to climate changes, and therefore, will
be an aggregated measure at the community level. The analysis
we performed and presented was comparing the variability in
canopy response to climate anomalies for large, contiguous
intact forest areas with non-intact forests across and within
biomes. We do not assert that the dataset produced by Seddon
et al. (2016) necessarily captures the underlying mechanism that
may be causing an increase in discernible vegetation sensitivity
to climate anomalies, as there may be “intrinsic” ecosystem
dynamics contributing to climate responses of vegetation that
are not currently captured by coarse-resolution imagery (e.g.,
degradation or low adaptive capacity).

By comparing canopy responses within biomes rather than
between them, our results suggest that intact forest areas exhibit
lower sensitivity to climate drivers that a biome is known to be
susceptible to, namely temperature in the boreal region and water
availability in the tropics. However, this pattern varied across
continents within the same biome. For instance, African forests
in the tropics seem to exhibit the lowest canopy sensitivity to
climate anomalies and are known to have experienced significant
climate variability, which has perhaps selected for more drought
resilient traits. If we take exposure to past climate variability as a
predictor of future vulnerability, the tropical forests of Southeast
Asia, which are dominated by tall trees that have experienced
little seasonality historically and which our analysis shows to
be exhibiting the highest sensitivity to climate anomalies, would
be particularly important for understanding the mechanisms of
forest resilience.

Even by combining contemporary and paleoecological
perspectives, it remains up for debate how forest resilience will
manifest under rapidly accelerating climate change and whether
insights can be generalized for biomes or regions. Theory as
well as evidence from the literature reveals that resilience is an
emergent property of a complex system. Individual tree responses
to disturbance are influenced by life histories and functional
attributes, and therefore, the ecosystem-level response will, to
some extent, be path dependent. At the century to millennium-
scale, paleoecology tells us that many intact forests have persisted

and been able to adapt to new environmental conditions, which
may entail shifts in species, or vegetation structure. However,
it is over the short term that many in the forest research
community are looking to ensure resilience of forest systems, and
particularly, maintain forests as reliable storage of carbon and
habitat for threatened biodiversity. A precautionary approach
over this time frame, might be to prioritize conservation of
large forest areas as they have a higher probability of supporting
greater biodiversity and generally have lower opportunity costs
to protect. However, with the benefit of hindsight through long-
term studies, we can see that past disturbance does enhance
aspects of resilience (e.g., recovery rate) and even forest in
fragmented landscapes can persist for millennia. With the scale
and rapidity of precipitation and temperature changes expected,
the immediate future of carbon storage and sequestration services
of forest is hard to predict. However, the greater uncertainty
seems to be the degree to which the global community is able to
dramatically reduce carbon emissions, and by extension, at what
concentration of CO2 the atmosphere will eventually stabilize.
Ensuring carbon storage in forests cannot be achieved without
dramatic reductions in fossil fuel emissions.
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The conservation of Earth’s remaining intact forests (IFs) is a global priority, but

improved understanding of the causes and solutions to IF loss is urgently needed to

improve conservation efforts. This meta-analysis examines 207 case studies of IF loss

occurring since 1970 to synthesize the drivers of IF loss and the proposed case-specific

interventions. The goal of this study is to build a portfolio of conservation best practices

for retaining IFs. The most frequently reported direct drivers of IF loss were logging,

agriculture, ranching, and infrastructure expansion. Mining and fire were also prominent

threats to IFs in selected areas. Indirect drivers of IF loss varied between continents,

with high demographic pressures driving forest loss in Latin America, Asia, and Africa,

contrasting with North America and Europe-Russia. Indirect economic and socio-political

drivers were most frequently reported at the national scale for all continents studied,

indicating a central role for national institutions in IF loss and conservation. Decisive socio-

political factors underlying IF loss worldwide include political failures, institutional failures,

and pro-development policies. A wide range of interventions were recommended in the

case studies to conserve IFs. The proposed actions were most frequently within the

forest, finance, and education and science sectors, and also emphasized inter-sectoral

activities. Based on the results of this study, three core approaches to IF conservation

that can be combined at the landscape scale are identified: protected areas, payments

for ecosystem services, and agricultural reforms. Related enabling conditions include

cooperative landscape management, effective enforcement, and political advocacy. The

success of IF conservation efforts ultimately depends on sustained political support and

the prioritization of high-value forest landscapes. Such efforts should mitigate socio-

economic pressures through policy mixes that are cross-sectoral and place-based. Key

policy priorities for IF conservation include addressing the systemic failures of public

institutions, increasing political support for IF conservation, and countering harmful

development activities.
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INTRODUCTION

Intact forests (IFs) are a global conservation priority because
they provide ecosystem services and vital resources and cultural
benefits to local and global societies, especially forest-dependent
indigenous people (Finer et al., 2008; Olivero et al., 2016). The
loss of these relatively undisturbed native forests has both local
and global consequences because human and natural ecosystems
are dependent upon stable global carbon and hydrologic cycles
and the ability of IFs to mitigate climate change impacts
(Seymour and Busch, 2016; Watson et al., 2018). Documenting
the loss of IFs has been a long-term priority in biodiversity
conservation because the core habitats for many threatened
forest-dependent species worldwide are found in IFs (Gibson
et al., 2011; Betts et al., 2017; Donald et al., 2019). The threats
to and losses of relatively undisturbed native forest ecosystems
continue to be reported and recent estimates suggest that only
∼25% of global forests are classified as intact (11 million km2)
(Heino et al., 2015). Between 2000 and 2012, ∼324,000 km2 of
IF was lost, which is equal to a land area 1.3 times the size of
the United Kingdom (Heino et al., 2015). Scientists and policy-
makers have worked for decades to understand the causes of
forest loss and to develop effective interventions (e.g., World
Resources Institute, 1997; Lambin et al., 2003; Nepstad, 2005;
Kissinger et al., 2012). While past efforts have helped to reduce
deforestation in some areas (Nepstad et al., 2014; Thaler et al.,
2019) and have improved the science of forest conservation (Puri
et al., 2016; Min-Venditti et al., 2017), more effective approaches
are needed to address the continued and widespread loss of IFs.
Current research priorities include improved understanding of
the causes of IF loss (Heino et al., 2015) and the development
of more evidence to inform the design of place-based forest
conservation efforts (Puri et al., 2016; Min-Venditti et al., 2017).

Underlying our need to better understand the drivers of
IF loss is the reality that conservation interventions must be
matched to the multi-scale drivers threatening IFs. Developing
this knowledge can be difficult because the drivers of forest
loss vary regionally and temporally due to variations in socio-
economic conditions, land-use dynamics, population density,
forest condition, and local biophysical conditions, among other
factors (Lambin et al., 2003; Geist et al., 2006). This variation
implies that efforts to conserve IFs must be place-based and
informed by direct deforestation drivers, which operate locally
(e.g., logging and mining), and indirect drivers, which are often
external to the local area and outside the control of local land-
users (e.g., market prices and technology; Geist et al., 2006). A
diversity of scholars with different academic backgrounds have
studied the direct and indirect drivers of forest change at several
scales—global, regional, and local (e.g., Geist et al., 2006; Soares-
Filho et al., 2006; Kissinger et al., 2012; DeFries et al., 2013). The
existence of various disciplinary frameworks to understand the
drivers of forest change suggests that IF conservation efforts be
based on an interdisciplinary, and therefore holistic, approach to
forming knowledge of the drivers of IF loss.

Designing effective IF conservation interventions must
account not only for the location-specific drivers of forest
change, but also overcome a lack of evidence regarding the
efficacy of conservation policies and programs. In general,

the field of evidence-based policy and program design for
biodiversity conservation remains immature (Miteva et al., 2012;
Baylis et al., 2016). Various forest conservation policies have
been rigorously evaluated in recent decades, but even the
most well-studied interventions suffer from a limited study of
intervention outcomes and are not geographically representative
(Puri et al., 2016). Limited evaluation data for past conservation
efforts is problematic because the impacts of interventions,
including unintended tradeoffs (Ferraro and Pattanayak, 2006;
Puri et al., 2016) such as increased inequality or leakage
(Hirsch et al., 2011), cannot be predicted accurately. Insufficient
evaluation data may also hinder projections of conservation
interventions because policy impacts can vary by efficacy,
efficiency, equity, legitimacy, and partisan appeal (Salamon
and Lund, 1989). Given the paucity of rigorous evaluations
of forest conservation interventions and the multitude of
potential outcomes, expanding the evidence used to inform
IF conservation efforts and developing best practices for IF
conservation efforts is an urgent scientific challenge.

In addition to insufficient knowledge about the impacts
and trade-offs of IF conservation efforts, another key challenge
is implementation. Even if a set of well-informed policies is
designed to counter the drivers of forest loss, weak governance,
institutional failure, and corruption may inhibit implementation
and negate desired effects (Geist and Lambin, 2002; Laurance,
2004; Kissinger et al., 2012). The importance of institutional
and political failure in policy implementation is rooted in
the tradition of command-and-control governance widely used
to regulate land-use (Lambin et al., 2014). Implementing
conservation policies and enforcing compliance often requires
adequate governance capacity andmonitoring capabilities, which
is problematic in most tropical forest countries (Kissinger et al.,
2012; DeFries et al., 2013). Likewise, political support is necessary
to enforce IF conservation laws and to develop new legislation,
but political will may be lacking due to corruption (Ascher,
1999; Laurance, 2004) and the primacy of economic development
(Geist et al., 2006; Nepstad et al., 2014). Policies that conserve
IF may also create economic trade-offs that can be difficult to
overcome in the face of powerful political actors and market
forces (Wunder and Verbist, 2003). Thus, developing effective
approaches to conserve IFs that identify and mitigate governance
and institutional deficiencies and overcome existing economic
and political trade-offs is a research priority.

To inform the aforementioned gaps in knowledge and the
design of IF conservation efforts, this study examined the
following questions: (1) what are the drivers of IF loss with
respect to the case study literature?; (2) what IF conservation
policies and activities are recommended in the case study
literature?; and (3) can the synthesis of the case study’s reported
deforestation drivers and conservation recommendations inform
the design of IF conservation policies and strategies?

MATERIALS AND METHODS

Meta-analyses of case studies are widely used to provide
systematic knowledge of scientific topics (Khan et al., 2001),
including case-based analyses of the drivers of tropical
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deforestation (e.g., Geist and Lambin, 2002; Rudel, 2007).
Like all research methods, the case-oriented meta-analysis
approach has strengths and limitations (Rudel, 2008). An
important strength of the approach is the method’s ability
to identify broad patterns that explain the causes of land-
cover change and inform policy development (Rudel, 2008;
Magliocca et al., 2015). Drawing inferences from unique case
studies can also present methodological challenges, including
potential issues with inter-coder variability in the analysis
of case studies (Rudel, 2005) and potential bias if cases are
mostly focused on popular issues or regions of interest (Rudel,
2008). The following case-oriented meta-analysis sought to
avoid potential biases by collecting a global sample of case
studies of IF loss, extracting relevant data from each case
study using two independent reviewers, and analyzing the
case studies at continental and global levels. Continents
studied were North America, Latin America, Europe-Russia,
Asia, and Africa. Only two cases were identified related to
IF loss in Australia-Pacific, so this area was excluded from
the continental analyses. To reduce inter-coder variability
and ensure that each reviewer utilized a similar approach
to extracting information from a case, the reviewers were
trained by the lead author using sample case studies. Reviewers
then evaluated each assigned case independently before
comparing and synthesizing their results with the reviewer
who analyzed the same case. The data extracted from the
cases was categorized and assessed using existing conceptual
frameworks (Table 1).

The final dataset included 207 case studies from 193
publications documenting the drivers of IF loss at the local,
regional, or national scale. Cases were identified and screened

using the PRISMA-P meta-analysis protocol (Shamseer et al.,
2015) (see Appendix 1 for complete PRISMA search results). All
cases included were peer-reviewed research articles, dissertations
or master’s theses, or related institutional publications. Cases
were obtained using keyword searches in Google Scholar and
the Web of Science database from the first 30 pages, showing
10 results per page. The following search terms were used:
agricultural frontier, forest frontier, and deforestation frontier,
as well as keyword searches constructed using the following
methodology: “forest” + climate or condition keyword +

change keyword. Climate keywords included dry, rainforest,
tropical, subtropical, boreal, and temperate. Condition keywords
included old-growth, intact, and primary. Change keywords
included deforestation, conversion, and loss. For example, search
strings included “dry forest deforestation” and “tropical forest
loss.” To be included, each case study had to describe IF
loss at the local, regional, or national scale, occur partly or
entirely after 1970, and contain information on the drivers
of IF loss.

Based on the keyword searches and after screening the titles
for relevance to the study, a total of 1,113 case studies were
identified and a total of 483 duplicate studies were removed.
The abstracts of the remaining 630 cases were then screened
and 441 were excluded, leaving 189 cases (see Appendix 1 for
reasons for exclusion). An additional 41 records were obtained
from reference lists and Google Scholar alerts, resulting in 230
records for full-text screening. After full-text screening 37 records
were excluded, which resulted in a database of 193 records for
study. Cases were organized and analyzed in Excel. The following
data was extracted from each case study by each reviewer: direct
and indirect drivers of change, institutional failures, political

TABLE 1 | The drivers of IF loss and the proposed conservation interventions extracted from the case studies.

Variable extracted Variable definition Variable structure

Direct drivers Drivers locally responsible for forest conversion or

degradation

(1) agricultural expansion; (2) infrastructure development; (3) wood

extraction; (4) natural disturbances (e.g., fire, pests, drought); (5) mining

and hydrocarbon extraction; and (6) ranching

Indirect drivers Drivers that enable or encourage conditions that lead to

forest conversion or degradation.

(1) demographic; (2) economic; (3) sociopolitical; (4) cultural and

religious; and (5) scientific and technological. Drivers were recorded by

spatial scale of local, national, and international

Institutional failures Failures in public institutions that lead to forest loss or

degradation

(1) weak or inadequate law enforcement; (2) poorly designed policies;

(3) insufficient capacity; (4) failures in tenure regime; (5) poor planning;

(6) poor coordination or collaboration; and (7) institutional corruption

Political failures Failures by political actors that lead to forest conversion

or degradation

(1) absent policies or insufficient political will; (2) political corruption;

(3) failed policy effort; (4) unclear or ambiguous policies; (5) political

instability or uncertainty; (6) insufficient or weak policies; and

(7) insufficient funding

Pro-development policies Forest development, natural resource extraction, or

immigration policies implemented by political leaders or

policy-makers

(1) encourage resource extraction; (2) encourage agriculture/pasture

expansion; (3) encourage migration/colonization projects; (4) subsidies

or tax incentives to deforest; (5) encourage/support infrastructure

development; and (6) promotion of general economic growth.

Forest conservation interventions Policy recommendations of case study authors to

conserve forests

(1) sectoral policies; (2) inter-sectoral policies; and (3) unique policies

and strategies

The direct drivers of IF loss were extracted using a modified version of the framework of Geist and Lambin (2002) and indirect drivers were identified using the framework developed by

Nelson et al. (2006). The institutional and political failure typologies were produced based on results of the case studies and the political science concepts of policy failure, government

failure, and institutional failure (Acheson, 2006; Howlett and Ramesh, 2014; Press, 2015).
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failures, pro-development policies, and proposed conservation
policies or activities. The data extracted by each reviewer was
then refined based on discussions between the paired case study
reviewers. Bias was present in the form of the unequal global
distribution of case studies. To control for this bias, extracted data
was quantitatively analyzed and synthesized as a percent of the
case studies at the global and continental scales. For a detailed
description of each variable extracted see Table 1.

RESULTS

Case Studies of IF Loss Reviewed
The review of 193 publications produced 207 case studies of
IF loss that formed the database used in this study. Data was
collated across all major forest types, five continents, and 49
countries (Appendices 2, 3). The most common reported forest
type was tropical-subtropical wet forests (63% of cases), followed
by tropical-subtropical dry forests (20%), temperate forests (8%),
and boreal forests (8%). The case studies were mostly focused
on Latin America (57%), followed by Asia (22%), Africa (10%),
Europe-Russia (6%), and North America (5%). Eighty-nine
percent of the cases were from developing countries and the
remaining 11% were from developed countries.

Global and Continental Direct Drivers
By order of frequency reported, the global direct drivers (i.e.,
proximate causes) of IF loss were agriculture, logging, and
ranching (Appendix 4). However, logging was most frequently
reported as the greatest contributor to IF loss in all continents
studied with the exception of Latin America. In Asia, logging
was followed by agriculture and infrastructure development,
with ranching infrequently reported. In North America and
Europe-Russia, logging was followed by natural factors (i.e., fire),
with many of the fires reported caused directly or indirectly
by humans. In Latin America, the most frequently reported
direct driver of IF loss was agriculture followed by ranching
and infrastructure development. Infrastructure development was
reported to play a role in ≥50% of each of the continental
analyses and mining and oil/gas drilling was reported in 19–31%
of cases by continent. A continental analysis of the co-occurrence
of agriculture and logging as driving IF loss found that 50%
of the Europe-Russian cases and 40% of the North American
cases reported logging as the primary reason for IF loss without
identifying agriculture as a driver. In contrast, logging without
agriculture was reported in only 13% of the cases from Africa
and Asia and 4% of the cases from Latin America. Agricultural
crops commonly reported to replace IFs at the continental level
were soy in Latin America, palm oil and rubber in Asia, and corn
in Africa.

Global and Continental Indirect Drivers
The indirect drivers (i.e., underlying causes) of IF loss reported
in the cases reviewed varied widely by continent and driver
type (Appendix 5). Socio-political and economic indirect drivers
were most commonly reported at the national scale for all
continents at 55 and 63% of all cases, respectively. National
and international economic drivers of IF loss were higher in

Latin America, Asia, and North America compared to Europe-
Russia and Africa. Notable economic factors identified across the
cases included increasing commodity and land prices, poverty,
and economic recession. National demographic factors were
most commonly reported as IF loss factors in Africa (63% of
cases), Latin America (48%), and Asia (36%). A continental
analysis of the association between demographic factors and
IF change identified four IF loss-demographic scenarios: high
internal population growth, general internal migration, internal
immigration caused by instability, and immigration from abroad.
In Latin America, Asia, and Africa, the demographic factors of
importance were internal population growth (34, 29, and 31%
of cases, respectively), internal migration (39, 22, and 50% of
cases, respectively), andmigration due to internal instability (5, 2,
and 19%, respectively). In Latin America and Asia, immigration
was often associated with government-sponsored immigration
projects and spontaneous colonist expansion due to poverty,
whereas in Africa, immigration was associated with poverty and
refugee movements caused by war and political unrest. With a
few exceptions, cultural and religious drivers and scientific and
technological drivers were reported in ≤10% of the continental
case studies. Examples of cultural drivers reported included
the transition from traditional hunting and gathering practices
to subsistence agriculture and changes in traditional land-
use practices. Examples of scientific and technological drivers
reported included advances in seed varieties, improved irrigation
technologies, and increased mechanization of logging operations
and wood processing.

Pro-development Policies and Political and
Institutional Failures
A global and continental analysis of “pro-development” policies
leading to IF loss found that 49% of all cases reported one
or more pro-development policy, and the number of policies
reported varied widely by continent. Pro-development policies
were more commonly reported as driving IF loss in North
America (50% of cases), Latin America (47%), and Asia (44%)
compared to Europe-Russia (30%) and Africa (19%). In Latin
America, the most frequent pro-development policies were
associated with agriculture and pasture expansion, colonization
schemes, and promotion of resource extraction (e.g., gold mining
and logging). In Asia, the most common pro-development
policies were agriculture expansion, promotion of resource
extraction (i.e., logging), and infrastructure development. In
North America, the pro-development policies most often
reported were the promotion of resource extraction (i.e., logging)
and agriculture expansion.

A common socio-political factor leading to IF loss is political
failure (59% of all cases studied) due to the absence of political
will or policies to conserve IFs (30% of all cases) (Table 2).
Absence of political will or policies was most frequently reported
on all continents except Asia, where political corruption and
failed policy efforts were more frequently reported. In Africa,
a multitude of factors drive political failure contributing to IF
loss, including political corruption, lack of policies or political
will, political instability, and insufficient or weak policies.

Frontiers in Forests and Global Change | www.frontiersin.org 4 October 2019 | Volume 2 | Article 62128

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Scullion et al. Conserving the Last Great Forests

TABLE 2 | The table below shows the reported political failures at the global and

regional scales leading to IF loss.

Political failures Global

cases

Latin

America

Asia Africa Europe—

Russia

North

America

% of cases with

political failures

59 55 67 69 40 70

Absent policies or

political will

30 30 18 44 30 50

Political corruption 10 6 20 19 0 0

Failed policy effort 11 11 20 0 0 0

Political instability or

uncertainty

10 9 4 38 10 0

Insufficient or weak

policies

8 4 7 25 10 30

Lack of funding 5 5 0 13 10 0

Results shown as a percentage of the total case studies reporting a political failure.

TABLE 3 | The table below shows the reported institutional failures at the global

and regional scales leading to IF loss.

Institutional

failures

Global

cases

Latin

America

Asia Africa Europe—

Russia

North

America

% of cases with

institutional failures

57 55 69 69 30 30

Inadequate law

enforcement

26 25 36 31 10 0

Poorly designed

policies/planning

5 4 9 13 10 10

Insufficient

institutional capacity

12 13 11 6 10 0

Issues with land

tenure

9 11 9 6 0 0

Poor

resource/development

planning

10 11 11 13 10 20

Inadequate

collaboration/coordination

1 1 2 0 0 10

Institutional

corruption

2 2 4 0 0 0

Results shown as a percentage of the total case studies reporting an institutional failure.

In North America, 80% of the cases reviewed reported the
absence of political will or a lack of policies and insufficient
or weak policies to conserve IFs. Another common indirect
socio-political factor leading to IF loss is institutional failure,
with 57% of all cases reporting a related institutional failure
(Table 3). Globally, the most commonly reported institutional
failure was inadequate law enforcement (26% of cases),
followed by insufficient institutional capacity (12%), and poor
resource/development planning (10%). Similarly, inadequate
law enforcement was most frequently reported in Latin
America, Asia, and Africa, followed by insufficient institutional
capacity, and poor resource/development planning. Institutional
failures were reported less frequently in Europe-Russia and
North America.

Recommended Policies and Strategies for
IF Conservation
In the 207 case studies, a total of 456 interventions were
recommended to address forest loss. Each intervention
was classified and organized by its respective governance
sector (Appendix 6). The most frequently recommended
sectoral intervention was forest-conservation (53% of all
recommendations), followed by inter-sectoral actions (13%),
efforts within the finance sector (8%), and public education and
science (8%). A sample of the policies and activities proposed
within each sector is shown in Appendix 6. Interventions
were assessed by how frequently they were recommended to
address indirect or direct drivers of IF loss. The most frequently
recommended interventions were forest governance (20% of
cases), forest management activities (15%), protected areas
(10%), collaboration and landscape governance (7%), and law
enforcement and monitoring (7%). The least recommended
interventions were sustainable land-use planning (2%), political
advocacy and lobbying (<1%) and addressing corruption (<1%)
(Appendix 6).

DISCUSSION

The basic assumption of this research is that the long-term
conservation of IFs depends on the integration of scientific
knowledge and conservation efforts. Results from this meta-
analysis show that the drivers of IF loss vary at the continental
level, which adds further support to existing evidence that place-
based conservation strategies are needed. As shown by this
study, a wide variety of forest conservation policies are available.
However, further research is needed to inform the design of IF
conservation interventions for specific locations and to develop a
portfolio of best practices. Improved understanding of the causes
of IF loss and an overview of best practices for IF conservation is
the focus of the following sections.

Understanding and Linking the Drivers of
IF Loss to Conservation Efforts
The meta-analysis results presented provide an overview of the
case study literature describing the global and continental drivers
of IF loss and their recommended conservation interventions.
While the drivers of tropical forest loss are well understood
(Geist and Lambin, 2002; Rudel, 2005; Kissinger et al., 2012),
knowledge gaps remain with respect to the causes of IF loss
(Heino et al., 2015). Echoing previous research on the causes of
deforestation (Geist and Lambin, 2002; Kissinger et al., 2012), this
study finds that IF loss is often directly due to a combination of
factors, including agriculture, logging, infrastructure expansion,
and ranching. Agriculture was the most frequently reported
direct driver of IF loss at the global level, but logging was themost
frequently reported continental direct driver, occurring in >85%
of the case studies not in Latin America. This finding aligns with
research conducted by Potapov et al. (2017), who used remote
sensing to show that IF loss 2000–2013 was most frequently due
to logging. Logging, agriculture, and ranching co-occurred with
high frequency on most continents, but in North American and
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European-Russian forests, logging was reported as a direct driver
on its own at a higher frequency than Latin America, Asia, and
Africa. This finding highlights how the boreal and temperate
forests of North America and Europe-Russia are particularly
threatened by the logging industry (Hansen et al., 2013; Potapov
et al., 2017). Another key continental difference was the high
frequency of ranching in Latin America but relatively low
frequency in Asia. Also, while agriculture is a frequent driver on
all five continents, the most commonly reported crops replacing
IFs on three continents were distinct. The individual case studies
also demonstrate that direct drivers often vary at regional and
local levels. For example, at the local level, Scullion et al. (2014)
found that the direct drivers of forest loss in Madre de Dios,
Peru varied by land-use designations. At the regional level,
Caldas et al. (2015) found that cattle ranching was the largest
driver of change in the Paraguayan Chaco, which contrasts with
other dry forest case studies in Latin America where conversion
due to soya expansion was dominant (Pacheco, 2006; Volante
et al., 2016). Common to all continents was the ubiquity of
infrastructure development resulting in IF loss. A number of
cases also reported mining and oil and gas extraction as drivers,
but at lower frequencies. Overall, the direct drivers of IF loss vary
widely at the continental level and often at regional and local
levels as well. The broad geographic diversity of deforestation
threats and the ubiquity of IF loss worldwide (Appendices 2, 3)
indicate that IF conservation efforts should focus on high-value
regions. The strategy of regional prioritization of IF conservation
efforts is reinforced by the finding that many “IF landscapes”
(Potapov et al., 2008) lack the full complement of their native
fauna (Plumptre et al., 2019). In other words, fully intact forests
are increasingly rare and should be targeted for conservation
efforts based on priority IF landscapes.

The indirect causes of IF loss also vary widely at the
continental level. The three most frequently reported indirect
drivers of IF loss were factors related to demographics,
economics, and socio-politics. These factors can be summarized
as increasing human demand for natural resources and
the global trade in commodities, which drive local-to-global
teleconnections (Carrasco et al., 2017) and endanger not only
IFs but also wildlife (International Union for the Conservation
of Nature, 2009; Estrada et al., 2019). In agreement with
trends of global population growth and immigration (United
Nations, 2019), clear differences were found between reported
demographic pressures across continents, including higher
frequencies of population growth and internal migration
affecting IFs in developing countries. The causes of migration
affecting IFs within developing countries were also variable,
with colonization projects, poverty, and population growth being
most reported in Latin America and Asia, and population
growth, poverty, and refugee movements being most reported
in Africa. These findings are insightful because they draw
attention to the important and diverse role of human migration
in IF change, which can include reductions or increases in
forest cover depending on the circumstances (Radel et al.,
2019). Economic factors were the most frequently reported
indirect driver worldwide and most commonly reported on
the same three continents with high levels of pro-development

policies: Latin America, Asia, and North America. The economic
drivers reported were often linked to economic growth, but
economic contraction and poverty also led to IF loss. These
findings demonstrate that an important factor driving the
continued loss of IFs, which are often geographically remote
(Potapov et al., 2008), is their continued integration into global
commodity supply chains. Since this integration threatens IFs,
this study therefore suggests that conservation efforts should
target the leading industries and pro-development policies on
each continent. For example, in Latin America, the most
frequently reported pro-development policies are the promotion
of agriculture, pastures, and logging. Thus, primary targets
in Latin America include the beef and soya industries and
companies engaged in tropical forest logging. Similarly, priority
conservation targets in Asia should include palm oil and
logging companies, and in North America, logging companies.
Interestingly, the least reported indirect drivers of IF loss,
scientific and technological factors and cultural and religious
practices, are likely relevant in far more cases than reported due
to the central role of culture in influencing human behavior
(Brislin, 1993; Schultz, 2011) and the importance of science and
technology in driving economic expansion and environmental
degradation (Millennium Ecosystem Assessment, 2005). Taken
together, this study finds that meta-analysis studies of cases
describing IF loss can inform the design and targeting of
conservation interventions and confirms that the meta-analysis
approach is limited by the biases and reporting of case study
authors (Rudel, 2008).

The need to simultaneously target both market forces and
national development policies and institutions to conserve IF is
evident in this study by the high frequency of reported political
and institutional failures driving IF loss. More than half of the
case studies reviewed reported one or more political failure. Lack
of political will or absent policies were especially problematic and
pronounced in North America and Africa. Many studies have
identified the role of political failures, including failed policy
efforts, political corruption, political instability, and insufficient
or weak policies as major threats to forests in the tropics (e.g.,
Ascher, 1999; Geist and Lambin, 2002; Kissinger et al., 2012).
This study confirms these findings and shows that such drivers
are worldwide threats to IFs. Similarly, echoing previous findings
on the important role of institutional failure in forest loss (e.g.,
Dourojeanni, 1999; Kissinger et al., 2012; Rodrigues-Filho et al.,
2015), this research found that institutional failures leading to IF
loss occur worldwide and were reported in more than half of the
cases studied. Overall, institutional failures were more frequently
reported in developing countries than in developed countries.
Across all continents, except for North America, inadequate
law enforcement was the most frequently reported institutional
failure, which aligns with other research showing that weak law
enforcement is a persistent problem facing forests in developing
countries (Kissinger et al., 2012). The relatively high frequency
of failures related to law enforcement worldwide demonstrates
that preventing IF loss is often not about writing new laws, but
enforcing existing laws and regulations. Likewise, the frequency
at which the lack of political will is cited indicates the importance
of political advocacy to change the domestic politics that

Frontiers in Forests and Global Change | www.frontiersin.org 6 October 2019 | Volume 2 | Article 62130

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Scullion et al. Conserving the Last Great Forests

surround IFs. However, increased political advocacy on behalf
of IFs was rarely mentioned as a recommended conservation
intervention. In many cases, the political reforms required to
address issues of weak law enforcement and insufficient political
will need to address the social inequities that often lead to
IF loss (Dourojeanni, 1999) and the strengthening of political
constituencies in favor of IF conservation and government
accountability (Nepstad, 2005).

A key finding of this study is the relatively high frequency
of indirect drivers of IF loss at the national level, including
demographic, economic, and socio-political factors. The
importance of these national-level factors in IF loss, particularly
decisions made by national governments and corporations, is
supported by others who have noted the key role of national-
scale institutions in driving tropical deforestation (Wells
et al., 2015; Nolte et al., 2017) and maintaining protected area
effectiveness (Brandon, 1998; Bradshaw et al., 2015). Related
evidence showing the importance of national-scale institutions
in forest conservation outcomes includes the recent success
of national initiatives to conserve large areas of forests in
China, Vietnam, and Brazil (Liu et al., 2008; Meyfroidt and
Lambin, 2009; Nepstad et al., 2014). Opportunities exist for
international actors to catalyze domestic reforms through
multilateral agreements that provide economic assistance or
increased market access in return for reform. One example is
the US-Peru trade agreement that required forest governance
reforms in Peru for greater market access to the United States
(Del Gatto et al., 2009). Similarly, international actors can
incentivize nation-states to strengthen government institutions
that manage IFs through international aid, such as the recent
investments of Norway in Liberia, Indonesia, and Brazil
(Rainforest Foundation Norway, 2018). While prioritizing
conservation efforts at the national scale makes intuitive
sense given the hierarchical structure of modern nation-states
and the importance of national-level drivers of IF loss, this
research also shows that important indirect drivers of IF
loss are nested at local and international scales. In summary,
future IF conservation efforts should design policies that target
deforestation drivers at specific geographic scales and emphasize
the targeting of national-level political systems, economic
systems, and public institutions whose mission and activities
influence IFs.

