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Editorial on the Research Topic

Computational Approaches for Human-Human and Human-Robot Social Interactions

1. INTRODUCTION

Non-verbal behaviors such as gaze, facial expressions, gestures, and vocal behavior carry significant
information regarding human personality, emotions, engagement, intentions, action goals, and
focus of attention. A large part of human communication takes place non-verbally (and often
implicitly) during an explicit exchange of thoughts, attitudes, concerns, and feelings. Analyzing the
basic principles of human communication through non-verbal signals is a long-standing research
focus in cognitive and social psychology. However, the automatic realization of such analyses,
especially by using machine learning (ML), or, in general, computational techniques, is a relatively
unexplored avenue, although these techniques can be very efficient and effective.

Automatized detection and analysis of non-verbal social signals can be of particular relevance
not only to human-human interaction (HHI) but also in human-robot interaction (HRI). Over the
last decade, much research effort has been dedicated to improving robots’ capabilities regarding
perceiving, interacting, and cooperating with humans. Indeed, social HRI requires augmentation
of robots’ standard functionality with the ability to recognize and interpret human social signals in
order to be able to engage naturally and intuitively with a human. Simultaneously, research efforts
are being directed toward examining the human side of HRI, namely, the human mechanisms of
social cognition in interactions with artificial agents (embodied robots specifically). This is crucial
in order to understand how the human brain processes social signals coming from non-human
agents and whether such agents can evoke mechanisms of social cognition in humans. ML
techniques have also proved to be useful in this case to explore the patterns of neural and behavioral
activity of the human counterparts.

This Research Topic is dedicated to exploring computational techniques for the analysis of non-
verbal social signals in HHI as well as HRI. Specifically, we focus on ML methodologies, as well
as other computational approaches for understanding non-verbal behavior and analyzing multi-
modal data. It brings together ten selected papers that reflect some of the current computational
approaches applied to HHI and HRI.

Bartlett et al. focus on movement analysis based on internal state identification. Video clips
of social interactions, either the original scene or in the form of 2D body pose data, were shown
to participants whose internal state perception was later assessed. These data were analyzed to
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determine whether the full scene clips were more informative
than the 2D body pose. The results showed that participants were
able to identify interaction imbalance, valence, and engagement
independent of the types of videos. ML achieved similar
performances as well, which can be interpreted as indicating
that it can successfully decode and classify internal states using
low-dimensional data.

Kory-Westlund and Breazeal investigate whether a social
robot can increase children’s rapport, positive emotion,
acceptance, engagement, closeness, and learning. The robot
entrained its speech and behavior to individual children and
provided an appropriate backstory about its abilities. The data
analysis performed showed that the robot’s entrainment led
children to show more positive emotions; it affected children’s
emulation of the robot’s words in their own stories. Additionally,
children who heard the robot’s backstory were more accepting of
it, find it more human-like, and agreed more to its requests.

Bloch et al. study the relevance of interpersonal synchrony
(IS) for Autism Spectrum Disorder (ASD). IS is related to
empathy and rapport and thus enables successful HHI, while
individuals with ASD have difficulties with IS. The authors
present a comprehensive review of IS in ASD and then propose
a theoretical concept based on temporal processing of sensory
input of interactions. Georgescu et al. present an ML method
to study IS difficulties in ASD. IS between the head and upper
body was quantified using Motion Energy Analysis, the results of
which were used to train a Support Vector Machine to classify
individuals with ASD and typically developed individuals.

Biancardi et al. propose a computational model that allows
changes in the impression of warmth and competences of an
embodied conversational agent that can interact with a human.
The impressions of warmth and competence are changed in real-
time to adapt to the human in order to maximize engagement.
The system is tested as a museum guide, and it is shown that the
hypothesis of warmth primacy may be valid.

Niewiadomski et al. focus on the analysis of social activities
related to food and eating, as well as computational and
technological approaches addressing such activities. The paper
describes the approach of treating food-related activities
as a social phenomenon that requires psychological and
sociological analyses. It also presents problems that need
to be tackled from the computational perspective, such
as detection and recognition of food-related or eating
activities.

Amiriparian et al. address interpersonal synchronization
of acoustic signals during speech communication. They
present an auto-encoder-based method trained on a
large set of dyads across six different cultures. The
results show that in all six cultures, partners tended to
synchronize their speech, but inter-cultural differences were
also observed.

Lammers et al. present a dataset of everyday actions
expressing various emotions. This dataset was created based on
motion capture data collected from human volunteers and then
rendered into video files with a standardized, unified virtual
character performing the actions. The stimulus material was then
homogenized in terms of low-level physical features and tested
for sufficiently high recognition rates.

Iwasaki et al. conducted an in-the-wild experiment, where
a Pepper robot was in the role of a salesperson. The robot
responded to various social situations and tried to attract
customers’ attention. Many customers ignored the robot’s
presence. However, if it managed to create a first impression of
being capable of recognizing and appropriately responding to
human behavior, it had higher chances of engaging customers.
In a lab-environment experiment, the robot’s “looking back
behavior” was manipulated such that participants subjectively
felt that they were being observed. The paper points out that
for attracting the attention of users and maintaining their
engagement, it is important to create an impression that a robot
is aware of and reactive to the situational context, environment,
and current state of the interaction.

Dinh et al. describe a framework for legible and safe
robot behavior for HRI based on reinforcement learning. In a
collaborative scenario, where both human and robot need to
reach the same objects, the robot learns how to be legible to the
human and how to avoid dynamic obstacles, thereby improving
the safety of the human. This was tested in a virtual reality setup
and in a physical HRI with a KUKA robot arm. The results
showed that over the course of the experiment, participants
efficiently learned how to predict robot movements and rated
the robot’s legibility increasingly higher. That improvement was
better compared to a non-adaptive condition. The important
advantage of this approach is that it is generalizable to other tasks.
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INTERpersonal synchrony leads to increased empathy, rapport and understanding,

enabling successful human-human interactions and reciprocal bonding. Research

shows that individuals with Autism Spectrum Disorder (ASD) exhibit difficulties to

INTERpersonally synchronize but underlying causes are yet unknown. In order to

successfully synchronize with others, INTRApersonal synchronization of communicative

signals appears to be a necessary prerequisite. We understand INTRApersonal

synchrony as an implicit factor of INTERpersonal synchrony and therefore hypothesize

that atypicalities of INTRApersonal synchrony may add to INTERpersonal synchrony

problems in ASD and their interaction partners. In this perspective article, we first

review evidence for INTERpersonal dissynchrony in ASD, with respect to different

approaches and assessment methods. Second, we draft a theoretical conceptualization

of INTRApersonal dissynchrony in ASD based on a temporal model of human interaction.

We will outline literature indicating INTRApersonal dissynchrony in ASD, therefore

highlighting findings of atypical timing functions and findings from clinical and behavioral

studies that indicate peculiar motion patterns and communicative signal production in

ASD. Third, we hypothesize that findings from these domains suggest an assessment

and investigation of temporal parameters of social behavior in individuals with ASD.

We will further propose specific goals of empirical approaches on INTRApersonal

dissynchrony. Finally we present implications of research on INTRApersonal timing in ASD

for diagnostic and therapeutic purposes, what in our opinion warrants the increase of

research efforts in this domain.

Keywords: human-human interaction, INTERpersonal synchrony, INTRApersonal synchrony, timing, non-verbal

behavior, autism spectrum disorder

1. INTERPERSONAL DISSYNCHRONY

“Terms such as interactional synchrony, non-verbal mirroring, shared rhythmicity, motor mimicry or

chameleon effect embrace the underlying dimension of coordination between two or more individuals in

the domain of nonverbal action” (Ramseyer and Tschacher, 2008, p.332).

Across different terminology INTERpersonal synchrony describes the phenomenon that people
automatically align behavior while interacting. This is thought to strengthen their social bond

6
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by means of increased rapport (LaFrance, 1979; Tickle-
Degnen and Rosenthal, 1990; Lakin and Chartrand, 2003;
Vacharkulksemsuk and Fredrickson, 2012), mutual affiliation
(Hove and Risen, 2009), enhanced mentalizing (Baimel et al.,
2018), successful joint action (Valdesolo et al., 2010; Lorenz
et al., 2014), as well as empathy (Behrends et al., 2012;
Koehne et al., 2016). Autism Spectrum Disorder (ASD)
is defined as a neurodevelopmental disorder that entails
difficulties in social communication and interaction together
with repetitive behaviors and restricted interests (American
Psychiatric Association, 2013) and there exists evidence for
INTERpersonal dissynchrony of individuals with ASD with
interaction partners.

INTERpersonal synchrony as a dependent variable in groups
of healthy control persons was measured in reference to
parameters in a dynamical model of human movements
dynamical model of human movements (Haken et al., 1985).
Those studies measured coordinated movements between two
individuals in terms of reduced changes in relative phase angles
between reference points in two oscillating systems (Richardson
et al., 2007; Schmidt and Richardson, 2008; Romero et al., 2015).
With respect to individuals with ASD one study found less
coordination of movements measured by the alignment of phase
angles between two rocking chairs (Marsh et al., 2013). Similarly,
individuals with ASD synchronized pendulum swings less with
their parents (Fitzpatrick et al., 2016).

Fitzpatrick et al. (2017a) separately investigated performance
in intentional vs. spontaneous synchrony tasks and found lower
INTERpersonal coherence scores in both domains for children
with ASD. Additionally, the authors found distinct cognitive
mechanisms underlying both kinds of alignment problems
(Fitzpatrick et al., 2017b). In a naturalistic setting, spontaneous
INTERpersonal synchrony was measured by coherence of body
motion of two interaction partners in predefined regions of
interest, thereby not focusing on external oscillators or specific
limbs, rather on general body motion (Ramseyer and Tschacher,
2011; Romero et al., 2015). So-called Motion Energy Analysis
(MEA) (Ramseyer and Tschacher, 2011) calculates cross-
correlation time series of pixel changes from video-recorded
interactions as an indicator for coordinated movements. Noel
et al. (2018) usedMEA in their study and showed that individuals
with ASD exhibited less INTERpersonal synchrony and less
complex movements in an interview setting.

Relevant for understanding INTERpersonal synchrony are
also joint action paradigms, in which participants have to conduct
actions that require consideration of another person’s perspective
and movement affordances in the course of motion planning.
When assessing the motor anticipation of a partner’s grip
comfort when passing objects, participants with ASD showed
more variable grip positions indicating atypical social motor
planning (Gonzalez et al., 2013). Moreover, with increasing
severity of ASD traits, participants modulated grip movements
less in adaption to a partner’s movements, but performed well
in a non-social replication task indicating deficits only for
the social domain (Curioni et al., 2017). Other studies found
less grip-to-reach positions that enhanced end-state comfort
for the partner (Scharoun and Bryden, 2016; Studenka et al.,
2017) and more variable reaction times, slower movements

and more movement dissynchrony with an interaction partner
(Fulceri et al., 2018).

Besides investigations of alignments of whole body or limb
movements, mutual gaze and the establishment of joint attention
are of particular interest for INTERpersonal coupling processes
(Emery, 2000; Senju and Johnson, 2009). Gaze behavior is
the first non-verbal source for the coordination of behavior
between newborn and parent and therefore a driving force for
the development of non-verbal reciprocity (Feldman, 2007).
Empirical evidence for atypical gaze behavior and atypical
processing of gaze cues in individuals with ASD is now
overwhelming, in particular early aversion of social gaze (Jones
and Klin, 2013), altered attention preferences for social cues
in form of gaze avoidance (Madipakkam et al., 2017) and less
contact or involvement evoked by direct gaze (Schwartz et al.,
2010). Gaze idiosyncrasies were already found in children with
ASD (Jones and Klin, 2013) and are still present in adults
(Schwartz et al., 2010; Georgescu et al., 2013; Madipakkam et al.,
2017; Caruana et al., 2018) and are not caused by oculomotor
disfunctions (Caruana et al., 2018). In conclusion, empirical
evidence from several domains indicate reduced body motion
alignment, less anticipation of other persons’ kinematics inmotor
planning as well as atypical social gaze as features of individuals
with ASD that contribute to INTERpersonal dissynchrony (see
Table 1 for an overview).

2. INTRAPERSONAL DISSYNCHRONY

IN ASD

In their social entrainment model, McGrath and Kelly (1986)
consider social interaction in terms of temporal patterns or
rhythms in behavior. This model states that endogenous (i.e.
individual) rhythms in behavior become temporally aligned in
phase and period in the course of interaction. This implies the
emergence of systematic temporal patterns of verbal and non-
verbal turn-taking during INTERpersonal encounters. Based on
this, one can assume that there exist temporal windows of
signal production that are critical for communication efficiency
and INTERpersonal alignment. From an individual perspective,
communication signals are composed of various non-verbal
sources (e.g., gaze and gestures). These need to be coordinated
with each other and with verbal output to achieve the intended
communicative effects. We define INTRApersonal synchrony as
the temporal coordination of communication signals in a socially
informative manner. In the following, we will review evidence of
atypical temporal processing andmovement patterns in ASD.We
will then introduce the idea that those peculiarities may be related
to individuals with ASD missing the assumed temporal windows
for producing socially effective communication signals.

2.1. Temporal Processing in ASD
Temporal processing of sensory input seems to be altered in
individuals with ASD. For instance, in a perceptual simultaneity
task individuals with ASD judged the presentation of two visual
stimuli to be temporally asynchronous for smaller stimulus
onset asynchronies compared to typically developed (TD) control
participants (Falter et al., 2012a). Further empirical evidence
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TABLE 1 | Studies on INTERpersonal synchrony in ASD.

Study N (m;f) Age M(SD) Paradigm

OSZILLATION

Fitzpatrick et al. (2016) 9 (8;1) 13.7 (1.3) Pendulum task

Marsh et al. (2013) 8 (6;2) 6.2 (1.2) Rocking chair task

BODY ALIGNMENT

Fitzpatrick et al. (2017a,b) 45 (39;6) 8.6 (4.8) Social motor synchronization tasks and cognitive measures

Noel et al. (2018) 12 (8;4) 12.2 (3.8) Multisensory temporal binding task and MEA

JOINT ACTION

Curioni et al. (2017) 16 (13;3) 26.1 (/) Grasping objects in social vs. non-social condition

Fulceri et al. (2018) 11 (10;1) 7.8 (1.3) Joint action task with clear and unclear end point

Gonzalez et al. (2013) 10 (9;1) 32.7 (10.8) Helping partner by passing objects

Scharoun and Bryden (2016) 14 (9;5) 8.6 (/) Grasp-to-reach task with experimenter

Studenka et al. (2017) 5 (3;2) 9.8 (/) Narrative task and motor perspective taking

SOCIAL GAZE

Caruana et al. (2018) 17 (11;6) 26.5 (11.9) Initiating and responding to joint attention

Jones and Klin (2013) 11 (11;0) 0.2–0.4 Gaze preferences in longitudinal study design

Madipakkam et al. (2017) 14 (8;4) 35.4 (2.3) Unconscious reactions to direct and averted gaze

Schwartz et al. (2010) 20 (11;9) 39.3 (9.2) Socioaffective effects of direct gaze

All studies recruited age-matched control groups.

shows an enhanced temporal parsing of auditory (Jones et al.,
2009) and visual events (Falter et al. 2013; but see Isaksson
et al. 2018), lower hit rates for the detection of differences in
temporal intervals between auditory signals (Falter et al., 2012b),
atypical judgment and reproduction of durations (Szelag et al.,
2004) and wider multisensory temporal binding windows for
simultaneity judgments (Noel et al., 2018). All of these findings
support the notion of atypical temporal processing in ASD,
possibly associated with a detail-focused, less holistic cognitive
style as postulated in the ‘Weak Central Coherence Theory’ of
autism (Happé and Frith, 2006). Atypical temporal processing
also manifests in higher level processes, such as the subjective
experience of time. Allman et al. (2014) in this context argue
that stereotypical behavior patterns and behavioral routines serve
the structuring of subjective time experience in ASD which
compensates for atypical internal timing functions. In line with
that are results of a high tendency in ASD to rely on self-
structured routines and repetitive behavior to control bottom-up
perceptual input, thereby generating experiences of timelessness
or “flow” (Vogel et al., 2018a,b).

Atypical temporal processing in ASD most likely influences
behavior as well, given that sensorimotor frameworks propose
feedback loops of sensory and motor systems (Wolpert et al.,
2003; Torres et al., 2013). In this line, Gowen and Miall (2005)
found atypical motor timing in an ASD sample, namely faster and
more variable responses in a finger tapping task and results were
replicated by Isaksson et al. (2018). In addition to this evidence
for altered motor timing, behavioral research underpins the
assumption that individuals with ASD exhibit atypical movement
patterns, as shown in the following literature.

2.2. Motor Production in ASD
Clinically, “clumsiness” in motor production is a major feature
of autism (Asperger, 1944). Although still a secondary criterion

for diagnosis, Parma and de Marchena (2015) argue that atypical
motor patterns in ASD need to be further investigated as
they occur across the spectrum and may constitute a possible
diagnostic marker. In this context a study by Anzulewicz et al.
(2016) successfully discriminated children with ASD from TD
children by a machine learning algorithm that deployed motor
variables from a gaming task with a touch screen. Children
with ASD exhibited significantly faster movements with peculiar
pressure patterns. Other studies further highlight jerky limb
movements (Cook et al., 2013), atypical gait (Barrow et al.,
2011; Kindregan et al., 2015; Dufek et al., 2017; Eggleston
et al., 2017), enhanced postural sway (Gowen and Miall,
2005; Doumas et al., 2016) and enhanced variability in motor
output (Brincker and Torres, 2013; Gowen and Hamilton,
2013; Parma and de Marchena, 2015; Kaur et al., 2018). A
meta-analysis by Fournier et al. (2010) included 41 studies on
motor coordination, motor impairment, arm movement, gait,
or postural stability. They found a significant effect indicating
weaker motor performance in ASD individuals, independent
from symptom severity. A review byGowen andHamilton (2013)
systematically inspected approaches on motor abilities in ASD
on the background of a computational model that postulates
intermediate cognitive steps of motor processing. The authors
suggest poorer integration of sensory input for motor planning
as well as increased variability in motor output or “motor noise”
as integral characteristics in ASD.

Taken together, there is cumulative evidence for atypical
movement patterns in terms of reduced coordination and
greater variability in motor production. Together with evidence
for peculiarities in motor timing (Gowen and Miall, 2005;
Isaksson et al., 2018), movement aberrations may influence
INTERpersonal communication because communicative signals
as motor acts dissociate from typical signal production with
respect to temporal emergence.
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2.3. INTRApersonal Dissynchrony in

Interactions
The Autism Diagnostic Observation Schedule (ADOS)
as a standard diagnostoc tool targets the coordination of
communication channels as a symptom of ASD (Lord et al.,
2000). Regarding social contexts there exists research in atypical
gesture production in individuals with ASD. In a study by
de Marchena and Eigsti (2010), the authors counted gesture
usage and coded types of gestures in a narrative task with ASD
and TD adolescents. They found no differences in frequency and
the kind of gesture used but atypical timing of gestures related
to co-occurring speech led to reduced ratings of communication
quality in naive observers. In another study on gesture usage
in infants with ASD, Colgan et al. (2006) also found no
differences in the frequency of gestures, but infants with ASD
showed a reduced variety of gestures compared to TD control
participants. That is in line with findings of less complexity in
non-verbal behavior found by Noel et al. (2018). These results
indicate that it is not the quantity of communicative signals
that leads to the known communication difficulties but the
quality of signals and how they fit in the interactional flow.
In the social context it is noteworthy to mention, that the
temporal thresholds of perceptual simultaneity (that indicated
enhanced temporal parsing of sensory events) in ASD were
significantly correlated with difficulties in the communications
domain, especially when difficulties were assessed with items
encompassing the use of communicative gestures and social
imitation (Falter et al., 2012b). Isaksson et al. (2018) likewise
found an association of enhanced temporal parsing and
symptom severity in communication and social interaction. Noel
et al. (2018) further demonstrated that multisensory temporal
binding windows correlated with INTERpersonal synchrony in
TD participants but not in participants with ASD, indicating
distinctive associations in the multisensory temporal domain.

Those findings imply that temporal processing in ASD may
be associated with the reduced INTERpersonal alignments. If this
association is mediated by atypical social signal timing, is targeted
by our proposed perspective on INTRApersonal dissynchrony
in ASD.

3. PERSPECTIVE ON FUTURE RESEARCH

The temporal model of social interactions by McGrath and
Kelly (1986) implies that synchronous alignments require
mutual responsiveness and coordinated signal production.
Individuals with ASD exhibit atypical temporal processing and
motor patterns, what most likely disrupts the emergence or
maintenance of systematic INTERpersonal coupling. In line with
that, we argue that future research needs to extend findings of
deviant motor timing (Gowen and Miall, 2005; Barakova and
Chonnaparamutt, 2009; Isaksson et al., 2018) to the domain
of socially expressive behavior and investigate the impact of
INTRApersonal dissynchrony on interactions.

Therefore we suggest approaches on INTRApersonal
dissynchrony should pursue two consecutive goals. First, the
aim is to quantify temporal deviations in communication
behavior in ASD and to find critical temporal windows of

INTRApersonal synchronous signal production. State-of-the-art
techniques, such as motion capture, eye tracking and video
tracking should be used to assess time series of communication
behavior. This allows the investigation of peculiarities of signal
timing in multiple communication contexts. Combining such
techniques makes it possible to assess the temporal coordination
of separate signal sources (e.g., gaze, gestures, facial expressions,
speech) in terms of relational signal onsets, durations and
end points. Thereby one may gain insights into the temporal
composition of individual signal streams. On the background
of findings of enhanced motor variability (Brincker and Torres,
2013; Gowen and Hamilton, 2013; Kaur et al., 2018) the
investigation of measures of dispersion in ASD samples will be
of particular interest. Furthermore, implementing perceptual
timing tasks may lead to insights in functional relations of
temporal processing and social motor timing in ASD. Thus, the
questions if timing of communicative channels is affected by
a general sensory timing deficit or by social contexts or both
can be addressed by comparing task performance in social and
non-social tasks of varying sensory complexity. With regard
to the neurophysiological framework of predictive coding, it
would be highly interesting to investigate, if INTRApersonal
dissynchrony also manifests in EEG patterns with social cues
produced by individuals with ASD possibly missing predictive
timing windows (Arnal and Giraud, 2012). As physical arousal
and stress may be enhanced in social tasks in ASD participants,
further assessment of heart rate and skin conductance constitute
important covariates.

A subsequent goal would be to analyze the perception of
idiosyncratic communication patterns, here targeting causal
effects of INTRApersonal dissynchrony on INTERpersonal
outcomes. Therefore, motion capture data should be used to
animate virtual characters in order to create ecologically valid and
standardized stimulus material for perception studies (Bente and
Krämer, 2002; Georgescu et al., 2014; Pan and Hamilton, 2018).
By assessing impression, evaluation and recognition of altered
signal production in ASD, one may draw causal conclusions
for deficits in social interactions. Dependent variables should
be included in such perception studies that are critical for the
quality of the produced signal, e.g., communication efficiency and
measures of INTERpersonal bonding, e.g., likeability. Creating
an “autistic avatar” would allow experimental manipulation
of movement parameters under high experimental control.
It is of great relevance to illuminate the perspective of the
interaction partner to fully understand developmental pathways
and resulting communication deficits. There is evidence that TD
participants show poorer performance in decoding expressive
movements generated by individuals with ASD, indicating
reciprocal lack of mentalization (Edey et al., 2016). On
presentation of short video clips or still frames of individuals
with ASD, independent raters judged individuals with ASD less
favorably and reported less motivation to socially approach them
(Sasson et al., 2017). An avatar that exhibits specific autistic
movement patterns could therefore be employed for research into
reciprocal effects of INTERpersonal dissynchrony as well as for
training of staff to improve interaction with patients.

This approach on INTRApersonal dissynchrony in ASD
potentially has further implications for diagnosis and therapy. In
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this context, measures of INTRApersonal communication signal
coordination could serve as implicit measures that can be used
for diagnostic purposes. Implicit diagnostic tools are strongly
needed to account for symptomatical heterogeneity in ASD.
Subjective observational tools are based on clinical observations
or self-report with limited objectivity, especially in adults given
behavioral adjustment throughout their lives. Time series data
of motion patterns may be used for diagnostic purposes, e.g.
supported by machine learning (Georgescu et al., 2019). Our
recent work shows that automatized classification of ASD from
non-ASD is possible on the mere basis of motion energy assessed
using video analysis (ibid.). Specifically motion capture data
of INTRApersonal movement parameters is likely to further
increase classification power due to richer data retrieval.

An INTRApersonal approach has conceivable implications
for the field of robotics in autism research as temporal
parameters of signal production may inform models of
interactive robotic behavior.

Recent research of human-robot interaction (HRI) with
children with ASD revealed positive effects, as robots attract
attention and elicit novel behavior while social complexity can
be controlled for (Duquette et al., 2008; Scassellati et al., 2012;
Srinivasan et al., 2016). The AURORA project (AUtonomous
RObotic platform as a Remedial tool for children with Autism)
used the robot “Robota,” which resembles a human doll and is
able to exhibit interactive movements via video-, speech-, and
motion-tracking (Dautenhahn and Billard, 2002). The project
showed that “Robota” could serve a mediating role for eliciting
joint attention in triadic human-human-robot interactions
and elicited spontaneous imitation behavior (Dautenhahn and
Werry, 2004; Robins et al., 2004, 2005), thereby potentially
reinforcing social skills.

Amplifying joint attention via HRI is of great potential for
endorsing social engagement and reciprocity in children with
ASD, but the literature is not yet fully convincing. In their
study, Anzalone et al. (2014) found that children with ASD
were less responsive to joint attention initiatives by the social
robot “Nao” and both groups responded less to the robot
compared to a human therapist. Another approach investigated
interactions of four children with “Nao” and again found
mixed results, including facilitated joint attention only for one
child (Tapus et al., 2012). Possibly, the design of the social
robot with respect to its anthropomorphism may be highly
important for eliciting and reinforcing social interactive behavior
in children with ASD, for example a realistic eye design in
joint attention paradigms (Admoni and Scassellati, 2017; Luria
et al., 2018). However, the target of the intervention is not yet
properly defined.

Our perspective suggests that individuals with ASD exhibit
social interaction in different ways (e.g. peculiar temporal
parameters of communicative signal production). Socially
interactive robots generally need to be able to recognize
communicative signals and exhibit appropriate reactions
(Breazeal et al., 2016). Thus, models of robotic behavior could
be adjusted to temporal parameters of signal production in

ASD in order to reinforce reciprocity, similar to computational
approaches in Admoni and Scassellati (2014) or Barakova and
Chonnaparamutt (2009). Such an adjustment may enhance
compliance and responsiveness of individuals with ASD toward
the robotic interaction partner. Furthermore, given that Gowen
and Hamilton (2013) suggest intact motor learning in ASD,
parameters of typical signal timing may be used for robotic
interventions that aim to train proper timing in communicative
signal coordination, thereby providing a possible quantitative
outcome measure of treatment success. Building upon findings
of the AURORA project, the creation of HRI scenarios
in which human-like robots serve as interactive tutors for
training specific communicative skills (e.g. joint attention) are
promising. Creating game-based robot interactions that prompt
spontaneous imitation of properly coordinated signals could be
a great opportunity to support children in their development of
non-verbal skills.

There exist a number of aspects that need to be considered
when planning approaches on INTRApersonal dissycnhrony
in ASD. One potentially confounding factor when measuring
INTRApersonal synchrony lies in the distinction between
spontaneously and voluntarily produced behavior, as different
cognitive processes are thought to underlie these processes
(Frith and Frith, 2008; Torres et al., 2013). Thus, future
studies should investigate how INTRApersonal dissynchrony
differs under the impact of explicit instructions or implicit and
natural task conditions. Furthermore, highly standardized study
designs that strictly control sensory surroundings are crucial for
studying INTRApersonal synchronization, given deviant sensory
processing may contribute to behavioral variability in ASD.

Further research should broaden this approach to other
psychiatric disorders that entail INTRApersonal coordination
peculiarities like schizophrenia (Walther et al., 2015) or
depression (Schrijvers et al., 2008). But especially for ASD,
we think that a perspective on INTRApersonal dissynchrony
is fundamentally relevant for understanding INTERpersonal
difficulties. A quantification of temporally atypical coordination
of communication signals in ASD is an important explanatory
approach that potentially informs diagnosis as well as
intervention programs.
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Autism Spectrum Disorder (ASD) is a spectrum of neurodevelopmental conditions

characterized by difficulties in social communication and social interaction as well as

repetitive behaviors and restricted interests. Prevalence rates have been rising, and

existing diagnostic methods are both extremely time and labor consuming. There is

an urgent need for more economic and objective automatized diagnostic tools that

are independent of language and experience of the diagnostician and that can help

deal with the complexity of the autistic phenotype. Technological advancements in

machine learning are offering a potential solution, and several studies have employed

computational approaches to classify ASD based on phenomenological, behavioral

or neuroimaging data. Despite of being at the core of ASD diagnosis and having

the potential to be used as a behavioral marker for machine learning algorithms,

only recently have movement parameters been used as features in machine learning

classification approaches. In a proof-of-principle analysis of data from a social

interaction study we trained a classification algorithm on intrapersonal synchrony as

an automatically and objectively measured phenotypic feature from 29 autistic and 29

typically developed individuals to differentiate those individuals with ASD from those

without ASD. Parameters included nonverbal motion energy values from 116 videos of

social interactions. As opposed to previous studies to date, our classification approach

has been applied to non-verbal behavior objectively captured during naturalistic and

complex interactions with a real human interaction partner assuring high external

validity. A machine learning approach lends itself particularly for capturing heterogeneous

and complex behavior in real social interactions and will be essential in developing

automatized and objective classification methods in ASD.

Keywords: autism spectrum disorder, machine learning, nonverbal synchrony, support vector machine, motion

energy analysis, classification, intrapersonal synchrony, nested cross-validation
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INTRODUCTION

Autism spectrum disorder (ASD) is an umbrella term for
neurodevelopmental conditions characterized by severe
difficulties in social interaction and communication, as well
as by repetitive behaviors and restricted interests (American
Psychiatric Association, 2013). The prevalence rates of ASD
are on the rise (Elsabbagh et al., 2012) and diagnostic services
are experiencing an increased demand, in particular in adults
seeking diagnostic advice (Murphy et al., 2011). Diagnostics
according to medical guidelines are time-consuming, the clinical
assessment is complicated by the phenotypic heterogeneity and
the language-dependency of assessment with verbal skills being
affected by the ASD.

Recently, computational methods of classification have
been employed to increase diagnostic reliability and efficiency
(Thabtah, 2018). In particular, machine learning (ML) employs
algorithms to uncover patterns in complex datasets, which are
utilized to improve decision making. ASD diagnostics come
down to a decision-making problem that can be supported by
automated models (classifiers) using ML to decide whether a
newly assessed patient has ASD or not. This works by splitting
available data into a training set, on which an algorithm is trained,
which is then applied to a test set, resulting in a measure of
accuracy of the resulting model. Without making assumptions
ML finds classification solutions in a data-driven, bottom-up
approach that can be applied to individual prediction making
(Dwyer et al., 2018). The primary purposes of using ML are
(1) to reduce assessment time to reach a diagnostic decision
in order to provide quicker access to health care services, (2)
to improve diagnostic reliability, and (3) diagnostic validity by
reducing dimensionality of input data so as to identify those
features that have the most diagnostic value in ASD (Thabtah,
2018). However, first applications of ML in studies on autism
diagnostics have been inconsistent in terms of methodology and
outcome, with inconsistent classification accuracy and specificity.

The aim of the present paper is twofold: First, we aim to give
an overview of previous research that has attempted to apply ML
methods to the classification of ASD, while suggesting guidelines
for future research in terms of setup and algorithm design.
Second, in a proof-of-principle analysis of data from a social
interaction study we aim to establish the potential of using full-
body non-verbal behavior data extracted from video recordings
of naturalistic social interactions to classify autistic adults.

MACHINE LEARNING APPLICATIONS IN
THE CLASSIFICATION OF ASD

First ML attempts in ASD have been used with the aim of
shortening ADOS [Autism Diagnostic Observation Schedule,
(Lord et al., 2000)] and ADI-R [Autism Diagnostic Interview,
(Lord et al., 1994)] administration time by item-reduction
yielding a classification accuracy of autism vs. typically-
developing (TD) individuals of up to 99.9% (Wall et al., 2012a,b;
Bone et al., 2016). In a similar attempt to predict case status words
and expressions contained in 8 year old children’s developmental

evaluations across a network of multiple clinical sites were used
for algorithm development (Maenner et al., 2016) with 86.5%
prediction accuracy and high concordance with the respective
clinician. Home videos of children have been rated by naïve
and/or expert raters in terms of ASD-typical behavior and
ratings fed into a predictive model along with other features of
the diagnostic process (Glover et al., 2018; Tariq et al., 2018).
However, while all these first studies using ML in ASD yield
fairly high accuracies, the features utilized for classification are
still highly subjective and not independent of the respective
clinician who bases the diagnostic decision on just those features
(circularity). Importantly, when using subjectively influenced
data, resulting classification algorithms must be validated in an
independent sample in order to prevent circularity.

An increasing number of studies are also using ML to
separate individuals with ASD from TD individuals based on
neuroimaging data. For example, Ecker et al. (2010) used regional
gray and white matter volume measures from whole-brain
structural MRI scans of individuals with ASD to investigate their
diagnostic value. They used a common variant ofML, the support
vector machine (SVM). This is an algorithm aiming at finding
a boundary (the so-called “hyperplane”) that can be used to
optimally classify groups while being able to generalize to new
cases (Dwyer et al., 2018). In their sample, the SVM correctly
classified individuals with ASD and controls on the basis of
their neuroanatomy with about 80% accuracy (Ecker et al.,
2010). These original observations are supported by findings
from several other neuroimaging studies with similar levels of
classification accuracy in younger age groups (Wee et al., 2014),
females with ASD (Calderoni et al., 2012) and with various
anatomical and functional measurements (Coutanche et al.,
2011). These results based on objective data are very promising,
although not widely applicable due to high costs.

WHOLE-BODY MOVEMENTS AS A
FEATURE IN ML ALGORITHMS IN ASD

Another source of objective data with high potential for
diagnostics can be found in the motor domain. Approximately
80% of children with ASD are suspected to exhibit pronounced
motor difficulties (Green et al., 2009). Difficulties with
balance, gait, movement speed and timed movements
have demonstrated to hold a high level of discrimination
between children with ASD and TD children (Jansiewicz
et al., 2006) and correlate strongly with measures of social
and communicative functioning (Parma and de Marchena,
2016). Hence, movement parameters of social interactions
in ASD should be investigated for their potential as a
diagnostic marker.

Particularly relevant for ASD motor symptomology are
gestures and non-verbal communicative behaviors (Georgescu
et al., 2014). Accordingly, atypical non-verbal behavior has been
included in the DSM-5 criteria for ASD. Yet, the assessment is
not straightforward or standardized so far and is hampered by the
fact that non-verbal behavior is not necessarily reduced in ASD,
but abnormal in the quality of its temporal coordination with
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own verbal output (de Marchena and Eigsti, 2010) and that of an
interaction partner. Literature provides evidence for aberrations
in temporal processing (Allman and Falter, 2015) and time
experience in ASD (Vogel et al., 2019), potentially affecting non-
verbal communication. In fact, findings have shown that ASD can
be characterized by increased temporal resolution associated with
the severity of (non-verbal) communication impairments in ASD
(Falter et al., 2012, 2013; Menassa et al., 2018; but see Isaksson
et al., 2018).

Recently, movement in ASD has taken up increasing interest
(for a review see Bo et al., 2016). In a proof-of-concept
study to explore whether low-functioning children with ASD
could be identified by means of a kinematic analysis of
a simple motor task, 15 children with ASD and 15 TD
children (2–4 years) were asked to pick up a ball and drop
it into a hole while their movements were recorded using
a motion tracker (Crippa et al., 2015). Seventeen kinematic
parameters were extracted from the upper-limb movement and
seven of these were found significant for discrimination. The
classifier distinguished ASD from non-ASD with a classification
accuracy of 96.7%, suggesting the validity of assuming a motor
signature of ASD. Reach and throw movements of 10 ASD
and 10 TD children were analyzed for “peculiar features”
using ML and fed into a classification algorithm yielding
an accuracy of 92.5% (Perego et al., 2009). Furthermore, Li
et al. (2017) extracted 40 kinematic parameters of imitative
movements and identified 9 of them that best describe variance
of participant groups, resulting in a classification accuracy
of 93%.

These studies demonstrate the potential of using kinematic
biomarkers in diagnostics of ASD. However, the movements
under investigation were staged, thus, highly unnatural. Yet, it
has been established that individuals with ASD have particular
difficulties with spontaneous “on-line” social interaction
requiring intuitive decisions and behavior (Redcay et al., 2013)
constituting an urgent need to move this type of research to
more external validity and investigate movement in a more
naturalistic context.

CLASSIFICATION USING
INTRAPERSONAL SYNCHRONY: A
PROOF-OF-CONCEPT STUDY

Whole-body movements in more naturalistic conversations were
tested for their classification potential in 29 high functioning
adults with ASD and 29 TD individuals. The data for this
investigation came from a study on interpersonal coordination
in dyadic interactions (Georgescu et al., under revision).
The autistic participants were diagnosed and recruited at the
Autism Outpatient Clinic of the Department of Psychiatry,
University Hospital Cologne, Germany. The sample included
only patients with the diagnoses high-functioning autism
(ICD-10: F84.0) or Asperger syndrome (ICD-10: F84.5). Two
medical specialists confirmed the diagnosis independently in
clinical interviews, according to the criteria of the International
Classification of Diseases (ICD-10) and supplemented by

extensive neuropsychological examination. The TD sample was
recruited online from the student and staff population at the
University of Cologne and the University Hospital of Cologne,
Germany. The study was conducted with the approval of the
local ethics committee of the Medical Faculty of the University
of Cologne. Participants were paired to conduct five 5min
social interaction tasks. Conversational dyads consisted of either
two TD individuals, two individuals with ASD or a TD
individual with an individual with ASD. An ice-breaker task,
two debating tasks, a meal-planning task and a roleplay were
included resulting in a total of 145 videos of social interactions
(for more information, see Georgescu et al., under revision).
All conversations were recorded in a room with standardized
artificial lighting and using a high-definition video camera
(Panasonic DV C Pro HD P2), mounted on a tripod 320 cm away
from the chairs which were 60 cm apart from each other. Since
one of the MIXED dyads did not understand instructions on
the ice-breaker task, for the purpose of this analysis the whole
task was abandoned, resulting in a total of 116 videos submitted
for final analysis. Intrapersonal Synchrony between the head
and upper body was quantified using Motion Energy Analysis,
a widely used semi-automated frame-differencing method that
continuously monitors the amount of movement occurring in
manually pre-defined regions of interest and the method of
lagged cross-correlations (Nagaoka and Komori, 2008; MEA;
Altmann, 2011; Ramseyer and Tschacher, 2011). MEA offers the
advantage of a constraint-free, objective analysis tool for non-
verbal behavior (e.g., Ramseyer and Tschacher, 2011; Schmidt
et al., 2012; Paxton and Dale, 2013). This method has been
used to capture body movement in different contexts (e.g.,
Grammer et al., 1999; Ramseyer and Tschacher, 2011, 2014;
Schmidt et al., 2012, 2014; Paxton and Dale, 2013). MEA
and other frame-differencing methods have been successfully
used in clinical research before (e.g., Kupper et al., 2015)
and in particular in autism (Noel et al., 2017; Romero et al.,
2017, 2018). We followed the MEA pipeline described in
Ramseyer and Tschacher (2014). We manually selected two
regions of interest (ROI) for each participant, covering (1)
the head and (2) the rest of the body including the legs.
Changes in grayscale values in these ROIs were detected and
separately recorded as two continuous time series measuring the
amount of movement in the head and the body region of each
person. Data were submitted for quantification of Intrapersonal
Synchrony (for more information on the MEA procedure in
general, please see Ramseyer and Tschacher, 2014 and on this
sample, Georgescu et al., under revision). Input time series
were smoothed and scaled to account for different-sized ROIs
using custom software in R (package rMEA, Kleinbub and
Ramseyer, 2019) and cross-correlated in windows of 60 s with
a time lag of ±5 s (step size 0.04 s). Windows were not allowed
to overlap. The resulting 1,004 lagged cross-correlations were
then z-standardized and aggregated over the four conditions for
every participant, yielding 4,016 features per participant which
were implemented in the open-source machine learning tool
NeuroMiner (https://www.pronia.eu/neurominer/). A support
vector machine with linear kernel was chosen as a classification
algorithm, a multivariate supervised learning technique widely
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TABLE 1 | Performance metrics of the ASD vs. TD SVM classifier.

True positives/true negatives 28/16

False positives/false negatives 13/1

Accuracy [%] 75.9

Sensitivity [%] 96.6

Specificity [%] 55.2

Area under the curve 0.71

For detailed explanation of performance metrics please refer to Dwyer et al. (2018).

FIGURE 1 | Decision scores of SVM classification performance. The algorithm

assigns a score to each participant indicating the probability of this participant

as belonging to Group 1 or 2 (in our case ASD vs. TD) where the decision

boundary between the two groups is zero. Notably, our algorithm misclassified

only one of the ASD participants.

used in psychiatric research (Bone et al., 2016; Duda et al.,
2016). Our repeated nested k-fold cross-validation (CV) structure
consisted of 10-folds and five permutations for the outer cross-
validation cycle (CV2) and repeated 5-by-5-fold inner cross-
validation cycle (CV1), with participants being shuffled prior
to each definition of folds. This way, the data available for
training was maximized while ensuring enough heterogeneity
within the inner test sample to avoid overfitting and create stable
models. Parameter optimization was performed in CV1, while
model performance was evaluated in CV2. Prior to analysis, data
was preprocessed using principal component analysis (PCA) for
dimensionality reduction, retaining the principal components
that cumulatively explained 80% of the variance in each CV1

fold, and subsequently, scaled feature-wise from 0 to 1. The slack
parameter C was estimated in the inner CV cycle using eight
parameters ranging from 0.015625 to 16. Overall classification
performance resulted in 75.9% accuracy (Table 1). Remarkably,
sensitivity was 96.6%, correctly classifying all but one individual
with ASD (Figure 1).

Thus, with a portable and inexpensive video-setup in a
naturalistic setting and a semi-automated analysis pipeline, we
reached a good diagnostic classification of ASD within four
5min interaction excerpts on the mere basis of objective motion
data. Feeding further clinical and interaction variables into the

BOX 1 | Minimum requirements for reliable clinical application of ML in

ASD research (adapted from Dwyer et al., 2018)

• Combination of objective variables and standard diagnostic measures as

input features to classify ASD.

• Use of nested CV as a standard procedure.

• Prevent unstable model outcomes through k-fold CV.

algorithm promises a high potential for classification (see Future
Perspectives section).

METHODOLOGICAL ISSUES IN MACHINE
LEARNING APPROACHES TO
CLASSIFYING ASD

Unlike e.g., Bone et al. (2016) or Li et al. (2017), most ML
studies in ASD research have relied on simple cross-validation
(CV) methods. This increases the likelihood of choosing an
overly optimistic model (Cawley and Talbot, 2010). We therefore
suggest the application of a second layer of CV to allow for
parameter selection and model performance evaluation to not be
performed on the same data and to prevent overfitting. The test
fold is completely held out until parameter optimization within
the inner CV cycle is achieved by splitting the training data once
more into an (inner) test and (inner) training set. The optimized
models can then be tested for generalizability on the outer
test fold. This so-called nested CV maximizes generalizability
and has now been established as a gold standard procedure in
psychiatric research (Dwyer et al., 2018). In order to account
for the small sample sizes in ASD research, often predictions are
made in a leave-one-out approach whereby only one individual’s
data is held out in the test set while parameters are optimized
on the others (Crippa et al., 2015; Li et al., 2017). Especially,
for ASD with its highly heterogeneous phenotype, leave-one-
out creates overly variable test sets, rendering model outcomes
unstable (Varoquaux et al., 2017). This can be prevented
through k-fold nested CV and simultaneous permutation of
individual data sets within the inner cross-validation cycle
(Dwyer et al., 2018). An overview of best-practice standards is
outlined below.

FUTURE PERSPECTIVES

Impairments of non-verbal communication are seen across the
entire spectrum of ASD warranting the use as a behavioral
biomarker. Yet, its intricacy requires multivariate analysis
methods to capture complex interdependencies across domains.
Machine learning offers the potential to incorporate high-
dimensional data for the detection of underlying mechanisms
and classification if certain minimum practice requirements are
fulfilled (see Box 1).

In our proof-of-principle study, we were able to classify
high-functioning adults with ASD from TD adults on the
mere basis of non-verbal intrapersonal motion synchrony in
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social interactions with an accuracy of 75.9%, which can be
regarded a conservative estimate on the basis of a state-of-
the art ML approach. Due to relatively small sample sizes
available with high phenomenological heterogeneity in ASD,
it is of utmost importance to choose adequate methods of
cross-validation in order to maximize generalizability. The
use of repeated nested cross-validation prevents overfitting
and should be incorporated as a standard procedure in ML
applications. However, given our rather limited sample size,
the next steps for future research will be to apply the
resulting algorithm to a completely new and larger data set
and to investigate its transdiagnostic specificity across different
psychiatric disturbances.

Future research should furthermore consider combining
multiple non-verbal communication parameters and clinical
data (e.g., questionnaires) in order to improve prediction and
classification accuracy further and to possibly detect potential
associations across domains. For instance, peculiarities in
eye-gaze (Merin et al., 2007; Georgescu et al., 2013) and
facial expression (McIntosh et al., 2006) in ASD demonstrate
feasible approaches.

One future avenue would be to explore methods to quantify
non-verbal behavior in a fully-automated fashion. In the present
proof-of-principle study, a dataset was used that was analyzed
using MEA, a classic frame-differencing approach. It has been
shown that MEA is able to capture movements and even
complex coordinative patterns to a similar extent as more
expensive motion capture equipment such as the Polhemus
(Romero et al., 2017). A main advantage for autism research
of this method of extracting whole-body motor movement
is that it does not involve any wearable technology. Given
the hypersensitivity exhibited by many individuals with ASD,
not having to add any attachable piece of equipment or
body suit to their bodies is helpful. However, while MEA
automatically detects pixel changes, corresponding regions of
interest are drawn in manually. Although resulting values are
standardized, there remains a subjective component. Computer
vision tools that can estimate the coordinates of limb positions
and even extract gaze location and body poses would offer
similar benefits while balancing out subjective biases in the
motion extraction process (Marín-Jiménez et al., 2014; Mehta
et al., 2017; Tome et al., 2017; Cao et al., 2018). In
addition, they offer even more flexibility, given it could be
possible to include less strict and standardized experimental
setups (no requirement for standardized camera or lighting
conditions). However, the validity for movement extraction
compared to other standard motion capture methods has
not been demonstrated yet. Moreover, such tools vary greatly
with respect to their susceptibility to tracking failures, or
the type of videos they can support (single vs. multiple
agent, indoor vs. outdoor etc.). Overall, with the current
methodology that is available for motion extraction, the
present semi-automated method offers a realistically applicable
diagnostic value. Nevertheless, incredible advances are being

made (Li et al., 2018; Tran et al., 2018) such that they are very
promising tools for future non-verbal behavior in autism research
and beyond.

Taken together, given the recent advances in predictive
psychiatry, adequately applied ML offers the potential to
fully capture the autistic phenotype in all its complexity
with sufficient specificity across psychiatric disorders with a
special focus on the spontaneous non-verbal behavior during
social encounters with others and irrespective of clinician
or site.
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Food and eating are inherently social activities taking place, for example, around

the dining table at home, in restaurants, or in public spaces. Enjoying eating with

others, often referred to as “commensality,” positively affects mealtime in terms of,

among other factors, food intake, food choice, and food satisfaction. In this paper

we discuss the concept of “Computational Commensality,” that is, technology which

computationally addresses various social aspects of food and eating. In the past few

years, Human-Computer Interaction started to address how interactive technologies

can improve mealtimes. However, the main focus has been made so far on improving

the individual’s experience, rather than considering the inherently social nature of food

consumption. In this survey, we first present research from the field of social psychology

on the social relevance of Food- and Eating-related Activities (F&EA). Then, we review

existing computational models and technologies that can contribute, in the near future, to

achieving Computational Commensality. We also discuss the related research challenges

and indicate future applications of such new technology that can potentially improve

F&EA from the commensality perspective.

Keywords: commensality, food, food recognition, HCI, social signal processing, embodied interfaces, social

robots, augmented experience

1. INTRODUCTION

Food and drink consumption is a vital human activity aimed at providing the body with nutrients
that are necessary for survival. What is more, eating and drinking are also highly social activities
that take place, for example, around the dining table at home, in restaurants, or in public spaces.
People use food to regulate their own and others’ emotions, for example, by offering food to
cheer others up or by eating some particular food they associate with positive memories. Humans
learn that food can have a social and emotional meaning from a very young age, for example, by
associating food offering with soothing (Hamburg et al., 2014). Food-related interaction, often
referred to as “commensality,” is very important for personal health and well-being (e.g., Grevet
et al., 2012).

Given the importance of food consumption, researchers in human-computer interaction (HCI)
and artificial intelligence (AI) have recently started to address how interactive technologies can
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improve mealtimes. For example, devices like sensor networks or
connected appliances offering multi-sensory eating experiences
(Kortum, 2008) are increasingly entering the processes of food
preparation and consumption, while virtual agents (Gardiner
et al., 2017) and robot companions (Baroni et al., 2014) are used
to motivate children to eat more healthily. The variety of the
topics related to Food- and Eating-related Activities (F&EA) has
attracted researchers’ interest from several AI-related disciplines:
from computer vision to multimodal interaction and from
positive to social computing, as demonstrated by the recently
born series of workshops titled “Multi-sensory Approaches to
Human-Food Interaction” and the “ACM Future of Computing
& Food Manifesto1”.

However, research in AI and HCI and technologies dedicated
to F&EA often focus on food (or eating) itself (e.g., food
recognition and sensory augmentation) rather than on its
social dimension. In this work, we introduce the concept of
Computational Commensality (CC)2 to gather different attempts
to computationally address various social aspects of food and
eating. CC extends commensality in humans (see Figure 1),
which is the practice of sharing food and eating together in a
social group (Ochs and Shohet, 2006) by introducing technology
as a “social glue” for food-related interaction. CC will focus on
creation of rich physical or mediated multimodal interaction
between two or more agents (being humans, or humans and
machines) which may enable or enhance outcomes of the
“traditional” commensality (i.e., in the sense of Ochs and
Shohet’s definition) studied so far mainly by psychologists
and sociologists. CC needs, for example, F&EA recognition
modules as building blocks to create food-related interaction.
However, it goes beyond these topics already extensively studied
in HCI and AI. It must also be distinguished from the other
food-related concepts recently proposed, such as gastroludology
(Chisik et al., 2018) and human–food interaction (Comber et al.,
2014; Altarriba Bertran et al., 2018). The first one focuses on
experiences involving playing with food (e.g., games). Indeed,
such experiences can sometimes be social, e.g., when two or
more persons use the technology to feed each other (Mehta
et al., 2018) (see section 6.1 for other examples), but still
the main focus is on sensorial, playful experience with food
and the technological innovation enabling it. In this sense,
Mueller et al. (2018) proposes considering the eating activity
“as something not serious, with neither a clear goal nor
real-world consequences.” The second one mainly investigates
the individual experience, and rarely considers social context
(although we present some recent interesting works in this
field in section 5).

In our view, CC may appear in two main scenarios. First
of all, two (or more) humans can use technology to enable

1https://acm-fca.org/2018/07/01/future-of-computing-food-manifesto
2The term “commensality” was used previously in a narrower sense, among

others, in works by Ferdous et al. (2016a) on the influence of existing technology

(e.g., tablets, smart phones) in familial interaction, or by Grevet et al. (2012)

on promoting social awareness around mealtimes through communication of

the “eating”-related statuses to remote confederates. In this paper, we propose a

broader perspective, which includes, for instance, social interaction not only with

another human but also the technology itself (e.g., social robots).

or enhance human-human interactions during meals. Examples
can be: using technology to enhance co-located social dining
(e.g., Ganesh et al., 2014), or using tele-dining technology to
enable social interaction between people who do not share
the same physical space (e.g., Nawahdah and Inoue, 2013). In
the second CC scenario, human(s) interact with an artificial
companion, such as a social robot (e.g., Khot et al., 2019) during
meal time. The companion uses sensors and computational
models of commensality to guide its behavior toward the human
interlocutor. In both cases, computational models can also be
used to analyze and quantify the interaction during meals, for
example, by detecting quantity of food consumed together or
identifying the social roles at the table.

The main goal of this article is 2-fold: (1) we discuss
psychological and sociological studies on the social aspects of
food and eating activities, showing how they can be exploited
to create CC; and (2) we present computational models, devices,
and applications focusing on their social dimension, illustrating
how they could be used in CC scenarios.

In the next section we will review contributions from social
psychology dealing with food related interaction and social
influence on food behavior, and we will illustrate recent HCI
and AI works that deal with food preparation and consumption.
In section 3, we will start our survey by illustrating existing
works on food and eating recognition, which is probably
the food-related topic most explored in computer science,
with applications ranging from food production to virtual
dining experiences. Existing solutions are usually based on
computer vision and machine learning techniques, although
other modalities such as audio have been sometimes explored.
The most recent trends include the application of deep learning
techniques for life-logging. We will present works dealing
with human movement tracking and monitoring in food-
related activities—for example, the recognition of drinking
and swallowing actions from multimodal data coming from
wearable sensors, audio or visual devices. In section 4, we will
turn our attention to systems applying these technologies to
provide physical or psychological support in eating activities. For
example, systems offering physical assistance (e.g., for physically
impaired people), mainly using robots, cooking assistants (e.g.,
in augmented reality), or serious games aiming to change bad
eating habits. In section 5, we will discuss systems that use
similar techniques with the aims to manipulate, augment, or
enhance eating and drinking experiences through multimodal
technologies. For example, several devices have been designed
and tested to detect and simulate odors to be presented during
food consumption as an additional sensory cue, while in
other cases dining tables enhanced with projection mapping
visualizations have been developed. These efforts provide insights
on how technology can be introduced in dining activities to
enhance the sensory experience of food and drink. In section
6 we will outline systems that use technology to, in a broad
sense, enable, or stimulate interaction during food preparation
and consumption. This includes multi-user games, robot-
mediated physical interaction, as well as tele-dining systems.
Most of these works already contain some aspects of CC,
as they provide the technology and computational models
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FIGURE 1 | From commensality to computational commensality. We introduce research on “traditional” commensality in section 2, the papers related to the CC

Scenario 1 in sections 4 and 6, and to the CC Scenario 2—in sections 3, 5, and 6.

to enhance or extend the human-human interaction around
the food.

Despite the long list of topics related to eating and AI we
present in our survey (see also Figure 2), we believe that the
investigation of the link between social aspects of F&EA and
technology has just started. The variety of possible applications in
this field is enormous, pushing this discipline to grow up quickly
in the near future.We will conclude the paper by discussing some
possible future research directions in section 7.

1.1. Selection of Sources
Given the novelty of the topic and its inherently multidisciplinary
nature, we drew on many different sources from different
disciplines and kept an open perspective in the selection of
literature relevant to the current survey. Nevertheless, our main
focus was on computational technologies that either had a direct
relation with social dining practices (e.g., tele-presence dining),
or computational technologies that would be part of or would
enable such practices (e.g., computer vision, food recognition).
For this reason, in preparing this survey, we mainly focused on
“technology-oriented” online libraries, such as the IEEE Xplore
Digital Library and the ACM Digital Library. Our initial search
focused on work published in the past 5 years, to come up
with the works we surveyed in sections 3–6. The following
search terms were used: commensality, eating, dining, and food
(see Table 1 for details). Our initial search resulted in an initial
selection of 2174 (i.e., the total number of ACM and IEEE
references from 2014 to 2019, see Table 1). To get a more
complete overview of the field, in the next step, we searched for
relevant sources cited in the papers from the initial selection.
This process resulted in an additional selection of 3040 sources

(Table 1). It is important to notice that not all papers in this
pool deal with food-related technology. For instance, several
papers contain the keyword “eating” in used as a verb in the title,
e.g., “how to have the cake and eat it too,” without addressing
eating-related research questions.

In addition to this, we also relied on sources from
psychology and social sciences (i.e., Frontiers in Psychology
and Psychological bulletin) and from Appetite. In doing so, we
leveraged the aforementioned keywords, often combined with:
social facilitation, social comparison, and social context. The final
number of sources used in this survey is indicated in parentheses
in Table 1. It is important to stress that our intention, when
preparing this survey, was rather to show the variety of topics
relevant to CC than performing a systematic survey of one
research field. For example, we do not aim to enumerate all
papers on serious games for changing eating habits published
in the last 5 years, but we show a broad spectrum of works we
deem relevant to CC systems and applications. Consequently,
this survey is different from previous attempts of reviewing the
existing works (see next section 1.2 for more detail), which
usually focus on one aspect of food-related technology only.

1.2. Related Work
Min et al. (2019) proposed a survey on Food Computing,
defined as an interdisciplinary field addressing food-related
studies via computer science. In their view, Food Computing
applies computational approaches for acquiring and analyzing
heterogeneous food data from various sources for perception,
recognition, retrieval, recommendation and monitoring of food
to address food related issues in health, biology, gastronomy,
and agronomy. Furthermore, Food Computing is conceptualized
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FIGURE 2 | Landscape of topics discussed in this survey which are relevant to Computational Commensality.

TABLE 1 | The total number of the papers per keyword found in the online

libraries (in parenthesis the number of the papers cited in this survey

corresponding to given period and the source).

Keyword ACM digital library IEEE Xplore digital library

2014–2019 2010–2019 2014–2019 2010-2019

Commensality 13 (5) 17 (6) 1 (0) 1 (0)

Eating 322 (14) 466 (19) 670 (6) 926 (10)

Food 971 (10) 1299 (17) — —

Dining 66 (0) 106 (3) 131 (1) 225 (3)

The research was performed on 23rd of August, 2019.

as a collection of new methodologies and technologies for
food science. According to the authors, Food Computing
involves several steps. It requires data collection coming from
different sources (e.g., social media, leveraging pictures and
videos posted by users) and analysis carried out, for example,
through machine learning or data mining techniques. At the
same time, Food Computing has several applications, from food
perception to recognition and from food recommendation to
intake monitoring. The authors conclude by illustrating future
directions and challenges of Food Computing. Although they
mention that Food Computing might be involved in human
behavior understanding especially in terms of the interaction of
humans with food, Food Computing does not explicitly deal with
the social dimension of food.

Shifting to Human-Computer Interaction (HCI), Grimes and
Harper (2008) examined the literature on food and technology,

pointing out that most of the existing works fall into two
main categories: (1) technologies to solve food-related issues
(for instance by helping inexperienced cooks to prepare a dish),
and (2) technologies to modify the user’s bad eating habits,
namely “corrective technologies.” In their view, HCI should also
focus on the pleasurable and socio-cultural aspects of eating,
and they introduce the concept of celebratory technologies “that
celebrate the way that people interact with foods” (Grimes and
Harper, 2008). Within this aim, according to the authors, several
concepts related to eating should be explored, such as creativity,
pleasure, nostalgia, gifting, family connectedness, trend-seeking,
and relaxation. In the last part of their work, they describe
challenges and provide a possible research direction toward this

new type of technology. Interestingly, they point out different
“social” aspects of food, such as food gifting, which has a
symbolic social function. Comber et al. (2014) illustrate how food

practices have gained importance in HCI, building what is called
Human Food Interaction (HFI). The main areas of interest in

HFI are health and wellbeing, sustainability, food experiences,
and alternative food cultures. In this, HFI differentiates from

commensality as the commensal experience seems not to be the
core of HFI. HFI is in fact more focused on food practices as
socio-cultural artifacts, examining cultural environmental and
political aspects of human-food interaction. Furthermore, a new
body of research on the experience of food, known by the
term of gastrophysics (Spence, 2017b), has grown, describing
the many factors driving food perception and enjoyment. The
scientific study of dining illustrates how all sensory modalities
drive food experience, along with the context in which the
meal is consumed. In this sense, the social dimension can
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influence the food experience as much as the edible elements
on the plate.

2. FOOD AS A SOCIAL PHENOMENON

Food itself has an inherently social and emotional meaning.
As such, it has been the subject of psychological and socio-
psychological studies aiming at investigating it as a social
phenomenon. Studies on traditional commensality investigated
several interaction-related phenomena, such as conversational
patterns in families (Laurier and Wiggins, 2011). Research on
conversation analysis has drawn its attention to F&EA, for
example, preparing (Paay et al., 2015) and sharing (Sterponi,
2003; Goodwin, 2007; Mondada, 2009) a meal. Research
on workspace interaction has demonstrated how food and
beverages, for istance, coffee, can have important communicative
functions, with sipping becoming a cue to turn taking during
conversations (Laurier, 2008). Furthermore, meal time is a
key moment for addressing gestural interaction, as shown
by Nansen et al. (2014). Other researchers focused on the
cultural aspects of joint food practices (Fischler, 2011). They
showed how the importance of the social dimension of food
changes across cultures, being more relevant for French and
Italian than for U.S. eaters. Ferdous et al. (2016b) illustrated
how commensality and technology are often blended together,
with technologies such as smartphones and tablets often being
included in family dinners. The social dimension of eating is
further explored by works on social comparison. In psychology,
the term social comparison indicates how people spontaneously
compare themselves to others as a means of self-evaluation
(Festinger, 1954). Researchers have shown that mealtime is
often a chance for social comparison (Polivy, 2017), with food
perception and intake being influenced by others’ presence
(Polivy and Pliner, 2015). Social psychology has demonstrated
how being with others can affect mealtime in terms of food intake
(Bell and Pliner, 2003; Herman et al., 2003; Paquet et al., 2008;
Hermans et al., 2009, 2012; Howland et al., 2012), food choice
(Stroebele and De Castro, 2004; McFerran et al., 2009; Prinsen
et al., 2013), calory consumption (Young et al., 2009), and taste
perception (King et al., 2004; Poor et al., 2013) and how this
influence is modulated by group membership (Cruwys et al.,
2012), relationship status (Salvy et al., 2007), and, interestingly,
that such influence still holds in virtual eating scenarios (Fox
et al., 2009).

According to Simmel (1997), the meal has an immeasurable
sociological significance. In fact, it is well known that, from a
very young age, humans learn that eating is more than just
introducing food into the body. Hamburg et al. (2014) illustrated
how infants learn the soothing effect food can have and, more
interestingly, according to the scope of this survey, that food
offering can be a way to show empathy for others’ distress. The
term comfort food refers to those foods whose consumption
provides consolation or a feeling of well-being (Spence, 2017a). In
this view, food has the possibility of fostering positive emotions.
Troisi et al. (2015) stated how food can have the capability of
making people feel socially connected and call this property the

social utility of food. Furthermore, they stress the idea of food as
a social surrogate, demonstrating how (comfort) food choice is
often associated with social isolation. As Connor and Armitage
(2002) claimed, social psychologists contribute to food research
by addressing topics as factors in food choice (McFerran et al.,
2009), dietary change (Lange et al., 2018), weight control and
well-being (Utter et al., 2018), snacking (Schüz et al., 2018), and
food and self-presentation (Herman et al., 2003). In this context,
the most thoroughly explored topic is what social psychology
defines as the social facilitation of eating (e.g., Herman, 2015,
2017). This term describes the influence of presence of others on
food intake. Diary studies have shown how meal size increases
with the degree of intimacy with meal companions (De Castro,
1994) and how the presence of others models food intake, by
acting as a guide on what and how to eat (Cruwys et al., 2015).

2.1. Summary
In our view, CC is a multidimensional phenomenon. So, the
social and psychological aspects of F&EA should be taken into
consideration when proposing computational models aimed at
augmenting, analyzing or simply recognizing commensality. On
one hand, several results mentioned in this section can relatively
easily be replicated to check whether the technology-enhanced
interaction can foster similar (positive) outcomes on interactants
as it was observed in “traditional” commensality. This can
include, for example, experiments on the quantity of food intake,
or the degree of intimacy experienced by interactants. Work
on socio-affective values of F&EA might contribute to new
computational techniques for analyzing social interaction by
relying on social, commensality-related cues. For instance, as
humans can infer relationship statuses from observing people
sharing food (Erwin et al., 2002), we could envisage technologies
able to exploit F&EA-related cues in a similar way.

On the other hand, some existing computational models can
be useful to quantify the social interaction around the table, and,
thus, to address important research questions in the field. An
example of how CC could benefit, e.g., social psychology, could
consist in using a quantitative approach to detect the person

at the table who is marginally participating in the conversation
while eating (e.g., from their gaze behavior and amount of food
intake (see Otsuka and Inoue, 2012).

3. TECHNOLOGY FOR FOOD AND EATING
RECOGNITION

In order to account for the role of food and food related behaviors
as non-verbal social signals, technologies must be able to afford

their automated recognition. Technologies able to detect food
related activities (for instance swallowing or drinking) contribute

to CC because interaction in ecological settings often revolves
around food (e.g., parties, dates, meetings). In particular, in the
CC scenario 2, social robots and virtual agents would benefit
from being able to detect when human interactants are involved
in a F&EA, such as taking a bite of food or sip of a drink. Such
a F&EA during interaction could influence, for example, turn-
taking, which should be taken into account by the social robot
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or virtual agent when it serves as a companion during food
consumption. In addition, the artificial companion might be able
to detect the type of food the human interactants are consuming
and can comment on the qualities of the food in conversation.

This section reviews existing studies on food and eating
detection: going from computer vision algorithms for food
recognition (both on food image datasets and on pictures or
video captures in the wild) to automatic trackers of eating
activities (e.g., automatically detecting food intake quantity
and speed).

3.1. Food Detection and Recognition
Several algorithms and techniques for food detection and
recognition rely on the huge amount of pictures people share
on social media every day. It must be noted that such pictures
are mostly egocentric pictures, meaning that they are taken
from the point of view of the user. They can be automatically
captured by wearable cameras (e.g., for medical purposes) or
taken by users of mobile devices (e.g., smartphones). They
usually have low quality and poor framing, so the objects to
be detected (e.g., plates) are far from the center of the picture,
have scarce illumination, are deformed by the camera lens,
and so on. These pictures are the most commonly shared by
users on social media or on instant messaging apps, making
them particularly interesting for automated analysis. To deal
with food pictures, authors can exploit several existing datasets
on food: ILSVRC 2013 by Russakovsky et al. (2015), Food101
by Bossard et al. (2014), UECFood256 by Kawano and Yanai
(2014), or Egocentric Food3. The resulting recognition models
showed high accuracy in locating food, both in traditional and
egocentric pictures, when there is no overlap between objects.
Such approaches and resources, although not directly aimed at
investigating commensality, are required steps toward analyzing
human behavior during mealtime.

Bolaños et al. (2013) implemented a technique, based on
machine learning, for the labeling of huge amounts of images.
The algorithm they presented, based on a Hierarchical Sampling
(HS) method, determines whether or not a plate is present in an
image. According to the test on about 90k images, the algorithm
can label all images in about 40 min in a totally unsupervised
setting. Similarly, Ciocca et al. (2017) created the UNIMIB2016
dataset consisting of 3616 food instances belonging to 73 food
classes (e.g., “pasta,” “pizza,” “yogurt”). The dataset is manually
annotated to separate the food from the background. The authors
also performed the automated recognition of food types using K-
Nearest Neighbors (k-NN) and Support Vector Machine (SVM).

Aguilar et al. (2017) aims to build an application for automatic
food habits tracking. It is a multi-labeling task, that is, a machine
learning problem in which there are multiple output labels
(instead of a single one), and it is solved using a Convolutional
Neural Network (CNN). Results have shown good recognition
rates also for recognizing ingredients of recipes that were not
present in the training set.

Herranz et al. (2018) propose to take into account context and
external knowledge in automated food detection. Context is, for

3https://github.com/MarcBS/keras

example, the location, date, and time a food picture was taken.
External knowledge includes food recipes, nutrition information,
restaurant information, and food images and videos. In this
framework, the authors review existing works on multimodal
cuisine analysis, focusing on food recognition in restaurants. As
mentioned before, studies exploiting egocentric pictures often
have to deal with poor image quality; despite this, egocentric
pictures (due to their great availability) are still leveraged, as in
Jia et al. (2018). This work illustrates the development of the
eButton, a small box containing a camera and a motion sensor.
Using it, the authors showed that, even if the quality of egocentric
images is lower than that of a smartphone, still it allows for
food detection. To do that, they chose to exploit an existing
CNN, the Clarifai CNN (Zeiler and Fergus, 2014), and compared
food recognition on images captured by the eButton vs. images
belonging to the Food-5K dataset (Singla et al., 2016). Results
showed that the performances of the CNNs are comparable.

It is worth noticing that, as a consequence of the works
we have described above, there already exist solutions for
food recognition that take into consideration the context (e.g.,
location, like in Herranz et al., 2018). However, it seems that
the social context is not considered (yet). The information about
the group (e.g., the number of people involved) and the group
bonds (e.g., their level of intimacy) can be contextual information
helpful to recognizing some type of food. For example, some
types of food are eaten usually in close company, such as,
birthday cakes, raclette, fondue, or Korean BBQ, while the
others are more often eaten alone, for istance, fast food. This
example demonstrates the need to introduce models of CC in
food recognition.

3.2. Eating Activity Detection and
Recognition
As far as eating activity recognition is concerned it must be noted
that activities linked to food preparation present a high intra-
class variability, as highlighted in Stein and McKenna (2013b).
They observed that recognition would be possible if large data-
sets were available, but this is not the case with food preparation
activities. For this reason, they present work in which activity
recognition is carried out by performing a training on a limited
amount of data, collected in the publicly available 50 Salads
dataset presented in Stein and McKenna (2013a) and Chen et al.
(2017). They compared two approaches: classifying (e.g., SVM,
k-NN) activity of single users and then combining the results vs.
performing a combined classification. They argued that the first
one gives the most accurate results as it takes into account intra-
user variability. Features were extracted from accelerometers
attached to objects and from environmental video data (e.g., a
camera framing the cooking area from top).

Wearable sensors can be used for eating recognition and
detection, but they are typically intrusive. For instance, Bi et al.
(2014) exploited a necklace-like device and a smartphone to
capture throat sounds, and applied machine learning techniques
(e.g., kNN, SVM) to determine the eating-related user activity
(e.g., chewing, swallowing, breathing). The device could be
applied to monitoring what and how people eat during the day to
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better address food-related health problems like dysphagia and
indigestion. Their system was based on a microphone and on
the extraction of acoustic features to be later used for training
and classification of eating-related activities, which reached over
95% accuracy. Amft and Tröster (2008), similarly to Bi et al.
(2014), developed an on-body sensing approach to detect three
key activities during food intake: arm movements, chewing, and
swallowing. They applied Hidden Markov Models (HMM) on
inertial sensors data to recognize arm movements. Chewing
was recognized by analyzing the produced sounds. Swallowing
was detected from the fusion data captured by two sensors: a
surface EMG sensor and a stethoscope microphone. Moreover,
Mendi et al. (2013) propose an application for eating activity
recognition based on an accelerometer placed on the user’s wrist,
providing the user with information on the total number of bites,
bites-taken rate and eating speed. The application is based on
acceleration peaks detection and sends real-time warnings to the
user when the eating speed is over a given threshold.

Rahman et al. (2015) highlight that eating is difficult to be
accurately and unobtrusively recognized and analyzed. Worn
sensors, for example, are deemed as uncomfortable and, in
their opinion, they should be avoided. As an alternative, they
propose to use Google Glass to track head movements, and they
demonstrate that the captured inertial data (i.e., accelerometer,
gyroscope, and magnetometer) from this device are informative
enough to automatically recognize users’ eating activity with
traditional machine learning techniques, such as k-NN and RF.
Interestingly, similarly to Stein and McKenna (2013b), Rahman
et al. (2015) also see as the primary application of their work
the possibility to better monitor and cure chronic diseases
like obesity and diabetes. Other approaches to overcoming the
intrusiveness of wearable sensors for eating recognition have
been proposed. An interesting approach was illustrated by Chang
et al. (2006), who designed a “diet-aware” dining table that used
weight sensors and radio frequency identification (RFID) readers
in order to measure food intake of diners at the table. The
combination of weight sensors and RFID tags embedded in food
containers enables the detection of food being moved from a
central container to an individual’s plate, allowing measures to be
taken during a multi-party dinner. A first small-scale evaluation
of the system showed recognition accuracy of food transfer from
a central container to an individual plate and eating events to be
around 80%. Another example of a device for the monitoring
of food intake in ecological settings was proposed by Fontana
et al. (2014), who developed a wearable system composed of a
jaw motion sensor, a hand gesture sensor, and an accelerometer.
The system is integrated with a smartphone equipped with a food
intake recognition module which uses dedicated sensor fusion
and pattern recognition techniques. The device was validated in
real-life conditions over a one-day period by 12 subjects. Results
showed that the system was able to detect food intake with an
average accuracy of 89.8%.

An interesting contribution to CC was proposed by Kiriu
et al. (2017) who, using the data from a smartwatch and a
smartphone, are able to recognize whether a person is eating
alone or in company, with an accuracy of 96%. The data consist of
kinematics data (e.g., from 3D accelerometer) and several metrics

of the smartphone. At the moment, this approach was tested
only on a small dataset of 20 participants, but it showed a very
interesting direction of research to be more deeply investigated
in the framework of CC.

With the aim of addressing eating activities ecologically,
while preserving their social dimension, it might be necessary to
discriminate eating from speech. The goal of the work illustrated
by Hantke et al. (2016) and Hantke et al. (2018), which was part
of the EU iHEARu Project4, was in fact to demonstrate that
Automatic Speech Recognition can be improved by introducing
the automatic recognition of eating conditions. To do that, they
collected the iHEARu-EAT audio/video database, featuring 1.6k
utterances of 30 subjects, 6 food types, and read/spontaneous
speech. The authors performed a number of experiments in
different conditions to discriminate between normal speech and
eating speech, and to detect the type of food that was eaten while
speaking. Results were positive, though the authors highlighted
that the accuracy of detection, based on SVM, was strictly linked
to the training that was carried out on some specific food (apple,
nectarine, banana, Haribo Smurfs, biscuit, and crisps).

3.3. Future Developments Toward
Computational Commensality
Overall, the existing technologies for food and eating recognition
are not yet ready to be exploited in real-life applications. In a
recent study, Alharbi et al. (2017) addressed the challenges of
wearing devices (video camera, neck-worn sensor, and a wrist-
worn sensor) for food activity monitoring to support weight
management, mainly in terms of comfort of wearing a camera,
and privacy. Results showed that participants had many concerns
about privacy and had the feeling of a social stigma of wearing
electronic devices that could worry other people around them.

Eating recognition might benefit from introducing the social
context to the recognition models. One can imagine the
recognition systems, in which subject data coming, for example,
from an accelerometer placed on their wrist (e.g., similar to
Mendi et al., 2013), is compensated by the data coming from
similar devices placed on wrists of their eating companions.
Research has in fact demonstrated that people eating together
tend to mimic their companions’ food intake, for instance in
terms of bite rhythm (Hermans et al., 2012). Indeed, in the
commensal scenarios, models for the recognition of eating
activities should take into account social dynamics between the
interaction partners, for istance, conversation turn-taking, social
relations between the eaters (e.g., leadership, level of intimacy)
but also other contextual data, such as the place of eating (e.g.,
fast food or an exclusive restaurant).

4. ASSISTIVE TECHNOLOGY

Much attention has been oriented toward the development of
technologies to provide support in eating activities or during food
preparation (as in Mennicken et al., 2010; Angara et al., 2017).
Such technologies include systems offering physical support and
assistance (e.g., for physically impaired people), mainly through

4http://www.tangsoo.de
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the use of robots. A separate category consists of mobile apps
that monitor and help to change the eating habits and increase
overall well-being. Here we can distinguish two subcategories:
some of the systems can supplement therapy related to some
concrete health problem such as diabetes, while others can be
used to improve the general habits, for example, by promoting
a balanced diet, and, consequently, increasing the well-being of
users. With a similar goal, several virtual and robotic assistants
and serious games were developed. In particular, the gamification
approach is a very popular method used specially in systems
dedicated to young end users. All these applications focusing,
at least at the moment, mainly on health and well-being related
goals, are relevant to CC as they may relatively easily become CC
use cases, in which one or more humans enter into interaction
with a socially intelligent system (tutor, coach, assistant). One
can, for example, easily imagine a virtual character which would
not only assist the user by explicitly instructing her about healthy
eating, but create a rich and fruitful social interaction, which can,
indirectly, influence the well-being of the user and consequently
her eating habits, too. To reach this aim, overall social skills of
machines need to be improved.

4.1. Artificial Companions
Several systems have been designed to assist humans in changing
their eating habits by leveraging the communicative (and
sometimes affective) skills of humanoid assistants, be they virtual
(e.g., embodied agents) or physical (e.g., robots). They usually
address some very specific populations, such as hospital patients,
children, or the elderly, as those groups often benefit from
healthier life style, including healthier eating habits. Angara et al.
(2017), proposed an interactive kitchen assistant giving health
recommendations. Interestingly, the virtual agent’s food-related
interaction with the user was enriched by taking into account the
user’s food habits and cultural food preferences. Gardiner et al.
(2017) evaluated the use of such technology to promote healthier
eating behaviors. A virtual assistant is able to interact face-to-
face with a user providing personalized dietary suggestions and
health information (e.g., food recipes) and asking food-related
questions to the user. A study on 61 female participants using
the system during a 30-day span demonstrated a decrease of
negative eating habits (e.g., drinking alcohol) and an increase of
positives ones (e.g., fruit consumption). Such assistants do not
need to have a human-like appearance, as in the case of the work
by Pollak et al. (2010), who developed Time to Eat, a mobile
virtual pet game designed to enhance healthy eating habits in
teenagers. The pet sends healthy eating daily reminders to the
user. In response, children take photos of their meals and snacks,
of which the “healthiness” is evaluated by the app, which in turn
influences the pet’s emotional state (e.g., junk food corresponds
to sadness, healthy food corresponds to happiness). Again, an
evaluation involving 53 children showed that the app had positive
effects on their eating habits. Parra et al. (2018) proposed an
interesting combination between a human-like virtual assistant
and crowd-sourcing. They developed an app with an e-assistant
able to discuss the preparation of ameal with a human user. Then,
the user can upload a photo of the meal and receive an evaluation
provided by another user of the same app. The final system was

evaluated on 59 patients, who found it useful, easy to use, and
helpful in maintaining tasks “related to their diet.”

With the aim of solving issues caused by solitary eating,
Takahashi et al. (2017) proposed a virtual co-eating system
allowing enjoyable conversations related to the meal, as well as
typical daily conversation to be maintained. A virtual character
is displayed on a mesh fabric, and the character has an embedded
facial expression recognitionmodule. The results of a preliminary
evaluation of the system are particularly interesting in the CC
context, as 4 out of 5 participants reported improvement when
comparing the eating alone condition with the one in which they
ate together with the virtual character.

Assistants promoting healthier eating styles can have physical
bodies, as in the case of robots. Baroni et al. (2014) evaluated
the effect of a humanoid robot on children’s dietary choices.
The robot can successfully persuade children to eat more fruit
and vegetables by communicating verbally (modulating the
voice, and using encouragements) and non-verbally (through
gestures, proxemics, gaze). Eating habits in young children are
also addressed by Randall et al. (2018) with their Health-e-
Eater, a sensor-equipped plate and a simple robotic companion
which motivates and educates children during meals. Health-
e-Eater is a low-cost robot architecture based on a Raspberry
Pi 3, equipped with LEDs, a vibration motor, a servomotor,
and a speaker. LED lights and verbal messages are supposed
to focus the attention of the child on the food, encouraging
and rewarding them when a healthy eating style is detected.
McColl and Nejat (2013) proposed an assistive robot designed
to cognitively stimulate and engage the elderly during eating.
Starting from existing studies on the role of the interaction during
meals in the improvement of dietary intake (e.g., Schell and
Kayser-Jones, 1999), they designed an autonomous robot able to
detect the amount of food intake while interacting with the user,
both verbally and non-verbally. Some of the robot utterances are
directly related to the eating itself (e.g., encouragements), while
the others are aimed at enhancing the interaction (e.g., greetings,
telling jokes, laughing). An exploratory study was conducted
on a group of elderly, and results showed that participants felt
engaged, enjoyed themselves, and cooperated with the robot in
response to its prompting behaviors.

In general, we believe that social robots are particularly
appropriate to become commensal partners, but very little
research has been presented on this topic so far. Within the
aim to exploit the positive outcomes of commensality, Khot
et al. (2019) recently proposed a robotic dining companion called
FoBo (see Figure 3). The role of this robot is to create playful
and entertaining interactions around a meal with no clear “real-
world” goal. So, it does not instruct or correct human’s behavior
but, instead, for istance, it “consumes” batteries, performs sounds
related to eating (e.g., burping and purring), as well as mimics
some human behaviors.

4.2. Virtual and Augmented Reality
Virtual and augmented reality are also used to create situations
aimed to change the human eating habits. For instance, Celikcan
et al. (2018) proposed the Virtual Cafeteria–VR immersive
environment designed for nutrition education of adolescents.
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FIGURE 3 | FoBo—a robotic dining companion. Reproduced from Khot et al.

(2019) with permission from the authors who hold the copyrights.

The virtual buffet offers a large selection of foods and drinks
covering the three meals. The users create their own meals and
can pick any portion for any available food. At the same time, they
are given age appropriate recommendations on healthy eating
and recommended portion sizes of each food group. The data
related to the user activity are collected, so as soon as the session
ends, the detailed nutritional information of the assembled meal
is immediately available. In a similar vein, the Virtual Food Court
(Nordbo et al., 2015) is a VR environment for studying humans’
food choices in the context of policy-based interventions. It
was successfully used to analyze the effects of introducing
taxes for unhealthy food on food choices. Narumi et al. (2012)
propose a system based on Augmented Reality (AR) and a
Head Mounted Display (HMD) to influence food consumption
and the perception of satiety by exploring the phenomenon of
cross-modality. The system allows for the augmentation of food
volume using the shape deformation techniques to give the user
the impression of consuming more than she does in reality.
The evaluation shows a significant effect of size (enlarged vs.
shrunken) on the quality of food consumed. Participants ate
significantly more food when the size was virtually decreased as
compared to the condition of virtually increased food. According
to the authors, such a system might be useful in treating obesity.
Additional evidence for positive effects of VR on helping people
in acquiring more healthy eating habits is provided by Tuanquin
et al. (2018). The authors used VR to change the visual and
olfactory appearance of food items in order to gradually change
a person’s eating preferences toward more healthy food choices.
The goal was to help individuals with eating disorders through
VR cue-exposure therapy (CET). Results of a first study, in which
participants were presented with actual and virtual chocolate chip
cookies, showed that the VR setup was able to successfully induce
food craving and the urge to eat the cookie. According to the
authors, the VR setup shows potential to aid in CET by presenting
virtual food cues during therapy. Indeed, VR is increasingly
recognized as a potentially useful tool to study human behavior
regarding food choice (Nordbo et al., 2015; Ung et al., 2018),
and food cravings (Ledoux et al., 2013), as well as research into

the sensory aspects of food selection and consumption in general
(Stelick and Dando, 2018).

4.3. Dedicated Sensing Devices
As for other devices that can positively intervene in human
eating habits, Hermsen et al. (2016) carried out an experiment
involving a smart fork (i.e., a fork-shaped device augmented
with sensors and actuators). The fork can provide real-time
haptic and visual feedback to the user (Kadomura et al., 2013),
for example, producing alerts if the user eats too quickly.
Eleven participants who perceive themselves as “fast eaters” were
asked to use the fork during 3 days. Most of them reported
an increased awareness of their eating rate, and decrease of
the eating speed. Drink-O-Mender by Ritschel et al. (2018)
is able to sense the type and amount of drinks consumed
by an adult, providing verbal advice depending on calories
and nutritional values. For example, it may try to attract the
person’s attention toward the drinks with the lowest amount
of calories.

4.4. Future Developments for Creation of
Computational Commensality With
Artificial Companions
Assistive technologies, at least at the moment, rarely explore
the social bonds with their users. An interesting exception
we mentioned above are the works by McColl and Nejat
(2013) and Khot et al. (2019), where the robot builds an
interaction for which the aim is not only functional (i.e.,
assistive) but also social. Future solutions may include, for
example, tools for reciprocal assistance. Moreover, even if social
aspects of eating are considered, it is usually limited to dyadic
interactions. A robot bartender by Foster et al. (2012) is a
rare example of an artificial companion able to deal with
multiple humans in a dynamic social setting. Their robot is
able to engage in multiple socially appropriate interactions at
the same time when performing a task-oriented activity (i.e.,
serving drinks).

Similarly, immersive VR/AR systems currently focus on the
individual experience. Systems such as the Virtual Cafeteria
mentioned in this section can easily become multi-user social
systems, where different users can interact and exchange their
experiences regarding the food, similarly to how they do now
using dedicated forums (see, e.g., Parra et al., 2018).

At the same time, it is important to stress that examples
of artificial (eating) companions that do not have either an
assistive or coaching role, are even more rare. Liu and Inoue
(2014) propose a virtual eating companion that aims to be an
active listener in order to support the generation of new ideas.
According to the authors, the person who has a meal is likely
to become an attentive listener, while the other interactant more
likely becomes a speaker. Based on this assumption, the authors
created a virtual character whose eating behavior is modeled
on the quantitative analysis of actual dining behavior. For this
purpose, recordings of multiple students eating together were
used. Performing such analysis of human-human interaction
is a good first step to create CC applications. Unfortunately,
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such works are still rare, especially when we consider papers
that use technology to automatically quantify social interactions
during meals.

5. TECHNOLOGY FOR AUGMENTED
FLAVOR EXPERIENCES

In the literature dealing with food and technology there is a large
body of work on the use of technology to alter flavor experiences
(Spence and Piqueras-Fiszman, 2013; Bruijnes et al., 2016). These
works are grounded in research into the multi-sensory nature
of flavor experiences (Velasco et al., 2018). The central notion
is that flavor is a multi-sensory construct of which the percept
results from a combination of information from several sensory
channels (Auvray and Spence, 2008). A change to one sensory
channel (e.g., the color of the food) can potentially influence
the flavor experience of the food consumed. Several techniques
exist that can be used to digitally alter the flavor experience of
food. This is of interest to CC because such alterations could
be used to create new social dining experiences, new ways of
socially sharing food experiences, and can give robotic or virtual
dining companions some form of control over actual food being
consumed by human co-diners.

5.1. Visual Flavor Augmentation
Considering flavor as a multi-sensory construct, changing the
visual appearance of food has been demonstrated to have an
impact on flavor experiences (Zampini et al., 2007). A potentially
interesting method to digitally alter the visual appearance of
actual food is the use of projection mapping (Kita and Rekimoto,
2013). In one study, projection mapping was used to alter the
visual appearance of yogurt. Colors, shapes, and animations
were found to have the potential to change flavor experiences
(Huisman et al., 2016).

5.2. Auditory Flavor Augmentation
Auditory feedback can be used to change the perceived texture
of food, altering the overall experience of eating, say, crisps
(Zampini and Spence, 2004; Koizumi et al., 2011). Wang et al.
(2018) propose a five-keys framework for augmentation of the
eating experience with sounds. According to them, (1) new
sounds can be generated (that are different from the natural
sounds of consumed food), (2) the natural sounds can be
amplified, (3) removed, or (4) blended with other (food related)
sounds. Finally, the sounds can also be (5) distorted. Within this
framework, the authors propose the Singing Carrot, a platform
for the exploration of food sonifications, which generates sounds
when the user eats a carrot. The system detects food consumption
through capacitive touch sensing, and the value of sensed
capacitance is mapped to the frequency of a sinewave, resulting
in eating sound that dynamically changes. A similar concept is
used in the iScream! system (Wang et al., 2019, see Figure 4),
which allows the use of a novel "gustosonic" experience of digital
sounds which are automatically created as a result of eating an ice
cream. It also uses capacitive sensing to detect eating actions, and
based on these actions, it plays different sounds to create a playful
eating experience.

FIGURE 4 | The user is playing with iScream! Reproduced from Wang et al.

(2019) with permission from the authors who hold the copyrights.

5.3. Haptic Flavor Augmentation
Augmentation of haptic sensations, for example through
electrical muscle stimulation, can create augmented experiences
of food texture (Niijima and Ogawa, 2016). Iwata et al. (2004)
in their research focused specifically on creating a simulation of
mastication, using haptic technology. The biting force used to
chew on real food items (e.g., a cracker) was recorded and used as
data in the system to modulate the physical resistance provided
by the haptic device in order to produce sensations of biting into
different food items.

5.4. Chemical Flavor Augmentation
Ranasinghe et al. (2011) and Ranasinghe and Do (2017) highlight
how taste and smell are the senses allowing us to remember
emotions and feelings, as they directly influence our mood,
stress, retention, and recall functions (Drewnowski, 1997). With
this in mind, Ranasinghe and Do (2017) created the Digital
Lollipop, a device that synthesizes taste (e.g., sweet, salty, sour,
bitter, and umami) by applying a small electrical and thermal
(i.e., applying heat vs. cool) stimulation to tongue. The Digital
Lollipop consists of two silver electrodes, a sphere and a plate,
and can generate square wave pulses with a current ranging from
20 to 200 µA with frequencies in the range 50–1,200 Hz. The
tongue must be placed between the electrodes. In an experiment
presented in Ranasinghe and Do (2017) the authors observed
that, by placing the electrodes on the tongue tip and sides, 90%
of participants perceived sourness, 70% saltiness, 50% bitterness,
and 5% sweetness (corresponding to the case in which the current
was inverted). Some participants perceived a tingling, pineapple-
like sensation when current increased. Tip and side stimulations
exhibited slight variations in the observations, mainly related
to the intensity needed to elicit the sensations, which was
lower. Note, however, that there are specific challenges to using
technology to address the chemical senses, such as the notion
that people generally pay less attention to smells when they are
engaged in another task as well as the need for using capsules to
produce artificial scents (Spence et al., 2017).
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5.5. Multimodal Flavor Augmentation
There are also multimodal approaches where digital
augmentation is used to address multiple sensory channels
at the same time. For example, Narumi et al. (2011) used a HMD
to alter the visual appearance of cookies. An olfactory display was
synchronized to the visuals to create the illusion of, for example,
chocolate flavors. In another example, researchers used electrical
stimulation of the taste buds on the tongue, in addition to lights,
and an olfactory display to augment the flavor of an actual drink
(Ranasinghe et al., 2017, see also Narumi et al., 2010; Ranasinghe
et al., 2014, 2016).

One solution could be to create VR experiences that more
carefully integrate with “real” experiences, by having actual
objects (e.g., food or drinks) also be virtually represented in
VR (Harley et al., 2018). Automatic computer vision-based food
recognition solutions could be used in such an approach way to
create compelling mixed reality experiences (Kanak et al., 2018).

5.6. Future Developments for
Multi-Sensory Commensality
There is a large body of research on multi-sensory flavor
experiences (for an overview see Auvray and Spence, 2008), and
this research has since found its way into high-end restaurants
such as Sublimotion5 andUltra Violet6 (see Spence and Piqueras-
Fiszman, 2014 for additional examples), where diners not only
experience haute cuisine but also high-tech.

While the research discussed above does not directly bear
on commensality, it can be argued that flavor augmentation
and flavor synthesis have a potential future role to play in
social communication and CC. For example, Ranasinghe et al.
(2011) discuss how their flavor synthesizing technology could
be used for flavor communication between remotely located
individuals, creating a new kind of remote communication.
Similarly, flavor augmentation technology could be used
to share experiences around actual food items. Remotely
located diners could potentially adapt the flavor experience
of their companion’s food to their own flavor experience (see
also section 6.2). The potential future application of these
technologies could be envisioned to be in the realm of social
media communication and the sharing of experiences through
social media, similar to how applications such as Instagram
are now used to share visual aspects of food. Connecting
such social food sharing to food printing technologies
would create interesting forms of social “food messaging”
(Wei et al., 2014).

Other applications of food augmenting technologies in
commensal scenarios might include using food augmentation to
communicate emotional and social states of interaction partners,
for exmaple, by dynamically changing their food properties such
as a color or by adding the relevant sonification. These alterations
could be part of CC models that also drive social behaviors of
robotic or virtual dining companions so that they can interact
with humans through the food on the table.

5https://www.sublimotionibiza.com
6https://uvbypp.cc

6. TECHNOLOGY FOR FOSTERING
HUMAN-HUMAN INTERACTION

Several technologies have been proposed that can be considered
digital extensions of social activities. For example, job meetings
can take place through video-conference (Jo et al., 2016) or
artistic performances through Networked Music Performance
(Rottondi et al., 2016). Similarly, technologies such as tele-
dining platforms were proposed as a digital counterpart of
eating activities. In this section, we describe technologies that are
supposed to be able to deal with the social aspects of food and
eating-related activities and which are designed to make eating
more social as well as more enjoyable.

6.1. Serious Games and Playful Interaction
Particularly popular are solutions which combine educational
purposes related to food intake with entertainment, often in the
form of a serious game. Such games often introduce elements of
competition or cooperation between two or more players, and
thus, a social dimension to the activity. We4Fit by Pereira et al.
(2014) is an example of such amobile app that uses a gamification
approach to modify the motivation of users to change eating
habits and promote a healthy lifestyle. Interestingly, it is a
rare example of a collaborative food-related game: in the game,
the user (or a team) posts pictures of the consumed food.
Other participants rank the photos indicating how healthy the
photographed food is. At the end of each seven-day round, the
sum of the ranks is used to establish the winning team. Playing in
teams, according to the authors, should enhance the motivational
effect, as the members of the team can influence each other to
obtain a better final score. Another application that uses similar
mechanisms of interaction between the users is called Foodie
Moodie (ElSayed et al., 2018). This app promotes the awareness
about the relation between the type of food consumed and the
mood. It allows the users to keep track of what they eat and
understand how it may affect their mood, as well as provides
guidelines to other users about the possible interrelation between
mood and food. A gamification techniques were also included in
the app: first, the users can collaborate by adding and (re-)viewing
the others’ hints related to the topic. They may also compete
with each other trying to obtain the highest total score on their
tips. Other serious games use immersive virtual environments
and AR. Ganesh et al. (2014) used interactive projection mapping
to introduce game elements on children’s plates during eating,
with the goal of addressing children’s reluctance to eat certain
types of, predominantly healthy, food. The system is composed
of two applications: one which changed the color of food items
and one that awarded points and virtual badges for eating healthy
items. The system was evaluated with children and their families
at home. Observational data indicated that children ate food
items they were otherwise reluctant to eat, and showed a playful
attitude to food and the system. In addition, the system served
to stimulate interactions between parents and children regarding
healthy food intake. The authors considered the system’s role
in enhancing parent-child interaction and interactions between
siblings to be particularly important. In this sense, it can be
considered an example of commensal technology.
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You Better Eat to Survive! by Arnold (2017) is a VR game in
which eating real food becomes an input to control the narrative
of the VR game. The players work in teams: when one player
tries to realize some tasks in a virtual world, the other needs
to feed him with real food to keep the first one “alive.” In the
background, the system is able to detect the eating events via a
microphone placed near to the first player’s mouth. The VR game
objective is to get rescued from an island. During its exploration,
the player must keep himself alive by eating regularly. Otherwise,
due to hunger, he loses consciousness, which is the end of
the game. The team players can succeed in the game only if
they collaborate, thus the game becomes a social experience.
Feed the Food Monsters! by Arza et al. (2018) is a two-player
AR game that uses chewing real food as an input to control
the flow of the game. In order to achieve the goal (i.e., feed
the virtual monsters that live in the stomach) the participants
need to chew slowly. The participants can monitor each other’s
chewing behaviors through an interface that is displayed on their
torso. Thus, they can also interact and guide each other to chew
properly. AR is used to visualize the process of digestion though
the means of using playful animations rather than showing the
actual human anatomy.

The Restaurant Game (Orkin and Roy, 2010) is an example
of a virtual commensality platform for human virtual agent
interaction. The aim is 2-fold: it is designed to collect the data
of human interactions, for example, when playing the a role of
a customer or waiter in a 3D virtual environment, as well as
to generate plausible behaviors of virtual agents. In the system,
humans control characters from a first-person perspective using
the mouse and chat. Agents are also able to interact and build a
conversation both with humans and other agents. The behavior
patterns of the agent are learned automatically from logs of the
previous game sessions. Although it is not clear whether the
previous game sessions include also the logs of human-human
interactions in the VR system, such an extension would definitely
be valuable in the context of CC.

Other examples of playful approaches to enhance interaction
during dining using technology involve physical installations.
One playful approach is presented by Mehta et al. (2018). The
Arm-a-dine system involves two users both wearing a robot arm
attached to their chests. A mobile phone camera is used to detect
the facial expressions of the diners. For example, if a negative
facial expression is detected the wearers own robotic arm will
pick up a food item and present it to the wearer. If a positive
facial expression, such as a smile, is detected the robotic arm
of the partner will offer a food item to the person smiling.
The central concept of the system revolves around taking away
some bodily control in order to stimulate new kinds of social
interactions around food consumption. One finding from a first
exploratory study indicated that feeding another person using
the robotic arm was an enjoyable social experience, and that
it could potentially serve as an ice-breaker between strangers.
In a similar vein, Mitchell et al. (2015) designed an actuated
dining table where two people can eat together. The table lowers
the plate of the person who is eating too fast, and raises the
plate of the other so that diners’ eating speeds become aligned.
According to the authors, misalignment in eating pace between

co-diners can create social friction and discomfort, something
their system aims to address. The concept of the interactive
table is also explored by Kado et al. (2010), who present a
more abstract approach of agency with their sociable dining
table (SDT). Users interact with the SDT by knocking on it
which, according to the authors, serves as a minimal social cue
to interact with “creatures”; actuated tableware such as a pot
and a dish that can move around the table. An exploratory
study indicated that users were able to guide the creatures
around the table through the knocking interaction. While the
social dimension of the installation deserves further study it
is interesting to consider agency in a broader scope through
interactions with robotic table wear. Li et al. (2018) explore
ingestible sensors, i.e., microsystems that perform sensing inside
the body. As an example they propose HeatCraft–two user
interactive system which measures the internal body temperature
of the one player and communicates it to the other player though
thermal stimuli.

Humans often interact not only when eating but also when
preparing food. Foodie byWei and Nakatsu (2012) is an example
of system that allows for joint design and creation of real food.
The system is composed of the Food Creation Interface—a
mobile app to design the food (e.g., to define its shape, color),
and the Food Crafting Mechanism—a robot which crafts the
designed food. In the use case scenario, multiple persons, by
using their mobile devices, design new food together and send
the project to another user whose robot generates edible food
(e.g., a sandwich).

6.2. Tele-Dining
As demonstrated in Ferdous (2015), technology can enhance
commensal experiences. During family mealtimes technology
can scaffold and shape social interaction (Ferdous et al., 2016a).
In Ferdous et al. (2016b), they present TableTalk, affording diners
the possibility to bring together their photos, videos, audio, and
other digital media to create a shared commensal technological
experience. Nevertheless, the positive role of technology in these
instances is focused on the traditional setting of the family
dinner. Nawahdah and Inoue (2013) highlight that family dining
is becoming very difficult today. Young people and the elderly
are increasingly living independently, and working people tend
to either travel frequently or work remotely, as also observed
by Sellaeg and Chapman (2008). Hence, technology to enhance
commensality can no longer only focus on the shared family
dining table, but has to take into account distal interactions.
Commensality can be re-introduced by exploring the possibility
of what is called remote commensality (Foley-Fisher et al.,
2010; Wei et al., 2011a; Grevet et al., 2012; Komaromi Haque,
2016). An example of a system aimed at creating a sense
of remote commensality is the KIZUNA system (Nawahdah
and Inoue, 2013; Inoue and Nawahdah, 2014). The system
enables asynchronous dining interaction between people living
in different time zones. The idea is that a person can experience
remote co-dining with another person by watching a pre-
recorded video of the other person’s dining. The system works
by separately recording the dining actions of two persons dining
at different times and plays back these recordings by modulating
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the playback time to ensure the synchronization between the
real and the recorded person. As the authors highlight in their
work, it is not enough that people can merely watch another
person dining, as it also happens, for example, with the Cu-
later (Tsujita et al., 2010), to have the illusion of co-dining. It
is the synchronization between their actions that contributes
to achieving this illusion. The KIZUNA system was validated
through questionnaires asking participants to rate the sense of
presence they perceived from the remote (pre-recorded) person
and the overall satisfaction of communication. The test had
two conditions, one in which participants had dinner while
watching a pre-recorded video of someone else eating and
another one using a Wizard-of-Oz approach to simulate the
KIZUNA system. Results showed that the system was preferred
both in terms of presence perception and overall satisfaction
of communication.

Similarly, Heidrich et al. (2012) presented the Room XT
concept which consists of a wall-sized projection, head-tracking,
and 3D rendering to create the illusion of sitting across
from another person at a table. In this setup, head-tracking
would allow for the projection to be adjusted to the point-
of-view of the person looking at the projection to create the
illusions of depth. The concept was implemented in a scaled-
down setup using a computer monitor and Kinect sensor to
demonstrate the potential of the depth illusion in a shared
dining experience.

The importance of synchronized multimodal signals during
remote co-dining is underlined by the work of Wei et al.
(2011b) in the design of the CoDine system. The system consists
of a large video screen, Kinect sensor, augmented table and
tablecloth, and food printer. Remotely located diners can see
each other through the screen and use the combination of the
screen and Kinect sensor to engage in gesture-based interactions
with the system through icons displayed on the screen. The
icons can be selected to share messages through the tablecloth
which, through thermochromic ink and Peltier elements, can
change color to display simple shapes. Similarly, on-screen icons
can be selected to create printed food shapes on the remotely
located other’s food items using the food printer. Finally, the
augmented table is embedded with a movable magnet that allows
a diner to remotely move another person’s tableware, the idea
being that this enables a form of sharing that is typically only
possible during co-located dining. Aspects of the CoDine system
were later implemented in Foodie, aimed at social interactions
through printable food. Foodie by Wei and Cheok (2012) is an
integrated system that allows for joint design and creation of real
food (see section 6.1).

Where CoDine and Foodie enable interactions between two
remotely located diners, the telematic dinner party system by
Barden et al. (2012) allows remotely located groups of people
to engage in interactions during dinner. After observational
studies of dinner parties and an initial prototype design, the
final design consisted of a set of round tables where three
diners would gather around. Webcams were used to capture
diners at one table and a projector was used to project
visuals of remotely located diners. A projection area showed
a visualization of a remotely located diner from the other

table. In the center of each table a rotating platform was used
to present food. Diners could physically rotate the platform
on their table, which would result in an identical rotation
in the platform of the remotely located table. The setup
was evaluated during several dining scenarios (e.g., murder
mystery dinner party), showing that communication was not
as fluent as during a co-located dinner party. Conversely,
participants did engage in playful behavior during the scenarios
predominantly by manipulating the rotating platform, for
example, while a remotely located diner was just about to reach
for an item of food. The authors suggest that the element
of playfulness helped overcome technical limitations while at
the same time resulting in more of a performance than an
actual dinner party.

6.3. Future Developments for Enhance
Computational Commensality Between
Humans
To conclude this section it is worth noticing that the
systems mentioned in section 6.1 allow for some interaction
between multiple humans. It can be as simple as trying to
perform a better score in a game than all other competitors,
or very complex scenarios requiring cooperation and which
revolve around the topics of eating and food. The latter
also show that the technology can change eating into a play
and create an experience, which is enjoyable not because of
the (consumed) food, but mainly due to connecting people
by tasks that require joint actions in the physical space
(Altarriba Bertran et al., 2018; Chisik et al., 2018). In this
sense, for istance, works by Mehta et al. (2018) or Mitchell
et al. (2015) are examples of CC, which would not be
possible without using the technology (i.e., in traditional
human-human setting).

The technology to enable remote commensality is becoming
increasingly more sophisticated, and researchers have made
headway in creating systems that allow individuals some form
of visual communication and in some cases shared interaction
with actual food items. However, it remains to be investigated
whether or not these systems provide the same benefits of actual
commensality—for example, the ones mentioned in section 2.
In addition, these systems do not necessarily provide solutions
for individuals experiencing (chronic) loneliness due to a lack
of sufficiently satisfying social connections. Nevertheless, one
may wonder whether the use of these systems could also be
sought in shared dining with strangers, which could be seen
as a potential approach to create new, hopefully in the end,
satisfying, social relationships. The technology implemented in
tele-dining systems could then also be used as conversation
support technology to stimulate strangers to engage with each
other socially (Otsuka and Inoue, 2012).

7. FINAL DISCUSSION

Eating is a highly social activity, and so are everyday eating-
related actions. For this reason, we believe computational models
and techniques aimed at reading and understanding human
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non-verbal social interaction should pay attention to eating-
related behaviors. In this survey, we hope to have provided
an overview of existing psychological studies, approaches and
technologies aimed at addressing, creating or augmenting
commensality. The body of literature discussed shows that
CC draws on many different fields. It is a complex, multi-
disciplinary field of research still in its early stages. Therefore,
a number of hiatuses remain that deserve to be addressed in
future research.

Like current smart phone use, adding technology to the dining
table will change social situations and rituals around the food
consumed. Therefore, CC should take into account the impact
of the technology once it is introduced into the dining sphere.
For example, consider using a VR headset to visually augment
food experiences. In such a situation, it becomes very difficult
to share food experiences between co-diners due to the fact
that the headset will make regular face-to-face interactions very
difficult. Similarly, gamification, and augmentation technology in
general, can also serve as potential distractors from food and food
consumption. As an educational approach, one could question
whether creating distractions is beneficial to long-term food
enjoyment and healthy eating habits of children, for example.
More generally, the argument can be put forth that any kind
of technology that distracts from the actual food or genuine
interaction during dinner can have potentially detrimental
effects on food enjoyment, healthy eating, and conducive social
eating habits.

At the same time, potential opportunities for sharing food
and flavor experiences across distances (e.g., while connected
through the internet) can be enabled by the same technologies,
potentially providing commensal experiences where none were
possible before. Future work on CC should carefully consider
how the addition of technology to commensality will impact
already existing social eating practices.

One way to have technology more seamlessly integrated into
current dining practices is to move it into the background, and
to adapt it to different eating situations as needed. However,
technology to track and recognize food items is not fully
implemented yet in many of the systems that have been
discussed in this review. Therefore the manipulations, for
example those aimed at guiding diners’ behavior using AR,
are typically hand-built to match the food items presented to
participants. Considerable effort should be put into automatic
recognition of food items in order to create seamless, automatic
augmentations in an interaction loop where the food is
recognized and the digital augmentation is automatically
generated based on the recognition (e.g., to match or contrast
some of the qualities of the food). Only through such
integrations can these systems have a real place at the dining
table, especially as far as commensal dining is concerned
(see also previous point).

Works discussed in this survey that provide augmented
food experiences often do so in controlled lab settings. One
can question how strongly lab-based manipulations affect
(commensal) food experiences in a real-life dining settings. Some
restaurants do experiment with CC (e.g., Sublimotion, Ultra
Violet), but there is currently a lack of research showing effects of

technological augmentations on food experiences in ecologically
valid settings. In relation to ecologically valid research, it is
important to stress cultural aspects of commensality. There are
strong differences between various cultures in commensal eating
(Kittler et al., 2011; Counihan and Van Esterik, 2012; Anderson,
2014). However, little research in CC, be it related to food
recognition, changing flavor experiences, or providing support
through artificial social agents, takes into account cultural
differences in a structural way. Therefore, it can be recommended
for research to move away from focusing on WEIRD (Henrich
et al., 2010) samples, and includemore culturally diverse samples.
At the very least, research in CC should be mindful of the fact
that results may be limited to specific socio-cultural settings, and
be difficult to generalize beyond that setting. As an example,
in this context, nearly all commensal technologies listed in this
paper (e.g., Kado et al., 2010; Mitchell et al., 2015) assume that
eating is organized around the table (whether real, augmented
or virtual). At the same time, it is well-known that people in
several cultures eat and interact when eating without using such
furniture. Consequently, it might be important also to develop
culture-specific CC.

From a more technological perspective, it is important to
carefully consider the validity of computational models of
human-human behaviors at the table. Existing models dedicated
to social signal processing, for example, leadership (Beyan
et al., 2018; Niewiadomski et al., 2018), cohesion (Hung and
Gatica-Perez, 2010), and turn-taking (de Kok and Heylen, 2009)
might not necessarily be appropriate for analyzing behaviors
in commensal scenarios. Indeed, when eating together, humans
perform at least two different activities in parallel: eating and
socializing. Both of these activities could be considered to
interfere with each other. For example, when chewing or focusing
on the food on the plate social behaviors that are typical in non-
commensal social settings can be disrupted (e.g., turn-taking).
In addition, the non-verbal behaviors and the communication
with eating partners are limited by the position at the table
and the distance to the interlocutors. These unique aspects of
social interactions that occur while consuming food highlight
the need to build new, multimodal corpora of commensality.
Here, it is important to take into account spontaneous behavioral
aspects related to the food specifically (e.g., food recognition,
mastication) as well as the social behaviors that occur between
co-located humans.

Indeed, such models may be a requirement to create truly
social interactions with artificial social entities such as assistive
robots or virtual coaches. These social interactions should not
only be focused on food, diet, and eating behaviors, to name
but a few application areas covered in this review, but should
include interactions around other topics, from small talk about
the weather to discussing the day at work. Through such more
complete social interactions the bond between the user and
the artificial social entity can potentially be strengthened. Only
when embodied computational systems, such as social robots,
can participate on some level in all the complexities of social
interactions during meal time can we move toward true CC.

To conclude, we have seen in this paper that even if
technology is often integrated in eating practices already,
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there is still the need for technologies capable of reading
and generating social signals that are associated with such
practices. This should motivate HCI and AI researchers to
give more attention to different social aspects of food related
interactions. Our hope is that this work will contribute
to kick off new research and strengthen existing research
initiatives in diverse fields toward the creation of novel
computational models dealing with commensal food preparation
and consumption.
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During both positive and negative dyadic exchanges, individuals will often

unconsciously imitate their partner. A substantial amount of research has been

made on this phenomenon, and such studies have shown that synchronization

between communication partners can improve interpersonal relationships. Automatic

computational approaches for recognizing synchrony are still in their infancy. In this study,

we extend on previous work in which we applied a novel method utilizing hand-crafted

low-level acoustic descriptors and autoencoders (AEs) to analyse synchrony in the

speech domain. For this purpose, a database consisting of 394 in-the-wild speakers

from six different cultures, is used. For each speaker in the dyadic exchange, two

AEs are implemented. Post the training phase, the acoustic features for one of the

speakers is tested using the AE trained on their dyadic partner. In this same way, we

also explore the benefits that deep representations from audio may have, implementing

the state-of-the-art Deep Spectrum toolkit. For all speakers at varied time-points during

their interaction, the calculation of reconstruction error from the AE trained on their

respective dyadic partner is made. The results obtained from this acoustic analysis

are then compared with the linguistic experiments based on word counts and word

embeddings generated by our word2vec approach. The results demonstrate that there

is a degree of synchrony during all interactions. We also find that, this degree varies

across the 6 cultures found in the investigated database. These findings are further

substantiated through the use of 4,096 dimensional Deep Spectrum features.