Core IF Conservation Interventions
Individual conservation policies and activities can be understood
as “tools in the toolbox” of potential forest conservation
interventions because policy instruments are viewed as
substitutable (Landry and Varone, 2005). That is, as shown
in this study, a wide range of policies and strategies exist to
conserve IFs and many of these approaches are useful under
a range of circumstances. However, some policy instruments,
such as payments for ecosystem services, are more specialized
and only effective under certain conditions (Scullion et al.,
2011; Wunder, 2013). Given the variation of policy impacts in
different contexts and the lack of “policy panaceas” to resolve
the overuse of natural resources (Ostrom, 2007), intelligent
combinations of policy instruments, known as “policy mixes”

(Howlett, 2004), are needed to conserve IFs. The strength
of policy mixes is that they are designed to create positive
synergies between individual policies and contextual conditions
(Howlett, 2004). The wide variety of policies identified in the
case studies shows that numerous IF conservation policies
are available. While there are many options available, we
identified a set of conservation interventions that when
implemented together at the landscape scale are likely to lead
to long-term IF conservation: protected areas, payments for
ecosystem services, and agricultural reforms. These policies
were chosen because of their ability to target key drivers of IF
loss identified in this study: land conversion for agriculture,
logging, and ranching as well as market prices and politics
favoring converted forests over IFs. The trade-offs of these
core interventions and their related enabling conditions are
discussed below.

Protected Areas
Protected areas (PAs) form the foundation of global biodiversity
and forest protection and are designed to prevent land-use
change (United Nations Environmental Program, 2016). The
effectiveness of PAs in conserving forests has been studied
extensively with most studies finding that PAs slow or stop
deforestation compared to unprotected lands (Joppa and Pfaff,
2011; Geldmann et al., 2013). The success of PAs depends on
internal and external conditions, such as adjacency and intensity
of nearby development and the density of park guards (Bruner
et al., 2001; Joppa and Pfaff, 2011). Not all PAs are effective
as many fail to maintain their biodiversity (Laurance et al.,
2012) or are degazetted due to political pressure (Mascia and
Pailler, 2011; Kroner et al., 2019). Establishing PAs on expanding
forest frontiers may be helpful in the short-term, but without
other supporting initiatives, such as regional land-use planning
and law enforcement, their long-term maintenance may be
too costly economically and politically. The main reasons for
this being that PAs can result in the displacement of other
land-uses (Dewi et al., 2013) and create political opposition
(Mascia and Pailler, 2011). PA success is especially challenged
in developing countries where institutions and political support
for conservation are weaker (Ascher, 1999). Similar options
but with fewer restrictions, such as indigenous reserves and
multiple-use community forestry systems, have also been shown
to be effective in maintaining forest cover (Nepstad et al.,
2006; Blackman et al., 2017). Based on the aforementioned,
we hypothesize that government-led PAs are more likely to
effectively conserve IFs in North America and Europe-Russia and
community-based systems more effective in Latin America, Asia,
and Africa.

Payments for Ecosystem Services (PES)
PES programs are an increasingly popular forest conservation
strategy that can be used to conserve IFs in lieu of or in
addition to PAs. PES programs come in a variety of forms,
including carbon payments (e.g., REDD+) and payments for
hydrological services (Porras et al., 2008; Angelsen and Rudel,
2013). The strength of the PES approach is that under the
right conditions they create a market price for the services
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of intact ecosystems that can compete with market prices for
ecosystem conversion (Wunder, 2005). PES programs may also
be advantageous because they can provide an equitable way to
offset opportunity costs borne by land-users whose land-use is
reduced by conservation efforts (Grieg-Gran et al., 2005). Major
drawbacks to PES programs are that the payments are often
marginal to the income of land-users and they may not compete
with high returns from agriculture (Fisher et al., 2011; Scullion
et al., 2014). PES interventions also require existing tenure
regimes and effective law enforcement (Wunder, 2005), which
are often lacking in remote or frontier regions. PES policies may
also increase economic resources in poor regions and ultimately
increase deforestation (Assunção et al., 2013). Nonetheless, as
evidenced by the rush of national governments seeking to receive
REDD+ funds, PES programs can provide a strong incentive to
conserve forests (Kissinger et al., 2012). The REDD+ program
and other multilateral funding programs that exchange cash
for commitments to conserve forests offer promising ways to
conserve IFs, but program criteria need to be adjusted to
explicitly include IFs (Watson et al., 2018). In summary, given
low payment prices, PES programs will work best to conserve
IFs when land-use alternatives have low economic value.
Also, effective law enforcement and stable public institutions
are needed, which frequently excludes IF landscapes in
developing countries.

Agricultural Reforms
Because PAs are insufficient to conserve all species and
landscapes (Soares-Filho et al., 2006) and because agricultural
expansion is a leading cause of IF loss and forest loss worldwide
(Kissinger et al., 2012), reforming the agricultural sector and
including private lands in landscape-level conservation strategies
is a key priority. Agricultural policies and programs designed to
reduce deforestation include approaches known as “supply chain
interventions” (Lambin et al., 2018), which aim to create market
incentives to conserve forests and disincentives for deforestation.
Transformation of the agricultural sector to conserve forests
has increased rapidly in recent years due to consumer demand
and the limited effect of public policies in slowing deforestation
(Nepstad et al., 2013). Key efforts underway to transform
agricultural supply chains include commodity roundtables, crop
certification schemes, and corporate procurement policies, such
as “no-deforestation” pledges (Nepstad et al., 2013; Rainforest
Foundation Norway, 2018). A major downside to supply chain
interventions is that they require other supporting policies
because they are vulnerable to leakage and spillover effects
(Schielein and Börner, 2018). Also, for local producers, crop
certification schemes often have low returns because of high
certification costs and low-price premiums (Nepstad et al., 2013).
In areas of the landscape where PAs and PES payments are
less effective due to weak governance or existing private land,
agricultural reforms may be useful in all regions of the world
studied. Also, while deforestation caused by smallholder shifting
cultivation appears to be decreasing in relative terms compared
to industrial agriculture (Austin et al., 2017), in Africa, Asia,
and Latin America this form of farming remains a threat to
IFs (Geist and Lambin, 2002; Potapov et al., 2017). Thus,

efforts to reduce the impacts of smallholder agriculture are
also needed. Overall, the major related policy challenge is how
to pair agricultural reforms with other multi-sectoral efforts
that together ensure IF conservation, food security, and local
income generation.

Enabling Conditions for IF Conservation
Enabling conditions are necessary for the efficacy of the core
IF conservation interventions described above and include
cooperative landscape management, enforcement, and political
advocacy. These three conditions were selected based on the
high frequency of interventions recommended related to law
enforcement and multi-sectoral actions, as well as their ability to
increase political will for IF conservation.

Cooperative Landscape Management
The diversity of cross-sectoral deforestation drivers and proposed
inter-sectoral conservation interventions reported in this study
highlight the necessity of cooperative landscape management.
Cooperative landscape management involves collaborative
management of mixed-use landscapes by land-users and
institutions with management authority at the landscape-scale
(Jacobson and Robertson, 2012), including combinations of PAs,
working forests, and agricultural landscapes. The strength of
this approach is that landscape-level collaborative efforts can
break down sectoral silos, increase co-learning, and create shared
responsibility to solve natural resource issues (Jacobson and
Robertson, 2012; Kissinger et al., 2012). Various IF conservation
interventions can be applied through cooperative landscape
management, or “territorial approaches” (Nepstad et al., 2014),
including strategic road planning (Laurance et al., 2014),
deforestation bans and moratoriums (Fagan et al., 2013), forest
zoning (Potapov et al., 2008), and land tenure reforms (Busch
and Ferretti-Gallon, 2017).

Enforcement
This study found that weak or absent law enforcement was
the most frequently reported institutional failure in Latin
America, Africa, and Asia. This situation is problematic because
enforcement of the rules and laws underlying natural resource
management is a prerequisite for conservation success (Ostrom,
1990). In general, effective law enforcement is associated with
positive forest conservation outcomes (Agrawal et al., 2014).
However, law enforcement can be economically costly and may
present opportunity costs to land-users (Börner et al., 2014).
Effective law enforcement also has the potential to exacerbate
rural poverty and can raise questions about social justice and
the legitimacy of force (Brechin et al., 2002). If used inhumanely
or without policies to offset its opportunity costs to land-users,
law enforcement will be politically unpopular and increasingly
difficult to maintain (Brechin et al., 2002). These challenges may
be overcome through community-based conservation efforts
where local communities make and enforce their own rules
(Ostrom, 1990; Cox et al., 2010). Relatedly, corruption threatens
IFs worldwide and related law enforcement efforts are essential.

Frontiers in Forests and Global Change | www.frontiersin.org 8 October 2019 | Volume 2 | Article 62132

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Scullion et al. Conserving the Last Great Forests

Political Advocacy
Absent policies or political will was the most frequently
documented political failure on all continents besides Asia.
Political advocacy is necessary to conserve IFs in a democratic
society to generate political will, challenge powerful actors,
win political debates, and ensure government transparency.
An engaged citizenry is also needed to conserve IFs because
the ultimate cause of most conservation challenges is human
behavior (Schultz, 2011), which manifests through politically
negotiated outcomes and government institutions (Dietz et al.,
2003; Fischer et al., 2012). Social movements and grassroots
advocacy whose agendas are to influence environmental politics
have long been instrumental in the legal protection of IFs,
including wilderness protection in the United States (Turner,
2012) and the recent soy moratorium in the Brazilian
Amazon (Rainforest Foundation Norway, 2018). Maintaining
and expanding the protection of IFs will thus require increasingly
effective political advocacy. Such advocacy should emphasize
persuasive storytelling and building influential and diverse
political constituencies, including corporations, politicians,
young people, and forest-dependent communities.

CONCLUSION

This study demonstrates that the synthesis of case studies of
IF loss worldwide can be used to identify distinct continental
patterns of indirect and direct drivers. This knowledge can
be used to inform the design of place-based conservation
interventions. A key finding from this study is the diversity of
reported drivers of IF loss external to the forest-conservation
sector. This reality implies that many of the most effective
policy interventions will be extra-sectoral (Wunder, 2004).
Critical non-forest sectors identified in this research include
infrastructure, finance, and education and science. Ultimately,
the inter-sectoral nature of IF loss implies the need to shift
from a linear conservation dominated approach to a holistic
multi-sectoral approach. Similarly, gaps in the recommended
conservation interventions in the case studies include a lack
of recommendations to address corruption, insufficient political
will, and institutional weakness. Whether this issue is restricted
to the case study literature or is a broader problem facing
IF conservation efforts requires further analysis, but additional
efforts are surely needed to increase political support, eliminate
subsidies and tax incentives, and address corruption.

This meta-analysis shows that IFs face a variety of direct and
indirect threats around the world. Successful IF conservation

efforts require holistic, place-based, and multi-scale approaches
focused on priority IF landscapes. Conservation efforts
at the landscape-scale cross jurisdictional borders which
creates challenges and opportunities for public-private
partnerships (Scarlett and McKinney, 2016). Ultimately,
the current paradigm of economic development must shift
to make IF conservation the preferred policy option and not
a trade-off that must be made. This approach requires the
concerted efforts of scientists, policymakers, corporations,
NGOs, and engaged citizens operating in governance regimes
that link actors and institutions across global-to-local scales.
To conserve IFs locally and globally thus requires many
different actors to work together and for governance regimes
to account for the telecoupled nature of resource flows
and collective decision-making (Munroe et al., 2019). The
structure for such collaborations is multi-scale governance
whereby global and domestic institutions provide guidance,
coordination, and monitoring and local and regional institutions
ensure policies are fit to local conditions and include local
stakeholders. Developing these polycentric governance systems
(Nagendra and Ostrom, 2012) focused on landscape-level
IF conservation will take generations, but the effort is
surely worthwhile.
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Intact forests are natural and often extensive forests free from apparent anthropogenic

degradation. Intact forests have important intrinsic and societal values, making their

protection a high conservation priority. They are, however, vulnerable to being lost

and degraded due to high opportunity costs and a lack of positive incentives to

their preservation. Market-based mechanisms, such as voluntary certification, might

provide a means to conserve intact forests while maintaining income through sustainable

forest uses. Yet possibilities to ensure strict protection of large areas of intact forests

through certification remain limited as long as premiums from certification are bound

to the units of forest products that are sold. We explore challenges for incorporating

intact forests into certification processes, and of maintaining intact forests within forest

management units. To circumvent these challenges, it might be necessary to create

a form of compensation payment scheme to overcome the foregone costs of intact

forest preservation. Alternatively, certification systems might need to consider permitting

some degree of regulated extraction in exchange for recognition and implementation

of stringent forest preservation. This will require a re-evaluation of the way intactness

is treated within current certification standards and the requirements for forestry within

intact forests. Eventually, intact forest conservation and socially and economically viable

forest management can only be reconciled on the landscape scale.

Keywords: land sharing land sparing, protected areas, REDD+, forest management, FSC, sustainable

intensification, boreal forest, tropical forest

INTRODUCTION

Global efforts for biodiversity conservation are not sufficient to be distributed equally around the
world. In order to target those areas with the highest conservation value, two contrasting concepts
have emerged, both prioritizing landscapes that are biodiverse, but one focussing more on hotspots
the other more on coldspots of human activities. Hotspots are global centers of biological diversity
and endemism that are threatened by human activity, especially from habitat loss (Brooks et al.,
2002). Coldspots are extensive and largely intact and undisturbed natural regions where the threat
of loss is less immediate, but where the problem of degradation is increasingly important. The
maintained integrity of coldspots is important for their large carbon stores and the extensive
habitats of many disturbance-sensitive species (Watson et al., 2018). According to recent research,
areas that have been identified as global hotspots currently contain an average of only 15% of their
natural, intact vegetation (Sloan et al., 2014). Coldspots, in contrast, include the last large intact
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forests that remain free of human activities. Intact forests tend
to be remote from populated areas and urban centers, and often
occupy mostly inaccessible and agriculturally marginal regions in
both tropical and boreal regions. One commonly used definition
defines intact forest landscapes (IFL) as areas of at least 500
km2 that do not show any sign of remotely detectable human
activity or habitat fragmentation (Potapov et al., 2008). Intactness
is in itself a valued aspect of conservation quite apart from
the biodiversity that such IFL might contain, and therefore
preserving intactness is an additional and complementary
component of conservation. The expansion of exploitative
activities even into some of the most remote corners of the
globe is stimulating efforts to maintain these extensive areas of
permanent forest cover, especially in countries where pressure to
harvest timber or convert forest to agricultural uses is high.

THE ECONOMIC IMPERATIVES OF USING
AND NOT USING INTACT FORESTS

Just as avoided deforestation is a cost-effective way for climate
mitigation (Griscom et al., 2017), conserving intact forests
has been described as a cost-effective way of delivering
conservation benefits (Potapov et al., 2008). The underlying
assumption is that maintaining an intact forest by avoiding
human interventions of any kind has lower direct costs than
maintaining, managing, or restoring smaller forested areas
located in populated biodiversity hotspots. Large countries, such
as Canada and Russia in boreal regions, or Brazil and the
Democratic Republic of Congo in the tropics, could potentially
maximize conservation outcomes for lower cost by preserving
existing intact forests.

Yet, while on global scale the protection of intact forests can be
a win to society, locally some people lose their assets. Many intact
forests overlap with commercial logging interests (e.g., Courbin
et al., 2014; Gaveau et al., 2014; Kleinschroth et al., 2017) and
have been or will be exploited for timber under a business as
usual scenario. The opportunity costs for avoided exploitation
of resources within intact forests can be very high (Nasi et al.,
2012). Areas of intact forests often have high commercial value
for wood production, due to the age of forest stands, and the
prevalence of large old trees. Forest companies have a strong
financial interest to access the “primary forest premium,” and
governments are attracted to the tax revenues generated from
commercial logging. If governments do protect intact forest
areas to the exclusion of extractive industries, some form of
compensation payments (e.g., for ecosystem services) might be
demanded by concession holders. Both REDD+ and mitigations
for environmental impacts elsewhere could, theoretically, fund
this. Yet, such compensation schemes are only viable if the funds
are competitive with the expected extractive revenues (Butler
et al., 2009). Additionally, in countries with limited statehood,
characterized by weak institutional capacity in the periphery,
the commitment to preserve forests might weaken over time, or
might never materialize, as happened to Ngoyla-Mintom forest,
one of the last intact forests outside national parks in Cameroon
(Ongolo, 2015).

The long-term preservation of intact forests is also threatened
by national development agendas. Nations typically seek to
improve transport and power infrastructures in order to aid the
extraction of natural and mineral resources, and reduce post-
harvest losses in the food sector by increasing accessibility to rural
lands. Logging is often a first step in this process, as it generates
revenue and requires investment in initial infrastructure upon
which subsequent development can be based.

FSC AS AN AGENT TO IMPLEMENT
INTACT FOREST CONSERVATION

Forest certification is a voluntary, market-based incentive
mechanism to validate sustainable forest management for wood
production in addition to legal compliance as a form of non-
state governance. As such, it relies for its effectiveness on the
marketing of forest products from responsibly managed forests.
There is a need for market rewards to compensate owners
for the cost of certification. The process of forest management
certification implicitly follows a “land sharing” approach, based
on the assumption that improved management across the whole
management unit delivers overall benefit on social, environment
and economic grounds.

FSC certification rules require a minimum of 10% of
the management unit area to be set aside for conservation
purposes (FSC Policy Standards Unit, 2010). In practice, this is
complemented by areas designated as High Conservation Value
(HCV) and un-operable areas, meaning that the percentage of
protected forest within the management unit may be much
higher. In 2014, FSC set itself the target to include IFL as an
HCV criterion (FSC Policy Standards Unit, 2017), with far-
reaching consequences for the implementation of certification
in boreal and tropical forests (Kleinschroth et al., 2019). The
opportunity costs introduced by the mandatory protection of
IFL as part of certification depends on the individual location of
a forest management concession and on the economic value of
the IFL. The larger the overlap between concession and valuable
IFL, the higher the opportunity costs (Karsenty and Ferron,
2017). Intactness, as defined in the IFL concept, can only be
maintained through strict protection. Yet, the price premium
from certification is bound to the units of wood sold, not
to the area protected (Figure 1). A company with concessions
that include large overlaps with IFL areas will therefore be
disadvantaged, unless it is compensated for the opportunity costs
in a different way.

The influence of FSC over global IFL is small. In Russia, 1.6%
of the 225 Mio ha of IFL area fell into certified concessions
(Ptichnikov et al., 2017) and in the Congo Basin 1.2% of the 84
Mio ha of IFL are found within certified concessions of Republic
of Congo, Gabon, and Cameroon (based on own calculations
for 2016). Other major overlaps between IFL and FSC certified
areas occur in Canada and Brazil, where we were unable to find
complete spatial data of certified areas. Total certified area in
the six main IFL countries has stagnated since 2014 (Figure 2).
In Africa, for example, the area of FSC certified forest has
declined by 9% (from 7,421,322 to 6,784,372 ha) from February
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FIGURE 1 | Conceptual comparison between produced yields and income for the same area of forest under conventional and certified management. “Certified +”

stands for certification that includes protection of IFL.

2016 to 2019 (https://fsc.org/en/page/facts-figures). This reflects,
at least in part, the current atmosphere of uncertainty in the
forestry sector regarding FSC certification to which the new
IFL policy is contributing (Rotherham, 2016). Obtaining forest
certification is a long process, and considerations as to whether
to maintain a certificate might last longer than a few years,
and such considerations might therefore not yet be reflected in
currently reported certified areas. More remarkable is the strong
increase of the area under double certification by FSC and the
competing scheme Programme for the Endorsement of Forest
Certification (PEFC). Data published jointly by FSC and PEFC
shows a strong increase of the area under double certification
in the three main IFL-countries Brazil, Canada, and Russia, as
well as in all other countries from 2017 to 2018 (Figure 3).
Around 43% of all FSC certified forest in Canada is now also
certified by PEFC, with equivalent values being 27% for Russia
and 51% for Brazil. This can be interpreted as a signal that the
industry is seeking a backstop solution through an alternative
certification scheme in the event that FSC is no longer tenable
for them.

INCORPORATING IFL WITHIN THE FSC
VOLUNTARY FRAMEWORK

The voluntary nature of certification means that the standards
can only be as demanding as the marginal value of the
certified label to the certified company. If standards become too
demanding, certification will be a net cost, rather than a benefit
to timber companies, resulting in “flight” from FSC. In order
to prevent this, and to remain a viable influence in the timber
trade, FSC could take either an “Exclusion Strategy,” abrogating
responsibility by excluding intact forests from certified areas,
or a “Reduced-impact Strategy,” allowing timber production
in intact forests while attempting to reduce the impact of
this activity with additional requirements. For other strategies

to become viable, certification would need to move further
to a landscape scale, as we propose in the last section of
this article.

The Exclusion Strategy excludes forest concessions that
overlap with intact forests from certification, by not allowing
any new certificates in IFL areas or by revoking existing
certificates from IFL areas. The FSC has been criticized
for certifying logging inside intact forests (Greenpeace,
2017). Removing IFLs from the certified area protects
the reputation of the FSC brand at a superficial level, but
fails to address the drivers of intact forest degradation.
From a conservation perspective, the Exclusion Strategy is
only useful if areas excluded from FSC certified forestry
operations are also excluded from any other uses and become
protected by governments. Yet, protected areas around
the world experience strong human pressures (Jones et al.,
2018; Schulze et al., 2018) and the effectiveness of strict
protected area management is limited (Oldekop et al., 2016).
Furthermore, while the wider implementation of REDD+
payments remains deadlocked (see e.g., Nantongo and Vatn,
2019), governments have few if any sources of compensation
for the creation of additional protected areas. The likely
outcome is that many IFLs would be exploited by companies
using conventional (non-certified) harvesting methods, or
companies using other certificates that lack IFL considerations
(Karsenty and Ferron, 2017).

Alternatively, FSC could follow the Reduced-Impact Strategy,
in the expectation that impacts on intact forests would be much
less under light and highly regulated extractive management
than alternative exploitation scenarios. This approach would
allow timber extraction from an agreed portion of IFL
areas within certified concessions, on the basis of tighter
requirements on timber harvesting practice, post logging controls
and increased permanent conservation set asides in critically
important areas. This would allow FSC to govern actions
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with large IFL (sources: https://fsc.org/en/page/facts-figures, https://www.

atibt.org/en/press-release-of-our-partner-pafc-gabon-the-forest-certification-

pacf-gabon-continues-its-development-and-commitment-to-the-gabonese-

forests-by-rose-ondo-president-of-pafc-gabon/).

in IFL portions of certified concessions, but will require a
reinterpretation of FSC policy toward IFL and the practices
allowed within them.

From an ecological point of view, there are two main
arguments against logging in intact forests: modification of the

forest stand due to tree harvesting (Martin et al., 2015), and
provision of access to other land uses due to road building
(Kleinschroth and Healey, 2017). Both processes can have severe
impacts on plant and animal communities. Forest recovery
strategies should, therefore, be an integral part of any forest
management considerations. Forest recovery strongly depends
on logging intensity (Kleinschroth et al., 2013). Common logging
cycles of 30 years are considered too short to sustain yields
of commercial species (Karsenty and Gourlet-Fleury, 2006),
resulting in the strong contrast in standing value between intact
and logged forests. At the same time carbon stocks in managed
Amazonian forests have been shown to recover within <21
years at logging intensities below 30 m3 ha−1 (Rutishauser
et al., 2015). For disturbance sensitive animal species such as
the woodland caribou (Rangifer tarandus caribou) in Canada,
habitat recovery after clearcutting forestry operations takes
at least 50 years (Environment Canada, 2012). In contrast,
populations of chimpanzees (Pan troglodytes troglodytes) and
gorillas (Gorilla gorilla gorilla) in tropical managed forests
returned to baseline within <10 years after logging (Morgan
et al., 2017). Especially in Central Africa, well-managed forests
make an important contribution to species conservation (Clark
et al., 2009; Stokes et al., 2010; Poulsen et al., 2011; Maisels
et al., 2013). Forest and species recovery after logging are highly
variable depending on geographical contexts. This highlights
the importance of regional assessments of forest intactness
to be used in forest management standards implemented on
the ground.
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The current identification of IFL is based on remote sensing
and the most visible traces of industrial logging are the roads that
are constructed for access. Definitions of intactness that could
work within the FSC system could take into account ecological
values on finer scales, and differentiate for the actual impact of
different types of disturbance depending on the duration of time
they occur, and on how quickly and effectively habitats can be
restored afterwards. In such a case, the intact forest is maintained
as an extensive forest unit that has not lost the main functions,
carbon storage and the provision of habitat to disturbance
sensitive species. The only forestry activities allowed would be
constrained and regulated by strict adherence to FSC guidelines.
Criteria for the definition of intact forests could include the
extensiveness (e.g., more than 500 km2) of continuous cover
forest with viable populations of monitored umbrella species
such as the above mentioned woodland caribou in boreal regions
and primates in the tropics. Further management would need to
incorporate ecosystem service outcomes that are accommodated
within a carefully managed and certified concession. Human
activities would be limited to those permitted by the certifications
standards, and any interventions (e.g., logging areas and roads)
should no longer be discernible through remote sensing within
5 years of their implementation (Kleinschroth et al., 2015). The
Reduced-impact Strategy presupposes that effective monitoring
and verification of the efficacy of certification guidelines in
maintaining biodiversity and ecosystem services and functions
across intact forest areas.

THE CONSEQUENCES FOR FOREST
MANAGEMENT IN NON-INTACT AREAS

If FSC requires companies to retain the oversight and
management of IFLs, it is likely that timber production from
these areas will have to be reduced in line with more stringent
operational requirements, even to zero under current IFL
standards. This may drive the intensification of timber extraction
outside IFL areas to maintain current levels of timber output with
implications for the implementation of certification standards
and the marketing of certified wood. The potential for companies
to do this while remaining within the standards expected of FSC
certification remains uncertain, and will no doubt vary on a
case by case basis, but the more general point is that we might
expect pressure to increase on non-IFL forests within concession
areas. Sustainable intensification is an approach to minimize
the environmental footprint of productive systems by increasing
outputs per area for multiple purposes (Rockström et al., 2017),
but the extent to which this can be achieved in natural (i.e.,
not plantation) tropical or boreal forests has yet to be assessed
in detail.

In clearcutting regimes of boreal forests, sustainable
intensification would mean higher investments in silvicultural
interventions before and after harvesting, requiring investment
from forestry companies in technology, recruitment and training
of skilled employees (Naumov et al., 2016). For tropical forests
with selective logging regimes, intensification could be achieved
through higher extraction regimes in previously disturbed

forest to increase light availability for faster regeneration
of light-demanding timber species (Fredericksen and Putz,
2003). Other improvements include more careful mapping and
planning processes, and using remote sensing and precision
forestry before any operations take place. Increased efficiency
in timber processing and transformation to reduce waste, and
the marketing of a broader range of species, offer additional
options for sustainable intensification (Karsenty et al., 2008;
Horne, 2013). Current forestry regimes in remote regions with
low tenure security may not, however, favor intensification on
account of the costs relative to the returns when compared to
conventional logging systems (Mathey et al., 2008).

URGENT NEED FOR LANDSCAPE SCALE
SOLUTIONS

Land use changes in increasingly remote regions push back the
forest frontier through degradation and forest clearance, and
increased vulnerability to fire and illegal encroachment (Ahrends
et al., 2010). To preserve intact forests, expansion into the forest
frontier needs to halt. Buffers of managed natural forests might
have an important function in maintaining a stable frontier
between intact forests and agricultural land (Gaveau et al., 2013),
provided that these activities are genuinely sustainable, and
managed in a way that does not facilitate “hidden” encroachment
as has been observed in agroforests that expand into natural
forests legally or otherwise.

Care should be taken to ensure that “Exclusion Strategies”
do not lead to displacement of unsustainable forest uses to
other areas or countries with weaker law enforcement (Lambin
and Meyfroidt, 2011). Such leakage has been observed in the
context of REDD+, where deforestation was avoided where
it was been paid for, but this led to forest losses elsewhere
(Fisher et al., 2011). FSC provides some leverage to protect
more intact forest areas, while ensuring financial benefits flow to
forests country governments. Yet, any effort of FSC to protect
intact forests will be spatially limited to those areas where
certified concessions overlap with intact forests. Intact forests
are generally larger than certified forest areas, meaning that
measures to afford permanent protection to intact forests still
depend on the creation, financing and management of protected
areas. If certified forest management is to play a major on-
the-ground role in intact forest protection, forest management
certification of intact areas should be spatially aligned with
protected areas.

Moving certification from the concession to the landscape
scale, allows thinking beyond the land sharing—land sparing
paradigm. Land use allocations in forested landscapes that
strike a balance between productivity and conservation have
been proposed. In a case study in Borneo, setting aside two-
thirds of the land as protected areas could potentially be
compensated by the incomes from certified selective logging
and wood fiber plantations on the remaining third of the land
(Runting et al., 2019).

Yet the landscape approach demands a coordination process
that operates above the concession scale. Coordinated planning
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that encompass a range of degraded, productive and intact
forests in order to direct optimal spatial configurations
of forest uses and restoration is not currently possible
through management unit based voluntary certification.
Moreover, supply chains emanating from regions such as
the Congo Basin are structured around specific timber
commodities, and a business plan built around plantations,
even if only a small proportion of the land, is not necessarily
viable. The proposed differential land allocation solution
requires action from a range of stakeholders, including
governments, and new paradigms for land use planning and
conservation finance.

The protection of intact forests is gaining momentum and
support from society, but existing certified companies view
the IFL issue as a challenge to their continued viability in
important timber producing regions (Rotherham, 2016; Karsenty
and Ferron, 2017). To protect more intact forest, we need
to explore ways of overcoming the concerns of certified
companies that are often the most progressive actors in IFL
frontier areas. Since these companies agreed to be certified,
we can assume that they have some degree of willingness to
respect and enforce ecological considerations in response to
the demands of their target markets. To bridge this challenge,
we might need to compromise on the strict non-intervention
IFL approach, while still retaining the core elements of its
agenda, including the preservation of extensive forest areas,
the biodiversity they contain, and the services they provide.
Alternatively, incentives could be provided in the form of
compensation payments for non-exploitation, and these can be
within the context of landscape-level payments for ecosystem

services (Ghazoul et al., 2009). In other words, certification that
includes the protection of IFL areas could make a company
potentially eligible for REDD+ payments. Making a stronger
link between the ecological necessities of intact forest protection
and the economic possibilities of certification can eventually
strengthen both, for the benefit of livelihoods in production and
conservation forests.
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The world’s forests are crucially important for both biodiversity conservation and climate

mitigation. New forest status and forest change spatial layers using remotely sensed

data have revolutionised forest monitoring globally, and provide fine-scale deforestation

alerts that can be actioned in near-real time. However, existing products are restricted

to representing tree cover and do not reflect the considerable spatial variation in the

biological importance of forests. Here we link modelled biodiversity values to remotely

sensed data on tree cover to develop global maps of forest biodiversity significance

(based on the rarity-weighted richness of forest mammal, bird, amphibian and conifer

species) and forest biodiversity intactness (based on the modelled relationship between

anthropogenic pressures and community intactness). The strengths and weaknesses of

these products for policy and local decision-making are reviewed and we map out future

improvements and developments that are needed to enhance their usefulness.

Keywords: forest cover, remote sensing, biodiversity, Biodiversity Intactness Index (BII), IUCN Red List

INTRODUCTION

The world’s forested biomes are crucially important for terrestrial biodiversity but humanity’s
growing demands for resources have led to the removal of natural forest for agriculture and the
degradation of forest landscapes through hunting and timber removal, fragmentation, pollution,
and other human impacts (Foley et al., 2005; Song et al., 2018). Such pressures are impacting forest
biodiversity (Newbold et al., 2013, 2016; Phillips et al., 2017), as many sensitive species are reliant
upon intact forest landscapes and “primary” forests (Gibson et al., 2011; Betts et al., 2017).

Remote sensing has been established for over 40 years as a vital tool for understanding
how land cover and land use are changing over time. As satellite technology and analytical
methodologies have improved, computing power has increased and data have become increasingly
freely accessible, the available products have increased greatly in sophistication and spatial and
temporal resolution. For forest biomes, these developments have resulted in the creation of the
world’s first global 30-m resolution tree-cover status and change product (Hansen et al., 2013),
which in turn facilitated the development of a suite of academic papers and freely available products
within the “Global Forest Watch” partnership, covering forest status and trends (Hansen et al.,
2013), forest carbon (Tyukavina et al., 2015), and forest tree height (Hansen et al., 2016).
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However, measurements of tree presence and absence alone
are a poor surrogate for biodiversity value and biodiversity
loss (Tropek et al., 2014). Biodiversity, including measures such
as species diversity, species endemism, or genetic diversity, is
unequally distributed, with major biological differences among
and within the forested ecoregions of the world (Olson et al.,
2001; Dinerstein et al., 2017). This variation means that equally
sized areas of tree cover, mapped through remote sensing, often
differ dramatically in biological value (however this may be
defined) among different continents, and at different locations,
latitudes, and elevations.While these patterns have been explored
for particular taxa by linking species distribution data to global
tree cover loss data (e.g., Buchanan et al., 2011), until now
there has been no global analysis of biological values of forests
(covering a broad suite of taxa) linked to the newly available
tree-cover data enabled by Hansen et al. (2013).

In this paper we present approaches that estimate how forest
cover change affect two aspects of biodiversity value, through
a combination of modelled biodiversity data that are spatially
linked to remotely sensed data. The first approach uses data
from the IUCN Red List (www.iucnredlist.org), a widely used
dataset relating to species’ risk of extinction, including spatial
distributionmaps for each species.We use these maps to estimate
and map biodiversity significance, based on rarity-weighted
richness (through aggregate scores of range-size rarity), for
all forest-dependent mammals, birds, amphibians and conifers
across the forested regions of the world, highlighting locations
that make a disproportionate total contribution to the global
distributions of these species (Williams et al., 1996).

The second approach uses data from the PREDICTS database,
a large taxonomically and geographically representative global
database of the impact of anthropogenic pressures on local
biodiversity (Hudson et al., 2017). This database is analysed
statistically to estimate andmap biodiversity intactness, following
the framework outlined by Newbold et al. (2016) and Purvis et al.
(2018), reflecting the proportion and abundance of a location’s
original forest community that remain.

These two layers are both informative about how different
facets of forest biodiversity are distributed; considering them
together provides added information, such as highlighting areas
that are potentially suitable for restoration or conservation.

MATERIALS AND METHODS

Tree Cover Change
Gridded tree cover, tree-cover loss and tree-cover gain data as
described by Hansen et al. (2013) were accessed in December
2017 from the Google Earth Engine (Gorelick et al., 2017)
data repository. However, tree cover for 2010 was accessed
from the USGS Land Cover Institute (2017). Thresholds of
minimum crown cover/closure (MCC), from here on referred
to as tree cover, for delimiting forested land vary greatly within
scientific literature (Lund, 2002, 2015; Magdon and Kleinn, 2013;
Magdon et al., 2014). The US National Vegetation Classification
System defines forests as areas with a 60% tree cover (Grossman
et al., 1998), UNEP (2001) use a threshold of 40% tree cover
to distinguish closed forests, Kohl and Päivinen (1996) use a

threshold of 20% tree cover for distinguishing European forests
and the Vegetation Resources Inventory (for Canadian forests)
defines a treed area as having 10% tree cover (Sandvoss et al.,
2005). The FAO uses a threshold of 10% MCC to determine
whether an area has been deforested (FAO, 2000) in contrast to
Hansen et al., 2010 who suggest that a value <25% MCC can be
used for measuring global deforestation across all biomes, due
to its ability to “identify tall woody vegetation unambiguously
in multispectral imagery.” Tropical and more forested countries
typically use higher tree cover in their national assessments
relative to countries primarily outside of forest biomes, for
example, Zimbabwe defines forest using a tree cover of 80%
(Magugu and Chitiga, 2002) whereas Australia uses a tree cover
of 20–50% (ABARES, 2018). The scale of the reference area
is important, with forest area positively correlated to reference
area size (Magdon and Kleinn, 2013). For this study we selected
the more conservative value of 60% tree cover to indicate the
presence of forest; however, for comparison, we also calculated
biodiversity intactness and biodiversity significance maps using a
forest definition of 25% tree cover and have included the results
within the Supplementary Material (SM Figures 1–3).

Tree cover data may not distinguish between natural forests
and forests that have been planted for human uses, yet
the biodiversity value of such plantation forests is typically
considerably lower (e.g., Gibson et al., 2011; Newbold et al.,
2015; Phillips et al., 2017). If the rotation length of plantations
is greater than the time span of the tree-cover data, and
other criteria such as height and density of trees are met,
then treating plantation forests as though they are natural
would lead us to overestimate their biodiversity value. To
distinguish between natural forests and plantation forests we
used the Spatial database of Planted Trees (SDPT; Harris et al.,
2019), a compilation of mapped and modelled plantation data
from multiple countries, that focuses on including intensively
managed plantations and excludes semi-natural forests with
intensive natural regeneration. Plantations in China and Papua
New Guinea in the SDPT could not be included due to
data restrictions. Further details of spatial datasets used in this
study can be found in SM Table 2.

Biodiversity Significance
Tree cover data for 2018 and annual tree-cover loss data between
2000 and 2018 were used in this analysis.

Using the IUCN Red List dataset (www.iucnredlist.org), we
extracted spatial data on distributional boundaries and tabular
data on habitat preferences and elevation limits for birds,
mammals, and amphibians (provided by IUCN in October 2017)
and conifers (in November 2017). Following Tracewski et al.
(2016), we defined forest-dependent species as those birds coded
by BirdLife International as having high or medium forest
dependency (Buchanan et al., 2008; Bird et al., 2012), and those
mammals and amphibians coded by Rondinini et al. (2011)
and Ficetola et al. (2015), respectively, as having high forest
dependency. Differences in forest-dependency selection criteria
(i.e., high, medium etc.) between birds and other taxa reflect
variation in how dependency is defined. We defined forest-
dependent conifers as those coded for forest habitats only (IUCN,
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2017). This produced a list of forest-dependent mammals (n =

1,463), amphibians (n = 3,563), birds (n = 6,841), and conifers
(n = 393), totalling 12,260 species for further analysis. These
taxonomic classes are the only ones in which all or nearly all
terrestrial species have been assessed for the IUCN Red List
and for which spatial distribution maps are available (BirdLife
International Handbook of the Birds of the World, 2016; IUCN,
2017).

Biodiversity Significance of Remaining
Forest in 2018
To calculate the significance of remaining forest habitat for each
forest-dependent species, we produced an “Extent of Suitable
Habitat” (ESH) map [now known as Area of Habitat: (Brooks
et al., 2019) through exclusion of areas within the species’
distribution with (1) <30% tree cover in 2000, or (2) any tree
cover loss between 2000 and 2018, and/or (3) altitude outside the
species’ elevational limits as defined by IUCN (2017). Spatially
explicit elevation data was obtained from the GMTED2010
dataset (Danielson and Gesch, 2011). We also removed areas of
plantations based on the SDPT dataset (Harris et al., 2019), except
for ∼20% of species that were listed with affiliations coded as
“Suitable” for either Plantations or Subtropical/Tropical Heavily
Degraded Former Forest habitats (IUCN, 2017). For such species,
composed primarily of birds, including plantation areas in the
ESH calculations represents their ability to utilise both habitats.
Where these are present within the species’ range this will then
lead to lower significance scores in natural forest areas, reflecting
their lower dependence on natural forest habitat.

The range-size rarity for each species within a grid cell was
calculated as the contribution of each ∼30m cell toward the
global extent of suitable habitat for the species (i.e., the inverse
of the ESH within each species’ distribution). For those species
coded with having different seasonal distributions, we calculated
range-size rarity scores for each of these distributions separately.
Range-size rarity scores were summed across all species present
within a grid cell to give an overall rarity-weighted richness
score, or the “biodiversity significance” of the cell. Cells with
high values for biodiversity significance typically contain more
species for which the cell comprises a larger proportion of their
global distribution. Loss of forest in such cells is therefore of
disproportionate significance in terms of loss of biodiversity (at
least for the taxonomic groups considered). We note that there
are many alternative ways of estimating biodiversity importance,
but we use the term “biodiversity significance” for this metric as
“rarity-weighted richness,” “range rarity,” and related terms are
not widely understood by non-specialists.

We converted species’ distribution polygons to raster format
at ∼1 km resolution. This resolution is more relevant to the
accuracy of the species distribution data than the high resolution
(∼30m) forest data. However, to calculate the area of forest
habitat (ESH) per species, and for creating final outputs, we
used the forest data at ∼30m resolution. Therefore, the coarser
resolution of the underlying species data remains in the final
outputs, i.e., biodiversity significance values for forest pixels do
not vary within ∼1 km cells. All analyses were completed in
Google Earth Engine (Gorelick et al., 2017).

Significance of Forest Loss 2000–2018
To calculate the significance of loss, we followed a similar
approach, but instead calculated range-size rarity values based on
ESH using forest cover from 2000. This shows how significant
a pixel of forest was for a species in 2000. We then summed
this value across all species per cell to calculate the biodiversity
significance of forest cells lost during 2000–2018.

Biodiversity Intactness
To model biodiversity intactness, we analysed the PREDICTS
database which comprises well over 3 million rows of
geographically and taxonomically representative data of land-
use impacts to local terrestrial biodiversity derived from
the primary literature and other databases (Hudson et al.,
2017). As our intention was to explore the impacts of forest
change, the database was first subset to sites within forested
biomes (Olson et al., 2001) yielding a dataset from over 550
studies encompassing over 19,700 sites, 2.3 million observations
and ∼25,000 taxa. A generalised linear mixed-effects model
framework was used to assess how community abundance
was impacted by land use and human population density
(extracted from HYDE 3.1: Klein Goldewijk et al., 2011) within
forest biomes, following the methods outlined in Newbold
et al. (2016). Briefly, the random-effects structure included a
study-level random effect to account for the innate variability
between samples collected using different methodology and
focused upon varying taxa, and a biome-level random effect
with human population density as a random slope to account
for differences in the influence of human population density
among biomes. A random slope of land use within study
accounted for the study-level variation in the influence of land
use on community abundance. The fixed-effects structure was
selected using backwards stepwise selection using likelihood
ratio tests to select the most appropriate model. The model
of compositional similarity followed the methodology of De
Palma et al. (2018) (see also Newbold et al., 2019, Nature
Ecology and Evolution). In brief, a matrix of paired site-level
comparisons was first prepared where all sites within a study
were compared to all minimally-used primary vegetation sites
within that same study. The asymmetric Jaccard Index was
employed to calculate abundance-based compositional similarity
for each paired comparison, and a mixed-effects model was
fitted to predict the influence of land use, the environmental
distance between sites and the geographic distance between sites,
on logit-transformed compositional similarity. The community
abundance and compositional similarity model coefficients
were multiplied to produce the abundance-based Biodiversity
Intactness Index (BII), our biodiversity intactness metric.

To estimate how the spatial patterns of forest change have
affected biodiversity intactness, we used the layers of tree cover,
loss, and gain during 2000–2014 (Hansen et al., 2013 updated)
to produce a map of land-cover change. The downscaled land-
use map produced by Hoskins et al. (2016) provides data on
anthropogenic land uses (such as cropland, pasture and urban)
at a spatial grain of ∼1 km2; we used this map to infer the land
use after deforestation. Each deforested pixel was allocated the
proportions of the anthropogenic land-use categories within the
corresponding grid cell of the downscaled land-use map.
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We defined 12 Boolean conditions describing important
boundaries within the input data layers (SM Table 1). Mutually
exclusive expressions were then built to describe each of the
land covers as a function of the Boolean variables (Equations 1–
7). It was important to include a distinction between tropical
and temperate areas due to the input data informing the
model coefficients. The PREDICTS database, which populates
and informs the models for BII, uses different classification
schemas for tropical and temperate environments: specifically,
tropical secondary forest characterised as “young” cannot be
older than 10 years, whilst in temperate biomes “young”
secondary forests can be up to 30 years old. This reflects
the speed with which succession takes places in temperate
vs. tropical areas, and especially how intactness can recover
faster in the tropics. The expressions below reflect this by
introducing variable I (SM Table 1), which differentiates tropical
and temperate biomes.

APrimary, Mature Secondary = P′ · T · L′ · G′

· V′ (1)

AIntermediate Secondary = P′ · (T · L′ · (G+ V))

+((T′

+ L) · D′

· R′

· I) (2)

AYoung Secondary = P′ · (T′

+ L) · D′

· ((R · I)+ I′) (3)

ACropland = P′ · (T′

+ L) · D · C (4)

APasture = P′ · (T′

+ L) · D · B (5)

AUrban = P′ · (T′

+ L) · D · U (6)

APlantation = P (7)

A primary or mature secondary forest is defined as an area which
is not a plantation, meets the forest cover in 2010 criteria, and
which has not experienced forest loss (Equation 1). It must also
not have recorded growth, and tree cover must have been stable
(±20%) between 2000 and 2012 (Equation 1). An intermediate
secondary forest is defined as an area which is not a plantation
and which is either: an area which experienced loss or does
not meet 2010 cover criteria, but which is not disturbed and
is both tropical and over 10 years old; or which meets cover
criteria and has not experienced loss but is either still growing
or unstable in its cover between 2000 and 2012 (Equation 2).
A young secondary forest is defined as an area which is not
a plantation and has experienced loss or does not meet 2010
cover criteria, but which is not disturbed, and is either tropical
and under 10 years old, or temperate (Equation 3). Cropland
is defined as an area which is not a plantation and does not
meet 2010 cover criteria or has experienced loss, which is also
sufficiently disturbed, was not disturbed by natural fires, and is
dominated by cropland (Equation 4). Pasture is defined as an area
which is not a plantation and does not meet 2010 cover criteria or
has experienced loss, which is also sufficiently disturbed, was not
disturbed by natural fires, and is dominated by pasture (Equation
5). Urban land is defined as an area which is not a plantation and
does notmeet 2010 cover criteria or has experienced loss, which is
also sufficiently disturbed, was not disturbed by natural fires, and
is dominated by urban areas (Equation 6). Finally, plantations
are defined as areas which are covered by the plantations layer,
independent of all other variables (Equation 7). A description of

the Boolean conditions used to define land use can be found in
SM Table 1.

This resulted in a map within forested biomes with
the following land use classes: Primary/mature secondary
forest, Intermediate secondary forest, Young secondary forest,
Cropland, Pasture, and Urban. The statistical models were
crossed with global maps of biomes, land use, and human
population density to make global spatial projections of
both abundance and compositional similarity, which were
then multiplied together to provide a map of modelled
biodiversity intactness.

RESULTS

Forest Biodiversity Significance
Our forest biodiversity significance layer shows that the relative
importance of forest locations—in terms of their contribution
to the distributions of mammal, bird, amphibians and conifer
species occurring in them—varies around the world (Figure 1).
The areas with low values across most of the temperate region
tend to support fewer species and these tend to have larger
geographical distributions. While lowland tropical forests in
the Amazon and Congo basins are species-rich, these species
also tend to have large distributions, so the contribution of
any individual location to the overall distributions of these
species tends to be low. Conversely, montane forests in South
America, Africa and SE Asia all contain many species with
small geographical distributions, as do the lowland forests of
insular SE Asia, coastal Brazil, Australia, Central American,
and Caribbean islands. These regions all show high values for
biodiversity significance on our map; as well as being species-
rich these individual locations make a greater contribution to the
overall distributions of the species occurring within them.

The forest biodiversity significance of tree-cover lost from
2000 to 2018 gives an indication of the impacts of removal of
forested habitat (with the caveat that some forest loss may be
from natural causes, such as hurricane damage). Our results
(Figure 2) highlight those regions where tree cover loss (change
from above 60% tree cover to 0% tree cover within a 1 km2

pixel) has resulted in disproportionate loss of the distributions
of the world’s forest-dependent species (in the taxonomic groups
considered): Madagascar, parts of eastern Brazil, central America,
SE Asia, West Africa, Australia, and northern New Zealand.
Intermediate levels of loss are seen across large regions of the
forests of continental and insular SE Asia. Although areas of
particularly significant forest biodiversity loss occurred in the
tropics during this period (a reflection of the higher species
richness as well as the density of endemic species within the
tropics), it should be noted that the map also highlights the
biodiversity significance of the substantial extent of deforestation
that has occurred over the last 18 years within temperate areas.
Scandinavia, Russia, Canada and the USA have all undergone
considerable losses in forest cover, mainly due to large-scale
logging and fires (Curtis et al., 2018). Although these areas
support relatively fewer species and these species tend to have
larger global distributions, the aggregate biodiversity impacts
may be substantial. The layer does not distinguish between forest
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FIGURE 1 | Forest biodiversity significance in 2018, in terms of the contribution of each location to the distributions of forest mammal, bird, amphibian, and conifer

species occurring in them. Grey shows low and dark purple shows high significance values. White shows areas not classified as forest (i.e., tree cover values were

<60% in 2000, lost between 2000 and 2018, or mapped as plantations).

FIGURE 2 | Forest biodiversity significance for areas of forest loss during 2000–2018, in terms of the contribution of each location to the distributions of forest

mammal, bird, amphibian, and conifer species occurring in them. Values are for the year 2000 in areas where forest was subsequently lost. Grey shows low and

purple shows high significance. White areas are not classified as forest in 2000 (i.e., tree cover was <25% in 2000, or area was mapped as plantation), or where forest

remains in 2018 (i.e., no loss during 2000–2018).
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loss that is likely to be permanent in the foreseeable future
(e.g., conversion to agriculture) and forest loss that may only
be temporary (e.g., resulting from fires or sustainable forestry
practices in parts of Canada and Scandinavia). We did not
consider forest gain in our assessment, but this is unlikely to
overestimate biodiversity loss substantially during the period, as
most forest-dependent species do not recolonise young regrowth.

Forest Biodiversity Intactness
The forest biodiversity intactness layer reveals the impact that
forest change and human population density has had on
species assemblages.

Our models revealed that land use and human population
density are significant predictors of community abundance
(χ2

= 38.04, df = 7, p < 0.001 and χ
2
= 7.99, df = 1,

p = 0.005, respectively). Heavily utilised areas of the world
are unsurprisingly less intact (Figure 3), for instance, much
of Europe and the more densely populated areas of India,
North America, Bangladesh, and China. In these areas, the
impact of dense human populations together with the urban
and agricultural land use required to support them has led
to severe losses of biodiversity intactness. Madagascar, coastal
Brazil, South Africa, southern Australia, and northern Africa,
are also identified as areas with striking losses in biodiversity
intactness. These regions have undergone intense removal of
natural forest, but retain more of their native biodiversity due to
lower levels of urbanisation.

Comparison of Biodiversity Significance
and Intactness
Overlaying biodiversity intactness and significance provides
insight into areas with high values for both, and areas that
score highly for one but not the other. Regions with high
values for both metrics include the Northern Andes and Central
America, south-eastern Brazil, the western, and eastern parts of
the Congo basin, southern Japan, the Himalayas, and various
parts of Southeast Asia and New Guinea (Figures 4, 5). By
contrast, Europe (Figure 5D) is dominated by large areas of
biodiversity intactness in the north-east and areas of high
biodiversity significance in the south, but lacks large areas where
both are high.

DISCUSSION

We present two new biodiversity layers for the world’s
forests, derived from existing data but in novel ways that
aim to add contextual meaning to forest data for use in
conservation decision-making.

The layers describe two different dimensions of biodiversity
and so are not expected to show the same geographic patterns.
Biodiversity significance combines spatial variation in both
species richness and levels of endemism, and hence shows
the relative contribution of any location to the persistence
of forest species. However, the degree to which the values
in any particular location are driven by one of these
characteristics or the other cannot be determined without
further analysis. Furthermore, high endemism may result from

either natural endemism, human-induced geographic restriction,
or a combination. By contrast with biodiversity significance,
biodiversity intactness is highest where ecological assemblages
remain intact, irrespective of natural macroecological variations
in species diversity or endemism; intermediate values can reflect a
range of combinations of reduced overall abundance and reduced
compositional similarity to an intact assemblage. In general,
biodiversity significance is higher within the tropics (especially in
topographically heterogeneous regions) and lower in northern,
boreal regions, whereas biodiversity intactness is generally low
across most of Europe, India and eastern Asia and high within
wilderness areas in northern European and North American
forests, as well as within tropical forest cores across Central
America, South America, Africa, and Asia.

Safeguarding areas of high significance is important as their
loss results in a disproportionate loss of species’ distributions,
especially narrow-range endemics, elevating species’ risk of
extinction. High intactness is important to safeguard in order
to (a) maintain ecosystem functioning; (b) retain community
resilience against pressures such as climate change; and, in
the case of forest ecosystems, (c) help mitigate climate change
through greenhouse gas regulation (Steffen et al., 2015).
Biodiversity intactness is also relevant to efforts to define
wilderness regions, intact forest landscapes, or areas that have
been described as the “last of the wild” (Potapov et al., 2008;
Watson et al., 2016, 2018).

At a more local scale, comparison of the layers may provide
information relevant for conservation. For example, landscapes
of high significance but low intactness may be appropriate
targets for restoration efforts. Landscapes that contain both
high intactness and high significance reveal locations with
relatively high density of geographically restricted native species.
Such areas may therefore be important to safeguard through
broad-scale policy responses or site-scale conservation measures
such as designation of protected areas. However, biodiversity
has multiple dimensions and here we have chosen to focus
on just two. When considering prioritisation of areas for
conservation management other aspects of biodiversity may also
be relevant such as phylogenetic diversity or the presence of
charismatic species.

The biodiversity significance layer shows similar patterns
to those revealed by the distribution of endemic bird areas
and biodiversity hotspots that were identified in the 1990s
(Myers, 1990; Mittermeier et al., 1998, 2004; Stattersfield
et al., 1998). The advantage of our approach is that it is
based on many more species than used in these earlier
analyses, and the distribution of each species considered
is spatially explicit, allowing much finer resolution maps.
Furthermore, the analytical approach is repeatable and allows
the layer to be updated as more species and taxonomic groups
are added.

The biodiversity intactness later broadly accords with
Newbold et al.’s (2016) map, with areas of greatest loss in densely
populated and heavily converted regions such as most of western
Europe, northern China, and the southern coast of South Africa.
However, our estimates for plantation-rich parts of Southeast
Asia are notably lower than those of Newbold et al. (2016), which
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FIGURE 3 | Forest biodiversity intactness, showing the impacts of forest change and human population density. Yellow shows more intact areas and dark red shows

more degraded areas.

FIGURE 4 | Bivariate map of forest biodiversity significance and intactness. Dark green areas show both high intactness and high significance.

were criticized by Martin et al. (2019) as being too high. Our
forest biodiversity intactness map is also able to distinguish areas
of recent (post-2005) forest change, such as lowland Mexico and
regions in Southeast Asia.

The outputs we highlight here are relevant to international
and national policy including the Convention on Biological
Diversity (CBD) (Parties’ National Biodiversity Strategies and
Action Plans, and National Reports), the Paris Agreement of
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FIGURE 5 | Bivariate maps of forest biodiversity significance and intactness within forest biomes, focused on parts of (A) Central and South America, (B) Central and

West Africa, (C) China and South East Asia, and (D) Western Europe. Spatial scales differ among the panels.

the UN Framework Convention on Climate Change, Bonn
Challenge, and global environmental assessment processes
such as the Intergovernmental Science-Policy Platform on
Biodiversity and Ecosystem Services and the Global Biodiversity
Outlook. The layers are potentially useful both for targeting
policy responses and on-ground interventions, and for tracking
progress towards goals and targets. For example, global, regional
and national maps and indicators of the proportion of areas
of high forest biodiversity significance or intactness lost over
time are relevant to Aichi Target 5 in terms of measures of
loss and degradation of habitats, Aichi Target 11 in terms
of areas of biodiversity significance, and Aichi Target 12 in
terms of preventing extinctions and declines of threatened
species. Data on tree-cover loss linked to biodiversity can
also be used for national REDD+ planning and monitoring
other commitments to international, regional and nation
agreements, policies, and laws. The layers are also relevant
to the safeguard policies of investors, financial institutions,
and companies.

The data that we have brought together here are the best
available, but have a number of limitations. For instance,
the Hansen et al. (2013) dataset does not allow for regional
calibration, yet the height and density of natural tree cover
will vary depending upon local variations in environmental
conditions (Tropek et al., 2014). We were not able to account
for the variation of natural tree cover on a local scale and,
as no standard definition of the tree cover associated with
natural forests exists at larger scales, our conservative literature-
based choice of a 60% tree cover threshold is unlikely to

optimally delimit natural forest across the entire area of our
analysis. A comparison of the biodiversity significance and
intactness maps derived using a 25% tree cover threshold to
indicate forest presence (SM Figures 1–3) illustrates this issue.
For instance, when considering the biodiversity significance
layer, landscapes with high endemicity and a naturally low
forest cover are highlighted in the layer at this lower threshold,
including the Okavango Delta in Botswana, the South African
coast, and the western coast of Madagascar (SM Figure 1).
Likewise, the biodiversity intactness layer produced using the
25% threshold reveals intactness with northern boreal forests
and dry forests in Zambia, which have a naturally sparse
tree cover, that are not highlighted in the 60% threshold
layer. However, the 25% threshold intactness layer does not
show degraded areas within West Africa, including south-
east Ghana, which would naturally be covered with dense
tree cover (SM Figure 3). The Hansen et al. (2013) dataset
does not provide gain data across all years of our analysis,
which meant that it could not be used within the biodiversity
significance layer. However, this is unlikely to bias our results
substantially given that forests often take considerable time
before becoming suitable for forest-specialist species (Newbold
et al., 2014).

When producing the biodiversity significance layer, the forest
species’ distribution maps were clipped by forest cover and
suitable elevations to create maps of the Extent of Suitable
Habitat (sensu Beresford et al., 2011), which are finer resolution
representations of distribution. However, they do not map
occupancy per se, and contain commission errors (e.g., owing
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to extirpation caused by over-exploitation, invasive alien species
etc.), although this is not likely to bias the broad patterns across
>12,000 species that are shown in the resulting layer. The layer
does not take account of variation in abundance within species’
distributions, spatial data for which are not available for the
large set of species considered. The data used are not currently
taxonomically representative—for instance, no invertebrates are
included—and clades may have systematically different degrees
of spatial resolution in their distributions resulting in the species
with the most resolved maps obtaining higher values. The coding
of forest dependence in the IUCNRed List does not capture finer-
scale variation. In the coming years, the layer will be updated to
incorporate data on the distributions of all forest reptiles and
a number of forest plant groups (e.g., trees, gingers, rattans)
and invertebrate taxa (e.g., dragonfly, monarch and swallowtail
butterflies) as these are assessed and mapped for the IUCN
Red List.

Likewise, the biodiversity intactness layer has caveats (though
our analysis overcomes many of the issues raised by Martin
et al., 2019; see also Newbold et al., 2019). For instance, the
layer is based upon data extracted from the (Hansen et al., 2013)
(updated) tree cover change dataset which only dates back to
2000. Therefore, we are not able to distinguish between forest
that had recovered by 2000 and pristine forest. The biodiversity
intactness layer reflects how species communities are impacted
by land use change and human population density. However,
we know that other anthropogenic pressures—such as climate
change, hunting and exploitation—are also important, but will
only be accommodated in our analysis to the extent that land use
or human population density serve as proxies. Although climate
change has a significant impact on biodiversity, it is not possible
to disaggregate the impacts of a changing climate from the
impacts of land use change and human populations over the short
time period on which our analysis focuses. Roads open forest
areas and affect biodiversity through harvesting (Sodhi et al.,
2004), the introduction of alien species (Hulme, 2009), alterations
in the microclimate and creating light gaps (Laurance et al., 2009)
but these subtle changes were not captured in our analysis.

We have used the plantation data for countries where such
data is available in the SDPT, but it is not possible to distinguish
all plantation forests from natural forests, notably for countries
not represented in the SDPT dataset. Furthermore, it should be
noted that China and Papua New Guinea are present in the
SDPT dataset but we were not able to obtain permission for
their data to be included in this analysis. This deficiency impacts
both approaches. In the forest biodiversity significance layer,
plantations may wrongly appear as highly significant if the forest
they replaced had high values (but not so otherwise). In the
intactness layer, plantations that contained mature trees in 2000
are indistinguishable from primary or mature secondary forests,
but those plantations composed of primarily non-native species
or high intensity, monoculture plantations will have markedly
lower intactness than indicated.

Technological revolutions over the last few years, including
in our ability to obtain and process satellite-derived data with
freely available supercomputer power, are opening up new areas
of opportunity for conservation science. We are moving closer

to near-real-time habitat and biodiversity-change products that
can ingest remotely sensed data and run algorithms to show both
areas of forest loss and the consequences for multiple facets of
biodiversity, within time periods that can lead to rapid responses
and interventions on the ground. Our work represents a further
contribution to this aim.

The layers described here have been integrated into the Global
Forest Watch platform (www.globalforestwatch.org), which aims
to provide the data necessary to document and conserve forests
worldwide. It provides information relevant to monitoring fires,
documenting illegal activities, screening estates for deforestation
and analysing trends in forest change.

Humanity has long relied upon forests, and the varied and
complex species assemblages they encompass and support, but in
recent times human impacts have become unsustainable, creating
areas depauperate in biodiversity. The layers presented here help
to evaluate and map how we have impacted forest biodiversity
and can inform what measures can be taken at a local scale to
conserve and restore forests.
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The mammalian and avian assemblages of intact tropical forests are among the most

diverse vertebrate communities on Earth and influence the structure, composition,

and functioning of these forests in myriad ways. Over recent centuries, however,

increasing human domination of the tropics has led to widespread defaunation, or

the decline, local-, or global extinction of tropical animal species. Defaunation is one

of the defining features of the Anthropocene and is best documented for vertebrate

species, especially mammals and birds. Defaunation is driven by several direct (e.g.,

hunting) and indirect (e.g., habitat alteration) anthropogenic threats, but how these

threats differ in the nature and magnitude of their impacts on tropical mammal and bird

species remains unclear. Using a meta-analysis of 82 studies on 254 mammal and 1,640

bird species from across the tropics, we assess the effects of three major regional-

scale drivers of tropical defaunation, namely hunting, forest degradation and forest

conversion, on measures of abundance for tropical mammal and bird species belonging

to different dietary guilds and IUCN conservation status groups. Mammal species across

dietary guilds either declined or did not change, on average, in response to the three

drivers, with hunting having the most consistent negative impacts on abundances

of carnivores, frugivores, herbivores/granivores, large-bodied species, and species of

high conservation importance. By contrast, bird species declined most strongly in

response to forest conversion, with responses varying widely across different dietary

and conservation importance groups, and not consistently related to body size. Our

results reveal that hunting, forest degradation and conversion are associated with distinct

types of defaunation of mammal and bird species, and are therefore likely to have distinct

implications for animal-mediated interactions and processes, ecosystem functions, and

conservation of tropical forests. Addressing major gaps in our empirical understanding

of defaunation effects—e.g., hunting impacts on smaller-bodied mammals and birds,

and responses of species in southeast Asian forests—is key to better understanding,

predicting, and mitigating the impacts of this pervasive global threat.

Keywords: anthropocene, avifauna, habitat change, hunting,mammal,meta-analysis, species traits, tropical forest
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INTRODUCTION

Tropical forests are among themost biodiverse global biomes and
harbor c. 50–70% of all terrestrial vertebrate diversity (Whitmore,
1990; Pimm and Raven, 2000). The rapidly expanding footprint
of anthropogenic disturbance is a leading driver of species
population declines, resulting in widespread losses of tropical
biodiversity (Gibson et al., 2011; Lewis et al., 2015; Watson et al.,
2018). Such anthropogenic biodiversity loss, termed defaunation
when focusing on animal species, is pervasive among all biomes,
terrestrial, freshwater, or marine, and is one of the defining
features of this epoch, commonly referred to as the Anthropocene
(Dirzo et al., 2014; Young et al., 2016).