Keywords: speech synchronization, human-human interaction, computational paralinguistics, machine learning,

speech processing, autoencoders

1. INTRODUCTION

It has been shown that during a dyadic human-human interaction, companions will often
synchronize their communication style with their partner. This synchrony happens not only on
a linguistic level, e.g., syntactic alignment (Gries, 2005; Dale and Spivey, 2006; Branigan et al.,
2010), but also occurs across modes, with partners shifting their posture (Scheflen, 1964), facial
expression (Blairy et al., 1999), as well as verbal cues (Chartrand and Bargh, 1999)—a topic
which has been an area of interest across fields, including psychology (Likowski et al., 2012) and
neuroscience (Seibt et al., 2015; Rymarczyk et al., 2018).

An alteration in the rapport between partners is one outcome in relation to synchronous
behaviors, and can be described as an interpersonal aspect of a given dyadic exchange in which both
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partners are experiencing positivity (Tickle-Degnen and
Rosenthal, 1990). From early-research in the field of psychology
an increase in rapport was found from interactions in which
body posture synchrony had occurred (LaFrance, 1979).
However, due to the intrinsic complexity of human behavior, the
measurement of interaction synchrony as an indicator of rapport
has posed a substantial challenge for researchers (Bernieri
et al., 1994). Nevertheless, in social psychological research a
non-invasive measurement of interpersonal synchrony, which
can be performed without the knowledge of participants, shows
great potential for the analysis of human interaction (Bernieri
et al., 1994).

Pickering and Garrod presented a mechanistic model
of language processing during a dialogue (Pickering and
Garrod, 2004). Their interactive alignment account describes
how interlocutors automatically synchronize their linguistic
representations on multiple levels, from syntax to semantics
and phonetics. They argue that alignment on one level also
increases alignment on other levels through mechanisms like
routinization (i.e., the establishment of semi-fixed expressions
encoding specific meanings). In recent years, approaches testing
mimicry (synchrony) as a tool to enhance rapport have been
popular in the field of Human Robot Interaction (HRI) (Riek
et al., 2010; Li and Hashimoto, 2011). Valdesolo et al. analyzed
the influence of synchrony on individuals who pursue joint
goals (Valdesolo et al., 2010). The authors demonstrated that
synchrony in body motions can enhance individuals’ perceptual
sensitivity to the movements of other persons and therefore
can increase their success in a following cooperative task which
requires the ability to respond appropriately to a partner’s
movement (Valdesolo et al., 2010). Furthermore, it was discussed
that success in achieving common goals is motivated by the
enhanced sense of collective spirit, and that synchrony could also
predict cooperative ability (Valdesolo et al., 2010).

Previously studies in the area of automatic synchrony
detection, have come largely from the vision domain (Michelet
et al., 2012), some of which evaluating behaviors such as rate of
head nods, and smiling (Sun et al., 2011a; Bilakhia et al., 2013).
For this study, we focus on the acoustic signal, as it has been
shown that aside from body-language, partners will additionally
shift their speech style toward that of their partner (Giles, 1973;
Giles et al., 1987).

Although there are similar previous works on this
topic (Brdiczka et al., 2005; Burgoon and Hubbard, 2005),
we have first proposed an acoustic-based approach to evaluate
individual communication styles for the phenomenon of dyadic
synchrony across a broad group of cultures (Han et al., 2018).
First, we attempt a brute-force conventional approach in which
we extract low-level descriptors (LLDs) such as log-energy, and
pitch, to measure similarities in the speech turns, resulting in
limited success (Han et al., 2018). To explore a state-of-the-art
machine learning approach for this task, an autoencoder-
based framework is implemented. The framework consists
of two autoencoders (AEs), in which each is trained on the
speech of one of the communication partners, subject A and
B, respectively. On training completion, the data subsets are
then switched, and fed to the opposing AE. In choosing this

approach, we hypothesize that when a subject is behaving in
a more synchronous manner, the reconstruction error of the
features from the AE trained on their communication partner
should decrease over time. Compared to other state-of-the-art
computational approaches for unsupervised learning, e.g.,
Generative Adversarial Networks, AEs are relatively easy to train
and chose hyperparameters for.

In the following section, the related work is summarized both
from a sociological and a technical perspective. We then describe
our multicultural dataset and the extracted acoustic and DEEP

SPECTRUM features used in our research. In section 4, we analyse
the behavioral similarities of dyads and explain the experimental
settings and discuss about our findings. Afterwards, in section 5,
we analyse the linguistic behavior and compare the results to the
ones obtained from our acoustic approach, before concluding the
paper in section 6.

2. RELATED WORK

Synchronous behavior (often referred to as mimicry), can play an
important role as a mechanism of emotional contagion (Hatfield
et al., 1993) i.e., the phenomenon an individual’s emotional
response to activate a similar emotion in their partner., and
is either emotion- or motor-based (Hess and Fischer, 2013).
Emotional synchrony is the change in affective states such as
happiness or anger, and the motor-based synchrony would refer
to physical changes, e.g., facial expression or position of the
hands, although there is also literature indicating that vocal
expression is often an unconsciousmotor act (McGettigan, 2015).
Of the two, motor-based synchrony is a more effectively tracked
aspect, as there is an object component which can be classified
by a human observer, subsequently showing improved accuracy
for automatic approaches such as body posture recognition (Hu
et al., 2016).

Toward the end of the 1970s, the Facial Action Coding
System’ (Ekman and Friesen, 1978) based on so-called facial
action units (FAUs), descriptors of 44 facial activations, was
first proposed. Since this time FAUs have been utilized for
an array of computational tasks (Kaiser and Wehrle, 1992;
Tian et al., 2001; Jaiswal and Valstar, 2016). When combining
active FAUs various facial expressions can be constructed, with
a strong relationship between typical FAU combinations, e.g.,
frowning, or smiling, and an individual’s affective state (Ekman
and Friesen, 2003). These combinations have shown to be
independent from culture (Ekman and Friesen, 2003), and can
be robustly extracted utilizing state-of-the-art toolkits such as the
well-known OPENFACE (Baltrušaitis et al., 2016).

In general partners will likely show synchrony of traits such
as gestures and posture, from their partner, nearer to the end
of a conversation (Chartrand and Bargh, 1999; Delaherche et al.,
2012). Motor-based synchrony can be applied as a persuasive tool
during human-to-human exchange, specifically when including
the mimicry of the partners spoken opinion (Hess and Fischer,
2013). From both the auditory and visual channels, humans
are vulnerable to this behavior (Parrill and Kimbara, 2006). To
this end, although there has been evidence of communication
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partners synchronizing when they do not agree, there is more
prevalent factors of synchrony when partners discuss a common
topic of which they hold a similar opinion (Sun et al., 2011a).

From a computational point of view, automatic detection
approaches for motor-based synchronous behavior are varied.
A time-based regression model which utilized long short-
term memory (LSTM) recurrent neural networks (RNNs) was
proposed as a prediction method for audio-visual features of
chat partners (Bilakhia et al., 2013). In Bilakhia et al. (2013), the
authors utilized Mel-frequency cepstral coefficients (MFCCs) as
acoustic features and facial landmarks as visual features. They
then trained an ensemble of models to predict the features of
one chat partner based on the features of their dyadic partner
in order to solve the binary classification task of mimicry or non-
mimicry. The model in which the lowest reconstruction error was
provided gave the class. In contrast to their work, our approach is
unsupervised, i.e., the models are not trained to predict a ground
truth occurrence of mimicry.

In general, emotion-based synchrony has not been extensively
researched, and has shown to be highly dependent on social
context, with individuals not synchronizing at all if they are
not in favor with one another (Hess and Fischer, 2014). As
well as having a positive outcome on negotiations (Swaab et al.,
2011), a similar observation for the favored partner was found
within linguistic information (Scissors et al., 2008). In a text-
based interaction individuals were found to repeat the style of
their partner over time, particularly in scenarios where trust was
already established. In this same way, rapport during interactions
was found to develop more highly between partners over time
when repeating the counterpart’s behaviors (LaFrance, 1979).

3. DATASET AND FEATURES

To validate the proposed approaches, we use the SEWA
corpus of audio-visual interaction in-the-wild (Kossaifi et al.,
2019)1. A database which has in the past been used as the
official benchmark database for the 2017 and 2018 Audio-
Visual Emotion Challenges (AVEC) (Ringeval et al., 2017,
2018). Extracting both hand-crafted acoustic features and deep
representations of the audio signal on the frame-level of
all sessions. We decided to extract both acoustic and DEEP

SPECTRUM features, due to their previous performance and
proven ability in capturing characteristics of speech (Schuller
et al., 2013; Amiriparian et al., 2016, 2018; Eyben, 2016).
Both feature sets are different in their nature; COMPARE is a
hand-crafted, expert-designed feature set which can cover time-
dependent frame-level information for the input signals, and
DEEP SPECTRUM is based on the spectrograms of audio signals,
focusing mostly on the time-frequency properties of the speech.

3.1. The SEWA Video Chat Dataset
The SEWA database includes audio-visual recordings of 197
dyadic conversations (including 201 male and 197 female
subjects), from individuals of six differing cultures (Chinese,
Hungarian, German, British, Serbian, and Greek). A summary

1https://sewaproject.eu/

TABLE 1 | SEWA corpus: Quantity of conversations and subjects, as well as total

duration given in minutes for each culture.

Index Culture # Conversations # Subjects Total duration

C1 Chinese 35 70 101

C2 Hungarian 33 66 67

C3 German 32 64 89

C4 British 33 66 94

C5 Serbian 36 72 98

C6 Greek 28 56 81

Sum 197 394 530

FIGURE 1 | Screenshots taken from sample video chats in the SEWA corpus

(German culture).

of the SEWA database is given in Table 1, including number
and total duration of conversation for each culture. An
example conversation is shown in Figure 1 and during such
conversations, subjects discuss with each other their view of a 90 s
advertisement of a (water) tap that they have just been shown via
the web platform.

The subjects were “in-the-wild” and using a personal
computer, with recordings captured from either their home
or office. The chat partners were already acquainted with one
another before the chat (either family, friends, or colleagues), and
included varied gender pairings (female-male, female-female,
male-male), which were balanced across all sessions. Subject were
aged between 18 and 60, and communication was held in the
native language of the partners, with no specified limitation on
what to discuss about the advertisement. From post analysis,
it was found that the conversations in the SEWA Dataset
contain a variety of emotional states, as well as instances of
both agreement/disagreement, and additionally positive/negative
rapport (Ringeval et al., 2017, 2018; Kossaifi et al., 2019).

3.2. Acoustic Features
The COMPARE feature set of acoustic features (Eyben, 2016) is
used for our first approach. For each audio recording, acoustic
low-level descriptors are extracted using the OPENSMILE
toolkit (Eyben et al., 2013) at a step size of 10ms. COMPARE LLDs
are extracted at frame-level. Functionals defined in the feature set
are not applied in this work, as the time-dependent frame-level
information is of most interest. Extracted with a window size of
20 to 60 ms length, there are 65 LLDs in the COMPARE feature
set and these have been summarized in Table 2. Feature vectors
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TABLE 2 | Interspeech 2013 Computational Paralinguistics Challenge feature set.

4 energy related LLD Group

Loudness Prosodic

Modulation loudness Prosodic

RMS energy, zero-crossing rate Prosodic

55 spectral related LLD Group

RASTA auditory bands 1–26 Spectral

MFCC 1–14 Cepstral

Spectral energy 250-650 Hz, 1–4 kHz Spectral

Spectral roll-off pt. .25, .50, .75, .90 Spectral

Spectral flux, entropy, variance Spectral

Spectral skewness and kurtosis Spectral

Spectral slope Spectral

Spectral harmonicity Spectral

Spectral sharpness (auditory) Spectral

Spectral centroid (linear) Spectral

6 voicing related LLD Group

F0 via SHS Prosodic

Probability of voicing Voice quality

Jitter (local and delta) Voice quality

Shimmer Voice quality

Log harmonics-to-noise ratio Voice quality

An overview of the 65 acoustic low-level descriptors (LLDs). SHS, Sub-Harmonic

Summation.

of size 130 for each 10ms step are given by calculating the first
order derivative (deltas).

3.3. Deep SpectrumFeatures
In addition to the acoustic features (cf. section 3.2), we
apply the feature extraction DEEP SPECTRUM toolkit2 to
extract deep representations from the audio signals using pre-
trained convolutional neural networks (CNNs) (Amiriparian
et al., 2017c). First, audio signals are transformed into Mel-
spectrogram plots using a Hanning window of width 500ms
and an overlap 10ms. From these, 128 Mel-frequency bands
are then computed. Afterwards, the generated spectrograms are
forwarded through VGG16 (Simonyan and Zisserman, 2014), a
pre-trained CNN, and the activations of the penultimate fully
connected layer (fc7) of the network are extracted, resulting
in a 4,096 dimensional DEEP SPECTRUM feature vector. These
features can be considered as being a high-level representation
of the Mel-spectrograms (Amiriparian et al., 2017c), and have
shown to be highly effective in various speech and audio analysis
tasks (Amiriparian et al., 2017a,c, 2018, 2019; Baird et al., 2017;
Ringeval et al., 2018).

4. BEHAVIOR SIMILARITY TENDENCY

ANALYSIS WITH AUTOENCODER

In order to investigate the temporal-based patterns, as well as
interpersonal sentiment which may occur in speech, we first
need to get machine readable representations from the speech

2https://github.com/DeepSpectrum/DeepSpectrum

signals of each individual (cf. section 3.2 and 3.3) and then use
these features for our machine learning experiments (cf.section
4.1). Based on the experimental results (cf. section 4.2), we then
analyse the behavior similarities in various cultures.

To minimize the variance between recording environments
the acoustic features (130 frame level) are first standardized (zero
mean and unit standard deviation) across the same recordings.
We have neither standardized nor normalized the DEEP

SPECTRUM features, since we found during our preliminary
evaluation that this negatively impacts autoencoder performance.
Before beginning to train the AE (cf.section 4.1), the feature
sequences are first segmented based on the transcriptions which
are also included in the SEWA database. The feature sequences
of each recording are then split in two sub-sequences, with each
having the features of only one of the subjects.

We then use a machine learning framework based on
autoencoders for investigating the effect of synchrony found
in the feature sequences. Autoencoders are a special type of
neural network architecture trained in an unsupervised manner
to find a compact, information rich representation of the input
data from which this input can be reconstructed (Vincent et al.,
2008). Further, the reconstruction error that is made by a trained
autoencoder on unseen test data can give an indication on how
similar this data is to the training domain: In the context of
audio analysis, this has for example been used for automatic
acoustic novelty detection (Marchi et al., 2015), the intuition
being that audio events that are foreign to the training data
will be harder to accurately reconstruct for the autoencoder. For
our experiments, the training domain of each autoencoder are
the feature sequences of one speaker while the sequences of the
speaker’s partner are used for evaluation. In our approach, AEs
use the features extracted at each frame as independent instances,
without considering the evolution of features over time. For
each individual dyadic interaction in the dataset, we proceed
as follows: Features of one subject are applied frame-wise to
train the first AE, with the features of the other used frame-
wise for testing. Although training the AEs and reconstructing
the features using each frame as an independent instance, we
preserve the order of the test frames in order to generate the
reconstructed sequence of features. Then, the root-mean-squared
errors (RMSEs) are calculated between the reconstructed and
actual features as a means of evaluating the extent to which
the RMSE varies over time. For each conversation, we end with
two AEs trained on the two subjects involved, with two one-
dimensional RMSE sequences, whose slopes can be measured
by computing their first derivatives and later averaged for
further analysis.

4.1. Experimental Settings
For the AEs, we made use of a common bottleneck architecture:
The input layer of the encoder and the output layer of the decoder
match the size of the feature vectors whilst the size of neurons
on the hidden layers is halved (doubled) for each layer in the
encoder (decoder). As shown in Figure 2, the AE framework
that has been constructed consists of a 3-layer encoder with a
3-layer decoder. During the initial experiments, nodes in each
layer were selected as follows: 130–64–32–12–32–64–130, with
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FIGURE 2 | The autoencoder framework implemented for our study. The error

between the input features (left) and the reconstructed features (right) is

minimized for each subject using the RMSE. The given number of neurons in

each layer (indicated above the neurons) refers to the COMPARE /DEEP

SPECTRUM features, respectively.

the dimensions of the output matching that of the input low-level
audio descriptors. For the DEEP SPECTRUM features, we use a
larger number of neurons on each layer: 4,096–2,048–1,024–512–
1,024–2,048–4,096. We train all AEs with a batch size of 256 for
512 epochs minimizing the mean squared reconstruction error
using the Adagrad (Duchi et al., 2011) optimizer with a learning
rate of 0.01.

When the temporal reconstruction errors had been generated
for each of the test subjects, the sequence is then utilized for a
linear regression task, assuming that the learnt slope will indicate
a behavior pattern change. In other words, when there is a
negative slope, this may indicate that the dyadic partners are
becoming more similar. Counter to this if there is a positive
slope, it would indicate that the partners are less synchronized. As
well as this, we make the additional assumption that the overall
amplitude of the slope will denote the level of synchrony as well.

Our approach for using the slope for synchrony analysis
between dyads is mainly motivated by the works introduced
in Sun et al. (2011b), Delaherche et al. (2012), and Bilakhia et al.
(2013). In Delaherche et al. (2012), the authors state that the
interactive alignment/synchrony can be observed in conversation
from a variety of features such as intonation, intensity, and
rhythm in speech. In addition, in Bilakhia et al. (2013), the
authors applied MSE to measure the reconstruction error of an
unseen example with a trained model to detect non-verbal vocal
mimicry vs. non-mimicry categories. In particular, 6 MFCCs
were adopted as audio features instead of pitch or energy, whilst
in the present work, more hand-crafted features, as well as
deep representations, are investigated. Moreover, in Sun et al.
(2011b), the results have shown that a long-term increasing
correlation is consistently obtained between two speakers in a
discussion. Thus, though the term “slope” was not well-supported
in any of previous work, these previous findings motivate this
work to adopt the RMSE slope overall interaction to indicate
progressive synchronization. Furthermore, in Table 3, it has
been demonstrated that the slope tendencies have a negative
correlation with the answer to the question if an individual feels
of holding the same opinion with the partner, demonstrating

TABLE 3 | Average slope of RMSE sequences of all subjects and the Pearson

correlation coefficients of pairs in each culture (C1: Chinese, C2: Hungarian, C3:

German, C4: British, C5: Serbian, and C6: Greek).

Feature set C1 C2 C3 C4 C5 C6

Acoustic features

average slope −0.07 −0.11 −0.10 −0.07 −0.08 −0.12

pcc of pairs −0.03 0.34 0.15 0.39 0.39 −0.26

DEEP SPECTRUM features

average slope −0.03 −0.05 −0.03 −0.02 −0.05 −0.07

pcc of pairs 0.03 0.16 0.18 0.09 0.13 −0.15

The autoencoders were trained on both acoustic and DEEP SPECTRUM features. For all

cultures the average slope shallower when using DEEP SPECTRUM features.

that the detected synchronization tendency has a high correlation
with their self-reported labels.

4.2. Results and Discussion
The first culture from the SEWA dataset; C1 (Chinese) will
be where we begin our discussion. This culture consists of
35 sessions, and the average RMSE sequence slope for all 70
subjects is −0.07, and −0.03 when using acoustic and DEEP

SPECTRUM features, respectively. Using both feature sets, which
differ in their nature, we show that very low average RMSE can
be achieved for the Chinese culture. This finding indicates a
relatively high synchrony between Chinese dyadic partners.

From the analysis shown in Figure 3 it can be seen that most
subject slopes for both feature sets (54 /70 for the acoustic features
and 47 /70 for the DEEP SPECTRUM features) are negative,
with less being positive. With our previous assumption in
mind, these results indicate that the acoustic LLD features
and the DEEP SPECTRUM features of these subjects have a
smaller reconstruction error over time. As the AE is trained
with the opposing subject from the same session a smaller
reconstruction error should indicate higher synchrony between
the communication partners. We also see a similar trend across
other cultures in the dataset, however the ratios for negative /
positive slope vary across cultures. Figures 4, 5 show the slope
of RMSE for all subjects and all cultures obtained from both
feature sets.

With these results in mind, the average slopes s were
calculated for all cultures, as well as the Pearson correlation
coefficients (PCCs). This was made with the intention of
investigating cultural-based variation across the spontaneous in
the wild conversations. For this analysis, results are summarized
in Table 3. As mentioned a negative slope indicates a more
synchronous speech-based relationship. The average slope is
computed to demonstrate the overall tendency throughout all
subjects in one specific culture, whilst the pcc of pairs is applied to
indicate the tendency between two conversation partners given
that specific culture.

From the correlation analysis shown in Table 3, it can
be noticed that generally when observed as group pairings
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FIGURE 3 | Slope of RMSE sequences of 70 Chinese subjects from 35 recordings. In each recording, there are two subjects as denoted with green and blue bars.

The diagrams (from left to right) are generated based on the acoustic and DEEP SPECTRUM features, respectively.

FIGURE 4 | Slope of RMSE sequences of paired subjects from all recordings in all six cultures. The results are calculated based on the acoustic features.

A/B, individuals across the six cultures show a tendency to
synchronize. Given that s for each culture is always negative. The
Greek culture (C6) shows the largest slope, i.e., lower synchrony
between the Greek dyads, and the smallest slope is observed for
both Chinese and British cultures.

As well as this, when looking only at the PCC, we can see an
alternative culture variance. In the case of PCC, positive values
indicate that the subjects of a culture converge to a similar place,
either both behaving in synchrony or out of synchrony with one
another. Conversely, a negative PCC would indicate that one
subject is dominating the other. No correlation is seen in the

C1 (Chinese) pairs for example, with a PCC of −0.03 and 0.03

when using acoustic and DEEP SPECTRUM features which is close
to 0. On the other side, a linear correlation is shown as either
positive for the Hungarian (C2), German (C3), British (C4), and
Serbian (C5) or negative for the Greek (C6) culture. Although
out of the scope of our study, it would be of benefit to verify

these findings based on literature across other fields, such as the
anthropological linguistics domain and the field of conversation
analysis (Stivers et al., 2009). We should also note that variances
such as educational background, occupation, and health status
of the individuals in the SEWA dataset may have some effect on
the result, however, although the dataset providers did implement
a control of aspects such as age and gender, variation between
complex characteristics such as these would be difficult to avoid.

5. LINGUISTIC BEHAVIOR ANALYSIS AND

SIMILARITY PATTERNS

Motor-based synchrony, e.g., raising an eyebrow, can be detected
from visual mid-level features such as Facial Action Units
(FAUs) (Surakka and Hietanen, 1998). Nonetheless, the detection
of similarity in speech from raw features is challenging due
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FIGURE 5 | Slope of RMSE sequences of paired subjects from all recordings in all six cultures. The results are calculated based on the DEEP SPECTRUM features.

to the variability of speech descriptors. To name a few, these
descriptors are sensitive to the environment and the voice of the
subject, which is influenced by factors such as age and gender,
amongst others.

Besides the acoustic similarities, we should also investigate
the behavioral synchronization shown in video chats from
other modalities, including linguistic information. In this regard,
rather than the conventional bag-of-words (BoW) approach,
which represents a text as a sparse histogram vector, word
embeddings are the current state-of-the-art (Kusner et al., 2015;
Liu et al., 2015; Amiriparian et al., 2017b; Chung and Glass,
2018). With this technique, the sparse histogram vectors, with a
dimensionality higher thanR1×5000, are transformed into a lower
dimensionality vector, typically R

1×300, where each component
in the vector space represents a concept. As a relevant property
of word embeddings, the distance between this concept and
words with similar meanings is lower than the distance between
this concept and words with completely different meanings.
The architecture of neural networks for word embeddings
usually includes a single layer, which converts the BoW into the
embedding vector. Currently, word2vec, introduced by Mikolov
et al. (2013), is a popular technique to generate word embeddings,
as it is trained on large text corpora, such as Wikipedia.
This technique employs a specialized objective function,
called“negative sampling.” One of the benefits of using such word

embedding technique is that the representations generated from
the words quantitatively capture several properties of the object

they describe (Mikolov et al., 2013).
We base our analysis on the manual transcriptions of the

video chats from the six different cultures included in the

SEWA database (cf. section 3 for details). Word embeddings
are extracted using pre-trained word2vecmodels available on the
internet. While a word embedding model for the British culture
trained on a Google News corpus is employed3, word embedding
models for the Hungarian and German cultures trained on
Wikipedia dumps are used4. For the other cultures, suitable word
embedding pre-trained models are not currently available and, as
a consequence, we exclude these cultures from our experiments
with the word2vec approach. Furthermore, training our own
word embedding models on the transcriptions of the SEWA
database is discarded due to limitations on the available data.
Word embedding models require large amounts of data to be
trained, usually requiring more than a million running words.

In order to analyse the linguistic synchronization as the
interaction progresses, we decide to split the chat sessions in
two halves, the first and second half of each conversation.
The measurement of similarities on a smaller scale, e.g., on
utterance or speaker turn level, is not possible, as some particular
speaker turns are quite long (more than 30 s). For every half
of the interaction word2vec embeddings are extracted from
both the speaker and their partner, and the cosine similarity
between the word embeddings is computed. In addition to word
embeddings, a simple evaluation of word usage is also made
by counting how often the same words were used by the two
subjects in each segment and normalizing the result by the
number of words per segment. The averaged similarities of both
scenarios in both halves of the interactions for all participants

3https://github.com/3Top/word2vec-api
4https://github.com/Kyubyong/wordvectors
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TABLE 4 | Evaluation of linguistic similarities between dyadic companions in the

two halves of the video chat.

Culture Word usage similarity word2vec similarity

1st half 2nd half 1st half 2nd half

C1 (Chinese) 0.710 0.880 — —

C2 (Hungarian) 0.738 0.902 0.809 0.794

C3 (German) 1.063 1.128 0.301 0.327

C4 (British) 1.714 1.787 0.364 0.383

C5 (Serbian) 1.241 1.353 — —

C6 (Greek) 0.849 1.125 — —

The linguistic information is analyzed using two different approaches: by computing word

usage and by extracting word2vec embeddings from the transcripts included in the SEWA

database.

belonging to the same culture are calculated and summarized
in Table 4.

The results reported in Table 4 show that for all cultures the
linguistic similarity increases during the video chat in regards
to the word usage. For word2vec embeddings the increase is
very subtle and in particular, for the Hungarian culture, we
observe that the similarity slightly decreases. The very weak or
even non-existent linguistic synchronization we measured with
the word2vec approach could be explained by the nature of the
rather complex features. It seems possible that a synchronization
on such a high linguistic level takes even more time than the
acoustic synchronization or the linguistic synchronization on
the word level and could therefore not be measured in short
conversations. This result leads us to assume that rapport and
synchrony in the linguistic domain is manifested in the direct
synchrony of terminology, rather than in synchrony of concepts
and topics.

The differences of linguistic similarity across cultures is quite
noticeable as the values of word usage similarity in the first half
of the conversations range from 0.710 in the Chinese culture
up to 1.714 in the British culture. In the word2vec approach
the similarity values for the first half of the conversations range
from 0.301 in the German culture up to 0.809 in the Hungarian
culture. Reasons for this, as for the different changes of the
similarity through the conversations, might lie in the respective
languages of the different cultures or culture-specific behaviors
during conversation.

6. CONCLUSION AND OUTLOOK

In this work, we have demonstrated that, an autoencoder-based
framework has great potential to recognize the spontaneous
and unconscious synchronization which occur during social
interactions. We can see this evidence through the observation
of the reconstruction error, when using the acoustic and
DEEP SPECTRUM features extracted from the speech of each
dyadic companion.

From this work, we have also explored culturally dependent
synchronization of vocal behavior in dyadic conversations.
In section 4, we have analyzed the behavior similarities and ability
of interpersonal chats to synchronize. It was found that both

feature sets are suitable for this task. Most subjects slopes are
negative when observing the feature sets (54 /70 for the acoustic
features and 47 /70 for the DEEP SPECTRUM features). From
additional correlation analysis, it was found that individuals do
tend to synchronize, however from this analysis, the cultural
differences were more noticeable, e.g., C6 (Greek) and C1
(Chinese) show quite opposing average slopes (−0.07 and−0.03,
respectively with DEEP SPECTRUM features).

Furthermore, the results provided in Table 4 demonstrated
that for all six cultures the linguistic similarity increases during
the video chat.

Future work will focus on utilizing further unsupervised
representation learning techniques, such as unsupervised
feature learning with deep neural networks using the
AUDEEP toolkit (Amiriparian et al., 2017b; Freitag et al.,
2018), and feature quantization methods, such as bag-of-audio-
words (Schmitt et al., 2016). Moreover, we are planing to
exploit the linguistic domain through state-of-the-art word2vec
embeddings (Mikolov et al., 2013). Given the findings in relation
to cultures from the utilized dataset, it would also be of value
to further explore this, possibly through a deeper analysis
of non-verbal synchrony and the known occurrence of this
during dyadic interactions (Tschacher et al., 2014). It is also
of big interest to analyse the amount of alignment between
speakers across different dyads. Finally, in addition to the
slope of the reconstruction errors, we want to explore further
evaluation strategies to measure the degree of synchrony between
subjects (Delaherche et al., 2012).
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In the context of human-robot collaboration in close proximity, safety and comfort are

the two important aspects to achieve joint tasks efficiently. For safety, the robot must

be able to avoid dynamic obstacles such as a human arm with high reliability. For

comfort, the trajectories and avoidance behavior of the robot need to be predictable

to the humans. Moreover, these two aspects might be different from person to person

or from one task to another. This work presents a framework to generate predictable

motions with dynamic obstacle avoidance for the robot interacting with the human by

using policy improvement method. The trajectories are generated using Dynamic Motion

Primitives with an additional potential field term that penalizes trajectories that may

lead to collisions with obstacles. Furthermore, human movements are predicted using a

data-driven approach for proactive avoidance. A cost function is defined which measures

different aspects that affect the comfort and predictability of human co-workers (e.g.,

human response time, joint jerk). This cost function is thenminimized during human-robot

interaction by the means of policy improvement through black-box optimization to

generate robot trajectories that adapt to human preferences and avoid obstacles. User

studies are performed to evaluate the trust and comfort of human co-workers when

working with the robot. In addition, the studies are also extended to various scenarios and

different users to analyze the task transferability. This improves the learning performance

when switching to a new task or the robot has to adapt to a different co-worker.

Keywords: human robot interaction, motion generation, black-box optimization, dynamicmotion primitives, policy

improvement, close proximity

1. INTRODUCTION

Nowadays, robots are no longer only industrial machines behind fences. Instead, they are being
integrated more in our daily lives as well as in collaborative manufacturing scenarios. The new
generation of robots is expected to assist elderly people in daily tasks, to support customers in
markets, to work as a partner with humans in factories, etc. For all of these tasks, the robots are
required to interact with the human. Especially in collaborative scenarios, where robots work with
humans as co-partners in joint tasks, they need to interact more efficiently since it will increase the
overall performance. Looking at the case when two humans perform a joint task as an example,
the humans can anticipate each others’ movements and perform a complementary action without
the need of verbal communication. This facilitates teamwork and increases the efficiency of joint
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tasks (Erlhagen et al., 2007). Similarly, robots are expected to
move in a natural way, similar to human-human interaction.To
achieve such an interaction between humans and robots, the
first requirement is the robot’s motion must be readable to the
human (Kirsch et al., 2010), which means the human partner is
able to understand its intentions and the motion/behavior of the
robot has to meet the expectations of the human partner. In the
work of Lichtenthäler and Kirsch (2016), this is defined as legible
robot behavior. Another requirement is that the robot has to be
aware of its surroundings to provide a safe environment, while
still being efficient in performing its task. Legibility and safety are
therefore the two important criteria that increase the efficiency of
joint collaboration between human and robot.

In order for humans to feel comfortable working with robots,
especially in close proximity, they have to understand the robot’s
behavior and be able to infer their actions or in other words, the
robot’s behaviormust be legible to the human partner. Identifying
the factors that contribute to these natural movements is
not trivial. According to a study conducted by Dautenhahn
et al. (2005), participants want robots assisting at home to be
predictable, controllable and have human-like communication.
Another study (Koay et al., 2007) that investigated the subjective
effects of direction of approach and distance of robots when
handing an object over to humans, came to the conclusion
that the frontal approach is subjectively preferred most by the
participants since it is the most predictable. In addition, Bortot
et al. (2013) discovered that understanding and predicting the
behavior of the robot increases the well-being of humans.

The question arises how such legible robot motion can
be generated. Dragan and Srinivasa (2013) tried to find one
mathematical metric for legibility. However, this is insufficient as
robotmotion gets perceived differently by individual humans and
depends on several factors including the configuration of tasks,
robot positions and human positions. It is therefore necessary
to have a framework in which the robot is able to learn legible
motions by interacting directly with the human. In this way, all
possible influencing factors will indirectly be included.

In addition, to fulfill the requirements mentioned above,
legibility alone is not sufficient. In order to ensure the
safety of humans in close proximity scenarios and allow joint
collaborations, the robot has to know the position of the human
and possibly predict their motion (Oguz et al., 2017) to modify
its trajectories in real-time and reliably avoid collision with the
human. Combining this safe behavior with legibility increases
human comfort.

It is also worth mentioning that the main drawback of
many learning approaches is the training time. The learning
process usually requires several iterations of training and is time
consuming to repeat for each new task and each human partner.
In a lot of scenarios, it might be useful to have a flexible algorithm
that still works if any parameter changes i.e., robot position,
task configuration, human perspective, etc without the need of
retraining. Therefore, the algorithmmust be capable of extending
to different scenarios and different tasks.

In this work, we develop a framework to generate legible
robot motion that is transferable to different tasks and that
is safe to allow collaboration in close proximity through a

reinforcement learning approach. The interdependency between
legibility, safety and efficiency is tackled for achieving natural
human-robot interaction. Both human and robot collaborate in a
joint scenario, i.e., in our case they have to reach similar objects,
and the robot will adapt its motions over time corresponding
to the reaction/prediction of the human partner. After training,
the robot will be able to perform its tasks more efficiently
and more predictable. This helps increase human comfort and
the effectiveness of the collaboration. Our framework is also
generalizable to similar tasks using learned policies in order to
save training time.

2. RELATED WORK

Safety and legibility of robot motion in close proximity have
always been investigated independently. Several methods were
proposed that produce real-time obstacle avoiding trajectories,
while others developed optimization based algorithms for legible
robot motions.

Legible (or predictable) robot motion was first introduced
in Dautenhahn et al. (2005). The result from their survey
confirms the necessity of predictable behaviors in future
robot companions. However, the paper does not focus on
how to generate predictable behaviors for the robot. In the
works from the Robotics and Artificial Intelligence Group at
LAAS/CNRS (Alami et al., 2005; Sisbot et al., 2007, 2008; Sisbot
et al., 2010; Sisbot and Alami, 2012), they developed a human
aware motion and manipulation framework which is able to
generate safe, comfortable and socially acceptable motions. The
framework is verified on amobile robotmanipulator in simulated
environment and in a hand-over scenario on real setup. The
safety criterion introduced in their works, however, is based on
the distance between the robot and the human, i.e., the robot
should keep its distance from the human when performing tasks.
While the framework is able to generate safe and legible motion,
it is not applicable for joint tasks in close proximity since it does
not allow the interaction between human and robot. As shown in
the results of their papers, only the robot performs its tasks and
there is no collaboration between them.

The work from Dragan et al. (2013) focuses explicitly on
generating predictable and legible robot motion. In their work,
the authors differentiate between legibility and predictability and
provide a mathematical model to produce and evaluate such
motions. They assume that humans expect robots to be efficient
in their movements and compare all possible goals in the scene to
determine the most probable one. This probability is formulated
mathematically and is being maximized for the targeted goal.
This approach has some limitations. The algorithm was tested
only with two goals for the robot, which the human had to
predict when pausing a video which showed the robot moving
to one of the two (see Supplementary Video). This setup was
very simple as the probability of selecting a goal (randomly) is
already 50%. Another limitation is that the subjective evaluation
of robot efficiency differs from one individual to another and
the algorithm does not allow to adjust the robot’s movements to
individual preferences of each participant.
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In the work of Stulp et al. (2015), the team generates robot
motions that learn from the observation of a human participant
and iteratively reduce the human’s reaction time. Here, Dynamic
Motion Primitives (DMPs) are used for motion planning. Policy
Improvement through Black Box Optimization (PIBBO) (Stulp
and Sigaud, 2012) is applied to improve the robot’s legibility
to the human iteratively. This is done by only optimizing
human guessing time about the action of the robot and the
correctness of the prediction without defining formal criteria
about legibility. This approach provides flexibility in choosing
the relevant parameters to be optimized to obtain legible motion.
Recently, Busch et al. (2017) showed that transferring the learned
policy to other individuals leads to better prediction in the
beginning and can thus lead to shorter adaptation times for new
subjects. However, in this work no close interaction scenarios
were considered as no necessary collision avoidance methods
were integrated and only the policy transfer to other subjects was
investigated, not the policy transfer to new tasks.

Safety for humans during interaction with the robot, in
general, involves several aspects and criteria (Robla-Gómez
et al., 2017). There are also different categories of methods
to ensure safety for the human partner (Lasota et al., 2017)
i.e., safety through control, motion planning, consideration
of psychological factors, etc. Within this work, we limit the
safety aspect to the obstacle avoidance behavior of the robot
and therefore only mention about methods that are able to
provide this functionality to the robot. In this aspect, potential
field (Khatib, 1985) is a very popular and widely used approach
due to its simplicity and real-time capability. Flacco et al.
(2012) and Dinh et al. (2015) utilize the potential field idea
in their works to provide obstacle avoidance behavior on the
end-effector of an articulated robot. In the work of Park et al.
(2008), the authors introduce the dynamic potential field to
adapt robot trajectories while avoiding obstacles in mid-motion.
This dynamic potential field is used with the inverse kinematics
with null-space constraints to further ensure collision avoidance
between the human and robot’s links. However, the aim of these
approaches was not to enable the robot to interact with humans,
but rather to perform desired movements in the presence of
obstacles. In a recent study by Oguz et al. (2017), a stochastic
motion planning algorithm is introduced that predicts human
motions and adjusts the robot’s trajectories on-line to avoid the
predicted region. For the prediction of the human movement,
Probabilistic Movement Primitives (ProMPs) were used, which
were first introduced by Paraschos et al. (2013). This method
learns the distribution of the motion during training and allows
prediction of human motion in the online phase. This allows
close interaction between humans and robots, but does not
examine predictable or legible motion.

Inspired by the work of Stulp et al. (2015) and considering
the requirements of joint human-robot collaboration in close
proximity, in this paper we extend the learning approach in Stulp
et al. (2015) with the potential field method. Our contribution is
therefore a learning framework incorporating real-time obstacle
avoidance to allow humans and robots working together in
close proximity and therefore both legibility and safety aspects
are tackled within our framework. This means that the human

partner no longer stays outside of the robot workspace as a silent
observer, but really cooperates with the robot in joint tasks in
the same workspace. Apart from that, we also develop a task
generalization method to generate policies for new tasks from
previously learned tasks. With our task generalization approach,
the robot is able to adapt to new tasks faster and hence the
training time is reduced. We evaluate our approach on an
articulated KUKA IIWA robot in virtual reality (VR) as well as
in a real robot and complete the evaluation with a human study.

In the following, we first introduce our legible motion
framework in section 3 then present our idea on the task
generalization method in section 4. The improvement of our
framework and task generalization approach is evaluated through
experiments in section 5. Sections 6 and 7 provides further
discussion and concludes our work.

3. LEGIBLE MOTION FRAMEWORK IN
HUMAN ROBOT INTERACTION IN CLOSE
PROXIMITY

A general overview of our framework is shown in Figure 1. The
goal of the framework is to generate legible motion for the robot
directly through interaction between the human and robot. Both
of them collaborate in a joint scenario, i.e., in our case they have
to reach similar objects, and the robot will adapt its motions
over time corresponding to the reaction/prediction of the human
partner. After training, the robot will be able to perform its
tasks more efficiently and more predictable. This helps increase
human comfort and the effectiveness of the collaboration. The
framework therefore can be described in three steps as follow:

1. Firstly, Dynamic Movement Primitives (DMPs) are
used to generate smooth trajectories with modifiable
parameters. These trajectories are generated in Cartesian
space and converted into the joint space of the robot using
inverse kinematics.

2. DMP trajectories are then executed by the robot in the online
phase where the robot collaborates with the human in a joint
task. During execution, a potential field force is added to
modify the DMP trajectories to ensure safety of the human.

3. A cost function which evaluates how the human partner
perceives each trajectory is computed. These costs are then
used to update the policy, which comprises the parameters
of the DMPs in our framework. In the next iteration, new
trajectories are sampled based on the updated policy and the
procedure repeats until it converges to an optimal predictable
trajectory or the maximum number of iterations is reached.

DMP trajectories are the trials/samples that the robot performs to
understand how his human partner perceives a legible motion. By
changing the parameters of the DMPs, the robot is able to exploit
the working area and approach the goal from different angles.

The human reacts to the robot by moving to his corresponding
task. Each trajectory performed by the robot is then evaluated
based on the human reaction formulated in a predefined cost
function. This cost function reflects the perception of the human

on how legible this trajectory is. Base on the evaluation of the cost

Frontiers in Robotics and AI | www.frontiersin.org 3 July 2019 | Volume 6 | Article 6952

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Hoang Dinh et al. Adaptive Motion Policies in HRI

FIGURE 1 | Overview of the human-guided policy improvement framework. In each iteration, DMPs generate Cartesian trajectories x, which are converted to joint

angles q using inverse kinematics. During interaction, potential field force is added to modify the trajectories online to provide safety when the human gets close to the

robot. After execution, a cost function C is evaluated to update the policy 2 of the DMPs using PIBBO for the next iteration.

function of each trajectory, the DMP parameters will be modified
in favor of the ones that are more predictable to the human

(smaller costs). This is done by the policy update method called
Policy Improvement through Black Box Optimization (PIBBO).
After the DMP parameters (policies) are updated, the robot rolls
out new samples from these parameters for the next iteration. The

procedure is then repeated until the trajectories converge or the
maximum number of iterations is reached. Note that all of these
computations are done at the beginning of each iteration.

To prevent collision between human and robot during

execution (online phase), the DMP trajectories are modified
using a potential field force. This potential field force is

proportional to the relative distance between the human and

robot and returns an error vector that is added into the current
DMP trajectory. As a result, the robot will move away when
the human comes close, and recovers his task when the area is
free. Additionally, in order to increase safety in close proximity,
human motion is predicted using Probabilistic Movement
Primitives (ProMPs) (Paraschos et al., 2013) and serves as
Supplementary Information added into the potential field force.
ProMPs is a recent approach that is able to generate/represent
movement from a given trajectory distribution. After training
with a set of human motion observations, we used ProMPs
in the online phase to predict the movement of the human
hand and incorporate this information into the potential field.
This helps the robot react faster and can avoid the human
more actively.

In section 3.1, we first briefly introduce DMPs and describe
how they are used to generate smooth trajectories. The policy
update method PIBBO is introduced and explained in section 3.2.
This is followed by the explanation of how safety for the
human partner is ensured through potential field force with the
assistance of ProMPs in section 3.3. Finally, the cost function
that evaluates the performance of each trajectory especially with
a focus on collaboration effectiveness, is explained in detail in
section 3.4.

3.1. Dynamic Movement Primitives
DMPs provide a method for trajectory control and planning
that is able to represent complex motions and is flexible to
be adjusted without manual parameter tuning or having to
worry about instability (Ijspeert et al., 2002). DMPs comprise
two parts, a dynamical system, and a nonlinear forcing term.
In our work, the dynamical system is defined as a closed loop
spring-damper system

τ ÿ = α(β(yg − y)− ẏ) (1)

that converges to the defined attractor state yg where τ is the time
constant, α and β are positive constants. By setting β to α/4 we
get a critically damped system. The variables y, ẏ and ÿ are the
position, velocity and acceleration, respectively.

The forcing term, which forms the second part of the DMPs,
deforms the trajectory tomatch a desired shape. Thus, the spring-
damper system is modulated to

τ ÿ = α(β(yg − y)− ẏ)+ f (x), (2)

where f (x) is the forcing term consisting of a weighted sum of
Gaussian basis functions multiplied by a canonical dynamical
system, denoted as x. The canonical system x is obtained by

ẋ = −αxx, (3)

where αx is a constant. The canonical system state x in (3) starts
at some arbitrary value and goes to 0 as time goes to infinity. This
ensures convergence to the goal while keeping the forcing term
not directly dependent on time. The forcing function f (x) hence
has the form

f (x) =

∑N
i=1 ψi(x)ωi∑N
i=1 ψi(x)

x, (4)

where

ψi(x) = exp

(
−

1

2σ 2
i

(x− ci)
2

)
(5)
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defines the Gaussian basis functions with means ci and variances
σi. In (4), N is the number of basis functions and ωi are
modifiable weights, which are adjusted to match the desired
trajectory. They are optimized by the policy improvement
method explained in section 3.2.

Since the mass spring-damper system leads to high initial
accelerations, which is not desirable for robots, we use a goal
system, which moves the attractor state of the system from
the initial state y0 to the goal state yg during the movement.
This delayed goal attractor ygd itself is given as an exponential
dynamical system that starts at y0 and converges to yg .

ẏgd = −αg(yg − ygd) (6)

Thus the equation for the DMPs resolves to

τ ÿ = α(β(ygd − y)− ẏ)+ f (x) (7)

The DMPs has several advantages, which make it suitable for our
framework:

• It is guaranteed to converge to the goal, since the canonical
system is 0 at the end of every movement.
• The weights ωi can be adapted to generate any desired

trajectory. In our case this is especially relevant, since we want
to learn the optimal trajectory and adjust the weights online
with each interaction.
• As there is no time-dependency, the duration of themovement

can simply be altered by adjusting τ .

3.2. Policy Improvement Through
Black-Box Optimization
Policy improvement methods seek to optimize the parameters of
a policy w.r.t. a utility function. In our work, we use a policy
improvement method to iteratively update the weights of the
DMP to obtain a desired trajectory. Policy improvementmethods
have two basic steps:

1. Exploration by perturbation: The exploration noise ǫt can
be either added to the actions, i.e., the output of the policy
(πθ (x) + ǫt), or directly to the input parameters of the policy
(πθ+ǫt (x)).

2. Policy update: Here, the parameters of the policy are updated
in order to minimize a predefined cost metric C. Usually,
gradient descent is applied to iteratively converge to a local
minimum. Another method is the reward-weighted averaging,
which is used in our application.

Reward-weighted averaging does not require differentiability of
the cost function, which makes it more stable than gradient
descent if the cost function is not continuous.

Specifically for this work, we choose Policy Improvement
through Black-box Optimization (PIBBO) as our policy
improvement method (Stulp and Sigaud, 2012). PIBBO treats the
whole control trajectory as a black-box, i.e., no assumptions are
made about the search space or the cost function. An important
property of PIBBO is that the search is done in the space of

policy parameters, thus it is a parameter perturbing approach.
The output ut of the policy is computed as:

uk = πθ+ǫk (x), with ǫt ∼ N (0,6) (8)

In our case the policy πθ , is the DMP and θ are the corresponding
weights for the Gaussians.

The parameter update is done using reward-weighted
averaging. First, the cost Ck for each trajectory roll-out is
computed. Then we assign higher probabilities Pk to trajectories
with a lower cost and vice versa.

Pk =
e−1/λCk

∑K
k=1 e

−1/λCk
(9)

k is the number of roll-outs and λ is a constant between 0 and 1.
The parameter update is then given as

δθ =

K∑

k=1

Pkǫk (10)

θ ← θ + δθ . (11)

After taking the weighted average of all roll-outs, the new DMP
with updated parameters θ follows the trend of trajectories with
high probabilities (i.e., low costs). This process of perturbing and
updating is repeated until the desired cost value is achieved or the
maximum number of updates is reached.

The exploration is done by rolling out different trajectories
and evaluating them using the cost values resulting from the
interaction with the human. Before outlining the cost function
in detail, we discuss the safety aspect of the human partner in
close proximity.

3.3. Safety Aspect in Close Proximity
As the human works together with the robot in close proximity,
safety of the human needs to be considered. In essence, the
robot should be able to physically avoid the human to prevent
any collision. In this section, we describe our approach to
provide a safety aspect for the robot. The main idea is to
create an artificial repulsive force to push the robot away
whenever the human comes close (Khatib, 1990; Park et al.,
2008). Furthermore, to improve the robot reactivity, the human
motion is also considered. In our approach, we use Probabilistic
Movement Primitives (ProMPs) to predict the human motion
and incorporate its effect into the repulsive force. Our idea
about generating repulsive force for obstacle avoidance will be
introduced in section 3.3.1, after that, an introduction about
ProMPs and how human motion prediction extracted from
ProMPs is incorporated will be given in section 3.3.2.

3.3.1. Repulsive Force With Artificial Potential Field
The robot trajectory is generated by the DMP at the beginning
of every update. We want to modify this trajectory to avoid
the human partner while still generating smooth motions and
following the original DMP trajectory when the human is out
of reach. As the DMP trajectory is already smooth based on its
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formulation (see section 3.1), the artificial repulsive force also has
to generate a smooth transition on the robot. This is important
for the human partner to feel comfortable when working with
the robot. A simple solution is to make the robot behave like a
virtual mass-spring-damper system regarding to external forces
(Hogan, 1984)

Fext = Më+ Dė+ Ke, (12)

where Fext ∈ R
3represents an external virtual force, which

is excited whenever the human enters the safety area around
the end-effector of the robot. This virtual mass-spring-damper
system results in a smooth transition in the vector e ∈ R

3

regardless Fext. This vector indicates the modification length and
direction to be added to the DMP. M,D,K ∈ R

3×3are positive
definite matrices that represent the mass, damping and stiffness
of the virtual system. In our proposed setup, M is chosen as the
identity matrix, K and D are diagonal matrices chosen to adapt
the desired reaction to virtual forces. Increasing the damping
results in a slower reaction but smoother movement of the robot.
The external virtual force Fext is computed based on potential
fields w.r.t the distance between the end-effector of the robot
and obstacles.

The idea of potential fields was first introduced in the work
of Khatib (1990). Whenever an obstacle is inside a threshold
region of the end-effector, a repulsive force vector Fext according
to (12) is generated. Here, we use the same idea of repulsive
vectors (Flacco et al., 2012; Dinh et al., 2015) to generate a smooth
reaction force

Fext =
Fmax

1+ exp
(
(
∥∥d(E,O)

∥∥ (2/ρ)− 1)γ
) , (13)

where Fmax is the maximum force applied,
∥∥d(E,O)

∥∥is the
distance between obstacleO and end-effector E, ρis the threshold
distance that defines the collision region around the end-effector
and γ is a shape factor. The force reaches its maximum if the
distance equals zero, and zero if the obstacle is outside the
region, respectively. The steepness of the force profile within the
threshold region regarding the distance can be adjusted by the
shape factor γ . With Fext, the error vector e is obtained from (12)
which return in the deviation needs to be added into the DMP to
avoid the obstacle.

3.3.2. Human Motion Prediction With ProMP
Although the robot is able to avoid the human with the repulsive
force generated from the potential field, its reaction time is an
important factor that needs to be considered. In a confined
workspace where the human usually interferes with the robot,
the robot might not have enough time to react and fail to avoid
the human partner. Increasing the safety region around the robot
can improve the reaction time but results in a smaller workspace.
Thus, in our framework, we estimate and predict the human
motion and add this additional information into the repulsive
force to increase the responsiveness of the robot.

In general, human motion estimation requires a specialized
prediction method due to the inter- and intra-personal

movement variations (Todorov, 2004). To imitate such behavior
online, we use ProMPs and learn a distribution of a motion
behavior by training with multiple trajectories performed for a
specific task (Paraschos et al., 2013). ProMPs represent a discrete
trajectory X = {xn}, n = 0 . . .N defined by states xn over time N
with the formulation

yn = [xn, ẋn]
⊤ = 8⊤n ω + ǫy, (14)

where ω ∈ R
k×2 is the weighting matrix over the k × 2

dimensional time-dependent basis matrix 8n = [φn, φ̇n] with k
being the number of basis functions and ǫy ∼ N (0,6y) is zero-

mean independent Gaussian noise, while 8⊤n ω gives the mean
of the trajectory. Introducing a Gaussian distribution to also
represent variance p(ω; θ) = N (ω|µω,6ω) over the weighting
vector ω results in the following distribution for the trajectory:

p(yn; θ) =

∫
N (yn|8

⊤
n µω,6y)N (ω|µω,6ω)dω

= N (yn|8
⊤
n µω,8

⊤
n 6ω8n + 6y).

(15)

Using a set of motion observations, the parameters µω, 6ω can
be computed by maximum likelihood estimation (Lazaric and
Ghavamzadeh, 2010).

By this formulation, an online human motion prediction,
where a trajectory along with the variance for each discretized
time point is generated. This predicted trajectory can be used in
different ways within our framework. An intuitive way is to select
some predictions at different time points along the trajectory.
These predictions represent the points in space where the human
might occlude in the future and thus are treated as incoming
obstacles that the robot has to avoid. This triggers the reaction
of the robot even if the human is not currently within the safety
region, which in turn increases the responsiveness of the robot. In
case the human does not move toward the robot, these incoming
obstacles do not create any disturbance, thus do not alter the
robot desired position.

3.4. Cost Computation
In this section, we will explain how the cost function in our
framework (Figure 3) is defined. There are different aspects that
we want to evaluate through the cost function:

• First is the legibility of the robot trajectories. There are
different methods to measure this aspect. In the works of
Dehais et al. (2011) and Lichtenthäler et al. (2011), they show
the participants robot motions and afterwards ask them to rate
how legible the motions were perceived. In a quantitative level,
Dragan and Srinivasa (2013) and Busch et al. (2017) show the
participants robot motions through videos/experiments and
ask them to indicate immediately or press a button when they
feel certain about the robot’s intention. Time and correctness
of the prediction are used as the indicators for legibility in their
works. Using the same approach as in Busch et al. (2017), we
also use the human prediction time and accuracy to form the
cost of legibility.
• Second is the smoothness of the trajectories. This helps

the human partners feel comfortable when working with
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the robot and be more confident approaching their goals.
Smoothness also contributes in the legibility aspect since a
jerky motion does not meet the expectation of the human. In
our framework, we use the third derivative of the trajectories
to form the cost of smoothness.

From the two aspects that we want to evaluate, several
components are identified and also mixed up depending on the
experimental setup. Here, we list all the costs used in this work:

• End-effector jerk Vej: the sum of the third derivative of
the end-effector position of the robot at each sample
along trajectory.
• Angular jerk Vθ : the sum of the third derivative of the angular

positions of the controlled joints of the robot at each sample
along trajectory.
• Human prediction time Vpred: the time taken by the human to

make a prediction about the robot’s target. It starts when the
robot starts moving and ends when the human reaches one of
the targets.
• Accuracy Vtask: whether the human prediction was correct,

translating to 0 cost (Vtask = 0), or if the prediction was wrong
which results to a cost of 1 (Vtask = 1).
• Human duration Vdur: the duration of the human movement

between when the human starts moving and reaches the
goal. It is a measurement of human’s confidence in the
robot’s presence.
• The weighted distance between the robot trajectories, Vδ ,

which measures how distinct the trajectory to the targeted goal
is in comparison to the trajectories to the other goals. This cost
is calculated using the following equation:

Vδ =

( G∑

g=1

T∑

t=0

1

t

∥∥pt , qt
∥∥
2

)−1
(16)

whereG is the number of the goals excluding the targeted goal,
g is the other goal whose trajectory is compared to the targeted
goal trajectory, t is the time step at which we calculate the
distance, T is the total time of the trajectory, pt is the point
at t in the trajectory to the targeted goal, qt is the position at
t in the trajectory to the goal g and

∥∥pt , qt
∥∥
2
is the Euclidean

distance between pt and qt .