There are numerous drivers of Anthropocene defaunation,
operating across a variety of scales, ranging from global (e.g.,
climate change, environmental pollution) to local or regional
(e.g., direct harvest) scales (Young et al., 2016). Major regional-
scale defaunation drivers include direct (e.g., hunting), and
indirect (e.g., habitat degradation), threats (Young et al., 2016).
Direct harvest for commercial and subsistence hunting is
prevalent in most tropical forest regions (Fa et al., 2002;
Peres and Palacios, 2007), including within protected reserves
(Harrison, 2011; Laurance et al., 2012). In some regions such as
Southeast Asia, hunting is considered the predominant threat to
vertebrates including birds and mammals (Harrison et al., 2016).
Indirect drivers of faunal change in tropical forests include forest
degradation (e.g., fragmentation and unsustainable logging)
(Potapov et al., 2008; Malhi et al., 2014), and conversion of forests
to plantations, cropland and pastures (Gibson et al., 2011; Young
et al., 2016), which affect virtually all tropical landscapes.

Because hunting, forest degradation, and forest conversion are
very different types of disturbances, the nature and magnitude
of their impacts on different mammal and bird species would
be expected to vary. For example, species’ responses to hunting
depend strongly on the traits preferred by hunters, such as large
body size, or herbivorous diet (Fa et al., 2002; Fa and Brown,
2009; Benítez-López et al., 2017). By contrast, forest degradation
and conversion drive changes in animal communities by altering
resource availability for different dietary guilds (Gray et al.,
2007), or by constraining dispersal across degraded or modified
landscapes (Şekercioḡlu et al., 2002). Understanding variation in
the nature of trait-mediated animal community change is useful
not only for assessing conservation threats posed by different
defaunation drivers, but can also improve our ability to predict
knock-on impacts on forest vegetation dynamics and ecosystem
functions such as carbon sequestration (Osuri et al., 2016;
Berzaghi et al., 2018). However, even as previous studies have
examined faunal responses to individual drivers such as hunting
(Benítez-López et al., 2017) or selective logging (Burivalova
et al., 2014), or responses of particular species groups such as
frugivores to multiple drivers (McConkey et al., 2012), variation
in the responses of tropical forest faunal communities to different
defaunation drivers has not been systematically assessed.

In this paper, we present a pan-tropical meta-analysis of
mammal and bird species responses to three major regional-
scale drivers of tropical defaunation, namely hunting, forest
degradation and forest conversion (Young et al., 2016). We ask

how abundance or relative abundance metrics of different dietary
guilds (e.g., carnivores, frugivores) of mammal and bird species
vary in response to these drivers, and whether the strength of
these responses are influenced by body size.

MATERIALS AND METHODS

Datasets
Data on the responses of bird and non-volant mammal species to
hunting, forest degradation and forest conversion were extracted
from published literature and databases. For hunting, a list of
potential data sources was derived from a recent pan-tropical
meta-analysis of the effects of hunting and distance from human
settlements on abundances of mammal and bird species (Benítez-
López et al., 2017). We examined all the publications included
in the above meta-analysis and retained those studies that were
in English, available online, and which explicitly compared and
reported metrics of abundance or relative abundance for at least
one mammal or bird species from hunted forests and forests
experiencing little to no hunting.

For forest degradation and conversion, we extracted data from
the PREDICTS database (2016 release) of species responses to
anthropogenic habitat disturbance (Hudson et al., 2017). Studies
from tropical forests reporting metrics of abundance or relative
abundance for at least one bird ormammal species from relatively
undisturbed habitats (Predominant_land_use = “Primary
vegetation”) and at least one disturbed (Predominant_land_use
= “Secondary vegetation”) or converted (Predominant_land_use
= “Plantation forest” OR “Pasture” OR “Cropland”) habitat were
retained for analysis. The “Secondary vegetation” class included
selectively logged forests, forest fragments, and secondary forests
growing on shifting or abandoned agriculture.

We extracted the geographic coordinates of each study site
and retained only those studies situated within the tropical
forest biome as defined by Olson et al. (2001). Next, we
reviewed study area and design descriptions of each study to
characterize sole or primary disturbances as one of hunting,
forest degradation or forest conversion. Studies assessing single
disturbance types [e.g., undisturbed vs. hunted forests—Endo
et al. (2010)], and studies assessing multiple disturbances
separately [undisturbed vs. degraded vs. converted forest—
Barlow et al. (2007)], were retained, whereas studies looking at
combined impacts of multiple disturbances [e.g., undisturbed vs.
hunted + logged forest—Marshall et al. (2006)] were excluded
from subsequent analyses.

Our final dataset comprised 117 comparisons (e.g., species
abundances in hunted vs. non-hunted forests) in total (from 82
publications), including 60 comparisons based on hunting, 27 on
forest degradation, and 30 based on forest conversion, with 37%
of the publications reporting more than one type of comparison
(Figure 1; Table S1). The dataset spanned 254 mammal and
1,640 bird species belonging to 17 and 28 taxonomic orders,
respectively (Table 1). We detected a bias among studies on
hunting, which mostly reported responses of species targeted
by hunters (e.g., Lwanga, 2006), while responses of non-target
species were less frequently reported (e.g., Carrillo et al., 2000),
resulting in a skew toward larger-bodied species in hunting
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FIGURE 1 | (A) Locations of 82 studies from different parts of the tropical forest biome (green) included in the meta-analysis. The distribution of body sizes of (B)

mammal and (C) bird species included in the meta-analysis across different defaunation drivers.

studies relative to studies on forest degradation and conversion
in our dataset (Figures 1B,C).We explore the implications of this
bias in our Discussion.

The above dataset was transformed into a species response
table that comprised, for every species in each comparison,
information on disturbance type, average abundance or relative
abundance in undisturbed (control) and disturbed (treatment)
habitats. Average body mass (g) and broad dietary guilds of
the species were extracted from the EltonTraits 1.0 database
(Wilman et al., 2014). For dietary guild, species were assigned
one of the following diet classes based on which of those
classes represented 40% or more of their known dietary
affinity—Carnivore, Frugivore, Herbivore (including Granivore),
Insectivore, Nectarivore, and Generalist (including Omnivore).
The aggregation and handling of species with ≥40% affinity to
more than one class is described in Table S2, and body size
characteristics of species in different diet classes are described
in Table S3. Information on species’ conservation threat status
were obtained from the International Union for Conservation of
Nature’s (IUCN) Red List of Threatened Species (https://www.
iucnredlist.org/).

Analyses
The log response ratio (LRR) between observed abundances,
densities, relative abundances or encounter rates of species in
disturbed and undisturbed treatments was used as a response
variable [LRR = ln(disturbed/undisturbed)]. The processing of
data to avoid artifacts in the LRR due to log transformation
of zeroes is described in the Supplementary Methods section
of the Supplementary Material. Analyses were run separately
for non-volant mammals and birds using linear mixed-effects
models (lme4 package: Bates et al., 2014) in the R statistical
and programming environment (version 3.4.4) (R Core Team,
2017). The three-way interaction between disturbance type
(hunting, degradation, and conversion), feeding guild (carnivore,
frugivore, herbivore, insectivore, generalist, and nectarivore), and
species bodymass (log transformed) was used as the independent
predictor. A unique identifier for study was used as a random
factor. Pseudo-replication due to multiple occurrences of the
same species across studies was accounted for by including
species identity as a second random term.

Phylogenetic similarity between species could be a source
of bias when responses of multiple species are aggregated at
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different treatment levels. This bias stems from the possibility of
closely related species, which have similar evolutionary histories,
responding in amore consistent manner than those that are more
distantly related. To check if phylogenetic similarity influences
parameter estimates and differences detected in our analyses, we
compared results from the mixed model described above with
a separate model, where the species random term was nested
within order. Models with and without the nested species-order
random term were compared using model BICs and the amount
of variation attributed to the random term (following Benítez-
López et al., 2017). The premise of this comparison is that if
phylogenetic similarity is an important determinant of observed
differences in the response variable, it would be reflected in
relatively lower BICs (i.e., better model fit) of the model with
the nested species-order random term, as well as greater variance
associated with the random term. Our analyses showed that the
nested random term model did not account for more variation
and was a poorer fit to the data relative to the non-nested model
(based on model BICs) for both mammals and birds. Hence,
we concluded that phylogenetic similarity did not influence the
analyses, and we report and interpret results from mixed models
with the non-nested random term structure (i.e., where random
terms were study identifier and species identity).

A linear mixed-effects model was also used to assess the
consistency of effects across species when grouped by IUCN
threat status. To ensure adequate sample sizes (numbers of
species) in each IUCN threat category, we reclassified threat
status into three levels—Critically endangered and Endangered
(CR-EN), Vulnerable and Near Threatened (VU-NT), and Least
Concern (LC). Log response ratios were modeled as a function
of the two-way interaction between disturbance type and our
reclassified IUCN threat category. Again, study identity and
species identity were used as separate random factors.

We interpreted our results based on modeled effect sizes,
their associated 95% confidence intervals (CIs) and biological
relevance, rather than relying on p-values. Our inferences were
categorized into three classes—(1) where modeled effects were
large and CIs do not span zero (directional and consistent
effects); (2) where effects were ≥10% change, but CIs span zero
(directional, but inconsistent effects); and (3) where effects were
<10% change with CIs spanning zero (no effects). The basis for
the second interpretation class is that for effects having 95% CIs
that span zero, there is as much support for twice the estimated
effect (counternull) as there is for no effect (Rosenthal and Rubin,
1994; Stephens et al., 2007), which can be biologically meaningful
when average effect sizes are large (e.g., ≥10% in our definition).

RESULTS

Mammal and bird species’ abundances varied in response to
hunting, forest degradation, and conversion. Mammal species
abundances were consistently lower (−49%; LRR mean=−0.67;
LRR 95% CI = −0.97 to −0.38) in hunted forests than in
forests with little to no hunting (Figure 2A). Forest degradation
and conversion also reduced mammal species’ abundances by
16% and 27%, respectively, on average, but with 95% CIs

TABLE 1 | The representation of different mammal and bird orders across

different disturbance types included in the meta-analysis.

Order Hunting Degradation Conversion

Mammals

Afrosoricida 0 (0) 3 (3) 6 (3)

Artiodactyla 100 (21) 12 (7) 8 (6)

Carnivora 65 (29) 17 (15) 13 (12)

Cingulata 16 (4) 2 (2) 7 (4)

Didelphimorphia 13 (11) 1 (1) 9 (5)

Erinaceomorpha 0 (0) 1 (1) 1 (1)

Hyracoidea 3 (2) 0 (0) 0 (0)

Lagomorpha 3 (1) 0 (0) 0 (0)

Macroscelidea 3 (3) 0 (0) 0 (0)

Perissodactyla 12 (2) 1 (1) 1 (1)

Pholidota 1 (1) 0 (0) 0 (0)

Pilosa 14 (5) 1 (1) 1 (1)

Primates 165 (69) 10 (9) 0 (0)

Proboscidea 7 (2) 0 (0) 0 (0)

Rodentia 60 (29) 36 (25) 36 (24)

Scandentia 0 (0) 12 (8) 7 (7)

Soricomorpha 0 (0) 13 (13) 13 (12)

Birds

Accipitriformes 14 (14) 27 (21) 73 (46)

Anseriformes 0 (0) 1 (1) 6 (4)

Apodiformes 0 (0) 59 (55) 80 (65)

Bucerotiformes 15 (9) 15 (10) 25 (16)

Caprimulgiformes 0 (0) 2 (2) 9 (7)

Charadriiformes 0 (0) 1 (1) 5 (2)

Ciconiiformes 0 (0) 1 (1) 1 (1)

Coliiformes 0 (0) 0 (0) 1 (1)

Columbiformes 3 (3) 70 (51) 128 (69)

Coraciiformes 0 (0) 34 (26) 60 (34)

Cuculiformes 0 (0) 44 (28) 95 (47)

Eurypygiformes 0 (0) 1 (1) 1 (1)

Falconiformes 4 (4) 8 (7) 13 (10)

Galliformes 37 (21) 27 (21) 32 (27)

Gruiformes 6 (3) 6 (4) 12 (8)

Leptosomiformes 0 (0) 2 (1) 1 (1)

Mesitornithiformes 0 (0) 1 (1) 0 (0)

Musophagiformes 3 (3) 6 (3) 7 (4)

Passeriformes 0 (0) 865 (639) 1433 (883)

Pelecaniformes 0 (0) 2 (2) 20 (10)

Phaethontiformes 0 (0) 0 (0) 1 (1)

Piciformes 4 (3) 91 (66) 177 (103)

Psittaciformes 3 (3) 40 (37) 53 (47)

Pteroclidiformes 0 (0) 1 (1) 0 (0)

Strigiformes 0 (0) 10 (10) 31 (22)

Struthioniformes 1 (1) 0 (0) 0 (0)

Tinamiformes 11 (4) 12 (10) 11 (10)

Trogoniformes 0 (0) 19 (13) 27 (15)

The number of comparisons (number of species in parentheses) of every order-

disturbance combination are reported.
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FIGURE 2 | Estimated average effect sizes and 95% CIs from linear mixed-effects models of (A) mammal and (B) bird species Log Response Ratios (LRRs) in

comparisons of hunted, degraded, and converted forests to relatively undisturbed forests. Numbers below each bar represent the number of species of that particular

category included in the analysis. The gray band depicts a ≤10% difference in species’ abundance between disturbed and undisturbed habitats.

overlapping zero, their overall effects on mammals were less
consistent, relative to hunting (Figure 2A). For birds, by contrast,
hunting and forest degradation were associated with increasing
but highly variable overall species’ abundance responses of 32%
and 16%, respectively, while bird species declined consistently
by over 53% in response to forest conversion (LRR mean =

−0.76; LRR 95% CI = −1.27 to −0.25; Figure 2B). The full
set of model estimated parameters and 95% CIs is provided
in Table S4.

Mammal species responses to hunting were negative on
average across all major dietary groups, with declines being
relatively more consistent among carnivores, frugivores,
and herbivores than insectivore and diet-generalist species
(Figure 3A). The responses of different mammalian diet groups
to forest degradation and conversion were more variable,
ranging from negative but inconsistent responses of carnivores
and frugivores to positive but inconsistent responses of
insectivores (Figure 3A). Among birds, forest conversion was
associated with consistent declines of frugivores and insectivores
and increases of herbivores/granivores and nectarivores, and
inconsistent declines of insectivores, while guild-wise responses
to hunting and forest degradation were weaker andmore variable
(Figure 3B). The full set of model estimated parameters and 95%
CIs is provided in Table S4.

The effect of hunting on mammals was consistently more
negative for larger-bodied than smaller-bodied species (LRR vs.
Log body mass slope = −0.34; Slope 95% CI = −0.46 to −0.21),
particularly among carnivores (Slope = −0.4; Slope 95% CI =
−0.81 to 0) and frugivores, (Slope = −0.64; Slope 95% CI =
−1.29 to 0.01) and less consistently for herbivores, insectivores,
and generalists/omnivores (Figure 4A). By contrast, mammal
species’ responses to forest degradation and conversion were
not consistently related to body size overall, with responses

among guilds ranging from negative but inconsistent LRR-
body size relationships (Insectivore-Degradation) to positive but
inconsistent relationships (Frugivore-Degradation) (Figure 4A).
Among birds, body size was either unrelated, or weakly
negatively related, to species’ responses across disturbance
types and across most dietary guilds, with the exception of
herbivore/granivore and carnivore species which showed a
negative but inconsistent LRR-body size relationship under the
hunting category (Figure 4B). The full set of model estimated
slope parameters and 95% CIs is provided in Table S5.

Declines of mammal species in hunted forests were consistent
across conservation threat status categories. Forest conversion
was associated with consistent declines of VU and NT species,
but inconsistent declines in LC species (Figure 5A). Mammal
species responses to forest degradation did not show a consistent
relationship with any conservation threat category (Figure 5A).
By contrast, forest degradation and conversion were consistently
associated with large declines of threatened bird species (CR,
EN, VU, NT). LC species experienced smaller consistent declines
due to forest conversion, but positive if inconsistent effects
of hunting and forest degradation (Figure 5B). The full set
of model estimated parameters and 95% CIs is provided
in Table S6.

DISCUSSION

Our findings suggest that hunting, forest degradation and
conversion have marked but varied defaunation impacts on
mammal and bird communities of relatively intact tropical
forests. For mammal abundances, all three disturbance types
exerted a negative effect, while the response in birds was
more mixed. Hunting had stronger negative impacts than forest
degradation or conversion on mammal abundances across all
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FIGURE 3 | Estimated average effect sizes and 95% CIs from linear mixed-effects models of (A) mammal and (B) bird species guild-wise LRRs in comparisons of

hunted, degraded, and converted forests to relatively undisturbed forests. The “Herbivores” category also includes granivores. Numbers below each bar represent the

number of species of that particular category included in the analysis. Categories comprising fewer than five species in the dataset (e.g., Frugivore mammals in Forest

conversion comparisons; Nectarivore mammals) are not depicted. The gray band depicts a ≤10% difference in species’ abundance between disturbed and

undisturbed habitats.

species, with declines evident across the spectrum of high to
low conservation priority species in hunted forests. However,
given that species groups targeted by hunters (e.g., primates)
were overrepresented in our hunting dataset, actual impacts of
hunting at the level of mammal communities across targeted
and non-targeted groups (e.g., small insectivores) may be
weaker, and potentially differ less overall from the impacts of
forest degradation or conversion. By contrast, forest conversion
was most strongly associated with declines in bird species’
abundances (high and low conservation priority species), while

hunting—despite underrepresentation of non-targeted species
(e.g., passerines)—and forest degradation were associated with
weak increases in bird species’ abundance, driven by the positive
responses of low conservation priority (according to the IUCN)
species in hunted and degraded forests. These findings suggest
that while interventions aimed at reducing hunting pressure
may be important for conserving mammals, incentive schemes
for reducing forest degradation and promoting wildlife friendly
farming might be equally if not more important for averting
declines of bird species in the tropics.
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FIGURE 4 | Estimated slopes and 95% CIs of LRR-body size relationships from linear mixed-effects models for (A) mammal and (B) bird species across different diet

guild|disturbance type combinations. Categories comprising fewer than five species in the dataset (e.g., Frugivore mammals in Forest conversion comparisons;

Nectarivore mammals) are not depicted.

The effects of hunting, forest degradation, and conversion
on birds and mammals differed with respect to species’ body
sizes and dietary guilds. Mammal species across all dietary guilds
showed strong (in carnivores, frugivores, and herbivores) to weak
(insectivores and generalists) reductions in abundance in hunted
forests, while responses to forest degradation and conversion
were more variable, ranging from strong declines (carnivores
in converted habitats) to weak declines (carnivores in degraded
forests) and increases (insectivores in degraded and converted
forests). Hunting also had stronger negative impacts on large-
bodied than smaller-bodied mammal species, possibly reflecting
hunters’ preference for larger wildlife (Fa et al., 2002; Young et al.,
2016), while the impacts of forest degradation and conversion
on mammals were less consistently related to body size. Among
birds, while hunting impacts on species’ abundance ranged from
weakly positive (carnivores) to weakly negative (insectivores) and
unknown (herbivores/granivores, generalists and nectarivores,
due to a lack of data) across dietary guilds, responses to forest
degradation and conversion were stronger in both directions
across different guilds. For example, frugivores (conversion
and degradation) and insectivores (conversion) showed marked
declines in converted habitats, possibly due to reductions in food

resources in degraded and non-forest habitats relative to intact
forests (Gray et al., 2007; Naniwadekar et al., 2015), or due to
the inability of certain species (e.g., understorey insectivores)
to disperse across non-forest habitats (Şekercioḡlu et al., 2002).
Likewise, increases in the abundances of herbivore/granivore and
nectarivore species in degraded and converted habitats relative
to intact forests are possibly related to greater food availability
in modified habitats [e.g., flowering trees in coffee plantations—
Faria et al. (2006)], and a greater ability of birds in these
guilds to disperse across open or disturbed habitats (Lees and
Peres, 2009; Şekercioḡlu, 2012). Collectively, notwithstanding
gaps in current literature and understanding of hunting impacts
on smaller-bodied species, our results suggest that defaunation
drivers can vary in their impacts on, and result in communities
comprising distinct combinations of, dietary guild, size class and
conservation status groups of tropical forest mammals and birds.

A central question of both academic and applied relevance
pertaining to the Anthropocene defaunation is of how the
consequent losses of animal-mediated interactions and processes
modify the structure, composition and functioning of the tropical
forest ecosystem (Muller-Landau, 2007; Wright et al., 2007;
Osuri et al., 2016). Our findings on the contrasting responses
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FIGURE 5 | Estimated average effect sizes and 95% CIs from linear mixed-effects models of (A) mammal and (B) bird species LRRs of different IUCN threat status

groups in comparisons of hunted, degraded, and converted forests to relatively undisturbed forests. Groups include Critically Endangered and Endangered (CR-EN),

Vulnerable and Near Threatened (VU-NT) and Least Concern (LC). Numbers below each bar represent the number of species of that particular category included in

the analysis. Categories comprising fewer than five species in the dataset (CR-EN mammals in Forest conversion comparisons) are not depicted. The gray band

depicts a ≤10% difference in species’ abundance between disturbed and undisturbed habitats.

of different diet and body-size species groups to hunting,
forest degradation and conversion suggest that such knock-on
effects of defaunation on ecosystem processes, functions, and
services might also vary across defaunation drivers. For example,
our results suggest that while abundances of frugivores are
reduced by both hunting (mammals) and forest modification
(mammals and birds), mammalian herbivores and granivores
decline more strongly in hunted than in modified forests
(Figure 3). Seed dispersal by frugivores, and seed, seedling,
and sapling predation by granivores and herbivores, are known
to influence the regeneration of tropical trees (Wright, 2003;
Paine et al., 2016; Terborgh et al., 2018). Thus, variation in
the response of these guilds to different defaunation drivers
could drive distinct trajectories of tree community composition,
and consequently, result in distinct outcomes in terms of key
ecosystem functions such as carbon storage (Culot et al., 2017).
Given the long time periods—typically decades to centuries—
that shifts in animal-mediated interactions and processes might
take to manifest at the ecosystem level, vegetation-, and other
types of models have emerged as an important tool for
understanding and attempting to predict longer term ecosystem-
level consequences of defaunation (Berzaghi et al., 2018; Schmitz
et al., 2018). Our results suggest that incorporating disturbance-
specific defaunation parameters and scenarios could improve the
ability of such models to distinguish the ecosystem-level impacts
of different drivers of faunal loss.

While our meta-analysis uncovered broad patterns of
variation in defaunation impacts across different anthropogenic
drivers, empirical studies are needed in order to overcome
existing biases in the literature and thereby to quantify
the differences in faunal responses to different drivers more
accurately. For example, most studies on hunting do not report

community-wide responses but rather focus on particular target
and non-target species, while studies on forest degradation and
conversion frequently report community-wide responses. For
this reason, differences between disturbance types on mammals
should be interpreted cautiously, particularly for carnivore,
frugivore, and herbivore guilds, which show size-dependent
responses to disturbance. For birds, on the other hand, it
is worth noting that forest conversion and degradation show
stronger and more consistent effects than hunting in spite of the
potential bias. Such biases could be overcome by future studies
that assess community-wide faunal responses using consistent
methodologies across disturbance types. A number of biases also
exist in the geographic coverage of studies of faunal responses to
different defaunation drivers—most notably, empirical studies on
the effects of hunting are highly underrepresented in Southeast
Asia, even as hunting is recognized as a major threat to mammals
and birds in this region (Harrison et al., 2016).

Collectively, our findings highlight that the major regional-
scale anthropogenic threats to intact tropical forests are
associated with distinct types of defaunation, in terms of their
impacts on different functional and conservation status groups
of mammal and bird species, and consequently, in terms of their
potential impacts on forest ecosystem functions and services.
Other distinct combinations of species and ecosystem responses
could potentially arise from interactions between disturbance
types, such as logging and hunting, which frequently co-occur in
the tropics (Wilkie et al., 2000; Peres, 2001; Laurance and Useche,
2009), and from interactions of regional drivers with global
drivers such as climate change (Young et al., 2016). Incorporating
this heterogeneity in species’ and community responses to
different drivers into defaunation theory and models, and efforts
to address key gaps in species and geographic coverage, are
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important for better understanding, predicting and mitigating
the pervasive declines of mammals and bird species, and their
cascading impacts on the tropical forest ecosystem.
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The North American Boreal Forest biome has been recognized as containing some
of the highest proportions of intact, primary forest left on Earth. Over 6 million km2

of the Boreal Forest biome is found in Canada (5.5 million km2) and the United States
(0.74 million km2) across 10 provinces and territories and one United States state
(Alaska). All of it is within the traditional territories of hundreds of Indigenous
governments, many of whom are now asserting their rights to make decisions about
its future and current land-use including for conservation and development. The biome
is considered to be 80% intact and between 8 and 13% formally protected. The
North American Boreal Forest biome’s intactness has allowed it to retain many globally
significant conservation features including long-distance mammal and fish migrations,
healthy populations of large predators, one to three billion nesting birds, some of the
world’s largest lakes and North America’s longest undammed rivers, massive stores
of carbon and ecological functionality. The biome’s forests, minerals, and hydropower
potential are also recognized as economic opportunities so that the industrial footprint is
rapidly increasing, sometimes without careful land-use planning decisions. Indigenous,
federal, state, provincial and territorial governments and conservation organizations
have strived over recent decades to recognize the conservation opportunity inherent
in such a still-intact landscape, resulting in implementation of some of the world’s
largest land conservation set-asides. Indigenous governments, in particular, have been
at the forefront in developing and implementing world-leading, modern land-use plans
that achieve land conservation at massive scales. Supporting efforts to ensure that
a high proportion of North America’s Boreal Forest biome is protected and remains
as intact habitat with unimpeded ecosystem processes should be a priority of the
global conservation community. Federal, state, and provincial/territorial governments
should support Indigenous protected area proposals, vastly increase financial support
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for Indigenous government land conservation and stewardship activities, and should
develop new protected area co-management models with Indigenous governments.
Governments should also be strongly advocating for raising the global Convention on
Biological Diversity protected area goal to at least 30% by 2030.

Keywords: boreal forest, forest conservation, intact forest, indigenous guardians, indigenous-led conservation,
indigenous protected and conserved areas, primary forest, protected areas

INTRODUCTION

With the advent of GIS capabilities and the availability of
complete global coverage of remote sensing products over the
last two decades, identification of the biomes of the world
with the least large-scale human impacts has become possible.
Notwithstanding the various methodological and definitional
questions around how to define and map such areas (Potapov
et al., 2017; Venier et al., 2018; Watson et al., 2018) there has
been broad consensus that there are five regions of the world
that encompass the largest areal extent of forest habitat that has
not been subject to large-scale industrial logging, roadbuilding,
mining, or other modern industrial land-use impacts. First
identified in 1997 (Bryant et al., 1997) and termed “frontier
forests” these forest areas have subsequently been mapped under
different criteria and terms including “wilderness,” “intact forest”
and “primary forest” in a number of other publications and
analyses (Sanderson et al., 2002; Mittermeir et al., 2003; Potapov
et al., 2008, 2017; Hansen et al., 2013; Mackey et al., 2014;
Watson et al., 2016, 2018; Dinerstein et al., 2017). These five
regions–the forests of New Guinea and Borneo, the Congo
Basin, the Amazon Basin, the Russian Boreal Forest, and the
North American Boreal Forest (Figure 1) – have all seen major
losses in forest area since their original identification in 1997
(Hansen et al., 2013; Haddad et al., 2015; Venter et al., 2016;
Watson et al., 2016).

Increasingly, terrestrial protected areas work in these and
other regions around the world has focused on increasing
protected areas coverage (Dinerstein et al., 2017, 2018;
Watson et al., 2018). The first goal that many governments
and non-governmental organizations have focused on is
reaching the Convention on Biodiversity Target 11 goal of
17% of each nation protected as outlined in the so-called
Aichi treaty (Environment and Climate Change Canada, 2016;
Canadian Parks and Wilderness Society, 2018; Indigenous
Circle of Experts, 2018). Academics and conservation
practitioners have also increased awareness for the need
to increase protected areas goals to much higher levels in
order to achieve the goal of maintaining biodiversity and
ecosystem services (Noss et al., 2012; International Boreal
Conservation Science Panel, 2013; Wilson, 2016). These
higher-level goals are being achieved in certain landscapes
as a result of the leadership of Indigenous peoples and
often through reconciliation processes that result in strong
Indigenous self-government (Indigenous Circle of Experts, 2018;
Zurba et al., 2019).

CONSERVATION VALUES OF THE
NORTH AMERICAN BOREAL FOREST
BIOME THAT MAKE IT A GLOBAL
PRIORITY FOR CONSERVATION

North America’s Boreal Forest biome (Figure 2) is one of the
most intact of these global forested ecosystems (Lee et al., 2003,
2006; Andrew et al., 2012, 2014; Dinerstein et al., 2017; Venier
et al., 2018). The biome is estimated to harbor 25% of the world’s
remaining intact forests (Aksenov et al., 2002; Lee et al., 2003,
2006). Spanning from Newfoundland and Labrador in the east
and across Canada to interior Alaska, it encompasses 6.27 million
km2. Within its boundaries are some of the largest peatlands,
lakes, and rivers in the world (Schindler and Lee, 2010; Wells
et al., 2010) and a significant amount of the world’s terrestrial
carbon (Carlson et al., 2009, 2010; Tarnocai et al., 2009).

North American Boreal Forest biome peatlands include a
wetland that is considered one of the largest in the world, the
Hudson Bay-James Bay Lowlands that extend over 370,000 km2

(Abraham and Keddy, 2005; Webster et al., 2015). Along with
being enormous storehouses of carbon, these wetlands store and
filter massive amounts of freshwater (Schindler and Lee, 2010;
Wells et al., 2010). Canada’s portion of the Boreal Forest biome
is thought to hold a minimum of 208 billion tons of carbon
in its trees and other plants, soils, peatlands, as well as under
permafrost (Carlson et al., 2009). The biome’s natural capital is
worth an estimated $703 billion annually (Anielski and Wilson,
2009). Ecosystem goods and services are relatively unimpaired
across the region due to its large degree of intactness.

The highest densities of trees on earth occur in the global
boreal forest biomes and are estimated to support 24% of the
world’s individual trees (Crowther et al., 2015). Using Crowther
et al.’s (2015) boreal tree density average applied to the North
American Boreal Forest biome suggests that the biome holds
as many as 500 billion individual trees representing 16% of the
world’s total number of individual trees. Many plants species are
largely confined to the North American Boreal Forest biome or
at least reach their greatest abundance and distributional extent
within the biome. This includes many coniferous tree species
which are considered characteristic of the North American
Boreal Forest biome including Picea glauca, Picea mariana, Larix
laricina, Abies balsamea, Pinus banksiana, Pinus contorta var.
latifolia, and Abies lasiocarpa but also characteristic deciduous
tree species like Populus tremuloides, Populus balsamifera, and
Betula papyrifera (Brandt, 2009).
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FIGURE 1 | The largest intact forest regions on earth are primarily confined to five regions: the forests of New Guinea and Borneo, the Congo Basin, the Amazon
Basin, the Russian Boreal Forest, and the North American Boreal Forest. Map courtesy of Canadian Geographic.

The North American Boreal Forest biome encompasses
millions of lakes and ponds (Wells et al., 2010) and Canada’s
Boreal Forest holds more available freshwater than any other
single country on earth (Minns et al., 2008). Freshwater outflows
from the North American Boreal Forest biome to marine
systems play an important role in driving large-scale ocean
currents, moving nutrients, impacting weather patterns and the
productivity of marine fisheries across the globe (Aagaard and
Carmack, 1989; Woo et al., 2008; Wells et al., 2010). Within
the biome are four of the world’s ten largest lakes. This includes
Great Bear Lake in the Northwest Territories, one of the world’s
most pristine (Figure 3). Many large lakes here support healthy,
age-structured fish populations that includes a significant
proportion of larger and older fish that often become scarce
under heavy fishing pressure. The largest known individuals of
species like lake trout, brook trout, and Arctic grayling have been
documented from these lakes (Wells et al., 2010). North America’s
Boreal Forest biome is rich also in free-flowing, undammed rivers
(Figure 4) – more than now occur in the remainder of North
America (Dynesius and Nilsson, 1994; Webster et al., 2015).
Dams, pollution and water over-subscription have imperiled
river biodiversity across much of the world, but rivers in
North America’s Boreal Forest biome are among the remaining
strongholds for populations of many anadromous fish species
(Wells et al., 2010). Pacific salmon continue to migrate up the

Stikine, Nass, and Skeena rivers into the Sacred Headwaters of
northern B.C. and the Yukon River through Alaska to the Yukon.
Anadromous fish ascend the Mackenzie River southward from
the Arctic over 1,000 km, some reaching to tributaries in B.C. and
Alberta. Atlantic salmon runs along the Atlantic Coast of North
America have been lost or are endangered in the United States
and southern Canada (Limburg and Waldman, 2009). Yet healthy
populations still ascend rivers in the boreal regions of Quebec and
Newfoundland and Labrador.

North America’s Boreal Forest biome is also home to both
Old and New World evolutionary lineages of caribou (Polfus
et al., 2017) and migratory and non-migratory lineages of
wolves (Musiani et al., 2007) that persist together in the biome.
Unfortunately, all populations and forms of caribou that occur
in Canada (woodland, mountain, barren-ground) are now listed
as Endangered, Threatened, or of Special Concern by the
Committee on the Status of Endangered Wildlife in Canada
(COSEWIC, 2019) with major harvest restrictions now in place
on caribou throughout Canada.

Within the biome are some of Earth’s only remaining
unfettered large mammal migrations – those particularly of herds
of migratory tundra caribou (Rangifer tarandus) that can traverse
500–1500 km in an annual migration between boreal forest
wintering ranges and tundra summer calving grounds (Hummel
and Ray, 2008; Wilcove, 2008; Joly et al., 2019). The Porcupine
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FIGURE 2 | The North American Boreal Forest biome as defined in Brandt (2009). The biome is estimated to harbor 25% of the world’s remaining intact forests.

Caribou Herd in western Canada and Alaska travels over 1300 km
each year as do the Bathurst and Beverly herds of western Canada
and the Leaf River Herd of Quebec (Gurarie et al., 2019; Joly
et al., 2019). The Western Arctic Caribou Herd of Alaska and
the Qamanirjuaq Herd of Canada travel at least 1200 km each
year (Joly et al., 2019). Loss of migration corridors threatens
many herbivore species across the globe as habitat modification
reduces the ability of animals to move across large tracts of intact
landscape (Wilcove, 2008; Ripple et al., 2015).

The North American Boreal Forest biome supports significant
populations of large carnivores that have been lost from much
of their southern range including wolves, grizzly bears, and
wolverine (Laliberte and Ripple, 2004; Cardillo et al., 2006;
Bradshaw et al., 2009). One of the southernmost populations
of polar bears in the world occurs in the Boreal Forest biome
in the Hudson Bay and James Bay region where the bears
have the unusual habit of maternity denning in the ground
(rather than in snow) sometimes hundreds of kilometers inland
(Peacock et al., 2010).

Within the North American Boreal Forest biome are a
variety of range-restricted mammal species including the Ungava
collared lemming (found only in northern Ungava peninsula),

Richardson’s collared lemming, singing vole (found only in parts
of Alaska, Yukon and the Northwest Territories), Dall’s sheep,
collared pika, and the American wood bison (Bowers et al., 2004).
A subspecies of freshwater harbor seal is separated from the sea
and found only in Quebec’s Tursujuq National Park (Smith, 1996,
1997; COSEWIC, 2007).

A great abundance of invertebrates, especially insects, occur
only or primarily in peatlands and other wetlands and lakes,
rivers and streams of North America’s Boreal Forest biome. This
includes species of chironomid flies, lepidopterans, dragonflies,
and beetles (Spitzer and Danks, 2006). Species of dragonfly
whose range is primarily within the biome include the Boreal
Snaketail, Quebec Emerald, Hudsonian Emerald, Kennedy’s
Emerald, Boreal Whiteface, Lake Darner, and Zigzag Darner
(Cannings and Cannings, 1994; Dunkle, 2000).

Butterflies that are wetland-dependent and that have most of
their range confined to the North American Boreal Forest biome
include the Bog Fritillary, Titania Fritillary, Disa Alpine, Jutta
Arctic, and Cranberry Blue (Opler and Malikul, 1992). Peatlands
of the biome support unusual species, like the sphagnum
bog cricket (Neonemobius palustris), bog katydid (Metrioptera
sphagnorum), the pitcher plant mosquito (Wyeomyia smithii),
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FIGURE 3 | North America’s Boreal Forest biome contains millions of lakes, including Lake Superior, Great Bear Lake and Great Slave Lake, which rank amongst the
world’s largest in both surface area and overall volume.

and the pitcher plant midge (Metriocnemus knabi) (Capinera
et al., 2004; Spitzer and Danks, 2006).

The North American Boreal Forest biome supports billions
of songbirds, millions of waterfowl and shorebirds, and is
the last stronghold for globally endangered species like the
Whooping Crane (Wells and Blancher, 2011). The intactness
of the North American Boreal Forest biome is a critical reason
it has remained one of the world’s most important breeding
reservoirs for migratory birds, supporting an estimated 1–3
billion nesting birds each summer including billions of songbirds
and millions of waterfowl and shorebirds (Wells, 2011; Wells and
Blancher, 2011). The biome is the last stronghold for the globally
endangered Whooping Crane which nests in or near Wood
Buffalo National Park straddling the border between Alberta and
the Northwest Territories (Wells and Blancher, 2011). Each fall,
the biome annually “exports” some 3–5 billion birds once the
young have hatched and migrated to populate their wintering
ranges, from southern Canada and the United States south
through Mexico, the Caribbean, Central America and South
America (Robertson et al., 2011; Wells and Blancher, 2011; Wells
et al., 2014). At least 96 species are estimated to have at least half

of their North American breeding distribution within the biome
and 151 to have at least 25% of their breeding distribution in
the biome (Wells and Blancher, 2011). Wetlands within Alaska’s
portion of the Boreal Forest biome have long been known as
an important stronghold for the original wild populations of
Trumpeter Swan and these same wetlands are hosting increased
densities of nesting waterfowl in recent decades, perhaps three
times as many as in the 1950’s (Petrie and Reid, 2009).

Sadly, there are a growing number of Boreal bird
species in steep decline with six species considered globally
threatened under IUCN Red List and eight Near Threatened.
Boreal-dependent birds like the Rusty Blackbird, the Olive-sided
Flycatcher, and Canada Warbler have shown declines in
abundance of more than 50% over the last half-century. All
three are now on Canada’s list of Threatened or Special Concern
species and Olive-sided Flycatcher appears on Audubon Alaska’s
Redlist (Warnock, 2017). Boreal-breeding waterbirds are
also featured on that list, including the eastern populations
of Barrow’s Goldeneye and Harlequin Duck, the western
populations of Horned Grebe, and Yellow Rail, Hudsonian
Godwit and Red-necked Phalarope (Wells et al., 2014). The
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FIGURE 4 | The North American Boreal Forest biome encompasses most of the continent’s remaining, large undammed rivers, which maintain globally significant
water, nutrient, and migratory fish movements between terrestrial and ocean ecosystems.

candidate species for future inclusion on that list include a
number of shorebirds that are dependent on Boreal wetlands for
breeding, including Lesser Yellowlegs, Semipalmated Sandpiper,
Short-billed Dowitcher, Stilt Sandpiper, and Pectoral Sandpiper
(COSEWIC, 2019). Many other Boreal-breeding species have
seen steep declines in the last 50 years, including Black Scoter
(listed at Near Threatened on the IUCN Red List), Surf, and
White-winged Scoters, Lesser Scaup, Long-tailed Duck (listed as
Vulnerable on the IUCN Red List), Blackpoll Warbler, and even
well-loved backyard feeder birds like White-throated Sparrow
and Dark-eyed Junco (Wells, 2007; Slattery et al., 2011; Sauer
et al., 2015; Wells et al., 2016, 2018). Many of the species in steep
decline on Alaska’s Watchlist are found seasonally within Alaska’s
Boreal Forest biome (Warnock, 2017).

GOVERNANCE AND POLICY CONTEXT
OF THE CANADIAN BOREAL FOREST

Virtually all of North America’s Boreal Forest biome is considered
(at least by non-Indigenous governments) to be under the

dominion of federal, provincial and territorial governments as
so-called “crown land” in Canada (Bone, 2000). Decisions about
the management of that land have historically largely been under
the control of provincial and territorial governments (Frideres
and Rowe, 2010) in Canada. Indigenous governments, on the
other hand, consider their traditional territories within the region
to be sovereign lands for which they should have complete
authority or co-authority with federal, provincial, and territorial
governments. In some regions, these lands were never under a
historic treaty and some areas of Canada remain without even
a modern-day treaty (Bone, 2000). In other regions, there are
historic treaties that are sometimes invoked by federal, provincial
or territorial governments to suggest that all Indigenous land
management rights were extinguished (Long, 2010). Recent legal
cases have challenged the latter view and have been supported, at
least in part, by court rulings including at the Canadian Supreme
Court (Ariss and Cutfeet, 2012).

Provincial and territorial governments as opposed to the
federal government, in the Canadian confederation system,
hold the rights to make decisions about the use of crown
lands. One of the types of land uses granted by provinces and
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territories that encompasses much of the southern half of the
Boreal Forest biome is for industrial scale logging (International
Boreal Conservation Science Panel, 2013). Often long-term
land tenures to single logging companies cover vast areas,
larger than some United States states. These tenures give those
companies the rights to harvest logs and build roads, bridges
and other infrastructure in order to do so. Mining companies
and oil and gas companies can similarly license claims for
areas of the boreal forest for exploration (Wells et al., 2010).
If exploration has indicated a substantial mineral deposit, then
those companies can apply for the right to develop mines or
oil extraction facilities. Hydropower corporations in Canada
are largely all public-private corporations. These entities must
also be granted rights to develop dams, roads, transmission
line corridors and other infrastructure within Boreal Forest
lands. Historically, Indigenous peoples were rarely consulted
on the management of their lands including the granting of
rights to resource extraction companies to operate on their
traditional territories (Ariss and Cutfeet, 2012; Indigenous
Circle of Experts, 2018) or the designation of protected areas
(Indigenous Circle of Experts, 2018). In the last two decades,
more engagement and consultation of Indigenous governments
and communities has begun taking place. But the degree of
authority in land use decisions that any particular Indigenous
government or community has over the use of its traditional
territory varies greatly across Canada depending especially on the
views of the provincial or territorial government and bureaucratic
leadership and the level of pressure exerted by resource extraction
industries in that region.

GOVERNANCE AND POLICY CONTEXT
OF THE ALASKA BOREAL FOREST

The Alaska portion of the Boreal Forest biome is managed
by the federal government (51%), Native Corporations (24%),
state and local governments (25%), and private landowners
(0.4%). Federal lands in the Alaska Boreal Forest biome are
primarily managed by the Bureau of Land Management. The
Bureau of Land Management is governed by a multiple-use
mandate, seeking to balance a host of resources. This is
outlined in federal statute 43 U.S.C. §1732(a) which states:
“Multiple use means the management of the public lands and
their various resource values so that they are utilized in the
combination that will best meet the present and future needs
of the American people,” and includes “the use of some land
for less than all of the resources.” The resources to be managed
specifically include, but are not limited to “recreation, range,
timber, minerals, watershed, wildlife and fish, and natural scenic,
scientific and historical values.” In addition, the Bureau of Land
Management is required to “give priority to the designation
and protection of Areas of Critical Environmental Concern,”
which are areas that receive special management “to protect and
prevent irreparable damage to important historic, cultural, or
scenic values, fish and wildlife resources or other natural systems
or processes. . .” (Federal Land Policy and Management Act,
43 U.S.C. § § 1712[b][3], 1702[a]).

Management for the Bureau of Land Management Boreal
Forest lands in Alaska is defined in Resource Management
Plans that govern land use for decades at a time. These
Resource Management Plans are based on ongoing inventories
of existing resources and identify which lands will be managed
as Areas of Critical Environmental Concern or for other special
purposes, as well as which lands will be available for oil and gas
leasing and which lands will be recommended for withdrawal
from mining (Federal Land Policy and Management Act, 43
U.S.C. §§1711, 1712). Based on its perception of the multiple
use mandate, the Bureau of Land Management is generally
reluctant to set aside lands for protection or to close them
to leasing or other forms or development. For example, the
Kobuk-Seward Record of Decision and Approved Resource
Management Plans did not close any of the 11.9 million
acres under consideration to oil and gas leasing (Bureau of
Land Management, 2016). Nonetheless, many existing Resource
Management Plans in Alaska do contain some Areas of Critical
Environmental Concern that protect cultural and subsistence
values for Tribes (e.g., Bureau of Land Management, 2008a;
Bureau of Land Management, 2008b). In addition, much of the
Boreal Forest lands, close to 50 million acres, were withdrawn
from mining and leasing pursuant to the Alaska Native Claims
Settlement Act, subject to later actions by the Bureau of Land
Management and the Department of the Interior to revoke those
withdrawals (Alaska Native Claims Settlement Act, 43 U.S.C.
§ 1616[d][1]).

INDIGENOUS LEADERSHIP IN BOREAL
FOREST LAND-USE PLANNING AND
LAND CONSERVATION

In recent years in Canada, Indigenous governments have
increasingly been asserting more decision-making authority over
their lands (Ariss and Cutfeet, 2012). One of the ways that this has
been accomplished has been by Indigenous nations developing
leading edge comprehensive land-use plans for their traditional
lands (International Boreal Conservation Science Panel, 2013).
These plans consolidate the Indigenous government’s vision for
the future of their lands and include protected lands as well as
lands that may be available for resource development under the
oversight of Indigenous governments through their laws, policies
and regulations.

In some areas, these plans have led Indigenous governments
to declare certain areas as off limits to resource development
activities sometimes through a declaration of an Indigenous
protected or conserved area (Ariss and Cutfeet, 2012; Indigenous
Circle of Experts, 2018). Conflicts have arisen when a provincial
or territorial government ignores the declaration and grants
permits for private industry to operate within the area designated
by the Indigenous government as off-limits to such activity.
Those conflicts can result in actual on-the-ground standoffs with
Indigenous blockades of access roads and/or may begin a string
of protracted legal battles that can be financially debilitating for
the Indigenous government (Ariss and Cutfeet, 2012).
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THE CHALLENGE FOR
NON-GOVERNMENTAL CONSERVATION
ORGANIZATIONS

For non-governmental conservation organizations (NGCO),
the political landscape is a complicated one within which
to operate. In essence, both Indigenous and provincial or
territorial governments control or strongly influence land use
decisions across the Boreal Forest biome. NGCOs must develop
and maintain supportive partnerships with many distinct and
independent Indigenous governments and with provincial or
territorial government officials to understand the intricacies of
reinforcing Indigenous-led conservation actions and not overstep
the Indigenous government’s leadership.

CURRENT CONSERVATION STATUS OF
THE NORTH AMERICAN BOREAL
FOREST BIOME

Large tracts of North American Boreal Forest ecosystems
remain intact not by design, but rather as the outcome of the
inaccessibility of access (Andrew et al., 2012). The historical
and current difficulty in accessing these lands has also made it
one of the last industrial development frontiers on earth. The
area protected is estimated to be only between 8 (Andrew et al.,
2014) and 12.7% (Lee and Cheng, 2010; Carlson et al., 2015) and
development and land-use management decisions are underway
at an increased rate. Yet estimates do not yet reflect gains made
in the last 2 years in creating new, large-scale protected areas in
Canada’s Boreal Forest region.

The overall areal extent of the North American Boreal
Forest biome considered intact or relatively free of industrial
anthropogenic impacts (including forestry, mining, oil and
gas, hydropower, and infrastructure but not including climate
change) has been estimated at 80–83% (Lee and Cheng, 2010;
Lee et al., 2010; Andrew et al., 2012; Powers et al., 2013; Smith
and Cheng, 2016). An area of contention in global analyses
of areal extent of intact forest is whether areas impacted by
forest fires should be considered as part of the anthropogenic
footprint (Venier et al., 2018). Most forest fires in the North
American Boreal Forest biome have historically been considered
to be lightning-caused (Veraverbeke et al., 2017) and part of
the long-term ecological history of the biome (Brandt et al.,
2013; Venier et al., 2018). Very large forest fires have historically
occurred across much of the North American Boreal Forest
biome. In recent decades, the size and frequency of fires has
increased, especially in the Alaskan and western Canada portions
of the biome, perhaps to a level that has not occurred in the last
10,000 years (Kelly et al., 2013).

In contrast, in the Russian Boreal Forest biome most forest
fires are generally considered to be human caused. Most experts
now agree that the area burned in forest fires in the North
American Boreal Forest should not be considered part of the
anthropogenic footprint since most large fires are in remote areas
lacking industrial infrastructure and these burned over areas will

regrow and remain intact. However, because of the inclusion of
areas burned by forest fires, several global analyses have suggested
that the North American Boreal Forest biome has lost forest cover
in recent decades at exceptionally high rates (e.g., Hansen et al.,
2013; Haddad et al., 2015). An estimated 399,000 km2 of the
Canadian portion of the North American Boreal Forest biome
was impacted by forest fires between 1985 and 2010 (White et al.,
2017), amounting to 9% of the Canadian portion of the biome. If
this were considered part of the anthropogenic footprint, the area
considered intact would be lowered to approximately 74%.

A 1987 study reported that, of the “frontier forests” of North
American (most in the Boreal Forest biome), 26% were under
moderate or high threat (Bryant et al., 1997). An expert review
of the state of all of North America’s ecoregions categorized two
southern Boreal Forest ecoregions as in Critically Endangered
condition, one as Endangered, and an additional seven Boreal
Forest ecoregions as Vulnerable (Ricketts et al., 1999).

As these studies reflect, the loss and fragmentation of
intact ecosystems of the North American Boreal Forest biome
is increasing as industrial access infrastructure is established
from south to north. This is clear from the fact that while
northern portions of the biome like the Taiga Plains ecozone
are substantially intact (78% of the ecozone consists of intact
landscapes of 10,000 ha or larger), substantial disturbance has
occurred in southern portions like the Boreal Plains ecozone
which is only 36% intact (Lee et al., 2006). In the southern portion
of the North American Boreal Forest biome, estimates of the
amount of no-longer-intact habitat range up to 66% (Ricketts
et al., 1999) encompassing 1.77 million km2. Lee et al. (2006)
demonstrated that less than fifteen percent of the 710,000 km2

Boreal Plains ecozone (the portion of the southern Boreal
ranging from the eastern foothills of the Canadian Rockies to
south-central Manitoba) was in forested landscapes that were
still large and intact. More than 4,000 km2 of the southern
Boreal Forest biome within Saskatchewan and Manitoba and
over 24,000 km2 of the Boreal Forest biome within Quebec was
impacted between 1900 and 2000 by forestry, road-building, and
other infrastructure development (Stanojevic et al., 2006a,b).

FOREST INDUSTRY IMPACTS IN THE
NORTH AMERICAN BOREAL FOREST
BIOME

Forestry practices differ across international boundaries within
the North American Boreal Forest Biome but forestry clearly
has impacted more area of the Boreal Forest biome than any
other industrial activity. A third of the North American Boreal
Forest biome is tenured (leased) for forestry in Canada (Carlson
et al., 2015). As of 2003, an estimated 61% of the 1.6 million
km2 Canadian commercially managed portion of the North
American Boreal Forest biome had been logged at least once – an
area of over 1 million km2 (Venier et al., 2014) or 16% of
the entire biome (note that this does not include any portion
of Alaskan boreal that was logged). Using Landsat time series,
White et al. (2017) estimated that 104,000 km2 were disturbed
by harvest in boreal ecozones of Canada between 1985 and
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2010 while 399,000 km2 were impacted by wildfire during the
same period. A remote sensing analysis in 2013 estimated that
240,000 km2 of Canada’s portion of the Boreal Forest biome
showed visible forest cutblocks (Pasher et al., 2013; Webster
et al., 2015). A number of declining and Canadian federally
listed Boreal Forest dependent birds species show major overlap
with the most heavily impacted southern portion of the Boreal
Forest biome (Wells, 2011) as does the Canadian federally
threatened Woodland Caribou (Environment Canada, 2008,
2011; International Boreal Conservation Science Panel, 2011).

In the eastern Canadian part of the North American Boreal
Forest biome, the pace and scale of forest harvest has increased
in recent decades. Combined with increased size and frequency
of forest fires, this is diminishing the amount of older age forest
on the landscape to critically low levels (Cyr et al., 2009; Venier
et al., 2014; Gauthier et al., 2015; Bergeron et al., 2017). Similarly,
only 16.5% of old growth was estimated to be remaining in the
managed portion of the Boreal Forest biome in Ontario and only
10% in Alberta (Venier et al., 2014).

The Alaska portion of the Boreal Forest biome has experienced
limited timber harvest that has been concentrated near
communities with infrastructure. Less than 5% of the total timber
harvested in Alaska comes from Boreal Forests (Wurtz et al.,
2006). Forested boreal lands make up 47 million hectares of
land (roughly the size of California) in interior Alaska. Most
timber extraction occurs in mature stands of white spruce where
volumes are highest, with much of this harvest being devoted
to local wood product needs. During the late 1980’s and early
1990’s, many high-quality white spruce logs were exported to
Pacific Rim countries from state and private lands in the Boreal
Forest. However, changing global markets largely ended these
exports and the likelihood of future log exports from Alaska’s
interior forests appears small. Timber harvest in Alaska’s Boreal
Forest remains low due to distance from markets, low population
densities, and lack of accessible timber lands for harvest.

MINING AND OIL AND GAS INDUSTRY
IMPACTS IN THE NORTH AMERICAN
BOREAL FOREST BIOME

A variety of other types of industrial disturbances occur within
the North American Boreal Forest biome. In the western Canada
portion of the biome, oil and gas extraction and exploration are
rapidly increasing. As many as 22,800 oil and gas wells were
drilled in 2004 and there were 222,000 active and abandoned
well sites as of 2011 (Brandt et al., 2013). There are now at
least 441,000 km of pipelines and 1.7 million km of seismic
lines (1.75–10 m wide cleared corridors for deploying equipment
to search for oil and gas deposits) set primarily in the Alberta
portion of the North American Boreal Forest biome (Lee and
Boutin, 2006; Brandt et al., 2013; Dabros et al., 2018). The
industrial footprint from the oil and gas industry in Canada’s
portion of the Boreal Forest biome as of 2003 was estimated
at 460,000 km2 or approximately 8% of Canada’s portion of
the biome (Anielski and Wilson, 2009). Habitat that would
have supported an estimated 58,000–402,000 breeding birds has

already been lost within Alberta’s oil sands region (Timoney and
Lee, 2009) and future accumulated losses have been estimated
into the tens of millions (Wells et al., 2008).

Mining may be one of the most damaging of the natural
resource extraction industries to both the environment and local
communities. Effects include cumulative impacts, disruption of
ecological and social systems, and lasting contamination. Because
many of these impacts occur over decades or centuries, the ways
that mining activities impact the broad ecological landscape and
environment is often not widely acknowledged. Eighty percent
of Canada’s mines occur within the Boreal Forest biome (Wells
et al., 2010). There were 108 mineral, metal, and coal mines in the
Canadian portion of the North American Boreal Forest biome as
of 2009 and 1300 or more abandoned mines (Brandt et al., 2013).
Although there is no existing estimate of the impact to waterways
of abandoned and active mines in Canada’s portion of the Boreal
Forest biome, at least 3,000 such sites are known to occur within
1 km of a stream, river, or lake into which they have the potential
to leach contaminants (Wells et al., 2010).

The biggest anthropogenic challenges, other than climate
change, for Alaska’s Boreal Forest biome, come from proposed
development projects that include infrastructure for large-scale
mining operations and access to currently roadless landscapes.
Some of these projects will threaten the ecological integrity of
existing protected areas (Wilson et al., 2014). The proposed
Ambler road would develop a 400 km route through western
Alaska Boreal Forests, cross three major salmon-producing rivers
(including two Wild and Scenic designated rivers), and bisect
the southern portion of Gates of the Arctic National Park. The
proposed road would allow access and spur development for
at least twelve individual mines that would create the largest
mining district in Alaska and one of the largest mining districts
in the world’s Boreal Forest biome (Guettabi et al., 2016). Global
development scenarios suggest oil, gas, mining, and renewable
energy development in Alaska will concentrate across regions
of the Boreal Forest biome (Oakleaf et al., 2019). Four of
Alaska’s six largest operating mines and six of the seven largest,
proposed mining projects occur within the Boreal Forest biome
(Spengler, 2013).

HYDROPOWER PROJECT IMPACTS IN
THE NORTH AMERICAN BOREAL
FOREST BIOME

Large hydropower projects in Canada, many developed in the
1970s and 1980s, have inundated millions of hectares (Wells
et al., 2010; Cheskey et al., 2011), especially in parts of the
eastern Boreal Forest biome. For example, 1.1 million hectares
of terrestrial habitat were lost to five reservoirs established in the
La Grande River region of central Quebec (Gauthier and Aubry,
1996). According to Brandt et al. (2013) there were 713 large
dams (>5 m in height) and another 290 smaller dams in Canada’s
portion of the Boreal Forest biome as of 2011. The total surface
area of hydropower impoundments was estimated at 50,724 km2.
Most of this surface area was formerly terrestrial habitat (Wells
et al., 2010; Lee et al., 2011).
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Large, proposed hydropower projects in Alaska would
bring significant changes to Alaska’s Boreal Forest biome. The
Susitna-Watana Hydroelectric project would destroy over 20 km
of spawning habitat for Arctic grayling and impact 100 km
of salmon spawning habitat. The dam created by the project
would be the fifth largest concrete dam in the world. Proposed
dams and both claimed and surveyed mining claims encompass
a significant portion of Alaska’s Boreal Forest, indicating the
potential for large-scale industrial development in a currently
intact ecological region larger than the size of California.

ROAD NETWORK AND AGRICULTURE
IMPACTS IN THE NORTH AMERICAN
BOREAL FOREST BIOME

Roads and associated infrastructure threaten the ecological
integrity of large portions of North America’s Boreal Forest
biome. Between 1959 and 1970, over 6,000 km of new permanent
roads were built in Canada, largely in the Boreal Forest biome
(Bone, 1992). A vast network of hundreds of thousands of
kilometers of logging roads still span Canada’s southern Boreal
Forest biome – at least 51,000 km (ten times the driving
distance between Montreal and Vancouver) in Quebec alone.
In addition, there are over 1,200 km of new or upgraded roads
under consideration in Quebec’s northern regions (Government
of Quebec, 2011). In British Columbia, there are now over
600,000 km of resource roads with an estimated 10,000 km of new
roads added every year (Forest Practices Board, 2015).

In Alaska’s portion of the Boreal Forest biome, the 577 km
Dalton Highway was built in 1974 to serve the oilfields on
Alaska’s Arctic coastline. It bisects Boreal Forest and has
accelerated the degradation of permafrost in the region and
shifted plant community composition due to the accumulation
of road dust. The extent of the degradation footprint from
the road extends 115 km2 along the road corridor (Farmer,
1993; Connor and Harper, 2013). The Red Dog Mine haul
road in northwestern Alaska has impacted birds, mammals
and vegetation communities in the region through heavy metal
contamination and road dust pollutants (Hasselbach et al., 2005;
Neitlich et al., 2017). Even the Denali Park Road, which extends
through Denali National Park and allows limited vehicle traffic,
has shown degradation of wilderness characteristics within the
national park along the road corridor (Burrows et al., 2016).

Land use conversion for agriculture is significant in some parts
of the Boreal Forest biome. In the western Canadian Province
of Saskatchewan, deforestation rates for agriculture can reach
1% per year (Hobson and Bayne, 2000). Parts of the biome in
Alberta, Manitoba, and northeastern British Columbia have also
experienced significant conversion to agriculture.

POLICY CHANGE IMPACTS IN ALASKA’S
BOREAL FOREST

In Alaska, current government actions by the Department of
Interior and the Bureau of Land Management are putting the

ecological and subsistence functions of Alaska’s Boreal Forest
lands at even further risk. The Bureau of Land Management
is preparing revised Resource Management Plans that govern
millions of acres and proposes to remove all protections for
Areas of Critical Environmental Concern while declining to
designate any new Areas of Critical Environmental Concern,
despite its statutory obligation. For instance, in the Bering
Sea Western Interior Resource Management Plan, the Bureau
of Land Management has proposed to remove Areas of
Critical Environmental Concern protection from approximately
1.9 million acres (769,000 ha) and refused to give protection to
an additional 4.2 million acres (1.7 million ha) that the agency
found merited such protection (Bureau of Land Management,
2019). Further, the United States Department of the Interior
has issued Public Land Orders revoking withdrawals on nearly
2 million acres (809,000 ha) of Boreal Forest lands (Rait, 2019;
Rowland-Shea et al., 2019).

CLIMATE CHANGE IMPACTS IN NORTH
AMERICA’S BOREAL FOREST BIOME

While large areas of the North American Boreal Forest biome are
being rapidly transformed by industrial activities, the biome is
also undergoing major impacts from climate change (Price et al.,
2013; Gauthier et al., 2015; Wells et al., 2018). Books, reviews and
thousands of pages of government reports are published annually
on the changes underway and expected from climate change in
the Boreal Forest biome. While these are important (and we
summarize some of the major impacts below), we focus in this
review on impacts from land-use change activities and policies
and actions related to large landscape conservation.

Mean annual temperatures across the biome are projected
to be higher by 4–5◦C by 2100 with an increase in droughts
significant enough to cause tree mortality in the western portion
of the biome coupled with increased size and frequency of forest
fires and the severity of tree-killing insect outbreaks (Price et al.,
2013). Climate warming may initially increase boreal tree growth
but after an average 2◦C temperature increase is reached, tree
growth is expected to decrease as a result of warming and
drying (D’Orangeville et al., 2018). The areal extent of the North
American Boreal Forest biome is predicted to shrink by 25% by
the end of the century (Rehfeldt et al., 2012). More than half
of birds dependent on forested habitats within the biome are
projected to decline by 2100 as a result of less favorable climate
conditions (Wells et al., 2018).

Climate change is also accelerating ecological changes across
the Boreal Forest biome. In Alaska, over 50% of these forests
have low biomass production due to underlying discontinuous
permafrost that leads to stunted timber growth. White spruce
is vulnerable to permafrost degradation and may be replaced
by grasslands and deciduous trees. Black spruce recruitment is
declining due to shortened fire-free periods of time. Drought
stress, insects, and displacement of conifers by deciduous species
are driving ecological regime shift through much of the Boreal
Forest biome. Boreal Forests in Alaska are expected to resemble
the mixed deciduous-conifer forests of southern Canada as early
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as 2040 (Mann et al., 2012) and in Canada there is evidence
that deciduous species are already becoming more prominent
in the southern extent of the Boreal Forest and that shift may
be exacerbated by modern forestry practices (Cyr et al., 2009;
Cadieux et al., 2020).

Several recent publications have outlined the regions within
the Boreal Forest biome that are predicted to be important future
climate change refugia for a variety of wildlife and plants and the
factors that are important in determining what areas will show
rapid change and what areas will show slower changes (Stralberg
et al., 2018, 2020a,b).