In summary, the cost function has the form

V = λejVej + λθVθ + λpredVpred + λtaskVtask + λdurVdur + λδVδ
(17)

where each cost component is weighted differently. In general,
λpred, λtask > λej, λθ , λdur, λδ as we want to have a high reward
for trajectories that are more predictable to the human partner.

4. TASK GENERALIZATION

Even though our framework generates predictable policies, the
learning procedure requires a considerable amount of data and
thus time until a convergent behavior is achieved. Furthermore,
the trained polices directly depend on the specific setup. When
the environment changes, e.g., the start/goal positions of the

robot or the relative position of the human w.r.t. the robotic
partner, the robot needs to adapt to this new configuration.

Given a fixed number of policies that have been learned on
specific settings, the existing knowledge can be exploited, such
that the adjustment to variations of similar tasks can be achieved
given limited data. In other words, since the prior policies
learned already encode some preference of human perception,
they can be used to improve the learning convergence rate for
the cases that the robot has not been trained for. We propose an
approach to realize such a generalization capability for the policy
improvement framework within HRI settings.

Suppose that the set of tasks for the robot is defined as

8 =
{
g1, g2, · · · , gM | M ∈ N

}
, (18)

whereM is the number of available tasks. Within the scope of this
work, a task is defined as a reaching motion, where the starting
position is the same for all of the tasks and g1, g2, · · · , gM are M
different goal positions. Learning via PIBBO is done by selecting
a subset Ti out of 8 and training trajectories for each goal in
T i, where

T i =
{
g i1, g i2, · · · , g iS

}
⊂ 8, S ∈ N, g ij 6= g ik,∀j 6= k (19)

with a predefined S < M. The result of PIBBO is S policies that
generate predictable trajectories for each g ij over Ti. Each policy

is parameterized by 2
ij
T i

, e.g., in our case given as the weighted
basis functions of the DMP. Note that the policy of g ij depends
on the remaining goals in T i, which means a similar task will
have different policies if it belongs to a different subset. We then
denote the generated policy for a goal g ij from Ti as

πT i (g ij | g i\j) = πT i (g ij) = π(2
ij
T i

) (20)

where g i\j is an abbreviation of all tasks in Ti except j. This can
be interpreted as the policy that generates the most predictable
motion for goal g ij given the remaining tasks in T i.

Given a training set T = {T 1,T 2, · · · ,T k} consisting of k
batches of S elements from 8 each, a new T̃ /∈ T is drawn
from 8. The objective here is to find a new policy for a goal
gm ⊂ T̃ such that the DMPs initialized using this policy improve
the convergence rate of the learning procedure of gm afterwards.
This requires finding a mapping

π
T̃
(gm) = h

(
πT 1 (g11), . . . ,πT 1 (g1S), . . . ,πT k

(gkS)
)

(21)

with h(·) is a function of all policies obtained from the training set
T. In fact, solving (21) is equivalent to finding the parameterized
vector 2m

T̃
in Equation (20) for goal gm in the new subset T̃ .

We claim that a predictable trajectory for each goal in Ti

depends on a set of features χ . These features characterize the
interrelation between g ij and g i\j in the subset T i. They can be
relative distances, angles, etc, depending on how the set of tasks
8 is defined. These features vary for each goal in each subset.
Given a predefined set of p features for goal g ij in T i, we denote

the resulting feature vector for each goal as χTi
(g ij) ∈ R

p. We
now want to establish a relation between χTi

(g ij) and vector
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2
ij
T i

, which is the policy of g ij in T i. Furthermore, the weighted

basis functions of the DMP in 2
ij
T i

are independent from each
other, hence can be evaluated individually. Therefore, we propose

an approximation to initialize each individual weight 2 ∈ 2
ij
T i

as follow

2 = β0 +

p∑

k=1

βkχk(g ij), (22)

where χk ∈ χT i
represents a single feature in the set of p features

for goal g ij. Given the trained policies from T and a predefined
set of features χ , β = {β0,βk} in (22) is obtained by solving the

linear regression problem. Assuming 2
ij
T i

has N basis functions,
then N linear regression problems of (22) are solved individually
to obtainN sets of β , denoted as β i where i denotes the according
basis function index.

From there, given the new subset T̃ , the generalized policy for
a goal gm in T̃ is initialized by the approximate value as

2m
T̃
=




β1
...

βN


 χ

T̃
(gm), (23)

where χ
T̃
(gm) is the features of gm in T̃ . We then use this

policy as an initialization for the DMP when learning predictable
motion for the new subset T̃ . Details about our implementation
and results are outlined in section 5.3.

5. RESULTS

In this section, we present different experiments to evaluate our
framework and task generalization method. In section 5.1, we
first describe the experimental setup in virtual reality (VR). The
legibility results are shown in section 5.2 while in section 5.3, we
present the results of our task generalization approach. Finally,
to verify the safety aspect of our approach we conducted an
experiment on a real KUKA LWR 4+ robot and present its results
in section 5.4.

5.1. Experimental Setup in Virtual Reality
We conduct our main experiments in a VR environment as
shown in Figure 2. There are advantages of VR that facilitate
our work: First, it is easier to change the environment or switch
to different robots and second, VR provides a first person point
of view that is similar to how humans would perceive their
environment, which makes it suitable for our work.

In the experiment, the participant wears a VIVE pro headset
and stands in front of a table with the robot mounted on it in
VR. We added a real table at the exact location as in VR, which
both acts as a physical support and improves the realism of the
interaction. The position of the robot is different depending on
the experiments. In our case, we use two configurations: (i) the
robot is mounted on the same side of the participant, and (ii) on
the opposite side of the participant relative to the collaborative
task area. The first case emphasizes the side-by-side perspective

of the human toward the robot motions and the second case
highlights the direct point of view when the human observes
the robot motions from the opposite side. Here we want to
investigate if this perspective also affects the predictable motion
of the robot. To facilitate the collaboration between the human
and the robot, we design the tasks for both as reaching designated
goals. The goals of the robot are visualized as cylinders and the
goals of the human are visualized as spheres. Each goal of the
robot has a corresponding goal of the human with the same
color. They are positioned near each other to evaluate obstacle
avoidance behavior (Figure 2).

For each experiment, there are three different goals for the
robot and three corresponding goals for the human. The robot
starts first by moving to one randomly chosen goal and the
participant has to predict which one the robot is aiming at and
moves the VR controller to the corresponding goal with same
color when they feel confident about the target of the robot. After
that, both the participant and robot move back to their starting
positions and the procedure repeats. The participant is informed
that this is a collaborative task, therefore they are expected to
find a balance between making a correct prediction or being fast
and reacting early. For example, making many wrong predictions
results in failing the tasks, whereas having long prediction time
increases the total amount of time for both to finish their tasks.
Both cases reduce the efficiency of the collaboration.

Each experiment consists of a habituation phase and an
evaluation phase. The purpose of the habituation phase is to
get the participants acquainted to the VR environment and the
used equipment as well as familiarized to the robot motions and
their own task. This habituation phase reduces the learning effect
during the main evaluation phase. During the evaluation phase,
the participants are asked to answer a questionnaire. The answers
are scaled onto 5 different levels: strongly disagree, disagree,
neutral, agree, strongly agree. There are 11 questions in total, that
are classified into 5 categories:

• How does the participant feel about the smoothness of
the trajectories?
• Does the participant feel safe when working with the robot?
• Are the robot trajectories predictable?
• How natural and comfortable the participant feel about the

robot trajectories?
• How does the participant like and want to work with the

robot again?

The user study was approved by the ethics committee of the TUM
School ofMedicine. All subjects gave written informed consent in
accordance with the Declaration of Helsinki.

For all experiments, if not mentioned specifically, we use
configurations and parameters described as follow:

• For DMP, we use three goal systems for the three Cartesian
goal positions of the end-effector. These goal systems are
first initialized with straight lines. The DMP has 5 equally
spaced Gaussian radial basis functions and there are 5 samples
per update for each goal. In the sampling phase, we add
perturbations with the covariance size as 200 to the DMP
parameters and run the policy for each sample. With each
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FIGURE 2 | Experiment setup with different configurations: (A) Human and robot are on the same side. (B) Robot is on the opposite side of the human.

iteration, we let the variance factor for the perturbations
decay as it helps reducing the search space for the parameters
over time.
• For obstacle avoidance, we use a motion capture system to

detect the position of the human (and the velocity), which are
then used to compute the repulsive force. The maximum force
Fmax is set to 300N and the obstacle threshold is 20 cm around
the end-effector of the robot.
• The weights of cost components used in the experiment are:
λej = 1, λθ = 2, λpred = 8, λtask = 10, λdur = 1, λδ = 3. The
weights of the human prediction time and accuracy costs are
relatively higher than the others.

Over time, the policy of the robot is updated to adapt to
the preferences of the human and produces more predictable
movements to the human partner. The results of this adaptation
are presented in the following section.

In order to convert the Cartesian trajectory produced by
the DMP into joint positions, we use traditional inverse
differential kinematics:

θ̇ = J+ẋ (24)

with J+ being the pseudo inverse of the Jacobian J of the end-
effector (Penrose, 1955), θ ∈ R

7 is joint configuration and
x ∈ R

3 is Cartesian position. The pseudo inverse gives the least
square approximation to the real inverse. In our case only the
pseudo inverse is applicable, as we map three Cartesian values
to seven joint positions, which makes the Jacobian not quadratic
and thus not regular. We constrain the covariance size of the
DMPs to avoid generating trajectories out of the robot’s reach.
In addition, the joint configuration corresponding to the starting
position is fixed for all trajectories. In this way, the elbow position
of the robot resulting from joint redundancy does not change
significantly during the experiment. Hence, the adaptation effect
is mainly visible on the end-effector movement. The motion of
the end-effector is formed based on the DMPs trajectories and the
potential field force applied to it and it is the major factor for the
human partner to differentiate between different robot motions.
Our detailed implementation is provided in https://github.com/
khoilsr/hrc_legible_motion_generation.

5.2. Predictable Robot Motion for a
Specific Setup
Given a specific setup, which in our case comprises the goals
of the human and the robot in addition to the robot mounting
position (either in the same side or opposite side of the human),
the predictable trajectories are obtained through the learning
framework. We conduct experiments with different participants
on different configurations to evaluate overall performance. To
quantify the performance of our framework, we look at the
following criteria:

• The total costV and human prediction time costVpred (section
3.4) for each update. Vpred is used to quantify the legibility of
the robot motion while V shows the overall efficiency of the
learning framework.
• The opinion of the subject about how legible robot motions are

after each phase.
• The converged trajectory for each goal after learning w.r.t each

subject.

The first two criteria will be discussed in sections 5.2.1 and 5.2.2
while the last one will be analyzed in section 5.2.3.

5.2.1. Evaluation of the Learning Framework
Fifteen participants took part in this study. As mentioned, each
experiment consists of a habituation phase and an evaluation
phase. In the habituation phase, 30 trials are executed using
invariable DMP trajectories. After its completion, the evaluation
phase starts, which consists of 10 updates with 5 trials per
update for each of the three goals, resulting in 150 trials in total.
This number is comparable to Stulp et al. (2015) and Busch
et al. (2017). To evaluate the participants’ perception during the
experiment, this phase is divided in three blocks with two breaks
after the 4th and 7th update, respectively, in which the participants
are asked to fill a short questionnaire (see results in Figure 4).

The prediction time and accuracy from all participants is
collected using a motion capturing system after each trial to
update the cost function and evaluate the framework over time.
The human prediction time is calculated by measuring the time
between the start of the robot’s motion until the participant
reaches their goal. Since each human being has a different
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FIGURE 3 | The mean and confidence interval of the total cost and human prediction time cost for all subjects.

inherent reaction speed, we normalize the measurement of the
human prediction time of each participant by their responses on
the first update, which is computed as the average of 15 values of
the human prediction time.

Both total cost V and human prediction time cost Vpred for
all subjects are presented in Figure 3. For each update, there are
225 data points (15 trials per update for 15 participants), each
data point represents the measurement of one single movement
of the participants. The red line depicts the mean while the blue
area illustrates the 95% confidence interval. As shown, both cost
values decrease over time. The human prediction time cost Vpred

drops around 13%, while the total cost V drop is around 24%.
Comparing the data between the first and the last update, a pair-
sampled t-test indicates that they are both significantly different
from each other (t = 7.142, p < 0.001 for V and t = 7.437, p <
0.001 forVpred). The decrease of human prediction time indicates
that the subjects are able to predict and react faster to the robot
motions while the reduction of total cost also implies that the
subjects predict more accurately over time (accuracy cost has the
highest weight).

The subjective legibility of robot trajectories is measured by
the questionnaire during the breaks and after the last update.
Here, we asked the participants’ opinion on two statements: the
robot’s intention was clear and it was easy to predict which goal
the robot is targeting. We get the average of the two answers as
the measurement of legibility aspect from the human perspective.
The trajectories becomemore predictable as themedian increases
over time (Figure 4A). An interesting result that can be observed
here is that the interquartile range is reduced from phase 1 to
phase 2, however it slightly increases from phase 2 to phase 3.
This means the improvement from phase 2 to phase 3 is not very
clear as the mean increase but the data spread is also larger. One
reason for this is due to the trajectories of the robot start to get
close to the converged one after a few updates and the updated
trajectories of phase 2 and phase 3 are quite close together.
An example of this behavior is shown in Figure 4B, where the

trajectories start as a straight line toward the goals and after a few
updates, get close to the converged trajectories depicted as the
bold and dark curves for each goal.

Overall, it can be concluded that, given a specific setup, human
prediction time and subjective legibility can be improved through
our framework and therefore can boost the efficiency of the
collaboration between human and robot. However, the question
arises here whether the learning effect of the participants plays
a significant role in the improvement of the results, since the
experiment is designed as a repetitive task. This will be discussed
further in the next section.

5.2.2. Comparison With Non-adaptive Robot
In this section, we compare our method with a non-adaptive
baseline. Even though we reduce the learning effect from
the participants through the habituation phase, there is still
probability that the human adapts to the motions of the robot
over time. Therefore, the goal of this section is to investigate
if the prediction of the human is improved due to the legible
motions of the robot or because of human adaption. We design
two experiments with the same environment setup, i.e., the tasks
and the positioning of human and robot are the same. We
use the counterbalanced ABBA design and define the following
two groups:

• Group I: Subjects within this control group first interact
with the non-adaptive robot, then with the adaptive
robot subsequently.
• Group II: Subjects within this control group first interact

with the adaptive robot, then with the non-adaptive
robot subsequently.

In the case of non-adaptive robot, we also use our framework,
but the policies (the parameters of the DMP) will not be
updated. Therefore, the non-adaptive robot will always follow
a straight line from the start toward the goal in every motion.
As there is no adaption from the robot, the results from
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FIGURE 4 | (A) Predictability evaluation from all subjects for each phase. The evaluation of participants for the first 4 updates, then the next 3 updates and the last 3

ones are shown in phase 1, phase 2 and phase 3, respectively. The mark shows the median of each group. The box contains 50% of the middle half of all given

answers thus representing the interquartile range of the data. The whiskers mark the most extreme answers. (B) Robot trajectories learned for each goal every

update. The first updates (straight lines) and last updates are marked thicker than the others.

the non-adaptive robot solely reflect the learning capability
of the human over time. This configuration also guarantees
that the trajectory of the robot is smooth based on the
DMP formulation (section 3.1) and the avoidance behavior is
identical to the adaptive robot. The only difference between
the two robots is the method to generate their motions
which can be evaluated by comparing the results from the
two experiments.

The experiments are then conducted on 14 new subjects,
divided into 2 groups of 7 participants each. The procedure
for each experiment is identical to the experiment described in
section 5.2.1.

The total cost and human prediction time for both cases,
adaptive and non-adaptive robot, are shown in Figure 5. The
error bar represents the mean value and standard deviation for
each update. For the adaptive robot, there is a clear tendency
for decreasing in both total cost and human time cost over the
course of iterative updates. On average, the total cost deceases
around 22% and human time cost decreases around 10%. In
the case of non-adaptive robot, these values are 3.8% and 4.5%,
respectively. It can also be seen that for the first few updates,
the subjects collaborate better with the non-adaptive robot as
both of the costs are lower. This is due to the fact that the
adaptive robot uses a trial and error method to understand how
the human perceives legibility by exploiting different motions.
Motions that are harder to predict result in a higher cost, as
shown in the slightly increasing in the human time cost on the
second and third updates of the adaptive robot. But overtime,
its motions become more predictable and easier for the subjects
to predict compared to the non-adaptive robot, as indicated by
the better performance in both cost values from the sixth update
and after.

We also perform pair-sampled t-test to evaluate how
significantly different is the performance between the adaptive
and non-adaptive robot. On the first update, the performance
between both robots is not significantly different (t =

−2.464, p > 0.001 for the total cost V and t = −0.266, p > 0.001
for the human prediction time cost Vpred). In contrast, on the
last update, the t-test results in t = 4.139, p < 0.001 for V and
t = 3.185, p < 0.001 forVpred, which indicates that the difference
is significant. Overall, our conclusion drawn from this section
is that the improvement in the human prediction time and the
overall performance is mainly from the legible behavior of the
robot. The learning effect from the human partner, while also
reducing the human time and cost, does not have a significant
contribution within our framework.

5.2.3. Predictable Trajectory Evaluation
To analyze the converged trajectories from the policy
improvement framework, we first pick three different
configurations: 3 goals in a horizontal line, 3 goals in a vertical
line and 3 goals in a diagonal line. These configurations are
illustrated in Figure 7. Combined with two different mounting
positions of the robot (same or opposite to the human), we have
6 cases in total. The experiments are conducted with several
participants for each case. In Figure 6 we representatively show
3 converged robot trajectories for each goal configuration.

For the horizontal configuration, Figures 6A,B are
with the robot on the same side and Figure 6C is with
the robot on the opposite side. The robot tends to
bend more on the left or right for the blue or red goal,
respectively, while for the green goal, the robot tries to
keep the trajectory in the middle with a small variance,
i.e., the green line diverges slightly to the left side in
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FIGURE 5 | Comparison of the total cost and human prediction time between adaptive robot and non-adaptive robot.

FIGURE 6 | Converged trajectories from different subjects and configurations. (A–C) Horizontal, (D–F) Vertical, (G–I) Diagonal configurations.

Figure 6A. Another variance is the length of the trajectories,
e.g., the red line is the shortest in Figure 6A and longest
in Figure 6B. All trajectories tend to go downward for all
three results.

The vertical configuration is one of themost interesting case as
the trajectories converge quite differently. For example, the green
line curves to the left in Figures 6D,E but keeps in the middle-
left in Figure 6F. The red line is the only one bending to the
left in all three results. However, we observe the same pattern
for all three results. For each case, one trajectory bends to the
left side, one to the right side and one stays in the middle. This

creates a divergence between the three trajectories and makes
it easier to predict. The difference in trajectory shape toward
each goal comes from the random sampling of DMPs during
the rollout phase. For example, if there are more rollouts for
the green goal to the left side and being predicted correctly
by the human, these rollouts will be rewarded more and push
the next update to the left. Another reason is the personal
preference of each participant, i.e., for the blue goal, it is easier
for one participant to predict if it bends to the left side, but for
another the right side is favorable. Hence, these trajectories are
rewarded differently.
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For the diagonal configuration, we observe similar behaviors
as in the horizontal one. The green line stays in the middle while
the two others diverge to the corresponding directions. Also in
this configuration, the distance between two goals is larger than
previous cases, therefore it is easier for the human to predict in
this configuration. The blue line is one example as it tends to go
straight toward the goal in Figure 6H.

For all configurations, we observed slightly different
trajectories w.r.t the mounting position of the robot. It seems the
perspective affects the shape, but it’s not always significant. This
is probably because from the human point of view, the shape of
trajectories does not change a lot, therefore it does not affect the
predictability too much.

In summary, there are differences between trajectories
w.r.t different subjects and configurations i.e., length, bending
angle, etc. However, we also observed several similarities and
patterns in the robot trajectories that make them become more
predictable to the human. This motivates us to learn these
patterns such that they can be generalized to other cases.

5.3. Task Generalization Evaluation
As learning a policy for each task and each configuration requires
considerable amount of time, it is preferable to take advantage
of the knowledge of the prior polices as it already encodes some
preference of human perception. In this section, we evaluate
our task generalization presented in section 4. To generalize the
policy for task gm in a new set T̃ , we have to find a set of features
χ

T̃
(gm) (see section 4). From our observation and from the

results in section 5.2.3, we identified some critical features that
a predictable trajectory depends on:

• The relative distances from the target goal gm to other goals
in T̃ .
• The angles between the target goal gm to other goals in T̃ w.r.t

the horizontal line.
• The relative angle between the human and the robot.

Without loss of generality, we illustrate our idea for the case T̃

consisting of 3 goals as depicted in Figure 7. The workspace of
the robot is divided into a 3 × 3 lattice where robot goals can
be located in 9 different positions. For the sake of simplicity,
the height of the workspace is normalized as 1. Figure 7 depicts
some possible configurations and how χ

T̃
(gm) is calculated. For

example, for G1 in Figure 7A, the relative distances to G2 and
G3 are 0.5 and 1, respectively, the angles to G2 and G3 are both
0◦. For G2 in Figure 7B, the angles are 90◦ and -90◦ while for
the same G2 in Figure 7C, these values are 45◦ and -135◦. The
relative angles between the human and robot is set 0◦ if the robot
in mounted on the same side with the human and 180◦ if the
robot is mounted on the opposite side of the human. Within
the scope of this work, we only investigate these two mounted
positions of the robot, but it can be extended to other cases,
e.g. the robot is positioned on one side of the table such that the
perspectives of the human and robot are orthogonal.

To verify our task generalization approach, three
configurations Figures 7A–C combined with two different
robot positions are used for the training phase (6 different
cases in total). The training phase consists of 18 subjects,

equally distributed for all cases. For each experiment, we
obtain the policy w.r.t each subject for each case. The weights
of the converged trajectories are extracted to construct a
regression model. Then, we use a new setup depicted in
Figure 7D with the robot mounted on the same side with
the human as a testing sample. Using the corresponding
features for the new setup as the input, we initialize
the DMP with the output of the regression function in
Equation (23).

The robot trajectories in the first and final update are depicted
in Figure 8. The trajectories are initialized as curves toward
the three goals in the first update instead of straight lines in
the non-trained case. For G1, the curve bends upward while
for G2 and G3, the curves deviate downward, more to the left
and right from the human point of view, respectively. These
behaviors match the expectation that we observed in section
5.2.3. During the updates, the robot continues exploring new
motions around the initial ones. The covariance size of the
DMP perturbation is set to half of the value of the non-trained
case so that the rollout trajectories are sampled in a smaller
area. The converged trajectories for each goal are shown in
the final update in Figure 8. Compared to the first update, the
shape of the trajectories does not change a lot, which indicates
that the learning algorithm stays close to the minimum from
the beginning.

Next, we analyze the outcome of the total cost and the human
prediction time. Our goal here is to compare the performance
of the learning method to the non-trained case. Therefore, we
establish two groups with 6 new participants each:

• Group A: Subjects within this control group interact with
the untrained robot on a specific experimental setup different
from the ones used for training the data.
• Group B: Subjects interact with the robot, whose trajectories

are initialized by the regressionmodel. The experimental setup
is identical to the one of Group A.

The experiment procedure is the same as described in section
5.2.1. The human prediction time cost of each subject is also
normalized for cross comparison. The means and standard
deviations of the total cost and human prediction time cost
from both groups are plotted together for comparison (Figure 9).
A clear improvement of the trained robot can be observed
directly from the result as both the total cost and the human
prediction time cost are lower than the untrained robot. In
addition, the cost values of the trained robot start decreasing
from the start while in the case of untrained robot, they start
increasing at first then decrease due to high exploration in
the beginning. As the experiment is designed exactly the same
between both groups, the improvement of the trained robot
comes from the initialized trajectories derived from our task
generation approach. Instead of exploring the whole area, the
trained robot only needs to search around the given trajectories,
which inherit the properties of legibility from training data.
As a result, the human predicts easier and faster over time,
i.e., the human time cost drops substantially 20% in the case
of the trained robot compare to 10% of the untrained robot
after 10 updates.
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FIGURE 7 | Different configurations of the robot goals: (A–C) are used for training, (D) is used for testing the task generalization approach.

FIGURE 8 | Robot trajectories in the task generalization experiment. The trajectories were initialized by the weights generated from the regression model.

As a conclusion, the task generalization approach that we
proposed increases the efficiency of the learning framework.
Starting from an initial trajectory generated from the approach,
the robot trajectory converges quickly to the predictable one,
which is also close to the initial trajectory. This helps to reduce
the number of updates and the number of sampled trajectories
per update, which in turn reduces the amount of time needed
for training.

5.4. Experimental Results on a Real Robot
As shown in previous sections, our approach is efficient in
learning predictable motions for the robot through interaction
in VR. We take one step further and bring our framework into
a real robot. While performing the experiments in VR allows us
to evaluate our hypotheses in different setups and configurations
without the need to account for the system limits, safety, etc.
in the performance, it is difficult to judge the safety aspect
from the human perspective since there is no real collision
possibility during the experiment. Therefore, the safety aspect is

additionally evaluated in this section. For this purpose, we design
the experiment as illustrated in Figure 10 with the robot on the
opposite side of the human. The robot used in this experiment
is the KUKA LWR 4+ which has 7 degrees of freedom. The
same inverse kinematics introduced in section 5.1 are applied
to convert the Cartesian position to joint configuration for the
robot. The trajectories generated from our framework are sent to
the robot via ROS (Robot Operating System) at the frequency of
100Hz. The KUKA robot uses the joint position control internally
to keep track of the sent trajectories. Slightly different from
the setup in VR, here the goals of the human and robot are
chosen to be the same and are constructed in the form of three
LEGO blocks (red, blue, and yellow). With this configuration, the
human needs to enter the robot workspace to reach the goals and
therefore triggers the possibility of collision at every movement.
The human hand and robot end effector are equipped with
passive retroreflective markers which are tracked by a Qualisys
tracking system. This information is then used by the robot to
avoid the human and provide safety during the experiment.
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FIGURE 9 | Cost plots that show the difference between the control group that interacted with the untrained robot and the results for the interaction with the trained

robot.

The experiment procedure is then designed identically to
previous sections with a habituation phase and three main blocks
in the evaluation phase. The first block contains 4 updates
while the second and third one contain 3 updates each. After
each block, there is a short break for the subject to answer a
questionnaire. The questionnaire is designed similarly to section
5.2.1 with the same questions about the legibility of robot
motions. Additionally, new questions are added to evaluate
the safety aspect and comfort of the participants. For safety,
we asked the participants’ opinions about three statements:
The robot is responsive to my movement, The robot does not
hit me while moving and I feel safe working with the robot.
The first two statements focus on the avoidance behavior of
the robot since this is the key feature to provide safety for
the human. The last statement is a direct question to the
participants if they feel safe when working with the robot.
The average of three answers is used as the measurement
for safety aspect. Similarly, for comfort, two statements were
asked: The motion of the robot is natural to me and I feel
comfortable working with the robot. Here we want to evaluate
if our framework also provides comfort to the human partner.
The experiment lasts around 30 min in total. During the
experiment, the participants are asked to wear a headphone with
concentration music so that they do not get distracted by the
surrounding environment.

We collect data from 10 new participants who have not
participated in or known about the VR experiments. The
results therefore only reflect the performance of the real robot.
Regarding the total cost V and the human prediction time cost
Vpred, we observe similar patterns as in VR experiments. Both
cost values decreases over time (Figure 11). In this case, the total
cost V drops around 20% and for the human prediction time
cost Vpred, the drop is around 19%. The improvement in the cost

FIGURE 10 | Real experiment setup on a KUKA LWR 4+ robot.

values indicates that the trajectories of the KUKA robot is more
predictable over time.

The bottom side of Figure 11 shows the evaluation of safety
and comfort aspects in box-plot. In case of safety, there is almost
no negative answer from the participants as the data spreads
only from neutral to strongly agree in all three phases of the
experiment. The boxes, which contains 50% of the answers
spread around agree level in phase 1 and phase 2. In phase 3, there
is a larger variation since the box spreads from above neutral to
strongly agree. In general, the data shows positive feedback which
means the participants are confident that the robot will not hit
them while moving and therefore they feel safe when working
with the robot. Some participants, that we observed that during
the experiment, even show their interest in the behavior of the
robot by repetitively interacting with the robot after finishing
their task (they keep moving their hand toward the robot to
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FIGURE 11 | Results of the real experiment on a KUKA LWR 4+ robot. The top side of the figure shows the total cost and human prediction time cost while the

bottom side shows the human evaluation in the safety and comfort aspects when working with the real robot.

see how the robot reacts to their movement). For comfort, the
participants also give positive feedback as most of the answers
are above neutral level. Only in phase 2, one of the whiskers stays
below neutral level. However this is an extreme case (1 out of 10
subjects) which also reflects the difference in subject’s personality.
Overall, we can conclude that our framework is able to provide
a safe and comfortable environment for the interaction between
human and robot during the learning process.

6. DISCUSSION

Our learning framework is a framework that combines learning
and interaction into one. By ensuring safety for the human
partner, we are able to change from “learning from observation”
to “learning through interaction.” The results in sections 5.2.1
and 5.2.2 show that our framework is able to generate motions
that are legible to the human partner during interaction. A
substantial improvement compared to the non-adaptive baseline
also points out that the robot motion is more legible over time
due to its own adaption and the learning effect from human
does not play a significant role during the learning process. We
also present some preliminary results in our task generalization
approach. We first learn the policies of three sampled tasks

and use our approach to generate the policy for a new one.
Results presented in section 5.3 indicate that the robot initialized
with this policy achieves a better performance. This confirms
our hypothesis that legibility can also be transferred to similar
tasks and our framework therefore is generalizable using our
task generalization method. We also verify our framework in a
real experiment setup and show that it is able to provide a safe
environment for the human partner. Even though the results that
we presented show the effectiveness of our framework, there are
some other aspects that we want to discuss in detail.

In our study, we evaluate and verify different hypotheses
as presented in section 5. Beside that, there are also other
case studies that are worth investigating in further experiments.

One case study that is interesting to further investigate is how

the predictable trajectories learned from the framework are
affected by the relative perspective of the human and robot.
The motivation of this study comes from the fact that the
human partner usually does not stay at a fixed position, but
rather goes around when working with the robot. Therefore the
robot trajectories also change from the human point of view. In
our work, two mounting positions of the robot were evaluated
and we obtained some preliminary results. However, further
positions need to be investigated to justify this proposition.
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Another case study is about the variation in perception of
different types of participants, e.g., participants who have robotics
background behave and react differently when working with the
robot compared to others who do not have robotics background.
Comparing the outcomes of the learning framework from these
types of participants requires further inspection but might lead to
interesting results.

Task generalization is a concept to estimate the policy for a
new task from the existing policies of the prior trained tasks
by exploiting the relation between human perception in term of
predicting robot trajectories and task specifications. As a result,
for a new task, the robot starts from a trajectory that is more
predictable to the human and therefore the convergence rate of
the learning framework is improved. We demonstrated our idea
in a 3 × 3 lattice environment with 3 tasks for the robot per
configuration and showed the effectiveness of the approach. The
advantages of our method are: First, it does not require the exact
positions of tasks but only the relative positions between them
as we only estimate the basis functions of the DMP; second, it
can be extended to an n× n case with larger number of tasks per
configuration without lots of modifications. However, since the
features that specify the differences of tasks are defined from the
start and do not change during the learning phase, the variation
of new tasks whose policies can be estimated by our approach are
limited. The reason is these new tasks need to be described using
the same features. For example, in our work, all tasks or the robot
are reaching a goal on a vertical plane.

With the promising outcome of the task generalization
method, there are some consequent open questions that are
worth investigating further. The first question is how to identify
features and how to qualify the influence of each feature to
the trajectories of the robot. In this work, we did it mainly by
observing from a certain number of participants and identifying
some critical features. However, more data is required to properly
justify these features. Another interesting question is how many
cases are needed for the training phase of the task generalization
approach and how to select these cases such that it comprises
enough information about the interrelation between tasks. Too
many training cases requires lots of training time, thus reduces
the efficiency of the approach. But too few training cases might
not contain enough variation, therefore affect the outcome of the
generalization method.

Finally, the experiment on the KUKA LWR 4+ robot is
our first step to bring our learning framework to reality. The
avoidance behavior of the robot is reliable such that the human
feels safe and confident to cooperate with the robot. Here, we
want to emphasize the importance of this avoidance behavior and
its contribution on the success of the learning process since it
allows a smooth and consistent behavior from the human partner
in term of prediction and hand movement. One example is that
in case of collision during the experiment, the human would feel
uncomfortable and hesitant to do the next movements, which
may lead to inaccurate measurement of the human prediction
time. Beside that, one limitation in our setup on the KUKA LWR
4+ is the working area of the robot. Due to the joint limits of
the robot (especially the elbow), the mounting position and our
configuration to avoid singularity, the workspace of the robot
is quite small as we can only setup 3 goals with the distance

between them being around 20 cm. As a result, it is difficult to
extend the framework to different tasks and evaluate the task
generalization method in a real setup. A solution for this is to
change the mounting position i.e., mount the robot on the ceiling
to have a larger range on the elbow or use a different robot with
larger working space.

7. CONCLUSION

In this work, a framework is developed to generate predictable
robot motion that can adapt to human preferences and can
avoid dynamic obstacles, which in our case is the human
hand during interaction. The experiments that were conducted

show that robots are able to adapt their behavior to human
preferences. They can learn to become more predictable while
still giving humans the freedom to move safely in the same
work space. The humans became faster and more confident in
their predictions. Furthermore, a task generalization approach is
also developed and tested. In our experiment, the learned policy
produces better results in the new task than the control group
without a pre-learned policy. This confirms our hypothesis that
the policy learned by this framework is indeed transferable to
other tasks.
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Others’ movements inform us about their current activities as well as their intentions

and emotions. Research on the distinct mechanisms underlying action recognition and

emotion inferences has been limited due to a lack of suitable comparative stimulus

material. Problematic confounds can derive from low-level physical features (e.g.,

luminance), as well as from higher-level psychological features (e.g., stimulus difficulty).

Here we present a standardized stimulus dataset, which allows to address both action

and emotion recognition with identical stimuli. The stimulus set consists of 792 computer

animations with a neutral avatar based on full body motion capture protocols. Motion

capture was performed on 22 human volunteers, instructed to perform six everyday

activities (mopping, sweeping, painting with a roller, painting with a brush, wiping,

sanding) in three different moods (angry, happy, sad). Five-second clips of each motion

protocol were rendered into AVI-files using two virtual camera perspectives for each

clip. In contrast to video stimuli, the computer animations allowed to standardize the

physical appearance of the avatar and to control lighting and coloring conditions, thus

reducing the stimulus variation to mere movement. To control for low level optical features

of the stimuli, we developed and applied a set of MATLAB routines extracting basic

physical features of the stimuli, including average background-foreground proportion and

frame-by-frame pixel change dynamics. This information was used to identify outliers

and to homogenize the stimuli across action and emotion categories. This led to a

smaller stimulus subset (n = 83 animations within the 792 clip database) which only

contained two different actions (mopping, sweeping) and two different moods (angry,

happy). To further homogenize this stimulus subset with regard to psychological criteria

we conducted an online observer study (N = 112 participants) to assess the recognition

rates for actions and moods, which led to a final sub-selection of 32 clips (eight per

68
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category) within the database. The ACASS database and its subsets provide unique

opportunities for research applications in social psychology, social neuroscience, and

applied clinical studies on communication disorders. All 792 AVI-files, selected subsets,

MATLAB code, annotations, and motion capture data (FBX-files) are available online.

Keywords: body motion, experimental paradigms, human interaction, motion capture, non-verbal behavior, social

cognition, visual stimuli

INTRODUCTION

Observations of others’ movements provide important
information about our social environment. Not only do
movements tell us what people are doing or what they intend to
do (Dittrich, 1993; Thompson and Parasuraman, 2012; Cavallo
et al., 2016), they also build the basis for far-reaching inferences
about others’ motivational states, moods, and emotions
(Atkinson et al., 2004; Loula et al., 2005; Chouchourelou et al.,
2006; Gross et al., 2012; Barliya et al., 2013). The cognitive
mechanisms and the putatively distinct neural mechanisms
underlying action recognition on the one hand and emotion
inferences on the other hand are not yet fully understood
(Vogeley, 2017). A limiting factor in previous studies has
been the lack of naturalistic movement stimuli that are free of
confounds and allow for high levels of experimental control (cf.
Bente, 2019). This is a general requirement in motion perception
studies, but particularly crucial for studies in the field of
cognitive neuroscience, where distinct stimulus features that are
not subject to the experimental variation, can contaminate the
observed effects and aggravate their interpretation. Problematic
confounds can derive from low-level physical features, such
as differences in luminance or pixel changes, as well as from
higher-level psychological features, such as differences in the
stimulus difficulty and recognition base rates. The demand for
internal validity, stands opposite to the quest for ecologically
valid social stimuli, which has led to the use of more complex,
real-life samples of human behavior, as captured in video
documents (Bartels and Zeki, 2004; Hasson et al., 2004;
Nishimoto et al., 2011; Lahnakoski et al., 2012; de Borst and
de Gelder, 2015). Beyond the mentioned threats to internal
validity, the disadvantage of video stimuli, in particular those
collected in naturalistic settings, is evident: video documents
usually disclose person variables such as age, ethnicity, gender,
or attractiveness relevant to stereotypes that might interfere with
inferences based on movement (Meadors and Murray, 2014).
Further confounds concern the visibility of context, which has
been shown to massively influence the recognition of bodily
expressions (Kret and de Gelder, 2010). Last but not least, when
falling back on existing media content, such as samples from
TV shows or movies (Hasson et al., 2004; Spunt and Lieberman,
2012; Schmälzle et al., 2015) there is no way to control any of the
visual features and no access to behavioral information of the
actors, except through time consuming coding.

Different methods for stimulus production have been
proposed to preserve the natural movement dynamics while
avoiding the typical issues of video stimuli (cf. Bernieri et al.,

1994) such as the use of point light displays (Johansson, 1973,
1976) or video quantization techniques (Berry et al., 1991, 1992).
However, both methods come along with specific limitations.
Although point-light displays have been shown to carry relevant
information for the recognition of intentions (Manera et al.,
2010) and emotions (Atkinson et al., 2004; Chouchourelou
et al., 2006; Gross et al., 2012; Barliya et al., 2013; von der
Lühe et al., 2016) they can only portray movements but not
postural patterns (see Cutting and Proffitt, 1981), which also
convey relevant emotional information (cf. Aviezer et al., 2012).
Quantization techniques used to degrade video images to rougher
mosaic patterns are restricted as they cannot completely obscure
person characteristics, such as gender and ethnicity (see stimulus
examples in Bernieri et al., 1994). These limitations can be
overcome by using motion capture technologies and hereon
based character animations (cf. Kret and de Gelder, 2010). Such
procedures for stimulus production not only allow to systemically
vary or obscure aspects of physical appearance (Bente et al., 2008,
2010) but also provide rich datasets to analyze the behavioral
variations in the stimuli (Poppe et al., 2014). Importantly, we
could show that character animations (lacking several visible
features) produce similar impressions as videos of the original
human movement they are based on (Bente et al., 2001a,b).

A setback of motion capture and character animation
applications can be seen in the time consuming production
process including marker application and calibration and
particularly the labor intense post-production to clear the motion
data from measurement artifacts and jitter before rendering. To
protect these considerable investments it is reasonable to produce
and publish larger stimulus data sets formultiple (re-)use. Ideally,
these stimulus sets should contain annotations of low-level and
high-level stimulus features, which allow other researchers to
select stimulus subsets tailored to their specific research questions
and methodological requirements. This is particularly true for
brain imaging studies that might require the control of physical
stimulus features such as brightness, contrast or pixel change
dynamics in order to avoid contaminations of low-level sensory
effects and high-level inferential processes. We here introduce
such an annotated stimulus database suitable for the study of
action recognition and emotion inferences in social perception
research and social neuroscience.

Motion capture was performed on 22 human volunteers,
instructed to perform six everyday activities (mopping, sweeping,
painting with a roller, painting with a brush, wiping, sanding)
in three different moods (angry, happy, sad; see Table 1). The
six activities were chosen to be recognizable for the majority
of viewers without specific expertise in contrast to movements
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TABLE 1 | Activities and moods recorded in the motion capture setup.

Activities Moods

1. Mopping 2. Sweeping 1. Happy

3. Wiping a table with a rag 4. Sanding a piece of wood

on a table

2. Angry

5. Painting a wall with a

brush

6. Painting a wall with a

roller

3. Sad

All six activities were performed in three designated recording blocks for each mood.

requiring expert knowledge (e.g., particular dancing styles). Five-
second clips of eachmotion protocol were rendered into AVI-files
using two virtual camera perspectives for each clip, yielding a set
of 792 stimuli. Based on this, we identified an exemplary subset of
clips controlled for low- and high-level confounds: By applying a
MATLAB routine for feature extraction we identified a subset of
83 clips free of outliers and characterized by maximal similarity
of low-level physical stimulus features across actions and moods
(see Figure 1 for an overview). In the next step we conducted
an online observer study to obtain recognition rates for action
and emotion which could serve as high-level psychological
selection criteria for stimulus sets. Applying this data to further
homogenize the stimulus set we ended with a fully balanced
subset of 32 animation clips (eight variations of each of four
possible combinations: two actions × two moods). This specific
subset was prepared for a particular fMRI study that focused on
the differential activation of the action observation network and
the mentalizing system (also called theory of mind system) as
related to action and emotion recognition (Geiger et al., 2019).

The current article introduces the ACASS database
(Annotated Character Animation Stimulus Set) and reports the
details of stimulus generation, the algorithm used for feature
extraction, as well as the exemplary stepwise stimulus selection
procedure leading to the subset(s). The publication includes
the complete database including all animations (N = 792)
annotated with low-level features along with two subsets: (a)
with additional recognition rate annotation (n = 83 animations)
and (b) selected for maximum homogenous and balanced
properties (n = 32 animations). Additionally, we provide the
3D data (FBX-files, N = 396). Readers interested in existing
motion capture databases can refer to Table 2 and the respective
publications mentioned therein.

STIMULUS DATABASE

Performers
We recruited 31 volunteers (17 females, mean age= 25.55, SD=

6.01) via (a) mailing lists of the study programs Psychology and
Neuroscience of the University of Cologne, (b) word of mouth or
(c) publicly visible notices. The volunteers which participated in
the study to produce motion capture data will in the following
be called “performers.” Four performers were excluded due to
technical issues. Five other performers were excluded because
they stated that they did not empathize sufficiently with the
demanded moods during the procedure (see section Instructions

and Recording-Procedures for details), resulting in a total sample
of n= 22 (12 females, mean age= 24.73, SD= 4.84).

All performers were informed about the scientific background
of the envisaged use of their motion capture recordings
as stimulus material and gave informed consent prior
to participation. All performers were either compensated
monetarily (15€) or with credits for participation. Procedures
were approved by the ethics committee of the Medical Faculty of
the University of Cologne.

Instructions and Recording-Procedures
All performers filled out a questionnaire via computer which
included basic demographic information, as well as the following
psychological traits (see Supplementary Data Sheet 1): a short
version of the Big Five Inventory (Rammstedt and John, 2007),
the Toronto Empathy Questionnaire (Spreng et al., 2009), and the
Emotional Intelligence Scale (Schutte et al., 1998). Correlations
between these traits and the subsequent recognition rates (see
section Homogenizing for Recognition Rates) showed that
the personality traits of the performers have no significant
influence on the subsequent recognition rates when presenting
the animations to naïve volunteers (Lammers, 2017).

We selected six everyday household activities (mopping,
sweeping, painting with a roller, painting with a brush, wiping a
table, sanding a piece of wood) in combination with three moods
(angry, happy, sad; see Table 1) to yield animations that contain
information about a specific activity (What is the person doing?)
and at the same time about the underlying mood that the person
was in (How is the person doing it?). The six activities can be
separated in three domains (floor, table, wall) with two pairs of
actions each. For instance, sweeping and mopping (floor) are
not too easily differentiated when shown as wooden mannequin
without the used tool (see Figure 2A).

Each volunteer performed all activities in combination with
the different moods resulting in 18 recordings per performer
(see Table 1). To ensure that the performers execute the
different movements naturally while displaying the different
moods, we used the followingmood induction procedure. Specific
instructions were presented as audio recordings to which the
volunteers listened before each of the 18 recordings. Mood
induction was achieved by an Imagination Mood Induction
Procedure, which is considered to be one of the most effective
ways to induce different moods (for a meta-analysis on mood
induction procedures, see Westermann et al., 1996; a transcript
of the instructions is provided in Supplementary Table 2).

The recordings were organized in three recording blocks
according to the moods: angry, happy, and sad. The order of the
three moods was randomized for each performer, while the order
of activities remained the same in all three blocks. To control
for immersion of the volunteers into the different moods, the
performers’ level of immersion into the demanded mood was
assessed after each recording block via a Likert scale (How well
were you able to empathize with the required feeling?; German:Wie
gut konnten Sie das von Ihnen geforderte Gefühl nachempfinden?)
ranging from 1 (not at all) to 11 (very well). The mean level of
immersion was 9.197 (SD 1.184). Performers’ data as a whole
were excluded from further processing if they responded with a
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FIGURE 1 | This flowchart summarizes the rationale and process of stimulus production (A), annotation (A,C), and selection of the stimulus subsets (B–D).

value equal to or smaller than five for any of the recording blocks
to ensure sufficiently mood-influencedmovements. Additionally,
performers were asked to briefly describe the situation(s), which
they imagined in order to immerse into the different moods.
Directly before the next recording block they were presented with
a 90 s relaxation-video (showing a tree with relaxing background
music) to neutralize the mood.

Technical Setup and Processing
The movements were recorded using an optical motion capture
system with 16 infrared cameras (frame rate = 100Hz) and the
Motive Software (OptitrackTM, NaturalPoint, Inc., Oregon, USA).
After recordings, the 3D-data were processed and rendered using
MotionBuilder R© and Maya R© (Autodesk Inc., California, USA)
to retarget the human movements onto a virtual character in a
virtual scene. We used a virtual character on a black background
that looked like a wooden mannequin without a face, with
detectable gross hand movements but without visibility of the
fingers and the used tools (see Figure 2A).

Light sources and virtual cameras were added to all
recordings in an identical fashion to ensure uniform brightness
conditions. The virtual cameras defined the perspective (position,
orientation, field of view) from which the resulting animation
showed the mannequin. We placed two virtual cameras in each
virtual scene to render the material from both the left-hand
45 degree angle and the right-hand 45 degree angle from the
frontal axis. We chose this angle, because in pretests it achieved
the best tradeoff between ecological validity and recognizability
compared to other orientations.

From the total recording length of ∼30 s only the first 5 s
of the respective action were batch-rendered as PNG-files with
the mental ray Plugin for Maya. We decided to use the first 5 s,
because we expect the mood to be performed at peak intensity
at the beginning of the recording sequence. Using a custom
MATLAB script, these image-files were subsequently converted
to high definition AVI-files (1280× 720 pixels) with a frame rate
of 25 frames per second.

The rendering resulted in 792 animation clips featuring
22 volunteers performing six everyday household activities in
combination with three moods (see Table 1).

Additionally we provide the 396 FBX-files that allow the use
in virtual reality and to further change camera angles, choose
different appearances of the avatar or computations based on the
3D data.

Low-Level Physical Feature Extraction and

Stimulus Annotation
Our aim is to provide solid animation stimuli for research
paradigms. As such, we deem it most important to be able to
characterize the stimuli that are shown to (future) participants.
While the analysis of the motion capture data would yield
additional insight about the individual movements, we aimed at
specifying details about the stimulus material that is presented
to volunteers of future studies. This means that the analysis of
the visual features of the AVI-files gains the best insight into
what future participants will perceive when confronted with
the stimuli.
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TABLE 2 | Existing motion capture databases.

Name Publication Availability

The Korea University Gesture

Database

Hwang, B. W., Kim, S., and Lee, S. W. (2006). A full-body gesture

database for automatic gesture recognition. 7th International

Conference on Automatic Face and Gesture Recognition (FGR06),

243–248. https://doi.org/10.1109/FGR.2006.8

Upon request:

gesturedb@image.korea.ac.kr

The Biological Motion Library Ma, Y., Paterson, H. M., and Pollick, F. E. (2006). A motion capture

library for the study of identity, gender, and emotion perception from

biological motion. Behavior Research Methods, 38(1), 134–141.

https://doi.org/10.3758/BF03192758

http://paco.psy.gla.ac.uk/index.php/res/download-data

CMU Mocap Database Not available http://mocap.cs.cmu.edu

HDM05 Müller, M., Röder, T., Clausen, M., Eberhardt, B., Krüger, B., and

Weber, A. (2007). Documentation Mocap Database HDM05 (No.

CG-2007-2). Universität Bonn.

http://resources.mpi-inf.mpg.de/HDM05

HMDB Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., and Serre, T.

(2011). HMDB: A large video database for human motion

recognition. 2011 International Conference on Computer Vision,

2556–2563. https://doi.org/10.1109/ICCV.2011.6126543

http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-

motion-database

ICS Action Database Not available Upon request:

tmori@ics.t.u-tokyo.ac.jp

Overview: http://www.miubiq.cs.titech.ac.jp/action/index.html

IEMOCAP Busso, C., Bulut, M., Lee, C. C., Kazemzadeh, A., Mower, E., Kim,

S., Narayanan, S. S. (2008). IEMOCAP: interactive emotional dyadic

motion capture database. Language Resources and Evaluation,

42(4), 335. https://doi.org/10.1007/s10579-008-9076-6

Upon request:

https://sail.usc.edu/iemocap/release_form.php

GEMEP Corpus Bänziger, T., Mortillaro, M., and Scherer, K. R. (2012). Introducing

the Geneva Multimodal expression corpus for experimental research

on emotion perception. Emotion, 12(5), 1161–1179. https://doi.org/

10.1037/a0025827

Upon request:

https://www.unige.ch/cisa/gemep

The KIT whole-body human

motion database

Mandery, C., Terlemez, O., Do, M., Vahrenkamp, N., and Asfour, T.

(2015). The KIT whole-body human motion database. 2015

International Conference on Advanced Robotics (ICAR), 329–336.

https://doi.org/10.1109/ICAR.2015.7251476

https://motion-database.humanoids.kit.edu/

Only databases that were available to the authors are listed here. Databases that have an accompanying article but can no longer be accessed are not listed.

TABLE 3 | Overview of Value Categories Computed by Matlab Algorithm.

No. Value category Description

1. pixelamount Number of non-black pixels in current frame

2. intensitydiff Changes of gray-scale values across time

3. rel_intensitydiff Amount of pixels in avatar ÷ sum of intensity

differences (1 ÷ 2)

4. MA_X The horizontal extension of the motion area

5. MA_Y The vertical extension of the motion area

6. MA_size MA-X-Dimension × MA-Y-Dimension (4 × 5)

To help understand the variable-names in the supplementary spreadsheets, the value

categories are named accordingly here. One of the six categories always builds the

first part of the variable-name. For each of these six categories, ten values (see

Supplementary Table 1) were computed, resulting in a total of 60 variables. Example

for the variable-name for the mean amount of pixels of a clip: pixelamount_mean. MA,

motion area.

To this end, we developed a special algorithm, which
accepts most common video file formats (e.g., AVI, MPEG-
1, MPEG-4). The algorithm is implemented and executed in
MATLAB (R2017a, The MathWorks, Inc., Natick, USA). The
routine performs a frame-by-frame comparison based on 8-bit
gray-scale converted images with a black threshold of 30. The

resulting signal is filtered with a moving average filter (window
size = 5). The algorithm extracts two main features: (a) the size
of a “motion area” (MA) and (b) differences in pixel intensity
(i.e., pixel change). The MA is automatically defined by the 2D-
area that the avatar occupies per frame and can be thought
of as the smallest possible rectangle encompassing the whole
body including the most distal parts (minimum bounding box).
Usually these are head and feet, as well as hands, elbows or
shoulders (see Figure 2B for illustration). The MA gives an
impression of the extension of movements (e.g., stretched arms)
and the frequency of occurring motion patterns (e.g., back and
forth movements). On a more abstract level, the MA measures
the size of the area in a given frame that is occupied by non-black
pixels (proportion of foreground to background).

Pixel change is computed by comparing the absolute
differences of gray values of each pixel frame-by-frame.
This allows to infer motion parameters in general, but is
particularly interesting for cases when the changes in MA
are subtle (e.g., small movements in front of the body).
These concepts are based on common approaches, namely
motion energy analysis (Ramseyer and Tschacher, 2011)
and motion energy detection (Grammer et al., 1999). The
output of the low-level feature annotation is structured in
60 variables, with six main categories (Table 3) and 10
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FIGURE 2 | Standardized virtual character with blank face used in the animations (A). The red rectangle illustrates the detected motion area for the current frame (B).

values each (see Supplementary Table 1). Three of the
six categories are centered on pixel change computations
(categories 1–3), while the other three reflect characteristics
of the MA (categories 4–6). Automated curve sketching
is implemented to compare the progression of motion
features within and between animation clips (see Figure 3

for an example). One core element of this procedure is
the translation of visible motion features into quantitative
properties (e.g., number of maxima; see Supplementary Table 1,
Values 3–10).

Based on these values we defined motion frequency as the
number of maxima of the MA-size-curve (e.g., how often does
the avatar stretch its arms) and motion expansiveness as the
amplitude of the MA-size-curve (e.g., how far does the avatar
stretch its arms).

Most of the 60 parameters show weak correlations, however
some are inherently connected and thus show strong correlations
(e.g., the number of maxima and the mean distance between
those maxima; for a graphical representation of correlations
between all parameters, see Figure 4).

Resulting Database
The 60 variables resulting from the low-level feature extraction
were computed for all 792 animation clips and included in
the database metafile (see Supplementary Data Sheet 2; see also
Figures 5, 6 for an overview of all animations across actions
and moods).

We used R (R Core Team, 2019), RStudio (RStudio Team,
2018) and the lme4 package (Bates et al., 2015) to fit generalized
linear mixed effects models of the relationship between motion
frequency and action, as well as mood. Likelihood ratio tests
were used to assess the general influence of predictors, comparing

how well models including different predictors fit a given
data set while taking into account the models’ complexity.
The significance of the effect of each predictor was tested by
comparing a model including the predictor with the same model
without the predictor against a significance level of 0.05.

Post hoc tests were computed for the comparison between
factor levels (correcting for multiple comparisons) with the
glht() function from the multcomp package (Hothorn et al.,
2008). To analyze motion frequency, a model including action
and mood (without interaction term) as fixed effects with
random intercepts for motion capture performers was fitted and
performed significantly better than the null model including only
the intercept or models with only one of the fixed effects [χ2

(2) =

176.31, p < 0.001].
In post hoc tests we found significant differences in the mean

motion frequency for sanding vs. wiping (M=−0.14, SE= 0.04,
z = −3.16, p < 0.01; see also Figure 7), but not between the
two other pairs of activities. The tests further revealed significant
differences in the mean motion frequency between happy and
sad movements, M = −0.19, SE = 0.04, z = −5.28, p <

0.001, angry and sad movements, M = −0.44, SE = 0.03, z =

−12.99, p < 0.001 and notably also between happy and angry
movements, M = 0.25, SE = 0.03, z = 7.84, p < 0.001 (see
also Figure 8).