A VISION FOR THE FUTURE OF THE
NORTH AMERICAN BOREAL FOREST
BIOME

The recognition of the increasing pressure for industrial
resource development led a Canadian senate subcommittee
in 1999 to describe the Canadian portion of the North
American Boreal Forest biome as “under siege” (Sub-Committee
on Boreal Forest of the Standing Senate Committee on
Agriculture and Forestry, 1999). The senate subcommittee
suggested that management of these lands was not living
up to government commitments to sustainable management
and ecosystem protection (e.g., Canada’s Forest Accord and
National Forest Strategies). A forward-thinking recommendation
of the subcommittee was for the establishment of industrial
footprint thresholds – an idea that has been proposed and
debated in the context of protecting the remaining herds of
Threatened Woodland Caribou in Canada’s portion of the Boreal
Forest biome (Environment Canada, 2008, 2011; Festa-Blanchet
et al., 2011; International Boreal Conservation Science Panel,
2011). Significantly, the senate subcommittee pointed out that
recognition and protection of Indigenous rights and participatory
land-use planning were critical to the region’s future.

A coalition of Indigenous governments, conservation
non-governmental organizations, and forward-thinking industry
soon came together after this to form the Boreal Leadership
Council (BLC). The BLC has promoted a vision for maintaining
the special ecological and cultural values of the Boreal Forest
biome within Canada (Carlson et al., 2015). They published this
collaborative vision in 2003, describing the idea of an approach
to land-use within the biome that would balance conservation
and industrial activities with a suggestion that half or more of
the biome should be considered for some form of protected
area status (Boreal Leadership Council, 2003; Carlson et al.,
2015). The need to significantly raise targets for protected areas
goals in order to represent all native ecosystems, maintain
populations of native species in natural patterns of abundance,
maintain ecological processes, and maintain resilience to
climate change (Noss and Cooperrider, 1994: International
Boreal Conservation Science Panel, 2013; Carlson et al., 2015)
is now widely acknowledged and discussed by both scientists
and policymakers (Schmiegelow et al., 2006; Noss et al., 2012;
International Boreal Conservation Science Panel, 2013; Locke,
2013; Wilson, 2016; Dinerstein et al., 2017).

CONSERVATION SUCCESSES AND
OPPORTUNITIES IN CANADA

Fortunately, large conservation gains have been and continue
to be made in North America’s Boreal Forest biome through
innovative, collaborative efforts of Indigenous, provincial,
territorial, and federal governments and NGCO. Over
450,000 km2 of protected areas have been formalized in
Canada’s portion of the Boreal Forest biome since 2000 and
400,000 km2 of forest tenures had been certified through the
Forest Stewardship Council (Carlson et al., 2015). In partnership
with provinces and territories, the Canadian federal government
has embarked on an ambitious effort to reach its Convention
on Biodiversity-Aichi obligation of protecting at least 17% of
its terrestrial landscape by 2020 (Wulder et al., 2018) through,
among other things, establishing a $500 million Nature Fund,
including a $175 million Target 1 Challenge Fund. A significant
proportion of Challenge Fund support has been used to assist
Indigenous and provincial/territorial governments in developing
protected areas proposals. Because of its relative intactness,
lands in the Boreal Forest biome of Canada make up the vast
proportion of these proposals.

CONSERVATION OPPORTUNITIES IN
ALASKA

In Alaska, National Wildlife Refuges, and National Parks and
Preserves make up the current protected areas of the Boreal
Forest biome. Over 12 million hectares within the Boreal Forest
biome were protected under the Alaska National Interest Lands
Conservation Act in 1980. These land protections included
subsistence rights for Indigenous Peoples within Alaska, but
did not convey management or ownership to Indigenous
Peoples. In fact, Alaska’s 229 Federally recognized Tribes do
not have equal land rights to those of Native Corporations,
or state and federal government. Even with the current
political structure, Indigenous Peoples have engaged in land
use management planning efforts to establish Areas of Critical
Environmental Concern and other types of protected areas within
management plans. In Alaska, species-based co-management
groups govern specific wildlife populations, but they do not
have authority over land management decisions. For example,
the Western Arctic Caribou Herd Working Group makes
management recommendations for the Western Arctic Caribou
Herd and the Alaska Migratory Bird Co-Management Council
makes recommendations to inform state and federal wildlife
guidelines for migratory birds. However, the conservation of
species must include the conservation of species’ habitats,
and thus, the co-management models that have been built
by species-specific co-management boards should be expanded
to include land units for conservation. Although these efforts
have not resulted in permanent protection for specific places,
the opportunity exists to build new collaborations and secure
protections for Alaska’s Boreal Forest biome that are consistent
with the requests of Indigenous governments and communities
across the region.
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INDIGENOUS-LED CONSERVATION

Indigenous governments across the Boreal Forest biome of
Canada are leading in many of the most modern, cutting
edge land and wildlife management plans and models in
the world (International Boreal Conservation Science Panel,
2013; Wells et al., 2013; Carlson et al., 2015). Land-use
plans developed by Indigenous governments cover vast regions
involving hundreds of thousands of hectares of habitat (Wells
et al., 2014). The recommendations for protected areas and
sustainable development zones in these landscape plans are
some of the most significant conservation efforts ongoing in
North America and the world. In 2018, the Canadian federal
government announced $175 million in new funds (Target 1
Challenge Funds as mentioned above) to support new protected
areas proposals, including those led by Indigenous governments.
New Indigenous land-use plans and protected areas proposals
(often termed Indigenous Protected and Conserved Areas)
for areas within the Boreal Forest biome continue to be
announced and developed.

EXAMPLE INDIGENOUS LARGE-SCALE
LAND-USE PLANS AND PROTECTED
AND CONSERVED AREAS PROPOSALS

The Łutsël K’e Dene First Nation in the Northwest Territories is
implementing a conservation plan for their traditional territory.
On August 21st 2019, the Łutsël K’e Dene First Nation signed an
agreement with the Parks Canada Agency and the Government
of the Northwest Territories to permanently protect 26,376 km2

of boreal lands. The entire area, called Thaidene Nëné, is
an Indigenous Protected and Conserved Area. Parts of it are
also designated as a national park, territorial park and wildlife
conservation area (S. Nitah, personal communication).

The Dehcho First Nation in the southwestern part of
the Northwest Territories finalized a sophisticated land-use
plan in 2006 for their more than 200,000 km2 traditional
territory (Dehcho Land Use Planning Committee, 2006). While
negotiations with the Government of the Northwest Territories
and the Canadian federal government are still ongoing, the
original Dehcho plan called for more than 100,000 km2 of
protected lands (International Boreal Conservation Science
Panel, 2013; Wells et al., 2013). In October 2018, Dehcho
leaders and federal government representatives held a signing
ceremony to designate the Edéhzhíe Dehcho Protected Area and
National Wildlife Area. Spanning 14,249 km2 of Boreal Forest,
Edéhzhíe marked the first Indigenous protected and conserved
area established since Canada laid out its pathway process to
protect at least 17% of lands and freshwaters by 2020.

The Sahtúgot’ine Dene in the Northwest Territories proposed
and established the Tsá Tué Biosphere Reserve in 2016. The
Biosphere Reserve encompassed more than 90,000 km2 of area
including Great Bear Lake (one of the world’s largest and most
pristine) and its watershed. More recently the Sahtúgot’ine Dene
have proposed creating an Indigenous protected and conserved
area in their traditional territory.

In Yukon, the Peel River Watershed Land Use Plan which
was developed through a many-year process involving a number
of First Nations as well as conservation organizations and the
Yukon Government, was approved in 2019 requiring 55,000 km2

of new protected areas be formally established in coming years
(Government of Yukon, 2019).

In Manitoba and Ontario, several First Nations that developed
and implemented land-use plans for their traditional territories,
worked with the governments of Manitoba and Ontario to be
granted World Heritage status under the name of Pimachiowin
Aki (the Land that Gives Life). They protected 29,040 km2

of intact forest within the southern portions of the Boreal
Forest biome in eastern edge of Manitoba and western Ontario
(Davidson-Hunt et al., 2012; Wells et al., 2013). In northern
Manitoba, the Sayisi Dene First Nation has proposed protection
of the entire 50,000 km2 of the Seal River watershed, a 260 km
free-flowing river whose watershed is free of any large-scale
industrial development. Other Indigenous governments and
NGCOs are working toward creating a marine protected area at
the mouth of the Seal River to protect important beluga calving
habitat and other marine protected areas in western Hudson Bay
(Labun and Debicki, 2018).

In Ontario the Moose Cree First Nation has submitted a
proposal to protect an additional 5,080 km2 of the North French
River watershed (of which 1,583 km2 is currently protected) that
flows north into James Bay (Canadian Parks and Wilderness
Society, 2018).

In Quebec, the Cree Nation has completed a comprehensive
protected areas proposal (Cree Nation Government, 2015) with
community proposals for more than twenty large, new protected
areas together totaling about 80,000 km2 in extent (Cree Nation
Government, 2019b). A new agreement was signed in 2019
between the Cree Nation and the Canadian federal government
to launch a feasibility assessment for considering a new national
marine conservation area in Eastern James Bay (Cree Nation
Government, 2019a). A marine protected area had been proposed
in 2009 off the central east coast of James Bay by the Wemindji
First Nation (Mulrennan and Scott, 2019).

The Innu Nation in Labrador developed a Forest Ecosystem
Strategy Plan that directs that more than 50% of the 71,000-km2

agreement area be protected for ecological or cultural values – an
area of 35,000 km2 (Forsyth et al., 2003; Wells et al., 2014).

Although technically north of the Boreal Forest biome in
Alaska, there is an opportunity for a new United States model
of co-management or Indigenous leadership in protected area
management for the Arctic National Wildlife Refuge (Arctic
Refuge). The Arctic Refuge was established in 1960 and expanded
in 1980 in Alaska. Adjacent to the Arctic Refuge are Ivvavik
National Park and Vuntut National Park in Canada. The
Porcupine Caribou Management Board, which includes Alaska
Native Tribes, Canada First Nations, federal, state and provincial
governments, was established in 1987 to fulfill the international
treaty obligations to protect the Porcupine Caribou Herd within
these protected areas. These landscapes have been proposed as
an international Arctic Wilderness area with an emphasis of
continuing to protect a land base for the Gwich’in and Inupiat
cultures (Miller, 1995) and to protect the ecological integrity
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of habitats and migration corridors for the Porcupine Caribou
Herd. Adoption of such a new co-management model in Alaska
could be an important step toward establishment of other new
co-managed protected areas within Alaska’s Boreal Forest biome.

INDIGENOUS GUARDIAN PROGRAMS

Increasingly, Indigenous governments across the North
American Boreal Forest biome region are also developing
programs to train and equip Indigenous people from their
own nations to serve as on-the-ground guardians. Indigenous
guardians fulfill a wide range of duties including land and people
management, biological monitoring, safety and enforcement,
and education within their traditional territories and protected
areas using both Indigenous knowledge and western science.
Often termed “Indigenous ranger” programs in Australia, such
efforts already employ about 840 full time equivalent Indigenous
people managing protected areas in Australia (Woinnarski et al.,
2014) and the Australian government has committed another
$700 million to support rangers until 2028. One of the earliest
modern examples of this approach in Canada was initiated by
the Haida Gwaii in 1981 under the name of the Haida Watchmen
Program (M. Richardson, personal communication). Since that
time, the program has expanded to other First Nations and
is now collectively called the Guardian Watchmen Program
(Coastal First Nations–Great Bear Initiative, 2018). There
are now about 60 Indigenous Guardian programs operating
across Canada. The Łutsël K’e Dene First Nation, for instance,
established the Ni hat’ni Dene (the “Dene Watching the Land”)
program in 2008 that trains and employs young people from the
community in Indigenous knowledge, scientific monitoring and
visitor education and safety duties (Łutsël K’e Dene First Nation,
2018). In 2017, the Canadian Federal government committed
$25 million to help support existing and establish more such
guardian programs. By the end of 2020, more than 70 existing
and new programs will have received financial support for
guardian programs.

CONSERVATION RECOMMENDATIONS
FOR NORTH AMERICA’S BOREAL
FOREST BIOME

• Land-use decisions across the North American Boreal
Forest biome will determine its ecological future. Those
decisions must be led by Indigenous governments and
communities. This is consistent with Free Prior and
Informed Consent (FPIC) principles that state that
Indigenous peoples have the right to determine and develop
priorities and strategies for the development or use of
lands and waters or other resources within their traditional
territories (Boreal Leadership Council, 2012).

• Federal, provincial and territorial governments should
make large-scale, multi-year investments in providing
financial resources for Indigenous governments and
communities to train and hire Indigenous land-use

planners, managers, and on-the-land guardians. Such
programs can fill existing gaps in ecological data
particularly in remote northern regions where data
are most sparse.

• Federal, provincial and territorial governments should
make large-scale, multi-year investments in providing
financial resources for Indigenous governments and
communities for the planning, development, and
management of Indigenous protected and conserved
areas. This will be essential for Canada to meet both
its current and any future conservation commitments,
including the Government of Canada’s 2019 Speech
from the Throne commitment to protect 25% of lands
and waters by 2025.

• To maintain the full complement of all plant and animal
species and associated ecological processes, at least 50
percent of the North American Boreal Forest biome should
be within a network of protected areas free of large-scale
industrial disturbance, including from forestry, mining and
exploration activity, oil and gas extraction and exploration,
agriculture and hydropower production (International
Boreal Conservation Science Panel, 2013; Wells et al., 2014).
Industrial development that does occur must be carried
out at the highest sustainability standards and only with
Indigenous government consent and oversight.

• The protected area networks must include very large
landscapes – ideally on the order of 10,000–30,000+ km2

(2.5–7+ million acres) in size – connected to allow wildlife
populations to survive and to ensure the full range of
habitat diversity and ecosystem functions that will serve
as biodiversity reservoirs in the face of climate change
(International Boreal Conservation Science Panel, 2011).

• Conservation of lands must accommodate Indigenous
traditional uses of the land and should be managed or
co-managed by Indigenous governments and guardians.
In all conservation areas, there should be protection of
traditional values and uses, including hunting, trapping,
gathering plants for food, materials, medicines and spiritual
and ceremonial practices.

• Planning must take into account the cumulative impacts
of development over meaningful time periods (i.e., decades
to a century). This is necessary to ensure that the full
consequences of land use are understood and addressed.
Given the unprecedented speed of climate change impacts
to ecological systems, especially in northern regions, the
viability of wildlife populations is dependent on managing
land use to maintain large, intact habitat areas and
landscape connectivity.

• While Alaska has examples of species-specific co-
management plans, such a co-management model must
be applied to Indigenous protected areas or ecosystem-
based plans that can be implemented through Indigenous
resource management, such as the approach originally
envisioned for the Arctic National Wildlife Refuge.

• In Alaska, the foregoing recommendations generally
apply. However, they will also need to be implemented
in a manner that addresses the challenges of current
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land ownership and management within the state. The
federal agencies, as well as the State of Alaska, can and
should use their management flexibility to enter into
co-management arrangements for landscapes and set up
Indigenous guardian programs, similar to those employed
in Canada. They should undertake an effort to identify the
best places for management with Indigenous governments
and communities immediately. The opportunity to
protect large, intact Boreal Forest landscapes in Alaska
will require coordination among diverse stakeholders,
investment in Indigenous governments and communities,
and recognition of the issues that have resulted from the
history of colonization across the United States.

CONCLUSION

The North American Boreal Forest biome is one of the last,
large intact landscapes remaining on Earth. The intactness of the
biome has allowed it to retain globally significant conservation
values and features and ecological functions. As the human
industrial footprint and climate change impacts continue to
degrade ecosystems and increase the loss of biodiversity on the
planet, the protection of the North American Boreal Forest
biome becomes even more essential. Maintaining its massive
terrestrial carbon storehouse is critical to preventing further
carbon from being released into the atmosphere (Bradshaw et al.,
2009; Carlson et al., 2009; Bradshaw and Warkentin, 2015).
The biome will also become increasingly important as a place
of refuge for species forced northward by inhospitable climate
further south (Stralberg et al., 2015, Stralberg et al., 2017).
Further, the best insurance for maintaining resilience of plant and
animal communities to climate change will be the maintenance
of intact ecosystems and robust populations (Wells et al., 2018).
Species that must shift ranges northward to survive will have
their best opportunity to so do when unimpeded by fragmented
habitat full of human-made barriers. Careful land-use planning
now that conserves very large parts of the North American

Boreal Forest biome will provide the best likelihood of survival
for countless species, including humans. The most significant
land-use planning and conservation proposals underway across
the biome are led by Indigenous governments. Governments,
non-governmental organizations, academics and indeed the
public at large, should be finding ways to support and encourage
Indigenous-led land-use planning, Indigenous guardians and
Indigenous protected and conserved areas.
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Pre-settlement New England was heavily forested, with trees exceeding 2 m in diameter.
The forests have regrown since farm abandonment, representing what is arguably the
most successful regional reforestation on record and identified recently in the “Global
Safety Net.” Temperate “old-growth” forest and remnant stands demonstrate that native
tree species can live several hundred years and continue to add to forest biomass
and structural and ecological complexity. Forests globally are an essential natural
climate solution that accumulate carbon and reduce annual increases in atmospheric
CO2 by approximately 30%. Some studies emphasize young, fast-growing trees and
forests while others highlight carbon storage and accumulation in old trees and intact
forests. We addressed this directly within New England with long-term, accurate field
measurements and volume modeling of individual trees and two stands of eastern white
pines (Pinaceae: Pinus strobus) and compared our results to models developed by the
U.S. Forest Service. Within this sample and species, our major findings complement
and clarify previous findings and are threefold: (1) beyond 80 years, an intact eastern
white pine forest can accumulate carbon above-ground in living trees at a high rate
and double the carbon stored in this compartment in subsequent years; (2) large trees
dominate above-ground carbon and can continue to accumulate carbon; (3) productive
stands can continue to accumulate high amounts of carbon in live trees for well over 150
years. Because the next decades are critical in addressing the climate emergency, and
most New England forests are less than 100 years old, a major implication of this work
is that maintaining and accumulating carbon in some existing forests—proforestation—
is a powerful regional climate solution. Furthermore, older and old-growth trees and
forests are rare, complex, highly dynamic and biodiverse: dedication of some forests
to proforestation will produce large carbon-dense trees and also protect ecosystem
integrity, special habitats, and native biodiversity long-term. In sum, strategic policies
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to grow and protect suitable existing forests in New England will optimize a proven,
low cost, natural climate solution that also protects and restores biodiversity across
the landscape.

Keywords: proforestation, intact forest, ecological resilience, carbon accumulation, chronoseqeuence, old-
growth and second-growth forest, tree volume, ecological integrity

INTRODUCTION

A global priority for the climate has long been reducing ongoing
emissions of heat-trapping greenhouse gases (GHGs) produced
by burning carbon-based fuels. While this is essential, it is
not sufficient for halting the rise in global temperatures. It
is necessary to also simultaneously increase carbon dioxide
(CO2) removal (CDR) and keep carbon stored within natural
systems. Clearing and harvesting forests, draining and developing
wetlands, and degrading soils account for one-third of all the
CO2 added to the atmosphere by humans since the beginning
of the industrial revolution (Simmons and Matthews, 2016).
Together, these ongoing actions continue to add approximately
1.6 PgC/year (1 Pg equals 1 Gt or 1015 grams or 1 billion
metric tons; Friedlingstein et al., 2020). Burning wood for
heat and electricity adds additional CO2, and current forest
management practices limit the potential of this natural solution
to accumulate carbon above and below ground and keep it out of
the atmosphere (Sterman et al., 2018).

Two recent Intergovernmental Panel on Climate Change
(IPCC) reports identify the urgent and unprecedented imperative
to simultaneously and rapidly reduce Carbon Dioxide Emissions
and achieve additional Carbon Dioxide Removal (CDR) from
the atmosphere (Intergovernmental Panel on Climate Change,
2018, 2019). These reports identify forests as playing a major
role in accumulating carbon out of the atmosphere. However,
for CDR the focus is primarily on afforestation (planting
new forests) and reforestation (regrowing forests) and ignores
the more rapid climate mitigation and adaptation benefits of
additional growth by existing forests, termed “proforestation”
(Moomaw et al., 2019).

Even achieving the goal of “zero net carbon” will only
“probably” limit global average temperatures to 1.5◦C
(Intergovernmental Panel on Climate Change, 2018) above
the pre-industrial global temperature and a significant increase
above the current level (∼1.2◦C). This additional temperature
increase will result in greater disruption to the climate system
and will accelerate ecological decline. To avoid ever more serious
consequences of a changed climate, the goal must be to become
net carbon negative as soon as possible. Growing suitable existing
forests is an effective and low cost means for reducing the
atmospheric stock of carbon as others have noted (Fargione et al.,
2018; Hudiburg et al., 2019; Moomaw et al., 2019; Mildrexler
et al., 2020) and will be demonstrated by the findings reported
in this paper. Natural regeneration of forests has recently been
found to accumulate more carbon in the first 30 years than
managed reforestation (Cook-Patton et al., 2020).

A second and perhaps even more urgent priority is the
strong protection of intact biodiverse natural systems (Watson

et al., 2018), as verified in the Global Assessment Report on
Biodiversity and Ecosystem Services (Intergovernmental Science-
Policy on Biodiversity and Ecosystem Services, 2019) and the
recent “Global Deal for Nature”(Dinerstein et al., 2019). A global
review with a dual focus on carbon and biodiversity identified
regions that are part of a “Global Safety Net” (Dinerstein
et al., 2020), and the safety net must be now be translated
to local levels. This joint climate/biodiversity priority was
also highlighted in the peer-reviewed declaration of a Climate
Emergency signed by over 13,000 scientists in late 2019 and
which highlighted proforestation as a global climate solution
(Ripple et al., 2020).

There is scientific consensus that we can substantially close
the gap between CO2 emissions and removals by maximizing a
range of nature-based solutions (Griscom et al., 2017; Fargione
et al., 2018). Regarding biodiversity, the beneficial role of
protected areas in supporting species abundance and diversity
was confirmed in a global meta-analysis (Coetzee et al., 2014),
and the benefit of protecting intact ecosystems was quantified
by comparing the probability of extinction in the six major
global regions. On average, “wilderness” reduces the rate of
species’ extinction by half due to higher rates of species loss in
unprotected areas (Di Marco et al., 2019); the quantified benefit
of wilderness in preventing extinction is even higher in regions,
including the Eastern United States. Biodiverse intact forests can
simultaneously provide long-term protection to natural processes
and biodiversity, reduce extinction, and provide pathways for
migration while accumulating atmospheric carbon moderating
local and global temperature increases (Friedlingstein et al.,
2020). Taken together, it is practical and possible to act
immediately to protect ecosystems and prevent extinction while
we maintain increased CDR rates and store and accumulate
additional carbon in forests and forest soils.

Forest conservation studies tend to focus on high-biodiversity
tropical forests (Mitchard, 2018), yet temperate forests are also
biodiverse (Hilmers et al., 2018), benefit human health and well-
being in highly populated areas (Karjalainen et al., 2010), and
provide many essential ecosystem services (United States Forest
Service, 2021). They also have a large additional potential for
CDR that has been underestimated by 32% (Cook-Patton et al.,
2020). New England Acadian Forests are the only region in
the lower 48 United States identified as part of the “Global
Safety Net” as a Tier 1 climate stabilization area (Dinerstein
et al., 2020). Current forest CDR in the United States reduces
annual net nation-wide greenhouse gas emissions by 11.6%
(United States Environmental Protection, and Agency, 2018),
with the potential for much more (Keeton et al., 2011; Moomaw
et al., 2019). Houghton and Nassikas (2018) estimate the current
gross carbon sink in forests recovering from harvests and in

Frontiers in Forests and Global Change | www.frontiersin.org 2 May 2021 | Volume 4 | Article 620450184

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-04-620450 May 7, 2021 Time: 17:14 # 3

Leverett et al. Above-Ground Carbon in Eastern Pine

abandoned agriculture to be −4.4 PgC/year (negative means
removal) globally, consistent with the IPCC 1.5◦C report that
identified forests as key to increasing accumulation rates. This
potential carbon sink from recovering forests is nearly as large
as the gap between anthropogenic emissions and removal rates,
5.1 PgC/year (Friedlingstein et al., 2020).

In the context of resource production and forest management,
some forest carbon is stored in lasting wood products, and
responsible forestry can provide a reliable wood supply from
a semi-natural forest. However, multiple analyses have found
that more carbon associated with timber harvests is lost to
the atmosphere than is stored in the harvested wood products
(Nunery and Keeton, 2010; Harris et al., 2016). For example,
just 19% of the original carbon stock in Oregon forests in
1900 is in long lived wood products; approximately 16% is in
landfills, and the remaining 65% is in the atmosphere as carbon
dioxide (Hudiburg et al., 2019). Updated models indicate that the
product substitution benefits of wood products are overestimated
between 2 and 100-fold (Harmon, 2019) and any near-term
carbon benefit relies on product subsitution (Hudiburg et al.,
2019; Leturcq, 2020). Biogenic emissions from harvesting in the
United States are estimated to be 640 MtC/year or 85% of total
forestry emissions, exceeding the commercial and residential
building sectors, and fossil fuel emissions from harvesting add an
additional 17% CO2 to the atmosphere above biogenic emissions
(Harris et al., 2016).

Strategic planning for responsible resource production can
both mitigate these emissions and ensure a protected network
of intact natural areas. For example, the US Climate Alliance
underestimates the importance of “net carbon accumulation”
in forests (United States Climate Alliance, 2021). Forests do
accumulate net carbon now, but carbon above and below ground
is far below historic levels and far below its potential (Law
et al., 2018; Hudiburg et al., 2019). A critical and explicit goal
is to increase and optimize carbon accumulation by utilizing
some forests for responsible resource production as needed and
protecting other forests for climate protection, long-term full
biodiversity, science, and human health and well-being.

At a global level, if deforestation were halted, and existing
secondary forests allowed to continue growing, a network of these
intact forests would protect the highest number of species from
extinction (Di Marco et al., 2019; World Wildlife Federation,
2020) and it is estimated that they could accumulate ∼120 PgC
in the 84 years between 2016 and 2100 (Houghton and Nassikas,
2018). This is equivalent to about 12 years of current global fossil
fuel carbon emissions. These global numbers are conservative as
outlined in recent analyses (Cook-Patton et al., 2020) and they
do not factor in the enhanced regional CDR potential and high
cumulative carbon that can be achieved with proforestation in
such carbon-dense temperate forests of the Pacific Northwest
(Law et al., 2018) and New England (Nunery and Keeton, 2010;
Keeton et al., 2011; Moomaw et al., 2019; Dinerstein et al., 2020).

Because these global and regional projections can be difficult
to translate locally, particularly over time, we focused on
a detailed analysis of individual trees and stands in New
England. Historically, between 80 and 90% of the New England
landscape was heavily forested, and early chroniclers describe

pre-settlement forests with many large, mature trees reaching
1–1.5 m in diameter (Whitney, 1996). Fast-growing riparian
species like sycamores and cottonwoods could reach or exceed
2 m. Today, New England trees of this size are mostly found as
isolated individuals in open areas, parks, and old estates. Old-
growth forests (primary forests) and remnants are currently less
than 0.2% of northern New England’s landscape, and less than
0.03% in Southern New England. Ongoing attempts to document
their value and identify their locations is underway (Davis, 1996;
Kershner and Leverett, 2004; Ruddat, 2020). Secondary forests in
New England consist mostly of smaller, relatively young trees (on
average less than 100 years old). The U.S. Forest Service estimates
that fewer than 7% of the nation’s forests exceed 100 years in age.

Our goal in this study was to measure carbon directly in
individual trees and in an “average” vs. an older stand of
eastern white pine (Pinaceae: Pinus strobus) in New England.
Most forest carbon studies focus on large geographical areas,
and utilize “net” carbon data gathered from LIDAR (Light
Detection And Ranging) and satellite technology, as well as
statistical modeling based on the US Forest Service methods.
Upon examining these options we note that carbon estimates
from different tools and models can lead to disparate results at
the level of individual trees—and these errors can be extrapolated
to stands (Leverett et al., 2020). Therefore, we capitalized on
the extensive tree-measuring protocols and experience of the
Native Tree Society (NTS) to conduct highly accurate direct field
measurements and measure volume precisely in younger vs. older
trees growing in stands (Native Tree Society, 2021). We used
direct measurements to evaluate volume-biomass models from
multiple sources and developed a hybrid—termed FIA-COLE—
to capitalize on the strengths of each model. We calculated the
live above-ground carbon (in metric tons) in individual eastern
white pines and individuals of other species in pine stands using
conservative assumptions and direct measurements in pines up
to 190 years old.

MATERIALS AND METHODS

This paper centers primarily on (1) individual eastern white pines
(Pinaceae: Pinus strobus), (2) a representative older pine stand in
Western Massachusetts, named the Trees of Peace (TOP: located
in Mohawk Trail State Forest, Charlemont, MA), and (3) a nearby
younger pine stand (∼230 m center to center from the TOP).
Both stands regenerated naturally from pasture and they share
abiotic conditions such as a similar elevation, soil type (Hinkley
loamy), temperature and precipitation. The younger stand is
slightly downslope, and neither shows evidence of major recent
disturbance. In 1989 the TOP lost 6 trees in a storm. Currently
the TOP has 76 pines covering 0.6–0.7 ha.

While not discussed in detail herein, we have also collected
and analyzed data from NTS measurements in 38 other sites
with white pines in the Eastern United States. Since 1990,
NTS has taken thousands of on-site direct measurements of
individual trees in dozens of stands of eastern white pines
(see examples Supplement 1). Measurements are published
on the society’s website (Native Tree Society, 2021) and

Frontiers in Forests and Global Change | www.frontiersin.org 3 May 2021 | Volume 4 | Article 620450185

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-04-620450 May 7, 2021 Time: 17:14 # 4

Leverett et al. Above-Ground Carbon in Eastern Pine

comprehensive measurement protocols were adopted from those
developed by NTS (Leverett et al., 2020) and incorporated into
the American Forests Tree Measuring Guidelines Handbook
(Leverett and Bertolette, 2014). A brief description of the
measurement methods and models is provided in “Height and
Diameter Direct Measurement Methodology,” Supplement 2 and
in Leverett et al. (2020). Here, in all cases, the best mathematical
processes were applied, e.g., the sine instead of the tangent height
method and the best statistical models.

In the pine stands, a point-centered plot was established with a
radius of 35.89 m, covering 0.403 hectares (subsequently referred
to as 0.4 ha), with the goal of evaluating a standard acre (radius:
117.75 ft), and thus relevant to forestry conventions in the U.S.
Within the TOP, 44 mature white pine stems were tallied along
with 20 hardwoods and eastern hemlocks greater than 10 cm in
diameter at breast height (DBH, 4′ 5′′ or 1.37 m from the ground).
The measured acre had 50 pines in July 1989 when six trees were
lost in a wind event. The pines are∼160 years old; the hardwoods
and hemlocks are estimated to be between 80 and 100 years old.

Height and Diameter Direct
Measurement Methodology
We quantified the volume of the trunk and limbs of each
tree from heights and diameters measured with laser-based
hypsometers, monoculars with range-finding reticles, traditional
diameter tapes, and calipers (described in detail in Leverett et al.,
2020). Each instrument was calibrated and independently tested
for accuracy over a wide range of distances and conditions
(see Supplement 2 for an example). Absolute accuracies of the
two main infrared lasers were verified as ±2.5 cm for distance,
surpassing the manufacturer’s stated accuracy of ±4.0 cm. The
tilt sensors were accurate to ±0.1◦, meeting the manufacturer’s
stated accuracy. The combination of these distance and angle
error ranges, along with the most accurate trigonometric
methods noted above (sine vs. tangent method), gave us height
accuracies to within 10–15 cm on the most distant targets being
measured and approximately half that on the closest targets. We
distinguished the rated and/or tested accuracy of a particular
sensor of an instrument (such as an infrared laser or tilt sensor)
from the results of a measurement that utilized multiple sensors.

Tree heights were measured directly for each pine with a
visible top, using the sine method (Supplement 2) whenever
possible rather than the traditional tangent method. Our
preference for the sine method is supported by NTS, the US
Forest Service (Bragg et al., 2011) and American Forests (Leverett
and Bertolette, 2014). The more traditional tangent method
often over/under-estimates heights by treating the sprig being
measured (interpreted as the top), as if it were located vertically
over the end of the baseline. The heights of 38 white pines
in the TOP with visible tops were measured directly using
the sine method.

Use of a Form Factor and FIA-COLE in
Determining Pine Volume
To compute trunk volume directly from the base to the
absolute top of a tree, diameters at base and breast height
were measured with conventional calibrated tapes according to

the procedures established and published by NTS. Diameters
aloft were measured with the combination of laser range-finders
and high performance monoculars with range-finding reticles.
A miniature surveying device, the LTI Trupoint 300, was also
used. Its Class II, phase-based laser is rated at an accuracy of
±1.0 mm to clear targets and its tilt sensor is accurate to ±0.1
degrees. In the TOP, we computed the volume of each pine’s trunk
and limbs using diameter at breast height, full tree height, trunk
form, and limb factors. (See Supplement 3 for a discussion on the
development of the form factor and its importance in measuring
volume, with comparisons to other methods of measurement).

Detailed measurements of 39 sample trees established an
average form factor (see NTS measurements in Supplement 3,
Table S3.2). The volume of each sample tree was determined
by dividing the trunk into adjacent sections, with the length of
each section guided by observed changes in trunk taper and/or
visibility. Each section was modeled as the frustum of a regular
geometric solid (neiloid, cone, paraboloid; see Supplement 3 and
Leverett et al., 2020, for formulas). The form factor for each pine
was computed by adding its section volumes to obtain total trunk
volume and then dividing the result by the product of the pine’s
height and breast-high cross-sectional area. This produced an
average factor that would fit the pines growing in a stand. We
applied the average form factor to all pines included in the TOP
as one determination of trunk volume.

For comparison to our direct volume measurements, we
applied a hybrid volume-biomass model to compute trunk
volumes for pines in the TOP. This hybrid allowed us to make
use of the extensive analysis of the US Forest Service Forest
Inventory and Analysis (FIA) program and database (which
determines volume and biomass through the use of allometric
equations; United States Forest Service, 2020) as well as the
Carbon On-Line Estimator (COLE; National Council for Air
Stream Improvement, 2020). This hybrid was termed FIA-COLE.
See Supplement 4 for a full explanation of the variables and
equations for defining trunk volume. We finalized volumes for
the pines in the TOP by averaging our direct measurements with
those of FIA-COLE.

For the total volume of the above-ground portion of a pine,
we derived a factor for limbs, branches, and twigs as a proportion
of the trunk volume using the FIA-COLE model (Supplement 5).
That model includes all the branching in what is defined as the
“top” in a biomass calculation and the limb factor for large trees
is typically an additional 15–16%. We ran the model for each of
the individuals in the TOP and calculated the volume. This was
converted to biomass (density) and then to carbon mass using a
conservative carbon mass fractional factor of 48%.

Analysis of Individual Pine Trees and a
Representative Stand
In addition to the TOP, and older exemplary pines, we quantified
above-ground carbon in younger trees and a representative stand.
To determine an “average” pine at 50 years we defined two
populations: (1) trees at 50 years that are still alive today, and
(2) trees that were alive at 50 years but are missing today. This
allowed us to compute an average trunk size for the missing
trees and the associated carbon. We also measured white pines
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from young to older ages to estimate growth rates and volumes.
The number of pines alive at 50 years but not alive today was
determined from stand density data coming from both field
counts and FIA (United States Forest Service, 2020).

We extensively studied an ∼80-year-old stand of pines
adjacent to the TOP (Supplement 6) growing on a terrace located
just downslope from the TOP in an area fairly well protected
from wind and with similar abiotic conditions and adequate soil
depth. This age is more representative of the average stand of
eastern white pine in New England (60–80 years; United States
Forest Service, 2019). We also considered the range of pines
of known ages from stands within the vicinity and elsewhere.
Where we could, we examined ring growth and height patterns
for individual pines during their early years on a variety of sites
in different geographical locations. In some cases, we examined
stumps and measured the average ring width. In other cases, we
measured trees and counted limb whorls to get age estimates.

We measured the tallest pine in the TOP over a long time-span
(referred to as Pine #58, its research tag number). Pine #58 has
been measured carefully and regularly over a period of 28 years.
In 1992 the tree was 47.24 m tall and 2.93 m in circumference.
Since then, it has been climbed 4 times, tape-drop-measured, and
volume-determined. Pine #58 continues to grow and has enabled
us to quantify the changes in carbon accumulation in a dominant
tree over decades. See Supplement 7 for a detailed measurement
history of Pine #58.

Live tree above-ground volumes were converted to mass
using standard wood density tables (United States Department
of Agriculture, 2009). The air-dried density for white pine
is 385.3 kg/m3 (0.3853 metric tons/m3). As noted above, we
calculated the amount of carbon in each pine conservatively as
48% of total air-dried weight, whereby a cubic meter of white
pine trunk or limbs holds 0.18494 metric tons of carbon (at
least 50% is used more commonly; the percentage of carbon
content in different species ranges from ∼47% to 52+% and
there is evidence that pine is at the upper range (Nicodemus
and Williams, 2004). Note that the carbon in a cubic meter of
wood varies depending on the species and is usually greater in
hardwoods (United States Department of Agriculture, 2009).

RESULTS

Our measurements indicate that individual eastern white pines
can accumulate significant above-ground volume/carbon up to
at least 190 years, that this volume/carbon accumulation in
an individual tree can accelerate beyond 100 years, and that a
stand of pines can double its above-ground live carbon between
∼80 and 160 years.

Analysis of Dominant Individuals and
Averages for Stand-Grown Pines
As Pine #58 is the tallest and the largest tree (volume) in the
Trees of Peace (TOP), its performance over time was analyzed
in great detail. It started growing as part of a more tightly packed
stand, but presently has ample space. Its circumference at breast

height is 3.30 m, its height is 53.71 m, and its crown spread is
approximately 15.5 m. Over a period of 26 years, beginning in
1992, Pine #58 has grown in circumference at an average rate of
1.39 cm per year and grown in height 23.71 cm per year. For a
chronosequence, we assumed that Pine #58 grew a lot when it was
young—an average of up to 61 cm per year in its first 50 years.
Its trunk and limb volume was 23.33 m3 at the end of the 2018
growing season (Supplement 7).

Figure 1 shows the increase in height, circumference and
volume of Pine #58 within each 50-year interval up to 150 years
and includes a photo of the tree. Its estimated age is ∼160 years,
and we used a chronosequence to determine previous epochs. For
dominant pines in stands on good sites, ring widths for the first
50 years average ∼0.6 cm and thus a 1.88 m circumference at
50 years. (Note that we measured one exceptional pine at 2.13
m in circumference.) Heights of stands at age 50 depend largely
on site characteristics and expressed as site index (the average
height of a stand at 50 years). The average index for white pine
in Massachusetts is approximately 20 m (William Van Doren,
Massachusetts Department of Conservation and Recreation, pers.
comm.). For Pine #58 we calculated a much higher index to
assume rapid early growth in the first 50 years. Based on these
principles, the change in circumference and growth in height
were greatest in the first 50 years, and decreased in the next two
50-year periods, confirming young pines “grow more rapidly” in
terms of annual height and radial increases. However, volume
growth, and thus carbon accumulation, continued to increase
in the epochs studied here. This is primarily because volume
increases linearly with height but increases as the square of the
diameter (see Figure 1 and Supplement 8).

As noted, we assumed Pine #58 had optimal rapid growth in
the first 50 years. Even so, our analysis supports the conclusion
that the pine accumulated the majority of its current carbon
after age 50 and at an increased rate during subsequent epochs.
Pine #58 now stores 4.33 tC above ground and continues to
grow. For comparison, the carbon stored in the trunk of the
highest volume 50-year-old pine that we encountered (2.13 m
circumference, 34.75 m height, and 0.4346 form factor) is 1.16
tC. Therefore, even in the best-case scenario Pine #58 would
have acquired only a quarter of its current carbon by age 50.
Note that the same crown area occupied by multiple younger
trees cannot achieve the carbon in this larger tree (Leverett,
unpublished observations).

Up to a point, the carbon advantage gained by the older
trees accelerates with their increasing age and size, a finding
that has been affirmed globally (Stephenson et al., 2014).
Figure 2 documents the average volume in individual pines in
the stands at ∼80 and 160 years as well as several additional
large pines. MSF Pine #1, the largest pine in Monroe State
Forest, western Massachusetts, has a trunk volume of 35.9 m3 at
approximately 190 years (6.62 tC; Figure 2). Assuming its early
years accumulated 1.16 tC at 50 years, which is the fastest growing
50-year old pine we measured in all sampled locations, the large
pine added 5.46 tC between 50 and 190 years, or 1.95 tC per
50-year cycle after year 50. This is at least 1.68 times the rate of
growth for the first 50 years. This compares to a 1.6 ratio for Pine
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FIGURE 1 | Changes in circumference, height and volume of a stand-grown individual eastern white pine (Pine #58) in three 50-y intervals. Upper panels (A) Change
in circumference during 0–50, 50–100, and 100–150 years. (B) Change in height between 0–50, 50–100, and 100–150 years. (C) Change in above-ground tree
volume (trunk plus limbs) between 0–50, 50–100, and 100–150 years. Lower panels (D) Cumulative circumference at 50, 100, and 150 years compared to
cumulative above-ground volume. (E) Cumulative height at 50, 100, and 150 years compared to cumulative above-ground volume. On each lower panel initial
slopes were matched to reflect the rapid change in circumference and height during the first 50-years interval. Note that volume is a proxy for above-ground carbon.
Values for circumference, height and volume of Pine #58 were determined by a combination of direct measurement and chronosequence and described in the text
and in Supplement. (F) Pine #58 (center) being readied for climbing and measuring.

#58. In both cases∼75% of the carbon they accumulated occurred
after their first 50 years even when assuming the most optimal
growth observed during the first 50 years.

Stand Measurements at ∼80 and 160
Years
Detailed measurements were taken in comparable pine stands at
∼80 and 160 years (TOP). As noted, the average tree in each stand
is shown in Figure 2, and the distribution of tree sizes in the TOP
is shown in Figure 3A. The largest pine in the TOP holds 4.33 tC
and the smallest holds 0.53, an eightfold difference. A comparison
of the stand density and above ground carbon at∼80 vs.∼160 yr
are shown in Figure 3B.

Complete data for 76 individual pines in the TOP (the 0.4
ha primary plot plus additional trees in the stand) is provided
in Supplement 9. Similar data were collected from 0.4 ha of
the ∼80-year old stand (Supplement 6). This age is more
representative of the average stand of eastern white pine in
New England. Average values for both stands are summarized
in Table 1. As shown in Figure 2, we found an average of
0.66 tC per tree compared to 1.93 tC per tree in the TOP,
a near tripling of carbon in the average individual pine in
the older stand. We found a robust size distribution among
the pines in the older stand (Figure 3A), as well as a lower

stand density (fewer stems), and a higher level of carbon in the
TOP (Figure 3B). Pines predominated both plots, and non-pine
species added ∼10% to the total above ground carbon in the
TOP (Figure 3B).

We emphasize that all of our calculations are based on
a conservative value for the carbon mass fractional factor
in the pines (48%) and only include above-ground live tree-
based carbon—they do not include more labile sources of
additional carbon in needles, leaves and understory plants,
or the accumulation of carbon in downed woody debris in
older stands. Our measurements also do not include the large
store of underground carbon (the root system is typically
estimated as an additional 15–20% of the above-ground tree
volume, and total soil organic carbon can be an additional
50% or more (Birdsey and Heath, 1995). Therefore, the total
carbon is considerably higher. Nevertheless, the live trees
in the older stand hold twice the carbon of the younger
stand: the above-ground tree-based carbon measured directly
in the primary acre in the 80 year old stand is 46.9 tC
and the 160-year-old stand is 94.4 tC, translating to 117.2
and 236.0 tC per hectare, respectively. Approximately 10%
of the tree-based carbon in the older stand is non-pine
whereas non-pine live tree carbon in the younger stand is
negligible (Table 1).
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FIGURE 2 | Metric tons of above-ground carbon (tC) in an “average” eastern
white pine in a measured research acre (green locants) and in five individual
trees measured directly on site at three separate locations in Massachusetts.
Average tC and standard deviation is based on pines in a stand at ∼80 years
(0.66 ± 0.38 tC) and ∼160 years (1.93 ± 0.73 tC) as described in the text.
Direct measurement of tC is shown for individual trees in western
Massachusetts at these ages and locations (the centers of the X symbols
indicate the data points): ∼190 years: MSF #1 and #2, Monroe State Forest;
∼160 years: Pine #58, Mohawk Trail State Forest; more details of Pine #58
shown in Figure 1; ∼150 years: Totem, Northampton, MA; ∼120 years: BB
#2, Broad Brook, Florence, MA.

DISCUSSION

We found that above-ground carbon stored in individual eastern
white pines (Pinaceae: Pinus strobus) and stands can continue
to increase well beyond 150 years. A chronosequence coupled
with decades of direct measurements of a dominant stand-grown
individual pine in Massachusetts demonstrate that height and
circumference increase rapidly during the first 50-year epoch
with smaller increases in 50-year epochs thereafter. In contrast,
volume (and therefore carbon) shows the smallest increment in
the first 50 years and the biggest in the 50-yr epoch between 100
and 150 years. This superior carbon sequestration in older trees
is consistent with recent reports of recent rapid sequestration
of older oak trees in Massachusetts (Finzi et al., 2020) and the
outsized forest accumulation in large trees (Stephenson et al.,
2014; Mildrexler et al., 2020). Here, the largest pine measured
in Massachusetts (by volume) achieved 6.62 tC at 190 years old,
and we found very large pines at ages ranging up to 350 years at
dozens of sites in the Eastern United States.

Using direct measurement of above-ground carbon in
different-aged pine stands, we found that live tree carbon can
continue to increase in a pine stand up to at least 160 years. We
found twice as much above-ground live tree carbon in a measured
research acre within the older vs. the younger stand. The live
pines in the older stand also exhibited marked size diversity and
the stand had a higher tree species diversity.

The representative stands in this analysis approximate the
average pine forest age in New England (∼80 years old) and a
comparable stand approximately twice that age. To determine

FIGURE 3 | Carbon distribution, stand density and cumulative carbon in
predominantly eastern white pine stands at ∼80 and 160 years. These two
stands were regrown from land previously used as pasture (i.e., not recovering
from a harvest at time zero). (A) Distribution of above-ground carbon (tC)
among 76 eastern white pines of different sizes in the full TOP stand at ∼160
years old. The majority contained 1–3 tC. (B) Stand density and
above-ground carbon measured directly on site in a research acre of eastern
white pine at ∼80 and 160 years. Stand density (# of stems) declined while
above-ground carbon increased. The older stand includes some non-pine
species that added to the number of stems and total carbon (open locants).

the biomass and above ground carbon in living trees as a
function of tree size and age, we have used a combination of
direct measurements and a hybrid FIA-COLE (Forest Inventory
and Analysis—Carbon On-Line Estimator) volume and biomass
model to quantify individual trees and stands of eastern white
pine. We found that individual trees continue accumulating
carbon well past 150 years, and ∼75% of the carbon in pines
up to 190 years is gained after the first 50 years. Despite a lower
stand density (fewer stems), total above-ground carbon is greatest
in older stands and continues to increase past 150 years. The
carbon per hectare quantified in these stands aligns with previous
averages for the region and previous regional estimates that New
England forests can accumulate between 2.3 and 4.2 times as
much carbon as they now contain on productive sites (Keeton
et al., 2011). The total carbon stored is much greater when below-
ground carbon in roots, coarse woody debris, standing dead trees,
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TABLE 1 | Summary of key measurements within a 160-year pine stand (TOP)
and a comparable ∼80 year old stand (2018–2019 values).

Individual values ∼160 year old 0.4 hectare

Circumference at breast height (avg) 2.36 m

Diameter at breast height (avg) 0.75 m

Height (avg) 45.10 m

Tree volume (trunk + limbs; avg) 10.47 m3

Above-ground carbon per tree (avg) 1.93 tC

∼80 year old 0.4 hectare

Circumference at breast height (avg) 1.56 m

Diameter at breast height (avg) 0.50 m

Height (avg) 38.4 m

Tree volume (trunk + limbs; avg) 3.58 m3

Above-ground carbon per tree (avg) 0.66 tC

Stand values Full stand at ∼160 years

Number of pines 76

Above-ground pine-based carbon 146.84 tC

Above-ground non-pine carbon 14.90 tC

Total above-ground tree carbon 161.74 tC

Research acre ∼160 years (0.4 hectare)

Number of pines 44

Above-ground pine-based carbon 85.8 tC

Above-ground non-pine carbon 8.6 tC

Total above-ground tree carbon 94.4 tC

Research acre ∼80 years (0.4
hectare)

Number of pines 71

Total above-ground pine-based carbon
(negligible non-pine carbon)

46.86 tC

smaller plants and soils are included (Birdsey and Heath, 1995;
Nunery and Keeton, 2010; Tomasso and Leighton, 2014).

Forest managers stress the high accumulation rates of younger
forests as important in absorbing atmospheric CO2. This is an
important consideration for production forests as well as to help
optimize between growing a wood resource and accumulating
carbon. Younger individual trees do not accumulate absolute
amounts of carbon more rapidly than larger more mature trees,
and we did not find evidence for a significant benefit for a young
stand compared to an older stand. We note this is a limited
sample, and we did not estimate rates of accumulation below 80
years (Table 1).

Multi-use forests provide a source of wood products and can
support recreation but active management practices limit forest
carbon accumulation long-term. At a range of scales, chronic
intervention eliminates the ability for that forest to host the full
biodiversity of some of our rarest species of plants, animals,
insects, fungi, lichens, reptiles and amphibians found in older
and continuously forested areas (McMullin and Wiersma, 2019;
Moose et al., 2019) as well as climate-sensitive birds that may
benefit from mature or old-growth forests (Betts et al., 2017).
These older unmanaged forests also have fewer invasive species
(Riitters et al., 2018).

The pine stands studied here grew from abandoned sheep
pasture, and therefore were unlikely to have been severely

disturbed prior to natural regeneration. Site history influences
growth and net carbon accumulation, especially in the early
years, since disturbed soil can continue to lose carbon for more
than a decade (Birdsey and Heath, 1995; Hamburg et al., 2019).
We recognize that at some point the above-ground carbon in
living trees will no longer increase as the live trees in the
stand eventually will reach a steady state of death and renewal.
Pines easily reach 200 years and some live 400 years; today the
TOP is less than halfway to that age and the younger stand
is only ∼25% of that lifespan. Previous work shows that pine
stands continue to add above ground carbon beyond 200 years
(Seymour, 2011, 2016), and even when above-ground live carbon
reaches asymptote, total forest carbon continues to increase, even
in some primary (“old-growth”) forests (Mackey et al., 2015):
after tree death or forest disturbance there is a new growth as
well as transfer of live carbon to dead wood and woody debris,
the litter layer, and into the soil. For example, 70 years after
an old-growth (virgin) eastern hemlock (Tsuga canadensis) and
eastern white pine stand blew down (the 1938 Hurricane in New
England) that forest stored as much carbon as forests that were
250 years old (D’Amato et al., 2017).

There is no evidence of recent disturbance in either research
plot herein. A major storm in 1989 blew over six large pines
in the older research acre, reducing stand density by >10%
and thereby reducing above-ground live-tree carbon. Downed
wood due to death and disturbance contributes to total forest
carbon and biodiversity. The older pine stand shows an increased
prevalence and growth of trees of other species (including
more carbon-dense hardwoods), and for multiple reasons it is
unlikely it has reached maximal above-ground live carbon or
total carbon. Rather, this forest appears to be transitioning into
a phase where the structural diversity, species diversity and total
carbon load will continue to rise. A goal for future research is a
better understanding of tree and stand-level carbon accumulation
and dynamics as well as many other ecological features in
different forest types and in stands well beyond 150 years—a
time when old-growth characteristics are starting to redevelop in
eastern forests.

Public forests in New England are typically older than private
forests (but still predominantly less than 100 years old), and
provide the greatest possibility for future carbon-dense and
biodiverse intact forests across the landscape. Native tree species
can live for several hundred years (and in the case of eastern
hemlock (Tsuga canadensis) and black gum (Nyssa sylvatica),
up to and exceeding 500 years) (Whitney, 1996; Sperduto
et al., 2000). Despite the shortage of old and old-growth forests
(and their proven resilience to disturbance (D’Amato et al.,
2017), and the increased prevalence of natural disturbances (e.g.,
insect outbreaks, windstorms) creating forest diversity and forest
openings (Oswalt et al., 2019), a major focus across public land
has been to make forests younger. These programs assert that
these habitats prevent a suite of species from declining, that they
accumulate carbon more rapidly, and that they are more resistant
to disturbance than their older counterparts (Anwar, 2001).
This approach downplays the rate of the natural development
of niches for multiple species (Zlonis and Niemi, 2014) and
the accumulation of biodiversity in temperate forests during
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natural forest succession (Hilmers et al., 2018). It also overlooks
cumulative forest carbon (Moomaw et al., 2019) as well as the
superior resilience of older forests to the stresses of climate
change (Thom et al., 2019). Comparing details of age and location
(tropical, temperate, boreal, etc.) are important, as is evaluating
the term “young”—in some cases it is considered up to 140 years
(Pugh et al., 2019).

Our findings are consistent with Stephenson et al. (2014) who
found that absolute growth increases with tree size for most of 403
tropical and temperate tree species, and a study of 48 forest plots
found that in older forests, regardless of geographical location,
half of all above-ground biomass (and hence carbon), is stored in
the largest 1% of trees as measured by diameter at breast height
(Lutz et al., 2018). An increase in carbon density per hectare was
found as the age of the stand increased in the Northeast U.S.
(Keeton et al., 2011), and a recent study in China found that
forests with older trees and greater species richness had twice the
levels of carbon storage than did less diverse forests with younger
trees (Liu et al., 2018). Earlier work demonstrated that intact
old growth forests in the Pacific Northwest contained more than
twice the amount of carbon as did those that were harvested on a
fixed rotation basis (Harmon et al., 1990).

Globally, forests are capable of accumulating twice as much
atmospheric carbon, and the current deficit is due to a
combination of conversion and management (Erb et al., 2018).
Continuing current management in the Northeast will result
in a large difference between the potential for land-based
carbon and the current trajectory (Duveneck and Thompson,
2019). Meanwhile, natural regeneration and reforestation is a
superior climate solution compared to managed reforestation
and tree planting (Cook-Patton et al., 2020). Proforestation—
growing existing natural forests—complements and extends
natural regeneration as an ongoing climate solution by leveraging
the accumulation potential in forests that are already established
(Moomaw et al., 2019). These strategies are outlined in the
recent report on “ten golden rules” for restoring forests wherein
the first rule is protect existing forest (Di Sacco et al., 2021).
Proforestation recognizes implicitly that older forests and large
trees are critical to a global strategy for carbon accumulation
and biodiversity protection (Lindenmayer and Laurance, 2016).
Rapidly moving large stocks of atmospheric carbon as CO2 into
forests and reducing emissions are both essential to limiting
the increase in global temperatures, and protecting intact and
connected habitat is essential in preventing extinction. These
time-sensitive dual goals and the importance of traditional
indigenous land use are explicitly recognized internationally in
the Global Deal for Nature, the Global Safety Net, and the recent
“Campaign for Nature” or “30 × 30”—i.e., protecting 30% of the
planet’s land and water by 2030 (Campaign for Nature, 2021), and
in the ambitious coalition goal of “Nature Needs Half” (Nature
Needs Half, 2021).

An important additional implication of our study is that the
estimated potential additional carbon dioxide (CO2) removal
(CDR) achieved by future growth of secondary forests as reported
by Houghton and Nassikas (2018) is likely an underestimate
because it does not account for high ongoing accumulation rates
as trees age in regions with relatively young (compared to tree

lifespan) forests like those of the Northeast United States. The
global study of natural forest carbon accumulation by Cook-
Patton et al. (2020) and the synthesis of quantified carbon
and biodiversity by Moomaw et al. (2019) provide evidence
for the power of natural forest processes throughout their
growth and development. These reports and the current site-
specific findings support the high regional contribution of carbon
accumulation in the coming decades by Northeastern temperate
forests and their designation as a Tier 1 climate stabilization
region (Dinerstein et al., 2020).

Whereas the IPCC clearly identified forests as essential for
accumulating additional carbon for climate stability, it focused
on production forests that are currently recovering from being
harvested or on unforested areas where forests could be planted
(afforestation). Bastin et al. (2019) proposes an afforestation
project on 0.9 billion ha but acknowledges the relatively long
time before large amounts of carbon would be stored. Global
tree planting efforts are under way, but are presented too
simplistically (Holl and Brancalion, 2020); for example, there is
little data on how to plant an ecosystem, and tree planting efforts
can suffer from numerous challenges, including high mortality
(Cao et al., 2011). In contrast, growing existing forests is an
established near-term strategy (Moomaw et al., 2019). Overall,
afforestation and reforestation are valuable, but neither can keep
as much carbon out of the atmosphere as proforestation in the
next 50 years—the timeline when it is needed most to avoid
irreversible consequences of a changed climate.

Although this study focused exclusively on above-ground
live tree carbon accumulation, we emphasize that additional
carbon exists and accumulates above and below ground. Other
ecosystem services of proforestation also accrue, and the essential
goal of protecting a “Global Safety Net” of nature extends
explicitly beyond greenhouse gas emissions and mitigating the
climate crisis (Dinerstein et al., 2020). Nevertheless, an accurate
carbon-centric model of “business as usual” vs. proforestation
must include comprehensive real-world carbon fluxes. Removing
carbon from the forest releases carbon into the atmosphere,
and in some cases a portion of the carbon is stored in wood
and/or wood is substituting for other materials. Recent work
shows that near-term carbon benefits associated with wood
products and substitution have been overestimated based on
outdated assumptions or neglecting or underestimating future
accumulation (Harmon, 2019; Leturcq, 2020). Efforts should
be made on consumption and conservation to ensure we
protect primary forests and additional secondary forests where
possible: carbon storage in forests is low-risk, high-capacity and
practical—therefore preferable to experimental bioenergy with
carbon capture and storage (BECCS) suggested by the IPCC
report (Anderson and Peters, 2016; Intergovernmental Panel
on Climate Change, 2018). Finally, letting existing secondary
forests grow creates a network of nature that can provide
equity, access to natural heritage, scientific discovery, and
cumulative health benefits for people. Protecting and growing
a network of suitable existing forests as a carbon sink in New
England is cost-effective (Tomasso and Leighton, 2014) and does
not compete directly with agriculture and other demands for
land use.
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The direct measurements at the tree and stand level in this
paper are consistent with parameterized and other studies at
larger scale in verifying that larger trees (Stephenson et al., 2014;
Lutz et al., 2018) and stands of larger trees accumulate the
most carbon over time compared to smaller trees (Mildrexler
et al., 2020). They support the proforestation strategy of growing
existing forests to achieve their natural capacity to accumulate
carbon and achieve their ecological potential (Moomaw et al.,
2019) to redress the balance of carbon lost to the atmosphere
from global forests due to human activity (Hudiburg et al., 2019).
The important implication of these findings is that the trees
and the forests that we need most for carbon storage and CDR
to help limit near-term climate change are the ones that are
already established.

Currently, plantations and forests managed for forest products
account for 71% of all forest area globally (Intergovernmental
Panel on Climate Change, 2019), more than sufficient for
resource production. Strategic decisions can enable some of
these forests to be dedicated to climate protection and research,
and the remaining 29% should be protected wherever possible.
This would be a major step toward the goal of 30 × 30—
with additional climate stabilization areas needed beyond that.
Together 30 × 30 plus climate stabilization will move us
toward long-term protection of “half-earth” (Wilson, 2016).
High levels of carbon accumulation and biodiversity protection
are integral to resiliency in a changing climate—including
the resiliency achieved by protecting species networks and
interactions, genetic diversity and the potential for specific
adaptive epigenetic changes (Hanlon et al., 2019). These
complexities are poorly understood—science and technology
is evolving, and new techniques can discover new species
(Schulz et al., 2018)—and any areas, even on public land, lack
a detailed ecological inventory due to resource constraints or
a focus on other priorities. Meanwhile, intensive biodiversity
inventories have yielded many hundreds of new species—
often small species such microbes, lichen, fungi, algae and
insects; i.e., Smokies Species Tally (Discover Life in America,
2021). Much more research is needed, and essential ecological
processes develop and diversify at timescales far beyond
a human lifetime.

In sum, the current findings ground-truth the capacity for
a representative New England eastern white pine stand to at
least double its above-ground live tree carbon in the coming
decades, confirming previous chronosequencing of pine stands
in the region (Seymour, 2011). We did not attempt to quantify or
estimate the flux in other carbon compartments above or below
ground. With a small fraction of New England (∼3% overall,
∼1% in Southern New England) prioritized for proforestation
and natural processes, protection of a suitable network of
land from unneeded intervention is urgent, and public land
is the most logical place to start: funding to ensure evidence-
based intervention and additional data collection will generate
policies that protect the long-term public trust. At the same
time, systems to support local wood use and reuse are equally
needed to ensure the highest and best use of this resource,
protect local expertise and jobs, and reduce emissions associated
with the forest industry; in some states it is the largest source

of emissions (Law et al., 2018). Comprehensive education,
information and compensation programs should be established
to provide private landowners a range of options based on
numerous ecosystem services, including maximal carbon and
biodiversity accumulation, with the goal of optimizing natural
solutions that address the Climate Emergency immediately
(Ripple et al., 2020). Failing to protect natural systems erodes the
wealth and well-being that is essential to meet this unprecedented
challenge and avoid “a ghastly future” (Bradshaw et al., 2021).

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

RL chose site locations and individual trees, established
measurement methods and protocols, did the on-site tree
measuring, and performed the subsequent analysis. SM analyzed
and organized the content and supplements, and participated
in drafting and finalizing the text. WM framed the analysis in
the context of other studies and the larger context of climate
change, assisted with data analysis and presentation, and drafting
and editing the text. All authors contributed to the article and
approved the submitted version.

FUNDING

This work was supported by Trinity College (SM), the Charles
Bullard Fellowship in Forest Research (SM), the Faculty Research
Grant from the NASA Connecticut Space Grant Consortium (RL,
SM) and the Rockefeller Brothers Fund (WM).

ACKNOWLEDGMENTS

We acknowledge the critical technical assistance of Jared
D. Lockwood in measuring pines in the TOP, the younger
pine stand, and elsewhere as needed. We thank Ray Asselin
for photographing pines for further analysis, and for ring
and whorl counts to establish ages. We thank Monica Jakuc
Leverett for invaluable assistance in editing and revising the
original text thank, Dr. David Ruskin for tireless efforts
throughout the process, and thank Dr. Edward Faison for
constructive suggestions. We also thank the reviewers for
constructive comments.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/ffgc.2021.
620450/full#supplementary-material

Frontiers in Forests and Global Change | www.frontiersin.org 10 May 2021 | Volume 4 | Article 620450192

https://www.frontiersin.org/articles/10.3389/ffgc.2021.620450/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/ffgc.2021.620450/full#supplementary-material
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-04-620450 May 7, 2021 Time: 17:14 # 11

Leverett et al. Above-Ground Carbon in Eastern Pine

REFERENCES
Anderson, K., and Peters, G. (2016). The trouble with negative emissions. Science

354, 182–183. doi: 10.1126/science.aah4567
Anwar, A. (2001). Does the Age of a Tree Affect Carbon Storage? [Online].

GISS Institute on Climate and Planets, National Aeronautics and Space
Administration. Available online at: https://icp.giss.nasa.gov/research/ppa/
2001/anwar/ (accessed 2021).