DEFINING STIMULUS SUBSETS

In the following we exemplarily demonstrate a stimulus selection
procedure which results in an optimal set to compare neural
correlates of action and emotion recognition. This selection is
based on the low level video features described above, as well
as on an additional annotation based on observer recognition
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FIGURE 3 | Exemplary curves computed from the raw output of the MATLAB algorithm for one animation clip. (A) shows an example for “Pixels in Avatar” (categories

1 – 3 in Table 2), while (B) displays an example for “MA-Size” (categories 4 – 6 in Table 2). The trajectories of the curves are used to derive variables such as the

number of maxima or the mean amplitude (for a full list of computed variables, see Table 2 and Supplementary Table 1).

FIGURE 4 | Overview of correlations between all 60 variables from the MATLAB algorithm. Most correlations are weak, but some parameters are inherently

connected, and thus show strong correlations (e.g., number of minima and number of maxima in the same category).

rates for actions and emotions (see section Homogenizing for
Recognition Rates). The procedure comprises three selection
steps, which lead to a highly homogenous set of 32 stimuli with

eight clips for each of the four different possible combinations
(two actions × two emotions; see Figures 1B–D for an overview
of the selection procedure).
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FIGURE 5 | Scatter plots showing the relations of motion frequency and motion expansiveness for all six activities. Darker areas indicate the overlap of multiple

animation-files. Sanding and wiping show the highest values for motion frequency, while sweeping, and mopping show the highest values for motion expansiveness.

Homogenizing for Low-Level Physical

Features
Procedure

First, we excluded single animation clips with outliers in any of
the 60 variables (outlier defined as a value outside the range of
M ± 2× SD) to ensure comparability across action and emotion
categories. To this end a z-score for each variable was computed.
After excluding clips with outlier data in any of the 60 variables,
328 of the initial 792 animations remained (see Figure 1B). The
distribution of the remaining clips across conditions (actions,
moods) is illustrated in Figure 9. In a second step, the remaining
328 videos were subsequently analyzed with R (R Core Team,
2019) and RStudio (RStudio Team, 2018) in (generalized)
linear mixed effects models, followed by post hoc tests
as described above.

The goal was to remove groups that show significant
differences in their motion frequency and to identify the
subset of clips with the highest possible homogeneity
(see Figure 1C). Since motion frequency is reported
to be the most characteristic parameter of movements
under varying emotional conditions (Paterson et al.,
2001; Sawada et al., 2003), we decided to focus on
this variable in the selection process. The results for
motion expansiveness are reported as an additional
descriptive parameter.

RESULTS

Motion frequency was analyzed in generalized linear mixed
effects models with action and mood as fixed effects and random
intercepts for motion capture performers. A model including
action and mood (without interaction term) as fixed effects fitted
the data significantly better than the null model including only
the intercept or models with only one of the fixed effects [χ2

(2) =

16.67, p < 0.001].
Even after filtering outliers there were still significant

differences between sad and happy activities, M = −0.13, SE =

0.05, z = −2.52, p < 0.05, as well as sad and angry actions, M =

−0.22, SE= 0.05, z=−4.05, p < 0.001. No significant difference
was found between happy and angry actions, M = 0.09, SE =

0.05, z= 1.82, p= 0.16. Hence animations containing sad actions
were excluded, to homogenize the stimulus set with respect to
motion frequency.

In contrast to the analysis prior to the exclusion of outliers,

the post hoc tests now did not show any significant differences

between the motion frequency of either of the three pairs of

activities (floor, table, wall). Painting activities were excluded

more often by the procedure of outlier removals (see Figure 9). In
the four other actions (domains: floor, table) there was an uneven
distribution among sanding and wiping across moods (see
Figure 9). Thus, we decided to exclude table- and wall-activities.
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FIGURE 6 | Scatter plots showing the relations of motion frequency and motion expansiveness for all three moods. Darker areas indicate the overlap of multiple

animation-files. Sad movements show the highest values for motion expansiveness, while angry movements show the highest motion frequency values.

FIGURE 7 | Distribution of motion frequency across activities. A significant difference is found between the mean motion frequency of sanding vs. wiping (p < 0.01).
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FIGURE 8 | Distribution of motion frequency across moods. Significant differences are found in the mean motion frequency between happy and sad movements,

angry and sad movements and notably also between happy and angry movements (in all mentioned contrasts: ps < 0.001).

FIGURE 9 | Distribution of animation clips (n = 328) across activities and moods after exclusion of outliers based on low-level feature extraction. Painting-activities

were excluded significantly more often than the four other activities. The distribution of sanding and wiping across moods is unbalanced compared to sweeping and

mopping.
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Motion expansiveness was investigated by comparing the fit
of linear mixed effects models with random intercepts for motion
capture performers. Amodel including action as fixed effect fitted
the data significantly better than the null model including only
the intercept [χ2

(5) = 123.90, p < 0.001]. Adding mood as fixed
effect (without interaction term) did not significantly improve the
model fit [χ2

(2) = 1.94, p = 0.38] and was thus not included in
the model.

Post hoc tests revealed significant differences between
mopping and sweeping, M = −3.38, SE = 0.84, z = −4.04,
p < 0.001, as well as between sanding and wiping, M = 4.23,
SE = 0.78, z = 5.40, p < 0.001, but no significant difference
between the two painting-activities, M = −0.19, SE = 1.05, z =
−0.18, p= 0.99.

On the basis of these arguments we decided to focus the
following steps on a 2× 2 design with the actions being mopping
vs. sweeping, and the moods being happy vs. angry (n = 83
remaining clips).

Homogenizing for Recognition Rates
This particular selection was intended for a functional
neuroimaging study where task difficulty across conditions
was ideally balanced between both tasks (Geiger et al., 2019). We
therefore conducted an online survey using the remaining 83
clips to receive an additional annotation for these animations. In
this survey we showed each animation to volunteers to compute
recognition rates for actions and moods. Taking recognition
rates as estimate of task difficulty, we further selected clips to
homogenize for this high-level feature (see Figure 1D). This is
especially important in cognitive neuroscience studies to avoid
confounding effects of task difficulty on observed brain activity.

Participants (Observers)

We recruited 112 volunteers (73 females, mean age= 31.66, SD=

11.71) independently from the group of performers (see section
Performers) via (a) mailing lists of the study programs Biology,
Neuroscience, Philosophy and Psychology of the University of
Cologne, (b) word of mouth or (c) a designated mailing list of
volunteers of the Research Center Jülich.

Three participants who’s answering behavior differed
significantly (deviations > 2 × SD) from the rest of volunteers
were excluded. Additionally, six participants were excluded
because they were presented with too many incomplete
animations (> 2 × SD). The number of incomplete animation
playbacks was dependent on the computer hardware and internet
connection of each participant. To ensure that the majority of
ratings are based on the viewing of complete animations, we
excluded participants’ ratings with many incomplete animation
playbacks. Four participants were excluded, because of technical
difficulties, resulting in a total remaining sample of n = 99 (64
females, mean age= 31.52, SD= 12.03).

Procedure

At the beginning of the survey, all participants received
structured instructions. It was pointed out that all data were
collected and analyzed anonymously. It was further emphasized
that the task was either to focus on (a) the action or (b) the mood

displayed. Tasks were always indicated before the start of the
video and were additionally displayed above the video during its
presentation. After the presentation, participants were prompted
with an explicit forced-choice format [for the activity: (a)
mopping or (b) sweeping; for the mood: (a) happy or (b) angry].
The animations were divided into four subgroups, containing
either 20 or 21 clips with approximately equal amounts of clips
per mood and activity. Each volunteer was randomly assigned
to one of four subgroups and rated each animation of that
subgroup for activity and mood. The order of the clips was
randomized within the subgroups. After completing the video
ratings, basic information (age, gender, handedness, sportiness,
years of education) was assessed. The experiment was finished
with a short debriefing that informed the participants about
the general purpose of the survey and the overarching project.
The recognition rates were computed by dividing the amount
of correct answers by the total amount of given answers for
each animation (for both activities and moods). The survey was
conducted via Unipark (Questback GmbH, EFS Survey, Version
10.9, http://www.unipark.com). Results were analyzed in SPSS
(Version 24). For the purpose of data cleansing, z-scores were
computed for (a) responses, (b) the amount of incomplete clips
(see section Participants (Observers) for details).

Results

The majority of animations were rated above chance level within
a range from 55 to 100% correctness in at least one condition (see
Figure 10 and Supplementary Data Sheet 3). Thirty-six clips
were rated both for action as well as mood at a rate of ≥55%,
with a maximum accuracy difference of 30 percentage points
between the two scores. For the selection of the fMRI stimulus
set, we controlled for two parameters: (a) difference between the
two recognition rates (<30 percentage points), (b) equal amount
of combinations between activities and moods [angry mopping
(n = 8), angry sweeping (n = 8), happy mopping (n = 8), happy
sweeping (n = 8); see Supplementary Data Sheet 4].

DISCUSSION AND FUTURE PROSPECTS

We herewith present the ACASS database including 792
animations with their respective annotations about basic motion
features and emotional expressions inscribed therein. The
outstanding features of this newly generated database are (a) the
uniform presentation across actors after transferring all human
movements onto the same avatar and (b) the motion feature
annotation of all animations. The low-level physical feature
annotation allows to define various subsets, for instance selecting
maximum heterogeneous or homogenous subsets. Furthermore,
additional annotations, for instance regarding psychological
evaluations as provided by neutral observers can enrich the
database and extend its usefulness even beyond the possible
applications sketched here.

As a show case, we have demonstrated here as one example
how to extract a homogeneous stimulus subset with respect
to perceived difficulty of action and mood recognition for the
purpose of a particular functional neuroimaging study in the
field of social cognitive neuroscience that aimed at identifying

Frontiers in Robotics and AI | www.frontiersin.org 11 September 2019 | Volume 6 | Article 9478

http://www.unipark.com
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Lammers et al. Annotated Character Animation Stimulus Set

FIGURE 10 | Distribution of animation clips (n = 83) across recognition rates for activities and moods. The majority of animations were recognized above chance level

within a range from 55–100% correctness in at least one condition.

the neural correlates of action recognition and mood recognition
(Geiger et al., 2019).

For this subset of the database, different types of application
within social neuroscience come to mind: it would be very
interesting and timely to investigate the temporal relations of
the involved brain systems with more suitable technology like
magnetoencephalography. Another obvious question is that of
functional connectivity of the involved brain regions. This leads
to questions about changes in psychopathological conditions.
Abnormalities have been reported for mentalizing abilities in
conditions such as schizophrenia and autism spectrum disorders
(Frith, 2004). Functional connectivity has been shown to be
altered between and within thementalizing system and the action
observation network in autism spectrum disorders (Fishman
et al., 2014). With our novel stimulus subset the neural correlates
of the involved systems can be investigated in more detail.

Aside from possible applications in the field of social cognitive
neuroscience, the stimulus subset, as well as other individually
chosen subsets from the database can serve in behavioral studies
that use the annotational information to systematically vary e.g.,
task difficulty (recognition rates). For instance, this could be
interesting to contrast ambiguous animations with recognition
rates close to guessing rate with other animations that are mostly
correctly recognized according to the observer annotation. A
further interesting study could be to examine animations that
are easily recognized for only one category (e.g., action but

not mood). A free viewing task could be conducted to see
what the spontaneous attributions of observers are, when no
specific instructions and answering options are given. The stimuli
could be further enhanced to use in studies about perspective
taking and embodiment, e.g., by use in virtual reality or
systematically varying the camera angle. Another interesting line
of investigation could be to ask participants to rate animations
for valence and arousal.

The ACASS database, including the subsets, as well as
the source code of the algorithm are hosted at FigShare
(doi.org/10.6084/m9.figshare.c.4443014) (preview during
review-process). Annotational information are provided in
designated CSV-files to enable the selection of individual sets
of animations.

LIMITATIONS

The ACASS database contains recordings of six different
household activities that we expect the vast majority of viewers
to recognize. All activities were performed stand-alone. Thus,
the recordings do not cover interactive situations like dyadic
activities or those that address the viewer as an interaction
partner. Our main field of application is aimed to be person
perception as a well-established domain in social psychology,
which includes the processing of social information derived from
mere observation beyond true interactions.
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In this paper we present a computational model for managing the impressions of warmth

and competence (the two fundamental dimensions of social cognition) of an Embodied

Conversational Agent (ECA) while interacting with a human. The ECA can choose among

four different self-presentational strategies eliciting different impressions of warmth and/or

competence in the user, through its verbal and non-verbal behavior. The choice of the

non-verbal behaviors displayed by the ECA relies on our previous studies. In our first

study, we annotated videos of human-human natural interactions of an expert on a

given topic talking to a novice, in order to find associations between the warmth and

competence elicited by the expert’s non-verbal behaviors (such as type of gestures,

arms rest poses, smiling). In a second study, we investigated whether the most relevant

non-verbal cues found in the previous study were perceived in the same way when

displayed by an ECA. The computational learning model presented in this paper aims

to learn in real-time the best strategy (i.e., the degree of warmth and/or competence

to display) for the ECA, that is, the one which maximizes user’s engagement during the

interaction. We also present an evaluation study, aiming to investigate our model in a

real context. In the experimental scenario, the ECA plays the role of a museum guide

introducing an exposition about video games. We collected data from 75 visitors of a

science museum. The ECA was displayed in human dimension on a big screen in front

of the participant, with a Kinect on the top. During the interaction, the ECA could adopt

one of 4 self-presentational strategies during the whole interaction, or it could select

one strategy randomly for each speaking turn, or it could use a reinforcement learning

algorithm to choose the strategy having the highest reward (i.e., user’s engagement) after

each speaking turn.

Keywords: embodied conversational agents, warmth, competence, human-agent interaction, impression

management, non-verbal behavior

1. INTRODUCTION AND MOTIVATION

During the last decades, anthropomorphic interfaces, such as humanoid robots and virtual
characters, have been increasingly deployed in several roles, such as pedagogical assistants,
companion, trainers. When conceiving Embodied Conversational Agents (ECAs), which are
anthropomorphic virtual characters capable of interacting with users using verbal and non-verbal
behavior (for more details, see Cassell, 2000), it is very important to take into account how users
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perceive them during the course of the interaction. Virtual agents
ought to be endowed with the capability of maintaining engaging
interactions with users (Sidner and Dzikovska, 2005). This would
make it easier for a virtual guide to transmit information, would
ensure change behavior for a virtual coach, would create rapport
with a virtual companion. Like in human-human interactions,
the first moments of an interaction with a virtual character are
critical since users form impressions about them, that can affect
the rest of the interaction, in terms of engagement andwillingness
to continue it (Cafaro et al., 2016).

During the first moments of a new encounter, people
automatically collect information to infer the intentions of the
others (also called “warmth” dimension Fiske et al., 2007),
that is, how the others seem friendly, social, moral, as well
as the consequent ability to enact those intentions (called
“competence” dimension Fiske et al., 2007), that is, how the
others seem intelligent, competent, skillful. People are quite
accurate at forming this kind of impressions, by collecting and
integrating information from others’ appearance and behaviors.
This process, defined byGoffman and his colleagues as impression
formation, is naturally coupled with impression management,
that is, the attempt to control the impressions that one gives
to the others (Goffman et al., 1978). Impression management
concerns, among other, dressing and hairstyle, the choice of
the moment when smiling, as well as behaviors such as body
orientation, posture, etc. People adopt verbal and non-verbal self-
presentational strategies in order to elicit in the other a specific
impression. According to the context and the goal, one can
choose a strategy to convince a target other that he is likable or
competent for example (Jones and Pittman, 1982).

Non-verbal behaviors play an important role in these
processes (Goffman et al., 1978; Judd et al., 2005). If we want to
investigate the effects of these behaviors on the interaction, this
could be difficult since we cannot have full control of them in a
spontaneous interaction between humans. We can exploit ECAs,
which allow us to fully manage their behaviors, to investigate the
effect of non-verbal behaviors on the interaction.

In the work presented in this paper, we manage agent’s
behaviors. To choose the set of possible behaviors for the
agent to display, we previously started from the analysis of
human-human interaction, in order to identify non-behavioral
cues eliciting different impressions of warmth and competence
(Biancardi et al., 2017). We then implemented them into an
ECA in order to investigate how these cues are perceived when
displayed by a virtual character instead of a human (Biancardi
et al., 2018). Starting from these findings, we now focus on two
main questions:

• What is the impact of these behaviors on a real interaction
between an ECA and a human?
• How can an ECA manage its behaviors in order to engage the

user, and so to improve the quality of the interaction?

To address them, we have developed a model to manage the
impressions generated by an ECA on the user, by endowing it
with the capability of adapting its behaviors, and the strategies
that drive them, according to user’s reactions. The goal of the
agent is to maximize user’s engagement during the interaction.

If the user is engaged, it is more probable for her to have a longer
interaction and to appreciate it.

In the following sections, we will describe the dimensions
studied in this work in section 2 and the related work in section
3, we will present the architecture of our system in section 4 and
the evaluation study of the system in section 5. We will finally
discuss the results in section 6 and the limitations and possible
improvements of our system in section 7.

2. BACKGROUND

In this section we provide definitions and related theories
about the psychological dimensions that are investigated in our
research: the two fundamental dimensions of social cognition,
that is, Warmth and Competence (W&C), and Engagement.

2.1. Warmth and Competence
Several authors investigated the fundamental dimensions of
social cognition, that is, those characteristics of the others that
are processed from the initial moments of an interaction.

These authors converged, even if adopting different
terminology, to two main dimensions (Abele and Wojciszke,
2013). The first includes traits like friendliness, morality,
sociability, trustworthiness, and it is commonly labeled as
warmth. The second one includes traits like agency, efficacy,
intelligence, and it is commonly labeled as competence. In the
current work we refer to competence as cognitive competence
(knowledge, abstract intelligence and experience).

We can already findW&C in Asch’s research (Asch, 1946). He
was the first who intuited the centrality of W&C in impression
formation. Later, Rosenberg et al. distinguished intellectual
good/bad traits (such as intelligent, skillful, determined, foolish,
unintelligent, irresponsible) and social good/bad traits (such as
sociable, honest, warm, unsociable, cold, unhappy) as the main
dimensions of person’s judgements (Rosenberg et al., 1968).
Wojciszke et al. showed that W&C account for almost 82% of
the variance in global impressions of well-known others: when
people interpret behaviors or their impressions of others, W&C
form basic dimensions that almost entirely account for how
people characterize others (Wojciszke et al., 1998).

According to the evolutionary explanation given by Fiske
et al. warmth is judged before competence, as others’ intentions
matter more to survival whether the other can act on those
goals (Fiske et al., 2007). Primacy of warmth is supported by
a large evidence (Willis and Todorov, 2006; Wojciszke and
Abele, 2008). In Wojciszke and Abele (2008) participants were
asked to list the most important personality traits: they listed
significantly more warmth traits than competence traits, and the
five most frequently listed traits were warmth-related. Moreover,
evaluations based on warmth information were strong and
stable, while those based on competence information were weak
and dependent on accompanying warmth information. Finally,
cognitive performance is better for warmth than for competence.
For example, in rapidly judging faces at 100 ms exposure times,
social perceivers judged trustworthiness (as a warmth trait Fiske
et al., 2007) most reliably, followed by competence (Willis and
Todorov, 2006).
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Whether the previous authors investigated W&C at a person-
perception level, Fiske et al. with their Stereotype Content
Model (Fiske et al., 2002), showed the role of W&C in group
stereotypes. Groups’ warmth is judged according to their level
of competition with the in-group, while competence depends
on the group status. Different levels of W&C elicit unique
emotional (admiration, contempt, envy, and pity; Fiske et al.,
2002) and behavioral responses (active and passive, facilitative
and harmful; Cuddy et al., 2008).

Another topic of interest concerning W&C is the relationship
between the judgements about them. According to Rosenberg
et al. they are positively correlated, that is, a halo effect occurs
(Rosenberg et al., 1968). This effect led people who were given
information about only one dimension (warmth or competence),
to make judgements about the other (non-described) dimension
toward the same direction of the described one.

Yzerbyt et al. showed evidence for an opposite effect instead,
called compensation effect (Yzerbyt et al., 2008). This effect also
occurred in Judd et al. experiments, where they asked to compare
two targets. Some participants received information about the
competence of the two targets (high in one target and low in
the other one), while other participants received information
about the warmth of the two targets (again, high in one target
and low in the other one). Judgements about the manipulated
dimension (competence for some participants, warmth for the
others) corresponded to the given information, while for the non-
manipulated dimension they went toward the opposite direction
of those about the manipulated dimension (Judd et al., 2005).

More recent studies showed the occurrence of compensation
effect also in absence of any explicit comparative context, that
is without evoking any explicitly comparison to another target.
Kervyn et al. called it amplification effect (Kervyn et al., 2016).

2.1.1. Behavioral Cues of Warmth and Competence
While most of the studies described above used written
descriptions of traits and situations as cues of W&C (e.g., “X
helped a blind woman to cross the street,” “X wrote a little
computer program that solved a tough calculus integration
problem”), other works focused on non-verbal cues conveying
these dimensions.

Previous research in human-human interaction showed an
important effect of smiling on warmth (Bayes, 1972; Cuddy et al.,
2008), as well as the presence of immediacy cues that indicate
positive interest or engagement (e.g., leaning forward, nodding,
orienting the body toward the other), touching and postural
openness, and mirroring (i.e., copying the non-verbal behaviors
of the interaction partner). Leaning backwards, orientating the
body away from the other, tense and intrusive hand gestures (e.g.,
pointing) are related to impressions of low warmth (Cuddy et al.,
2008).

Non-verbal behaviors eliciting competence are more related
to dominance and power, such as expansive (i.e., taking up
more space) and open (i.e., keeping limbs open and not
touching the torso) postures. People who express high-power
or assertive non-verbal behaviors are perceived as more skillful,
capable, and competent than people expressing low-power or
passive non-verbal behaviors (Cuddy et al., 2008). Hand gestures

have been found to influence competence perception too, in
particular, ideationals (i.e., gestures related to the semantic
content of the speech) and object-adaptors resulted in higher
judgements of competence, while self-adaptors resulted in lower
ones (Maricchiolo et al., 2009).

2.1.2. Self-Presentational Strategies
Jones and Pittman argued that people can use different verbal
and non-verbal behavioral techniques to create the impressions
they desire in their interlocutor (Jones and Pittman, 1982).
The authors proposed a taxonomy of these techniques, that
they called self-presentational strategies. We illustrate here 4
of their strategies that can be associated to different levels of
W&C. We did not consider the 5th strategy of the taxonomy,
called Exemplification. This strategy is used when people want
to be perceived as self-sacrificing and to gain the attribution of
dedication from others, thus it is not related neither to warmth
nor to competence. Concerning the other 4 strategies, two of
them focus on one dimension at a time, the other two focus on
both dimensions by giving them opposite values:

• Ingratiation: its goal is to get the other person to like you
and attribute positive interpersonal qualities (e.g., warmth and
kindness). The person selecting this strategy has the goal to
elicit impressions of high warmth, without considering its level
of competence.
• Supplication: it occurs when individuals present their

weaknesses or deficiencies to receive compassion and
assistance from others. The person selecting this strategy
has the goal to elicit impressions of high warmth and
low competence.
• Self-promotion: it occurs when individuals call attention to

their accomplishments to be perceived as capable by observers.
The person selecting this strategy has the goal to elicit
impressions of high competence, without considering its level
of warmth.
• Intimidation: it is defined as the attempt to project its own

power or ability to punish to be viewed as dangerous and
powerful. In the context of our research, we interpret this
strategy in a smoother way, as the goal to elicit impressions
of low warmth and high competence.

2.2. Engagement in Human-Agent
Interaction
An important aspect of human-agent interaction is engagement
which ensures the interaction to move forwards. Despite of
being a major theme of research and a universal goal in
Human-Computer Interaction (HCI), engagement is a difficult
concept to define (102 different definitions of engagement exist
according to Doherty and Doherty review Doherty and Doherty,
2018), due to its multidimensional nature and the difficulty to
measure it.

A detailed summary of engagement definitions in human-
agent interaction is provided in Glas and Pelachaud (2015a).
Among others, it can be defined as “the value that a participant in
an interaction attributes to the goal of being together with the
other participant(s) and of continuing the interaction” (Poggi,
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2007), and as “the process by which participants involved in an
interaction start, maintain and terminate an interaction” (Sidner
and Dzikovska, 2005; Corrigan et al., 2016).

Engagement is not measured from single cues, but rather
from several cues that arise over a certain time window (Peters
et al., 2005). Engagement can be defined by high-level behavior
like, synchrony—which is the temporal coordination during
social interactions; mimicry—which is the automatic tendency
to imitate others; feedback—which can indicate whether the
communication is successful or not. Similarly, engagement can
also be defined by low-level behavior like eye gaze - providing
feedback and showing interest; head movements - nods (in
agreement, disagreement, in between); gestures—to greet, to take
turns; postures—body orientation, lean; facial expressions. Clavel
et al. provided a review on methodologies for assessing user
engagement in human-agent interaction (Clavel et al., 2016).

In the work presented in this Chapter we used low-level
signals, such as facial Action Units activation, trunk and head
rotation, to measure engagement. The engagement detection
model is described in section 4.1.

3. RELATED WORK

Some works already exist that included W&C dimensions in
ECAs. Nguyen et al. analyzed gestures, use of space and gaze
behaviors in videos of actors performing different degrees
of W&C (Nguyen et al., 2015). They applied an iterative
methodology which included theory from theater, animation and
psychology, expert reviews, user testing and feedback, in order
to extract a set of rules to be encoded in a virtual agent. They
then asked participants to rate W&C of an agent behaving by
following these rules. Bergmann et al. found that human-like vs.
robot-like appearance positively affects impressions of warmth,
while the presence of co-speech gestures increases competence
judgements (Bergmann et al., 2012).

The goal of our current work is to model W&C dimensions
in order to obtain an engaging ECA, by following the idea that
a more engaging agent is likely to form a positive impression
and be accepted by the user, thus promoting further interactions
(Bergmann et al., 2012; Cafaro et al., 2017). Several authors
attempted to design engaging virtual agents, by focusing on
the use of feedback and backchannels (Truong et al., 2010),
by adopting politeness strategies (Glas and Pelachaud, 2015b),
or by investigating the role of verbal alignment for improving
user’s engagement (Campano et al., 2015). Other studies focused
on how to improve user’s engagement by adapting social
agents (mainly robots) behaviors, using reinforcement learning
(RL) methods. These works incorporate user’s social signals
to measure user’s engagement and exploit it as the reward
of the RL algorithm. For example, Ritschel et al. computed
user’s engagement as a reward, with the goal to adapt robot’s
personality expressed by linguistic style (Ritschel et al., 2017).
Gordon et al. exploited facial expressions to measure child’s
engagement in order to adapt a robot’s behaviors (Gordon
et al., 2016), while Liu et al. exploited user’s physiological
signals (Liu et al., 2008).

3.1. Our Previous Work
In our previous research, we investigated the associations
between non-verbal cues and W&C impressions in human-
human interaction (Biancardi et al., 2017). To do that, we
annotated videos form NoXi dataset (Cafaro et al., 2017), a
corpus of spontaneous interactions involving an expert and a
novice discussing about a given topic (e.g., sports, videogames,
travels, music, etc.). We annotated the type of gesture, the type
of arms rest poses, head movements and smiling, as well as the
perceived W&C of the expert. We found a negative association
with warmth and competence for some arms rest poses like
arms crossed. We also found that the presence of gestures was
positively associated with both W&C, in particular the presence
of beat gestures (rhythmic gestures not related to the speech
content) for both W&C and ideationals for warmth. In addition,
when gestures were performed with a smile, warmth judgements
increased. A compensation effect was found for smiling: warmth
judgements were positively related to the presence of smiles,
while competence judgements were negatively related to it.

With respect to the works cited at the beginning of the section,
we considered more behaviors than only co-speech gestures, in
particular the position of the arms when not performing gestures.
In addition, we analyzed W&C elicited by non-verbal behaviors
performed during natural interactions, instead of behaviors
performed by actors.

We then continued our research by questioning how these
cues are perceived when displayed by an ECA (Biancardi et al.,
2018). To do that, wemanipulated in an ECA themost interesting
findings from the previous study and asked people to rate
videos of the agent displaying different combinations of these
manipulations. We found an effect of type of gesture on W&C
judgements. In particular, W&C ratings were higher when the
agent displayed ideationals than compared to when it displayed
beats. In addition, this effect occurred for warmth judgements
only when the frequency of gestures was high rather than low.

Our previous works did not investigate W&C impressions in
an interaction, where participants are no more passive observers
but active agents. The work presented in this paper aims to
improve the previous ones, by starting from their findings and
focusing on two main questions:

• What is the impact of these behaviors on a real interaction
between an ECA and a human?
• How can an ECA manage its behaviors in order to engage the

user, and so to improve the quality of the interaction?

We conceived an interaction scenario where the agent manages
the impressions of W&C it gives by adopting one of the 4 self-
presentational strategies described in section 2.1.2. We exploited
the results of our previous works in order to define the non-verbal
behaviors associated to each strategy, while we relied on literature
to select the verbal behavior for each strategy (see section 5).

In order to make the agent learn how to manage its
impressions, that is, to adapt its behavior in real-time to user’s
engagement level, we adopt a reinforcement learning (RL)
approach rather than supervised learning techniques. Since the
ECA’s behavioral adaptation has the goal to maximize user’s
engagement, we use this variable as reward in the RL algorithm.
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The action space, that is, the set of possible choices of the agent,
concerns different behavioral strategies, eliciting impressions of
different levels of W&C.

Differently from the existing works described above, the
system presented in this paper is the first one using behaviors
eliciting different W&C impressions as variables in a RL
algorithm for ECAs.

To do this aim, we implemented a system architecture that is
described in more details in the following section.

4. SYSTEM ARCHITECTURE

We conceived a system architecture to enable the interaction
between an ECA and a user. To do that, we implemented software
modules to capture user’s behavior (speech, facial expressions,
head and torso orientation), analyse/interpret it (e.g., detect the
user’s level of engagement) and decide what the ECA should say
and how (i.e., the non-verbal behaviors accompanying speech).
The ECA’s speech and behavior are decided not only based on
the detected user’s level of engagement but also by taking into
account the ECA’s self-presentational intention. That is, the ECA
has the goal of communicating a given level of W&C that will
influence the choice of the verbal and non-verbal signals to
be produced.

Figure 1 illustrates the system we designed and implemented.
We can distinguish 2 main parts:

1. User analysis–We exploit the EyesWeb platform (Camurri
et al., 2004), that extracts in real-time: (1) user’s non-verbal
signals (i.e., torso and head orientation), starting from the
Kinect depth camera skeleton data; (2) user’s face Action Units
(AUs), by running the OpenFace framework (Baltrušaitis et al.,
2016); (3) user’s speech, by executing the Microsoft Speech
Platform1. After that, as illustrated in section 4.1, EyesWeb
computes the user’s overall engagement.

2. ECA generation–Agent’s behavior generation is performed
by VIB/Greta, a software platform supporting the creation
of socio-emotional embodied conversational agents (Pecune
et al., 2014). For the presented work, we implemented
a self-presentational intention manager using Flipper (van
Waterschoot et al., 2018) to process the detected user’s
overall engagement and speech and to choose the verbal
and non-verbal signals the ECA has to perform in the
next speaking turn, according to a reinforcement learning
algorithm. The self-presentational intention manager also
includes a Natural Language Processing (NLP) module for
user’s speech interpretation. As explained in section 4.2,
Flipper selects the proper communicative intention of the
ECAwhile VIB/Greta generates the ECA animation consisting
of gestures, facial expressions and gaze, in sync with speech.

4.1. Overall Engagement Detection
As mentioned earlier in the paper, in this work we aim at
endowing ECAs with the capability of adapting their behavior
according to the user’s reactions. In particular, we focus on the

1https://www.microsoft.com/en-us/download/details.aspx?id=27225

user’s level of engagement. So, we now present our computational
model of user’s engagement based on the works of Corrigan
et al. (2016) and Sidner and Dzikovska (2005). In our model,
user’s engagement can be expressed at three different levels,
corresponding to different types of non-verbal signals:

• Attention engagement–Engagement can be expressed by
continuously gazing at relevant objects/persons during the
interaction. The more a person continuously focuses her
attention on a relevant object/person, the more engaged she
is (Sidner and Dzikovska, 2005).
• Cognitive engagement–(Corrigan et al., 2016) claims that

“frowning may indicate effortful processing suggesting high
levels of cognitive engagement.” The same work also refers to
signals such as “looking for a brief interval outside the scene”
as indicators of cognitive engagement.
• Affective engagement–Smiling could indicate that a person is

enjoying the interaction, while some postures (e.g., crossed
arms, hands in pockets) or posture shifts can indicate a lack
of engagement.

The Affective and Cognitive Engagement Detection module is
based on a Long Short-Term Memory (LSTM) prediction model
using Recurrent Neural Networks implemented with the Keras
toolkit and TensorFlow. More details about this model can
be found in Dermouche and Pelachaud (2018). The prediction
model takes as input the user’s face AUs during the last second,
and predicts the user’s affective and cognitive engagement: for
example, when non-verbal signals like frowning or smiling are
extracted, the affective and cognitive engagement increases.

The Attention Engagement Computation module is
implemented in EyesWeb as a set of rules. It takes as input
the user’s head and torso orientation and computes the user’s
attention engagement: for example, if the user is facing the
ECA (with both her head and torso) then the attention
engagement increases.

Finally, affective, cognitive and attention engagement
are summed up by the Overall User Engagement
Computationmodule.

Overall user’s engagement is computed continuously at 10 Hz
during every speaking turn, starting when the agent starts to
pronounce its question for the user and ending when the user
stops replying to the agent (or, if the user does not respond, until
a 1,500 ms of continuous silence is detected). After the end of
the speaking turn, the overall mean engagement is sent from
EyesWeb to the Self-presentational IntentionManager, described
in the following section, that will plan the verbal and non-verbal
behavior the ECA will produce in the next speaking turn.

Figure 2 depicts the user analysis interface, developed
in EyesWeb.

4.2. Self-Presentational Intention Manager
User’s speech and overall engagement are sent to the Self-
presentational Intention Manager implemented in the Dialog
Manager Flipper, an open-source engine for pragmatic yet robust
interactionmanagement for ECAs (vanWaterschoot et al., 2018).

The Dialog Manager Flipper is based on two main
components described in XML: the information state and the
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FIGURE 1 | System architecture: user non-verbal and verbal signals are extracted by EyesWeb and the Microsoft Speech Platform, respectively; user’s overall

engagement, computed by EyesWeb, is provided to the Self-presentational Intention Manager that decides the verbal and non-verbal signals to be produced by

VIB/Greta. (The person in this image agrees for publication).

FIGURE 2 | The user analysis interface implemented in EyesWeb. On the left, user’s silhouette is extracted from Kinect’s depth data. The two red bars in the middle

indicate that the user is looking at the screen, with both her trunk (left bar) and head (right bar). Audio intensity is low (volume meter on the right), that is, the user is not

speaking. Overall engagement level is represented by the green bar on the right (The person in this image agrees for publication).
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declarative templates. The information state stores interaction-
related information and data in a hierarchical tree-based
structure. Declarative templates can be grouped and organized
in different files according to their related functionality (van
Waterschoot et al., 2018). Each template consists of:

• preconditions: sets of rules that describe when a template
should be executed;
• effects: associated updates to the information state.

So, for example, we defined a template whose precondition is
that the user’s overall engagement value has been computed by
EyesWeb (see section 4.1) and the effect is that the expected
reward of the current self-presentational intention has to be
updated depending on the engagement value (see section 4.2.1).

Flipper has been also exploited to implement a dialogue
manager based on NLP, aiming at interpreting user’s speech
to select the ECA’s next self-presentational intention. Since the
generation of a realistic and complex dialogue is not the main
focus of our work, the agent takes into account only the polarity
of user’s answers rather than the semantic content of user’s
speech. For example, the agent can ask whether or not the user
wants a more detailed explanation about a topic: if the user’s
answer is positive, then the agent will talk about it in more detail,
or will move to another topic in case of a negative answer (see
section 5.5).

4.2.1. Self-Presentational Intention Selection
During its interaction with the user, the ECA has the goal of
selecting its self-presentational intention (e.g., to communicate
verbally and non-verbally a given utterance with high warmth
and low competence). The ECA will choose its intention
among a given set of possible utterances depending on the
user’s overall engagement value: for example, if the last self-
presentational intention had the effect of decreasing the detected
user’s engagement, then the ECA will select a different intention
for the next speaking turn, that is it will select an utterance
associated with a different value of warmth and of competence;
conversely, if the last intention increased user’s engagement, that
intention will be maintained.

This problem can be seen as a multi-armed bandit problem
(Katehakis and Veinott Jr, 1987), which models agents evolving
in an environment where they can perform several actions, each
action being more or less rewarding for them.

In our case, the actions that the ECA can perform are
the verbal and non-verbal behaviors corresponding to the self-
presentational intention the ECA aims to communicate, and they
are selected by the Formula 1. The environment is the interaction
with the user, while the state space is the set of the topics discussed
at each speaking turn, and it is defined by the Dialog Manager.
That is, the choice of the action does not change the state (i.e., the
topic discussed during the actual speaking turn), but rather it acts
on how this topic is realized by verbal and non-verbal behavior.

In order to maximize user’s engagement during the
interaction, the ECA will, at the beginning, explore the
environment (i.e., by randomly choosing an initial self-
presentational intention) and then exploit its knowledge

(i.e., user’s engagement) to find the most rewarding
self-presentational intention.

To do that, we choose to exploit the ǫ-decreasing learning
approach: the exploration rate ǫ continuously decreases in
time. In this way, the ECA starts the interaction with the
user by exploring the environment without taking into account
knowledge (i.e., user’s engagement) and finishes it by exploiting
its knowledge only (i.e., without performing any further
environment exploration). That is, the ECA explores with
probability ǫ, and exploits knowledge with probability 1− ǫ.

The ECA updates its knowledge through a table where it
iteratively approximates the expected reward Q(int) of a self-
presentation intention int. This is done using the formula below:

Q(int)t+1 ← (1− α)× Q(int)t + α × et (1)

where:

• Q(int) is the expected value of the intention, int ∈

[ingratiation, supplication, self-promotion, intimidation];
• α is the learning rate, set at 0.5, a very high number compared

to other works (e.g., in Burda et al., 2018 it was set to 0.0001).
This is because the ECA needs to learn quickly (i.e., in few
dialogue steps) the self-presentational intention to use;
• e is the overall engagement score, that is the reward for

the ECA.

5. EVALUATION STUDY

We now present the evaluation study we conceived to investigate
whether or not an ECA endowed with the architecture described
in the previous section, that is, able to manage its impressions
of W&C according to user’s engagement, could affect user-
agent interaction. In the study, we compared different conditions
where the ECA could interact with the user by adapting or not
its behaviors.

We created a scenario where the virtual agent, called Alice,
plays the role of a virtual guide of a museum. The experiment
took place in the Carrefour Numerique, an area of the Cité des
sciences et de l’industrie in Paris, one of the largest sciences
museums in Europe.

5.1. Independent Variables
The independent variable manipulated in this study concerns
agent’s Strategy, that is, how the agent manages its behaviors to
influence user’s perception of its W&C.

For each speaking turn, the agent plays one out of 4 self-
presentational techniques presented in section 2.1.2, inspired
from Jones & Pittman’s taxonomy (Jones and Pittman, 1982),
in order to appear more or less warmth and/or competent.
According to the different Strategy conditions, the agent can
select one of the 4 self-presentational techniques at the beginning
and display it during the whole interaction, or select one of
the 4 at each speaking turn, either randomly or by using
our self-presentational intention model based on user’s overall
engagement detection.

These 4 self-presentational techniques are realized by the
agent through its non-verbal and verbal behavior. The choice
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FIGURE 3 | Use of pronouns, verbs, type of language, and other verbal behaviors associated to each self-presentational technique, inspired from Pennebaker (2011)

and Callejas et al. (2014).

of its non-verbal behavior is based on our previous studies
described in section 3.1. The verbal behavior characterizing
the different strategies is inspired by the works of Pennebaker
(2011) and Callejas et al. (2014). According to their findings,
we manipulated the use of you- and we- pronouns, the level
of formality of the language, the length of the sentences. For
example, sentences aiming at eliciting high warmth contain more
pronouns, less synonyms, more informal language, so that the
phrases are more casual and give the impression to be less
meditated; more verbs rather than nouns, and positive contents
are predominant. Sentences aiming at eliciting low warmth
contain more negations, longer phrases, formal language, and
do not refer to the speaker. Sentences aiming at eliciting high
competence contain high rates of we- and you-words, and I-
words at low rates. Figure 3 shows the use of verbal behavior
according to each self-presentational technique, while Table 1

shows an example of a speaking turn for each of the 4 techniques.
The independent variable Strategy has 6 levels: the first

4 levels are static conditions, where one self-presentational
technique is chosen at the beginning of the interaction and does
not change; in the last 2 levels the self-presentational technique is
chosen at each speaking turn. They are:

• INGR: when the agent selects the Ingratiation
self-presentational technique from the beginning

to the end of the interaction, without considering
user’s reactions;
• SUPP: when the agent selects the Supplication self-

presentational technique from the beginning to the end
of the interaction, without considering user’s reactions;
• SELF: when the agent selects the Self-promotion self-

presentational technique from the beginning to the end of the
interaction, without considering user’s reactions;
• INTIM: when the agent selects the Intimidation self-

presentational technique from the beginning to the end of the
interaction, without considering user’s reactions;
• RAND: it consists in selecting one of the 4 self-presentational

techniques, randomly, at each speaking turn, without

considering user’s reactions;
• IMPR: it consists in selecting one of the 4 self-presentational

techniques, at each speaking turn, by using our self-

presentational intention model based on user’s overall
engagement detection (see section 4.1).

According to the Strategy level, the self-presentational
intention selection module of the Dialog Manager
Flipper (see section 4.2.1) will apply (or not) the
reinforcement learning formula 1 to update the action
(i.e., the following self-presentational intention) of
the agent.
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TABLE 1 | An example of 4 different sentences for the same speaking turn (the agent introduces the videogames exhibition), according to the 4 different

self-presentational techniques.

Strategy Translated sentence Original sentence

INGR “You can test some games, if you wanna.” Tu vas pouvoir tester des jeux si tu veux.

SUPP “I dunno about the other exhibits of the museum, but here you can test

some games, it’s cool!”

J’connais pas les autres expo du musée, mais ici on peut tester des jeux,

c’est trop bien !

SELF “In this exhibition, you can test some videogames.” Dans cette expo tu va pouvoir tester des jeux-vidéos.

INTIM “In this exhibition, you can try out some games on different platforms.” Dans cette exposition tu peux essayer des jeux sur différents supports.

The original sentences in French are provided.

TABLE 2 | Items of the NARS questionnaire, adapted from Nomura et al. (2006).

Items

1. I would feel uneasy if virtual characters had emotions.

2. I would feel relaxed talking with virtual characters.

3. I feel comforted being with virtual characters that have emotions.

4. The word “virtual character” means nothing to me.

5. I would hate the idea that virtual characters were making judgements

about things.

6. I would feel very nervous just standing in front of a virtual character.

7. I would feel paranoid talking with a virtual character.

8. I am concerned that virtual characters would be a bad influence on children.

5.2. NARS
Before the interaction, we collected information about users’
attitudes and prejudices toward virtual characters. We used a
slightly adapted version of the Negative Attitudes toward Robots
Scale (Nomura et al., 2006). This questionnaire measures people’s
negative attitudes toward situations and interactions with robots,
toward the social influence of robots, and toward emotions in
interaction with robots. We selected the most relevant questions
according to our context and adapted the questions by referring
to virtual characters instead of robots. Participants gave their
rating on a 5-points Likert scale, from 1 = “I completely disagree”
to 5 = “I completely agree.” The items of the questionnaires
(translated in English) are available in Table 2.

5.3. Dependent Variables
The dependent variables were measured during and after the
interaction with the virtual character. During the interaction, if
the participant agreed in the consent form, we recorded the user’s
speech audio, in order to measure user’s cues of engagement
from his verbal behavior. After the interaction we asked the
participants to rate the agent’sW&C, and their overall satisfaction
of the interaction.

5.3.1. Verbal Cues of Engagement
For people who agreed with audio recording of the experiment,
we collected quantitative information about their answers,
in particular:

• The polarity of the answer to Topic1_question (see
section 5.5);

TABLE 3 | Items of the questionnaire about user’s perception of the interaction,

adapted from Bickmore et al. (2011).

Measure Question

Satisfaction I am satisfied with my interaction with Alice.

Continue I would like to talk with Alice again.

Like I liked Alice.

Learnfrom I have learned something from Alice.

Exhib Alice gave me want to visit the exhibition (if you haven’t yet)

Rship I would describe Alice as a complete stranger vs. a close friend.

Likeperson I would describe Alice just as a computer vs. like a person.

Alice is the name of the virtual character.

• The polarity of the answer to Topic2_question (see
section 5.5);
• The number of any verbal feedback produced by the user

during a speaking turn.

5.3.2. Self-Report Assessment
After the interaction, the participants filled in a final
questionnaire, divided in several parts. In particular
we measured:

• User’s perception of agent’s warmth (w) and competence (c):
we presented a list of adjectives referring to W&C and asked
participants to indicate their agreement on a 5-points Likert
scale (1 = “I completely disagree,” 5 = “I completely agree”)
about how precisely each adjective described the character.
The items were taken from Aragonés et al. (2015) scale,
and were: kind, pleasant, friendly, warm for warmth, and
competent, effective, skilled, intelligent for competence.
• User’s perception of the interaction (perception): the second

part of the questionnaire concerned a list of items adapted
from those already used by Bickmore et al. (2011). They are
shown in Table 3.

5.4. Hypotheses
The first experiment’s goal was to demonstrate that the ECA’s
4 self-presentational techniques during all the interaction are
correctly perceived by users, for example, if users rate the agent
in INGR condition as warm, and the agent in INTIM as cold
and competent.

In particular, we hypothesize that:
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FIGURE 4 | The experimenter room and an example of an interaction (the person in this image agrees for publication). In the yellow squares, on the left, the control

place, in the middle the interaction place, and on the right the questionnaires space.

• H1ingr: The agent in INGR condition will be perceived as
warm by users;
• H1supp: The agent in SUPP condition will be perceived as

warm and not competent by users;
• H1self: The agent in SELF condition will be perceived as

competent by users;
• H1intim: The agent in INTIM condition will be perceived as

competent and not warm by users.

Then, our main hypothesis is that the use of the self-
presentational intention model based on user’s overall
engagement detection (i.e., when the virtual character adapts its
behaviors) positively affects user’s perception of the interaction.
Thus, we hypothesize that:

• H2a: The scores of perception items are higher in IMPR

condition compared to all the other conditions;
• H2b: The agent in IMPR condition influences how it is

perceived in terms of W&C.

5.5. Protocol
The experiment took place in a room of the Carrefour
Numérique. As shown in Figure 4, the room was divided in
three areas:

• The questionnaires place, including a desk with a laptop, and
a chair;
• The interaction place, with a big screen displaying the virtual

character, a Kinect 2 on the top of the screen and a black tent
in front of the screen;
• The control station, separated by the rest of the room by

2 screens. This place included a desk with the computer
controlling the system.

The experiment was completed in three phases:

1. Before the interaction begun, the participant sat at the
questionnaires place, read and signed the consent form, and
filled in a first questionnaire (see section 5.2), then moved
to the interaction place, where the experimenter gave the last
instructions (5 min);

2. During the interaction phase, the participant stayed right in
front of the screen, between it and the black tent. He\she wore
a headset and was free to interact with the virtual character as

he \she wanted. During this phase, the experimenter stayed in
the control place, behind the screens (3 min);

3. After the interaction, the participant came back to the
questionnaires place and filled in the last questionnaires (see
section 5.3.2). After that, the experimenter proceeded with the
debriefing (5 min).

The interaction with the virtual character lasted about 3 min. It
included 25–36 steps, according to user’s answers. A step includes
one or few sentences played by the virtual character and user’s
answer. If user did not reply in a certain interval of time, the agent
started the following step. After each step, user’s engagement was
computed through our overall engagement detection model (see
section 4.1).

The dialogue is divided into 4 main parts that were always
played by the agent, no matter what answers the users gave:

1. Start interaction (8 steps);
2. Topic 1 (3 steps);
3. Topic 2 (4 steps);
4. End of the interaction (4 steps).

At the end of parts 1, 2, and 3, the agent asked a question to the
user. After parts 2 and 3, if the user gave a positive answer, the
agent continued to talk about the same topic (6 steps for Topic
1, 5 steps for Topic 2), otherwise it skipped to the next part. The
dialogue flowchart is shown in Figure 5.

5.6. Analysis and Results
We analyzed data from 75 participants, of which were 30 females
and 2 preferred not to specify their gender. The majority of the
participants were in the 18–25 or 36–45 age range, 5 of them
were not native French speakers, and 72% of them had at least a
Bachelor. Participants were almost equally distributed across the
levels of the independent variable Strategy (12.5± 1 participants
per each strategy).

Before conducting our analyses, we computed Cronbach’s
alphas and explored the distribution of data. Good reliability for
w and c items was found (α = 0.9 and α = 0.8, respectively).
We then used the mean of these items for our analyses. Since the
distributions of this data satisfy assumptions for ANOVA, we run
this type of test on them.

Nars scores got an acceptable score of reliability (α = 0.66),
we therefore computed the means of these items in order to
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FIGURE 5 | The dialogue flowchart. The diamond shapes represent the main

parts that always occur during the dialogue, the rectangles represent

questions, the rounds represent agent’s reply to user’s answer and the dotted

shapes the optional parts. Where not specified, each shape represents one

step of the dialogue.

obtain one overall mean for each participant. We then divided
participants into 2 groups, “high” and “low,” according to whether
they obtained a score higher than the overall mean or not,
respectively. Participants were almost equally distributed into the
two groups (39 in the “high” group, 36 in the “low” group, almost
equally distributed across the other variables, too).

5.6.1. Warmth
A 4-way between-subjects ANOVA, including age, sex and Nars
scores as factors, was first run in order to check for any effect
of these variables. A main effect being found for Nars scores,
we then conducted a 4 × 2 between-subjects ANOVA with
Strategy and Nars as factors. The analysis revealed a main effect
of Strategy [F(5,62) = 4.75, p = 0.000974, η2 = 0.26] and Nars
[F(1,62) = 5.74, p = 0.02, η

2 = 0.06]. Warmth ratings were
higher from participants with a high Nars score (M = 3.74,
SD = 0.77) than from those with a low Nars score (M =

3.33, SD = 0.92).
In Table 4 are showed mean and SD of w scores for each

level of Strategy. Multiple comparisons t-test using Holm’s
correction shows that the w mean for INTIM is significantly
lower than all the others (see Figure 6). As consequence, the
others conditions are rated as warmer than INTIM. H1ingr,
H1supp are thus validated, and H1intim and H2b are validated
for the warmth component.

5.6.2. Competence
A 4-way between-subjects ANOVA, including age, sex and Nars
scores as factors, was first run in order to check for any effect
of these variables. No effects were found for any factor, even
when considering only Strategy as factor. When looking at the
means of c for each condition (see Table 5), SUPP is the one with
lower score, even if its difference with the other scores does not
reach statistically significance (all p-values > 0.1). H1supp and
H1intim (for the competence component) are not validated.

5.6.3. User’s Perception of the Interaction
We analyzed each item of perception separately, by applying
non-parametric tests since data were not normally distributed.

Concerning satisfaction scores, a Kruskal-Wallis rank test
showed a statistically significant difference according to Strategy
[H(5) = 11.99, p = 0.03]. In particular, Dunn’s test for
multiple comparisons found that INGR scores were significantly
higher than SUPP (z = 2.88, p-adj = 0.03) and INTIM

(z = 2.56, p-adj= 0.04) (see Figure 7A). No differences were
found between IMPR scores and the other conditions. In
addition, a statistically significant difference between scores was
found according to Nars scores (U = 910.5, p = 0.02):
participants who got high scores in the Nars questionnaire were
more satisfied by the interaction (M = 3.62, SD = 0.94) than
people who got low scores in the Nars questionnaire (M = 3.00,
SD = 1.07). Another interesting results concerns the effect of age
on satisfaction [H(4) = 15.05, p = 0.005]: people in the age
range 55+ were more satisfied than people of any other age range
(see Figure 7B, all p-adj ≤ 0.03).

Concerning continue scores, no effect of Strategy was found.
In general, mean scores were not very high, with only scores
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TABLE 4 | Mean and standard deviation of warmth scores for each level of

Strategy.

Condition Warmth mean ± SD

INGR 3.77± 0.57

SUPP 3.54± 0.999

SELF 3.81± 0.70

INTIM 2.63± 0.93

RAND 3.71± 0.80

IMPR 3.89± 0.38

FIGURE 6 | Mean and SD values of warmth ratings for each level of Strategy.

INITM scores are significantly lower than any other condition. Significance

levels: *p < 0.05, ***p < 0.005.

in INGR and SELF conditions being higher than 3. A Mann-
Whitney U-Test showed a statistically significant difference
according to Nars scores (U = 998, p = 0.001): participants who
got high scores in the Nars questionnaire were more motivated to
continue the interaction (M = 3.28, SD = 1.12) than people who
got low scores in the Nars questionnaire (M = 2.36, SD = 1.13).

Concerning like scores, a Kruskal-Wallis rank test showed
a very near to significance difference according to Strategy

[H(5) = 10.99, p = 0.05]. In particular, Dunn’s test for multiple
comparisons found that INGR scores were significantly higher
(M = 3.75, SD = 0.62) than INTIM (M = 2.62, SD = 0.96; z =
2.87, p-adj = 0.03) (see Figure 7C). No differences were found
between IMPR scores and the other conditions. In addition,
a statistically significant difference between scores was found
according to Nars scores (U = 970, p = 0.003): participants
who got high scores in the Nars questionnaire liked Alice more
(M = 3.62, SD = 0.91) than people who got low scores in the
Nars questionnaire (M = 2.92, SD = 0.99).

TABLE 5 | Mean and standard deviation of competence scores for each level of

Strategy.

Condition Competence mean ± SD

INGR 3.6± 0.62

SUPP 2.98± 0.77

SELF 3.75± 0.63

INTIM 3.65± 0.79

RAND 3.5± 0.70

IMPR 3.43± 0.76

No significant differences among the conditions were found.

Concerning learnfrom, exhib, and rship, no significant
differences in scores were found according to any variable.
Participants’ scores about learnfrom and exhib were all over the
mean value, while for rship the mean scores for each condition
were quite low (all means ≤ 2.75), suggesting that participants
considered Alice as very distant from them.

Concerning likeperson scores, no significant differences were
found according to Strategy. Mean scores for each condition
were quite low (all means ≤ 2.25), suggesting that in general
Alice was perceived more similar to a computer than a person.
A Mann-Whitney U-Test showed a statistically significant
difference according to Nars scores (U = 1028, p = 0.0003):
participants who got high scores in the Nars questionnaire
perceived Alice less closed to a computer (M = 2.49, SD = 1.12)
than people who got low scores in the Nars questionnaire (M =
1.58, SD = 0.69).

On the whole, these results do not allow us to validate H2a,
but agent’s adaptation was found to have at least an effect on its
level of warmth (H2b, see section 5.6.1).

5.6.4. Verbal Cues of Engagement
Only one person gave a negative answer to Topic1_question,
while people gave different responses to Topic2_question. In
general, participants which did not give much verbal feedback
(i.e., <13 reactions over all the speaking turns) gave a positive
answer to this question (OR = 4.27, p = 0.04). In addition,
we found that ratings about likeperson item were significantly
lower for people giving much verbal feedback (M = 1, SD =
0) compared to those of people who did not talk a lot (M =

2.16, SD = 1.07; U = 36.5, p = 0.02). This means that,
even than in general users found the agent closer to a computer
than to a real person, all the people who gave much verbal
feedback during the interaction perceived totally agreed with this
definition. No differences in any of the dependent variables were
found according to Strategy.