Bastin, J. F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., et al.
(2019). The global tree restoration potential. Science 365, 76–79. doi: 10.1126/
science.aax0848

Betts, M. G., Phalan, B., Frey, S. J. K., Rousseau, J. S., and Yang, Z. (2017). Old-
growth forests buffer climate-sensitive bird populations from warming. Divers.
Distrib. 24, 439–447. doi: 10.1111/ddi.12688

Birdsey, R. A., and Heath, L. S. (1995). “Carbon changes in U.S. forests,” in
Productivity of America’s Forests and Climate Change. General Technical Report
RM-GTR-271, ed. L. A. Joyce (Fort Collins, CO: U.S.D.A. Forest Service, Rocky
Mountain Forest and Experiment Station), 56–70.

Bradshaw, C. J. A., Ehrlich, P. R., Beattie, A., Ceballos, G., Crist, E., Diamond, J.,
et al. (2021). Underestimating the challenges of avoiding a ghastly future. Front.
Conserv. Sci. 1:615419. doi: 10.3389/fcosc.2020.615419

Bragg, D. C., Frelich, L. E., Leverett, R. T., Blozan, W., and Luthringer, D. J. (2011).
The sine method: An alternative height measurement technique, Research Note
SRS-22. Asheville, NC: F.S. U.S. Department of Agriculture, Southern Research
Station.

Campaign for Nature (2021). Availableonline at: https://www.campaignfornature.
org/ (accessed 2021).

Cao, S., Chen, L., Shankman, D., Wang, C., Wang, X., and Zhang, H. (2011).
Excessive reliance on afforestation in China’s arid and semi-arid regions: lessons
in ecological restoration. Earth Sci. Rev. 104, 240–245. doi: 10.1016/j.earscirev.
2010.11.002

Coetzee, B. W., Gaston, K. J., and Chown, S. L. (2014). Local scale comparisons
of biodiversity as a test for global protected area ecological performance: a
meta-analysis. PLoS One 9:e105824. doi: 10.1371/journal.pone.0105824

Cook-Patton, S. C., Leavitt, S. M., Gibbs, D., Harris, N. L., Lister, K., Anderson-
Teixeira, K. J., et al. (2020). Mapping carbon accumulation potential from
global natural forest regrowth. Nature 585, 545–550. doi: 10.1038/s41586-020-
2686-x

D’Amato, A. W., Orwig, D. A., Foster, D. R., Barker Plotkin, A., Schoonmaker,
P. K., and Wagner, M. R. (2017). Long-term structural and biomass dynamics
of virgin Tsuga canadensis-Pinus strobus forests after hurricane disturbance.
Ecology 98, 721–733. doi: 10.1002/ecy.1684

Davis, M. B. (1996). Eastern Old-Growth Forests: Prospects For Rediscovery And
Recovery. Washington DC: Island Press.

Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J., and Watson, J. E. M.
(2019). Wilderness areas halve the extinction risk of terrestrial biodiversity.
Nature 573, 582–585. doi: 10.1038/s41586-019-1567-7

Dinerstein, E., Joshi, A. R., Vynne, C., Lee, A. T. L., Pharand-Deschenes, F., Franca,
M., et al. (2020). A “Global Safety Net” to reverse biodiversity loss and stabilize
Earth’s climate. Sci. Adv. 6:eabb2824. doi: 10.1126/sciadv.abb2824

Dinerstein, E., Vynne, C., Sala, E., Joshi, A. R., Fernando, S., Lovejoy, T. E., et al.
(2019). A global deal for nature: guiding principles, milestones, and targets. Sci.
Adv. 5:eaaw2869. doi: 10.1126/sciadv.aaw2869

Di Sacco, A., Hardwick, K. A., Blakesley, D., Brancalion, P. H. S., Breman,
E., Cecilio Rebola, L., et al. (2021). Ten golden rules for reforestation to
optimize carbon sequestration, biodiversity recovery and livelihood benefits.
Glob. Chang. Biol. 27, 1328–1348. doi: 10.1111/gcb.15498

Discover Life in America (2021). Available online at: https://dlia.org/smokies-
species-tally (accessed 2021).

Duveneck, M. J., and Thompson, J. R. (2019). Social and biophysical determinants
of future forest conditions in New England: effects of a modern land-use regime.
Glob. Environ. Change 55, 115–129. doi: 10.1016/j.gloenvcha.2019.01.009

Erb, K.-H., Kastner, T., Plutzar, C., Bais, A. L. S., Carvalhais, N., Fetzel, T., et al.
(2018). Unexpectedly large impact of forest management and grazing on global
vegetation biomass. Nature 553, 73–76. doi: 10.1038/nature25138

Fargione, J. E., Bassett, S., Boucher, T., Bridgham, S. D., Conant, R. T., Cook-Patton,
S. C., et al. (2018). Natural climate solutions for the United States. Sci. Adv.
4:eaat1869.

Finzi, A. C., Giasson, M.-A., Barker Plotkin, A. A., Aber, J. D., Boose, E. R.,
Davidson, E. A., et al. (2020). Carbon budget of the harvard forest long-term
ecological research site: pattern, process, and response to global change. Ecol.
Monogr. 90:e01423.

Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A.,
et al. (2020). Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340.

Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva,
D. A., et al. (2017). Natural climate solutions. Proc. Natl. Acad. Sci. U.S.A. 114,
11645–11650.

Hamburg, S. P., Vadeboncoeur, M. A., Johnson, C. E., and Sanderman, J. (2019).
Losses of mineral soil carbon largely offset biomass accumulation 15 years after
whole-tree harvest in a northern hardwood forest. Biogeochemistry 144, 1–14.
doi: 10.1007/s10533-019-00568-3

Hanlon, V. C. T., Otto, S. P., and Aitken, S. N. (2019). Somatic mutations
substantially increase the per-generation mutation rate in the conifer Picea
sitchensis. Evol. Lett. 3, 348–358. doi: 10.1002/evl3.121

Harmon, M. E. (2019). Have product substitution carbon benefits been
overestimated? A sensitivity analysis of key assumptions. Environ. Res. Lett.
14:065008. doi: 10.1088/1748-9326/ab1e95

Harmon, M. E., Ferrell, W. K., and Franklin, J. F. (1990). Effects on carbon storage
of conversion of old-growth forests to young forests. Science 247, 699–702.
doi: 10.1126/science.247.4943.699

Harris, N. L., Hagen, S. C., Saatchi, S. S., Pearson, T. R. H., Woodall, C. W., Domke,
G. M., et al. (2016). Attribution of net carbon change by disturbance type
across forest lands of the conterminous United States. Carbon Balance Manag.
11:24.

Hilmers, T., Friess, N., Bassler, C., Heurich, M., Brandi, R., Pretzsch, H., et al.
(2018). Biodiversity along temperate forest succession. J. Appl. Ecol. 55, 2756–
2766. doi: 10.1111/1365-2664.13238

Holl, K. D., and Brancalion, P. H. S. (2020). Tree planting is not a simple solution.
Science 368, 580–581. doi: 10.1126/science.aba8232

Houghton, R. A., and Nassikas, A. A. (2018). Negative emissions from stopping
deforestation and forest degradation, globally. Glob. Chang. Biol. 24, 350–359.
doi: 10.1111/gcb.13876

Hudiburg, T. W., Law, B. E., Moomaw, W. R., Harmon, M. E., and Stenzel,
J. E. (2019). Meeting GHG reduction targets requires accounting of all forest
emission sectors. Environ. Res. Lett. 14:095005. doi: 10.1088/1748-9326/ab28bb

Intergovernmental Panel on Climate Change (2018). “Summary for Policymakers,”
in Global warming of 1.5◦C An IPCC Special Report on the impacts of
Global Warming of 1.5◦C Above Pre-industrial Levels and Related Global
Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global
Response to the Threat of Climate Change, Sustainable Development, and
Efforts to Eradicate Poverty, eds V. Masson-Delmotte, P. Zhai, H. O. Pörtner,
D. Roberts, J. Skea, P. R. Shukla, et al. (Geneva: World Meteorological
Society).

Intergovernmental Panel on Climate Change (2019). “Summary for Policymakers,”
in Global Warming of 1.5◦C,” In An IPCC Special Report on the Impacts
of Global Warming of 1.5◦C above Pre-industrial Levels And Related Global
Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global
Response to the Threat of Climate Change, Sustainable Development, and
Efforts to Eradicate Poverty, eds V. Masson-Delmotte, P. Zhai, H.-O. Pörtner,
D. Roberts, J. Skea, P. R. Shukla, et al. (Geneva: World Meteorological
Society).

Intergovernmental Science-Policy on Biodiversity and Ecosystem Services (2019).
in Global Assessment Report on Biodiversity and Ecosystem Services, eds E. S.
Brondizio, J. Settele, S. Díaz, and H. T. Ngo (Bonn: IPBES).

Karjalainen, E., Sarjala, T., and Raitio, H. (2010). Promoting human health through
forests: overview and major challenges. Environ. Health Prev. Med. 15, 1–8.
doi: 10.1007/s12199-008-0069-2

Keeton, W. S., Whitman, A. A., Mcgee, G. C., and Goodale, C. L. (2011). Late-
successional biomass development in northern hardwood-conifer forests of the
Northeastern United States. Forest Sci. 57, 489–505.

Kershner, B., and Leverett, R. T. (2004). The Sierra Club Guide to the Ancient Forests
of the Northeast. San Francisco, CA: Sierra Club Books.

Law, B. E., Hudiburg, T. W., Berner, L. T., Kent, J. J., Buotte, P. C., and Harmon,
M. E. (2018). Land use strategies to mitigate climate change in carbon dense
temperate forests. Proc. Natl. Acad. Sci. U.S.A. 115, 3663–3668. doi: 10.1073/
pnas.1720064115

Frontiers in Forests and Global Change | www.frontiersin.org 11 May 2021 | Volume 4 | Article 620450193

https://doi.org/10.1126/science.aah4567
https://icp.giss.nasa.gov/research/ppa/2001/anwar/
https://icp.giss.nasa.gov/research/ppa/2001/anwar/
https://doi.org/10.1126/science.aax0848
https://doi.org/10.1126/science.aax0848
https://doi.org/10.1111/ddi.12688
https://doi.org/10.3389/fcosc.2020.615419
https://www.campaignfornature.org/
https://www.campaignfornature.org/
https://doi.org/10.1016/j.earscirev.2010.11.002
https://doi.org/10.1016/j.earscirev.2010.11.002
https://doi.org/10.1371/journal.pone.0105824
https://doi.org/10.1038/s41586-020-2686-x
https://doi.org/10.1038/s41586-020-2686-x
https://doi.org/10.1002/ecy.1684
https://doi.org/10.1038/s41586-019-1567-7
https://doi.org/10.1126/sciadv.abb2824
https://doi.org/10.1126/sciadv.aaw2869
https://doi.org/10.1111/gcb.15498
https://dlia.org/smokies-species-tally
https://dlia.org/smokies-species-tally
https://doi.org/10.1016/j.gloenvcha.2019.01.009
https://doi.org/10.1038/nature25138
https://doi.org/10.1007/s10533-019-00568-3
https://doi.org/10.1002/evl3.121
https://doi.org/10.1088/1748-9326/ab1e95
https://doi.org/10.1126/science.247.4943.699
https://doi.org/10.1111/1365-2664.13238
https://doi.org/10.1126/science.aba8232
https://doi.org/10.1111/gcb.13876
https://doi.org/10.1088/1748-9326/ab28bb
https://doi.org/10.1007/s12199-008-0069-2
https://doi.org/10.1073/pnas.1720064115
https://doi.org/10.1073/pnas.1720064115
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-04-620450 May 7, 2021 Time: 17:14 # 12

Leverett et al. Above-Ground Carbon in Eastern Pine

Leturcq, P. (2020). GHG displacement factors of harvested wood products: the
myth of substitution. Sci. Rep. 10:20752.

Leverett, R. T., and Bertolette, D. (2014). American Forests Champion
Trees Measuring Guidelines Handbook [Online]. Available online at:
https://www.americanforests.org/wp-content/uploads/2014/12/AF-Tree-
Measuring-Guidelines_LR.pdf (accessed 2021).

Leverett, R. T., Ruskin, D. N., and Masino, S. A. (2020). Direct measurement of
trunk volume in forest trees: Focus on white pine and comparison to a statistical
method. bioRxiv [Preprint] doi: 10.1101/2020.03.18.995985

Lindenmayer, D. B., and Laurance, W. F. (2016). The unique challenges of
conserving large old trees. Trends Ecol. Evol. 31, 416–418. doi: 10.1016/j.tree.
2016.03.003

Liu, X., Trogisch, S., He, J.-S., Niklaus, P. A., Bruelheide, H., Tang, Z., et al. (2018).
Tree species richness increases ecosystem carbon storage in subtropical forests.
Proc. Biol. Sci. 285:20181240. doi: 10.1098/rspb.2018.1240

Lutz, J. A., Furniss, T. J., Johnson, D. J., Davies, S. J., Allen, D., Alonso, A., et al.
(2018). Global importance of large-diameter trees. Glob. Ecol. Biogeogr. 27,
849–864.

Mackey, B., Dellasala, D. A., Kormos, C., Lindenmayer, D., Kumpel, N.,
Zimmerman, B., et al. (2015). Policy options for the world’s primary forests in
multilateral environmental agreements. Conserv. Lett. 8, 139–147. doi: 10.1111/
conl.12120

McMullin, R. T., and Wiersma, Y. F. (2019). Out with OLD growth, in with
ecological continNEWity: new perspectives on forest conservation. Front. Ecol.
Environ. 17:176–181. doi: 10.1002/fee.2016

Mildrexler, D. J., Berner, L. T., Law, B. E., Birdsey, R. A., and Moomaw, W. R.
(2020). Large trees dominate carbon storage in forests east of the Cascade
crest in the U.S. Pacific Northwest. Front. For. Glob. Change 3:594274. doi:
10.3389/ffgc.2020.594274

Mitchard, E. T. A. (2018). The tropical forest carbon cycle and climate change.
Nature 559, 527–534. doi: 10.1038/s41586-018-0300-2

Moomaw, W. R., Masino, S. A., and Faison, E. K. (2019). Intact forests in the
United States: Proforestation mitigates climate change and serves the greatest
good. Front. Forests Global Change 2:27. doi: 10.3389/ffgc.2019.00027

Moose, R. A., Schigel, D., Kirby, L. J., and Shumskaya, M. (2019). Dead wood fungi
in North America: an insight into research and conservation potential. Nat.
Conserv. 32, 1–17. doi: 10.3897/natureconservation.32.30875

National Council for Air Stream Improvement (2020). United States Department of
Agriculture Forest Service. Cole, IL: Carbon on Line Estimator.

Native Tree Society (2021). Available online at: https://www.nativetreesociety.org/,
https://www.ents-bbs.org (accessed 2021).

Nature Needs Half (2021). Available online at: https://natureneedshalf.org/
(accessed 2021).

Nicodemus, M. A., and Williams, R. A. (2004). “Quantifying aboveground carbon
storage in managed forest ecosystems in Ohio,” in Proceedings of the 14th
Central Hardwoods Forest Conference GTR-NE-316, Newtown Square, PA.

Nunery, J. S., and Keeton, W. S. (2010). Forest carbon storage in the northeastern
United States: Net effects of harvesting frequency, post-harvest retention, and
wood products. Forest Ecol. Manag. 259, 1363–1375. doi: 10.1016/j.foreco.2009.
12.029

Oswalt, S. N., Smith, W. B., Miles, P. D., and Pugh, S. A. (2019). “Forest Resources
of the United States, 2017: a technical document supporting the Forest Service
2020 update of the RPA Assessment,” in Gen. Tech. Rep. WO-97, ed. F. S.
(Washington, DC: United States Department of Agriculture).

Pugh, T. A. M., Lindeskog, M., Smith, B., Poulter, B., Arneth, A., Haverd, V., et al.
(2019). Role of forest regrowth in global carbon sink dynamics. Proc. Natl. Acad.
Sci. U.S.A. 116, 4382–4387. doi: 10.1073/pnas.1810512116

Riitters, K., Potter, K., Iannone, B., Oswalt, C., Guo, Q., and Fei, S. (2018).
Exposure of protected and unprotected forest to plant invasions in the eastern
United States. Forests 9:723. doi: 10.3390/f9110723

Ripple, W. J., Wolf, C., Newsome, T. M., Barnard, P., and Moomaw, W. R. (2020).
World scientists’ warning of a climate emergency. BioScience 70, 8–12.

Ruddat, J. (2020). Documenting and Protecting New England’s Old-Growth
Forests [Online]. Available online at: https://digitalcommons.wpi.edu/iqp-all/
5763 (accessed 2021).

Schulz, F., Alteio, L., Goudeau, D., Ryan, E. M., Yu, F. B., Malmstrom, R. R., et al.
(2018). Hidden diversity of soil giant viruses. Nat. Commun. 9:4881.

Seymour, R. (2011). Influence of age on Productivity and Carbon Sequestration of
Eastern white pine. Northeastern States Research Cooperative. Available online

at: https://nsrcforest.org/project/influence-age-productivity-and-carbon-
sequestration-eastern-white-pine (accessed 2021).

Seymour, R. (2016). Managing an Aging Resource: Influence of age on Leaf
Area Index, Stemwood Growth, Growth Efficiency, and Carbon Sequestration
of Eastern White Pine. Northeastern States Research Cooperative. Available
online at: https://nsrcforest.org/sites/default/files/uploads/seymour11full.pdf
(accessed 2021).

Simmons, C. T., and Matthews, H. D. (2016). Assessing the implications of
human land-use change for the transient climate response to cumulative
carbon emissions. Environ. Res. Lett. 11:035001. doi: 10.1088/1748-9326/11/3/
035001

Sperduto, D. D., Nichols, W. F., Crowley, K. F., and Bechtel, D. A. (2000).
Black Gum (Nyssa sylvatica Marsh) in New Hampshire. Concord, NH: New
Hampshire Natural Heritage Inventory.

Stephenson, N. L., Das, A. J., Condit, R., Russo, S. E., Baker, P. J., Beckman, N. G.,
et al. (2014). Rate of tree carbon accumulation increases continuously with tree
size. Nature 507, 90–93.

Sterman, J. D., Siegel, L., and Rooney-Varga, J. N. (2018). Reply to comment
on ‘Does replacing coal with wood lower CO2 emissions? Dynamic lifecycle
analysis of wood bioenergy’. Environ. Res. Lett. 13:128003. doi: 10.1088/1748-
9326/aaf354

Thom, D., Golivets, M., Edling, L., Meigs, G. W., Gourevitch, J. D., Sonter, L. J.,
et al. (2019). The climate sensitivity of carbon, timber, and species richness
covaries with forest age in boreal-temperate North America. Glob. Chang. Biol.
25, 2446–2458. doi: 10.1111/gcb.14656

Tomasso, L. P., and Leighton, M. (2014). The impact of land use change for
greenhouse gas inventories and state-level climate mediation policy: a GIS
methodology applied to Connecticut. J. Environ. Protec. 5:52176.

United States Climate Alliance (2021). Available online at: http://www.
usclimatealliance.org/ (accessed 2021).

United States Department of Agriculture (2009). Specific Gravity and Other
Properties of Wood and Bark for 156 Tree Species Found in North America
[Online]. Available online at: https://www.fs.usda.gov/treesearch/pubs/34185
(accessed 2021).

United States Environmental Protection, and Agency (2018). Sources of Greenhouse
Gas Emissions [Online]. Available online at: https://www.epa.gov/ghgemissions/
sources-greenhouse-gas-emissions (accessed 2021).

United States Forest Service (2019). EVALIDator Version 1.8.0.01 [Online].
Available online at: https://apps.fs.usda.gov/Evalidator/evalidator.jsp (accessed
2021).

United States Forest Service (2020). Forest Inventory Analysis [Online]. Available
online at: https://www.fia.fs.fed.us/ (accessed 2021).

United States Forest Service (2021). Ecosystem Services [Online]. Available online
at: https://www.fs.fed.us/ecosystemservices/ (accessed 2021).

Watson, J. E. M., Evans, T., Venter, O., Williams, B., Tulloch, A., Stewart, C., et al.
(2018). The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2,
599–610.

Whitney, G. G. (1996). From Coastal Wilderness to Fruited Plain: A History of
Environmental Change in Temperate North America from 1500 to the Present.
Cambridge: Cambridge University Press.

Wilson, E. O. (2016). Half-Earth: Our Planet’s Fight for Life. New York, NY:
Liveright Publishing Corp.

World Wildlife Federation (2020). Living Planet Report 2020 [Online]. Available
online at: https://livingplanet.panda.org/en-us/ (accessed 2021).

Zlonis, E., and Niemi, G. (2014). Avian communities of managed and wilderness
hemiboreal forests. Forest Ecol. Manag. 328, 26–34. doi: 10.1016/j.foreco.2014.
05.017

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Leverett, Masino and Moomaw. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Forests and Global Change | www.frontiersin.org 12 May 2021 | Volume 4 | Article 620450194

https://www.americanforests.org/wp-content/uploads/2014/12/AF-Tree-Measuring-Guidelines_LR.pdf
https://www.americanforests.org/wp-content/uploads/2014/12/AF-Tree-Measuring-Guidelines_LR.pdf
https://doi.org/10.1101/2020.03.18.995985
https://doi.org/10.1016/j.tree.2016.03.003
https://doi.org/10.1016/j.tree.2016.03.003
https://doi.org/10.1098/rspb.2018.1240
https://doi.org/10.1111/conl.12120
https://doi.org/10.1111/conl.12120
https://doi.org/10.1002/fee.2016
https://doi.org/10.3389/ffgc.2020.594274
https://doi.org/10.3389/ffgc.2020.594274
https://doi.org/10.1038/s41586-018-0300-2
https://doi.org/10.3389/ffgc.2019.00027
https://doi.org/10.3897/natureconservation.32.30875
https://www.nativetreesociety.org/
https://www.ents-bbs.org
https://natureneedshalf.org/
https://doi.org/10.1016/j.foreco.2009.12.029
https://doi.org/10.1016/j.foreco.2009.12.029
https://doi.org/10.1073/pnas.1810512116
https://doi.org/10.3390/f9110723
https://digitalcommons.wpi.edu/iqp-all/5763
https://digitalcommons.wpi.edu/iqp-all/5763
https://nsrcforest.org/project/influence-age-productivity-and-carbon-sequestration-eastern-white-pine
https://nsrcforest.org/project/influence-age-productivity-and-carbon-sequestration-eastern-white-pine
https://nsrcforest.org/sites/default/files/uploads/seymour11full.pdf
https://doi.org/10.1088/1748-9326/11/3/035001
https://doi.org/10.1088/1748-9326/11/3/035001
https://doi.org/10.1088/1748-9326/aaf354
https://doi.org/10.1088/1748-9326/aaf354
https://doi.org/10.1111/gcb.14656
http://www.usclimatealliance.org/
http://www.usclimatealliance.org/
https://www.fs.usda.gov/treesearch/pubs/34185
https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions
https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions
https://apps.fs.usda.gov/Evalidator/evalidator.jsp
https://www.fia.fs.fed.us/
https://www.fs.fed.us/ecosystemservices/
https://livingplanet.panda.org/en-us/
https://doi.org/10.1016/j.foreco.2014.05.017
https://doi.org/10.1016/j.foreco.2014.05.017
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact 

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover
	Frontiers eBook Copyright Statement
	Intact Forests
	Table of Contents
	Editorial: Intact Forests
	Introduction
	Clarifying Definitions and Metrics
	Values Associated with High Intactness
	Threats to Intact Forests
	Solutions: Halting and Reversing the Decline of Intact Forests
	Author Contributions
	Funding
	References

	Are We Capturing Faunal Intactness? A Comparison of Intact Forest Landscapes and the ``Last of the Wild in Each Ecoregion''
	Introduction
	Methods
	Scoping of LWE Areas
	Intersecting IFL and LWE Areas With Species Distributions
	Species With Measures of Density
	Species With Range-Wide Priority Setting

	Intersecting IFL and LWE Areas With a Map of Where Species Have Gone Extinct

	Results
	LWE Areas
	Intersection of Species Ranges and IFL/LWE Areas
	Faunal Loss in IFL and LWE Areas

	Discussion
	What Do We Mean by Intactness?

	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Intact Forests in the United States: Proforestation Mitigates Climate Change and Serves the Greatest Good
	Introduction
	A Small Fraction of U.S. Forests is Managed to Remain Intact
	Proforestation Increases Biological Carbon Sequestration and Long-Term Storage in U.S. Forests
	Habitat Protection, Biodiversity and Scientific Value of Proforestation
	Proforestation and Forest Fires
	Proforestation and Ecosystem Services: Serving the Greatest Good
	Policy Recommendations
	Conclusions
	Author Contributions
	Funding
	Acknowledgments
	References

	Intact Forest in Selective Logging Landscapes in the Tropics
	Introduction
	Caveat
	Methods
	Results
	Discussion
	Recommendations
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Corrigendum: Intact Forest in Selective Logging Landscapes in the Tropics
	Abstract
	References

	The Legacy of Pre–Columbian Fire on the Pine–Oak Forests of Upland Guatemala
	Introduction
	Previous Work in the Maya Area
	Forest Succession
	Methods
	Study Site: Cenote Kail
	Field and Sampling Techniques
	Chronology
	Fossil Pollen and Sporormiella Analysis
	Charcoal Analysis
	Data Handling

	Results
	Chronology and Resolution
	Palaeoecological Trends

	Discussion
	The Natural Baseline Vegetation
	Anthropogenic Impacts and Agrarian Practices
	Forest Structure, Composition, and Successional Regeneration

	Conclusions
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	Corrigendum: The Legacy of Pre–Columbian Fire on the Pine–Oak Forests of Upland Guatemala
	References

	Impacts of Selective Logging and Associated Anthropogenic Disturbance on Intact Forest Landscapes and Apes of Northern Congo
	Introduction
	Materials and Methods
	Forest Status
	Accessibility
	Human Presence
	Botanical Surveys
	Ape Abundance
	Species Specific Nest Heights in IFL vs. Logged Habitat

	Results
	Quantification of IFL
	Botanical Surveys
	Ape Density Estimation
	Species Specific Nest Heights in IFL vs. Logged Habitat

	Discussion
	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	References

	Protecting Forests From Conversion: The Essential Role of Supply-Side National Laws
	Introduction
	Policy Options and Implications: National Supply-Side Laws for Reducing Deforestation
	Allocation of Land—The Need for Clarity
	Clearing Forested Land—The Need for a Permit
	Environmental Protection—The Need for Consideration
	Complementary Policy Options to National Supply-Side Laws

	Actionable Recommendations
	Conclusion
	Author Contributions
	Funding
	References

	Fire in the Swamp Forest: Palaeoecological Insights Into Natural and Human-Induced Burning in Intact Tropical Peatlands
	Introduction
	Materials and Methods
	Data Collection
	Chronology
	Reconstructing Past Burning Regimes
	Reconstructing Vegetation Change Over Time
	Data-Handling Techniques

	Results
	(i) What Is the Natural Fire Regime in These Coastal Peat Swamps? How Has It Changed Toward the Present Day?
	2,800–1,800 Cal. year BP
	200 Cal. year BP to Present

	(iii) How Do the Changing Fire Regimes Impact the Peat Swamp Forest Vegetation?

	Discussion
	(i) What Is the Natural Fire Regime in These Coastal Peat Swamps? How Has It Changed Toward the Present Day?
	(ii) What Caused Such Patterns of Fire in This Landscape?
	(iii) How Do the Changing Fire Regimes Impact the Peat Swamp Forest Vegetation?
	Management Implications

	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Climate Benefits of Intact Amazon Forests and the Biophysical Consequences of Disturbance
	Introduction
	Materials and Methods
	Classification of Forest Disturbance Categories
	Remote Sensing Datasets
	Statistical Analysis

	Results
	Discussion
	Summary
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	Combining Contemporary and Paleoecological Perspectives for Estimating Forest Resilience
	Introduction
	Competing Frameworks for Resilience
	Spatial and Temporal Metrics for Assessing Resilience
	Baselines: Providing Trajectories of Intact Forest to Assess Resilience

	Comparison of Studies and Metrics for Measuring Resilience in Intact Forests
	Analysis of Contemporary Datasets
	Identified Paleoecological Studies

	Discussion
	How Are Intact Forests Responding Currently?
	What Does the Paleoecological Record Suggest?
	Can We Distinguish Natural Variability From Variability Approaching a Tipping Point?
	Proposed Mechanisms for Resilience
	Do Larger Forest Patch Areas Confer Resilience?

	Conclusions
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Conserving the Last Great Forests: A Meta-Analysis Review of the Drivers of Intact Forest Loss and the Strategies and Policies to Save Them
	Introduction
	Materials and Methods
	Results
	Case Studies of IF Loss Reviewed
	Global and Continental Direct Drivers
	Global and Continental Indirect Drivers
	Pro-development Policies and Political and Institutional Failures
	Recommended Policies and Strategies for IF Conservation

	Discussion
	Understanding and Linking the Drivers of IF Loss to Conservation Efforts
	Core IF Conservation Interventions
	Protected Areas
	Payments for Ecosystem Services (PES)
	Agricultural Reforms
	Enabling Conditions for IF Conservation
	Cooperative Landscape Management
	Enforcement
	Political Advocacy


	Conclusion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	The Dilemma of Maintaining Intact Forest Through Certification
	Introduction
	The economic imperatives of using and not using intact forests
	FSC as an agent to implement intact forest conservation
	Incorporating IFL within the FSC voluntary framework
	The consequences for forest management in non-intact areas
	Urgent need for landscape scale solutions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Measuring Forest Biodiversity Status and Changes Globally
	Introduction
	Materials and Methods
	Tree Cover Change
	Biodiversity Significance
	Biodiversity Significance of Remaining Forest in 2018
	Significance of Forest Loss 2000–2018
	Biodiversity Intactness

	Results
	Forest Biodiversity Significance
	Forest Biodiversity Intactness
	Comparison of Biodiversity Significance and Intactness

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Hunting and Forest Modification Have Distinct Defaunation Impacts on Tropical Mammals and Birds
	Introduction
	Materials and Methods
	Datasets
	Analyses

	Results
	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	The State of Conservation in North America's Boreal Forest: Issues and Opportunities
	Introduction
	Conservation Values of the North American Boreal Forest Biome That Make It a Global Priority for Conservation
	Governance and Policy Context of the Canadian Boreal Forest
	Governance and Policy Context of the Alaska Boreal Forest
	Indigenous Leadership in Boreal Forest Land-Use Planning and Land Conservation
	The Challenge for Non-Governmental Conservation Organizations
	Current Conservation Status of the North American Boreal Forest Biome
	Forest Industry Impacts in the North American Boreal Forest Biome
	Mining and Oil and Gas Industry Impacts in the North American Boreal Forest Biome
	Hydropower Project Impacts in the North American Boreal Forest Biome
	Road Network and Agriculture Impacts in the North American Boreal Forest Biome
	Policy Change Impacts in Alaska's Boreal Forest
	Climate Change Impacts in North America's Boreal Forest Biome
	A Vision for the Future of the North American Boreal Forest Biome
	Conservation Successes and Opportunities in Canada
	Conservation Opportunities in Alaska
	Indigenous-Led Conservation
	Example Indigenous Large-Scale Land-Use Plans and Protected and Conserved Areas Proposals
	Indigenous Guardian Programs
	Conservation Recommendations for North America's Boreal Forest Biome
	Conclusion
	Author Contributions
	Acknowledgments
	References

	Older Eastern White Pine Trees and Stands Accumulate Carbon for Many Decades and Maximize Cumulative Carbon
	Introduction
	Materials and Methods
	Height and Diameter Direct Measurement Methodology
	Use of a Form Factor and FIA-COLE in Determining Pine Volume
	Analysis of Individual Pine Trees and a Representative Stand

	Results
	Analysis of Dominant Individuals and Averages for Stand-Grown Pines
	Stand Measurements at 80 and 160 Years

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Back Cover