6. DISCUSSION

In this section we discuss the details of the results of our
evaluation study.

First of all, regarding H1, the only statistically significant
results concern the perception of agent’s warmth. Alice was
rated as colder when she adopted INTIM strategy, compared
to the other conditions. This supports the thesis of the primacy
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FIGURE 7 | Mean values with sd for the different items of perception where an effect of Strategy and age was found. Significant results of Dunn’s test for multiple

comparisons are reported, with the following significance levels: *p < 0.05, ***p < 0.001: (A) mean values of satisfaction for each level of Strategy; (B) mean values

of satisfaction for each age range; (C) mean values of like for each level of Strategy.

of warmth dimension (Wojciszke and Abele, 2008, see section
2), and it is in line with the positive-negative asymmetry
effect described by Peeters and Czapinski (1990), who argues
that negative information has generally a higher impact in
person perception than positive information. In our case,
when the agent displays cold (i.e., low warmth) behaviors
(i.e., in INTIM condition), it is judged by participants with
statistically significant lower ratings of warmth. Regarding the
other conditions (INGR, SUPP, SELF, IMPR, and RAND), they
elicited warmer impressions in the user, but there is not one
strategy better than the others in this regard. The fact that also
the SELF elicited the same level of warmth than the others could
reflect an halo effect: the behaviors displayed to appear competent
influenced its warmth perception in the same direction.

Regarding H2, the results do not validate our hypothesis
H2a that the interaction is improved when the virtual agent
manages its impressions by adapting its strategy according to
user’s engagement. When analyzing scores for perception items,
we found that participants were more satisfied by the interaction
and they liked Alice more when the agent wanted to be perceived
as warm (i.e., in INGR condition), compared to when it wanted
to be perceived cold and competent (i.e., in INTIM condition).
An hypothesis is that since the agent was perceived warmer in
INGR condition, it could have positively influenced the ratings
of the other items, like satisfaction. Concerning H2b about a
possible effect of agent’s adaptation on user’s perception of its
W&C, it is interesting to see that when the agent adapts its self-
presentational strategy according to user’s overall engagement,
it is perceived as warm. This highlights a link between agent’s
adaptation, user’s engagement and warm impression: the more
the agent adapts its behaviors, the more the user is engaged and
the more s/he perceives the agent as warm.

When looking at participants’ verbal cues of engagement (see
section 5.6.4), we could divide people into two groups: those
who gave much verbal feedback during the speaking turns, and
those who mainly answered to agent’s questions and did not talk

during the rest of the interaction. Participants talking a lot may
ask questions to the agent, give their opinion on a game, etc. Since
the agent is not endowed with natural language understanding
capacities, it could not answer participant’s request, nor could
it argument on user’s opinion. Even though we did not explain
agent’s limitation to participants before starting the experiment,
users who gave many feedback at the beginning of the interaction
often became aware that the agent could not react to their speech,
since it did not consider what they said, interrupt them, continue
talking on its topic as if the participants had not talked. This
could had a negative effect on their experience and had led
them to choose not to continue to discuss with the agent. When
looking at the interaction with this group of people, we notice
that they stop proving feedback after the virtual agent missed
answering them properly. There is a clear distinction in their
verbal behaviors before and after the agent missed their input.
In our quantitative analyses we found that the majority of people
replying a lot to the agent often gave a negative answer to the
question Topic2_question asked by the agent about continuing
the discussions. On the other hand, people who did not talk a
lot had less probability to experience weird situations such as
asking a question to the agent and not being heard. These people
were less disappointed than the others and more likely to accept
to continue the interaction. Indeed, according to our results, the
majority of people who did not give much verbal feedback gave a
positive answer to the question Topic2_question. This hypothesis
that participants giving much feedback at the beginning of the
interaction discovered the limits of the agent seems in line with
the lower scores found for likeperson item given by people
talking a lot compared to the others. The fact that the agent
did not behave in the appropriate way and that the agent did
not stand up to their expectancies could have highlighted even
more the fact that they were in front of a system that simulates a
“mock” of interaction. Another possible explanation to this result
could concern the fact that people who did not talk a lot were
intimidated and so they did not dare to give a negative answer
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to the agent. This could be in line too with the results about
likeperson item: considering the agent closer to a person, they
could have answered “yes” as not to offend, somehow, the agent.

In this discussion we should take into account how
participants’ expectancies may affect their perception of the
interaction. People expectancies about others’ behaviors have
already been demonstrated to affect human-human interaction
(Burgoon, 1993), as well as when people are in front of
an ECA (Burgoon et al., 2016; Biancardi et al., 2018). In
this study we found some effects of people’s a priori about
virtual character: people who got higher scores in the Nars
questionnaire generally perceived the agent warmer, compared
to people who got lower scores in the Nars questionnaire.
In addition, it should not be forgotten that the fact of being
in a Sciences museum, combined with people exposition to
films and TV shows about artificial intelligence could have
had a strong impact on participants’ expectancies. People
could have difficulties in distinguishing between what is
shown in science-fiction films and the current state of the
technology of interactive ECAs. Thus, people could have
exaggerated expectancies about our virtual agent’s capabilities.
These expectancies, and the related disappointment showed by
some participants when interacting with a less sophisticated
virtual character, could have become an uncontrollable variable
preventing any other effect of the independent variables of our
experiment. Nevertheless, it has to be remembered that in this
experiment we mainly focused on the non-verbal behaviors
rather than on the dialogical dimension, limiting therefore the
dialogue complexity to better control the other variables. The
agent had the floor during the majority of the interaction; our
system took into account the polarity of user’s answers only
at 2 specific moments, Topic1_question and Topic2_question
(see section 5.5, thus the variability of the agent’s dialogue was
very limited.

7. CONCLUSIONS, LIMITATIONS, AND
FUTURE WORK

In this paper, we presented a computational model for
an Embodied Computational Agent, aimed at managing its
self-presentational intentions eliciting different impressions of
warmth and competence, in order tomaximize user’s engagement
during the interaction. We built an architecture which takes as
input participants facial Action Units, torso and head rotation,
use them to compute user’s overall engagement and sends it to the
dialog manager of the agent. Through a reinforcement learning
algorithmwhich takes user’s engagement as reward, the agent can
select the self-presentational intention which maximizes user’s
engagement. In order to evaluate the system, we conceived an
interaction scenario where the agent played a role of museum
guide. In the experiment we manipulated how the agent selected
its self-presentational intention at each speaking turn. It could
adapt its behavior by using the reinforcement learning algorithm,
or choose it randomly, or use the same self-presentational
intention during the whole interaction. The agent which adapted
its behavior to maximize user’s engagement was perceived as

warm by participants, but we did not find any effect of agent’s
adaptation on users’ evaluation of the interaction.

We are aware of some limitations of our system: we discuss
them in the following paragraph, and suggest some future
improvements to deal with these limitations. First of all, many
participants did not like the virtual character, as we can see
from their answers to the questionnaires, as well as from
their comments during the debriefing. They reported their
disappointment about the quality of the animation and of the
voice of the agent. They described the experience as “disturbing,”
“creepy.” So probably their very first impression about the
appearance and the voice of the agent was too strong and affected
the rest of the experience. During the interaction, participants
did not show many non-verbal behaviors. This could be due to
the setup of the experiment, where participants stood in front
of the screen and the virtual agent was displayed at human size.
According to their comments, many people were a bit frightened
by the dimension of the agent and for almost all of them it
was their first interaction with an ECA. Many of them stared
at the ECA without moving much. They did not vary their
facial expression, move their head or gesture. Since our overall
engagement detectionmodule relies on the interpretation of non-
verbal behaviors, the lack of behavioral change impacts directly
the output values it returns.

In our work, we have done qualitative analyses and some
quantitative ones. In the future, it would be interesting to
conduct further quantitative measures, such as analyzing facial
expressions, gaze direction and posture of the participants
to measure phenomena like synchronization and alignment.
This will allow us to have a complementary measure to their
subjective evaluation.

One of the main limits of the interaction was that agent’s
strategies did not focus on building a rapport with the participant:
it just managed its impressions of warmth and competence
without considering the social relation with the user. Rapport,
meant as the feeling of harmony and connection with another,
is an important aspect of human interaction, as well as of
human-agent interaction (Gratch et al., 2007; Zhao et al., 2016).
Agent’s self-presentational intentions should take into account
this dimension, at both verbal and non-verbal level. For example,
we could include some conversational strategies such as self-
disclosure, enhance the gaze behavior of the agent to improve
mutual attentiveness, and provide agent’s non-verbal listening
feedback, such as postural mimicry and synchronization of its
movements with the user’s ones.
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In recent years, the field of Human-Robot Interaction (HRI) has seen an increasing

demand for technologies that can recognize and adapt to human behaviors and internal

states (e.g., emotions and intentions). Psychological research suggests that human

movements are important for inferring internal states. There is, however, a need to better

understand what kind of information can be extracted from movement data, particularly

in unconstrained, natural interactions. The present study examines which internal states

and social constructs humans identify from movement in naturalistic social interactions.

Participants either viewed clips of the full scene or processed versions of it displaying

2D positional data. Then, they were asked to fill out questionnaires assessing their social

perception of the viewed material. We analyzed whether the full scene clips were more

informative than the 2D positional data clips. First, we calculated the inter-rater agreement

between participants in both conditions. Then, we employed machine learning classifiers

to predict the internal states of the individuals in the videos based on the ratings

obtained. Although we found a higher inter-rater agreement for full scenes compared

to positional data, the level of agreement in the latter case was still above chance,

thus demonstrating that the internal states and social constructs under study were

identifiable in both conditions. A factor analysis run on participants’ responses showed

that participants identified the constructs interaction imbalance, interaction valence and

engagement regardless of video condition. The machine learning classifiers achieved

a similar performance in both conditions, again supporting the idea that movement

alone carries relevant information. Overall, our results suggest it is reasonable to expect

a machine learning algorithm, and consequently a robot, to successfully decode and

classify a range of internal states and social constructs using low-dimensional data (such

as the movements and poses of observed individuals) as input.

Keywords: social psychology, human-robot interaction, machine learning, social interaction, recognition
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1. INTRODUCTION

One of the main goals in the field of Human-Robot Interaction
(HRI) is to create robots capable of recognizing and adapting
to human interaction partners in an appropriate manner
(Dautenhahn and Saunders, 2011). In human-human
interactions, the appropriateness of our responses to others
is often a result of our ability to recognize the internal states (e.g.,
intentions, dispositions) of our interaction partner (Domes et al.,
2007). Here we focus on internal states and social constructs
relevant to task engagement and social relations between
interaction partners. For example, we consider states that can be
thought of as dispositional judgments (e.g., friendliness), states
which can be considered emotional and are embedded within
a social context (e.g., aggression), and states relevant to task
performance (e.g., boredom). These states are communicated
through both verbal and non-verbal cues (Pollick et al., 2001;
Manera et al., 2011). Endowing robots and behavior classification
systems with a similar ability to recognize internal states based
on non-verbal behaviors would allow for more appropriate,
autonomous human-robot interactions (Breazeal et al., 2009;
Vernon et al., 2016), and for classification systems to provide
more detailed insights into human behavior, e.g., for security
purposes (Gowsikhaa et al., 2014).

1.1. Internal State Recognition
HRI research exploring approaches to achieving on-line
recognition of human internal states/behavior draws on our
understanding of how humans themselves infer internal states
and social constructs. For example, a rich history of research has
led to the assumption that humans are able to infer the internal
states of others by observing their actions and movements
(Gallese and Goldman, 1998; Manera et al., 2011; Quesque et al.,
2013) and facial expressions (Ekman and Friesen, 1971; Haidt
and Keltner, 1999; Tracy and Robins, 2008). In their paper,
Manera et al. (2011) claim that “in some circumstances, the
movement of a human body... is sufficient to make judgments...
in relation to the actor’s intention" [p. 548]. The idea here is
that our intentions or emotions influence differences in the
movements we make and, as observers, we are able to pick up on
these differences and use them to infer the internal state of the
person performing the action (Pollick et al., 2001; Ansuini et al.,
2014; Becchio et al., 2017). To examine this researchers have
used point-light displays and other methods to isolate movement
information from other sources of information. Point-light
displays denote the position and movements of an actor’s joints
on an otherwise blank display. Studies using this type of stimulus
have shown that humans are able to use observed movement to
infer an actor’s gender (Kozlowski and Cutting, 1977; Mather
and Murdoch, 1994; Hufschmidt et al., 2015), intention (Manera
et al., 2010; Quesque et al., 2013) and emotional state (Pollick
et al., 2001; Alaerts et al., 2011).

Available evidence also suggests that internal states
and social constructs which fall under our definition of
being socially relevant, dispositional or related to task
engagement/performance are recognizable from observable
movement. Okada et al. (2015) found that observable

movements and non-verbal audio information produced
during spontaneous, naturalistic interactions were sufficient for
classifying dispositions and social behaviors such as dominance
and leadership. Similarly, Sanghvi et al. (2011) demonstrated that
postural behaviors could be used to classify a child’s engagement
with a robotic opponent, with which the children are playing a
game. Beyan et al. (2016) asked four unacquainted individuals
to complete a group decision task. They found that a classifier,
when fed the 3D positional data of the interaction, was able to
identify leaders within the group based on head pose and gaze
direction information. Sanchez-Cortes et al. (2011) applied a
computational framework to the inference of leadership and
related concepts (e.g., dominance, competence) from non-verbal
behaviors in a group interaction. Interactions in this study
took place between four previously unacquainted individuals
whose interactions were spontaneous and minimally structured.
Sanchez-Cortes and colleagues were able to identify which
behaviors were most informative for the recognition of the
different leadership concepts. For example, conversational
turn-taking and body movement behaviors were found to
be the most informative for inferring leadership, whereas
head activity and vocal pitch were the most informative for
inferring competence.

States which are socially relevant, dispositional or task related,
(such as friendliness, dominance or engagement) are particularly
relevant for HRI research where the aim is to provide a socially
interactive agent. In such scenarios it is preferable to have
an agent which can provide appropriate social behaviors and
responses (Dautenhahn and Saunders, 2011). Whilst emotion
and intention recognition are definitely important for generating
appropriate autonomous social behaviors from a robot, some
HRI scenarios would also benefit from an ability to recognize
internal states as we have defined them here. For instance,
a teaching robot, such as those developed by the L2TOR
project (Belpaeme et al., 2015), would be better able to provide
appropriately timed encouragements or prompts if able to
recognize when a student is bored or not engaged with the
learning task.

As a result, HRI researchers have begun exploring ways in
which observed movement can be utilized by robots and artificial
systems to enable automated interpretation of, and responding
to, the internal states of humans (Schrempf and Hanebeck, 2005;
Han and Kim, 2010). Whilst humans also use other cues such
as tone of voice (Walker-Andrews, 1997), findings such as those
described above suggest that movement information may be
sufficient for recognizing some, if not all, human internal states.

1.2. Current Study
1.2.1. Motivation and Approach

To take advantage of this information for the purposes of internal
state recognition it is important to first identify what internal
state information is available in movements and body postures.
This knowledge is particularly useful for streamlining the design
process for a robot or classifier able to interpret such data. For
example, if we want to design a system able to recognize when a
human is bored, we first need to know what data is sufficient, if
not optimal, for recognizing this state. Would the system need
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to take multiple behaviors into account, e.g., movements and
prosodic features, or would movement alone be enough? In the
case of internal states such as emotions and intentions, previous
research suggests that movement information is sufficient for
gaining insight (e.g., Tracy and Robins, 2008; Manera et al.,
2011; Quesque et al., 2013). Given that the aim of HRI research
is to create systems and robots which can be deployed in the
real world, it is also important to consider that a classifier must
be able to deal with natural, spontaneous human behaviors.
Consequently, it is important to explore whether (and which)
internal states can be recognized from the movements produced
in natural human interactions. A a growing pool of studies have
examined this (e.g., Sanchez-Cortes et al., 2011; Sanghvi et al.,
2011; Shaker and Shaker, 2014; Okada et al., 2015; Beyan et al.,
2016; Okur et al., 2017; Kawamura et al., 2019). However, further
research is needed to provide a better understanding of which
internal states can be inferred from such movements.

We therefore propose that an exploration into how readily
different types of internal states can be identified from
naturalistic human behavior would be beneficial for the
streamlining of future HRI research. That is, by identifying which
internal states are best recognized from a particular behavioral
modality (e.g., biological motion), future research can identify
which data sources are most useful for a given recognition task.

This study takes the first steps in this direction by developing
a method for determining which internal state information is
reported as identifiable by humans when they observe people in
natural interactions. Given the strength of evidence suggesting
that movement information is useful for identifying emotional
and other internal states or social constructs (e.g., Pollick et al.,
2001; Gross et al., 2012; Quesque et al., 2013; Beyan et al.,
2016), this modality is likely to be a rich source of internal
state information. Further, by extending this work to naturalistic
interactions, we will find which internal states are likely to be
identified in more ecologically valid settings. The usefulness of
these states to HRI, indicate that an exploration of which internal
states, from a selection of several, are recognizable from human
movements would be helpful in guiding future research and
development. To address this, we aim to examine and compare
how reliably humans report identifying a number of different
internal states and social constructs from observable movements.

To summarize, the main aim of this study is to demonstrate
a method for identifying: (1) whether the data source of choice
(in this case observable movements) can be used by humans to
infer internal states and social constructs, and (2) what internal
states and social constructs are readable from the movements
within the data set. To do so, we will present short video clips
of social interactions (exhibiting seven different internal states
and social constructs) to participants. These clips come from the
PInSoRo (Lemaignan et al., 2017) data set made openly available
by our group1. This data set consists of videos of child-child
or child-robot interactions. Children were asked to play for as
long as they wanted on a touch-screen table-top device. For this
study, we will solely use the child-child interactions as these
are more likely to involve spontaneous behaviors throughout

1https://freeplay-sandbox.github.io

the children’s interactions with one another. Some participants
will view short clips including the full visual scene (full-scene
condition) and others clips containing only movement and body
posture information (movement-alone condition). These clips
will contain at least one noticeable internal state (for details of
the selection process see the Method section). Following each
clip, participants respond to a series of questions where they can
describe the internal states (e.g., boredom, friendliness) or social
constructs (e.g., cooperation, dominance) they identified in the
children’s behaviors. By comparing responses in each condition
we expect to be able to identify constructs which are likely to be
recognizable from movement information alone.

1.2.2. Hypotheses and Predictions

Based on previous findings that humans are able to recognize
internal states such as emotions (Gross et al., 2012) and group
dynamics such as leadership (Beyan et al., 2016) from human
motion information, we expect the following:

1. Participants will report being able to draw internal state
information from the movement-alone videos (Hypothesis
1). Specifically, we predict that even in the impoverished
movement-alone condition, the provided ratings will be
sufficient to describe the internal states and social constructs
identified in the observed interaction. This can be tested by
training a classifier on the full-scene ratings, and assessing its
performance when tested on the movement-alone ratings.

2. However, given that participants in this condition are
provided with fewer visual cues than those viewing the full-
scene videos (e.g., lack of resolution for facial expressions) we
expect a higher recognition error rate in the movement-alone
condition compared to the full-scene condition (Hypothesis
2). If this is the case, we predict that inter-rater agreement
levels amongst participants will be above chance in both
conditions (i.e. the same constructs are robustly identified
in the clips by the participants), but with higher levels of
agreement in the full-scene condition.

2. METHOD

2.1. Design and Participants
This study examined the effect of video type (full-scene vs.
movement-alone) on responses to questions about the nature
of the interaction depicted in the videos. We used a between-
subject design: participants saw either full-scene clips (Figure 1,
left) or movement-alone clips (Figure 1, right). 284 participants
were recruited fromAmazon’sMechanical Turk (MTurk). A total
of 85 participants were excluded from analysis due to incorrect
answers to an attention check (discussed in Procedure), leaving
199 participants (see Table 1 for demographics). All participants
were remunerated $1 (USD) upon completion of the experiment.

2.2. Materials
The stimuli used for this experiment were extracted from the
PInSoRo data set. This data set contains videos (up to 40 min
long) of pairs of children interacting whilst playing on a touch-
screen table-top. For the present study we extracted twenty 30 s
clips from these videos. We wanted to provide participants with
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FIGURE 1 | Captures of one of the twenty video-clips, full-scene condition on the left, movement-alone condition on the right. Written consent for these images to be

shared was obtained during collection.

TABLE 1 | Demographics of participants included in the analyses.

Condition N Mean Age

(Range)

Gender

(%M, %F)

%

American

% English

First

Language

Movement-

Alone

100 34.52 (22–70) 55%, 44% 75% 80%

Full-Scene 99 33.54 (19–72) 65%, 34% 69% 73%

Both 199 34.03 (19–72) 60%, 39% 72% 76%

clips which showed both children in the frame at the same time.
We therefore selected our stimuli from videos filmed using a
camera which had been positioned roughly 1.4m away from the
touch-screen table-top, with the table-top in the center of the
camera’s view, thus allowing for each child to be viewed on either
side of the frame (see Figure 1, left).

Two versions of the same clips were extracted: the full-
scene clips were the raw video footage of the children playing,
recorded from a static camera (Figure 1, left); the movement-
alone clips were based on the exact same clips, but post-processed
to extract skeletal and facial landmarks (using the OpenPose
library2; Cao et al., 2017). Resulting landmarks were rendered on
a black background, and connected to each other using colored
lines, so that each child was depicted as a stick-man-style figure
(Figure 1, right).

Clip selection was made based on whether a notable
“event” or social dynamic occurred, defined as the labels
listed in Table 2. This was done by watching the full-
scene clips and working out what internal states and social
constructs might be inferred from the children’s movements.
Specifically, two experimenters selected and labeled clips (by
first independently extracting and annotating clips from the
PInSoRo dataset, and second discussing to reach consensus)
wherein at least one of the following seven concepts described
the children’s behavior or their interaction in the full-scene clips
(see Table 2):

2https://github.com/CMU-Perceptual-Computing-Lab/openpose/

1. Boredom - at least one child was bored or not engaging
with the task on the touch-screen (e.g., resting head in hand,
interacting with touch-screen in slow/lazy manner).

2. Aggression - at least one child exhibited a physical aggressive
action either toward the touch-screen or the other child (e.g.,
hitting the screen, pushing the other child’s hand away).

3. Cooperation - the children were working together and/or
communicating about how to perform a task [e.g., talking,
joint attention (looking at the same object together), nodding].

4. Dominance - one child was bossy, performing most of the
actions on the touch-screen or clearly in charge (e.g., pointing
to touch-screen and talking at the other child, stopping the
other child from using the touch-screen, being the only child
to use the touch-screen).

5. Aimless play - at least one child was interacting with the
touch-screen in a non-goal-directed manner or without being
very engaged in their task (e.g., sitting slightly away from
touch-screen whilst still using it, slow/lazy movements on
touch-screen, not always looking at what they’re doing).

6. Fun - at least one child was having fun (e.g., laughing, smiling).
7. Excitement - at least one child behaved excitedly (e.g., more

dynamic than just “having fun," hearty laughter, open smiling
mouth, fast movements).

It was decided that multiple labels could be applied to each
clip for two reasons. First, the two children in each clip could
have behaved in very different ways. Thus, if one child was
bored and the other excited, the clip would be assigned both
the Boredom and Excitement labels (see Table 2). Second, we
recognized that a lot can happen in 30 s (the duration of
the clips) resulting in changes in the internal states or social
constructs which could be inferred from the children’s behaviors.
For example, an interaction might involve an excited child
pushing the other away so they didn’t have to share the touch-
screen, causing the second child to sit and watch in a manner
denoting boredom, this clip could be labeled with Excitement,
Aggression and Bored. These labels were selected based on two
considerations: (a) the events and internal states which appear
available the dataset, and (b) events and internal states which
would be useful to a robot which might observe or mediate
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TABLE 2 | Labels that experimenters assigned to each clip during clip selection.

Clip Label 1 Label 2 Label 3

01 Aggressive

02 Aggressive Excited Aimless

03 Excited Fun

04 Cooperative

05 Bored Aimless

06 Cooperative

07 Dominance

08 Bored

09 Cooperative

10 Cooperative Dominance

11 Cooperative Dominance

12 Aggressive Aimless

13 Excited Aggressive Aimless

14 Aggressive Fun

15 Dominance

16 Cooperative Dominance

17 Excited Aggressive

18 Aggressive Dominance

19 Dominance

20 Excited

such an interaction. Recognizing boredom and aimless behavior
would allow a robot to appropriately encourage a child to take
part in a task. Recognizing when a child is being dominant or
aggressive could provide a robot with cues tomediate and balance
the interaction, or request assistance from a human adult (e.g.,
in the case of aggressive behavior). Recognizing excitement, fun
and cooperation could be used to cue positive feedback from
the robot, or to signal that the robot need not interject. The
selection was made independently by two of the authors, using
a consensus method to reach agreement. It is important to note
that interactions in this data set were minimally controlled -
pairs of children from the same school class were asked to play
on a touch-screen table-top for as long as they wanted. Whilst
structured play options were provided, they were not enforced.
The selected clips were stored on a private server for the duration
of the experiment.

Similarly to the selection of clip labels, the questions were
constructed by the experimenters based on the types of internal
states and social constructs we might want an artificial system
to recognize within a scene. The open question was a single
item which asked participants “What did you notice about the
interaction?.” The closed questions were a series of 4 unique
questions concerning group dynamics, and 13 2-part questions
wherein participants were asked the same question twice, once
regarding the child on the left and once regarding the child
on the right. Each of these 13 pairs were displayed one after
the other. Otherwise, the order in which the questions were
presented was random (see Appendix A for the questions and
response options).

It is important to note that the ground-truth of what internal
states the children were experiencing during their interactions is

not available. As such, neither the labels used for clip selection
and labeling, nor the inferences participants provide in their
questionnaire responses can be truly validated. The labels were,
therefore, also an attempt to work out what naive observers
would infer from the videos.

2.3. Apparatus
The experiment was designed using the jsPsych library3, and
remotely hosted from a private server (Figure 2 shows a
screenshot of the experiment). The experiment was accessible
via Amazon Mechanical Turk (MTurk) to MTurk Workers. An
advert was posted onMTurk containing a link to the experiment.
The remote/online nature of this study means that we had no
control over the physical set-up experienced by the participants.

2.4. Procedure
The two video conditions were posted as separate experiments.
To ensure that participants did not complete both conditions,
the experiments were posted one at a time. Upon opening the
experiment participants were asked to provide their MTurk
ID and then shown a welcome screen. This was followed
by a consent form where participants were asked to provide
consent by selecting one of two response options (“I do not
consent,” or “I do consent”). If participants selected “I do
not consent,” the experiment would close. If they selected “I
do consent” participants were able to press a “Continue” button
and proceed to an instruction screen. This was followed by a
series of 4 demographic questions (age, nationality, first language
and gender). An instruction screen was then presented for a
minimum of 3,500 ms, containing the following text:

“During this experiment you will be shown 4 30-second clips of

children interacting. The children are sat either side of a touch-

screen table-top on which they can play a game. Pay particular

attention to the way the children interact. After each video you will

be asked some questions about what you have watched.”

Participants could then press any button to continue on to the
experimental trials.

All participants were asked to complete 4 trials and were
presented with the same series of events within each trial.
Each trial started with a 30 s clip selected randomly from the
list of 20, which was immediately followed by the questions.
Upon completion of the fourth trial, participants were shown
an additional 2 questions which acted as an attention check (see
Figure 3). Responses to these questions were used to assess how
attentive participants were and how diligently they completed
the experiment. Participants who responded incorrectly were
excluded from analysis.

Participants then viewed a debrief page which thanked
them, explained the purpose of the study and attention-check
questions, and provided participants with contact information
if they had further questions or desired to withdraw their data.
Participants were then provided with a “survey code” which was
randomly generated and were instructed that they had completed

3https://www.jspsych.org/
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FIGURE 2 | Screenshot of the online experimental setup showing the

questionnaire, just after watching the video clip (here in the full-scene

condition). The poster image displayed at the top is a static snapshot of the

clip. Written consent for these images to be shared was obtained during

collection.

FIGURE 3 | Capture of attention check questions presented at the end of the

questionnaire. Single correct answer provided. Questions and responses are

presented in the same format as the rest of the questions in order to test

whether participants read the questions.

the experiment and should now return to the MTurk page in
order to submit their survey code. The survey codes participants
submitted were later compared to those generated to validate
participation and payment was authorized via theMTurk system.
The experiment took between 20 and 30 min to complete.

The resulting data set is fully anonymous, and made publicly
available at https://github.com/severin-lemaignan/pinsoro-
kinematics-study/blob/master/fulldata.csv.

3. RESULTS

All data analyses were performed with the Python pandas and
sklearn toolkits. The notebook used for this article, allowing
for the replication of our results, is available online, see section 5.

The responses to the open questions revealed no insights
beyond those addressed in the specific questions. Therefore, the
analyses of these responses are not included in this report.

3.1. Inter-rater Agreement
To determine inter-rater agreement and reliability, we calculated
agreement scores across all 30 questions for each clip in each
condition separately. This analysis was performed to examine
whether participants in each condition gave similar ratings
across all questions when they had viewed the same clip.
High agreement would indicate that participants had interpreted
similar things from a given clip, e.g., participants might all have
felt that the children in a clip were being friendly and cooperative,
or aggressive and competitive. Whilst this analysis does not
reveal exactly what participants interpreted from the videos, it
does indicate whether they gave similar ratings, and therefore
reported recognizing similar states/behaviors. Given that each
clip was rated by a varying subset of participants, Krippendorff ’s
alpha (Hayes and Krippendorff, 2007) was the most appropriate
metric of rater agreement (see Table 3 for number of raters
and agreement per clip). The alpha scores ranged from
0.058 to 0.463 i.e., from “slight” to “moderate” agreement
(Landis and Koch, 1977).
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TABLE 3 | Table of inter-rater agreement scores for responses to each clip in each

condition.

Clip Krippendorff’s Alpha (3 d.p.)

Full-Scene (N) Movement Alone (N)

1 0.446 (16) 0.186 (26)

2 0.181 (24) 0.270 (20)

3 0.393 (22) 0.369 (18)

4 0.444 (22) 0.262 (23)

5 0.328 (23) 0.283 (20)

6 0.463 (19) 0.359 (19)

7 0.091 (19) 0.236 (23)

8 0.339 (19) 0.312 (17)

9 0.097 (20) 0.058 (18)

10 0.396 (18) 0.086 (13)

11 0.280 (17) 0.234 (23)

12 0.368 (25) 0.298 (16)

13 0.334 (20) 0.189 (21)

14 0.310 (17) 0.309 (21)

15 0.422 (26) 0.242 (14)

16 0.192 (16) 0.272 (21)

17 0.273 (17) 0.183 (21)

18 0.334 (16) 0.331 (24)

19 0.415 (22) 0.304 (19)

20 0.451 (18) 0.250 (23)

A t-test was conducted to assess whether the two conditions
differed in their agreement scores across all 20 clips. This analysis
revealed that participants in the full-scene condition showed
significantly higher agreement (M = 0.328, SD = 0.110) than
participants in themovement-alone condition (M = 0.252, SD =

0.079) (Paired Samples T-Test: t(39) = 2.95, p = 0.008, d = 0.78).
These analyses show that participants viewing the full-scene clips
demonstrated higher levels of agreement in their ratings than
those viewing the movement-alone clips. However, participants
in the latter condition still showed some agreement compared to
chance (chance level Krippendorff ’s Alpha= 0.0; One Sample T-
Test: t(19) = 13.95, p =< 0.001, d = 3.12), suggesting that some
internal states and social constructs were recognizable within the
movement information in both conditions.

3.2. Automatic Labeling of Internal States
The following analysis explored the question of whether the
internal states and social constructs which were available
to/inferred by humans when viewing the full visual scene was also
available in the movement-alone condition.

We investigated this question using supervised machine
learning: would a classifier, trained to label internal states and
social constructs from the full-scene ratings, then label the social
situations equally well from the movement-alone ratings? If so,
this would suggest that the same interaction information was
recognized by, and therefore available to, participants in each
video condition.

Pre-processing Participants’ ratings were coded from 0
(strongly disagree) to 4 (strongly agree), each construct being

recorded as leftconstruct and rightconstruct (seeAppendix A). Before
the following analyses were run, the data from the right-left
paired questions was transformed so that results could be more
easily interpreted in terms of what behaviors were evident in
the interactions, ignoring whether it was the child on the right
or the left who was exhibiting this behavior. First, for each
question we calculated the absolute difference diffconstruct =

abs(leftconstruct − rightconstruct) between the score for the left child
and the right child. This score was calculated so that we could
more easily see if the children were rated as behaving in the
same way, or experiencing similar internal states. Examining the
individual scores for each child would have meant that in order
to see the dynamics between the children, each clip would have
needed to be analyzed separately. Second, for each question we
calculated the sum (shifted to the range [−2, 2]) sumconstruct =

leftconstruct + rightconstruct − 4 of the scores for both children.
This score was calculated because the difference score does not
contain information about the strength of the rater’s belief that
the behavior or internal state was evident in the clip. For example,
we might have the same difference score for clips where raters
believed that both children behaved aggressively and that neither
child behaved aggressively. The sum score tells us the degree to
which a state was identifiable in the clip.

Multi-label classification To test whether the same
interaction information was reported in each video condition
we examined whether the ratings from each condition were
sufficient to identify the types of internal states or social
constructs which were depicted in the videos.

The classifier was trained in a supervised manner, using
the 30 ratings provided by the participants (questions from
Appendix A, pre-processed as indicated above) as input, and the
seven labels assigned to each clip during selection (Table 2) as the
target classification classes. Because the clips could be assigned
multiple labels (e.g., a given interaction can be fun and cooperative
at the same time), we used a multi-label classifier (Pieters and
Wiering, 2017), using 7-dimensional binary vectors (wherein a
zero value denoted that a label was not present in the clip, and a
value of one denoted that it was).

We compared the performances of four of classifier
(random forest classifier, extra-tree classifier, multi-layer
perceptron classifier and a k-Nearest Neighbor classifier, using
implementations from the Python sklearn toolkit; hyper-
parameters were optimized using a grid search where applicable),
and eventually selected a k-Nearest Neighbor (with k = 3)
classifier as providing the best overall classification performance.

Accuracy, precision, recall and F1 score were calculated

to assess the performance of the classifier (following
recommendations in Sorower (2010) and using the weighted

implementations of the metrics available in the Python

sklearn toolkit). Specifically, in the following, Accuracy

reports the percentage of instances where the predicted labels

match exactly with the actual labels; Precision is calculated as

the ratio
tp

tp+fp
of true positives divided by the total number

of predicted labels (true positives + false positives); Recall is
calculated as

tp
tp+fn

, i.e. the ratio true positives over the total

number of labels that should have been found (true positives +
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false negatives). Finally, the F1 score is the harmonic average of

the precision and recall, calculated as
2precision·recall
precision+recall

.

To see how well the classifier performed, we compared
performance against chance. Chance levels for these metrics were
calculated by training the classifier with randomly generated
labels (using the same distribution of labels as found in the real
data set), and then measuring the classifier’s performance on the
actual testing data set.

Results are shown in Table 4. In both testing conditions,
performance is poor to moderate (for instance 15.8% accuracy
for the exact predictions of correct labels in the movement-alone
clips), but remain markedly above chance levels (following Ojala
and Garriga (2010) permutation-based p-value for classification
significance, we found p = 0.02 for the full-scene classification,
and p = 0.01 for the movement-alone classification, ruling out
with high probability the null hypothesis that the classification
results are due to chance).

Importantly, we found that prediction scores are very similar
when testing the classifier on the full-scene ratings or when
testing on the movement-alone ratings. This indicates that, from
the perspective of automatic data classification, participants who
viewed the movement-alone videos were able to report similar
details as participants in the full-scene condition. This suggests
that the movement-alone videos contain sufficient information
to identify different internal states and social constructs.

To identify whether there were particular internal states or
social constructs which were easier to recognize than others, the
F1 score for each label was calculated. These results are reported
in Table 5 and Figure 4. We can see that in both conditions
the labels “Bored” and “Aggressive” have higher F1 scores than
the other labels. Additionally, the F1 scores for these labels
when classifying the full-scene ratings (Bored: 60.0%, Aggressive:
39.0%) are similar to the F1 scores when testing was done on
the movement-alone ratings (Bored: 58.5%, Aggressive: 43.7%).
This suggests that these constructs are as readily recognized
when viewing the full visual scene as when viewing only body
movements. In contrast, the F1 score for “Aimless” when testing
on full-scene ratings is similar to the scores for most of the
rest of the labels (30.3%) but drops to be much lower than any
other label when testing was done on themovement-alone ratings
(19.4%). This could be interpreted as showing that aimless play,
whilst fairly well recognized from the ratings of full visual scene

TABLE 4 | Classification results. Full-scene results are obtained by training the

classifier on 80% of the full-scene ratings, and testing on the remaining 20%;

Movement-alone results are obtained by training the classifier on 100% of the

full-scene data, and testing on the movement-only ratings.

Accuracy Precision Recall F1-measure

Full-scene 15.1 44.5 32.0 36.1

Chance 3.7 27.3 14.0 17.4

Movement-alone 15.8 41.6 32.7 36.3

Chance 3.9 28.2 14.2 17.9

Results are averaged over a 300-fold cross-validation. Values are given as percentages.

videos, is much harder to recognize from ratings produced when
participants viewed only movement information.

This analysis relied on the labels assigned by some of
the authors during clip selection. However, participants may
have been able to recognize other internal states or social
constructs not covered by these labels. In order to investigate
possible latent constructs that participants in both conditions
may have relied on, we next performed a factor analysis on
the dataset.

3.3. Factor Analysis
An Exploratory Factor Analysis (EFA) was performed to explore
what types of information participants reported recognizing from
the videos. If similar latent constructs are found to underlie
participants responses in each condition, this would support the
conclusion that participants reported identifying the same types
of information in each type of video. Additionally, exploring what
factors load into each construct would provide an indication of
what these types of information are.

EFA Preliminary assessments revealed a Kaiser-Meyer-Olkin
(KMO) statistic of 0.89 and the Bartlett’s Test of Sphericity was
significant, indicating that the data was suitable for performing
an EFA. EFA was performed on the ratings data from each
video condition separately to examine what types of interaction
information participants were able to draw from the full visual
scene compared to movement information alone. We used the

TABLE 5 | F1 scores for each independent label.

Aggressive Aimless Bored Cooperative Dominant Excited Fun

Full-scene 42.2 29.5 56.6 30.7 37.9 32.2 25.1

Chance 18.8 17.3 11.7 18.2 20.0 18.6 11.4

Movement

Alone

43.7 19.4 58.5 29.6 43.4 31.2 27.5

Chance 20.1 16.1 10.7 18.7 19.9 17.3 10.4

See Table 4 for the meaning of each row. Values are given as percentages.

FIGURE 4 | F1 scores of individual label predictions in both conditions.
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TABLE 6 | Factor loadings for the three-factor solution using EFA, with factor

loadings > 0.35.

Factor 1:

imbalance

Factor 2:

valence

Factor 3:

engagement

Full-

scene

Mov.-

alone

Full-

scene

Mov.-

alone

Full-

scene

Mov.-

alone

Diff sad 0.41 0.52

Sum sad 0.72 0.53 0.49

Diff happy 0.49 0.53

Sum happy –0.51 –0.55

Diff angry 0.40 0.62

Sum angry 0.81 0.85

Diff excited 0.53 0.63

Sum excited –0.71

Diff calm 0.45 0.63

Sum calm –0.45

Diff friendly 0.69 0.56

Sum friendly –0.60 –0.43

Diff aggressive 0.78 0.79

Sum aggressive 0.80 0.72 –0.36

Diff engaged 0.39 0.65 0.52

Sum engaged –0.64 –0.64

Diff distracted 0.65 0.63

Sum distracted 0.63 0.82

Diff bored 0.44 0.61 0.54

Sum bored 0.58 0.48 0.83

Diff frustrated 0.53 0.61

Sum frustrated 0.70 0.69

Diff dominant 0.75 0.81

Sum dominant 0.53 0.52

Diff submissive 0.68 0.72

Sum submissive 0.54

factor_analyzer Python module4 to perform the EFA,
additionally using a promax rotation. Three factors were found
to explain 44% of the variance in the full-scene ratings, and
46% in the movement-alone ratings. The factor loadings for each
component can be seen in Table 6.

A Pearson correlation was conducted to examine the
similarity of components found in the full-scene and movement-
alone ratings. A strong positive correlation was found between
each pair of components: for Factor 1: r = 0.94, p < 0.001;
for Factor 2: r = 0.84, p < 0.001; for Factor 3: r =

0.81, p < 0.001. This supports the hypothesis that the same
latent constructs are relied upon by the participants to rate social
interactions, be it based on raw video footage (full-scene) or
on a simplified, movement-only, stick-man-style representation
(movement-alone).

By inspecting the distribution of factors loadings in Table 6,
the latent constructs can be further interpreted. It appears that
the first component is describing how different the children’s
behaviors and emotional states are, i.e. this factor describes an

4https://github.com/EducationalTestingService/factor_analyzer

imbalance in the children,s social, behavioral, and emotional
states. For instance, a high value on this scale would show that
the children were reported as behaving very differently, e.g., if one
child was highly engaged, the other was not very engaged at all.

The second component describes the overall valence of the
interaction. A high value on this factor would indicate a negative,
adversarial interaction where the children were rated as being
sad, aggressive etc. Alternatively, a (lower) positive valence value
might result from an interaction where one child was rated as
being more sad or aggressive than the other child was happy.
For both conditions this component has positive correlations
with the Sum items for negative emotions and behaviors (e.g.,
Anger, Aggression). For the movement-alone condition, this
component also has negative correlations with Sum items for
positive emotions and behaviors (e.g., Happiness, Friendliness).

The third component is mostly describing the children’s
engagement with their task. In comparison to the other two
components it contains more of a mix of Sum and Difference
items, and therefore describes both how similar the children were
in how engaged they were, and the overall level of engagement
within the interaction. A high value on this third factor would
show that the children were rated as showing different levels
of engagement, but a strong indication of boredom within the
interaction as a whole.

Social Expressiveness of the EFA-Space Embedding One
may wonder whether these three factors alone would allow by
themselves for an effective assessment of a social interaction, i.e.
is the social “expressiveness” of our EFA factors as good as the
original 26 factors? This can be investigated by re-applying the
same classification methodology as used in section 3.2 to the EFA
embedding of the participants’ ratings.

To this end, the 26-dimensional participant ratings were
projected onto the smaller, 3-dimensional, space spanned by the
EFA factors (the EFA-space):

MEFA
fullscene = Mfullscene · 3

EFA
fullscene

MEFA
movementalone = Mmovementalone · 3

EFA
fullscene

with Mfullscene the 396 × 26 matrix of the participants’ ratings,

MEFA
fullscene

the 396× 3 matrix of the participants’ ratings projected

onto the EFA space, and 3
EFA
fullscene

the 26 × 3 matrix of the

EFA factor loadings (Table 6). Both the full-scene clips and
the movement-alone clips where projected into the same space
(spanned by the factors found during the full-scene EFA).

Then, we retrained the same classifier (a kNN with k = 3)
as in section 3.2, and tried to predict social labels from EFA-
projected ratings unseen at training time. Tables 7, 8 show the
results. We observe a drop of about 4–6% in performance, but
still above chance.

4. DISCUSSION AND CONCLUSION

Psychology literature has long established the importance of
observing physical group behaviors to provide us with a unique
window onto the agents’ internal states, as well as the current
state of the social interaction. Specifically, we have previous
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TABLE 7 | Classification results, including classification in EFA-space. EFA-space

means that the dimensionality of the training and testing data is reduced to 3 by

projecting the ratings onto the 3-dimensional space spanned by the EFA factors;

non-EFA values copied from Table 4 for comparison.

Accuracy Precision Recall F1-measure

Full-scene, EFA 11.2 38.3 26.2 30.0

Full-scene 15.1 44.5 32.0 36.1

Chance 3.8 28.1 14.2 17.8

Movement-alone, EFA 11.7 35.1 27.0 30.3

Movement-alone 15.7 41.6 32.7 36.3

Chance 3.9 28.3 14.2 17.9

Values are given as percentages.

TABLE 8 | F1 scores for each independent label, including after classification in

the EFA-space.

Aggressive Aimless Bored Cooperative Dominant Excited Fun

Fullscene, EFA 37.8 16.2 53.9 29.4 29.7 25.9 20.6

Fullscene 42.2 29.5 56.6 30.7 37.9 32.2 25.1

Chance 19.1 16.5 11.7 19.0 19.6 17.4 11.0

Movement

alone, EFA

36.5 24.0 49.2 24.6 33.7 27.4 12.2

Movement

alone

43.7 19.4 58.5 29.6 43.4 31.2 27.5

Chance 19.8 16.4 10.7 18.9 19.9 17.9 10.5

Non-EFA values copied from Table 5 for comparison. Values are given as percentages.

evidence of the role of movements/actions as an important social
signal (Gallese and Goldman, 1998; Alaerts et al., 2011). The
main contribution of this paper is to investigate the question of
what different states are identified by observers of naturalistic
interactions, looking at the (rather messy) social interactions
occurring between children while playing together.

This study aimed to examine the kinds of information humans
report recognizing from the movements of such naturalistic
social interactions. We investigated the following question: is
movement information alone (in our case, the moving skeletons
of two children playing together, pictured on a uniform black
background) sufficient for humans to successfully infer the
internal states and social constructs experienced and present
within a social interaction? Our methodology involved a
between-subject, on-line study, where participants were asked
to rate children’s behaviors along 17 dimensions, having either
watched the raw footage of short interaction videos, or only the
skeletons and facial landmarks extracted from the same video
clips. This resulted in about 800 unique human ratings, covering
both conditions, across 20 different clips, selected for displaying
a range of different internal states and social constructs.

We explored the ratings data set (which is publicly available,
see the details in the following section) using two main data
mining techniques. We first trained a classifier on the full-
scene ratings with hand-crafted social labels to then attempt
to automatically identify these social labels on the movement-
alone ratings. Our results show that training our best performing

classifier (a 3-kNN) on 80% of the full-scene ratings and testing
on the remaining 20% results in a (cross-validated) precision
of 46.2% and recall of 33.6%. We found very similar levels of
precision and recall (respectively 41.6 and 32.7%) when testing
on the movement-alone ratings: the assessment of the social
interaction taking place between two children, made by naive
observers watching a low-dimensional, movement-alone video-
clip of the interaction, carries similar informational content
regarding the internal states and social constructs as the original
raw video footage. Based on this finding, we can tentatively
conclude that whilst the movement alone videos contain fewer
pieces of information, the pieces of information available are as
meaningful as those in the full scene videos. Furthermore, we
can assess that these pieces of information can be interpreted by
human observers in a similar way as those in the full scene videos.

To better make sense of these results, we employed a second
data mining technique (Exploratory Factor Analysis, EFA) to
attempt to uncover underlying latent factors that would in effect
embody stronger cognitive constructs, implicitly relied upon
by the humans when assessing a social interaction. We ran
independent EFAs on the ratings provided for the full-scene
videos and those provided for the movement-alone clips.

To our surprise, the latent factors found by the EFA were
strongly correlated between both conditions. In both condition,
one factor was measuring the behavioral imbalance between the
two children (i.e. how similar or dissimilar their behaviors were);
a second factor reflected the valence of the interaction, from
adversarial behaviors and negative emotions, to pro-social and
positive behaviors and emotions; finally a third factor embodied
the level of engagement of the children. These constructs may
be indicative of the constructs humans use to interpret social
interactions in general. Further research is needed to confirm
whether or not this is the case. However, if it is it would provide
further insights into how humans approach the interpretation
and understanding of social interactions. That is, these three
factors may represent the basic cognitive constructs humans use
to understand social interactions. Consequently, HRI research
could use these constructs as a basic framework for exploring
human behavior for classification purposes.

Using the 3-dimensional subspace spanned by these three
EFA factors, we have furthermore shown that ‘summarizing’ the
internal states and social constructs inferred by the participants
into the 3 latent constructs—imbalance, valence, engagement—
only slightly degrades the ability of the classifier to predict the
social labels associated with the interaction. This reinforces the
hypothesis that these three constructs might play a foundational
role in the human understanding of social interactions.

The results of both the classification analysis and EFA
demonstrate that it is reasonable to expect a machine learning
algorithm, and in consequence, a robot, to successfully decode
and classify a range of internal states and social constructs
using a low-dimensional data source (such as the movements
and poses of observed individuals) as input. Specifically, whilst
this study does not examine the ability to identify the correct
internal states or social constructs, we have shown that, in a
robust way, people agree in their reports of what they have
seen both within and between conditions. As such, our study
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shows that, even though assessing social interactions is difficult
even for humans, using skeletons and facial landmarks only
does not significantly degrade the assessment. Future studies
aiming to train a robotic system would ideally utilize a training
dataset where the internal states and social constructs have been
verified (and therefore a ground-truth is available). This study
provides the evidence to guide this type of work, for example
by demonstrating that training a robot to recognize aggression
from movement information is likely to be more successful than
recognizing aimlessness.

4.1. Opportunities for Future Work
Given that this work is exploratory in nature, it presents a
number of opportunities for future work. First, while above
chance, the accuracy of the classifier is relatively low. This may
reflect the inherent difficulty of rating internal states and social
constructs for an external, naive observer (such as the raters
recruited for this study). The literature on emotion recognition
does show that humans are able to recognize emotional states
from impoverished stimuli with a high level of accuracy [e.g.,
44–59% in Alaerts et al. (2011), 59–88% in Gross et al. (2012)].
Similarly, research regarding the recognition of dispositions
and social behaviors indicate that computational techniques can
achieve a higher recognition accuracy than the current study.
For example, Okada et al. (2015) achieved around 57% accuracy
in classifying dominance. However, there is some evidence to
suggest that humans may not be as accurate as computational
classifiers in identifying internal states as we define them here.
To demonstrate, Sanghvi et al. (2011) found that whilst human
observers were able to recognize engagement to an average of
56% accuracy, their best classifier achieved an 82% level of
accuracy. Whilst the accuracy scores presented here are much
lower, the existing literature suggests that this may be a result
of the fact that humans do seem to demonstrate some difficulty
in recognizing these types of states. Additionally, it is important
to remember that the classifier in this study labeled the clips
using the ratings of all the left/right child questionnaire items,
whereas previous research has tended to use the raw visual and/or
audio information for classification by both computational
systems (Okada et al., 2015) and human observers (Sanghvi
et al., 2011). This high dimensional input may have had the
effect of diluting the specificity and causing the classifier to
use irrelevant or unhelpful inputs when making classification
decisions. Additionally, the low classification accuracy may result
from the fact that the questionnaire used in this study might not
have been good enough. As such, future research would benefit
from developing and optimizing the questionnaire.

Additionally, the present study does not explore precisely
which movement characteristics were useful for participants
in making inferences about the internal states of the children
in the videos. In this study we employed a supervised
classification technique to demonstrate that social interaction
assessments based on full-scene or movement-only stimuli were
of similar quality–most notably, our input were ratings of
social interactions by human observers. This technique is not
practically transferable to a robot, as robots would have to
directly classify the raw stimuli (a video stream or skeletons),

without having access to intermediate ratings of the agents’ states.
Creating such a classifier is an important next step in deciphering
how humans recognize internal states, and therefore in deciding
how a robot or classifier can be endowed with a similar skill, for
which our present results provide a solid foundation.

The fact that the internal states experienced by the children in
the videos could not be validated does present a further limitation
for this study. A number of datasets demonstrating one or a
subset of the internal states we are interested in are available.
For example, the Tower Game Dataset consists of human-human
pairs collaborating on a task, and has been annotated for joint
attention and entrainment behaviors reflecting cooperation and
collaboration (Salter et al., 2015). Similarly, the DAiSEE dataset
contains videos of individuals watching videos in an e-learning
setting and is annotated for the internal states of boredom,
confusion, engagement, and frustration (Gupta et al., 2016).
Other datasets include: the UE-HRI annotated for engagement
(Ben-Youssef et al., 2017), the ELEA annotated for perceived
leadership and dominance (Sanchez-Cortes et al., 2011) among
others. Replicating this experiment using a validated dataset may
provide stronger classification and inter-rater agreement results.
However, few ecologically-valid datasets present the range and
variety of internal states as are available in the PInSoRo dataset.
As such, this present research represents an important first step
in framing the research methodology for analysis of complex,
real-life social interactions.

4.2. Conclusion
The aim of this study was to identify social constructs or
human internal states which a socially interactive robot could be
made to recognize. Analyzing the weighted precision scores for
each classification label revealed that “Aggressive” and “Bored”
were classified correctly more often in both conditions, whilst
“Aimless” was classified correctly much less from the movement-
alone ratings. This suggests that training a robot to recognize
aimlessness based on movement information might not be
as successful as training recognition of boredom. Practically
speaking, this finding suggests that designing a tutor robot,
such as those used by L2TOR (Belpaeme et al., 2015), to
recognize when a child is bored by their task based on
movement information would be more successful than having
the robot recognize when a child is performing the task in an
“aimless” or “non-goal-directed” manner. Such a robot could
then appropriately offer encouragement or an alternative task.

Additionally, these findings suggest that exploring other
data sources for recognizing human internal states may reveal
that certain behavioral modalities may be more useful for
recognizing different states. In this way, the method we have
demonstrated here can be used to streamline research aimed
at teaching robots [and other classification technologies, e.g.,
automatic classification of security footage (Gowsikhaa et al.,
2014)] to recognize human internal states. By applying this
method to different types of input data, research can identify the
optimal behavioral modality for recognizing a particular human
internal state.

These findings have significant impact for both social
psychology and artificial intelligence. For social psychology,
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it consolidates our understanding of implicit social
communication, and confirms previous findings that humans
are able to recognize socially relevant information from observed
movements (Iacoboni et al., 2005; Alaerts et al., 2011; Quesque
et al., 2013). For artificial intelligence, and in particular, for social
robotics and human-robot interaction, it provides support for
the intuition that low-dimensional (about 100 skeletal and facial
points per agent vs. full video frames comprising of hundred
of thousands of pixels), yet structured observations of social
interactions might effectively encode complex internal states
and social constructs. This provides promising support for
fast and effective classification of social interactions, a critical
requirement for developing socially-aware artificial agents
and robots.

5. RESOURCES FOR REPLICATION

Following recommendations by Baxter et al. (2016), we briefly
outline hereafter the details required to replicate our findings.

5.1. Study
The protocol and all questionnaires have been provided
in the text. The code of the experiment is available at
https://github.com/severin-lemaignan/pinsoro-kinematics-
study/. Note that, due to data protection regulations, the
children’ video clips are not available publicly. However, upon
signature of an ethical agreement, we can provide them to the
interested researcher.

5.2. Data Analysis
The full recorded experimental dataset, as well as the complete
data analysis script allowing for reproduction of the results and

plots presented in the paper (using the Python pandas library)

are open and available online, in the same Git repository. In
particular, a iPython notebook with all the steps followed for
our data analysis is available here: https://github.com/severin-
lemaignan/pinsoro-kinematics-study/blob/master/analysis/
analyses_notebook.ipynb.
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A. APPENDIX

A.1. Questions
Open Question: “What did you notice about the interaction?”

Specific Questions: For all of the following questions
participants were asked to report how much they agreed with
each statement. Answers : Strongly Disagree / Disagree / Not Sure
/ Agree / Strongly Agree

1. “The children were competing with one another.”
2. “The children were cooperating with one another.”
3. “The children were playing separately.”
4. “The children were playing together.”

6-7 “The character on the left/right was sad.”
8-9 “The character on the left/right was happy.”

10-11 “The character on the left/right was angry.”
12-13 “The character on the left/right was excited.”
14-15 “The character on the left/right was calm.”
16-17 “The character on the left/right was friendly.”
17-18 “The character on the left/right was aggressive.”
19-20 “The character on the left/right was engaged with

what they were doing on the table.”
21-22 “The character on the left/right was distracted from

the table.”
23-24 “The character on the left/right was bored.”
25-26 “The character on the left/right was frustrated.”
27-28 “The character on the left/right was dominant.”
29-30 “The character on the left/right was submissive.”
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“That Robot Stared Back at Me!”:
Demonstrating Perceptual Ability Is
Key to Successful Human–Robot
Interactions
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Tatsuyuki Kawamura 2 and Hideyuki Nakanishi 1*

1Department of Adaptive Machine Systems, Osaka University, Osaka, Japan, 2 Kyoto Innovation, Inc., Kyoto, Japan

Communication robots, such as robotic salespeople and guide robots, are increasingly

becoming involved in various aspects of people’s everyday lives. However, it is still unclear

what types of robot behavior are most effective for such purposes. In this research,

we focused on a robotic salesperson. We believe that people often ignore what such

robots have to say owing to their weak social presence. Thus, these robots must behave

in ways that attract attention encouraging people to nod or reply when the robots

speak. In order to identify suitable behaviors, we conducted two experiments. First, we

conducted a field experiment in a shop in a traditional Kyoto shopping street to observe

customers’ real-world interactions with a robotic salesperson. Here, we found that the

first impression given by the robot had a crucial influence on its subsequent conversations

with most customer groups and that it was important for the robot to indicate it could

understand how much attention customers were paying to the robot in the early stages

of its interactions if it was to persuade customers to respond to what it said. Although the

field experiment enabled us to observe natural interactions, it also includedmany external

factors. In order to validate some of our findings without the involving these factors, we

further conducted a laboratory experiment to investigate whether having the robot look

back at the participants when they looked at it increased their perception that the robot

was aware of their actions. These results supported the findings of the field experiment.

Thus, we can conclude that demonstrating that a robot can recognize and respond to

human behavior is important if it is to engage with people and persuade them to nod and

reply to its comments.

Keywords: robotic salesperson, field trial, multimodal conversation analysis, social presence, situation awareness

INTRODUCTION

In recent years, several attempts have been made to integrate robots that can communicate with
people into different aspects of daily life (Shiomi et al., 2006; Yamazaki et al., 2008; Gehle et al.,
2014) because robots are seen as more engaging than animated characters and are perceived as
more credible and informative as well as more enjoyable to interact with (Kidd and Breazeal, 2004).
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Many studies have considered ways to utilize these types of
robots. For example, experiments have been conducted on the
use of guidance robots in museums (Shiomi et al., 2006; Lee
et al., 2010; Tanaka et al., 2015); further, robots have been adopted
for educational purposes (Gehle et al., 2014). Additionally,
much research has focused on employing robotic salespeople
in real-world shops. For example, several studies have shown
that specific robot motions have a large influence on people’s
impressions of the robots (Kanda et al., 2001; Sidner et al., 2004,
2005; Ham et al., 2011), while other researchers have attempted to
find particular robot behaviors that attract customers’ attention
(Yamazaki et al., 2008, 2009). In addition, several researchers
have developed robots that can recognize human social behaviors
and take advantage of these to attract attention (Gaschler et al.,
2012; Das et al., 2015; Fischer et al., 2015). However, these
types of behaviors are not always effective in different aspects of
daily life. Some researchers developed a robot that can recognize
social behavior recognition of human and attract the attention
depending on typical social behaviors of human (Gaschler et al.,
2012; Das et al., 2015; Fischer et al., 2015). However, these kind
of behaviors are not efficient in every aspects of daily life.

In this research, we focus on the behaviors of a robotic
salesperson. When there are foreign travelers in a shopping
mall, the salespeople in the mall may not be able to speak their
language. In such cases, robotic salespeople could help to serve
customers, but they are easily ignored by customers due to their
lack of social presence, making it difficult for them to work as
salespeople. The robots’ behavior should draw human attention
to them and encourage customers to listen carefully to what they
have to say.

In this paper, our goal is to investigate these types of behaviors
of robotic salespeople. First, we conducted a field experiment
in a shop in a traditional Kyoto shopping street in order to
identify behaviors that could draw people’s attention to the robot.
In this experiment, although we observed natural, real-world
interactions between the robotic salesperson and the customers,
there were also many external factors. In order to validate some
of our experimental findings without involving these extraneous
factors, we also conducted a laboratory experiment to examine
whether demonstrating the robot’s ability to perceive how much
attention people were paying the robot could encourage them to
respond to its comments.

RELATED WORK

Field Trials
Many real-world experiments have already attempted to study
natural interactions between robots and humans. For example,
experiments have been conducted in museums (Bennewitz et al.,
2005; Kuno et al., 2007; Yamazaki et al., 2008; Gehle et al.,
2014) and a classroom (Tanaka et al., 2015). In addition, several
experiments have employed robots as salespeople for different
purposes (Lee et al., 2012; Nakagawa et al., 2013; Niemelä
et al., 2017a,b). Two of these experiments were conducted in
a shopping mall (Kanda et al., 2010; Shiomi et al., 2013). The
first one aimed to use a robot to build customer relationships,

while in the second one a robotn offered customers product
coupons to improve product sales. However, the robots in these
experiments did not introducepresent products to the customers
directly. By contrast, in this research we would develop a robotic
salesperson that can introduce customers to products in a
real shop.

Attracting Customers to Robots
Many experiments have also been conducted into attracting
customers’ attention to robots. For example, it was found that
tracking customers’ faces and headmovements could attract their
attention in a museum (Yamazaki et al., 2008, 2009). However,
that robot was automated and could not communicate naturally
with customers. In another study, they placed a robot in an
information kiosk to encourage customers to communicate with
the robot (Lee et al., 2010), but did not generate a large dataset. In
our research, we used remotely controlled robots and conducted
two long-term experiments to investigate how to attract and
communicate with customers.

FIELD EXPERIMENT

Robotic salespeople’s comments tend to be easily ignored due
to their weak social presence, meaning that they may not be
effective. The robots’ actions must therefore attract human
attention and encourage people to listen to what robots have to
say. In this section, we conduct a field experiment in order to
identify robot behaviors that can draw people’s attention to it
by observing its natural, real-world interactions with customers.
The fact that the robot is not-ignored means that the customer
responds continuously to the robot’s speech. That is, two-
way conversation is established. In this section, we focus on
the robot’s initial utterances, drawing on previous research
suggesting that first impressions are important in human–human
interactions (Kelley, 1950), then investigate how to establish
two-way conversations.

Method
Experimental Setup
We conducted the experiment in a shichimi (seven-spice
blend) shop located in a traditional Kyoto shopping mall.
Figure 1A shows a photograph of the shop, where we installed
a Pepper robot as a salesperson. We used Pepper because
it has many sensors, enabling us to easily obtain real-
time data from the customers, as well as a robot-mounted
tablet that we could use to show them pictures of the
products. We developed a remote controler and installed
a predetermined set of actions in the robot before the
experiment began.

Here, we used the Wizard of Oz (WOZ) method (Saerbeck
et al., 2010) to control the robot remotely, with an experimenter
selecting appropriate reactions for Pepper based on the
current situation. With the WOZ method, it takes time
for the operator to determine the robot’s next behavior
and implement it, but this is not a serious problem when
the robot is talking with visitors. Pepper’s behaviors were
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divided into two types: ordinary conversation and product
introduction. Its ordinary conversation behaviors included
greetings (such as “Hello”), handshake requests, and self-
introduction, while its product introduction behaviors included
offering customers a sample to try, trying to promote
sales of shichimi and soft-serve ice cream, and asking a
salesperson for help. When offering customers a sample,
Pepper would point to the sample’s location with its left
hand and say, “Would you like to try a sample? You can
taste here.”

We placed a camera behind the robot to enable the
experimenters to observe the situation in the shop and choose
its next action. The robot could also turn its head automatically
to focus on people’s faces using a camera on its head. To
record data, we set up three obscure recording cameras in the
shop, as shown in Figure 1B. Here, the customers’ faces have
been obscured. We also set up one clear recording camera
in the shop. When customers approached the robot, they
were shown a consent form on the tablet. Only when they
had given their consent did we begin recording with the
camera. We also placed some handouts on the robot’s leg
that gave further information about the whole experiment.
This experiment was approved by Osaka University’s Research
Ethics Committee.

FIGURE 1 | Setup of the field experiment, showing (A) a photograph, and (B)

a top-down view of the shichimi shop.

Analysis Method
In order to observe and analyze the structure and patterns in the
robot’s interactions with customers, we conducted a multimodal
conversation analysis. First, we transcribed the conversations
with each group in detail based on the acquired video footage.
In addition to the words spoken, the transcripts also described
the timing of the customers’ remarks, as well as their body
movements, gaze direction, and so on. Then, we used these
transcripts and videos to analyze the interactions, taking into
account both verbal and non-verbal information. Here, we
defined a customer group as a group of people who knew each
other and entered the shop at the same time, determining this by
using the video to confirm that they entered the shop together
and talked to each other.

Results and Discussion
This experiment was carried out over 10 days in 2017. During
this time, around 360 customers visited the shop, divided into
164 groups with an average of 2.2 people per group.

In order for a robotic salesperson to offer services to customers
and encourage them to make purchases, it needs to attract
their attention to what it has to say. Thus, it was vital to
investigate which types of action the robot could use to attract
the customers’ attention. When Pepper received two or more
consecutive replies from the same customer, we defined it as
a two-way conversation. However, if the customer either did
not respond or only replied once, we defined it as a one-way
interaction. When we looked for these two types of conversation
in our experimental data, we found that 45 groups engaged
in two-way conversations, compared with 119 groups whose
interactions were one-way. These results suggest that the robot
was ignored by most customers.

Customers’ First Impressions of the Robot Strongly

Influenced Their Conversations
In society, robots are generally perceived as mechanical
beings that are merely tasked with executing human orders
accurately. However, unlike industrial robots, some robots
now coexist with people in everyday society. Thus, the
relationships between humans and robots should not only
involve humans giving commands to robots, but also robots
being able to communicate interactively with humans on an
equal footing. In this section, we investigate which of the robotic
salesperson’s behaviors persuaded customers to respond to
its comments.

A previous study of human–human interactions found
that people’s behavior toward others is shaped by their
first impressions, with people who have favorable first
impressions of someone tending to interact more with
them than others who have formed unfavorable impressions
(Kelley, 1950). Although that research focused on human–
human interactions, this finding may also be applicable to
human–robot interactions, so we focused on the robot’s
initial utterances and examined how best to establish
two-way conversations.

First, we compare the group that had a two-way conversation
with the group that robot spoke one-way utterances.
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Transcript 1. The group that had a two-way conversation with

Pepper (December 5th 16:17:17-16:18:26)

1 ((C1 looks at Pepper))

2 P Hello!=

3 C1 Hi!

4 C2 Hello

5 P My name is Pepper.

6 C1 Hi, Pepper!

7 P Nice to meet you.

8 C2 Nice to meet you too.

9 C1 Nice to meet you too. (1.0)

10 C1 Hi, Pepper::.

11 P May I shake hands with you?

12 C1 Sure! Hi! Hello! ((C1 is shaking hands

with Pepper))

(…)

19 P Would you like to try a sample? You

can taste here.

20 C1 OK! ((C1 looks at the tasting sample))

(()) : Supplementary explanation · Speaker’s behavior

! : Lively tone

= : Speech and utterance are connected without interruption

(number) : The length of silence

“:” : Stretched sound

(…) : Omission

(P = Pepper, C1 = young woman1, C2 = young woman2)

Transcript 1 shows an example of customers having a two-
way conversation with Pepper. At the beginning, when they had
just entered the shop (Figure 2A), Pepper said “Hello!” (Line 2),
to which the customer replied “Hi!” (Line 3). After that, Pepper
made some brief comments, to which the customers replied
“Nice to meet you,” (Line 7) and “May I shake hands with you?”
(Line 11). We can therefore say that they engaged in a two-way
conversation. Once the conversation had begun, even though
the robot made slightly longer comments, such as “Would you
like to try a sample? You can taste here,”(Line 19) the customer
answered “OK!” and looked at the samples (Line 20). Figure 2B
shows C1 looking at the samples.

Transcript 2. The group that robot spoke one-way utterances

(August15th 15:59:33-16:00:50)

1 ((Looking at the products))

2 P Medium hot shichimi is standard

spicy for normal use.

3 P Very hot shichimi is characterized by

a numbing and exciting spicy taste.

4 ((C1, C2 and C3 are looking at the

products))

5 P Hello.

6 P My name is Pepper.

7 ((C1, C2 and C3 get away from

Pepper))

8 P Wait, wait. Come on! Let’s talk

together.

(P = Pepper, C1 = man1, C2 = man2, C3 = man3, S = salesperson)

However, Transcript 2 gives an example of a one-way
interaction. When the customers entered the shop, Pepper gave
a lengthy description of the shop’s products, saying “Medium hot
shichimi is standard spicy for normal use.” (Line 2, Figure 3A),
but they did not respond. Here, we can see that once the one-way
interaction had begun, even when the robot made short and easy-
to-answer comments, such as “Hello!” (Line 5) and “My name is
Pepper” (Line 6), it was simply ignored (Figure 3B).

Comparing these two examples, we see that once the
customers had responded to Pepper’s comments, the subsequent
conversation became two-way. By contrast, when they did not
respond to Pepper’s comments, the subsequent interaction was
one-way. These differences are particularly noticeable at the
beginning of the conversation, so the initial impression the
robot gives to customers appears to be extremely important, and
possibly determines the customers’ subsequent attitude to it.

For all the customers who entered the shop, we looked at
the robot’s first utterance and the customer’s initial response.
For 31 out of the 35 customer groups that replied to the
robot’s first utterance (88.6% of cases), this resulted in a two-
way conversation. By contrast, only 14 out of the 129 customer
groups who did not respond to the robot’s first utterance (10.8%
of cases) went on to have a two-way conversation. We also
validated these results using chi-squared tests, finding that the
difference between the two conditions was significant (x2 = 83.5,
p = 0.0063 × 10–17 < 0.05). Consequently, we believe that the
initial impression given by the robot had a crucial influence on
the subsequent conversation for most customer groups.

Among the 14 groups that did not initially respond to
Pepper but then went on to have interactive conversations,
this was mostly due to the robot using the wrong language
or the customers not paying attention to its first comment. In
these cases, when the robot said something later, most of the
customers were surprised and responded willingly. In addition,
four groups replied to the robot’s first utterance but then let
the interaction become one-way. However, in these cases, the
customers included words that seemed to be spontaneous like “I
was surprised.”

So far, it is unclear whether comment length is all that matters,
or whether the content is also important. We therefore compared
the interactions in cases where the robot’s first utterance was
the same, namely “Hello,” which was its most frequent initial
comment. The results are shown in Figure 4. For 23 out of the
29 customer groups that replied to the robot’s initial greeting,
this resulted in a two-way conversation (79.3%). By contrast, only
5 out of the 39 customer groups who did not respond to the
robot’s greeting went on to have a two-way conversation (12.8%).
The results of our chi-squared tests showed that the difference
between the two conditions was significant (x2 = 30.36, p= 0.03
× 10–6 < 0.05).

Given the above, it is reasonable to assume that the impression
given by the robot at the beginning of the interaction had
a decisive influence on the subsequent conversation for most
customer groups. Essentially, the customers’ impressions of the
robot were determined at the start of the interaction. If they
initially perceived the robot as being similar to a voice guidance
machine, its subsequent actions tended to be ignored, resulting
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FIGURE 2 | Scenes from Transcript 1, showing (A) the robot saying “Hello!” (Line 2), and (B) the customers looking at the samples (Line 20).

FIGURE 3 | Scenes from Transcript 2, showing (A) the robot saying a lengthy explanation (Line 2), and (B) the robot being ignored (Line 6).

in a one-way interaction. However, if the customers initially saw
the robot as being capable of two-way dialogue, they were much
more likely not to ignore its subsequent actions, resulting in a
two-way conversation.

Establishing the Two-Way Conversation
Having found that it was important for the robot to persuade
customers to reply to its first utterance if it was to establish a two-
way conversation, we investigated how to encourage customers
to reply to the robot. Here, we focused on its initial interactions
with customers and compared two customer groups, one where
the robot was unable to start a conversation and another where
it could.

Transcript 3. The robot did not start a conversation with the

customers(16th August 14:31:07-14:33:54).

1 ((Entering the shop))

2 ((Looking at the products))

3 P Would you like to try a sample? You

can taste here.

4 (3.3)

5 P Welcome. Please feel free to watch

the products.

6 P Are you troubled to select?

7 P May I shake hand with you?

(P = robot, C1 = old man, C2 = old woman)

Transcript 4. The robot started a conversation with the

customers(10th April 15:52:45-15:57:30).

1 ((Entering the shop))

2 ((Looking at the products))

3 P May I help you?

4 ((C1 turns his head to look at the

robot)) (0.5)

5 P Hello!

6 C2 Hello↑!

7 C1 Hi::!

8 P My name is Pepper.

(P = robot, C1 = man, C2 = woman)

In Transcript 3, the robot suggested that the customers try a
sample (Line 3), but they were looking at the products and did
not reply. We believe this was because they did not know whom
the robot was speaking to. In Transcript 4, the robot said “Hello!”
(Line 5) while the customers were looking at it (Line 4, Figure 5).
In that case, the customers replied to the robot (Line 6), and we
believe this was because the robot greeted them while they were
looking at it. Thus, they realized that the robot was talking to
them, establishing a state of mutual perception.

We also wanted to discover whether the robot had to greet
customers quickly when they turned their heads to look at it.
In Transcript 5, the customer turned her head to look at the
robot, but it was slow to greet them: for 3.6 s, she was looking
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FIGURE 4 | Influence of an initial interaction on the following interaction.

FIGURE 5 | The customer turns his head to look at the robot (Line 4 of

Transcript 4).

at the robot but it took no action (Lines 3 and 4), and then she
turned her head away to look at the products (Line 5). Thus, we
believe the robot must greet customers quickly when they turn
their heads to look at it, otherwise they will rapidly lose interest.

Transcript 5. The customer turns his head to look at the robot(16th

August 15:47:27-15:50:49).

1 ((Entering the shop))

2 P May I help you?

3 ((C1 turns her head to look at the

robot))

4 (3.6)

5 P (C1 turns her head to look at the

products)

6 P Nice to meet you!

(P = robot, C1 = old woman)

From the above, when customers turn to look at the robot, that
is a good time for it to greet them. Engaging with them at such
moments helps them to believe that the robot is aware they have
turned their heads. We therefore investigated all the customer
groups to see whether they responded to the robot’s utterances.
Of the 98 customer groups who were looking at the robot when
it greeted them, 78 responded (79.6%). By contrast, only 8 out of
the 66 customer groups who were looking elsewhere responded
(12.1%). Thus, we can see that most of the customers who
responded to the robot were looking at it when it greeted them.

FIGURE 6 | Result of the customers’ response.

Our chi-squared test results show that the difference between
the two conditions was significant (x2 = 71.9, p = 0.021
× 10–15 <0.05). However, this does not account for differences
in the content of the robot’s first utterance, so we conducted
another chi-squared test for just the groups where the robot’s first
utterance was “Hello!” The results, shown in Figure 6, indicate
that 34 out of the 36 customer groups who were looking at the
robot when it greeted them responded to it (94.4%), compared
with only 5 out of the 27 customer groups who were looking
elsewhere (15.6%). Again, we can see that most of the customers
who responded to the robot were looking at it when it greeted
them, and our chi-squared test results show that the difference
between the two conditions was significant (x2 = 43.02, p= 0.054
× 10–13 < 0.05).

If the robot responds to customers the moment they see it,
this suggests that it is able to perceive the customers’ behavior
and degree of attention. As a result, customers are more likely
to respond to the robot. Essentially, when it shows its perceptual
ability to customers, its conversations with them are more likely
to be interactive.

LABORATORY EXPERIMENT

In the field experiment (Field Experiment), we found that giving
the impression that the robot could recognize human behavior
encouraged customers to reply. However, since this result was
derived from a field experiment, there were many external
factors. In order to validate some of our experimental findings
without involving these extraneous factors, we also conducted
a laboratory experiment to examine whether demonstrating the
robot’s ability to perceive howmuch attention people were paying
it could encourage them to respond to its comments.

Hypothesis
In this experiment, we investigated which robot’s behaviors
persuaded people to respond to its utterances. We believed that
it needed to give the participants the impression that it could
understand its surroundings, including how much attention they
were paying to it, by responding to their non-verbal information.
To test this, we adopted a looking-back behavior, where the
robot would look back at the participants as soon as they turned
their heads to look at it. We then examined whether invoking
this looking-back behavior before the conversations began could
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capture the participants’ subsequent attention and encourage
them to respond to the robot. Here, we considered the following
two hypotheses.

Hypothesis 1: The robot’s looking-back behavior increases the
participants’ perception that it is looking at them.

Hypothesis 2: The robot’s looking-back behavior encourages
the participants to respond to it.

Method
Experimental Setting
For this experiment, we adopted the simply designed robot
shown in Figure 7. We did not add features such as eyes, a
nose, or a mouth to the robot’s face because we suspected that
its expression might influence the participants’ impressions of
it. However, we did make the robot wear glasses to show the
direction of its line of sight. Figure 8 shows the experimental
setup. We placed the robot behind the participant’s chair because
we assumed that robots would talk to customers from different
directions in real-world shops. This meant that, in order to see
the robot, the participants had to turn their heads first.

As a task for the participants to complete, we chose sudoku,
an easy logic-based number-placement puzzle, because there
was plenty that the robot could say about sudoku puzzles. This
experiment was based on an experiment plan that was approved
by Osaka University’s Research Ethics Committee.

Robot Design
We placed a motor in the robot’s shoulder (Figure 9A), enabling
it to move its left arm with 2◦ of freedom, swinging it back and
forth and rotating it in and out. In addition, we added a motor to
control the neck with two strings (Figure 9B), enabling it tomove
its head with 1◦ of freedom, namely left and right. To control
the robot remotely, we developed PC-based controler software
in advance. During the experiment, we observed the participants
and controlled the robot with a camera that we placed beside it.
The robot’s utterances came from a speaker that we placed behind
it, so the participants could locate it based on the direction of its
voice, which was synthesized.

Procedure
When each participant first entered the experimental room,
the robot had already started talking about sudoku. The
participant then stood in a waiting area and listened to one of
the experimenters explain the following three points about the
experiment: the participant was to solve a sudoku puzzle, the
robot would signal them when to begin, and the experiment
would end when they solved the puzzle. After that, the participant
sat down on the chair and waited for the robot to signal them
to begin the puzzle. After the robot had talked about sudoku for
around 4min, it gave a signal for the participant to begin. When
the participant completed the puzzle, they rang a bell to call
the experimenter. After the experiment was over, the participant
answered a questionnaire about their impressions of the robot
and we discussed their reasons for awarding particular scores and
taking the actions they did during the experiment. Finally, the
participants were debriefed after the interview.

Conditions
To validate the hypotheses (Hypothesis), we focused on one
factor and two experimental conditions.

Factor: the robot’s looking-back behavior
No looking-back behavior condition: After the participant

entered the laboratory, the robot kept speaking until it signaled
them to begin the puzzle.

Looking-back behavior condition: After the participant
entered the laboratory, the robot kept speaking. However, when
they sat down, the robot stopped speaking to show them that
it suspected they were not listening to it. After that, when the
participant turned their head to look at it, it also turned its head
to look at them and resumed speaking until it signaled them to
begin the puzzle.

The robot spoke for the same amount of time under both
conditions (around 4min). However, it simply talked about
sudoku puzzles in general, and did not include tips or ways to
solve the current puzzle, so that the content of its comments
did not attract the participants’ attention. In addition, the
robot’s utterances were decided before the experiment. While
speaking, its head swung from side to side every few seconds
so that it turned toward each participant several times. Its
left arm also moved up and down so the participants could
see it was a robot when they looked at it. Figure 7 shows
the experimental procedures under both conditions. In this
example, the participant turned his head to look at the robot
even without the looking-back behavior, but not all participants
did this. In order to provide a clear understanding of the
different conditions in the laboratory experiment, a video is
available (Supplementary Material).

Participants
Twenty participants (10 females and 10 males) were involved
in the experiment. They were all 18–24-year-old university
students living in Japan, recruited for the experiment and
paid for their contributions. None of them were known
to the experimenters. In addition, we used a between-
subjects design, because their impressions of the robot under
one condition could influence their responses under the
other condition.

Behavior Evaluation
In this experiment, we first counted the number times each
participant responded to the robot’s utterances. A participant
was seen as responding to the robot if they either made an
utterance of their own or nodded without saying anything. Under
the looking-back behavior condition, the experimenter observed
the participants and made the robot say “Hello” and “Nice to
meet you” to them when they turned their heads to look at it.
By contrast, under the no looking-back behavior condition, the
robot uttered each sentence at predetermined intervals.

We suspected that, if the robot left a wider interval between
utterances, it was more likely that the participant would respond,
so we analyzed the participants’ behavior while keeping the
robot’s utterances exactly the same under both conditions,
during the period when the robot was talking bout sudoku
after potentially having looked back. Specifically, we counted the
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FIGURE 7 | Experimental procedures under both the (A) looking-back and (B) no looking-back behavior conditions.

FIGURE 8 | Overview of the laboratory experiment.

number of responses and measured how long the participants
watched the robot when it left equal intervals following each
utterance under both conditions. We measured this time based
on video recordings taken from the camera shown in Figure 8.
In order to examine the changes in the participants’ responses
over time, we divided the robot’s utterances into four parts based
on time, splitting its 4min of speech into four 1-min parts.

Under the looking-back behavior condition, all the
participants had to look at the robot so if, during the experiment,
the participants did not turn to look at it, we would make the
robot say “Please look at me.” However, we felt that this utterance
(“Please look at me”) led the participants to look at the robot
on purpose so, when we analyzed the experimental results, we

also analyzed the data with these cases excluded. In this study,
two coders collected the behavioral data and we adopted Cohen’s
kappa statistic to validate its inter-rater reliability. The results
showed that κ values for the participants’ responses (κ = 0.79),
time spent looking at the robot (κ = 0.80), and number of
spoken replies (κ = 1.0) were all above 0.75.

Questionnaire Evaluation
After the experiment, the participants filled out questionnaires
regarding their impressions of the robot in order to evaluate
Hypothesis 1. They responded using a 7-point Likert scale
going from 1 (strongly disagree) through 4 (neutral) to 7
(strongly agree), and we also included a free description section.
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FIGURE 9 | Structure of the robot, showing the (A) left arm, and (B) neck.

Afterwards, we interviewed the participants about their reasons
for awarding particular scores and acting as they did during
the experiment. The questionnaire included the following seven
questions. Here, Q1 assessed the quality of the robot’s speech,
Q2 checked for manipulation, and the remaining questions were
related to the participants’ impressions of the robot.

Q1. The robot’s voice was sufficiently clear.
Q2. I felt I was being observed by the robot.
Q3. I felt the robot was waiting for my reply.
Q4. I felt the robot’s behaviors were similar to human ones.
Q5. I felt I was being forced to listen to the robot.
Q6. I felt I was being forced to respond to the robot.
Q7. I felt the robot was reacting to my behavior.

Results and Discussion
Results
Figure 10 shows the behavior evaluation results, and Figure 11

shows the questionnaire results. For these analyses, we carried out
two-tailed independent t-tests. For the speech quality question
(Q1 in Figure 11), we found no significant difference between the
two conditions, so we believe that the robot’s speech quality did
not influence the participants’ behavior or their impressions of
the robot. In addition, the results for Q2 (whether the participants
felt the robot was observing them) showed a significantly higher
score under the looking-back behavior condition than under the
no looking-back behavior condition (t(18) = 2.11, p = 0.049 <

0.05, Cohen’s d = 0.95), supporting Hypothesis 1. There were no
significant differences between the two conditions for any of the
other questions.

In the behavior evaluation results shown in Figure 10, the
difference in the total number of responses across all four parts
of the experiment between the two conditions was not significant
(t(18) = 1.86, p= 0.079< 0.1, Cohen’s d= 0.83). From Figure 10,
the more the robot talked, the fewer responses the participants
made, under both conditions. We therefore analyzed whether

FIGURE 10 | Histograms representing the number of responses to each of the

robot’s utterances, under the (A) no looking-back, and (B) looking-back

behavior conditions. Here, the bars represent the average numbers of

responses, while the light gray shaded areas represent the overall average

numbers of responses for each part and the error bars represent the standard

errors.
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FIGURE 11 | Questionnaire evaluation results. Here, the bars represent the

average scores for each question, while the error bars represent the

standard errors.

FIGURE 12 | Average numbers of responses during the first and second

parts, under both conditions. Here, the bars represent the averages, while the

error bars represent the standard errors.

the number of responses during each part differed between the
two conditions.

Figure 12 shows the average numbers of responses during
the first and second parts. For the first part, we found that the
difference was significant (t(18) = 2.47, p= 0.024 < 0.05, Cohen’s
d= 1.10). By contrast, the difference in the numbers of responses
during the second part was a non-significant tendency (t(18) =
1.77, p = 0.093 < 0.1, Cohen’s d = 0.79). Finally, we found no
significant differences in the numbers of responses during the
third and fourth parts. Thus, Hypothesis 2 was only supported
during the early stages of the robot’s comments.

Discussion
Regarding the questionnaire, the results for Q2 showed that
the feeling of being observed by the robot was significantly
stronger under the looking-back behavior condition. During the
interviews, the participants made comments such as, “When I
turned around, I made eye contact with the robot,” and “When
I turned my head to the robot, it also looked at me.” This

confirms that the participants had the impression that the robot
was looking back in response to them turning their heads and
looking at it.

From the behavior evaluation results, we see that although
there was a difference in the total number of responses to
the robot’s utterances, it was not significant. We believe this
was because the robot’s looking-back behavior only occurred
at the start of each experiment, so the participants’ impression
of the robot faded away over time and they stopped feeling
that it could understand their behavior. In addition, there was
no significant difference between the two conditions in the
responses to questions Q5–Q7 on the questionnaire. We believe
this was because the participants had much stronger impressions
of the latter half of the experiment because they answered the
questionnaire afterward. Moreover, when interviewed, one of the
participants said that “I felt that my actions were being observed
by the robot when it looked back at the beginning, but as time
went on, this faded away.”

Given these results, we divided the robot’s utterances into
four 1-min parts to investigate how the number of responses
changed over time (Figure 10). This showed that the more the
robot talked, the fewer responses the participants made, under
both conditions. When we focused only on the first part of
the robot’s utterances, there was a significant difference in the
number of responses between the two conditions, which we
believe is because the robot’s looking-back behavior made a
strong impression on the participants during this time.

It is also possible that another reason for this was that we
did not consider the concept of turn-taking. In a previous study,
a robot only looked at people when it was asking them to
respond (Chao and Thomaz, 2010). Thus, we might have been
able to maintain the number of responses by repeating the
robot’s looking-back behavior while it was talking. During their
post-experiment interviews, most of the participants said that
“I wanted to show that I was listening to the robot.” Under the
looking-back behavior condition, not only their faces but also
often their bodies were turned toward the robot when they were
listening to it. Under the looking-back behavior condition, 9 out
of the 10 participants turned their bodies toward the robot. By
contrast, only 4 out of the 10 participants did the same under the
no looking-back behavior condition.

From the above, we concluded that indicating the robot
can understand the participants’ behavior and mental state is
important for increasing its social presence. The robot’s initial
behavior enhanced their perception of being looked at by it.
After that, they would have felt guilty if they had ignored the
robot, so they tried to suggest that they were listening to it and,
consequently, were more willing to respond to it.

In this experiment, although we investigated the effect of
the robot’s looking back, we did not study which behaviors
would enable it to show that it was aware of how much
attention the participants were paying to it. Moreover, the
looking-back behavior was performed before the conversations
began, so it is possible that the participants simply become
bored when the impression created by this behavior faded away.
It is probable that the robot could maintain a strong social
presence by performing such behaviors several times during the
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conversation or adopting the previously mentioned approaches
considered in related studies (Shiomi et al., 2006; Yamazaki
et al., 2008, 2009). We plan to investigate these points in
future work.

GENERAL DISCUSSION

From the field experiment, we found that most of the customer
groups fell into one of two categories: either the group
replied to the robot’s first utterance, resulting in a two-way
conversation, or it did not, resulting in a one-way interaction.
Therefore, we believe that the impression made by the robot
at the beginning of the interaction had a crucial influence on
the subsequent conversation for most customer groups. The
key was to persuade the customers to reply to the robot’s
first utterance.

We also clarified that the best time for the robot to first talk
to a customer is the moment when they turn their head to look
at it. Greeting them at this time potentially makes them believe
that the robot is aware they have turned their head. Thus, we
believe that giving the impression of recognizing human behavior
encourages customers to reply. A previous study found that gaze-
based feedback can be used to signal the robot’s perception,
understanding, and attitude toward the communicated content
(Allwood et al., 1992), which also supports our conclusion.
The laboratory experiment also supported this conclusion. In
addition, the robot established eye contact with the customers
when they looked at it, and some studies have shown that eye
contact has an impact on various cognitive processes (Senju
and Hasegawa, 2005; Dalmaso et al., 2017; Xu et al., 2018). We
therefore believe that establishing eye contact was also a factor in
our results.

Taken together, our qualitative and statistical results lead us
to conclude that indicating the robot can understand people’s
behavior and mental state is important for attracting their
attention and makes it easier to persuade people to listen to it.

In this paper, we conducted both a field experiment and a
laboratory experiment. The field experiment did not consider
customer differences, such as the number of people in the group
or their age, gender, or nationality, even though these could
have affected their interactions with the robot. We also did not
consider the effect of different utterances. We plan to investigate
these issues in future work.

CONCLUSION

This paper has focused on encouraging customers to respond
to a robotic salesperson’s initial utterances. With this in mind,
we conducted two experiments to investigate the initial stages
of human–robot interactions, namely a field experiment and
a laboratory experiment, in order to investigate what types of
behaviors the robot should adopt and when it should perform
them. First, we conducted a field trial to observe natural
interactions between a robot and customers in a real shop. Then,
we conducted a laboratory experiment to investigate whether

having a robot look back at the participant when they looked
at it increased their perception that the robot was aware of
their actions.

Based on the results, we found that suggesting the robot
could recognize human behavior in the initial stages of its
interactions with customers made them feel as if it was
looking at them and encouraged them to respond to its
utterances. Our most important finding is that, in conversations
between people and robots, it is important to suggest that the
robots are aware of their behavior and state of mind. Such
behavior makes people feel that the robot can understand their
behavior and respond accordingly, so they are more likely
to show they are listening to it. We hope that this research
will promote human–robot conversation and enable us to use
robots more effectively.
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In positive human-human relationships, people frequently mirror or mimic each other’s

behavior. This mimicry, also called entrainment, is associated with rapport and smoother

social interaction. Because rapport in learning scenarios has been shown to lead to

improved learning outcomes, we examined whether enabling a social robotic learning

companion to perform rapport-building behaviors could improve children’s learning

and engagement during a storytelling activity. We enabled the social robot to perform

two specific rapport and relationship-building behaviors: speech entrainment and

self-disclosure (shared personal information in the form of a backstory about the robot’s

poor speech and hearing abilities). We recruited 86 children aged 3–8 years to interact

with the robot in a 2× 2 between-subjects experimental study testing the effects of robot

entrainment Entrainment vs. No entrainment and backstory about abilities Backstory

vs. No Backstory. The robot engaged the children one-on-one in conversation, told a

story embedded with key vocabulary words, and asked children to retell the story. We

measured children’s recall of the key words and their emotions during the interaction,

examined their story retellings, and asked children questions about their relationship

with the robot. We found that the robot’s entrainment led children to show more positive

emotions and fewer negative emotions. Children who heard the robot’s backstory were

more likely to accept the robot’s poor hearing abilities. Entrainment paired with backstory

led children to use more of the key words and match more of the robot’s phrases in

their story retells. Furthermore, these children were more likely to consider the robot

more human-like and were more likely to comply with one of the robot’s requests.

These results suggest that the robot’s speech entrainment and backstory increased

children’s engagement and enjoyment in the interaction, improved their perception of

the relationship, and contributed to children’s success at retelling the story.

Keywords: children, entrainment, language development, peer modeling, rapport, relationship, robotics,

storytelling
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1. INTRODUCTION

Social robots have been designed as peers, tutors, and teachers to
help children learn a variety of subjects (Belpaeme et al., 2018),
including math (Clabaugh et al., 2015; Kennedy et al., 2015),
language (Movellan et al., 2009; Kory and Breazeal, 2014; Gordon
et al., 2016; Kory Westlund et al., 2017a,b; Vogt et al., 2017;
Rintjema et al., 2018), reading (Gordon and Breazeal, 2015),
handwriting (Hood et al., 2015), social skills (Robins et al., 2005;
Scassellati et al., 2018), curiosity (Gordon et al., 2015), and a
growth mindset (Park et al., 2017b). Prior work has explored
how social robots can best engage children in learning activities
and improve learning outcomes, using, e.g., personalization of
behavior or curriculum (Gordon and Breazeal, 2015; Hood
et al., 2015; Gordon et al., 2016; Baxter et al., 2017; Scassellati
et al., 2018), appealing appearance and personality (Kory and
Breazeal, 2014), and appropriate nonverbal behaviors (Kennedy
et al., 2015; Kory Westlund et al., 2017a,b). One aspect of
human-human interpersonal interaction that has been linked
to improved learning outcomes in peer tutoring situations is
rapport and positive relationships (Sinha and Cassell, 2015a,b).
Because of this link, we hypothesize that improving a social
robot’s capabilities for building rapport and positive relationships
with children may similarly lead to improved learning outcomes.

Some prior work with adults provides evidence in support of
this hypothesis (Kidd and Breazeal, 2008; Lubold et al., 2016,
2018; Lubold, 2017); however, there is little work yet exploring
a social robot’s rapport and relationship with young children.
Thus, in this paper, we explored whether enabling a social
robot to perform rapport-building behaviors, including speech
and behavior entrainment, and giving the robot an appropriate
backstory regarding its abilities, could help establish rapport
and generate positive interactions with children, which we
hypothesized could improve children’s learning and engagement.

2. BACKGROUND

2.1. Relationships, Rapport, and Learning
We have strong evidence that children’s peer relationships
provide bountiful opportunities for learning via observing peers,
being in conflict with peers, and cooperating with peers (Piaget,
1932; Bandura and Walters, 1963; Bandura, 1971; Vygotsky,
1978; Tudge and Rogoff, 1989; Rubin et al., 1998; De Lisi and
Golbeck, 1999; Whitebread et al., 2007). The research so far
on children’s peer learning discusses how children might learn
from other, but does not yet thoroughly address what precisely
modulates peer learning. That is: Are all peers approximately
equivalent as sources to promote learning, or is there something
about some peers that makes them “better inputs” than others?
In the context of social robots, what is it about a social robot that
could lead children to learn more, or less?

Two possible modulating factors are rapport and a positive
relationship. Some recent work has linked rapport to improved
learning outcomes in older children’s human-human peer
tutoring situations (Sinha and Cassell, 2015a,b). In addition, the
social bonds between children and teachers can predict learner
performance (Wentzel, 1997). Other research has shown that

children may learn math concepts from media characters more
effectively when they have stronger parasocial relationships with
those characters (Gola et al., 2013; Richards and Calvert, 2017).

Many different social and relational factors can increase
rapport, trust, and engagement with virtual agents and
robots. For example, using appropriate social cues (Desteno
et al., 2012; Lee et al., 2013; Breazeal et al., 2016b),
contingent backchanneling (Park et al., 2017a), nonverbal
mirroring (Bailenson et al., 2005; Burleson and Picard, 2007;
Lubold et al., 2018), responsiveness and proactivity (Kim
et al., 2006), increased social presence (Lester et al., 1997), and
matching ethnic communication styles (Cassell et al., 2009) all
have had positive effects.

We chose to implement two rapport- and relationship-
building behaviors in a social robot to explore their effects on
young children’s engagement and learning: speech entrainment
and self-disclosure (shared personal information).

2.2. Speech Entrainment
In positive human-human interpersonal interactions, people
frequently mimic each other’s behavior—such as posture,
affect, speech patterns, gestures, facial expressions, and more—
unconsciously, without awareness or intent (Davis, 1982;
Grammer et al., 1998; Philippot et al., 1999; Provine, 2001; Lakin
et al., 2003; Semin and Cacioppo, 2008; Reitter et al., 2011;
Borrie and Liss, 2014). This mimicry, also called entrainment,
is considered a signal of rapport and has been observed in a
variety of human relationships (Tickle-Degnen and Rosenthal,
1990; Dijksterhuis and Bargh, 2001; Rotenberg et al., 2003;
Dijksterhuis, 2005; Chartrand and van Baaren, 2009; Wiltermuth
and Heath, 2009; Lubold, 2017), as well as with robots and virtual
agents (Breazeal, 2002; Bell et al., 2003; Suzuki and Katagiri,
2007; Levitan et al., 2016). While there is less work exploring
mimicry and rapport in children, there is some showing that
infants and children mimic emotions with humans (Haviland
and Lelwica, 1987; Chisholm and Strayer, 1995; Rotenberg et al.,
2003) and with robots (Gordon et al., 2016). Thus, enabling
a robot to perform entrainment could significantly increase
children’s rapport with it. We chose speech entrainment because
language learning is often a dialogue-heavy activity, and thus,
would perhaps be more noticeable and relevant than entraining
other behaviors. In addition, given the morphology and technical
limitations of the robot platform we had available for this study
(the Tega robot, described below), speech entrainment was one
of the most feasible behaviors to study, though other behaviors
could also be examined in the future (such as posture or affect).

Speech entrainment involves matching the vocal features such
as speaking rate, intensity, pitch, volume, and prosody of one’s
interlocutor. This mimicry tends to happen unconsciously, and
more often when rapport has been established—i.e., when one
feels closer to or more positively about one’s interlocutor (Porzel
et al., 2006; Reitter et al., 2011; Borrie and Liss, 2014). Some
recent work has explored increasing prosodic synchrony in
a speech-controlled child-robot game in order to promote
cooperation and improve enjoyment (Chaspari and Lehman,
2016; Sadoughi et al., 2017). In addition, Lubold and colleagues
developed several social voice-adaptive robots that adjust the
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pitch of the robot’s text-to-speech voice to match that of its
human interlocutor (Lubold et al., 2015, 2016, 2018; Lubold,
2017). This vocal entrainment contributed to increased learning
with undergraduate students as well as middle school students
during math tasks, but did not increase self-reported rapport.
However, our work differs in several ways. We are investigating
the impact of entrainment with younger children in a more
social task—language learning—that may be more affected by
social relationships. Second, these prior studies compared a robot
with a text-to-speech voice to one that had a more expressive
(albeit contingently adapted) voice. They did not control for the
expressivity of the voice. Other recent work found that a robot
with a more expressive voice was more effective as a learning
companion, leading to greater engagement and learning, than
a robot that used a flat voice, similar to a classic text-to-speech
voice (KoryWestlund et al., 2017b). This work raises the question
of whether the effects seen in Lubold et al.’s studies are strictly a
result of the entrainment or a result of the robot’s voice being
more expressive. In the work presented here, we control for the
robot’s expressivity.

2.3. Backstory (Personal Self-Disclosure)
Backstory is the story told by or about an agent, including
personal story (e.g., origin, family, hobbies), capabilities,
limitations, and any other personal information that might be
disclosed. With young children in particular, we expect that
sharing information about an agent in a story context could make
it easier for children to understand.

Prior work has shown that the story told about a robot prior
to interaction can change how people perceive the robot and
interact with it. Telling participants that a robot is a machine vs.
a human-like, animate agent (Stenzel et al., 2012; Klapper et al.,
2014; Kory Westlund et al., 2016b) or giving the robot a name
and a story involving greater agency and experience (Darling
et al., 2015) can manipulate people’s perceptions of the robot
as an animate, social agent as well as their empathy for
the agent. These studies build on extensive work in social
cognition and social psychology literature regarding the idea
that framing or priming can influence subsequent behavior
and perception (Dijksterhuis and Bargh, 2001; Biernat, 2004).
However, it is not only stories told before an interaction, but
also the content of an interaction that affects people’s perceptions
of their interlocutor. For example, one aspect of children’s
friendships and positive relationships is self-disclosure. Children
disclose more information, and more personal information, in
closer relationships (Rotenberg and Mann, 1986; Rotenberg,
1995). The amount of disclosure during conversation reflects
how close two children feel to one another. A robot that
discloses personal information may impact not only relationship
formation and perception, but the story it tells could also impact
how a child perceives how social an agent the robot is.

Backstory can also increase engagement with an agent. For
example, in one study, giving a robot receptionist a scripted
backstory during a long-term deployment increased engagement,
since the story added interesting variation and history to the
interactions people had with it (Gockley et al., 2005). However,

no research as yet has examined the impact a backstory can have
on young children’s learning.

Part of our goal in giving the robot a backstory was to
promote amore positive relationship. Thus, we examined specific
interventions regarding the acceptance of peers and how these
interventions might play into the story told about the robot.
Favazza and colleagues explored how to promote the acceptance
of peers with disabilities in children’s kindergarten classrooms,
as well as how to measure that acceptance (Favazza and Odom,
1996; Favazza et al., 2000). One component of the intervention
they used involved telling stories with guided discussion
about children with disabilities; a second component involved
structured play with the peers who had disabilities. We combined
the idea of telling a story about one of the robot’s relevant
difficulties that could be perceived as a disability—namely, its
hearing and listening abilities—with the idea of self-disclosure
as a component of children’s friendships; and followed this
story/disclosure with several structured activities with the robot.

There are ethical concerns regarding deception when giving
robots stories that may elicit empathy, trust, or acceptance. In
this study, the backstory we chose to use was fairly reflective
of the actual limitations and capabilities of social robots. It
pertained to the robot’s difficulties with hearing and listening
and was thus fairly realistic and not particularly deceptive,
given general difficulties in social robotics with automatic speech
recognition and natural language understanding. The remainder
of the backstory discussed the robot’s interest in storytelling and
conversation, which was deceptive in that robots do not really
have interests, but served to present the robot as a character with
interests in these subjects in order to promote engagement in
learning activities.

3. METHODOLOGY

3.1. Research Questions
We wanted to explore whether a social robot that entrained
its speech and behavior to individual children and provided
an appropriate backstory about its abilities could increase
children’s rapport, positive relationship, acceptance, engagement,
and learning with the robot during a single session.

3.2. Design
The experiment included two between-subjects conditions:
Robot entrainment (Entrainment vs. No entrainment) and
Backstory about abilities (Backstory vs. No Backstory). We
abbreviate the four conditions as E-B, E-NB, NE-B, and NE-
NB. In the Entrainment (E) condition, the robot’s speech was
entrained based on each child’s speaking rate, pitch, and volume,
and exuberance. In the Backstory (B) condition, the experimenter
explained that the robot was not so good at hearing and needed
practice; this backstory was reinforced by the robot later.

3.3. Participants
We recruited 95 children aged 3–8 years (47 female, 48 male)
from the general Boston area to participate in the study. We
recruited a wide age range in order to recruit a sufficient number
of participants and also because we were interested in seeing
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TABLE 1 | Demographic information about the participants by condition.

Condition Mean age (SD) Girls Boys Monolingual Bilingual

E-B 5.40 (1.54) 11 9 12 8

E-NB 5.21 (1.34) 7 9 9 7

NE-B 5.44 (1.67) 13 15 18 10

NE-NB 5.27 (1.35) 13 9 11 11

whether older children (e.g., 6–8 years) or younger children
(e.g., 3–5 years) might relate differently to the robot’s relational
behavior, since children may develop relationships differently as
they grow older (Hartup et al., 1988; Rubin et al., 1998).

Nine children were removed from analysis because they
did not complete the study1. The children in the final sample
included 86 children aged 3–8 (44 female, 42 male), with a mean
age of 5.31 years (SD = 1.43). Of these, 3 were 3-year-olds, 30 were
4-year-olds, 19 were 5-year-olds, 15 were 6-year-olds, and 9 were
7-year-olds, and 10 were 8-year-olds. Forty-nine children spoke
English only; 37 children were bilingual.

We used random counterbalanced assignment to assign
children to conditions. There were 20 in the E-B condition, 16
in the E-NB condition; 28 children in the NE-B condition; and
22 in the NE-NB condition. The imbalance was a result of the
children who did not complete the study.Table 1 lists age, gender,
and bilingual status by condition. Age did not significantly differ
by condition. We asked parents to rate their children’s social
behavior on a variety of dimensions; these ratings also did not
significantly differ by condition.

Children’s parents gave written informed consent prior to the
start of the study, and all children assented to participate. The
protocol was approved by the MIT Committee on the Use of
Humans as Experimental Subjects.

3.4. Hypotheses
We expected that the robot’s entrainment and backstory might
affect both children’s rapport and social behavior, as well as
learning and retention, during a single session with the robot.
Accordingly, we used a variety of measures to explore the effects
of the robot’s entrainment and backstory.We tentatively expected
the following results:

Learning

• H1: In all conditions, children would learn the target
vocabulary words presented in the robot’s story. In prior
studies, we have seen children learn new words from stories
told by robots (Kory, 2014; Kory Westlund et al., 2017b;
Park et al., 2019). However, we expected that children
would learn more as a result of the robot’s entrainment or

1The children who failed to complete the study were primarily younger children

(one 3-year-old, five 4-year-olds, one 5-year-old, and two six-year-olds). Most were

very distracted during the session and did not want to play with the robot for the

full duration of the session. One 4-year-old and the 3-year-old appeared scared of

the robot and did not want to interact at all, even with parental prompting. One

of the 6-year-olds had accidentally signed up for the study twice, and this was not

noticed until after we began the session.

from an increased relationship, i.e., the most in the E-B
condition, followed by the E-NB and NE-B conditions, and
the least in the NE-NB condition.

• H2: Children who learned the target vocabulary words
would also use them in their story retells. We have
previously seen children mirror a robot’s vocabulary words
in their own stories (Brennan, 1996; Iio et al., 2015;
Kory Westlund et al., 2017b).

• H3: Because of the expected connection between the
robot’s entrainment and backstory to children’s rapport
and relationship, as well as prior work showing that
the story told about a computer’s limitations influenced
participants’ lexical entrainment (Pearson et al., 2006), we
expected the entrainment and backstory would lead to
differences in children’s mirroring of the robot’s story in
their retells. Children in the E-B condition would produce
more vocabulary, longer stories, and phrase mirroring
because of more rapport and a closer relationship.

Rapport, Relationship, and Social Behavior

• H4: A robot with an appropriate backstory about its
abilities (E-B and NE-B conditions) would lead to greater
acceptance by children of the robot and more helping
behaviors.

• H5: Both entrainment and backstory would lead children to
treat the robot as a greater social other, such as laughing and
smiling more (Provine, 2001; Smidl, 2006), and affording
the robot courtesies such as saying goodbye or considering
its preferences (Reeves and Nass, 1996). We expected to see
this more in the E-B than the other conditions; and least in
the NE-NB condition.

• H6: Children would show greater rapport, entrainment,
mirroring, and helping behaviors with a robot that
entrained to them (E-B and E-NB conditions). We
also expected that a robot with both an appropriate
backstory and entrainment (E-B) would promote a
stronger relationship, and as a result, greater attention,
engagement, rapport, and mirroring than in the E-NB
condition. Furthermore, children’s attention, engagement,
and positive emotions would increase—or at least decrease
less—over the course of the session than in the other
conditions.

• H7: Children who reported a closer relationship to the
robot would also show more mirroring behaviors, more
helping behaviors, greater rapport, greater engagement,
and more learning. We expected a connection between
children’s relationship and their learning because of prior
work showing that rapport can facilitate learning in peer
tutoring scenarios (Sinha and Cassell, 2015a,b).

3.5. Procedure
Five different experimenters (three female adults and two male
adults) ran the study in pairs in a quiet room in the lab. The
study setup is shown in Figure 1. One experimenter interacted
with the child. The second experimenter was present in the room,
but sat back behind a laptop and did not interact directly with
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FIGURE 1 | (A) The robot was placed on a table. The tablet was set upright to the left (when facing the robot), and the camera behind the robot and to the right. (B) A

child discusses holidays with the robot in the picture conversation task. Written informed consent was obtained to use this image.

the child; their role was to teleoperate the robot and manage the
other equipment. Some children wished their parents to stay with
them (e.g., if they were particularly shy); in these cases children’s
parents were instructed to watch only and let their children do as
much as possible by themselves.

For each child, the interaction with the robot lasted about
20 min, followed by 5–10min for the posttests. The interaction
script, full interaction procedure, and other study materials
are available for download from figshare at: https://doi.org/10.
6084/m9.figshare.7175273; they are available for download as
Supplementary Materials.

The experimenter introduced the sleeping robot, Tega, to
the child and explained that it liked looking at pictures and
telling stories. If the child was in the Backstory condition, the
experimenter also explained that Tega sometimes had trouble
hearing: “Do you see Tega’s ears? Tega’s ears are hiding under
all the fur, so sometimes Tega’s ears don’t work very well. Tega
sometimes has a lot of trouble hearing. You should talk to
Tega in a loud and clear voice so Tega can hear you. Try to be
understanding if Tega needs to hear something again.” Then, in
all conditions, the experimenter invited the child to help wake
up the robot.

The robot interaction had four main sections: A brief
introductory conversation (providing context for sharing the
backstory, 2–3min), a conversation about pictures (providing
opportunities for speech entrainment and a helping/compliance
request, 5–6min), a sticker task (a sharing/compliance request,
1min), a storytelling activity (providing opportunities to learn
words and mirror the robot’s speech, 10–12min), and a brief
closing conversation (1–2min).

In the introductory conversation, the robot introduced itself,
shared personal information about its favorite color and an
activity it liked doing, and prompted the child for disclosure in
return. Then, in the Backstory condition, the robot reinforced the
backstory provided by the experimenter earlier, telling the child,
“Sometimes I have trouble hearing and I can’t always understand
what people tell me. I try really hard, but sometimes I just don’t
hear things right. I need help and practice to get better!”

The picture conversation took approximately 5 min and was
designed to provide many conversation turns for the child, and
thus provide the robot with opportunities to entrain its speech to

the child’s. The experimenter placed photos one at a time in front
of the robot and child (e.g., a collage of holidays or pictures from
children’s movies). For each picture, the robot introduced the
picture content, expressed something it liked about the picture,
asked the child a question, responded with generic listening
responses (e.g., “Can you tell me more?,” “Oh, cool!,” “Keep
going!”), shared another fact relevant to the picture, and asked
another question. At two points during this activity, there were
scripted moments where the robot had difficulty hearing (saying,
e.g., “I didn’t hear that, can you say it again?”), to reinforce its
backstory. The experimenter explained that the robot and child
had to do at least three pictures, but they could do one more
if they wanted—this set up a later compliance/helping task after
the third picture, in which the robot asked if the child would do a
fourth picture with it to help it practice extra. If the child declined
the fourth picture, the experimenter moved on.

The sticker task was used to see how likely the child was to
agree to a request by the robot to share a favorite object. The child
was allowed to pick out a sticker from a small selection. The robot
stated that it wanted the child’s sticker and asked for it. The child
could spontaneously speak or give their sticker to the robot, or
decline. If the child gave their sticker, the experimenter would
conveniently find a duplicate sticker in their pocket to replace it,
so that the child would not have to forgo their favorite sticker.

The storytelling activity was modeled after the story retelling
task used in Kory Westlund et al. (2017b). The robot told a story
consisting of a 22-page subset of the wordless picture book “Frog,
Where Are you?” by Mercer Mayer. The pages of the book were
shown one at a time on the tablet screen. On each page, the robot
said 1–2 sentences of the story. Every few pages, the robot asked
a dialogic reading comprehension question about the events in
the story, e.g., “Where is the deer taking the boy?,” ‘and “How
do you think the boy feels now?” (3 questions total, decreased
from the 11 questions in the prior study to decrease the length
of the story activity). As in the prior study, the robot responded
to children’s answers with encouraging, non-committal phrases
such as “Mmhm,” “Good thought,” and “You may be right.”

We embedded six target vocabulary words (all nouns) into
the story. As in the prior study, we did not test children on
their knowledge of these words prior to the storytelling activity
because we did not want to prime children to pay attention to

Frontiers in Robotics and AI | www.frontiersin.org 5 July 2019 | Volume 6 | Article 54128

https://doi.org/10.6084/m9.figshare.7175273
https://doi.org/10.6084/m9.figshare.7175273
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Kory-Westlund and Breazeal A Social Robot’s Speech Entrainment and Backstory

these words, since that could bias our results regarding whether
or not children would learn or use the words after hearing them
in the context of the robot’s story. We used the six key nouns
identified in the original story in Kory Westlund et al. (2017b),
which were replaced with the target words “gopher”(original
word: animal), “crag” (rock),“lilypad” (log), “hollow” (hole),
“antlers” (deer), and “cliff” (hill).

After the robot told the story, the robot prompted children to
retell the story. Children could use the tablet while retelling the
story to go through the story pages, so they could see the pictures
to help them remember the story. Twice during the retell, the
robot had difficulty hearing (“What? Can you say that again?”),
which reinforced the backstory. Children’s retellings were used as
a measure of their story recall, mirroring of the robot’s speech,
and expressive use of the vocabulary words.

As part of the closing conversation, we included a goodbye gift
task. The experimenter brought out a tray with several objects on
it: a small toy frog (because the frog was present in the robot’s
story), a small book (because the robot expressed great interest
in stories), a sticker of the robot’s favorite color (blue), and an
orange sticker. The child could pick an object to give to the robot,
and the experimenter followed up by asking why the child had
picked that gift.

After the robot interaction, the experimenter administered a
receptive vocabulary test of the six target words in the story.
For each word, four pictures taken from the story’s illustrations
were shown to the child. The child was asked to point to the
picture matching the target word. We examined both children’s
receptive knowledge of the words as well as children’s expressive
or productive abilities during the story retelling, since children
who can recognize a word may or may not be able to produce
it themselves.

This was followed by the Inclusion of Other in Self task,
adapted for children as described in Kory-Westlund et al. (2018).
In this task, children are shown seven pairs of circles that proceed
from not overlapping at all to overlapping almost entirely. They
are asked to point to the circles showing how close they feel to
five different entities: their best friend, their parent, a bad guy they
saw in amovie, their pet (or if they have no pet, their favorite toy),
and the robot. These five entities were included because we were
curious how children might rate the robot compared to other
people and things they might feel close to.

Then the experimenter asked several questions taken from
the Social Acceptance Scale for Kindergarten Children (Favazza
and Odom, 1996; Favazza et al., 2000) regarding how accepting
children might be of the robot and its hearing difficulties, as
well as of other children who might have hearing difficulties,
as described in Kory-Westlund and Breazeal (2019). Finally,
children performed a Picture Sorting Task (Kory-Westlund and
Breazeal, 2019), in which they were asked to arrange a set of eight
entities along a line. The entities included a baby, a frog, a cat, a
teddy bear, a computer, a mechanical robot arm, a robot from a
movie (e.g., Baymax, WALL-e, or R2D2, depending on which the
child was familiar with), and Tega. The line was anchored at one
end with a picture of an adult human female and at the other with
a picture of a table. We wanted to see where children placed the
robot in relation to the other entities.

3.6. Materials
Weused the Tega robot, a colorful, fluffy squash and stretch robot
designed for interactions with young children (Kory Westlund
et al., 2016a) (see Figure 1). The robot is covered in red fur with
blue stripes and uses an Android phone to display an animated
face and run control software. The face has blue oval eyes and
a white mouth, both of which can change shape to display
different facial expressions and mouth movements (visemes)
during speech. The robot can move up and down, tilt sideways,
rotate from side to side, and lean forward and backward. The
experimenters referred to the robot by name (not with pronouns)
in a non-gendered way throughout the study.

Speech was recorded by a human adult female and shifted
to a higher pitch to sound more child-like. All robot speech
was sent through the automated audio entrainment module and
streamed to the robot. For the Entrainment conditions, all speech
was entrained; for the No Entrainment conditions, processing
still occurred, but the speech simply passed through and was
not changed. The reason for this was to incur the same delay
(generally a latency of less than 1–2 s) that results from entraining
and streaming speech in both conditions. More details regarding
entrainment are provided below.

We used a Google Nexus 9 8.9-inch tablet to display the story.
Touchscreen tablets have effectively engaged children and social
robots in shared tasks (Park et al., 2014), including storytelling
activities (Kory and Breazeal, 2014; Kory Westlund et al., 2017b).
We used the same custom software on the tablet to display the
story pages as in KoryWestlund et al. (2017b), which allowed the
teleoperator to turn the pages at appropriate times. This software
is open-source and available online under the MIT License at
https://github.com/mitmedialab/SAR-opal-base/.

3.7. Teleoperation
As in the prior study (Kory Westlund et al., 2017b), we
used custom teleoperation software to control the robot and
digital storybook. The teleoperation software is open-source and
available online under the MIT License at https://github.com/
mitmedialab/tega_teleop/. The experimenters were all trained to
control the robot by an expert teleoperator.

Using teleoperation allowed the robot to appear autonomous
while removing technical barriers, primarily natural language
understanding, since the teleoperator could be in the loop
to parse language. The teleoperator triggered when the robot
began each sequence of actions (speech, physical motions, and
gaze), and when the storybook should turn the page. Thus,
the teleoperator had to attend to timing in order to trigger
action sequences at the right times. The timing of actions within
sequences was automatic and thus consistent across children.
There were also several occasions when the teleoperator had to
listen to children’s speech and choose the most appropriate of a
small set of different action sequence options to trigger, namely
during the picture conversation task.

The teleoperator performed one of two actions if the child
asked an unexpected question or said something unusual. During
the conversation portion of the interaction, the teleoperator
could trigger one of the generic responses (e.g., “Mmhm!,”
“Hm, I don’t know!”) in reply. During the remainder of the
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interaction, the teleoperator had to continue in accordance
with the interaction script, which essentially ignored unexpected
behaviors. While this is not ideal from an interaction standpoint,
it was necessary to ensure reasonably consistent behavior on the
part of the robot across children.

3.8. Entrainment
In the Entrainment condition, the speaking rate and pitch of the
robot’s voice were automatically adjusted to be more similar to
the child. In addition, the robot’s volume and exuberance were
manually adapted by the teleoperator.

For speaking rate and pitch entrainment, the child’s speech
was automatically collected via the robot’s microphone when it
was the child’s turn to speak in the conversation. Using automatic
software scripts with Praat (audio analysis software), various
features of the children’s speech were extracted and used to
modify the robot’s recorded speech files. These modified audio
files were then streamed to the robot for playback.

For speaking rate, the robot’s speech was sped up or slowed
down to match the child’s speaking rate. Thus, if a child spoke
slowly, the robot slowed down its speech as well. We included
ceiling and floor values such that the robot’s speech would only
ever be sped up or slowed down by amaximum amount, ensuring
that the speech stayed within a reasonable set of speeds. We used
the Praat script for speaking rate detection from de Jong and
Wempe (2009). The code for our entrainment module is open-
source and available online under a GNU General Public License
v3.0 at https://github.com/mitmedialab/rr_audio_entrainer/.

The mean pitch of the robot’s speech was shifted up or down.
In doing this, the robot matches two features: (1) the child’s
age, (2) the child’s current mean pitch. In general, people speak
at a particular fundamental frequency, but there is variation
within an individual (pitch sigma). Thus, we provided a table of
mean fundamental frequencies for different age children based
on the values computed in prior work (Weinberg and Zlatin,
1970; Bennett, 1983; Sorenson, 1989; Hacki andHeitmüller, 1999;
Baker et al., 2008; Gelfer and Denor, 2014). For a given child,
all of the robot’s speech was first shifted to have the mean pitch
for children of that age. Then, since an individual may vary
their pitch in each utterance, the pitch of each utterance was
also shifted up or down slightly based on whether the child’s
most recent utterance was higher or lower. Unlike Lubold and
colleagues (Lubold et al., 2016, 2018), we did not adapt the
pitch contour of the robot’s speech. Because the base sounds for
the robot’s speech were recorded by a human (not flat text-to-
speech as in Lubold et al.’s work), the sounds had their own
pitch contours. Pilot tests showed that morphing or replacing
this contour led to speech that sounded unnatural (e.g., placing
emphasis on the wrong syllables).

We also manually adapted the robot’s volume and exuberance.
During the introduction and first picture in the picture task,
the teleoperator observed the child’s behavior and personality:
were they shy, passive, reserved, or quiet (less exuberant/quiet
children)? Or were they loud, extroverted, active, smiley,
or expressive (more exuberant/loud children)? Based on this
binary division, the teleoperator adjusted the robot’s audio
playback volume twice, at two specific points during the

interaction, to either be slightly quieter (for less exuberant/quiet
children) or slightly louder (for more exuberant/louder children).
Furthermore, the teleoperator triggered different animations
to be played on the robot at six different points during the
interaction—more excited and bigger animations for more
exuberant/louder children; quieter, slower, animations for less
exuberant/quieter children.

3.9. Data
We recorded audio and video of each interaction session using
a camera set up on a tripod behind the robot, facing the
child. All audio was transcribed by human transcriptionists
for later language analyses. Children’s responses to the posttest
assessments were recorded on paper and later transferred
to a spreadsheet.

3.10. Data Analysis
For the analysis of children’s story retellings, we excluded the
three 3-year-olds because one did not retell the story, and the
other two needed extra prompting by the experimenter and were
very brief in their responses. Of the remaining 83 children, one
child’s transcript could not be obtained due to missing audio
data. Fifteen children did not retell the story (the number from
each condition who did not retell the story was not significantly
different). Thus, in total, we obtained story retell transcripts for
67 children (15 E-B; 9 E-NB; 22 NE-B; 21 NE-NB).

We analyzed children’s transcribed story retells in terms of
story length (word count), overall word usage, usage of target
vocabulary words, and similarity of each child’s story to the
robot’s original story. We created an automatic tool to obtain
similarity scores for each child’s story as compared to the
robot’s story, using a phrase and word matching algorithm. The
algorithm proceeded as follows: First, take both stories (the
original story and the child’s story) and remove stopwords (i.e.,
words with no significant information such as “the,” “uh,” and
“an”). Second, stem words—i.e., convert words to their original
form. For example, “jumping” would be converted to “jump.”
Third, find all N-grams in each story, where an N-gram is a
continuous sequence of N words from both texts. Fourth, remove
duplicate N-grams from one text. Fifth, count how many N-
grams are the same in both texts. The number of matches is
the similarity score. This algorithm produces a score reflecting
the number of exact matching phrases in both stories—i.e.,
words used in the same order by both the child and robot. It
also produces a higher match score for texts that have both
more matching phrases and longer matching phrases. We also
implemented an algorithm for counting similar matches that are
close to each other, but not exactly the same. This algorithm was
the same as the above, where the fifth step (counting matching
N-grams) used a fuzzy string matching algorithm to determine if
the N-grams matched.

When running the algorithm to match stories, we used N =

3 for computing exact match scores because a smaller N may
not retain enough information to be considered actual phrase
matching, while a larger N may encompass more information
than would constitute a single phrase. For determining similar
match scores, we used N = 4, so that when phrases differed by
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one word, or used a different word in the middle of a similar
phrase, they might still match, as would be expected for similar
phrases. We combined the exact and similar match scores to get
a single overall similarity score for each child’s story that reflected
the child’s overall use of exact and similar matching phrases.

For example, the robot’s story included the sentences, “The
baby frog liked the boy and wanted to be his new pet. The boy and
the dog were happy to have a new pet frog to take home.” After
stopword removal and stemming, this was converted to: “baby
frog like boy want be new pet boy dog happy new pet frog take
home.” One child’s story included the similar section, “Then he
hopped on his hand and hewanted to be his pet. And then the dog
and the boy was happy to have a new pet,” which was converted
to: “hop hand want be pet dog boy happy new pet.” There were
several exactly matching phrases, e.g., “happy new pet.” There
were also several similar matching phrases, e.g., (robot) “be pet
boy dog”/(child) “be pet dog boy.”

We obtained children’s facial expressions from the recorded
videos using Affdex, emotion measurement software from
Affectiva, Inc., Boston, MA, USA (McDuff et al., 2016). Affdex
can detect 15 facial expressions, which are used to detect whether
the face is displaying nine different affective states. Affdex only
recognizes outward expressions of affect (i.e., facial configuration
patterns), which does not imply detecting any underlying feelings
or inferring deep internal states (though they are believed to
be correlated). For each frame of a video, Affdex attempts to
detect a face. If a face is detected, Affdex scores each affective
state as well as the presence of each expression in the range
0 (no expression/affective state detected) to 100 (expression or
state fully present); middle values represent an expression or
state that is partially present. However, these values are relative
and Affdex does not specify what the exact difference between
scores means. For more detail on the algorithms used for facial
affect classification, see Senechal et al. (2015). We analyzed affect
data for 74 children (16 E-B; 11 E-NB; 26 NE-B; 21 NE-NB). For
the remaining 12 children, little or no affect data were collected
as a result of system failures, such as children’s faces not being
recognized by Affdex.

We focused our analysis on the following affective states
and facial expressions: joy, fear, sadness, surprise, concentration,
disappointment, relaxation, engagement, valence, attention,
laughter, and smiles. We included valence in addition to
specific emotions such as joy because Affdex uses different
sets of facial expressions to detect the likelihood that a face
is showing each affective state. Thus, valence is not detected
from, e.g., the emotions joy or sadness; instead, it is calculated
from a set of facial expressions that is somewhat different
than, though overlapping with, the set of expressions used
to calculate other emotions. The expression “concentration”
was called “contempt” by Affectiva. Affectiva has no label
for concentration or thinking expressions. Affectiva uses brow
furrows and smirks to classify contempt; prior work has found
that brow furrowing and various lipmovements present in smirks
such as mouth dimpling and lip tightens are also associated with
concentration (Oster, 1978; Rozin and Cohen, 2003; Littlewort
et al., 2011). Furthermore, contempt is generally defined as
“the feeling that a person or thing is worthless or beneath

consideration,” which, as in Kory Westlund et al. (2017b), did
not make sense in this context; children’s expressions were more
indicative of concentration.

We coded children’s responses to the Social Acceptance Scale
questions on a 3-point scale, with “no” as 0, “maybe” as 1, and
“yes” as 2. We labeled children’s placement of the entities in the
Picture Sorting Task, with the anchor on one end (the human) at
position 1 and the anchor at the other (the table) at position 10.
Thus, a lower rank indicated that children placed the entity closer
to the adult woman. We counted positions to determine what
rank was held by each picture.We also computed scores for Tega’s
rank relative to the other entities. For example, we subtracted the
human baby’s rank from Tega’s rank to get Tega’s rank relative
to the human baby and human adult. Because Tega’s position
among the entities was dependent on where children placed the
other entities in the task, we examined where children placed all
the different entities.

We coded whether children agreed to do the fourth picture
and whether they gave the robot their sticker with “no” as 0
and “yes” as 1. We coded children’s selections in the goodbye
gift task as follows: frog as 4, book as 3, blue sticker as 2, and
orange sticker as 1. We also coded the comments children made
regarding why they selected a particular gift with the following
rubric: 2 if they referenced the robot or the robot’s feelings (e.g.,
“Tega would like it because frog jumped out in story,” “Tega
likes books,” “Because he wanted a sticker”); 1 for a somewhat
relevant comment, mentioning the interaction (e.g., “It was in
the story”); 0 for no explanation, reference to themselves, or
an irrelevant comment (e.g., “It is swamp week at camp,” “I
don’t know”).

4. RESULTS

Our results are divided below into two parts, each reflecting
one of our hypothesis areas: (1) Learning: We asked whether
the robot’s entrainment and backstory would increase children’s
learning with the robot and emulation of the robot’s story;
and (2) Rapport, relationship, and social behavior: We asked
whether children would show greater rapport, acceptance,
positive emotion, engagement, and closeness to the robot as a
result of its entrainment and backstory.

4.1. Learning (H1, H2, H3)
For all learning-related analyses of variance, we included Age as a
covariate because we expected that children’s age would be related
to their language ability and thus to their vocabulary scores and
the complexity and/or length of their stories.

4.1.1. Target Vocabulary Word Identification (H1)
We performed 2×2 between-subjects analyses of variance with
Entrainment (E vs. NE) and Backstory (B vs. NB) with Age as
a covariate. We found a significant effect of Age on the total
vocabulary words identified correctly, F(5, 77) = 2.76, p = 0.024,
η
2
p = 0.15. Eight-year-olds correctly identified the most words,

while 3-year-olds correctly identified the least (Figure 2A). We
also found a significant effect of Entrainment on children’s
identification of the target words, F(1, 77) = 5.47, p = 0.022, η

2
p
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FIGURE 2 | (A) The number of words correctly identified by children of each age group. (B) The number of words correctly identified by entrainment condition.

*p < 0.05.

FIGURE 3 | Children in the E,B condition used more target words in their story

retells than children in the other conditions. ***p < 0.001.

= 0.07. Contrary to our hypotheses, children in theNE condition
correctly identified more words than children in the E condition;
however, in both conditions, there appeared to be a ceiling effect
(Figure 2B). Older children were more likely to correctly identify
words than younger children, rs(85) = 0.367, p < 0.001.

4.1.2. Target Vocabulary Word Use (H2, H3)
A 2×2 between-subjects analyses of variance with Entrainment
(E vs. NE) and Backstory (B vs. NB) with Age as a covariate
revealed a significant interaction between Entrainment and
Backstory regarding children’s use of the target vocabulary words
in the story, F(1,59) = 9.45, p = 0.003, η2p = 0.14. Children in the
E,B condition used significantly more of the target words than
children in all three other conditions (Figure 3).

Overall, we saw no correlation between children’s recognition
of words on the vocabulary test and their subsequent use of those
words in their retells, rs(67) = 0.047. However, there were trends
showing that this did vary by condition, though none of the
correlations were significant. If the robot entrained, childrenwere
more likely to use the words themselves if they had identified the
words correct on the test, E-B rs(15) = 0.253; E-NB rs(10) = 0.254;
children who did not receive entrainment were less likely to do
so, NE-B rs(23) =−0.077; NE-NB rs(21) = 0.024.

In summary, given that children’s scores on the vocabulary
identification test were not significantly different by condition,
these results suggest that the robot’s entrainment and backstory
did not impact children’s initial encoding of the words, but did
affect children’s expressive use of the words in their retelling.

4.1.3. Story Length (H3)
The robot’s story was 435 words long, including the dialogic
questions. The mean length of children’s retells was 304 words
(SD = 110.9). After stopword removal, the robot’s story was 185
words, of which 99 were unique, non-overlapping words. The
mean length of children’s stories after stopword removal was 113
(SD= 41.7), with a mean of 63.1 unique words (SD= 19.0).

We performed 2×2 between-subjects analyses of variance
with Entrainment (E vs. NE) and Backstory (B vs. NB) with Age
as a covariate, which revealed a significant effect of Age on the
length of children’s stories after stopword removal, F(4, 59) =

3.77, p = 0.008, η2p = 0.20, and on the number of unique words

children used, F(4, 59) = 3.19, p= 0.019, η2p = 0.17. Post-hoc tests
revealed that 6- and 7-year-old children told longer stories than
4-year-old children, and 7-year-old children used more unique
words than 4-year-old children (Figures 4A,B). The length of
children’s stories before stopword removal followed the same
pattern, but was not statistically significant. This suggests that the
primary difference between older (6–7 years) and younger (4–5
years) children’s stories was their use of significant content words
vs. stopwords.
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FIGURE 4 | (A) Older children told longer stories than younger children. (B) Older children used more unique words than younger children. *p < 0.05.

FIGURE 5 | The number of overlapping words children used by entrainment condition (A) and by age (B). *p < 0.05; **p < 0.01.

4.1.4. Mirroring the Robot’s Story (H2, H3)
Children used a mean of 37.7 unique words (SD = 12.3) in their
retells of the 99 unique words that the robot had used in its story.
A 2×2 between-subjects analyses of variance with Entrainment
(E vs. NE) and Backstory (B vs. NB) with Age as a covariate
revealed that the number of overlapping unique words used was
significantly different by Age, F(4, 60) = 6.12, p < 0.001, η

2
p =

0.29. We also observed a significant interaction of Entrainment
with Backstory, F(1, 60) = 6.42, p = 0.013, η

2
p = 0.10. Post-hoc

tests showed that older children overlapped more than younger
children (Figure 5A). Children in the E-NB condition (M = 31.2,
SD = 10.9) overlapped less than children in the E-B and NE-NB
conditions (E-B: M = 41.3, SD = 13.2; NE-B: M = 36.2, SD =

10.6; NE-NB: M = 39.8, SD= 13.3) (Figure 5B).
Children’s stories received mean scores of 41.3 (SD = 36.2)

for their use of exact and similar phrases that mirrored the
robot’s phrases. However, we observed no significant differences

between conditions in children’s use of exact and similar
matching phrases.

4.2. Rapport, Relationship, and Social
Behavior (H4, H5, H6, H7)
4.2.1. Acceptance of the Robot (H4)
We performed 2×2 between-subjects analyses of variance with
Entrainment (E vs. NE) and Backstory (B vs. NB) for the
questions asked about children’s social acceptance of the robot
and of other children. We found a significant main effect of
Backstory of children’s responses to the question “Would you
like to be good friends with a robot who can’t hear well,” F(1, 82)
= 7.55, p = 0.007, η

2
p = 0.08. Children who heard the robot’s

backstory were more likely to respond positively than children
who did not hear the robot’s backstory. Children who heard the
backstory were also somewhat more likely to respond positively
to the question, “Would you like to be good friends with a
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FIGURE 6 | Children’s responses to the question, “Would you like to be good friends with a robot who can’t hear well?” and the question, “Would you like to be good

friends with a handicapped or disabled kid?” by condition. *p < 0.05.

TABLE 2 | Analysis of facial expressions during the interaction by condition.

Expression Overall E-B E-NB NE-B NE-NB

Engagement 30.8 (11.7) 33.3 (13.3) 30.5 (12.0) 29.6 (11.2) 30.5 (11.4)

Attention 68.9 (13.4) 62.2 (21.1) 67.8 (15.2) 71.9 (5.56) 72.0 (9.51)

Valence −0.738 (9.11) 3.51 (8.81) 5.75 (13.72) −4.13 (5.20) −2.72 (8.47)

Joy 7.13 (8.04) 9.13 (8.81) 12.1 (12.5) 5.48 (5.02) 5.61 (7.26)

Smiles 8.98 (8.82) 10.9 (9.35) 14.6 (13.4) 7.16 (5.65) 7.52 (8.31)

Laughter 0.13 (0.22) 0.23 (0.31) 0.28 (0.36) 0.08 (0.09) 0.07 (0.11)

Relaxation 3.53 (5.31) 4.13 (5.38) 6.63 (9.61) 2.49 (2.42) 3.06 (5.03)

Surprise 7.21 (6.96) 8.47 (9.22) 4.53 (4.63) 7.40 (5.32) 7.43 (7.84)

Disappointment 4.98 (3.98) 2.58 (2.01) 3.58 (3.03) 6.58 (4.37) 5.72 (4.05)

Fear 1.48 (2.06) 1.00 (1.40) 0.38 (0.66) 1.87 (2.04) 1.93 (2.72)

Concentration 2.92 (2.48) 2.02 (1.79) 2.11 (1.87) 3.20 (2.45) 3.72 (3.03)

Sadness 0.27 (0.46) 0.22 (0.34) 0.49 (0.54) 0.32 (0.59) 0.17 (0.24)

Values can range from 0 (no expression present) to 100 (expression fully present), except

Valence, which can range from −100 to 100. Each column lists mean and standard

deviation.

handicapped or disabled kid,” though it was not statistically
significant (Figure 6).

4.2.2. Children’s Expressivity and Positive Emotion

(H5, H6)
Overall, children were highly attentive and engaged, and
displayed surprise and other emotions during the story
(see Table 2). To evaluate whether children showed greater
engagement or positive emotion with the robot that entrained,
we performed 2×2 between-subjects analyses of variance with
Entrainment (E vs. NE) and Backstory (B vs. NB).

We found a significant main effect of Entrainment on
children’s expressions of joy, F(1, 69) = 6.25, p= 0.015, η2p = 0.070;

fear, F(1, 69) = 5.31, p = 0.024, η2p = 0.074; concentration, F(1, 69)

= 5.09, p = 0.027, η2p = 0.074; disappointment, F(1, 69) = 12.7, p

< 0.001, η2p = 0.17; attention, F(1, 69) = 5.66, p= 0.02, η2p = 0.091;

laughter, F(1, 69) = 12.02, p < 0.001, η2p = 0.13; smiles, F(1, 69) =

5.82, p = 0.019, η
2
p = 0.064; and valence, F(1, 69) = 14.7, p = <

0.001, η
2
p = 0.16. Post-hoc tests showed that children expressed

less fear, concentration, disappointment, and attention in the E
condition than in the NE condition (Figure 7). Children showed
higher mean joy, laughter, valence (i.e., showedmore affect with a
positive valence), and more smiles in the E condition than in the
NE condition (Figure 8). There were no significant differences in
sadness, surprise, relaxation, or engagement; however, there was
a trend for children in the E condition to show more relaxation
than in the NE condition, which could have contributed to the
higher valence seen in the E condition.

Next, we asked whether children’s affect changed during the
session. We split the affect data into the first half of the session
and the second half of the session, using the data timestamps to
determine the halfway point. We ran a 2×2×2 mixed ANOVA
with time (within: first half vs. second half) × Entrainment
(between: E vs. NE) × Backstory (between: B vs. NB). Although
we hypothesized several changes in children’s affect over time as
a result of condition, we corrected for multiple comparisons here
and only considered results significant when p < 0.004.

Like before, we found a significant main effect of Entrainment
on disappointment, F(1, 70) = 14.7, p < 0.001; laughter, F(1, 70) =
8.94, p= 0.004; and valence, F(1, 70) = 14.6, p < 0.001. There were
trends for a main effect of Entrainment on joy, F(1, 70) = 4.25, p=
0.043; fear, F(1, 70) = 5.88, p = 0.018; attention, F(1, 70) = 4.37, p
= 0.040; and smiles, F(1, 70) = 3.99, p= 0.0497. Children showed
fewer expressions of fear and disappointment in the E than in
the NE condition (Figure 9). Children showed more joy, more
smiles, and higher valence in the E than the NE condition.

We found a significant main effect of time on joy, F(1, 67) =
34.6, p < 0.001; valence, F(1, 67) = 17.7, p < 0.001; engagement,
F(1, 67) = 10.3, p = 0.002; smiles, F(1, 67) = 40.5, p < 0.001;
relaxation, F(1, 67) = 27.2, p < 0.001; laughter, F(1, 67) = 11.9, p
= 0.001. All of these decreased from the first half to the second
half of the session.

We saw trends for interactions of Entrainment with time:
concentration, F(1, 67) = 6.79, p = 0.011; attention, F(1, 67) =
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FIGURE 7 | Children’s overall negative affect varied by entrainment condition. (A) shows attention; (B) shows concentration; (C) shows fear; (D) shows

disappointment. *p < 0.05; ***p < 0.001.

5.47, p = 0.022; and laughter, F(1, 67) = 7.82, p = 0.007. Children
showed more concentration during the first half in the NE than
in the E condition. Children showed more attention during the
first half for NE vs. E, but they did not differ during the second
half. Children laughed more in the first half in the E condition
than in the NE condition, and decreased to the second half,
while in the NE condition the amount of laughter did not change
over time.

We also saw trends for interactions of time with Backstory for
fear, F(1, 67) = 8.55, p = 0.005; sadness, F(1, 67) = 7.01, p= 0.010;
disappointment, F(1, 67) = 7.70, p = 0.007; attention, F(1, 67) =
4.88, p= 0.031; and valence, F(1, 67) = 8.12, p= 0.006 (Figure 10).
Children expressed less fear in the second half of the session
when they did not hear the backstory, but expressed somewhat
more fear in the second half if they had heard the backstory.
They expressed less sadness in the second half in NB condition,
but did not change in B condition. Children’s expressions of
disappointment increased slightly in the B condition from first
to second half, but not for the NB condition. Children’s attention
was higher initially in the NB condition and decreased slightly,
while children’s attention started lower in the B condition and

increased slightly. Children showed decreased valence in the
B condition from first half to second half, but not in the
NB condition.

4.2.3. Closeness to the Robot (H5, H6)
We performed a 2×2×5 mixed ANOVA with Entrainment (E
vs. NE) × Backstory (B vs. NB) × IOS agent (within: Friend,
Parent, Tega, Pet/Toy, Bad guy). We found a significant effect
of agent, F(4, 302) = 61.9, p < 0.001. Post-hoc Tukey’s HSD tests
showed that the bad guy was rated significantly lower than all
other agents. In addition, the robot was rated significantly lower
than the friend, but was not significantly different from the parent
or pet/toy (Figure 11A). Older children were more likely to rate
Tega as closer, rs(86) = 0.410, p < 0.001 (Figure 13A).

Regarding the Picture Sorting Task, overall, Tega was placed
at a mean position of 4.78 (SD= 1.80) (Figure 11B). Figure 12A
shows results by condition for Tega’s distance to the human, and
Figure 12B shows the relative distance of each entity from the
Tega robot by condition.

We performed a mixed ANOVA with Entrainment (between:
E vs. NE) × Backstory (between: B vs. NB) × Entity (within:
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FIGURE 8 | Children’s overall postive affect varied by entrainment condition. (A) shows valence; (B) shows joy; (C) shows smiles; (D) shows laughter. *p < 0.05;

***p < 0.001.

Tega robot, baby, cat, frog, teddy bear, movie robot, robot arm,
computer) for the entity positions, as well as for the entity
positions relative to the Tega robot. For entity positions, we
observed a significant main effect of Entity, F(7, 574) = 71.7, p
< 0.001. We also observed a significant interaction of Entity
with Entrainment, F(7, 574) = 2.15, p = 0.037; and a significant
interaction of Entity with Backstory, F(7, 574) = 2.35, p= 0.022.

Post-hoc tests revealed that the baby was placed significantly
closer to the human adult than all other entities. The cat was
placed significantly closer to the human adult than all entities
except for the Tega robot in the E condition, and closer to the
human than all entities except Tega and the frog in the NB
condition. In both the NE and B conditions, the cat was not
placed significantly differently from Tega, the frog, movie robot,
or teddy bear.

In the E condition, the Tega robot was significantly closer to
the human adult than the robot arm, computer, movie robot, and
teddy bear. It was farther from the human adult than the baby and
was not placed in a significantly different position from the cat
or frog. In the NE condition, Tega was only placed significantly
closer to the human adult than the robot arm and computer; it

was not placed significantly differently from the cat, frog, movie
robot, or teddy bear. Tega was not placed in a significantly
different position from the movie robot in the B condition, but
was placed significantly farther from it (closer to the human) in
the NB condition.

The frog was placed significantly closer to the human adult
than the robot arm and computer, and significantly farther from
the human adult than the baby, but otherwise its position did
not differ significantly from any other entities, except in the NB
condition, where it was placed closer than the movie robot.

In the NE condition, the robot arm was placed closer to the
table than the frog and movie robot, but in the E condition, the
robot arm was not placed significantly differently from the frog
or movie robot. By Backstory, children in the B condition placed
the robot arm closer to the table than all other entities except the
computer and teddy bear, while in the NB condition the robot
arm’s position was also not signficantly different from the movie
robot’s. Finally, in the NE and B conditions, the computer was
placed closer to the table than all entities except the robot arm,
while in the E and NB conditions, the computer was also not
significantly different from the movie robot.
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FIGURE 9 | Children’s affect during the first half and the second half of the interaction varied by entrainment condition. (A) shows attention; (B) shows concentration;

(C) shows laughter; (D) shows valence; (E) shows joy; (F) shows smiles; (G) shows engagement; (H) shows relaxation; (I) shows surprise; (J) shows sadness; (K)

shows fear; (L) shows disappointment. ***p < 0.001.
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FIGURE 10 | Children’s affect during the first half and the second half of the interaction varied by backstory. (A) shows attention; (B) shows concentration; (C) shows

laughter; (D) shows valence; (E) shows joy; (F) shows smiles; (G) shows engagement; (H) shows relaxation; (I) shows surprise; (J) shows sadness; (K) shows fear;

(L) shows disappointment. *p < 0.05; **p < 0.01.
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FIGURE 11 | (A) Children’s IOS ratings for each agent. (B) The mean position

where children placed each entity in the Picture Sorting Task by condition.

*p < 0.05; ***p < 0.001.

Regarding the distance of each entity relative to the Tega
robot, we observed a significant main effect of Entity, F(6, 492)
= 71.8, p < 0.001. We also observed a significant interaction of
Entity with Entrainment, F(6, 492) = 2.13, p = 0.049; and a trend
toward an interaction of Entity with Backstory, F(6, 492) = 2.11, p
= 0.051. Post-hoc tests revealed that the baby was placed farther
from Tega, and closer to the human adult than Tega was, than all
other entities. There was a trend for children to place the Tega
robot closer to the baby (and the baby closer to the human adult
than Tega) in the B condition (mean difference = 1.83, SD =

2.55) than in the NB condition (M = 2.92, SD= 2.01).
The cat was placed closer to Tega than most other entities. It

was not placed significantly differently than the teddy bear in the
E condition; from the frog, movie robot, or teddy bear in the NE
and B conditions; and from the frog in the NB condition.

The computer was placed farther from Tega than all entities
except the robot arm and, in the E and NB conditions, the movie
robot. The robot arm, in turn, was placed farther from Tega than
all entities except the computer and teddy bear. In theNB andNE
conditions, the robot arm was also not different than the movie

FIGURE 12 | (A) Tega’s mean distance from the human adult in the Picture

Sorting Task by condition. (B) The distance of each entity from the Tega robot

in the Picture Sorting Task by condition. There were trends for the Tega robot

to be placed closer to the baby in the B condition than in the NB condition,

closer to the movie robot in the E condition than in the NE condition, and

closer to the frog in the E-B condition than in the other conditions.

robot; and in the E condition, the robot armwas also not different
from the movie robot or frog. There was a trend for children to
place Tega farther from the movie robot, and closer to the human
than the movie robot was, in the E condition (M = −1.94, SD =

2.40) than in the NE condition (M =−0.80, SD= 2.69).
Finally, we also observed trends for Tega to be placed farther

from the frog, and also closer to the human adult than the frog
was, in the E (E: M = −1.31, SD = 2.77, NE: M = −0.16, SD
= 2.62) and B conditions (B: M = −1.11, SD = 2.76, NB: M =

−0.05, SD= 2.60).
We observed no significant differences between conditions

regarding whether children were more likely to agree to do the
fourth picture with the robot, give the robot their sticker in the
sticker task, or give the robot a bigger goodbye gift (in terms of
how meaningful the robot might think it to be). About half the
children in each condition chose to do the fourth picture; we did
not see any effects of the number of picture conversations (i.e.,
the three required vs. the optional fourth one) on the results. If
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we looked at children’s likelihood to perform all three activities
(adding up the fourth picture, the sticker, and the goodbye gift,
rather than any one individually), we saw a trend for children
in the E-B condition to be slightly more likely to do all three
activities, though this was not statistically significant.

4.2.4. Children’s Mirroring, Learning, and

Relationship (H7)
We found that children who gave Tega a closer score on the IOS
task were also more likely to use the target words in their stories,
rs(67) = 0.359, p = 0.003 (Figure 13C). They were also more
likely to emulate the robot’s stories as reflected by the number of
exact and similar phrases used in their retells, rs(67) = 0.273, p =
0.025 (Figure 13B). Given that age also correlated with children’s
ratings of Tega on the IOS task, we might suspect that age is more
relevant than how close children felt to the robot. However, age
did not correlate with children’s use of exact and similar phrases,
which suggests a deeper story.

In addition, children who placed Tega closer to the human
in the Picture Sorting Task were also more likely to use phrases
similar to the robot’s, rs(67) = −0.299, p = 0.014 (Figure 13D).
There was a trend for children who placed Tega closer to the
human to also rate Tega more closely on the IOS task, rs(86) =
−0.197, p= 0.069.

We did not observe any significant correlations of children’s
vocabulary scores with their phrase mirroring or any of the
relationship assessments.

5. DISCUSSION

We asked whether a social robot that entrained its speech and
behavior to individual children and provided an appropriate
backstory about its abilities could increase children’s rapport,
positive relationship, acceptance, engagement, and learning with
the robot. Below, we discuss the main findings and then discuss
the implications of these findings.

5.1. Learning
Children learned the target vocabulary words in the robot’s
story and were generally attentive and engaged with the robot
regardless of the experimental condition. They showed a variety
of emotional expressions throughout the interaction. Children
remembered the robot’s story as evidenced by their ability to
retell the story and their identification of target words on the
vocabulary test. These results are in line with the prior study
using this story activity (Kory Westlund et al., 2017b), which
found significant learning gains.

We did see differences in children’s learning by condition.
Contrary to our hypotheses (H1), children in theNo Entrainment
condition correctly identified more target words than children
in the Entrainment condition (Figure 2B). This could be for
several reasons. A prior study found that a robot tutor that
employed social adaptive behaviors led to lower learning gains
than a robot that did not act as socially (Kennedy et al., 2015).
Thus, perhaps the entraining robot was perceived more socially,
which was detrimental in learning. This is contrary to our
hypotheses regarding the importance of social behavior, rapport,
and relationship in language learning with peers. However, in the

prior study, children performed a math task with the robot tutor.
The authors hypothesized that perhaps children were paying
attention to the robot’s social behavior as opposed to the lessons
it was providing, or, alternatively, that the social behavior placed
greater cognitive load on children thus inhibiting their ability
to perform in the math task. Performance on a math task in
a tutoring format may indeed benefit less from a robot’s social
behaviors than performance in a language-based story activity in
a peer-learning format.

A second explanation pertains to the learning results we
observed. There was a ceiling effect and little variance in
children’s responses, with 43% of children correctly identifying
all six target words, and 41% correctly identifying 5 of the
target words. If a significant number of children were already
familiar with the target words, then the vocabulary tests would
not reflect their learning during the task with the robot; the
difference between conditions may not reflect children’s learning
in the task. Furthermore, given that children’s receptive language
abilities may precede their expressive abilities (Bloom, 1974;
Ingram, 1974; Sénéchal, 1997), we would expect that children
who correctly identified more words to also use more of
them in their stories (H2), reflecting greater understanding and
deeper encoding of the words (this was also seen in the prior
study, Kory Westlund et al., 2017b). However, we did not see
this correlation: children’s use of the target words was not
significantly correlated with correct identification of the words.
In fact, children’s use of the target words was significantly greater
in the E-B condition than all others, in line with our hypotheses
(H3) (Figure 3). Additionally, while the patterns were not
significant, children weremoderatelymore likely to use the words
if they had identified them correctly in the Entrainment condition
than in the No Entrainment condition. These results suggest that
the robot’s rapport- and relationship-building behaviors affected
either or both of (a) children’s learning and deeper understanding
of the words such that they were more able to expressively use
the words, or (b) children’s mirroring of the robot’s speech such
that they used more of these target words, both of which would
be in line with prior work linking rapport to learning (Sinha
and Cassell, 2015a,b). This was also a short-term encounter.
Given the positive aspects we see here regarding word use and
mirroring, we expect that over multiple sessions, we would see
greater differences in word learning.

When we examined children’s mirroring of the robot’s speech,
we saw that children did mirror the robot (H2, Figures 3, 5),
in line with past work suggesting that children may mirror
adults’ syntax and speech (Huttenlocher et al., 2004) and earlier
work in human-computer interaction showing that adults will
entrain to computers and robots (e.g., Pearson et al., 2006;
Lubold et al., 2018). However, we saw no significant differences
in children’s emulation of the robot’s phrases, and in fact, less
overlap in the number of unique words used by children that
mirrored the words the robot used in the E-NB condition, and
little difference among the other conditions (contrary to H3).
This suggests that perhaps entrainment did not affect children’s
mirroring of the words the robot used somuch as their expressive
ability to use the key words present in the story. Prior work
has shown that social robots can be successful at prompting
children to demonstrate expressive vocabulary skills in both
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FIGURE 13 | (A) Older children rated the robot as closer in the IOS task. Children who rated the robot as closer were more likely to (B) use the target words in their

stories and (C) emulate the robot’s phrases. (D) Children who placed the robot closer to the human in the Picture Sorting Task were also more likely to emulate the

robot.

vocabulary test and storytelling contexts (e.g., Kory and Breazeal,
2014; Kory Westlund et al., 2017b; Wallbridge et al., 2018). The
present study suggests that the robot’s entrainment may influence
expressive ability.

The lack of difference in phrase mirroring was counter to
our hypotheses (H3). Perhaps children did not feel sufficiently
more rapport with the entraining robot for this to affect their
storytelling. Indeed, in all conditions, the robot was a friendly,
expressive character, which children generally said they felt
close to—as close as to pet or parent, though less close than
to a best friend. The entrainment only affected the robot’s
speech and some animations (which were played primarily in
accompaniment with speech). In particular, if a child was very
shy and rarely spoke, then the robot had fewer opportunities
to adapt and entrain to that child. Perhaps greater difference
would be seen if the robot also entrained other behaviors, such
as posture, gesture, or word use. Another explanation is that
perhaps language mirroring is not as closely linked to rapport as

we expected; there is limited research so far suggesting this link,
and more is needed.

5.2. Rapport, Relationship, and Social
Behavior
The robot’s entrainment and backstory also affected children’s
displays of positive emotions during the interaction. All
children were engaged, but children in the E-B condition
showed more positive emotions (e.g., joy, laughter, smiles, and
positive valence), as well as fewer negative emotions (e.g.,
disappointment, fear) (supporting H5 andH6; see Figures 7–10).
Laughter and smiling are social behaviors (Provine, 2001; Smidl,
2006; Manson et al., 2013). We also saw trends for children to
be more helpful and accommodating in the E-B condition, as
one might expect with a more social agent (Reeves and Nass,
1996), as evidenced by their behavior with fourth picture, the
sticker task, and the goodbye gift. This is evidence that the robot’s
entrainment and backstory improved children’s enjoyment of the
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interaction and may have perceived it as more of a social agent,
perhaps a result of increased rapport (supporting H5 and H6).

Children in the E-B condition also showed fewer attentive
expressions, though only during the first half of the interaction
(they did not differ later on). This could mean that these children
were in fact less attentive initially, or it could mean that they were
showing more positive attentive expressions that were coded by
the affect recognition software as engagement and joy. If they
were less attentive, we might expect this to be reflected in their
vocabulary scores and story retellings—perhaps this is why these
children did not identify as many words correctly. However,
children in the E-B condition showed just as many expressions
of engagement as children in the other conditions, were just as
likely to retell the story, and as noted earlier, there were few
significant differences by condition in children’s story retellings
beyond more use of the target words by children in the E-B
condition. An alternative explanation is that perhaps children’s
attentive looks were related to how much cognitive effort was
involved in performing the task. The robot’s entrainment and
backstory could have improved rapport and made the interaction
more fluent, easier, and smoother, thus requiring less intense
attention by children. This would be especially apparent earlier
in the interaction, immediately following the robot’s backstory
disclosure and during the picture conversation task, when the
robot was entraining more frequently due to the increased
number of conversational turns during that task.

Related to this, we saw that children’s attention increased over
time in the B condition, but decreased in the NB condition, while
multiple negative emotions (fear, disappointment, sadness) were
displayed more frequently over time in the B condition than in
the NB condition. For all other affective states measured, the
change over time was not significant, though there were patterns
for decreases in positive affect (e.g., joy, smiles, etc.) over time
for all children. If children’s attentive expressions were related
to cognitive effort, this could indicate that in the B condition,
children felt that over time, they had to attend more carefully to
the robot (putting in more effort) in order to help it and deal with
its hearing limitations. This could, perhaps, have led to increased
feelings of difficulty interacting with the robot over time, which
could have led to the increased displays of negative emotions that
we observed in the B condition.

Regarding the decrease in attention in the NB condition, it
may be that these children became less attentive because they
were growing bored or were not as invested in the interaction.
Indeed, while not statistically significant, children’s engagement
did decrease slightly more over time in the NB condition than
in the B condition. There were also no affective states for which
children in the NB condition increased their expression over
time, suggesting that they became less expressive overall, which
may be indicative of boredom or less emotional investment in
the interaction.

We observed that children showed greater acceptance of
the robot when they had heard the robot’s backstory, as we
expected (H4; Figure 6). Children’s increased negative affect seen
in the B condition may also reflect increased sympathy for
the robot. Regardless, it seems that the robot’s story influenced
children’s perceptions of it, in line with prior work showing

that a robot’s story does influence how people understand and
react to it (Stenzel et al., 2012; Klapper et al., 2014; Darling
et al., 2015; Kory Westlund et al., 2016b). Interestingly, this
effect seemed to carry over to children’s ideas about being friends
with other children. While only a trend, it suggests room for
future interventions using robots to help children understand
and accept others different from themselves.

As noted above, children generally felt as close to the robot
as they did to a pet, favorite toy, or parent, though not quite so
close as to their best friend (Figure 11A). They generally placed
Tega closer to the human adult than the table in the Picture
Sorting Task, and frequently close to the human baby and to
the cat (Figures 11B, 12). These results present an intriguing
picture regarding children’s perceptions of the robot as a peer- or
friend-like, non-human, animate entity. Children did not confuse
the robot with a human; they knew it was different. Children
seemed to clearly find companionship in the robot and to place
it in a category between friend, pet, and authority figure. It
was not merely a machine or computer; it was seen as more
animate and alive—but not in the same category as a human. This
jibes with prior work suggesting that children may categorize
robots as in-between entities, with attributes of both living beings
and mechanical artifacts (Kahn et al., 2002, 2012; Severson and
Carlson, 2010). Perhaps children observed that some of the things
that are messy about human relationships, such as the kinds of
conflict that arise and the emotions that others display, are not
the same in robot relationships—perhaps they are more like pet
relationships. In this case, the robot did not get overly upset
when it did not receive the sticker it wanted in the sticker task; it
was generally cheerful throughout the interaction, which perhaps
would not have been the case with another child. It is also likely
that the robot’s morphology influenced children’s perceptions,
since the robot we used was fluffy, colorful, and moved more like
an animated character or sidekick than a humanoid being.

In support of our hypotheses regarding the connection
between children’s feelings of closeness, rapport, and relationship
with learning and mirroring the robot (H7), we observed that
children who rated the robot as closer to themselves also used
the target words more often and emulated the robot’s story more
(Figure 13). This is in line with earlier work linking rapport to
learning (Sinha and Cassell, 2015a,b). However, we also saw that
age correlated with children’s ratings of Tega on the IOS task.
Older children rated the robot as closer; younger children as less
closer. Perhaps younger children were less sure of the robot and
needed more time to become comfortable with it. Given these
correlations, we might suspect that age was more relevant to
children’s use of the target words and emulation of the robot’s
story than children’s closeness ratings. However, children’s age
did not correlate with children’s emulation of the robot’s phrases
at all, which suggests that this emulation was in fact related to
children’s feelings of closeness.

Finally, we also observed a few age differences. The length of
children’s story retellings differed with respect to their age, but
did not vary by condition (Figure 4). Notably, the stories told by
6- and 7-year-old children were longest. The stories of 8-year-old
children were not quite so long, which may have been because
they were less interested in the story, rather than less capable. The
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story and activity were designed with 4–7-year-olds in mind. The
story may have been a little on the difficult side for the younger
children, and on the easy side (and thus perhaps a little boring)
for the oldest. However, even the children outside the target age
range for the activity were receptive to the social robot, showing
engagement, learning, and emulation.

Taken together, these results show that the robot’s rapport
and relationship-building behaviors do matter in interactions
with young children. A robot that deliberately emulates a child’s
speech in a way similar to how people mirror each other can elicit
more positive emotion and greater emulation of key words in
a language learning activity. Children’s feelings of closeness are
related to their emulation of the robot’s words in their stories.

5.3. Relation to Related Work
Our results also mirror, to an extent, the results in the
prior study that explored a robot’s use of expressive vs. flat
speech (Kory Westlund et al., 2017b). In both studies, the
robot’s entrainment, backstory, and expressivity reflected the
sensitivity the robot showed to the interaction. This sensitivity
influenced children’s engagement and learning. This is in
line with work examining nonverbal behaviors in human-
human learning interactions, in particular, nonverbal immediacy.
Nonverbal immediacy refers to the perceptual availability of one’s
interaction partner, i.e., the use of nonverbal behaviors including
gaze, gesture, posture, facial expressions, and vocal qualities such
as prosody to signal general responsiveness and attentiveness.
In human-human learning interactions, nonverbal immediacy
has been linked to increased learning gains (Mehrabian, 1968;
Christophel, 1990; Witt et al., 2004). When we examine prior
child-robot interaction studies, we see that they have found
a similar pattern of results to these human-human studies:
The use of nonverbal immediacy behaviors including socially
contingent behavior, appropriate gaze and posture, and vocal
expressivity increased children’s learning, engagement, and trust
in a learning companion (Breazeal et al., 2016a; Kennedy et al.,
2017; Kory Westlund et al., 2017a,b). Thus, it may be that the
entrainment behaviors used by the robot increased its perceived
immediacy and perceived sensitivity to the interaction.

However, in other work on language learning with social
robots, the robot’s social interactive capabilities have been found
to influence children’s relationships and social acceptance of
the robot, but not their learning (e.g., Kanda et al., 2004,
2007, 2012). Indeed, some work has shown no significant
differences in children’s word learning from a social robot (with
numerous embodied social capabilities) than from a tablet (e.g.,
Kory Westlund et al., 2015; Vogt et al., 2019). Arguably, these
studies suggest a contrary story in which the robot’s social
capabilities may not affect children’s learning that much.

These studies, however, have generally included learning
tasks that did not require a robot or much social behavior
for learning to proceed. For example, the second language
learning activities used by Vogt et al. (2019) involved educational
games presented on a tablet, for which the robot provided
instructions, feedback, and support, but in which—as the authors
acknowledge—the robot appeared to be non-critical for the
learning interaction. The robot’s social behaviormaymatter more
for conversation and storytelling-based activities than for tablet

games or simpler word learning tasks. Thus, we suspect that
the robot’s social capabilities (such as nonverbal immediacy)
can influence children’s learning—as we have seen here and in
multiple other studies discussed earlier—but that the influence
of social behavior is moderated by other factors, such as the
extent to which the robot’s sociality is necessary for the learning
activity to proceed smoothly (as in the case of conversation and
storytelling-based activities), and the extent to which the robot’s
social behavior helps build rapport.

This hypothesis is supported by Lubold and colleagues’ recent
work with middle school children and adults, in which a
social robot with vocal entrainment contributed to increased
learning on math tasks, though not increases in self-reported
rapport (Lubold et al., 2016, 2018; Lubold, 2017). Because the
vocal entrainment served not only to match pitch and other vocal
features, but also made the robot’s text-to-speech voice much
more expressive, these studies could not disentangle the effects
of expressivity from entrainment—however, both expressivity
and entrain increase the robot’s social capabilities. Our results
here are similar to Lubold et al.’s, in that we also found that
the robot’s vocal entrainment was related to learning, but unlike
Lubold’s work, we also found connections between the robot’s
entrainment and aspects of children’s relationship and rapport,
including increased positive emotion and language emulation.
This difference could be for numerous reasons, including the
different age groups studied, the different learning matter (math
vs. language), and the additional social and expressive capabilities
of our robot.

Our results also extend prior work showing that children
learn through storytelling with peer-like robot companions
in ways that are significantly different from how children
learn and engage with other technologies. We are seeing a
peer learning dynamic similar to that seen in child-child
interactions. Children socially model and emulate the behavior
of the robots, like they do with other children. For example,
children are more emotionally expressive when the robot is
more expressive (Spaulding et al., 2016), show more curiosity
in response to a robot’s increased curiosity (Gordon et al.,
2015), teach new tasks to robot peers (Park and Howard, 2015),
and emulate linguistic phrases and vocabulary (Kory Westlund
et al., 2017b). This study extends these previous works to
explore not only whether children will learn with and emulate
a robot peer, but the mechanisms by which robots can influence
peer learning. Rapport and relationship appear to be two
such mechanisms.

5.4. Limitations
This study had several limitations. First, we did not control
for children’s individual differences, particularly with regards to
learning ability, language ability, or socio-economic status, all
of which may affect individual children’s social interactions and
learning with the robot. Furthermore, we did not obtain an equal
number of children at each age group to participate in the study.
Future work should examine amore homogeneous sample as well
as explore the stability of results across individual differences and
across ages as children grow older.

We also lacked complete story retelling data and affect data
for all children. Some children did not retell the story and in
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a few cases, we had issues regarding the audio quality of the
recorded stories. Some children’s faces were not recognized
by the Affdex software, and a few videos were missing or
insufficiently captured a full frontal view of the children’s faces,
which was necessary for affect recognition. As a result, the
analyses reported are underpowered. Future work should take
greater effort to obtain quality audio and video recordings for all
children during the study.

As mentioned in Kory Westlund et al. (2017b), the target
vocabulary words were uncommon, but some children still
may have known them. In particular, older children may have
been familiar with some of the words, given the correlation
we observed between children’s age and the number of words
identified correctly. The words’ uncommonness may have cued
children to pay attention to them; as such, future work should
consider using nonce words or include a vocabulary pretest.
Including a vocabulary pretest would also help ensure that
children’s language abilites did not differ by condition.

The robot’s automated entrainment was limited to its speaking
rate and pitch, so if a child was very quiet or spoke rarely, the
robot would not have been able to entrain to that child. Because
volume and exuberance were teleoperated, these occurred for all
children. Future work could explore ways of encouraging shy
children to speak up, or explore othermodalities for entrainment,
such as posture, gesture, facial expressions, and word use.

It is also unclear how generalizable the results are to robots
with different embodiments or morphologies. The Tega robot
that we used appears much like a fluffy stuffed animal, and
thus is morphology could be seen as more familiar to children
than a robot such as the Aldebaran NAO, which is humanoid.
Childrenmay feel a different level of comfort or uncanniness with
a humanoid robot than with the Tega robot.

Finally, this study explored only a single one-on-one
interaction with the robot. As such, any overall effects could
be related to the novelty of the robot. However, children had
the same amount of exposure to the robot in all conditions,
so novelty cannot explain the differences we observed between
conditions regarding the effects of entrainment and backstory.

Because learning tends to happen over time, as does the
development of relationships, future work should explore
longitudinal interactions to help us better understand the
relationship between learning and rapport. Furthermore,
children are frequently accompanied by friends and siblings in
educational contexts. We do not know how multiple encounters
with the robot or how interacting in groups might affect
children’s development of a relationship and rapport with
the robot. Exploring group interactions that include multiple
children, or children in concert with parents and teachers, could
help us learn how to integrate robots into broader educational
contexts and connect learning with peers to learning in school
and at home.

6. CONCLUSION

In this work, we explored the impact of a robot’s entrainment and
backstory on children’s engagement, rapport, relationship, and
learning during a conversation and story activity. We found that
the robot’s rapport- and relationship-building behaviors affected
children’s emulation of the robot’s words in their own stories,
their displays of positive emotion, and their acceptance of the
robot, and their perception of the robot as a social agent. This
study adds to a growing body of work suggesting that the robot’s
social design impacts children’s behavior and learning. The
robot’s story, use of relationship behaviors, nonverbal immediacy
and rapport behaviors, social contingency, and expressivity are all
important factors in a robot’s social design.
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